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Introduction




Python is the most popular programming language in scientific computing today. It is simple, clear, and powerful. It works on Windows, Mac, Linux, and various other platforms. An excellent introduction to Python can be found in Python’s online help. In the real world data analysis, Python serves as a glue for many mature extension libraries that have become the de-facto standard.



This book is for people who want to start using Python and its popular extension libraries in their work quickly. The best way to start is to install a scientific python distribution, such as
 
Anaconda

 -
 available for Windows, Mac, and Linux or
 
Winpython

 -
  available on Windows, that supply many necessary extension libraries. The installation process is described in the
 
introductory volume 1

 of this series. You might also want to look at
 
volume 2

 of this series, that describes how to read tabular data, save it as text or Microsoft Excel file, explore data interactively with Ipython notebook, create GUI application with TkInter, package your program for deployment on other computers, do efficient computation with Numpy, run Python at the speed of compiled program on all cores of your processor. I assume that you have a scientific Python bundle installed on your machine and know how to start the Jupyter notebook we are going to use for most examples.












Graphs with matplotlib.




Although there is plenty of spreadsheet and graphing software, there are certain advantages in making your graphs programmatically. Here is a nonexclusive list







	
You can automate complex workflows


	
Combine graphing with data acquisition in real time


	
Create your own graph types and variations


	
Annotate your graphs automatically


	
Use custom curve fitting


	
Include output of machine learning packages


	
Alter parameters interactively


	
Produce animated graphs









Matplotlib is the most popular Python graph library. It can be as simple or as complex as you want it to be. It is possible to quickly test ideas or create publication quality graphs. This book is for scientists; so, I'll show features we are likely to need, but some of which are hard to find in admittedly great online documentation.







As usual, I'll use the IPython notebook for my examples. It is easy to tweak the graph interactively in the notebook, and, as soon as you like the result, copy and paste it into your favorite word processor or presentation program. Of course, examples can be easily adapted for standalone applications.












Create a figure








import
 matplotlib.pyplot as plt



# make plots inline images



%matplotlib inline



plt.figure
 (
 figsize=
 (
 12
 ,
 8
 )
 ,
 # figure dimensions in inches



 dpi=
 100
 ,
 # resolution



 facecolor=
 '1.0'
 )
 # white opaque background



plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 15
 ])
 
 # X and Y axes ranges



plt.title
 (
 "My first plot"
 ,
 # plot title



 fontsize=
 24
 )
 
 # Title font size



plt.tick_params
 (
 labelsize=
 20
 )
 
 # tick label font size



plt.xticks
 ([])
 
 # here is how to kill ticks



   
 # you can list just the ticks you want



plt.show
 ()
 
 # show the plot







The Pyplot library needs to be imported to use plotting commands
 .
 %matplotlib inlin
 e
 tells IPython notebook to inline images. They become like any image in your browser so you can easily copy them with a right mouse click or a ctrl-mouse click on Mac. This makes it easier to transfer plots into your favorite word processor or presentation software. Without inlining, images will appear in a separate window. You can still save them, for example, in pdf format and import them into other programs








Size, resolution, and background








plt.figure
 (
 figsize=
 (
 12
 ,
 8
 )
 , dpi=
 100
 , facecolor=
 '1.0'
 )







Figure command is not strictly necessary, but it allows us to set some useful plot parameters. Larger figures look better; so, it is handy to increase plot size with the figsiz
 e
 parameter accepting a tuple of (width, height) in inches. Most publications demand a certain resolution, and you can request the necessary resolution with the dp
 i
 parameter. If you skip figure command and try to paste an image into Microsoft Power Point, you will discover a black space around your plot which makes black tick labels invisible. I think it is a Power Point issue with handling transparency and the default figure background is transparent. Setting it to opaque white with the facecolo
 r
 parameter doesn't alter how the plot looks in notebook, but solves the black edges problem in Power Point.












Axes limits




plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 15
 ])
 # pass a list of Xmin, Xmax, Ymin,Ymax



You don't have to set limits for the X and Y axis. Defaults are often OK. But, sometimes you want to leave some extra spaces at the edges or zoom in on some details, and setting the axes limits manually comes in handy. So, I show how to do it in case you want to.












Title








plt.title
 (
 "My first plot"
 , fontsize=
 24
 )







You can give your figure a title. Sure you can do it in Power Point later, but sometimes Notebook is the final product and sometimes you want to generate a title automatically so this is how you do it.












Plotting








The plot command allows you to make simple line or scatter plots.



This command is pretty versatile. You can plot just Y values assuming X is 0,1,2..N







plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
 ])







Alternatively, you can supply both X and Y values as sequences of equal length







plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
 ])







You can supply the third argument that will define color, marker, and line style. The default is no line which makes it a scatter plot.







plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
 ]
 ,
 "rs--"
 )











	

Color



	

Marker



	

Line






	

r



	

red



	

o



	

circle



	

-



	

Solid line






	

g



	

green



	

^V



	

Triangle up, down,



	

--



	

Dashed line






	

b



	

blue



	

<>



	

Triangle left,right



	

-.



	

Dash-dot






	

c



	

cyan



	

s



	

square



	

:



	

Dotted line






	

m



	

magenta



	

*



	

star



	





	








	

y



	

yellow



	

p



	

pentagon



	





	








	

k



	

black



	

H, h



	

Hexagon 1 and 2



	





	








	

w



	

white



	

+



	

plus



	





	








	





	





	

x



	

X



	





	








	





	





	

D



	

diamond



	





	








	





	





	

d



	

Thin diamond



	





	








	





	





	

|



	

Vertical line



	





	








	





	





	

_



	

Horizontal line



	





	















More than one line can be plotted at once. For this, several pairs of X and Y values and possibly style strings have to be passed. Alternatively, you can pass 2D arrays. Then, X and Y values for plot lines will be taken from the columns.












Set line properties with named parameters




Unnamed parameters defining lines can be followed by named parameters defining characteristics of all lines drawn. For instance, line width.







plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
 ]
 ,
 "rs--",
 linewidth
 =
 3
 )












Set properties of individual lines




A named parameter is applied to all lines plotted by the command. That might be what you want for the linewith parameter, but probably not for thr label parameter that defines the label for the line in the plot's legend. To pass different named parameters, just plot lines using separate commands







import
 matplotlib.pyplot as plt



%
 matplotlib inline



plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 [
 5
 ,
 3
 ,
 4
 ,
 10
 ]
 ,
 "rs--"
 , label=
 "My red line"
 )



plt.plot
 ([
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 [
 4
 ,
 2
 ,
 7
 ,
 6
 ]
 ,
 "g^--"
 , label=
 "My green line"
 )



plt.legend
 ()
 # show the legend



plt.show
 ()












Adjusting lines




But how can you define line parameters if you passed X and Y as 2D arrays and lines were plotted from the columns? Matplotlib cycles through colors and marker types, and I will show how to explicitly define these cycles, but how about the legends?







Plot command returns a sequence of Line2D objects for each plotted line. So, you can adjust each line later using the
 
 setp(
 )
 function, which takes a line and several named arguments that set the line's parameters. Let’s generate a 4x4 numpy array and plot its columns - giving each a separate label.







import
 numpy as np



import
 matplotlib.pyplot as plt



%
 matplotlib inline







Y=np.random.rand
 (
 4
 ,
 4
 )
 # 4x4 array of random numbers



lines=plt.plot
 (
 Y
 )
 # plot columns as lines







# use enumerate to iterate over lines



# to get both line and its number



for
 i,l
 in
 enumerate
 (
 lines
 )
 :



 plt.setp
 (
 l,label=
 "Line "
 +
 str
 (
 i
 +1
 ))



plt.legend
 ()



plt.show
 ()



plt.setp
 (
 lines
 )
 # print all line's parameters







The last string prints all the line's parameters that you can adjust using the setp(
 )
 function or set as named parameters in a plot(
 )
 function.












Legend parameters




The functio
 n
 legend(
 )
 takes several named parameters allowing you some pretty fine control over the legend's appearance.




Legend position




The loc parameter controls legend's position. It might be a tuple containing the X and Y position of the label or a string. Allowed strings are the 'best' to let pyplot choose the legend's position automatically or a combination of strings setting the vertical and horizontal position.









	

Legend positioning






	

Vertical



	

Horizontal






	

'upper'



	

'left'






	

'center'



	

'center'






	

'lower'



	

'bottom'













Examples:







plt.legend
 (
 loc=
 (
 'upper left'
 )



plt.legend
 (
 loc=
 (
 loc=
 (
 0.01
 ,
 0.8
 ))







If the location is set as tuple, it sets the position of the lower left legend's corner relative to the plot. The lower left plot corner has the coordinate 0,0. The upper right - 1,1. Coordinates larger than 1 or smaller than 0 put the legend outside the plot area.








Number of markers in a legend.




By default, the legend will show two markers and the line between them. It is rather unusual, and, for instance, if you use no line to show a scatter plot, it might be distracting and annoying. You can set the number of markers in the legend with theparameter
 
 numpoints



plt.legend
 (
 numpoints=
 1
 )



There is a specialized function for plotting scatter plots. It uses different numbersof markers in the legend, but the default is even worse – 3. You can control how many markers will show in a legend for scatter plots with another named paramete
 r
 scatterpoints



plt.legend
 (
 scatterpoints=
 1
 )




Legend font size, title, columns, transparency




Among other parameters, you are most likely to use:



	
fontsiz
 e
 to adjust legend's font size.


	
framealph
 a
 set between 0 and 1, allows you to make legend semitransparent. It might come handy for instance if you have a super busy plot


	
ncol
 s
 allow you to split the legend in several columns if you have too many lines or would rather have the legend place them side by side .


	
titl
 e
 in case you want to give your legend a separate title





Even more parameters can be found in online
 
documentation

 .








Error bars




All the versatility of the plot(
 )
 command will not satisfy many scientists. We need error bars in our line plots. There is a special function for this called errorbars()







impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline



line,caps,bars=plt
 .
 errorbar
 (




 
 [
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 
 # X




 
 [
 1
 ,
 4
 ,
 9
 ,
 16
 ]
 ,
 
 # Y



 yerr
 =
 5
 , 
 
 # Y-errors



 fmt
 =
 "rs--
 "
 , 
 
 # format line like for plot()



 linewidth
 =
 3
 ,
 
 # width of plot line



 elinewidth
 =
 2
 ,
 
 # width of error bar line



 ecolor
 =
 'k
 '
 ,
 
 # color of error bar



 capsize
 =
 1
 0
 ,
 
 # cap length for error bar



 capthick
 =
 2
 
 
 # cap thickness for error bar




 
 )



# errorbar() returns line caps and bars separately



# I would recomment you give label to returned line



# Otherwise legend marker will include error bars.



plt
 .
 setp
 (
 line,label
 =
 "My error bars"
 )



plt
 .
 legend
 (
 numpoints
 =
 1
 )



plt
 .
 show
 ()











Just lik
 e
 plo
 t
 , the functio
 n
 errorbar(
 )
 takes two sequences for X and Y . In addition,it takes named parameter
 s
 xer
 r
 an
 d
 yer
 r
 , representing X and Y errors. Usually, those are sequences of the same length as X and Y.I use scalar for simplicity. Eithe
 r
 xer
 r
 o
 r
 yer
 r
 can be missing.



You can still use a plot()-like style string to set color, line style, and marker style, but now it is passed as the named parameter fmt.



Essentially, you control line, error bar, and error bar cap with color separate. Additionally, you control the length of the error bar cap through named parameters:











	

Parameter



	

Line



	

Error bar



	

Cap








	

color



	

colo
 r
 or throug
 h
 fmt



	

ecolor



	

Same as error bar






	

width



	

linewidth



	

elinewidth



	

capthick






	

length



	





	

yer
 r
 o
 r
 xerr



	

capsize


















Error bar legend label




You can provide a label for inclusion in the legend as a named parameter to the errorbar(
 )
 function, but this will give you a marker with error bars in the legend, which you probably don't want. The functio
 n
 errorbar(
 )
 returns 3 values: a plotline representing a line just like the plot(
 )
 function does, caplines, and barlinecols - representing the error bar caps and error bar lines. I would recommend you keep the returned plot line and assign a label to it for inclusion in the legend using the setp(
 )
 function.







line,caps,bars=plt
 .
 errorbar
 (




 
 [
 1
 ,
 2
 ,
 3
 ,
 4
 ]
 ,
 
 [
 1
 ,
 4
 ,
 9
 ,
 16
 ]
 ,



 yerr
 =
 5
 ,



 fmt
 =
 "rs--"
 )



plt
 .
 setp
 (
 line,label
 =
 "My plot with error bars"
 )












Customizing pyplot with a resource file




Pyplot has lots of styling options. Instead of setting them programmatically, you can collect them in a matplotlibrc file in your working directory. Besides a matplotlibrc file in the working directory applied to the current program, there might be a user and system-wide matplotlibrc file. Read more on this in
 
online documentation

 . It also provides a default matplotlibrc file as a sample.



The settings in a matplotlibrc file are divided into sections. These settings are read at startup and are accessible to your program through:







	
pyplot.rcParam
 s
 – a dictionary that ha
 s
 'section.option
 '
 strings as keys or


	
pyplot.rc(
 )
 -
 a
 helper function that takes a section name as a string and allows the user to set options through named parameters.









Instead of setting an error bar cap size for each plotted line, you can create a custom matplotlibrc file redefining default value or adjust it in memory.







plt
 .
 rcParams
 [
 'errorbar.capsize'
 ]
 =
 10







or







plt
 .
 rc
 (
 'errorbar
 '
 , capsize
 =
 10
 )







We will use both approaches later to adjust different default settings. Adjusted settings persist in the Python kernel running IPython notebook. So after trying out a new setting,we might want to restore defaults. There is a special function for this in pyplo
 t
 rcdefaults()







plt.rcdefaults
 ()








Bar graphs.




Another graph type popular with scientists is the bar graph. The pyplot command to draw bar graph i
 s
 bar(
 )
 . Drawing bar plots in pyplot is a little more involved than in most graphing software. You must supply at least two parameters: the X coordinates of each bar and their heights. Fortunately,X coordinates for evenly spaced bars are easy to generate b
 y
 range(
 )
 o
 r
 numpy.arange(
 )
 functions :







import
 numpy as np



import
 matplotlib.pyplot as plt



%
 matplotlib inline







X=np.arange
 (
 4
 )



plt.bar
 (
 range
 (
 4
 )
 ,
 [
 1
 ,
 4
 ,
 9
 ,
 16
 ])



plt.xticks
 (
 X
 +0.4
 ,
 (
 'A'
 ,
 'B'
 ,
 'C'
 ,
 'D'
 ))



plt.show
 ()











The usual parameters; colo
 r,
 edgecolo
 r
 , and linewidt
 h
 apply and define the bar area color, without the bar edge, and edge color.












Setting your own x ticks




Default X-ticks often don't make sense for a bar plot; so,you might want to set your own and learn how to do it in process. You can define your own ticks wit
 h
 xticks(
 )
 an
 d
 yticks(
 )
 functions supplying a sequence of ticks positions and labels. The default bar width is 0.8, so we shift tick positions by half the width of a bar to position a label under the bar center







plt.xticks
 (
 X
 +0.4
 ,
 (
 'A'
 ,
 'B', 'C', 'D'
 ))








Bar plot error bars




Us
 e
 yer
 r
 (o
 r
 xer
 r
 ) named parameters to add error bars. It might be scalar or a sequence of the same length as the number of bars. The errorbar function is called internally to draw error bars and you can pass it the same parameters
 (
 ecolo
 r,
 elinewidth, capsize, capthic
 k
 ) as a dictionary usin
 g
 error_k
 w
 named parameter.







impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







plt
 .
 bar
 (
 range
 (
 4
 )
 ,
 [
 1
 ,
 4
 ,
 9
 ,
 16
 ]
 ,



 yerr
 =
 2
 ,



 error_kw
 =
 {
 'ecolor
 '
 :
 'k
 '
 ,




 
 'elinewidth
 '
 :
 2
 ,




 
 'capsize
 '
 :
 1
 0
 ,




 
 'capthick
 '
 :
 2
 }




 
 )



plt
 .
 show
 ()












Bar charts showing several series




To display two series of bars side by side, the X values of the second series need to be adjusted. You can either space bars wider or make them narrower using the wit
 h
 parameter. Additionally, you might want to use different colors for different series:







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







x_positions=np
 .
 arange
 (
 4
 )







plt
 .
 bar
 (
 x_positions
 ,
 [
 1
 ,
 4
 ,
 9
 ,
 16
 ]
 ,



 width
 =
 0.4
 )
 
 
 # make first series bars narrow







plt
 .
 bar
 (
 x_position
 s
 +0.
 4
 ,
 # shift second series by 0.4




 
 [
 3
 ,
 2
 ,
 5
 ,
 10
 ]
 ,



 width
 =
 0.
 4
 ,
 
 # make bars narrower



 color
 =
 'r'
 )
 
 
 # make second series red







plt
 .
 xticks
 (
 X
 +0.
 4
 ,
 (
 'A
 '
 ,
 'B
 '
 ,
 'C
 '
 ,
 'D'
 ))



plt
 .
 show
 ()












Stacking bars




The bar function accepts another useful parameter, botto
 m
 , that allows the user to stack series on top of each other. It this case, the bar height of the first series serves as the bottom for the second. The sum of heights might serve as the bottom of the third series and so on.







import
 numpy as np



import
 matplotlib.pyplot as plt



%
 matplotlib inline







X=np.arange
 (
 4
 )



Y1=np.random.rand
 (
 4
 )



Y2=np.random.rand
 (
 4
 )



Y3=np.random.rand
 (
 4
 )







plt.bar
 (X
 ,Y1, label=
 "Series 1"
 )



plt.bar
 (X
 ,Y2,bottom=Y1, color=
 'r'
 , label=
 "Series 2"
 )



plt.bar
 (X
 ,Y3,bottom=Y1+Y2, color=
 'g'
 , label=
 "Series 3"
 )







plt.xticks
 (
 X
 +0.4
 ,
 (
 'A'
 ,
 'B'
 ,
 'C'
 ,
 'D'
 ))



plt.legend
 ()



plt.show
 ()












Histogram




The histogram is a variety of bar chart useful to show statistical distributions. It accepts an unordered sequence of values, assigns it to a given number of bins (10 by default), and shows as a bar plot. It cannot show error bars, but, on the other hand, you don't need to worry about positioning bars or adjusting their width - they are positioned and adjusted automatically. You can still stack series on top of each other.



The following plot shows histograms for normal and Laplace distributions of 10,000 samples. Just for fun, I’ll show you how to use Greek symbols in labels.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







Y1=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 10000
 )



Y2=np
 .
 rando
 m.
 laplace
 (
 2
 0
 ,
 2
 ,
 10000
 )







plt
 .
 hist
 (
 Y1, bins
 =
 5
 0
 , label=
 r
 'Normal
 $
 \
 m
 u$ =0,
 $
 \
 s
 igma$ =5'
 )



plt
 .
 hist
 (
 Y2, bins
 =
 5
 0
 , label=
 r
 'Laplace
 $
 \
 m
 u$=20,
 $
 \
 s
 igma$=2'
 )



plt
 .
 rcParams
 [
 'mathtext.default'
 ]
 =
 'regular'



plt
 .
 legend
 (
 loc
 =
 'upper left'
 )



plt
 .
 show
 ()







Greek symbols are enclosed in $ signs and preceded by a backslash. These strings are passed to the TeX renderer as is. So,we use Python's raw string literals
 r
 '
 '
 to let the interpreter know that the backslash should not be interpreted as an escape character. If you don’t have TeX installed you can download a distribution for your system at
 
LaTeX web site

 . For more information on rendering special mathematical symbols in pyplot, (including the complete list of Greek symbols) see matplotlib
 
online documentation

 .



By default, matplotlib uses aspecial font for mathematical symbols that is smaller than normal. Setting plt
 .
 rcParams
 [
 'mathtext.default'
 ]
 =
 'regular
 '
 enforces the use of the regular font.












Kernel density distribution and violin plots




While we are on it, let’s look at two more ways to show distributions. You have seen that, even with 10,000 samples, a histogram is far from an ideal bell curve. If you have tens or even hundreds of samples, the distribution shape might be hard to see in a histogram plot. Fortunately, the computational power of modern computers can help. A discrete number of samples can be converted into a continuous function using kernel density estimation. Each sample produces, for instance, a Gaussian bell curve, and bell curves from all samples are added. The sigma parameter of the Gaussian bell curve used to create a kernel determines the resolution, allowing you to choose the desired balance between smoothness and resolution.




Kernel density estimation




A scipy library available with all scientific Python distributions provides a convenient object for a Gaussian kernel density estimation. The constructor takes the samples and the desired smoothness.Calling the returned object with a sequence (X) as a parameter returns the sequence of density estimation for every supplied x value:







impor
 t
 numpy as np



fro
 m
 scipy
 .
 stat
 s
 impor
 t
 gaussian_kde



fro
 m
 ipywidget
 s
 impor
 t
 interact



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







samples=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 100
 )



xs = np
 .
 linspace
 (
 -1
 0
 ,
 1
 0
 ,
 100
 )







de
 f
 plot_kd
 e
 (
 smoothing
 =
 (
 0.0
 2
 ,
 1.
 0
 ,
 0.02
 )
 )
 :



 plt
 .
 clf
 ()



 density = gaussian_kd
 e
 (
 samples, smoothin
 g
 )



 plt
 .
 plot
 (
 xs,densit
 y
 (
 x
 s
 ))




 
 plt.sho
 w
 ()







i=interac
 t
 (
 plot_kd
 e
 )







The code above requests 100 normally distributed numbers centered around 0 with sigma 5. The slider allows the user to adjust the smoothness factor and function plot_kde plots the density estimation between -10 and 10. With enough smoothing, the density distribution becomes obvious even with 100 samples. You can get an idea of the original data by pulling the slider all the way left - decreasing smoothing and increasing resolution. If you don't supply a smoothing factor, the gaussian_kde object tries to guess the best value for you. Interactive widgets for Jupyter notebook are described in
 
volume 2

 of these series.












Violin plots




A variation on the theme of kernel density estimation is the violin plot.



It is basically a kernel density estimation graph and its mirror reflection with a colored area between the two. You can easily put several such graphs on a single plot so that they resemble a row of violins. This kind of plot might be used to show how a collection of strains responds to increasing the concentration of a drug to illustrate the trend for the majority of the population. It serves as a nice background to show resistant or hypersensitive strains. The first will respond dramatically well before the majority of population responds, while the second will remain mostly unaffected even at drug concentrations that kill most of the collection.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







n_violines
 =
 5



positions
 =
 range
 (
 n_violine
 s
 )



samples
 =
 [
 np
 .
 rando
 m.
 normal
 (
 3
 *
 i
 ,
 3
 ,
 100
 )




 
 fo
 r
 i
 i
 n
 range
 (
 n_violine
 s
 )]







result=plt
 .
 violinplot
 (
 samples
 ,
 # list of samples for each violine



 positions,
 
 #horizontal positions



 points
 =
 10
 0
 ,
 # the more the smoother



 widths
 =
 0.
 8
 ,



 showmeans
 =
 Fals
 e
 ,



 showextrema
 =
 Fals
 e
 ,



 showmedians
 =
 False
 )







fo
 r
 v
 i
 n
 resul
 t
 [
 'bodies'
 ]
 :



 v
 .
 set_facecolor
 (
 'b'
 )



 v
 .
 set_edgecolor
 (
 'k'
 )



 v
 .
 set_linewidth
 (
 1
 )



 v
 .
 set_alpha
 (
 1
 )







plt
 .
 show
 ()







A violin plot can be very informative and thefunctio
 n
 violinplot(
 )
 has many parameters it can take:



	
a list containing lists of samples for each violin,


	
a list of horizontal positions for violins that resemble an X for a bar plot except that it defines the positions of the centers of violins, not the left edge,


	
point
 s
 determines the resolution for violin curves - the more points the smoother the curve.


	
widt
 h
 has the same meaning as for a bar plot


	
showmean
 s,
 showextrem
 a
 , an
 d
 showmedia
 n
 can display additional descriptive information about each distribution.









Still, you have to use a return value to extract the PolyCollection representing the violin bodies in order to customize the edge and area colors.












Color schemes




Matplotlib default colors are considered too bright for professional use, but you can easily change the color scheme.








Predefined color schemes




Several alternative styles are supplied with matplotlib, including one borrowed from the popular R package ggplot, which is considered better for professional use. To switch to a ggplot color scheme, use command:







plt
 .
 styl
 e.
 use
 (
 'ggplot'
 )







If you want to generate your own color scheme, especially if you want to do it programmatically, I would recommend
 
this post

 on the Stack Overflow web site. It contains references on premade color schemes and various approaches to generating custom ones.












Color schemes from color maps




You can create a color scheme from color maps supplied with matplotlib. Here is a fragment of code that makes a 10 color cycle from the viridis colormap supplied with pyplot







import
 numpy as np



import
 matplotlib.pyplot as plt



%
 matplotlib inline







n=
 10



colors=
 [
 plt.cm.viridis
 (
 i
 )
 for
 i
 in
 np.linspace
 (
 0
 ,
 1
 ,n
 )]



plt.rcParams
 [
 'axes.prop_cycle'
 ]
 =plt.cycler
 (
 'color'
 ,colors
 )







for
 i
 in
 range
 (
 n
 )
 :



 Y=np.random.rand
 (
 4
 )



 plt.plot
 (
 Y,linewidth=
 3
 ,



 label=
 "Series "
 +
 str
 (
 i
 +1
 ))



plt.legend
 ()



plt.show
 ()







#restore default property cycle (and other) settings



plt.rcdefaults
 ()







Automatically generated colors are not always easy to distinguish, but, sometimes, lines are meaningfully close to each other like in contour plots, or the lines showing consecutive time points. In these cases, generating line colors from color maps might actually be a good idea.



Note how the default settings are restored in the last line. If you run these samples in an IPython notebook, the altered settings will persist from one code cell into the next. Here is how to restore the default settings.












Black and white plots




By default, pyplot will cycle through line colors, plotting each consequent line in a different color. If you need a black and white plot, you can change the default property cycle to circle through line styles instead.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







plt
 .
 rcParams
 [
 'axes.prop_cycle'
 ]
 =plt
 .
 cycler
 (
 'linestyle
 '
 ,




 
 [
 '-
 '
 ,
 '--
 '
 ,
 '-.
 '
 ,
 ':'
 ])



fo
 r
 i
 i
 n
 range
 (
 4
 )
 :



 Y=np
 .
 rando
 m.
 rand
 (
 4
 )



 plt
 .
 plot
 (
 Y, color
 =
 'k
 '
 , label
 =
 "Series
 "
 +
 str
 (
 i
 +1
 ))



plt
 .
 legend
 ()



plt
 .
 show
 ()












Plotting 2D arrays.




Pyplot can show 2D arrays as:







	
Contour plots which draw lines that connect dots with similar values


	
Color code values using one of the many available color maps


	
A combination of both









Rapidly developed technology makes data acquisition easy. Instead of single test tube, we have plates with 96, 384 and even more wells. Instead of using one hybridization probe in an experiment, we use tens of thousands of probes arrayed on a surface of a microchip. Instead of testing a few drugs, we have thousands of drugs arrayed on chips. Instead of several lanes on a sequencing gel - each used to read a single DNA sequence, we have flow cells with tens of millions of clusters - each giving a read of a DNA sequence in both directions.



A 2D plot can visualize systematic variations in such experiments. For instance, wells among the border of a 384 well plate give a systematically stronger signal because there is more evaporation going on along the edge. There are adjustments to experimental conditions that might reduce these effects and algorithms to compensate for it. The effectiveness of both approaches might be easily visualized with a colormap or contour plot.



A 2D plot might be used to visualize things that are not visible on a single image. For instance, the growth of single microbial colonies can be measured by subtracting images taken at different time points and the change in the density of each pixel color coded with a color map.












Color mapped image




I'll use a gray scale
 
image of yeast colonies

 as an array. You can download it here
 
http://s19.postimg.org/jqihr0ra7/yeast_colonies.png

 Pyplot can read PNG images. Other image types are read through the
 
Python Imaging Library

 (PIL).. Use:







	
imread(
 )
 to read the image


	
imshow(
 )
 to show it









If it is a single channel image, it will be normalized with a minimal value set to 0 and a maximal to 1. Also, the default color map is used on single channel images. So, the named paramete
 r
 cma
 p
 should be used to specifically set the gray scale color map, to ensure the image looks like the original.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







im=plt
 .
 imread
 (
 'yeast_colonies.png'
 )



plt
 .
 imshow
 (
 im, cmap
 =
 'gray'
 )



plt
 .
 colorbar
 (
 )
 # add a color bar



plt
 .
 show
 (
 )







It doesn't have to be an image. Any 2D numpy array can be displayed this way, or a 3D array representing 3 color channels RGB. If you use a color map, it might be useful to add a color bar that shows what numbers each color represents. This can be done with thefunctio
 n
 colorbar(
 )
 . The



X and Y axes are not totally meaningless here. They show the offset in pixels. But, they might be switched off if desired. Note that the Y axes goes from image height to 0. It is a convention with displaying an image that the pixel 0,0 is a top left pixel, so the Y axis goes down. Other functions like contour don't invert the Y axis. So, contour plot will look upside down. If you plot both the image and contour plot, the Y axis follows the image convention and both plots overlaid as intended.



You might want to try a different color map, viridis for instance. A list of available color maps can be found
 
here

 .








Contour plot




Instead of showing a color mapped image, contour plots can be shown using the contour(
 )
 function that takes a 2D array as an argument and plots contours. It returns a ContourSet object that might be given as an argument to the clabel() function that draws labels for contour lines.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline



plt
 .
 figure
 (
 figsize
 =
 (
 1
 2
 ,
 8
 ))



im=plt
 .
 imread
 (
 'yeast_colonies.png'
 )



cts=plt
 .
 contour
 (
 i
 m
 )



plt
 .
 clabel
 (
 ct
 s
 )



plt
 .
 show
 ()







I've increased the figure size to make labels easier to read.



As mentioned above, the Y axis for contour plot goes from 0 to image height. Which is opposite to what you will get with imshow(). You can reverse the Y axis using following command:







plt.gca
 ()
 .invert_yaxis
 ()







You can also plot the original image before drawing the contours and labels to combine the image with the contour plot. Note that, in this case, you don't have to invert the Y axis - for a contour plot, it is done automatically.








Figures with multiple plots




It is possible to include several plots in one figure. It might be several panels in a figure for publication or several different ways to look at data in your program's user interface. Two plot one under the other might also be used to simulate an axis break if you have to display dramatically different values



The simplest way to make several plots in one figure is by using the subplot(
 )
 function. This function allows you to switch the output from one subplot to another. It takes 3 parameters: rows, columns, and subplot number. Rows and columns should be the same every time you call a subplo
 t
 function for a given figure. The subplot number can be in the range 1 .. rows*columns. Subplots are numbered left to right and top to bottom.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline



plt
 .
 figure
 (
 figsize
 =
 (
 1
 2
 ,
 8
 ))







plt
 .
 subplot
 (
 2
 ,
 2
 ,
 1
 )



im=plt
 .
 imread
 (
 'yeast_colonies.png'
 )



plt
 .
 imshow
 (
 im, cmap
 =
 'gray'
 )







plt
 .
 subplot
 (
 2
 ,
 2
 ,
 2
 )



plt
 .
 gca
 (
 )
 .
 invert_yaxis
 ()



ct=plt
 .
 contour
 (
 i
 m
 )



plt
 .
 clabel
 (
 c
 t
 )







plt
 .
 subplot
 (
 2
 ,
 2
 ,
 3
 )



plt
 .
 imshow
 (
 im, cmap
 =
 'viridis'
 )







plt
 .
 subplot
 (
 2
 ,
 2
 ,
 4
 )



im=plt
 .
 imread
 (
 'yeast_colonies.png'
 )



plt
 .
 imshow
 (
 im, cmap
 =
 'gray'
 )



ct=plt
 .
 contour
 (
 i
 m
 )



plt
 .
 clabel
 (
 c
 t
 )







plt
 .
 show
 ()












Sharing an axis among several subplots




Sometimes, it is easier to compare several plots in one figure if they use the same X or Y axis. You can request a shared axis when creating the second subplot. Subplot returns an object axes. That should be saved to access its shared axis later.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







plt
 .
 figure
 (
 figsize
 =
 (
 6
 ,
 12
 ))



ax1=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 1
 )



ax2=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 2
 ,sharex=ax
 1
 )







Y1=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 10000
 )



Y2=np
 .
 rando
 m.
 laplace
 (
 2
 0
 ,
 2
 ,
 10000
 )







ax1
 .
 hist
 (
 Y1, bins
 =
 50
 )



ax2
 .
 hist
 (
 Y2, bins
 =
 50
 )



plt
 .
 show
 (
 )







If you run this example, you will see that pyplot doesn't try to center each distribution in the plot as it would do if the X axis were not shared. If you want to remove the tick labels between the subplots to declutter the picture and save same space, you have to do it manually.












Breaking the Y axis




Sometimes, you have outliers or some data points just dwarf all the others and you cannot really see the difference other than the difference between these data points and everything else. In this case, you need to break the Y axis either to skip a sparsely populated range or to show it at a different scale. There is no way you can do this on a single plot, but you can achieve the same effect by plotting your data on two subplots one under another with different ranges for the Y axis.



To make the figure more visually appealing, you need to remove the axis, ticks, and tick labels from the lower edge of the top plot and the top edge of the bottom plot. It helps to print '~' where the axis is broken.



It is easy to place text on the plot using the text(X,Y,str
 )
 function. The question now is; how do you print in the right place? The functio
 n
 tex
 t
  accepts a named parameter - transform, which you can set to axes transform to easily position text at the corners of the desired axes. The problem is that the '~' symbol itself has some dimensions, and you want its center to lie exactly on the axis end. You can adjust X and Y, but if the figure resolution or dimensions are changed '~' will appear in wrong place. Fortunately, there is a special tool to help you adjust the position in points. So, if we use the same font size for the '~' we should be fine. If font size changes, it is aone time adjustment. The helper functio
 n
 ScaledTranslation(
 )
 from modul
 e
 matplotlib.transform
 s
 takes the X and Y shift in inches and scale transformation that can be obtained from the figure. The transformation generated b
 y
 ScaledTranslation(
 )
 is added to the axes transform and '~' falls where it belongs no matter how you change the dimensions or resolution.







impor
 t
 numpy as np



impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



fro
 m
 matplotlib
 .
 transform
 s
 impor
 t
 ScaledTranslation



%
 matplotlib inline







tilda_fs
 =
 20



fig=plt
 .
 figure
 (
 figsize
 =
 (
 7
 ,
 9
 )
 , facecolor
 =
 '1.0'
 )



ax1=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 1
 )



ax2=plt
 .
 subplot
 (
 2
 ,
 1
 ,
 2
 , sharex=ax
 1
 )



ax1
 .
 set_ylim
 (
 10
 0
 ,
 2500
 )



ax2
 .
 set_ylim
 (
 0
 ,
 100
 )



ax1
 .
 spines
 [
 'bottom'
 ]
 .
 set_visible
 (
 False
 )



ax2
 .
 spines
 [
 'top'
 ]
 .
 set_visible
 (
 False
 )



ax2
 .
 xaxi
 s.
 tick_bottom
 ()



fig
 .
 subplots_adjust
 (
 hspace
 =
 0.02
 )







offset = ScaledTranslatio
 n
 (
 -
 9
 /
 7
 2
 ,
 -
 6
 /
 7
 2
 ,



 fig
 .
 dpi_scale_trans
 )



plt
 .
 text
 (
 0
 ,
 0
 ,
 '~
 '
 ,size=tilda_fs, transform=ax1
 .
 transAxe
 s
 +offse
 t
 )



plt
 .
 text
 (
 0
 ,
 1
 ,
 '~
 '
 ,size=tilda_fs, transform=ax2
 .
 transAxe
 s
 +offse
 t
 )



plt
 .
 text
 (
 1
 ,
 0
 ,
 '~
 '
 ,size=tilda_fs, transform=ax1
 .
 transAxe
 s
 +offse
 t
 )



plt
 .
 text
 (
 1
 ,
 1
 ,
 '~
 '
 ,size=tilda_fs, transform=ax2
 .
 transAxe
 s
 +offse
 t
 )







Y1=np
 .
 rando
 m.
 normal
 (
 0
 ,
 5
 ,
 10000
 )



Y2=np
 .
 rando
 m.
 laplace
 (
 2
 0
 ,
 2
 ,
 10000
 )







ax1
 .
 hist
 (
 Y1, bins
 =
 5
 0
 , label=
 r
 'Normal
 $
 \
 m
 u$ =0,
 $
 \
 s
 igma$ =5'
 )



ax1
 .
 hist
 (
 Y2, bins
 =
 5
 0
 , label=
 r
 'Laplace
 $
 \
 m
 u$=20,
 $
 \
 s
 igma$=2'
 )



ax2
 .
 hist
 (
 Y1, bins
 =
 50
 )



ax2
 .
 hist
 (
 Y2, bins
 =
 50
 )



plt
 .
 rc
 (
 'mathtext
 '
 , default
 =
 'regular'
 )



ax1
 .
 legend
 (
 loc
 =
 'upper left'
 )



plt
 .
 show
 ()







Note, we only show the legend on the top plot. With minor tweaks, this code can be adapted for your projects, or you can design a generic function to handle all the loose ends for you automatically.












Interaction




You see some interesting points on your plot and want to study the data they represent, but how do you get from the picture back to the data? Fortunately matplotlib allows for interaction with the plot. Callback functions might be associated with keyboard and mouse events. Not only can you get data coordinates at the mouse pointer positions, but lines, markers, and boxes etc. can detect the user clicking on them and generate events that could be bound to handler functions. This
 
documentation chapter

 explains the interaction with plots pretty well, and offers some advanced examples. I will show you how to select dots on a scatter plot using the rubber band rectangle and how to print the data for selected dots.







For this exercise, we will need to explicitly create a figure to redraw and attach events to axes, add a path representing the selection, and the two arrays of the same length representing the X and Y coordinates of data points that will be used to generate a scatter plot.







fig=plt.figure
 ()



ax=plt.subplot
 (
 111
 )



X=np.random.rand
 (
 40
 )



Y=np.random.rand
 (
 40
 )



plt.scatter
 (
 X,Y
 )







The rectangle object from matplotlib.patches will represent a rubber band rectangular selection. The rectangle is defined by a point representing a corner, width, and heights.







rubber_band=patches.Rectangle
 ((
 0
 ,
 0
 )
 ,
 # x,y




 0.5
 ,
 0.5
 ,
 # width,heights



 ls=
 ':'
 ,
 # dotted line



 fill=
 False
 )
 # no fill







For the patch to appear on a plot, it needs to be added to the axes.







ax.add_patch
 (
 rubber_band
 )







We will write a single function, mouse_selection, to handle three mouse events: button down, drag, and button up. Then, connect it to these events:







fig.canvas.mpl_connect
 (
 'button_press_event'
 , mouse_selection
 )



fig.canvas.mpl_connect
 (
 'button_release_event'
 , mouse_selection
 )



fig.canvas.mpl_connect
 (
 'motion_notify_event'
 , mouse_selection
 )







To keep track of the selected rectangle, we need to store two points that define its diagonal, (x1,y1) and (x2,y2). I will use two global lists - one will store the x and another the y coordinates:







mouse_x=
 [
 0
 ,
 0
 ]



mouse_y=
 [
 0
 ,
 0
 ]







Global is used to make data persist between calls. Of course, those variables could be hidden inside an object and this object could be made callable to handle mouse events, but I will use globals for simplicity.







The event handler receives a single parameter – in our case it i
 s
 MouseEven
 t
 . It has several useful members:



	
nam
 e
 – a string that tells callback what event called it.


	
x,
 y
 – mouse coordinates in pixels


	
xdata,ydat
 a
 – mouse position in data coordinates


	
inaxi
 s
 – boolean variable that is True when an event occurred in axes and False otherwise.





The first thing this event handler does is filter out irrelevant events – those not involving the left mouse button or ones occurring outside the axes.







The button down event must remember thex1,y1 coordinates of selection start and set the corner of the selection rectangle. Rectangle'
 s
 set_bonds(
 )
 method allows us to set the corner coordinates, width, and heights in one call.







if
 event.name==
 'button_press_event'
 :



 mouse_x
 [
 0
 ]
 =event.xdata



 mouse_y
 [
 0
 ]
 =event.ydata



 rubber_band.set_bounds
 (
 mouse_x
 [
 0
 ]
 ,mouse_y
 [
 0
 ]
 ,
 0
 ,
 0
 )
 







When the mouse moves with the left button down, the callback function redraws the rubber band rectangle.







if
 event.name==
 'motion_notify_event'
 :



 mouse_x
 [
 1
 ]
 =event.xdata



 mouse_y
 [
 1
 ]
 =event.ydata



 x1,x2=min_max
 (
 mouse_x
 )



 y1,y2=min_max
 (
 mouse_y
 )



 rubber_band.set_bounds
 (
 x1,y1,x2-x1,y2-y1
 )



 fig.canvas.draw
 ()







I wrote a littl
 e
 min_max(
 )
 function to make sure x1 is less than x2 and y1 is less than y2. It is not necessary here because Matplotlib allows the height and width of a rectangle to be negative, but we will need it later to identify selected points.



fig.canvas.draw(
 )
 insures that the figure is redrawn to reflect a change in selection.







Finally, when the button is released, the selection is finalized. Points that occur within the selected area are identified in the original data and printed.







if
 event.name==
 'button_release_event'
 :



 mouse_x
 [
 1
 ]
 =event.xdata



 mouse_y
 [
 1
 ]
 =event.ydata



 x1,x2=min_max
 (
 mouse_x
 )



 y1,y2=min_max
 (
 mouse_y
 )




 print
 (
 "selected dots"
 )




 for
 i
 in
 range
 (
 X.shape
 [
 0
 ])
 :




 if
 (
 X
 [
 i
 ]>
 x1
 and
 X
 [
 i
 ]<
 x2
 and



 Y
 [
 i
 ]>
 y1
 and
 Y
 [
 i
 ]<
 y2
 )
 :




 print
 (
 X
 [
 i
 ]
 ,Y
 [
 i
 ])




 sys
 .stdout.flush
 ()







The standard output stream is buffered and the last string ensures that all the text printed b
 y
 print(
 )
 calls appears to the user instantly.







It is impossible to interact with plots inlined in a notebook in a regular way. It is possible to inline the plot and keep it interactive with a %matplotlib nbag
 g
 magic line, but, at least on my machine, it is painfully slow and prevents printing. If you want to interact with a plot, keep it in a separate window and skip inlining altogether. You might need to restart a kernel to clear the effects of any previously executed magics and return to default plotting in a separate window.







Here is the complete code for a scatter plot that allows interactive selection.







import
 sys



import
 numpy as np



import
 matplotlib.pyplot as plt



import
 matplotlib.patches as patches







fig=plt.figure
 ()



ax=plt.subplot
 (
 111
 )







X=np.random.rand
 (
 40
 )



Y=np.random.rand
 (
 40
 )



plt.scatter
 (
 X,Y
 )







rubber_band=patches.Rectangle
 ((
 0
 ,
 0
 )
 ,
 # x,y




 0.5
 ,
 0.5
 ,
 # width,heights



 ls=
 ':'
 ,
 # dotted line



 fill=
 False
 )
 # no fill



ax.add_patch
 (
 rubber_band
 )







mouse_x=
 [
 0
 ,
 0
 ]



mouse_y=
 [
 0
 ,
 0
 ]







def
 min_max
 (
 l
 )
 :




 return
 min
 (
 l
 )
 ,
 max
 (
 l
 )







def
 mouse_selection
 (
 event
 )
 :




 if
 event.button
 !
 =
 1
 :




 return




 if
 not
 event.inaxes:




 return




 if
 event.name==
 'button_press_event'
 :



 mouse_x
 [
 0
 ]
 =event.xdata



 mouse_y
 [
 0
 ]
 =event.ydata



 rubber_band.set_bounds
 (
 mouse_x
 [
 0
 ]
 ,mouse_y
 [
 0
 ]
 ,
 0
 ,
 0
 )
 




 if
 event.name==
 'motion_notify_event'
 :



 mouse_x
 [
 1
 ]
 =event.xdata



 mouse_y
 [
 1
 ]
 =event.ydata



 x1,x2=min_max
 (
 mouse_x
 )



 y1,y2=min_max
 (
 mouse_y
 )



 rubber_band.set_bounds
 (
 x1,y1,x2-x1,y2-y1
 )



 fig.canvas.draw
 ()




 if
 event.name==
 'button_release_event'
 :



 mouse_x
 [
 1
 ]
 =event.xdata



 mouse_y
 [
 1
 ]
 =event.ydata



 x1,x2=min_max
 (
 mouse_x
 )



 y1,y2=min_max
 (
 mouse_y
 )




 print
 (
 "selected dots"
 )




 for
 i
 in
 range
 (
 X.shape
 [
 0
 ])
 :




 if
 (
 X
 [
 i
 ]>
 x1
 and
 X
 [
 i
 ]<
 x2
 and



 Y
 [
 i
 ]>
 y1
 and
 Y
 [
 i
 ]<
 y2
 )
 :




 print
 (
 X
 [
 i
 ]
 ,Y
 [
 i
 ])




 sys
 .stdout.flush
 ()











fig.canvas.mpl_connect
 (
 'button_press_event'
 , mouse_selection
 )



fig.canvas.mpl_connect
 (
 'button_release_event'
 , mouse_selection
 )



fig.canvas.mpl_connect
 (
 'motion_notify_event'
 , mouse_selection
 )



plt.show
 ()








Animation




If a static picture is not enough, the graphs can be animated. You can show animated graphs on the screen or save them as movies or an animated GIF file. To save an animated GIF, you need
 
ImageMagic

 installed on your system. To save the movies, you might need to install
 
ffmpeg

 . They might be already installed on your machine though.







As we've seen before, plotting functions return values. For instance, a simple plot() function return a list of Line2D objects. Using these objects, you can change the lines after they were plotted. For instance, you can change the X and Y values of data poinst for a plotted line.







X
 =
 [
 1
 ,
 2
 ,
 3
 ]



Y
 =
 [
 1
 ,
 1
 ,
 1
 ]



lines=plt
 .
 plot
 (
 X,
 Y
 )



line
 s
 [
 0
 ]
 .
 set_ydata
 ([
 1
 ,
 2
 ,
 4
 ])







This ability to adjust plots will be used for animation. Of course, it only works with some drawing back ends. The Ipython magi
 c
 %matplotlib inlin
 e
 we used before generates an image and inserts it in a notebook. This image cannot be adjusted if we change the line after plotting. So, we will skip the magic for now and have the animated graphs appear in a separate window. You might need to restart the kernel to reset the %matplotlib inlin
 e
 settings from previous program runs. As an additional benefit - if we make a looping animation all you have to do to stop it is to close the plot window. I'll show how to embed animations in the workbook later.



To illustrate animation with matplotlib, we will make line plots that appear dot by dot from left to right. So, let's generate x-values ranging from 0 to 20 and 20 random y-values







Y=np.random.rand
 (
 20
 )



X=np.linspace
 (
 0
 ,
 20
 ,
 20
 )







Pyplot is smart and adjusts the axes’ limits to better fit the graph. For an animation, we want the limits to stay the same throughout and not change from one frame to another as we add dots to the plot; so, we set the axes limits manually.







fig=plt.figure
 (
 figsize=
 (
 12
 ,
 6
 )
 , facecolor=
 '1.0'
 )



ax=plt.subplot
 (
 111
 )



plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 1
 ])







Then, we do plotting with no data points, but keep the returned list of Line2D objects in variable lines.







lines=plt.plot
 (
 Y
 [
 0
 :
 0
 ])







Function update(frame) will update the first (and only) plot line by adding a new point every frame. The return value tells the caller what lines need to be updated.







def
 update
 (
 frame
 )
 :



 lines
 [
 0
 ]
 .set_xdata
 (
 X
 [
 :frame
 ])



 lines
 [
 0
 ]
 .set_ydata
 (
 Y
 [
 :frame
 ])




 return
 lines







Th
 e
 FuncAnimatio
 n
 object from the modul
 e
 matplotlib.animatio
 n
 will drive the animation by calling the update function.








animation = FuncAnimation
 (

 fig,



  update,



  interval=
 50
 ,



  blit=
 True
 ,



  frames=
 20
 ,



  repeat=
 True
 )



plt.
 show
 ()







The constructor for the FuncAnimation object takes a figure and update function name as positional parameters. You can supply the interva
 l
 between frames in milliseconds, tell the object to refresh the updated lines with a bli
 t
 parameter, supply the number o
 f
 frames
 ,
 and tell whether you want t
 o
 repea
 t
 animation indefinitely.







The save method allows you to save an animation in a file with the animation writer of choice. Following call saves an animated GIF using
 
ImageMagic

 (which you might need to install separately).







animation.save
 (
 'draw_plot.gif'
 ,



  writer=
 'imagemagick'
 ,



  fps=
 5
 , dpi=
 45
 )







Here is the complete code. To embed animation in a notebook, uncomment the
 %matplotlib nbag
 g
 line. The gray band over the figure will have a blue button on the right to stop the animation.







import
 matplotlib.pyplot as plt



from
 matplotlib.animation
 import
 FuncAnimation



import
 numpy as np



#%matplotlib nbagg







Y=np.random.rand
 (
 20
 )



X=np.linspace
 (
 0
 ,
 20
 ,
 20
 )



fig=plt.figure
 (
 facecolor=
 '1.0'
 )



ax=plt.subplot
 (
 111
 )



plt.axis
 ([
 0
 ,
 20
 ,
 0
 ,
 1
 ])



lines=plt.plot
 (
 Y
 [
 0
 :
 0
 ])



def
 update
 (
 frame
 )
 :



 lines
 [
 0
 ]
 .set_xdata
 (
 X
 [
 :frame
 ])



 lines
 [
 0
 ]
 .set_ydata
 (
 Y
 [
 :frame
 ])




 return
 lines



animation = FuncAnimation
 (
 fig,



    update,



    interval=
 50
 ,



    blit=
 True
 ,



    frames=
 20
 ,



    repeat=
 True
 )



#animation.save('draw_plot.gif', writer='imagemagick', fps=30, dpi=40)



plt.show
 ()



#animation.save('draw_plot.mp4', writer='ffmpeg')







To save an animation as an animated GIF file or an mp4 movie, set repea
 t
 t
 o
 Fals
 e
 in th
 e
 FuncAnimatio
 n
 constructor and uncomment one of the last two lines. In my experience, ffmpeg animation writer is more demanding. It requires the repeat to be set on False and must go after plt.show(). GIF animation writer is more forgiving.












Networks




The last graph type, I want to mention is a network graph. It is often useful to explore connections. It might be two genes coding proteins that physically interact with each other, two scientific papers often referred together, hyperlinks connecting web pages, a highway system, “friendship” relationships on social networks, or many other cases where you are interested in connections. You can do many things with networks programmatically, but, sometimes, it is useful to visualize them for the user.







The most popular Python library for handling networks is called
 
Networkx

 . It uses pyplot for visualizations although there are other options.







impor
 t
 matplotlib
 .
 pyplo
 t
 as plt



%
 matplotlib inline







impor
 t
 networkx as nx



G=nx
 .
 Graph
 ()



G
 .
 add_edge
 (
 'A
 '
 ,
 'B'
 )



G
 .
 add_edge
 (
 'A
 '
 ,
 'C'
 )



G
 .
 add_edge
 (
 'A
 '
 ,
 'D'
 )



G
 .
 add_edge
 (
 'C
 '
 ,
 'B'
 )



nx
 .
 draw_networkx
 (
 G,node_color
 =
 [
 'r
 '
 ,
 'g
 '
 ,
 'b
 '
 ,
 'm'
 ])







We will discuss the network graph at length later, when we have something interesting to display.








Databases








Databases allow







	
Persistent storage


	
Powerful search, sorting, and filtering tools


	
Combining various data


	
Easy sharing


	
Easy scalability


	
Unlimited amounts of data









Much of the power of databases comes from the Standard Query Language SQL. Not only does it allow efficient lookup - combining, search, and filtering operations, but it also standardizes database requests so that the query with minor tweaks can run on both an embedded SQLite database, that keeps data as a single local file, and on a huge cluster with hundreds of servers.












SQLite




In this book, I will concentrate on the SQLite database engine that is supplied with the standard Python library. It is a serverless database perfect for learning. It’s also good for hobbyist use as well as for substantial data exploratory activities carried out by a single person. It stores data as a single file, which is easy to backup and transfer.







SQLite starts to show its limits when you develop several programs to work with the same database. You start a new program using the database in a new folder and make a copy of your database. Then, you use a flash drive to transfer the database from your work desktop computer to your laptop. Then, you update data from an online source on your laptop, but use the same old copy from the flash drive to transfer the database to your home desktop computer. You give a copy to your boss, who wants you to give a copy to your colleague. As you continue to improve the database, copies and versions propagate before eventually running out of control. Even if you are the only person who introduces changes, over period of time you generate versions that take on a life of their own which you no longer control. And, you might not be the only one to introduce the changes if you write a program for a data entry that stores entered data in a database.







Preferably, you will switch to a server-client model before that point. Python has interfaces to all major SQL and non-SQL database engines. Something like mySQL might be adequate for a lab or a medium sized business.












Single system-wide database with SQLite




As long as you stay with a single computer, you can create a single database without aserver by storing a database file in a single well defined location. All major OSes have special directories where applications can store their data. For instanc
 e
 HOME/{.ApplicationName
 }
 on Unix-like operating systems. On Windows it i
 s
 APPDATA\{DeveloperName\ApplicationName} for a single user and
 
 PROGRAMDATA\{ApplicationName
 }
 for all users. You can use a HOM
 E
 environment variable on Unix an
 d
 APPDAT
 A
 o
 r
 PROGRAMDAT
 A
 on Windows to create a directory where you are going to keep your database file, and make all of your programs access it there. Environment variablesare accessible in Python script throug
 h
 os
 .enviro
 n
 dictionary:







import
 os


os
 .environ
 [
 'PROGRAMDATA'
 ]







Just don't forget to make backup copies. The same is true for a database server. If you use single system-wide database, be sure to back it up before updating. Fortunately, it is easy with SQLite. All you have to do is make a copy of database file. And, you can do it programmatically:







import
 shutil



shutil
 .copyfile
 (
 filename,filename+
 '.backup'
 )












GUI tools for SQLite




Although I will concentrate on the programmatic use of databases, there are several GUI applications that allow for work with a database without programming. You can use these tools to:







	
Look how your program changes database.


	
Develop or troubleshoot queries.


	
Dump database data or query results into text files


	
Import CSV files into database tables


	
Manually create, delete, modify tables, views, indexes, triggers, etc.









There are several cross platform options



	

SQLiteman



	

SQLite browser



	

SQLite bro










There is also a free version of the proprietary
 
SQLite Expert

 for Windows. It tries to be limited, to encourage the purchase of the commercial version; so, some features available in the free programs might be missing.












Connecting to database




To work with the SQLite database, we need to import module sqlite3 and create a connection and a cursor







import
 sqlite3



con = sqlite3.connect
 (
 'sgd.db'
 )
 # connect to database in file sgd.db



cur = con.cursor
 ()
 
 # create cursor







If the database file doesn't exist, it will be created in theprogram's working directory unless you provide an absolute path lik
 e
 'c:\sgd.db
 '
 on Windows. Now, you can execute SQL statements by preparing them in a Python string and sending them as a parameter to thecursor'
 s
 execute(
 )
 method. When you are done working with the database, you need to commit the changes so that recent changes get committed to the database on the disk and close the database so that other programs can access it.








con.commit
 ()




con.close
 ()







Let’s not fool around with toy databases and get some real data. I will use the
 
Yeast Genome Database

 for my examples. It gives the sense of a real world application, its decent size gives some idea of scale effect i.e. advantage of indexes, and limiting your queries.












Creating a table




Data in SQL databases is stored in tables closely resembling Microsoft Excel spreadsheets. It is composed of rows containing the same number of fields. Each column contains fields of the same type. Instead of numbers or letters like in spreadsheets, columns are referred to by names. While creating a table, we have to specify column names and the type of data they contain.







SQLite supports following types



	
Integer


	
Float


	
Text


	
Blob









More complex data types could be split into several fields of the same row, or encoded into Text or Blob fields. For instance, entire numpy arrays might be turned into strings using the numpy.array_repr() function and stored in Text field. If an object can be written to a file, you can write it in a bytes buffer instead and store it in Blob field. That is how images might be effectively stored in a database as blobs. There is a mechanism allowing you to adapt your program's objects for storage in the SQLite database.
 For now, we will mostly use Text and Integer types though.







Data can be obtained from
 
SGD site

 . We will need a file containing chromosomal features
 
http://downloads.yeastgenome.org/curation/chromosomal_feature/SGD_features.tab








It is a tab delimited text file. According to the
 
readme file

 columns of the SGD_features.tab, are







	
Primary SGDID (mandatory)


	
Feature type (mandatory)


	
Feature qualifier (optional)


	
Feature name (optional)


	
Standard gene name (optional)


	
Alias (optional, multiples separated by |)


	
Parent feature name (optional)


	
Secondary SGDID (optional, multiples separated by |)


	
Chromosome (optional)


	

 Start_coordinate (optional)


	

 Stop_coordinate (optional)


	

 Strand (optional)


	

 Genetic position (optional)


	

 Coordinate version (optional)


	

 Sequence version (optional)


	

 Description (optional)









One way to put this file into a database would be to download and import it using one of the GUI programs mentioned above. The file doesn't have column names; so, you would need to open it in a spreadsheet application like Microsoft Excel, add a row containing column names at the top, and save the modified version as the tab delimited text file. Column names should not contain spaces.











We will create the table and fill it with data programmatically. Let’s make our first SQL statement. Our first table will be calle
 d
 feature
 s
 .







First, we need to delete the table if it already exists. We don't delete tables very often, but, as you develop a program that creates a table, it is safe to do and should be done or else your program will crash if table already exists.







The SQL statement to delete a table named 'features' if one exists is:







dro
 p
 tabl
 e
 i
 f
 exist
 s
 features







A Python statement that does the same will look like this:







cur.execute
 (
 'drop table if exists features'
 )







An SQL statement to create a table is also simple.
 Creat
 e
 tabl
 e
 nam
 e
 followed by a parenthesized, comma-separated list of fields and their types. A statement for creating tabl
 e
 feature
 s
 is pretty long, but most of it is just the listing of 16 fields and their types.



It is a good idea to build longer queries in Python string variables. You can print them at various points for debugging, reuse parts of the query in other queries, etc. Here is a listing of a program that will create a database withtabl
 e
 feature
 s
 in it.







import
 sqlite3



con = sqlite3.connect
 (
 'sgd.db'
 )



cur = con.cursor
 ()



cur.execute
 (
 'drop table if exists features'
 )



query=
 '''create table features (



 id text,



 kind text,



 status text,



 orf text,



 name text,



 aliases text,



 parent text,



 sec_ids text,



 chromosome integer,



 start integer,



 finish integer,



 direction text,



 genetic_pos int,



 coordinat_vers text,



 sequence_vers text,



 description text)'''



cur.execute
 (
 query
 )



con.commit
 ()



con.close
 (
 )







The file sgd.db, containing newly created database, will appear in your program's working directory. You can open it in a GUI database management software, and make sure the table is there and that it has all the requested fields.












Importing data




To insert a row of data into the database, use the insert SQL statement:







inser
 t
 int
 o
 feature
 s
 value
 s
 (
 …
 )







The actual values are supplied as a comma separated list in parenthesis. Text strings should be quoted. When using SQL from Python, we can put comma separated question marks instead of values and supply the values as a Python sequence in a second parameter of the cur.execute(
 )
 method.



I find typing 16 comma separated question marks tedious. It is a good opportunity to illustrate how to build a query programmatically.







query=
 "insert into features values("



query+=
 ','
 .join
 ([
 '?'
 ]*
 16
 )



query+=
 ')'







The second line is the most important. ['?'] is a list containing one string of a single question mark. ['?']*16 makes a list of 16 question marks, and, finally, this list is joined in a string, where the question marks are separated by comas. If we print the query variable, we will see the SQL query ready to run.







print
 (
 query
 )



inser
 t
 int
 o
 feature
 s
 values
 (
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 ,
 ?
 )







In my first book, I've shown how to import tab delimited data from a local file. For the sake of variety, let’s read data directly from an online source now. I definitely don't recommend doing this with your production database. At the very least, you should import from a local file so you don't depend on connection quality or speed. Use transactions for updating, make a backup of your valuable data, etc. But, we are starting from a clean slate now for our own amusement; so, we are free to experiment.



Let's import thefunctio
 n
 urlopen(
 )
 from thestandard library modul
 e
 urllib.reques
 t
 . This function takes a web address as a parameter and returns a file-like object that we can read almost like a regular file. The only difference is that it is a binary file and we need to convert the lines we read from it into unicode strings by manually using the decode(
 )
 function. Another caveat is removing the end of line character. We want to keep all the tab characters that are usually removed by the strip(
 )
 method. Otherwise, if the final fields of some rows are empty, following the split('\t'
 )
 method will generate a fields list shorter than 16, and SQLite will complain. So, we have to specify which characters we want removed from thelin
 e
 ends strip('\n\a'
 )







We will read the file line by line, split the lines into fields at tab characters, and send the resulting list together with SQL insert statement prepared beforet
 o
 cur.execute
 (
 )
 .







Here is the listing for a program that will create database, make a features table, and enter the data from online source:







from
 urllib
 .request
 import
 urlopen



import
 sqlite3







con = sqlite3.connect
 (
 'sgd.db'
 )



cur = con.cursor
 ()



cur.execute
 (
 'drop table if exists features'
 )



query=
 '''create table features (



 id text,



 kind text,



 status text,



 orf text,



 name text,



 aliases text,



 parent text,



 sec_ids text,



 chromosome integer,



 start integer,



 finish integer,



 direction text,



 genetic_pos int,



 coordinat_vers text,



 sequence_vers text,



 description text)'''



cur.execute
 (
 query
 )







query=
 "insert into features values("



query+=
 ','
 .join
 ([
 '?'
 ]*
 16
 )



query+=
 ')'







url=
 'http://downloads.yeastgenome.org/curation/chromosomal_feature/SGD_features.tab'



f=urlopen
 (
 url
 )



for
 line
 in
 f:



 fields=line.decode
 ()
 .strip
 (
 '
 \n\
 a
 '
 )
 .split
 (
 '
 \
 t
 '
 )



 cur.execute
 (
 query,fields
 )







con.commit
 ()



con.close
 ()







This script can be used to create a database or update a local database when new content appears online.








Querying databases




Now, we have some data in and can start retrieving data or querying our database. The SQL statement for data retrieval is
 select
 . I will give several short SQL examples. Feel free to run them in the GUI database manager.



The most basic select operation will return all the data from table features







selec
 t
 *
 fro
 m
 features







Here is a screen shot of Sqliteman window with a sgd.db database file opened after executing this statement (highlighted in orange in top right panel). To execute statements printed in this window, click the right facing green triangle in the row above the panel. Retrieved data appears in the lower right panel.


[image: ]








If we only want some columns, we give a comma separated list of columns to retrieve. The following statement will retrieve the systematic gene name, conventional name, and chromosome number







selec
 t
 or
 f
 ,
 nam
 e
 ,
 chromosom
 e
 fro
 m
 features












Filtering




To limit the number of retrieved rows, we can filter rows using the
 where
 clause.







selec
 t
 or
 f
 ,
 nam
 e
 ,
 descriptio
 n
 fro
 m
 feature
 s
 wher
 e
 nam
 e
 =
 'ACT1'







This statement returns a single row with information on actin – the only gene in the database named ACT1









	

orf



	

name



	

description






	

YFL039C



	

ACT1



	

Actin; structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions













Several records might satisfy the
 where
 condition. For instance, we might want to retrieve all the genes on chromosome one. The table contains all known genetic features - not only coding genes. Coding genes have an 'ORF' string in the kind column. So we put two conditions in
 where
 clause joining them by
 and
 operation so that both conditions should be satisfied for the row to be retrieved. Actually, let’s not retrieve any data and just count the database rows that satisfy all the conditions. To do this, instead of listing the columns to retrieve, we put an aggregate function count(*) after a
 select
 statement.







selec
 t
 count(*
 )
 fro
 m
 features




 
 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 







117 rows satisfy the conditions representing all coding genes from chromosome 1.



Some of the genes were not properly studied and don't even have names. They might not even be real genes, just some sequences that the computer identified as a gene by mistake. Let’s limit our search to genes that have names. So, they don't have an empty string in the nam
 e
 column.







selec
 t
 count(*
 )
 fro
 m
 features




 
 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 and
 name!
 =
 ''







This time, only 78 rows satisfy the conditions.







What if, in your filter, you want a value in a particular field be any of few possible choices? You can use
 or







select orf from features



 where name='TDH1'



 or name='TDH2'



 or name='TDH3'







But, if there are tens or hundreds of allowed choices, this might get tedious.







You can test if a name equals any of these values using the
 in
 condition.







select
 orf
 from
 features




 where
 name
 in
 (
 'TDH1'
 ,
 'TDH2'
 ,
 'TDH3'
 )







If it is a list of banned values, the condition can be negated.







select
 orf
 from
 features




 where
 not
 name
 in
 (
 'TDH1'
 ,
 'TDH2'
 ,
 'TDH3'
 )








Sorting




We can use SQL not only to filter rows, but also to sort them. Let’s sort the genes of chromosome 1 by their positions on the chromosome. Two columns represent positional information - start and finish. Let’s use start for now. To order the retrieved rows, we need to add an
 order
 by
 clause to our query.







selec
 t
 orf, name, star
 t
 fro
 m
 features




 
 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 and
 name!
 =
 ''




 order
 by
 start







The first few rows returned by this statement are presented in the table below.









	

orf



	

name



	

start






	

YAL068C



	

PAU8



	

2169






	

YAL067C



	

SEO1



	

9016






	

YAL064C-A



	

TDA8



	

13743






	

YAL063C



	

FLO9



	

27968






	

YAL062W



	

GDH3



	

31567






	

YAL061W



	

BDH2



	

33448






	

YAL060W



	

BDH1



	

35155






	

YAL059W



	

ECM1



	

36509






	

YAL058W



	

CNE1



	

37464






	

YAL056W



	

GPB2



	

39259













It is obvious that genes are ordered by their start position, but it is also obvious than we have more than two columns representing the positional information for each gene. Look at the systematic names in the first column - they are also ordered now. Systematic names are given according to gene position on the chromosome. The second letter codes for chromosome number. The third designates the chromosome shoulder L – left and R-right. The number represents the order of the gene from the centromere – the region of the chromosome between the left and right shoulder that is attached to the mitotic spindle during cell division. As we start from one end tle left chromosome shoulder going right, the gene numbers decrease to 001, which is the closest to the centromere. Then, as we move to the right chromosome shoulder, the gene numbers begin to increase again. Some numbers are missing, for instance 65 and 66. These genes were filtered out by our
 select
 statement because they don't have names or don't code for proteins.







Actually, genes can go in either direction along the chromosome; so, the start position might be greater than the finish. Genes can overlap; so, either start or finish might be misleading when trying to order genes by chromosomal location. We can avoid this confusion by using the functions min(), max(), or sum(). The later might be divided by two to obtain the average of the start and finish positions. Ordering by the average of the start and end might be useful if a smaller gene is completely inside a larger one







selec
 t
 orf, name, star
 t
 fro
 m
 features




 
 wher
 e
 kin
 d
 =
 'ORF
 '
 an
 d
 chromosom
 e
 =
 1
 and
 name!
 =
 ''




 order
 by
 (start-finish)/2







Sometimes, you want some summary of the data. We already dealt with this a little when we used the count(*) function. But, there are more ways to summarize the data. Let’s see for instance what kinds of chromosomal features there are. To do this, we need to request the
 distinct
 values of some column.







selec
 t
 distinc
 t
 kin
 d
 fro
 m
 features







Actually, there are surprisingly many different kinds of features – 44. The obvious application for this kind of request would be initializing the widget and allowing the user to select one or several feature types for further analysis.



The same effect can be achieved by grouping rows by value in some column.







select
  kind
 from
 features
 group
 by
 kind







It returns the same 44 different feature types, but, this time, you can count how many times each feature kind occurs in database.







select
 kind
 ,
 count
 (*)
 from
 features
 group
 by
 kind







This statement returns two columns – the feature type and the number of times it occurs in the database. We can not only get the count, but can also order by it to easily find the most and the least frequent features.







select
 kind
 ,
 count
 (*)
 from
 features
 group
 by
 kind
 order
 by
 count
 (*)












Working with multiple tables




All the SQL operations demonstrated above are very useful and I miss things like sorting by expression on several columns in spreadsheet applications. There are even Python packages that allow you to run SQL statements on Python data structures. But, the real power of SQL comes from the ability to join data from several tables. We will need to create another table to play with it.



Let's obtain data on scientific articles that mention yeast genes. The
 
data file

 is available from Stanford. Just like features, it is a plain text tab delimited file, containing following columns:







1) PubMed ID - the unique PubMed identifer for a reference



2) citation - the article's title, journal's name, year etc.



3) gene name - Gene name, if one exists



4) ORF - Systematic name



5) literature_topics - separated by a '|' character.



6) SGDID - the SGDID, unique ID for the gene/feature







The following code will download the file and create atabl
 e
 literatur
 e
 in the database sgd.db.







from urllib.request import urlopen



import sqlite3







con = sqlite3.connect
 (
 'sgd.db'
 )



cur = con.cursor
 ()



cur.execute
 (
 'drop table if exists literature'
 )



query=
 '''create table literature (



 pmid integer,



 title text,



 gene text,



 orf text,



 topics text,



 sgdid text)'''



cur.execute
 (
 query
 )







query=
 "insert into literature values("



query+=
 ','
 .join
 ([
 '?'
 ]*
 6
 )



query+=
 ')'







url=
 'http://downloads.yeastgenome.org/curation/literature/gene_literature.tab'



f=urlopen
 (
 url
 )



for
 line
 in
 f:



 fields=line.decode
 ()
 .strip
 (
 '
 \n\
 a
 '
 )
 .split
 (
 '
 \
 t
 '
 )



 cur.execute
 (
 query,fields
 )







con.commit
 ()



con.close
 ()







This file is also pretty large – 95MB. You might want to download it with a browser. In this case, instead of:







f=urlopen
 (
 url
 )







use







f=
 open
 (
 'file_name'
 ,
 'r'
 )







where file_name is the name of the file on the disk
 ,
 and omit
 .decode
 () in







 fields=line
 .decode
 ()
 .strip
 (
 '
 \n\
 a
 '
 )
 .split
 (
 '
 \
 t
 '
 )







Now, all the articles on a particular gene, URM1 for instance, might be extracted by the SQL statement







select
 title
 from
 literature where gene=
 'URM1'







There are currently 45 such articles in the database. We can obtain unique pubmed IDs for these articles:







select
 pmid
 from
 literature where gene=
 'URM1'







Now, let’s find all the genes mentioned in papers that mention URM1. If one paper mentions several genes, those genes might well be involved in the same process. To identify genes mentioned in the same papers as URM1, we can chain two select statements. One obtains the IDs of the articles that mention URM1. Another searches for all the genes mentioned in these articles.







selec
 t
 gen
 e
 fro
 m
 literature where pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literature where gene
 =
 'URM1'
 )







This statement returns the gene as many times as the many articles mention it. Let’s group the results by gene name, count how many times each gene occurs in papers on URM1, and order genes by how many times they co-occurr with URM1 in literature.







selec
 t
 coun
 t
 (*)
 ,
 gen
 e
 fro
 m
 literature




 
 wher
 e
 pmi
 d
 i
 n




 
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
 )




 
 grou
 p
 b
 y
 gene




 
 orde
 r
 b
 y
 coun
 t
 (*
 )
 desc







This statement returns thousands of genes, but a huge majority of these genes occur only in one or two articles. There are a few articles mentioning hundreds and sometimes thousands of genes. They are probably not really informative in terms of gene function; so, we should discard genes that occur in one or two articles and concentrate on the top of the returned list.








HAVING a clause to filter by count(*)




Ordering helps when a query returns a lot of results. We just look at the top of the list, but returning a lot of rows takes time. As queries become more complex, this time might become significant. Let's say we want to look up descriptions of the found genes from a table of features. Looking up a dozen descriptions takes way less time than looking up a dozen hundreds. With more complex queries, such needless searches might take minutes and even hours only for the results to be ignored and discarded.



It would be nice to filter only the most frequent genes, but we have to filter by an aggregate functio
 n
 coun
 t
 ()
 ,and aggregate functions lik
 e
 coun
 t
 ()
 cannot occur in a
 where
 clause that filters rows. Instead, we have to test for the aggregate of a group in a
 having
 clause that follows
 group
 by
 .







selec
 t
 coun
 t
 (*)
 ,
 gen
 e
 fro
 m
 literature




 
 wher
 e
 pmi
 d
 i
 n




 
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
 )




 
 grou
 p
 b
 y
 gene




 
 havin
 g
 coun
 t
 (*)>=
 8




 
 orde
 r
 b
 y
 coun
 t
 (*
 )
 desc







The returned list looks like this:







416



45 URM1



29 UBA4



16 NCS2



16 NCS6



10 ELP2



10 ELP3



10 TRM9



8 ELP6



8 IKI3







As we remember, URM1 occurred in 45 papers, and unsurprisingly it still does. 29 of these papers mention UBA4 and 16 articles mention NCS2 and NCS6 each. It’s quite likely that these genes occur in scientific papers together because they are involved in the same biological process as URM1. But, what about the 416 no name entries? Those entries represent the occurrences of features that don't have a trivial name. These might be different genes, but they all have an empty string instead of a trivial name and
 grou
 p
 b
 y
 clause groups them together. Perhaps these features have a systematic name we can obtain from the orf column. We can actually group results by several columns; so, only rows having an identical name and systematic name will be grouped together. To see if it is really so, we need to add an or
 f
 field to both the
 select
 and
 grou
 p
 by
 clauses







selec
 t
 coun
 t
 ()
 ,
 gen
 e
 ,
 or
 f
 fro
 m
 literature




 
 wher
 e
 pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
 )




 
 grou
 p
 b
 y
 gen
 e
 ,
 orf




 
 orde
 r
 b
 y
 coun
 t
 (*
 )
 desc







Indeed, 416 disappeared from the list. Instead, 11 features appeared that have neither a trivial nor a systematic name. But, in addition to this, 3 papers mention lots of genes that code not proteins, but tRNAs







3  tE(UUC)B



3  tE(UUC)C



3  tE(UUC)E1



3  tE(UUC)E2



3  tE(UUC)E3



3  tE(UUC)G2



…..







This makes perfect sense, because, as we will see shortly, URM1 is involved in the modification of tRNAs, allowing them to recognize their anticodon more efficiently during translation.












Joining tables




It would be nice to add a gene description to the result list. We have gene descriptions in the table features, but how could we combine the results from the two tables? It is easy. All we have to do is to list all the desired fields from both tables in the
 select
 clause. Note that both tables have an orf column, so we have to specify if we want the orf in the results to come from the literature or the features table. To do this, we use table.column notation - literature.orf







selec
 t
 coun
 t
 (*)
 ,
 literatur
 e
 .
 or
 f
 ,
 gen
 e
 ,
 description







We have to list all the tables used in the
 from
 clause,







from
 literature
 ,
 features







Then, to make sure that only rows with the same systematic gene name are joined, we need to add a conditional statement







where
 literature
 .
 orf
 =
 features
 .
 orf







plus the additional conditions we've discussed before.







and
 kind
 =
 'ORF'
 and



pmid
 in
 (
 select
 pmid
 from
 literature
 where
 gene
 =
 'URM1'
 )



group
 by
 gene
 ,
 literature
 .
 orf



order
 by
 count
 (*)
 desc







Every time both tables have columns of the same name, we need to specify from which table the data comes from by using table.column notation.







The whole query is present below:







selec
 t
 coun
 t
 (*)
 ,
 literatur
 e
 .
 or
 f
 ,
 gen
 e
 ,
 description
 
 fro
 m
 literatur
 e
 ,
 features




 
 wher
 e
  literatur
 e
 .
 or
 f
 =
 feature
 s
 .
 orf



 
 
 an
 d
 kin
 d
 =
 'ORF
 '



 
 
 an
 d
  pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
 )




 
 grou
 p
 b
 y
 gen
 e
 ,
 literatur
 e
 .
 orf




 
 orde
 r
 b
 y
 coun
 t
 (*
 )
 des
 c







If you run this query in SQLiteman or another GUI database management tool, you will get results that are already pretty useful. They give a good idea of the biological processes URM1 is involved in and other genes that cooperate with URM1. It is a pretty good point to start learning about a new field of study.












Indexing database




I don't know about your computer, but mine takes a noticeable amount of time to return results of this request. You can speed up your queries dramatically by creating indexes on columns used for filtering or ordering. Your favorite GUI database management tools almost certainly allow you to create an index interactively, selecting the index name, table, and column(s) to index. Certainly, there is a way to see an SQL command program used behind the scenes to create index. An SQL statement creating index named features_orf_index on orf column of features table looks like this







CREATE
 INDEX
 features_orf_index
 on
 features
 (
 orf
 )







An index can be ascending, descending, unique,and index several columns, but this is good enough. I will leave creating indexes o
 n
 or
 f
 and gene columns of literature table as an exercise. If you skip doing this excersize, the examples from the following chapter might be painfully slow. If you've seen a delay in the execution of the query that adds gene descriptions, try to run it again and see how much speed up indexing gives you. This speed up comes at a cost though – the index increases the database size on your disk. That is also something you might want to see for yourself.







The index can be destroyed by the command







DROP
 INDEX
 features_orf_index







Indexes are persistent. They are saved in a database file and you only have to create them once. New data added to an indexed table will be indexed automatically (which might increase execution time for insert statements; so, when creating a database, we insert the data first and the index later).












Views




If you have a very complex table with many columns and want to simplify it or preserve it in database,you can create
 a
 vie
 w
 . For instance, if you want to get only genes from the features table and are interested only in the systematic name, trivial name, and description,you can make
 a
 view







creat
 e
 vie
 w
 simply_gene
 s
 a
 s
 




 
 selec
 t
 or
 f
 ,
 nam
 e
 ,
 descriptio
 n
 fro
 m
 features



  
 
 wher
 e
 kin
 d
 =
 'ORF'







Views are persistent. They are stored in the database and are available the next time you connect to it. They take almost no space on the disk and you can run your
 select
 statements on views as if they were regular tables.




Aliases and joining rows of the same table




It would be interesting to look up the papers that mention two genes together. One way to do it is to chain select statements like we did before:







selec
 t
 pmi
 d
 ,
 title
 
 fro
 m
 literature




 
 wher
 e
 gen
 e
 =
 'NCS6
 '



 
 
 an
 d
 pmi
 d
 i
 n
 (
 selec
 t
 pmi
 d
 fro
 m
 literatur
 e
 wher
 e
 gen
 e
 =
 'URM1'
 )







Another way is to treat thetabl
 e
 literatur
 e
 as two separate tables and join them like we joined the literatur
 e
 an
 d
 feature
 s
 tables. To treat rows of the same table as rows from different tables, we need to give the tables aliases, for instance, lit
 1
 an
 d
 lit
 2
 . Because, in this case,all columns i
 n
 lit
 1
 are named like thecorresponding columns fro
 m
 lit
 2
 , we need to qualify all the fields with table.column notation for all used columns.







selec
 t
 lit
 1
 .
 pmi
 d
 ,
 lit
 1
 .
 title
 
 fro
 m
 literatur
 e
 a
 s
 lit
 1
 ,
 literatur
 e
 a
 s
 lit2




 
 wher
 e
 lit
 1
 .
 pmi
 d
 =
 lit
 2
 .
 pmid



 
 
 an
 d
 lit
 1
 .
 gen
 e
 =
 'URM1
 '



 
 
 an
 d
 lit
 2
 .
 gen
 e
 =
 'NCS6'







Both queries return a list of 16 articles that mention both genes. I will use the later variety in the following chapter.







This is pretty quick introduction to SQL - just to get you started. I only demonstrated commands essential to use SQL for realistic data analysis. I didn't show how to update or delete rows, how to use transactions, or how to create triggers that would automatically update several tables if some data is distributed across tables. Deleting data doesn't necessarily reduce file size - you might need to specifically cal
 l
 vacuu
 m
 command. All these things are beyond this book. You are highly encouraged to study more. A description of SQLite's SQL dialect can be found on SQLite site
 
https://www.sqlite.org/lang.html

 .



Many tutorials are available on the web, such as this tutorial on tutorialspoint
 
http://www.tutorialspoint.com/sqlite/









Querying database from Python




SQL is a very clear and elegant data retrieval language. Simple queries are very easy to both write and understand, but queries might get pretty complex. SQL was not designed to handle infinitely complex problems that require thousands of lines of code. That is what the general purpose programming languages such as Python are for. When working with a database from a Python program, you have a choice how much of processing you want to do in SQL query and how much in Python. One extreme would be to just get all the tables from the database in Python lists of lists or dictionaries and proceed from there. On the other hand, we've seen that SQL query alone can produce very useful data. So, your solution might be anywhere in between, depending on the task at hand, performance considerations, amounts of memory, network bandwidth, whether the database physically resides on a remote server, your skills in both languages, and personal preferences.







Let's query the database for genes that co-occur with a given target gene from Python script, and draw a network of interactions. Points to note:







	
We will prepare SQL query as a Python string.


	
Data passed to the query (target gene) is sent as the second parameter in cursor'
 s
 execute(
 )
 method.


	
Positions within the query where parameters need to be inserted are marked by '?'.


	
Parameters must be passed as a tuple – a sequence of comma separated values in brackets. We send just one value; so, we need a comma after it to show that it is actually a tuple.


	
After query is executed by the cursor'
 s
 execute(
 )
 , method we use anidio
 m
 for
 row
 in
 cur
 :
 to iterate over rows of data fetched from database.


	
A returned row of data can be indexed like a regular list to get the field's values


	
We can do filtering either in SQL query adding extra conditions in
 where
 or
 having
 clauses or in Python by simply skipping rows we don't want.


	
We can use Python'
 s
 i
 f
 statement to fall back on the systematic name if a gene has no trivial name. It is possible in SQL, but doesn't look as clean.









import
 sqlite3



import
 networkx as nx
 # graph theory library



import
 matplotlib.pyplot as plt



%
 matplotlib inline



fig=plt.figure
 (
 figsize=
 (
 10
 ,
 10
 ))







con = sqlite3.connect
 (
 'sgd.db'
 )
 # connect to database



cur = con.cursor
 ()
 # create a cursor







target_gene=
 'URM1'
 # choose the target gene







G=nx.Graph
 ()
 # create network



G.add_node
 (
 target_gene
 )
 # add the first node - the target gene.



query=
 """select count(), gene, orf from literature



 where pmid in



 (select pmid from literature where gene=?)



 group by gene,orf



 order by count(*) desc"""







cur.execute
 (
 query,
 (
 target_gene,
 ))
 # run query with target as a parameter



for
 row
 in
 cur:
 # iterate over returned rows of data




 if
 row
 [
 1
 ]
 ==target_gene:
 # this is the target gene?




 continue
 # skip.




 if
 row
 [
 0
 ]<
 6
 :
 # less than 6 papers mention




 continue
 # this gene and target gene - skip.




 if
 row
 [
 1
 ]!
 =
 ''
 :
 # has trivial name?



 gene_name=row
 [
 1
 ]
 # keep it




 elif
 row
 [
 2
 ]!
 =
 ''
 :
 # no? how about systematic?



 gene_name=row
 [
 2
 ]
 # keep it.




 else
 :
 # no name at all?




 continue
 
 # skip



 G.add_edge
 (
 gene_name,target_gene
 )
 #add link between target and this gene







# get list of all nodes in a network and make list of colors



# red for the target gene and yellow for all others



colors=
 [(
 'r'
 if
 node==target_gene
 else
 'y'
 )
 for
 node
 in
 G.nodes
 ()]







# draw network of genes occuring in the same papers as target gene



nx.draw_networkx
 (
 G, node_color=colors
 )



plt.show
 ()







This code doesn't show any more information than a simple ordered list would. The real power of network graphs shines when the relations of each node to every other node needs to be displayed. Sure, you can do it with a 2D table, but a network is way easier to read. Let's make a graph showing the pairwise co-occurrence in the literature for all genes that co-occur with our target.







Although the frequency of pairwise co-occurrence for all the genes could be obtained with a single SQL query, the query will get pretty complex. So, let's use a hybrid approach - splitting logic between two SQL queries and Python code to keep the program simple and readable.



	
We will identify genes that co-occur frequently enough with the target.


	
Then, we will go through pairwise combinations querying the database for the number of papers mentioning each pair of genes.





Pairs that pass a particular co-occurrence threshold will be stored in a dictionary together with the number of times they co-occur. This dictionary will be used to construct the network.



The edges of network connect two nodes; so, the key in a dictionary must contain information about both connected nodes. There are several ways to do it. The only requirement is that the key must be of an immutable type. Given nodes 'a' and 'b', we have several options to construct a key



String  'a_b'



Tuple  ('a','b')



Frozen set frozenset(['a','b'])







The problem with the first two options is that ab and ba are different. Th
 e
 frozense
 t
 feels cumbersome to me. To solve ab!=ba, I usually sort a and b alphabetically. That is what I do in the functio
 n
 make_key(a,b
 )
 before joining both gene names in a tuple.



The same problem appears again with displaying edge labels. By default, edge labels will be shown in a dictionary notation {'weight':16}. This clutters the graph which is already pretty busy. We can create a dictionary of labels and supply it as the edge_label
 s
 named parameter. But the networkx library uses unordered tuples as keys for graph edges - at least for unordered graphs, and there is no way to know if an edge between nodes
 a
 and
 b
 is stored as (a,b) or (b,a). So, the only way to make clean labels for the edges is to make a graph, get a list of edges from it, and generate a label dictionary from this list:







edge_labels=
 dict
 ([((
 a,b
 )
 ,data
 [
 'weight'
 ])




 for
 a,b,data
 in
 G.edges
 (
 data=
 True
 )]
 )
 







This is probably the only part of the program that doesn't look familiar. Unlike in the previous example, I did as much filtering as possible In SQL in the first query. Genes without trivial names, target gene, and genes that do not occur frequently enough in the same papers as the target gene are filtered out. Of course, I need to pass the frequency threshold to the query as a parameter. The target gene is passed twice, because it is used twice in the query. First, to filter the rows with the target gene, and then to select papers that mention the target gene.







import
 sqlite3



import
 networkx as nx
 # graph theory library



import
 matplotlib.pyplot as plt



%
 matplotlib inline







con = sqlite3.connect
 (
 'sgd.db'
 )



cur = con.cursor
 ()







target_gene=
 'URM1'
 # choose the target gene







def
 make_key
 (
 a,b
 )
 :




 # make a tuple from two gene names to serve




 # as a key in dictionary holding bond weight



 pair=
 [
 a,b
 ]



 pair.sort
 ()
 #order a and b alphabetically




 return
 (
 pair
 [
 0
 ]
 ,pair
 [
 1
 ])
 #make a tuple and return







query=
 """select count(*), gene from literature



 where



 not (gene in ('',?))



 and pmid in



 (select pmid from literature where gene=?)



 group by gene,orf having count(*)>=?



 order by count(*) desc"""







min_freq=
 8



bonds=
 {}



interactors=
 []







# run query with target as a parameters



cur.execute
 (
 query,
 (
 target_gene, target_gene, min_freq
 ))



for
 row
 in
 cur:
 # iterate over returned rows of data



 interactors.append
 (
 row
 [
 1
 ])
 # remember co-occurring gene



 key=make_key
 (
 target_gene,row
 [
 1
 ])



 bonds
 [
 key
 ]
 =row
 [
 0
 ]
 # remember how many times it cooccurs with target







interactors.sort
 ()



query=
 """select count(*)



 from literature as lit1, literature as lit2



 where lit1.pmid=lit2.pmid



 and lit1.gene=?



 and lit2.gene=?"""







# determine frequencies of pairwise gene cooccurrence



for
 i,g1
 in
 enumerate
 (
 interactors
 [
 :
 -1
 ])
 :




 for
 g2
 in
 interactors
 [
 i
 +1
 :
 ]
 :



 cur.execute
 (
 query,
 (
 g1,g2
 ))




 for
 row
 in
 cur:




 if
 row
 [
 0
 ]<
 min_freq:
 # no gropup clause in query




 continue
 
 # use Python to discard rare gene pairs



 key=make_key
 (
 g1,g2
 )
 # make a tuple to serve as a key



 bonds
 [
 key
 ]
 =row
 [
 0
 ]
 # store cooccurenge of genes g1 and g2







# get list of all nodes in a network and make list of colors



# red for the target gene and yellow for all others







G=nx.Graph
 ()
 # create network



for
 key
 in
 bonds:




 #add link between target and this gene



 G.add_edge
 (
 key
 [
 0
 ]
 ,key
 [
 1
 ]
 ,weight=bonds
 [
 key
 ])







#Go through network edges and edge labels from weights



edge_labels=
 dict
 ([((
 a,b
 )
 ,data
 [
 'weight'
 ])




 for
 a,b,data
 in
 G.edges
 (
 data=
 True
 )])



#Go through nodes and make list of colors



colors=
 [(
 'r'
 if
 node==target_gene
 else
 'y'
 )
 for
 node
 in
 G.nodes
 ()]



fig=plt.figure
 (
 figsize=
 (
 10
 ,
 10
 ))







#Get network layout



pos=nx.spring_layout
 (
 G
 )



# draw network of genes



nx.draw_networkx
 (
 G, pos=pos, node_color=colors
 )



# draw edge labels showing pairwise cooccurrence



nx.draw_networkx_edge_labels
 (
 G,pos=pos, edge_labels=edge_labels
 )



plt.show
 ()







The network drawn by the script is shown below. It is clear that ELP genes and IKI1 are mentioned together in scientific papers way more often than they are mentioned together with URM1. Actually, proteins coded by these genes form a functional complex with functions similar but distinct from the functions of URM1. An ordered list of genes co-occurring with URM1 would not show this information.






[image: ]







That is it for now.
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