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Introduction


Here you’ll find some notes that I wrote up as I worked through this excellent book. For some of the problems I used R
 to perform any needed calculations. The code snippets for various exercises can be found at the following location:


http://www.waxworksmath.com/Authors/N_Z/Ruppert/ruppert.html


I’ve worked hard to make these notes as good as I can, but I have no illusions that they are perfect. If you feel that that there is a better way to accomplish or explain an exercise or derivation presented in these notes; or that one or more of the explanations is unclear, incomplete, or misleading, please tell me. If you find an error of any kind – technical, grammatical, typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments in later printings the name of the first person to bring each problem to my attention.
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1 Chapter 2 (Returns)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1 (GM and Ford returns)


















	 
        









Figure 1:
 A scatter plot of the returns of Ford as a function of the returns of GM.



In Figure 1
 we show the scatter plot of the returns of Ford as a function of the returns of GM. We notice that these returns do appear to be correlated (they are distributed somewhat symmetrically about a line) and the outliers of each stocks return do appear together.



Problem 2



In the accompanying R
 code we plot the two returns. The two sets of points lie almost exactly on the line y
 = x
 . They have a correlation (using the R
 function cor
 ) given by 0.9995408.





Problem 3



I get that with 100% certainty the value of the stock will be below $950000 at the close of at least one of the 45 trading days.





Problem 4-7



I get that the hedge fund will make a profit with a probability of 0.38775. I get that the hedge fund will suffer a loss with a probability of 0.58844. I get that the hedge funds expected profit is given by 9922.63 but the expected return (in units of days) -0.01783836.




Exercises






Exercise 2.1




Part (a):
 To have a value less than $990 means that we must have a log return less than




To find this probability we evaluate




to get the value 0.2306556.


Part (b):
 In five trading days our log return will be normally distributed with a mean 5(0.
 001) = 0.
 005 and a standard deviation of 
 (0.
 015) = 0.
 03354102. To be less than $990 we need to have a logarithm less than -0.01005034 (as computed above). Thus in this case we need to evaluate




to get the value 0.3268188.





Exercise 2.2



To have a price greater than 110 we must have a log return greater than log 
 = 0.
 09531018 in one years time. This will happen with a probability of










Exercise 2.3



For this problem we will need to recall the definitions of the net return








	




	(1)




and the log return








	




	(2)




Using the above formulas we have that




Then r

3



 (2) = log(1 + 0.
 03061224) = 0.
 03015304.





Exercise 2.4




Part (a):
 With dividends our single period gross return is given by




so that with the numbers for this problem we get







Part (b):
 Next recall that with dividends the multiperiod gross returns R


t




 (k
 ) are given by







	




	(3)




Using the above we have







	1 + R

 
 4



 (3)
	= 
 
 
   
	
	



	 
	= 
 
 
 = 1.
 147959 .  

	
	




Thus R

4



 (3) = 0.
 1479588.


Part (c):
 For this part we will use








Exercise 2.5




Part (a):
 The variable r


t




 (4) would be a normal random variable with a mean 4(0.
 06) = 0.
 24 and a variance of 4(0.
 47) = 1.
 88 (assuming that the number 0.47 quoted is the one period variance and not standard deviation).


Part (b):
 We would compute this using the R
 command







Part (c):
 For this recall that







	
r

 
 1



 (2)
	= r

1



 + r

  
 0




	
	



	
r

 
 2



 (2)
	= r

2



 + r

1



  ,  

	
	




where each of r


t




 is i.i.d. from N
 (0.
 06,
 0.
 47). Thus we have that



	Cov(r

1



 (2),r

 
 2



 (2))
	= Cov(r

1



 + r

0


 ,r

2



 + r

  
 1



 )
	
	



	 
	= Cov(r

1


 ,r

2



 ) + Cov(r

1


 ,r

1



 ) + Cov(r

0


 ,r

2



 ) + Cov(r

0


 ,r

  
 1



 )
	
	



	 
	= 0 + σ

2



 + 0 + 0 = 0.
 47 .  

	
	





Part (d):
 For this note that




Thus if we know that r


t

 −2



 was equal to 0.6 then r


t




 (3) is made of only two random components (and a known constant) thus r


t




 (3)|{r


t

 −2



 = 0.
 6} is a normal random variable with a mean 2(0.
 06) + 0.
 6 = 0.
 72 and a variance of 2(0.
 47) = 0.
 94.





Exercise 2.6




Part (a):
 For this we have







	
P
 (X

2



 >
 1.
 3X

 
 0



 )
	= P
 
   
	
	



	 
	= P
 (r

1



 + r

2



 >
 log(1.  
 3))
	
	



	 
	= 1 − P
 (r

1



 + r

2



 <
 log(1.  
 3))
	
	



	 
	= 1 − pnorm(log(1.
 3),
 mean = 2μ,
 sd = 
 σ
 ) .  

	
	





Part (b):
 For this we first recall that A.4 (with X
 replaced with R
 ) is given by








	




	(4)




For this problem these functions are







	
f


R




 (r 
 )
	= 
 exp 
   
	
	



	
Y 

	= g
 (R
 ) = X

0


 e

  
 
R





	
	



	
R 

	= h
 (Y
 ) = log 
 so h
 ′(Y
 ) = 
  .  

	
	




Then using Equation 4
 we have




for the density of Y
 = X

1



 .


Part (c):
 As we can write X


k




 = X

0


 e


R




 where R
 is a normal random variable with mean a kμ
 and variance kσ

2



 the probability density function of the random variable X 


k




 is derived just like the one for X

1



 above. In fact we have if Y
 = X


k




 we have




Then since the transformation from R
 to X


k




 is a monotone transformation the quantiles of R
 transform to the quantiles of X


k




 using the same monotone transformation. Thus finding the 0.9 quantile of R
 (by using the qnorm
 command in R
 for a normal with a mean kμ
 and a variance kσ

2



 ) which we will denote as μ

0
 
.

 9



 . Given this we find the 0.9 quantile of X


k




 by computing X

0


 e


μ

0
 
.

 9







 .


Part (d):
 Now X


k



 

2



 is equal to




The expectation of this is given by integrating the above against the density




This gives




Lets now evaluate the integral above (dropping for now the coefficient 
 ) we have







	
I 

	= ∫ 

−∞


 

∞


 e

2
 
r



 e

−
 



 dr = ∫ 

−∞


 

∞


 exp 
 dr  

	
	



	 
	= ∫ 

−∞


 

∞


 exp 
 dr  

	
	



	 
	= ∫ 

−∞


 

∞


 exp 
 dr  

	
	



	 
	= e

−
 



 ∫ 

−∞


 

∞


 exp 
 dr
  .  

	
	




Working with the exponent in the above exponential we have



	−
 
  
	= −
 
   
	
	



	 
	= −
 
   
	
	



	 
	= −
 
  .  

	
	




Putting this back into the expression for I
 we get



	
I 

	= e

−
 



 e



 ∫ 

−∞


 

∞


 exp 
 dr  

	
	



	 
	= e




 ∫ 

−∞


 

∞


 e

−
 

 
r

2






 dr .  

	
	




To keep evaluating the expression for I
 we recall [3
 ] that



	




	(5)




Using this we have that




Putting back the factor of 
 we get





Part (e):
 Now we want to compute Var
 which we do using




Thus we use this formula we need to compute E
 [X


k




 ]. Following the same procedure as used above to compute E
 [X


k



 

2



 ] we get




Using this we get







	Var
  
	= X

0


 

2



 
   
	
	



	 
	= X

0


 

2


 e

2
 
kμ



 e


kσ

2







 (e


kσ

2







 − 1) .  

	
	






Exercise 2.7



To have the stock price greater than $100 means that the log return needs to be larger than




In 20 days the log return should be a normal random variable and have a mean value of 20(0.
 0002) = 0.
 004 with a standard deviation of 
 0.
 03 = 0.
 1341641. The probability we have a return larger than the above (and a final price greater than 100) is given by








2 Chapter 3 (Fixed Income Securities)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.
















	 
          









Figure 2:
 A plot of the value of a bond for various yields to maturity.





Problem 1



When we run the given Rlab.R
 function we get the plot in Figure 2
 . There we see graphically that the value found by the spline
 function (which was 0.03239813) intersects the curve at $1200.





Problem 2



The given code with the uniroot
 function finds the root of the given function. In this case that is equivalent to finding the square root of 0.5.





Problem 3



For this we would execute


uniroot( function(r) bondvalue(C, T, r, par) - 1200, c(0.03,0.04) )


which gives the following output


$root  




[1] 0.03241618  




$f.root  




[1] -0.5497406  




$iter  




[1] 3  




$estim.prec  




[1] 6.103516e-05


The value of the “root” field gives the desired yield-to-maturity.





Problem 4



For this we would execute


uniroot( function(r) bondvalue(280, 8, r, 10000) - 9800, c(0.01,0.04) )


which gives an output structure with a root
 field with a value 0.02956445.
















	 
      
	 
      









Figure 3: Left:
 The time evolution of the short end of the yield curves for the dates given in Problem 5. Right:
 The time evolution of the long end of the yield curves for the dates given in Problem 5.





Problem 5



See Figure 3
  (left) for the requested plot of the short end of the yield curves. There we see that the yields seemed to get smaller as time progressed. See Figure 3
  (right) for the requested plot of the long end of the yield curves. There we see the same behavior in that the yield gets smaller as time progresses.
















	 
          









Figure 4:
 The time evolution of the long end of the yield curves for the dates given in Problem 6.





Problem 6



See Figure 4
 for the plot of the yield curves at these four points in time. There we see that the yields seemed to get smaller in value as time progressed.




Exercises






Exercise 3.1




Part (a):
 The yield to maturity is given by








	




	(6)




thus with what we are given here we have







	
y

 
 20




	= 
 ∫ 

0


 

20


 (0.
 028 + 0.
 00042t
 )dt  

	
	



	 
	= 
 
 = 0.
 0322 .  

	
	





Part (b):
 Using the same steps as in the previous part we find y

15



 = 0.
 03115 then the price is given by




	




	(7)




Thus for the numbers here we get










Exercise 3.2




Part (a):
 As the coupon rate is larger than the current yield following the discussion in the book in the section titled “Yield to Maturity” the bond is selling above
 par value.


Part (b):
 As the bond is selling above par value, the yield to maturity is smaller than the current yield and thus is below 2.8%.





Exercise 3.3




Part (a):
 This would be given by y

5



 and is computed using Equation 6
 for the forward rate function r
 (t
 ) given here we find y

5



 = 0.
 03616667.


Part (b):
 This would be given by Equation 7
 where we find P
 (5) = 0.
 8345744.





Exercise 3.4



We are given the values of the half year spot rates r

1


 ,r

2


 ,r

3


 ,r

4



 , T
 = 2, a coupon amount of C
 = 35 and a par value of $1000. The price of this bond will be given by







	




	(8)




Using what we know we find this expression to be given by $1001.114.





Exercise 3.5



For this we will use the identity




to write the sum on the left-hand-side as







	∑ 


t

 =1


 

2
 
T



 
  
	= 
 = 
   
	
	



	 
	= 
 
  .  

	
	




Using this we see that the left-hand-side of the given expression becomes




	




	(9)




the desired expression.





Exercise 3.6




Part (a):
 When the bond is issued the annual interest rate is 8.5% (or a semiannual rate of 4.25%) thus the semiannual coupon payment would be for 0.
 0425(1000) = 42.
 5.


Part (b):
 The semiannual interest rate now is 3.8%. After two coupons payments and with the new interest rates the bond is now worth




when we evaluate.


Part (c):
 In this case the lower limit on the first summation would start at t
 = 0 and we would have










Exercise 3.7




Part (a):
 We are told that




so exp(5r
 ) = 
 which has r
 = 0.
 044017.


Part (b):
 The price of the bond would now be





Part (c):
 The net return is




or about 3.3%.





Exercise 3.8




Part (a):
 We are told that PAR = 1000, C
 = 22, and r
 = 0.
 04 (so the semiannual rate is 0.02). To compute the price of the bond we can use the right-hand-side of Equation 9
 with T
 = 10 to get





Part (b):
 The coupon rate is 
 = 
 = 0.
 022. Since the coupon rate is larger than the current yield of 0.02 this bond is selling above par value.





Exercise 3.9




Part (a):
 We are told that PAR = 1000 and T
 = 7. We find to find the value of r
 such that Equation 9
 gives




Using the bondvalue
 function with the uniroot
 we get r
 = 0.
 01987349.


Part (b):
 The current yield is 
 = 0.
 022857 semiannually and is also called the coupon rate.


Part (c):
 The yield to maturity is less than the current yield since the bond is selling above par.





Exercise 3.10



For this we first compute the yield to maturity y

15



 which is given by







	
y

 
 15




	= 
 ∫ 

0


 

15


 r
 (t
 )dt
 = 
 ∫ 

0


 

15


 (0.
 035 + 0.
 0013t
 )dt  

	
	



	 
	= 
 
 

0


 

  
 15



	
	



	 
	= 
 
 = 0.
 04475 .  

	
	




Thus with this we have the price of the zero is given by








Exercise 3.11



The yield to maturity with this continuous forward rate r
 (t
 ) is given by







	
y

 
 20




	= 
 ∫ 

0


 

20


 r
 (t
 )dt
 = 
 ∫ 

0


 

20


 (0.
 03 + 0.
 001t
 − 0.
 00021(t
 − 10) 

+


 )dt  

	
	



	 
	= 
 
 

0


 

20


 −
 ∫ 

0


 

20


 (t
 − 10) 

+


 dt  

	
	



	 
	= 0.
 04 −
 ∫ 

10


 

20


 (t
 − 10)dt
 = 0.
 04 −
 
 = 0.
 039475 .  

	
	






Exercise 3.12



From the problem statement the zero spot rates are given by







	
y

 
 1




	= 0.  
 031
	
	



	
y

 
 2




	= 0.  
 035
	
	



	
y

 
 3




	= 0.  
 04
	
	



	
y

 
 4




	= 0.  
 042
	
	



	
y

 
 5




	= 0.
 043 .  

	
	





Part (a):
 Following the book’s Section 3.4.2 “spot rates” for the price of these zeros we will use the formula




So with the numbers given we have







	
P 
 (1)
	= 
 = 969.  
 9321
	
	



	
P 
 (3)
	= 
 = 888.  
 9964
	
	



	
P 
 (5)
	= 
 = 810.
 1743 .  

	
	





Part (b):
 This would be



	
P 
 (1)
	= 1000 since the bond pays immediately  
	
	



	
P
 ′ (3)
	= P
 (2) = 
 = 933.  
 5107
	
	



	
P
 ′ (5)
	= P
 (4) = 
 = 848.
 2603 .  

	
	




Note that the yields had to change since one year has passed.


Part (c):
 This would be







	
P
 ′ (1)
	= 1000  
	
	



	
P
 ′ (3)
	= P
 (2) = 
 = 854.  
 8042
	
	



	
P
 ′ (5)
	= P
 (4) = 
 = 692.
 5108 .  

	
	




Again the yields had to change since one year has passed and get incremented by 0.005.


Part (d):
 We will compute the rate of return for each of these three investments under the case where the analyst is
 correct and we find


[1]  0.03100000 -0.03846154 -0.14523233


Thus the investment in the one year zero bond is the only investment that is profitable.


Part (e):
 We will compute the rate of return for each of these three investments under the case where the analyst is not
 correct and we find


[1] 0.03100000 0.05007258 0.04700961


Thus the investment in the three year zero bond gives the largest return.


Part (f):
 The bond with the highest spot rate is the five year bond. From the previous part we see that when the spot rate does not change (and we sell our bond a year later) we get a rate of return of 0.04700961. This however is smaller than the three year bond which (under the same situation) would give a rate of return of 0.05007258.





Exercise 3.13



To being we recall the definition of net present value







	




	(10)




of the weights







	




	(11)




and of the duration








	




	(12)




We then get that the derivative of DUR as the spot yield changes is then







	
 ∑ 


i

 =1


 


N



 C 


i




 
 

 
 
δ

 =0
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 =1
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i



 T
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 =1


 


N



 T 
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i




	
	



	 
	= −∑ 
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 =1


 


N
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 T

  
 
i





	
	



	 
	= −
 ∑ 


i

 =1


 


N
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i
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i





	
	



	 
	= −
    DUR
	
	



	 
	= −DUR ∑ 


i

 =1


 


N



 C 


i



 e

−
 
T


i



 y


T


i












  ,  

	
	




which is the derivative we wanted to show.

To derive the books equation 3.31 we recognize that ∑ 


i

 =1


 


N



 NPV 


i



 is the value of the bond (which we will denote as B
 ) so that the change in the bond value (which we will call ΔB
 ) as the spot yield changes is given by







	ΔB 

	= 
 
 δy  

	
	



	 
	= −DUR B
  δy
  .  

	
	




With this we have




which is the books’ Eq. 3.31. Here δy
 is the change in the spot yield.





Exercise 3.14




Part (a):
 For the given yield curve




we have that y

10



 = 0.
 04 + 0.
 001(10) = 0.
 05 so the bond price is





Part (b):
 For the new yield curve we find y

9



 = 0.
 051 so the price in a year is




The net return is








Exercise 3.15




Part (a):
 As the coupon rate is larger than the current yield following the discussion in the book in the section titled “Yield to Maturity” the bond is selling above
 par value.


Part (b):
 As the bond is selling above par value, the yield to maturity is smaller than the current yield and thus is below 2.8%.





Exercise 3.16




Part (a):
 This would be given by y

5



 and is computed using Equation 6
 for the forward rate function r
 (t
 ) given here we find y

5



 = 0.
 03416667.


Part (b):
 This would be given by Equation 7
 where we find P
 (5) = 0.
 8429621.





Exercise 3.17



This seems to be exactly
 the same problem as Exercise 3.4 above with perhaps some numbers changed slightly. It would be worked in the same way.





Exercise 3.18




Part (a):
 Given the prices and using the relationship




we can determine y


n




 is a semiannual rate. For example we have







	
  
	= 980.
 39 so y

1
 
∕

 2



 = 0.  
 02000224
	
	



	
  
	= 957.
 41 so y

1



 = 0.  
 02200029
	
	



	
  
	= 923.
 18 so y

3
 
∕

 2



 = 0.  
 0270018
	
	



	
  
	= 888.
 489 so y

2



 = 0.
 02999943 .  

	
	





Part (b):
 This would be given by




Using the numbers we know we find this to be 967.2278.





Exercise 3.19



We are told that PAR = 1000 and T
 = 4. We find to find the value of r
 such that Equation 9
 gives




Using the bondvalue
 function with the uniroot
 we get r
 = 0.
 02322351.





Exercise 3.20




Part (a):
 We will first find the yield to maturity for the times to each coupon payment 1∕
 2,
 1,
 3∕
 2,
 2,
 5∕
 2,
 3,
 7∕
 2,
 4. For example for 1∕
 2 we have




The other yields are given by


[1] 0.02324167 0.02300313 0.02226667 0.02108854 0.01952500 0.01763229 0.01546667


The net present value of the first coupon payment is




The rest of the coupon payments have net present values of


[1] 20.51755 20.28776 20.08532 19.92153 19.80526 19.74321 19.74017


while the final payment of $1000 has a net present value of 940.0082. The price of the bond is the sum of these parts or 1100.87.


Part (b):
 The duration of the bond is given by Equation 12
 which we find to be 3.741419. The calculations for this problem are worked in this small R
 code


yield = function(T) { ( 0.022*T + (0.005/2)*T^2 - (0.004/3)*T^3 + (0.0003/4)*T^4 ) / T }  




yield(1/2)  




 




times = c(1, 3/2, 2, 5/2, 3, 7/2, 4)  




yield( times )  




 




pt1 = 21 * exp( -(1/2) * yield(1/2) )  




pt2 = 21 * exp( -times * yield( times ) )  




pt3 = 1000 * exp( -4 * yield( 4 ) )  




pt1 + sum( pt2 ) + pt3  




 




# All net present values:  




npvs = c( pt1, pt2, pt3 )  




 




B = sum( npvs ) # the bond value  




ws = npvs / B # the weights  




 




DUR = sum( c( 1/2, times, 4 ) * ws ) # the duration






3 Chapter 4 (Exploratory Data Analysis)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1-2 (

 

EuStockMarkets


 
)


















	 
          









Figure 5:
 Plots of the four time series corresponding to the EuStockMarkets
 data.



In Figure 5
 we show the time series plots of the four indices. They don’t look stationary and the fluctuations seem to get larger towards more recent dates (i.e. increase with increasing index level). In Figure 6
 we show the time series of log returns. These time series look stationary but the fluctuations appear to get larger at certain periods of time (again the more recent dates).
















	 
          









Figure 6:
 Plots of the log returns corresponding to the four time series in the EuStockMarkets
 data.





Problem 3



When we run the code that produces the four normal plots we get the result given in Figure 7
 . All of the plots have a “sigmoidal” shape. From that plot we see that none of the indices have returns that look normal. All of them have heaver tails than a normal distribution would predict. The FTSE index seems to be the most symmetric of the four indices with tail returns caped at around ±0.
 04. The other three indices appear to be skewed to the left indicating that the negative samples can be larger than the positive samples. For example, the DAX index has its most negative return of −0.
 1 while its most positive return is around 0.
 05.
















	 
          









Figure 7:
 The four normal plots corresponding to the returns of the four indices in the EuStockMarkets
 data.



The Shapiro-Wilks test for the four returns gives the following


data:  logR[, i]  




W = 0.9538, p-value < 2.2e-16  




data:  logR[, i]  




W = 0.9554, p-value < 2.2e-16  




data:  logR[, i]  




W = 0.982, p-value = 1.574e-14  




data:  logR[, i]  




W = 0.9799, p-value = 1.754e-15


The Shapiro-Wilks test assumes that the input data comes from a normal distribution. The test statistics is the value of W
 and the p
 -value is the probability we get a W
 test statistic this extream from random fluctuations. All of the p
 -values are very small indicating that we can reject the null hypothesis and conclude that the data does not
 come from a normal distribution.



Problem 4



The code q.grid = (1:n)/(n+1)
 creates a uniform grid with a spacing of 
 between the nodes i.e.


> n=9; (1:n)/(n+1)  




[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9


The code qt(q.grid,df=df[j])
 evaluates the quantiles of the t
 -distribution with df[j]
 degrees of freedom i.e.


> qt( (1:n)/(n+1), df=4 )  




[1] -1.5332063 -0.9409646 -0.5686491 -0.2707223  0.0000000  0.2707223  0.5686491  




[8]  0.9409646  1.5332063


The paste
 command combines multiple strings together into a single string.





Problem 5



For the DAX index the QQ plots using the t
 -distribution are given in Figure 8
 . There we see that four degrees of freedom fits the data in that the linear fit seems “visually” to be the best.
















	 
          









Figure 8:
 QQ plots for the returns of the DAX index with respect to a t
 -distribution.





Problem 6



Both of the parametric models seem to have tails that fall to zero faster than the empirical density. This would indicate that they will underestimate the probabilities of extream events. Because of this the parametric models have sharper peaks near the zero return origin. In Figure 9
 I plot a zoomed view of these “tails”. We can see that the solid curve (the KDE approximation) is above the other two curves indicating that the parametric densities under estimate the true density in this range of returns.
















	 
          









Figure 9:
 A plot of modeling log returns of the DAX index using: a kernel density estimate (KDE), a t
 -distribution with five degrees of freedom, and an normal distribution.





Problem 7



Looking at the “help” for the density
 command we see that the bw
 parameter controls the bandwidth selector to be used and has a default value of nrd0
 . Information about this can be given by looking at the results of the online help for bw.nrd0
 . That help page gives a description of the procedure used and call is “Silverman’s rule of thumb”. The default kernel is the Gaussian kernel.




Exercises


See the R
 script chap_4.R
 where the exercises for this chapter are worked.





Exercise 4.1




Part (a):
 We can use the summary
 command to compute some of these statistics


> summary(ford.s[,2])  




      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  




-0.1810000 -0.0099070  0.0000000  0.0007601  0.0112900  0.1040000


and the sd
 command to compute the standard deviation where we find the value of 0.01831557.


Part (b):
 See Figure 10
 where we plot a normal QQ plot for these returns. In that plot we see the classic mismatch that normal models have with return data, that is, the normal model does not fit the tails of the distribution very well.
















	 
          









Figure 10:
 A normal QQ plot for the returns in the ford.s
 data frame.




Part (c):
 The result from using the shapiro.test
 command is


        Shapiro-Wilk normality test  




data:  ford.s[, 2]  




W = 0.9639, p-value < 2.2e-16


With a P
 -value this we can reject the null hypothesis of a normal distribution for the returns.


Part (d):
 See Figure 11
 where we produce QQ plot for a t
 -distribution of the Ford returns for various degrees of freedom. From that plot we see that the line that appears to match the data best is for six degrees of freedom.

Next we remove the return that has the smallest negative absolute value from all returns (the return from black Monday) and then reproduce the QQ plots over the same values for the degree of freedom parameter as above. When we do that we get qualitatively the same results and the degree of freedom that appears to be the best is the still the one with six degrees of freedom.
















	 
          









Figure 11:
 QQ plots for various values of ν
 (the degree of freedom parameter in a t
 -distribution).




Part (e):
 The formula referred to is







	




	(13)




where for the median we have q
 = 0.
 5, F

−1



 (q
 ) = 0.
 0 (using the sample median), n
 = 2000, and f
 {F

−1



 (q
 )} = 26.
 06007 (using the approx
 function and the output from density
 ). Using these numbers we compute the standard error of the median to be 0.
 0004290219. The standard error the mean is given by 
 = 0.
 0004095486 which is slightly smaller than the standard error of the median.



Exercise 4.2


















	 
          









Figure 12:
 Density estimation of the first differences of the variable dy
 in the Garch
 data set.



We plot the suggested parametric and nonparametric density estimates in Figure 12
 . There we see that the normal density with a mean taken as the median and the standard deviation taken to be the MAD gives a closer fit to the kernel density estimate than does the normal density with a mean and standard deviation computed from the sample.



Exercise 4.3




Part (a):
 When the data is plotted on the y
 -axis a convex pattern means that the data is skewed to the right.


Part (b):
 When the data is plotted on the y
 -axis a concave pattern means that the data is skewed to the left.


Part (c):
 When the data is plotted on the y
 -axis a convex-concave pattern means that the data is more clustered in the center than a normal distribution i.e. it has lighter tails than a normal distribution.


Part (d):
 When the data is plotted on the y
 -axis a concave-convex pattern means that the data is less clustered in the center than a normal distribution i.e. it has heavier tails than a normal distribution.





Exercise 4.4



See Figure 13
 where we construct the requested plots. For the plots of the data from simulated normal random variables notice that for each value of p
 the line touches “all” of the points. When comparing the logarithm of bp
 vs. the direct change we see that the logarithm seems to have more points that deviate from a straight line than when we consider just the raw differences of bp
 . This indicates that the raw difference of bp
 are more normal than the differences of the logarithm of bp
 .
















	 
     
	 
     
	 
     









Figure 13: Left:
 The 3×2 grid of QQ plots for simulated normal random variables. Middle:
 The 3 × 2 grid of QQ plots for the difference in the bp
 variable in the Garch
 data frame. Right:
 The 3 × 2 grid of QQ plots for the difference in the logarithm of the bp
 variable in the Garch
 data frame.





4 Chapter 5 (Modeling Univariate Distributions)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.
















	 
          









Figure 14:
 QQ plots of untransformed and transformed male.earnings
 data.





Problem 1



In the qqplots both the untransformed and the log-transformed data look concave (see Figure 14
 ). The square-root transformed plot looks to be the straightest curve (of the three). Note however that the left-tail of the distribution is not modeled very well in with this transformation (other transformations don’t do better however).
















	 
          









Figure 15:
 Box plots of untransformed and transformed male.earnings
 data.



The box plots (see Figure 15
 ) don’t show much qualitative difference between the methods. All methods seem to have a large number of outliers and to be skewed to one side.
















	 
          









Figure 16:
 KDE plots of untransformed and transformed male.earnings
 data.



The kernel density estimate (see Figure 16
 ) show that the untransformed and the log-transformed variables look skewed while the square-root transformed variables look to have the most “normal” (and symmetric) form.



Problem 2 (the Box-cox transformation)



We can automate the selection of the exponent to apply to the male.earnings
 data that will produce the most “normal data” by using the boxcox
 function from the MASS package. The code in Rlab.R
 shows how to use this function on the male.earnings
 data. Running that code give the two plots shown in Figure 17
 . The optimal value of λ
 to use in the Box-Cox transformation is found to be


[1] "Maxlikihood lambda value=   0.343434"


This is smaller (but on the same order of magnitude) as the value of 0.5 used in the square-root transformation.
















	 
      
	 
      









Figure 17: Left:
 The output from the boxcox
 command showing the location of the maximum likelihood solution. Right:
 A KDE of the earnings data that results when we apply the optimal value of λ
 to the male.earnings
 data.





Problem 3



Running the given code we find that the variable fit
 has the following elements (partial)


> fit  




$minimum  




[1] 20121.41  




 




$estimate  




     mean        sd        nu        xi  




17.322933  7.492441 21.599882  1.651652


These are the parameters in an Fernandez-Steel (F-S) skewed t
 -distribution. Here ξ
 = 1.
 65 >
 1 which indicates right skewness of the data. The other parameters are the ones found in the standardized t
 -distribution.





Problem 4



Using the dsstd
 function we can evaluate the skewed t
 -distribution found in the previous problem. When we plot these two density estimates we get the plot in Figure 18
 . The two curves match quite well.
















	 
          









Figure 18:
 A kernel density estimate and a F-S skewed t
 -distribution estimate of the male.earnings
 data.





Problem 5 (fitting a skewed GED model)



To fit a skewed
 GED model we use the function sgedFit
 . Using that function on the male.earnings
 data we get


> sgedFit( male.earnings )  




$par  




     mean        sd        nu        xi  




17.336668  7.500945  1.770956  1.654997


We can plot the resulting parametric density using the density function for this family which in this case is


  dsged(x, mean = 0, sd = 1, nu = 2, xi = 1.5, log = FALSE)


Plotting the fitted density and the kernel density estimate gives the plot in Figure 19
 . Again the two curves match quite well.
















	 
          









Figure 19:
 A kernel density estimate and a F-S skewed GED model of the male.earnings
 data.



As it is hard to tell visually which of the models (the skewed t
 or the skewed GED) has the better fit we could compare them with the AIC or the BIC. As the number of parameters used in each model is the same the comparison would depend on which model had a larger log-likelihood. Each fitting procedure above minimizes the negative of the log-likelihood and at the optimal parameters we find


> c( fit_sstd$minimum, fit_sged$objective )  




[1] 20121.41 20120.98


Thus the skewed GED has a slightly lower objective function (slightly larger log-likelihood) and this is the better fitting model.



Problem 6



Running the required code gives the following maximum likelihood parameter estimates


> fit_std  




$par  




[1] 0.0007845663 0.0105790014 4.0351450626  




$value  




[1] -5983.233


The values in the par
 element are the estimates of μ
 , σ
 , and ν
 respectively. The AIC is computed using







	




	(14)




For the fit in this problem we find this to be the value -11960.47.





Problem 7



To modify the code for a skewed t
 -distribution we replace the use of the function dstd
 with the function dsstd
 and have to introduce another parameter to optimize over ξ
 representing the amount of ”skew” to introduce into the distribution using the F-S method. We also have to specify bounds on the ξ
 parameter so that the optim
 function call with the ”L-BFGS-B” can work. When we do this we find the following parameter estimate


> fit_sstd  




$par  




[1] 0.0007472667 0.0097865057 7.4064801455 1.0001388909  




$value  




[1] -5972.539


Notice that the estimated value of ξ
 is very close to one indicating that skewness is not really important for this data. The AIC for this model is given by -11937.08. This is larger
 than the value for the model with a symmetric t
 -distribution also indicating that the better model is the one without skew.





Problem 8-9



In the Rlab.R
 we include code to compute the TKDE. We then plot the KDE and the TKDE on the same graph. This is given in Figure 20
  (left). A zoom of the tail region is given in Figure 20
  (right). Notice that the TKDE and the parametric estimate are smooth in the tails while the KDE estimate is not.
















	 
      
	 
      









Figure 20: Left:
 The KDE and the TKDE for the DAX log returns. Right:
 The KDE and the TKDE for the DAX log returns for the range 0.
 035 < y <
 0.
 06.




Exercises






Exercise 5.1



The dimnames
 command gives


[1] "year"  "month" "day"   "ge"    "ibm"   "mobil" "crsp"


and the requested return plot is given in Figure 21
  (left). The r
 object has a mode
 of numeric
 and a class
 of ts
 . If we change the type of the r
 object to a numeric
 object and plot again (as suggested in the problem) we get the plot in Figure 21
  (right).
















	 
      
	 
      









Figure 21: Left:
 A plot of the IBM returns (when r
 ) is a object of class ts
 (i.e. a time series object). Right:
 A plot of the IBM returns (when r
 ) is a object of class numeric
 .



The remaining commands have an output given by


> cov(CRSPday[,4:6])  




                ge          ibm        mobil  




ge    1.882164e-04 8.007660e-05 5.270394e-05  




ibm   8.007660e-05 3.061309e-04 3.588748e-05  




mobil 5.270394e-05 3.588748e-05 1.670265e-04  




> apply(CRSPday[,4:6],2,mean)  




          ge          ibm        mobil  




0.0010713801 0.0007000767 0.0007788801


From these we can conclude that the mean of the Mobil return is 0.0007788801, the variance of the GE returns is 1.
 882164 10

−4


 , the covariance between the GE and the Mobil returns is given by 5.
 270394 10

−5


 . The cor
 function has an output given by


> cor(CRSPday[,4:6])  




             ge       ibm     mobil  




ge    1.0000000 0.3335979 0.2972499  




ibm   0.3335979 1.0000000 0.1587072  




mobil 0.2972499 0.1587072 1.0000000


From this we can conclude that the correlation between the GE and the Mobil returns is given by 0.2972499.



Exercise 5.2



The likelihood (with τ
 = 
 ) is given by
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If we let s
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 − μ
 )

2


 we get




Taking the logarithm of the above expression gives




The derivative of the above with respect to σ
 is given by




Setting this equal to zero gives




is the ML estimate for σ

2



 as we were to show.





Exercise 5.3



Eq. 5.15 in the book is







	




	(15)




Then for this function we have




In the first integral we let v
 = yξ
 so that dv
 = ξdy
 . In the second integral we let v
 = y∕ξ
 so that dv
 = dy∕ξ
 . With these we get




As the function f
 (⋅) is symmetric about x
 = 0 (and the total integral of f
 (⋅) is one) each of the above integrals is 1∕
 2 and we get




as we were to show.





Exercise 5.4




Part (a):
 The kurtosis is given by








	




	(16)




If we introduce the notation E
 (X
 ) = μ
 and Var
 = σ

2



 we see that for any random variable X
 we have




Thus if we let X
 be given in terms of Y
 by




Then E
 (X

2



 ) is the kurtosis of Y
 so using the above identity we have




Now




so we get




as we were to show.


Part (b):
 As Var
 ≥ 0 for all random variables X
 by the above decomposition we have that










Exercise 5.5




Part (a):
 The definition of kurtosis is given in Equation 16
 and for a normal random variable Y
 ∼ N
 (μ,σ

2



 ) we have that




for the Gaussian mixture given here we have the fourth moment given by
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and the variance given by




Thus our kurtosis is given by







Part (b):
 Following the formulas above (but in the more general case) we have
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and the variance of X
 is given by




With these our kurtosis is given by








	




	(17)




Lets fix the value of σ

2



 >
 1 and look for the value of p
 that maximizes the expression above. Rather than maximize the expression directly we will try the equivalent procedure of maximizing the logarithm of the above expression. Taking the logarithm of Kur(X
 ) we get




Taking the derivative of the above with respect to p
 we get




We can combine these two fractions under the same denominator to get




We now want to set the numerator of the above equal to zero and then solve for p
 . Doing this (and skipping some of the algebra) we find








	




	(18)




which is a function of only σ
 . We will assume that this value of p
 gives a maximum value for the kurtosis (we could evaluate the second derivative at this value of p
 and show that it is negative to verify that). Taking this expression for p
 and putting it into Equation 17
 (and simplifying) we get




Thus we see that by making σ
 large enough and then selecting p
 (as above) we can make Kur(X
 ) as large as desired. For example, taking σ

2



 = 20000 and then selecting p
 using Equation 18
 we get Kur(X
 ) = 15001.
 5 >
 10000.
 0.





Exercise 5.6



While the text states to fit a F-N skewed t
 -distribution the code they suggest (i.e sstdFit
 ) fits a F-S skewed t
 -distribution so I’ll assume the F-N was a typo. I’ll fit to the Flow1
 data. Using that code we get estimates for the parameters of a F-S skewed t
 -distribution given by


> fit_sstd  




$minimum  




[1] 4518.062  




 




$estimate  




        mean           sd           nu           xi  




9.542522e+05 1.533434e+05 1.318583e+01 3.610280e-01


Plotting a KDE and the parametric fit gives the plot in Figure 22
 .
















	 
          









Figure 22:
 A kernel density estimate and a F-S skewed t
 -distribution model of the Flow1
 data.





Exercise 5.7



In this problem we use notation slightly different than in the book. For this problem we will assume a density function given by




Given the set of data, {x


i




 }, we form the likelihood function L
 (assuming independence of each sample point) as




From this we form the the log-likelihood function l
 (𝜃
 ) (assuming the exponential likelihood form given above) of




Where here I have defined 
 to be the sample mean i.e. 
 = 
 ∑ 


i

 =1


 


n



 x 


i




 . To evaluate the maximum of this expression with respect to 𝜃
 ; we take the derivative with respect to 𝜃
 , set the resulting expression equal to zero, and solve for 𝜃
 . This gives




Thus our maximum likelihood estimate of 𝜃
 is given by




Converting back to the notation of the book we have the desired result.






Exercise 5.8




Part (a):
 Our model is that the probability of N
 defaults in a month is a Poisson random variable with a parameter λ
 that is a linear function of x
 or




Then the total log-likelihood is the product of the probabilities P
 (N
 = n


i




 ) for each of the i
 = 1,
 2,
 
  ,N
 − 1,N
 realized monthly defaults. We start our maximization of the log-likelihood at the location (β

0


 ,β

1



 ) = (1,
 1).


Part (b):
 The optim
 function estimated







Part (c):
 Confidence intervals for maximum likelihood estimators can be derived from the fact that the standard error for an estimator is given by







	




	(19)




Since we are given the values of the above from the Fisher information matrix we can compute 95% confidence intervals assuming normality. Namely for β

0



 we have


> 28.0834 + 1.8098 * qnorm(1-0.05/2) * c(-1,+1)  




[1] 24.53626 31.63054


while for β

1



 we have


> 0.6884 + 0.1638 * qnorm(1-0.05/2) * c(-1,+1)  




[1] 0.3673579 1.0094421








Exercise 5.9




Part (a):
 The function dstd
 is the d(ensity) of the standardized t
 -distribution and its in the fGarch
 package.


Part (b):
 The function solve
 in this case inverts the Hessian matrix.


Part (c):
 The estimate of ν
 is the third value in the par
 field in the mle_bmw
 variable which is 2.9882458517.


Part (d):
 Taking the square root of the inverse of the Fisher information matrix we find the (3,
 3) element is given by ŝ


ν




 = 0.
 1294801353.





Exercise 5.10




Part (a):
 The given commands produces the plot given in Figure 23
 . Looking at the qq plot for ν
 = 2 it looks like the returns have a lighter
 tails than a t
 -distribution with ν
 = 2. This is because the curve for that plot bends down (on the left side) and up (on the right side).
















	 
          









Figure 23:
 Various qq-plots for fitting symmetric t
 -distributions to the returns of siemens
 for various values of ν
 .




Part (b):
 Looking for the value of ν
 that gives the “straightest” qq-plot we would guess a value of ν
 ≈ 5.


Part (c):
 Using the fitdistr
 function in the MASS
 package we get


> fitdistr(siemens,"t")  




        m              s              df  




  0.0002927624   0.0076637573   3.4234499635  




 (0.0001172093) (0.0001255543) (0.1675316915)


Thus the optimal value for ν
 was found to be around 3.
 4.



5 Chapter 6 (Resampling)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1



Looking at the output from the sstdFit
 command we have


> fit_skewt  




$minimum  




[1] -17865.61  




$estimate  




        mean           sd           nu           xi  




0.0003856989 0.0161162587 2.9889166127 1.0332622264


Thus the MLE of ν
 is around three. To have a finite value for the skewness of a t
 -distribution must have ν >
 3 and to have a finite value of kurtosis we must have ν >
 4. Thus for the estimate of ν
 given above neither skewness or kurtosis for this parametric model will be finite.





Problem 2



Since we can compute exactly the quantiles of a t
 -distribution using the R
 code qt
 . We can then compute the quantile based kurtosis exactly for each value of ν
 . This is done in the function tQuantKurt
 . If we then plot this function for the suggested values of ν
 we get the plot given in Figure 24
 . Note that as ν
 decrease the value of the function tQuantKurt
 goes to infinity.
















	 
          









Figure 24:
 The t
 -based quantile function as a function of ν
 .





Problem 3



When we plot the two KDEs we get the plot given in Figure 25
  (left). From the given plot we see that the model based distribution seems to be shifted to the left relative to the model free distribution. Note that the uncertainty (variance) in each distribution looks to be about the same. In Figure 25
  (right) we present boxplots of samples of kurtosis under each modeling assumption.
















	 
      
	 
      









Figure 25: Left:
 KDE of the model free and model based sample values of quantKurt
 . Right:
 Boxplots of the samples of kurtosis. The label “1” corresponds to the model free samples of kurtosis while the label “2” corresponds to the model based samples of kurtosis.





Problem 4



The basic percentile confidence interval on a parameter 𝜃
 is given by finding the α∕
 2-lower and -upper sample quantiles of the bootstrap estimates 
 

1


 

∗


 ,
 
 

2


 

∗


 ,…,
 
 


B



 

∗


 and then the basic percentile confidence interval is given by




For the samples in the ModelFree_kurt
 and ModelBased_kurt
 (and for α
 = 0.
 1) we get


> quantile( ModelFree_kurt, c(0.05,1-0.05) )  




      5%      95%  




4.064854 4.447066  




> quantile( ModelBased_kurt, c(0.05,1-0.05) )  




      5%      95%  




3.996941 4.332154








Problem 5



Using the bcanon
 function we get the following output


> set.seed("1234")  




> bc_out = bcanon( bmwRet[,2], 5000, quantKurt, alpha=c(0.05,0.95) )  




> print( bc_out$confpoints )  




     alpha bca point  




[1,]  0.05  4.104399  




[2,]  0.95  4.487329


This agrees qualitatively with the results from Problem 4 above.




Exercises






Exercise 6.1



The α∕
 2 (when α
 = 0.
 1) quantile of the samples s


b,

 boot



 would be 10000(0.
 05) = 500 thus to compute a percentile confidence interval we would need to find the s

500
 
,

 boot



 and s

950
 
,

 boot



 bootstrap samples. These are given to us and we have







	
s

 
 500
 
,

 boot




	= 0.
 71s
 = 0.
 71(0.
 31) = 0.  
 2201
	
	



	
s

 
 950
 
,

 boot




	= 1.
 67s
 = 1.
 67(0.
 31) = 0.
 5177 .  

	
	




Thus the percentile confidence interval for s
 is (0.
 2201,
 0.
 5177).





Exercise 6.2




Part (a):
 The bias is estimated using





Part (b):
 An estimate of the standard deviation of the sample correlation is given by




from the numbers given in the text.


Part (c):
 An estimate of the MSE for the sample correlation is given by







Part (d):
 This would be




This is a very small fraction of the MSE and it is probably worth more to reduce the variance of our estimator than to spend time trying to reduce the bias.





Exercise 6.3




Part (a):
 The bias is estimated using





Part (b):
 An estimate of the MSE for the sample standard deviation is given by








6 Chapter 7 (Multivariate Statistical Models)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1 (Equity Returns)


















	 
        









Figure 26:
 A scatter plot of the selected four returns from the “berndtInvest” data.



In Figure 26
 we show the scatter plot produced from the pairs
 function for the four suggested returns. Calling the cov
 function on the data frame of returns gives


> cov(Berndt)  




            CITCRP        CONED      CONTIL       DATGEN  




CITCRP 0.006556442 0.0010933247 0.006052187 0.0055091027  




CONED  0.001093325 0.0025272604 0.000795463 0.0006124665  




CONTIL 0.006052187 0.0007954630 0.022710259 0.0050502504  




DATGEN 0.005509103 0.0006124665 0.005050250 0.0162664367


Then to compute (estimate) the variance of the given linear combination we need to compute w


T




 Σw
 where Σ is the matrix above and w
 is a vector of portfolio weights w


T




 = 
 . When we compute the above we get the value 0.004408865



Problem 2 (A multivariate

 

t


 
distribution)


















	 
        









Figure 27:
 The loglikelihood as a function of the degrees of freedom ν
 of the estimated t
 -distribution.



In Figure 27
 we plot the loglikelihood of the return data as a function of the degrees of freedom parameter ν
 . To determine the 90% confidence interval for this value of ν
 we will use the fact that the standard errors of our maximum likelihood estimates are given by




where ℐ(
 ) is the Fisher information matrix. Rather than take the required expectation we will follow the suggestion in the book and approximate this use the value based on the sample of data we have. This means that we have to estimate the second derivative of the loglikelihood at the optimal location. There are many way to do this but we will do it by approximating the second derivative using central finite differences [1
 ]




Using this approximation we find




Thus we find our standard error given by




If we make a normal approximation the 90% confidence interval of ν
 is then given by




where z


α∕

 2



 are the critical points of a standard normal and α
 = 0.
 1. In Figure 27
 we show these two values as black vertical lines. As a check to the validity of using the finite difference approximation I also used the fdHess
 function in the nlme
 library to estimate the Hessian at the maximum likelihood value of ν
 . The two methods gave results that were very close.



Problems 3-5 (example multivariate

 

t


 
distributions)


















	 
            









Figure 28:
 Examples of samples drawn from four different multivariate t
 distributions a-d from left to right.



See Figure 28
 where the simulations of these t
 -distributions are presented.




	Then the sample with independent variates is (c) since the covariance matrix has zero off diagonal elements and there is no linkage between the two variables from the w
 parameter. In fact here two different vectors w1
 and w2
 are used.

	The sample with correlated variates without tail dependence is (b) since in that case the covariance matrix has nonzero off diagonal elements but there is no linkage between the two variables with the w
 parameter.

	The sample with uncorrelated variates but with tail dependence is (d) since in that case the covariance matrix has zero off diagonal elements but linkage between the two variables with a common w
 parameter.





Problem 6




Part (a):
 From the discussion in the book entitled “Using the t
 -distribution in portfolio analysis” the random variable R
 will also have a t
 -distribution but with a mean of w


T



 μ
 and a variance of 
 w


T




 Λw
 = w


T




 Σw
 . Thus in this case R
 will have a t
 -distribution with ν
 = 5, a mean value of




and a variance of




Thus our scale “matrix” is




Given all of these things we can state that R
 is given by a t


ν




 (μ,
 Λ) = t

5



 (0.
 0015,
 0.
 0465) distribution.


Part (b):
 This is done in the R
 code Rlab.R
 . In that code we generate raw 
 data from the correct multivariate t
 -distribution using the code rmt
 and then for each sample compute w


T




 
 to get a sample for R
 . Running that code for a very large number of samples we find


[1] "Using N=      10000 has a mean of upper   0.990000 quantile of=   0.733422"  




[1] "Using N=     100000 has a mean of upper   0.990000 quantile of=   0.740097"  




[1] "Using N=    1000000 has a mean of upper   0.990000 quantile of=   0.743422"








Problem 7




Part (a):
 The object Y
 holds returns of IBM
 and CRSP
 . The call to cov
 creates a covariance matrix and the call to chol
 compute the Cholesky factorization of this matrix. This is an upper triangular matrix U
 that when “squared” as U


T



 U
 gives back the covariance matrix for Y
 . This step makes the initial matrix used for the “scale matrix” equal to the sample covariance matrix.


Part (b):
 The call from optim
 gives


> fit_mvt$par  




[1] 0.0003789236 0.0008317070 0.0126907363 0.0026859493 0.0051011198  




[6] 4.2618395311


for the ML estimate of the variables in 𝜃
 .


Part (c-d):
 The member hessian
 of the variable fit_mvt
 gives the second derivative of the loglikelihood when viewed as a function of the parameters. Since the R
 optimization routine optim
 looks for a minimum, the function loglik
 that returns the loglikelihood was multiplied by −1 to find the maximum of the loglikelihood. This means that to get an approximation to the Fisher information matrix ℐ(𝜃
 ) we can just report the value of the member hessian
 . We need to invert this, extract the diagonal elements, and then take the square root of these to get the standard errors of the components of 𝜃
 . When we do that we find


> sqrt( diag(inv_fisher) )  




[1] 2.886679e-04 1.310061e-04 2.506014e-04 1.292280e-04 9.372555e-05  




[6] 2.570202e-01





Part (e):
 For this we need to extract the needed components of the parameter vector 𝜃
 and form the covariance matrix. When we do this we find


             [,1]         [,2]  




[1,] 1.610548e-04 3.408667e-05  




[2,] 3.408667e-05 3.323575e-05





Part (f):
 Using the above covariance matrix we can construct the correlation matrix to get


> cor_matrix = DInv %*% ( cov_matrix %*% DInv )  




> cor_matrix  




          [,1]      [,2]  




[1,] 1.0000000 0.4659025  




[2,] 0.4659025 1.0000000







Exercises






Exercise 7.1




Part (a):
 These would be







	
E
 (0.
 2X
 + 0.
 8Y  
 )
	= 0.
 2E
 (X
 ) + 0.
 8E
 (Y
 ) = 0.
 2(1) + 0.
 8(1.
 5) = 1.  
 4
	
	



	Var
  
	= 0.
 2

2


 Var
 + 0.
 8

2


 Var
 + 2(0.
 2)(0.
 8)Cov
   
	
	



	 
	= 0.
 2

2


 (2) + 0.
 8

2


 (2.
 7) + 2(0.
 2)(0.
 8)(0.
 8) = 2.
 064 .  

	
	





Part (b):
 We can expand the given expression to get



	Var
  
	= w

2



 Var
 + (1 − w
 )

2


 Var
 + 2w
 (1 − w
 )Cov
   
	
	



	 
	= 2w

2



 + 2.
 7(1 − w
 )

2


 + 1.
 6w
 (1 − w
 ) .  

	
	




Taking the derivative of this expression with respect to w
 , setting the result equal to zero and solving for w
 we get




This procedure is finding the minimum variance combination of the two random variables X
 and Y
 .





Exercise 7.2




Part (a):
 From the definition of the covariance we have







	Cov
  
	= E
 [(X

1



 + X

2



 − E
 [X

1



 + X

2



 ])(Y
 

1


 + Y
 

2


 − E
 [Y
 

1


 + Y
 

  
 2


 ])]
	
	



	 
	= E
 [((X

1



 − E
 [X

1



 ]) + (X

2



 − E
 [X

2



 ]))((Y
 

1


 − E
 [Y
 

1


 ]) + (Y
 

2


 − E
 [Y
 

2


 ]))] .  

	
	




Then expanding the multiplication of terms in the outermost expectation, taking the expectation, and recognizing pairwise covariance we have the desired result.


Part (b):
 An arbitrary number of terms would be expanded in the same way as above. That is the outer expectation is of the expression




which is the same as the double sum of pairwise covariances.





Exercise 7.3



We want to derive equivalent expressions for Cov
 = σ


X,Y




 . From the definition of the covariance we have








	Cov
  
	= E
 [(X
 − E
 [X
 ])(Y
 − E
 [Y   
 ])]
	
	



	 
	= E
 [XY
 − XE
 [Y
 ] − Y E
 [X
 ] + E
 [X
 ]E
 [Y   
 ]]
	
	



	 
	= E
 [XY
 ] − E
 [X
 ]E
 [Y
 ] − E
 [Y
 ]E
 [X
 ] + E
 [X
 ]E
 [Y   
 ]
	
	



	 
	= E
 [XY
 ] − E
 [X
 ]E
 [Y
 ] .  

	(20)




We can also evaluate the definition of covariance as follows



	Cov
  
	= E
 [(X
 − E
 [X
 ])(Y
 − E
 [Y   
 ])]
	
	



	 
	= E
 [X
 (Y
 − E
 [Y
 ]) − E
 [X
 ](Y
 − E
 [Y   
 ])]
	
	



	 
	= E
 [X
 (Y
 − E
 [Y
 ])] − E
 [X
 ]E
 [Y
 − E
 [Y   
 ]]
	
	



	 
	= E
 [X
 (Y
 − E
 [Y
 ])] .  

	(21)




Since E
 [Y
 −E
 [Y
 ]] = 0. Since the covariance expression is symmetric in X
 and Y
 interchanging the roll of X
 and Y
 gives



	




	(22)




Finally from Equation 20
 we see that if either E
 [X
 ] or E
 [Y
 ] is zero we have







	




	(23)








Exercise 7.4




Part (a):
 Since E
 [X
 ] is a constant (not a random variable) its expectation is itself. Thus using the linearity of the expectation we have





Part (b):
 If two random variables are independent then




so that Equation 20
 then gives Cov
 = corr(X,Y
 ) = 0 and X
 and Y
 are uncorrelated.





Exercise 7.5



We have




since E
 [X
 ] = 0 (in fact E
 [X


p




 ] = 0 for any odd power p
 ). This shows that X
 and Y
 are uncorrelated. To show that X
 and Y
 are not independent we want to see if p
 (x,y
 ) = p
 (x
 )p
 (y
 ). To evaluate the right-hand-side of this expression we need to know p
 (y
 ). For Y
 the cdf is given by







	
F


Y




 (y 
 )
	= P
 {Y
 ≤ y
 } = P
 {X

2



 ≤ y
 } = P
 {−
 ≤ X
 ≤ +
 }  
	
	



	 
	= ∫ 

−
 


 

+
 


 
 = 
  .  

	
	




Thus taking the derivative we have




Thus the product of the marginal distributions is




Next to evaluate p
 (x,y
 ) we will use p
 (x,y
 ) = p
 (y
 |x
 )p
 (x
 ) = 
 . Now p
 (y
 |x
 ) is a delta function with the only nonzero value when y
 = x

2



 so we have




As this does not equal p
 (x
 )p
 (y
 ) we have that X
 and Y
 are not independent.





Exercise 7.6



We write w


T



 X
 = ∑ 


i

 =1


 


N



 w 


i



 X


i




 and then use the linearity of the expectation to get




Use the expression




and the result of Exercise 7.2 above to write this as




This is equivalent to the expression for w


T




 COV(X
 )w
 when we expand.



7 Chapter 8 (Copulas)

 





R Lab


What was difficult about doing the Rlab
 for this problem was installing the copula
 library in R
 . After much searching on the web, the following steps worked for me on a recent version of Ubuntu (mileage may vary). The first step is to make sure that you have all of the auxiliary programs that copula
 will need. This can be done with the following installs:


# These were all needed to install copula in R:  




sudo apt-get install -y libgsl0-dev # for GSL gnu scientific library  




sudo apt-get install -y r-cran-rcpparmadillo r-cran-rgl  




sudo apt-get install -y libgmp3-dev  




sudo apt-get install -y libboost-all-dev build-essential  




sudo apt-get install -y libmpfr-dev


The “-y” flag stops the apt-get
 program from asking the user if they want to install the packages or not. Next in R
 one has to perform


install.packages( "copula", dependencies=TRUE )


Once this is done, in R
 , the command


library( copula )


worked as it should.

Once this is done one should be able to execute the R
 script Rlab.R
 where the problem for this chapter are worked.
















	 
          









Figure 29:
 The scatter plot matrix for data generated by a t
 -copula.





Problem 1



When we run the given Rlab.R
 function we get the pairs
 plot in Figure 29
 . From the definition of the copula we have a t
 -copula with one degree of freedom. The vector given in the call to tCopula
 is used to construct the correlation matrix which can be obtained by using the getSigma
 function on the constructed copula as


> getSigma(cop_t_dim3)  




      [,1] [,2] [,3]  




[1,]  1.00 -0.6 0.75  




[2,] -0.60  1.0 0.00  




[3,]  0.75  0.0 1.00


The sample size is 500.





Problem 2



See the scatter plot matrix in Figure 29
 .


Part (a):
 It looks like when Var 3 is very small Var 2 can be either be very small or very large. The same seems to hold true if Var 3 is very large. Thus these two variables don’t seem independent.


Part (b-c):
 Note that when Var 2 is large Var 1 is small and when Var 2 is small Var 1 is large thus the two variables show tail dependence but in opposite directions (the correlation between these two variables is negative). In the same way if Var 3 is large/small then Var 1 is large/small thus the tails of these two distributions seem to move together (the correlation between these two variables is positive).


Part (d):
 It seems that this is not due to random variations since the suggested confidence interval is given by


> cor.test( rand_t_cop[,1], rand_t_cop[,2] )  




 




        Pearson’s product-moment correlation  




 




data:  rand_t_cop[, 1] and rand_t_cop[, 2]  




t = -14.696, df = 498, p-value < 2.2e-16  




alternative hypothesis: true correlation is not equal to 0  




95 percent confidence interval:  




 -0.6083456 -0.4857311  




sample estimates:  




       cor  




-0.5499951


While the value of -0.6 is technically in this interval it is at the left most endpoint. Increasing the sample size from 500 to 5000 gives a confidence interval that does not contain the value of -0.6.
















	 
      
	 
      









Figure 30: Left:
 The scatter plot matrix for data generated by a t
 -copula. Right:
 KDE of the marginal distributions.





Problem 3



The pairs plot for this is given in Figure 30
  (left) and the KDE marginals are estimated in Figure 30
  (right).


Part (a):
 The marginals are exponential that have rates 2, 3, and 4. These translate into mean values of 1∕
 2, 1∕
 3, and 1∕
 4.


Part (b):
 The correlation is specified to be zero between these two variables.





Problem 4



In the book we have







	




	(24)




where ρ


τ




 is Kendall’s tau correlation. Since we want the value of Ω


i,j



 we can invert the above equation to get




When we compute that on the given data we find the value of omega
 given by 0.4965565.





Problem 5




Part (a):
 The fitCopula
 function has an input that should be the cumulative density of the marginal variables. This can be done by using the pstd
 which assumes that the marginals are from a t
 -distribution or by using the empirical cumulative distribution.


Part (b):
 The two estimates are given by


> print(ft1)  




      Estimate Std. Error z value Pr(>|z|)  




rho.1   0.4937     0.0246   20.07   <2e-16 ***  




df      9.8537         NA      NA       NA  




The maximized loglikelihood is  362  




 




> print(ft2)  




      Estimate Std. Error z value Pr(>|z|)  




rho.1  0.49563    0.02452   20.21   <2e-16 ***  




df     9.40536         NA      NA       NA  




The maximized loglikelihood is  365


Note that the two estimates are very close to each other.





Problem 6




Part (a-b):
 The output from the optim
 command gives


> fit_cop  




$par  




[1] 0.0003546525 0.0172451571 4.2744837061 0.0008413968 0.0081630155  




[6] 3.4791785532 0.4941659446 9.8536613477  




$value  




[1] -16128.42


The first three numbers in par
 are the (μ,s,ν
 ) parameters of the marginal t
 -distribution for the ibm
 returns, the next three numbers are the (μ,s,ν
 ) parameters of the marginal t
 -distribution for the crsp
 returns. The last two numbers are the parameters Ω (the correlation) and ν
 (the degrees of freedom) in the multivariate t
 -distribution copula.


Part (c):
 This is maximum likelihood estimation as we are estimating the parameters of the marginal distributions with
 the parameters of the t
 -distribution copula at the same time. If we had frozen the parameters of the marginal (at their individual maximum likelihood values) and only optimized over the parameters in the copula we would have been using pseudo-maximum likelihood estimation.


Part (d):
 From the text the coefficient of lower
 tail dependence is defined as λ


l




 and for a t
 -copula with ν
 degrees of freedom and a correlation ρ
 we have







	




	(25)




Using the numbers estimated for ρ
 and ν
 we find this to be 0.08194319.
















	 
            









Figure 31:
 Contour plots for the density function for various fitted copula models.





Problem 7



The contour plots for this problem are given in Figure 31
 . Many of them look quite similar to the empirical copula. Perhaps the t
 -copula is best but its hard to tell visually.
















	 
            









Figure 32:
 Contour plots for the distribution function for various fitted copula models.





Problem 8



The contour plots for this problem are given in Figure 32
 . In this case the t
 -distribution copula looks to match the empirical copula the closest.





Problem 9



Using the log-likelihood the AIC is given by




For the given copulas we get the following values for the AIC


             AICs  




t       -719.9693  




normal  -690.3688  




gumbel  -622.4514  




frank   -646.5734  




clayton -582.2204


Seeking the smallest value of AIC would point to the t model as the best one. This is equivalent to the conclusion made above.




Exercises






Exercise 8.1



We are told that




If we flip Y
 to 1∕Y
 we get







	
ρ


τ




 
  
	= E
 
   
	
	



	 
	= E
 
   
	
	



	 
	= −E
 
 = −0.
 55 .  

	
	




If we now flip X
 to 1∕X
 we get



	
ρ


τ




 
  
	= E
 
   
	
	



	 
	= E
 
   
	
	



	 
	= E
 
 = 0.
 55 .  

	
	








Exercise 8.3



For the generator of a Frank copula




Note that ϕ
 is continuous as all the functions in its construction are continuous. The first derivative of ϕ

Fr



 with respect to u
 is given by




If 𝜃 >
 0 and u
 ∈ [0,
 1] then −u𝜃 <
 0 so e

−
 
u𝜃




 <
 1 and e

−
 
u𝜃




 − 1 <
 0. In addition 𝜃e

−
 
𝜃u




 >
 0 so we have




thus 
 <
 0 showing that ϕ

Fr



 is decreasing. In the same way if 𝜃 <
 0 and u
 ∈ [0,
 1] then −u𝜃 >
 0 so e

−
 
u𝜃




 >
 1 so e

−
 
u𝜃




 − 1 >
 0. In addition we have 𝜃e

−
 
𝜃u




 <
 0 so again 
 <
 0 and we have that ϕ

Fr



 (u
 ) is decreasing. Now the second derivative of ϕ

Fr



 is given by







	
  
	= 
 −
   
	
	



	 
	= 
   
	
	



	 
	= 
 >
 0 ,  

	
	




for all 𝜃
 and u
 . Therefore we have that ϕ

Fr



 is convex function on u
 ∈ [0,
 1].





Exercise 8.4



For this problem we want to show that when u

1



 and u

2



 have a domain of [0,
 1] we have




Here C

Fr



 (u 

1


 ,u

2



 ) is defined as




Now as 𝜃
 → +∞ the argument of the logarithm goes to




Thus the entire function goes to




which is indeterminate. Thus to directly evaluate this limit we would have to use something like L’Hospital’s rule. That calculation is somewhat complicated to do directly so we will argue this result heuristically. To do this lets write the function C

Fr



 (u 

1


 ,u

2



 ) as







	
C

Fr



 (u 

1


 ,u

 
 2



 )
	= −
 log 
   
	
	



	 
	= −
 log 
  .  

	
	




Lets now assume that u

1



 < u

2



 . Now since u

1



 + u

2



 > u

2



 > u

1



 we have that




Since u

1



 <
 1 we also have that




Thus in the numerator when 𝜃
 is large we have




meaning that the first, third, and fourth term become much smaller than the second terms as 𝜃
 →∞. If we use this approximation then we have that




Taking the limit of 𝜃
 →∞ directly still gives an indeterminate expression but using L’Hospital’s rule on this functional form is much easier to apply. Using it we get







	lim 


𝜃

 →∞


 C

Fr



 (u 

1


 ,u

 
 2



 )
	= − lim 


𝜃

 →∞


 
 
   
	
	



	 
	= lim 


𝜃

 →∞


 
 
   
	
	



	 
	= 
 
 = u

1



  .  

	
	




Now if we had started with u

2



 < u

1



 we would find this limit equal to u

2



 . Thus we see that in either case the limit is min(u

1


 ,u

2



 ).



8 Chapter 9 (Time Series Models: Basics)

 





R Lab


See the R
 script Rlab.R
 for this chapter.
















	 
      
	 
      









Figure 33: Left:
 The time series plots of the data in the Tbrate
 dataset. Right:
 The autocorrelation plots for the data in the Tbrate
 dataset.





Problem 1 (stationarity of the raw variables)




Part (a):
 To start this analysis see Figure 33
  (left) for plots of time series for the variables r
 , y
 , and π
 . From that plot, the variables r
 and y
 seem to be moving in the same direction for extended periods of time (indicating that they may not be stationary time series). The plot of π
 seems to be more stationary. Next see Figure 33
  (right) for plots of the auto-correlation of the same three variables r
 , y
 , and π
 (on the diagonal) and plots of the cross-correlation functions (on the off-diagonal). The very slow decay of the autocorrelation functions along the diagonal indicate that differencing will probably be needed to obtain stationary time series that we can model with ARMA models.


Part (b):
 We next run the adf.test
 on each of the given time series before any transformations are taken. Note that the null hypothesis for the adf.test
 is that the time series has
 a unit-root. The alternative hypothesis is that the time series is actually stationary. Thus “large” and negative t
 -values (or small p
 -values) indicate that this time series probably does not
 have a unit root. On the other hand “small” t
 values (or large p
 -values) indicates that the given time series probably does
 have a unit root. For the variable in this dataframe we find




	For the variable r
 we get
Dickey-Fuller = -1.925, Lag order = 5, p-value = 0.6075


Indicating that most likely have a unit-root in this data.



	For the variable y
 we get
Dickey-Fuller = -0.3569, Lag order = 5, p-value = 0.9873


Indicating that it is very likely that we have a unit-root in this data.



	For the variable π
 we get
Dickey-Fuller = -2.9499, Lag order = 5, p-value = 0.1788


Indicating that there is less chance that we have a unit-root in this data.





Looking back at plots of the time series of the variables using the plot(Tbrate)
 we see that the first two time series seem to be steadily growing while the one for π
 seems to more stationary. That is what the numbers above state in that y
 and r
 seem to very strongly have a unit root while for π
 there is less evidence of that.





Problem 2 (stationarity of the first differences)


















	 
      
	 
      









Figure 34: Left:
 The time series plots of the first difference of the data in the Tbrate
 dataset. Right:
 The autocorrelation plots of first difference of the data in the Tbrate
 dataset.



Next we take the first difference of this data and look if the result is more stationary. We first plot the time series of this first difference in Figure 34
  (left). There we see that the series are much more mean reverting in this case. Next we plot the ACF functions for these first differences in Figure 34
  (right). All of these plots show series that look much more stationary than before.

Next we consider the adf.test
 looking for a unit root for these first differences. For these three time series we get




	For the variable Δr
 we get
Dickey-Fuller = -5.2979, Lag order = 5, p-value = 0.01


Indicating that there is most likely not a unit-root in this difference.



	For the variable Δy
 we get
Dickey-Fuller = -5.9168, Lag order = 5, p-value = 0.01


Also indicating that there is most likely not a unit-root in this difference.



	For the variable Δπ
 we get
Dickey-Fuller = -7.6571, Lag order = 5, p-value = 0.01


Again indicating that there is most likely not a unit-root in this difference.





We conclude that all three series appear stationary after taking first differences. Looking at the ACF plots we see that there is evidence that these first difference could be modeled as a MA(1) process.



Problem 3 (seasonality differences)


















	 
        









Figure 35:
 A box plot of Δr
 grouped by the quarter 1,
 2,
 3 or 4 the measurement was taken in.



Next we look to see if the mean level for Δr
 depends on the quarter. In Figure 35
 we construct a box plot of the samples of Δr
 that fall in each quarter. From that plot it does not
 look like there is much dependence on the mean level with the quarter.



Problem 4 (fitting an ARIMA model)



The output from the auto.arima
 function call is


> auto.arima( Tbrate[,1], max.P=0, max.Q=0, ic="aic" )  




Series: Tbrate[, 1]  




ARIMA(0,1,1)  




 




Coefficients:  




         ma1  




      0.3275  




s.e.  0.0754  




 




sigma^2 estimated as 0.8096:  log likelihood=-245.65  




AIC=495.3   AICc=495.37   BIC=501.76


Which indicates that when we use the AIC information criterion we choose to take the first difference d
 = 1 and then to model Δr
 with a MA(1) model. This is in line with what the ACF plot of Δr
 above suggested. Changing the ic
 argument in the auto.arima
 call to bic
 does not change the final model selected.





Problem 5 (residual autocorrelation)



The plot of the autocorrelation function of the ARIMA model residual shows no spikes reaching far outside of the confidence intervals plotted on the graph. There are some spikes that are just outside these limits but these are probability due to statistical fluctuations rather than to a real phenomena that we should try to model. The output from the Box.test
 command is


X-squared = 13.0169, df = 10, p-value = 0.2227


Which indicates that if we accept the hypothesis of randomly ordered data
 there is a probability of around 0.22 of getting results as “extream” as the ones we have. We would like the p
 -value returned from this test to be as large as possible but at this point we can conclude that our model of the time series r
 is complete.





Problem 6 (GARCH effects)


















	 
        









Figure 36:
 The autocorrelation function of the ARIMA residuals squared. Notice there are several spikes above the 2σ
 horizontal lines indicating evidence of GARCH effects.



The plot of the autocorrelation function for the residuals squares is given in Figure 36
 . There we see two large spikes above the 2σ
 horizontal lines. The output from the Box.test
 also indicates the presence of non-randomness


X-squared = 92.1004, df = 10, p-value = 1.998e-15


A p
 -value this small means that it is very unlikely that this data is purely random and we see evidence of GARCH effects.




Problem 7 (forecasting)


















	 
        









Figure 37:
 Forecasts of inflation rate as we move forward in time.



The output from the auto.arima
 call is


> auto.arima( Tbrate[,3], max.P=0, max.Q=0, ic="bic" )  




Series: Tbrate[, 3]  




ARIMA(1,1,1)  




 




Coefficients:  




         ar1      ma1  




      0.6749  -0.9078  




s.e.  0.0899   0.0501  




 




sigma^2 estimated as 3.516:  log likelihood=-383.12  




AIC=772.24   AICc=772.37   BIC=781.94


Which indicates that we should model this with an ARIMA(1,1,1) model.

We plot the forecast and the standard errors in Figure 37
 . In a non rigorous way, the prediction intervals widen since at every timestep our ΔY
 


t



 build from terms of the form 𝜖


t




 + 𝜃

1


 𝜖


t

 −1



 (along with other terms). These two terms are random and have an associated variance and as we predict further in the future we have to add more and more of these random variables to estimate ΔY
 


t



 . The more random variables we add together the larger the variance of the resulting sum.


Exercises


See the R
 code chap_9.R
 where these problems are worked.
















	 
          









Figure 38: Left:
 The acf
 plot for the crsp
 data (as a time series object). Right:
 The acf
 plot for the crsp
 data (treated as a numeric array).





Exercise 9.1



Plots of the output from the acf
 function for each of the two calls are given in Figure 38
 .


Part (a):
 Note that variable crsp
 is a ts
 (time series) object and as such has some auxiliary data associated with it. If we try to display the variable crsp
 in the command window we get the following (partial output)


> crsp  




Time Series:  




Start = c(1969, 1)  




End = c(1975, 338)  




Frequency = 365  




   [1] -0.007619  0.013016  0.002815  0.003064  0.001633 -0.001991  0.004671  




   [8]  0.004027  0.001736  0.001504 -0.001778  0.008950  0.001920 -0.000024


When we plot the acf
 of the ts
 object the lag is in units of time
 since the time series object has a notion of how much time is represented between each data point. For the output above we see that the frequency is 365 (corresponding to the number of days in a year) thus a lag of one day corresponds to 
 = 0.
 002739726 yearly time units which is the spacing between the acf
 values in the leftmost plot. If we look at the rightmost acf
 plot in Figure 38
 we see a small downward spike at lag seven. In units of time
 this is located at 
 = 0.
 01917808 in the leftmost plot.


Part (b):
 We see that the three significant autocorrelations (with the smallest lags) are found at lags 1, 7, and 16. I would expect the autocorrelation at lag 1 to be statistically significant but the others are most likely due to change. Autocorrelations with larger lags that seem “significant” (in that they are above the 2σ
 standard error bars) are also probably due to chance.





Exercise 9.2




Part (a):
 From the autocorrelation plots for the crsp
 data it looks like a better model to fit would be a MA(1) model rather than any AR(p) model (as suggested in this exercise). In any case, if we are to fit AR(1) and AR(2) model the output from the two arima
 calls is


> arima(crsp,order=c(1,0,0))  




Series: crsp  




ARIMA(1,0,0) with non-zero mean  




 




Coefficients:  




         ar1  intercept  




      0.0853      7e-04  




s.e.  0.0198      2e-04  




 




sigma^2 estimated as 5.973e-05:  log likelihood=8706.18  




AIC=-17406.37   AICc=-17406.36   BIC=-17388.86  




> arima(crsp,order=c(2,0,0))  




Series: crsp  




ARIMA(2,0,0) with non-zero mean  




 




Coefficients:  




         ar1      ar2  intercept  




      0.0865  -0.0141      7e-04  




s.e.  0.0199   0.0199      2e-04  




 




sigma^2 estimated as 5.972e-05:  log likelihood=8706.43  




AIC=-17404.87   AICc=-17404.85   BIC=-17381.53


In comparing these two models we would select the one that has the lower value of the Akaike information criterion (aic) or the Bayesian information criterion (bic). For either of these two metrics the AR(1) model is preference to the AR(2) model. We note that we fit a MA(1) model and looked at its AIC (or BIC) it is a smaller value than either of these two AR(p) models and would be the preferred model.


Part (b):
 Using the data given for the AR(1) fit we have a 95% confidence interval for the value of ϕ
 given by


alpha = 0.05  




0.0853 + 0.0198 * qnorm( 1 - 0.5 * alpha ) * c(-1,+1)  




[1] 0.04649271 0.12410729








Exercise 9.3 (an AR(1) model)




Part (a):
 An AR(1) model looks like




To have a stationary AR(1) model we must have |ϕ
 | <
 1. Since for this problem we have ϕ
 = −0.
 55 we do have |ϕ
 | <
 1 and this AR model is stationary.


Part (b):
 We can write the above expression for an AR(1) model in the form




With ϕ
 = −0.
 55 and equating this to the model we were given in this problem we have







Part (c):
 From the book we have that





Part (d):
 From the book we have that










Exercise 9.4 (another AR(1) model)




Part (a):
 For an AR(1) model we know







Part (b):
 Again from the discussion in the book on AR(1) models we have







	Cov(Y
 

1


 ,Y
 

 
 2


 )
	= 
 = 
 = 0.  
 8
	
	



	Cov(Y
 

1


 ,Y
 

 
 3


 )
	= 
 = 
 = 0.
 4 .  

	
	





Part (c):
 We can compute this expression as follows



	Var
  
	= 
 Var(Y
 

1


 + Y
 

2


 + Y
 

  
 3


 )
	
	



	 
	= 
 
   
	
	



	 
	= 
 
   
	
	



	 
	= 
 
 = 2.
 2 .  

	
	








Exercise 9.5 (an AR(3) model)



An AR(3) model takes the form








	




	(26)




To prediction the value of Y
 


t

 +1


 we incrementing the t
 index by one to get




and then taking expectations (conditioned data that has arrived by the time t
 ) to get







	
Ŷ

 
 
t

 +1




	= 
 + 
 

1


 (Y
 


t



 −
 ) + 
 

2


 (Y
 


t

 −1


 −
 ) + 
 

3


 (Y
 


t

 −2


 −
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	= 104 + 0.
 4(99 − 104) + 0.
 25(103 − 104) + 0.
 1(102 − 104) = 101.
 55 .  

	
	




For the prediction of Y
 


t

 +2


 we use Equation 26
 again (evaluated at t
 = t
 + 2) to get



	
Ŷ
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 4(101.
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 25(99 − 104) + 0.
 1(103 − 104) = 101.
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Exercise 9.6 (the autocovariance of a MA(2) model)



For the MA(2) model




note that




Thus we can compute







	
γ
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In the above if h
 = 0 then we get




In the above if h
 = ±1 then we get




In the above if h
 = ±2 then we get




In the above we get γ
 (h
 ) = 0 if |h
 | >
 2. Using these results we have for the autocorrelation of Y
 


t














Exercise 9.7



An AR(2) process has the form





Part (a):
 Now given this process we can compute the autocovariance function as







	
γ
 (k 
 )
	= E
 [(Y
 


t



 − μ
 )(Y
 


t

 −
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 − μ  
 )]
	
	



	 
	= E
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2


 E
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t

 −2


 − μ
 )(Y
 


t

 −
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 − μ  
 )] + 0
	
	



	 
	= ϕ

1


 γ
 (k
 − 1) + ϕ

2


 γ
 (k
 − 2) .  

	
	




Note that the last term in the equation above the last is zero since 𝜖


t




 and Y
 


t

 −
 
k



 are independent and E
 [𝜖


t




 ] = 0. If we now divide both sides by γ
 (0) we get




the expression we were trying to show.


Part (b):
 If we let k
 = 1 in the above equation then we get




If we let k
 = 2 in the above equation we get




Putting these two equations together gives the system




Thus if we think that a time series is generated from an AR(2) model we could measure ρ
 (1) and ρ
 (2) numerically and then invert the above system to compute values for ϕ

1



 and ϕ

2



 that would be estimates of the parameters in this AR(2) model.


Part (c):
 These values would give rise to the system




which if we invert gives ϕ

1



 = 0.
 38095238 and ϕ

2



 = 0.
 04761905. Using these parameter estimates we can compute ρ
 (3) as










Exercise 9.8



The left-hand-side of the book’s equation 9.12 is




Now Cov(𝜖


t

 −
 
i



 ,𝜖


t

 +
 
h

 −
 
j




 ) = 0 unless t
 −i
 = t
 + h
 −j
 or j
 = h
 + i
 . Thus our double summation above simplifies to a single summation to give




Since the autocovariance function is symmetric in h
 we need to take the absolute value of h
 in the above to get ϕ

|
 
h

 |



 which gives the desired expression.





Exercise 9.9



The expression for w


t




 is




so that when we compute Δw


t




 we get
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as we were to show.





Exercise 9.10



For a large enough length of time maybe. One could get some evidence if an I
 (2) model would fit a given time series of prices p


t




 by looking at the results of the Ljung-Box test on the second difference sequence Δ

2


 p 


t




 .





Exercise 9.11



Let t
 = n
 + 1 and from the form of Y
 


t



 we see that Y
 


n

 +1


 is given by




so from this we see that our prediction is given by







	
Ŷ

 
 
n

 +1




	= 
 + 0 + 
 

1
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 3(1.
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 15(−4.
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For Y
 


n

 +2


 from the form of Y
 


t



 we see that we have




Then using this our prediction Ŷ


n

 +2



 is given by
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Exercise 9.12



For the given time series model with t
 = n
 + 1 we have




so our prediction of Y
 


n

 +1


 is given by







	
Ŷ
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Next using the given time series model with t
 = n
 + 2 we have




so our prediction of Y
 


n

 +2


 is given by
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Exercise 9.13



The autocorrelation plot of Δy


t




 shows a function that is effectively zero and thus the simplest model would be to model the time series of y


t




 as Δy


t




 = 𝜖


t




 (i.e. d
 = 1).
















	 
          









Figure 39:
 A plot of the tb1
 time series.





Exercise 9.14




Part (a):
 We plot the time series in Figure 39
 . There we see trending that indicates that we do not
 have a stationary time series. In Figure 40
  (left) we plot the autocorrelation function of the raw time series. The very slow decay of the values indicates that we need to take a forward different of this time series to proceed to try to model it with an ARMA model. In Figure 40
  (right) we plot the autocorrelation function of the first difference of the time series. There it looks like we can model this first difference with a MA(1) model. Well it looks like there are several spikes in the autocorrelation plot that are above the 2σ
 horizontal lines and that these seem to be spaced periodically in time. Thus we would probably need a seasonal
 MA model to fully model this process.


Part (b):
 The output from the auto.arima
 command using the AIC option is


> auto.arima( tb1, max.P=0, max.Q=0, ic="aic" )  




Series: tb1  




ARIMA(5,1,3)  




 




Coefficients:  




         ar1      ar2     ar3     ar4      ar5      ma1     ma2      ma3  




      0.7659  -0.7175  0.6176  0.2595  -0.1117  -0.9432  0.9001  -0.8921  




s.e.  0.0578   0.0690  0.0697  0.0576   0.0480   0.0387  0.0513   0.0389  




 




sigma^2 estimated as 0.0199:  log likelihood=263.81  




AIC=-509.62   AICc=-509.25   BIC=-471.87


This does not look like a very parsimonious model (given the large number of parameters that used in fitting it). The output from the auto.arima
 command using the BIC option is much cleaner


> auto.arima( tb1, max.P=0, max.Q=0, ic="bic" )  




Series: tb1  




ARIMA(0,1,1)  




 




Coefficients:  




          ma1  




      -0.1692  




s.e.   0.0448  




 




sigma^2 estimated as 0.02158:  log likelihood=244.48  




AIC=-484.95   AICc=-484.93   BIC=-476.57


Which is a much simpler model.


Part (c):
 We plot the autocorrelation function of the residuals of the model fit above using the AIC in Figure 41
  (left). There we still see a significant spike at the integer lag  
 21 which might be problematic. The autocorrelation function of the model fit above using the BIC is given in Figure 41
  (right). There we see several spikes that are outside of the 2σ
 horizontal lines. Both of these results indicate that we have not modeled this series completely and we should probably add a seasonal component.
















	 
          









Figure 40: Left:
 A plot of the autocorrelation function for the tb1
 time series (directly). Right:
 A plot of the autocorrelation function of the first difference of the tb1
 time series.


















	 
          









Figure 41: Left:
 A plot of the autocorrelation function for the residuals of the tb1
 time series when we model this as an ARIMA(5,1,3) series. Right:
 A plot of the autocorrelation function for the residuals of the tb1
 time series when we model this as an ARIMA(0,1,1) series.





Exercise 9.15



An AR(2) time series model looks like




so letting t
 = n
 + 1 we get




Using this, our prediction of Y
 


n

 +1


 is then given by
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Next letting t
 = n
 + 2 in our time series model we get




Using this, our prediction of Y
 


n

 +2


 is then given by
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Next letting t
 = n
 + 3 in our time series model we get




Using this, our prediction of Y
 


n

 +3


 is then given by
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Exercise 9.16



We will just make arguments along these lines. First if Y
 


t



 has an m
 th degree polynomial time trend then we can write E
 (Y
 


t



 ) = ∑ 


k

 =0


 


m



 β 


k



 t


k




 . Note that the expectation of the first difference of Y
 


t



 is then given by




Lets looks at what a few forward differences look like. Note that the forward difference of 1, t
 , and t

2



 are given by
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From these it looks like the first difference of a monomial is a polynomial of one less degree. We can prove this in general using the binomial theorem as follows
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which is a polynomial of degree k
 − 1 (one less than we started with). Thus for each forward difference we take we reduce the order of the polynomial time trend by one. If we take d
 differences we will end with a polynomial time trend of degree m
 − d
 . If d
 is larger than m
 then E
 (Δ


d



 Y
 


t



 ) = 0.



9 Chapter 10 (Time Series Models: Further Topics)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1 (seasonal ARIMA models)


















	 
        









Figure 42:
 The time series plot of the consumption
 data.



From the plot of consumption
 given in Figure 42
 we see that the time series is not stationary and will need to take differences to make it stationary. In addition, noticing the periodic “up ticks” that seem to happen in the third quarter of every year imply that we need seasonal differencing to make this time series stationary. This also gives the indication that the order of the seasonal difference should be four.
















	 
           









Figure 43:
 Plots of the autocorrelation functions for the consumption
 time series.



In Figure 43
 we plot the autocorrelation functions (ACF) for various differences of the consumption
 time series data.




	The leftmost plot is the ACF for the untransformed consumption
 data.

	The left-middle plot is the ACF for the first difference of the consumption
 data.

	The right-middle plot is the ACF for the seasonal difference (of order four) of the consumption
 data.

	The rightmost plot is the ACF for the combined nonseasonal and seasonal difference (of order four) of the consumption
 data.



Taking a logarithmic transform of the data gives an ACF that look very much the same as these presented here. In each case it looks like one seasonal difference combined with one nonseasonal difference can be modeled with a seasonal moving average (MA) model with a single coefficient. Fitting this model to both the raw consumption
 time series and the logarithm of consumption
 we will compare which is a better fit by looking at the Ljung-Box test on each models residuals. When we do that we get


> consumption_ts_model = arima( consumption, order=c(0,1,0),  




                                seasonal=list(order=c(0,1,1), period=4) )  




> Box.test( residuals(consumption_ts_model), lag=10, type="Ljung" )  




        Box-Ljung test  




X-squared = 6.5425, df = 10, p-value = 0.7678  




 




> log_consumption_ts_model = arima( lconsumption, order=c(0,1,0),  




                                    seasonal=list(order=c(0,1,1), period=4) )  




> Box.test( residuals(log_consumption_ts_model), lag=10, type="Ljung" )  




        Box-Ljung test  




X-squared = 4.1145, df = 10, p-value = 0.942


Intuitively, larger P-values in the Box.text
 indicate that the time series looks like it is a sequence of independent
 events. Since the logarithm of consumption has a larger P-value we might argue that taking the logarithm results in a better fit since the model then produces more independent residuals.



Problem 2 (fitting a seasonal ARIMA model)



Based on the above discussion, we propose a ARIMA{(0,
 1,
 0) × (0,
 1,
 1)

4


 } model for the logarithm of consumption. Fitting such a model gives


> arima( lconsumption, order=c(0,1,0), seasonal=list(order=c(0,1,1), period=4) )  




ARIMA(0,1,0)(0,1,1)[4]  




 




Coefficients:  




         sma1  




      -0.5348  




s.e.   0.1164  




 




sigma^2 estimated as 0.0002923:  log likelihood=139.77  




AIC=-275.55   AICc=-275.31   BIC=-271.61








Problem 3 (the residuals of the fit)



A plot of the autocorrelation function of the residuals (not shown) for the model above show no statistically significant autocorrelations.





Problem 4 (using

 

auto.arima


 
)



The model found by auto.arima
 is the same model as suggested from the acf
 plots. Running auto.arima
 gives


> auto.arima( lconsumption, ic="bic" )  




ARIMA(0,1,0)(0,1,1)[4]  




 




Coefficients:  




         sma1  




      -0.5348  




s.e.   0.1164  




 




sigma^2 estimated as 0.0002923:  log likelihood=139.77  




AIC=-275.55   AICc=-275.31   BIC=-271.61








Problem 5 (forecasting)



In Figure 44
 I plot the predictions (the solid lines) and two-sigma error bars (the dashed lines) on these predictions for the next eight quarters. The red curves are for the consumption
 data directly and the green
 curves are for the logarithm model. Notice that the log model predicts larger numbers with a larger confidence interval.
















	 
        









Figure 44:
 Predictions for eight quarters ahead using two models for the consumption
 data set.





Problem 6 (fitting VAR models)




Part (a):
 For this part we have p
 = 1 and the matrix Φ

1


 is given by


            r       y         pi  




r   0.2139366 17.2841 -0.0304881  




y  -0.0001014  0.2206  0.0001002  




pi  0.1846333 16.1098 -0.2487303





Part (b):
 The estimate of the covariance of the 𝜖


t




 is given by


          r         y        pi  




r  0.807888  0.001858  0.150369  




y  0.001858  0.000138 -0.001082  




pi 0.150369 -0.001082  3.682619



















	 
          









Figure 45:
 The output from the acf
 on the residuals of the VAR(1) model fit to the time series in the Tbrate
 data set. Note that all auto and cross-correlations are quite small.




Part (c):
 The output from the acf
 function is given in Figure 45
 . From that plot we don’t see any spikes above the two sigma standard error lines. We see very few spikes above these lines and the few that are could be due to statistical fluctuations and not real effects.



Problem 7 (predicting with VAR models)



To predict with the model that we extracted from the ar
 function we need to convert the given data into a ts
 object to pass to the predict
 function. I’ll assume that the time stamps to associate with the new data occur after the given training data set. Then since the last five samples from the end of the del_dat
 are given by


1995 Q4 -0.491  0.002322 -1.64  




1996 Q1 -0.834  0.003435  0.41  




1996 Q2 -0.438  0.003553  1.76  




1996 Q3 -0.561  0.008224 -0.82  




1996 Q4 -1.188  0.007138  0.41


Using this the new data we want to predict with can be created using the ts
 command as


df = data.frame( r, y, pi )  




newdata = ts( df, start=c(1997,1), end=c(1997,3), frequency=4 )


Here the vectors r
 , y
 , and pi
 hold the scalar (non vector) time series for each variable given in the text. If we display the resulting newdata
 variable we get


> newdata  




            r         y    pi  




1997 Q1 -1.41 -0.019420  2.31  




1997 Q2 -0.48  0.015147 -1.01  




1997 Q3  0.66  0.003303  0.31


showing that it appends conformally at the end of the training data set. We can then use the predict
 function on the output from the ar
 function and get


> predict(var1, newdata=newdata )  




$pred  




                 r           y          pi  




1997 Q4 0.03271604 0.008220368 -0.05135386


with an error messages saying that the standard error of predictions for multivariate AR models is not implemented.





Problem 8 (long term memory

 

DiffSqrtCpi


 
)


















	 
          









Figure 46: Left:
 A plot of the time series DiffSqrtCpi
 . Right:
 A plot of the autocorrelation function for the time series DiffSqrtCpi
 .



A plot of the time series and the autocorrelation function (ACF) for the suggested transformations of the Consumer Price Index (CPI) data is given in Figure 46
 . Notice that the ACF decays very slowly and its value is not strictly decreasing (there are periods where it increases as we move from left to right). This is characteristic of perhaps an AR(p) model or the need for fractional differencing (i.e. a long term memory process).



Problem 9 (fractional differencing)



Applying the code fracdiff
 to estimate the amount of fractional differencing we get d
 = 0.
 4104047 applying this amount of differencing and then plotting the ACF we get Figure 47
 . Notice that there are no significant spikes above the two sigma horizontal lines indicating that we have found a reasonable fit.





Problem 10 (ARIMA model on

 

fdiff


 
)



If we run auto.arima
 on the time series fdiff
 we see that this routine will choose to model this with an ARIMA(0,1,1) model.


> auto.arima(fdiff,max.P=0,max.Q=0,ic="aic")  




Series: fdiff  




ARIMA(0,1,1)  




 




Coefficients:  




          ma1  




      -0.9857  




s.e.   0.0093  




 




sigma^2 estimated as 0.0001029:  log likelihood=1549.4  




AIC=-3094.79   AICc=-3094.77   BIC=-3086.41


Using BIC does not give a different result. This is a bit strange since looking at the ACF of the raw time series it looks like there are no significant autocorrelations. If we look at the ACF for the first difference of the fdiff
 time series we do indeed see a very significant spike at lag one. What is strange is that forcing auto.arima
 to not consider any differences we get a result that has lower AIC and BIC metrics and should be the preferable model.


> auto.arima(fdiff,d=0,max.P=0,max.Q=0,ic="aic")  




Series: fdiff  




ARIMA(0,0,0) with zero mean  




 




sigma^2 estimated as 0.0001028:  log likelihood=1554.56  




AIC=-3107.11   AICc=-3107.1   BIC=-3102.92


This is a case of spurious differencing (more differencing than is needed). Given these results it seems prudent to model fdiff
 using the simplest model (that of no additional differencing).
















	 
        









Figure 47:
 The ACF of the fractionally differenced time series.





Problem 11 (selecting the correct ARIMA model)



Running the given code gives an ARIMA(2,1,0) model (as also stated in the text)


> auto.arima(price,ic="bic")  




Series: price  




ARIMA(2,1,0)  




 




Coefficients:  




         ar1     ar2  




      0.2825  0.0570  




s.e.  0.0407  0.0408  




 




sigma^2 estimated as 9.989:  log likelihood=-1570.11  




AIC=3146.23   AICc=3146.27   BIC=3159.47


Running the given bootstrap code in the text we find that of the 10 runs we only get an ARIMA(2,1,0) once
 . Even in that single case the estimate of ϕ

2



 is quite different than that used to generate the data (0.1759 vs. 0.0570). Thus it is safe to say that none
 of the bootstrap samples found the correct model.





Problem 12 (estimating the correct parameters)



We next want to determine how well we can estimate the given AR(2) parameters under the assumption that we know the correct model i.e. that our data is coming from an ARIMA(2,1,0) model. When we run the suggested R
 code from the book, for the biases, standard deviations, and MSE we get


                 [,1]        [,2]  




bias     0.0001361095 0.005447920  




std_devs 0.0427685740 0.044955387  




mses     0.0027049221 0.002843228


The first column has statistics of the estimate for ϕ

1



 while the second column holds statistics for the estimates of ϕ

2



 . We see that the bias in the estimate of ϕ

2



 is larger than that in the estimate of ϕ

1



 . We commented on how different the estimate of ϕ

2



 was in the single case where auto.arima
 estimated the correct model in the previous problem. Note that the standard error of the two estimate is about the same. This leads one to conclude that the estimate of ϕ

2



 (because the bias is so large) will in general not be correct.




Exercises


See the R
 script chap_10.R
 for the implementation of the exercises for this chapter.





Exercise 10.1



From the given picture is is clear that we need both
 a seasonal and a nonseasonal difference to make this data stationary. Both differences gives autocorrelations with large spikes beyond the two-sigma error lines.





Exercise 10.2



In this case the seasonal difference gives an ACF that has only a few (two) spikes beyond the horizontal two-sigma lines. In this case we could probably fit a seasonal difference of the time series with a MA(2) model.





Exercise 10.3



In this case a single nonseasonal difference gives an ACF that has only a few (two) spikes beyond the two-sigma lines. Thus we could model the first nonseasonal difference using a MA(2) model.





Exercise 10.4



A two-dimensional AR(1) model for the variables ΔCPI and ΔIP is written in the form




Using the given numbers in the book (in gory detail) our prediction of the vector at t
 + 1 becomes




The next prediction is done the same way but using the prediction we just made for the state vector. That is




If we compare this with the results from figure 10.8 in the book we see that the numbers computed here agree with the ones plotted on that graph.





Exercise 10.5


















	 
        









Figure 48:
 A plot of the income
 time series.



In the R
 code chap_10.R
 we first plot this time series. This plot can be seen in Figure 48
 . From that plot we see a steady increase in the value of income
 . Next we look at the ACF of various differences of this time series. In Figure 49
 we plot several of these (for various amounts of differencing). From that plot it looks like either a single seasonal difference or a seasonal difference combined with a single nonseasonal difference would be the two models to consider.




	If we consider the single seasonal difference it looks like the resulting time series would best be modeled with an AR(1) model or at least the ACF has a decaying that looks like it might be exponential (consistent with AR models).

	If we consider the combined seasonal and nonseasonal differencing then the resulting series would best be modeled perhaps with a MA(2) model (or no additional model beyond differencing at all).



From these plots it looks like the most parsimonious model (to me) is given by seasonal differencing followed by nonseasonal differencing. It is interesting to compare this hypothesis with what the auto.arima
 would give. One run of that function gives


> auto.arima( income, ic="aic" )  




Series: income  




ARIMA(2,1,2)(0,1,0)[4]  




 




Coefficients:  




          ar1      ar2     ma1     ma2  




      -0.1315  -0.3016  0.0743  0.9129  




s.e.   0.2091   0.1571  0.1338  0.1183  




 




sigma^2 estimated as 334423:  log likelihood=-413.54  




AIC=837.08   AICc=838.36   BIC=846.93


Which arrives at what seems like a relatively complicated model. This model is to be contrasted with the one we get when we take the ic
 option to the auto.arima
 function to the value bic
 . In that case we get


> auto.arima( income, ic="bic" )  




Series: income  




ARIMA(0,1,0)(0,1,0)[4]  




 




sigma^2 estimated as 486420:  log likelihood=-422.22  




AIC=846.43   AICc=846.51   BIC=848.4


This states that no other modeling (other than taking the differences) is needed. This result seems to have only a marginal increase in the AIC
 and BIC
 metrics but the benefit of being quite a bit simpler. It is also the model we argued for above based on the autocorrelation plots.
















	 
        









Figure 49:
 A plot of the ACF for various differences of the income
 time series. From left to right we have (in terms of the amount of differencing): none, nonseasonal, seasonal (4), a seasonal (4) and a nonseasonal difference. Notice that all of the spikes in the fourth plot are within the two sigma horizontal error bars indicating that no additional modeling (other than taking these differences) maybe needed.





Exercise 10.6




Part (a):
 For this time series each of the differenced autocorrelation function does not look uniformly “flat”. This makes modeling this time series difficult since it does not seem to fit nicely into a particular case. Rather than puzzle over the ACF functions in an attempt to figure out what model fits best we will use a data driven approach and let the auto.arima
 function in the forecast
 package give us an estimated model. Running this command on the unemp
 data gives


> auto.arima(unemp,ic="aic")  




Series: unemp  




ARIMA(1,1,0)(0,0,2)[4]  




 




Coefficients:  




         ar1     sma1     sma2  




      0.6611  -0.4199  -0.2623  




s.e.  0.0544   0.0675   0.0660  




 




sigma^2 estimated as 0.07992:  log likelihood=-32.85  




AIC=73.69   AICc=73.89   BIC=86.94


As predicted, this gives a somewhat “mixed” model in that it includes effects from several different sources (both seasonal and nonseasonal). We can verify that the residuals show no autocorrelation when using this model by calling the acf
 on the model residuals.


Part (b):
 For this part we will use the simulate.Arima
 function from the forecast
 library to generate Monte-Carlo samples of the seasonal ARIMA model we fit above. The model we found above (in R
 notation) is given by


ARIMA(1,1,0)(0,0,2)[4]


Looking at the eight bootstrap samples we see that the correct values of d
 and D
 where selected in none
 of the samples. To study this with more Monte-Carlo runs I considered 100 samples (rather than eight). In this case the results were not much better. In all 100 cases the correct model was never
 selected.





Exercise 10.7



For the problem mentioned if we look at Figure 34
  (left) we see the ACF plots for all the variables in the Tbrate
 dataframe. From that plot there seem to be a few spikes that look like they might be significant at spaced at seasonal lags. See for example the variable r
 which looks like it might have a spike downwards at around lag “two”. Most of these spikes are just on the border between significant and non-significant and as such unless there is strong compelling evidence to include seasonal effects the model is more parsimonious without them. As an example of this in a previous chapter, we forecasted the variable pi
 (the inflation rate) using a nonseasonal ARIMA (see Page §
 ) where use of auto.arima
 (restricted to nonseasonal models) gave a ARIMA(1,1,1) model with AIC = 772.
 24 and BIC = 781.
 94. Running auto.arima
 unrestricted with the two options for ic
 gives (results have been truncated for clarity)


> auto.arima( pi, ic="aic" )  




ARIMA(1,1,1)(2,0,1)[4]  




 




sigma^2 estimated as 3.432:  log likelihood=-380.97  




AIC=773.95   AICc=774.41   BIC=793.33  




 




> auto.arima( pi, ic="bic" )  




ARIMA(1,1,1)(2,0,0)[4]  




 




sigma^2 estimated as 3.438:  log likelihood=-381.13  




AIC=772.26   AICc=772.59   BIC=788.41


In this case the nonseasonal model gives smaller values for AIC and BIC and is the more parsimonious model. Thus it seems prudent to not
 include seasonal effects in modeling pi
 . One could do a similar study for the other two variables.



10 Chapter 11 (Portfolio Theory)

 





R Lab


See the R
 script Rlab.R
 for this chapter.





Problem 1



When the above R
 code is run it produces the plot given in Figure 50
 . In that figure we show the requested items. The data that went into this plot was produced by the function efficient_frontier
 . Note that to have the constraints −0.
 1 ≤ w


j




 ≤ 0.
 5 on the portfolio weights enforced in our quadratic program we need to write them in the form A

neq


 


T



 w
 ≥ b 

neq



 . To do this we write the above constraints as the two conditions w


j




 ≥−0.
 1 and −w


j




 ≥−0.
 5.
















	 
          









Figure 50:
 The efficient frontier for the requested problem.





Problem 2



We will combine the tangency portfolio with the risk free portfolio in such a way that we achieve the desired portfolio return of 0.07%. To do this we will let R


p




 be the return of the portfolio that allocates a fraction ω
 of the investment to the tangency portfolio and 1 − ω
 to the risk-free asset. Then




If we desire R


p




 = 0.
 0007 (unitless) then using the properties of the tangency portfolio (namely E
 (R


T




 ) found earlier) we find that ω
 must satisfy (in terms of percent)




This gives ω
 = 0.
 947679 to be invested in the tangency portfolio and with 1 − ω
 = 0.
 05233042 to be invested in the risk-free asset. Combining this with the stock weights found in the computation of the tangency portfolio we get the final weights of


> print( omega*result$weights[ind,] )  




[1] -0.086866909 -0.002917908  0.318313977  0.364024462  0.302827793  




[6]  0.052288168


These represent the fraction of the portfolio to buy of each asset. We would also need to buy a fraction 1 − ω
 = 0.
 05233042 of our portfolio of the risk-free asset. As an explicit example, if we have 100000 dollars to invest we will




	Short −0.
 086866909(100000) = −8686.
 6909 dollars worth of GM

	Short −0.
 002917908(100000) = −291.
 7908 dollars worth of F

	Go long 0.
 318313977(100000) = 31831.
 3977 dollars worth of CAT

	Go long 0.
 364024462(100000) = 36402.
 4462 dollars worth of UTX

	Go long 0.
 302827793(100000) = 30282.
 7793 dollars worth of MRK

	Go long 0.
 052288168(100000) = 5228.
 8168 dollars worth of IBM

	Go long 0.
 05233042(100000) = 5233.
 042 dollars worth of the risk-free asset



Summing all of the numbers on the right-hand-side of the above equations gives exactly our starting dollar value of 100000.




Exercises






Exercise 11.1



We are told the values of the parameters μ


A




 , μ


B




 , σ


A




 , σ


B




 , and ρ


AB




 .


Part (a):
 Following the book by letting ω
 be the fraction of the portfolio to invest in the A
 asset we have




If we desire to have E
 (R


P




 ) = 3 then we need to have ωμ


A




 + (1 − ω
 )μ


B




 = 3 which has a solution ω
 = 0.
 6818182 (so that 1 − ω
 = 0.
 3181818). This is the fraction of the total portfolio we invest in asset A
 and 1 − ω
 is the fraction of the total portfolio we invest in asset B
 .


Part (b):
 Since the variance of our return satisfies







	




	(27)




using the numbers given in this problem we have




As we want σ


R



 

2



 = 5.
 5 the above becomes a quadratic equation in ω
 with solutions 0.
 3066032 and 4.
 2329467. Only the first satisfies the constraint 0 < ω <
 1 and must be the desired solution. A portfolio with this weight will have a mean return given by ωμ


A




 + (1 − ω
 )μ


B




 = 3.
 825473 (percent). This second portfolio has a larger expected return compared with the one from Part (a).





Exercise 11.2



In the notation of this chapter we are told that E
 (R


T




 ) = 5, σ


T




 = 7, μ


f




 = 1.
 5, ω


C




 = 0.
 65, and ω


D




 = 0.
 35. When we combine this tangency portfolio with the risk-free one we get




Since we want σ


R




 = 5 this means that ω
 = 
 = 0.
 7142857. Thus we should invest




	
ω


C



 ω
 = 0.
 4642857 fraction of our portfolio in C


	
ω


D



 ω
 = 0.
 25 fraction of our portfolio in D


	1 − ω
 = 0.
 2857143 in the risk free asset.







Exercise 11.3




Part (a):
 The value of this portfolio is




so that the weights of A
 and B
 are







	
ω 

	= 
 = 0.  
 6617647
	
	



	1 − ω 

	= 
 = 0.
 3382353 .  

	
	





Part (b):
 We would have










Exercise 11.4 (linearity of returns)



We recall that the gross return


1



 which we will denote as R


t




 is defined as







	




	(28)




and the net return


2



 which we will denote as r


t




 is defined as







	




	(29)




This notation is consistent with that in [2
 ]. Now consider a portfolio of N
 assets and assume that we have X


i

 0



 dollars worth of each i
 = 1,
 2,…,N
 − 1,N
 . The total initial value of the investment is




and let w


i




 be the fraction of investment i
 in the initial portfolio so




Then if each asset experiences the gross return of R


i




 then the new value of the asset is




and the portfolio now has value of




Thus the portfolios gross return is given by




Showing that the portfolios gross return is a weighted sum of its components gross returns. Since the net return is the gross return minus one we have that the portfolios net return is




using ∑ 


i

 =1


 


N



 w 


i




 = 1. Showing that the portfolios net return is also a weighted sum of its components net returns. This expression is not
 true if the returns are log returns but it is a good approximation in that case.



Exercise 11.5




Part (a):
 From the resampled numbers we would compute a value of ω
 such that




or ω
 = 0.
 8333333.


Part (b):
 This would be given by




Putting in the numbers given we get σ


R


p







 

2



 = 0.
 009346762 so that σ 


R


p








 = 0.
 09667865.


Part (c):
 For the weight given in Part (a) we find that the true portfolio returns and variance is given by







	
R

 
 
p





	= 0.
 8333333μ

1



 + 0.
 1666667μ

2



 = 0.  
 0039
	
	



	
σ


R


p







 

 
 2




	= 0.
 01253379 so σ 


R


p








 = 0.
 1119544 .  

	
	




Notice that the true (realized) portfolio return is much less than the target of 0.
 005 and the true variance is larger than estimated in Part (b).





Exercise 11.6



From the numbers given in this problem the weights of the two stocks in this portfolio are given by







	
ω

 
 
A





	= 
 = 0.  
 6153846
	
	



	
ω

 
 
B





	= 
 = 0.
 3846154 .  

	
	




The covariance matrix for these two stocks is given by




The mean return of the portfolio is given by




with a variance of




Using the codes written for another chapter (namely VaR_norm
 which assumes normally distributed return and S
 = 100000) we compute the one-week VaR(0.
 05) to be 4463.779.



11 Chapter 12 (Regression: Basics)

 





R Lab


See the R
 script Rlab.R
 for this chapter. We plot a pairwise scatter plot of the variables of interest in Figure 51
 . From that plot we see that it looks like the strongest linear relationship exists between consumption and dpi
 and unemp
 . The variables cpi
 and government
 don’t seem to be as linearly related to consumption
 . There seem to be some small outliers in several variables namely: cpi
 (for large values), government
 (large values), and unemp
 (large values). There does not seem to be too much correlation between the variable in that none of the scatter plots seem to look strongly linear and thus there does not look to be collinearity problems.

If we fit a linear model on all four variables we get


Call:  




lm(formula = consumption ~ dpi + cpi + government + unemp, data = MacroDiff)  




 




Coefficients:  




              Estimate Std. Error t value Pr(>|t|)  




(Intercept)  14.752317   2.520168   5.854 1.97e-08 ***  




dpi           0.353044   0.047982   7.358 4.87e-12 ***  




cpi           0.726576   0.678754   1.070    0.286  




government   -0.002158   0.118142  -0.018    0.985  




unemp       -16.304368   3.855214  -4.229 3.58e-05 ***  




 




Residual standard error: 20.39 on 198 degrees of freedom  




Multiple R-squared: 0.3385,     Adjusted R-squared: 0.3252  




F-statistic: 25.33 on 4 and 198 DF,  p-value: < 2.2e-16


The two variables suggested to be the most important above namely dpi
 and unemp
 have the most significant regression coefficients. The anova
 command gives the following


> anova(fitLm1)  




Analysis of Variance Table  




 




Response: consumption  




            Df Sum Sq Mean Sq F value    Pr(>F)  




dpi          1  34258   34258 82.4294 < 2.2e-16 ***  




cpi          1    253     253  0.6089    0.4361  




government   1    171     171  0.4110    0.5222  




unemp        1   7434    7434 17.8859 3.582e-05 ***  




Residuals  198  82290     416


The anova
 table emphasizes the facts that when we add cpi
 and government
 to the regression of consumption
 on dpi
 we don’t reduce the regression sum of square significantly enough to make a difference in the modeling. Since two of the variables don’t look promising in the modeling of consumption
 we will consider dropping them using stepAIC
 in the MASS
 library. The stepAIC
 suggests that we should first drop government
 and then cpi
 from the regression.

Comparing the AIC for the two models gives that the reduction in AIC is 2.827648 starting with an AIC of 1807.064. This does not seem like a huge change.

The two different vif
 give


> vif(fitLm1)  




       dpi        cpi government      unemp  




  1.100321   1.005814   1.024822   1.127610  




> vif(fitLm2)  




     dpi    unemp  




1.095699 1.095699


Note that after removing the two “noise” variables the variance inflation factors of the remaining two variables decreases (as it should) since now we can determine the coefficients with more precision.
















	 
          









Figure 51:
 The pairs
 plot for the suggested variables in the USMacroG
 dataset.




Exercises






Exercise 12.1 (the distributions in regression)




Part (a):





To compute P
 (Y
 


i



 ≤ 3|X


i




 = 1) in R
 this would be pnorm( 3, mean=3.1, sd=sqrt(0.3) )
 to find 0.4275661.


Part (b):
 We can compute the density of P
 (Y
 


i



 = y
 ) as







	
P
 (Y
 


i



 = y 
 )
	= ∫ 

−∞


 

∞


 P
 (Y
 


i



 = y
 |X
 )P
 (X
 )dX  

	
	



	 
	= ∫ 

−∞


 

∞


 
 exp 
 
 dx  

	
	



	 
	= 
 exp 
  ,  

	
	




when we integrate with Mathematica. Here σ

1



 = 
 and σ

2



 = 
 . Thus this density is another normal density and we can evaluate the requested probability using the cumulative normal density function.





Exercise 12.2 (least squares is the same as maximum likelihood)



Maximum likelihood estimation would seek parameters β

0



 and β

1



 to maximize the log-likelihood of the parameters given the data. For the assumptions in this problem this becomes







	LL 
	= log 
 = ∑ log p
 (Y
 


i



 |X

  
 
i




 )
	
	



	 
	= ∑ log 
   
	
	



	 
	= a constant −
 ∑ 


i



 (y


i




 − β

0



 − β

1


 x


i




 )

2


  .  

	
	




This later summation expression is what we are minimizing when we perform least-squares minimization.





Exercise 12.4 (the VIF for centered variables)



In the R
 code chap_12.R
 we perform the requested experiment and if we denote the variable X
 −X
 as V
 we find


[1] "cor(X,X^2)= 0.974"  




[1] "cor(V,V^2)= 0.000"  




[1] "VIF for X and X^2= 9.951"  




[1] "VIF for (X-barX) and (X-barX)^2= 1.000"


Thus we get a very large reduction in the variance inflation factor when we center our variable.





Exercise 12.5 (the definitions of some terms in linear regression)



In this problem we are told that n
 = 40 and that the empirical correlation r
 (Y,Ŷ
 ) = 0.
 65. Using these facts and the definitions provided in the text we can compute the requested expressions.


Part (a):
 R

2



 = r 


Y

 
Ŷ



 

2



 = (0.
 65)

2


 = 0.
 4225


Part (b):
 From the definition of R

2



 we can write








	




	(30)




Since we know the value of R

2



 and that the total sum of squares, given by,




is 100 we can solve Equation 30
 for the residual sum of square. We find we have a residual error sum of squares given by 57.75.


Part (c):
 Since we can decompose the total sum of squares into the regression and residual sum of squares as







	




	(31)




and we know the values of the total sum of squares and the residual sum of squares we can solve for the regression sum of squares, in that




Thus regression SS = 42.
 25.


Part (d):
 We can compute s

2



 as










Exercise 12.6 (model selection with

 

R


2






 
and

 

C 



p







 
)



For this problem we are told that n
 = 66 and p
 = 5. We will compute several metrics used to select which of the models (the value of the number of predictors or p
 ) one should use in the final regression. The metrics we will consider include







	
R

 
 2




	= 1 −
   
	(32)



	Adjusted R

 
 2




	= 1 −
   
	(33)



	
C

 
 
p





	= 
 − n
 + 2(p   
 + 1) where
	(34)



	SSE(p 
 )
	= ∑ 


i

 =1


 


n



 (Y
 


i



 −Ŷ


i




 )

  
 2


 and
	
	



	
 


𝜖,M



 

 
 2



	= 
 ∑ 


i

 =1


 


M



 (Y
 


i



 −Ŷ


i




 )

2


  .  

	
	




Here 
 


𝜖,M



 

2


 is the estimated residual variance using all
 of the M
 = 5 predictors, and SSE(p
 ) is computed using values for Ŷ


i




 produced under the model with p < M
 predictors. From the numbers given we compute it to be 0.1666667. Given the above when we compute the three model selection metrics we find


> print( rbind( R2, Adjusted_R2, Cp ) )  




                  [,1]      [,2]      [,3]  




R2           0.7458333 0.7895833 0.7916667  




Adjusted_R2  0.7335349 0.7757855 0.7743056  




Cp          15.2000000 4.6000000 6.0000000


To use these metrics in model selection we would want to maximize R

2



 and the adjusted R

2



 and minimize C


p




 . Thus the R

2



 metric would select p
 = 5, the adjusted R

2



 metric would select p
 = 4, and the C


p




 metric would select p
 = 4.





Exercise 12.7 (high

 

p


 
-values)



The p
 -values reported by R
 are computed under the assumption that the other predictors are still in the model. Thus the large p
 -values indicate that given X
 is in the model X

2



 does not seem to help much and vice versa. One would need to study the model with either X
 or X

2



 as the predictors. Since X
 and X

2



 are highly correlated one might do better modeling if we subtract the mean of X
 from all samples i.e. take as predictors (X
 −X
 ) and (X
 −X
 )

2


 rather than X
 and X

2



 .





Exercise 12.8 (regression through the origin)



The least square estimator for β

1



 is obtained by finding the value of 
 

1


 such that the given RSS(β

1



 ) is minimized. Taking the derivative of the given expression for RSS(
 

1


 ) with respect to 
 

1


 and setting the resulting expression equal to zero we find




or




Solving this expression for 
 

1


 we find







	




	(35)




To study the bias introduced by this estimator of β

1



 we compute




showing that this estimator is unbiased. To study the variance of this estimator we compute




the requested expression. An estimate of 
 is given by the usual




which has n
 − 1 degrees of freedom.





Exercise 12.9 (filling in the values in an ANOVA table)



To solve this problem we will use the given information to fill in the values for the unknown values. As the total degrees of freedom is 15 the number of points (not really needed) must be one more than this or 16. Since our model has two slopes the degrees of freedom of the regression is 2. Since the degrees of freedom of the regression (2) and the error must add to the total degrees of freedom (15) the degrees of freedom of the error must be 15 − 2 = 13.

The remaining entries in this table are computed in the R
 code chap_12.R
 .





Exercise 12.10 (least squares with a

 

t


 
-distribution)



For this problem in the R
 code chap_12.R
 we generate data according to a model where y
 is linearly related to x
 with an error distribution that is t
 -distributed (rather than the classical normal distribution). Given this working code we can observe its performance and match the outputs with the outputs given in the problem statement. We find


Part (a):
 This is the second number in the mle$par
 vector or 1.042.


Part (b):
 Since the degrees-of-freedom parameter is the fourth one the standard-error of it is given by the fourth number from the output from the sqrt(diag(FishInfo))
 or 0.93492.


Part (c):
 This would be given by combining the mean and the standard error for the standard deviation estimate or







Part (d):
 Since mle$convergence
 had the value of 0 the optimization converged.



12 Chapter 13 (Regression: Troubleshooting)

 





R Lab


See the R
 script Rlab.R
 for this chapter. To make the plots more visible I had to change the y
 limits of the suggested plots. When these limits are changed we get the sequence of plots shown in Figure 52
 .
















	 
          









Figure 52:
 Several regression diagnostics plots for the CPS1988
 dataset.



The plots (in the order in which they are coded to plot) are given by




	The externally studentized residuals as a function of the fitted values which is used to look for heteroscedasticity (non constant variance).

	The absolute value
 of the externally studentized residuals as a function of the fitted values which is used to look for heteroscedasticity.

	The qqplot is used to look for error distributions that are skewed or significantly non-normal. This might suggest applying a log or square root transformation to the response Y
 to try and make the distribution of residuals more Gaussian.

	Plots of the externally studentized residuals as a function of the variable education
 which can be used to look for nonlinear regression affects in the given variable.

	Plots of the externally studentized residuals as a function of the variable experience
 which can be used to look for nonlinear regression affects in the given variable.



There are a couple of things of note from this plot. The most striking item in the plots presented is in the qqplot. The right limit of the qqplot has a large deviation from a streight line. This indicates that the residuals are not normally distributed and perhaps a transformation of the response will correct this.

We choose to apply a log transformation to the response wage
 and not
 to use ethnicity
 as a predictor (as was done in the previous part of this problem). When we plot the same diagnostic plots as earlier (under this new model) we get the plots shown in Figure 53
 . The qqplot in this case looks “more” normal (at least both tails of the residual distribution are more symmetric). The distribution of residuals still has heavy tails but certainly not as severe as they were before (without the log transformation).
















	 
          









Figure 53:
 Several regression diagnostic plots for the CPS1988
 dataset where we apply a log transformation to the response.



After looking at the plots in Figure 53
 we see that there are still non-normal residuals. We also see that it looks like there is a small nonlinear affect in the variable experience
 . We could fit a model that includes this term. We can try a model of log(wage)
 with a quadratic term. When we do that, and then reconsider the diagnostic plots presented so far we get the plots shown in Figure 54
 .
















	 
          









Figure 54:
 Several regression diagnostic plots for the CPS1988
 dataset where we apply a log transformation to the response and model with a quadratic term in experience
 (as well as a linear term).



We can then add in the variable ethnicity
 and reproduce the same plots be have been presenting previously. These plots look much like the last ones presented.


Exercises






Exercise 13.1



Some notes on the diagnostic plots are




	From Plot (a) there should be a nonlinear term in x
 added to the regression.

	From Plot (b) we have some heteroscedasticity in that it looks like we have different values of variance for small and larger values of ŷ
 .

	From Plot (c) there might be some heavy tails and or some outliers.

	From Plot (d) it looks like we have autocorrelated errors.

	From Plot (f) we might have some outliers (samples 1 and 100).







Exercise 13.2



Most of these plots seem to emphasis an outlier (the sample with index 58). This sample should be investigated and most likely removed.





Exercise 13.3



Some notes on the diagnostic plots are




	From Plot (a) there should be a nonlinear term in x
 added to the regression.

	From Plot (b) we don’t have much heteroscedasticity i.e. the residual variance looks uniform.

	From Plot (d) it looks like we have autocorrelated residual errors.







Exercise 13.4



Some notes on the diagnostic plots are




	From Plot (a) there is perhaps a small nonlinear term in x
 that could be added to the regression.

	From Plot (c) we see that the distribution of the residuals have very large tails. Thus we might want to consider taking a logarithmic or a square root transformation of the response Y
 .

	From Plot (f) it looks like there are two samples (89 and 95) that could be outliers.





13 Chapter 14 (Regression: Advanced Topics)

 





Notes on the Text






The maximum likelihood estimation of

 

σ


2








To evaluate what σ
 is once β
 has been computed, we take the derivative of L

GAUSS



 with respect to σ
 , set the result equal to zero, and then solve for the value of σ
 . For the first derivative of L

GAUSS



 we have




Setting this expression equal to zero (and multiply by σ
 ) we get




Solving for σ
 then gives











Notes on the best linear prediction



If we desire to estimate Y
 with the linear combination β

0



 + β

1


 X
 then to compute β

0



 and β

1



 we seek to minimize E
 ((Y
 − (β
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 X
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 ). This can be expanded to produce a polynomial in these two variables as
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(37)





Take the β

0



 and β

1



 derivatives of this result, and then setting them equal to zero gives




	0 
	= −2E
 (Y
 ) + 2β

0



 + 2β

1


 E
 (X  
 )
	(38)



	0 
	= −2E
 (XY
 ) + 2β

0


 E
 (X
 ) + 2β
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 E
 (X
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 ) ,  

	(39)




as the two equations we must solve for β

0



 and β

1



 to evaluate the minimum of our expectation. Writing the above system in matrix notation gives




Using Cramer’s rule we find
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Thus we see that



	




	(40)




From Equation 38
 we have







	




	(41)




These are the equations presented in the text.





Notes on the error of the best linear prediction



Once we have specified β

0



 and β

1



 we can evaluate the expected error in using these values for our parameters. With Ŷ
 = 
 

0


 + 
 

1


 X
 and the expressions we computed for β

0



 and β

1



 when we use Equation 37
 we have
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Since σ


XY




 = σ


X



 σ


Y



 ρ


XY




 we can write the above as



	




	(42)




which is the equation presented in the book. Next we evaluate the expectation of (Y
 − c
 )

2


 for a constant c
 . We find
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since this last term is a constant (independent of the random variable Y
 ).




R Lab


See the R
 script Rlab.R
 for this chapter where these problems are worked.





Regression with ARMA Noise



When the above R
 code is run it computes the two requested AIC values


[1] "AIC(arima fit)=     86.852; AIC(lm fit)=    138.882"


and also generates Figure 52
 . Note that both of these diagnostics indicate that the model that considers autocorrelation of residuals is the preferred model i.e. this would mean the model computed using the R
 command arima
 .















	 
          









Figure 55: Left:
 Autocorrelation function for the residuals for the arima
 fit of the MacroDiff
 dataset. Right:
 Autocorrelation function for the residuals for the lm
 fit of the MacroDiff
 dataset. Note the significant autocorrelation present at lag one.



I was not exactly sure how to compute the BIC directly but since it is related to the AIC (which the output of the arima
 command gives us) I will compute it using




Using this we find


[1] "BIC(arima fit)=     96.792; BIC(lm fit)=    145.509"


which again specifies that the first model is better. We can fit several ARIMA models and compare the BIC of each. When we do that we find


[1] "BIC(arima(2,0,0))=     99.532; BIC(arima(1,0,1))=    100.451; "


Thus we see that according to the BIC criterion the ARIMA(1,0,0) model is still the best.



Nonlinear Regression



The R
 command help(Irates)
 tells us that the r1
 column from the Irates
 dataframe is a ts
 object of interest rates sampled each month from Dec 1946 until Feb 1991 from the United-States. These rates are expressed as a percentage per year.

When the above R
 code is run we get the plots shown in Figure 56
 . These plots are used in building the models for μ
 (t,r
 ) and σ
 (t,r
 ). From the plot labeled (d) we see that Δr


t




 seems (on average) to be relatively constant at least for small values of r


t

 −1



 i.e. less than 10. For values greater than that we have fewer samples and it is harder to say if a constant would be the best fitting function. From the plot labeled (b) it looks like there are times when Δr


t




 is larger than others (namely around 1980s). This would perhaps argue for a time dependent μ
 function. There does not seem to be a strong trend.
















	 
          









Figure 56:
 The plots for estimating the short rate models.



From the summary
 command we see that a
 and 𝜃
 are estimated as


> summary( nlmod_CKLS )  




 




Formula: delta_r1 ~ a * (theta - lag_r1)  




 




Parameters:  




      Estimate Std. Error t value Pr(>|t|)  




theta  5.32754    1.33971   3.977 7.96e-05 ***  




a      0.01984    0.00822   2.414   0.0161 *






Response Transformations



The boxcox
 function returns x
 which is a list of the values of α
 tried and y
 the value of the loglikelihood for each of these values of α
 . We want to pick a value of α
 that maximizes the loglikelihood. Finding the maximum of the loglikelihood we see that it is achieved at a value of α
 = 0.
 1414141. The new model with Y
 transformed using the box-cox transform has a much smaller value of the AIC


[1] "AIC(fit1)= 12094.187991, AIC(fit3)= 1583.144759"


This is a significant reduction in AIC. Plots of the residuals of the box-cox model as a function of the fitted values indicate that there is not a problem of heteroscedasticity. The residuals of this box-cox fit appear to be autocorrelated but since this is not time series data this behavior is probably spurious (not likely to repeat out of sample).





Who Owns an Air Conditioner?



Computing a linear model using all
 of the variables gives that several of the coefficients are not estimated well (given the others in the model). We find


> summary(fit1)  




 




Call:  




glm(formula = aircon ~ ., family = "binomial", data = HousePrices)  




 




Deviance Residuals:  




    Min       1Q   Median       3Q      Max  




-2.9183  -0.7235  -0.5104   0.6578   3.2650  




 




Coefficients:  




                Estimate Std. Error z value Pr(>|z|)  




(Intercept)   -3.576e+00  5.967e-01  -5.992 2.07e-09 ***  




price          5.450e-05  8.011e-06   6.803 1.02e-11 ***  




lotsize       -4.482e-05  6.232e-05  -0.719 0.472060  




bedrooms      -6.732e-02  1.746e-01  -0.385 0.699887  




bathrooms     -5.587e-01  2.705e-01  -2.065 0.038907 *  




stories        3.155e-01  1.540e-01   2.048 0.040520 *  




drivewayyes   -4.089e-01  3.550e-01  -1.152 0.249366  




recreationyes  1.052e-01  2.967e-01   0.355 0.722905  




fullbaseyes    1.777e-02  2.608e-01   0.068 0.945675  




gasheatyes    -3.929e+00  1.121e+00  -3.506 0.000454 ***  




garage         6.893e-02  1.374e-01   0.502 0.615841  




preferyes     -3.294e-01  2.743e-01  -1.201 0.229886


We can use the stepAIC
 in the MASS
 library to sequentially remove predictors. The final step from the stepAIC
 command gives


Step:  AIC=539.36  




aircon ~ price + bathrooms + stories + gasheat  




 




            Df Deviance    AIC  




<none>           529.36 539.36  




- bathrooms  1   532.87 540.87  




- stories    1   535.46 543.46  




- gasheat    1   554.74 562.74  




- price      1   615.25 623.25


The summary
 command on the resulting linear model gives


> summary(fit2)  




 




Call:  




glm(formula = aircon ~ price + bathrooms + stories + gasheat,  




    family = "binomial", data = HousePrices)  




 




Deviance Residuals:  




    Min       1Q   Median       3Q      Max  




-2.8433  -0.7278  -0.5121   0.6876   3.0753  




 




Coefficients:  




              Estimate Std. Error z value Pr(>|z|)  




(Intercept) -4.045e+00  4.050e-01  -9.987  < 2e-16 ***  




price        4.782e-05  6.008e-06   7.959 1.73e-15 ***  




bathrooms   -4.723e-01  2.576e-01  -1.833 0.066786 .  




stories      3.224e-01  1.317e-01   2.449 0.014334 *  




gasheatyes  -3.657e+00  1.082e+00  -3.378 0.000729 ***


Looking at the signs of the coefficients estimated we first see that as price
 and stories
 increases the probability of air conditioning increases which seams reasonable. From the same table, increasing
 bathrooms
 and gasheatyes
 should decrease
 the probability that we have air conditioning. One would not expect that having more bathrooms should decrease our probability of air conditioning. The same might be said for the gasheatyes
 predictor. The difference in AIC between the model suggested and the one when we remove the predictor bathrooms
 is not very large indicating that removing it does not give a very different model. As the sample we are told to look at seems to be the same as the first element in the training set we can just extract that sample and use the predict
 function to evaluate the given model. When we do this (using the first model) we get 0.1191283.




Exercises






Exercise 14.1 (computing

 

β


0






 
and

 

β


1






 
)



See the notes on Page §
 .





Exercise 14.2 (hedging)



The combined portfolio is




Lets now consider how this portfolio changes as the yield curve changes. From the book we would have that the change in the total portfolio is given by




We are told that we have modeled Δy

20



 as




When we put this expression for Δy

20



 into the above (and then group by Δy

10



 and Δy

30



 ) we can write the above as




We will then take F

10



 and F

30



 to be the values that would make the coefficients of Δy

10



 and Δy

30



 both zero. These would be
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Exercise 14.3 (fitting a yield curve)



We are given the short rate r
 (t
 ; 𝜃
 ), which we need to integrate to get the yield y


t




 (𝜃
 ). For the Nelson-Siegel model for r
 (t
 ; 𝜃
 ) this integration is presented in the book on page 383. Then given the yield the price is given by




I found it hard to fit the model “all at once”. In order to fit the model I had to estimate each parameter 𝜃


i




 in a sequential fashion. See the R
 code chap_14.R
 for the fitting procedure used. When that code is run we get estimate of the four 𝜃
 parameters given by


     theta0      theta1      theta2      theta3  




0.009863576 0.049477242 0.002103376 0.056459908


When we reconstruct the yield curve with these numbers we get the plot shown in Figure 57
 .
















	 
          









Figure 57:
 The model (in red) and the discrete bond prices (in black) for Exercise 14.3.





14 Chapter 15 (Cointegration)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1



The values of the test statistic output from the ca.jo
 command is given by


          test 10pct  5pct 1pct  




r <= 9 |  0.60   6.5  8.18 11.7  




r <= 8 |  6.31  12.9 14.90 19.2  




r <= 7 |  9.20  18.9 21.07 25.8  




r <= 6 | 11.79  24.8 27.14 32.1  




r <= 5 | 15.32  30.8 33.32 38.8  




r <= 4 | 19.89  36.2 39.43 44.6  




r <= 3 | 21.65  42.1 44.91 51.3  




r <= 2 | 22.98  48.4 51.07 57.1  




r <= 1 | 35.62  54.0 57.00 63.4  




r = 0  | 58.39  59.0 62.42 68.6


To read the output from this command we start at the top and can reject a hypothesis r
 ≤ d
 if the value in the “test” column is larger than the various confidence given in the 10%, 5%, and 1% columns. For this example none
 of the values in the “test” column is larger than the other values in the same row. Thus we can not reject the hypothesis that r
 ≤ d
 for each of the d
 ’s given. We are forced to conclude that r
 = 0 or that there are no
 cointegration vectors.





Problem 2



The maturities for the bonds considered is stored in the mk.maturity
 dataframe. Looking at the maturities of the bonds we are considering (in months) for cointegration we find


> mk.maturity[2:11,] * 12  




 [1]  2  3  4  5  6  7  8  9 10 11


Thus these are short-term maturities.





Problem 3



The values of the test statistic output from the ca.jo
 command on this data is given by


          test 10pct  5pct 1pct  




r <= 9 |  1.43   6.5  8.18 11.7  




r <= 8 |  8.03  12.9 14.90 19.2  




r <= 7 | 18.48  18.9 21.07 25.8  




r <= 6 | 27.87  24.8 27.14 32.1  




r <= 5 | 36.12  30.8 33.32 38.8  




r <= 4 | 40.96  36.2 39.43 44.6  




r <= 3 | 51.87  42.1 44.91 51.3  




r <= 2 | 59.25  48.4 51.07 57.1  




r <= 1 | 70.71  54.0 57.00 63.4  




r = 0  | 90.57  59.0 62.42 68.6


Looking at the 1% level we can reject r
 ≤ 3 (since 51.
 87 >
 51.
 3) but not r
 ≤ 4 (since 40.
 96 ⁄>
 44.
 6). Thus we must conclude that r
 = 4. Thus we have four cointegration relationships.





Problem 4-7



Using the simulation written in Rlab.R
 we find that the expected profit is 13238, the probability that we have to liquidate for a loss is given by 0.0966, the expected waiting time is 44.1267 days, and the expected yearly return is 5.267559.




Exercises






Exercise 15.1



Now Eq. 15.4 from the book is given by








	




	(44)




When we use the definition of the forward difference Δ we get that the left-hand-side of the above is equal to




When we move Y
 

1
 
,t

 −1


 − λY
 

2
 
,t

 −1


 in the above to the right-hand-side of Equation 44
 we have the equation




which shows that Y
 

1
 
,t

 −1


 − λY
 

2
 
,t

 −1


 is an AR(1) process with a coefficient 1 + ϕ

1



 − λϕ

2



 .





Exercise 15.2



Now Eq. 15.2 from the book is given by







	




	(45)




and Eq. 15.3 from the book is given by







	




	(46)




If we add constants to them we get the equations







	ΔY
 

 
 1
 
,t




	= ϕ

1



 (Y
 

1
 
,t

 −1


 − λY
 

2
 
,t

 −1


 ) + μ

1



 + 𝜖

  
 1
 
,t





	
	



	ΔY
 

 
 2
 
,t




	= ϕ

2



 (Y
 

1
 
,t

 −1


 − λY
 

2
 
,t

 −1


 ) + μ

2



 + 𝜖

2
 
,t




  .  

	
	




From these we find that Δ(Y
 

1
 
,t



 − λY
 

2
 
,t



 ) is given by




or that Y
 

1
 
,t



 − λY
 

2
 
,t



 is given by




This is an AR(1) model for Y
 

1
 
,t



 − λY
 

2
 
,t



 but it is not yet written in the “standard form” for an AR(1) models (with a mean m
 ) which takes the form




To find the mean of the AR(1) process for Y
 

1
 
,t



 −λY
 

2
 
,t



 using the second equation for Z


t




 above we see that the m
 mean must satisfy




The solution for m
 is given by




The point of this is that the process Y
 

1
 
,t



 − λY
 

2
 
,t



 now has a nonzero mean m
 (assuming the numerator is nonzero).





Exercise 15.3



In Example 15.2 we were told to take ϕ

1



 = 0.
 5, ϕ

2



 = 0.
 55 and λ
 = 1. From Exercise 1 above we know that Y
 

1
 
,t



 − λY
 

2
 
,t



 is an AR(1) process with a parameter that has a magnitude of




Since this is less than one we have that Y
 

1
 
,t



 − λY
 

2
 
,t



 is stationary.





Exercise 15.4



Eq. 15.2 and 15.3 together are the vector model




When we write this as a VAR(1) model for 
 we get




To have the vector AR process for Y
 be stationary means that the coefficient matrix Φ above has all eigenvalues less than one in magnitude. For the numbers we were to use for this problem ϕ

1



 = 0.
 5, ϕ

2



 = 0.
 55 and λ
 = 1 the coefficient matrix Φ is given by




This matrix has eigenvalues given by 1 and 0.
 95. Since on of the eigenvalues has a magnitude of one this process is not technically stationary.



15 Chapter 16 (The Capital Asset Pricing Model)

 





R Lab


See the R
 script Rlab.R
 where the Rlab
 problem from this chapter are worked.





Problem 1



We can look at the summary
 command output for each regression to see if any of the P-values for the constant (in R
 this is denoted as the Intercept
 coefficient) of the simple linear regression is sufficiently small. At an intuitive level a very small P-value indicates that a nonzero result is likely to “actually” be nonzero. Scanning the results we find that the smallest
 P-value of the Intercept terms is for F_AC
 and is the value 0.14. Typical values (for a significant result) need to be at least below 0.05. Thus we can conclude that none of the α
 terms are nonzero.





Problem 2



Eq. 16.19 from the book is given by







	




	(47)




Thus the expected excess return of the j
 th stock is given in terms of the expected excess return of the market by




I took this problem to mean that we will compute the expected excess return of the j
 stock to be equal to the product of the estimate of β


j




 (computed earlier) and the excess return of the market (see the previous equation). When we do this we get the following


> mean(market) * betas  




 GM_AC   F_AC UTX_AC CAT_AC MRK_AC PFE_AC IBM_AC  




0.0233 0.0240 0.0190 0.0274 0.0146 0.0184 0.0159


These estimates are to be compared against just computing the values for R


j,t




 − μ


f,t




 and then taking the average of these points. Computing the average in this way gives


> apply( stockExRet, 2, mean )  




  GM_AC    F_AC  UTX_AC  CAT_AC  MRK_AC  PFE_AC  IBM_AC  




-0.0452 -0.0736  0.0485  0.0842  0.0071 -0.0218 -0.0163


These results are very different from each other.





Problem 3



Using the cor
 command we get these to be


> cor(res)  




          GM_AC     F_AC   UTX_AC  CAT_AC  MRK_AC  PFE_AC   IBM_AC  




GM_AC   1.00000  0.50911  0.03967  0.0202 -0.0472 -0.0188  0.00785  




F_AC    0.50911  1.00000 -0.00714  0.0289  0.0128  0.0114  0.03575  




UTX_AC  0.03967 -0.00714  1.00000  0.1498 -0.0154 -0.1110 -0.06949  




CAT_AC  0.02023  0.02895  0.14977  1.0000 -0.0757 -0.0650 -0.08342  




MRK_AC -0.04715  0.01279 -0.01540 -0.0757  1.0000  0.2833 -0.07817  




PFE_AC -0.01877  0.01142 -0.11103 -0.0650  0.2833  1.0000 -0.04606  




IBM_AC  0.00785  0.03575 -0.06949 -0.0834 -0.0782 -0.0461  1.00000


From the above correlation matrix it looks like some of the tickers have larger correlations with certain other tickers. Some examples are F and GM (both automobile companies) and MRK and PFE (both pharmaceutical companies). The companies UTX and CAT are both in the “industrial goods” sector and have a relatively large correlation also.





Problem 4



Once we have estimated β


j




 and σ


𝜖


j








 for each security then Eq. 16.19 implies that the covariance matrix for the returns between securities has




for its diagonal elements and




for its off diagonal elements. Computing these elements from the given data we get


> as.matrix(betas) %*% t(as.matrix(betas)) * sigma2_M + diag( sigmas2 )  




       GM_AC  F_AC UTX_AC CAT_AC MRK_AC PFE_AC IBM_AC  




GM_AC  5.519 0.686  0.541  0.781  0.416  0.526  0.455  




F_AC   0.686 3.677  0.557  0.804  0.428  0.542  0.468  




UTX_AC 0.541 0.557  1.231  0.634  0.338  0.427  0.370  




CAT_AC 0.781 0.804  0.634  2.443  0.487  0.617  0.534  




MRK_AC 0.416 0.428  0.338  0.487  3.334  0.328  0.284  




PFE_AC 0.526 0.542  0.427  0.617  0.328  2.007  0.359  




IBM_AC 0.455 0.468  0.370  0.534  0.284  0.359  0.994


This is to be compared with just computing the covariance matrix directly from the excess returns which gives


> cov(stockExRet)  




       GM_AC  F_AC UTX_AC CAT_AC MRK_AC PFE_AC IBM_AC  




GM_AC  5.512 2.616  0.619  0.836  0.234  0.474  0.469  




F_AC   2.616 3.673  0.546  0.866  0.466  0.566  0.519  




UTX_AC 0.619 0.546  1.230  0.799  0.314  0.303  0.319  




CAT_AC 0.836 0.866  0.799  2.441  0.323  0.516  0.448  




MRK_AC 0.234 0.466  0.314  0.323  3.329  0.954  0.171  




PFE_AC 0.474 0.566  0.303  0.516  0.954  2.004  0.311  




IBM_AC 0.469 0.519  0.319  0.448  0.171  0.311  0.992


These two results are quite similar.





Problem 5



This is the R

2



 of the CAPM regression performed on the UTX symbol. From the R
 code for this problem we find a summary of this regression given by


> summary_fit_reg[3]  




Response UTX_AC :  




 




Call:  




lm(formula = UTX_AC ~ market)  




 




Coefficients:  




            Estimate Std. Error t value Pr(>|t|)  




(Intercept)   0.0296     0.0343    0.86     0.39  




market        0.9766     0.0506   19.31   <2e-16 ***  




 




Residual standard error: 0.89 on 670 degrees of freedom  




Multiple R-squared:  0.357,     Adjusted R-squared:  0.356  




F-statistic:  373 on 1 and 670 DF,  p-value: <2e-16


Thus we have an R

2



 of 0.357 indicating 35.7% of the variance in the returns of UTX explained by the variance in the market.





Problem 6



The expected excess return from each stock will be given by its beta times the expected excess return of the market. Thus we would get


> betas * ex_ret_M_predicted  




 GM_AC   F_AC UTX_AC CAT_AC MRK_AC PFE_AC IBM_AC  




0.0481 0.0495 0.0391 0.0564 0.0300 0.0380 0.0328


For the excess return for our stocks.




Exercises






Exercise 16.1



Using the expression




by taking expectations we get




Solving for β
 we get










Exercise 16.2



We are told that μ


f




 = 0.
 03 and E
 [R


M




 ] = 0.
 14 with σ


M




 = 0.
 12


Part (a):
 If we want E
 [R


P




 ] = 0.
 11 then following CAPM we would compute




We would then invest w
 percent of our dollars (capital) in a fund that tracks the market and invest 1 − w
 = 0.
 2727273 percent of our capital in risk-free treasury bills.


Part (b):
 The Capital Market Line (CML) states that the returns and risk must be related as




so solving for σ


P




 we get




Note that σ


P




 < σ


M




 as it must be.





Exercise 16.3




Part (a):
 If σ


M




 = 0.
 12 then the CML gives





Part (b):
 We have σ


A,M




 = 0.
 004 so







Part (c):
 For this part we are told that







	
β

 
 
B





	= 1.  
 5
	
	



	
β

 
 
C





	= 1.  
 8
	
	



	
σ


𝜖



 

 
 
B





	= 0.  
 08
	
	



	
σ


𝜖



 

 
 
C





	= 0.
 1 .  

	
	





Part (i):
 With our portfolio of stocks B
 and C
 our return will be




thus the expected return is given by




But in terms of the market portfolio we have μ


B




 = μ


f




 + β


B




 (μ


M




 −μ


f




 ) and similarly for μ


C




 . Using what we know we get μ


B




 = 0.
 1385 and μ


C




 = 0.
 1616 so that E
 [R


P




 ] = 0.
 15005.


Part (ii):
 For this we have




thus σ


P




 = 0.
 06403124.






Exercise 16.4



Equation 7.8 from the book is








	




	(48)




To use this to derive the books equation 16.15 we let w

1



 be a vector of all zeros but with a single one at the j
 th location (denoted by the vector e


j




 ) and let w

2



 have elements given by w


i,M




 i.e. the vector of weights (denoted by the vector w
 ). Then if we define




we see that this is equal to




with R
 a random vector of returns. Then using Equation 48
 to evaluate it since




we get




as we should. Note that we used the symmetry of Cov(R
 ) as σ


j,i




 = σ


i,j




 in the above.





Exercise 16.5



This is True. In order to get a larger return rate for μ


P




 the risk σ


P




 must increase to keep




constant.





Exercise 16.6




Part (a):
 The value for beta for stock A is given by





Part (b):
 For this we have





Part (c):
 For this we would have




The market risk variance is β


A



 

2


 σ 


M



 

2



 = 0.
 0225 so the fraction of the variance of A due to the market is





Warning:
 Something must be wrong with this since the above fraction is larger than one. If anyone sees anything wrong with what I have done please contact me.





Exercise 16.7




Part (a):
 This would be given by





Part (b):
 This would be given by





Part (c):
 This would be










Exercise 16.8 (two risky assets)




Part (a):
 This would be given by





Part (b):
 This would be given by







	
σ

 
 
P





	= 
   
	
	



	 
	= 
 = 0.
 1144727 .  

	
	








Exercise 16.9



For this we will use




Putting in the numbers given in the problem we have










Exercise 16.10




Part (a):
 We will want to allocate




percent of our investment dollars in the market and then allocate 1 − w
 = 0.
 4285714 percent of our investment dollars in the risk-free asset.


Part (b):
 The risk standard deviation of the portfolio in the above must be on the Capital Market Line (CML) or must satisfy




Solving for σ


P




 we get 0.06857143.





Exercise 16.11



This problem is just like Problem 7 above but with different numbers.


Part (a):
 This would be given by





Part (b):
 This would be given by





Part (c):
 This would be








16 Chapter 17 (Factor Models and Principal Components)

 





Notes on the Book







Notes on Estimating Expectations and Covariances using Factors



Given the expression for R


j,t




 we can evaluate the covariance between two difference asset returns as follows
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which is the same as the books equation 17.6.




R Lab


See the R
 script Rlab.R
 for this chapter. We first duplicate the bar plot of the eigenvalues and eigenvectors of the covariance matrix of the dataframe yielddat
 . These are shown in Figure 58
 .
















	 
      
	 
      









Figure 58: Left:
 The distribution of the eigenvalues of the yield data. Right:
 Plots of the first four eigenvectors of the yield data.





Problem 1-2 (for fixed maturity are the yields stationary?)



See Figure 59
 for a plot of the first four columns of the yield data (the first four maturities). These plots do not look stationary. This is especially true for index values from 1000 to 1400 where all yield curves seem to trend upwards.
















	 
            









Figure 59:
 Plots time series of the first four yield maturities.



As suggested in the book we can also use the augmented Dickey-Fuller test to test for stationarity. When we do this for each possible maturity we get


[1] "column index=  1; p_value=   0.924927"  




[1] "column index=  2; p_value=   0.543508"  




[1] "column index=  3; p_value=   0.410602"  




[1] "column index=  4; p_value=   0.382128"  




[1] "column index=  5; p_value=   0.382183"  




[1] "column index=  6; p_value=   0.386320"  




[1] "column index=  7; p_value=   0.391729"  




[1] "column index=  8; p_value=   0.437045"  




[1] "column index=  9; p_value=   0.461692"  




[1] "column index= 10; p_value=   0.460651"  




[1] "column index= 11; p_value=   0.486028"


As all of these p values are “large” (none of them are less than 0.05) we can conclude that the raw yield curve data is not
 stationary.



Problem 3 (for fixed maturity are the

 

difference


 
in yields stationary?)



See Figure 60
 for a plot of the first difference of each of the four columns of the yield data (the first difference of the first four maturities). These plots now do
 look stationary.
















	 
            









Figure 60:
 Plots the time series of the first difference of the first four interest rate yield maturities.



Using the augmented Dickey-Fuller test we can show that the time series of yield differences are stationarity. Using the same code as before we get


[1] "column index=  1; p_value=   0.010000"  




[1] "column index=  2; p_value=   0.010000"  




[1] "column index=  3; p_value=   0.010000"  




[1] "column index=  4; p_value=   0.010000"  




[1] "column index=  5; p_value=   0.010000"  




[1] "column index=  6; p_value=   0.010000"  




[1] "column index=  7; p_value=   0.010000"  




[1] "column index=  8; p_value=   0.010000"  




[1] "column index=  9; p_value=   0.010000"  




[1] "column index= 10; p_value=   0.010000"  




[1] "column index= 11; p_value=   0.010000"  




There were 11 warnings (use warnings() to see them)


As all of these p values are “small” (they are all less than 0.01) we can conclude that the first differences of a yield at a fixed maturity is
 stationary. The warnings indicates that the adf.test
 command could not actually compute the correct p
 -value and that the true p
 -values are actually smaller than the ones printed above.



Problem 4 (PCA on differences between the yield curves)




Part (a):
 The variable sdev
 holds the standard deviations of each principal components, these are also the square root of the eigenvalues of the covariance matrix. The variable loadings
 hold the eigenvectors of the covariance matrix. The variable center
 hold the means that were subtracted in each feature dimension in computing the covariance matrix. The variable scores
 holds a matrix of each vector variable projected into all its principle components. We can check that this is so by comparing the two outputs


t(as.matrix(pca_del$loadings[,])) %*% t( delta_yield[1,] - pca_del$center )  




                    2  




Comp.1   0.1905643953  




Comp.2   0.0375662026  




Comp.3   0.0438591813  




Comp.4  -0.0179855611  




Comp.5   0.0002473111  




Comp.6   0.0002924385  




Comp.7   0.0101975886  




Comp.8  -0.0093768514  




Comp.9  -0.0036798653  




Comp.10  0.0004287954  




Comp.11 -0.0005602180


with


pca_del$scores[1,]  




       Comp.1        Comp.2        Comp.3        Comp.4        Comp.5  




 0.1905643953  0.0375662026  0.0438591813 -0.0179855611  0.0002473111  




       Comp.6        Comp.7        Comp.8        Comp.9       Comp.10  




 0.0002924385  0.0101975886 -0.0093768514 -0.0036798653  0.0004287954  




      Comp.11  




-0.0005602180


These two outputs are exactly the same (as they should be).


Part (b):
 Squaring the first two values of the sdev
 output we get


> pca_del$sdev[1:2]^2  




     Comp.1      Comp.2  




0.031287874 0.002844532





Part (c):
 The eigenvector corresponding to the largest eigenvalue is the first one and has values given by


> pca_del$loadings[,1]  




      X1mon       X2mon       X3mon       X4mon       X5mon     X5.5mon  




-0.06464327 -0.21518811 -0.29722014 -0.32199492 -0.33497517 -0.33411403  




    X6.5mon     X7.5mon     X8.5mon     X9.5mon         NA.  




-0.33220277 -0.33383143 -0.32985565 -0.32056039 -0.31668346





Part (d):
 Using the output from the summary(pca_del)
 which in a truncated form is given by


Importance of components:  




                          Comp.1     Comp.2     Comp.3      Comp.4      Comp.5  




Standard deviation     0.1768838 0.05333415 0.03200475 0.014442572 0.011029556  




Proportion of Variance 0.8762330 0.07966257 0.02868616 0.005841611 0.003406902  




Cumulative Proportion  0.8762330 0.95589559 0.98458175 0.990423362 0.993830264


we see from the Cumulative Proportion
 row above that to obtain 95% of the variance we must have at least 2 components. Taking three components gives more than 98% of the variance.





Problem 5 (zero intercepts in CAPM?)



The output of the lm
 gives the fitted coefficients and their standard errors, capturing the partial output of the summary
 command we get the following


Response GM :  




                 Estimate Std. Error t value Pr(>|t|)  




(Intercept)    -0.0103747  0.0008924 -11.626   <2e-16 ***  




FF_data$Mkt.RF  0.0124748  0.0013140   9.494   <2e-16 ***  




 




Response Ford :  




                 Estimate Std. Error t value Pr(>|t|)  




(Intercept)    -0.0099192  0.0007054  -14.06   <2e-16 ***  




FF_data$Mkt.RF  0.0131701  0.0010386   12.68   <2e-16 ***  




 




Response UTX :  




                 Estimate Std. Error t value Pr(>|t|)  




(Intercept)    -0.0080626  0.0004199  -19.20   <2e-16 ***  




FF_data$Mkt.RF  0.0091681  0.0006183   14.83   <2e-16 ***  




 




Response Merck :  




                 Estimate Std. Error t value Pr(>|t|)  




(Intercept)    -0.0089728  0.0009305  -9.643  < 2e-16 ***  




FF_data$Mkt.RF  0.0062294  0.0013702   4.546 6.85e-06 ***


Notice that the p
 -value of all intercepts are smaller than the given value of α
 i.e. 5%. Thus we cannot
 accept the hypothesis that the coefficient β

0



 is zero.





Problem 6



We can use the cor
 command to compute the correlation of the residuals of each of the CAPM models which gives


> cor( fit1$residuals )  




               GM       Ford        UTX       Merck  




GM     1.00000000 0.55410840 0.09020925 -0.04331890  




Ford   0.55410840 1.00000000 0.09110409  0.03647845  




UTX    0.09020925 0.09110409 1.00000000  0.05171316  




Merck -0.04331890 0.03647845 0.05171316  1.00000000


The correlation between GM and Ford is quite large. To get confidence intervals for each correlation coefficient we will use the command cor.test
 to compute the 95% confidence intervals. We find


[1] "Correlation between  Ford and    GM; (  0.490439,   0.554108,   0.611894)"  




[1] "Correlation between   UTX and    GM; (  0.002803,   0.090209,   0.176248)"  




[1] "Correlation between   UTX and  Ford; (  0.003705,   0.091104,   0.177122)"  




[1] "Correlation between Merck and    GM; ( -0.130254,  -0.043319,   0.044277)"  




[1] "Correlation between Merck and  Ford; ( -0.051113,   0.036478,   0.123513)"  




[1] "Correlation between Merck and   UTX; ( -0.035878,   0.051713,   0.138515)"


From the above output only the correlations between Merck and GM, Ford, and UTX seem to be zero. The others don’t seem to be zero.





Problem 7 (comparing covariances)



The sample covariance or Σ


R



 can be given by using the cov
 command. Using the factor returns the covariance matrix Σ


R



 can be written as








	




	(49)




where β
 is the row
 vector of each stocks CAPM beta value. In the R
 code Rlab.R
 we compute both Σ


R



 and the right-hand-side of Equation 49
 (which we denote as 
 ). If we plot these two matrices sequentially we get the following


> Sigma_R  




                GM         Ford          UTX        Merck  




GM    4.705901e-04 2.504410e-04 6.966363e-05 1.781501e-05  




Ford  2.504410e-04 3.291703e-04 6.918793e-05 4.982034e-05  




UTX   6.966363e-05 6.918793e-05 1.270578e-04 3.645322e-05  




Merck 1.781501e-05 4.982034e-05 3.645322e-05 4.515822e-04  




> Sigma_R_hat  




                GM         Ford          UTX        Merck  




GM    4.705901e-04 7.575403e-05 5.273459e-05 3.583123e-05  




Ford  7.575403e-05 3.291703e-04 5.567370e-05 3.782825e-05  




UTX   5.273459e-05 5.567370e-05 1.270578e-04 2.633334e-05  




Merck 3.583123e-05 3.782825e-05 2.633334e-05 4.515822e-04


The errors between these two matrices are primarily in the off diagonal elements. We expect the pairs that have their residual correlation non-zero to have the largest discrepancy. If we consider the absolute value of the difference of these two matrices we get


> abs( Sigma_R - Sigma_R_hat )  




                GM         Ford          UTX        Merck  




GM    1.084202e-19 1.746870e-04 1.692904e-05 1.801622e-05  




Ford  1.746870e-04 2.168404e-19 1.351424e-05 1.199209e-05  




UTX   1.692904e-05 1.351424e-05 1.084202e-19 1.011988e-05  




Merck 1.801622e-05 1.199209e-05 1.011988e-05 0.000000e+00


The largest difference is between GM and Ford which are also the two stocks that had the largest residual correlations under the CAPM model.





Problem 8 (the beta of

 

SMB


 
and

 

HML


 
)



If we look at the p
 -values of the fitted model on each stock we are getting results like the following


> sfit2$’Response GM’$coefficients  




                   Estimate  Std. Error    t value     Pr(>|t|)  




(Intercept)    -0.010607689 0.000892357 -11.887271 7.243666e-29  




FF_data$Mkt.RF  0.013862140 0.001565213   8.856390 1.451297e-17  




FF_data$SMB    -0.002425130 0.002308093  -1.050708 2.939015e-01  




FF_data$HML     0.006373645 0.002727395   2.336899 1.983913e-02  




> sfit2$’Response GM’$coefficients  




                   Estimate  Std. Error    t value     Pr(>|t|)  




(Intercept)    -0.010607689 0.000892357 -11.887271 7.243666e-29  




FF_data$Mkt.RF  0.013862140 0.001565213   8.856390 1.451297e-17  




FF_data$SMB    -0.002425130 0.002308093  -1.050708 2.939015e-01  




FF_data$HML     0.006373645 0.002727395   2.336899 1.983913e-02  




> sfit2$’Response Ford’$coefficients  




                    Estimate   Std. Error      t value     Pr(>|t|)  




(Intercept)    -1.004705e-02 0.0007082909 -14.18492403 1.296101e-38  




FF_data$Mkt.RF  1.348451e-02 0.0012423574  10.85396920 8.752040e-25  




FF_data$SMB    -7.779018e-05 0.0018320033  -0.04246181 9.661475e-01  




FF_data$HML     3.780222e-03 0.0021648160   1.74620926 8.138996e-02  




> sfit2$’Response UTX’$coefficients  




                    Estimate   Std. Error     t value     Pr(>|t|)  




(Intercept)    -0.0080963376 0.0004199014 -19.2815220 2.544599e-62  




FF_data$Mkt.RF  0.0102591816 0.0007365160  13.9293389 1.721546e-37  




FF_data$SMB    -0.0028475161 0.0010860802  -2.6218286 9.013048e-03  




FF_data$HML     0.0003584478 0.0012833841   0.2792989 7.801311e-01  




> sfit2$’Response Merck’$coefficients  




                   Estimate  Std. Error   t value     Pr(>|t|)  




(Intercept)    -0.008694614 0.000926005 -9.389381 2.142386e-19  




FF_data$Mkt.RF  0.007065701 0.001624233  4.350178 1.650293e-05  




FF_data$SMB    -0.004094797 0.002395124 -1.709639 8.795427e-02  




FF_data$HML    -0.009191144 0.002830236 -3.247483 1.242661e-03


In the fits above we see that the slope of the SMB and HML for different stocks have significance at the 2% - 8% level. For example, the HML slope for GM is significant at the 1.9% level. Based on this we cannot accept the null hypothesis of zero value for slopes.





Problem 9 (correlation of the residuals in the Fama-French model)



If we look at the 95% confidence interval under the Fama-French model we get


[1] "Correlation between  Ford and    GM; (  0.487024,   0.550991,   0.609079)"  




[1] "Correlation between   UTX and    GM; ( -0.004525,   0.082936,   0.169138)"  




[1] "Correlation between   UTX and  Ford; (  0.002240,   0.089651,   0.175702)"  




[1] "Correlation between Merck and    GM; ( -0.119609,  -0.032521,   0.055064)"  




[1] "Correlation between Merck and  Ford; ( -0.039887,   0.047708,   0.134575)"  




[1] "Correlation between Merck and   UTX; ( -0.040087,   0.047508,   0.134378)"


Now the correlation between UTX and GM is zero (it was not in the CAPM). We still have a significant correlation between Ford and GM and between UTX and Ford (but it is now smaller).





Problem 10 (model fitting)



The AIC and BIC between the two models is given by


[1] "AIC(fit1)= -10659.895869; AIC(fit2)= -10688.779045"  




[1] "BIC(fit1)= -10651.454689; BIC(fit2)= -10671.896684"


The smaller value in each case comes from the second fit or the Fama-French model.





Problem 11 (matching covariance)



The two covariance matrices are now


> Sigma_R  




                GM         Ford          UTX        Merck  




GM    4.705901e-04 2.504410e-04 6.966363e-05 1.781501e-05  




Ford  2.504410e-04 3.291703e-04 6.918793e-05 4.982034e-05  




UTX   6.966363e-05 6.918793e-05 1.270578e-04 3.645322e-05  




Merck 1.781501e-05 4.982034e-05 3.645322e-05 4.515822e-04  




> Sigma_R_hat  




                GM         Ford          UTX        Merck  




GM    4.705901e-04 7.853015e-05 5.432317e-05 3.108052e-05  




Ford  7.853015e-05 3.291703e-04 5.602592e-05 3.437406e-05  




UTX   5.432317e-05 5.602592e-05 1.270578e-04 2.733456e-05  




Merck 3.108052e-05 3.437406e-05 2.733456e-05 4.515822e-04


The difference between these two matrices are smaller than in the CAPM model.





Problem 12 (Fama-French betas to excess returns covariance)



We will use the formula








	




	(50)




Here we have already calculated the value of Σ


F



 in the R
 code Rlab.R
 . We had found


            Mkt.RF         SMB         HML  




Mkt.RF  0.46108683  0.17229574 -0.03480511  




SMB     0.17229574  0.21464312 -0.02904749  




HML    -0.03480511 -0.02904749  0.11023817


This factor covariance matrix will not change if the stock we are considering changes.


Part (a-c):
 Given the factor loadings for each of the two stocks and their residual variances we can compute the right-hand-side of Equation 50
 and find


           [,1]       [,2]  




[1,] 23.2254396  0.1799701  




[2,]  0.1799701 37.2205144


Thus we compute that the variance of the excess return of Stock 1 is 23.2254396, the variance of the excess return of Stock 2 is 37.2205144 and the covariance between the excess return of Stock 1 and Stock 2 is 0.1799701.





Problem 13



Using the factanal
 command we see that the factor loadings are given by


        Factor1 Factor2  




GM_AC    0.874  -0.298  




F_AC     0.811  




UTX_AC   0.617   0.158  




CAT_AC   0.719   0.286  




MRK_AC   0.719   0.302  




PFE_AC   0.728   0.208  




IBM_AC   0.854  




MSFT_AC  0.646   0.142


The variance of the unique risks for Ford and GM are the values that are found in the “Uniquenesses” list which we found is given by


  GM_AC    F_AC  UTX_AC  CAT_AC  MRK_AC  PFE_AC  IBM_AC MSFT_AC  




  0.148   0.341   0.594   0.401   0.392   0.427   0.269   0.562


Thus the two numbers we are looking for are 0.341 and 0.148.





Problem 14



The p
 -value for the factanal
 command is very small 1.
 39 10

−64


 indicating that we should reject the null hypothesis and try a larger number of factors. Using four factors (the largest that we can use with eight inputs) gives a larger p
 -value 0.00153.





Problem 15



For statistical factor models the covariance between the log returns is given by




where the 
 and 
 


𝜖



 are the estimated loadings and uniqueness found using the factanal
 command. When we do that we get an approximate value for Σ


R



 given by


          [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]      [,8]  




[1,] 1.0000002 0.6944136 0.4920453 0.5431030 0.5381280 0.5737600 0.7556789 0.5223550  




[2,] 0.6944136 1.0000012 0.5075905 0.5961289 0.5966529 0.5994766 0.6909546 0.5305168  




[3,] 0.4920453 0.5075905 0.9999929 0.4892064 0.4915723 0.4821511 0.5222193 0.4215048  




[4,] 0.5431030 0.5961289 0.4892064 0.9999983 0.6034673 0.5829600 0.6052811 0.5055927  




[5,] 0.5381280 0.5966529 0.4915723 0.6034673 1.0000019 0.5860924 0.6045542 0.5076939  




[6,] 0.5737600 0.5994766 0.4821511 0.5829600 0.5860924 1.0000006 0.6150548 0.5000431  




[7,] 0.7556789 0.6909546 0.5222193 0.6052811 0.6045542 0.6150548 1.0000003 0.5476733  




[8,] 0.5223550 0.5305168 0.4215048 0.5055927 0.5076939 0.5000431 0.5476733 0.9999965


As Ford is located at index 2 and IBM is located at index 7 we want to look at the (2,
 7)th or (7,
 2)th element of the above matrix where we find the value 0.6909546.




Exercises






Exercise 17.1-2



These are very similar to the Rlab
 for this chapter.





Exercise 17.3



See the notes on Page §
 .



17 Chapter 18 (GARCH Models)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1


















	 
          









Figure 61:
 The Tbill
 time series and ACF plot.



In Figure 61
 we plot the time series and the ACF for the Tbill
 data. In that plot we do not see a stationary time series. The ADF and KPSS test for this series give


        Augmented Dickey-Fuller Test  




data:  Tbill  




Dickey-Fuller = -1.925, Lag order = 5, p-value = 0.6075  




alternative hypothesis: stationary  




 




        KPSS Test for Level Stationarity  




data:  Tbill  




KPSS Level = 2.777, Truncation lag parameter = 3, p-value = 0.01


with a warning that the P-value is smaller than the printed 0.01. In the ADF test the null hypothesis is that the time series has a unit root thus a “large” P-value indicates that it does in fact have one. In the KPSS test has a null hypothesis of stationarity (level in the default case) so a small P-value indicates that there is “alot” of evidence that the time series is in fact not
 stationary. Thus from each of these tests we conclude that our time series is not
 stationary.

Now we do the same thing with the first difference of Tbill
 . In Figure 62
 we plot the time series and the ACF for the first difference of theTbill
 data. In that plot we see that this series looks more stationary. There are still some spikes at larger lags in the ACF but the series is much more stationary.
















	 
          









Figure 62:
 The time series and ACF plot of the first difference of the Tbill
 data.



Results for the ADF and KPSS test for this series give


        Augmented Dickey-Fuller Test  




data:  Del.Tbill  




Dickey-Fuller = -5.2979, Lag order = 5, p-value = 0.01  




alternative hypothesis: stationary  




 




        KPSS Test for Level Stationarity  




data:  Del.Tbill  




KPSS Level = 0.1546, Truncation lag parameter = 3, p-value = 0.1


with a warning from the ADF test that the P-value is smaller than the printed 0.01 and a warning from the KPSS test that the P-value is larger than 0.1. Following the discussion above if a time series is stationary then the P-value from the ADF test should be “small” (yes) and the P-value from the KPSS test should be “large” (yes). Thus both of these tests are telling us that the differenced time series is stationary.

Finally, from Figure 62
  (left) we see osculations of different magnitudes especially large osculations around 1980 and smaller ones around 1965. This change in the magnitude of the series is an observation of heteroscedasticity.



Problem 2




Part (a-b):
 In the previous problem we argued that Del.Tbill
 is stationary and should be further modeled with an ARMA/GARCH model. From the formula
 argument are are using a ARMA(1,0) model for the conditional mean




and a GARCH(1,0) model for the “noise” term a


t




 of







	
a

 
 
t





	= σ


t



 𝜖

  
 
t





	
	



	
σ

 
 
t





	= 
  .  

	
	




When we run the given R
 code and look at the output from the summary
 command we get


        Estimate  Std. Error  t value Pr(>|t|)  




mu       0.08350     0.05391    1.549 0.121395  




ar1      0.24163     0.07280    3.319 0.000902 ***  




omega    0.33816     0.06145    5.503 3.73e-08 ***  




alpha1   0.83483     0.24295    3.436 0.000590 ***


Here μ
 is called mean
 , ω
 is called omega
 , ϕ
 is called ar1
 and α

1



 is called alpha1
 . The numerical value of these parameters are given in the “estimate” column. Thus the model fit is




where a


t




 is modeled as







	
a

 
 
t





	= σ


t



 𝜖

  
 
t





	
	



	
σ

 
 
t





	= 
  .  

	
	








Problem 3


















	 
          









Figure 63:
 Autocorrelation plots for the residuals and the residual squared for the Del.Tbill
 time series. The two ACF for the standardized residuals look like the model is fitting well.




Part (a):
 See the upper middle plot in Figure 63
 . There we see that the model for the mean of the Del.Tbill
 series is modeled well.


Part (b):
 See the upper right most plot in Figure 63
 . There we see that the model for the variance of the time series has some spikes above the horizontal 2σ
 lines but that there does not appear to be a systematic behavior to these spikes that we could easily model (like each spike to the inside of an exponentially decaying outer envelope). Each spike could be modeled with a moving average term perhaps if it was believed that there is some reason why there should be spikes to the variance at these lags.


Part (c):
 See the bottom right most plot in Figure 63
 . There we see that the model for the standardized residuals squared has no significant spikes indicating that our GARCH model is fitting well.


Part (d):
 The variable with the sigma.t
 holds the values of σ


t




 or the “conditional standard deviations” of the time series. It is what is used to divide the residuals by to get standardized residuals.


Part (e):
 See the bottom left most plot in Figure 63
 . There we see an almost uniform noise like pattern with no noticeable volatility clustering. This is an indicator that our model is fitting well.



Problem 4



For this problem we try to fit an ARMA/GARCH model to the series Del.Log.Tbill
 defined as in the text. We perform the same model fitting (using garchFit
 ) that we did for Del.Tbill
 . For comparison, the summary
 command on the fitted model of Del.Tbill
 has the following partial results


Log Likelihood:  




 -223.7818    normalized:  -1.196694  




 




Information Criterion Statistics:  




     AIC      BIC      SIC     HQIC  




2.436169 2.505284 2.435279 2.464174


the same thing for the GARCH model of the difference of the logarithm gives


Log Likelihood:  




 104.6908    normalized:  0.5598439  




 




Information Criterion Statistics:  




      AIC       BIC       SIC      HQIC  




-1.076907 -1.007792 -1.077797 -1.048902


In minimizing the information criterion metric, the model of the difference in the logarithm is a much better fit. This can also be seen in the residual plots for this model (see Figure 64
 ). In particular these are much nicer plots than when we modeled Del.Tbill
 with a GARCH process. See Figure 63
 where the ACF for the residuals squared still have some significant spikes that are not found in Figure 64
 .
















	 
          









Figure 64:
 Plots of standardized residuals, the ACF of the standardized residuals, and the ACF of the standardized residuals squared when fitting an AR(1)/GARCH(1,1) model to the first difference in the logarithm of Tbill
 . This is the best fitting model for this time series seen.




Exercises


See the R
 script chap_18.R
 where the exercises for this chapter are worked.





Exercise 18.1



Following the hint we have







	
E
 (|Z
 | )
	= 
 ∫ 

0


 

∞
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 dz
 = 
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	= −
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which is the expression we were to show.





Exercise 18.2



To show f


X




 (x
 ) integrates to one we have







	∫ 

−∞


 

∞


 f 


X
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 )dx 
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	= −
 (−1 − 0) + 
 −
 (0 − 1) = 1 ,  

	
	




as we were to show. So show that X
 does not have an expectation consider the integral over negative x
 which is given by



	∫ 

−∞


 

0


 xf 


X




 (x
 )dx 

	= ∫ 
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 + ∫ 
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	= 
 (log(1) − log(+∞)) + 
 (0 − 1) = −∞ .  

	
	




Next the integral over positive x
 which is given by



	∫ 

0


 

+∞


 xf 


X




 (x
 )dx 
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	= 
 (1 − 0) + 
 (log(| + ∞|) − 0) = +∞ .  

	
	








Exercise 18.3



This is an AR(1)/ARCH(1) model i.e. it takes the form








	




	(51)




with





Part (a):
 Taking the expectation of the given expression with the numbers as given we have





Part (b):
 The unconditional variance of u


t




 is given by




The conditional variance of u


t




 is given by





Part (c):
 This is the same as for an AR(1) model or ρ


u




 (h
 ) = ϕ

|
 
h

 |



 = 0.
 72

|
 
h

 |


 for all h
 .


Part (d):
 The process a


t



 

2



 has an ACF given by ρ 


a

2







 (h
 ) = α

1


 

|
 
h

 |



 = 0.
 35

|
 
h

 |


 for all h
 .





Exercise 18.4




Part (a):
 As E
 (a


t




 ) = 0 for all t
 this is given by





Part (b):
 Evaluate the model for the mean (given by Equation 51
 ) at t
 = 1 where we get




We know everything in the above except a

1



 . Putting in everything we know and solving we get a

1



 = 0.
 69. For the variance we then get








Exercise 18.5



Note that this is an AR(1)/ARCH(1) model for Y
 


t



 with ϕ
 = 0.
 67, ω
 = 7, and α

1



 = 0.
 5.


Part (a):
 Taking the expectation of the given expression for Y
 


t



 we get





Part (b):
 Since Y
 


t



 is a AR(1)/ARCH(1) model the ACF for Y
 


t



 is the same as an AR(1) model or




for all h
 .


Part (c):
 This is discussed in the section entitled “ARCH(1) Processes” where it is stated that ρ


a




 (h
 ) = 0 for all h
 .


Part (d):
 This is discussed in the section entitled “ARCH(1) Processes” where it is stated that ρ


a

2







 (h
 ) = α

1


 

|
 
h

 |



 = 0.
 5

|
 
h

 |


 for all h
 .





Exercise 18.6




Part (a):
 For the models of the type we have been discussion in this chapter we always take a


t




 = σ


t



 𝜖


t




 so for the given expression here this means that




When a


t

 −1



 = 0.
 6 we can evaluate the above to get σ


t




 = 
 = 1.
 086278. Now E
 (a


t




 ) = 0 so we know all of the terms in the expectation we are to compute. We have
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 22(1.
 086278) = 0.
 3339812 .  

	
	





Part (b):
 For this we have



	Var(Y
 


t



 |X
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 6)
	= Var(a
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 |X
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Part (c):
 Yes because once X


t




 and a


t

 −1



 are known we can compute σ


t




 exactly (using the above formula). Thus all of the terms β

0



 + β

1


 X


t




 + δσ


t




 are known exactly. The noise term a


t




 takes the form a


t




 = σ


t



 𝜖


t




 which is a multiple of a normal random variable and is therefore itself a normal random variable. Adding all of these pieces together we get that the conditional distribution of Y
 


t



 is normal.


Part (d):
 I would say not since unconditionally we have the model




which has two random variables a


t

 −1



 and a


t




 added together in a nonlinear way.





Exercise 18.7




Part (a):
 a


t




 is a ARCH(1) model.


Part (b):
 u


t




 is a AR(1)/ARCH(1) model.


Part (c):
 a


t




 is not Gaussian and has heavier tails than a Gaussian distribution.


Part (d):
 The ACF of a


t




 is ϕ


a




 (h
 ) = 0 for all h
 .


Part (e):
 The ACF of a


t



 

2



 is ϕ 


a

2







 (h
 ) = α

1


 

|
 
h

 |



 = 0.
 3

|
 
h

 |


 for all h
 .


Part (f):
 The ACF of u


t




 is ϕ


u




 (h
 ) = ϕ

|
 
h

 |



 = 0.
 6

|
 
h



 for all h
 .





Exercise 18.8


















	 
          









Figure 65:
 Daily returns leading up to (and including) black Monday.



We run the given code and plot the daily returns in Figure 65
 . Notice the very large negative return on the right side of the graph.


Part (a):
 The output from the predict
 command is


  meanForecast  meanError standardDeviation  




1 -0.003155522 0.01705332        0.01705332


I then compute the “z-score” for the return observed on black Monday




Then I use this value and the pt
 function to compute the probability we would get a sample this small (or smaller) from a t
 -distribution with the estimated degrees of freedom (which was 4.106972). Doing this I get the probability of 8.
 132712 10

−5


 .


Part (b):
 We plot the standardized residuals in Figure 66
 . There we see that the suggested AR(1)/GARCH(1,1) model appears to fit quite well.
















	 
          









Figure 66:
 Plots of standardized residuals, the ACF of the standardized residuals, and the ACF of the standardized residuals squared.




Part (c):
 We can refit with the suggested model and then look at diagnostic plots like for the residuals above. Doing this we get plots that look similar to the ones in the previous part and show no problems with their fit. To compare the two models in the first case summary(results)
 we get (partial)


Log Likelihood:  




 1655.214    normalized:  3.271174  




 




Information Criterion Statistics:  




      AIC       BIC       SIC      HQIC  




-6.518632 -6.468515 -6.518909 -6.498977


For the AR(1)/ARCH(1) model considered in this part the same pieces from the summary
 command look like


Log Likelihood:  




 1654.06    normalized:  3.268894  




 




Information Criterion Statistics:  




      AIC       BIC       SIC      HQIC  




-6.518026 -6.476261 -6.518218 -6.501646


Since there are 506 points in the data vector x
 and the information criterion numbers above are normalized by this we need to multiply by 506 to get the absolute information criterion numbers. For the first models the AIC is -3298.428 while for the second model the AIC is -3298.121. The better model will be the one that minimizes the AIC and thus in this case we would select the first model (although the difference is very slight).


Part (d):
 The (partial) output from the arima
 function is


sigma^2 estimated as 9.451e-05:  log likelihood = 1626.52,  aic = -3247.03


The value of the AIC here (-3247.03) is larger than that from either of the two models above. This gives an indication that we would prefer one of the previous two models. In Figure 67
 we plot the standardized residuals and the ACF’s for the residuals and the residuals squared. There we see that the ACF of the squared residuals has a second lag that is significant and the the residuals seem to show some volatility clustering. These are indications that the pure AR(1) model is not fully adequate.
















	 
          









Figure 67:
 Plots of standardized residuals, the ACF of the standardized residuals, and the ACF of the standardized residuals squared when fitting an AR(1) model.





Exercise 18.9




Part (a):
 We are fitting an AR(1)/GARCH(1,1) model to the differences in r


t




 . A model of this type has (defining u


t




 ≡ Δr


t




 ) the following form




and a GARCH(1,1) model for the “noise” term a


t




 of







	
a

 
 
t





	= σ


t



 𝜖

  
 
t





	
	



	
σ

 
 
t





	= 
  .  

	
	





Part (b):
 The output from the garchFit
 gives


          mu          ar1        omega       alpha1        beta1        shape  




0.0091087266 0.0950806001 0.0005486445 0.3244401979 0.7402686990 2.8306075762


for the estimated model parameters.


Part (c):
 Based on the AR(1)/GARCH(1,1) model specified the ACF for Δr


t




 is the same as for an AR(1) model so ρ

Δ
 
r




 (h
 ) = ϕ

1


 

|
 
h

 |



 = 0.
 0950806001

|
 
h

 |


 for all h
 .


Part (d):
 Based on the AR(1)/GARCH(1,1) model specified the ACF for a


t




 will be zero.


Part (e):
 Based on the AR(1)/GARCH(1,1) model specified the ACF for a


t



 

2



 will be the same as that discussed in the text namely







	
ρ

 
 
a

2







 (1)
	= 
   
	
	



	
ρ


a

2







 (h 
 )
	= (α

1



 + β

1



 )


h

 −1


 ρ 


a

2







 (1) for h
 ≥ 2 .  

	
	




We could put in the estimated values for α

1



 and β

1



 in the above.



18 Chapter 19 (Risk Management)

 





R Lab


See the R
 script Rlab.R
 where the problem for this chapter are worked.





Problem 1



We specify a range of values for ν
 and then use cov.trob
 to estimate the parameters for a multidimensional t
 -distribution. Once we have the parameters we can use the function dmt
 to evaluate the loglikelihood of the data under the given parameter setting. When we run this code we get the following


> result$fit  




$cov  




            DATGEN         DEC  




DATGEN 0.009993897 0.004546750  




DEC    0.004546750 0.005406026  




 




$center  




     DATGEN         DEC  




0.005422298 0.021636475


with an estimate of 
 = 4.
 3. The label of the output from the cov.trob
 is the string cov
 but I believe that is actually an approximation to the scale
 matrix Λ. This is based on usage since its value is passed directly into the function dmt
 as the argument S
 which (according to the documentation) is a scale matrix. This hypothesis is further validated when we compute the covariance matrix from the scale matrix using




For the approximation above we get


> result$fit$cov * ( 4.3 / (4.3-2) )  




            DATGEN         DEC  




DATGEN 0.018684242 0.008500445  




DEC    0.008500445 0.010106918


This is a much better match for the covariance of the data which is given by


> cov(Berndt)  




            DATGEN         DEC  




DATGEN 0.016266437 0.007283029  




DEC    0.007283029 0.009829483


than is result$fit$cov
 see above. If anyone knows that this logic is incorrect please contact me.





Problem 2




Part (a):
 Following the discussion in Chapter 7 on multivariate distributions in the section titled ”Using the t
 -distribution in Portfolio Analysis” the portfolio as specified will have returns given by




I see two ways to work this problem. The first is to take the given fractional distribution of each asset and the raw returns for the two assets and combine them to compute the portfolio return (using the above formula). We can then use the R
 code fitdistr
 to fit a t
 -distribution to this data. When we do that we get the following parameters of the t
 -distribution


> params  




        m             s            df  




  0.015713110   0.077582356   5.389583510  




 (0.008109552) (0.008802226) (2.692582265)


As discussed in Chapter 5 in the book fitdistr
 fits the classical t
 -distribution and returns the standard deviation
 times 
 which is called s
 in the output. This is the parameter called that is also called the ”scale parameter” and is denoted λ
 .

A second method to work this problem is to recall the fact that linear projections of random variables that are distributed as multivariate t
 -distribution will have a univariate t
 -distribution with a mean w


T



 μ
 , a variance 
 w


T




 Λw
 = w


T




 Σw
 , and the same degrees of freedom ν
 . This gives the parameter estimate


> list( m=mu_2, s=lambda_2, df=nu_2 )  




$m  




[1] 0.01677222  




$s  




           [,1]  




[1,] 0.07387854  




$df  




[1] 4.3


These numerical values match well with the ones we obtained using fitdistr
 .


Part (b):
 Given parameters for a t
 -distribution we can use the parametric estimate of the value-at-risk and the expected shortfall that apply when we assume that we have a t
 -distribution. In this case, the formula for the value-at-risk is given by







	




	(52)




and that for the expected shortfall is given by the books Eq. 19.8. Using these two equations (and the two ways we estimated the parameters of the t
 -distribution) we get


[1] "VaR_1= 13815.711768; VaR_2= 13762.077715"  




[1] "ES_1= 20227.220528; ES_2= 21130.813757"








Problem 3



I used the boot
 command in the library of the same name to generate the bootstrap samples. When that command finishes one has the bootstrap samples in the member field t
 . In addition, when we display the output from the boot command we get


> boot_results  




 




ORDINARY NONPARAMETRIC BOOTSTRAP  




 




Call: boot(data = r_port, statistic = boot_fn, R = 250)  




 




Bootstrap Statistics :  




        original        bias     std. error  




t1* 1.570073e-02 -0.0002939243 6.366081e-03  




t2* 7.786412e-02 -0.0000742150 6.593052e-03  




t3* 5.512324e+00  1.0626691845 4.214329e+00  




t4* 1.380347e+04 -0.3143866541 1.146888e+03  




t5* 2.013453e+04 94.8409343322 1.892534e+03


As the bootstrap gives the standard error and we assume that the distribution of values of VaR(0.
 05) are normally distributed using the numbers above the 90% confidence interval for VaR(0.
 05) is given by


1.380347e+04 + c(-1,+1) * qnorm(1-0.1/2) * 1.146888e+03  




[1] 11917.01 15689.93


We plot the KDE of the bootstrap samples of VaR(0.
 05) in Figure 68
 . From that plot we see that the distribution of VaR is somewhat symmetric and somewhat Gaussian.
















	 
          









Figure 68:
 The KDE of the bootstrap samples of VaR(0.
 05).



Using the shapiro.test
 on this data gives


> shapiro.test(VaR_boots)  




        Shapiro-Wilk normality test  




data:  VaR_boots  




W = 0.9957, p-value = 0.714


The large p
 -value indicates that this data could be normal. By contract in Figure 69
 we present the KDE of the bootstrap samples of the parameter ν
 (the degree of freedom in the univariate t
 -distribution fit).
















	 
          









Figure 69:
 The KDE of the bootstrap samples of the degrees of freedom parameter ν
 in the t
 -distribution.



Here we see a very skewed distribution that does not look normal at all. The shapiro.test
 on this data gives


> shapiro.test(df_boots)  




        Shapiro-Wilk normality test  




data:  df_boots  




W = 0.557, p-value < 2.2e-16


Indicating a very non-normal distribution.



Problem 4 (the Hill tail index estimate)



When computing a tail index we are assuming that the density for y <
 0 takes the functional form




Then a >
 0 is the tail index
 . The Hill estimate of the left tail index is given by







	




	(53)




where n
 (c
 ) = #{Y
 

(
 
i

 )


 ≤ c
 } and c
 = Y
 

(
 
n

 (
 
c

 ))


 . We will vary the value of n
 (c
 ) from the smallest it can be (of one) to the largest it can be (the number of samples in the dataset) and then plot the estimate of â

Hill



 (c
 ) as a function of n
 (c
 ). This is done in Figure 70

















	 
          









Figure 70:
 Hill plots of the estimated tail index a
 .



Notice that for a range of n
 (c
 ) between 10 and 30 the estimate of a
 is constant around the value of 2.25. When n
 (c
 ) = 20 the estimated value of a
 is 2.18973.


Exercises


See the R
 script chap_19.R
 where the exercises for this chapter are worked.





Exercise 19.1



I assumed that S
 = 100000 for this problem.


Part (a):
 For the nonparametric estimates we will use the formulas







	




	(54)




and







	




	(55)




For this data these give


> as.vector( c( VaR_np, ES_np ) )  




[1] 4079.757 5649.151



Part (b):
 In this case we get


> c( VaR_norm(alpha,m,s,S), ES_norm(alpha,m,s,S) )  




[1] 3398.577 3898.592





Part (c):
 In this case we get


[1] 4200.555 6488.889





Part (d):
 The Shapiro-Wilk test on a sample of this data gives


> shapiro.test( rets[sample.int(length(rets),size=2500)] )  




        Shapiro-Wilk normality test  




data:  rets[sample.int(length(rets), size = 2500)]  




W = 0.918, p-value < 2.2e-16


Showing that these returns are not very normally distributed. In fact a histogram indicates that they have very long tails. Thus we would expect the t
 -distribution to fit better and give more realistic risk metrics. The estimated value of ν
 in the t
 -distribution was 2.9968678708. A value this small further indicates non-normality.





Exercise 19.2



When a density has a polynomial tail with a left tail index a
 we can show that the value-at-risk for two different values of α
 is related as








	




	(56)




Using what we know we then have that










Exercise 19.3



I downloaded prices for “IBM” and took the last 1000 prices. I also assumed that S
 = 10000. If you download prices at a different point in time your results might be different than these.


Part (a):
 For this we compute


> VaR_t_pt_a  




[1] 212.2063





Part (b):
 For this we compute


> VaR_np  




    2.5%  




233.4143





Part (c):
 For this we compute a normal QQ plot and a t
 QQ plot. Each of these is displayed in Figure 71
 . The t
 distribution is a better fit (especially along the right tail). Neither model does a great job modeling the negative returns. Normality of the returns does not seem reasonable.
















	 
      
	 
      









Figure 71: Left:
 A normal QQ plot. Right:
 A t
 QQ plot.




Part (d):
 For this we use the Hill plot given in Figure 72
 . Notice for a large range of value for n
 (c
 ) the estimate â
 is very stable. Taking the mean value of the estimate of a
 over the range from 50 to 125 we get â
 = 2.
 110415. Then using Equation 56
 we compute





















	 
          









Figure 72:
 A Hill plot.





Exercise 19.4



In Figure 73
 I plot KDE of the bootstrap densities of VaR (left) and ES (right).
















	 
      
	 
      









Figure 73: Left:
 A KDE estimate of VaR. Right:
 A KDE estimate of ES.



We can directly use the results from the output of the boot
 command (like we did above) or the function boot.ci
 to derive confidence intervals. Based on the location of the result we are interested in we have


> boot.ci(boot_results, conf=0.95, type="norm", index=4)  




 




Intervals :  




Level      Normal  




95%   ( 9261, 13791 )  




 




> boot.ci(boot_results, conf=0.95, type="norm", index=5)  




 




Intervals :  




Level      Normal  




95%   (11122, 20310 )






Exercise 19.6 (the five-day VaR)




Part (a):
 The estimated vector of daily mean returns μ
 , for the selected stocks is given by


> apply( rets, 2, mean )  




       GM_AC         F_AC       UTX_AC       CAT_AC       MRK_AC  




9.801282e-04 1.556664e-03 5.400236e-05 1.231639e-03 8.568635e-04


The estimated covariance matrix Σ, for the selected stocks is given by


> cov( rets )  




              GM_AC         F_AC       UTX_AC       CAT_AC       MRK_AC  




GM_AC  0.0004081672 0.0002913652 0.0001877597 0.0002314422 0.0001858492  




F_AC   0.0002913652 0.0004493332 0.0001973972 0.0002771111 0.0002188128  




UTX_AC 0.0001877597 0.0001973972 0.0003744431 0.0002231245 0.0001698379  




CAT_AC 0.0002314422 0.0002771111 0.0002231245 0.0005037975 0.0002291694  




MRK_AC 0.0001858492 0.0002188128 0.0001698379 0.0002291694 0.0003123000





Part (b):
 Since there are five stocks in this portfolio each stock would get 50∕
 5 = 10 million dollars. Dividing this number by the price-per-share gives


    GM_AC      F_AC    UTX_AC    CAT_AC    MRK_AC  




 63.02021 236.60714 309.94152 193.07832 185.96491


for the number of shares of each stock to purchase to get the desired portfolio.


Part (c):
 For this portfolio, the weight vector is a five element vector with 
 in every component. This means that our portfolio
 return will be a normal random variable with a mean given by w


T



 μ
 and a variance of




Evaluating these on the data given, we get a portfolio mean of w


T



 μ
 = 0.
 0009358594 and a variance of w


T




 Σw
 = 0.
 0002588712 (which implies a standard deviation of return of 0.01608947). We can then have everything we need to use the formula for the value-at-risk when we have normally distributed returns and given in the function VaR_norm
 . Calling this function with S
 = 100000 and the above estimates we get the value of 1968.363.


Part (d):
 Over five days (rather than one) the mean return will be five times the one day mean return and the covariance will be five times the one day covariance. Assuming that the correlations between stocks can be taken to be zero we can zero out the off-diagonal elements in Σ to obtain a matrix 
 and then again compute the one day variance using w


T




 
 w
 . Doing this, for the data in this problem we get a five day mean return of 0.004679297 and a five day variance of 0.0004096082. With these parameters we find the value-at-risk (again using the function VaR_norm
 ) given by 2125.774.



19 Chapter 20 (Bayesian Data Analysis and MCMC)

 





R Lab


One of the hard parts (for me) about running the code from this chapter was getting the needed BUGS program installed. As I run Ubuntu Linux I choose to install OpenBUGS
 vs. WinBUGS. To do that I needed to first


# to install 32 bit headers on 64 bit machine needed to install OpenBUGS  




sudo apt-get install g++-multilib


Then one needs to download and install the OpenBUGS software from


http://www.openbugs.net/w/Downloads


Then in R
 I needed to do the following


install.packages( "R2WinBUGS", dependencies=TRUE )  




install.packages( "BRugs", dependencies=TRUE )


After these steps there were still a couple of small changes I needed to make to the given codes to make them run. See the R
 script Rlab.R
 for this chapter.





Problem 1




Part (a-b):
 The output from the print(univt.mcmc)
 command is


> print(univt.mcmc,digits=4)  




Inference for Bugs model at "Tbrate_t.bug", fit using OpenBUGS,  




 3 chains, each with 2600 iterations (first 100 discarded)  




 n.sims = 7500 iterations saved  




              mean      sd      2.5%       25%       50%       75%     97.5%  




mu          0.0095  0.0035    0.0025    0.0072    0.0096    0.0118    0.0164  




tau       237.7120 22.5085  198.6151  221.8916  236.1194  250.9109  288.5372  




nu         27.6553 11.4585    8.9672   18.1431   26.9800   37.0714   48.4221  




sigma       0.0651  0.0030    0.0589    0.0631    0.0651    0.0671    0.0710  




deviance -916.2988  2.1460 -919.0373 -917.7026 -916.8050 -915.4008 -910.7087  




           Rhat n.eff  




mu       1.0014  3500  




tau      1.0024  2400  




nu       1.0058   480  




sigma    1.0024  2400  




deviance 1.0008  7500  




 




For each parameter, n.eff is a crude measure of effective sample size,  




and Rhat is the potential scale reduction factor (at convergence, Rhat=1).  




 




DIC info (using the rule, pD = Dbar-Dhat)  




pD = 2.0 and DIC = -914.3  




DIC is an estimate of expected predictive error (lower deviance is better).


The parameter n.eff
 can be thought of as “the number of effective samples” and larger values are better (meaning more information is extracted). The parameter Rhat
 is a measure of chain convergence and here smaller
 values are better. Using that from the above output the deviance
 parameter mixes best while the parameter nu
 mixes the worst.


Part (c):
 A 95% confidence interval for nu
 can be found by reading off the 2.5% and 97.5% quantiles in the above row corresponding to the nu
 parameter. From the above output we find that to be the values (8.
 9672,
 48.
 4221). Note that this is a very large range. This matches our observation above about nu
 having the worst mixing properties.
















	 
          









Figure 74:
 Plots of the MCMC chains for mu
 , sigma
 , and nu
 .





Problem 2




Part (a):
 See Figure 74
 where we see that based on the time series plots in order of best mixing to worst mixing we have mu
 , sigma
 , and nu
 . The time series plot for nu
 does not look stationary.
















	 
          









Figure 75:
 The ACF for the MCMC chains for mu
 , sigma
 , and nu
 .




Part (b):
 See Figure 75
 where we plot the ACF for the three variables mu
 , sigma
 , and nu
 . There we again see the ordering from best to worst mixing is the same as that found in Part (a).


Part (c):
 We can use the extracted matrix variable nu
 to determine the skewness and kurtosis where we find


> library("fGarch") # for skewness and kurtosis  




> skewness(nu,method="moment")  




[1] 0.7075442  




> kurtosis(nu,method="moment")  




[1] 2.59612



















	 
      
	 
      









Figure 76: Left:
 Histograms of the MCMC chains for mu
 , sigma
 , and nu
 . Right:
 KDE of the MCMC samples of the posterior for mu
 , sigma
 , and nu
 .





Problem 3



See Figure 76
 for plots of the histograms (left) and the kernel density estimates (right) for the mu
 , sigma
 , and nu
 variables. From this figure we see that the variable nu
 appears to be the most skewed. The sample skewness for all three variables is given by


> c( skewness(mu), skewness(sigma), skewness(nu) )  




[1] -0.01635687 -0.13948345  0.70754418


From which we see that nu
 has the largest value (in magnitude).





Problem 4



We have samples of the posterior for ν
 and then using the formula given 
 we can compute the kurtosis when ν >
 4. If ν
 ≤ 4 we take the kurtosis to be +∞.


Part (a):
 We find these to be


> quantile( posterior_kurtosis, c( 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 ) )  




      1%       5%      25%      50%      75%      95%      99%  




3.132109 3.140067 3.181426 3.261097 3.424235 3.946165 4.763263





Part (c):
 We did a similar problem in Chapter 6. Here we will just use the model free bootstrap (see Chapter 6 for an example where we use the model based bootstrap method). Using the boot
 library we find the requested quantiles to be


> quantile( boot.kurtosis$t, c( 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 ) )  




      1%       5%      25%      50%      75%      95%      99%  




2.577871 2.824477 3.571534 4.660616 5.477031 6.468237 7.109982





Part (d):
 The confidence interval for the samples from the posterior is (3.
 140067,
 3.
 946165), while that from the model free bootstrap is (2.
 824477,
 6.
 468237). The confidence interval for the samples from the posterior is smaller.
















	 
            









Figure 77:
 Time series plots and the ACF for the phi
 variable.





Problem 5




Part (a):
 Plots of the time series and the ACF for the phi
 variable are given in Figure 77
 while plots of the time series and the ACF for the sigma
 variable are given in Figure 78
 . There we see that for both parameters the samples of the posterior seem to be coming from a stationary distribution. This is an indication that the parameters chosen (the number of chains, the number of iterations, and the burn-in) are adequate.
















	 
            









Figure 78:
 Time series plots and the ACF for the sigma
 variable.




Part (b):
 The output from the print statement is given by


> print(ar1.mcmc,digits=3)  




Inference for Bugs model at "ar1.bug", fit using OpenBUGS,  




 3 chains, each with 2600 iterations (first 100 discarded)  




 n.sims = 7500 iterations saved  




              mean    sd      2.5%       25%       50%       75%     97.5%  




phi          0.219 0.072     0.079     0.170     0.219     0.267     0.361  




sigma        0.012 0.001     0.011     0.011     0.012     0.012     0.013  




deviance -1129.076 1.965 -1131.020 -1130.493 -1129.655 -1128.314 -1123.843  




          Rhat n.eff  




phi      1.001  7500  




sigma    1.001  7500  




deviance 1.001  3100  




 




For each parameter, n.eff is a crude measure of effective sample size,  




and Rhat is the potential scale reduction factor (at convergence, Rhat=1).  




 




DIC info (using the rule, pD = Dbar-Dhat)  




pD = 2.0 and DIC = -1127.0  




DIC is an estimate of expected predictive error (lower deviance is better).


While the output from the arima
 call which computes the MLE estimate of the parameters in our AR(1) model is


> arima(y,order=c(1,0,0))  




 




Call: arima(x = y, order = c(1, 0, 0))  




 




Coefficients:  




         ar1  intercept  




      0.2181     0.0000  




s.e.  0.0713     0.0011  




 




sigma^2 estimated as 0.0001336:  log likelihood = 568.72,  aic = -1131.44


There we see that the Bayesian and the MLE estimates of phi are quite close to each other. The Bayesian estimate of sigma squared (or 0.
 012

2


 = 0.
 000144) matches the MLE estimate of sigma squared (of 0.0001336).


Exercises






Exercise 20.1




Part (a):
 We need to find the MAP estimator for the 𝜃
 parameter in the density




To find the MAP estimator we need to maximize the above expression as a function of 𝜃
 . Taking the derivative and setting it equal to zero we get




Solving the above for 𝜃
 we get 𝜃
 = 
 . Taking the second derivative of π
 we get







	
  
	= 56(5)𝜃

4



 (6 − 7𝜃
 ) + 56𝜃

5



 (−  7)
	
	



	 
	= 56𝜃

4



 (30 − 35𝜃
 − 7𝜃
 ) = 56𝜃

4



 (30 − 42𝜃
 ) .  

	
	




Note that




showing that 𝜃
 = 
 is a maximum.





Exercise 20.2



To show the desired expression consider the likelihood







	
f
 (Y
 

1


 ,
 
  ,Y
 


n



 |τ 
 )
	= ∏ 


i

 =1


 


n



 
 exp 
   
	
	



	 
	= ∏ 


i

 =1


 


n



 
 τ

1
 
∕

 2



 exp 
 in terms of τ  

	
	



	 
	∝ τ


n∕

 2



 exp 
 = τ


n∕

 2



 exp 
  ,  

	
	




which is the desired expression.



20 Chapter 21 (Nonparametric Regression and Splines)

 





Notes on the Text






Notes on polynomial splines



When we force the linear fits on each side of the knot x
 = t
 to be continuous we have that a
 + bt
 = c
 + dt
 and this gives c
 = a
 + (b
 − d
 )t
 . When we use this fact we can simplify the formula for s
 (x
 ) when x > t
 as







	
s
 (x 
 )
	= c
 + dx
 = a
 + (b
 − d
 )t
 + dx  

	
	



	 
	= a
 + bt
 + d
 (x
 − t
 ) = a
 + bx
 − bx
 + bt
 + d
 (x
 − t  
 )
	
	



	 
	= a
 + bx
 − b
 (x
 − t
 ) + d
 (x
 − t
 ) = a
 + bx
 + (d
 − b
 )(x
 − t
 ) ,  

	
	




which is the books equation 21.11.




R Lab


See the R
 script Rlab.R
 for this chapter.





R lab: An Additive Model for Wages, Education, and Experience



When we enter and then run the given R
 code we see that the summary
 command gives that




Plots from the fitGam
 are duplicated in Figure 79
 .
















	 
          









Figure 79:
 Plots for the splines CPS1988
 dataset.





R lab: An Extended CKLS model for the Short Rate



We are using 10 knots. The outer
 function here takes the outer difference of the values in t
 with those in knots
 . The statement that computes X2
 then computes the value of the “plus” functions for the various knots i.e. evaluates (t
 − k
 )

+


 where t
 is the time variable and k
 is a knot. Then X3
 holds the linear spline basis function i.e. the total spline we are using to predict μ
 (t,r
 ) is given by




Here α

0



 and α

1



 are the coefficients of the initial linear fit, and 𝜃


i




 are the jumps in the first derivatives at each of the k


i




 knots. The first column of X3
 is the a column of all ones (for the constant α

0



 term), the second column of X3
 is a column of time relative to 1946. The rest of the columns of X3
 are samples of the spline basis “plus” functions i.e. (t
 − k


i




 )

+


 for 1 ≤ i
 ≤ 10. When we run the given R
 code we generate the plot in Figure 80
 .
















	 
          









Figure 80:
 The three plots for the short rate example.



Note that


X3[,1:2]%*%a


is a linear function in t
 but because of the way that X3
 is constructed (its last 10 columns)


X3%*%theta


is the evaluation of a spline. Our estimates of the coefficients of α

0



 and α

1



 are not significant. A call to summary( nlmod_CKLS_ext )$parameters
 gives


            Estimate  Std. Error     t value     Pr(>|t|)  




a1       0.082619604 0.087780955  0.94120192 3.470418e-01  




a2       0.002423339 0.002706119  0.89550342 3.709356e-01


The large p
 -values indicate that these coefficients are not well approximated and might not be real effects.


Exercises






Exercise 21.1 (manipulations with splines)



Our expression for s
 (t
 ) is given by




Where the “plus function” is defined by




From the given values of x
 and s
 (x
 ) we can compute







	
s 
 (0)
	= 1 = β

  
 0




	
	



	
s 
 (1)
	= 1.
 3 = 1 + β

1



 so β

1



 = 0.  
 3
	
	



	
s 
 (2)
	= 5.
 5 = 1 + 0.
 3(2) + b

1



 (1) so b

1



 = 3.  
 9
	
	



	
s 
 (4)
	= 6 = 1 + 0.
 3(4) + 3.
 9(3) + b

2



 (2) + b

  
 3



 (1)
	
	



	
s 
 (5)
	= 6 = 1 + 0.
 3(5) + 3.
 9(4) + b

2



 (3) + b

3



 (2) .  

	
	




Solving these two equations gives b

2



 = −3.
 7 and b

3



 = −0.
 5. Thus we have s
 (x
 ) given by







Part (a):
 We would find







Part (b):
 We would find







Part (c):
 We would evaluate




each term could then be evaluated.





Exercise 21.2



The model 21.1 in the book is







	




	(57)




In this problem we are told functional forms for μ
 (r


t

 −1



 ) and σ
 (r


t

 −1



 ).


Part (a):
 Since 𝜖


t




 has a mean of zero we have that





Part (b):
 Since 𝜖


t




 has a variance of one we have that










Exercise 21.4



For the given spline we have







	
s
 ′(x 
 )
	= 0.
 65 + 2x
 + 2(x
 − 1)

+


 + 1.
 2(x
 − 2)

  
 +



	
	



	
s
 ′′(x 
 )
	= 2 + 2(x
 − 1)

+


 

0


 + 1.
 2(x
 − 1.
 2) 

+


 

0


  .  

	
	





Part (a):
 We have




and







Part (b):
 We have
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