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Introduction

 

Word2Vec is a set neural network algorithms that have gotten a lot of attention in recent years as part of the re-emergence of deep learning in AI.

 

The idea that one can represent words and concepts as vectors is not new. The ability to do it effectively and generate noteworthy results is.

 

Word2Vec algorithms are especially interesting because they allow us to perform arithmetic on the word vectors that yield both surprising and satisfying results. We call these “word analogies”.

 

Some popular word analogies Word2Vec is capable of finding:

 

“King” is to “Man” as “Queen” is to “Woman”.

 

“France” is to “Paris” as “Italy” is to “Rome”.

 

“December” is to “November” as “July” is to “June”.

 

Not only can we cluster similar words together, we can make all these clusters have the same “structure”, all by using Word2Vec.

 

Word2Vec was created by a team led by Tomas Mikolov at Google and has many advantages over earlier algorithms that attempt to do similar things, like Latent Semantic Analysis (LSA) or Latent Semantic Indexing (LSI).

 

In this book we cover various popular flavors of the Word2Vec algorithm, including CBOW (continuous bag-of-words), skip-gram, and negative sampling.

 

I show you both their derivations in math (you’ll see that if you already are familiar with deep learning concepts, there is no new math to be learned), and how to implement them in code.

 

Whereas implementation in Numpy is just the straightforward application of the equations in code, Theano is a bit more complex because it requires new array-slicing techniques, namely running gradient descent on only a part of a matrix. It’s not straightforward, but I walk you through all the bits and pieces required to understand the full implementation.

 

Amazingly, all the technologies we discuss in this book can be downloaded and installed for FREE. That means all you need to invest after purchasing this book is your effort and your time. The only prerequisites are that you are comfortable with Python , Numpy, and Theano coding and you know the basics of deep learning.

 

“Hold up... what’s deep learning and all this other crazy stuff you’re talking about?”

 

If you are completely new to deep learning, you might want to check out my earlier books and courses on the subject, since they are required in order to understand this book:

 



Deep Learning in Python





Deep Learning in Python Prerequisities



 

Much like how IBM’s Deep Blue beat world champion chess player Garry Kasparov in 1996, Google’s AlphaGo recently made headlines when it beat world champion Lee Sedol in March 2016.

 

What was amazing about this win was that experts in the field didn’t think it would happen for another 10 years. The search space of Go is much larger than that of chess, meaning that existing techniques for playing games with artificial intelligence were infeasible. Deep learning was the technique that enabled AlphaGo to correctly predict the outcome of its moves and defeat the world champion.

 

Deep learning progress has accelerated in recent years due to more processing power (see: Tensor Processing Unit or TPU), larger datasets, and new algorithms like the ones discussed in this book.

 

Where to get the code

 

The code is as always, in the github repo:



https://github.com/lazyprogrammer/machine_learning_examples



 

The folder for this class is nlp_class2.

 

Make sure you always “git pull” so you have the latest version.

 

Where to get the data

 

We’ll be using the wikipedia data dumps in this book, which you can get get from 
https://dumps.wikimedia.org/

 .

 

You’ll want to download the files that have the term “pages-articles” in the filename.

 

To turn the data from XML into regular text files, we are going to use a tool called WP2TXT which you can get from 
https://github.com/yohasebe/wp2txt

 .

 

Instructions for how to install and use it can be found in the github repo.

 

Just use this command to install the program:

 


sudo gem install wp2txt


 

And use this command to run it:

 


wp2txt -i <input_file>


 

Some people have boohoo’d to me that wp2txt is in Ruby. Note that it doesn’t matter what language the program is written in -- it’s already written! You just need to download it and run it.

 

The code expects these txt output files to be inside the folder large_files, which should be adjacent to nlp_class2.

 

Formatting

 

I know that the e-book format can be quite limited on many platforms. If you find the formatting in this book lacking, particularly for the code or diagrams, please shoot me an email at 
info@lazyprogrammer.me

 along with a proof-of-purchase, and I will send you the original ePub from which this book was created.

 


 







Chapter 1: Word Embeddings

 

What is a word embedding?

 

A lot of the time in deep learning we are concerned with dimensionality reduction.

 

Another way to think of “dimensionality reduction” is that we are finding a “higher level” representation of some input data by representing it more compactly, or in other words, with a smaller number of dimensions.

 

An easy way to remember why we want to do this is to think of principal components analysis or PCA.

 

What is one of the goals of PCA?

 

It’s to decorrelate the observed data, so that the transformed data can be represented more compactly. For example, if 99% of documents that contain the word “car” also contain the word “vehicle” and vice versa, then those 2 words are highly correlated - we don’t need 2 separate dimensions to represent them.

 

Remember that to store words initially we use one-hot encoding, because they are categorical variables, so each word takes up a dimension.

 

Therefore, if we have a vocabulary size of 1 million, then we would need a 1 million dimensional vector to represent all the distinct possible words.

 

When representing sentences in this fashion (if a word appears in the sentence set the corresponding element’s value to 1, or the count of how many times that word appears) this is called “bag-of-words”.

 

 

Distance

 

Aside from the fact that 1 million dimensions is way too large to work with, what is another problem with one-hot encoding?

 

Think about the fact that one pair of words might be more related to each other than another pair.

 

I’ll give you a second to think about why this might be a problem.

 

Did you?

 

Great!

 

Hopefully you thought about why one-hot encoding is bad for telling us the closeness of each pair of words.

 

The answer is that all pairs of words are the same distance apart! That’s not very useful.

 

In addition to being represented in a very high-dimensional space, the vectors in this high dimensional space are all orthogonal to the axes at a distance of 1 from the origin, with a Manhattan distance of 2 from every other word.

 

e.g. The L1 distance between [1,0,0] and [0,1,0] is 2.

 

So we don’t know exactly how
 any of the words are related to each other. We don’t have any idea about the correlations of the words.

 

That should remind you of PCA, because that’s exactly what PCA does - it finds correlations and then outputs new vectors that are both smaller than the original, and are at meaningful distances away from each other.

 

In fact, we already did this in my Easy NLP course / book (
https://www.udemy.com/data-science-natural-language-processing-in-python

 )!

 

Let’s review how that worked.

 

Step 1 is to gather a bunch of documents and then count up how many times each word appears in each document.

 

Recall that this gives us a matrix, and the simplest way to represent it is with raw counts. There are other ways to create this matrix like TF-IDF or using percentages, but let’s just use raw counts for this example.

 

So if we were to do a baby example:

 

Document 1 contains “Cat dog rabbit”

Document 2 contains “Cat lion tiger cat”

 

We would then create a VxN (=5x2) matrix with the values:

cat=0, dog=1, rabbit=2, lion=3, tiger=4


1 2



1 0



1 0



0 1



0 1


 

Note that this is sort of opposite from what we usually work with - usually we have NxD matrices, where N is the number of samples and D is the number of features.

 

Here it’s backwards, because the vocabulary goes along the rows, and the documents go along the columns.

 

If you think about it, this makes the most sense, because which
 documents the word shows up in are
 the features.

 

For example, if you have a set of words showing up in physics journal articles, you might say that all those individual physics articles are all correlated with each other, so you only need 1 new dimension to represent them.

 

In unsupervised learning parlance, you might say that the hidden cause or latent variable is it’s a physics article, and then the actual document is then generated
 from a distribution that describes what physics articles look like.

 

Now let’s say do PCA on this term document matrix.

 

We create a transformation from VxN to VxD, where D << N. Let’s say N=1 million documents, and D=300 to retain 95% of the original variance.

 


xxxxx xxx |



xxxxx xxx |



xxxxx > xxx V



xxxxx xxx |



xxxxx xxx |



--N-- -D-


 

If you’re unsure of how PCA works and you want to review it, you’ll want to take my Unsupervised Deep Learning (
https://www.udemy.com/unsupervised-deep-learning-in-python

 ) course, which is part 4 of the series, and is in some ways a prerequisite to this course.

 

Now we have a VxD matrix. What now?

 

Actually that’s it!

 

Since the number of rows is V, each row represents a word, and it is represented by a D-dimensional vector.

 

In a way, we’ve already
 been creating word vectors, long before you even knew that they existed!

 

Note that we will always use the convention “V x D”. V = vocabulary size, D = number of dimensions of each word vector.

 

In my Easy NLP (
https://www.udemy.com/data-science-natural-language-processing-in-python

 ) course, we did this example using TruncatedSVD, which is part of the PCA family, and we saw a very interesting pattern in the book title data we used.

 

The result was that all the technical and analytical words were grouped along one axis, and the more liberal arts-related words, and those involving language, religion, etc., went along another axis.

 

A little more advanced

 

Now, that’s not very exciting, since we already did it.

 

But before we go on to word embeddings as they are used in deep learning, what if we turned things up just a few notches, and used some of the techniques we learned in the previous deep learning courses, on a more sophisticated term-document matrix, namely, one that uses TF-IDF?

 

In the next chapter we’ll do just that. Step 1 will be creating the TF-IDF matrix, and step 2 will be using a nonlinear dimensionality reduction technique, known as t-SNE, also covered in the unsupervised deep learning course, rather than PCA, which is just linear.

 

Word Analogies

 

If you took my course on recurrent neural networks, you got your first taste of word embeddings and how they could be used for finding word analogies.

 

These are when you can make equations like:

 

King - man ~= Queen - woman

 

Recall that word analogies are one of the main tasks that we’ve been using recently to demonstrate that our word vectors have positioned themselves in some meaningful configuration.

 

We’ll get to how exactly word analogies are found later in the book.

 

The reason I mention recurrent neural networks is because in that course, we saw yet another
 way to create word embeddings.

 

We simply made the first stage of the neural network to be the creation of word vectors from one-hot encoded words.

 

What this does is effectively take a sequence of one-hot encoded words, and turns it into a sequence of word vectors.

 

There are 2 ways to think about this:

 

1) the embedding happens BEFORE the actual neural network.

 

2) the word embedding is PART OF the neural network.

 

Therefore, the input into the neural network is a sequence of one-hot encoded words, i.e. a TxV matrix (or a T-length vector of ints, depending on what perspective you take), and then in the first stage it is converted into a TxD matrix of word vectors.

 

The reason we want to consider it part of the neural network is that we update all the weights, including the word embedding matrix, using backpropagation.

 

When we visualized these word embeddings using t-SNE, we found that it clustered all the words in a very meaningful way - all the numbers were together, religions were together, months were together, and they were very well-separated from the rest of the clusters.

 

So it proved to us that the word embeddings we learned using recurrent neural nets were very meaningful.

 

Summary

 

Let’s summarize what we’ve just discussed, since it’s probably information-overload if you haven’t used these techniques before.

 

There are 3 scenarios I’ve outlined where we have already seen word embeddings:

 

1) Using PCA on a term-document matrix (just raw counts, i.e. document j contains word i X(i,j) times). We output a transformed matrix of size VxD.

 

2) We can use the same pipeline but with more sophisticated techniques, i.e. TF-IDF instead of simple word counts, and t-SNE (nonlinear dimensionality reduction) instead of PCA (linear dimensionality reduction).

 

3) Use recurrent neural networks with a VxD word embedding matrix at the first layer. This will train a VxD word embedding matrix that one can visualize using a technique like t-SNE, and discover clusters of similar words.

 

 

Word embeddings in this book

 

This brings us to the question - how are we going to find word embeddings in this book?

 

We are going to learn a novel
 way of creating word embeddings. It is called word2vec.

 

You’ll see that it uses a lot of concepts we already know about, but it also applies them in very strange ways - so it’s a very creative invention in that regard.

 

Another very effective but less well-known algorithm called GLoVe is what you’ll learn about in my follow-up book. GLoVe stands for “Global Vectors for Word Representation”.

 

Since this was such a long section, let’s summarize what we talked about.

 

Word embeddings are just word vectors for each word in our vocabulary that are all separated from each other in some meaningful way.

 

We’ve already looked at word embeddings in the past, sometimes subtly like when we did PCA, and sometimes more directly like when we used word embeddings in recurrent neural networks.

 

We are going to do an experiment by building a term-document matrix with TF-IDF, and we’ll use t-SNE to visualize the matrix to see if we can find any interesting patterns (next chapter).

 

Finally, this book will discuss one novel method of creating word embeddings, called word2vec.

 

Using Pre-trained Word Embeddings

 

A lot of my later books will tie in things you learned about in earlier books and courses.

 

Here is yet another example of that.

 

In unsupervised deep learning, we talked about greedy pre-training.

 

This is useful because the cost functions for neural networks have local minima, and sometimes you can get stuck in a bad spot when you’re doing gradient descent, or you might encounter the vanishing gradient, where the changes in your weight updates drop down to 0.

 

You learned that by doing pre-training, you put weights that came earlier in the network in a good spot first, so that before you run a global backpropagation on the whole network, that first layer has already found a useful mapping from its input to its output.

 

That makes it easier for backpropagation to do its job later on.

 

One way we can apply this principle is to use pre-trained word embeddings in our neural networks.

 

Remember that we often put the word embedding matrix at the front of a recurrent network, and as you’ll see in later books, at the leaves of our recursive neural networks, or tree neural networks.

 

And remember that recurrent neural networks can suffer from the vanishing gradient problem, so pre-training would be especially helpful.

 

Well then the solution is to pre-train those word embeddings instead of randomly initializing them.

 

So as an example, suppose we’re doing sentiment analysis with a recurrent neural network, and the first stage of the network is a word embedding matrix.

 

Instead of initializing that word embedding matrix randomly, you could use word2vec or GLoVe on that same corpus of data, and find a better word embedding matrix first, then plug that word embedding matrix into the RNN, and then do backpropagation in the RNN.

 

At this point you can still continue to update the word embedding with backprop.

 

 

Finding Word Analogies

 

In this section we are going to talk about how you can actually do calculations like show king - man + woman = queen.

 

It’s quite simple but worth going through anyway.

 

I will describe it in 2 steps:

 

1) Convert all 3 of the words on the left to their word embeddings, or word vectors. Once they’re in vector form, you can subtract and add very easily. Hopefully you know how to do that by now.

 

Remember that we can just grab the word’s corresponding word vector by indexing the word embedding matrix with the index of the word.

 

e.g. 
We

 is a VxD matrix and 
i

 is the index of the word we’re interested in. Then:

 



We[i]

 is the word vector for that word.

 

We usually keep a dictionary called word2idx to store a mapping of words to indexes.

 

2) Find the closest actual
 word in our vocabulary to the equation on the left.

 

Why is that? Because the result of king - man + woman just gives us a vector - there’s no way to map from vectors to words, since a vector space is continuous and that would require an infinite number of words.

 

So the idea is we just find the closest word.

 

There are various ways of defining distance.

 

Sometimes you see just the plain squared distance used.

 

In code that’s:

 


def dist(a, b):



return np.linalg.norm(a - b)


 

It is also common to use the cosine distance.

 

In code, that’s:

 


def dist(a, b):



return 1 - a.dot(b) / (np.linalg.norm(a) * np.linalg.norm(b))


 

In this latter form, since only the angle matters, during training we normalize all the word vectors so that their length is 1. In that case of course the norm calculations can be dropped, and we can say that all the word embeddings lie on the unit sphere.

 

Once we have our distance function, how do we find the word? The simplest way is just to look at every word in the vocabulary, and get the distance between each vector and your expression vector.

 

Keep track of the smallest distance and then return that word.

 

You may want to leave out the other words from the left side of the equation, namely king, man, and woman.

 

In code, that might look like:

 


min_dist = float('inf')



best_word = ''



for word, idx in word2idx.iteritems():



if word not in (w1, w2, w3):



v1 = We[idx]



d = dist(v0, v1)



if d < min_dist:



min_dist = d



best_word = word



print w1, "-", w2, "=", best_word, "-", w3


 

 

 

Assuming w1 = “king”, w2 = “man”, and w3 = “woman”.

 

More on cosine distance

 

Let’s further expand on how cosine distance works. Remember that with distance, we want a bigger number to mean “further apart” and a smaller number to mean “closer together”.

 

But if you take the cosine it kind of does the opposite.

 

If 2 vectors are parallel, the angle is 0, but then cos(0) is 1, which is the maximum value of cosine!

 

If 2 vectors are orthogonal, the angle is 90 degrees, and cos(90) is 0!

 

If 2 vectors are facing the opposite direction, the angle is 180 degrees, and cos(180) is -1, which is the minimum value of cosine!

 

So what’s the moral of the story here?

 

It’s that we don’t want to use cosine directly, we actually want to use the negative of cosine. Another way of doing it is to use 1 - cosine.

 

So what are the possible distance values now?

 

If the 2 vectors are facing the same direction, you get 1 - cos(0), which is 1 - 1, which is 0.

 

If the 2 vectors are orthogonal, you get 1 - cos(90), which is 1 - 0, which is 1.

 

And if the 2 vectors are facing opposite directions, you get 1 - cos(180), which is 1 + 1, which is 2.

 


 







Chapter 2: TF-IDF with t-SNE Experiment

 

In this chapter we are going to do an experiment and see what happens when we use TF-IDF on our term document matrix along with t-SNE for finding a low-dimensionality representation of that matrix.

 

Why are doing this?

 

Because it’s interesting.

 

We don’t want to only
 do things like Word2Vec without considering the more fundamental issues that we’re dealing with, just because Word2Vec happens to be popular at the moment.

 

We know that TF-IDF is a bit more complex than raw frequency counts, because it takes into account the global frequency of a word. So the fact that common words like “the”, “a”, and “in” appear everywhere lowers its score, but words that are common within only a small subset of documents should have a higher score.

 

In this example we are going to consider each paragraph to be a separate document, since we don’t want to correlate every single word on a Wikipedia page, but instead just focus on a smaller window.

 

We also don’t want to do it at the sentence level because that would take way too long. As you’ll see it’s going to take a long time for this code to run.

 

We also want to use t-SNE, because we’ve already used linear methods like PCA. You might wonder, can a nonlinear method such as t-SNE provide more meaningful results?

 

All of this code should already be within your skillset. In fact, you should try doing this yourself first. If you want to cross-reference your code with mine or see the latest version, the relevant file is tfidf_tsne.py in the class repo (
https://github.com/lazyprogrammer/machine_learning_examples/tree/master/nlp_class2

 )

 

 


import json



import numpy as np



import matplotlib.pyplot as plt



from sklearn.utils import shuffle



from sklearn.manifold import TSNE



from datetime import datetime



 



import os



import sys



sys.path.append(os.path.abspath('..'))



from rnn_class.util import get_wikipedia_data



from util import find_analogies



from sklearn.feature_extraction.text import TfidfTransformer



 



 



def main():



sentences, word2idx = get_wikipedia_data(n_files=10, n_vocab=1500, by_paragraph=True)



with open('w2v_word2idx.json', 'w') as f:



json.dump(word2idx, f)



 



# build term document matrix



V = len(word2idx)



N = len(sentences)



 



# create raw counts first



A = np.zeros((V, N))



j = 0



for sentence in sentences:



for i in sentence:



A[i,j] += 1



j += 1



print "finished getting raw counts"



 



transformer = TfidfTransformer()



A = transformer.fit_transform(A)



A = A.toarray()



 



idx2word = {v:k for k, v in word2idx.iteritems()}



 



# plot the data in 2-D



tsne = TSNE()



Z = tsne.fit_transform(A)



plt.scatter(Z[:,0], Z[:,1])



for i in xrange(V):



try:



plt.annotate(s=idx2word[i].encode("utf8"), xy=(Z[i,0], Z[i,1]))



except:



print "bad string:", idx2word[i]



plt.show()



 



# create a higher-D word embedding, try word analogies



# tsne = TSNE(n_components=3)



# We = tsne.fit_transform(A)



We = Z



find_analogies('king', 'man', 'woman', We, word2idx)



find_analogies('france', 'paris', 'london', We, word2idx)



find_analogies('france', 'paris', 'rome', We, word2idx)



find_analogies('paris', 'france', 'italy', We, word2idx)



 



 



if __name__ == '__main__':



main()


 

Spend some time looking at the output scatterplot.

 

You should find that all related words appear clustered together.

 

Not only that, you should find that words which are synonyms are often found in between 2 groups of related words.

 

For example, the word “program” could be related to the word “college”, as in “college program”. Or it could be related to the word “software” as in “software program”.

 

See if you can find it in the scatterplot!

 

Unfortunately, this technique is no good at finding word analogies.

 

 


 







Chapter 3: Word2Vec Simple Bigram Prediction

 

Word2Vec Introduction

 

In this chapter we are going to discuss the basics of the word2vec algorithm.

 

Remember, word2vec is used for learning word embeddings, so somewhere in here we’re going to have a VxD matrix.

 

If you took my course on recurrent neural networks, you should be familiar with the idea of next-word prediction.

 

On the next-word prediction task you just take all the previous words in a sequence, and try to predict the next word in the sequence.

 

e.g. model p{ x(t) | x(t-1), x(t-2), ..., x(1) }

 

Here we’re going to start with something even simpler. We’ll just take ONE word at a time, and try to predict the next word. Remember, these are called bi-grams.

 

e.g. p{ x(t) | x(t-1) }

 

It’s essentially a Markov model because each word is only conditioned on one previous value.

 

With Markov models this is particular easy. For example, if you wanted to find p(“states” | “united”), the maximum likelihood estimate is:

 

count(“united states”) / count(“united”)

 

To solve this problem with neural networks, we only need to draw on skills we learned in deep learning part 1.

 

What does the model look like?

 

We have a VxD input-to-hidden matrix, only one hidden layer, and a DxV hidden-to-output matrix.

 


Wi Wo



o----o----o



x h y


 

What’s interesting about all the word2vec models is that at the hidden layer, we don’t use any nonlinear function, so the value just passes through.

 

What that means is that we essentially just have a linear mapping from previous word to next word.

 

e.g. y = softmax( (x.dot(Wi).dot(Wo) )

 

It’s interesting that word2vec was invented at the time deep learning became very popular, and is considered to be part of the deep learning ecosystem, yet at the same time this model is not “deep” at all!

 

To train this model, we still at this point just use what we already know, we have one target word per training sample, we set that output to 1, do the softmax, calculate cross-entropy, and do gradient descent.

 

e.g. J = sum[k=1..K]{ t(k) * log(y(k)) }

 

So nothing special yet.

 

In the subsequent chapters we’ll discuss modifications to this architecture that make word2vec what it is - a much more powerful model than a simple bigram prediction model.

 

As an aside, I want to look at a sort of mathematical manipulation of this bigram model.

 

This might give you some insight when we discuss GLoVe in the next book.

 

As you know, because we don’t have any nonlinear function in the hidden layer, this is just a linear model.

 

If we represent the output, which is a V-size vector, in terms of the input, which is also a V-size vector, we get what almost
 looks like logistic regression.

 

Why?

 

WiWo is just a VxV matrix.

 

Let’s think about how we would solve this problem if we were to use logistic regression.

 

We would actually not need to use gradient descent.

 

Why?

 

This is actually a marriage between logistic regression and Markov models, which you learned about in my Hidden Markov Models course.

 

You can think of the VxV matrix as a Markov matrix, each row represents the probability of the next word, given that the previous word is the word that represents that row.

 

So you could simply solve the entire matrix using maximum likelihood as discussed earlier and maybe add smoothing.

 

Let’s do a very simple example: We have 2 sentences in our corpus, and our vocabulary size is 4.

 

“I love dogs”, “I love cats”

I=0, love=1, dogs=2, cats=3

 

So the matrix becomes:


0 1 0 0



0 0 .5 .5



0 0 0 0



0 0 0 0


 

The last 2 rows are 0 because no words come after dogs or cats.

 

As discussed, each entry in the matrix A(i,j) just represents P(word j | word i) because this is a Markov matrix.

 

Now I said that this model is only similar
 to logistic regression. But it’s not the same as
 logistic regression. If we multiply Wo by Wi we get a VxV matrix, and so the functional form is the same.

 

y = softmax( xWiWo )

 

The question is - how is it different?

 

If we used logistic regression directly, consider how many weights we would have. If our vocabulary is of size 2000, then the weight matrix would be of size 2000x2000, which is 4 million.

 

Now what about our bigram model?

 

Let’s say we choose D=100 as the size of our hidden layer, because we want word embeddings of size 100.

 

Then Wi would be of size 2000x100, and Wo would be of size 2000x100, so in total we would have 200k + 200k = 400k parameters. This is 10x less than logistic regression.

 

So to summarize, yes we are kind of
 doing logistic regression, but we have a much smaller number of parameters to train, which could result in a more compact and higher level representation of the data.

 

As an exercise, you may actually want to try building word embeddings using this bigram model, to see if you can come up with any interesting patterns.

 

Remember, this only requires skills you learned in deep learning part 1, so it should be very simple for you at this point.

 


 







Chapter 4: CBOW and Skip-Gram

 

CBOW

 

In this section we are going to discuss the first word2vec modification of the simple bigram architecture.

 

It’s called CBOW, which stands for “continuous bag-of-words”, and essentially what it does is it incorporates context.

 

In particular, we might be able to better predict a word given a window of surrounding words, rather than just the previous word.

 

We first discussed this in my Easy NLP course, where we used the last word and the next word to predict the middle word for an article spinner.

 

In that example, we would have considered the context size to be 1.

 

In word2vec, we usually use a context size of around 5-10 words. That means 10 to the left, AND 10 to the right.

 

Sometimes when people talk about context size they mean 10 to the left and right in total. You always want to check and make sure exactly what the author means whenever you see it mentioned.

 

What we try to predict is the middle word, same as what we did in the article spinner example.

 

e.g. We model p{ x(t) | x(t+1), x(t+2), ..., x(t+context_sz), x(t-1), x(t-2), ..., x(t-context_sz) }

 

So how can we modify our neural network to use CBOW?

 

To do that, we simply add more inputs to the neural network.

 

So the input becomes fat, but the output remains the same size.

 


o



\



\Wi



\ Wo



ox--oh--oy



/



/Wi



/



o


 

Notice that it’s the same input-to-hidden weight everywhere on the left. Remember that the inputs are one-hot encoded words, so they each just take one row of the word embedding matrix and pass that to the next layer.

 

What happens at the hidden layer?

 

Well if we have 10 input vectors, then we’ll have 10 D-dimensional vectors at the hidden layer, and we somehow have to match that to a DxV output matrix to get the output.

 

What we do with CBOW is we just take the average of those 10 vectors. So we sum them all up, and divide by 10, now we have 1 D-dimensional vector, which can be passed along to the output.

 

In pseudocode, the hidden layer value could be calculated as:

 


h = np.zeros(D)



for word_idx in context:



h += Wi[word_idx]



h = h / len(context)


 

Sidenote:

 


Wi[word_idx]


 

Is equivalent to doing:

 


x.dot(Wi)


 

Where x is a one-hot vector with the index word_idx set to 1.

 

And the output would be calculated as usual:

 


y = softmax(h.dot(Wo))


 

Note that we still don’t have any nonlinear function at the hidden layer, and that none of the word2vec algorithms in this course will have one.

 

The cost is still the cross-entropy as defined in the last chapter and we still use vanilla gradient descent to solve for Wi and Wo.

 

Exercise: convince yourself that the way I’ve described CBOW above is equivalent to what we would get if I simply turned the context into a “bag-of-words” vector (as discussed in Chapter 1), multiplied it by Wi, and divided the output by len(context) at the hidden layer h.

 

In code:

 


context_vector = np.zeros(V)



context_vector[context_word_indexes] = 1



h = context_vector.dot(Wi) / len(context_word_indexes)


 

 

Skip-Gram

 

In this section we are going to discuss yet another modification to the simple bigram model, called skip-gram.

 

CBOW and skip-gram are the 2 main methods of including context with word2vec, so that it’s not just simply bigram prediction.

 

Skip-gram is essentially the opposite of CBOW.

 

Whereas CBOW uses context to predict the middle word, skip-gram uses the middle word to predict context.

 

Pictorially, what we have now is the input remains the same size, and the output is fat.

 

Notice that it’s now the output weight that is repeated on the right side.
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The cost is now defined as the cross-entropy using targets which are the context words.

 

Now if you’re like me, you probably find this model a bit strange.

 

We know that softmax is for predicting one class only, meaning, out of the V words, softmax will choose one.

 

Now we’re sort of sending conflicting messages to the neural network, saying “wait, you should try to pick all 10 of these words, given that middle word”.

 

But how can we do this?

 

We have the same output weight Wo going to every output node.

 

Therefore, every output node is going to have the same output.

 

Softmax will simply choose the max.

 

e.g. If my sentence is “I love dogs and cats”, the middle word is “dogs”, and the context is [“I”, “love”, “and”, “cats”]

 

Suppose I pick “cats” correctly at the softmax output. But I still get 3 words wrong!

 

Well, we’re going to carry on as if nothing is wrong.

 

To create our cost function, we can just sum up all the individual costs of each target, pretending they are different bigram samples.

 

e.g. J = sum[c in context][k=1..K]{ targets(c,k)*log(y(c,k)) }

 

This is equivalent to trying to maximize the joint probability of producing all those words.

 

Another way to think of this is that we are still kind of doing a bigram model, just that instead of trying to predict the next word, we are creating MORE training samples by having that input word try to predict to ALL its context words.

 

In other words, for the sentence “I love dogs and cats”, I’ve created the “skip-grams”:

 

“dogs” -> “I”

“dogs” -> “love”

“dogs” -> “and”

“dogs” -> “cats”

 

And I’m treating them “like” bigrams as we discussed in the last chapter.

 

Get it? It’s called “skip-gram” because I’m making one word predict another word but skipping words in between. (If the word I’m predicting comes before, then I’m skipping a negative number of words).

 

The fact that we sum all the costs to get J is irrelevant.

 

It’s the same thing we’d do if we were doing batch gradient descent - just sum the cost of each input-output pair.

 

As an exercise, I would highly recommend trying to implement the skip-gram model as described.

 

It again requires only tools you learned in deep learning part 1.

 

You can use either Numpy or Theano.

 

One problem you’re going to have right away is that this is a lot of weight updates, especially if your vocabulary size is in the millions.

 

If you’re using Numpy, what’s going to happen is that EVERY hidden-to-output weight needs to be updated, because either the output is wrong or it’s right (e.g. the word is in the context or it’s not), and the weights need to be updated according to that signal.

 

So that’s DxV floats we need to update so far.

 

In the input-to-hidden layer, only the word vector for the middle word needs to be updated, because those are the only parameters that feed into the output layer.

 

So in total that’s D(V + 1) floats we need to update.

 

What if we used Theano?

 

The thing with Theano is that we need to take the entire weight matrix as one variable, and the updates are presented to Theano as tuples in the form:

 

(W, W - lr*g)

 

So it’s not really possible (yet) to update only parts of the weight.

 

If we were to do this in Theano, that would be 2xVxD floats to update (in other words, every single parameter), which is even more.

 

Now you might think you could create 2xV separate
 D-dimensional vectors, but that’s probably not a good idea since creating objects will incur additional overhead.

 

Anyway, give it a try, and get a feel for how fast it goes.

 

In the following chapters, we’ll discuss how to improve this.

 


 







Chapter 5: Negative Sampling

 

In this chapter we are going to discuss how to solve the problem of there being too many weights to update at every iteration of gradient descent.

 

For the first time since Deep Learning part 1, we are going to diverge from the usual softmax, and look at another method that has been shown to provide good results.

 

The idea is this.

 

If we have K words in the context, there are going to be K targets. And there will be K*(V-1) words that are not the target.

 

Why is that? It’s because each of the target words in the context is only the target one at a time. So all the other times, it’s not the target.

 

e.g. For our running example, “I love dogs and cats”, the targets are “I”, “love”, “and”, and “cats”.

 

When the target is “cats”, the cross-entropy is log(y(word2idx(“cats”))). But in this same equation, “I”, “love”, and “and” are NOT targets.

 

So the number of non-targets is not V-K as you might think at first glance. The number of non-targets is always V-1, and for a context of size K we do that K times.

 

That means a lot of the time we are spending is to make words NOT the target.

 

The basic idea with negative sampling is that we’ll throw away most of those words that are not the target, i.e. not in the context, since it’s almost the size of the entire vocabulary.

 

We don’t need to tell the neural network that those aren’t the target words all
 the time, we just need to tell the neural network that those aren’t the target words some
 of the time.

 

We call these words that are not
 in the context the “negative samples”, usually we choose a small amount on the same order as the context size. 10 is a fine value.

 

Now the question arises - do we choose these negative samples from a uniform distribution or by some other method?

 

Typically we choose the negative samples based on the uniform distribution or on a distribution that is based on the probability of a word appearing.

 

We call this distribution Pn(w), and research has shown that if we take the initial distribution and raise it to the power of 3/4, that can yield good results.

 

Why might that work?

 

Well, if a word appears in the corpus a lot, then we might proportionally try to make sure we get away from it if it’s not part of the context.

 

To do that, we might make it a function of its probability of appearing, P(w).

 

That’s just (# of times w appears in corpus) / (total # tokens in corpus).

 

However, some of those probabilities will be really small. In general, word probabilities have a long-tail distribution, so a ton of words appear very infrequently.

 

We can give those a better chance of being sampled by raising the probability by a power less than 1 (which is why researchers chose 3/4).

 

So now we have a way of generating negative samples, rather than using every single word that’s not the target.

 

But now that we’re doing this, we can’t use the cross entropy with softmax anymore. Instead, what we use for the cost is this equation:

 

J= -sum[o in context]{ log(sigmoid(W2(:,o)
T

 W1(i,:))) } - sum[o in negative samples]{ log(sigmoid(-W2(:,o)
T

 W1(i,:))) }

 

Where:

context = set of word indexes that are the context

negative samples = set of word indexes that are the negative samples

W2 = output weights

W1 = input weights

 

I’ve switched Wi and Wo out for W1 and W2 since it’s easier to write in this form.

 

Note that since W2 is a DxV matrix, it’s the 2nd index that will index a word.

 

I may or may not get sloppy and use W2(o) instead of W2(:,o) later in the book.

 

You see our old friend the sigmoid has returned. Notice that for the negative samples, the argument to the sigmoid is the negative dot product.

 

Now what do we do?

 

The next step is of course to calculate the derivatives in order to do gradient descent. You guys already know how to take the derivative of log, sigmoid and a dot product, so you probably don’t need my help here.

 

I will show you the answer, but as an exercise, you should try to derive these yourself.

 

Remember, we need to update all the hidden-to-output weights that appear in the context or in the negative samples, and we need to update the input-to-hidden weights for the input word.

 

dJ/dW2(:,o) =(sigmoid(W2(:,o)
T

 W1(i,:)) - t(o))W1(i)

 

dJ/dW1(i,:) = sum[o]{ (sigmoid(W2(:,o)TW(i,:)) - t(o))W2(:,o) }

 

Here t(o) is the target, which is 0 if it’s a negative sample and 1 if it’s a context word.

 

Remember that for the input-to-hidden update, the “o” in the summation indexes ALL context outputs and negative sample outputs.

 

In other words, sum[o] is shorthand for sum[o in union(context, negative samples)].

 

Now a few last notes before we move on.

 

If you consider your entire training corpus as a whole, and you think about specific training samples you’re going to pass into your model, we’re going to come across the same input word more than once.

 

Every time we come across it, it’s probably going to have a very different context compared to the other times.

 

Ex. “I love dogs
 and cats”

Ex. “The dogs
 ate my homework”

 

How can we possibly predict all of these words when there is only 1 possible output in a neural network?

 

This might seem weird to some of you, because in machine learning, what we try to do is make correct predictions.

 

But our model, since it’s essentially doing a softmax at the end - we only get one prediction.

 

That means, if you tried to use this model for prediction, it wouldn’t make a lot of sense. So high classification rate isn’t what we’re trying to go for here.

 

We just want to see the cost converge to a minimum, and then measure how good it is by doing something like word analogies or some other task that acts as a proxy for the usefulness of the word embeddings.

 

Notice that although all these modifications we made to the simple bigram model are a little strange, none of them require any new mathematical techniques.

 

So coding them from scratch should be entirely within your capabilities by now.

 

I would recommend giving it a try before looking at my code.

 

The point is not to get it right the first time, but to recognize where you had trouble, and to make note of what you did right and what you did wrong, so that you can improve your skills.

 

I’ve done some experiments on my own and you want 50 or more text files that are output from wp2txt. Use as many as you can but realize that the more training data you have, the longer it’s going to take to train.

 

There is one more modification to the softmax which we didn’t talk about, and it’s called hierarchical softmax. Research has shown that negative sampling in combination with skip-gram works best, so that’s what we are going to implement.

 

One last note about the code.

 

Since we already know how to calculate the gradients for negative sampling, we are going to code directly in Numpy first.

 

This will also allow us to index the specific weights we want to update, rather than trying to update the entire weight matrix like Theano would do.

 

At this point, you might ask, “is it possible for Theano to update only part of a Theano shared variable?”

 

The answer is yes.

 

So we are going to do 2 coding examples for word2vec.

 

The first one we’ll do in Numpy since it’s the most straightforward and follows directly from these chapters. You can even write it on your own using only techniques we’ve used in the previous courses.

 

The second one we’ll do in Theano since we like that it automatically takes gradients for us. You’ll need new techniques for this, namely, a way to update only part of a shared variable, so that you can take advantage of the optimizations that negative sampling gives us.

 

Why do I have 2 word embedding matrices and what do I do with them?

 

At this point, there is just one more small issue before you can go on and do word analogies on your own.

 

I purposely haven’t mentioned it until now.

 

With recurrent neural networks, we had a single word embedding matrix - a VxD matrix - at the beginning of the network.

 

That was where our word vectors lived, and from there we could use them to do whatever it is we needed to do with the word embeddings.

 

But with word2vec, it’s a different story.

 

We actually have 2 VxD matrices - one for the input-to-hidden weights and one for the hidden-to-output weights.

 

Now the question is, which of these is my word embedding? The first one? The second one? Both of them?

 

There are 2 ways that researchers have combined these in the past.

 

The first method is to concatenate the word vectors.

 

So we take the first word embedding, and put it beside the second word embedding transposed.

 


We = [W V.T]


 

The result is a V x 2D matrix. We can then just use these as we would have any other word embedding matrix.

 

The only difference is that the dimensionality is now double to what we originally set it as.

 

The second method is to simply add or average the word vectors.

 

This way we end up with vectors still of size D.

 


We = (W + V.T) / 2


 

In our code we are going to do both since it’s not difficult to do either of these.







Chapter 6: Word2Vec in Numpy

 

In this chapter we are going to walkthrough the Numpy implementation of word2vec, making comments where necessary.

 

The corresponding file in the course repo is word2vec.py.

 


import json



import numpy as np



import theano



import theano.tensor as T



import matplotlib.pyplot as plt



from sklearn.utils import shuffle



from datetime import datetime



from util import find_analogies as _find_analogies



 



import os



import sys



sys.path.append(os.path.abspath('..'))



from rnn_class.util import get_wikipedia_data



 



 



def sigmoid(x):



return 1 / (1 + np.exp(-x))



 



 



def init_weights(shape):



return np.random.randn(*shape).astype(np.float32) / np.sqrt(sum(shape))



 



 



class Model(object):



def __init__(self, D, V, context_sz):



self.D = D # embedding dimension



self.V = V # vocab size



self.context_sz = context_sz



 



def _get_pnw(self, X):



# calculate Pn(w) - probability distribution for negative sampling



# basically just the word probability ^ 3/4



word_freq = {}



word_count = sum(len(x) for x in X)



for x in X:



for xj in x:



if xj not in word_freq:



word_freq[xj] = 0



word_freq[xj] += 1



self.Pnw = np.zeros(self.V)



for j in xrange(2, self.V): # 0 and 1 are the start and end tokens, we won't use those here



self.Pnw[j] = (word_freq[j] / float(word_count))**0.75



 



assert(np.all(self.Pnw[2:] > 0))



return self.Pnw



 



def _get_negative_samples(self, context, num_neg_samples):



# temporarily save context values because we don't want to negative sample these



saved = {}



for context_idx in context:



saved[context_idx] = self.Pnw[context_idx]



self.Pnw[context_idx] = 0



neg_samples = np.random.choice(



xrange(self.V),



size=num_neg_samples, # this is arbitrary - number of negative samples to take



replace=False,



p=self.Pnw / np.sum(self.Pnw),



)



 



for j, pnwj in saved.iteritems():



self.Pnw[j] = pnwj



assert(np.all(self.Pnw[2:] > 0))



return neg_samples



 



def fit(self, X, num_neg_samples=10, learning_rate=10e-5, mu=0.99, reg=0.1, epochs=10):



N = len(X)



V = self.V



D = self.D



self._get_pnw(X)



 



# initialize weights and momentum changes



self.W1 = init_weights((V, D))



self.W2 = init_weights((D, V))



dW1 = np.zeros(self.W1.shape)



dW2 = np.zeros(self.W2.shape)



 



costs = []



cost_per_epoch = []



sample_indices = range(N)



for i in xrange(epochs):



t0 = datetime.now()



sample_indices = shuffle(sample_indices)



cost_per_epoch_i = []



for it in xrange(N):



j = sample_indices[it]



x = X[j] # one sentence



 



# too short to do 1 iteration, skip



if len(x) < 2 * self.context_sz + 1:



continue



 



cj = []



n = len(x)



for jj in xrange(n):





# do the updates manually



Z = self.W1[x[jj],:] # note: paper uses linear activation function



 



start = max(0, jj - self.context_sz)



end = min(n, jj + 1 + self.context_sz)



context = np.concatenate([x[start:jj], x[(jj+1):end]])



# NOTE: context can contain DUPLICATES!



# e.g. "<UNKOWN> <UNKOWN> cats and dogs"



context = np.array(list(set(context)), dtype=np.int32)



 



posA = Z.dot(self.W2[:,context])



pos_pY = sigmoid(posA)



 



neg_samples = self._get_negative_samples(context, num_neg_samples)



 



negA = Z.dot(self.W2[:,neg_samples])



neg_pY = sigmoid(-negA)



c = -np.log(pos_pY).sum() - np.log(neg_pY).sum()



cj.append(c / (num_neg_samples + len(context)))



 



# positive samples



pos_err = pos_pY - 1



dW2[:, context] = mu*dW2[:, context] - learning_rate*(np.outer(Z, pos_err) + reg*self.W2[:, context])



 



# negative samples



neg_err = 1 - neg_pY



dW2[:, neg_samples] = mu*dW2[:, neg_samples] - learning_rate*(np.outer(Z, neg_err) + reg*self.W2[:, neg_samples])



 



self.W2[:, context] += dW2[:, context]



self.W2[:, neg_samples] += dW2[:, neg_samples]



 



# input weights



gradW1 = pos_err.dot(self.W2[:, context].T) + neg_err.dot(self.W2[:, neg_samples].T)



dW1[x[jj], :] = mu*dW1[x[jj], :] - learning_rate*(gradW1 + reg*self.W1[x[jj], :])



 



self.W1[x[jj], :] += dW1[x[jj], :]



 



cj = np.mean(cj)



cost_per_epoch_i.append(cj)



costs.append(cj)



if it % 100 == 0:



sys.stdout.write("epoch: %d j: %d/ %d cost: %f\r" % (i, it, N, cj))



sys.stdout.flush()



 



epoch_cost = np.mean(cost_per_epoch_i)



cost_per_epoch.append(epoch_cost)



print "time to complete epoch %d:" % i, (datetime.now() - t0), "cost:", epoch_cost



plt.plot(costs)



plt.title("Numpy costs")



plt.show()



# We print both each individual cost and cost per epoch



# because the individual costs should be quite noisy



# given that the corpus is highly diverse.



# the cost per epoch should be smoother and constantly



# decreasing since it’s the total cost over the entire epoch



# which considers all sentences in the corpus in total.



 



plt.plot(cost_per_epoch)



plt.title("Numpy cost at each epoch")



plt.show()



 



# save all this stuff so we don’t have to run again



def save(self, fn):



arrays = [self.W1, self.W2]



np.savez(fn, *arrays)



 



 



def main():



sentences, word2idx = get_wikipedia_data(n_files=1, n_vocab=2000)



with open('w2v_word2idx.json', 'w') as f:



json.dump(word2idx, f)



 



V = len(word2idx)



model = Model(80, V, 10)



model.fit(sentences, learning_rate=10e-4, mu=0, epochs=5)



model.save('w2v_model.npz')



 



 



def find_analogies(w1, w2, w3, concat=True, we_file='w2v_model.npz', w2i_file='w2v_word2idx.json'):



npz = np.load(we_file)



W1 = npz['arr_0']



W2 = npz['arr_1']



 



with open(w2i_file) as f:



word2idx = json.load(f)



 



V = len(word2idx)



 



if concat:



We = np.hstack([W1, W2.T])



print "We.shape:", We.shape



assert(V == We.shape[0])



else:



We = (W1 + W2.T) / 2



 



_find_analogies(w1, w2, w3, We, word2idx)



 



if __name__ == '__main__':



main()



for concat in (True, False):



print "** concat:", concat



find_analogies('king', 'man', 'woman', concat=concat)



find_analogies('france', 'paris', 'london', concat=concat)



find_analogies('france', 'paris', 'rome', concat=concat)



find_analogies('paris', 'france', 'italy', concat=concat)


 


 







Chapter 7: Word2Vec in Theano

 

In this chapter we are going to implement word2vec in Theano.

 

We are simply going to write another function, called “fitt”, that can be added to the code we previously wrote.

 

This is because our model and the surrounding code should be implementation-independent.

 

Once we write this additional fitt function, you simply need to call 
model.fitt()

 instead of 
model.fit()

 inside main.

 

How to update only part of a Theano shared variable

 

One of the major obstacles we have in our Theano implementation is that we can’t take advantage of negative sampling knowing only what we know so far.

 

What would happen if you attempted to use Theano’s existing update functionality?

 

We have 2 weights, the input-to-hiddens and the hidden-to-outputs.

 

Let’s call them W1 and W2.

 

They would both be updated the usual way in Theano, get the gradient with respect to the cost, and put the expression for gradient descent into the Theano train function.

 


grads = T.grad(cost, [W1, W2])



updates = [(W1, W1 - lr*grads[0]), (W2, W2 - lr*grads[1])]


 

This presents us with a problem, because if we look at W1, we know that only the word vector for the input word should be updated.

 

So we are updating VxD floats instead of just D floats.

 

If we use Theano’s gradient descent, it’s going to update all the other word vectors too, because they are part of W1.

 

This is despite the fact that the cost function doesn’t depend on them, so their gradient will be 0.

 

Similarly, for W2, we have only the word vectors for the context and negative samples to update. So suppose our context is of size 10 and we have 10 negative samples and our vocabulary size is 2000. Then we’ll be updating 2000 vectors when we should only be updating 20.

 

Fortunately, Theano gives us a way to update only part of a shared variable. You’re going to see it in the code but it would be useful to go through some simple examples first.

 

The way to do this is with the functions inc_subtensor and set_subtensor.

 

As you can tell by their names, inc_subtensor is for incrementing a subtensor, so that’s similar to +=, and set_subtensor is for setting a subtensor, so that’s similar to = assignment.

 

In particular, let’s suppose I want to represent the expression

 


W[i] = W[i] - learning_rate*T.grad(cost, W[i])


 

We could use inc_subtensor for this, because it’s in the form of +=.

 


W = T.inc_subtensor(W[i], -learning_rate*T.grad(cost, W[i])


 

The interesting thing about this is that the full shared variable goes on the left. Just a nuance you have to remember.

 

Now let’s do an example with set_subtensor.

 

Suppose for whatever reason you want to do the long-form version of the cost function where you multiply log p(y|x) by the target indicator matrix.

 

Let’s pretend we have only one sample so that it’s a 1-D vector. In this case, we would first create a vector of size K with all 0s. Then we would set the element that corresponds to the label to 1, using set_subtensor. Finally, we would multiply the targets by the log of p(y|x) to get the cost.

 


targets = T.zeros(K)



targets = T.set_subtensor(targets[label], 1)



cost = -targets * T.log(py_x)


 

Now let’s do a slightly more complex example.

 

We still don’t have all the information we need to update the weights of our word2vec model, in particular, the hidden-to-output weights.

 

Why is this?

 

What I showed you previously was how to index a shared variable only once to do an update.

 

Theano can accept scalars or vectors as indexes into tensors, but we still have a problem.

 

We don’t just have one index for the output weights, we have 2.

 

We have one vector of ints that represents the context, and one vector of ints that represents the negative samples.

 

There are 2 initial but incorrect solutions to this problem you might think of.

 

First, you might think, just concatenate the context and negative samples and use that to index the output weights.

 

e.g.

 


W2_indexes = T.concatenate(context, negsamples)



W2grad = T.grad(cost, W2[W2_indexes])



W2 = T.inc_subtensor(...)


 

But that won’t work, because Theano will complain that your inputs are not part of the Theano graph.

 

Personally, I think that’s a bug, since technically they are part of the Theano graph, they’ve just been combined to create a new variable. Suffice it to say, it does not work.

 

The second solution you might think of, is to represent them as 2 separate updates, one for the context, and one for the negative samples.

 

So for example, you might want to do something such as:

 


grad_context = T.grad(cost, W2[:,context])



grad_negsamples = T.grad(cost, W2[:,neg_samples])



updates = [



(W2, T.inc_subtensor(W2[:, context], -lr*grad_context),



(W2, T.inc_subtensor(W2[:, neg_samples], -lr*grad_negsamples),



]


 

But of course, this is also incorrect, because the list of tuples in the updates acts more like a dictionary.

 

So all the elements in position 0 act as a key, and they must be unique.

 

Since these 2 obvious solutions won’t actually work, the question is, what will?

 

The actual solution is pretty ugly, but it works.

 

The idea is you’ll have to represent the 2 updates in a nested manner.

 


W2_update = T.inc_subtensor(



T.inc_subtensor(W2[:, context], -lr*grad_context)[:, neg_samples], -lr*grad_negsamples



)


 

Why is this possible?

 

Remember that inc_subtensor returns a full size tensor!

 

So after calling it once where we index context, we get back a full size tensor, from which we can index the negative samples no problem.

 

Now you have all the tools you need to update both W1 and W2 using Theano instead of Numpy. Give it a try, and if you can’t figure it out, cross-reference your code with mine and see where you went wrong.

 


def fitt(self, X, num_neg_samples=10, learning_rate=10e-5, mu=0.99, reg=0.1, epochs=10):



N = len(X)



V = self.V



D = self.D



self._get_pnw(X)



 



# initialize weights and momentum changes



W1 = init_weights((V, D))



W2 = init_weights((D, V))



W1 = theano.shared(W1)



W2 = theano.shared(W2)



 



thInput = T.iscalar('input_word')



thContext = T.ivector('context')



thNegSamples = T.ivector('negative_samples')



 



W1_subset = W1[thInput]



W2_psubset = W2[:, thContext]



W2_nsubset = W2[:, thNegSamples]



p_activation = W1_subset.dot(W2_psubset)



pos_pY = T.nnet.sigmoid(p_activation)



n_activation = W1_subset.dot(W2_nsubset)



neg_pY = T.nnet.sigmoid(-n_activation)



cost = -T.log(pos_pY).sum() - T.log(neg_pY).sum()



 



W1_grad = T.grad(cost, W1_subset)



W2_pgrad = T.grad(cost, W2_psubset)



W2_ngrad = T.grad(cost, W2_nsubset)



 



W1_update = T.inc_subtensor(W1_subset, -learning_rate*W1_grad)



W2_update = T.inc_subtensor(



T.inc_subtensor(W2_psubset, -learning_rate*W2_pgrad)[:,thNegSamples], -learning_rate*W2_ngrad)



 



updates = [(W1, W1_update), (W2, W2_update)]



 



train_op = theano.function(



inputs=[thInput, thContext, thNegSamples],



outputs=cost,



updates=updates,



allow_input_downcast=True,



)



 



costs = []



cost_per_epoch = []



sample_indices = range(N)



for i in xrange(epochs):



t0 = datetime.now()



sample_indices = shuffle(sample_indices)



cost_per_epoch_i = []



for it in xrange(N):



j = sample_indices[it]



x = X[j] # one sentence



 



# too short to do 1 iteration, skip



if len(x) < 2 * self.context_sz + 1:



continue



 



cj = []



n = len(x)



for jj in xrange(n):



 



start = max(0, jj - self.context_sz)



end = min(n, jj + 1 + self.context_sz)



context = np.concatenate([x[start:jj], x[(jj+1):end]])



# NOTE: context can contain DUPLICATES!



# e.g. "<UNKOWN> <UNKOWN> cats and dogs"



context = np.array(list(set(context)), dtype=np.int32)



neg_samples = self._get_negative_samples(context, num_neg_samples)



 



c = train_op(x[jj], context, neg_samples)



cj.append(c / (num_neg_samples + len(context)))



 



cj = np.mean(cj)



cost_per_epoch_i.append(cj)



costs.append(cj)



if it % 100 == 0:



sys.stdout.write("epoch: %d j: %d/ %d cost: %f\r" % (i, it, N, cj))



sys.stdout.flush()



 



epoch_cost = np.mean(cost_per_epoch_i)



cost_per_epoch.append(epoch_cost)



print "time to complete epoch %d:" % i, (datetime.now() - t0), "cost:", epoch_cost



 



self.W1 = W1.get_value()



self.W2 = W2.get_value()



 



plt.plot(costs)



plt.title("Theano costs")



plt.show()



 



plt.plot(cost_per_epoch)



plt.title("Theano cost at each epoch")



plt.show()


 


 







Conclusion

 


 I really hope you had as much fun reading this book as I did making it.

 

Did you find anything confusing? Do you have any questions?

 

I am always available to help. Just email me at: 
info@lazyprogrammer.me



 

I do 1:1 coaching and consulting as well.

 

Do you want to learn more about deep learning? Perhaps online courses are more your style. I happen to have a few of them on Udemy.

 

My first course in deep learning is a lot like the book, but you get to see me derive the formulas and write the code live. There are also a ton more examples, like how to use deep learning to optimize your e-commerce store and facial expression recognition.

 



Data Science: Deep Learning in Python



 



https://udemy.com/data-science-deep-learning-in-python



 

Are you comfortable with this material, and you want to take your deep learning skillset to the next level? Then my follow-up Udemy course on deep learning is for you. Similar to the book, I take you through the basics of Theano and TensorFlow - creating functions, variables, and expressions, and build up neural networks from scratch. I teach you about ways to accelerate the learning process, including batch gradient descent, momentum, and adaptive learning rates. I also show you live how to create a GPU instance on Amazon AWS EC2, and prove to you that training a neural network with GPU optimization can be orders of magnitude faster than on your CPU.

 



Data Science: Practical Deep Learning in Theano and TensorFlow



 



https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow



 

When you’ve got the basics of deep learning down, you’re ready to explore alternative architectures. One very popular alternative is the convolutional neural network, created specifically for image classification. These have promising applications in medical imaging, self-driving vehicles, and more. In this course, I show you how to build convolutional nets in Theano and TensorFlow.

 



Deep Learning: Convolutional Neural Networks in Python



 



https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow



 

In part 4 of my deep learning series, I take you through unsupervised deep learning methods. We study principal components analysis (PCA), t-SNE (jointly developed by the godfather of deep learning, Geoffrey Hinton), deep autoencoders, and restricted Boltzmann machines (RBMs). I demonstrate how unsupervised pretraining on a deep network with autoencoders and RBMs can improve supervised learning performance.

 



Unsupervised Deep Learning in Python



 



https://www.udemy.com/unsupervised-deep-learning-in-python



 

Would you like an introduction to the basic building block of neural networks - logistic regression? In this course I teach the theory of logistic regression (our computational model of the neuron), and give you an in-depth look at binary classification, manually creating features, and gradient descent. You might want to check this course out if you found the material in the first deep learning course too challenging.

 



Data Science: Logistic Regression in Python



 



https://udemy.com/data-science-logistic-regression-in-python



 

To get an even simpler picture of machine learning in general, where we don’t even need gradient descent and can just solve for the optimal model parameters directly in “closed-form”, you’ll want to check out my first Udemy course on the classical statistical method - linear regression:

 



Data Science: Linear Regression in Python



 



https://www.udemy.com/data-science-linear-regression-in-python



 

If you are interested in learning about how machine learning can be applied to language, text, and speech, you’ll want to check out my course on Natural Language Processing, or NLP:

 



Data Science: Natural Language Processing in Python



 



https://www.udemy.com/data-science-natural-language-processing-in-python



 

Already know NLP basics? In my followup NLP course, we combine NLP with deep learning. This includes the famous Word2Vec algorithm, GLoVe (created by the guys at Stanford who are famous for their NLP work), and Recursive Neural Networks - yet another architecture that is extremely well-suited for natural language understanding. This course is bigger than all my previous deep learning courses - instead of introducing just one new neural network architecture, it introduced 4!

 



Deep Learning: Natural Language Processing in Python



 



https://udemy.com/natural-language-processing-with-deep-learning-in-python



 

Are you interested in learning SQL - structured query language - a language that can be applied to databases as small as the ones sitting on your iPhone, to databases as large as the ones that span multiple continents - and not only learn the mechanics of the language but know how to apply it to real-world data analytics and marketing problems? I even show you how to write SQL code in Spark, so you can apply all the skills you learned in my big data book! Check out the course here:

 



SQL for Marketers: Dominate data analytics, data science, and big data



 



https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data



 

Are you interested in stock prediction, time series, and sequences in general? My Hidden Markov Models course is where you want to be. I teach you not only all the classical theory of HMMs, but I also show you how to write them in Theano using gradient descent! This is great practice for writing deep learning models and it will prepare you well for its sequel, Deep Learning Part 5: Recurrent Neural Networks in Python. You can get the HMM course here:

 



Unsupervised Machine Learning: Hidden Markov Models in Python



 



https://udemy.com/unsupervised-machine-learning-hidden-markov-models-in-python



 

Recurrent Neural Networks also focus on time series but are much more powerful than Hidden Markov Models because they do not rely on the Markov assumption and do not suffer from certain computational limitations that HMMs do. Learn more about the popular LSTM (long short-term memory) unit and GRU (gated recurrent unit) in this course:

 



Deep Learning: Recurrent Neural Networks in Python



 



https://udemy.com/deep-learning-recurrent-neural-networks-in-python



 

Finally, I am always
 giving out coupons
 and letting you know when you can get my stuff for free
 . But you can only do this if you are a current student of mine! Here are some ways I notify my students about coupons and free giveaways:

 

My newsletter, which you can sign up for at 
http://lazyprogrammer.me

 (it comes with a free 6-part intro to machine learning course)

 

My Twitter, 
https://twitter.com/lazy_scientist



 

My Facebook page, 
https://facebook.com/lazyprogrammer.me

 (don’t forget to hit “like”!)
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