

Data Science in Python

Volume 2.

Plots and Charts with Matplotlib

Data Analysis with Python and SQLite

Alexander Stepanov

Introduction

Graphs with matplotlib.

Create a figure

Size, resolution, and background

Axes limits

Title

Plotting

Set line properties with named parameters

Set properties of individual lines

Adjusting lines

Legend parameters

Legend position

Number of markers in a legend.

Legend font size, title, columns, transparency

Error bars

Error bar legend label

Customizing pyplot with a resource file

Bar graphs.

Setting your own x ticks

Bar plot error bars

Bar charts showing several series

Stacking bars

Histogram

Kernel density distribution and violin plots

Kernel density estimation

Violin plots

Color schemes

Predefined color schemes

Color schemes from color maps

Black and white plots

Plotting 2D arrays.

Color mapped image

Contour plot

Figures with multiple plots

Sharing an axis among several subplots

Breaking the Y axis

Interaction

Animation

Networks

Databases

SQLite

Single system-wide database with SQLite

GUI tools for SQLite

Connecting to database

Creating a table

Importing data

Querying databases

Filtering

Sorting

Working with multiple tables

HAVING a clause to filter by count(*)

Joining tables

Indexing database

Views

Aliases and joining rows of the same table

Querying database from Python

Introduction

Python is the most popular programming language in scientific computing today. It is simple, clear, and powerful. It works on Windows, Mac, Linux, and various other platforms. An excellent introduction to Python can be found in Python’s online help. In the real world data analysis, Python serves as a glue for many mature extension libraries that have become the de-facto standard.

This book is for people who want to start using Python and its popular extension libraries in their work quickly. The best way to start is to install a scientific python distribution, such as

Anaconda

 -
 available for Windows, Mac, and Linux or

Winpython

 -
 available on Windows, that supply many necessary extension libraries. The installation process is described in the

introductory volume 1

 of this series. You might also want to look at

volume 2

 of this series, that describes how to read tabular data, save it as text or Microsoft Excel file, explore data interactively with Ipython notebook, create GUI application with TkInter, package your program for deployment on other computers, do efficient computation with Numpy, run Python at the speed of compiled program on all cores of your processor. I assume that you have a scientific Python bundle installed on your machine and know how to start the Jupyter notebook we are going to use for most examples.

Graphs with matplotlib.

Although there is plenty of spreadsheet and graphing software, there are certain advantages in making your graphs programmatically. Here is a nonexclusive list

	
You can automate complex workflows

	
Combine graphing with data acquisition in real time

	
Create your own graph types and variations

	
Annotate your graphs automatically

	
Use custom curve fitting

	
Include output of machine learning packages

	
Alter parameters interactively

	
Produce animated graphs

Matplotlib is the most popular Python graph library. It can be as simple or as complex as you want it to be. It is possible to quickly test ideas or create publication quality graphs. This book is for scientists; so, I'll show features we are likely to need, but some of which are hard to find in admittedly great online documentation.

As usual, I'll use the IPython notebook for my examples. It is easy to tweak the graph interactively in the notebook, and, as soon as you like the result, copy and paste it into your favorite word processor or presentation program. Of course, examples can be easily adapted for standalone applications.

Create a figure

import
 matplotlib.pyplot as plt

make plots inline images

%matplotlib inline

plt.figure
 (
 figsize=
 (
 12
 ,
 8
)
 ,
 # figure dimensions in inches

 dpi=
 100
 ,
 # resolution

 facecolor=
 '1.0'
)
 # white opaque background

plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 15
])

 # X and Y axes ranges

plt.title
 (
 "My first plot"
 ,
 # plot title

 fontsize=
 24
)

 # Title font size

plt.tick_params
 (
 labelsize=
 20
)

 # tick label font size

plt.xticks
 ([])

 # here is how to kill ticks

 # you can list just the ticks you want

plt.show
 ()

 # show the plot

The Pyplot library needs to be imported to use plotting commands
 .
 %matplotlib inlin
 e
 tells IPython notebook to inline images. They become like any image in your browser so you can easily copy them with a right mouse click or a ctrl-mouse click on Mac. This makes it easier to transfer plots into your favorite word processor or presentation software. Without inlining, images will appear in a separate window. You can still save them, for example, in pdf format and import them into other programs

Size, resolution, and background

plt.figure
 (
 figsize=
 (
 12
 ,
 8
)
 , dpi=
 100
 , facecolor=
 '1.0'
)

Figure command is not strictly necessary, but it allows us to set some useful plot parameters. Larger figures look better; so, it is handy to increase plot size with the figsiz
 e
 parameter accepting a tuple of (width, height) in inches. Most publications demand a certain resolution, and you can request the necessary resolution with the dp
 i
 parameter. If you skip figure command and try to paste an image into Microsoft Power Point, you will discover a black space around your plot which makes black tick labels invisible. I think it is a Power Point issue with handling transparency and the default figure background is transparent. Setting it to opaque white with the facecolo
 r
 parameter doesn't alter how the plot looks in notebook, but solves the black edges problem in Power Point.

Axes limits

plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 15
])
 # pass a list of Xmin, Xmax, Ymin,Ymax

You don't have to set limits for the X and Y axis. Defaults are often OK. But, sometimes you want to leave some extra spaces at the edges or zoom in on some details, and setting the axes limits manually comes in handy. So, I show how to do it in case you want to.

Title

plt.title
 (
 "My first plot"
 , fontsize=
 24
)

You can give your figure a title. Sure you can do it in Power Point later, but sometimes Notebook is the final product and sometimes you want to generate a title automatically so this is how you do it.

Plotting

The plot command allows you to make simple line or scatter plots.

This command is pretty versatile. You can plot just Y values assuming X is 0,1,2..N

plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
])

Alternatively, you can supply both X and Y values as sequences of equal length

plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
])

You can supply the third argument that will define color, marker, and line style. The default is no line which makes it a scatter plot.

plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
]
 ,
 "rs--"
)

	

Color

	

Marker

	

Line

	

r

	

red

	

o

	

circle

	

-

	

Solid line

	

g

	

green

	

^V

	

Triangle up, down,

	

--

	

Dashed line

	

b

	

blue

	

<>

	

Triangle left,right

	

-.

	

Dash-dot

	

c

	

cyan

	

s

	

square

	

:

	

Dotted line

	

m

	

magenta

	

*

	

star

	

	

	

y

	

yellow

	

p

	

pentagon

	

	

	

k

	

black

	

H, h

	

Hexagon 1 and 2

	

	

	

w

	

white

	

+

	

plus

	

	

	

	

	

x

	

X

	

	

	

	

	

D

	

diamond

	

	

	

	

	

d

	

Thin diamond

	

	

	

	

	

|

	

Vertical line

	

	

	

	

	

_

	

Horizontal line

	

	

More than one line can be plotted at once. For this, several pairs of X and Y values and possibly style strings have to be passed. Alternatively, you can pass 2D arrays. Then, X and Y values for plot lines will be taken from the columns.

Set line properties with named parameters

Unnamed parameters defining lines can be followed by named parameters defining characteristics of all lines drawn. For instance, line width.

plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
]
 ,
 "rs--",
 linewidth
 =
 3
)

Set properties of individual lines

A named parameter is applied to all lines plotted by the command. That might be what you want for the linewith parameter, but probably not for thr label parameter that defines the label for the line in the plot's legend. To pass different named parameters, just plot lines using separate commands

import
 matplotlib.pyplot as plt

%
 matplotlib inline

plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
]
 ,
 "rs--"
 , label=
 "My red line"
)

plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,
 [
 4
 ,
 2
 ,
 7
 ,
 6
]
 ,
 "g^--"
 , label=
 "My green line"
)

plt.legend
 ()
 # show the legend

plt.show
 ()

Adjusting lines

But how can you define line parameters if you passed X and Y as 2D arrays and lines were plotted from the columns? Matplotlib cycles through colors and marker types, and I will show how to explicitly define these cycles, but how about the legends?

Plot command returns a sequence of Line2D objects for each plotted line. So, you can adjust each line later using the

 setp(
)
 function, which takes a line and several named arguments that set the line's parameters. Let’s generate a 4x4 numpy array and plot its columns - giving each a separate label.

import
 numpy as np

import
 matplotlib.pyplot as plt

%
 matplotlib inline

Y=np.random.rand
 (
 4
 ,
 4
)
 # 4x4 array of random numbers

lines=plt.plot
 (
 Y
)
 # plot columns as lines

use enumerate to iterate over lines

to get both line and its number

for
 i,l
 in
 enumerate
 (
 lines
)
 :

 plt.setp
 (
 l,label=
 "Line "
 +
 str
 (
 i
 +1
))

plt.legend
 ()

plt.show
 ()

plt.setp
 (
 lines
)
 # print all line's parameters

The last string prints all the line's parameters that you can adjust using the setp(
)
 function or set as named parameters in a plot(
)
 function.

Legend parameters

The functio
 n
 legend(
)
 takes several named parameters allowing you some pretty fine control over the legend's appearance.

Legend position

The loc parameter controls legend's position. It might be a tuple containing the X and Y position of the label or a string. Allowed strings are the 'best' to let pyplot choose the legend's position automatically or a combination of strings setting the vertical and horizontal position.

	

Legend positioning

	

Vertical

	

Horizontal

	

'upper'

	

'left'

	

'center'

	

'center'

	

'lower'

	

'bottom'

Examples:

plt.legend
 (
 loc=
 (
 'upper left'
)

plt.legend
 (
 loc=
 (
 loc=
 (
 0.01
 ,
 0.8
))

If the location is set as tuple, it sets the position of the lower left legend's corner relative to the plot. The lower left plot corner has the coordinate 0,0. The upper right - 1,1. Coordinates larger than 1 or smaller than 0 put the legend outside the plot area.

Number of markers in a legend.

By default, the legend will show two markers and the line between them. It is rather unusual, and, for instance, if you use no line to show a scatter plot, it might be distracting and annoying. You can set the number of markers in the legend with theparameter

 numpoints

plt.legend
 (
 numpoints=
 1
)

There is a specialized function for plotting scatter plots. It uses different numbersof markers in the legend, but the default is even worse – 3. You can control how many markers will show in a legend for scatter plots with another named paramete
 r
 scatterpoints

plt.legend
 (
 scatterpoints=
 1
)

Legend font size, title, columns, transparency

Among other parameters, you are most likely to use:

	
fontsiz
 e
 to adjust legend's font size.

	
framealph
 a
 set between 0 and 1, allows you to make legend semitransparent. It might come handy for instance if you have a super busy plot

	
ncol
 s
 allow you to split the legend in several columns if you have too many lines or would rather have the legend place them side by side .

	
titl
 e
 in case you want to give your legend a separate title

Even more parameters can be found in online

documentation

 .

Error bars

All the versatility of the plot(
)
 command will not satisfy many scientists. We need error bars in our line plots. There is a special function for this called errorbars()

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

line,caps,bars=plt
 .
 errorbar
 (

 [
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,

 # X

 [
 1
 ,
 4
 ,
 9
 ,
 16
]
 ,

 # Y

 yerr
 =
 5
 ,

 # Y-errors

 fmt
 =
 "rs--
 "
 ,

 # format line like for plot()

 linewidth
 =
 3
 ,

 # width of plot line

 elinewidth
 =
 2
 ,

 # width of error bar line

 ecolor
 =
 'k
 '
 ,

 # color of error bar

 capsize
 =
 1
 0
 ,

 # cap length for error bar

 capthick
 =
 2

 # cap thickness for error bar

)

errorbar() returns line caps and bars separately

I would recomment you give label to returned line

Otherwise legend marker will include error bars.

plt
 .
 setp
 (
 line,label
 =
 "My error bars"
)

plt
 .
 legend
 (
 numpoints
 =
 1
)

plt
 .
 show
 ()

Just lik
 e
 plo
 t
 , the functio
 n
 errorbar(
)
 takes two sequences for X and Y . In addition,it takes named parameter
 s
 xer
 r
 an
 d
 yer
 r
 , representing X and Y errors. Usually, those are sequences of the same length as X and Y.I use scalar for simplicity. Eithe
 r
 xer
 r
 o
 r
 yer
 r
 can be missing.

You can still use a plot()-like style string to set color, line style, and marker style, but now it is passed as the named parameter fmt.

Essentially, you control line, error bar, and error bar cap with color separate. Additionally, you control the length of the error bar cap through named parameters:

	

Parameter

	

Line

	

Error bar

	

Cap

	

color

	

colo
 r
 or throug
 h
 fmt

	

ecolor

	

Same as error bar

	

width

	

linewidth

	

elinewidth

	

capthick

	

length

	

	

yer
 r
 o
 r
 xerr

	

capsize

Error bar legend label

You can provide a label for inclusion in the legend as a named parameter to the errorbar(
)
 function, but this will give you a marker with error bars in the legend, which you probably don't want. The functio
 n
 errorbar(
)
 returns 3 values: a plotline representing a line just like the plot(
)
 function does, caplines, and barlinecols - representing the error bar caps and error bar lines. I would recommend you keep the returned plot line and assign a label to it for inclusion in the legend using the setp(
)
 function.

line,caps,bars=plt
 .
 errorbar
 (

 [
 1
 ,
 2
 ,
 3
 ,
 4
]
 ,

 [
 1
 ,
 4
 ,
 9
 ,
 16
]
 ,

 yerr
 =
 5
 ,

 fmt
 =
 "rs--"
)

plt
 .
 setp
 (
 line,label
 =
 "My plot with error bars"
)

Customizing pyplot with a resource file

Pyplot has lots of styling options. Instead of setting them programmatically, you can collect them in a matplotlibrc file in your working directory. Besides a matplotlibrc file in the working directory applied to the current program, there might be a user and system-wide matplotlibrc file. Read more on this in

online documentation

 . It also provides a default matplotlibrc file as a sample.

The settings in a matplotlibrc file are divided into sections. These settings are read at startup and are accessible to your program through:

	
pyplot.rcParam
 s
 – a dictionary that ha
 s
 'section.option
 '
 strings as keys or

	
pyplot.rc(
)
 -
 a
 helper function that takes a section name as a string and allows the user to set options through named parameters.

Instead of setting an error bar cap size for each plotted line, you can create a custom matplotlibrc file redefining default value or adjust it in memory.

plt
 .
 rcParams
 [
 'errorbar.capsize'
]
 =
 10

or

plt
 .
 rc
 (
 'errorbar
 '
 , capsize
 =
 10
)

We will use both approaches later to adjust different default settings. Adjusted settings persist in the Python kernel running IPython notebook. So after trying out a new setting,we might want to restore defaults. There is a special function for this in pyplo
 t
 rcdefaults()

plt.rcdefaults
 ()

Bar graphs.

Another graph type popular with scientists is the bar graph. The pyplot command to draw bar graph i
 s
 bar(
)
 . Drawing bar plots in pyplot is a little more involved than in most graphing software. You must supply at least two parameters: the X coordinates of each bar and their heights. Fortunately,X coordinates for evenly spaced bars are easy to generate b
 y
 range(
)
 o
 r
 numpy.arange(
)
 functions :

import
 numpy as np

import
 matplotlib.pyplot as plt

%
 matplotlib inline

X=np.arange
 (
 4
)

plt.bar
 (
 range
 (
 4
)
 ,
 [
 1
 ,
 4
 ,
 9
 ,
 16
])

plt.xticks
 (
 X
 +0.4
 ,
 (
 'A'
 ,
 'B'
 ,
 'C'
 ,
 'D'
))

plt.show
 ()

The usual parameters; colo
 r,
 edgecolo
 r
 , and linewidt
 h
 apply and define the bar area color, without the bar edge, and edge color.

Setting your own x ticks

Default X-ticks often don't make sense for a bar plot; so,you might want to set your own and learn how to do it in process. You can define your own ticks wit
 h
 xticks(
)
 an
 d
 yticks(
)
 functions supplying a sequence of ticks positions and labels. The default bar width is 0.8, so we shift tick positions by half the width of a bar to position a label under the bar center

plt.xticks
 (
 X
 +0.4
 ,
 (
 'A'
 ,
 'B', 'C', 'D'
))

Bar plot error bars

Us
 e
 yer
 r
 (o
 r
 xer
 r
) named parameters to add error bars. It might be scalar or a sequence of the same length as the number of bars. The errorbar function is called internally to draw error bars and you can pass it the same parameters
 (
 ecolo
 r,
 elinewidth, capsize, capthic
 k
) as a dictionary usin
 g
 error_k
 w
 named parameter.

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

plt
 .
 bar
 (
 range
 (
 4
)
 ,
 [
 1
 ,
 4
 ,
 9
 ,
 16
]
 ,

 yerr
 =
 2
 ,

 error_kw
 =
 {
 'ecolor
 '
 :
 'k
 '
 ,

 'elinewidth
 '
 :
 2
 ,

 'capsize
 '
 :
 1
 0
 ,

 'capthick
 '
 :
 2
 }

)

plt
 .
 show
 ()

Bar charts showing several series

To display two series of bars side by side, the X values of the second series need to be adjusted. You can either space bars wider or make them narrower using the wit
 h
 parameter. Additionally, you might want to use different colors for different series:

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

x_positions=np
 .
 arange
 (
 4
)

plt
 .
 bar
 (
 x_positions
 ,
 [
 1
 ,
 4
 ,
 9
 ,
 16
]
 ,

 width
 =
 0.4
)

 # make first series bars narrow

plt
 .
 bar
 (
 x_position
 s
 +0.
 4
 ,
 # shift second series by 0.4

 [
 3
 ,
 2
 ,
 5
 ,
 10
]
 ,

 width
 =
 0.
 4
 ,

 # make bars narrower

 color
 =
 'r'
)

 # make second series red

plt
 .
 xticks
 (
 X
 +0.
 4
 ,
 (
 'A
 '
 ,
 'B
 '
 ,
 'C
 '
 ,
 'D'
))

plt
 .
 show
 ()

Stacking bars

The bar function accepts another useful parameter, botto
 m
 , that allows the user to stack series on top of each other. It this case, the bar height of the first series serves as the bottom for the second. The sum of heights might serve as the bottom of the third series and so on.

import
 numpy as np

import
 matplotlib.pyplot as plt

%
 matplotlib inline

X=np.arange
 (
 4
)

Y1=np.random.rand
 (
 4
)

Y2=np.random.rand
 (
 4
)

Y3=np.random.rand
 (
 4
)

plt.bar
 (X
 ,Y1, label=
 "Series 1"
)

plt.bar
 (X
 ,Y2,bottom=Y1, color=
 'r'
 , label=
 "Series 2"
)

plt.bar
 (X
 ,Y3,bottom=Y1+Y2, color=
 'g'
 , label=
 "Series 3"
)

plt.xticks
 (
 X
 +0.4
 ,
 (
 'A'
 ,
 'B'
 ,
 'C'
 ,
 'D'
))

plt.legend
 ()

plt.show
 ()

Histogram

The histogram is a variety of bar chart useful to show statistical distributions. It accepts an unordered sequence of values, assigns it to a given number of bins (10 by default), and shows as a bar plot. It cannot show error bars, but, on the other hand, you don't need to worry about positioning bars or adjusting their width - they are positioned and adjusted automatically. You can still stack series on top of each other.

The following plot shows histograms for normal and Laplace distributions of 10,000 samples. Just for fun, I’ll show you how to use Greek symbols in labels.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

Y1=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 10000
)

Y2=np
 .
 rando
 m.
 laplace
 (
 2
 0
 ,
 2
 ,
 10000
)

plt
 .
 hist
 (
 Y1, bins
 =
 5
 0
 , label=
 r
 'Normal
 $
 \
 m
 u$ =0,
 $
 \
 s
 igma$ =5'
)

plt
 .
 hist
 (
 Y2, bins
 =
 5
 0
 , label=
 r
 'Laplace
 $
 \
 m
 u$=20,
 $
 \
 s
 igma$=2'
)

plt
 .
 rcParams
 [
 'mathtext.default'
]
 =
 'regular'

plt
 .
 legend
 (
 loc
 =
 'upper left'
)

plt
 .
 show
 ()

Greek symbols are enclosed in $ signs and preceded by a backslash. These strings are passed to the TeX renderer as is. So,we use Python's raw string literals
 r
 '
 '
 to let the interpreter know that the backslash should not be interpreted as an escape character. If you don’t have TeX installed you can download a distribution for your system at

LaTeX web site

 . For more information on rendering special mathematical symbols in pyplot, (including the complete list of Greek symbols) see matplotlib

online documentation

 .

By default, matplotlib uses aspecial font for mathematical symbols that is smaller than normal. Setting plt
 .
 rcParams
 [
 'mathtext.default'
]
 =
 'regular
 '
 enforces the use of the regular font.

Kernel density distribution and violin plots

While we are on it, let’s look at two more ways to show distributions. You have seen that, even with 10,000 samples, a histogram is far from an ideal bell curve. If you have tens or even hundreds of samples, the distribution shape might be hard to see in a histogram plot. Fortunately, the computational power of modern computers can help. A discrete number of samples can be converted into a continuous function using kernel density estimation. Each sample produces, for instance, a Gaussian bell curve, and bell curves from all samples are added. The sigma parameter of the Gaussian bell curve used to create a kernel determines the resolution, allowing you to choose the desired balance between smoothness and resolution.

Kernel density estimation

A scipy library available with all scientific Python distributions provides a convenient object for a Gaussian kernel density estimation. The constructor takes the samples and the desired smoothness.Calling the returned object with a sequence (X) as a parameter returns the sequence of density estimation for every supplied x value:

impor
 t
 numpy as np

fro
 m
 scipy
 .
 stat
 s
 impor
 t
 gaussian_kde

fro
 m
 ipywidget
 s
 impor
 t
 interact

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

samples=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 100
)

xs = np
 .
 linspace
 (
 -1
 0
 ,
 1
 0
 ,
 100
)

de
 f
 plot_kd
 e
 (
 smoothing
 =
 (
 0.0
 2
 ,
 1.
 0
 ,
 0.02
)
)
 :

 plt
 .
 clf
 ()

 density = gaussian_kd
 e
 (
 samples, smoothin
 g
)

 plt
 .
 plot
 (
 xs,densit
 y
 (
 x
 s
))

 plt.sho
 w
 ()

i=interac
 t
 (
 plot_kd
 e
)

The code above requests 100 normally distributed numbers centered around 0 with sigma 5. The slider allows the user to adjust the smoothness factor and function plot_kde plots the density estimation between -10 and 10. With enough smoothing, the density distribution becomes obvious even with 100 samples. You can get an idea of the original data by pulling the slider all the way left - decreasing smoothing and increasing resolution. If you don't supply a smoothing factor, the gaussian_kde object tries to guess the best value for you. Interactive widgets for Jupyter notebook are described in

volume 2

 of these series.

Violin plots

A variation on the theme of kernel density estimation is the violin plot.

It is basically a kernel density estimation graph and its mirror reflection with a colored area between the two. You can easily put several such graphs on a single plot so that they resemble a row of violins. This kind of plot might be used to show how a collection of strains responds to increasing the concentration of a drug to illustrate the trend for the majority of the population. It serves as a nice background to show resistant or hypersensitive strains. The first will respond dramatically well before the majority of population responds, while the second will remain mostly unaffected even at drug concentrations that kill most of the collection.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

n_violines
 =
 5

positions
 =
 range
 (
 n_violine
 s
)

samples
 =
 [
 np
 .
 rando
 m.
 normal
 (
 3
 *
 i
 ,
 3
 ,
 100
)

 fo
 r
 i
 i
 n
 range
 (
 n_violine
 s
)]

result=plt
 .
 violinplot
 (
 samples
 ,
 # list of samples for each violine

 positions,

 #horizontal positions

 points
 =
 10
 0
 ,
 # the more the smoother

 widths
 =
 0.
 8
 ,

 showmeans
 =
 Fals
 e
 ,

 showextrema
 =
 Fals
 e
 ,

 showmedians
 =
 False
)

fo
 r
 v
 i
 n
 resul
 t
 [
 'bodies'
]
 :

 v
 .
 set_facecolor
 (
 'b'
)

 v
 .
 set_edgecolor
 (
 'k'
)

 v
 .
 set_linewidth
 (
 1
)

 v
 .
 set_alpha
 (
 1
)

plt
 .
 show
 ()

A violin plot can be very informative and thefunctio
 n
 violinplot(
)
 has many parameters it can take:

	
a list containing lists of samples for each violin,

	
a list of horizontal positions for violins that resemble an X for a bar plot except that it defines the positions of the centers of violins, not the left edge,

	
point
 s
 determines the resolution for violin curves - the more points the smoother the curve.

	
widt
 h
 has the same meaning as for a bar plot

	
showmean
 s,
 showextrem
 a
 , an
 d
 showmedia
 n
 can display additional descriptive information about each distribution.

Still, you have to use a return value to extract the PolyCollection representing the violin bodies in order to customize the edge and area colors.

Color schemes

Matplotlib default colors are considered too bright for professional use, but you can easily change the color scheme.

Predefined color schemes

Several alternative styles are supplied with matplotlib, including one borrowed from the popular R package ggplot, which is considered better for professional use. To switch to a ggplot color scheme, use command:

plt
 .
 styl
 e.
 use
 (
 'ggplot'
)

If you want to generate your own color scheme, especially if you want to do it programmatically, I would recommend

this post

 on the Stack Overflow web site. It contains references on premade color schemes and various approaches to generating custom ones.

Color schemes from color maps

You can create a color scheme from color maps supplied with matplotlib. Here is a fragment of code that makes a 10 color cycle from the viridis colormap supplied with pyplot

import
 numpy as np

import
 matplotlib.pyplot as plt

%
 matplotlib inline

n=
 10

colors=
 [
 plt.cm.viridis
 (
 i
)
 for
 i
 in
 np.linspace
 (
 0
 ,
 1
 ,n
)]

plt.rcParams
 [
 'axes.prop_cycle'
]
 =plt.cycler
 (
 'color'
 ,colors
)

for
 i
 in
 range
 (
 n
)
 :

 Y=np.random.rand
 (
 4
)

 plt.plot
 (
 Y,linewidth=
 3
 ,

 label=
 "Series "
 +
 str
 (
 i
 +1
))

plt.legend
 ()

plt.show
 ()

#restore default property cycle (and other) settings

plt.rcdefaults
 ()

Automatically generated colors are not always easy to distinguish, but, sometimes, lines are meaningfully close to each other like in contour plots, or the lines showing consecutive time points. In these cases, generating line colors from color maps might actually be a good idea.

Note how the default settings are restored in the last line. If you run these samples in an IPython notebook, the altered settings will persist from one code cell into the next. Here is how to restore the default settings.

Black and white plots

By default, pyplot will cycle through line colors, plotting each consequent line in a different color. If you need a black and white plot, you can change the default property cycle to circle through line styles instead.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

plt
 .
 rcParams
 [
 'axes.prop_cycle'
]
 =plt
 .
 cycler
 (
 'linestyle
 '
 ,

 [
 '-
 '
 ,
 '--
 '
 ,
 '-.
 '
 ,
 ':'
])

fo
 r
 i
 i
 n
 range
 (
 4
)
 :

 Y=np
 .
 rando
 m.
 rand
 (
 4
)

 plt
 .
 plot
 (
 Y, color
 =
 'k
 '
 , label
 =
 "Series
 "
 +
 str
 (
 i
 +1
))

plt
 .
 legend
 ()

plt
 .
 show
 ()

Plotting 2D arrays.

Pyplot can show 2D arrays as:

	
Contour plots which draw lines that connect dots with similar values

	
Color code values using one of the many available color maps

	
A combination of both

Rapidly developed technology makes data acquisition easy. Instead of single test tube, we have plates with 96, 384 and even more wells. Instead of using one hybridization probe in an experiment, we use tens of thousands of probes arrayed on a surface of a microchip. Instead of testing a few drugs, we have thousands of drugs arrayed on chips. Instead of several lanes on a sequencing gel - each used to read a single DNA sequence, we have flow cells with tens of millions of clusters - each giving a read of a DNA sequence in both directions.

A 2D plot can visualize systematic variations in such experiments. For instance, wells among the border of a 384 well plate give a systematically stronger signal because there is more evaporation going on along the edge. There are adjustments to experimental conditions that might reduce these effects and algorithms to compensate for it. The effectiveness of both approaches might be easily visualized with a colormap or contour plot.

A 2D plot might be used to visualize things that are not visible on a single image. For instance, the growth of single microbial colonies can be measured by subtracting images taken at different time points and the change in the density of each pixel color coded with a color map.

Color mapped image

I'll use a gray scale

image of yeast colonies

 as an array. You can download it here

http://s19.postimg.org/jqihr0ra7/yeast_colonies.png

 Pyplot can read PNG images. Other image types are read through the

Python Imaging Library

 (PIL).. Use:

	
imread(
)
 to read the image

	
imshow(
)
 to show it

If it is a single channel image, it will be normalized with a minimal value set to 0 and a maximal to 1. Also, the default color map is used on single channel images. So, the named paramete
 r
 cma
 p
 should be used to specifically set the gray scale color map, to ensure the image looks like the original.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

im=plt
 .
 imread
 (
 'yeast_colonies.png'
)

plt
 .
 imshow
 (
 im, cmap
 =
 'gray'
)

plt
 .
 colorbar
 (
)
 # add a color bar

plt
 .
 show
 (
)

It doesn't have to be an image. Any 2D numpy array can be displayed this way, or a 3D array representing 3 color channels RGB. If you use a color map, it might be useful to add a color bar that shows what numbers each color represents. This can be done with thefunctio
 n
 colorbar(
)
 . The

X and Y axes are not totally meaningless here. They show the offset in pixels. But, they might be switched off if desired. Note that the Y axes goes from image height to 0. It is a convention with displaying an image that the pixel 0,0 is a top left pixel, so the Y axis goes down. Other functions like contour don't invert the Y axis. So, contour plot will look upside down. If you plot both the image and contour plot, the Y axis follows the image convention and both plots overlaid as intended.

You might want to try a different color map, viridis for instance. A list of available color maps can be found

here

 .

Contour plot

Instead of showing a color mapped image, contour plots can be shown using the contour(
)
 function that takes a 2D array as an argument and plots contours. It returns a ContourSet object that might be given as an argument to the clabel() function that draws labels for contour lines.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

plt
 .
 figure
 (
 figsize
 =
 (
 1
 2
 ,
 8
))

im=plt
 .
 imread
 (
 'yeast_colonies.png'
)

cts=plt
 .
 contour
 (
 i
 m
)

plt
 .
 clabel
 (
 ct
 s
)

plt
 .
 show
 ()

I've increased the figure size to make labels easier to read.

As mentioned above, the Y axis for contour plot goes from 0 to image height. Which is opposite to what you will get with imshow(). You can reverse the Y axis using following command:

plt.gca
 ()
 .invert_yaxis
 ()

You can also plot the original image before drawing the contours and labels to combine the image with the contour plot. Note that, in this case, you don't have to invert the Y axis - for a contour plot, it is done automatically.

Figures with multiple plots

It is possible to include several plots in one figure. It might be several panels in a figure for publication or several different ways to look at data in your program's user interface. Two plot one under the other might also be used to simulate an axis break if you have to display dramatically different values

The simplest way to make several plots in one figure is by using the subplot(
)
 function. This function allows you to switch the output from one subplot to another. It takes 3 parameters: rows, columns, and subplot number. Rows and columns should be the same every time you call a subplo
 t
 function for a given figure. The subplot number can be in the range 1 .. rows*columns. Subplots are numbered left to right and top to bottom.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

plt
 .
 figure
 (
 figsize
 =
 (
 1
 2
 ,
 8
))

plt
 .
 subplot
 (
 2
 ,
 2
 ,
 1
)

im=plt
 .
 imread
 (
 'yeast_colonies.png'
)

plt
 .
 imshow
 (
 im, cmap
 =
 'gray'
)

plt
 .
 subplot
 (
 2
 ,
 2
 ,
 2
)

plt
 .
 gca
 (
)
 .
 invert_yaxis
 ()

ct=plt
 .
 contour
 (
 i
 m
)

plt
 .
 clabel
 (
 c
 t
)

plt
 .
 subplot
 (
 2
 ,
 2
 ,
 3
)

plt
 .
 imshow
 (
 im, cmap
 =
 'viridis'
)

plt
 .
 subplot
 (
 2
 ,
 2
 ,
 4
)

im=plt
 .
 imread
 (
 'yeast_colonies.png'
)

plt
 .
 imshow
 (
 im, cmap
 =
 'gray'
)

ct=plt
 .
 contour
 (
 i
 m
)

plt
 .
 clabel
 (
 c
 t
)

plt
 .
 show
 ()

Sharing an axis among several subplots

Sometimes, it is easier to compare several plots in one figure if they use the same X or Y axis. You can request a shared axis when creating the second subplot. Subplot returns an object axes. That should be saved to access its shared axis later.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

plt
 .
 figure
 (
 figsize
 =
 (
 6
 ,
 12
))

ax1=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 1
)

ax2=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 2
 ,sharex=ax
 1
)

Y1=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 10000
)

Y2=np
 .
 rando
 m.
 laplace
 (
 2
 0
 ,
 2
 ,
 10000
)

ax1
 .
 hist
 (
 Y1, bins
 =
 50
)

ax2
 .
 hist
 (
 Y2, bins
 =
 50
)

plt
 .
 show
 (
)

If you run this example, you will see that pyplot doesn't try to center each distribution in the plot as it would do if the X axis were not shared. If you want to remove the tick labels between the subplots to declutter the picture and save same space, you have to do it manually.

Breaking the Y axis

Sometimes, you have outliers or some data points just dwarf all the others and you cannot really see the difference other than the difference between these data points and everything else. In this case, you need to break the Y axis either to skip a sparsely populated range or to show it at a different scale. There is no way you can do this on a single plot, but you can achieve the same effect by plotting your data on two subplots one under another with different ranges for the Y axis.

To make the figure more visually appealing, you need to remove the axis, ticks, and tick labels from the lower edge of the top plot and the top edge of the bottom plot. It helps to print '~' where the axis is broken.

It is easy to place text on the plot using the text(X,Y,str
)
 function. The question now is; how do you print in the right place? The functio
 n
 tex
 t
 accepts a named parameter - transform, which you can set to axes transform to easily position text at the corners of the desired axes. The problem is that the '~' symbol itself has some dimensions, and you want its center to lie exactly on the axis end. You can adjust X and Y, but if the figure resolution or dimensions are changed '~' will appear in wrong place. Fortunately, there is a special tool to help you adjust the position in points. So, if we use the same font size for the '~' we should be fine. If font size changes, it is aone time adjustment. The helper functio
 n
 ScaledTranslation(
)
 from modul
 e
 matplotlib.transform
 s
 takes the X and Y shift in inches and scale transformation that can be obtained from the figure. The transformation generated b
 y
 ScaledTranslation(
)
 is added to the axes transform and '~' falls where it belongs no matter how you change the dimensions or resolution.

impor
 t
 numpy as np

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

fro
 m
 matplotlib
 .
 transform
 s
 impor
 t
 ScaledTranslation

%
 matplotlib inline

tilda_fs
 =
 20

fig=plt
 .
 figure
 (
 figsize
 =
 (
 7
 ,
 9
)
 , facecolor
 =
 '1.0'
)

ax1=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 1
)

ax2=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 2
 , sharex=ax
 1
)

ax1
 .
 set_ylim
 (
 10
 0
 ,
 2500
)

ax2
 .
 set_ylim
 (
 0
 ,
 100
)

ax1
 .
 spines
 [
 'bottom'
]
 .
 set_visible
 (
 False
)

ax2
 .
 spines
 [
 'top'
]
 .
 set_visible
 (
 False
)

ax2
 .
 xaxi
 s.
 tick_bottom
 ()

fig
 .
 subplots_adjust
 (
 hspace
 =
 0.02
)

offset = ScaledTranslatio
 n
 (
 -
 9
 /
 7
 2
 ,
 -
 6
 /
 7
 2
 ,

 fig
 .
 dpi_scale_trans
)

plt
 .
 text
 (
 0
 ,
 0
 ,
 '~
 '
 ,size=tilda_fs, transform=ax1
 .
 transAxe
 s
 +offse
 t
)

plt
 .
 text
 (
 0
 ,
 1
 ,
 '~
 '
 ,size=tilda_fs, transform=ax2
 .
 transAxe
 s
 +offse
 t
)

plt
 .
 text
 (
 1
 ,
 0
 ,
 '~
 '
 ,size=tilda_fs, transform=ax1
 .
 transAxe
 s
 +offse
 t
)

plt
 .
 text
 (
 1
 ,
 1
 ,
 '~
 '
 ,size=tilda_fs, transform=ax2
 .
 transAxe
 s
 +offse
 t
)

Y1=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 10000
)

Y2=np
 .
 rando
 m.
 laplace
 (
 2
 0
 ,
 2
 ,
 10000
)

ax1
 .
 hist
 (
 Y1, bins
 =
 5
 0
 , label=
 r
 'Normal
 $
 \
 m
 u$ =0,
 $
 \
 s
 igma$ =5'
)

ax1
 .
 hist
 (
 Y2, bins
 =
 5
 0
 , label=
 r
 'Laplace
 $
 \
 m
 u$=20,
 $
 \
 s
 igma$=2'
)

ax2
 .
 hist
 (
 Y1, bins
 =
 50
)

ax2
 .
 hist
 (
 Y2, bins
 =
 50
)

plt
 .
 rc
 (
 'mathtext
 '
 , default
 =
 'regular'
)

ax1
 .
 legend
 (
 loc
 =
 'upper left'
)

plt
 .
 show
 ()

Note, we only show the legend on the top plot. With minor tweaks, this code can be adapted for your projects, or you can design a generic function to handle all the loose ends for you automatically.

Interaction

You see some interesting points on your plot and want to study the data they represent, but how do you get from the picture back to the data? Fortunately matplotlib allows for interaction with the plot. Callback functions might be associated with keyboard and mouse events. Not only can you get data coordinates at the mouse pointer positions, but lines, markers, and boxes etc. can detect the user clicking on them and generate events that could be bound to handler functions. This

documentation chapter

 explains the interaction with plots pretty well, and offers some advanced examples. I will show you how to select dots on a scatter plot using the rubber band rectangle and how to print the data for selected dots.

For this exercise, we will need to explicitly create a figure to redraw and attach events to axes, add a path representing the selection, and the two arrays of the same length representing the X and Y coordinates of data points that will be used to generate a scatter plot.

fig=plt.figure
 ()

ax=plt.subplot
 (
 111
)

X=np.random.rand
 (
 40
)

Y=np.random.rand
 (
 40
)

plt.scatter
 (
 X,Y
)

The rectangle object from matplotlib.patches will represent a rubber band rectangular selection. The rectangle is defined by a point representing a corner, width, and heights.

rubber_band=patches.Rectangle
 ((
 0
 ,
 0
)
 ,
 # x,y

 0.5
 ,
 0.5
 ,
 # width,heights

 ls=
 ':'
 ,
 # dotted line

 fill=
 False
)
 # no fill

For the patch to appear on a plot, it needs to be added to the axes.

ax.add_patch
 (
 rubber_band
)

We will write a single function, mouse_selection, to handle three mouse events: button down, drag, and button up. Then, connect it to these events:

fig.canvas.mpl_connect
 (
 'button_press_event'
 , mouse_selection
)

fig.canvas.mpl_connect
 (
 'button_release_event'
 , mouse_selection
)

fig.canvas.mpl_connect
 (
 'motion_notify_event'
 , mouse_selection
)

To keep track of the selected rectangle, we need to store two points that define its diagonal, (x1,y1) and (x2,y2). I will use two global lists - one will store the x and another the y coordinates:

mouse_x=
 [
 0
 ,
 0
]

mouse_y=
 [
 0
 ,
 0
]

Global is used to make data persist between calls. Of course, those variables could be hidden inside an object and this object could be made callable to handle mouse events, but I will use globals for simplicity.

The event handler receives a single parameter – in our case it i
 s
 MouseEven
 t
 . It has several useful members:

	
nam
 e
 – a string that tells callback what event called it.

	
x,
 y
 – mouse coordinates in pixels

	
xdata,ydat
 a
 – mouse position in data coordinates

	
inaxi
 s
 – boolean variable that is True when an event occurred in axes and False otherwise.

The first thing this event handler does is filter out irrelevant events – those not involving the left mouse button or ones occurring outside the axes.

The button down event must remember thex1,y1 coordinates of selection start and set the corner of the selection rectangle. Rectangle'
 s
 set_bonds(
)
 method allows us to set the corner coordinates, width, and heights in one call.

if
 event.name==
 'button_press_event'
 :

 mouse_x
 [
 0
]
 =event.xdata

 mouse_y
 [
 0
]
 =event.ydata

 rubber_band.set_bounds
 (
 mouse_x
 [
 0
]
 ,mouse_y
 [
 0
]
 ,
 0
 ,
 0
)

When the mouse moves with the left button down, the callback function redraws the rubber band rectangle.

if
 event.name==
 'motion_notify_event'
 :

 mouse_x
 [
 1
]
 =event.xdata

 mouse_y
 [
 1
]
 =event.ydata

 x1,x2=min_max
 (
 mouse_x
)

 y1,y2=min_max
 (
 mouse_y
)

 rubber_band.set_bounds
 (
 x1,y1,x2-x1,y2-y1
)

 fig.canvas.draw
 ()

I wrote a littl
 e
 min_max(
)
 function to make sure x1 is less than x2 and y1 is less than y2. It is not necessary here because Matplotlib allows the height and width of a rectangle to be negative, but we will need it later to identify selected points.

fig.canvas.draw(
)
 insures that the figure is redrawn to reflect a change in selection.

Finally, when the button is released, the selection is finalized. Points that occur within the selected area are identified in the original data and printed.

if
 event.name==
 'button_release_event'
 :

 mouse_x
 [
 1
]
 =event.xdata

 mouse_y
 [
 1
]
 =event.ydata

 x1,x2=min_max
 (
 mouse_x
)

 y1,y2=min_max
 (
 mouse_y
)

 print
 (
 "selected dots"
)

 for
 i
 in
 range
 (
 X.shape
 [
 0
])
 :

 if
 (
 X
 [
 i
]>
 x1
 and
 X
 [
 i
]<
 x2
 and

 Y
 [
 i
]>
 y1
 and
 Y
 [
 i
]<
 y2
)
 :

 print
 (
 X
 [
 i
]
 ,Y
 [
 i
])

 sys
 .stdout.flush
 ()

The standard output stream is buffered and the last string ensures that all the text printed b
 y
 print(
)
 calls appears to the user instantly.

It is impossible to interact with plots inlined in a notebook in a regular way. It is possible to inline the plot and keep it interactive with a %matplotlib nbag
 g
 magic line, but, at least on my machine, it is painfully slow and prevents printing. If you want to interact with a plot, keep it in a separate window and skip inlining altogether. You might need to restart a kernel to clear the effects of any previously executed magics and return to default plotting in a separate window.

Here is the complete code for a scatter plot that allows interactive selection.

import
 sys

import
 numpy as np

import
 matplotlib.pyplot as plt

import
 matplotlib.patches as patches

fig=plt.figure
 ()

ax=plt.subplot
 (
 111
)

X=np.random.rand
 (
 40
)

Y=np.random.rand
 (
 40
)

plt.scatter
 (
 X,Y
)

rubber_band=patches.Rectangle
 ((
 0
 ,
 0
)
 ,
 # x,y

 0.5
 ,
 0.5
 ,
 # width,heights

 ls=
 ':'
 ,
 # dotted line

 fill=
 False
)
 # no fill

ax.add_patch
 (
 rubber_band
)

mouse_x=
 [
 0
 ,
 0
]

mouse_y=
 [
 0
 ,
 0
]

def
 min_max
 (
 l
)
 :

 return
 min
 (
 l
)
 ,
 max
 (
 l
)

def
 mouse_selection
 (
 event
)
 :

 if
 event.button
 !
 =
 1
 :

 return

 if
 not
 event.inaxes:

 return

 if
 event.name==
 'button_press_event'
 :

 mouse_x
 [
 0
]
 =event.xdata

 mouse_y
 [
 0
]
 =event.ydata

 rubber_band.set_bounds
 (
 mouse_x
 [
 0
]
 ,mouse_y
 [
 0
]
 ,
 0
 ,
 0
)

 if
 event.name==
 'motion_notify_event'
 :

 mouse_x
 [
 1
]
 =event.xdata

 mouse_y
 [
 1
]
 =event.ydata

 x1,x2=min_max
 (
 mouse_x
)

 y1,y2=min_max
 (
 mouse_y
)

 rubber_band.set_bounds
 (
 x1,y1,x2-x1,y2-y1
)

 fig.canvas.draw
 ()

 if
 event.name==
 'button_release_event'
 :

 mouse_x
 [
 1
]
 =event.xdata

 mouse_y
 [
 1
]
 =event.ydata

 x1,x2=min_max
 (
 mouse_x
)

 y1,y2=min_max
 (
 mouse_y
)

 print
 (
 "selected dots"
)

 for
 i
 in
 range
 (
 X.shape
 [
 0
])
 :

 if
 (
 X
 [
 i
]>
 x1
 and
 X
 [
 i
]<
 x2
 and

 Y
 [
 i
]>
 y1
 and
 Y
 [
 i
]<
 y2
)
 :

 print
 (
 X
 [
 i
]
 ,Y
 [
 i
])

 sys
 .stdout.flush
 ()

fig.canvas.mpl_connect
 (
 'button_press_event'
 , mouse_selection
)

fig.canvas.mpl_connect
 (
 'button_release_event'
 , mouse_selection
)

fig.canvas.mpl_connect
 (
 'motion_notify_event'
 , mouse_selection
)

plt.show
 ()

Animation

If a static picture is not enough, the graphs can be animated. You can show animated graphs on the screen or save them as movies or an animated GIF file. To save an animated GIF, you need

ImageMagic

 installed on your system. To save the movies, you might need to install

ffmpeg

 . They might be already installed on your machine though.

As we've seen before, plotting functions return values. For instance, a simple plot() function return a list of Line2D objects. Using these objects, you can change the lines after they were plotted. For instance, you can change the X and Y values of data poinst for a plotted line.

X
 =
 [
 1
 ,
 2
 ,
 3
]

Y
 =
 [
 1
 ,
 1
 ,
 1
]

lines=plt
 .
 plot
 (
 X,
 Y
)

line
 s
 [
 0
]
 .
 set_ydata
 ([
 1
 ,
 2
 ,
 4
])

This ability to adjust plots will be used for animation. Of course, it only works with some drawing back ends. The Ipython magi
 c
 %matplotlib inlin
 e
 we used before generates an image and inserts it in a notebook. This image cannot be adjusted if we change the line after plotting. So, we will skip the magic for now and have the animated graphs appear in a separate window. You might need to restart the kernel to reset the %matplotlib inlin
 e
 settings from previous program runs. As an additional benefit - if we make a looping animation all you have to do to stop it is to close the plot window. I'll show how to embed animations in the workbook later.

To illustrate animation with matplotlib, we will make line plots that appear dot by dot from left to right. So, let's generate x-values ranging from 0 to 20 and 20 random y-values

Y=np.random.rand
 (
 20
)

X=np.linspace
 (
 0
 ,
 20
 ,
 20
)

Pyplot is smart and adjusts the axes’ limits to better fit the graph. For an animation, we want the limits to stay the same throughout and not change from one frame to another as we add dots to the plot; so, we set the axes limits manually.

fig=plt.figure
 (
 figsize=
 (
 12
 ,
 6
)
 , facecolor=
 '1.0'
)

ax=plt.subplot
 (
 111
)

plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 1
])

Then, we do plotting with no data points, but keep the returned list of Line2D objects in variable lines.

lines=plt.plot
 (
 Y
 [
 0
 :
 0
])

Function update(frame) will update the first (and only) plot line by adding a new point every frame. The return value tells the caller what lines need to be updated.

def
 update
 (
 frame
)
 :

 lines
 [
 0
]
 .set_xdata
 (
 X
 [
 :frame
])

 lines
 [
 0
]
 .set_ydata
 (
 Y
 [
 :frame
])

 return
 lines

Th
 e
 FuncAnimatio
 n
 object from the modul
 e
 matplotlib.animatio
 n
 will drive the animation by calling the update function.

animation = FuncAnimation
 (

 fig,

 update,

 interval=
 50
 ,

 blit=
 True
 ,

 frames=
 20
 ,

 repeat=
 True
)

plt.
 show
 ()

The constructor for the FuncAnimation object takes a figure and update function name as positional parameters. You can supply the interva
 l
 between frames in milliseconds, tell the object to refresh the updated lines with a bli
 t
 parameter, supply the number o
 f
 frames
 ,
 and tell whether you want t
 o
 repea
 t
 animation indefinitely.

The save method allows you to save an animation in a file with the animation writer of choice. Following call saves an animated GIF using

ImageMagic

 (which you might need to install separately).

animation.save
 (
 'draw_plot.gif'
 ,

 writer=
 'imagemagick'
 ,

 fps=
 5
 , dpi=
 45
)

Here is the complete code. To embed animation in a notebook, uncomment the
 %matplotlib nbag
 g
 line. The gray band over the figure will have a blue button on the right to stop the animation.

import
 matplotlib.pyplot as plt

from
 matplotlib.animation
 import
 FuncAnimation

import
 numpy as np

#%matplotlib nbagg

Y=np.random.rand
 (
 20
)

X=np.linspace
 (
 0
 ,
 20
 ,
 20
)

fig=plt.figure
 (
 facecolor=
 '1.0'
)

ax=plt.subplot
 (
 111
)

plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 1
])

lines=plt.plot
 (
 Y
 [
 0
 :
 0
])

def
 update
 (
 frame
)
 :

 lines
 [
 0
]
 .set_xdata
 (
 X
 [
 :frame
])

 lines
 [
 0
]
 .set_ydata
 (
 Y
 [
 :frame
])

 return
 lines

animation = FuncAnimation
 (
 fig,

 update,

 interval=
 50
 ,

 blit=
 True
 ,

 frames=
 20
 ,

 repeat=
 True
)

#animation.save('draw_plot.gif', writer='imagemagick', fps=30, dpi=40)

plt.show
 ()

#animation.save('draw_plot.mp4', writer='ffmpeg')

To save an animation as an animated GIF file or an mp4 movie, set repea
 t
 t
 o
 Fals
 e
 in th
 e
 FuncAnimatio
 n
 constructor and uncomment one of the last two lines. In my experience, ffmpeg animation writer is more demanding. It requires the repeat to be set on False and must go after plt.show(). GIF animation writer is more forgiving.

Networks

The last graph type, I want to mention is a network graph. It is often useful to explore connections. It might be two genes coding proteins that physically interact with each other, two scientific papers often referred together, hyperlinks connecting web pages, a highway system, “friendship” relationships on social networks, or many other cases where you are interested in connections. You can do many things with networks programmatically, but, sometimes, it is useful to visualize them for the user.

The most popular Python library for handling networks is called

Networkx

 . It uses pyplot for visualizations although there are other options.

impor
 t
 matplotlib
 .
 pyplo
 t
 as plt

%
 matplotlib inline

impor
 t
 networkx as nx

G=nx
 .
 Graph
 ()

G
 .
 add_edge
 (
 'A
 '
 ,
 'B'
)

G
 .
 add_edge
 (
 'A
 '
 ,
 'C'
)

G
 .
 add_edge
 (
 'A
 '
 ,
 'D'
)

G
 .
 add_edge
 (
 'C
 '
 ,
 'B'
)

nx
 .
 draw_networkx
 (
 G,node_color
 =
 [
 'r
 '
 ,
 'g
 '
 ,
 'b
 '
 ,
 'm'
])

We will discuss the network graph at length later, when we have something interesting to display.

Databases

Databases allow

	
Persistent storage

	
Powerful search, sorting, and filtering tools

	
Combining various data

	
Easy sharing

	
Easy scalability

	
Unlimited amounts of data

Much of the power of databases comes from the Standard Query Language SQL. Not only does it allow efficient lookup - combining, search, and filtering operations, but it also standardizes database requests so that the query with minor tweaks can run on both an embedded SQLite database, that keeps data as a single local file, and on a huge cluster with hundreds of servers.

SQLite

In this book, I will concentrate on the SQLite database engine that is supplied with the standard Python library. It is a serverless database perfect for learning. It’s also good for hobbyist use as well as for substantial data exploratory activities carried out by a single person. It stores data as a single file, which is easy to backup and transfer.

SQLite starts to show its limits when you develop several programs to work with the same database. You start a new program using the database in a new folder and make a copy of your database. Then, you use a flash drive to transfer the database from your work desktop computer to your laptop. Then, you update data from an online source on your laptop, but use the same old copy from the flash drive to transfer the database to your home desktop computer. You give a copy to your boss, who wants you to give a copy to your colleague. As you continue to improve the database, copies and versions propagate before eventually running out of control. Even if you are the only person who introduces changes, over period of time you generate versions that take on a life of their own which you no longer control. And, you might not be the only one to introduce the changes if you write a program for a data entry that stores entered data in a database.

Preferably, you will switch to a server-client model before that point. Python has interfaces to all major SQL and non-SQL database engines. Something like mySQL might be adequate for a lab or a medium sized business.

Single system-wide database with SQLite

As long as you stay with a single computer, you can create a single database without aserver by storing a database file in a single well defined location. All major OSes have special directories where applications can store their data. For instanc
 e
 HOME/{.ApplicationName
 }
 on Unix-like operating systems. On Windows it i
 s
 APPDATA\{DeveloperName\ApplicationName} for a single user and

 PROGRAMDATA\{ApplicationName
 }
 for all users. You can use a HOM
 E
 environment variable on Unix an
 d
 APPDAT
 A
 o
 r
 PROGRAMDAT
 A
 on Windows to create a directory where you are going to keep your database file, and make all of your programs access it there. Environment variablesare accessible in Python script throug
 h
 os
 .enviro
 n
 dictionary:

import
 os

os
 .environ
 [
 'PROGRAMDATA'
]

Just don't forget to make backup copies. The same is true for a database server. If you use single system-wide database, be sure to back it up before updating. Fortunately, it is easy with SQLite. All you have to do is make a copy of database file. And, you can do it programmatically:

import
 shutil

shutil
 .copyfile
 (
 filename,filename+
 '.backup'
)

GUI tools for SQLite

Although I will concentrate on the programmatic use of databases, there are several GUI applications that allow for work with a database without programming. You can use these tools to:

	
Look how your program changes database.

	
Develop or troubleshoot queries.

	
Dump database data or query results into text files

	
Import CSV files into database tables

	
Manually create, delete, modify tables, views, indexes, triggers, etc.

There are several cross platform options

	

SQLiteman

	

SQLite browser

	

SQLite bro

There is also a free version of the proprietary

SQLite Expert

 for Windows. It tries to be limited, to encourage the purchase of the commercial version; so, some features available in the free programs might be missing.

Connecting to database

To work with the SQLite database, we need to import module sqlite3 and create a connection and a cursor

import
 sqlite3

con = sqlite3.connect
 (
 'sgd.db'
)
 # connect to database in file sgd.db

cur = con.cursor
 ()

 # create cursor

If the database file doesn't exist, it will be created in theprogram's working directory unless you provide an absolute path lik
 e
 'c:\sgd.db
 '
 on Windows. Now, you can execute SQL statements by preparing them in a Python string and sending them as a parameter to thecursor'
 s
 execute(
)
 method. When you are done working with the database, you need to commit the changes so that recent changes get committed to the database on the disk and close the database so that other programs can access it.

con.commit
 ()

con.close
 ()

Let’s not fool around with toy databases and get some real data. I will use the

Yeast Genome Database

 for my examples. It gives the sense of a real world application, its decent size gives some idea of scale effect i.e. advantage of indexes, and limiting your queries.

Creating a table

Data in SQL databases is stored in tables closely resembling Microsoft Excel spreadsheets. It is composed of rows containing the same number of fields. Each column contains fields of the same type. Instead of numbers or letters like in spreadsheets, columns are referred to by names. While creating a table, we have to specify column names and the type of data they contain.

SQLite supports following types

	
Integer

	
Float

	
Text

	
Blob

More complex data types could be split into several fields of the same row, or encoded into Text or Blob fields. For instance, entire numpy arrays might be turned into strings using the numpy.array_repr() function and stored in Text field. If an object can be written to a file, you can write it in a bytes buffer instead and store it in Blob field. That is how images might be effectively stored in a database as blobs. There is a mechanism allowing you to adapt your program's objects for storage in the SQLite database.
 For now, we will mostly use Text and Integer types though.

Data can be obtained from

SGD site

 . We will need a file containing chromosomal features

http://downloads.yeastgenome.org/curation/chromosomal_feature/SGD_features.tab

It is a tab delimited text file. According to the

readme file

 columns of the SGD_features.tab, are

	
Primary SGDID (mandatory)

	
Feature type (mandatory)

	
Feature qualifier (optional)

	
Feature name (optional)

	
Standard gene name (optional)

	
Alias (optional, multiples separated by |)

	
Parent feature name (optional)

	
Secondary SGDID (optional, multiples separated by |)

	
Chromosome (optional)

	

 Start_coordinate (optional)

	

 Stop_coordinate (optional)

	

 Strand (optional)

	

 Genetic position (optional)

	

 Coordinate version (optional)

	

 Sequence version (optional)

	

 Description (optional)

One way to put this file into a database would be to download and import it using one of the GUI programs mentioned above. The file doesn't have column names; so, you would need to open it in a spreadsheet application like Microsoft Excel, add a row containing column names at the top, and save the modified version as the tab delimited text file. Column names should not contain spaces.

We will create the table and fill it with data programmatically. Let’s make our first SQL statement. Our first table will be calle
 d
 feature
 s
 .

First, we need to delete the table if it already exists. We don't delete tables very often, but, as you develop a program that creates a table, it is safe to do and should be done or else your program will crash if table already exists.

The SQL statement to delete a table named 'features' if one exists is:

dro
 p
 tabl
 e
 i
 f
 exist
 s
 features

A Python statement that does the same will look like this:

cur.execute
 (
 'drop table if exists features'
)

An SQL statement to create a table is also simple.
 Creat
 e
 tabl
 e
 nam
 e
 followed by a parenthesized, comma-separated list of fields and their types. A statement for creating tabl
 e
 feature
 s
 is pretty long, but most of it is just the listing of 16 fields and their types.

It is a good idea to build longer queries in Python string variables. You can print them at various points for debugging, reuse parts of the query in other queries, etc. Here is a listing of a program that will create a database withtabl
 e
 feature
 s
 in it.

import
 sqlite3

con = sqlite3.connect
 (
 'sgd.db'
)

cur = con.cursor
 ()

cur.execute
 (
 'drop table if exists features'
)

query=
 '''create table features (

 id text,

 kind text,

 status text,

 orf text,

 name text,

 aliases text,

 parent text,

 sec_ids text,

 chromosome integer,

 start integer,

 finish integer,

 direction text,

 genetic_pos int,

 coordinat_vers text,

 sequence_vers text,

 description text)'''

cur.execute
 (
 query
)

con.commit
 ()

con.close
 (
)

The file sgd.db, containing newly created database, will appear in your program's working directory. You can open it in a GUI database management software, and make sure the table is there and that it has all the requested fields.

Importing data

To insert a row of data into the database, use the insert SQL statement:

inser
 t
 int
 o
 feature
 s
 value
 s
 (
 …
)

The actual values are supplied as a comma separated list in parenthesis. Text strings should be quoted. When using SQL from Python, we can put comma separated question marks instead of values and supply the values as a Python sequence in a second parameter of the cur.execute(
)
 method.

I find typing 16 comma separated question marks tedious. It is a good opportunity to illustrate how to build a query programmatically.

query=
 "insert into features values("

query+=
 ','
 .join
 ([
 '?'
]*
 16
)

query+=
 ')'

The second line is the most important. ['?'] is a list containing one string of a single question mark. ['?']*16 makes a list of 16 question marks, and, finally, this list is joined in a string, where the question marks are separated by comas. If we print the query variable, we will see the SQL query ready to run.

print
 (
 query
)

inser
 t
 int
 o
 feature
 s
 values
 (
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
)

In my first book, I've shown how to import tab delimited data from a local file. For the sake of variety, let’s read data directly from an online source now. I definitely don't recommend doing this with your production database. At the very least, you should import from a local file so you don't depend on connection quality or speed. Use transactions for updating, make a backup of your valuable data, etc. But, we are starting from a clean slate now for our own amusement; so, we are free to experiment.

Let's import thefunctio
 n
 urlopen(
)
 from thestandard library modul
 e
 urllib.reques
 t
 . This function takes a web address as a parameter and returns a file-like object that we can read almost like a regular file. The only difference is that it is a binary file and we need to convert the lines we read from it into unicode strings by manually using the decode(
)
 function. Another caveat is removing the end of line character. We want to keep all the tab characters that are usually removed by the strip(
)
 method. Otherwise, if the final fields of some rows are empty, following the split('\t'
)
 method will generate a fields list shorter than 16, and SQLite will complain. So, we have to specify which characters we want removed from thelin
 e
 ends strip('\n\a'
)

We will read the file line by line, split the lines into fields at tab characters, and send the resulting list together with SQL insert statement prepared beforet
 o
 cur.execute
 (
)
 .

Here is the listing for a program that will create database, make a features table, and enter the data from online source:

from
 urllib
 .request
 import
 urlopen

import
 sqlite3

con = sqlite3.connect
 (
 'sgd.db'
)

cur = con.cursor
 ()

cur.execute
 (
 'drop table if exists features'
)

query=
 '''create table features (

 id text,

 kind text,

 status text,

 orf text,

 name text,

 aliases text,

 parent text,

 sec_ids text,

 chromosome integer,

 start integer,

 finish integer,

 direction text,

 genetic_pos int,

 coordinat_vers text,

 sequence_vers text,

 description text)'''

cur.execute
 (
 query
)

query=
 "insert into features values("

query+=
 ','
 .join
 ([
 '?'
]*
 16
)

query+=
 ')'

url=
 'http://downloads.yeastgenome.org/curation/chromosomal_feature/SGD_features.tab'

f=urlopen
 (
 url
)

for
 line
 in
 f:

 fields=line.decode
 ()
 .strip
 (
 '
 \n\
 a
 '
)
 .split
 (
 '
 \
 t
 '
)

 cur.execute
 (
 query,fields
)

con.commit
 ()

con.close
 ()

This script can be used to create a database or update a local database when new content appears online.

Querying databases

Now, we have some data in and can start retrieving data or querying our database. The SQL statement for data retrieval is
 select
 . I will give several short SQL examples. Feel free to run them in the GUI database manager.

The most basic select operation will return all the data from table features

selec
 t
 *
 fro
 m
 features

Here is a screen shot of Sqliteman window with a sgd.db database file opened after executing this statement (highlighted in orange in top right panel). To execute statements printed in this window, click the right facing green triangle in the row above the panel. Retrieved data appears in the lower right panel.

[image:]

If we only want some columns, we give a comma separated list of columns to retrieve. The following statement will retrieve the systematic gene name, conventional name, and chromosome number

selec
 t
 or
 f
 ,
 nam
 e
 ,
 chromosom
 e
 fro
 m
 features

Filtering

To limit the number of retrieved rows, we can filter rows using the
 where
 clause.

selec
 t
 or
 f
 ,
 nam
 e
 ,
 descriptio
 n
 fro
 m
 feature
 s
 wher
 e
 nam
 e
 =
 'ACT1'

This statement returns a single row with information on actin – the only gene in the database named ACT1

	

orf

	

name

	

description

	

YFL039C

	

ACT1

	

Actin; structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions

Several records might satisfy the
 where
 condition. For instance, we might want to retrieve all the genes on chromosome one. The table contains all known genetic features - not only coding genes. Coding genes have an 'ORF' string in the kind column. So we put two conditions in
 where
 clause joining them by
 and
 operation so that both conditions should be satisfied for the row to be retrieved. Actually, let’s not retrieve any data and just count the database rows that satisfy all the conditions. To do this, instead of listing the columns to retrieve, we put an aggregate function count(*) after a
 select
 statement.

selec
 t
 count(*
)
 fro
 m
 features

 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1

117 rows satisfy the conditions representing all coding genes from chromosome 1.

Some of the genes were not properly studied and don't even have names. They might not even be real genes, just some sequences that the computer identified as a gene by mistake. Let’s limit our search to genes that have names. So, they don't have an empty string in the nam
 e
 column.

selec
 t
 count(*
)
 fro
 m
 features

 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 and
 name!
 =
 ''

This time, only 78 rows satisfy the conditions.

What if, in your filter, you want a value in a particular field be any of few possible choices? You can use
 or

select orf from features

 where name='TDH1'

 or name='TDH2'

 or name='TDH3'

But, if there are tens or hundreds of allowed choices, this might get tedious.

You can test if a name equals any of these values using the
 in
 condition.

select
 orf
 from
 features

 where
 name
 in
 (
 'TDH1'
 ,
 'TDH2'
 ,
 'TDH3'
)

If it is a list of banned values, the condition can be negated.

select
 orf
 from
 features

 where
 not
 name
 in
 (
 'TDH1'
 ,
 'TDH2'
 ,
 'TDH3'
)

Sorting

We can use SQL not only to filter rows, but also to sort them. Let’s sort the genes of chromosome 1 by their positions on the chromosome. Two columns represent positional information - start and finish. Let’s use start for now. To order the retrieved rows, we need to add an
 order
 by
 clause to our query.

selec
 t
 orf, name, star
 t
 fro
 m
 features

 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 and
 name!
 =
 ''

 order
 by
 start

The first few rows returned by this statement are presented in the table below.

	

orf

	

name

	

start

	

YAL068C

	

PAU8

	

2169

	

YAL067C

	

SEO1

	

9016

	

YAL064C-A

	

TDA8

	

13743

	

YAL063C

	

FLO9

	

27968

	

YAL062W

	

GDH3

	

31567

	

YAL061W

	

BDH2

	

33448

	

YAL060W

	

BDH1

	

35155

	

YAL059W

	

ECM1

	

36509

	

YAL058W

	

CNE1

	

37464

	

YAL056W

	

GPB2

	

39259

It is obvious that genes are ordered by their start position, but it is also obvious than we have more than two columns representing the positional information for each gene. Look at the systematic names in the first column - they are also ordered now. Systematic names are given according to gene position on the chromosome. The second letter codes for chromosome number. The third designates the chromosome shoulder L – left and R-right. The number represents the order of the gene from the centromere – the region of the chromosome between the left and right shoulder that is attached to the mitotic spindle during cell division. As we start from one end tle left chromosome shoulder going right, the gene numbers decrease to 001, which is the closest to the centromere. Then, as we move to the right chromosome shoulder, the gene numbers begin to increase again. Some numbers are missing, for instance 65 and 66. These genes were filtered out by our
 select
 statement because they don't have names or don't code for proteins.

Actually, genes can go in either direction along the chromosome; so, the start position might be greater than the finish. Genes can overlap; so, either start or finish might be misleading when trying to order genes by chromosomal location. We can avoid this confusion by using the functions min(), max(), or sum(). The later might be divided by two to obtain the average of the start and finish positions. Ordering by the average of the start and end might be useful if a smaller gene is completely inside a larger one

selec
 t
 orf, name, star
 t
 fro
 m
 features

 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 and
 name!
 =
 ''

 order
 by
 (start-finish)/2

Sometimes, you want some summary of the data. We already dealt with this a little when we used the count(*) function. But, there are more ways to summarize the data. Let’s see for instance what kinds of chromosomal features there are. To do this, we need to request the
 distinct
 values of some column.

selec
 t
 distinc
 t
 kin
 d
 fro
 m
 features

Actually, there are surprisingly many different kinds of features – 44. The obvious application for this kind of request would be initializing the widget and allowing the user to select one or several feature types for further analysis.

The same effect can be achieved by grouping rows by value in some column.

select
 kind
 from
 features
 group
 by
 kind

It returns the same 44 different feature types, but, this time, you can count how many times each feature kind occurs in database.

select
 kind
 ,
 count
 (*)
 from
 features
 group
 by
 kind

This statement returns two columns – the feature type and the number of times it occurs in the database. We can not only get the count, but can also order by it to easily find the most and the least frequent features.

select
 kind
 ,
 count
 (*)
 from
 features
 group
 by
 kind
 order
 by
 count
 (*)

Working with multiple tables

All the SQL operations demonstrated above are very useful and I miss things like sorting by expression on several columns in spreadsheet applications. There are even Python packages that allow you to run SQL statements on Python data structures. But, the real power of SQL comes from the ability to join data from several tables. We will need to create another table to play with it.

Let's obtain data on scientific articles that mention yeast genes. The

data file

 is available from Stanford. Just like features, it is a plain text tab delimited file, containing following columns:

1) PubMed ID - the unique PubMed identifer for a reference

2) citation - the article's title, journal's name, year etc.

3) gene name - Gene name, if one exists

4) ORF - Systematic name

5) literature_topics - separated by a '|' character.

6) SGDID - the SGDID, unique ID for the gene/feature

The following code will download the file and create atabl
 e
 literatur
 e
 in the database sgd.db.

from urllib.request import urlopen

import sqlite3

con = sqlite3.connect
 (
 'sgd.db'
)

cur = con.cursor
 ()

cur.execute
 (
 'drop table if exists literature'
)

query=
 '''create table literature (

 pmid integer,

 title text,

 gene text,

 orf text,

 topics text,

 sgdid text)'''

cur.execute
 (
 query
)

query=
 "insert into literature values("

query+=
 ','
 .join
 ([
 '?'
]*
 6
)

query+=
 ')'

url=
 'http://downloads.yeastgenome.org/curation/literature/gene_literature.tab'

f=urlopen
 (
 url
)

for
 line
 in
 f:

 fields=line.decode
 ()
 .strip
 (
 '
 \n\
 a
 '
)
 .split
 (
 '
 \
 t
 '
)

 cur.execute
 (
 query,fields
)

con.commit
 ()

con.close
 ()

This file is also pretty large – 95MB. You might want to download it with a browser. In this case, instead of:

f=urlopen
 (
 url
)

use

f=
 open
 (
 'file_name'
 ,
 'r'
)

where file_name is the name of the file on the disk
 ,
 and omit
 .decode
 () in

 fields=line
 .decode
 ()
 .strip
 (
 '
 \n\
 a
 '
)
 .split
 (
 '
 \
 t
 '
)

Now, all the articles on a particular gene, URM1 for instance, might be extracted by the SQL statement

select
 title
 from
 literature where gene=
 'URM1'

There are currently 45 such articles in the database. We can obtain unique pubmed IDs for these articles:

select
 pmid
 from
 literature where gene=
 'URM1'

Now, let’s find all the genes mentioned in papers that mention URM1. If one paper mentions several genes, those genes might well be involved in the same process. To identify genes mentioned in the same papers as URM1, we can chain two select statements. One obtains the IDs of the articles that mention URM1. Another searches for all the genes mentioned in these articles.

selec
 t
 gen
 e
 fro
 m
 literature where pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literature where gene
 =
 'URM1'
)

This statement returns the gene as many times as the many articles mention it. Let’s group the results by gene name, count how many times each gene occurs in papers on URM1, and order genes by how many times they co-occurr with URM1 in literature.

selec
 t
 coun
 t
 (*)
 ,
 gen
 e
 fro
 m
 literature

 wher
 e
 pmi
 d
 i
 n

 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
)

 grou
 p
 b
 y
 gene

 orde
 r
 b
 y
 coun
 t
 (*
)
 desc

This statement returns thousands of genes, but a huge majority of these genes occur only in one or two articles. There are a few articles mentioning hundreds and sometimes thousands of genes. They are probably not really informative in terms of gene function; so, we should discard genes that occur in one or two articles and concentrate on the top of the returned list.

HAVING a clause to filter by count(*)

Ordering helps when a query returns a lot of results. We just look at the top of the list, but returning a lot of rows takes time. As queries become more complex, this time might become significant. Let's say we want to look up descriptions of the found genes from a table of features. Looking up a dozen descriptions takes way less time than looking up a dozen hundreds. With more complex queries, such needless searches might take minutes and even hours only for the results to be ignored and discarded.

It would be nice to filter only the most frequent genes, but we have to filter by an aggregate functio
 n
 coun
 t
 ()
 ,and aggregate functions lik
 e
 coun
 t
 ()
 cannot occur in a
 where
 clause that filters rows. Instead, we have to test for the aggregate of a group in a
 having
 clause that follows
 group
 by
 .

selec
 t
 coun
 t
 (*)
 ,
 gen
 e
 fro
 m
 literature

 wher
 e
 pmi
 d
 i
 n

 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
)

 grou
 p
 b
 y
 gene

 havin
 g
 coun
 t
 (*)>=
 8

 orde
 r
 b
 y
 coun
 t
 (*
)
 desc

The returned list looks like this:

416

45 URM1

29 UBA4

16 NCS2

16 NCS6

10 ELP2

10 ELP3

10 TRM9

8 ELP6

8 IKI3

As we remember, URM1 occurred in 45 papers, and unsurprisingly it still does. 29 of these papers mention UBA4 and 16 articles mention NCS2 and NCS6 each. It’s quite likely that these genes occur in scientific papers together because they are involved in the same biological process as URM1. But, what about the 416 no name entries? Those entries represent the occurrences of features that don't have a trivial name. These might be different genes, but they all have an empty string instead of a trivial name and
 grou
 p
 b
 y
 clause groups them together. Perhaps these features have a systematic name we can obtain from the orf column. We can actually group results by several columns; so, only rows having an identical name and systematic name will be grouped together. To see if it is really so, we need to add an or
 f
 field to both the
 select
 and
 grou
 p
 by
 clauses

selec
 t
 coun
 t
 ()
 ,
 gen
 e
 ,
 or
 f
 fro
 m
 literature

 wher
 e
 pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
)

 grou
 p
 b
 y
 gen
 e
 ,
 orf

 orde
 r
 b
 y
 coun
 t
 (*
)
 desc

Indeed, 416 disappeared from the list. Instead, 11 features appeared that have neither a trivial nor a systematic name. But, in addition to this, 3 papers mention lots of genes that code not proteins, but tRNAs

3 tE(UUC)B

3 tE(UUC)C

3 tE(UUC)E1

3 tE(UUC)E2

3 tE(UUC)E3

3 tE(UUC)G2

…..

This makes perfect sense, because, as we will see shortly, URM1 is involved in the modification of tRNAs, allowing them to recognize their anticodon more efficiently during translation.

Joining tables

It would be nice to add a gene description to the result list. We have gene descriptions in the table features, but how could we combine the results from the two tables? It is easy. All we have to do is to list all the desired fields from both tables in the
 select
 clause. Note that both tables have an orf column, so we have to specify if we want the orf in the results to come from the literature or the features table. To do this, we use table.column notation - literature.orf

selec
 t
 coun
 t
 (*)
 ,
 literatur
 e
 .
 or
 f
 ,
 gen
 e
 ,
 description

We have to list all the tables used in the
 from
 clause,

from
 literature
 ,
 features

Then, to make sure that only rows with the same systematic gene name are joined, we need to add a conditional statement

where
 literature
 .
 orf
 =
 features
 .
 orf

plus the additional conditions we've discussed before.

and
 kind
 =
 'ORF'
 and

pmid
 in
 (
 select
 pmid
 from
 literature
 where
 gene
 =
 'URM1'
)

group
 by
 gene
 ,
 literature
 .
 orf

order
 by
 count
 (*)
 desc

Every time both tables have columns of the same name, we need to specify from which table the data comes from by using table.column notation.

The whole query is present below:

selec
 t
 coun
 t
 (*)
 ,
 literatur
 e
 .
 or
 f
 ,
 gen
 e
 ,
 description

 fro
 m
 literatur
 e
 ,
 features

 wher
 e
 literatur
 e
 .
 or
 f
 =
 feature
 s
 .
 orf

 an
 d
 kin
 d
 =
 'ORF
 '

 an
 d
 pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
)

 grou
 p
 b
 y
 gen
 e
 ,
 literatur
 e
 .
 orf

 orde
 r
 b
 y
 coun
 t
 (*
)
 des
 c

If you run this query in SQLiteman or another GUI database management tool, you will get results that are already pretty useful. They give a good idea of the biological processes URM1 is involved in and other genes that cooperate with URM1. It is a pretty good point to start learning about a new field of study.

Indexing database

I don't know about your computer, but mine takes a noticeable amount of time to return results of this request. You can speed up your queries dramatically by creating indexes on columns used for filtering or ordering. Your favorite GUI database management tools almost certainly allow you to create an index interactively, selecting the index name, table, and column(s) to index. Certainly, there is a way to see an SQL command program used behind the scenes to create index. An SQL statement creating index named features_orf_index on orf column of features table looks like this

CREATE
 INDEX
 features_orf_index
 on
 features
 (
 orf
)

An index can be ascending, descending, unique,and index several columns, but this is good enough. I will leave creating indexes o
 n
 or
 f
 and gene columns of literature table as an exercise. If you skip doing this excersize, the examples from the following chapter might be painfully slow. If you've seen a delay in the execution of the query that adds gene descriptions, try to run it again and see how much speed up indexing gives you. This speed up comes at a cost though – the index increases the database size on your disk. That is also something you might want to see for yourself.

The index can be destroyed by the command

DROP
 INDEX
 features_orf_index

Indexes are persistent. They are saved in a database file and you only have to create them once. New data added to an indexed table will be indexed automatically (which might increase execution time for insert statements; so, when creating a database, we insert the data first and the index later).

Views

If you have a very complex table with many columns and want to simplify it or preserve it in database,you can create
 a
 vie
 w
 . For instance, if you want to get only genes from the features table and are interested only in the systematic name, trivial name, and description,you can make
 a
 view

creat
 e
 vie
 w
 simply_gene
 s
 a
 s

 selec
 t
 or
 f
 ,
 nam
 e
 ,
 descriptio
 n
 fro
 m
 features

 wher
 e
 kin
 d
 =
 'ORF'

Views are persistent. They are stored in the database and are available the next time you connect to it. They take almost no space on the disk and you can run your
 select
 statements on views as if they were regular tables.

Aliases and joining rows of the same table

It would be interesting to look up the papers that mention two genes together. One way to do it is to chain select statements like we did before:

selec
 t
 pmi
 d
 ,
 title

 fro
 m
 literature

 wher
 e
 gen
 e
 =
 'NCS6
 '

 an
 d
 pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
)

Another way is to treat thetabl
 e
 literatur
 e
 as two separate tables and join them like we joined the literatur
 e
 an
 d
 feature
 s
 tables. To treat rows of the same table as rows from different tables, we need to give the tables aliases, for instance, lit
 1
 an
 d
 lit
 2
 . Because, in this case,all columns i
 n
 lit
 1
 are named like thecorresponding columns fro
 m
 lit
 2
 , we need to qualify all the fields with table.column notation for all used columns.

selec
 t
 lit
 1
 .
 pmi
 d
 ,
 lit
 1
 .
 title

 fro
 m
 literatur
 e
 a
 s
 lit
 1
 ,
 literatur
 e
 a
 s
 lit2

 wher
 e
 lit
 1
 .
 pmi
 d
 =
 lit
 2
 .
 pmid

 an
 d
 lit
 1
 .
 gen
 e
 =
 'URM1
 '

 an
 d
 lit
 2
 .
 gen
 e
 =
 'NCS6'

Both queries return a list of 16 articles that mention both genes. I will use the later variety in the following chapter.

This is pretty quick introduction to SQL - just to get you started. I only demonstrated commands essential to use SQL for realistic data analysis. I didn't show how to update or delete rows, how to use transactions, or how to create triggers that would automatically update several tables if some data is distributed across tables. Deleting data doesn't necessarily reduce file size - you might need to specifically cal
 l
 vacuu
 m
 command. All these things are beyond this book. You are highly encouraged to study more. A description of SQLite's SQL dialect can be found on SQLite site

https://www.sqlite.org/lang.html

 .

Many tutorials are available on the web, such as this tutorial on tutorialspoint

http://www.tutorialspoint.com/sqlite/

Querying database from Python

SQL is a very clear and elegant data retrieval language. Simple queries are very easy to both write and understand, but queries might get pretty complex. SQL was not designed to handle infinitely complex problems that require thousands of lines of code. That is what the general purpose programming languages such as Python are for. When working with a database from a Python program, you have a choice how much of processing you want to do in SQL query and how much in Python. One extreme would be to just get all the tables from the database in Python lists of lists or dictionaries and proceed from there. On the other hand, we've seen that SQL query alone can produce very useful data. So, your solution might be anywhere in between, depending on the task at hand, performance considerations, amounts of memory, network bandwidth, whether the database physically resides on a remote server, your skills in both languages, and personal preferences.

Let's query the database for genes that co-occur with a given target gene from Python script, and draw a network of interactions. Points to note:

	
We will prepare SQL query as a Python string.

	
Data passed to the query (target gene) is sent as the second parameter in cursor'
 s
 execute(
)
 method.

	
Positions within the query where parameters need to be inserted are marked by '?'.

	
Parameters must be passed as a tuple – a sequence of comma separated values in brackets. We send just one value; so, we need a comma after it to show that it is actually a tuple.

	
After query is executed by the cursor'
 s
 execute(
)
 , method we use anidio
 m
 for
 row
 in
 cur
 :
 to iterate over rows of data fetched from database.

	
A returned row of data can be indexed like a regular list to get the field's values

	
We can do filtering either in SQL query adding extra conditions in
 where
 or
 having
 clauses or in Python by simply skipping rows we don't want.

	
We can use Python'
 s
 i
 f
 statement to fall back on the systematic name if a gene has no trivial name. It is possible in SQL, but doesn't look as clean.

import
 sqlite3

import
 networkx as nx
 # graph theory library

import
 matplotlib.pyplot as plt

%
 matplotlib inline

fig=plt.figure
 (
 figsize=
 (
 10
 ,
 10
))

con = sqlite3.connect
 (
 'sgd.db'
)
 # connect to database

cur = con.cursor
 ()
 # create a cursor

target_gene=
 'URM1'
 # choose the target gene

G=nx.Graph
 ()
 # create network

G.add_node
 (
 target_gene
)
 # add the first node - the target gene.

query=
 """select count(), gene, orf from literature

 where pmid in

 (select pmid from literature where gene=?)

 group by gene,orf

 order by count(*) desc"""

cur.execute
 (
 query,
 (
 target_gene,
))
 # run query with target as a parameter

for
 row
 in
 cur:
 # iterate over returned rows of data

 if
 row
 [
 1
]
 ==target_gene:
 # this is the target gene?

 continue
 # skip.

 if
 row
 [
 0
]<
 6
 :
 # less than 6 papers mention

 continue
 # this gene and target gene - skip.

 if
 row
 [
 1
]!
 =
 ''
 :
 # has trivial name?

 gene_name=row
 [
 1
]
 # keep it

 elif
 row
 [
 2
]!
 =
 ''
 :
 # no? how about systematic?

 gene_name=row
 [
 2
]
 # keep it.

 else
 :
 # no name at all?

 continue

 # skip

 G.add_edge
 (
 gene_name,target_gene
)
 #add link between target and this gene

get list of all nodes in a network and make list of colors

red for the target gene and yellow for all others

colors=
 [(
 'r'
 if
 node==target_gene
 else
 'y'
)
 for
 node
 in
 G.nodes
 ()]

draw network of genes occuring in the same papers as target gene

nx.draw_networkx
 (
 G, node_color=colors
)

plt.show
 ()

This code doesn't show any more information than a simple ordered list would. The real power of network graphs shines when the relations of each node to every other node needs to be displayed. Sure, you can do it with a 2D table, but a network is way easier to read. Let's make a graph showing the pairwise co-occurrence in the literature for all genes that co-occur with our target.

Although the frequency of pairwise co-occurrence for all the genes could be obtained with a single SQL query, the query will get pretty complex. So, let's use a hybrid approach - splitting logic between two SQL queries and Python code to keep the program simple and readable.

	
We will identify genes that co-occur frequently enough with the target.

	
Then, we will go through pairwise combinations querying the database for the number of papers mentioning each pair of genes.

Pairs that pass a particular co-occurrence threshold will be stored in a dictionary together with the number of times they co-occur. This dictionary will be used to construct the network.

The edges of network connect two nodes; so, the key in a dictionary must contain information about both connected nodes. There are several ways to do it. The only requirement is that the key must be of an immutable type. Given nodes 'a' and 'b', we have several options to construct a key

String 'a_b'

Tuple ('a','b')

Frozen set frozenset(['a','b'])

The problem with the first two options is that ab and ba are different. Th
 e
 frozense
 t
 feels cumbersome to me. To solve ab!=ba, I usually sort a and b alphabetically. That is what I do in the functio
 n
 make_key(a,b
)
 before joining both gene names in a tuple.

The same problem appears again with displaying edge labels. By default, edge labels will be shown in a dictionary notation {'weight':16}. This clutters the graph which is already pretty busy. We can create a dictionary of labels and supply it as the edge_label
 s
 named parameter. But the networkx library uses unordered tuples as keys for graph edges - at least for unordered graphs, and there is no way to know if an edge between nodes
 a
 and
 b
 is stored as (a,b) or (b,a). So, the only way to make clean labels for the edges is to make a graph, get a list of edges from it, and generate a label dictionary from this list:

edge_labels=
 dict
 ([((
 a,b
)
 ,data
 [
 'weight'
])

 for
 a,b,data
 in
 G.edges
 (
 data=
 True
)]
)

This is probably the only part of the program that doesn't look familiar. Unlike in the previous example, I did as much filtering as possible In SQL in the first query. Genes without trivial names, target gene, and genes that do not occur frequently enough in the same papers as the target gene are filtered out. Of course, I need to pass the frequency threshold to the query as a parameter. The target gene is passed twice, because it is used twice in the query. First, to filter the rows with the target gene, and then to select papers that mention the target gene.

import
 sqlite3

import
 networkx as nx
 # graph theory library

import
 matplotlib.pyplot as plt

%
 matplotlib inline

con = sqlite3.connect
 (
 'sgd.db'
)

cur = con.cursor
 ()

target_gene=
 'URM1'
 # choose the target gene

def
 make_key
 (
 a,b
)
 :

 # make a tuple from two gene names to serve

 # as a key in dictionary holding bond weight

 pair=
 [
 a,b
]

 pair.sort
 ()
 #order a and b alphabetically

 return
 (
 pair
 [
 0
]
 ,pair
 [
 1
])
 #make a tuple and return

query=
 """select count(*), gene from literature

 where

 not (gene in ('',?))

 and pmid in

 (select pmid from literature where gene=?)

 group by gene,orf having count(*)>=?

 order by count(*) desc"""

min_freq=
 8

bonds=
 {}

interactors=
 []

run query with target as a parameters

cur.execute
 (
 query,
 (
 target_gene, target_gene, min_freq
))

for
 row
 in
 cur:
 # iterate over returned rows of data

 interactors.append
 (
 row
 [
 1
])
 # remember co-occurring gene

 key=make_key
 (
 target_gene,row
 [
 1
])

 bonds
 [
 key
]
 =row
 [
 0
]
 # remember how many times it cooccurs with target

interactors.sort
 ()

query=
 """select count(*)

 from literature as lit1, literature as lit2

 where lit1.pmid=lit2.pmid

 and lit1.gene=?

 and lit2.gene=?"""

determine frequencies of pairwise gene cooccurrence

for
 i,g1
 in
 enumerate
 (
 interactors
 [
 :
 -1
])
 :

 for
 g2
 in
 interactors
 [
 i
 +1
 :
]
 :

 cur.execute
 (
 query,
 (
 g1,g2
))

 for
 row
 in
 cur:

 if
 row
 [
 0
]<
 min_freq:
 # no gropup clause in query

 continue

 # use Python to discard rare gene pairs

 key=make_key
 (
 g1,g2
)
 # make a tuple to serve as a key

 bonds
 [
 key
]
 =row
 [
 0
]
 # store cooccurenge of genes g1 and g2

get list of all nodes in a network and make list of colors

red for the target gene and yellow for all others

G=nx.Graph
 ()
 # create network

for
 key
 in
 bonds:

 #add link between target and this gene

 G.add_edge
 (
 key
 [
 0
]
 ,key
 [
 1
]
 ,weight=bonds
 [
 key
])

#Go through network edges and edge labels from weights

edge_labels=
 dict
 ([((
 a,b
)
 ,data
 [
 'weight'
])

 for
 a,b,data
 in
 G.edges
 (
 data=
 True
)])

#Go through nodes and make list of colors

colors=
 [(
 'r'
 if
 node==target_gene
 else
 'y'
)
 for
 node
 in
 G.nodes
 ()]

fig=plt.figure
 (
 figsize=
 (
 10
 ,
 10
))

#Get network layout

pos=nx.spring_layout
 (
 G
)

draw network of genes

nx.draw_networkx
 (
 G, pos=pos, node_color=colors
)

draw edge labels showing pairwise cooccurrence

nx.draw_networkx_edge_labels
 (
 G,pos=pos, edge_labels=edge_labels
)

plt.show
 ()

The network drawn by the script is shown below. It is clear that ELP genes and IKI1 are mentioned together in scientific papers way more often than they are mentioned together with URM1. Actually, proteins coded by these genes form a functional complex with functions similar but distinct from the functions of URM1. An ordered list of genes co-occurring with URM1 would not show this information.

[image:]

That is it for now.

OEBPS/Image00004.jpg
. Data
Science in
Python

Plots snd Charts
with Matploti

oy

with SaLie

OEBPS/Image00002.jpg
Alexander Stepanov

PV Data N
Science in
Python

Plots and Charts
with Matplotlib

Data Analysis
h with SQLite

OEBPS/Image00001.jpg

OEBPS/Image00000.jpg
* T ables)
- estues
> columns 16
7 ndenes)
§ syteminde.
© Tiggers 0)
views)

+ @ system Cotlogus 1)
il

Rm» = BMA Q
foect o ot
ig¢rHED®
Soooosions cos

Sonoczesos ORF Oubious YALOGBWA
socoozesez teamere a0

arvomazome |
ehvomosome 1

secis

