

Python Machine Learning

A Deep Dive Into Python Machine Learning and Deep Learning, Using Tensor Flow And Keras: From Beginner To Advance

Leonard Eddison

Page intentionally left blank

 Copyright 2018 by Leonard Eddison

All rights reserved.

This document is geared towards providing exact and reliable information with regards to the topic and issue covered. The publication is sold with the idea that the publisher is not required to render accounting, officially permitted, or otherwise, qualified services. If advice is necessary, legal or professional, a practiced individual in the profession should be ordered.

- From a Declaration of Principles which was accepted and approved equally by a Committee of the American Bar Association and a Committee of Publishers and Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of this document in either electronic means or in printed format. Recording of this publication is strictly prohibited and any storage of this document is not allowed unless with written permission from the publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability, in terms of inattention or otherwise, by any usage or abuse of any policies, processes, or directions contained within is the solitary and utter responsibility of the recipient reader. Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely and is universal as so. The presentation of the information is without contract or any type of guarantee assurance.

The trademarks that are used are without any consent, and the publication of the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only and are the owned by the owners themselves, not affiliated with this document.

Table of Contents

Python Machine Learning

INTRODUCTION

WHY MACHINE LEARNING?

APPLYING LOGISTIC REGRESSION TO U.S. EQUITY MARKETS FOR PREDICTIVE TRADING (AMZN)

APPLYING PYTHON’S FFN MODULE TO BACKTEST TRADING SIGNALS FOR AMZN

KERAS CNN MODEL FOR DEEP LEARNING PREDICTIONS ON AMZN

FURTHER POTENTIAL RESOURCES & PATHS FOR MACHINE/DEEP LEARNING EXPLORATION

PYTHON PROGRAMMING:

Introduction

CHAPTER ONE: I WANT TO START PROGRAMMING

CHAPTER TWO: WHY LEARN PYTHON.

TOP 5 REASONS

CHAPTER THREE: PROS AND CONS OF LEANING PYTHON

CHAPTER FOUR: HOW TO INSTALL PYTHON

(Windows, Mac and Linux)

CHAPTER FIVE: INTERPRETER, INTERACTIVE

CHAPTER SIX: PYTHON or PERL

CHAPTER SEVEN: OBJECT ORIENTED

CHAPTER EIGHT: MODULES

CHAPTER NINE: LET’S DIVE IN

CHAPTER TEN: VARIOUS TYPES OF DATA

CHAPTER ELEVEN: SYNTAX

CHAPTER TWELVE: FUNCTIONS

CHAPTER THIRTEEN: CLASSES

CHAPTER FOURTEEN: WHAT CAUSES FATAL ERRORS AND HOW TO FIX IT

CHAPTER FIFTHEEN: BEST PRACTICES FOR HANDLING WEBSITE ERRORS

CHAPTER SIXTEEN: WHY PYTHON IS HERE TO STAY

CONCLUSION

Python Machine Learning Applied to Financial Markets

INTRODUCTION

Throughout the recent years, artificial intelligence and machine learning have made some enormous, significant strides in terms of universal, global applicability. The ability to now be able to apply such algorithms via traditional and new dynamic programming languages allows us to interpret and understand these approaches much more eloquently. While machine and deep learning algorithms have become a common measure for significant model performance across multiple industries, the primary focus of this book will be to better understand how such algorithms are being applied specifically via financial markets through the usage of the python programming language. A language that continues to gain fast ground on other languages, due to its powerful versatility and adaptability to various types of APIs and platforms. This book is catered more towards someone who has already developed a relatively profound understanding with the python programming language, and is now looking to apply this skill set specifically towards machine and deep learning in finance. Throughout the book, we will outline a couple detailed scenarios in which we will apply different types of machine and deep learning algorithms towards real-life, financial market scenarios to help best bridge the connection between python and how it is being utilized in today’s day and age when it comes to artificial intelligence in the financial landscape.

WHY MACHINE LEARNING?

The obvious question many will ponder when it comes to artificial intelligence and its applicability towards financial markets is, why even trust it? To answer such a question seems very complicated on the surface; in that at the end of the day, can traditional fund managers really trust something that essentially will make its decisions on its own in absence of human intervention? The ability to even fathom such an approach for many modern age fund managers is undoubtedly questionable, and risky. Despite such concerns, many managers are now actually implementing a hybrid type of system, in which they are warming up to the idea of applying machine learning to their managed portfolios. However, by doing so in a sense of more security, where they allow some brief sense of human intervention during times of elevated market volatility. Or rather, during moments in which the algorithms seem to be acting up and disregarding the evolving dynamics of the market.

Such an approach, while it does utilize artificial intelligence, may sure be critiqued by true Wall Street quants, in that it is not purely quantitative trading. Nonetheless, we will approach the concepts and algorithms for this book from a perspective that is designed entirely towards applying the fundamentals of pure artificial intelligence in different types of financial markets; one with no pure form of human, or hybrid, intervention whatsoever. The underlying reasoning being that at the end of the day, if we can seem to create powerful machine learning models to predict market performance on such a level, we can maybe begin to slowly strip the general notion of emotional and irrational investment decision making from the equation. Such decision making that has historically been proven to fail the investment philosophy for both retail and experienced fund managers in that during times of high market stress and turmoil. In short, such irrational decisions have been proven to have a higher probability of playing into many lackluster investment choices. And generally speaking, result in poor investment outcomes.

This is something pure artificial intelligence and machine learning attempt to resolve by completely stripping such emotional decision making, and letting the machine make the ultimate, most rational of decisions with the highest probability of profitability potential. And with that, let’s jump into it! We will outline specifically a couple types of machine and deep learning algorithms that are beginning to be commonly used in the financial world for both retail traders, and large hedge fund managers. These algorithms being logistical regression, and recurrent neural networks. As you will notice, while the fundamental logic behind these algorithms are somewhat paralleled in reasoning, the mathematical mechanics that give way to their respective decision making process can significantly differ. For our first algorithm, we will be applying python’s module, scikit-learn, for machine learning prediction and trading. Further information on this library can be obtained at:

http://scikit-learn.org/stable/

APPLYING LOGISTIC REGRESSION TO U.S. EQUITY MARKETS FOR PREDICTIVE TRADING (AMZN)

In our first algorithm example, we will be applying an approach called logistic regression to help us predict price movements for traditional stocks within the U.S. equity markets via python. Logistic regression is a mathematical approach that has been around for quite some time now with the fundamental understanding behind it serving as a form of predictive analysis, in which the dependent variable (y variable) is binary. Generally speaking, the dependent variable should be dichotomous in nature, with the absence of outliers. We should also be able to exhibit no multicollinearity, in which there should be no elevated correlations among the predictors (our x variables, or our features). From a mathematical perspective, logistic regression estimates a multiple learning regression function defined as:

[image: Capture.PNG]

One careful thing to be very cognizant of for logistic regression, and for all machine learning algorithms for the most part, is the notion of overfitting. The thought behind this is that by adding independent variables to a logistic regression model, we will undoubtedly tend to increase the total variance explained in the predictor variable. Nonetheless, adding too many variables to our model can result in overfitting; something that can reduce the general foundation of the model beyond the data that we use to fit the model. In essence, providing us with false interpretations on how well our model fits the data in question. With that said, let’s apply our mathematical foundation for logistic regression to the U.S. equity markets via python. For our specific example, we will use logistic regression to help us predict price movements for Amazon, Inc. (ticker: AMZN) one of the most valued and respected technology companies on Wall Street for many years now. For all purposes and intentions on our algorithms throughout the book, we will be using python version 3.6, and Pycharm, a very popular editor/compiler for python that allows us to run our code and generate output results. Pycharm can be downloaded at:

https://www.jetbrains.com/pycharm/

Please note that the full functioning code for all of our given examples will be included as attachments to the book as well. Upon downloading Pycharm, one can open up a new project, which will allow for a new .py, python file. We will first need to install all of the required libraries, or modules, our algorithm will need to run on. These are listed at the top of our code, and look like the following:

import
 numpy
 as
 np

import
 pandas
 as
 pd

import
 matplotlib.pyplot
 as
 plt

import
 ffn

from
 pandas_datareader
 import
 data
 as
 pdr

import
 fix_yahoo_finance
 as
 yf

import
 datetime

yf.
 pdr_override
 ()

Before attempting to write any code, please make sure that these modules have all been properly installed and linked to your project directory via Pycharm. These can best be installed generally by using Pycharm’s very own internal capabilities to do so within the editor. Further, specific details on the install can be found at:

https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html

Upon successfully installing the libraries shown above, we will need to define a simple classification function; which will allow our algorithm to classify between buy and sell signals. The following function will return a 1 if the signal for the price movement on the stock is to be a buy and a -1 if the signal on the price movement on the stock is to be a sell. The classification function is displayed as the following:

def
 computeClassification
 (
 actual
)
 :

 if
 (
 actual
 >
 0
)
 :

 return
 1

 else
 :

 return
 -
 1

The 1 and -1 values that output from out classification function will be a result of Amazon’s experienced daily stock returns. With that, we are now ready to import our data, which will be done via the yahoo_finance library we have installed and imported in. We must first designate a start and end date for our logistic regression, machine learning algorithm to run off. For our examples, we will span our start and end dates from January 1, 2010 through October 29, 2018, in the following manner:

start
 =
 datetime.
 datetime
 (
 2010
 ,
 1
 ,
 1
)

end
 =
 datetime.
 datetime
 (
 2018
 ,
 10
 ,
 29
)

df
 =
 pdr.
 get_data_yahoo
 (
 'AMZN'
 ,
 start
 =
 start
 ,
 end
 =
 end)

Simply put, we are asking yahoo_finance to extract data for the ticker, AMZN, for our desired period of time, and assign it to the variable name ‘df.’ This will subsequently store the data in a newly created data frame by employing python’s pandas module. From here, manipulating of the data will become much easier. The next step will be to calculate daily returns for AMZN. We will be using the daily close price from our pandas data frame ‘df’ in order to do this. The method for this calculation is as follows:

calculate daily returns

df[
 'returns'
]
 =
 np.
 log
 (df[
 'Close'
]
 /
 df[
 'Close'
].
 shift
 (
 1
))

df[
 'returns'
].
 fillna
 (
 0
)

df[
 'returns_1'
]
 =
 df[
 'returns'
].
 fillna
 (
 0
)

df[
 'returns_2'
]
 =
 df[
 'returns_1'
].
 replace
 ([np.inf
 ,
 -
 np.inf]
 ,
 np.nan)

df[
 'returns_final'
]
 =
 df[
 'returns_2'
].
 fillna
 (
 0
)

Upon calculation of daily returns, we are now ready to apply our classification function for 1’s and -1’s to these returns. If the stock return for AMZN was positive, we assign a 1, and if it was negative, a -1. This is done with the following line of code:

df.iloc[
 :
 ,
 len
 (df.columns)
 -
 1
]
 =
 df.iloc[
 :
 ,
 len
 (df.columns)
 -
 1
].
 apply
 (computeClassification)

Now that we have assigned our classification function to our dataset’s closing returns, we can go ahead and begin the organizational process for our logistical regression machine learning model. This entails us deciding what percent of our dataset we want to train the machine learning model on, and what percent we want to test the model on. This is a very subjective aspect of machine learning, with no clear right or wrong answer. While many data scientists like to assign such proportions equally, others will tend to skew more heavily. For our specific example, we will train the machine learning model on 90% of our data, while forward testing its results on the remaining 10% of our data. Thus, employing a 90-10 train to test ratio. The process is done with the following lines of code:

Compute the last column (Y) -1 = down, 1 = up by applying the defined classifier above to the 'returns_final' dataframe

df.iloc[
 :
 ,
 len
 (df.columns)
 -
 1
]
 =
 df.iloc[
 :
 ,
 len
 (df.columns)
 -
 1
].
 apply
 (computeClassification)

Now that we have a complete dataset with a predictable value, the last column “Return” which is either -1 or 1, create the train and test dataset.

convert float to int so you can slice the dataframe

testData
 =
 df[
 -
 int
 ((
 len
 (df)
 *
 0.10
))
 :
]
 # 2nd half is forward tested on

trainData
 =
 df[
 :-
 int
 ((
 len
 (df)
 *
 0.90
))]
 # 1st half is trained on

replace all inf with nan

testData_1
 =
 testData.
 replace
 ([np.inf
 ,
 -
 np.inf]
 ,
 np.nan)

trainData_1
 =
 trainData.
 replace
 ([np.inf
 ,
 -
 np.inf]
 ,
 np.nan)

replace all nans with 0

testData_2
 =
 testData_1.
 fillna
 (
 0
)

trainData_2
 =
 trainData_1.
 fillna
 (
 0
)

X is the list of features

data_X_train
 =
 trainData_2.iloc[
 :
 ,
 0
 :
 len
 (trainData_2.columns)
 -
 1
]

Y is the 1 or -1 value to be predicted (as we added this for the last column above using the apply.(computeClassification) function

data_Y_train
 =
 trainData_2.iloc[
 :
 ,
 len
 (trainData_2.columns)
 -
 1
]

Same thing for the test dataset

data_X_test
 =
 testData_2.iloc[
 :
 ,
 0
 :
 len
 (testData_2.columns)
 -
 1
]

data_Y_test
 =
 testData_2.iloc[
 :
 ,
 len
 (testData_2.columns)
 -
 1
]

We are now finally ready to employ our logistical regression ML model to our dataset for AMZN. As mentioned before, we will be using python’s scikit-learn library in order to do this. The first step will be to import necessary libraries from scikit-learn:

from
 sklearn.linear_model
 import
 LogisticRegression

DEFINE METHOD FOR PRINTING TRAIN AND TEST ACCURACY SCORE

from
 sklearn.model_selection
 import
 cross_val_score
 ,
 cross_val_predict

from
 sklearn.metrics
 import
 accuracy_score
 ,
 classification_report
 ,
 confusion_matrix

The above imports allow us to set up our model parameters, along with testing configurations that enable us to analyze how well our model did in terms of price prediction for AMZN. Additionally, we can create a function, we will call print_score, that will allow us to assess the accuracy score for our model in terms of price prediction. This function is as follows:

def
 print_score
 (
 clf
 ,
 data_X_train
 ,
 data_y_train
 ,
 data_X_test
 ,
 data_y_test
 ,
 train
 =
 True
)
 :

 '''

 print the accuracy score, classification report and confusion matrix of classifier

 '''

 if
 train
 :

 '''

 training performance

 '''

 print
 (
 "Train Result:
 \n
 "
)

 print
 (
 "accuracy score: {0:.4f}
 \n
 "
 .
 format
 (
 accuracy_score
 (
 data_y_train
 ,
 clf
 .
 predict
 (
 data_X_train
))))

 print
 (
 "Classification Report:
 \n
 {}
 \n
 "
 .
 format
 (
 classification_report
 (
 data_y_train
 ,
 clf
 .
 predict
 (
 data_X_train
))))

 print
 (
 "Confusion Matrix:
 \n
 {}
 \n
 "
 .
 format
 (
 confusion_matrix
 (
 data_y_train
 ,
 clf
 .
 predict
 (
 data_X_train
))))

 res
 =
 cross_val_score
 (
 clf
 ,
 data_X_train
 ,
 data_y_train
 ,
 cv
 =
 10
 ,
 scoring
 =
 'accuracy'
)

 print
 (
 "Average Accuracy:
 \t
 {0:.4f}"
 .
 format
 (np.
 mean
 (res)))

 print
 (
 "Accuracy SD:
 \t\t
 {0:.4f}"
 .
 format
 (np.
 std
 (res)))

 elif
 train
 ==
 False
 :

 '''

 test performance

 '''

 print
 (
 "Test Result:
 \n
 "
)

 print
 (
 "accuracy score: {0:.4f}
 \n
 "
 .
 format
 (
 accuracy_score
 (
 data_y_test
 ,
 clf
 .
 predict
 (
 data_X_test
))))

 print
 (
 "Classification Report:
 \n
 {}
 \n
 "
 .
 format
 (
 classification_report
 (
 data_y_test
 ,
 clf
 .
 predict
 (
 data_X_test
))))

 print
 (
 "Confusion Matrix:
 \n
 {}
 \n
 "
 .
 format
 (
 confusion_matrix
 (
 data_y_test
 ,
 clf
 .
 predict
 (
 data_X_test
))))

We are now ready to apply the built in logistical regression classifier within python’s scikit-learn library to our dataset for AMZN. In order to do so, we must first assign the classifier to a variable name, fit our training data for x (which is our predictor variables of open, high, low, and close) and our training data for y (simply, the close prices that we are trying to predict by using our classification method). This is done with the following lines of code:

logistic regression

clf
 =
 LogisticRegression
 ()

clf.
 fit
 (data_X_train
 ,
 data_Y_train)

predictions is an array containing the predicted values (-1 or 1) for the features in data_X_test.

You can see the prediction accuracy using the method accuracy_score which compares the predicted values versus the expected ones.

from
 sklearn.metrics
 import
 accuracy_score

y_predictions
 =
 clf.
 predict
 (data_X_test)
 # predict y based on x_test

print
 (
 "Accuracy Score Employing Machine Learning: "
 +
 str
 (
 accuracy_score
 (data_Y_test
 ,
 y_predictions)))

And in terms of classifying how well our model can predict the close price for AMZN, that is pretty much it. Running the code up through this segment will display results similar to the following:

Accuracy Score Employing Machine Learning: 0.5315315315315315

Telling us that essentially, for AMZN and our given time period employing a 90-10 train to test ratio, the logistic regression machine learning model was able to predict the close price for AMZN at an approx. 53% accuracy rate. While it may not be as much above the 50% threshold as desires, we can definitely see that there is something there in terms of a simple model such as this being able to employ logistical regression and mathematics to price prediction. Next, we will take our algorithm a step forward and create a simple backtest function that attempts to monitor and judge how well we would have done if we actually traded on our model for the specific test period in question, being roughly 10% of our data. Which amounts to roughly 222 trading days for AMZN, with the last day being October 29, 2018. In other words, going back from October 29, 2018 222 trading days in time.

APPLYING PYTHON’S FFN MODULE TO BACKTEST TRADING SIGNALS FOR AMZN

Now that we have our logistical regression model in place, the next step will be to apply a commonly used library in python called ffn to our dataset, in attempt to backtest how we could have done if we traded on our machine learning signals. Before we do so, we will add one final step in which we calculate a 200 day moving average for AMZN, to add as an extra layer of conviction, or filter, for our signals. In short, now not only does our machine learning signal have to return a 1 for us to buy, but the closing price for AMZN must always be above its 200 day moving average as well. And vice versa, in order to signal a sell, both the machine learning model must return -1, and the closing price for AMZN must be below the 200 day moving average. The code required to set this up is as follows:

df[
 'SMA'
]
 =
 df[
 'Close'
].
 rolling
 (
 200
).
 mean
 ()
 # calculate n period SMA

df[
 'Sell1'
]
 =
 df[
 'Close'
]
 <
 df[
 'SMA'
]

df[
 'SELL'
]
 =
 df[
 'Sell1'
]

df[
 'Buy1'
]
 =
 df[
 'Close'
]
 >
 df[
 'SMA'
]

df[
 'BUY'
]
 =
 df[
 'Buy1'
]

buy_technical_signal
 =
 df[
 'BUY'
][
 -
 222
 :
]
 # extract last n daily signals

sell_technical_signal
 =
 df[
 'SELL'
][
 -
 222
 :
]
 # extract last n daily signals

print
 (
 "buy technical signal length"
 ,
 len
 (buy_technical_signal))

print
 (
 "sell technical signal length"
 ,
 len
 (sell_technical_signal))

print
 (
 "buy technical signal"
 ,
 buy_technical_signal)

print
 (
 "sell technical signal"
 ,
 sell_technical_signal)

buy_technical_signal
 =
 pd.
 DataFrame
 (buy_technical_signal)

sell_technical_signal
 =
 pd.
 DataFrame
 (sell_technical_signal)

pred
 =
 pd.
 DataFrame
 (predictions_dataframe)

print
 (
 "prediction"
 ,
 pred)

print
 (
 "PREDICTION LENGTH"
 ,
 len
 (predictions_dataframe))

pred[
 'Signal'
]
 =
 0

reindex data for later concatenation into 1 DataFrame - will all need same index to concat properly

buy_technical_signal.
 set_index
 (pred.index
 ,
 inplace
 =
 True
)

sell_technical_signal.
 set_index
 (pred.index
 ,
 inplace
 =
 True
)

set up filters

filter1
 =
 (predictions_dataframe[
 0
]
 >
 0
)
 # first buy filter (deep learning one)

filter2
 =
 buy_technical_signal
 >
 0
 # second buy filter (technical one), > 0 implies argument is true (1)

filter3
 =
 (predictions_dataframe[
 0
])
 <
 0
 # first sell filter (deep learning one)

filter4
 =
 sell_technical_signal
 >
 0
 # second sell filter (technical one), > 0 implies argument is true (1)

concatenate all data into 1 DataFrame for easy viewing/confirmation

pred2
 =
 pd.
 concat
 ([pred
 ,
 buy_technical_signal
 ,
 sell_technical_signal
 ,
 filter1
 ,
 filter2
 ,
 filter3
 ,
 filter4]
 ,
 axis
 =
 1
)

pred2.columns
 =
 [
 'Pred'
 ,
 'Signal'
 ,
 'Buy Tech Signal'
 ,
 'Sell Tech Signal'
 ,
 'Filter1'
 ,
 'Filter2'
 ,
 'Filter3'
 ,
 'Filter4'
]

use np.where function to set Signal according to whether above filters are satisfied

pred2[
 'Signal'
]
 =
 np.
 where
 (pred2[
 'Filter1'
]
 &
 pred2[
 'Filter2'
]
 ,
 1
 ,
 0
)

pred2[
 'Signal'
]
 =
 np.
 where
 (pred2[
 'Filter3'
]
 &
 pred2[
 'Filter4'
]
 ,
 -
 1
 ,
 pred2[
 'Signal'
])

buys
 =
 pred2.loc[pred2[
 'Signal'
]
 ==
 1
]

sells
 =
 pred2.loc[pred2[
 'Signal'
]
 == -
 1
]

need to reindex the buys and sells DataFrames to match the index of 'df[Close]'

if not
 buys.empty
 :

 buy_index_new
 =
 buys.index[
 -
 1
]
 -
 buys.index

 buy_index_new_2
 =
 len
 (df.index)
 -
 buy_index_new

 buys.
 set_index
 (buy_index_new_2
 ,
 inplace
 =
 True
)

if not
 sells.empty
 :

 sell_index_new
 =
 sells.index[
 -
 1
]
 -
 sells.index

 sell_index_new_2
 =
 len
 (df.index)
 -
 sell_index_new

 sells.
 set_index
 (sell_index_new_2
 ,
 inplace
 =
 True
)

iloc[row slicing, column slicing] Real Stock Price set to last n days of stock's close price

real_stock_price
 =
 df.iloc[
 -
 222
 :
 ,
 3
]
 # first -n: element is length of predictions, 3rd column is close prices

real_stock_price
 =
 real_stock_price.values

real_stock_price
 =
 pd.
 DataFrame
 (real_stock_price)
 # convert to pandas data frame

print
 (real_stock_price)

print
 (
 "REAL STOCK PRICE"
 ,
 real_stock_price)

Visualize strategy with a chart

the buys and sells have integer range indices (i.e. 1,2,3....) whereas the df index has datetime values. Reindex df using:

df.
 set_index
 (pd.
 RangeIndex
 (
 0
 ,
 len
 (df))
 ,
 inplace
 =
 True
)

plot price

plt.
 plot
 (df.index
 ,
 df[
 'Close'
]
 ,
 label
 =
 'Asset'
)

Plot the buy and sell signals on the same plot

plt.
 plot
 (sells.index
 ,
 df.loc[sells.index][
 'Close'
]
 ,
 'v'
 ,
 markersize
 =
 10
 ,
 color
 =
 'r'
)

plt.
 plot
 (buys.index
 ,
 df.loc[buys.index][
 'Close'
]
 ,
 '^'
 ,
 markersize
 =
 10
 ,
 color
 =
 'g'
)

plt.
 ylabel
 (
 'Price'
)

plt.
 xlabel
 (
 'Date'
)

plt.
 legend
 (
 loc
 =
 0
)

Display everything

plt.
 show
 ()

Our final step will be to create a backtest function and employ python’s ffn module to it, so that we can gain a deeper understanding on how well we could have predicted AMZN price returns using our logistical regression machine learning framework. Further information on this module can be found at:

https://pypi.org/project/ffn/

Before we can employ the ffn module to backtest results, we must create a basic backtesting function to use on the data. We will set the starting cash on the portfolio to $100,000. The function looks like the following:

BACKTESTING

define backtest method

def
 backtest
 (
 data
)
 :

 cash
 =
 100000
 # set starting cash to $100,000

 position
 =
 0
 # set position to 0 for current number of shares

 total
 =
 0

 equity_curve_df
 =
 []

 data
 [
 'Total'
]
 =
 100000
 # start with 100k for our strategy

 # To compute the Buy and Hold value, I invest all of my cash in X asset on the first day of the backtest

 increment
 =
 10
 # number of shares

 for
 row
 in
 data
 .
 iterrows
 ()
 :

 price
 =
 float
 (row[
 1
][
 0
])
 # Remember that "iterrows" returns an indexer(i.e. 0,1,2,3,4....) and the row of the DataFrame in a row vector - so you need to also reference the column you want in the row vector, hence the [1][3] - the 1 being the row (rather than the indexer), and the column within that row.

 signal
 =
 pred2.iloc[row[
 0
]][
 1
]
 # signal for our strategy, 2nd column in the dataframe is signals of 1 and -1

 if
 (signal
 >
 0
 and
 cash
 -
 increment
 *
 price
 >
 0
)
 :
 # ensure signal is 1 (or > 0), and there is enough cash to place trade (100,000 - (1,000 * price of asset) > 0)

 # Buy

 cash
 =
 cash
 -
 increment
 *
 price
 # deduct how many shares we bought and update cash remaining value

 position
 =
 position
 +
 increment
 # position is 0 + 1,000 shares (this keeps on going and looping as long as cash is available for another buy, assuming signal is there)

 # print(row[0].strftime('%d %b %Y') + " Position = " + str(position) + " Cash = " + str(cash) + " // Total = {:,}".format(int(position * price + cash)))

 elif
 (signal
 <
 0
 and
 abs
 (position
 *
 price)
 <
 cash)
 :
 # ensure signal is -1 (or < 0), and absolute value of (position or shares sold * price of stock is less than cash value to allow trade)

 # Sell

 cash
 =
 cash
 +
 increment
 *
 price
 # add cash value of portfolio to how many shares we sold, and update cash remaining value

 position
 =
 position
 -
 increment
 # position is new position (number of shares) - increment (or how many shares were sold)

 # print(row[0].strftime('%d %b %Y') + " Position = " + str(position) + " Cash = " + str(cash) + " // Total = {:,}".format(int(position * price + cash)))

 # data.loc[data.index == row[0], 'Total'] = float(position * price + cash) # return number of shares multiplied by price of asset + cash left in balance

 equity_curve_df.
 append
 (
 float
 (position
 *
 price
 +
 cash))

 # equity_curve_df = pd.DataFrame(equity_curve_df,index=range(len(equity_curve_df)),columns=["Total"])

 index
 =
 pd.
 date_range
 (
 '11/01/2017'
 ,
 periods
 =
 len
 (equity_curve_df)
 ,
 freq
 =
 'D'
)

 equity_curve_df
 =
 pd.
 DataFrame
 (equity_curve_df
 ,
 index
 =
 index
 ,
 columns
 =
 [
 'Total'
])

 return
 equity_curve_df
 # return number of shares multiplied by price of asset + cash left in balance

Finally, we can apply the ffn module to our defined backtest function to display the results of the strategy as follows:

Backtest for our strategy to create equity curve df by running backtest function defined above

equity_curve_df
 =
 backtest
 (real_stock_price)
 # for our strategy, backtest will be equal to the backtest(data) method we define above, utilizing our dataframe as the data

print
 (equity_curve_df)
 # prints out cash value of backtest result in USD

Apply Financial Functions for Python (FFN) to calculate statistics of algorithm

equity_curve_df[
 'Equity'
]
 =
 equity_curve_df

perf
 =
 equity_curve_df[
 'Equity'
].
 calc_stats
 ()

plot equity curve

perf.
 plot
 ()

plt.
 show
 ()

show overall metrics

perf.
 display
 ()

display monthly returns

perf.
 display_monthly_returns
 ()

plotting visual representation of strategy drawdown series:

ffn.
 to_drawdown_series
 (equity_curve_df[
 'Equity'
]).
 plot
 (
 figsize
 =
 (
 15
 ,
 7
)
 ,
 grid
 =
 True
)

#plt.show()

plot histogram of returns

perf.
 plot_histogram
 ()

#plt.show()

extract lookback returns

#perf.display_lookback_returns()

print
 (
 "Accuracy Score: "
 +
 str
 (
 accuracy_score
 (data_Y_test
 ,
 y_predictions)))

print_score(clf, data_X_train, data_Y_train, data_X_test, data_Y_test, train=True) # set to True for training

print_score
 (clf
 ,
 data_X_train
 ,
 data_Y_train
 ,
 data_X_test
 ,
 data_Y_test
 ,
 train
 =
 False
)
 # set to False because we want testing now

print
 (
 "CURRENT SIGNAL FOR SECURITY (1 FOR BUY, -1 FOR SELL, 0 FOR NEUTRAL):"
)

print
 (pred2.iloc[
 :
 ,
 0
])

The output for our code will create an equity price curve for how our initial $100,00 starting portfolio value would have faired through our specified testing period. Which for us, was 222 trading days going back from October 29, 2018. The equity price curve created by python looks like the following:

[image: Capture.PNG]

The associated actual backtest results created through the ffn module will look like:

[image: Capture.PNG]

The final line of code in our algorithm, being:

print
 (
 "CURRENT SIGNAL FOR SECURITY (1 FOR BUY, -1 FOR SELL, 0 FOR NEUTRAL):"
)

print
 (pred2.iloc[
 :
 ,
 0
])

allows us to simply notice what the latest, or current signal based on the last data point of our dataset is for AMZN; 1 buying buy, and -1 being sell.

And in terms of logistical regression machine learning applied to a specific stock, that is pretty much it. Very simple for the most part to code up. The ffn module allowed us to take this algorithm and apply historical statistics to it, so that we can gain a better understanding of how we could have done by acting on its signals. For the next section, we will go ahead and apply a much different technique employing artificial intelligence as a means of comparison to this model for AMZN, and see if we can beat our current results. This will be done through a probabilistic approach, employing deep learning with python’s keras module.

KERAS CNN MODEL FOR DEEP LEARNING PREDICTIONS ON AMZN

Now, let us go ahead and compare the results from our logistical regression machine learning model for AMZN to a deep learning neural network approach, employing python’s popular keras CNN convolution neural network. Further information on this model can be found at:

https://keras.io/layers/convolutional/

In general, deep learning refers to neural networks with multiple hidden layers that can learning increasingly abstract representations of the input data. For this specific example, we will again take AMZN for the same time span of January 1, 2010 through October 29, 2018, and apply a CNN framework that attempts to predict closing prices through a probabilistic model. These thresholds of probability (i.e. conviction levels) will be coded in a subjective manner, upon which the user can alter to meet his or her specific parameter needs. For CNN models such as this, you generally have a series of inputs (convolutions), feature maps (sub-sampling) and fully connected output layers. While CNNs have typically been used more for image recognition utilizing artificial intelligence in the past, they have slowly made their way into the financial spectrum recently; and definitely showing promising signs. For this specific example employing a CNN approach, we will use an 80-20 train test split ratio, in which we train on approx. 80% of our data, while testing on approx. 20%. This 20% amounts to approx. 439 trading days going back from October 29, 2018 (the last day in our data set).

In order to properly organize our training and testing data for the CNN algorithm, we will create a short script called ‘utils.py’, that will allow us to preprocess our dataset so that python can correctly interpret how to design and utilize the CNN model. Most importantly, this utils.py file is essential and required as a dependence for our algorithm to run off. The script written for this utils.py file is as follows:

def
 shuffle_in_unison
 (
 a
 ,
 b
)
 :

 # courtesy http://stackoverflow.com/users/190280/josh-bleecher-snyder

 assert
 len
 (
 a
)
 ==
 len
 (
 b
)

 shuffled_a
 =
 np.
 empty
 (
 a
 .shape
 ,
 dtype
 =
 a
 .dtype)

 shuffled_b
 =
 np.
 empty
 (
 b
 .shape
 ,
 dtype
 =
 b
 .dtype)

 permutation
 =
 np.random.
 permutation
 (
 len
 (
 a
))

 for
 old_index
 ,
 new_index
 in
 enumerate
 (permutation)
 :

 shuffled_a[new_index]
 =
 a
 [old_index]

 shuffled_b[new_index]
 =
 b
 [old_index]

 return
 shuffled_a
 ,
 shuffled_b

def
 create_Xt_Yt
 (
 X
 ,
 y
 ,
 percentage
 =
 0.80
)
 :
 # test on n% of the data. When was at 0.8, was testing on 20% of the data, 0.477 to get pred = 362 for q learning q trader algo

 p
 =
 int
 (
 len
 (
 X
)
 *
 percentage
)

 X_train
 =
 X
 [
 0
 :
 p]

 Y_train
 =
 y
 [
 0
 :
 p]

 X_train
 ,
 Y_train
 =
 shuffle_in_unison
 (X_train
 ,
 Y_train)

 X_test
 =
 X
 [p
 :
]

 Y_test
 =
 y
 [p
 :
]

 return
 X_train
 ,
 X_test
 ,
 Y_train
 ,
 Y_test

def
 remove_nan_examples
 (
 data
)
 :

 newX
 =
 []

 for
 i
 in
 range
 (
 len
 (
 data
))
 :

 if
 np.
 isnan
 (
 data
 [i]).
 any
 ()
 ==
 False
 :

 newX.
 append
 (
 data
 [i])

 return
 newX

Similar to our first model employing logistical regression machine learning, our CNN deep learning model employing keras needs to first read in all of the required libraries:

from
 utils
 import
 *

import
 pandas
 as
 pd

import
 matplotlib.pylab
 as
 plt

from
 keras.models
 import
 Sequential

from
 keras.layers.core
 import
 Dense
 ,
 Dropout
 ,
 Activation
 ,
 Flatten

from
 keras.layers.recurrent
 import
 LSTM
 ,
 GRU

from
 keras.layers
 import
 Convolution1D
 ,
 MaxPooling1D
 ,
 AtrousConvolution1D
 ,
 RepeatVector

from
 keras.callbacks
 import
 ModelCheckpoint
 ,
 ReduceLROnPlateau
 ,
 CSVLogger

from
 keras.layers.wrappers
 import
 Bidirectional

from
 keras
 import
 regularizers

from
 keras.layers.normalization
 import
 BatchNormalization

from
 keras.layers.advanced_activations
 import
 *

from
 keras.optimizers
 import
 RMSprop
 ,
 Adam
 ,
 SGD
 ,
 Nadam

from
 keras.initializers
 import
 *

import
 ffn

import
 seaborn
 as
 sns

sns.
 despine
 ()

from
 math
 import
 sqrt

from
 pandas_datareader
 import
 data
 as
 pdr

import
 fix_yahoo_finance
 as
 yf

import
 datetime

yf.
 pdr_override
 ()

Upon importing the installed libraries, we can go ahead and assign the required variable parameters to lists, which will be the open, high, low, close, and volume for AMZN.

openp
 =
 data_original.ix[
 :
 ,
 'Open'
].
 tolist
 ()

highp
 =
 data_original.ix[
 :
 ,
 'High'
].
 tolist
 ()

lowp
 =
 data_original.ix[
 :
 ,
 'Low'
].
 tolist
 ()

closep
 =
 data_original.ix[
 :
 ,
 'Adj Close'
].
 tolist
 ()

volumep
 =
 data_original.ix[
 :
 ,
 'Volume'
].
 tolist
 ()

data_chng = data_original.ix[:, 'Adj Close'].pct_change().dropna().tolist()

WINDOW
 =
 30
 # 30 day windows

EMB_SIZE
 =
 5
 # number of features (open, high, low, close, volume)

STEP
 =
 1

FORECAST
 =
 1
 # forecasting 1 day out

X
 ,
 Y
 =
 []
 ,
 []

for
 i
 in
 range
 (
 0
 ,
 len
 (data_original)
 ,
 STEP)
 :

 try
 :

 o
 =
 openp[i
 :
 i
 +
 WINDOW]

 h
 =
 highp[i
 :
 i
 +
 WINDOW]

 l
 =
 lowp[i
 :
 i
 +
 WINDOW]

 c
 =
 closep[i
 :
 i
 +
 WINDOW]

 v
 =
 volumep[i
 :
 i
 +
 WINDOW]

 # remember, we are not necessarily interested in predicting the exact value (thus, the expected value and variance of the future isn't very interesting (we just need to predict the up or down movement).

 # normalize open, high, low, close, and volume by subtracting mean, and dividing by standard deviation

 o
 =
 (np.
 array
 (o)
 -
 np.
 mean
 (o))
 /
 np.
 std
 (o)

 h
 =
 (np.
 array
 (h)
 -
 np.
 mean
 (h))
 /
 np.
 std
 (h)

 l
 =
 (np.
 array
 (l)
 -
 np.
 mean
 (l))
 /
 np.
 std
 (l)

 c
 =
 (np.
 array
 (c)
 -
 np.
 mean
 (c))
 /
 np.
 std
 (c)

 v
 =
 (np.
 array
 (v)
 -
 np.
 mean
 (v))
 /
 np.
 std
 (v)

 # Since we want to forecast the probability of moment either up or down the following day, we need to consider the change of a single dimension:

 x_i
 =
 closep[i
 :
 i
 +
 WINDOW]
 # closing price of x values for the window of 30 days

 y_i
 =
 closep[i
 +
 WINDOW
 +
 FORECAST]
 # closing price of y value (close) for the window of 30 days, + a forecast of 1 day out

 last_close
 =
 x_i[
 -
 1
]
 # previous day's close

 next_close
 =
 y_i
 # predicted future close 1 day out

 if
 last_close
 <
 next_close
 :
 # if next (or future close price 1 day out) was greater than prior day's close price.....

 y_i
 =
 [
 1
 ,
 0
]
 # price went up with 100% probability

 else
 :

 y_i
 =
 [
 0
 ,
 1
]
 # price went down with 100% probability

 x_i
 =
 np.
 column_stack
 ((o
 ,
 h
 ,
 l
 ,
 c
 ,
 v))
 # stack columns for open, high, low, close, and volume

 except
 Exception
 as
 e
 :

 break

 X.
 append
 (x_i)

 Y.
 append
 (y_i)

Next, we can go ahead and employ our created functions from our utils.py file in order to preprocess our data for the CNN algorithm, so that python will be able to correctly assess how to structure and prepare the framework to run properly. Done as follows:

X
 ,
 Y
 =
 np.
 array
 (X)
 ,
 np.
 array
 (Y)

X_train
 ,
 X_test
 ,
 Y_train
 ,
 Y_test
 =
 create_Xt_Yt
 (X
 ,
 Y)
 # utilize function from utils.py to create x train, x test, y train, y test , see method 'def create_Xt_Yt' in utils.py: we are training on 90% , and testing on 10%

scale data

X_train
 =
 np.
 reshape
 (X_train
 ,
 (X_train.shape[
 0
]
 ,
 X_train.shape[
 1
]
 ,
 EMB_SIZE))

X_test
 =
 np.
 reshape
 (X_test
 ,
 (X_test.shape[
 0
]
 ,
 X_test.shape[
 1
]
 ,
 EMB_SIZE))

Similar to our prior model, for additional trading conviction, we will code up some technical indicators tha