

 [image: Pragmatic Bookshelf]

Programming Ruby 1.9 & 2.0

The Pragmatic Programmers’ Guide

by Dave Thomas, with Chad Fowler, Andy Hunt

Version: P1.0 (June, 2013)
Copyright © 2013 The Pragmatic Programmers, LLC. This book is licensed to
	the individual who purchased it. We don't copy-protect it
	because that would limit your ability to use it for your
	own purposes. Please don't break this trust—you can use
	this across all of your devices but please do not share this copy
	with other members of your team, with friends, or via file sharing services. Thanks.

—Dave & Andy.

 Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and The Pragmatic Programmers, LLC
 was aware of a trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic Starter Kit,
 The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
 and the linking
 g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this
 book. However, the publisher assumes no responsibility for errors or
 omissions, or for damages that may result from the use of information
 (including program listings) contained herein.

 Our Pragmatic courses,
 workshops, and other products can help you and your team create better
 software and have more fun. For more information, as well as the
 latest Pragmatic titles, please visit us at
 http://pragprog.com.

Table of Contents
		Foreword to the Third Edition

		Preface

	 	Why Ruby?

	 	Ruby Versions

	 	Changes in the Book

	 	Resources

	 	Acknowledgments

	 	Notation Conventions

		Road Map

I. Facets of Ruby
	 	1. 	Getting Started

	 	 	1.1 	The Command Prompt

	 	 	1.2 	Installing Ruby

	 	 	1.3 	Running Ruby

	 	 	1.4 	Ruby Documentation: RDoc and ri

	 	2. 	Ruby.new

	 	 	2.1 	Ruby Is an Object-Oriented Language

	 	 	2.2 	Some Basic Ruby

	 	 	2.3 	Arrays and Hashes

	 	 	2.4 	Symbols

	 	 	2.5 	Control Structures

	 	 	2.6 	Regular Expressions

	 	 	2.7 	Blocks and Iterators

	 	 	2.8 	Reading and ’Riting

	 	 	2.9 	Command-Line Arguments

	 	 	2.10 	Onward and Upward

	 	3. 	Classes, Objects, and Variables

	 	 	3.1 	Objects and Attributes

	 	 	3.2 	Classes Working with Other Classes

	 	 	3.3 	Access Control

	 	 	3.4 	Variables

	 	4. 	Containers, Blocks, and Iterators

	 	 	4.1 	Arrays

	 	 	4.2 	Hashes

	 	 	4.3 	Blocks and Iterators

	 	 	4.4 	Containers Everywhere

	 	5. 	Sharing Functionality: Inheritance, Modules, and Mixins

	 	 	5.1 	Inheritance and Messages

	 	 	5.2 	Modules

	 	 	5.3 	Mixins

	 	 	5.4 	Iterators and the Enumerable Module

	 	 	5.5 	Composing Modules

	 	 	5.6 	Inheritance, Mixins, and Design

	 	6. 	Standard Types

	 	 	6.1 	Numbers

	 	 	6.2 	Strings

	 	 	6.3 	Ranges

	 	7. 	Regular Expressions

	 	 	7.1 	What Regular Expressions Let You Do

	 	 	7.2 	Ruby’s Regular Expressions

	 	 	7.3 	Digging Deeper

	 	 	7.4 	Advanced Regular Expressions

	 	8. 	More About Methods

	 	 	8.1 	Defining a Method

	 	 	8.2 	Calling a Method

	 	9. 	Expressions

	 	 	9.1 	Operator Expressions

	 	 	9.2 	Miscellaneous Expressions

	 	 	9.3 	Assignment

	 	 	9.4 	Conditional Execution

	 	 	9.5 	case Expressions

	 	 	9.6 	Loops

	 	 	9.7 	Variable Scope, Loops, and Blocks

	 	10. 	Exceptions, catch, and throw

	 	 	10.1 	The Exception Class

	 	 	10.2 	Handling Exceptions

	 	 	10.3 	Raising Exceptions

	 	 	10.4 	catch and throw

	 	11. 	Basic Input and Output

	 	 	11.1 	What Is an IO Object?

	 	 	11.2 	Opening and Closing Files

	 	 	11.3 	Reading and Writing Files

	 	 	11.4 	Talking to Networks

	 	 	11.5 	Parsing HTML

	 	12. 	Fibers, Threads, and Processes

	 	 	12.1 	Fibers

	 	 	12.2 	Multithreading

	 	 	12.3 	Controlling the Thread Scheduler

	 	 	12.4 	Mutual Exclusion

	 	 	12.5 	Running Multiple Processes

	 	13. 	Unit Testing

	 	 	13.1 	The Testing Framework

	 	 	13.2 	Structuring Tests

	 	 	13.3 	Organizing and Running Tests

	 	 	13.4 	RSpec and Shoulda

	 	 	13.5 	Test::Unit assertions

	 	14. 	When Trouble Strikes!

	 	 	14.1 	Ruby Debugger

	 	 	14.2 	Interactive Ruby

	 	 	14.3 	Editor Support

	 	 	14.4 	But It Doesn’t Work!

	 	 	14.5 	But It’s Too Slow!

II. Ruby in Its Setting
	 	15. 	Ruby and Its World

	 	 	15.1 	Command-Line Arguments

	 	 	15.2 	Program Termination

	 	 	15.3 	Environment Variables

	 	 	15.4 	Where Ruby Finds Its Libraries

	 	 	15.5 	RubyGems Integration

	 	 	15.6 	The Rake Build Tool

	 	 	15.7 	Build Environment

	 	16. 	Namespaces, Source Files, and Distribution

	 	 	16.1 	Namespaces

	 	 	16.2 	Organizing Your Source

	 	 	16.3 	Distributing and Installing Your Code

	 	17. 	Character Encoding

	 	 	17.1 	Encodings

	 	 	17.2 	Source Files

	 	 	17.3 	Transcoding

	 	 	17.4 	Input and Output Encoding

	 	 	17.5 	Default External Encoding

	 	 	17.6 	Encoding Compatibility

	 	 	17.7 	Default Internal Encoding

	 	 	17.8 	Fun with Unicode

	 	18. 	Interactive Ruby Shell

	 	 	18.1 	Command Line

	 	 	18.2 	Commands

	 	19. 	Documenting Ruby

	 	 	19.1 	Adding RDoc to Ruby Code

	 	 	19.2 	Adding RDoc to C Extensions

	 	 	19.3 	Running RDoc

	 	 	19.4 	Ruby source file documented with RDoc

	 	 	19.5 	C source file documented with RDoc

	 	20. 	Ruby and the Web

	 	 	20.1 	Writing CGI Scripts

	 	 	20.2 	Using cgi.rb

	 	 	20.3 	Templating Systems

	 	 	20.4 	Cookies

	 	 	20.5 	Choice of Web Servers

	 	 	20.6 	Frameworks

	 	21. 	Ruby and Microsoft Windows

	 	 	21.1 	Running Ruby Under Windows

	 	 	21.2 	Win32API

	 	 	21.3 	Windows Automation

III. Ruby Crystallized
	 	22. 	The Ruby Language

	 	 	22.1 	Source File Encoding

	 	 	22.2 	Source Layout

	 	 	22.3 	The Basic Types

	 	 	22.4 	Names

	 	 	22.5 	Variables and Constants

	 	 	22.6 	Expressions, Conditionals, and Loops

	 	 	22.7 	Method Definition

	 	 	22.8 	Invoking a Method

	 	 	22.9 	Aliasing

	 	 	22.10 	Class Definition

	 	 	22.11 	Module Definitions

	 	 	22.12 	Access Control

	 	 	22.13 	Blocks, Closures, and Proc Objects

	 	 	22.14 	Exceptions

	 	 	22.15 	catch and throw

	 	23. 	Duck Typing

	 	 	23.1 	Classes Aren’t Types

	 	 	23.2 	Coding like a Duck

	 	 	23.3 	Standard Protocols and Coercions

	 	 	23.4 	Walk the Walk, Talk the Talk

	 	24. 	Metaprogramming

	 	 	24.1 	Objects and Classes

	 	 	24.2 	Singletons

	 	 	24.3 	Inheritance and Visibility

	 	 	24.4 	Modules and Mixins

	 	 	24.5 	Metaprogramming Class-Level Macros

	 	 	24.6 	Two Other Forms of Class Definition

	 	 	24.7 	instance_eval and class_eval

	 	 	24.8 	Hook Methods

	 	 	24.9 	One Last Example

	 	 	24.10 	Top-Level Execution Environment

	 	 	24.11 	The Turtle Graphics Program

	 	25. 	Reflection, ObjectSpace, and
 Distributed Ruby

	 	 	25.1 	Looking at Objects

	 	 	25.2 	Looking at Classes

	 	 	25.3 	Calling Methods Dynamically

	 	 	25.4 	System Hooks

	 	 	25.5 	Tracing Your Program’s Execution

	 	 	25.6 	Behind the Curtain: The Ruby VM

	 	 	25.7 	Marshaling and Distributed Ruby

	 	 	25.8 	Compile Time? Runtime? Anytime!

	 	26. 	Locking Ruby in the Safe

	 	 	26.1 	Safe Levels

	 	 	26.2 	Tainted Objects

	 	 	26.3 	Trusted Objects

	 	 	26.4 	Definition of the safe levels

IV. Ruby Library Reference
	 	27. 	Built-in Classes and Modules

	 	28. 	Standard Library

	A1. 	Support

	 	A1.1 	Web Sites

	 	A1.2 	Usenet Newsgroup

	 	A1.3 	Mailing Lists

	 	A1.4 	Bug Reporting

	A2. 	Bibliography

Copyright © 2013, The Pragmatic Bookshelf.

Foreword to the Third Edition

 I wrote forewords to the previous two editions of this book. For the
 first edition, I wrote about motivation. For the second edition,
 I wrote about miracles.

 For this third edition, I’d like to write about courage. I always
 admire brave people. People around Ruby seem to be brave, like the
 authors of this book. They were brave to jump in to a relatively
 unknown language like Ruby. They were brave to try new
 technology. They could have happily stayed with an old technology,
 but they didn’t. They built their own world using new bricks and
 mortar. They were adventurers, explorers, and pioneers. By their
 effort, we have a fruitful result—Ruby.

 Now, I feel that I’ve created my own universe with help from those
 brave people. At first, I thought it was a miniature universe, like
 the one in “Fessenden’s Worlds.” But now it seems like a real
 universe. Countless brave people are now working with Ruby. They
 challenge new things every day, trying to make the world better and
 bigger. I am very glad I am part of the Ruby world.

 I suppose that even the world itself could not contain the books that
 should be written. But now we have the first book, updated to the
 most recent. Enjoy.

Yukihiro Matsumoto, aka “Matz”
Japan, February 2009

まっもと ゆきひろ

Copyright © 2013, The Pragmatic Bookshelf.

Preface

 This book is a new version of the PickAxe, as
 Programming Ruby is known to Ruby
 programmers. It is a tutorial and reference for versions 1.9 and
 2.0 of the Ruby programming language.

 Ruby 1.9 was a significant departure from previous versions. There are
 major changes in string handling, the scoping of block variables, and
 the threading model. It has a new virtual machine. The built-in
 libraries have grown, adding many hundreds of new methods and almost
 a dozen new classes. The language now supports scores of character
 encodings, making Ruby one of the only programming languages to live
 fully in the whole world.

 Ruby 2.0 is a (fairly minor) incremental improvement on Ruby 1.9.

Why Ruby?

 When Andy and I wrote the first edition, we had to explain the
 background and appeal of Ruby. Among other things, we wrote, “When we
 discovered Ruby, we realized that we’d found what we’d been looking
 for. More than any other language with which we have worked, Ruby
 ​stays out of your way​. You can concentrate on solving the
 problem at hand, instead of struggling with compiler and language
 issues. That’s how it can help you become a better programmer: by
 giving you the chance to spend your time creating solutions for your
 users, not for the compiler.”

 That belief is even stronger today. More than thirteen years
 later, Ruby is still my language of choice: I use it for client
 applications and web applications. I use it to run our
 publishing business (our online store,

 ​http://pragprog.com​
 , is more than 40,000 lines of
 Rails code), and I use it for all those little programming jobs
 I do just to get things running smoothly.

 In all those years, Ruby has progressed nicely. A large number
 of methods have been added to the built-in classes and modules,
 and the size of the standard library (those libraries included
 in the Ruby distribution) has grown tremendously. The community
 now has a standard documentation system (RDoc), and RubyGems has
 become the system of choice for packaging Ruby code for
 distribution. We have a best-of-breed web application framework,
 Ruby on Rails, with others waiting in the wings. We are leading
 the world when it comes to testing, with tools such as RSpec and
 Cucumber, and we’re working through the hard problems of
 packaging and dependency management. We’ve matured nicely.

 But Ruby is older than that. The first release of this book
 happened on Ruby’s 20th birthday (it was created on February 24,
 1993). The release of Ruby 2.0 is a celebration of that
 anniversary.

Ruby Versions

 This version of the PickAxe documents both Ruby 2.0 and Ruby 1.9.3.[1]

 Exactly what version of Ruby did I use to write this book? Let’s ask
 Ruby:

	​ 	$ ​ruby -v​

	​ 	ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 This illustrates an important point. Most of the code samples you see
 in this book are actually executed each time I format the book. When
 you see some output from a program, that output was produced by running
 the code and inserting the results into the book.

Changes in the Book

 Throughout the book I’ve tried to mark differences between Ruby 1.9 and
 2.0 using a small symbol, like the one
 here2.0». If you’re reading this as an ebook, you’ll see
 little arrows next to this flag. Clicking those will take you to
 the next or previous 2.0 change. One change I didn’t make: I
 decided to continue to use the word ​we​ when talking
 about the authors in the body of the book. Many of the words
 come from the first edition, and I certainly don’t want to claim
 any credit for Andy’s work on that book.

Changes in the Ruby 2.0 Printing

 Compared to the major change that occurred between
 Ruby 1.8 and Ruby 1.9, the update to Ruby 2 is
 fairly gentle. This book documents all the updated builtin
 class changes and the new keyword arguments. It spends some
 time looking at lazy enumerators, and at the updates to the
 regular expression engine. But, in general, users of
 Ruby 1.9 will feel right at home, and folks still using
 Ruby 1.8 should consider skipping straight to
 Ruby 2.

Resources

 Visit the Ruby website at
 ​http://www.ruby-lang.org​
 to
 see what’s new. Chat with other Ruby users on the newsgroup or
 mailing lists (see Appendix 1, ​Support​).

 And I’d certainly appreciate hearing from you. Comments, suggestions,
 errors in the text, and problems in the examples are all welcome.
 Email us at ​rubybook@pragprog.com​.

 If you find errors in the book, you can add them to the errata
 page.[2] If you’re reading the PDF version of the book, you
 can also report an erratum by clicking the link in the page
 footers.

 You’ll find links to the source code for almost all the book’s example
 code at
 ​http://www.pragprog.com/titles/ruby4​
 .

Acknowledgments

 The first International Ruby Conference had something like 32
 attendees. We could all fit into the tiny hotel bar and talk the night
 away. Things have changed. The annual conference now sells
 out many hundreds of seats within hours, and an increasing number of
 secondary conferences have sprung up to meet the needs of folks who
 can’t get to RubyConf.

 As the community has grown, so has Ruby. The language and its
 libraries are now many times bigger than they were back when the first
 edition of this book came out.

 And as the language has grown, so has this book. The PickAxe is now
 massive, mostly because I still want to document every single built-in
 class, module, and method. But a book of this size can never be a solo
 undertaking. This edition builds on the work from the first two
 editions, which included major contributions from Chad
 Fowler and Andy Hunt. Just as
 significant, all three editions have been works created by the Ruby
 community. On the mailing lists, in the forums, and on this book’s
 errata pages, hundreds of people have contributed ideas, code, and
 corrections to make it better. As always, I owe every one of you
 a big “thank you!” for all you have done and for all that you
 do. The Ruby community is still as vibrant, interesting, and (mostly)
 friendly as it ever was—that’s quite an achievement given the
 explosive growth we’ve enjoyed.

 For the third (tenth anniversary) printing, Wayne E. Seguin was
 kind enough to check the section on the wonderful tool RVM, and
 Luis Lavena checked the section on installing under Windows, as
 well as the chapter on running Ruby on Windows. And I’d like to
 call Anthony Burns a hero for doing an
 amazing job of reading through the changes as I was writing
 them, but that would take away from the fact that he’s a true
 hero.[3]

 Getting this book into production has also been a challenge.
 Kim Wimpsett is the world’s best copy editor—she’s the only
 copy editor I know who finds errors in code and fixes XML markup. Any remaining
 errors in this book are a result of my mistyping her
 suggested corrections. And, as we raced to get the book to the
 printer in time for RubyConf X, Janet Furlow patiently kept us all on
 track.

 Finally, I’m still deeply indebted to Yukihiro “Matz”
 Matsumoto, the creator of
 Ruby. Throughout this prolonged period of growth and change, he
 has remained helpful, cheery, and dedicated to polishing this
 gem of a language. The friendly and open spirit of the Ruby
 community is a direct reflection of the person at its center.

 Thank you all. Domo arigato gozaimasu.

Dave Thomas
The Pragmatic Programmers
mailto:dave@pragprog.com
June 2013

Notation Conventions

 Literal code examples are shown using a sans-serif font:

	​ 	​class​ SampleCode

	​ 	 ​def​ run

	​ 	 ​#...​

	​ 	 ​end​

	​ 	​end​

 Within the text, Fred#do_something is a
 reference to an instance method (in this
 case the method
 ​do_something​
) of
 class ​Fred​, Fred.new[4]
 is a class method, and Fred::EOF is a class
 constant. The decision to use a hash character to indicate
 instance methods was a tough one. It isn’t valid Ruby syntax,
 but we thought that it was important to differentiate between
 the instance and class methods of a particular
 class.
 When you see us write File.read, you know we’re
 talking about the class
 method
 ​read​
 . When instead we write
 File#read, we’re referring to the instance
 method
 ​read​
 . This convention is now
 standard in most Ruby discussions and documentation.

 This book contains many snippets of Ruby code. Where possible, we’ve
 tried to show what happens when they run. In simple cases, we show the
 value of expressions on the same line as the expression. Here’s an example:

	​ 	a = 1

	​ 	b = 2

	​ 	a + b ​# => 3​

 Here, you can see that the result of evaluating ​a + b​ is the
 value 3, shown to the right of the arrow. Note that if you were to run
 this program, you wouldn’t see the value 3 output—you’d need to
 use a method such as
 ​puts​
 to write it out.

 At times, we’re also interested in the values of assignment statements:

	​ 	a = 1 ​# => 1​

	​ 	a + 2 ​# => 3​

 If the program produces more complex output, we show it after the
 program code:

	​ 	3.times { puts ​"Hello!"​ }

Produces:
	​ 	Hello!

	​ 	Hello!

	​ 	Hello!

 In some of the library documentation, we wanted to show where spaces
 appear in the output. You’ll see these spaces as ␣ characters.

 Command-line invocations are shown with literal text in a regular font,
 and parameters you supply are shown in an ​italic​ font.
 Optional elements are shown in brackets.

ruby <flags>* progname <arguments>*

Footnotes

	[1]	

 Ruby version
 numbering used to follow the same scheme used for many other
 open source projects. Releases with even minor version
 numbers—1.6, 1.8, and so on—were stable, public releases. These
 are the releases that are prepackaged and made available on the
 various Ruby websites. Development versions of the software had odd
 minor version numbers, such as 1.5 and 1.7. However, in 2007 Matz
 broke with convention and made 1.9 a stable public release
 of Ruby.

	[2]	

 ​http://www.pragprog.com/titles/ruby4/errata.html​

	[3]	

 ​http://www.flickr.com/photos/pragdave/sets/72157625046498937/​

	[4]	

 In some other Ruby documentation, you may see class methods written
 as ​Fred::new​. This is perfectly valid Ruby syntax; we just
 happen to think that ​Fred.new​ is less distracting
 to read.

Copyright © 2013, The Pragmatic Bookshelf.

Road Map

 The main text of this book has four separate parts, each with its own
 personality and each addressing different aspects of the Ruby
 language.

 In ​Part I, Facets of Ruby​, you’ll
 find a Ruby tutorial. It starts with some notes on getting Ruby
 running on your system followed by a short chapter on some of the
 terminology and concepts that are unique to Ruby. This chapter also
 includes enough basic syntax so that the other chapters will make
 sense. The rest of the tutorial is a top-down look at the language.
 There we talk about classes and objects, types, expressions, and all
 the other things that make up the language. We end with chapters on
 unit testing and digging yourself out when trouble strikes.

 One of the great things about Ruby is how well it integrates with
 its environment. ​Part II, Ruby in Its
 Setting​, investigates this. Here you’ll find
 practical information on using Ruby: using the interpreter
 options, using irb, documenting your Ruby code, and packaging your
 Ruby gems so that others can enjoy them. You’ll also find
 tutorials on some common Ruby tasks: using Ruby with the Web and
 using Ruby in a Microsoft Windows environment (including wonderful
 things such as native API calls, COM integration, and Windows
 Automation). We’ll also touch on using Ruby to access the Internet.

 ​Part III, Ruby Crystallized​, contains
 more advanced material. Here you’ll find all the gory details
 about the language, the concept of ​duck typing​, the
 object model, metaprogramming, tainting, reflection, and
 marshaling. You could probably speed-read this the first time
 through, but we think you’ll come back to it as you start to use
 Ruby in earnest.

 The ​Ruby Library Reference​ is Part
 IV. It’s big. We document more than 1,300 methods in 57 built-in
 classes and modules (up from 800 methods in 40 classes and modules
 in the previous edition). On top of that, we now document the
 library modules that are included in the standard Ruby
 distribution (98 of them).

 So, how should you read this book? Well, depending on your level of
 expertise with programming in general and OO in particular, you may
 initially want to read just a few portions of the book. Here are our
 recommendations.

 If you’re a beginner, you may want to start with the tutorial
 material in Part I. Keep the library reference close at hand as
 you start to write programs. Get familiar with the basic classes
 such as ​Array​, ​Hash​,
 and ​String​. As you become more comfortable
 in the environment, you may want to investigate some of the more
 advanced topics in Part III.

 If you’re already comfortable with Perl, Python, Java, or
 Smalltalk, then we suggest reading
 Chapter 1, ​Getting Started​, which talks about installing
 and running Ruby, followed by the introduction in
 Chapter 2, ​Ruby.new​. From there, you may want to take the
 slower approach and keep going with the tutorial that follows, or
 you can skip ahead to the gritty details starting in Part III,
 followed by the library reference in Part IV.

 Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types
 can dive straight into the language reference in
 Chapter 22, ​The Ruby Language​; skim the library reference; and then use
 the book as a (rather attractive) coffee coaster.

 Of course, nothing is wrong with just starting at the beginning
 and working your way through page by page.

 And don’t forget, if you run into a problem that you can’t figure out,
 help is available. For more information, see Appendix 1, ​Support​.

Copyright © 2013, The Pragmatic Bookshelf.

Part 1
Facets of Ruby

	 Chapter
	 1
Getting Started

 Before we start talking about the Ruby language, it would be useful if we
 helped you get Ruby running on your computer. That way, you can try
 sample code and experiment on your own as you read along. In fact,
 that’s probably essential if you want to learn Ruby—get into the
 habit of writing code as you’re reading. We will
 also show you some different ways to run Ruby.

1.1 The Command Prompt

 (Feel free to skip to the next section if you’re already comfortable
 at your system’s command prompt.)

 Although there’s growing support for Ruby in IDEs, you’ll
 probably still end up spending some time at your system’s
 command prompt, also known as a
 ​ shell
 prompt​

 or just plain
 ​ prompt​

 . If
 you’re a Linux user, you’re probably already familiar with the
 prompt. If you don’t already have a desktop icon for it, hunt
 around for an application called Terminal or xterm. (On Ubuntu,
 you can navigate to it using Applications → Accessories →
 Terminal.) On Windows, you’ll want to
 run ​cmd.exe​, accessible by typing
 ​cmd​ into the dialog box that appears when you select
 Start → Run. On OS X, run Applications → Utilities →
 Terminal.app.

 In all three cases, a fairly empty window will pop up. It will contain
 a banner and a prompt. Try typing ​echo hello​ at the prompt
 and hitting Enter (or Return, depending on your keyboard). You should
 see ​hello​ echoed back, and another prompt should appear.

Directories, Folders, and Navigation

 It is beyond the scope of this book to teach the commands available at
 the prompt, but we do need to cover the basics of finding your way
 around.

 If you’re used to a GUI tool such as Explorer on Windows or
 Finder on OS X for navigating to your files, then you’ll be
 familiar with the idea
 of
 ​ folders​

 —locations on your hard drive
 that can hold files and other folders.

 When you’re at the command prompt, you have access to these same
 folders. But, somewhat confusingly, at the prompt these folders are called

 ​ directories​

 (because they contain lists
 of other directories and files). These directories are
 organized into a strict hierarchy. On Unix-based systems
 (including OS X), there’s one top-level directory, called
 ​/​ (a forward slash). On Windows,
 there is a top-level directory for each drive on your system,
 so you’ll find the top level for your ​C:​
 drive at ​C:\​ (that’s the drive
 letter ​C​, a colon, and a backslash).

 The path to a file or directory is the set of directories that you
 have to traverse to get to it from the top-level directory, followed
 by the name of the file or directory itself. Each component in this
 name is separated by a forward slash (on Unix) or a backslash (on
 Windows). So, if you organized your projects in a directory called
 ​projects​ under the top-level directory and
 if the ​projects​ directory had a
 subdirectory for your ​time_planner​ project, the full
 path to the README file would be
 ​/projects/time_planner/readme.txt​ on Unix and
 ​C:\projects\time_planner\readme.txt​ on
 Windows.

Spaces in Directory Names and Filenames

 Most operating systems now allow you to create folders with spaces in
 their names. This is great when you’re working at the GUI
 level. However, from the command prompt, spaces can be a headache, because
 the shell that interprets what you type will treat the spaces in file
 and folder names as being parameter separators and not as part of the
 name. You can get around this, but it generally isn’t worth the
 hassle. If you are creating new folders and files, it’s easiest to
 avoid spaces in their names.

 To navigate to a directory, use
 the ​cd​ command. (Because the Unix prompt
 varies from system to system, we’ll just use a single dollar sign to
 represent it here.)

	​ 	$ ​cd /projects/time_planner (on Unix)​

	​ 	C:\>​ cd \projects\time_planner (on Windows)​

 On Unix boxes, you probably don’t want to be creating top-level
 directories. Instead, Unix gives each user their own
 ​ home
 directory​

 . So, if your username is ​dave​, your home directory
 might be located in ​/usr/dave​, ​/home/dave​, or
 ​/Users/dave​. At the shell prompt, the
 special character ​~​ (a single
 tilde) stands for the path to your home directory. You can
 always change directories to your home directory using
 ​cd ~​, which can also be abbreviated to
 just ​cd​.

 To find out the directory you’re currently in, you can type
 ​pwd​ (on Unix) or
 ​cd​ on Windows. So, for Unix users,
 you could type this:

	​ 	$ ​cd /projects/time_planner​

	​ 	$ ​pwd​

	​ 	/projects/time_planner

	​ 	$ ​cd​

	​ 	$ ​pwd​

	​ 	/Users/dave

 On Windows, there’s no real concept of a user’s home
 directory:

	​ 	C:\>​ cd \projects\time_planner​

	​ 	C:\projects\time_planner>​ cd \projects​

	​ 	C:\projects>

 You can create a new directory under the current directory using the
 ​mkdir​ command:

	​ 	$ ​cd /projects​

	​ 	$ ​mkdir expense_tracker​

	​ 	$ ​cd expense_tracker​

	​ 	$ ​pwd​

	​ 	/projects/expense_tracker

 Notice that to change to the new directory, we could just give its name
 relative to the current directory—we don’t have to enter the full
 path.

 We suggest you create a directory called ​pickaxe​ to hold the code
 you write while reading this book:

	​ 	$ ​mkdir ~/pickaxe (on Unix)​

	​ 	C:\>​ mkdir \pickaxe (on Windows)​

 Get into the habit of changing into that directory before you
 start work:

	​ 	$ ​cd ~/pickaxe (on Unix)​

	​ 	C:\>​ cd \pickaxe (on Windows)​

1.2 Installing Ruby

 Ruby comes preinstalled on many Linux distributions, and Mac
 OS X includes Ruby (although the version of Ruby that comes with
 OS X is normally several releases behind the current Ruby
 version). Try typing ​ruby -v​ at a command prompt—you
 may be pleasantly surprised.

 If you don’t already have Ruby on your system or if you’d like
 to upgrade to a newer version (remembering that this book
 describes Ruby 1.9 and Ruby 2.0), you can install it pretty simply. What you
 do next depends on your operating system.

Installing on Windows

	There are two options for installing Ruby on
	Windows. The first is a simple installer package—download it,
	and you’ll have Ruby up and running in minutes. The second is
	slightly more complex but gives you the flexibility of easily
	managing multiple Ruby environments on the same computer at
	the same time. Whichever option you choose, you’ll first need
	to download and install a working Ruby.

Install Ruby with RubyInstaller

	 The simple solution (and probably the right one to use if
	 you’re not planning on running multiple versions of Ruby at
	 the same time) is Luis Lavena’s RubyInstaller.org.
	

	 Simply navigate to
 ​http://rubyinstaller.org​
 ,
	 click the big DOWNLOAD button, and select the Ruby version
	 you want. Save the file to
	 your downloads folder, and then run it once it has downloaded. Click
	 through the Windows nanny warnings, and you’ll come to a
	 conventional installer. Accept the defaults, and when the installer
	 finishes, you’ll have an entry for Ruby in your ​All
	 Programs​ menu of the Start menu:
	
[image: images/windows_start_menu.png]

		Select ​Start Command Prompt with Ruby​ to open
		a copy of the Windows command shell with the environment
		set up to run Ruby.
	
pik: Install Multiple Ruby Environments

	 The pik system by Gordon Thiesfeld
	 allows you to manage multiple Ruby interpreters on the same
	 machine, switching between them easily. Obviously, this
	 isn’t something everyone needs, so you may want to skip to
	 ​Source Code from This Book​.
	

	 Before you start, make sure you have a working Ruby on your
	 machine, using the instructions from the previous section to
	 download and use RubyInstaller if necessary.
	

	 Then, install pik. Visit
	
 ​http://github.com/vertiginous/pik/downloads​
 . Look
	 near the top for the list of
	 ​msi​ files, and choose the
	 latest. Double-click the filename to download and install it.
	

	 After a few seconds, the Pik Setup dialog box will
	 appear. Accept the defaults, and pik will be installed.
	

	 At this time, you’ll probably need to either log out and log back
	 in or (possibly) restart Windows to get pik successfully
	 integrated into your environment.
	

	 Now bring up a Ruby command prompt (​Start Command
	 Prompt with Ruby​), and type the following at the prompt:
	
	​ 	C:\Users\dave>​ pik add​

	​ 	** Adding: 193: ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

	 You’ve now registered that Ruby interpreter with pik. At any
	 other command prompt, you can use the
	 ​pik​ command to list the Ruby
	 interpreters pik knows about and to tell pik to make a
	 particular interpreter current:
	
	​ 	C:\>​pik list​

	​ 	 193: ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

	​ 	

	​ 	C:\>​pik use 193​

	​ 	

	​ 	C:\>​ruby -v​

	​ 	ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

	 Having gotten one Ruby registered with pik, let’s install
	 another. We’ll play with JRuby, an
	 implementation of Ruby written in Java. Before doing this,
	 you’ll need to download the Java runtime (Google is your
	 friend). Once Java is installed, tell pik to install the
	 JRuby interpreter:
	
	​ 	C:\>​ pik install jruby​

	​ 	** Downloading: http://jruby.org......downloads/1.5.2/jruby-bin-1.5.2.zip

	​ 	to: C:\Users\dave\.pik\downloads\jruby-bin-1.5.2.zip

	​ 	** Extracting: C:\Users\dave\.pik\downloads\jruby-bin-1.5.2.zip

	​ 	to: C:\Users\dave\.pik\rubies\JRuby-152

	​ 	done

	​ 	

	​ 	** Adding: 152: jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d)

	​ 	(Java HotSpot(TM) Client VM 1.6.0_21) [x86-java]

	​ 	Located at: C:\Users\dave\.pik\rubies\JRuby-152\bin

	 You now have two Ruby interpreters managed by pik. You can
	 switch between them at the command line:
	
	​ 	C:\>​pik list​

	​ 	 152: jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d) (Java H...

	​ 	 193: ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

	​ 	

	​ 	C:\>​pik use 152​

	​ 	C:\>​jruby -v​

	​ 	jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d)

	​ 	(Java HotSpot(TM) Client VM 1.6.0_21) [x86-java]

	​ 	

	​ 	C:\>​pik use 193​

	​ 	C:\>​ruby -v​

	​ 	ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

	 If you plan on installing gems that have native code
	 components (that is, they interface to existing Windows
	 libraries using C code), you’ll need a C development
	 environment on your machine, and you’ll need to download and
	 install the Pik development kit.
	

	 Now that you’re all set up, skip forward to ​Source Code from
	 This Book​.

	
Installing on Linux and Mac OS X

	One of the interesting things about the various Unix-like
	systems out there is that their maintainers all have their own
	ideas about how to package tools such as Ruby. It is very
	nice that they have gone to this trouble, but it also means
	that if you go with the flow, you’ll need to learn their way
	of doing things. It also often means that you’ll be stuck with
	what you’re given. So, we’re going to take a different
	approach. We’re going to use a system called the Ruby Version
	Manager (RVM), written by
	Wayne E. Seguin. RVM is a
	tool that lets you have multiple independent Ruby
	installations on the same machine. You can switch between them
	using a single command. This is wonderful, because you can
	experiment with new versions of Ruby while still keeping the
	old ones on your system. We use RVM to keep a Ruby environment
	for the examples in this book that’s isolated from our daily
	work.[5]

Installing RVM

	 Although you can install RVM using RubyGems (assuming you
	 already have a working Ruby on your system), the preferred
	 approach is to install it directly.
	

	 Most Unix-like systems will already have all the
	 dependencies
	 installed.[6] The
	 possible fly in the ointment is Ubuntu, where the
	 ​curl​ utility is not installed by
	 default. Add it before you start with this:
	
	​ 	$ ​sudo apt-get update​

	​ 	$ ​sudo apt-get install curl​

	 You install RVM by executing a script that you download from its repository in github.
	
	​ 	$ ​curl -L https://get.rvm.io | bash -s stable​

	 If this makes you nervous, you can always download the script first, inspect it, and then run it.
	
	​ 	$ ​curl -L get.rvm.io >rvm-installer​

	​ 	$ ​less rvm-installer​

	​ 	$ ​bash rvm-installer​

	 Behind the scenes, either option fetches a script from the
	 RVM git repository and executes it on your local box. The
	 end result is that RVM is installed in a directory named
	 ​.rvm​ beneath your home directory. At the
	 end of the process, RVM spits out a page or so of
	 information. You should read it.
	

	 You may need to knit RVM into your
	 environment. To find out, have a look at the end of ​~/.bashrc​.
 If it doesn’t mention RVM, add the following:
	
	​ 	​source​ $HOME/.rvm/scripts/rvm

	 Once that’s done, start a new terminal window (because RVM
	 gets loaded only when your ​.bashrc​ file
	 executes). Type ​rvm help​, and you should get a
	 summary of RVM usage.[7]
	

	 Before we use RVM to install Ruby, we have to let it install
	 a few things that it will need. To do that, we need to let
 RVM install various system libraries and utilities that are used
 when building Ruby. First, we have to give it permission
 to manage packages:
	
	​ 	dave@ubuntu:~$ ​rvm autolibs packages​

	 If you run into problems, Wayne has a great set of hints on
	 the RVM installation
	 page.[8]
	
Installing Ruby 2.0 Under RVM

	 This is where we start to see the payoff. Let’s install Ruby
	 2.0. (Note that in the following commands we do not type
	 ​sudo​. One of the joys of RVM is that it does
	 everything inside your home directory—you don’t have to be
	 privileged to install or use new Ruby versions.)
	
	​ 	$ ​rvm install 2.0.0​

 RVM first installs the system packages it needs (if any). At
 this stage, you may be prompted to enter a password that
 gives you superuser privileges.[9]

	 RVM then downloads the appropriate source code and builds Ruby
	 2.0. It also installs a few tools (including
	 irb, RDoc, ri, and RubyGems). Be patient—the process may
	 take five minutes or so.
	 Once it finishes, you’ll have Ruby 2.0 installed. To use
	 it, type the following:
	
	​ 	dave@ubuntu:~$ ​rvm use 2.0.0​

	​ 	info: Using ruby 2.0.0

	​ 	dave@ubuntu:~$ ​ruby -v​

	​ 	ruby 2.0.0p0 (2013-02-24 revision 39474) [i686-linux]

	 This is probably more work than you were expecting. If all
	 you wanted to do was install a prepacked Ruby, we’d
	 agree. But what you’ve really done here is given yourself an
	 incredible amount of flexibility. Maybe in the future a project
	 comes along that requires that you use Ruby 1.8.7. That’s
	 not a problem—just use ​rvm install 1.8.7​ to
	 install it, and use ​rvm use 1.8.7​ to switch to it.
	

	 The ​rvm use​ command applies only to the current
	 terminal session. If you want to make it apply to all your
	 sessions, issue this command:
	
	​ 	$ ​rvm use --default 2.0.0​

	 The RubyGems that you install while you’re using an
	 RVM-installed Ruby will be added to that version of Ruby and
	 not installed globally. Do not prepend the ​gem
	 install​ command with a ​sudo​—bad things will
	 happen.
	
Why Stop with Ruby 2.0?

	As well as installing stable versions of the Matz Ruby
	interpreter, RVM will also manage interpreters from
	different sources (JRuby, Rubinius, Ruby Enterprise Edition,
	and so on—​rvm list known​ gives the full
	list). It will also install versions of Ruby
	directly from the developers’ repository—versions that are
	not official releases.

	The Ruby developers use Subversion (often abbreviated as
	SVN) as their revision control system, so you’ll need a
	Subversion client installed on your machine. Once done, you
	can use RVM to install the very latest Ruby using ​rvm
	install ruby-head​ or the latest version of the 2.0
	branch using ​rvm install 2.0-head​.

Source Code from This Book

 If a code listing is preceded by a filename in a shaded bar,
	the source is available for download.[10]
	Sometimes, the listings of code in the book correspond to a
	complete source file. Other times, the book shows just part of
	the source in a file—the program file may contain additional
	scaffolding to make the code run.

 If you’re reading this as an ebook, you can download the code
 for an example by clicking the heading.

1.3 Running Ruby

 Now that Ruby is installed, you’d probably like to run some programs.
 Unlike compiled languages, you have two ways to run Ruby—you can
 type in code interactively, or you can create program files and run
 them. Typing in code interactively is a great way to experiment with
 the language, but for code that’s more complex or that you will want
 to run more than once, you’ll need to create program files and run
 them. But, before we go any further, let’s test to see whether Ruby is
 installed. Bring up a fresh command prompt, and type
 this:[11]

	​ 	$ ​ruby -v​

	​ 	ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 If you believe that you should have Ruby installed and yet you
 get an error saying something like “ruby: command not found,”
 then it is likely that the Ruby program is not in your
 path—the list of places that the shell searches for programs
 to run. If you used the Windows One-Click Installer, make sure
 you rebooted before trying this command. If you’re on Linux or
 OS X and you’re using RVM, make sure you type ​rvm use
 2.0​ before trying to use Ruby.

Interactive Ruby

 One way to run Ruby interactively is simply to type
 ​ruby​ at the shell prompt. Here we
 typed in the single ​puts​ expression and an
 end-of-file character (which is Ctrl+D on our system). This
 process works, but it’s painful if you make a typo, and you
 can’t really see what’s going on as you type.

	​ 	$ ​ruby​

	​ 	puts "Hello, world!"

	​ 	^D

	​ 	Hello, world!

 For most folks,
 ​ irb​

 —Interactive
 Ruby—is the tool of choice for executing Ruby
 interactively. irb is a Ruby shell, complete with
 command-line history, line-editing capabilities, and job
 control. (In fact, it has its own chapter:
 Chapter 18, ​Interactive Ruby Shell​.) You run irb from the command
 line. Once it starts, just type in Ruby code. It will show you
 the value of each expression as it evaluates it. Exit an irb
 session by typing ​exit​ or by using
 the Ctrl+D.

	​ 	$ irb

	​ 	2.0.0 :001 > ​def​ sum(n1, n2)

	​ 	2.0.0 :002?> n1 + n2

	​ 	2.0.0 :003?> ​end​

	​ 	=> nil

	​ 	2.0.0 :004 > sum(3,4)

	​ 	=> 7

	​ 	2.0.0 :005 > sum(​"cat"​, ​"dog"​)

	​ 	=> ​"catdog"​

	​ 	2.0.0 :006 > exit

 We recommend that you get familiar with irb so you can try our
 examples interactively.

Ruby Programs

 The normal way to write Ruby programs is to put them in one or more
 files. You’ll use a text editor (Emacs, vim, Sublime, and so on) or
 an IDE (such as NetBeans) to create and maintain these files. You’ll
 then run the files either from within the editor or IDE or from the
 command line. I personally use both techniques, typically running from
 within the editor for single-file programs and from the command line
 for more complex ones.

 Let’s start by creating a simple Ruby program and running
 it. Open a command window, and navigate to
 the ​pickaxe​ directory you created
 earlier:

	​ 	$ ​cd ~/pickaxe (unix)​

	​ 	C:\>​ cd \pickaxe (windows)​

 Then, using your editor of choice, create the
 file ​myprog.rb​, containing the following text.

	gettingstarted/myprog.rb
	​ 	puts ​"Hello, Ruby Programmer"​

	​ 	puts ​"It is now ​#{Time.now}​"​

 (Note that the second string contains the
 text ​Time.now​ between curly braces, not
 parentheses.)

 You can run a Ruby program from a file as you would any other shell
 script, Perl program, or Python program. Simply run the Ruby
 interpreter, giving it the script name as an argument:

	​ 	$ ​ruby myprog.rb​

	​ 	Hello, Ruby Programmer

	​ 	It is now 2013-05-27 12:30:36 -0500

 On Unix systems, you can use the “shebang” notation as the first line
 of the program file:[12]

	​ 	#!/usr/bin/ruby

	​ 	puts ​"Hello, Ruby Programmer"​

	​ 	puts ​"It is now ​#{Time.now}​"​

 If you make this source file executable (using, for instance,
 ​chmod +x myprog.rb​), Unix lets
 you run the file as a program:

	​ 	$ ​./myprog.rb​

	​ 	Hello, Ruby Programmer

	​ 	It is now 2013-05-27 12:30:36 -0500

 You can do something similar under Microsoft Windows using file
 associations, and you can run Ruby GUI
 applications by double-clicking their names in Windows Explorer.

1.4 Ruby Documentation: RDoc and ri

 As the volume of the Ruby libraries has grown, it has become impossible
 to document them all in one book; the standard library that
 comes with Ruby now contains more than 9,000 methods. Fortunately,
 an alternative to paper documentation exists for these methods (and classes
 and modules). Many are now documented internally using a system called

 ​ RDoc​

 .

 If a source file is documented using RDoc, its documentation can be
 extracted and converted into HTML and ri formats.

 Several websites contain a complete set of the RDoc
 documentation for Ruby.[13]
 Browse on over, and you should
 be able to find at least some form of documentation for any Ruby
 library. The sites are adding new documentation all the time.

 The ri tool is a local, command-line viewer for
 this same documentation. Most Ruby distributions now also install the
 resources used by the ri program.[14]

 To find the documentation for a class, type
 ​ri​ ​ClassName​. For example, the following
 is the summary information for the ​GC​
 class. (To get a list of classes with ri documentation, type
 ​ri​ with no arguments.)

	​ 	$ ​ri GC​

	​ 	---

	​ 	The GC module provides an interface to Ruby's garbage collection mechanism. Some of

	​ 	the underlying methods are also available via the ObjectSpace module.

	​ 	

	​ 	You may obtain information about the operation of the GC through GC::Profiler.

	​ 	---

	​ 	Class methods:

	​ 	 count, disable, enable, malloc_allocated_size, malloc_allocations,

	​ 	 start, stat, stress, stress=

	​ 	

	​ 	Instance methods:

	​ 	 garbage_collect

 For information on a particular method, give its name as a parameter:

	​ 	$ ​ri GC::enable​

	​ 	-- GC::enable

	​ 	GC.enable => true or false

	​ 	---

	​ 	Enables garbage collection, returning true if garbage collection was disabled.

	​ 	

	​ 	GC.disable #=> false

	​ 	GC.enable #=> true

	​ 	GC.enable #=> false

 If the method you give ri occurs in more than one class or module,
 ri will list the alternatives.

	​ 	$ ​ri assoc​

	​ 	Implementation from Array

	​ 	--

	​ 	 ary.assoc(obj) -> new_ary or nil

	​ 	--

	​ 	Searches through an array whose elements are also arrays comparing obj

	​ 	with the first element of each contained array using obj.==.

	​ 	

	​ 	Returns the first contained array that matches (that is, the first associated

	​ 	array), or nil if no match is found.

	​ 	

	​ 	See also Array#rassoc

	​ 	

	​ 	 s1 = ["colors", "red", "blue", "green"]

	​ 	 s2 = ["letters", "a", "b", "c"]

	​ 	 s3 = "foo"

	​ 	 a = [s1, s2, s3]

	​ 	 a.assoc("letters") #=> ["letters", "a", "b", "c"]

	​ 	 a.assoc("foo") #=> nil

	​ 	

	​ 	(from ruby site)

	​ 	Implementation from ENV

	​ 	--

	​ 	 ENV.assoc(name) -> Array or nil

	​ 	--

	​ 	Returns an Array of the name and value of the environment variable with

	​ 	name or nil if the name cannot be found.

	​ 	

	​ 	(from ruby site)

	​ 	Implementation from Hash

	​ 	--

	​ 	 hash.assoc(obj) -> an_array or nil

	​ 	--

	​ 	Searches through the hash comparing obj with the key using ==.

	​ 	Returns the key-value pair (two elements array) or nil if no match is

	​ 	found. See Array#assoc.

	​ 	

	​ 	 h = {"colors" => ["red", "blue", "green"],

	​ 	 "letters" => ["a", "b", "c"]}

	​ 	 h.assoc("letters") #=> ["letters", ["a", "b", "c"]]

	​ 	 h.assoc("foo") #=> nil

 For general help on using ri, type ​ri --help​. In
 particular, you might want to experiment with the
 ​--format​ option, which tells ri how to render decorated
 text (such as section headings). If your terminal program
 supports ANSI escape sequences, using ​--format=ansi​ will
 generate a nice, colorful display. Once you find a set of
 options you like, you can set them into the
 ​RI​
 environment variable. Using our shell (zsh), this would be done
 using the following:

	​ 	$ ​export RI="--format ansi --width 70"​

 If a class or module isn’t yet documented in RDoc format,
 ask the friendly folks over at
 ​suggestions@ruby-doc.org​ to consider adding it.

 All this command-line hacking may seem a tad off-putting if you’re
 not a regular visitor to the shell prompt. But, in reality, it isn’t
 that difficult, and the power you get from being able to string
 together commands this way is often surprising. Stick with it, and
 you’ll be well on your way to mastering both Ruby and your computer.

Footnotes

	[5]	

 RVM isn’t the only way of managing multiple Ruby
 installations. You might want to look at rbenv
 (
 ​https://github.com/sstephenson/rbenv/​
) or chruby
 (
 ​https://github.com/postmodern/chruby​
).

	[6]	

 ​http://rvm.io/rvm/prerequisites/​

	[7]	
The website,
	
 ​http://rvm.io/​
 , has even more
	 information.

	[8]	

 ​http://rvm.io/rvm/install/​

	[9]	

 This is the only time you’ll need these privileges. Once
 your system has all the tools it needs, RVM can do the rest of
 its work as a regular user.

	[10]	

 ​http://pragprog.com/titles/ruby4/code​

	[11]	

 Remember, you may need to
 use ​ruby1.9​ as the command name
 if you installed using a package management system.

	[12]	

 If your system supports it, you can
 avoid hard-coding the path to Ruby in the “shebang” line by using
 ​#!/usr/bin/env ruby​, which will search your path for ​ruby​
 and then execute it.

	[13]	

	Including
 ​http://www.ruby-doc.org​
 and

 ​http://rubydoc.info​

	[14]	

 If you installed Ruby using rvm, there’s one additional step to get ri documentation available. At a prompt, enter ​rvm docs generate​.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 2
Ruby.new

 Most books on programming languages look about the same. They
 start with chapters on basic types: integers, strings, and so
 on. Then they look at expressions, before moving on to ​if​
 and ​while​ statements. Then, perhaps around Chapter 7 or
 8, they’ll start mentioning classes. We find that somewhat
 tedious.

 Instead, when we designed this book, we had a grand plan (we were
 younger then). We wanted to document the language from the top down,
 starting with classes and objects and ending with the nitty-gritty
 syntax details. It seemed like a good idea at the time. After all,
 most everything in Ruby is an object, so it made sense to talk about
 objects first.

 Or so we thought.

 Unfortunately, it turns out to be difficult to describe a language
 that way. If you haven’t covered strings, ​if​ statements,
 assignments, and other details, it’s difficult to write examples of
 classes. Throughout our top-down description, we kept coming across
 low-level details we needed to cover so that the example code would
 make sense.

 So, we came up with another grand plan (they don’t call us pragmatic
 for nothing). We’d still describe Ruby starting at the top. But before
 we did that, we’d add a short chapter that described all the common
 language features used in the examples along with the special vocabulary
 used in Ruby, a kind of mini-tutorial to bootstrap us into the rest of
 the book. And that mini-tutorial is this chapter.

2.1 Ruby Is an Object-Oriented Language

 Let’s say it again. Ruby is a genuine object-oriented language.
 Everything you manipulate is an object, and the results of those
 manipulations are themselves objects. However, many languages make the
 same claim, and their users often have a different interpretation of what
 ​object-oriented​ means and a different terminology
 for the concepts they employ.

 So, before we get too far into the details, let’s briefly look at the
 terms and notation that ​we’ll​ be using.

 When you write object-oriented programs, you’re normally looking to
 model concepts from the real world. During this modeling
 process you’ll discover categories of things that need to be
 represented in code. In a jukebox, the concept of a “song” could be
 such a category. In Ruby, you’d define a
 ​ class​

 to represent
 each of these entities. A class is a combination of state (for
 example, the name of the song) and methods that use that state
 (perhaps a method to play the song).

 Once you have these classes, you’ll typically want to create a
 number of
 ​ instances​

 of each. For the
 jukebox system containing a class
 called ​Song​, you’d have separate
 instances for popular hits such as “Ruby Tuesday,” “Enveloped
 in Python,” “String of Pearls,” “Small Talk,” and so
 on. The word
 ​ object​

 is used interchangeably with
 ​class instance​ (and being lazy typists, we’ll
 probably be using the word ​object​ more frequently).

 In Ruby, these objects are created by calling a
 ​constructor​, a special method associated with a
 class. The standard constructor is called
 ​new​
 .

	​ 	song1 = Song.new(​"Ruby Tuesday"​)

	​ 	song2 = Song.new(​"Enveloped in Python"​)

	​ 	​# and so on​

 These instances are both derived from the same class, but they
 have unique characteristics. First, every object has a
 unique
 ​ object identifier​

 (abbreviated
 as ​object ID​). Second, you can define

 ​ instance
 variables​

 , variables
 with values that are unique to each instance. These instance
 variables hold an object’s state. Each of our songs, for
 example, will probably have an instance variable that holds the
 song title.

 Within each class, you can define
 ​ instance
 methods​

 . Each method
 is a chunk of functionality that may be called in the context
 of the class and (depending on accessibility constraints) from
 outside the class. These instance methods in turn have access
 to the object’s instance variables and hence to the object’s
 state. A ​Song​ class, for example, might
 define an instance method
 called
 ​play​
 . If a variable
 referenced a
 particular ​Song​ instance, you’d be able
 to call that instance’s
 ​play​
 method and play that
 song.

 Methods are invoked by sending a message to an object.
 The message
 contains the method’s name, along with any parameters the method may
 need.[15]
 When an object receives a message,
 it looks into its own class for a corresponding method. If found, that
 method is executed. If the method ​isn’t​ found...well,
 we’ll get to that later.

 This business of methods and messages may sound complicated, but
 in practice it is very natural. Let’s look at some method calls.
 In this code, we’re using
 ​puts​
 , a
 standard Ruby method that writes its argument(s) to the console,
 adding a newline after each:

	​ 	puts ​"gin joint"​.length

	​ 	puts ​"Rick"​.index(​"c"​)

	​ 	puts 42.even?

	​ 	puts sam.play(song)

Produces:
	​ 	9

	​ 	2

	​ 	true

	​ 	duh dum, da dum de dum ...

 Each line shows a method being called as an argument
 to
 ​puts​
 . The thing before the period
 is called the
 ​ receiver​

 , and the name after
 the period is the method to be
 invoked. The first
 example asks a string for its length; the second asks a
 different string to find the index of the
 letter ​c​. The third line asks the number 42 if it
 is even (the question mark is part of the method
 name
 ​even?​
). Finally, we ask Sam to
 play us a song (assuming there’s an existing variable called
 ​sam​ that references an appropriate
 object).

 It’s worth noting here a major difference between Ruby and most other
 languages. In (say) Java, you’d find the absolute value of some number
 by calling a separate function and passing in that number. You could
 write this:

	​ 	num = ​Math​.abs(num) ​// Java code​

 In Ruby, the ability to determine an absolute value is built into
 numbers—they take care of the details internally. You simply send
 the message
 ​abs​
 to a number object and
 let it do the work:

	​ 	num = -1234 ​# => -1234​

	​ 	positive = num.abs ​# => 1234​

 The same applies to all Ruby objects. In C you’d write
 ​strlen(name)​, but in Ruby it would be ​name.length​,
 and so on. This is part of what we mean when we say that Ruby is
 a genuine object-oriented language.

2.2 Some Basic Ruby

 Not many people like to read heaps of boring syntax rules when
 they’re picking up a new language, so we’re going to cheat. In
 this section, we’ll hit some of the highlights—the stuff
 you’ll just ​need​ to know if you’re going to write
 Ruby programs. Later, in Chapter 22, ​The Ruby Language​, we’ll go
 into all the gory details.

 Let’s start with a simple Ruby program. We’ll write a method that
 returns a cheery, personalized greeting.
 We’ll then invoke that method a couple of times:

	​ 	​def​ say_goodnight(name)

	​ 	 result = ​"Good night, "​ + name

	​ 	 ​return​ result

	​ 	​end​

	​ 	

	​ 	​# Time for bed...​

	​ 	puts say_goodnight(​"John-Boy"​)

	​ 	puts say_goodnight(​"Mary-Ellen"​)

Produces:
	​ 	Good night, John-Boy

	​ 	Good night, Mary-Ellen

 As the example shows, Ruby syntax is clean. You don’t need
 semicolons at the ends of statements as long as you put each statement
 on a separate line. Ruby comments start with a ​#​ character and
 run to the end of the line. Code layout is pretty much up to you;
 indentation is not significant (but using two-character indentation
 will make you friends in the community if you plan on distributing
 your code).

 Methods are defined with the keyword ​def​,
 followed by the method name (in this case, the name is
 ​say_goodnight​
)
 and the method’s parameters between parentheses. (In fact, the
 parentheses are optional, but we like to use them.) Ruby doesn’t use
 braces to delimit the bodies of compound statements and
 definitions. Instead, you simply finish the body with the keyword
 ​end​. Our method’s body is pretty simple. The
 first line concatenates the literal string ​"Good
 night,␣"​ and the
 parameter ​name​ and assigns the
 result to the local
 variable ​result​. The next line
 returns that result to the caller. Note that we didn’t have to
 declare the variable ​result​; it
 sprang into existence when we assigned to it.

 Having defined the method, we invoke it twice. In both cases, we
 pass the result to the method
 ​puts​
 ,
 which simply outputs its argument followed by a newline (moving
 on to the next line of output):

	​ 	Good night, John-Boy

	​ 	Good night, Mary-Ellen

 The line

	​ 	puts say_goodnight(​"John-Boy"​)

 contains two method calls, one to the
 method
 ​say_goodnight​
 and the other to
 the method
 ​puts​
 . Why does one call have
 its arguments in parentheses while the other doesn’t? In this
 case, it’s purely a matter of taste. The following lines are
 equivalent:

	​ 	puts say_goodnight(​"John-Boy"​)

	​ 	puts(say_goodnight(​"John-Boy"​))

 However, life isn’t always that simple, and precedence rules can make
 it difficult to know which argument goes with which method invocation,
 so we recommend using parentheses in all but the simplest cases.

 This example also shows some Ruby string objects. Ruby has many ways
 to create a string object, but probably the most common is to use

 ​ string literals​

 , which are sequences of
 characters between single or double quotation marks. The
 difference between the two forms is the amount of processing
 Ruby does on the string while constructing the literal. In the
 single-quoted case, Ruby does very little. With a few
 exceptions, what you enter in the string
 literal becomes the string’s value.

 In the double-quoted case, Ruby does more work. First, it looks for
 substitutions (sequences that start with a backslash character) and
 replaces them with some binary value. The most common of these is
 ​\n​, which is replaced with a newline
 character.
 When a string containing a newline is
 output, that newline becomes a line break:

	​ 	puts ​"And good night,\nGrandma"​

Produces:
	​ 	And good night,

	​ 	Grandma

 The second thing that Ruby does with double-quoted strings is
 expression interpolation. Within the string, the sequence
 ​#{​expression​}​ is replaced by the value of
 ​expression​. We could use this to rewrite our
 previous method:

	​ 	​def​ say_goodnight(name)

	​ 	 result = ​"Good night, ​#{name}​"​

	​ 	 ​return​ result

	​ 	​end​

	​ 	puts say_goodnight(​'Pa'​)

Produces:
	​ 	Good night, Pa

 When Ruby constructs this string object, it looks at the current
 value of ​name​ and substitutes it
 into the string. Arbitrarily complex expressions are allowed in
 the ​#{...}​ construct. In the following example, we
 invoke the
 ​capitalize​
 method, defined
 for all strings, to output our parameter with a leading
 uppercase letter:

	​ 	​def​ say_goodnight(name)

	​ 	 result = ​"Good night, ​#{name.capitalize}​"​

	​ 	 ​return​ result

	​ 	​end​

	​ 	puts say_goodnight(​'uncle'​)

Produces:
	​ 	Good night, Uncle

 For more information on strings, as well as on the other Ruby standard
 types, see Chapter 6, ​Standard Types​.

 Finally, we could simplify this method some more. The value
 returned by a Ruby method is the value of the last expression
 evaluated, so we can get rid of the temporary variable and
 the ​return​ statement altogether. This is
 idiomatic Ruby.

	​ 	​def​ say_goodnight(name)

	​ 	 ​"Good night, ​#{name.capitalize}​"​

	​ 	​end​

	​ 	puts say_goodnight(​'ma'​)

Produces:
	​ 	Good night, Ma

 We promised that this section would be brief. We have just one more
 topic to cover: Ruby names. For brevity, we’ll be using some terms
 (such as
 ​ class variable​

) that we aren’t going to
 define here. However, by talking about the rules now, you’ll be ahead
 of the game when we actually come to discuss class variables and
 the like later.

 Ruby uses a convention that may seem strange at first: the first
 characters of a name indicate how the name is
 used. Local variables, method parameters, and method
 names should all start with a lowercase
 letter[16] or an underscore. Global
 variables are prefixed with a dollar sign ($), and instance
 variables begin with an “at” sign (@). Class variables start
 with two “at” signs (@@).[17]
 Finally, class names, module names, and
 constants must start with an uppercase letter. Samples of
 different names are given in Table 1, ​Example variable, class, and constant names​.

 Following this initial character, a name can be any combination
 of letters, digits, and underscores (with the proviso that the
 character following an @ sign may not be a digit). However, by
 convention, multiword instance variables are written with
 underscores between the words, and multiword class names are
 written in MixedCase (with each word
 capitalized). Method names may end with the
 characters ?, !, and =.

Table 1. Example variable, class, and constant names
	
Local Variable:
	name fish_and_chips x_axis thx1138 _x _26
	
Instance Variable:
	@name @point_1 @X @_ @plan9
	
Class Variable:
	@@total @@symtab @@N @@x_pos @@SINGLE
	
Global Variable:
	$debug $CUSTOMER $_ $plan9 $Global
	
Class Name:
	String ActiveRecord MyClass
	
Constant Name:
	FEET_PER_MILE DEBUG

2.3 Arrays and Hashes

 Ruby’s arrays and hashes are indexed collections. Both store
 collections of objects, accessible using a key. With arrays, the key
 is an integer, whereas hashes support any object as a key. Both
 arrays and hashes grow as needed to hold new elements. It’s more
 efficient to access array elements, but hashes provide more
 flexibility. Any particular array or hash can hold objects of
 differing types; you can have an array containing an integer, a
 string, and a floating-point number, as we’ll see in a minute.

 You can create and initialize a new array object using an

 ​ array literal​

 —a
 set of elements between square brackets. Given an array object, you
 can access individual elements by supplying an index between
 square brackets, as the next example shows. Note that Ruby array
 indices start at
 zero.

	​ 	a = [1, ​'cat'​, 3.14] ​# array with three elements​

	​ 	puts ​"The first element is ​#{a[0]}​"​

	​ 	​# set the third element​

	​ 	a[2] = nil

	​ 	puts ​"The array is now ​#{a.inspect}​"​

Produces:
	​ 	The first element is 1

	​ 	The array is now [1, "cat", nil]

 You may have noticed that we used the special
 value ​nil​ in
 this example. In many languages, the concept of ​nil​ (or
 ​null​) means “no object.” In Ruby, that’s not the case;
 ​nil​ is an object, just like any other, that
 happens to represent nothing. Anyway, let’s get back to arrays
 and hashes.

 Sometimes creating arrays of words can be a pain, what with all
 the quotes and commas. Fortunately, Ruby has a
 shortcut; ​%w​ does just what we want:

	​ 	a = [​'ant'​, ​'bee'​, ​'cat'​, ​'dog'​, ​'elk'​]

	​ 	a[0] ​# => "ant"​

	​ 	a[3] ​# => "dog"​

	​ 	​# this is the same:​

	​ 	a = ​%w{ ant bee cat dog elk }​

	​ 	a[0] ​# => "ant"​

	​ 	a[3] ​# => "dog"​

 Ruby hashes are similar to arrays. A hash literal uses braces rather
 than square brackets. The literal must supply two objects for every
 entry: one for the key, the other for the value. The key and value are
 normally separated by ​=>​.

 For example, you could use a hash to map musical instruments to their
 orchestral sections.

	​ 	inst_section = {

	​ 	 ​'cello'​ => ​'string'​,

	​ 	 ​'clarinet'​ => ​'woodwind'​,

	​ 	 ​'drum'​ => ​'percussion'​,

	​ 	 ​'oboe'​ => ​'woodwind'​,

	​ 	 ​'trumpet'​ => ​'brass'​,

	​ 	 ​'violin'​ => ​'string'​

	​ 	}

 The thing to the left of the ​=>​ is the key, and the thing to the right
 is the corresponding value. Keys in a particular hash must be
 unique; you can’t have two entries for “drum.” The keys and
 values in a hash can be arbitrary objects. You can have hashes where
 the values are arrays, other hashes, and so on.

 Hashes are indexed using the same square bracket notation as
 arrays. In this code, we’ll use the
 ​p​

 method to write the values to the console. This works like

 ​puts​
 but displays values such as
 ​nil​
 explicitly.

	​ 	p inst_section[​'oboe'​]

	​ 	p inst_section[​'cello'​]

	​ 	p inst_section[​'bassoon'​]

Produces:
	​ 	"woodwind"

	​ 	"string"

	​ 	nil

 As the previous example shows, a hash by default returns
 ​nil​ when indexed by a key it doesn’t
 contain. Normally this is convenient, because
 ​nil​ means false when used in conditional
 expressions. Sometimes you’ll want to change this default. For
 example, if you’re using a hash to count the number of times
 each different word occurs in a file, it’s convenient to have
 the default value be zero. Then you can use the word as the key
 and simply increment the corresponding hash value without
 worrying about whether you’ve seen that word before. This is
 easily done by specifying a default value when you create a new,
 empty hash. (Have a look at
 the full source for the word
 frequency counter.)

	​ 	histogram = Hash.new(0) ​# The default value is zero​

	​ 	histogram[​'ruby'​] ​# => 0​

	​ 	histogram[​'ruby'​] = histogram[​'ruby'​] + 1

	​ 	histogram[​'ruby'​] ​# => 1​

 Array and hash objects have many useful methods; see the discussion, as well as the reference
 sections for arrays and for
 hashes.

2.4 Symbols

 Often, when programming, you need to create a name for something
 significant. For example, you might want to refer to the compass
 points by name, so you’d write this:

	​ 	NORTH = 1

	​ 	EAST = 2

	​ 	SOUTH = 3

	​ 	WEST = 4

 Then, in the rest of your code, you could use the constants instead of
 the numbers:

	​ 	walk(NORTH)

	​ 	look(EAST)

 Most of the time, the actual numeric values of these constants are
 irrelevant (as long as they are unique). All you want to do is
 differentiate the four directions.

 Ruby offers a cleaner alternative. ​Symbols​ are
 simply constant names that you don’t have to predeclare and that are
 guaranteed to be unique. A symbol literal starts with a colon and is
 normally followed by some kind of name:

	​ 	walk(:north)

	​ 	look(:east)

 There’s no need to assign some kind of value to a symbol—Ruby takes
 care of that for you. Ruby also guarantees that no matter where it
 appears in your program, a particular symbol will have the same
 value. That is, you can write the following:

	​ 	​def​ walk(direction)

	​ 	 ​if​ direction == :north

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

 Symbols are frequently used as keys in hashes. We could write our
 previous example as this:

	​ 	inst_section = {

	​ 	 :cello => ​'string'​,

	​ 	 :clarinet => ​'woodwind'​,

	​ 	 :drum => ​'percussion'​,

	​ 	 :oboe => ​'woodwind'​,

	​ 	 :trumpet => ​'brass'​,

	​ 	 :violin => ​'string'​

	​ 	}

	​ 	inst_section[:oboe] ​# => "woodwind"​

	​ 	inst_section[:cello] ​# => "string"​

	​ 	​# Note that strings aren't the same as symbols...​

	​ 	inst_section[​'cello'​] ​# => nil​

 In fact, symbols are so frequently used as hash keys that Ruby
 has a shortcut syntax: you can use ​name: value​
 pairs to create
 a hash if the keys are symbols:

	​ 	inst_section = {

	​ 	 cello: ​'string'​,

	​ 	 clarinet: ​'woodwind'​,

	​ 	 drum: ​'percussion'​,

	​ 	 oboe: ​'woodwind'​,

	​ 	 trumpet: ​'brass'​,

	​ 	 violin: ​'string'​

	​ 	}

	​ 	puts ​"An oboe is a ​#{inst_section[:oboe]}​ instrument"​

Produces:
	​ 	An oboe is a woodwind instrument

2.5 Control Structures

 Ruby has all the usual control structures, such
 as ​if​ statements and ​while​
 loops. Java, C, and Perl programmers may well get caught by the
 lack of braces around the bodies of these statements. Instead,
 Ruby uses the keyword ​end​ to signify the end
 of a body of all the control structures:

	​ 	today = Time.now

	​ 	

	​ 	​if​ today.saturday?

	​ 	 puts ​"Do chores around the house"​

	​ 	​elsif​ today.sunday?

	​ 	 puts ​"Relax"​

	​ 	​else​

	​ 	 puts ​"Go to work"​

	​ 	​end​

Produces:
	​ 	Go to work

 Similarly, ​while​ statements are terminated
 with ​end​:

	​ 	num_pallets = 0

	​ 	weight = 0

	​ 	​while​ weight < 100 ​and​ num_pallets <= 5

	​ 	 pallet = next_pallet()

	​ 	 weight += pallet.weight

	​ 	 num_pallets += 1

	​ 	​end​

 Most statements in Ruby return a value, which means you can use
 them as conditions. For example, the kernel
 method
 ​gets​
 returns the next line from
 the standard input stream or ​nil​ when the end
 of the file is reached. Because Ruby treats ​nil​
 as a false value in conditions, you could write the following to
 process the lines in a file:

	​ 	​while​ line = gets

	​ 	 puts line.downcase

	​ 	​end​

 Here, the assignment statement sets the
 variable ​line​ to either the next
 line of text or ​nil​, and then
 the ​while​ statement tests the value of the
 assignment, terminating the loop when it
 is ​nil​.

 Ruby
 ​ statement modifiers​

 are a useful
 shortcut if the body of an ​if​
 or ​while​ statement is just a single
 expression. Simply write the expression, followed
 by ​if​ or ​while​ and the
 condition. For example, here’s a simple ​if​
 statement:

	​ 	​if​ radiation > 3000

	​ 	 puts ​"Danger, Will Robinson"​

	​ 	​end​

 Here it is again, rewritten using a statement modifier:

	​ 	puts ​"Danger, Will Robinson"​ ​if​ radiation > 3000

 Similarly, this ​while​ loop:

	​ 	square = 4

	​ 	​while​ square < 1000

	​ 	 square = square*square

	​ 	​end​

 becomes this more concise version:

	​ 	square = 4

	​ 	square = square*square ​while​ square < 1000

 These statement modifiers should seem familiar to Perl
 programmers.

2.6 Regular Expressions

 Most of Ruby’s built-in types will be familiar to all programmers. A
 majority of languages have strings, integers, floats, arrays, and so
 on. However, regular expression support is typically
 built into only scripting languages, such as Ruby, Perl, and awk. This
 is a shame, because regular expressions, although cryptic, are a powerful tool
 for working with text. And having them built in, rather than tacked on
 through a library interface, makes a big difference.

 Entire books have been written about regular expressions (for example,
 Mastering Regular Expressions [Fri97]), so we
 won’t try to cover everything in this short section. Instead, we’ll
 look at just a few examples of regular expressions in action. You’ll
 find full coverage of regular expressions in
 Chapter 7, ​Regular Expressions​.

 A regular expression is simply a way of specifying
 a
 ​ pattern​

 of characters to be matched in a
 string. In Ruby, you typically create a regular expression by
 writing a pattern between slash characters (/​pattern​/).
 And, Ruby being Ruby, regular expressions are objects and can be
 manipulated as such.

 For example, you could write a pattern that matches a string
 containing the text ​Perl​ or the
 text ​Python​ using the following regular expression:

	​ 	/Perl|Python/

 The forward slashes delimit the pattern, which consists of the two
 things we’re matching, separated by a pipe character
 (​|​). This pipe character means “either the thing on the
 right or the thing on the left,” in this case either ​Perl​ or
 ​Python​. You can use parentheses within patterns,
 just as you can in arithmetic expressions, so you could also
 have written this pattern like this:

	​ 	/P(erl|ython)/

 You can also specify
 ​ repetition​

 within
 patterns. ​/ab+c/​ matches a string containing an
 ​a​ followed by one or more ​b​’s, followed by a
 ​c​. Change the plus to an asterisk,
 and ​/ab*c/​ creates a regular expression that matches
 one ​a​, zero or more ​b​’s, and
 one ​c​.

 You can also match one of a group of characters within a pattern. Some
 common examples are
 ​ character classes​

 such as ​\s​,
 which matches a whitespace character (space, tab, newline, and so on);
 ​\d​, which matches any digit; and ​\w​, which
 matches any character that may appear in a typical word. A dot
 (.) matches (almost) any character. A table of
 these character classes appears in
 Table 2, ​Character class abbreviations​.

 We can put all this together to produce some useful regular
 expressions:

	​ 	/​\d\d​:​\d\d​:​\d\d​/ ​# a time such as 12:34:56​

	​ 	/Perl.*Python/ ​# Perl, zero or more other chars, then Python​

	​ 	/Perl Python/ ​# Perl, a space, and Python​

	​ 	/Perl *Python/ ​# Perl, zero or more spaces, and Python​

	​ 	/Perl +Python/ ​# Perl, one or more spaces, and Python​

	​ 	/Perl​\s​+Python/ ​# Perl, whitespace characters, then Python​

	​ 	/Ruby (Perl|Python)/ ​# Ruby, a space, and either Perl or Python​

 Once you have created a pattern, it seems a shame not to use
 it. The match operator ​=~​ can be used to match a string
 against a regular expression. If the pattern is found in the
 string, ​=~​ returns its starting position; otherwise, it
 returns ​nil​. This means you can use regular
 expressions as the condition in ​if​ and ​while​
 statements. For example, the following code fragment writes a
 message if a string contains the text ​Perl​ or
 ​Python​:

	​ 	line = gets

	​ 	​if​ line =~ /Perl|Python/

	​ 	 puts ​"Scripting language mentioned: ​#{line}​"​

	​ 	​end​

 The part of a string matched by a regular expression can be
 replaced with different text using one of Ruby’s substitution methods:

	​ 	line = gets

	​ 	newline = line.sub(/Perl/, ​'Ruby'​) ​# replace first 'Perl' with 'Ruby'​

	​ 	newerline = newline.gsub(/Python/, ​'Ruby'​) ​# replace every 'Python' with 'Ruby'​

 You can replace every occurrence of ​Perl​
 and ​Python​ with ​Ruby​ using this:

	​ 	line = gets

	​ 	newline = line.gsub(/Perl|Python/, ​'Ruby'​)

 We’ll have a lot more to say about regular expressions as we go
 through the book.

2.7 Blocks and Iterators

 This section briefly describes one of Ruby’s particular
 strengths. We’re about to look at
 ​ code
 blocks​

 , which are chunks of code you can associate
 with method invocations, almost as if they were parameters. This
 is an incredibly powerful feature. One of our reviewers
 commented at this point: “This is pretty interesting and
 important, so if you weren’t paying attention before, you should
 probably start now.” We’d have to agree.

 You can use code blocks to implement callbacks (but they’re simpler
 than Java’s anonymous inner classes), to pass around chunks of code
 (but they’re more flexible than C’s function pointers), and to
 implement iterators.

 Code blocks are just chunks of code between braces or between
 ​do​ and ​end​. This is a code
 block:

	​ 	{ puts ​"Hello"​ }

 This is also a code block:

	​ 	​do​

	​ 	 club.enroll(person)

	​ 	 person.socialize

	​ 	​end​

 Why are there two kinds of delimiter? It’s partly because sometimes one
 feels more natural to write than another. It’s partly too because they have
 different precedences: the braces bind more tightly than the
 ​do​/​end​ pairs. In this book, we try to follow what is
 becoming a Ruby standard and use braces for single-line blocks and
 ​do​/​end​ for multiline
 blocks.

 All you can do with a block is associate it with a call to a
 method. You do this by putting the start of the block at the end of
 the source line containing the method call.

 For example, in the following code, the block
 containing ​puts "Hi"​ is associated with the call to the
 method
 ​greet​
 (which we don’t show):

	​ 	greet { puts ​"Hi"​ }

 If the method has parameters, they appear before the block:

	​ 	verbose_greet(​"Dave"​, ​"loyal customer"​) { puts ​"Hi"​ }

 A method can then invoke an associated block one or more times
 using the Ruby ​yield​ statement. You can think
 of ​yield​ as being something like a method
 call that invokes the block associated with the call to the
 method containing the ​yield​.

 The following example shows this in action. We define a method
 that calls ​yield​ twice. We then call this
 method, putting a block on the same line, after the call (and
 after any arguments to the method).[18]

	​ 	​def​ call_block

	​ 	 puts ​"Start of method"​

	​ 	 ​yield​

	​ 	 ​yield​

	​ 	 puts ​"End of method"​

	​ 	​end​

	​ 	

	​ 	call_block { puts ​"In the block"​ }

Produces:
	​ 	Start of method

	​ 	In the block

	​ 	In the block

	​ 	End of method

 The code in the block (​puts "In the block"​) is executed
 twice, once for each call to ​yield​.

 You can provide arguments to the call
 to ​yield​, and they will be passed to the
 block. Within the block, you list the names of the parameters to
 receive these arguments between vertical bars
 (​|params...|​). The following example shows a method
 calling its associated block twice, passing the block two
 arguments each time:

	​ 	​def​ who_says_what

	​ 	 ​yield​(​"Dave"​, ​"hello"​)

	​ 	 ​yield​(​"Andy"​, ​"goodbye"​)

	​ 	​end​

	​ 	

	​ 	who_says_what {|person, phrase| puts ​"​#{person}​ says ​#{phrase}​"​}

Produces:
	​ 	Dave says hello

	​ 	Andy says goodbye

 Code blocks are used throughout the Ruby library to implement

 ​ iterators​

 , which are methods that return
 successive elements from some kind of collection, such as an
 array:

	​ 	animals = ​%w(ant bee cat dog)​ ​# create an array​

	​ 	animals.each {|animal| puts animal } ​# iterate over the contents​

Produces:
	​ 	ant

	​ 	bee

	​ 	cat

	​ 	dog

 Many of the looping constructs that are built into languages such
 as C and Java are simply method calls in Ruby, with the methods
 invoking the associated block zero or more times:

	​ 	[​'cat'​, ​'dog'​, ​'horse'​].each {|name| print name, ​" "​ }

	​ 	5.times { print ​"*"​ }

	​ 	3.upto(6) {|i| print i }

	​ 	(​'a'​..​'e'​).each {|char| print char }

	​ 	puts

Produces:
	​ 	cat dog horse *****3456abcde

 Here we ask an array to call the block once for each of its
 elements. Then, object 5 calls a block five times. Rather than use
 ​for​ loops, in Ruby we can ask the number 3 to
 call a block, passing in successive values until it reaches
 6. Finally, the range of characters from ​a​
 to ​e​ invokes a block using the method

 ​each​
 .

2.8 Reading and ’Riting

 Ruby comes with a comprehensive I/O library. However, in most of
 the examples in this book, we’ll stick to a few simple
 methods. We’ve already come across two methods that do
 output:
 ​puts​
 writes its arguments with
 a newline after each;
 ​print​
 also writes
 its arguments but with no newline. Both can be used to write to
 any I/O object, but by default they write to standard output.

 Another output method we use a lot
 is
 ​printf​
 , which prints its arguments
 under the control of a format string (just
 like
 ​printf​
 in C or
 Perl):

	​ 	printf(​"Number: %5.2f,\nString: %s\n"​, 1.23, ​"hello"​)

Produces:
	​ 	Number: 1.23,

	​ 	String: hello

 In this example, the format string ​"Number: %5.2f,\nString:
 %s\n"​ tells
 ​printf​
 to
 substitute in a floating-point number (with a minimum of five
 characters, two after the decimal point) and a string. Notice
 the newlines (​\n​) embedded in the string; each moves
 the output onto the next line.

 You have many ways to read input into your program. Probably the
 most traditional is to use the
 method
 ​gets​
 , which returns the next
 line from your program’s standard input
 stream:

	​ 	line = gets

	​ 	print line

 Because
 ​gets​

 returns ​nil​ when it reaches the end of input, you
 can use its return value in a loop condition. Notice that in the
 following code the
 condition to the ​while​ is an assignment: we store whatever

 ​gets​
 returns into the variable
 ​line​ and then test to see whether
 that returned value was ​nil​
 or ​false​ before continuing:

	​ 	​while​ line = gets

	​ 	 print line

	​ 	​end​

2.9 Command-Line Arguments

 When you run a Ruby program from the command line, you can pass in
 arguments. These are accessible in two different ways.

 First, the
 array ​ARGV​
 contains each of the arguments passed to the running program. Create a
 file called ​cmd_line.rb​ that contains the following:

	​ 	puts ​"You gave ​#{ARGV.size}​ arguments"​

	​ 	p ARGV

 When we run it with arguments, we can see that they get passed in:

	​ 	$ ​ruby cmd_line.rb ant bee cat dog​

	​ 	You gave 4 arguments

	​ 	["ant", "bee", "cat", "dog"]

 Often, the arguments to a program are the names of files that you want
 to process. In this case, you can use a second technique: the variable
 ​ARGF​
 is a special kind of I/O object that acts like all the contents of all
 the files whose names are passed on the command line (or standard
 input if you don’t pass any filenames). We’ll look at that some more in
 ​ARGF​.

2.10 Onward and Upward

 That’s it. We’ve finished our lightning-fast tour of some of the
 basic features of Ruby. We took a look at objects, methods,
 strings, containers, and regular expressions; saw some simple control
 structures; and looked at some rather nifty iterators. We hope this
 chapter has given you enough ammunition to be able to attack the rest
 of this book.

 It’s time to move on and move up—up to a higher level. Next, we’ll be looking
 at classes and objects, things that are at the same time both the
 highest-level constructs in Ruby and the essential underpinnings of
 the entire language.

Footnotes

	[15]	

 This idea of expressing method calls in the form of
 messages comes from
 Smalltalk.

	[16]	
If your source files use non-ASCII
 characters (for example, because they’re written in UTF-8
 encoding), all non-ASCII characters are assumed to be lowercase
 letters.

	[17]	

 Although we talk about global and class variables
 here for completeness, you’ll find they are rarely used in Ruby
 programs. There’s a lot of evidence that global variables make
 programs harder to maintain. Class variables are not as
 dangerous—it’s just that people tend not to use them much.

	[18]	

 Some people like to
 think of the association of a block with a method as a kind of
 argument passing. This works on one level, but it isn’t really
 the whole story. You may be better off thinking of the block and
 the method as coroutines, which transfer control back and forth
 between themselves.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 3
Classes, Objects, and Variables

 From the examples we’ve shown so far, you may be wondering about
 our earlier assertion that Ruby is an object-oriented language.
 Well, this chapter is where we justify that claim. We’re going to
 be looking at how you create classes and objects in Ruby and at
 some of the ways that Ruby is more powerful than most
 object-oriented languages.

 As we saw, everything we
 manipulate in Ruby is an object. And every object in Ruby was
 generated either directly or indirectly from a class. In this
 chapter, we’ll look in more depth at creating and manipulating
 those classes.

 Let’s give ourselves a simple problem to solve. Let’s say that we’re
 running a secondhand bookstore. Every week, we do stock control. A
 gang of clerks uses portable bar-code scanners to record every book on
 our shelves. Each scanner generates a simple comma-separated value
 (CSV) file containing one row for each book scanned. The row contains
 (among other things) the book’s ISBN and price. An extract from one of
 these files looks something like this:

	tut_classes/stock_stats/data.csv
	​ 	"Date","ISBN","Price"

	​ 	"2013-04-12","978-1-9343561-0-4",39.45

	​ 	"2013-04-13","978-1-9343561-6-6",45.67

	​ 	"2013-04-14","978-1-9343560-7-4",36.95

 Our job is to take all the CSV files and work out how many of each
 title we have, as well as the total list price of the books in stock.

 Whenever you’re designing OO systems, a good first step is to identify
 the ​things​ you’re dealing with. Typically each type of thing
 becomes a class in your final program, and the things themselves are
 instances of these classes.

 It seems pretty clear that we’ll need something to represent each data
 reading captured by the scanners. Each instance of this will represent
 a particular row of data, and the collection of all of these objects
 will represent all the data we’ve captured.

 Let’s call this class
 ​BookInStock​. (Remember, class names start
 with an uppercase letter, and method names normally start with a
 lowercase letter.)

	​ 	​class​ BookInStock

	​ 	​end​

 As we saw in the previous chapter, we can create new instances of this
 class using
 ​new​
 :

	​ 	a_book = BookInStock.new

	​ 	another_book = BookInStock.new

 After this code runs, we’d have two distinct objects, both of
 class ​BookInStock​. But, besides
 that they have different
 identities, these two objects are otherwise the same—there’s nothing
 to distinguish one from the other. And, what’s worse, these objects
 actually don’t hold any of the information we need them to hold.

 The best way to fix this is to provide the objects with
 an
 ​initialize​
 method. This lets
 us set the state of each object as it is constructed. We store
 this state in
 ​ instance variables​

 inside the object. (Remember instance variables? They’re the ones that
 start with an @ sign.) Because each object in Ruby has its own
 distinct set of instance variables, each object can have its own
 unique state.

 So, here’s our updated class definition:

	​ 	​class​ BookInStock

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	​end​

 ​initialize​
 is a special method
 in Ruby programs. When you
 call
 ​BookInStock.new​
 to create a new
 object, Ruby allocates some memory to hold an uninitialized object
 and then calls that object’s
 ​initialize​

 method, passing in any parameters that were passed
 to
 ​new​
 . This gives you a chance to write
 code that sets up your object’s state.

 For class ​BookInStock​,
 the
 ​initialize​
 method takes two
 parameters. These parameters act just like local variables within
 the method, so they follow the local variable naming convention of
 starting with a lowercase letter. But, as local variables, they
 would just evaporate once the
 ​initialize​

 method returns, so we need to transfer them into instance
 variables. This is very common behavior in
 an
 ​initialize​
 method—the intent is to
 have our object set up and usable by the
 time
 ​initialize​
 returns.

 This method also illustrates something that often trips up
 newcomers to Ruby. Notice how we say ​@isbn = isbn​. It’s
 easy to imagine that the two variables
 here, ​@isbn​
 and ​isbn​, are somehow related—it
 looks like they have the same name. But they don’t. The former is
 an instance variable, and the “at” sign is actually part of its
 name.

 Finally, this code illustrates a simple piece of validation. The

 ​Float​
 method takes its argument and converts it to a
 floating-point number,[19] terminating the program with an error if that
 conversion fails. (Later in the book we’ll see how to handle these
 exceptional situations.) What we’re doing here is saying that we
 want to accept any object for
 the ​price​ parameter as long as that
 parameter can be converted to a float. We can pass in a float, an
 integer, and even a string containing the representation of a
 float, and it will work. Let’s try this now. We’ll create three
 objects, each with different initial
 state. The
 ​p​
 method prints out
 an internal representation of an object. Using it, we can see that
 in each case our parameters got transferred into the object’s
 state, ending up as instance variables:

	​ 	​class​ BookInStock

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	b1 = BookInStock.new(​"isbn1"​, 3)

	​ 	p b1

	​ 	

	​ 	b2 = BookInStock.new(​"isbn2"​, 3.14)

	​ 	p b2

	​ 	

	​ 	b3 = BookInStock.new(​"isbn3"​, ​"5.67"​)

	​ 	p b3

Produces:
	​ 	#<BookInStock:0x007fac4910f3e0 @isbn="isbn1", @price=3.0>

	​ 	#<BookInStock:0x007fac4910f0c0 @isbn="isbn2", @price=3.14>

	​ 	#<BookInStock:0x007fac4910eda0 @isbn="isbn3", @price=5.67>

 Why did we use the
 ​p​
 method to write out our
 objects, rather than
 ​puts​
 ?
 Well, let’s repeat the code using
 ​puts​
 :

	​ 	​class​ BookInStock

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	b1 = BookInStock.new(​"isbn1"​, 3)

	​ 	puts b1

	​ 	

	​ 	b2 = BookInStock.new(​"isbn2"​, 3.14)

	​ 	puts b2

	​ 	

	​ 	b3 = BookInStock.new(​"isbn3"​, ​"5.67"​)

	​ 	puts b3

Produces:
	​ 	#<BookInStock:0x007fb424847468>

	​ 	#<BookInStock:0x007fb424847238>

	​ 	#<BookInStock:0x007fb424847058>

 Remember,
 ​puts​
 simply writes strings to
 your program’s standard output. When you pass it an object based
 on a class you wrote, it doesn’t really know what to do with it,
 so it uses a very simple expedient: it writes the name of the
 object’s class, followed by a colon and the object’s unique
 identifier (a hexadecimal number). It puts the whole lot
 inside ​#<...>​.

 Our experience tells us that during development we’ll be printing
 out the contents of a ​BookInStock​ object
 many times, and the default formatting leaves something to be
 desired. Fortunately, Ruby has a standard
 message,
 ​to_s​
 ,
 that it sends to any object it wants to render as a string. So,
 when we pass one of our ​BookInStock​ objects
 to
 ​puts​
 ,
 the
 ​puts​
 method
 calls
 ​to_s​
 in that object to get its
 string representation. So, let’s override the default
 implementation of
 ​to_s​
 to give us a
 better rendering of our objects:

	​ 	​class​ BookInStock

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	 ​def​ to_s

	​ 	 ​"ISBN: ​#{@isbn}​, price: ​#{@price}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	b1 = BookInStock.new(​"isbn1"​, 3)

	​ 	puts b1

	​ 	b2 = BookInStock.new(​"isbn2"​, 3.14)

	​ 	puts b2

	​ 	b3 = BookInStock.new(​"isbn3"​, ​"5.67"​)

	​ 	puts b3

Produces:
	​ 	ISBN: isbn1, price: 3.0

	​ 	ISBN: isbn2, price: 3.14

	​ 	ISBN: isbn3, price: 5.67

 There’s something going on here that’s both trivial and
 profound. See how the values we set into the instance
 variables ​@isbn​
 and ​@price​ in
 the
 ​initialize​
 method are subsequently
 available in the
 ​to_s​
 method? That shows
 how instance variables work—they’re stored with each object and
 available to all the instance methods of those objects.

3.1 Objects and Attributes

 The ​BookInStock​ objects we’ve created so
 far have an internal
 state (the ISBN and price). That state is private to those
 objects—no other object can access an object’s instance variables.
 In general, this is a Good Thing. It means that the object is solely
 responsible for maintaining its own consistency.

 However, an object that is totally secretive is pretty
 useless—you can create it, but then you can’t do anything with
 it. You’ll normally define methods that let you access and
 manipulate the state of an object, allowing the outside world to
 interact with the object. These externally visible facets of an
 object are called
 its
 ​ attributes​

 .

 For our ​BookInStock​ objects, the first
 thing we may need is the ability
 to find out the ISBN and price (so we can count each distinct book and
 perform price calculations). One way of doing that is to write
 accessor methods:

	​ 	​class​ BookInStock

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	 ​def​ isbn

	​ 	 @isbn

	​ 	 ​end​

	​ 	

	​ 	 ​def​ price

	​ 	 @price

	​ 	 ​end​

	​ 	 ​# ..​

	​ 	​end​

	​ 	

	​ 	book = BookInStock.new(​"isbn1"​, 12.34)

	​ 	puts ​"ISBN = ​#{book.isbn}​"​

	​ 	puts ​"Price = ​#{book.price}​"​

Produces:
	​ 	ISBN = isbn1

	​ 	Price = 12.34

 Here we’ve defined two accessor methods to return the values of
 the two instance variables. The method

 ​isbn​
 , for example, returns the value of
 the instance variable ​@isbn​
 (because the last thing executed in the method is the expression
 that simply evaluates the ​@isbn​
 variable).

 Because writing accessor methods is such a common idiom, Ruby
 provides a convenient
 shortcut.
 ​attr_reader​
 creates
 these attribute reader methods for you:

	​ 	​class​ BookInStock

	​ 	

	​ 	 attr_reader :isbn, :price

	​ 	

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	

	​ 	 ​# ..​

	​ 	​end​

	​ 	

	​ 	book = BookInStock.new(​"isbn1"​, 12.34)

	​ 	puts ​"ISBN = ​#{book.isbn}​"​

	​ 	puts ​"Price = ​#{book.price}​"​

Produces:
	​ 	ISBN = isbn1

	​ 	Price = 12.34

 This is the first time we’ve used
 ​ symbols​

 in this chapter. As we
 discussed, symbols are just a convenient way of
 referencing a name. In this code, you can think of
 ​:isbn​ as meaning the ​name ​
 ​isbn​ and think of plain ​isbn​ as meaning the
 ​value​ of the variable. In this example, we named
 the accessor methods ​isbn​ and
 ​price​. The corresponding instance variables
 are ​@isbn​ and ​@price​.
 These accessor methods are identical to the ones we wrote by
 hand earlier.

 There’s a common misconception, particularly among people who
 come from languages such as Java and C#, that
 the
 ​attr_reader​
 declaration somehow
 declares instance variables. It doesn’t. It creates the accessor
 methods, but the variables themselves don’t need to be
 declared—they just pop into existence when you use them. Ruby
 completely decouples instance variables and accessor methods, as
 we’ll see in ​Virtual Attributes​.

Writable Attributes

	Sometimes you need to be able to set an attribute from outside
	the object. For example, let’s assume that we have
	to discount the price of some titles after reading in the raw
	scan data.

	In languages such as C# and Java, you’d do this
	with ​setter functions​:

	​ 	​class​ JavaBookInStock { ​// Java code​

	​ 	 ​private​ ​double​ _price;

	​ 	 ​public​ ​double​ getPrice() {

	​ 	 ​return​ _price;

	​ 	 }

	​ 	 ​public​ ​void​ setPrice(​double​ newPrice) {

	​ 	 _price = newPrice;

	​ 	 }

	​ 	}

	​ 	b = ​new​ JavaBookInStock(....);

	​ 	b.setPrice(calculate_discount(b.getPrice()));

	In Ruby, the attributes of an object can be accessed as if
	they were any other variable. We saw this earlier with phrases
	such as ​book.isbn​. So, it seems natural to be able to
	assign to these variables when you want to set the value of an
	attribute. You do that by creating a Ruby method whose name
	ends with an equals sign. These methods can be used as the
	target of assignments:

	​ 	​class​ BookInStock

	​ 	

	​ 	 attr_reader :isbn, :price

	​ 	

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ price=(new_price)

	​ 	 @price = new_price

	​ 	 ​end​

	​ 	

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	book = BookInStock.new(​"isbn1"​, 33.80)

	​ 	puts ​"ISBN = ​#{book.isbn}​"​

	​ 	puts ​"Price = ​#{book.price}​"​

	​ 	book.price = book.price * 0.75 ​# discount price​

	​ 	puts ​"New price = ​#{book.price}​"​

Produces:
	​ 	ISBN = isbn1

	​ 	Price = 33.8

	​ 	New price = 25.349999999999998

	The assignment ​book.price = book.price * 0.75​ invokes
	the method
 ​price=​
 in
	the ​book​ object, passing it the
	discounted
	price as an argument. If you create a method whose name ends with an
	equals sign, that name can appear on the left side of an assignment.

	Again, Ruby provides a shortcut for creating these simple
	attribute-setting methods. If you want a write-only accessor,
	you can use the form
 ​attr_writer​
 , but
	that’s fairly rare. You’re far more likely to want both a
	reader and a writer for a given attribute, so you’ll use the
	handy-dandy
 ​attr_accessor​

	method:

	​ 	​class​ BookInStock

	​ 	 attr_reader :isbn

	​ 	 attr_accessor :price

	​ 	

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	book = BookInStock.new(​"isbn1"​, 33.80)

	​ 	puts ​"ISBN = ​#{book.isbn}​"​

	​ 	puts ​"Price = ​#{book.price}​"​

	​ 	book.price = book.price * 0.75 ​# discount price​

	​ 	puts ​"New price = ​#{book.price}​"​

Produces:
	​ 	ISBN = isbn1

	​ 	Price = 33.8

	​ 	New price = 25.349999999999998

Virtual Attributes

	These attribute-accessing methods do not have to be just simple
	wrappers around an object’s instance variables. For example, you may
	want to access the price as an exact number of cents, rather than as a
	floating-point number of dollars.[20]

	​ 	​class​ BookInStock

	​ 	

	​ 	 attr_reader :isbn

	​ 	 attr_accessor :price

	​ 	

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ price_in_cents

	​ 	 Integer(price*100 + 0.5)

	​ 	 ​end​

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	book = BookInStock.new(​"isbn1"​, 33.80)

	​ 	puts ​"Price = ​#{book.price}​"​

	​ 	puts ​"Price in cents = ​#{book.price_in_cents}​"​

Produces:
	​ 	Price = 33.8

	​ 	Price in cents = 3380

	We can take this even further and allow people to assign to our
	virtual attribute, mapping the value to the instance variable
	internally:

	​ 	​class​ BookInStock

	​ 	

	​ 	 attr_reader :isbn

	​ 	 attr_accessor :price

	​ 	

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ price_in_cents

	​ 	 Integer(price*100 + 0.5)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ price_in_cents=(cents)

	​ 	 @price = cents / 100.0

	​ 	 ​end​

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	book = BookInStock.new(​"isbn1"​, 33.80)

	​ 	puts ​"Price = ​#{book.price}​"​

	​ 	puts ​"Price in cents = ​#{book.price_in_cents}​"​

	​ 	book.price_in_cents = 1234

	​ 	puts ​"Price = ​#{book.price}​"​

	​ 	puts ​"Price in cents = ​#{book.price_in_cents}​"​

Produces:
	​ 	Price = 33.8

	​ 	Price in cents = 3380

	​ 	Price = 12.34

	​ 	Price in cents = 1234

	Here we’ve used attribute methods to create a virtual instance
	variable. To the outside
	world,
 ​price_in_cents​
 seems to be an
	attribute like any other. Internally, though, it has no corresponding
	instance variable.

	This is more than a curiosity. In his landmark book Object-Oriented Software Construction [Mey97], Bertrand Meyer calls this the
	
 ​ Uniform Access Principle​

 . By
	hiding the difference between instance variables and calculated
	values, you are shielding the rest of the world from the
	implementation of your class. You’re free to change how things work
	in the future without impacting the millions of lines of code that use
	your class. This is a big win.

Attributes, Instance Variables, and Methods

	This description of attributes may leave you thinking that
	they’re nothing more than methods—why’d we need to invent a
	fancy name for them? In a way, that’s absolutely right. An
	attribute ​is​ just
	a method. Sometimes an attribute simply returns the value of an
	instance variable. Sometimes an attribute returns the result of a
	calculation. And sometimes those funky methods with equals signs at
	the end of their names are used to update the state of an object. So,
	the question is, where do attributes stop and regular methods begin?
	What makes something an attribute and not just a plain old method?
	Ultimately, that’s one of those “angels on a pinhead”
	questions. Here’s a personal take.

	When you design a class, you decide what internal state it has
	and also decide how that state is to appear on the outside (to
	users of your class). The internal state is held in instance
	variables. The external state is exposed through methods we’re
	calling
 ​ attributes​

 . And the other actions
	your class can perform are just regular methods. It really
	isn’t a crucially important distinction, but by calling the
	external state of an object its attributes, you’re helping
	clue people in to how they should view the class you’ve
	written.

3.2 Classes Working with Other Classes

 Our original challenge was to read in data from multiple CSV
 files and produce various simple reports. So far, all we have
 is ​BookInStock​, a class that represents
 the data for one book.

 During OO design, you identify external things and make them
 classes in your code. But there’s another source of classes in
 your designs. There are the classes that correspond to things
 inside your code itself. For example, we know that the program
 we’re writing will need to consolidate and summarize CSV data
 feeds. But that’s a very passive statement. Let’s turn it into a
 design by asking ourselves ​what​ does the
 summarizing and consolidating. And the answer (in our case) is
 a ​CSV reader​. Let’s make it into a class as follows:

	​ 	​class​ CsvReader

	​ 	 ​def​ initialize

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ read_in_csv_data(csv_file_name)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ total_value_in_stock

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ number_of_each_isbn

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

 We’d call it using something like this:

	​ 	reader = CsvReader.new

	​ 	reader.read_in_csv_data(​"file1.csv"​)

	​ 	reader.read_in_csv_data(​"file2.csv"​)

	​ 	 : : :

	​ 	puts ​"Total value in stock = ​#{reader.total_value_in_stock}​"​

 We need to be able to handle multiple CSV files, so
 our ​reader​ object needs to
 accumulate the values from each CSV file it is fed. We’ll do
 that by keeping an array of values in an instance variable. And
 how shall we represent each book’s data? Well, we just finished
 writing the ​BookInStock​ class, so that
 problem is solved. The only other question is how we parse data
 in a CSV file. Fortunately, Ruby comes with a good CSV library
 (which has a brief description).
 Given a CSV file with a header line, we can iterate over the
 remaining rows and extract values by name:

	tut_classes/stock_stats/csv_reader.rb
	​ 	​class​ CsvReader

	​ 	 ​def​ initialize

	​ 	 @books_in_stock = []

	​ 	 ​end​

	​ 	

	​ 	 ​def​ read_in_csv_data(csv_file_name)

	​ 	 CSV.foreach(csv_file_name, headers: true) ​do​ |row|

	​ 	 @books_in_stock << BookInStock.new(row[​"ISBN"​], row[​"Price"​])

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 Just because you’re probably wondering what’s going on, let’s dissect
 that
 ​read_in_csv_data​
 method. On the first line, we tell
 the CSV library to open the file with the given name. The
 ​headers: true​ option tells the library to parse the first line of
 the file as the names of the columns.

 The library then reads the rest
 of the file, passing each row in turn to the block (the code between
 ​do​ and ​end​).[21] Inside the block, we extract the data from the
 ISBN and Price columns and use that data to create a
 new ​BookInStock​ object. We then append
 that object to an instance variable
 called ​@books_in_stock​. And just
 where does that variable come from? It’s an array that we
 created in the
 ​initialize​
 method.

 Again, this is the pattern you want to aim
 for. Your
 ​initialize​
 method sets up
 an environment for your object,
 leaving it in a usable state. Other methods then use that
 state.

 So, let’s turn this from a code fragment into a working
 program. We’re going to organize our source into three
 files. The first, ​book_in_stock.rb​, will
 contain the definition of the class
 ​BookInStock​. The second,
 ​csv_reader.rb​, is the source for the
 ​CsvReader​ class. Finally, a third file,
 ​stock_stats.rb​, is the main driver program.
 We’ll start with ​book_in_stock.rb​:

	tut_classes/stock_stats/book_in_stock.rb
	​ 	​class​ BookInStock

	​ 	 attr_reader :isbn, :price

	​ 	

	​ 	 ​def​ initialize(isbn, price)

	​ 	 @isbn = isbn

	​ 	 @price = Float(price)

	​ 	 ​end​

	​ 	​end​

 Here’s the ​csv_reader.rb​
 file. The ​CsvReader​ class has two
 external dependencies: it needs the standard CSV library, and it
 needs the ​BookInStock​ class that’s
 in the file ​book_in_stock.rb​. Ruby
 has a couple of helper methods that let us load external
 files. In this file, we use
 ​require​
 to
 load in the Ruby CSV library
 and
 ​require_relative​
 to load in
 the ​book_in_stock​ file we wrote. (We
 use
 ​require_relative​
 for this because
 the location of the file we’re loading is relative to the file
 we’re loading it from—they’re both in the same directory.)

	tut_classes/stock_stats/csv_reader.rb
	​ 	require ​'csv'​

	​ 	require_relative ​'book_in_stock'​

	​ 	

	​ 	​class​ CsvReader

	​ 	 ​def​ initialize

	​ 	 @books_in_stock = []

	​ 	 ​end​

	​ 	

	​ 	 ​def​ read_in_csv_data(csv_file_name)

	​ 	 CSV.foreach(csv_file_name, headers: true) ​do​ |row|

	​ 	 @books_in_stock << BookInStock.new(row[​"ISBN"​], row[​"Price"​])

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​def​ total_value_in_stock ​# later we'll see how to use inject to sum a collection​

	​ 	 sum = 0.0

	​ 	 @books_in_stock.each {|book| sum += book.price}

	​ 	 sum

	​ 	 ​end​

	​ 	

	​ 	 ​def​ number_of_each_isbn

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

 And finally, here’s our main program, in the file
 ​stock_stats.rb​:

	tut_classes/stock_stats/stock_stats.rb
	​ 	require_relative ​'csv_reader'​

	​ 	

	​ 	reader = CsvReader.new

	​ 	

	​ 	ARGV.each ​do​ |csv_file_name|

	​ 	 STDERR.puts ​"Processing ​#{csv_file_name}​"​

	​ 	 reader.read_in_csv_data(csv_file_name)

	​ 	​end​

	​ 	

	​ 	puts ​"Total value = ​#{reader.total_value_in_stock}​"​

 Again, this file uses
 ​require_relative​

 to bring in the library it needs (in this case, the
 ​csv_reader.rb​ file). It uses the
 ​ARGV​ variable to access the
 program’s command-line arguments, loading CSV data for each file
 specified on the command line.

 We can run this program using the simple CSV data file
 as we showed:

	​ 	$ ​ruby stock_stats.rb data.csv​

	​ 	Processing data.csv

	​ 	Total value = 122.07000000000001

 Do we need three source files for this? No. In fact, most Ruby
 developers would probably start off by sticking all this code
 into a single file—it would contain both class definitions
 as well as the driver code. But as your programs grow (and
 almost all programs grow over time), you’ll find that this
 starts to get cumbersome. You’ll also find it harder to write
 automated tests against the code if it is in a monolithic
 chunk. Finally, you won’t be able to reuse classes if they’re
 all bundled into the final program.

 Anyway, let’s get back to our discussion of classes.

3.3 Access Control

 When designing a class interface, it’s important to consider
 just how much of your class you’ll be exposing to the outside
 world. Allow too much access into your class, and you risk
 increasing the coupling in your application—users of your
 class will be tempted to rely on details of your class’s
 implementation, rather than on its logical interface. The good
 news is that the only easy way to change an object’s state in
 Ruby is by calling one of its methods. Control access to the
 methods, and you’ve controlled access to the object.
 A good rule of thumb is never to expose methods that could leave an
 object in an invalid state.

 Ruby gives you three levels of protection:

	

	
 ​ Public methods​

 can be called by
	 anyone—no access control is enforced. Methods are public by
	 default (except for
 ​initialize​
 , which is always private).
	

	

	
 ​ Protected methods​

 can be invoked only by
	 objects of the
	 defining class and its subclasses. Access is kept within the family.
	

	

	
 ​ Private methods​

 cannot be called with an explicit
	 receiver—the receiver is always the current object, also known as
	 ​self​. This means that private methods can be called only in the
	 context of the current object; you can’t invoke another object’s
	 private methods.
	

 The difference between “protected” and “private” is fairly subtle
 and is different in Ruby than in most common OO languages. If a method is
 protected, it may be called by ​any​ instance of the defining
 class or its subclasses. If a method is private, it may be called only
 within the context of the calling object—it is never possible to
 access another object’s private methods directly, even if the object
 is of the same class as the caller.

 Ruby differs from other OO languages in another important way. Access
 control is determined dynamically, as the program runs, not
 statically. You will get an access violation only when the code
 attempts to execute the restricted method.

Specifying Access Control

	You specify access levels to methods within class or module
	definitions using one or more of the three functions
	
 ​public​
 ,
 ​protected​
 , and
 ​private​
 . You can use each function in
	two different ways.

	If used with no arguments, the three functions set the default access
	control of subsequently defined methods. This is probably familiar
	behavior if you’re a C++ or Java programmer, where you’d use keywords
	such as ​public​ to achieve the same effect:

	​ 	​class​ MyClass

	​ 	

	​ 	 ​def​ method1 ​# default is 'public'​

	​ 	 ​#...​

	​ 	 ​end​

	​ 	

	​ 	protected ​# subsequent methods will be 'protected'​

	​ 	 ​def​ method2 ​# will be 'protected'​

	​ 	 ​#...​

	​ 	 ​end​

	​ 	

	​ 	private ​# subsequent methods will be 'private'​

	​ 	 ​def​ method3 ​# will be 'private'​

	​ 	 ​#...​

	​ 	 ​end​

	​ 	

	​ 	public ​# subsequent methods will be 'public'​

	​ 	 ​def​ method4 ​# so this will be 'public'​

	​ 	 ​#...​

	​ 	 ​end​

	​ 	​end​

	Alternatively, you can set access levels of named methods by listing
	them as arguments to the access control functions:

	​ 	​class​ MyClass

	​ 	 ​def​ method1

	​ 	 ​end​

	​ 	 ​def​ method2

	​ 	 ​end​

	​ 	 ​# ... and so on​

	​ 	

	​ 	 public :method1, :method4

	​ 	 protected :method2

	​ 	 private :method3

	​ 	​end​

	It’s time for some examples. Perhaps we’re modeling an accounting
	system where every debit has a corresponding credit. Because we want
	to ensure that no one can break this rule, we’ll make the methods that
	do the debits and credits private, and we’ll define our external
	interface in terms of transactions.

	​ 	​class​ Account

	​ 	 attr_accessor :balance

	​ 	 ​def​ initialize(balance)

	​ 	 @balance = balance

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Transaction

	​ 	

	​ 	 ​def​ initialize(account_a, account_b)

	​ 	 @account_a = account_a

	​ 	 @account_b = account_b

	​ 	 ​end​

	​ 	

	​ 	private

	​ 	

	​ 	 ​def​ debit(account, amount)

	​ 	 account.balance -= amount

	​ 	 ​end​

	​ 	 ​def​ credit(account, amount)

	​ 	 account.balance += amount

	​ 	 ​end​

	​ 	

	​ 	public

	​ 	

	​ 	 ​#...​

	​ 	 ​def​ transfer(amount)

	​ 	 debit(@account_a, amount)

	​ 	 credit(@account_b, amount)

	​ 	 ​end​

	​ 	 ​#...​

	​ 	​end​

	​ 	

	​ 	savings = Account.new(100)

	​ 	checking = Account.new(200)

	​ 	

	​ 	trans = Transaction.new(checking, savings)

	​ 	trans.transfer(50)

	Protected access is used when objects need to access the
	internal state of other objects of the same class. For
	example, we may want to allow individual
	​Account​ objects to compare their
	cleared balances
	but to hide those balances from the rest of the world (perhaps because
	we present them in a different form):

	​ 	​class​ Account

	​ 	 attr_reader :cleared_balance ​# accessor method 'cleared_balance'​

	​ 	 protected :cleared_balance ​# but make it protected​

	​ 	

	​ 	 ​def​ greater_balance_than?(other)

	​ 	 @cleared_balance > other.cleared_balance

	​ 	 ​end​

	​ 	​end​

	Because
 ​cleared_balance​
 is protected, it’s available
	only within ​Account​ objects.

3.4 Variables

 Now that we’ve gone to the trouble to create all these objects,
 let’s make sure we don’t lose them. Variables are used to keep
 track of objects; each variable holds a reference to an
 object.
 Let’s confirm this with some code:

	​ 	person = ​"Tim"​

	​ 	puts ​"The object in 'person' is a ​#{person.class}​"​

	​ 	puts ​"The object has an id of ​#{person.object_id}​"​

	​ 	puts ​"and a value of '​#{person}​'"​

Produces:
	​ 	The object in 'person' is a String

	​ 	The object has an id of 70230663692980

	​ 	and a value of 'Tim'

 On the first line, Ruby creates a new string object with the
 value ​Tim​. A reference to this object is placed in the
 local variable ​person​.
 A quick check shows that the variable has indeed taken on the
 personality of a string, with an object ID, a class, and a value.

 So, is a variable an object? In Ruby, the answer is “no.” A
 variable is simply a reference to an object. Objects float around in a
 big pool somewhere (the heap, most of the time) and are pointed to by
 variables.
 Let’s make the example slightly more complicated:

	​ 	person1 = ​"Tim"​

	​ 	person2 = person1

	​ 	person1[0] = ​'J'​

	​ 	

	​ 	puts ​"person1 is ​#{person1}​"​

	​ 	puts ​"person2 is ​#{person2}​"​

Produces:
	​ 	person1 is Jim

	​ 	person2 is Jim

 What happened here? We changed the first character of
 ​person1​ (Ruby strings are mutable, unlike Java), but both
 ​person1​ and ​person2​
 changed from ​Tim​ to ​Jim​.

 It all comes back to the fact that variables hold references to
 objects, not the objects themselves. Assigning
 ​person1​ to
 ​person2​ doesn’t create any new
 objects; it simply copies ​person1​’s
 object reference to ​person2​ so that
 both ​person1​ and
 ​person2​ refer to the same object.

[image: images/tut_classes/variable_references.png]

 Assignment
 ​ aliases​

 objects, potentially
 giving you multiple variables that reference the same
 object. But can’t this
 cause problems in your code? It can, but not as often as you’d
 think (objects in Java, for example, work exactly the same way).
 In the previous example, for instance,
 you could avoid aliasing by using the

 ​dup​
 method of
 ​String​, which creates a new string object
 with identical contents:

	​ 	person1 = ​"Tim"​

	​ 	person2 = person1.dup

	​ 	person1[0] = ​"J"​

	​ 	puts ​"person1 is ​#{person1}​"​

	​ 	puts ​"person2 is ​#{person2}​"​

Produces:
	​ 	person1 is Jim

	​ 	person2 is Tim

 You can also prevent anyone from changing a particular object by
 freezing it. Attempt to alter a frozen object, and Ruby will
 raise a
 ​RuntimeError​
 exception:

	​ 	person1 = ​"Tim"​

	​ 	person2 = person1

	​ 	person1.freeze ​# prevent modifications to the object​

	​ 	person2[0] = ​"J"​

Produces:
	​ 	 from prog.rb:4:in `<main>'

	​ 	prog.rb:4:in `[]=': can't modify frozen String (RuntimeError)

 There’s more to say about classes and objects in Ruby. We still
 have to look at class methods and at concepts such as mixins and
 inheritance. We’ll do that in Chapter 5, ​Sharing Functionality: Inheritance, Modules, and Mixins​. But, for now, know that
 everything you manipulate in Ruby is an object and that
 objects start life as instances of classes. And one of the most
 common things we do with objects is create collections of
 them. But that’s the subject of our next chapter.

Footnotes

	[19]	

	Yes, we know. We shouldn’t be holding
	prices in inexact old floats. Ruby has classes that hold fixed-point
	values exactly, but we want to look at classes, not arithmetic,
	in this section.

	[20]	

	 We multiply the floating-point price by 100 to get the
	 price in cents but then add 0.5 before converting to an
	 integer. Why? Because floating-point numbers don’t always
	 have an exact internal representation. When we multiply
	 33.8 by 100, we get
	 3379.99999999999954525265. The
 ​Integer​

	 method would truncate this to 3379. Adding 0.5 before
	 calling
 ​Integer​
 rounds up the
	 floating-point value, ensuring we get the best integer
	 representation. This is a good example of why you want to
	 use ​BigDecimal​,
	 not ​Float​, in financial
	 calculations.

	[21]	

	 If you encounter an error along the lines
	 of "‘Float’: can’t convert nil into Float
	 (TypeError)" when
	 you run this code, you likely have extra spaces at the end of the
	 header line in your CSV data file. The CSV library is pretty strict
	 about the formats it accepts.
	

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 4
Containers, Blocks, and Iterators

 Most real programs deal with collections of data: the people in a
 course, the songs in your playlist, the books in the store. Ruby
 comes with two built-in classes to handle these collections:
 arrays and hashes.[22]
 Mastery of these two classes is key to being an effective Ruby
 programmer. This mastery may take some time, because both classes
 have large interfaces.

 But it isn’t just these classes that give Ruby its power when dealing
 with collections. Ruby also has a block syntax that lets you
 encapsulate chunks of code. When paired with collections, these blocks
 become powerful iterator constructs. In this chapter, we’ll look at
 the two collection classes as well as blocks and iterators.

4.1 Arrays

 The class ​Array​ holds a collection of
 object references. Each object
 reference occupies a position in
 the array, identified by a non-negative integer index.

 You can create arrays by using literals or by explicitly
 creating an ​Array​ object. A literal array
 is simply a list of objects between square brackets.[23]

	​ 	a = [3.14159, ​"pie"​, 99]

	​ 	a.class ​# => Array​

	​ 	a.length ​# => 3​

	​ 	a[0] ​# => 3.14159​

	​ 	a[1] ​# => "pie"​

	​ 	a[2] ​# => 99​

	​ 	a[3] ​# => nil​

	​ 	b = Array.new

	​ 	b.class ​# => Array​

	​ 	b.length ​# => 0​

	​ 	b[0] = ​"second"​

	​ 	b[1] = ​"array"​

	​ 	b ​# => ["second", "array"]​

 Arrays are indexed using the ​[]​
 operator. As
 with most Ruby operators, this is actually a method (an instance
 method of class ​Array​) and hence can be
 overridden in subclasses. As the example shows, array indices
 start at zero. Index an array with a non-negative integer, and
 it returns the object at that position or returns
 ​nil​ if nothing is there. Index an array
 with a negative integer, and it counts from the end.

	​ 	a = [1, 3, 5, 7, 9]

	​ 	a[-1] ​# => 9​

	​ 	a[-2] ​# => 7​

	​ 	a[-99] ​# => nil​

 The following diagram shows this a different way.

[image: images/tut_containers/how_arrays_are_indexed.png]

 You can also index arrays with a pair of numbers, ​[​start,count​]​.
 This returns a new array consisting of references to ​count​ objects
 starting at position ​start​:

	​ 	a = [1, 3, 5, 7, 9]

	​ 	a[1, 3] ​# => [3, 5, 7]​

	​ 	a[3, 1] ​# => [7]​

	​ 	a[-3, 2] ​# => [5, 7]​

 Finally, you can index arrays using ranges, in which start and end
 positions are separated by two or three periods. The two-period form
 includes the end position; the three-period form does not:

	​ 	a = [1, 3, 5, 7, 9]

	​ 	a[1..3] ​# => [3, 5, 7]​

	​ 	a[1...3] ​# => [3, 5]​

	​ 	a[3..3] ​# => [7]​

	​ 	a[-3..-1] ​# => [5, 7, 9]​

 The ​[]​ operator has a corresponding ​[]=​
 operator, which lets you set elements in the array. If used with
 a single integer index, the element at that position is replaced
 by whatever is on the right side of the assignment. Any gaps
 that result will be filled with ​nil​:

	​ 	a = [1, 3, 5, 7, 9] ​#=> [1, 3, 5, 7, 9]​

	​ 	a[1] = ​'bat'​ ​#=> [1, "bat", 5, 7, 9]​

	​ 	a[-3] = ​'cat'​ ​#=> [1, "bat", "cat", 7, 9]​

	​ 	a[3] = [9, 8] ​#=> [1, "bat", "cat", [9, 8], 9]​

	​ 	a[6] = 99 ​#=> [1, "bat", "cat", [9, 8], 9, nil, 99]​

 If the index to ​[]=​ is two numbers (a start and a length) or a
 range, then those elements in the original array are replaced by
 whatever is on the right side of the assignment. If the length is
 zero, the right side is inserted into the array before the start
 position; no elements are removed. If the right side is itself an
 array, its elements are used in the replacement.
 The array size is automatically adjusted if the index selects a
 different number of elements than are available on the right side
 of the assignment.

	​ 	a = [1, 3, 5, 7, 9] ​#=> [1, 3, 5, 7, 9]​

	​ 	a[2, 2] = ​'cat'​ ​#=> [1, 3, "cat", 9]​

	​ 	a[2, 0] = ​'dog'​ ​#=> [1, 3, "dog", "cat", 9]​

	​ 	a[1, 1] = [9, 8, 7] ​#=> [1, 9, 8, 7, "dog", "cat", 9]​

	​ 	a[0..3] = [] ​#=> ["dog", "cat", 9]​

	​ 	a[5..6] = 99, 98 ​#=> ["dog", "cat", 9, nil, nil, 99, 98]​

 Arrays have a large number of other useful methods. Using them,
 you can treat arrays as stacks, sets, queues,
 dequeues, and FIFO queues.

 For example,

 ​push​

 and

 ​pop​

 add and remove elements from the end of an array, so you can use
 the array as a stack:

	​ 	stack = []

	​ 	stack.push ​"red"​

	​ 	stack.push ​"green"​

	​ 	stack.push ​"blue"​

	​ 	stack ​# => ["red", "green", "blue"]​

	​ 	

	​ 	stack.pop ​# => "blue"​

	​ 	stack.pop ​# => "green"​

	​ 	stack.pop ​# => "red"​

	​ 	stack ​# => []​

 Similarly,

 ​unshift​

 and

 ​shift​

 add and remove elements from the head of an array. Combine

 ​shift​
 and

 ​push​
 , and you have a first-in first-out
 (FIFO) queue.

	​ 	queue = []

	​ 	queue.push ​"red"​

	​ 	queue.push ​"green"​

	​ 	queue.shift ​# => "red"​

	​ 	queue.shift ​# => "green"​

 The
 ​first​
 and

 ​last​
 methods return (but don’t remove)
 the ​n​
 entries at the head or end of an array.

	​ 	array = [1, 2, 3, 4, 5, 6, 7]

	​ 	array.first(4) ​# => [1, 2, 3, 4]​

	​ 	array.last(4) ​# => [4, 5, 6, 7]​

 The reference section lists the
 methods in class ​Array​. It is well worth
 firing up irb and playing with them.

4.2 Hashes

 ​ Hashes​

 (sometimes known as

 ​ associative arrays​

 ,

 ​ maps​

 , or
 ​ dictionaries​

)
 are similar to arrays in that they are indexed collections of
 object references. However, while you index arrays
 with integers, you index a hash with objects of any type:
 symbols, strings, regular expressions, and so on. When you store
 a value in a hash, you actually supply two objects—the index,
 which is normally called the
 ​ key​

 , and the
 entry to be stored with that key. You can subsequently retrieve
 the entry by indexing the hash with the same key value that you
 used to store it.

 The example that follows uses hash literals—a list of ​key
 ​ ​value​ pairs between
 braces:

	​ 	h = { ​'dog'​ => ​'canine'​, ​'cat'​ => ​'feline'​, ​'donkey'​ => ​'asinine'​ }

	​ 	

	​ 	h.length ​# => 3​

	​ 	h[​'dog'​] ​# => "canine"​

	​ 	h[​'cow'​] = ​'bovine'​

	​ 	h[12] = ​'dodecine'​

	​ 	h[​'cat'​] = 99

	​ 	h ​# => {"dog"=>"canine", "cat"=>99, "donkey"=>"asinine", "cow"=>"bovine",​

	​ 	 ​# .. 12=>"dodecine"}​

 In the previous example, the hash keys were strings, and the
 hash literal used ​=>​ to separate the keys from the
 values. From Ruby 1.9, there is a new shortcut you can use if
 the keys are ​symbols​. In that case, you can still use
 ​=>​ to separate keys from values:

	​ 	h = { :dog => ​'canine'​, :cat => ​'feline'​, :donkey => ​'asinine'​ }

 but you can also write the literal by moving the colon to the
 end of the symbol and dropping the ​=>​:

	​ 	h = { dog: ​'canine'​, cat: ​'feline'​, donkey: ​'asinine'​ }

 Compared with arrays, hashes have one significant advantage:
 they can use any object as an index. And you’ll find something
 that might be surprising: Ruby remembers the order in
 which you add items to a hash. When you subsequently iterate
 over the entries, Ruby will return them in that order.

 You’ll find that hashes are one of the most commonly used data
 structures in Ruby. The reference section has a list of the methods implemented by class
 ​Hash​.

Word Frequency: Using Hashes and Arrays

	Let’s round off this section with a simple program that
	calculates the number of times each word occurs in some
	text. (So, for example, in this sentence, the word
	​the​ occurs two
	times.)

	The problem breaks down into two parts. First, given some text as a
	string, return a list of words. That sounds like an array. Then, build
	a count for each distinct word. That sounds like a use for a hash—we
	can index it with the word and use the corresponding entry to keep a
	count.

	Let’s start with the method that splits a string into words:

	tut_containers/word_freq/words_from_string.rb
	​ 	​def​ words_from_string(string)

	​ 	 string.downcase.scan(/[​\w​']+/)

	​ 	​end​

	This method uses two very useful string methods:
	
 ​downcase​

	returns a lowercase version of a string, and
	
 ​scan​

	returns an array of
	substrings that match a given pattern. In this case, the pattern is
	​[\w’]+​, which matches sequences containing “word characters”
	and single quotes.

	We can play with this method. Notice how the result is an array:

	​ 	p words_from_string(​"But I didn't inhale, he said (emphatically)"​)

Produces:
	​ 	["but", "i", "didn't", "inhale", "he", "said", "emphatically"]

	Our next task is to calculate word frequencies. To do this, we’ll
	create a hash object indexed by the words in our list. Each entry in this hash
	stores the number of times that word occurred. Let’s say we already
	have read part of the list, and we have seen the word ​the​
	already. Then we’d have a hash that contained this:

	​ 	{ ..., ​"the"​ => 1, ... }

	If the variable ​next_word​
	contained the word ​the​, then
	incrementing the count is as simple as this:

	​ 	counts[next_word] += 1

	We’d then end up with a hash containing the following:

	​ 	{ ..., ​"the"​ => 2, ... }

	Our only problem is what to do when we encounter a word for the first
	time. We’ll try to increment the entry for that word, but there won’t
	be one, so our program will fail. There are a number of solutions to
	this. One is to check to see whether the entry exists before doing the
	increment:

	​ 	​if​ counts.has_key?(next_word)

	​ 	 counts[next_word] += 1

	​ 	​else​

	​ 	 counts[next_word] = 1

	​ 	​end​

	However, there’s a tidier way. If we create a hash object
	using ​Hash.new(0)​, the parameter, ​0​ in this
	case, will be used as the hash’s default value—it will be
	the value returned if you look up a key that isn’t yet in the
	hash. Using that, we can write our
 ​count_frequency​

	method:

	tut_containers/word_freq/count_frequency.rb
	​ 	​def​ count_frequency(word_list)

	​ 	 counts = Hash.new(0)

	​ 	 ​for​ word ​in​ word_list

	​ 	 counts[word] += 1

	​ 	 ​end​

	​ 	 counts

	​ 	​end​

	​ 	p count_frequency([​"sparky"​, ​"the"​, ​"cat"​, ​"sat"​, ​"on"​, ​"the"​, ​"mat"​])

Produces:
	​ 	{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

	One little job left. The hash containing the word frequencies
	is ordered based on the first time it sees each word. It would
	be better to display the results based on the frequencies of
	the words. We can do that using the hash’s
	
 ​sort_by​

	method. When you use
 ​sort_by​
 , you give it a
	block that tells the sort what to use when making
	comparisons. In our case, we’ll just use the count. The result
	of the sort is an array containing a set of two-element
	arrays, with each subarray corresponding to a key/entry pair in the
	original hash. This makes our whole program:

	​ 	require_relative ​"words_from_string.rb"​

	​ 	require_relative ​"count_frequency.rb"​

	​ 	

	​ 	raw_text = ​%{The problem breaks down into two parts. First, given some text​

	​ 	​as a string, return a list of words. That sounds like an array. Then, build​

	​ 	​a count for each distinct word. That sounds like a use for a hash---we can​

	​ 	​index it with the word and use the corresponding entry to keep a count.}​

	​ 	

	​ 	word_list = words_from_string(raw_text)

	​ 	counts = count_frequency(word_list)

	​ 	sorted = counts.sort_by {|word, count| count}

	​ 	top_five = sorted.last(5)

	​ 	

	​ 	​for​ i ​in​ 0...5 ​# (this is ugly code--read on​

	​ 	 word = top_five[i][0] ​# for a better version)​

	​ 	 count = top_five[i][1]

	​ 	 puts ​"​#{word}​: ​#{count}​"​

	​ 	​end​

Produces:
	​ 	that: 2

	​ 	sounds: 2

	​ 	like: 2

	​ 	the: 3

	​ 	a: 6

	At this point, a quick test may be in order. To do this, we’re
	going to use a testing framework called Test::Unit that comes
	with the standard Ruby distributions. We won’t describe it
	fully yet (we do that in Chapter 13, ​Unit Testing​). For now, we’ll just say that the
	method
 ​assert_equal​
 checks that its two
	parameters are equal, complaining bitterly if they aren’t.
	We’ll use assertions to test our two methods, one method at a
	time. (That’s one reason why we wrote them as separate
	methods—it makes them testable in isolation.)

	Here are some tests for the
 ​word_from_string​
 method:

	​ 	require_relative ​'words_from_string'​

	​ 	require ​'test/unit'​

	​ 	

	​ 	​class​ TestWordsFromString < Test::Unit::TestCase

	​ 	

	​ 	 ​def​ test_empty_string

	​ 	 assert_equal([], words_from_string(​""​))

	​ 	 assert_equal([], words_from_string(​" "​))

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_single_word

	​ 	 assert_equal([​"cat"​], words_from_string(​"cat"​))

	​ 	 assert_equal([​"cat"​], words_from_string(​" cat "​))

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_many_words

	​ 	 assert_equal([​"the"​, ​"cat"​, ​"sat"​, ​"on"​, ​"the"​, ​"mat"​],

	​ 	 words_from_string(​"the cat sat on the mat"​))

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_ignores_punctuation

	​ 	 assert_equal([​"the"​, ​"cat's"​, ​"mat"​],

	​ 	 words_from_string(​"<the!> cat's, -mat-"​))

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​

	​ 	Finished tests in 0.006458s, 619.3868 tests/s, 929.0802 assertions/s.

	​ 	4 tests, 6 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	The test starts by requiring the source file containing our
	
 ​words_from_string​
 method, along with the unit
	test framework itself. It then defines a test class. Within
	that class, any methods whose names start with
	
 ​test​
 are automatically run by the testing
	framework. The results show that four test methods ran,
	successfully executing six assertions.

	We can also test that our count of word frequency works:

	​ 	require_relative ​'count_frequency'​

	​ 	require ​'test/unit'​

	​ 	

	​ 	​class​ TestCountFrequency < Test::Unit::TestCase

	​ 	 ​def​ test_empty_list

	​ 	 assert_equal({}, count_frequency([]))

	​ 	 ​end​

	​ 	 ​def​ test_single_word

	​ 	 assert_equal({​"cat"​ => 1}, count_frequency([​"cat"​]))

	​ 	 ​end​

	​ 	 ​def​ test_two_different_words

	​ 	 assert_equal({​"cat"​ => 1, ​"sat"​ => 1}, count_frequency([​"cat"​, ​"sat"​]))

	​ 	 ​end​

	​ 	 ​def​ test_two_words_with_adjacent_repeat

	​ 	 assert_equal({​"cat"​ => 2, ​"sat"​ => 1}, count_frequency([​"cat"​, ​"cat"​, ​"sat"​]))

	​ 	 ​end​

	​ 	 ​def​ test_two_words_with_non_adjacent_repeat

	​ 	 assert_equal({​"cat"​ => 2, ​"sat"​ => 1}, count_frequency([​"cat"​, ​"sat"​, ​"cat"​]))

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​

	​ 	Finished tests in 0.006327s, 790.2639 tests/s, 790.2639 assertions/s.

	​ 	5 tests, 5 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

4.3 Blocks and Iterators

 In our program that wrote out the results of our word frequency
 analysis, we had the following loop:

	​ 	​for​ i ​in​ 0..4

	​ 	 word = top_five[i][0]

	​ 	 count = top_five[i][1]

	​ 	 puts ​"​#{word}​: ​#{count}​"​

	​ 	​end​

 This works, and it looks comfortingly familiar: a
 ​for​ loop iterating over an array. What could
 be more natural?

 It turns out there ​is​ something more natural. In a
 way, our ​for​ loop is somewhat too intimate
 with the array; it magically knows that we’re iterating over
 five elements, and it retrieves values in turn from the
 array. To do this, it has to know that the structure it is
 working with is an array of two-element subarrays. This is a
 whole lot of coupling.

 Instead, we could write this code like this:

	​ 	top_five.each ​do​ |word, count|

	​ 	 puts ​"​#{word}​: ​#{count}​"​

	​ 	​end​

 The method
 ​each​
 is an

 ​ iterator​

 —a method that invokes a
 block of code repeatedly.
 In fact, some Ruby programmers might write this more compactly as this:

	​ 	puts top_five.map { |word, count| ​"​#{word}​: ​#{count}​"​ }

 Just how far you take this is a matter of taste. However
 you use them, iterators and code blocks are among the more
 interesting features of Ruby, so let’s spend a while looking
 into them.

Blocks

	A
 ​ block​

 is simply a chunk of code
	enclosed between either braces or the keywords
	​do​ and ​end​. The two
	forms are identical except for precedence, which we’ll see in
	a minute. All things being equal, the current Ruby style seems
	to favor using braces for blocks that fit on one line and
	​do​/​end​ when a block
	spans multiple lines:

	​ 	some_array.each {|value| puts value * 3 }

	​ 	

	​ 	sum = 0

	​ 	other_array.each ​do​ |value|

	​ 	 sum += value

	​ 	 puts value / sum

	​ 	​end​

	You can think of a block as being somewhat like the body of an
	anonymous method. Just like a method, the block can take
	parameters (but, unlike a method, those parameters appear at
	the start of the block between vertical bars). Both the blocks
	in the preceding example take a single parameter,
	​value​. And, just like a method,
	the body of a block is not executed when Ruby first sees
	it. Instead, the block is saved away to be called later.

	Blocks can appear in Ruby source code only immediately after
	the ​invocation​ of some method. If the method
	takes parameters, the block appears after these parameters. In
	a way, you can almost think of the block as being one extra
	parameter, passed to that method. Let’s look at a simple
	example that sums the squares of the numbers in an array:

	​ 	sum = 0

	​ 	[1, 2, 3, 4].each ​do​ |value|

	​ 	 square = value * value

	​ 	 sum += square

	​ 	​end​

	​ 	puts sum

Produces:
	​ 	30

	The block is being called by the
 ​each​
 method once for each
	element in the array. The element is passed to the block as the
	​value​ parameter. But there’s something subtle going on,
	too. Take a look at the ​sum​ variable. It’s declared outside the
	block, updated inside the block, and then passed to
 ​puts​

	after the
 ​each​
 method returns.

	This illustrates an important rule: if there’s a variable inside a
	block with the same name as a variable in the same scope outside the
	block, the two are the same—there’s only one variable ​sum​ in
	the preceding program. (You can override this behavior, as we’ll see
	later.)

	If, however, a variable appears only inside a block, then that
	variable is local to the block—in the preceding program, we
	couldn’t have written the value of
	​square​ at the end of the code,
	because ​square​ is not defined at
	that point. It is defined only inside the block itself.

	Although simple, this behavior can lead to unexpected problems. For
	example, say our program was dealing with drawing different
	shapes. We might have this:

	​ 	square = Shape.new(sides: 4) ​# assume Shape defined elsewhere​

	​ 	

	​ 	​# .. lots of code​

	​ 	

	​ 	sum = 0

	​ 	

	​ 	[1, 2, 3, 4].each ​do​ |value|

	​ 	 square = value * value

	​ 	 sum += square

	​ 	​end​

	​ 	

	​ 	puts sum

	​ 	

	​ 	square.draw ​# BOOM!​

	This code would fail, because the variable ​square​, which
	originally held a ​Shape​ object, will have been overwritten inside
	the block and will hold a number by the time the
 ​each​
 method
	returns. This problem doesn’t bite often, but when it does, it can be
	very confusing.

	Fortunately, Ruby has a couple of answers.

	First, parameters to a block are ​always​ local to a block,
	even if they have the same name as locals in the surrounding
	scope. (You’ll get a warning message if you run Ruby with the
	​-w​ option.)

	​ 	value = ​"some shape"​

	​ 	[1, 2].each {|value| puts value }

	​ 	puts value

Produces:
	​ 	1

	​ 	2

	​ 	some shape

	Second, you can define block-local variables by putting them after
	a semicolon in the block’s parameter list. So, in our sum-of-squares
	example, we should have indicated that the ​square​
	variable was block-local by writing it as follows:

	​ 	square = ​"some shape"​

	​ 	

	​ 	sum = 0

	​ 	[1, 2, 3, 4].each ​do​ |value; square|

	​ 	 square = value * value ​# this is a different variable​

	​ 	 sum += square

	​ 	​end​

	​ 	puts sum

	​ 	puts square

Produces:
	​ 	30

	​ 	some shape

	By making ​square​ block-local, values assigned inside the block
	will not affect the value of the variable with the same name in the
	outer scope.

Implementing Iterators

	A Ruby iterator is simply a method that can invoke a block of
	code.

	We said that a block may appear only in the source adjacent to a
	method call and that the code in the block is not executed at the time
	it is encountered. Instead, Ruby remembers the context in which the
	block appears (the local variables, the current object, and so on) and
	then enters the method. This is where the magic starts.

	Within the method, the block may be invoked, almost as if it were a
	method itself, using the ​yield​ statement.
	Whenever a ​yield​
	is executed, it invokes the code in the block. When the block
	exits, control picks back up immediately after the
	​yield​.[24]
	Let’s start with a trivial example:

	​ 	​def​ two_times

	​ 	 ​yield​

	​ 	 ​yield​

	​ 	​end​

	​ 	two_times { puts ​"Hello"​ }

Produces:
	​ 	Hello

	​ 	Hello

	The block (the code between the braces) is associated with the call to
	the
 ​two_times​
 method. Within this method, ​yield​ is
	called two times. Each time, it invokes the code in the
	block, and a cheery greeting is printed. What makes blocks
	interesting, however, is that you can pass parameters to them and
	receive values from them. For example, we could write a simple
	function that returns members of the Fibonacci
	series up to a certain value:[25]

	​ 	​def​ fib_up_to(max)

	​ 	 i1, i2 = 1, 1 ​# parallel assignment (i1 = 1 and i2 = 1)​

	​ 	 ​while​ i1 <= max

	​ 	 ​yield​ i1

	​ 	 i1, i2 = i2, i1+i2

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	fib_up_to(1000) {|f| print f, ​" "​ }

	​ 	

	​ 	puts

Produces:
	​ 	1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

	In this example, the ​yield​ statement has a
	parameter. This value
	is passed to the associated block. In the definition of the
	block, the argument list appears between vertical bars. In
	this instance, the variable ​f​
	receives the value passed to ​yield​, so the
	block prints successive members of the series. (This example also
	shows parallel assignment in action. We’ll come back to this
	later.) Although it is common to pass just one
	value to a block, this is not a requirement; a block may have any
	number of arguments.

	Some iterators are common to many types of Ruby collections. Let’s look at three:
	
 ​each​
 ,
	
 ​collect​
 , and
 ​find​
 .

 ​each​
 is probably the simplest
	iterator—all it does is yield successive elements of its collection:

	​ 	[1, 3, 5, 7, 9].each {|i| puts i }

Produces:
	​ 	1

	​ 	3

	​ 	5

	​ 	7

	​ 	9

	The
 ​each​
 iterator has a special place in
 Ruby; we’ll
 describe how it’s used as the basis of the language’s ​for​ loop, and
 we’ll see how defining
 an
 ​each​
 method can add a whole lot more
 functionality to the classes you write–for free.

	A block may also return a value to the method. The value of
	the last expression evaluated in the block is passed back to
	the method as the value of the ​yield​. This
	is how the
 ​find​
 method used by class
	​Array​ works.[26] Its implementation would
	look something like the following:

	​ 	​class​ Array

	​ 	 ​def​ find

	​ 	 each ​do​ |value|

	​ 	 ​return​ value ​if​ ​yield​(value)

	​ 	 ​end​

	​ 	 nil

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	[1, 3, 5, 7, 9].find {|v| v*v > 30 } ​# => 7​

	This uses
 ​each​
 to pass successive elements of
	the array to the associated block. If the block returns true
	(that is, a value other than ​nil​ or
	​false​), the method returns the
	corresponding element. If no element matches, the method
	returns ​nil​. The example shows the
	benefit of this approach to iterators. The
	​Array​ class does what it does best, accessing
	array elements, and leaves the application code to concentrate
	on its particular requirement (in this case, finding an entry
	that meets some criteria).

	Another common iterator is
 ​collect​
 (also
	known as
	
 ​map​
),
	which takes each element from the collection and passes it to
	the block. The results returned by the block are used to
	construct a new array. The following example uses the
	
 ​succ​
 method, which increments a string value:

	​ 	[​"H"​, ​"A"​, ​"L"​].collect {|x| x.succ } ​# => ["I", "B", "M"]​

 Iterators are not limited to accessing existing data in arrays and
 hashes. As we saw in the Fibonacci example, an iterator can return
 derived values. This capability is used by Ruby’s input and output
 classes, which implement an iterator interface that returns successive
 lines (or bytes) in an I/O stream:

	​ 	f = File.open(​"testfile"​)

	​ 	f.each ​do​ |line|

	​ 	 puts ​"The line is: ​#{line}​"​

	​ 	​end​

	​ 	f.close

Produces:
	​ 	The line is: This is line one

	​ 	The line is: This is line two

	​ 	The line is: This is line three

	​ 	The line is: And so on...

 Sometimes you want to keep track of how many times you’ve been
 through the block. The

 ​with_index​

 method is your friend. It is added as an additional method call
 after an iterator, and adds a sequence number to each value
 returned by that iterator. The original value and that sequence
 number are then passed to the block:

	​ 	f = File.open(​"testfile"​)

	​ 	f.each.with_index ​do​ |line, index|

	​ 	 puts ​"Line ​#{index}​ is: ​#{line}​"​

	​ 	​end​

	​ 	f.close

Produces:
	​ 	Line 0 is: This is line one

	​ 	Line 1 is: This is line two

	​ 	Line 2 is: This is line three

	​ 	Line 3 is: And so on...

 Let’s look at one more useful iterator. The (somewhat
 obscurely named)
 ​inject​

 method
 (defined in the module ​Enumerable​) lets
 you accumulate a value across the
 members of a collection. For example, you can sum all the elements in
 an array and find their product using code such as this:

	​ 	[1,3,5,7].inject(0) {|sum, element| sum+element} ​# => 16​

	​ 	[1,3,5,7].inject(1) {|product, element| product*element} ​# => 105​

 ​inject​
 works like this: the first time the associated block
 is called, ​sum​ is set to
 ​inject​
 ’s parameter, and
 ​element​ is set to the first element in the collection. The
 second and subsequent times the block is called, ​sum​ is set to
 the value returned by the block on the previous call. The final value
 of
 ​inject​
 is the value returned by the block the last time it
 was called. One more thing: if
 ​inject​
 is called with no
 parameter, it uses the first element of the collection as the initial
 value and starts the iteration with the second value. This means that
 we could have written the previous examples like this:

	​ 	[1,3,5,7].inject {|sum, element| sum+element} ​# => 16​

	​ 	[1,3,5,7].inject {|product, element| product*element} ​# => 105​

 And, just to add to the mystique of
 ​inject​
 , you can also give
 it the name of the method you want to apply to successive elements of
 the collection. These examples work because, in Ruby,
 addition and multiplication are simply methods on numbers, and ​:+​
 is the symbol corresponding to the method +:

	​ 	[1,3,5,7].inject(:+) ​# => 16​

	​ 	[1,3,5,7].inject(:*) ​# => 105​

Enumerators—External Iterators

	Let’s spend a paragraph comparing Ruby’s approach to iterators
	to that of languages such as C++ and Java. In Ruby, the
	basic iterator is internal to the collection—it’s simply a method,
	identical to any other, that happens to call ​yield​ whenever it
	generates a new value. The thing that uses the iterator is just a
	block of code associated with a call to this method.

	In other languages, collections don’t contain their own
	iterators. Instead, they implement methods that generate external
	helper objects (for example, those based on Java’s ​Iterator​
	interface) that carry the iterator state. In this, as in many other
	ways, Ruby is a transparent language. When you write a Ruby program,
	you concentrate on getting the job done, not on building scaffolding
	to support the language itself.

	It’s also worth spending another paragraph looking at why Ruby’s
	internal iterators aren’t always the best solution. One area where
	they fall down badly is where you need to treat an iterator as an
	object in its own right (for example, passing the iterator into a
	method that needs to access each of the values returned by that
	iterator). It’s also difficult to iterate over two collections in
	parallel using Ruby’s internal iterator scheme.

	Fortunately, Ruby comes with a built-in
	​Enumerator​
	class, which implements external iterators in Ruby for just such occasions.

	You can create an ​Enumerator​ object by
	calling the
	
 ​to_enum​

	method (or its synonym,
 ​enum_for​
) on
	a collection such as an array or a hash:

	​ 	a = [1, 3, ​"cat"​]

	​ 	h = { dog: ​"canine"​, fox: ​"vulpine"​ }

	​ 	

	​ 	​# Create Enumerators​

	​ 	enum_a = a.to_enum

	​ 	enum_h = h.to_enum

	​ 	

	​ 	enum_a.next ​# => 1​

	​ 	enum_h.next ​# => [:dog, "canine"]​

	​ 	enum_a.next ​# => 3​

	​ 	enum_h.next ​# => [:fox, "vulpine"]​

	Most of the internal iterator methods—the ones that normally yield
	successive values to a block—will also return an ​Enumerator​
	object if called without a block:

	​ 	a = [1, 3, ​"cat"​]

	​ 	

	​ 	enum_a = a.each ​# create an Enumerator using an internal iterator​

	​ 	

	​ 	enum_a.next ​# => 1​

	​ 	enum_a.next ​# => 3​

	Ruby has a method called
	
 ​loop​

	that does nothing but repeatedly invoke its block. Typically,
	your code in the block will break out of the loop when some
	condition occurs. But
 ​loop​
 is also smart when
	you use an ​Enumerator​—when an
	enumerator object runs out of values inside a
	
 ​loop​
 , the loop will terminate cleanly. The
	following example shows this in action—the loop ends when
	the three-element enumerator runs out of
	values.[27]

	​ 	short_enum = [1, 2, 3].to_enum

	​ 	long_enum = (​'a'​..​'z'​).to_enum

	​ 	

	​ 	loop ​do​

	​ 	 puts ​"​#{short_enum.next}​ - ​#{long_enum.next}​"​

	​ 	​end​

Produces:
	​ 	1 - a

	​ 	2 - b

	​ 	3 - c

Enumerators Are Objects

	 Enumerators take something that’s normally executable code
	 (the act of iterating) and turn it into an object. This means you
	 can do things programmatically with enumerators that aren’t easily done
	 with regular loops.
	

	 For example, the ​Enumerable​ module defines
	
 ​each_with_index​
 .
	 This invokes its host class’s
 ​each Method​
 , returning
	 successive values along with an index:
	
	​ 	result = []

	​ 	[​'a'​, ​'b'​, ​'c'​].each_with_index {|item, index| result << [item, index] }

	​ 	result ​# => [["a", 0], ["b", 1], ["c", 2]]​

	 But what if you wanted to iterate and receive an index but use a
	 different method than
 ​each​
 to control that iteration? For
	 example, you might want to iterate over the characters in a
	 string. There’s no method called
 ​each_char_with_index​

	 built into the ​String​ class.
	

	 Enumerators to the rescue. The
	
 ​each_char​
 method of strings will
	 return an enumerator if you don’t give it a block, and you
	 can then call
 ​each_with_index​
 on
	 that enumerator:
	
	​ 	result = []

	​ 	​"cat"​.each_char.each_with_index {|item, index| result << [item, index] }

	​ 	result ​# => [["c", 0], ["a", 1], ["t", 2]]​

	 In fact, this is such a common use of enumerators that Matz has given
	 us
 ​with_index​
 , which makes the code read better:
	
	​ 	result = []

	​ 	​"cat"​.each_char.with_index {|item, index| result << [item, index] }

	​ 	result ​# => [["c", 0], ["a", 1], ["t", 2]]​

	 You can also create the ​Enumerator​ object explicitly—in this case
	 we’ll create one that calls our string’s
 ​each_char​

	 method. We can call
 ​to_a​
 on that enumerator to iterate over
	 it:
	
	​ 	enum = ​"cat"​.enum_for(:each_char)

	​ 	enum.to_a ​# => ["c", "a", "t"]​

	 If the method we’re using as the basis of our enumerator takes
	 parameters, we can pass them to
 ​enum_for​
 :
	
	​ 	enum_in_threes = (1..10).enum_for(:each_slice, 3)

	​ 	enum_in_threes.to_a ​# => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]​

Enumerators Are Generators and Filters

	 ​(This is more advanced material that can be skipped on
	 first reading.)​ As well as creating enumerators from
	 existing collections, you can create an explicit enumerator,
	 passing it a block. The code in the block will be used when
	 the enumerator object needs to supply a fresh value to your
	 program. However, the block isn’t simply executed from top
	 to bottom. Instead, the block is executed in parallel with
	 the rest of your program’s code. Execution starts at the top
	 and pauses when the block yields a value to your code. When
	 the code needs the next value, execution resumes at the
	 statement following the ​yield​. This lets
	 you write enumerators that generate
	 infinite sequences (among other things):
	
	​ 	triangular_numbers = Enumerator.new ​do​ |yielder|

	​ 	 number = 0

	​ 	 count = 1

	​ 	 loop ​do​

	​ 	 number += count

	​ 	 count += 1

	​ 	 yielder.yield number

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	5.times { print triangular_numbers.next, ​" "​ }

	​ 	puts

Produces:
	​ 	1 3 6 10 15

	 Enumerator objects are also enumerable (that is to say, the
	 methods available to enumerable objects are also available
	 to them). That means we can use
	 ​Enumerable​’s methods (such as
	
 ​first​
) on them:
	
	​ 	triangular_numbers = Enumerator.new ​do​ |yielder|

	​ 	 number = 0

	​ 	 count = 1

	​ 	 loop ​do​

	​ 	 number += count

	​ 	 count += 1

	​ 	 yielder.yield number

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p triangular_numbers.first(5)

Produces:
	​ 	[1, 3, 6, 10, 15]

	 You have to be slightly careful with enumerators that can
	 generate infinite sequences. Some of the regular
	 ​Enumerator​ methods such as
	
 ​count​
 and
 ​select​
 will
	 happily try to read the whole enumeration before returning a
	 result. If you want a version of
 ​select​

	 that works with infinite sequences, in
	 Ruby 1.9 you’ll need to write it yourself. (Ruby 2
	 users have a better option, which we discuss in a
	 minute.)«2.0» Here’s a version that gets passed an
	 enumerator and a block and returns a new enumerator
	 containing values from the original for which the block
	 returns true. We’ll use it to return triangular numbers that
	 are multiples of 10.
	
	​ 	triangular_numbers = Enumerator.new ​do​ |yielder|

	​ 	 ​# ...​

	​ 	 ​# as before...​

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	​def​ infinite_select(enum, &block)

	​ 	 Enumerator.new ​do​ |yielder|

	​ 	 enum.each ​do​ |value|

	​ 	 yielder.yield(value) ​if​ block.call(value)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p infinite_select(triangular_numbers) {|val| val % 10 == 0}.first(5)

Produces:
	​ 	[10, 120, 190, 210, 300]

	 Here we use the ​&block​ notation to pass the block as a parameter
	 to the
 ​infinite_select​
 method.
	

	 As Brian Candler pointed out in
	 the ruby-core mailing list (message 19679), you can make this
	 more convenient by adding filters such as
	
 ​infinite_select​
 directly to the
	 ​Enumerator​ class. Here’s
	 an example that returns the first five triangular numbers that are
	 multiples of 10 and that have the digit 3 in them:
	
	​ 	triangular_numbers = Enumerator.new ​do​ |yielder|

	​ 	 ​# ... as before​

	​ 	​end​

	​ 	

	​ 	​class​ Enumerator

	​ 	 ​def​ infinite_select(&block)

	​ 	 Enumerator.new ​do​ |yielder|

	​ 	 self.each ​do​ |value|

	​ 	 yielder.yield(value) ​if​ block.call(value)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p triangular_numbers

	​ 	 .infinite_select {|val| val % 10 == 0}

	​ 	 .infinite_select {|val| val.to_s =~ /3/ }

	​ 	 .first(5)

Produces:
	​ 	[300, 630, 1830, 3160, 3240]

Lazy Enumerators in Ruby 2

 As we saw in the previous section, the problem with
 enumerators that generate infinite sequences is that we have
 to write special, non-greedy, versions of methods such as

 ​select​
 . Fortunately, if you’re using
 Ruby 2.0«2.0», you have this support built in.

 If you call Enumerator#lazy
 on any Ruby enumerator, you get back
 an instance of class
 ​Enumerator::Lazy​. This enumerator acts
 just like the original, but it reimplements methods such as

 ​select​
 and
 ​map​
 so that
 they can work with infinite sequences. Putting it another
 way, none of the lazy versions of the methods actually
 consume any data from the collection until that data is
 requested, and then they only consume enough to satisfy that
 request.

 To work this magic, the lazy versions of the various methods
 do not return arrays of data. Instead, each returns a new
 enumerator that includes its own special processing—the

 ​select​
 method returns an enumerator that
 knows how to apply the select logic to its input collection,
 the
 ​map​
 enumerator knows how to handle the
 map logic, and so on. The result is that if you chain a
 bunch of lazy enumerator methods, what you end up with is a
 chain of enumerators—the last one in the chain takes values
 from the one before it, and so on.

 Let’s play with this a little. To start, let’s add a helper
 method to the ​Integer​ class that generates a
 stream of integers.

	​ 	​def​ Integer.all

	​ 	 Enumerator.new ​do​ |yielder, n: 0|

	​ 	 loop { yielder.yield(n += 1) }

	​ 	 ​end​.lazy

	​ 	​end​

	​ 	

	​ 	p Integer.all.first(10)

Produces:
	​ 	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 There are a couple of things to note here. First, see how I
 used a keyword parameter on the block both to declare and
 initialize a local variable
 ​n​.[28]
 Second, see how we convert the basic generator into a lazy
 enumerator with the call to
 ​lazy​
 after the
 end of the block.

 Calling the
 ​first​
 method on this returns
 the numbers 1 through 10, but this doesn’t exercise the
 method’s lazy characteristics. Let’s instead get the first
 10 multiples of three.

	​ 	p Integer

	​ 	 .all

	​ 	 .select {|i| (i % 3).zero? }

	​ 	 .first(10)

Produces:
	​ 	[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

 Without the lazy enumerator, the call to
 ​select​
 would
 effectively never return, as
 ​select​
 would
 try to read all the values from the generator. But the lazy
 version of
 ​select​
 only consumes values on demand, and in
 this case the subsequent call to
 ​first​
 only
 asks for 10 values.

 Let’s make this a little more complex—how about multiples of
 3 whose string representations are palindromes?

	​ 	​def​ palindrome?(n)

	​ 	 n = n.to_s

	​ 	 n == n.reverse

	​ 	​end​

	​ 	

	​ 	p Integer

	​ 	 .all

	​ 	 .select { |i| (i % 3).zero? }

	​ 	 .select { |i| palindrome?(i) }

	​ 	 .first(10)

Produces:
	​ 	[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

 Remember that our lazy filter methods simply return new
 ​Enumerator​ objects? That means we can split up the previous
 code:

	​ 	multiple_of_three = Integer

	​ 	 .all

	​ 	 .select { |i| (i % 3).zero? }

	​ 	

	​ 	p multiple_of_three.first(10)

	​ 	

	​ 	m3_palindrome = multiple_of_three

	​ 	 .select { |i| palindrome?(i) }

	​ 	

	​ 	p m3_palindrome.first(10)

Produces:
	​ 	[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

	​ 	[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

 You could also code up the various predicates as
 free-standing procs, if you feel it aids readability or
 reusablility.

	​ 	multiple_of_three = -> n { (n % 3).zero? }

	​ 	palindrome = -> n { n = n.to_s; n == n.reverse }

	​ 	

	​ 	p Integer

	​ 	 .all

	​ 	 .select(&multiple_of_three)

	​ 	 .select(&palindrome)

	​ 	 .first(10)

Produces:
	​ 	[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

 If you’ve ever played with
 ​ActiveRelation​ in Rails,
 you’ll be familiar with this pattern—lazy enumeration
 methods let us build up a complex filter one piece at a time.

Blocks for Transactions

	Although blocks are often used as the target of an iterator, they have
	other uses. Let’s look at a few.

	You can use blocks to define a chunk of code that must be run
	under some kind of transactional control. For example, you’ll
	often open a file, do something with its contents, and then
	ensure that the file is closed when you
	finish. Although you can do this using conventional linear
	code, a version using blocks is simpler (and turns out to be
	less error prone). A naive implementation (ignoring error
	handling) could look something like the following:

	​ 	​class​ File

	​ 	 ​def​ self.open_and_process(*args)

	​ 	 f = File.open(*args)

	​ 	 ​yield​ f

	​ 	 f.close()

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	

	​ 	File.open_and_process(​"testfile"​, ​"r"​) ​do​ |file|

	​ 	 ​while​ line = file.gets

	​ 	 puts line

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	This is line one

	​ 	This is line two

	​ 	This is line three

	​ 	And so on...

	
 ​open_and_process​
 is a
 ​ class
	method​

 —it may be called independently of any
	particular file object. We want it to take the same arguments
	as the conventional
 ​File.open​
 method,
	but we don’t really care what those arguments are. To do this,
	we specified the arguments as ​*args​, meaning
	“collect the actual parameters passed to the method into an
	array named ​args​.” We then call
	
 ​File.open​
 , passing it ​*args​
	as a parameter. This expands the
	array back into individual parameters. The net result is that
	
 ​open_and_process​
 transparently passes whatever parameters it
	receives to
 ​File.open​
 .

	Once the file has been opened,
	
 ​open_and_process​
 calls
	​yield​, passing the open file object to the
	block. When the block returns, the file is closed. In this
	way, the responsibility for closing an open file has been
	shifted from the users of file objects to the file
	objects themselves.

	The technique of having files manage their own life cycle is
	so useful that the class ​File​ supplied
	with Ruby supports it directly. If
	
 ​File.open​

	has an associated block, then that block will be invoked with
	a file object, and the file will be closed when the block
	terminates. This is interesting, because it means that
	
 ​File.open​
 has two different
	behaviors. When called with a block, it executes the block and
	closes the file. When called without a block, it returns the
	file object. This is made possible by the method
	
 ​block_given?​
 ,
	which returns ​true​ if a block is
	associated with the current method. Using this method, you
	could implement something similar to the standard
	
 ​File.open​
 (again, ignoring error handling)
	using the following:

	​ 	​class​ File

	​ 	 ​def​ self.my_open(*args)

	​ 	 result = file = File.new(*args)

	​ 	 ​# If there's a block, pass in the file and close the file when it returns​

	​ 	 ​if​ block_given?

	​ 	 result = ​yield​ file

	​ 	 file.close

	​ 	 ​end​

	​ 	 result

	​ 	 ​end​

	​ 	​end​

	This has one last twist: in the previous examples of using
	blocks to control resources, we didn’t address error handling. If we
	wanted to implement these methods properly, we’d need to ensure that we
	closed a file even if the code processing that file somehow aborted. We
	do this using exception handling, which we talk about
	later.

Blocks Can Be Objects

	Blocks are like anonymous methods, but there’s more to them than
	that. You can also convert a block into an object, store it in
	variables, pass it around, and then invoke its code later.

	Remember we said that you can think of blocks as being
	like an implicit parameter that’s passed to a method? Well,
	you can also make that parameter explicit. If the last
	parameter in a method definition is prefixed with an ampersand
	(such as ​&action​), Ruby looks for a code block
	whenever that method is called. That code block is converted
	to an object of class
	​Proc​ and
	assigned to the parameter. You can then treat the parameter as
	any other variable.

	Here’s an example where we create a ​Proc​ object in one instance
	method and store it in an instance variable. We then invoke the proc
	from a second instance method.

	​ 	​class​ ProcExample

	​ 	 ​def​ pass_in_block(&action)

	​ 	 @stored_proc = action

	​ 	 ​end​

	​ 	 ​def​ use_proc(parameter)

	​ 	 @stored_proc.call(parameter)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	eg = ProcExample.new

	​ 	eg.pass_in_block { |param| puts ​"The parameter is ​#{param}​"​ }

	​ 	eg.use_proc(99)

Produces:
	​ 	The parameter is 99

	See how the
	
 ​call​

	method on a proc object invokes the code in the original
	block?

	Many Ruby programs store and later call blocks in this way—it’s a
	great way of implementing callbacks, dispatch tables, and so on.
	But you can go one step further. If a block can be turned
	into an object by adding an ampersand parameter to a method,
	what happens if that method then returns the
	​Proc​ object to the caller?

	​ 	​def​ create_block_object(&block)

	​ 	 block

	​ 	​end​

	​ 	

	​ 	bo = create_block_object { |param| puts ​"You called me with ​#{param}​"​ }

	​ 	

	​ 	bo.call 99

	​ 	bo.call ​"cat"​

Produces:
	​ 	You called me with 99

	​ 	You called me with cat

	In fact, this is so useful that Ruby provides not one but two
	built-in methods that convert a block to an
	object.[29] Both
	
 ​lambda​

	and
	
 ​Proc.new​

	take a block and return an object of class
	​Proc​. The objects they return differ slightly in how they behave,
	but we’ll hold off talking about that until later.

	​ 	bo = lambda { |param| puts ​"You called me with ​#{param}​"​ }

	​ 	bo.call 99

	​ 	bo.call ​"cat"​

Produces:
	​ 	You called me with 99

	​ 	You called me with cat

Blocks Can Be Closures

	Remember I said that a block can use local variables from the
	surrounding scope? So, let’s look at a slightly different example of a
	block doing just that:

	​ 	​def​ n_times(thing)

	​ 	 lambda {|n| thing * n }

	​ 	​end​

	​ 	

	​ 	p1 = n_times(23)

	​ 	p1.call(3) ​# => 69​

	​ 	p1.call(4) ​# => 92​

	​ 	p2 = n_times(​"Hello "​)

	​ 	p2.call(3) ​# => "Hello Hello Hello "​

	The method
 ​n_times​
 returns a
	​Proc​ object that references the
	method’s parameter, ​thing​. Even
	though that parameter is out of scope by the time the block is
	called, the parameter remains accessible to the block. This is
	called a
 ​ closure​

 —variables in the surrounding
	scope that are referenced in a block remain accessible for the
	life of that block and the life of any
	​Proc​ object created from that block.

	Here’s another example—a method that returns a
	​Proc​ object that returns successive
	powers of 2 when called:

	​ 	​def​ power_proc_generator

	​ 	 value = 1

	​ 	 lambda { value += value }

	​ 	​end​

	​ 	

	​ 	power_proc = power_proc_generator

	​ 	

	​ 	puts power_proc.call

	​ 	puts power_proc.call

	​ 	puts power_proc.call

Produces:
	​ 	2

	​ 	4

	​ 	8

An Alternative Notation

	Ruby has another way of creating ​Proc​ objects. Rather than
	write this:

	​ 	lambda { |params| ... }

	you can now write the following:[30]

	​ 	-> params { ... }

	The parameters can be enclosed in optional parentheses. Here’s an example:

	​ 	proc1 = -> arg { puts ​"In proc1 with ​#{arg}​"​ }

	​ 	proc2 = -> arg1, arg2 { puts ​"In proc2 with ​#{arg1}​ and ​#{arg2}​"​ }

	​ 	proc3 = ->(arg1, arg2) { puts ​"In proc3 with ​#{arg1}​ and ​#{arg2}​"​ }

	​ 	

	​ 	proc1.call ​"ant"​

	​ 	proc2.call ​"bee"​, ​"cat"​

	​ 	proc3.call ​"dog"​, ​"elk"​

Produces:
	​ 	In proc1 with ant

	​ 	In proc2 with bee and cat

	​ 	In proc3 with dog and elk

	The ​->​ form is more compact than using
	
 ​lambda​
 and seems to be in favor when
	you want to pass one or more ​Proc​ objects to a method:

	​ 	​def​ my_if(condition, then_clause, else_clause)

	​ 	 ​if​ condition

	​ 	 then_clause.call

	​ 	 ​else​

	​ 	 else_clause.call

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	5.times ​do​ |val|

	​ 	 my_if val < 2,

	​ 	 -> { puts ​"​#{val}​ is small"​ },

	​ 	 -> { puts ​"​#{val}​ is big"​ }

	​ 	​end​

Produces:
	​ 	0 is small

	​ 	1 is small

	​ 	2 is big

	​ 	3 is big

	​ 	4 is big

	One good reason to pass blocks to methods is that you can reevaluate the
	code in those blocks at any time. Here’s a trivial example of
	reimplementing a ​while​ loop using a method. Because the condition is
	passed as a block, it can be evaluated each time around the loop:

	​ 	​def​ my_while(cond, &body)

	​ 	 ​while​ cond.call

	​ 	 body.call

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	a = 0

	​ 	

	​ 	my_while -> { a < 3 } ​do​

	​ 	 puts a

	​ 	 a += 1

	​ 	​end​

Produces:
	​ 	0

	​ 	1

	​ 	2

Block Parameter Lists

	Blocks written using the old syntax take their parameter lists
 between vertical bars. Blocks written using the ​->​
 syntax take a separate parameter list before the block
 body. In both cases, the parameter list looks just like the
 list you can give to methods. It can take default values,
 splat args (described later),
 keyword args,«2.0» and a block parameter (a
 trailing argument starting with an ampersand). You can write
 blocks that are just as versatile as
 methods.[31]
	Here’s a block using the original block notation:

	​ 	proc1 = lambda ​do​ |a, *b, &block|

	​ 	 puts ​"a = ​#{a.inspect}​"​

	​ 	 puts ​"b = ​#{b.inspect}​"​

	​ 	 block.call

	​ 	​end​

	​ 	

	​ 	proc1.call(1, 2, 3, 4) { puts ​"in block1"​ }

Produces:
	​ 	a = 1

	​ 	b = [2, 3, 4]

	​ 	in block1

	And here’s one using the new ​->​ notation:

	​ 	proc2 = -> a, *b, &block ​do​

	​ 	 puts ​"a = ​#{a.inspect}​"​

	​ 	 puts ​"b = ​#{b.inspect}​"​

	​ 	 block.call

	​ 	​end​

	​ 	

	​ 	proc2.call(1, 2, 3, 4) { puts ​"in block2"​ }

Produces:
	​ 	a = 1

	​ 	b = [2, 3, 4]

	​ 	in block2

4.4 Containers Everywhere

 Containers, blocks, and iterators are core concepts in Ruby. The more
 you write in Ruby, the more you’ll find yourself moving away from
 conventional looping constructs. Instead, you’ll write classes that
 support iteration over their contents. And you’ll find that this code
 is compact, easy to read, and a joy to maintain.
 If this all seems too weird, don’t worry. After a while, it’ll start
 to come naturally. And you’ll have plenty of time to practice as you
 use Ruby libraries and frameworks.

Footnotes

	[22]	

 Some languages call hashes
 ​associative arrays​ or ​dictionaries​.

	[23]	

	In the
	code examples that follow, we’re often going to show the value
	of expressions such as ​a[0]​ in a comment at the end of
	the line. If you simply typed this fragment of code into a file
	and executed it using Ruby, you’d see no output—you’d need to
	add something like a call to
 ​puts​
 to
	have the values written to the console.

	[24]	
Programming-language buffs will be pleased to
	know that the keyword ​yield​ was chosen to echo the ​yield​
	function in Liskov’s language CLU, a language that is more than thirty
	years old and yet contains features that still haven’t been widely
	exploited by the CLU-less.

	[25]	

	The basic
	Fibonacci series is a sequence of integers, starting with two 1s, in
	which each subsequent term is the sum of the two preceding
	terms. The series is sometimes used in sorting algorithms and in
	analyzing natural phenomena.

	[26]	
The
	
 ​find​
 method is actually defined in module
	​Enumerable​, which is mixed into class
	​Array​.

	[27]	
You can also handle this in your own
	iterator methods by rescuing the
	​StopIteration​
	exception, but because we haven’t talked about exceptions yet, we won’t
	go into details here.

	[28]	

 It would be nice to be able to define a true block-local
 variable using the semicolon separator, but Ruby doesn’t
 allow these variables to have initializers.

	[29]	
 There’s actually a third,
	
 ​proc​
 , but it is effectively
	deprecated.

	[30]	

	Let’s start by getting something out of the way. Why ​->​?
	For compatibility across all the different source file encodings, Matz
	is restricted to using pure 7-bit ASCII for Ruby operators, and the
	choice of available characters is severely limited by the ambiguities
	inherent in the Ruby syntax. He felt that ​->​ was (kind of)
	reminiscent of a Greek lambda character λ.
	

	[31]	
Actually, they are more versatile,
 because these blocks are also closures, while methods are
 not.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 5
Sharing Functionality: Inheritance, Modules, and Mixins

 One of the accepted principles of good design is the elimination of
 unnecessary duplication. We work hard to make sure that each concept
 in our application is expressed just once in our code.[32]

 We’ve already seen how classes help. All the methods in a class are
 automatically accessible to instances of that class. But there are
 other, more general types of sharing that we want to do. Maybe we’re
 dealing with an application that ships goods. Many forms of
 shipping are available, but all forms share some basic functionality
 (weight calculation, perhaps). We don’t want to duplicate the code
 that implements this functionality across the implementation of each
 shipping type. Or maybe we have a more generic capability that we
 want to inject into a number of different classes. For example, an
 online store may need the ability to calculate sales tax for carts,
 orders, quotes, and so on. Again, we don’t want to duplicate the sales
 tax code in each of these places.

 In this chapter, we’ll look at two different (but related) mechanisms
 for this kind of sharing in Ruby. The first,
 ​ class-level
 inheritance​

 , is common in object-oriented languages. We’ll then
 look at
 ​ mixins​

 , a technique that is often preferable to
 inheritance. We’ll wind up with a discussion of when to use each.

5.1 Inheritance and Messages

 In the previous chapter, we saw that when

 ​puts​
 needs to convert an object to a
 string, it calls that object’s
 ​to_s​

 method. But we’ve also written our own classes that don’t
 explicitly implement
 ​to_s​
 . Despite
 this, objects of these classes respond successfully when we call

 ​to_s​
 on them. How this works has to do
 with inheritance, subclassing, and how Ruby determines what
 method to run when you send a message to an object.

 Inheritance allows you to create a class that is a refinement or
 specialization of another class.
 This class is called a
 ​ subclass​

 of the original, and the
 original is a
 ​ superclass​

 of the subclass. People also talk of

 ​ child​

 and
 ​ parent​

 classes.

 The basic mechanism of subclassing is simple. The child inherits all
 of the capabilities of its parent class—all the parent’s instance
 methods are available in instances of the child.

 Let’s look at a trivial example and then later build on
 it. Here’s a definition of a parent class and a child class that
 inherits from it:

	​ 	​class​ Parent

	​ 	 ​def​ say_hello

	​ 	 puts ​"Hello from ​#{self}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p = Parent.new

	​ 	p.say_hello

	​ 	

	​ 	​# Subclass the parent...​

	​ 	​class​ Child < Parent

	​ 	​end​

	​ 	

	​ 	c = Child.new

	​ 	c.say_hello

Produces:
	​ 	Hello from #<Parent:0x007fb87110fd98>

	​ 	Hello from #<Child:0x007fb87110fac8>

 The parent class defines a single instance method,

 ​say_hello​
 . We call it by creating a new
 instance of the class and store a reference to that instance in
 the variable ​p​.

 We then create a subclass using ​class Child < Parent​.
 The ​<​
 notation means we’re creating a subclass of the thing on the
 right; the fact that we use less-than presumably signals that the
 child class is supposed to be a specialization of the parent.

 Note that the child class defines no methods, but when we create
 an instance of it, we can call

 ​say_hello​
 . That’s because the child
 inherits all the methods of its parent. Note also that when we
 output the value of ​self​—the
 current object—it shows that
 we’re in an instance of class ​Child​, even though the method we’re
 running is defined in the parent.

 The
 ​superclass​
 method
 returns the parent of a particular class:

	​ 	​class​ Parent

	​ 	​end​

	​ 	​class​ Child < Parent

	​ 	​end​

	​ 	Child.superclass ​# => Parent​

 But what’s the superclass of ​Parent​?

	​ 	​class​ Parent

	​ 	​end​

	​ 	Parent.superclass ​# => Object​

 If you don’t define an explicit superclass when defining a
 class, Ruby automatically makes the built-in class
 ​Object​ that
 class’s parent. Let’s go further:

	​ 	Object.superclass ​# => BasicObject​

 Class
 ​BasicObject​
 is used in
 certain kinds of metaprogramming, acting as a
 blank canvas. What’s its parent?

	​ 	BasicObject.superclass.inspect ​# => "nil"​

 So, we’ve finally reached the end. ​BasicObject​ is the root
 class of our hierarchy of classes. Given any class in any Ruby
 application, you can ask for its superclass, then the superclass
 of that class, and so on, and you’ll eventually get back to
 ​BasicObject​.

 We’ve seen that if you call a method in an instance of class
 ​Child​ and that method isn’t in
 ​Child​’s class definition, Ruby will look
 in the parent class. It goes deeper than that, because if the
 method isn’t defined in the parent class, Ruby continues looking
 in the parent’s parent, the parent’s parent’s parent, and so on,
 through the ancestors until it runs out of classes.

 And this explains our original question. We can work out why

 ​to_s​
 is available in just about every
 Ruby object.
 ​to_s​
 is actually defined
 in class ​Object​. Because
 ​Object​ is an ancestor of every Ruby class
 (except ​BasicObject​), instances of every
 Ruby class have a
 ​to_s​
 method defined:

	​ 	​class​ Person

	​ 	 ​def​ initialize(name)

	​ 	 @name = name

	​ 	 ​end​

	​ 	​end​

	​ 	p = Person.new(​"Michael"​)

	​ 	puts p

Produces:
	​ 	#<Person:0x007fa08b8643f8>

 We saw in the previous chapter that we can override the

 ​to_s​
 method:

	​ 	​class​ Person

	​ 	 ​def​ initialize(name)

	​ 	 @name = name

	​ 	 ​end​

	​ 	 ​def​ to_s

	​ 	 ​"Person named ​#{@name}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p = Person.new(​"Michael"​)

	​ 	puts p

Produces:
	​ 	Person named Michael

 Armed with our knowledge of subclassing, we now know there’s
 nothing special about this code. The

 ​puts​
 method calls

 ​to_s​
 on its arguments. In this case,
 the argument is a ​Person​ object. Because
 class ​Person​ defines a

 ​to_s​
 method, that method is called. If
 it hadn’t defined a
 ​to_s​
 method, then
 Ruby looks for (and finds)
 ​to_s​
 in
 ​Person​’s parent class,
 ​Object​.

 It is common to use subclassing to add application-specific
 behavior to a standard library or framework class. If you’ve
 used Ruby on
 Rails,[33]
 you’ll have subclassed ​ActionController​
 when writing your own controller classes. Your controllers get
 all the behavior of the base controller and add their own
 specific handlers to individual user actions. If you’ve used
 the FXRuby GUI
 framework,[34]
 you’ll have used subclassing to add your own
 application-specific behavior to FX’s standard GUI widgets.

 Here’s a more self-contained example. Ruby comes with a library
 called GServer that implements
 basic TCP server functionality. You add your own behavior to it
 by subclassing the ​GServer​ class. Let’s
 use that to write some code that waits for a client to connect
 on a socket and then returns the last few lines of the system
 log file. This is an example of something that’s actually quite
 useful in long-running applications—by building in such a
 server, you can access the internal state of the application
 while it is running (possibly even remotely).

 The ​GServer​ class handles all the
 mechanics of interfacing to TCP sockets. When you create a
 ​GServer​ object, you tell it the port to
 listen on.[35] Then, when a client
 connects, the ​GServer​ object calls its

 ​serve​
 method to handle that
 connection. Here’s the implementation of that

 ​serve​
 method in the
 ​GServer​ class:

	​ 	​def​ serve(io)

	​ 	​end​

 As you can see, it does nothing. That’s where our own
 ​LogServer​ class comes in:

	tut_modules/gserver-logger.rb
	​ 	require ​'gserver'​

	​ 	

	​ 	​class​ LogServer < GServer

	​ 	

	​ 	 ​def​ initialize

	​ 	 ​super​(12345)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ serve(client)

	​ 	 client.puts get_end_of_log_file

	​ 	 ​end​

	​ 	

	​ 	

	​ 	private

	​ 	

	​ 	 ​def​ get_end_of_log_file

	​ 	 File.open(​"/var/log/system.log"​) ​do​ |log|

	​ 	 log.seek(-500, IO::SEEK_END) ​# back up 500 characters from end​

	​ 	 log.gets ​# ignore partial line​

	​ 	 log.read ​# and return rest​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	server = LogServer.new

	​ 	server.start.join

 I don’t want to focus too much on the details of running the
 server. Instead, let’s look at how inheritance has helped us
 with this code. Notice that our
 ​LogServer​ class inherits from
 ​GServer​. This means that a log server is
 a kind of ​GServer​, sharing all the
 ​GServer​ functionality. It also means we
 can add our own specialized behavior.

 The first such specialization is the

 ​initialize​
 method. We want our log
 server to run on TCP port 12345. That’s a parameter that would
 normally be passed to the ​GServer​
 constructor. So, within the
 ​initialize​

 method of the ​LogServer​, we want to
 invoke the
 ​initialize​
 method of
 ​GServer​, our parent, passing it the port
 number. We do that using the Ruby keyword
 ​super​.
 When you invoke ​super​, Ruby sends a message
 to the parent of the current object, asking it to invoke a
 method of the same name as the method invoking
 ​super​. It passes this method the parameters
 that were passed to ​super​.

 This is a crucial step and one often forgotten by folks new to
 OO. When you subclass another class, you are responsible for making
 sure the initialization required by that class gets run. This means
 that, unless you know it isn’t needed, you’ll need to put a call to
 ​super​ somewhere in your subclass’s
 ​initialize​

 method. (If your subclass doesn’t need an
 ​initialize​
 method,
 then there’s no need to do anything, because it will be the parent
 class’s
 ​initialize​
 method that gets run when your objects get
 created.)

 So, by the time our
 ​initialize​
 method
 finishes, our ​LogServer​ object will be a
 fully fledged TCP server, all without us having to write any
 protocol-level code. Down at the end of our program, we start
 the server and then call
 ​join​

 to wait for the server to exit.

 Our server receives connections from
 external clients. These invoke the
 ​serve​
 method in the server
 object. Remember that empty method in class ​GServer​? Well, our
 ​LogServer​ class provides its own implementation. And because it
 gets found by Ruby first when it’s looking for methods to execute, it’s
 our code that gets run whenever ​GServer​ accepts a connection. And
 our code reads the last few lines of the log file and returns them to the
 client:[36]

	​ 	$ ​telnet 127.0.0.1 12345​

	​ 	Trying 127.0.0.1...

	​ 	Connected to localhost.

	​ 	Escape character is '^]'.

	​ 	Jul 9 12:22:59 doc-72-47-70-67 com.apple.mdworker.pool.0[49913]: PSSniffer error

	​ 	Jul 9 12:28:55 doc-72-47-70-67 login[82588]: DEAD_PROCESS: 82588 ttys004

	​ 	Connection closed by foreign host.

 The use of the
 ​serve​
 method shows a common idiom when using
 subclassing. A parent class assumes that it will be subclassed and
 calls a method that it expects its children to implement. This allows
 the parent to take on the brunt of the processing but to invoke what
 are effectively hook methods in subclasses to add application-level
 functionality. As we’ll see at the end of this chapter, just because
 this idiom is common doesn’t make it good design.

 So, instead, let’s look at
 ​ mixins​

 , a different way of sharing
 functionality in Ruby code. But, before we look at mixins, we’ll need
 to get familiar with Ruby
 ​ modules​

 .

5.2 Modules

 Modules are a way of grouping together methods, classes, and
 constants. Modules give you two major benefits:

	
Modules provide a namespace and prevent name clashes.

	
Modules support the mixin facility.

Namespaces

	As you start to write bigger Ruby programs, you’ll
	find yourself producing chunks of reusable code—libraries
	of related routines that are generally applicable. You’ll want to
	break this code into separate files so the contents can be shared
	among different Ruby programs.

	Often this code will be organized into classes, so you’ll probably
	stick a class (or a set of interrelated classes) into a file.
	However, there are times when you want to group things together that
	don’t naturally form a class.

	An initial approach may be to put all these things into a file
	and simply load that file into any program that needs it. This
	is the way the C language works. However, this approach has a
	problem. Say you write a set of the trigonometry functions,
	
 ​sin​
 ,
 ​cos​
 ,
	and so on. You stuff them all into a file,
	​trig.rb​, for future generations to
	enjoy. Meanwhile, Sally is working on a simulation of good and
	evil, and she codes a set of her own useful routines,
	including
 ​be_good​
 and
	
 ​sin​
 , and sticks them into
	​moral.rb​. Joe, who wants to write a
	program to find out how many angels can dance on the head of a
	pin, needs to load both ​trig.rb​ and
	​moral.rb​ into his program. But both
	define a method called
 ​sin​
 . Bad news.

	The answer is the module mechanism. Modules define a
	
 ​ namespace​

 , a sandbox in which your
	methods and constants can play without having to worry about
	being stepped on by other methods and constants. The trig
	functions can go into one module:

	tut_modules/trig.rb
	​ 	​module​ Trig

	​ 	 PI = 3.141592654

	​ 	 ​def​ Trig.sin(x)

	​ 	 ​# ..​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ Trig.cos(x)

	​ 	 ​# ..​

	​ 	 ​end​

	​ 	​end​

	and the good and bad “moral” methods can go into another:

	tut_modules/moral.rb
	​ 	​module​ Moral

	​ 	 VERY_BAD = 0

	​ 	 BAD = 1

	​ 	 ​def​ Moral.sin(badness)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

	Module constants are named just like class constants, with an
	initial uppercase letter.[37]
	The method definitions look similar, too:
	module methods are defined just like class methods.

	If a third program wants to use these modules, it can simply load the
	two files (using the Ruby
 ​require​
 statement). To
	reference the name
 ​sin​
 unambiguously, our code can then qualify
	the name using the name of the module containing the implementation we
	want, followed by ​::​, the scope resolution
	operator:

	tut_modules/pin_head.rb
	​ 	require_relative ​'trig'​

	​ 	require_relative ​'moral'​

	​ 	y = Trig.sin(Trig::PI/4)

	​ 	wrongdoing = Moral.sin(Moral::VERY_BAD)

	As with class methods, you call a module method by preceding its name
	with the module’s name and a period, and you reference a constant
	using the module name and two colons.

5.3 Mixins

 Modules have another, wonderful use. At a stroke, they pretty
 much eliminate the need for inheritance, providing a facility
 called a
 ​ mixin​

 .

 In the previous section’s examples, we defined module methods,
 methods whose names were prefixed by the module name. If this
 made you think of class methods, your next thought may well be
 “What happens if I define instance methods within a module?”
 Good question. A module can’t have instances, because a module
 isn’t a class. However, you can
 ​ include​

 a
 module within a class definition. When this happens, all the
 module’s instance methods are suddenly available as methods in
 the class as well. They get ​mixed in​. In fact,
 mixed-in modules effectively behave as superclasses.

	​ 	​module​ Debug

	​ 	 ​def​ who_am_i?

	​ 	 ​"​#{self.class.name}​ (id: ​#{self.object_id}​): ​#{self.name}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Phonograph

	​ 	 include Debug

	​ 	 attr_reader :name

	​ 	 ​def​ initialize(name)

	​ 	 @name = name

	​ 	 ​end​

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	​class​ EightTrack

	​ 	 include Debug

	​ 	 attr_reader :name

	​ 	 ​def​ initialize(name)

	​ 	 @name = name

	​ 	 ​end​

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	ph = Phonograph.new(​"West End Blues"​)

	​ 	et = EightTrack.new(​"Surrealistic Pillow"​)

	​ 	

	​ 	ph.who_am_i? ​# => "Phonograph (id: 70266478767560): West End Blues"​

	​ 	et.who_am_i? ​# => "EightTrack (id: 70266478767520): Surrealistic Pillow"​

 By including the ​Debug​ module, both the
 ​Phonograph​ and
 ​EightTrack​ classes gain access to the

 ​who_am_i?​
 instance method.

 We’ll make a couple of points about the ​include​
 statement before we go on.

 First, it has nothing to do with files. C programmers use a
 preprocessor directive called ​#include​ to insert the
 contents of one file into another during compilation. The Ruby
 ​include​ statement simply makes a reference to
 a module. If that module is in a separate file, you must use

 ​require​

 (or its less commonly used cousin,
 ​load​
) to drag that
 file in before using ​include​. Second, a Ruby
 ​include​ does not simply copy the module’s instance
 methods into the class. Instead, it makes a reference from the class
 to the included module. If multiple classes include that module,
 they’ll all point to the same thing. If you change the definition of a
 method within a module, even while your program is running, all
 classes that include that module will exhibit the new
 behavior.[38]

 Mixins give you a wonderfully controlled way of adding
 functionality to classes. However, their true power comes out
 when the code in the mixin starts to interact with code in the
 class that uses it. Let’s take the standard Ruby mixin
 ​Comparable​ as an
 example. The
 ​Comparable​ mixin adds the comparison
 operators (​<​, ​<=​, ​==​,
 ​>=​, and ​>​), as well as the method

 ​between?​
 , to a class. For this to work,
 ​Comparable​ assumes that any class that
 uses it defines the operator ​<=>​. So, as a class
 writer, you define one method, ​<=>​; include
 ​Comparable​; and get six comparison
 functions for free.

 Let’s try this with a simple ​Person​ class.
 We’ll make people
 comparable based on their names:

	​ 	​class​ Person

	​ 	 include Comparable

	​ 	 attr_reader :name

	​ 	

	​ 	 ​def​ initialize(name)

	​ 	 @name = name

	​ 	 ​end​

	​ 	 ​def​ to_s

	​ 	 ​"​#{@name}​"​

	​ 	 ​end​

	​ 	 ​def​ <=>(other)

	​ 	 self.name <=> other.name

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p1 = Person.new(​"Matz"​)

	​ 	p2 = Person.new(​"Guido"​)

	​ 	p3 = Person.new(​"Larry"​)

	​ 	

	​ 	

	​ 	​# Compare a couple of names​

	​ 	​if​ p1 > p2

	​ 	 puts ​"​#{p1.name}​'s name > ​#{p2.name}​'s name"​

	​ 	​end​

	​ 	

	​ 	​# Sort an array of Person objects​

	​ 	

	​ 	puts ​"Sorted list:"​

	​ 	puts [p1, p2, p3].sort

Produces:
	​ 	Matz's name > Guido's name

	​ 	Sorted list:

	​ 	Guido

	​ 	Larry

	​ 	Matz

 We included ​Comparable​ in our
 ​Person​ class and then defined a
 ​<=>​ method. We were then able to perform comparisons
 (such as ​p1 > p2​) and even sort an array of
 ​Person​ objects.

Inheritance and Mixins

 Some object-oriented languages (such as C++) support
 multiple inheritance, where a class can have more than one immediate
 parent, inheriting functionality from each. Although powerful, this
 technique can be dangerous, because the inheritance hierarchy can
 become ambiguous.

 Other languages, such as Java and C#, support single
 inheritance. Here, a class can have only one immediate
 parent. Although cleaner (and easier to implement), single
 inheritance also has drawbacks—in the real world, objects often
 inherit attributes from multiple sources (a ball is both a
 ​bouncing thing​ and a ​spherical thing​,
 for
 example).

 Ruby offers an interesting and powerful compromise, giving you
 the simplicity of single inheritance and the power of multiple
 inheritance. A Ruby class has
 only one direct parent, so Ruby is a single-inheritance
 language. However, Ruby classes can include the functionality of any
 number of ​mixins​ (a mixin is like a partial class definition). This
 provides a controlled multiple-inheritance-like capability with none
 of the drawbacks.

5.4 Iterators and the Enumerable Module

 The Ruby collection classes (​Array​,
 ​Hash​, and so on) support a large number
 of operations that do various things with the collection:
 traverse it, sort it, and so on. You may be thinking, “Gee,
 it’d sure be nice if ​my​ class could support all
 these neat-o features, too!” (If you actually thought that,
 it’s probably time to stop watching reruns of 1960s television
 shows.)

 Well, your classes ​can​ support all these neat-o
 features, thanks to the magic of mixins and module
 ​Enumerable​.
 All you have to do is write an iterator called

 ​each​
 , which returns the elements of
 your collection in turn. Mix in ​Enumerable​, and suddenly
 your class supports things such as
 ​map​
 ,

 ​include?​
 , and

 ​find_all?​
 . If the objects in your
 collection implement meaningful ordering semantics using the

 ​<=>​
 method, you’ll also get methods
 such as
 ​min​
 ,

 ​max​
 , and
 ​sort​
 .

5.5 Composing Modules

 ​Enumerable​ is a standard mixin,
 implementing a bunch of methods in terms of the host class’s

 ​each​
 method. One of the methods defined
 by ​Enumerable​ is

 ​inject​
 , which we saw previously. This method applies a function or
 operation to the first two elements in the collection and then
 applies the operation to the result of this computation and to
 the third element, and so on, until all elements in the
 collection have been used.

 Because
 ​inject​
 is made available by
 ​Enumerable​, we can use it in any class
 that includes the ​Enumerable​ module and
 defines the method
 ​each​
 . Many built-in
 classes do this.

	​ 	[1, 2, 3, 4, 5].inject(:+) ​# => 15​

	​ 	(​'a'​..​'m'​).inject(:+) ​# => "abcdefghijklm"​

 We could also define our own class that mixes in
 ​Enumerable​ and hence gets

 ​inject​
 support:

	tut_modules/vowel_finder.rb
	​ 	​class​ VowelFinder

	​ 	 include Enumerable

	​ 	

	​ 	 ​def​ initialize(string)

	​ 	 @string = string

	​ 	 ​end​

	​ 	 ​def​ each

	​ 	 @string.scan(/[aeiou]/) ​do​ |vowel|

	​ 	 ​yield​ vowel

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	vf = VowelFinder.new(​"the quick brown fox jumped"​)

	​ 	vf.inject(:+) ​# => "euiooue"​

 Note we used the same pattern in the call to

 ​inject​
 in these examples—we’re using
 it to perform a summation. When applied to numbers, it returns
 the arithmetic sum; when applied to strings, it concatenates
 them. We can use a module to encapsulate this functionality too:

	​ 	​module​ Summable

	​ 	 ​def​ sum

	​ 	 inject(:+)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Array

	​ 	 include Summable

	​ 	​end​

	​ 	

	​ 	​class​ Range

	​ 	 include Summable

	​ 	​end​

	​ 	

	​ 	require_relative ​"vowel_finder"​

	​ 	​class​ VowelFinder

	​ 	 include Summable

	​ 	​end​

	​ 	

	​ 	[1, 2, 3, 4, 5].sum ​# => 15​

	​ 	(​'a'​..​'m'​).sum ​# => "abcdefghijklm"​

	​ 	

	​ 	vf = VowelFinder.new(​"the quick brown fox jumped"​)

	​ 	vf.sum ​# => "euiooue"​

Instance Variables in Mixins

	People coming to Ruby from C++ often ask, “What happens to
	instance variables in a mixin? In C++, I have to jump through
	some hoops to control how variables are shared in a
	multiple-inheritance hierarchy. How does Ruby handle
	this?”

	Well, for starters, it’s not really a fair question.
	Remember how instance variables work in Ruby: the first mention of an
	​@​-prefixed variable creates the instance variable ​in the
	current object​, ​self​.

	For a mixin, this means the module you mix into your
	client class (the ​mixee​?) may create instance
	variables in the client object and may use
	
 ​attr_reader​
 and friends to define
	accessors for these instance variables. For instance, the
	​Observable​ module in the following
	example adds an instance variable
	​@observer_list​ to any class that
	includes it:

	tut_modules/observer_impl.rb
	​ 	​module​ Observable

	​ 	 ​def​ observers

	​ 	 @observer_list ||= []

	​ 	 ​end​

	​ 	 ​def​ add_observer(obj)

	​ 	 observers << obj

	​ 	 ​end​

	​ 	 ​def​ notify_observers

	​ 	 observers.each {|o| o.update }

	​ 	 ​end​

	​ 	​end​

	However, this behavior exposes us to a risk. A mixin’s
	instance variables can clash with those of the host class or
	with those of other mixins. The example that follows shows a
	class that uses our ​Observer​ module but
	that unluckily also uses an instance variable called
	​@observer_list​. At runtime, this
	program will go wrong in some hard-to-diagnose ways:

	tut_modules/observer_impl_eg.rb
	​ 	require_relative ​'observer_impl'​

	​ 	

	​ 	​class​ TelescopeScheduler

	​ 	

	​ 	 ​# other classes can register to get notifications​

	​ 	 ​# when the schedule changes​

	​ 	 include Observable

	​ 	

	​ 	 ​def​ initialize

	​ 	 @observer_list = [] ​# folks with telescope time​

	​ 	 ​end​

	​ 	 ​def​ add_viewer(viewer)

	​ 	 @observer_list << viewer

	​ 	 ​end​

	​ 	

	​ 	 ​# ...​

	​ 	​end​

	For the most part, mixin modules don’t use instance variables
	directly—they use accessors to retrieve data from the client object.
	But if you need to create a mixin that has to have its own state,
	ensure that the instance variables have unique names to distinguish
	them from any other mixins in the system (perhaps by using the
	module’s name as part of the variable name). Alternatively, the module
	could use a module-level hash, indexed by the current object ID, to
	store instance-specific data without using Ruby instance variables:

	​ 	​module​ Test

	​ 	 State = {}

	​ 	 ​def​ state=(value)

	​ 	 State[object_id] = value

	​ 	 ​end​

	​ 	

	​ 	 ​def​ state

	​ 	 State[object_id]

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Client

	​ 	 include Test

	​ 	​end​

	​ 	

	​ 	c1 = Client.new

	​ 	c2 = Client.new

	​ 	c1.state = ​'cat'​

	​ 	c2.state = ​'dog'​

	​ 	c1.state ​# => "cat"​

	​ 	c2.state ​# => "dog"​

	A downside of this approach is that the data associated with a
	particular object will not get automatically deleted if the
	object is deleted. In general, a mixin that requires its own
	state is not a mixin—it should be written as a class.

Resolving Ambiguous Method Names

	One of the other questions folks ask about mixins is, how is method
	lookup handled? In particular, what happens if methods with the same
	name are defined in a class, in that class’s parent class, and in a mixin
	included into the class?

	The answer is that Ruby looks first in the immediate class of an
	object, then in the mixins included into that class, and then in
	superclasses and their mixins. If a class has multiple modules mixed
	in, the last one included is searched first.

5.6 Inheritance, Mixins, and Design

 Inheritance and mixins both allow you to write code in one place and
 effectively inject that code into multiple classes. So, when do you
 use each?

 As with most questions of design, the answer is,
 well...it depends. However, over the years developers have come
 up with some pretty clear general guidelines to help us decide.

 First let’s look at subclassing. Classes in Ruby are related to
 the idea of types. It would be natural to say that
 ​"cat"​ is a string and ​[1,2]​ is an array. And
 that’s another way of saying that the class of ​"cat"​ is
 ​String​ and the class of ​[1,2]​ is
 ​Array​. When we create our own classes, you
 can think of it as adding new types to the language. And when we
 subclass either a built-in class or our own class, we’re
 creating a
 ​ subtype​

 .

 Now, a lot of research has been done on type theories. One of
 the more famous results is the
 ​ Liskov Substitution
 Principle​

 .
 Formally, this states, “Let q(x) be a property provable about
 objects x of type T. Then q(y) should be true for objects y of
 type S where S is a subtype of T.” What this means is that you
 should be able to substitute an object of a child class wherever
 you use an object of the parent class—the child should honor
 the parent’s contract. There’s another way of looking at this:
 we should be able to say that the child object ​is a​
 kind of the parent. We’re used to saying this in English: a car
 ​is a​ vehicle, a cat ​is an​ animal, and
 so on. This means that a cat should, at the very least, be
 capable of doing everything we say that an animal can do.

 So, when you’re looking for subclassing relationships while designing
 your application, be on the lookout for these ​is-a​
 relationships.

 But...here’s the bad news. In the real world, there really
 aren’t that many true ​is a​ relationships. Instead,
 it’s far more common to have ​has a​ or ​uses
 a​ relationships between things. The real world is built
 using composition, not strict hierarchies.

 In the past, we’ve tended to gloss over that fact when
 programming. Because inheritance was the only scheme available for
 sharing code, we got lazy and said things like “My ​Person​ class is a
 subclass of my ​DatabaseWrapper​ class.” (Indeed, the Rails
 framework makes just this mistake.)
 But a person object ​is not​ a kind of database
 wrapper object. A person object ​uses​
 a database wrapper to provide persistence services.

 Is this just a theoretical issue? No! Inheritance represents an
 incredibly tight coupling of two components. Change a parent class,
 and you risk breaking the child class. But, even worse, if code that
 uses objects of the child class relies on those objects also having
 methods defined in the parent, then all that code will break, too. The
 parent class’s implementation leaks through the child classes and out
 into the rest of the code. With a decent-sized program, this becomes a
 serious inhibitor to change.

 And that’s why we need to move away from inheritance in our
 designs. Instead, we need to be using ​composition​
 wherever we see a case of A ​uses a​ B, or A ​has
 a​ B. Our persisted ​Person​ object
 won’t subclass ​DataWrapper​. Instead, it’ll construct a
 reference to a database wrapper object and use that object
 reference to save and restore itself.

 But that can also make code messy. And that’s where a combination of
 mixins and metaprogramming comes to the rescue, because we can say this:

	​ 	​class​ Person

	​ 	 include Persistable

	​ 	 ​# ...​

	​ 	​end​

 instead of this:

	​ 	​class​ Person < DataWrapper

	​ 	 ​# ...​

	​ 	​end​

 If you’re new to object-oriented programming, this discussion may
 feel remote and abstract. But as you start to code larger and larger
 programs, we urge you to think about the issues discussed here. Try to
 reserve inheritance for the times where it is justified. And try to
 explore all the cool ways that mixins let you write decoupled,
 flexible code.

Footnotes

	[32]	

 Why?
 Because the world changes. And when you adapt your application to
 each change, you want to know that you’ve changed exactly the code
 you need to change. If each real-world concept is implemented at a
 single point in the code, this becomes vastly easier.

	[33]	

 ​http://www.rubyonrails.com​

	[34]	

 ​http://www.fxruby.org/​

	[35]	
You can tell it a lot more, as well. We
 chose to keep it simple here.

	[36]	
You can also access this server from a web browser by
 connecting to ​http://127.0.0.1:12345​.

	[37]	
But we will
	conventionally use all uppercase letters when writing
	them.

	[38]	
Of course, we’re speaking only
 of methods here. Instance variables are always per object, for
 example.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 6
Standard Types

 So far, we’ve been having fun implementing programs using arrays,
 hashes, and procs, but we haven’t really covered the other basic types
 in Ruby: numbers, strings, ranges, and regular expressions. Let’s
 spend a few pages on these basic building blocks now.

6.1 Numbers

 Ruby supports integers and floating-point, rational, and complex
 numbers.
 Integers can be any length (up to a maximum determined by the
 amount of free memory on your system). Integers within a
 certain range (normally -230...230-1 or -262...262-1) are held internally in binary form and
 are objects of class
 ​Fixnum​.
 Integers outside this range are stored in objects of class
 ​Bignum​
 (currently implemented as a variable-length set of short
 integers). This process is transparent, and Ruby automatically
 manages the conversion back and forth:

	​ 	num = 10001

	​ 	4.times ​do​

	​ 	 puts ​"​#{num.class}​: ​#{num}​"​

	​ 	num *= num

	​ 	​end​

Produces:
	​ 	Fixnum: 10001

	​ 	Fixnum: 100020001

	​ 	Fixnum: 10004000600040001

	​ 	Bignum: 100080028005600700056002800080001

 You write integers
 using an optional leading sign, an
 optional base indicator (​0​ for octal, ​0d​ for
 decimal [the default], ​0x​ for hex, or
 ​0b​ for binary), followed by a string of digits in the
 appropriate base. Underscore characters are ignored in the digit
 string (some folks use them in place of commas in larger numbers).

	​ 	123456 => 123456 ​# Fixnum​

	​ 	0d123456 => 123456 ​# Fixnum​

	​ 	123_456 => 123456 ​# Fixnum - underscore ignored​

	​ 	-543 => -543 ​# Fixnum - negative number​

	​ 	0xaabb => 43707 ​# Fixnum - hexadecimal​

	​ 	0377 => 255 ​# Fixnum - octal​

	​ 	-0b10_1010 => -42 ​# Fixnum - binary (negated)​

	​ 	123_456_789_123_456_789 => 123456789123456789 ​# Bignum​

 A numeric literal with a decimal point and/or an exponent is
 turned into a
 ​Float​
 object,
 corresponding to the native architecture’s
 double data type. You must both precede
 and follow the decimal point with a
 digit (if you write ​1.0e3​ as ​1.e3​, Ruby will try
 to invoke the method
 ​e3​
 on the object ​1​).

 Ruby includes support for rational and complex numbers.
 Rational numbers are the ratio of two integers—they are
 fractions—and hence have an exact representation (unlike
 floats). Complex numbers represent points on the complex
 plane. They have two components, the real and imaginary parts.

 Ruby doesn’t have a literal syntax for representing rational and
 complex numbers. Instead, you create them using explicit calls
 to the constructor methods
 ​Rational​
 and
 ​Complex​
 (although, as we’ll see, you
 can use the mathn library to make working with rational
 numbers easier).

	​ 	Rational(3, 4) * Rational(2, 3) ​# => (1/2)​

	​ 	Rational(​"3/4"​) * Rational(​"2/3"​) ​# => (1/2)​

	​ 	

	​ 	Complex(1, 2) * Complex(3, 4) ​# => (-5+10i)​

	​ 	Complex(​"1+2i"​) * Complex(​"3+4i"​) ​# => (-5+10i)​

 All numbers are objects and respond to a variety of messages (listed
 in full starting in the reference section at the end of this book).
 So, unlike (say) C++, you find
 the absolute value of a number by writing ​num.abs​, not
 ​abs(num)​.

 Finally, we’ll offer a warning for Perl users.
 Strings that contain just digits are
 ​not​ automatically converted into numbers when used in
 expressions. This tends to bite most often when reading numbers from a
 file. For example, we may want to find the sum of the
 two numbers on each line for a file such as the following:

	​ 	3 4

	​ 	5 6

	​ 	7 8

 The following code doesn’t work:

	​ 	some_file.each ​do​ |line|

	​ 	 v1, v2 = line.split ​# split line on spaces​

	​ 	 print v1 + v2, ​" "​

	​ 	​end​

Produces:
	​ 	34 56 78

 The problem is that the input was read as strings, not numbers. The
 plus operator concatenates strings, so that’s what we see in the
 output. To fix this, use the
 ​Integer​
 method to convert the
 strings to integers:

	​ 	some_file.each ​do​ |line|

	​ 	 v1, v2 = line.split

	​ 	 print Integer(v1) + Integer(v2), ​" "​

	​ 	​end​

Produces:
	​ 	7 11 15

How Numbers Interact

	Most of the time, numbers work the way you’d expect. If you perform
	some operation between two numbers of the same class, the answer will
	typically be a number of that same class (although, as we’ve seen,
	fixnums can become bignums, and vice versa). If the two numbers are
	different classes, the result will have the class of the
	more general one. If you mix integers and floats, the result will be
	a float; if you mix floats and complex numbers, the result will be
	complex.

	​ 	1 + 2 ​# => 3​

	​ 	1 + 2.0 ​# => 3.0​

	​ 	1.0 + 2 ​# => 3.0​

	​ 	1.0 + Complex(1,2) ​# => (2.0+2i)​

	​ 	1 + Rational(2,3) ​# => (5/3)​

	​ 	1.0 + Rational(2,3) ​# => 1.6666666666666665​

	The return-type rule still applies when it comes to division. However,
	this often confuses folks, because division between two integers yields an
	integer result:

	​ 	1.0 / 2 ​# => 0.5​

	​ 	1 / 2.0 ​# => 0.5​

	​ 	1 / 2 ​# => 0​

	If you’d prefer that integer division instead return a
	fraction (a ​Rational​ number), require the
	mathn library (described in
	the library section). This
	will cause arithmetic operations to attempt to find the most
	​natural​ representation for their results. For
	integer division where the result isn’t an integer, a fraction
	will be returned.

	​ 	22 / 7 ​# => 3​

	​ 	Complex::I * Complex::I ​# => (-1+0i)​

	​ 	

	​ 	require ​'mathn'​

	​ 	22 / 7 ​# => (22/7)​

	​ 	Complex::I * Complex::I ​# => -1​

	Note that ​22/7​ is effectively a rational literal once ​mathn​
	is loaded (albeit one that’s calculated at runtime).

Looping Using Numbers

	Integers also support several iterators. We’ve seen one already:
	​5.times​. Others include
 ​upto​
 and
	
 ​downto​
 for iterating up and down between two
	integers. Class ​Numeric​ also provides the more
	general method
 ​step​
 , which is more like a
	traditional ​for​ loop.

	​ 	3.times { print ​"X "​ }

	​ 	1.upto(5) {|i| print i, ​" "​ }

	​ 	99.downto(95) {|i| print i, ​" "​ }

	​ 	50.step(80, 5) {|i| print i, ​" "​ }

Produces:
	​ 	X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

	As with other iterators, if you leave the block off,
	the call returns an
	​Enumerator​
	object:

	​ 	10.downto(7).with_index {|num, index| puts ​"​#{index}​: ​#{num}​"​}

Produces:
	​ 	0: 10

	​ 	1: 9

	​ 	2: 8

	​ 	3: 7

6.2 Strings

 Ruby strings are simply sequences of
 characters.[39] They
 normally hold printable characters, but that is not a
 requirement; a string can also hold binary data. Strings are
 objects of class
 ​String​. Strings are often created
 using string literals—sequences of
 characters between delimiters. Because binary data is otherwise
 difficult to represent within program source, you can place various
 escape sequences in a string literal. Each is replaced with the
 corresponding binary value as the program is compiled. The type of
 string delimiter determines the degree of substitution performed.
 Within single-quoted strings, two consecutive backslashes are replaced
 by a single backslash, and a backslash followed by a single quote
 becomes a single quote.

	​ 	​'escape using "\\"'​ ​# => escape using "\"​

	​ 	​'That\'s right'​ ​# => That's right​

 Double-quoted strings support a boatload more escape sequences.
 The most common is probably ​\n​, the newline character.
 For a complete list, see Table 11, ​Substitutions in double-quoted strings​. In
 addition, you can substitute the value of any Ruby code into a
 string using the sequence
 ​#{​ ​expr​ ​}​.
 If the code is just a global variable, a class variable, or an
 instance variable, you can omit the braces.

	​ 	​"Seconds/day: ​#{24*60*60}​"​ ​# => Seconds/day: 86400​

	​ 	​"​#{​'Ho! '​*3}​Merry Christmas!"​ ​# => Ho! Ho! Ho! Merry Christmas!​

	​ 	​"Safe level is ​#$SAFE​"​ ​# => Safe level is 0​

 The interpolated code can be one or more statements, not
 just an expression:

	​ 	puts ​"now is ​#{ ​def​ the(a)

	​ 	 ​'the '​ + a

	​ 	 ​end​

	​ 	 the(​'time'​)

	​ 	 }​ for all bad coders..."​

Produces:
	​ 	now is the time for all bad coders...

 You have three more ways to construct string literals:
 ​%q​, ​%Q​, and ​here
 documents​.
 ​ %q​ and ​%Q​ start delimited single- and double-quoted
 strings (you can think of ​%q​ as a thin quote, as in
 ​’​, and ​%Q​ as a thick quote, as in ​"​):

	​ 	​%q/general single-quoted string/​ ​# => general single-quoted string​

	​ 	​%Q!general double-quoted string!​ ​# => general double-quoted string​

	​ 	​%Q{Seconds/day: ​#{24*60*60}​}​ ​# => Seconds/day: 86400​

 In fact, the ​Q​ is optional:

	​ 	​%!general double-quoted string!​ ​# => general double-quoted string​

	​ 	​%{Seconds/day: ​#{24*60*60}​}​ ​# => Seconds/day: 86400​

 The character following the ​q​ or ​Q​ is the delimiter. If it is
 an opening bracket ​[​, brace ​{​, parenthesis ​(​,
 or less-than sign ​<​, the string
 is read until the matching close symbol is found. Otherwise, the string
 is read until the next occurrence of the same delimiter. The delimiter
 can be any nonalphanumeric or nonmultibyte character.

 Finally, you can construct a string using a
 ​ here
 document​

 :

	​ 	string = ​<<END_OF_STRING​

	​ 	​ The body of the string is the input lines up to​

	​ 	​ one starting with the same text that followed the '<<'​

	​ 	​END_OF_STRING​

 A here document consists of lines in the source up to but not
 including the terminating string that you specify after the ​<<​
 characters. Normally, this terminator must start in
 column one. However, if you put a minus sign after the ​<<​
 characters, you can indent the terminator:

	​ 	string = ​<<-END_OF_STRING​

	​ 	​ The body of the string is the input lines up to​

	​ 	​ one starting with the same text that followed the '<<'​

	​ 	​ END_OF_STRING​

 You can also have multiple here documents on a single line. Each acts
 as a separate string. The bodies of the here documents are fetched
 sequentially from the source lines that follow:

	​ 	print ​<<-STRING1​, ​<<-STRING2​

	​ 	​Concat​

	​ 	​STRING1​

	​ 	​ enate​

	​ 	​ STRING2​

Produces:
	​ 	Concat

	​ 	 enate

 Note that Ruby does not strip leading spaces off the contents of the
 strings in these cases.

Strings and Encodings

	Every string has an associated encoding. The default
	encoding of a string literal depends on the encoding of the source
	file that contains it. With no explicit encoding, a source file (and
	its strings) will be US-ASCII in Ruby 1.9 and UTF-8«2.0» in Ruby 2.

	​ 	plain_string = ​"dog"​

	​ 	puts RUBY_VERSION

	​ 	puts ​"Encoding of ​#{plain_string.inspect}​ is ​#{plain_string.encoding}​"​

Produces:
	​ 	2.0.0

	​ 	Encoding of "dog" is UTF-8

	If you override the encoding, you’ll do that for all strings
	in the file:

	​ 	​#encoding: utf-8​

	​ 	plain_string = ​"dog"​

	​ 	puts ​"Encoding of ​#{plain_string.inspect}​ is ​#{plain_string.encoding}​"​

	​ 	utf_string = ​"δog"​

	​ 	puts ​"Encoding of ​#{utf_string.inspect}​ is ​#{utf_string.encoding}​"​

Produces:
	​ 	Encoding of "dog" is UTF-8

	​ 	Encoding of "δog" is UTF-8

	We’ll have a lot more to say about encoding in Chapter 17, ​Character Encoding​.

Character Constants

	Technically, Ruby does not have a class for characters—characters
	are simply strings of length one. For historical reasons, character
	constants can be created by preceding the character (or sequence that
	represents a character) with a question mark:

	​ 	?a ​# => "a" (printable character)​

	​ 	?\n ​# => "\n" (code for a newline (0x0a))​

	​ 	?\C-a ​# => "\u0001" (control a)​

	​ 	?\M-a ​# => "\xE1" (meta sets bit 7)​

	​ 	?\M-\C-a ​# => "\x81" (meta and control a)​

	​ 	?\C-? ​# => "\u007F" (delete character)​

	Do yourself a favor and forget this section. It’s far
	easier to use regular octal and hex escape sequences than to remember
	these ones. Use ​"a"​ rather than ​?a​, and use ​"\n"​ rather
	than ​?\n​.

Working with Strings

	​String​ is
	probably the largest built-in Ruby class, with more than
	one hundred standard methods. We won’t go through them all here; the
	library reference has a complete list. Instead, we’ll
	look at some common string idioms—things that are likely to pop up
	during day-to-day programming.

	Maybe we’ve been given a file containing information on a song
	playlist. For historical reasons (are there any other kind?),
	the list of songs is stored as lines in the file. Each line
	holds the name of the file containing the song, the song’s
	duration, the artist, and the title, all in vertical
	bar--separated fields. A typical file may start like
	this:

	tut_stdtypes/songdata
	​ 	/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'

	​ 	/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World

	​ 	/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

	Looking at the data, it’s clear that we’ll be using some of class
	​String​’s many methods to extract and clean up the fields before we
	use them. At a minimum, we’ll need to

	
break each line into fields,

	
convert the running times from mm:ss to seconds, and

	
remove those extra spaces from the artists’ names.

	Our first task is to split each line into fields, and
	
 ​String#split​

	will do the job nicely. In
	this case, we’ll pass
 ​split​
 a regular
	expression, ​/\s*\|\s*/​, that splits the line into
	tokens wherever
 ​split​
 finds a
	vertical bar, optionally surrounded by spaces. And, because
	the line read from the file has a trailing newline, we’ll use
	
 ​String#chomp​

	to strip it off just before we apply the split. We’ll store
	details of each song in a ​Struct​ that
	contains an attribute for each of the three fields. (A
	​Struct​ is simply a data structure that
	contains a given set of attributes—in this case the title,
	name, and length. ​Struct​ is described
	in the reference section.)

	​ 	Song = Struct.new(:title, :name, :length)

	​ 	

	​ 	File.open(​"songdata"​) ​do​ |song_file|

	​ 	 songs = []

	​ 	

	​ 	 song_file.each ​do​ |line|

	​ 	 file, length, name, title = line.chomp.split(/​\s​*​\|\s​*/)

	​ 	 songs << Song.new(title, name, length)

	​ 	 ​end​

	​ 	

	​ 	 puts songs[1]

	​ 	​end​

Produces:
	​ 	#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

	Unfortunately, whoever created the original file entered the
	artists’ names in columns, so some of them contain extra
	spaces that we’d better remove before we go much further. We
	have many ways of doing this, but probably the simplest is
	
 ​String#squeeze​
 ,
	which trims runs of repeated characters. We’ll use the
	
 ​squeeze!​
 form of the method, which
	alters the string in place:

	​ 	Song = Struct.new(:title, :name, :length)

	​ 	

	​ 	File.open(​"songdata"​) ​do​ |song_file|

	​ 	 songs = []

	​ 	

	​ 	 song_file.each ​do​ |line|

	​ 	 file, length, name, title = line.chomp.split(/​\s​*​\|\s​*/)

	​ 	 name.squeeze!(​" "​)

	​ 	 songs << Song.new(title, name, length)

	​ 	 ​end​

	​ 	

	​ 	 puts songs[1]

	​ 	​end​

Produces:
	​ 	#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

	Finally, we have the minor matter of the time format: the file says
	2:58, and we want the number of seconds, 178. We could use
	
 ​split​
 again, this time splitting the time field around the
	colon character:

	​ 	​"2:58"​.split(/:/) ​# => ["2", "58"]​

	Instead, we’ll use a related
	method.
 ​String#scan​

	is similar to
	
 ​split​
 in that it breaks a string into chunks based on a
	pattern. However, unlike
 ​split​
 , with
 ​scan​
 you
	specify the pattern that you want the chunks to match. In this case,
	we want to match one or more digits for both the minutes and seconds
	components. The pattern for one or more digits is ​/\d+/​:

	​ 	Song = Struct.new(:title, :name, :length)

	​ 	

	​ 	File.open(​"songdata"​) ​do​ |song_file|

	​ 	 songs = []

	​ 	

	​ 	 song_file.each ​do​ |line|

	​ 	 file, length, name, title = line.chomp.split(/​\s​*​\|\s​*/)

	​ 	 name.squeeze!(​" "​)

	​ 	 mins, secs = length.scan(/​\d​+/)

	​ 	 songs << Song.new(title, name, mins.to_i*60 + secs.to_i)

	​ 	 ​end​

	​ 	

	​ 	 puts songs[1]

	​ 	​end​

Produces:
	​ 	#<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

	We could spend the next fifty pages looking at all the methods in class
	​String​. However, let’s move on instead to look at a simpler
	data type: the range.

6.3 Ranges

 Ranges occur everywhere: January to December, 0 to 9, rare to
 well done, lines 50 through 67, and so on. If Ruby is to help us
 model reality, it seems natural for it to support these ranges. In
 fact, Ruby goes one better: it actually uses ranges to implement three
 separate features: sequences, conditions, and intervals.

Ranges as Sequences

	The first and perhaps most natural use of ranges is to express
	a sequence.
	Sequences have a start point, an end point, and a way to
	produce successive values in the sequence. In Ruby, these sequences
	are created using the ​..​ and ​...​ range operators. The
	two-dot form creates an inclusive range, and the three-dot form
	creates a range that excludes the specified high value:

	​ 	1..10

	​ 	​'a'​..​'z'​

	​ 	0...​"cat"​.length

	You can convert a range to an array using the
	
 ​to_a​
 method and convert it to an ​Enumerator​ using
	
 ​to_enum​
 :[40]

	​ 	(1..10).to_a ​# => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]​

	​ 	(​'bar'​..​'bat'​).to_a ​# => ["bar", "bas", "bat"]​

	​ 	enum = (​'bar'​..​'bat'​).to_enum

	​ 	enum.next ​# => "bar"​

	​ 	enum.next ​# => "bas"​

	Ranges have methods that let you iterate over them and test their
	contents in a variety of ways:

	​ 	digits = 0..9

	​ 	digits.include?(5) ​# => true​

	​ 	digits.max ​# => 9​

	​ 	digits.reject {|i| i < 5 } ​# => [5, 6, 7, 8, 9]​

	​ 	digits.inject(:+) ​# => 45​

	So far we’ve shown ranges of numbers and strings. However, as
	you’d expect from an object-oriented language, Ruby ranges can
	be based on objects that you define. The only constraints are
	that the objects must respond to
 ​succ​
 by
	returning the next object in sequence and the objects must be
	comparable using ​<=>​. Sometimes
	called the
 ​ spaceship operator​

 ,
	​<=>​ compares two values, returning -1, 0, or +1
	depending on whether the first is less than, equal to, or
	greater than the second.

	In reality, this isn’t something you do very often, so examples tend
	to be a bit contrived. Here’s one—a class that presents numbers that
	are powers of 2. Because it defines
 ​<=>​
 and
 ​succ​
 ,
	we can use objects of this class in ranges:

	​ 	​class​ PowerOfTwo

	​ 	 attr_reader :value

	​ 	 ​def​ initialize(value)

	​ 	 @value = value

	​ 	 ​end​

	​ 	 ​def​ <=>(other)

	​ 	 @value <=> other.value

	​ 	 ​end​

	​ 	 ​def​ succ

	​ 	 PowerOfTwo.new(@value + @value)

	​ 	 ​end​

	​ 	 ​def​ to_s

	​ 	 @value.to_s

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p1 = PowerOfTwo.new(4)

	​ 	p2 = PowerOfTwo.new(32)

	​ 	

	​ 	puts (p1..p2).to_a

Produces:
	​ 	4

	​ 	8

	​ 	16

	​ 	32

Ranges as Conditions

	As well as representing sequences, ranges can also be used as
	conditional expressions. Here, they act as a kind of
	toggle switch—they turn on when the condition in the first part of
	the range becomes true, and they turn off when the condition in the second part
	becomes true.
	For example, the
	following code fragment prints sets of lines from standard input,
	where the first line in each set contains the word ​start​ and the
	last line contains the word ​end​:

	​ 	​while​ line = gets

	​ 	 puts line ​if​ line =~ /start/ .. line =~ /end/

	​ 	​end​

	Behind the scenes, the range keeps track of the state of each
	of the tests. We’ll show some examples of this in the description of loops and in the
	.language section.

Ranges as Intervals

	A final use of the versatile range is as an interval
	test: seeing
	whether some value falls within the interval represented by
	the range. We do this using ​===​, the case
	equality operator:

	​ 	(1..10) === 5 ​# => true​

	​ 	(1..10) === 15 ​# => false​

	​ 	(1..10) === 3.14159 ​# => true​

	​ 	(​'a'​..​'j'​) === ​'c'​ ​# => true​

	​ 	(​'a'​..​'j'​) === ​'z'​ ​# => false​

	This is most often used in ​case​ statements:

	​ 	car_age = gets.to_f ​# let's assume it's 9.5​

	​ 	​case​ car_age

	​ 	​when​ 0...1

	​ 	 puts ​"Mmm.. new car smell"​

	​ 	​when​ 1...3

	​ 	 puts ​"Nice and new"​

	​ 	​when​ 3...10

	​ 	 puts ​"Reliable but slightly dinged"​

	​ 	​when​ 10...30

	​ 	 puts ​"Clunker"​

	​ 	​else​

	​ 	 puts ​"Vintage gem"​

	​ 	​end​

Produces:
	​ 	Reliable but slightly dinged

	Note the use of exclusive ranges in the previous example. These are
	normally the correct choice in ​case​ statements. If instead we had
	written the following, we’d get the wrong answer because 9.5 does not
	fall within any of the ranges, so the ​else​ clause triggers:

	​ 	car_age = gets.to_f ​# let's assume it's 9.5​

	​ 	​case​ car_age

	​ 	​when​ 0..0

	​ 	 puts ​"Mmm.. new car smell"​

	​ 	​when​ 1..2

	​ 	 puts ​"Nice and new"​

	​ 	​when​ 3..9

	​ 	 puts ​"Reliable but slightly dinged"​

	​ 	​when​ 10..29

	​ 	 puts ​"Clunker"​

	​ 	​else​

	​ 	 puts ​"Vintage gem"​

	​ 	​end​

Produces:
	​ 	Vintage gem

Footnotes

	[39]	
Prior to Ruby 1.9,
 strings were sequences of 8-bit bytes.

	[40]	

	Sometimes people worry that
	ranges take a lot of memory. That’s not an issue: the range
	1..100000 is held as a ​Range​ object containing references to
	two ​Fixnum​ objects. However, convert a range into an array, and
	all that memory will get used.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 7
Regular Expressions

 We probably spend most of our time in Ruby working with strings, so it
 seems reasonable for Ruby to have some great tools for working with
 those strings. As we’ve seen, the ​String​ class itself is no
 slouch—it has more than 100 methods. But there are still things that the
 basic ​String​ class can’t do. For example, we might want to see whether a
 string contains two or more repeated characters, or we might want to
 replace every word longer than fifteen characters with its first five
 characters and an ellipsis. This is when we turn to the power of
 regular expressions.

 Now, before we get too far in, here’s a warning: there have been
 whole books written on regular expressions.[41] There is complexity and subtlety
 here that rivals that of the rest of Ruby. So if you’ve never used
 regular expressions, don’t expect to read through this whole
 chapter the first time. In fact, you’ll find two emergency exits
 in what follows. If you’re new to regular expressions, I strongly
 suggest you read through to the first and then bail out. When some
 regular expression question next comes up, come back here and
 maybe read through to the next exit. Then, later, when you’re
 feeling comfortable with regular expressions, you can give the
 whole chapter a read.

7.1 What Regular Expressions Let You Do

 A regular expression is a pattern that can be matched against a
 string. It can be a simple pattern, such as ​the string must contain
 the sequence of letters “cat”​, or the pattern can be complex, such as
 ​the string must start with a protocol identifier, followed by
 two literal forward slashes, followed by...​, and so on. This is cool
 in theory. But what makes regular expressions so powerful is what you
 can do with them in practice:

	
You can test a string to see whether it matches a pattern.

	
You can extract from a string the sections that match all or
 part of a pattern.

	
You can change the string, replacing parts that match a pattern.

 Ruby provides built-in support that makes pattern matching and
 substitution convenient and concise. In this section, we’ll work
 through the basics of regular expression patterns and see how Ruby
 supports matching and replacing based on those patterns.
 In the sections that follow, we’ll dig deeper into both the patterns
 and Ruby’s support for them.

7.2 Ruby’s Regular Expressions

 There are many ways of creating a regular expression pattern. By far
 the most common is to write it between forward slashes. Thus, the pattern
 ​/cat/​ is a regular expression literal in the same way that
 ​"cat"​ is a string literal.

 ​/cat/​ is an example of a simple, but very common,
 pattern. It
 matches any string that contains the substring ​cat​. In fact,
 inside a pattern, all characters except ., |, (,), [,], {, }, +,
 \, ^, $, *, and ? match themselves. So, at the risk of creating
 something that sounds like a logic puzzle, here are some patterns and
 examples of strings they match and don’t match:

	
​/cat/​
	
Matches ​"dog and cat"​ and ​"catch"​
	 but not ​"Cat"​ or ​"c.a.t."​

	
​/123/​
	
Matches ​"86512312"​ and ​"abc123"​
	but not ​"1.23"​

	
​/t a b/​
	
Matches ​"hit a ball"​ but not ​"table"​

 If you want to match one of the special characters literally in
 a pattern, precede it with a backslash, so ​/*/​ is a
 pattern that matches a single asterisk, and
 ​/\//​ is a pattern that matches a
 forward slash.

 Pattern literals are like double-quoted strings. In particular, you
 can use ​#{...}​ expression
 substitutions in the pattern.

Matching Strings with Patterns

	The Ruby operator ​=~​ matches a string against a pattern. It
	returns the character offset into the string at which the match
	occurred:

	​ 	/cat/ =~ ​"dog and cat"​ ​# => 8​

	​ 	/cat/ =~ ​"catch"​ ​# => 0​

	​ 	/cat/ =~ ​"Cat"​ ​# => nil​

	You can put the string first if you prefer:[42]

	​ 	​"dog and cat"​ =~ /cat/ ​# => 8​

	​ 	​"catch"​ =~ /cat/ ​# => 0​

	​ 	​"Cat"​ =~ /cat/ ​# => nil​

	Because pattern matching returns ​nil​ when
	it fails and because ​nil​ is equivalent to
	​false​ in a boolean context, you can use the result of
	a pattern match as a condition in statements such as ​if​ and
	​while​.

	​ 	str = ​"cat and dog"​

	​ 	

	​ 	​if​ str =~ /cat/

	​ 	 puts ​"There's a cat here somewhere"​

	​ 	​end​

Produces:
	​ 	There's a cat here somewhere

	The following code prints lines in
	​testfile​ that have the string ​on​ in them:

	​ 	File.foreach(​"testfile"​).with_index ​do​ |line, index|

	​ 	 puts ​"​#{index}​: ​#{line}​"​ ​if​ line =~ /on/

	​ 	​end​

Produces:
	​ 	0: This is line one

	​ 	3: And so on...

	You can test to see whether a pattern does not match a string using
	​!~​:

	​ 	File.foreach(​"testfile"​).with_index ​do​ |line, index|

	​ 	 puts ​"​#{index}​: ​#{line}​"​ ​if​ line !~ /on/

	​ 	​end​

Produces:
	​ 	1: This is line two

	​ 	2: This is line three

Changing Strings with Patterns

	The
	
 ​sub​

	method takes a pattern and some replacement
	text.[43] If it finds a
	match for the pattern in the string, it replaces the matched
	substring with the replacement text.

	​ 	str = ​"Dog and Cat"​

	​ 	new_str = str.sub(/Cat/, ​"Gerbil"​)

	​ 	puts ​"Let's go to the ​#{new_str}​ for a pint."​

Produces:
	​ 	Let's go to the Dog and Gerbil for a pint.

	The
 ​sub​
 method changes only the first
	match it finds. To replace all matches, use
	
 ​gsub​
 . (The
	​g​ stands for global.)

	​ 	str = ​"Dog and Cat"​

	​ 	new_str1 = str.sub(/a/, ​"*"​)

	​ 	new_str2 = str.gsub(/a/, ​"*"​)

	​ 	puts ​"Using sub: ​#{new_str1}​"​

	​ 	puts ​"Using gsub: ​#{new_str2}​"​

Produces:
	​ 	Using sub: Dog *nd Cat

	​ 	Using gsub: Dog *nd C*t

	Both
 ​sub​
 and
	
 ​gsub​
 return a new string. (If no
	substitutions are made, that new string will just be a copy of
	the original.)

	If you want to modify the original string, use the
	
 ​sub!​
 and
 ​gsub!​

	forms:

	​ 	str = ​"now is the time"​

	​ 	str.sub!(/i/, ​"*"​)

	​ 	str.gsub!(/t/, ​"T"​)

	​ 	puts str

Produces:
	​ 	now *s The Time

	Unlike
 ​sub​
 and
	
 ​gsub​
 ,
 ​sub!​

	and
	
 ​gsub!​
 return the string only if the pattern was matched. If
	no match for the pattern is found in the string, they return ​nil​
	instead. This means it can make sense (depending on your need) to use
	the ! forms in conditions.

	So, at this point you know how to use patterns to look for text in a
	string and how to substitute different text for those matches. And, for
	many people, that’s enough. So if you’re itching to get on to other
	Ruby topics, now is a good time to move on to the next chapter. At some
	point, you’ll likely need to do something more complex with regular
	expressions (for example, matching a time by looking for two digits, a
	colon, and two more digits). You can then come back and read the next
	section.

	Or, you can just stay right here as we dig deeper into patterns,
	matches, and replacements.

7.3 Digging Deeper

 Like most things in Ruby, regular expressions are just
 objects—they are instances of the class
 ​Regexp​. This
 means you can assign them to variables, pass them to methods,
 and so on:

	​ 	str = ​"dog and cat"​

	​ 	pattern = /nd/

	​ 	pattern =~ str ​# => 5​

	​ 	str =~ pattern ​# => 5​

 You can also create regular expression objects by calling the
 ​Regexp​ class’s
 ​new​
 method or by using the
 ​%r{...}​ syntax. The ​%r​ syntax is particularly useful
 when creating patterns that contain forward
 slashes:

	​ 	/mm​\/​dd/ ​# => /mm\/dd/​

	​ 	Regexp.new(​"mm/dd"​) ​# => /mm\/dd/​

	​ 	%r{mm/dd} ​# => /mm\/dd/​

Playing with Regular Expressions

	 If you’re like us, you’ll sometimes get confused by regular
	 expressions. You create something that ​should​
	 work, but it just doesn’t seem to match. That’s when we fall
	 back to irb. We’ll cut and paste the regular expression into
	 irb and then try to match it against strings. We’ll slowly
	 remove portions until we get it to match the target string and
	 add stuff back until it fails. At that point, we’ll know what
	 we were doing wrong.
	

Regular Expression Options

	A regular expression may include one or more options that modify the
	way the pattern matches strings. If you’re using literals to create
	the ​Regexp​ object, then the options are one or more characters placed
	immediately after the terminator. If you’re using
 ​Regexp.new​
 , the
	options are constants used as the second parameter of the constructor.

	
​i​
	
​Case insensitive​. The pattern match
	 will ignore the case of letters
	 in the pattern and string. (The old technique of setting
	 ​$=​
	 to make matches case insensitive no longer works.)

	
​o​
	
	

	 ​Substitute once​. Any ​#{...}​
	 substitutions in a particular
	 regular expression literal will be performed just once,
	 the first time it is evaluated. Otherwise, the
	 substitutions will be performed every time the literal
	 generates a ​Regexp​ object.
	

	
	
​m​
	
	

	 ​Multiline mode​. Normally, “.” matches
	 any character
	 except a newline. With the ​/m​ option, “.”
	 matches any character.
	

	
	
​x​
	
	

	 ​Extended mode​.
	 Complex regular expressions can be difficult to read. The ​x​
	 option
	 allows you to insert spaces and newlines in the pattern to
	 make it more readable. You can also use ​#​ to introduce comments.
	

	

	Another set of options allows you to set the language encoding
	of the regular expression. If none of these options is
	specified, the regular expression will have US-ASCII encoding
	if it contains only 7-bit characters. Otherwise, it will use
	the default encoding of the source file containing the
	literal: n: no encoding (ASCII), e: EUC, s: SJIS,
	and u: UTF-8.

Matching Against Patterns

	Once you have a regular expression object, you can match it
	against a string using the
	​(Regexp#match(​​string​​)​
	method or the match operators ​=~​ (positive match) and
	​!~​
	(negative match). The match operators are defined for both
	​String​ and ​Regexp​ objects. One operand of the match operator
	must be a regular expression.

	​ 	name = ​"Fats Waller"​

	​ 	name =~ /a/ ​# => 1​

	​ 	name =~ /z/ ​# => nil​

	​ 	/a/ =~ name ​# => 1​

	​ 	/a/.match(name) ​# => #<MatchData "a">​

	​ 	Regexp.new(​"all"​).match(name) ​# => #<MatchData "all">​

	The match operators return the character position at which the
	match occurred, while the
 ​match​

	method returns a
	​MatchData​
	object. In all forms, if the match fails,
	​nil​ is returned.

	After a successful match, Ruby sets a whole bunch of magic
	variables. For example,
	​$&​
	receives the part of the string that was matched by the
	pattern,
	​$‘​
	receives the part of the string that preceded the match, and
	​$’​
	receives the string after the match. However, these particular
	variables are considered to be fairly ugly, so most Ruby
	programmers instead use the ​MatchData​ object
	returned from the
 ​match​
 method, because it
	encapsulates all the information Ruby knows about the
	match. Given a ​MatchData​ object, you can call
	
 ​pre_match​
 to return the part of the string
	before the match,
 ​post_match​
 for the string
	after the match, and index using ​[0]​ to get the matched
	portion.

	We can use these to write a
	
 ​show_regexp​
 , a method that shows where a
	pattern matches:

	tut_regexp/show_match.rb
	​ 	​def​ show_regexp(string, pattern)

	​ 	 match = pattern.match(string)

	​ 	 ​if​ match

	​ 	 ​"​#{match.pre_match}​->​#{match[0]}​<-​#{match.post_match}​"​

	​ 	 ​else​

	​ 	 ​"no match"​

	​ 	 ​end​

	​ 	​end​

	We could use this method like this:

	​ 	show_regexp(​'very interesting'​, /t/) ​# => very in->t<-eresting​

	​ 	show_regexp(​'Fats Waller'​, /lle/) ​# => Fats Wa->lle<-r​

	​ 	show_regexp(​'Fats Waller'​, /z/) ​# => no match​

Deeper Patterns

	We said earlier that, within a pattern, all characters match
	themselves except . | () [] { } + \
	^ $ * and ?. Let’s dig a bit deeper into this.

	First, always remember that you need to escape any of these characters
	with a backslash if you want them to be treated as regular characters
	to match:

	​ 	show_regexp(​'yes | no'​, /​\|​/) ​# => yes ->|<- no​

	​ 	show_regexp(​'yes (no)'​, /​\(​no​\)​/) ​# => yes ->(no)<-​

	​ 	show_regexp(​'are you sure?'​, /e​\?​/) ​# => are you sur->e?<-​

	Now let’s see what some of these characters mean if you use them
	without escaping them.

Anchors

	By default, a regular expression will try to find the first match for
	the pattern in a string. Match ​/iss/​ against the string
	“Mississippi,” and it will find the substring “iss” starting at
	position 1 (the second character in the string). But what if you
	want to force a pattern to match only at the start or end of a string?

	The patterns ​^​
	and ​$​ match the beginning and end of a
	line, respectively. These are often used to
 ​ anchor​

 a pattern
	match; for example, ​/^option/​ matches the word ​option​ only
	if it appears at the start of a line. Similarly, the sequence ​\A​ matches
	the beginning of a string, and ​\z​ and ​\Z​ match the
	end of a string. (Actually, ​\Z​ matches the end of a string
	​unless​ the string ends with ​\n​, in which case it
	matches just before the ​\n​.)

	​ 	str = ​"this is\nthe time"​

	​ 	show_regexp(str, /^the/) ​# => this is\n->the<- time​

	​ 	show_regexp(str, /is$/) ​# => this ->is<-\nthe time​

	​ 	show_regexp(str, /​\A​this/) ​# => ->this<- is\nthe time​

	​ 	show_regexp(str, /​\A​the/) ​# => no match​

	Similarly, the patterns ​\b​ and ​\B​ match word boundaries
	and nonword boundaries, respectively. Word characters are ASCII letters,
	numbers, and underscores:

	​ 	show_regexp(​"this is\nthe time"​, /​\b​is/) ​# => this ->is<-\nthe time​

	​ 	show_regexp(​"this is\nthe time"​, /​\B​is/) ​# => th->is<- is\nthe time​

Character Classes

	A
 ​ character class​

 is a set of characters between brackets:
	​[​​characters​​]​ matches any single
	character between the brackets, so ​[aeiou]​ matches a
	vowel, ​[,.:;!?]​ matches some punctuation, and so
	on. The significance of the special regular expression
	characters—​.|(){+^$*?​—is turned off inside the
	brackets. However, normal string substitution still occurs, so
	(for example) ​\b​ represents a backspace character,
	and ​\n​ represents a newline (see Table 11, ​Substitutions in double-quoted strings​). In addition, you can use the
	abbreviations shown in Table 2, ​Character class abbreviations​, so
	that ​\s​ matches any whitespace character, not just a
	literal space:

	​ 	show_regexp(​'Price $12.'​, /[aeiou]/) ​# => Pr->i<-ce $12.​

	​ 	show_regexp(​'Price $12.'​, /[​\s​]/) ​# => Price-> <-$12.​

	​ 	show_regexp(​'Price $12.'​, /[$.]/) ​# => Price ->$<-12.​

	Within the brackets, the sequence c1-c2
	represents all the characters from c1 to c2 in
	the current encoding:

	​ 	a = ​'see [The PickAxe-page 123]'​

	​ 	show_regexp(a, /[A-F]/) ​# => see [The Pick->A<-xe-page 123]​

	​ 	show_regexp(a, /[A-Fa-f]/) ​# => s->e<-e [The PickAxe-page 123]​

	​ 	show_regexp(a, /[0-9]/) ​# => see [The PickAxe-page ->1<-23]​

	​ 	show_regexp(a, /[0-9][0-9]/) ​# => see [The PickAxe-page ->12<-3]​

	You can negate a character class by putting an up arrow
	(​^​, sometimes called a ​caret​)
	immediately after the opening bracket:

	​ 	show_regexp(​'Price $12.'​, /[^A-Z]/) ​# => P->r<-ice $12.​

	​ 	show_regexp(​'Price $12.'​, /[^​\w​]/) ​# => Price-> <-$12.​

	​ 	show_regexp(​'Price $12.'​, /[a-z][^a-z]/) ​# => Pric->e <-$12.​

	Some character classes are used so frequently that Ruby
	provides abbreviations for them. These abbreviations are
	listed in Table 2, ​Character class abbreviations​—they may be used
	both within brackets and in the body of a pattern.

	​ 	show_regexp(​'It costs $12.'​, /​\s​/) ​# => It-> <-costs $12.​

	​ 	show_regexp(​'It costs $12.'​, /​\d​/) ​# => It costs $->1<-2.​

 If you look at the table, you’ll see that some of the
 character classes have different interpretations depending on
 the character set option defined for the regular
 expression. Basically, these options tell the regexp engine
 whether (for example) word characters are just the ASCII
 alphanumerics, or whether they should be extended to include
 Unicode letters, marks, numbers, and connection
 punctuation. The options are set using the sequence
 ​(?​option​)​, where the option is one
 of ​d​ (for Ruby 1.9 behavior), ​a​ for
 ASCII-only support, and ​u​ for full Unicode
 support. If you don’t specify an option, it defaults to
 ​(?d)​.«2.0»

	​ 	show_regexp(​'über.'​, /(?a)​\w​+/) ​# => ü->ber<-.​

	​ 	show_regexp(​'über.'​, /(?d)​\w​+/) ​# => ü->ber<-.​

	​ 	show_regexp(​'über.'​, /(?u)​\w​+/) ​# => ->über<-.​

	​ 	

	​ 	show_regexp(​'über.'​, /(?d)​\W​+/) ​# => ->ü<-ber.​

	​ 	show_regexp(​'über.'​, /(?u)​\W​+/) ​# => über->.<-​

	The POSIX character
	classes, as shown in Table 3, ​Posix character classes​,
	correspond to the ctype(3) macros of the same
	names. They can also be negated by putting an up arrow (or caret) after the first colon:

	​ 	show_regexp(​'Price $12.'​, /[aeiou]/) ​# => Pr->i<-ce $12.​

	​ 	show_regexp(​'Price $12.'​, /[[:digit:]]/) ​# => Price $->1<-2.​

	​ 	show_regexp(​'Price $12.'​, /[[:space:]]/) ​# => Price-> <-$12.​

	​ 	show_regexp(​'Price $12.'​, /[[:^alpha:]]/) ​# => Price-> <-$12.​

	​ 	show_regexp(​'Price $12.'​, /[[:punct:]aeiou]/) ​# => Pr->i<-ce $12.​

	If you want to include the literal characters ​]​ and ​-​ in
	a character class, escape them with \:

	​ 	a = ​'see [The PickAxe-page 123]'​

	​ 	show_regexp(a, /[​\]​]/) ​# => see [The PickAxe-page 123->]<-​

	​ 	show_regexp(a, /[0-9​\]​]/) ​# => see [The PickAxe-page ->1<-23]​

	​ 	show_regexp(a, /[​\d\-​]/) ​# => see [The PickAxe->-<-page 123]​

	You can create the intersection of
	character classes using ​&&​. So, to match all
	lowercase ASCII letters that aren’t vowels, you could use
	this:

	​ 	str = ​"now is the time"​

	​ 	str.gsub(/[a-z&&[^aeiou]]/, ​'*'​) ​# => "*o* i* **e *i*e"​

	The ​\p​ construct gives you an encoding-aware way of
	matching a character with a particular Unicode property (shown
	in Table 4, ​Unicode character properties​):

	​ 	​# encoding: utf-8​

	​ 	string = ​"∂y/∂x = 2πx"​

	​ 	show_regexp(string, /​\p​{Alnum}/) ​# => ∂->y<-/∂x = 2πx​

	​ 	show_regexp(string, /​\p​{Digit}/) ​# => ∂y/∂x = ->2<-πx​

	​ 	show_regexp(string, /​\p​{Space}/) ​# => ∂y/∂x-> <-= 2πx​

	​ 	show_regexp(string, /​\p​{Greek}/) ​# => ∂y/∂x = 2->π<-x​

	​ 	show_regexp(string, /​\p​{Graph}/) ​# => ->∂<-y/∂x = 2πx​

	Finally, a period (.) appearing outside brackets represents any
	character except a newline (though in multiline mode it matches a newline,
	too):

	​ 	a = ​'It costs $12.'​

	​ 	show_regexp(a, /c.s/) ​# => It ->cos<-ts $12.​

	​ 	show_regexp(a, /./) ​# => ->I<-t costs $12.​

	​ 	show_regexp(a, /​\.​/) ​# => It costs $12->.<-​

Table 2. Character class abbreviations

 For some of these classes, the meaning depends on the character set
 mode selected for the pattern. In these cases, the dfferent options
 are shown like this:

 ​(?a)​, ​(?d)​ → ​[a-zA-Z0-9_]​

 ​(?u)​ → ​Letter, Mark, Number, Connector_Punctuation​

 In this case, the first line applies to ASCII and default modes, and
 the second to unicode. In the second part of each line, the
 ​[…]​ is a conventional character class. Words in italic are
 Unicode character classes.

	
Sequence
	

 Logical intent

 Characters matched

	
​\d​
	

 Decimal digit

 ​(?a)​, ​(?d)​ → ​[0-9]​

 ​(?u)​ → ​Decimal_Number​

	
​\D​
	Any character except a decimal digit
	
​\h​
	

 Hexadecimal digit character

 ​[0-9a-fA-F]​

	
​\H​
	
Any character except a hex digit

	
​\R​
	
A generic linebreak sequence. May match the two characters ​\r\n​.«2.0»

	
​\s​
	

 Whitespace

 ​(?a), (?d)​ → [␣\t\r\n\f]
 ​(?a)​, ​(?d)​ → ​[0-9]​

 ​(?u)​ →
 ​[\t\n\r\x{000B}\x{000C}\x{0085}]​ plus ​Line_Separator, Paragraph_Separator, Space_Separator​

	
​\S​
	
Any character except whitespace

	
​\w​
	

 A “word” character (really, a programming language identifier)

 ​(?a)​, ​(?d)​ → ​[a-zA-Z0-9_]​

 ​(?u)​ → ​Letter, Mark, Number ,Connector_Punctuation​

	
​\W​
	
Any character except a word character

	
​\X​
	

 An extended Unicode grapheme (two or more characters that combine to form a single visual character).«2.0»

Repetition

	When we specified the pattern that split the song list line,
	​/\s*\|\s*/​, we said we wanted to match a vertical
	bar surrounded by an arbitrary amount of whitespace. We now
	know that the ​\s​ sequences match a single whitespace
	character and ​\|​ means a literal vertical bar, so
	it seems likely that the asterisks somehow mean “an
	arbitrary amount.” In fact, the asterisk is one of a number
	of modifiers that allow you to match multiple occurrences of
	a pattern.

	If ​r​ stands for the immediately preceding regular expression
	within a pattern, then

	
​r​​*​
	
Matches zero or more occurrences of ​r​

	
​r​​+​
	
Matches one or more occurrences of ​r​

	
​r​​?​
	
Matches zero or one occurrence of ​r​

	
​r​​{m,n}​
	
Matches at least m and at most n occurrences of ​r​

	
​r​​{m,}​
	
Matches at least m occurrences of ​r​

	
​r​​{,n}​
	
Matches at most n occurrences of ​r​

	
​r​​{m}​
	
Matches exactly m occurrences of ​r​

	These repetition constructs have a high precedence—they
	bind only to the immediately preceding matching construct in
	the pattern. ​/ab+/​ matches an ​a​
	followed by one or more ​b​’s, not a sequence of
	​ab​’s.

	These patterns are called
	
 ​ greedy​

 ,
	because by default they will
	match as much of the string as they can. You can alter this
	behavior and have them match the minimum by adding a question mark
	suffix. The repetition is then called
 ​ lazy​

 —it stops once it
	has done the minimum amount of work required.

	​ 	a = ​"The moon is made of cheese"​

	​ 	show_regexp(a, /​\w​+/) ​# => ->The<- moon is made of cheese​

	​ 	show_regexp(a, /​\s​.*​\s​/) ​# => The-> moon is made of <-cheese​

	​ 	show_regexp(a, /​\s​.*?​\s​/) ​# => The-> moon <-is made of cheese​

	​ 	show_regexp(a, /[aeiou]{2,99}/) ​# => The m->oo<-n is made of cheese​

	​ 	show_regexp(a, /mo?o/) ​# => The ->moo<-n is made of cheese​

	​ 	​# here's the lazy version​

	​ 	show_regexp(a, /mo??o/) ​# => The ->mo<-on is made of cheese​

	(There’s an additional modifier, ​+​, that makes them greedy and
	also stops backtracking, but that will have to wait until the advanced
	section of the chapter.)

	Be very careful when using the ​*​ modifier. It matches
	zero or more occurrences. We often forget
	about the zero part. In particular, a pattern that contains
	just a ​*​ repetition will always match, whatever
	string you pass it. For example, the pattern ​/a*/​
	will always match, because every string contains zero or more
	a’s.

	​ 	a = ​"The moon is made of cheese"​

	​ 	​# both of these match an empty substring at the start of the string​

	​ 	show_regexp(a, /m*/) ​# => -><-The moon is made of cheese​

	​ 	show_regexp(a, /Z*/) ​# => -><-The moon is made of cheese​

Alternation

	We know that the vertical bar is special, because our line-splitting
	pattern had to escape it with a backslash. That’s because an unescaped
	vertical bar, as in ​|​, matches either the construct that precedes it or
	the construct that follows it:

	​ 	a = ​"red ball blue sky"​

	​ 	show_regexp(a, /d|e/) ​# => r->e<-d ball blue sky​

	​ 	show_regexp(a, /al|lu/) ​# => red b->al<-l blue sky​

	​ 	show_regexp(a, /red ball|angry sky/) ​# => ->red ball<- blue sky​

	There’s a trap for the unwary here, because ​|​ has a
	very low precedence. The last example in the previous lines
	matches ​red ball​ or ​angry sky​, not
	​red ball sky​ or ​red angry sky​. To
	match ​red ball sky​ or ​red angry sky​, you’d need to
	override the default precedence using grouping.

Grouping

	You can use parentheses to group terms within a regular
	expression. Everything within the group is treated as a single regular
	expression.

	​ 	​# This matches an 'a' followed by one or more 'n's​

	​ 	show_regexp(​'banana'​, /an+/) ​# => b->an<-ana​

	​ 	​# This matches the sequence 'an' one or more times​

	​ 	show_regexp(​'banana'​, /(an)+/) ​# => b->anan<-a​

	​ 	a = ​'red ball blue sky'​

	​ 	show_regexp(a, /blue|red/) ​# => ->red<- ball blue sky​

	​ 	show_regexp(a, /(blue|red) ​\w​+/) ​# => ->red ball<- blue sky​

	​ 	show_regexp(a, /(red|blue) ​\w​+/) ​# => ->red ball<- blue sky​

	​ 	show_regexp(a, /red|blue ​\w​+/) ​# => ->red<- ball blue sky​

	​ 	show_regexp(a, /red (ball|angry) sky/) ​# => no match​

	​ 	a = ​'the red angry sky'​

	​ 	show_regexp(a, /red (ball|angry) sky/) ​# => the ->red angry sky<-​

	Parentheses also collect the results of pattern
	matching. Ruby
	counts opening parentheses and for each stores the result of
	the partial match between it and the corresponding closing
	parenthesis. You can use this partial match both within the
	rest of the pattern and in your Ruby program. Within the
	pattern, the sequence ​\1​ refers to the match of the
	first group, ​\2​ the second group, and so on. Outside
	the pattern, the special variables ​$1​, ​$2​,
	and so on, serve the same purpose.

	​ 	/(​\d\d​):(​\d\d​)(..)/ =~ ​"12:50am"​ ​# => 0​

	​ 	​"Hour is ​#$1​, minute ​#$2​"​ ​# => "Hour is 12, minute 50"​

	​ 	/((​\d\d​):(​\d\d​))(..)/ =~ ​"12:50am"​ ​# => 0​

	​ 	​"Time is ​#$1​"​ ​# => "Time is 12:50"​

	​ 	​"Hour is ​#$2​, minute ​#$3​"​ ​# => "Hour is 12, minute 50"​

	​ 	​"AM/PM is ​#$4​"​ ​# => "AM/PM is am"​

	If you’re using the
	​MatchData​
	object returned by the
	
 ​match​
 method, you can index into it to get the corresponding
	subpatterns:

	​ 	md = /(​\d\d​):(​\d\d​)(..)/.match(​"12:50am"​)

	​ 	​"Hour is ​#{md[1]}​, minute ​#{md[2]}​"​ ​# => "Hour is 12, minute 50"​

	​ 	md = /((​\d\d​):(​\d\d​))(..)/.match(​"12:50am"​)

	​ 	​"Time is ​#{md[1]}​"​ ​# => "Time is 12:50"​

	​ 	​"Hour is ​#{md[2]}​, minute ​#{md[3]}​"​ ​# => "Hour is 12, minute 50"​

	​ 	​"AM/PM is ​#{md[4]}​"​ ​# => "AM/PM is am"​

	The ability to use part of the current match later in that match
	allows you to look for various forms of repetition:

	​ 	​# match duplicated letter​

	​ 	show_regexp(​'He said "Hello"'​, /(​\w​)​\1​/) ​# => He said "He->ll<-o"​

	​ 	​# match duplicated substrings​

	​ 	show_regexp(​'Mississippi'​, /(​\w​+)​\1​/) ​# => M->ississ<-ippi​

	Rather than use numbers, you can also use names to refer to
	previously matched content. You give a group a name by placing
	​?<​name​>​ immediately after the
	opening parenthesis. You can subsequently refer to this named
	group using ​\k<​name​>​ (or
	​\k’​name​’​).

	​ 	​# match duplicated letter​

	​ 	str = ​'He said "Hello"'​

	​ 	show_regexp(str, /(?<char>​\w​)​\k​<char>/) ​# => He said "He->ll<-o"​

	​ 	

	​ 	​# match duplicated adjacent substrings​

	​ 	str = ​'Mississippi'​

	​ 	show_regexp(str, /(?<seq>​\w​+)​\k​<seq>/) ​# => M->ississ<-ippi​

	The named matches in a regular expression are also available
	as local variables, but only if you use a literal regexp and
	that literal appears on the left hand side of the ​=~​
	operator. (So you can’t assign a regular expression object to
	a variable, match the contents of that variable against a
	string, and expect the local variables to be set.)

	​ 	/(?<hour>​\d\d​):(?<min>​\d\d​)(..)/ =~ ​"12:50am"​ ​# => 0​

	​ 	​"Hour is ​#{hour}​, minute ​#{min}​"​ ​# => "Hour is 12, minute 50"​

	​ 	

	​ 	​# You can mix named and position-based references​

	​ 	​"Hour is ​#{hour}​, minute ​#{$2}​"​ ​# => "Hour is 12, minute 50"​

	​ 	​"Hour is ​#{$1}​, minute ​#{min}​"​ ​# => "Hour is 12, minute 50"​

Pattern-Based Substitution

	We’ve already seen how
 ​sub​
 and
	
 ​gsub​
 replace the
	matched part of a string with other text. In those previous examples,
	the pattern was always fixed text, but the substitution methods work
	equally well if the pattern contains repetition, alternation, and grouping.

	​ 	a = ​"quick brown fox"​

	​ 	a.sub(/[aeiou]/, ​'*'​) ​# => "q*ick brown fox"​

	​ 	a.gsub(/[aeiou]/, ​'*'​) ​# => "q**ck br*wn f*x"​

	​ 	a.sub(/​\s\S​+/, ​''​) ​# => "quick fox"​

	​ 	a.gsub(/​\s\S​+/, ​''​) ​# => "quick"​

	The substitution methods can take a string or a block. If a block is
	used, it is passed the matching substring, and the block’s value is
	substituted into the original string.

	​ 	a = ​"quick brown fox"​

	​ 	a.sub(/^./) {|match| match.upcase } ​# => "Quick brown fox"​

	​ 	a.gsub(/[aeiou]/) {|vowel| vowel.upcase } ​# => "qUIck brOwn fOx"​

	Maybe we want to normalize names entered by users into a web
	application. They may enter DAVE THOMAS, dave thomas, or dAvE
	tHoMas, and we’d like to store it as Dave Thomas. The
	following method is a simple first iteration. The pattern
	that matches the first character of a word is
	​\b\w​—look for a word boundary followed by a word
	character. Combine this with
 ​gsub​
 ,
	and we can hack the names:

	​ 	​def​ mixed_case(name)

	​ 	 name.downcase.gsub(/​\b\w​/) {|first| first.upcase }

	​ 	​end​

	​ 	mixed_case(​"DAVE THOMAS"​) ​# => "Dave Thomas"​

	​ 	mixed_case(​"dave thomas"​) ​# => "Dave Thomas"​

	​ 	mixed_case(​"dAvE tHoMas"​) ​# => "Dave Thomas"​

	There’s an idiomatic way to write the substitution in Ruby
	1.9, but we’ll have to wait until ​The Symbol.to_proc Trick​ to see why
	it works:

	​ 	​def​ mixed_case(name)

	​ 	 name.downcase.gsub(/​\b\w​/, &:upcase)

	​ 	​end​

	​ 	

	​ 	mixed_case(​"dAvE tHoMas"​) ​# => "Dave Thomas"​

	You can also give
 ​sub​
 and
 ​gsub​
 a hash as the
	replacement parameter, in which case they will look up matched groups
	and use the corresponding values as replacement text:

	​ 	replacement = { ​"cat"​ => ​"feline"​, ​"dog"​ => ​"canine"​ }

	​ 	replacement.default = ​"unknown"​

	​ 	

	​ 	​"cat and dog"​.gsub(/​\w​+/, replacement) ​# => "feline unknown canine"​

Backslash Sequences in the Substitution

	Earlier we noted that the sequences ​\1​,
	​\2​, and so on, are available in the pattern,
	standing for the ​n​th group matched so far. The
	same sequences can be used in the second argument of
	
 ​sub​
 and
	
 ​gsub​
 .

	​ 	puts ​"fred:smith"​.sub(/(​\w​+):(​\w​+)/, ​'\2, \1'​)

	​ 	puts ​"nercpyitno"​.gsub(/(.)(.)/, ​'\2\1'​)

Produces:
	​ 	smith, fred

	​ 	encryption

	You can also reference named groups:

	​ 	puts ​"fred:smith"​.sub(/(?<first>​\w​+):(?<last>​\w​+)/, ​'\k<last>, \k<first>'​)

	​ 	puts ​"nercpyitno"​.gsub(/(?<c1>.)(?<c2>.)/, ​'\k<c2>\k<c1>'​)

Produces:
	​ 	smith, fred

	​ 	encryption

	Additional backslash sequences work in substitution strings:
	​\&​ (last match), ​\+​ (last matched
	group), ​\‘​ (string prior to match), ​\’​
	(string after match), and ​\\​ (a literal
	backslash).

	It gets confusing if you want to include a literal backslash in a
	substitution. The obvious thing to write is
	​str.gsub(/\\/, ’\\\\’)​.

	Clearly, this code is trying to replace each backslash in ​str​
	with two. The programmer doubled up the backslashes in the replacement
	text, knowing that they’d be converted to ​\\​ in syntax
	analysis. However, when the substitution occurs, the regular
	expression engine performs another pass through the string, converting
	​\\​ to ​\​, so the net effect is to replace
	each single backslash with another single backslash. You need to write
	​gsub(/\\/, ’\\\\\\\\\’​)!

	​ 	str = ​'a\b\c'​ ​# => "a\b\c"​

	​ 	str.gsub(/​\\​/, ​'\\\\\\\\'​) ​# => "a\\b\\c"​

	However, using the fact that ​\&​ is replaced by the matched
	string, you could also write this:

	​ 	str = ​'a\b\c'​ ​# => "a\b\c"​

	​ 	str.gsub(/​\\​/, ​'\&\&'​) ​# => "a\\b\\c"​

	If you use the block form of
 ​gsub​
 , the string
	for substitution is analyzed only once (during the syntax pass), and
	the result is what you intended:

	​ 	str = ​'a\b\c'​ ​# => "a\b\c"​

	​ 	str.gsub(/​\\​/) { ​'\\\\'​ } ​# => "a\\b\\c"​

	At the start of this chapter, we said that it contained two emergency
	exits. The first was after we discussed basic matching and
	substitution. This is the second: you now know as much about regular
	expressions as the vast majority of Ruby developers. Feel free to
	break away and move on to the next chapter. But if you’re feeling
	brave....

7.4 Advanced Regular Expressions

 You may never need the information in the rest of this chapter. But,
 at the same time, knowing some of the real power in the Ruby regular
 expression implementation might just dig you out of a hole.

Regular Expression Extensions

	Ruby uses the Onigmo«2.0»[44] regular expression
	library. This offers a large number of extensions over
	traditional Unix regular expressions. Most of these extensions
	are written between the characters ​(?​ and
	​)​. The parentheses that bracket these extensions are
	groups, but they do not necessarily generate
	backreferences—some do not set the values of ​\1​,
	​$1​, and so on.

	The sequence ​(?# ​comment​)​
	inserts a comment into the pattern. The content is ignored during
	pattern matching. As we’ll see, commenting complex regular expressions
	can be as helpful as commenting complex code.

	​(?:​re​)​ makes ​re​ into a group without generating
	backreferences. This is
	often useful when you need to group a set of constructs but don’t want
	the group to set the value of ​$1​ or whatever. In the example
	that follows, both patterns match a date with either colons or slashes
	between the month, day, and year. The first form stores the separator
	character (which can be a slash or a colon) in ​$2​ and
	​$4​, but the second pattern doesn’t store the separator in an
	external variable.

	​ 	date = ​"12/25/2010"​

	​ 	

	​ 	date =~ %r{(​\d​+)(/|:)(​\d​+)(/|:)(​\d​+)}

	​ 	[$1,$2,$3,$4,$5] ​# => ["12", "/", "25", "/", "2010"]​

	​ 	

	​ 	date =~ %r{(​\d​+)(?:/|:)(​\d​+)(?:/|:)(​\d​+)}

	​ 	[$1,$2,$3] ​# => ["12", "25", "2010"]​

Lookahead and Lookbehind

	 You’ll sometimes want to match a pattern only if the matched
	 substring is preceded by or followed by some other
	 pattern. That is, you want to set some context for your
	 match but don’t want to capture that context as part of the
	 match.
	

	 For example, you might want to match every word in a string
	 that is followed by a comma, but you don’t want the comma to
	 form part of the match. Here you could use the charmingly
	 named
 ​ zero-width positive lookahead​

	 extension. ​(?=​re​)​ matches
	 ​re​ at this point but does not consume it—you
	 can look forward for the context of a match without
	 affecting ​$&​. In this example,
	 we’ll use
 ​scan​
 to pick out the
	 words:
	
	​ 	str = ​"red, white, and blue"​

	​ 	str.scan(/[a-z]+(?=,)/) ​# => ["red", "white"]​

	 You can also match before the pattern using ​(?<=​re​)​
	 (
 ​ zero-width positive lookbehind​

). This
	 lets you look for characters that precede the context of a match
	 without affecting ​$&​. The following example matches the
	 letters ​dog​ but only if they are preceded by the letters
	 ​hot​:
	
	​ 	show_regexp(​"seadog hotdog"​, /(?<=hot)dog/) ​# => seadog hot->dog<-​

	 For the lookbehind extension, ​re​ either must be a
	 fixed length or consist of a set of fixed-length
	 alternatives. That is, ​(?<=aa)​ and
	 ​(?<=aa|bbb)​ are valid, but ​(?<=a+b)​ is not.
	

	 Both forms have negated versions, ​(?!​re​)​ and
	 ​(?<!​re​)​, which are true if the context is
	 not present in the target string.
	

 The ​\K​
 sequence is related to backtracking. If included in a
 pattern, it doesn’t affect the matching process. However,
 when Ruby comes to store the entire matched string in
 ​$&​ or ​\&​, it only stores the text to the
 right of the ​\K​.«2.0»

	​ 	show_regexp(​"thx1138"​, /[a-z]+​\K\d​+/) ​# => thx->1138<-​

Controlling Backtracking

	Say you’re given the problem of searching a string for a
	sequence of ​X​s not followed by an
	​O​. You know that a string of ​X​s can
	be represented as ​X+​, and you can use a lookahead to
	check that it isn’t followed by an ​O​, so you code up
	the pattern ​/(X+)(?!O)/​. Let’s try it:

	​ 	re = /(X+)(?!O)/

	​ 	

	​ 	​# This one works​

	​ 	re =~ ​"test XXXY"​ ​# => 5​

	​ 	$1 ​# => "XXX"​

	​ 	

	​ 	​# But, unfortunately, so does this one​

	​ 	re =~ ​"test XXXO"​ ​# => 5​

	​ 	$1 ​# => "XX"​

	Why did the second match succeed? Well, the regular expression
	engine saw the ​X+​ in the pattern and happily gobbled
	up all the ​X​s in the string. It then saw the
	pattern ​(?!O)​, saying that it should not now be
	looking at an ​O​. Unfortunately, it is looking at
	an ​O​, so the match doesn’t succeed. But the
	engine doesn’t give up. No sir! Instead it says, “Maybe I was
	wrong to consume every single ​X​ in the
	string. Let’s try consuming one less and see what happens.”
	This is called ​backtracking​—when a match fails,
	the engine goes back and tries to match a different way. In
	this case, by backtracking past a single character, it now
	finds itself looking at the last ​X​ in the string
	(the one before the final ​O​). And that
	​X​ is not an ​O​, so the negative
	lookahead succeeds, and the pattern matches. Look carefully at
	the output of the previous program: there are three
	​X​s in the first match but only two in the second.

	But this wasn’t the intent of our regexp. Once it finds a
	sequence of ​X​s, those ​X​s should be
	locked away. We don’t want one of them being the terminator of
	the pattern. We can get that behavior by telling Ruby not to
	backtrack once it finds a string of ​X​s. There are a
	couple of ways of doing this.

	The sequence ​(?>​re​)​ nests an independent regular
	expression within the first regular
	expression.
	This expression is anchored at the current match position. If it
	consumes characters, these will no longer be available to the
	higher-level regular expression. This construct therefore inhibits
	backtracking.

	Let’s try it with our previous code:

	​ 	re = /((?>X+))(?!O)/

	​ 	

	​ 	​# This one works​

	​ 	re =~ ​"test XXXY"​ ​# => 5​

	​ 	$1 ​# => "XXX"​

	​ 	

	​ 	​# Now this doesn't match​

	​ 	re =~ ​"test XXXO"​ ​# => nil​

	​ 	$1 ​# => nil​

	​ 	

	​ 	​# And this finds the second string of Xs​

	​ 	re =~ ​"test XXXO XXXXY"​ ​# => 10​

	​ 	$1 ​# => "XXXX"​

	You can also control backtracking by using a third form of
	repetition. We’re already seen greedy repetition, such as
	​​re​+​, and lazy repetition,
	​​re​+?​. The third form is called
	
 ​ possessive​

 . You code it using a plus sign after the
	repetition character. It behaves just like greedy repetition,
	consuming as much of the string as it can. But once consumed,
	that part of the string can never be reexamined by the
	pattern—the regular expression engine can’t backtrack past a
	possessive qualifier. This means we could also write our code
	as this:

	​ 	re = /(X++)(?!O)/

	​ 	

	​ 	re =~ ​"test XXXY"​ ​# => 5​

	​ 	$1 ​# => "XXX"​

	​ 	

	​ 	re =~ ​"test XXXO"​ ​# => nil​

	​ 	$1 ​# => nil​

	​ 	

	​ 	re =~ ​"test XXXO XXXXY"​ ​# => 10​

	​ 	$1 ​# => "XXXX"​

Backreferences and Named Matches

	Within a pattern, the sequences ​\n​ (where
	​n​ is a number), ​\k’n’​, and
	​\k<n>​ all refer to the nth captured subpattern. Thus, the
	expression ​/(...)\1/​ matches six characters with the first
	three characters being the same as the last three.

	Rather than refer to matches by their number, you can give them names
	and then refer to those names. A subpattern is named using either of
	the syntaxes ​(?<name>...)​ or ​(?’name’...)​. You then refer to
	these named captures using either ​\k<name>​ or ​\k’name’​.

	For example, the following shows different ways of matching a time
	range (in the form hh:mm-hh:mm) where the hour part is the same:

	​ 	same = ​"12:15-12:45"​

	​ 	differ = ​"12:45-13:15"​

	​ 	

	​ 	​# use numbered backreference​

	​ 	same =~ /(​\d\d​):​\d\d​-​\1​:​\d\d​/ ​# => 0​

	​ 	differ =~ /(​\d\d​):​\d\d​-​\1​:​\d\d​/ ​# => nil​

	​ 	

	​ 	​# use named backreference​

	​ 	same =~ /(?<hour>​\d\d​):​\d\d​-​\k​<hour>:​\d\d​/ ​# => 0​

	​ 	differ =~ /(?<hour>​\d\d​):​\d\d​-​\k​<hour>:​\d\d​/ ​# => nil​

	Negative backreference numbers count backward from the place
	they’re used, so they are relative, not absolute, numbers. The
	following pattern matches four-letter
	palindromes (words that read the same forward and
	backward).

	​ 	​"abab"​ =~ /(.)(.)​\k​<-1>​\k​<-2>/ ​# => nil​

	​ 	​"abba"​ =~ /(.)(.)​\k​<-1>​\k​<-2>/ ​# => 0​

	You can invoke a named subpattern using
	​\g<name>​ or ​\g<number>​. Note
	that this reexecutes the match in the subpattern,
	in contrast to ​\k<name>​, which matches whatever is matched by
	the subpattern:

	​ 	re = /(?<color>red|green|blue) ​\w​+ ​\g​<color> ​\w​+/

	​ 	

	​ 	re =~ ​"red sun blue moon"​ ​# => 0​

	​ 	re =~ ​"red sun white moon"​ ​# => nil​

	You can use ​\g​ recursively, invoking a pattern within itself.
	The following code matches a string in which braces are
	properly nested:

	​ 	re = /

	​ 	 ​\A​

	​ 	 (?<brace_expression>

	​ 	 {

	​ 	 (

	​ 	 [^{}] # anything other than braces

	​ 	 | # ...or...

	​ 	 ​\g​<brace_expression> # a nested brace expression

	​)*

	​ 	 }

	​)

	​ 	 ​\Z​

	​ 	/x

	We use the ​x​ option to allow us to write the expression with lots
	of space, which makes it easier to understand. We also indent it, just
	as we would indent Ruby code. And we can also use Ruby-style comments to
	document the tricky stuff. You can read this regular expression as follows: a
	brace expression is an open brace, then a sequence of zero or more
	characters or brace expressions, and then a closing brace.

Nested Groups

	 The ability to invoke subpatterns recursively means that
	 backreferences can get tricky. Ruby solves this by letting you
	 refer to a named or numbered group at a particular level of the
	 recursion—add a ​+n​ or ​-n​ for a
	 capture at the given level relative to the current level.
	

	 Here’s an example from the Oniguruma cheat sheet. It matches
	 palindromes:
	
	​ 	/​\A​(?<a>|.|(?:(?.)​\g​<a>​\k​<b+0>))​\z​/

	 That’s pretty hard to read, so let’s spread it out:
	
	tut_regexp/palindrome_re.rb
	​ 	palindrome_matcher = /

	​ 	​\A​

	​ 	 (?<palindrome>

	​ 	 # nothing, or

	​ 	 | ​\w​ # a single character, or

	​ 	 | (?: # x <palindrome> x

	​ 	 (?<some_letter>​\w​)

	​ 	 ​\g​<palindrome>

	​ 	 ​\k​<some_letter+0>

	​)

	​)

	​ 	​\z​

	​ 	/x

	​ 	palindrome_matcher.match ​"madam"​ ​# => madam​

	​ 	palindrome_matcher.match ​"m"​ ​# => m​

	​ 	palindrome_matcher.match ​"adam"​ ​# =>​

	 A palindrome is an empty string, a string containing a single
	 character, or a character followed by a palindrome, followed by that
	 same character. The notation ​\k<some_letter+0>​ means that the
	 letter matched at the end of the inner palindrome will be the same
	 letter that was at the start of it. Inside the nesting, however, a
	 different letter may wrap the interior palindrome.
	
Conditional Groups

 Just because it’s all been so easy so far, Onigmo
 adds a new twist to regular expressions—conditional
 subexpressions.«2.0»

 Say you were validating a list of banquet attendees:

	​ 	Mr Jones and Sally

	​ 	Mr Bond and Ms Moneypenny

	​ 	Samson and Delilah

	​ 	Dr Jekyll and himself

	​ 	Ms Hinky Smith and Ms Jones

	​ 	Dr Wood and Mrs Wood

	​ 	Thelma and Louise

 The rule is that if the first person in the list has a
 title, then so should the second. This means that the first
 and fourth lines in this list are invalid.

 We can start with a pattern to match a line with an optional
 title and a name. We know we’ve reached the end of the name when we find
 the word ​and​ with spaces around it.

	​ 	re = %r{ (?:(Mrs | Mr | Ms | Dr)​\s​)? (.*?) ​\s​ and ​\s​ }x

	​ 	​"Mr Bond and Ms Monneypenny"​ =~ re ​# => 0​

	​ 	[$1, $2] ​# => ["Mr", "Bond"]​

	​ 	​"Samson and Delilah"​ =~ re ​# => 0​

	​ 	[$1, $2] ​# => [nil, "Samson"]​

 We’ve defined the regexp with the ​x​ (extended)
 option so we can include whitespace. We also used the
 ​?:​ modifier on the group that defines the optional
 title followed by a space. This stops that group getting
 captured into ​$1​. We do however capture just the
 title part.

 So now we need to match the second name. We can start with
 the same code as for the first.

	​ 	re = %r{

	​ 	 (?:(Mrs | Mr | Ms | Dr)​\s​)? (.*?)

	​ 	 ​\s​ and ​\s​

	​ 	 (?:(Mrs | Mr | Ms | Dr)​\s​)? (.+)

	​ 	}x

	​ 	​"Mr Bond and Ms Monneypenny"​ =~ re ​# => 0​

	​ 	[$1, $2, $3, $4] ​# => ["Mr", "Bond", "Ms", "Monneypenny"]​

	​ 	​"Samson and Delilah"​ =~ re ​# => 0​

	​ 	[$1, $2, $3, $4] ​# => [nil, "Samson", nil, "Delilah"]​

 Before we go any further, let’s clean up the duplication
 using a named group:

	​ 	re = %r{

	​ 	 (?:(?<title>Mrs | Mr | Ms | Dr)​\s​)? (.*?)

	​ 	 ​\s​ and ​\s​

	​ 	 (​\g​<title>​\s​)? (.+)

	​ 	}x

	​ 	re.match(​"Mr Bond and Ms Monneypenny"​) ​# => #<MatchData "Mr Bond and Ms​

	​ 	 ​# .. Monneypenny" title:"Ms">​

	​ 	re.match(​"Samson and Delilah"​) ​# => #<MatchData "Samson and Delilah"​

	​ 	 ​# .. title:nil>​

 But this code also matches a line where the first name has a
 title and the second doesn’t:

	​ 	re = %r{

	​ 	 (?:(?<title>Mrs | Mr | Ms | Dr)​\s​)? (.*?)

	​ 	 ​\s​ and ​\s​

	​ 	 (​\g​<title>​\s​)? (.+)

	​ 	}x

	​ 	re.match(​"Mr Smith and Sally"​) ​# => #<MatchData "Mr Smith and Sally" title:"Mr">​

 We need to make the second test for a title mandatory if the
 first test matches. That’s where the conditional
 subpatterns come in.

 The syntax ​(?(n)subpattern)​ will apply the
 subpattern match only if a previous group number
 ​n​ also matched. You can also test named
 groups using the syntaxes ​(?(<name>)subpattern)​
 or ​(?(’name’)subpattern)​.

 In our case, we want to apply a test for the second title if
 the first title is present. That first title is matched by
 the group named ​title​, so the condition group looks like
 ​(?<title>…)​:

	​ 	re = %r{

	​ 	 (?:(?<title>Mrs | Mr | Ms | Dr)​\s​)? (.*?)

	​ 	 ​\s​ and ​\s​

	​ 	 (?(<title>)​\g​<title>​\s​) (.+)

	​ 	}x

	​ 	re.match(​"Mr Smith and Sally"​) ​# => #<MatchData "Mr Smith and Sally" title:nil>​

 This didn’t work—the match succeeded when we expected it to
 fail. That’s because the regular expression applied
 ​backtracking​. It matched the optional first name, the
 ​and​, and then was told to match a second title
 (because group 1 matched the first). There’s no second
 title, so the match failed. But rather than stopping,
 the engine went back to explore alternatives.

 It noticed that the first title was optional, and so it
 tried matching the whole pattern again, this time skipping
 the title. It successfully matched ​Mr Smith​
 using the ​(.*?)​ group, and matched
 ​Sally​ with the second name group. So we want to
 tell it never to backtrack over the first name—once it has
 found a title there, it has to use it. ​(?>…)​ to the
 rescue:

	​ 	re = %r{

	​ 	 ^(?>

	​ 	 (?:(?<title>Mrs | Mr | Ms | Dr)​\s​)? (.*?)

	​ 	 ​\s​ and ​\s​

	​)

	​ 	 (?(<title>)​\g​<title>​\s​) (.+)

	​ 	}x

	​ 	re.match(​"Mr Smith and Sally"​) ​# => nil​

	​ 	re.match(​"Mr Smith and Ms Sally"​) ​# => #<MatchData "Mr Smith and Ms Sally"​

	​ 	 ​# .. title:"Ms">​

 The match failed, as we expected, but when we add a title to
 Sally, it succeeds.

 Let’s try this on our list:

	​ 	DATA.each ​do​ |line|

	​ 	 re = %r{ ^(?>

	​ 	 (?:(?<title>Mrs | Mr | Ms | Dr)​\s​)? (.*?) ​\s​ and ​\s​

	​)

	​ 	 (?(<title>)​\g​<title>​\s​) (.+)

	​ 	 }x

	​ 	 ​if​ line =~ re

	​ 	 print ​"VALID: "​

	​ 	 ​else​

	​ 	 print ​"INVALID: "​

	​ 	 ​end​

	​ 	 puts line

	​ 	​end​

	​ 	​__END__​

	​ 	​Mr Jones and Sally​

	​ 	​Mr Bond and Ms Moneypenny​

	​ 	​Samson and Delilah​

	​ 	​Dr Jekyll and himself​

	​ 	​Ms Hinky Smith and Ms Jones​

	​ 	​Dr Wood and Mrs Wood​

	​ 	​Thelma and Louise​

Produces:
	​ 	INVALID: Mr Jones and Sally

	​ 	VALID: Mr Bond and Ms Moneypenny

	​ 	VALID: Samson and Delilah

	​ 	INVALID: Dr Jekyll and himself

	​ 	VALID: Ms Hinky Smith and Ms Jones

	​ 	VALID: Dr Wood and Mrs Wood

	​ 	VALID: Thelma and Louise

Alternatives in Conditions

 Being British, I have a national duty to emulate my
 compatriates on informercials and shout “But Wait! There’s
 More!” Conditional subpatterns can also have an
 ​else​ clause.

	​ 	(?(group_id) true-pattern | fail-pattern)

 If the identified group was previously matched, the true
 pattern is applied. If it failed, the fail pattern is
 applied.

 Here’s a regular expression that deals with red or blue
 balls or buckets. The deal is that the colors of the ball
 and bucket must be different.

	​ 	re = %r{(?:(red)|blue) ball and (?(1)blue|red) bucket}

	​ 	

	​ 	re.match(​"red ball and blue bucket"​) ​# => #<MatchData "red ball and blue bucket"​

	​ 	 ​# .. 1:"red">​

	​ 	re.match(​"blue ball and red bucket"​) ​# => #<MatchData "blue ball and red bucket"​

	​ 	 ​# .. 1:nil>​

	​ 	re.match(​"blue ball and blue bucket"​) ​# => nil​

 If the first group, the red alternative, matched, then the
 conditional subpattern is blue, otherwise it is
 red.

Named Subroutines

	There’s a trick that allows us to write subroutines inside
	regular expressions. Recall that we can invoke a named group
	using ​\g<name>​, and we define the group using
	​(?<name>...)​. Normally, the definition of the group is
	itself matched as part of executing the pattern. However, if
	you add the suffix ​{0}​ to the group, it means “zero
	matches of this group,” so the group is not executed when
	first encountered:

	​ 	sentence = %r{

	​ 	 (?<subject> cat | dog | gerbil){0}

	​ 	 (?<verb> eats | drinks| generates){0}

	​ 	 (?<object> water | bones | PDFs){0}

	​ 	 (?<adjective> big | small | smelly){0}

	​ 	 (?<opt_adj> (​\g​<adjective>​\s​)?){0}

	​ 	

	​ 	 The​\s\g​<opt_adj>​\g​<subject>​\s\g​<verb>​\s\g​<opt_adj>​\g​<object>

	​ 	}x

	​ 	

	​ 	md = sentence.match(​"The cat drinks water"​)

	​ 	puts ​"The subject is ​#{md[:subject]}​ and the verb is ​#{md[:verb]}​"​

	​ 	

	​ 	md = sentence.match(​"The big dog eats smelly bones"​)

	​ 	puts ​"The last adjective in the second sentence is ​#{md[:adjective]}​"​

	​ 	

	​ 	sentence =~ ​"The gerbil generates big PDFs"​

	​ 	puts ​"And the object in the last sentence is ​#{$~[:object]}​"​

Produces:
	​ 	The subject is cat and the verb is drinks

	​ 	The last adjective in the second sentence is smelly

	​ 	And the object in the last sentence is PDFs

Setting Options

 We saw earlier that you can control the characters
 matched by ​\b​, ​\d​, ​\s​, and
 ​\w​ (along with their negations). To do that, we
 embedded a sequence such as ​(?u)​ in our pattern. That
 sequence sets an option inside the regular expression
 engine.«2.0»

	We also saw at the start of this chapter that you can add one or
	more of the options ​i​ (case insensitive), ​m​
	(multiline), and ​x​ (allow spaces) to the end of a
	regular expression literal. You can also set these options
	within the pattern itself. As you’d expect, they are set
 using ​(?i)​, ​(?m)​, and ​(?x)​. You can
 also put a minus sign in front of these three options to
 disable them.

	
​(?adimux)​
	
	

	 Turns on the corresponding option. If used inside a
	 group, the effect is limited to that group.
	

	
	
​(?-imx)​
	
	

	 Turns off the ​i​, ​m​, or ​x​ option.
	

	
	
​(?adimux:​re​)​
	
	

	 Turns on the option
	 for ​re​.
	

	
	
​(?-imx:​re​)​
	
	

	 Turns off the option for ​re​.
	

	

7.5 \z

 So, that’s it. If you’ve made it this far, consider yourself a
 regular expression ninja. Get out there and match some strings.

Table 3. Posix character classes
	

	

POSIX Character Classes (Unicode)

	

	

	Text in parentheses indicates the Unicode classes. These apply if
	the regular expression’s encoding is one of the Unicode encodings.

	
​[:alnum:]​
	
Alphanumeric (​Letter | Mark | Decimal_Number​)

	
​[:alpha:]​
	
Uppercase or lowercase letter (​Letter | Mark​)

	
​[:ascii:]​
	
7-bit character including nonprinting

	
​[:blank:]​
	
Blank and tab (+ ​Space_Separator​)

	
​[:cntrl:]​
	

	Control characters—at least 0x00--0x1f, 0x7f (​Control
	| Format | Unassigned | Private_Use | Surrogate​)

	
​[:digit:]​
	
Digit (​Decimal_Number​)

	
​[:graph:]​
	
Printable character excluding space (Unicode also excludes ​Control, Unassigned,​ and ​Surrogate​)

	
​[:lower:]​
	
Lowercase letter (​Lowercase_Letter​)

	
​[:print:]​
	
Any printable character (including space)

	
​[:punct:]​
	
Printable character excluding space and
 alphanumeric (​Connector_Punctuation | Dash_Punctuation
 | Close_Punctuation | Final_Punctuation | Initial_Punctuation |
 Other_Punctuation | Open_Punctuation​)

	
​[:space:]​
	
Whitespace (same as ​\s​)

	
​[:upper:]​
	
Uppercase letter (​Uppercase_Letter​)

	
​[:xdigit:]​
	
Hex digit (0--9, a--f, A--F)

	
​[:word:]​
	
Alphanumeric, underscore, and multibyte (​Letter | Mark | Decimal_Number | Connector_Punctuation​)

Table 4. Unicode character properties
	
Character Properties

	
​\p{​name​}​
	
Matches character with named property

	
​\p{^​name​}​
	
Matches any character except named property

	
​\P{​name​}​
	
Matches any character except named property

	
Property names.

	
Spaces, underscores, and
 case are ignored in property names.

	

	All encodings

 	

	Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower,
	Print, Punct, Space, Upper, XDigit, Word, ASCII

	

	EUC and SJIS

 	

	Hiragana, Katakana

	

	UTF-n

 	

	Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, Ll, Lm, Lo, Lt, Lu,
	M, Mc, Me, Mn, N, Nd, Nl, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps,
	S, Sc, Sk, Sm, So, Z, Zl, Zp, Zs,
	Arabic, Armenian, Bengali, Bopomofo, Braille, Buginese,
	Buhid, Canadian_Aboriginal, Cherokee, Common, Coptic,
	Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian,
	Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul,
	Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana,
	Kharoshthi, Khmer, Lao, Latin, Limbu, Linear_B, Malayalam,
	Mongolian, Myanmar, New_Tai_Lue, Ogham, Old_Italic, Old_Persian,
	Oriya, Osmanya, Runic, Shavian, Sinhala, Syloti_Nagri, Syriac,
	Tagalog, Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan,
	Tifinagh, Ugaritic, Yi

Footnotes

	[41]	
Such as
 Mastering Regular Expressions:
 Powerful Techniques for Perl and Other
 Tools [Fri97]

	[42]	
Some folks say
	this is inefficient, because the string will end up calling the regular
	expression code to do the match. These folks are correct in theory
	but wrong in practice.

	[43]	
Actually, it does more than that, but we
	won’t get to that for a while.

	[44]	

 Onigmo is an extension of the Oniguruma regular expression engine.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 8
More About Methods

 So far in this book, we’ve been defining and using methods without
 much thought. Now it’s time to get into the details.

8.1 Defining a Method

 As we’ve seen, a method is defined using the keyword
 ​def​.
 Method names should begin with a lowercase letter or
 underscore,[45] followed by letters,
 digits, and underscores.

 A method name may end with one of ​?​, ​!​, or ​=​. Methods
 that return a boolean result (so-called predicate methods) are
 often named with a trailing ​?​:

	​ 	1.even? ​# => false​

	​ 	2.even? ​# => true​

	​ 	1.instance_of?(Fixnum) ​# => true​

 Methods that are “dangerous,” or that modify their receiver,
 may be named with a trailing exclamation mark, ​!​.
 These are sometimes called
 ​ bang
 methods​

 . For instance, class
 ​String​ provides both

 ​chop​
 and
 ​chop!​

 methods. The first returns a modified string; the second
 modifies the receiver in place.

 Methods that can appear on the left side of an assignment (a
 feature we discussed back in
 the chapter on classes) end with an equal sign
 (​=​).

 ​?​, ​!​, and ​=​ are the only “weird” characters allowed
 as method name suffixes.

 Now that we’ve specified a name for our new method, we may need
 to declare some parameters.
 These are simply a list of local variable names in parentheses.
 (The parentheses around a method’s arguments are optional; our
 convention is to use them when a method has arguments and omit
 them when it doesn’t.)

	​ 	​def​ my_new_method(arg1, arg2, arg3) ​# 3 arguments​

	​ 	 ​# Code for the method would go here​

	​ 	​end​

	​ 	

	​ 	

	​ 	

	​ 	​def​ my_other_new_method ​# No arguments​

	​ 	 ​# Code for the method would go here​

	​ 	​end​

 Ruby lets you specify default values for a method’s
 arguments—values that will be used if the caller doesn’t pass
 them explicitly. You do this using an equal sign (​=​)
 followed by a Ruby expression. That expression can include
 references to previous arguments in the list:

	​ 	​def​ cool_dude(arg1=​"Miles"​, arg2=​"Coltrane"​, arg3=​"Roach"​)

	​ 	 ​"​#{arg1}​, ​#{arg2}​, ​#{arg3}​."​

	​ 	​end​

	​ 	

	​ 	cool_dude ​# => "Miles, Coltrane, Roach."​

	​ 	cool_dude(​"Bart"​) ​# => "Bart, Coltrane, Roach."​

	​ 	cool_dude(​"Bart"​, ​"Elwood"​) ​# => "Bart, Elwood, Roach."​

	​ 	cool_dude(​"Bart"​, ​"Elwood"​, ​"Linus"​) ​# => "Bart, Elwood, Linus."​

 Here’s an example where the default argument references a previous argument:

	​ 	​def​ surround(word, pad_width=word.length/2)

	​ 	 ​"["​ * pad_width + word + ​"]"​ * pad_width

	​ 	​end​

	​ 	

	​ 	surround(​"elephant"​) ​# => "[[[[elephant]]]]"​

	​ 	surround(​"fox"​) ​# => "[fox]"​

	​ 	surround(​"fox"​, 10) ​# => "[[[[[[[[[[fox]]]]]]]]]]"​

 The body of a method contains normal Ruby
 expressions.
 The return value of a method is the value
 of the last expression executed or the argument of an explicit
 ​return​ expression.

Variable-Length Argument Lists

	But what if you want to pass in a variable number of arguments or want
	to capture multiple arguments into a single parameter? Placing an
	asterisk before the name of the parameter after the “normal”
	parameters lets you do just that. This is sometimes called
	
 ​ splatting an argument​

 (presumably because the asterisk looks
	somewhat like a bug after hitting the windscreen of a fast-moving
	car).

	​ 	​def​ varargs(arg1, *rest)

	​ 	 ​"arg1=​#{arg1}​. rest=​#{rest.inspect}​"​

	​ 	​end​

	​ 	

	​ 	varargs(​"one"​) ​# => arg1=one. rest=[]​

	​ 	varargs(​"one"​, ​"two"​) ​# => arg1=one. rest=["two"]​

	​ 	varargs ​"one"​, ​"two"​, ​"three"​ ​# => arg1=one. rest=["two", "three"]​

	In this example, the first argument is assigned to the first method
	parameter as usual. However, the next parameter is prefixed with an
	asterisk, so all the remaining arguments are bundled into a new
	​Array​, which is then assigned to that parameter.

	Folks sometimes use a splat to specify arguments that are not used by
	the method but that are perhaps used by the corresponding method in a
	superclass. (Note that in this example we call
 ​super​
 with no
	parameters. This is a special case that means “invoke this method in
	the superclass, passing it all the parameters that were given to the
	original method.”)

	​ 	​class​ Child < Parent

	​ 	 ​def​ do_something(*not_used)

	​ 	 ​# our processing​

	​ 	 ​super​

	​ 	 ​end​

	​ 	​end​

	In this case, you can also leave off the name of the parameter
	and just write an asterisk:

	​ 	​class​ Child < Parent

	​ 	 ​def​ do_something(*)

	​ 	 ​# our processing​

	​ 	 ​super​

	​ 	 ​end​

	​ 	​end​

	You can put the splat argument
	anywhere in a method’s parameter list, allowing you to write
	this:

	​ 	​def​ split_apart(first, *splat, last)

	​ 	 puts ​"First: ​#{first.inspect}​, splat: ​#{splat.inspect}​, "​ +

	​ 	 ​"last: ​#{last.inspect}​"​

	​ 	​end​

	​ 	

	​ 	split_apart(1,2)

	​ 	split_apart(1,2,3)

	​ 	split_apart(1,2,3,4)

Produces:
	​ 	First: 1, splat: [], last: 2

	​ 	First: 1, splat: [2], last: 3

	​ 	First: 1, splat: [2, 3], last: 4

	If you cared only about the first and last parameters, you
	could define this method using this:

	​ 	​def​ split_apart(first, *, last)

	You can have only one splat argument in a method—if you had two, it
	would be ambiguous. You also can’t put arguments with default values
	after the splat argument. In all cases, the splat argument receives
	the values left over after assigning to the regular arguments.

Methods and Blocks

	As we discussed in the section
	on blocks and iterators, when a method is called it
	may be associated with a block. Normally, you call the block
	from within the method using
	​yield​:

	​ 	​def​ double(p1)

	​ 	 ​yield​(p1*2)

	​ 	​end​

	​ 	

	​ 	double(3) {|val| ​"I got ​#{val}​"​ } ​# => "I got 6"​

	​ 	double(​"tom"​) {|val| ​"Then I got ​#{val}​"​ } ​# => "Then I got tomtom"​

	However, if the last parameter in a method definition is
	prefixed with an ampersand, any associated block is converted
	to a ​Proc​
	object, and that object is assigned to the
	parameter. This allows you to store the block for
	use later.

	​ 	​class​ TaxCalculator

	​ 	 ​def​ initialize(name, &block)

	​ 	 @name, @block = name, block

	​ 	 ​end​

	​ 	 ​def​ get_tax(amount)

	​ 	 ​"​#@name​ on ​#{amount}​ = ​#{ @block.call(amount) }​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	tc = TaxCalculator.new(​"Sales tax"​) {|amt| amt * 0.075 }

	​ 	

	​ 	tc.get_tax(100) ​# => "Sales tax on 100 = 7.5"​

	​ 	tc.get_tax(250) ​# => "Sales tax on 250 = 18.75"​

8.2 Calling a Method

 You call a method by optionally specifying a receiver, giving
 the name of the method, and optionally passing some parameters
 and an optional block.
 Here’s a code fragment that shows us calling a method with a
 receiver, a parameter, and a block:

	​ 	connection.download_mp3(​"jitterbug"​) {|p| show_progress(p) }

 In this example, the object ​connection​ is the receiver,

 ​download_mp3​
 is the name of the method,
 the string ​"jitterbug"​ is the parameter, and the stuff
 between the braces is the associated block. During this method
 call, Ruby first sets
 ​self​
 to the receiver and then invokes the method in that object. For
 class and module methods, the receiver will be the class or
 module name.

	​ 	File.size(​"testfile"​) ​# => 66​

	​ 	Math.sin(Math::PI/4) ​# => 0.7071067811865475​

 If you omit the receiver, it defaults to ​self​, the current
 object.

	​ 	​class​ InvoiceWriter

	​ 	 ​def​ initialize(order)

	​ 	 @order = order

	​ 	 ​end​

	​ 	 ​def​ write_on(output)

	​ 	 write_header_on(output) ​# called on current object.​

	​ 	 write_body_on(output) ​# self is not changed, as​

	​ 	 write_totals_on(output) ​# there is no receiver​

	​ 	 ​end​

	​ 	 ​def​ write_header_on(output)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	 ​def​ write_body_on(output)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	 ​def​ write_totals_on(output)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

 This defaulting mechanism is how Ruby implements private
 methods. Private methods may ​not​ be called with a
 receiver, so they must be methods available in the current
 object. In the previous example,
 we’d probably want to make the helper methods private, because
 they shouldn’t be called from outside the
 ​InvoiceWriter​ class:

	​ 	​class​ InvoiceWriter

	​ 	 ​def​ initialize(order)

	​ 	 @order = order

	​ 	 ​end​

	​ 	 ​def​ write_on(output)

	​ 	 write_header_on(output)

	​ 	 write_body_on(output)

	​ 	 write_totals_on(output)

	​ 	 ​end​

	​ 	

	​ 	private

	​ 	

	​ 	 ​def​ write_header_on(output)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	 ​def​ write_body_on(output)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	 ​def​ write_totals_on(output)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

Passing Parameters to a Method

	Any parameters follow the method name. If no ambiguity
	exists, you can omit the parentheses around the argument list
	when calling a method.[46] However, except in the
	simplest cases we don’t recommend this—some subtle problems
	can trip you up.[47] Our rule is simple: if you
	have any doubt, use parentheses.

	​ 	​# for some suitable value in obj:​

	​ 	a = obj.hash ​# Same as​

	​ 	a = obj.hash() ​# this.​

	​ 	

	​ 	obj.some_method ​"Arg1"​, arg2, arg3 ​# Same thing as​

	​ 	obj.some_method(​"Arg1"​, arg2, arg3) ​# with parentheses.​

	Older Ruby
	versions compounded the problem by allowing you to put spaces between
	the method name and the opening parenthesis. This made it hard to parse: is
	the parenthesis the start of the parameters or the start of an expression?
	As of Ruby 1.8, you get a warning if you put a space between a method
	name and an open parenthesis.

Method Return Values

	Every method you call
	returns a value (although there’s no rule that says you have
	to use that value). The value of a method is the value of the
	last statement executed by the method:

	​ 	​def​ meth_one

	​ 	 ​"one"​

	​ 	​end​

	​ 	meth_one ​# => "one"​

	​ 	

	​ 	​def​ meth_two(arg)

	​ 	 ​case​

	​ 	 ​when​ arg > 0 ​then​ ​"positive"​

	​ 	 ​when​ arg < 0 ​then​ ​"negative"​

	​ 	 ​else​ ​"zero"​

	​ 	 ​end​

	​ 	​end​

	​ 	meth_two(23) ​# => "positive"​

	​ 	meth_two(0) ​# => "zero"​

	Ruby has a ​return​ statement, which exits from the currently
	executing method. The value of a ​return​ is the value of its
	argument(s). It is idiomatic Ruby to omit the ​return​ if it isn’t
	needed, as shown by the previous two examples.

	This next example uses ​return​ to exit from
	a loop inside the method:

	​ 	​def​ meth_three

	​ 	 100.times ​do​ |num|

	​ 	 square = num*num

	​ 	 ​return​ num, square ​if​ square > 1000

	​ 	 ​end​

	​ 	​end​

	​ 	meth_three ​# => [32, 1024]​

	As the last case illustrates, if you give ​return​ multiple
	parameters, the method returns them in an array. You can use parallel
	assignment to collect this return value:

	​ 	num, square = meth_three

	​ 	num ​# => 32​

	​ 	square ​# => 1024​

Splat! Expanding Collections in Method Calls

	 We’ve seen that if you prefix the name of a parameter with
	 an asterisk, multiple arguments in the call to the method
	 will be passed as an array. Well, the same thing works in
	 reverse.
	

	 When you call a method, you can convert any collection
	 or enumerable object into its constituent
	 elements and pass those elements as individual parameters to
	 the method. Do this by prefixing array arguments with an
	 asterisk:
	
	​ 	​def​ five(a, b, c, d, e)

	​ 	 ​"I was passed ​#{a}​ ​#{b}​ ​#{c}​ ​#{d}​ ​#{e}​"​

	​ 	​end​

	​ 	

	​ 	five(1, 2, 3, 4, 5) ​# => "I was passed 1 2 3 4 5"​

	​ 	five(1, 2, 3, *[​'a'​, ​'b'​]) ​# => "I was passed 1 2 3 a b"​

	​ 	five(*[​'a'​, ​'b'​], 1, 2, 3) ​# => "I was passed a b 1 2 3"​

	​ 	five(*(10..14)) ​# => "I was passed 10 11 12 13 14"​

	​ 	five(*[1,2], 3, *(4..5)) ​# => "I was passed 1 2 3 4 5"​

	 As of Ruby 1.9, splat arguments can appear anywhere in the parameter
	 list, and you can intermix splat and regular arguments.
	
Making Blocks More Dynamic

	 We’ve already seen how to associate a block with a method call:
	
	​ 	collection.each ​do​ |member|

	​ 	 ​# ...​

	​ 	​end​

	 Normally, this is perfectly good enough—you associate a fixed block
	 of code with a method in the same way you’d have a chunk of code
	 after an ​if​ or ​while​ statement.
 But sometimes you’d like to be more flexible. Maybe we’re
	 teaching math skills. The student could ask for an
	 ​n​-plus table or an ​n​-times table.
	 If the student asked for a 2-times table, we’d output 2, 4,
	 6, 8, and so on. (This code does not check its inputs for
	 errors.)
	
	​ 	print ​"(t)imes or (p)lus: "​

	​ 	operator = gets

	​ 	print ​"number: "​

	​ 	number = Integer(gets)

	​ 	

	​ 	​if​ operator =~ /^t/

	​ 	 puts((1..10).collect {|n| n*number }.join(​", "​))

	​ 	​else​

	​ 	 puts((1..10).collect {|n| n+number }.join(​", "​))

	​ 	​end​

Produces:
	​ 	(t)imes or (p)lus: t

	​ 	number: 2

	​ 	2, 4, 6, 8, 10, 12, 14, 16, 18, 20

	 This works, but it’s ugly, with virtually identical code on
	 each branch of the ​if​ statement. It would
	 be nice if we could factor out the block that does the
	 calculation:
	
	​ 	print ​"(t)imes or (p)lus: "​

	​ 	operator = gets

	​ 	print ​"number: "​

	​ 	number = Integer(gets)

	​ 	​if​ operator =~ /^t/

	​ 	 calc = lambda {|n| n*number }

	​ 	​else​

	​ 	 calc = lambda {|n| n+number }

	​ 	​end​

	​ 	puts((1..10).collect(&calc).join(​", "​))

Produces:
	​ 	(t)imes or (p)lus: t

	​ 	number: 2

	​ 	2, 4, 6, 8, 10, 12, 14, 16, 18, 20

	 If the last argument to a method is preceded by an
	 ampersand, Ruby assumes that it is a
	 ​Proc​ object. It removes it from the
	 parameter list, converts the ​Proc​
	 object into a block, and associates it with the method.
	
Hash and Keyword Arguments

 People commonly use
	 hashes as a way of passing optional named arguments to a
	 method. For example, we could consider adding a search
	 facility to an MP3 playlist:
	
	​ 	​class​ SongList

	​ 	 ​def​ search(field, params)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	list = SongList.new

	​ 	list.search(:titles, { genre: ​"jazz"​, duration_less_than: 270 })

	 The first parameter tells the search what to return. The second
	 parameter is a hash literal of search parameters. (Note how we
	 used symbols as the keys for this options hash. This has become
	 idiomatic in Ruby libraries and frameworks.) The use of a hash means
	 we can simulate keywords: look for songs with a genre of “jazz” and
	 a duration less than 4.5 minutes.
	

	 However, this approach is slightly clunky, and that set of
	 braces could easily be mistaken for a block associated with
	 the method. So, Ruby has a shortcut. You can place
	 ​key => value​
	 pairs in an argument list, as long as they follow any normal
	 arguments and precede any splat and block arguments. All
	 these pairs will be collected into a single hash and passed
	 as one argument to the method. No braces are
	 needed.
	
	​ 	list.search(:titles, genre: ​"jazz"​, duration_less_than: 270)

Keyword Argument Lists

 Let’s look inside our ​search​ method. It
 gets passed a field name and an options hash. Maybe we want
 to default the duration to 120 seconds, and validate that
 no invalid options are passed. Pre Ruby 2.0, the code
 would look something like:«2.0»

	​ 	​def​ search(field, options)

	​ 	 options = { duration: 120 }.merge(options)

	​ 	 ​if​ options.has_key?(:duration)

	​ 	 duration = options[:duration]

	​ 	 options.delete(:duration)

	​ 	 ​end​

	​ 	 ​if​ options.has_key?(:genre)

	​ 	 genre = options[:genre]

	​ 	 options.delete(:genre)

	​ 	 ​end​

	​ 	 fail ​"Invalid options: ​#{options.keys.join(​', '​)}​"​ ​unless​ options.empty?

	​ 	 ​# rest of method​

	​ 	​end​

 Do this enough times, and you end up writting a helper function to
 validate and extract hash parameters to methods.

 Ruby 2 to the rescue. You can now define keyword arguments to
 your methods. You still pass in the hash, but Ruby now matches the
 hash contents to your keyword argument list. It also validates
 that you don’t pass in any unknown arguments.

	​ 	​def​ search(field, genre: nil, duration: 120)

	​ 	 p [field, genre, duration]

	​ 	​end​

	​ 	

	​ 	search(:title)

	​ 	search(:title, duration: 432)

	​ 	search(:title, duration: 432, genre: ​"jazz"​)

Produces:
	​ 	[:title, nil, 120]

	​ 	[:title, nil, 432]

	​ 	[:title, "jazz", 432]

 Pass in an invalid option, and Ruby complains:

	​ 	​def​ search(field, genre: nil, duration: 120)

	​ 	 p [field, genre, duration]

	​ 	​end​

	​ 	

	​ 	search(:title, duraton: 432)

Produces:
	​ 	prog.rb:5:in `<main>': unknown keyword: duraton (ArgumentError)

 You can collect these extra hash arguments as a hash
 parameter—just prefix one element of your
 argument list with two asterisks (a ​double
 splat​).

	​ 	​def​ search(field, genre: nil, duration: 120, **rest)

	​ 	 p [field, genre, duration, rest]

	​ 	​end​

	​ 	

	​ 	search(:title, duration: 432, stars: 3, genre: ​"jazz"​, tempo: ​"slow"​)

Produces:
	​ 	[:title, "jazz", 432, {:stars=>3, :tempo=>"slow"}]

 And, just to prove that all we’re passing in is a hash,
 here’s the same calling sequence:

	​ 	​def​ search(field, genre: nil, duration: 120, **rest)

	​ 	 p [field, genre, duration, rest]

	​ 	​end​

	​ 	

	​ 	options = { duration: 432, stars: 3, genre: ​"jazz"​, tempo: ​"slow"​ }

	​ 	search(:title, options)

Produces:
	​ 	[:title, "jazz", 432, {:stars=>3, :tempo=>"slow"}]

 A well-written Ruby program will typically contain many methods, each
 quite small, so it’s worth getting familiar with the options available
 when defining and using them. At some point you’ll probably
 want to read ​Method Arguments​ to see exactly how arguments in a
 method call get mapped to the method’s formal parameters when you have
 combinations of default parameters and splat parameters.

Footnotes

	[45]	
You won’t get an immediate error if you
 start a method name with an uppercase letter, but when Ruby sees
 you calling the method, it might guess that it is a constant,
 not a method invocation, and as a result it may parse the call
 incorrectly. By convention, methods names starting with an
 uppercase letter are used for type conversion. The

 ​Integer​
 method, for example, converts
 its parameter to an integer.

	[46]	
Other Ruby documentation
	sometimes calls these method calls without parentheses
	
 ​ commands​

 .

	[47]	
In particular, you
	​must​ use parentheses on a method call that is
	itself a parameter to another method call (unless it is the
	last parameter).

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 9
Expressions

 So far, we’ve been fairly cavalier in our use of expressions in
 Ruby. After all, ​a = b + c​ is pretty standard stuff.
 You could write a whole heap of Ruby code without reading any of
 this chapter.

 But it wouldn’t be as much fun ​;-)​.

 One of the first differences with Ruby is that anything that can
 reasonably return a value does: just about everything is an
 expression. What does this mean in practice?

 Some obvious things include the ability to chain statements
 together:

	​ 	a = b = c = 0 ​# => 0​

	​ 	[3, 1, 7, 0].sort.reverse ​# => [7, 3, 1, 0]​

 Perhaps less obvious, things that are normally statements in C
 or Java are expressions in Ruby. For example, the ​if​ and
 ​case​ statements both return the value of the last expression
 executed:

	​ 	 song_type = ​if​ song.mp3_type == MP3::Jazz

	​ 	 ​if​ song.written < Date.new(1935, 1, 1)

	​ 	 Song::TradJazz

	​ 	 ​else​

	​ 	 Song::Jazz

	​ 	 ​end​

	​ 	 ​else​

	​ 	 Song::Other

	​ 	 ​end​

	​ 	

	​ 	rating = ​case​ votes_cast

	​ 	 ​when​ 0...10 ​then​ Rating::SkipThisOne

	​ 	 ​when​ 10...50 ​then​ Rating::CouldDoBetter

	​ 	 ​else​ Rating::Rave

	​ 	 ​end​

 We’ll talk more about ​if​ and ​case​
 later.

9.1 Operator Expressions

 Ruby has the basic set of operators (+, -, *, /, and so on) as
 well as a few surprises. A complete list of the operators, and
 their precedences, is given in
 Table 13, ​Ruby operators (high to low precedence)​.

 In Ruby, many operators are implemented as method
 calls. For example, when you write ​a*b+c​, you’re
 actually asking the object referenced by
 ​a​ to execute the method ​*​,
 passing in the parameter ​b​. You
 then ask the object that results from that calculation to
 execute the ​+​ method, passing
 ​c​ as a parameter. This is
 the same as writing the following (perfectly valid) Ruby:

	​ 	a, b, c = 1, 2, 3

	​ 	a * b + c ​# => 5​

	​ 	(a.*(b)).+(c) ​# => 5​

 Because everything is an object and because you can redefine
 instance methods, you can always redefine basic arithmetic if
 you don’t like the answers you’re getting:

	​ 	​class​ Fixnum

	​ 	 ​alias​ old_plus + ​# We can reference the original '+' as 'old_plus'​

	​ 	

	​ 	 ​def​ +(other) ​# Redefine addition of Fixnums. This is a BAD IDEA!​

	​ 	 old_plus(other).succ

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	1 + 2 ​# => 4​

	​ 	a = 3

	​ 	a += 4 ​# => 8​

	​ 	a + a + a ​# => 26​

 More useful is that classes you write can participate in
 operator expressions just as if they were built-in
 objects. For example, the left shift operator,
 ​<<​, is often used to mean ​append to
 receiver​. Arrays support this:

	​ 	a = [1, 2, 3]

	​ 	a << 4 ​# => [1, 2, 3, 4]​

 You can add similar support to your classes:

	​ 	​class​ ScoreKeeper

	​ 	 ​def​ initialize

	​ 	 @total_score = @count = 0

	​ 	 ​end​

	​ 	 ​def​ <<(score)

	​ 	 @total_score += score

	​ 	 @count += 1

	​ 	 self

	​ 	 ​end​

	​ 	 ​def​ average

	​ 	 fail ​"No scores"​ ​if​ @count.zero?

	​ 	 Float(@total_score) / @count

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	scores = ScoreKeeper.new

	​ 	scores << 10 << 20 << 40

	​ 	puts ​"Average = ​#{scores.average}​"​

Produces:
	​ 	Average = 23.333333333333332

 Note that there’s a subtlety in this code—the ​<<​
 method explicitly returns
 ​self​. It does this to allow the
 method chaining in the line ​scores << 10 << 20 <<
 40​. Because each call to ​<<​ returns the
 ​scores​ object, you can then call
 ​<<​ again, passing in a new score.

 As well as the obvious operators, such as ​+​,
 ​*​, and ​<<​, indexing using square
 brackets is also implemented as a method call. When you write
 this:

	​ 	some_obj[1,2,3]

 you’re actually calling a method named ​[]​ on
 ​some_obj​, passing it three
 parameters. You’d define this method using this:

	​ 	​class​ SomeClass

	​ 	 ​def​ [](p1, p2, p3)

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

 Similarly, assignment to an element is implemented using the
 ​[]=​ method. This method receives each object passed
 as an index as its first ​n​ parameters and the
 value of the assignment as its last parameter:

	​ 	​class​ SomeClass

	​ 	 ​def​ []=(*params)

	​ 	 value = params.pop

	​ 	 puts ​"Indexed with ​#{params.join(​', '​)}​"​

	​ 	 puts ​"value = ​#{value.inspect}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	s = SomeClass.new

	​ 	s[1] = 2

	​ 	s[​'cat'​, ​'dog'​] = ​'enemies'​

Produces:
	​ 	Indexed with 1

	​ 	value = 2

	​ 	Indexed with cat, dog

	​ 	value = "enemies"

9.2 Miscellaneous Expressions

 As well as the obvious operator expressions and method calls and
 the (perhaps) less obvious statement expressions (such as
 ​if​ and ​case​), Ruby has a
 few more things that you can use in expressions.

Command Expansion

	If you enclose a string in backquotes (sometimes called
	
 ​ backticks​

) or use the delimited form
	prefixed by ​%x​, it will (by default) be executed as a
	command by your underlying operating system. The value of the expression is
	the standard output of that command. Newlines will not be
	stripped, so it is likely that the value you get back will
	have a trailing return or linefeed character.

	​ 	`date` ​# => "Mon May 27 12:30:56 CDT 2013\n"​

	​ 	`ls`.split[34] ​# => "newfile"​

	​ 	%x{echo "hello there"} ​# => "hello there\n"​

	You can use expression expansion and all the usual escape sequences in
	the command string:

	​ 	​for​ i ​in​ 0..3

	​ 	 status = `dbmanager status id=#{i}`

	​ 	 ​# ...​

	​ 	​end​

	The exit status of the command is available in the global
	variable ​$?​.

Redefining Backquotes

	 In the description of the command output expression, we said
	 that the string in backquotes would “by default” be
	 executed as a command. In fact, the string is passed to the
	 method called
	 Object#` (a single backquote). If you want, you can
	 override this. This example uses ​$?​, which contains
	 the status of the last external process run:
	
	​ 	​alias​ old_backquote `

	​ 	​def​ `(cmd)

	​ 	 result = old_backquote(cmd)

	​ 	 ​if​ $? != 0

	​ 	 puts ​"*** Command ​#{cmd}​ failed: status = ​#{$?.exitstatus}​"​

	​ 	 ​end​

	​ 	 result

	​ 	​end​

	​ 	print `ls -l /etc/passwd`

	​ 	print `ls -l /etc/wibble`

Produces:
	​ 	-rw-r--r-- 1 root wheel 5086 Jul 20 2011 /etc/passwd

	​ 	ls: /etc/wibble: No such file or directory

	​ 	*** Command ls -l /etc/wibble failed: status = 1

9.3 Assignment

 Just about every example we’ve given so far in this book has
 featured assignment. Perhaps it’s about time we said something
 about it.

 An assignment statement sets the variable or attribute on its left
 side (the
 ​ lvalue​

) to refer to the value on the right (the

 ​ rvalue​

).
 It then returns that rvalue as the result of the
 assignment expression. This means you can chain assignments, and
 you can perform assignments in some unexpected places:

	​ 	a = b = 1 + 2 + 3

	​ 	a ​# => 6​

	​ 	b ​# => 6​

	​ 	a = (b = 1 + 2) + 3

	​ 	a ​# => 6​

	​ 	b ​# => 3​

	​ 	

	​ 	File.open(name = gets.chomp)

 Ruby has two basic forms of assignment. The first assigns an
 object reference to a variable or constant. This form of
 assignment is hardwired into the language:

	​ 	instrument = ​"piano"​

	​ 	MIDDLE_A = 440

 The second form of assignment involves having an object attribute or
 element reference on the left side. These forms are special, because
 they are implemented by calling methods in the lvalues,
 which means you can override them.

 We’ve already seen how to define a writable object attribute. Simply
 define a method name ending in an equals sign. This method receives as
 its parameter the assignment’s rvalue. We’ve also seen that you can
 define ​[]​ as a method:

	​ 	​class​ ProjectList

	​ 	 ​def​ initialize

	​ 	 @projects = []

	​ 	 ​end​

	​ 	 ​def​ projects=(list)

	​ 	 @projects = list.map(&:upcase) ​# store list of names in uppercase​

	​ 	 ​end​

	​ 	 ​def​ [](offset)

	​ 	 @projects[offset]

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	list = ProjectList.new

	​ 	list.projects = ​%w{ strip sand prime sand paint sand paint rub paint }​

	​ 	list[3] ​# => "SAND"​

	​ 	list[4] ​# => "PAINT"​

 As this example shows, these attribute-setting methods don’t have to
 correspond with internal instance variables, and you don’t need an
 attribute reader for every attribute writer (or vice versa).

 In older Rubys, the result of the assignment was the
 value returned by the attribute-setting method. As of Ruby 1.8,
 the value of the assignment is ​always​ the value of the
 parameter; the return value of the method is discarded. In the
 code that follows, older versions of Ruby would set
 ​result​ to 99. Now
 ​result​ will be set to 2.

	​ 	​class​ Test

	​ 	 ​def​ val=(val)

	​ 	 @val = val

	​ 	 ​return​ 99

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	t = Test.new

	​ 	result = (t.val = 2)

	​ 	result ​# => 2​

Parallel Assignment

	During your first week in a programming course (or the second semester
	if it was a party school), you may have had to write code to swap the
	values in two variables:

	​ 	​int​ a = 1; # C, or Java, or ...

	​ 	​int​ b = 2;

	​ 	​int​ temp;

	​ 	

	​ 	temp = a;

	​ 	a = b;

	​ 	b = temp;

	You can do this much more cleanly in Ruby:

	​ 	a, b = 1, 2 ​# a=1, b=2​

	​ 	a, b = b, a ​# b=2, a=1​

	Ruby lets you have a comma-separated list of rvalues (the things on
	the right of the assignment). Once Ruby sees more than one rvalue in
	an assignment, the rules of parallel assignment come into play. What
	follows is a description at the logical level: what happens inside the
	interpreter is somewhat hairier. Users of older versions of Ruby
	should note that these rules have changed in Ruby 1.9.

	First, all the rvalues are evaluated, left to right, and
	collected into an array (unless they are already an
	array). This array will be the eventual value returned by the
	overall assignment.

	Next, the left side (lhs) is inspected. If it contains a
	single element, the array is assigned to that element.

	
​
a = 1, 2, 3, 4​
	
​ # a=[1, 2, 3, 4]​

	
​
b = [1, 2, 3, 4]​
	
​ # b=[1, 2, 3, 4]​

	If the lhs contains a comma, Ruby matches values on the rhs
	against successive elements on the lhs. Excess elements are
	discarded.

	
​
a, b = 1, 2, 3, 4​
	
​ # a=1, b=2​

	
​
c, = 1, 2, 3, 4​
	
​ # c=1​

Splats and Assignment

	 If Ruby sees any splats on the right side of an assignment
	 (that is, rvalues preceded by an asterisk), each will be
	 expanded inline into its constituent values during the
	 evaluation of the rvalues and before the assignment to
	 lvalues starts:
	
	
​
a, b, c, d, e = *(1..2), 3, *[4, 5]​
	
​ # a=1, b=2, c=3, d=4, e=5​

	 Exactly one lvalue may be a splat. This makes it greedy—it will end
	 up being an array, and that array will contain as many of the
	 corresponding rvalues as possible. So, if the splat is the last
	 lvalue, it will soak up any rvalues that are left after assigning to
	 previous lvalues:
	
	
​
a, *b = 1, 2, 3​
	
​ # a=1, b=[2, 3]​

	
​
a, *b = 1​
	
​ # a=1, b=[]​

	 If the splat is not the last lvalue, then Ruby ensures that the
	 lvalues that follow it will all receive values from rvalues at the end
	 of the right side of the assignment—the splat lvalue will
	 soak up only enough rvalues to leave one for each of the remaining
	 lvalues.
	
	
​
*a, b = 1, 2, 3, 4​
	
​ # a=[1, 2, 3], b=4​

	
​
c, *d, e = 1, 2, 3, 4​
	
​ # c=1, d=[2, 3], e=4​

	
​
f, *g, h, i, j = 1, 2, 3, 4​
	
​ # f=1, g=[], h=2, i=3, j=4​

	 As with method parameters, you can use a raw asterisk to ignore some
	 rvalues:
	
	
​
first, *, last = 1,2,3,4,5,6​
	
​ # first=1, last=6​

Nested Assignments

	 The left side of an assignment may contain a
	 parenthesized list of terms. Ruby treats these terms as if
	 they were a nested assignment statement. It extracts the
	 corresponding rvalue, assigning it to the parenthesized terms,
	 before continuing with the higher-level assignment.
	
	
​
a, (b, c), d = 1,2,3,4​
	
​ # a=1, b=2, c=nil, d=3​

	
​
a, (b, c), d = [1,2,3,4]​
	
​ # a=1, b=2, c=nil, d=3​

	
​
a, (b, c), d = 1,[2,3],4​
	
​ # a=1, b=2, c=3, d=4​

	
​
a, (b, c), d = 1,[2,3,4],5​
	
​ # a=1, b=2, c=3, d=5​

	
​
a, (b,*c), d = 1,[2,3,4],5​
	
​ # a=1, b=2, c=[3, 4], d=5​

Other Forms of Assignment

	In common with other languages, Ruby has a syntactic shortcut:
	​a = a + 2​ may be written as ​a += 2​.
	The second form is converted internally to the first. This
	means that operators you have defined as methods in your own
	classes work as you’d expect:

	​ 	​class​ Bowdlerize

	​ 	 ​def​ initialize(string)

	​ 	 @value = string.gsub(/[aeiou]/, ​'*'​)

	​ 	 ​end​

	​ 	 ​def​ +(other)

	​ 	 Bowdlerize.new(self.to_s + other.to_s)

	​ 	 ​end​

	​ 	 ​def​ to_s

	​ 	 @value

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	a = Bowdlerize.new(​"damn "​) ​# => d*mn​

	​ 	a += ​"shame"​ ​# => d*mn sh*m*​

	Something you won’t find in Ruby are the autoincrement (++) and
	autodecrement (--) operators of C and Java. Use the ​+=​
	and ​-=​ forms instead.

9.4 Conditional Execution

 Ruby has several different mechanisms for conditional execution
 of code; most of them should feel familiar, and many have some
 neat twists. Before we get into them, though, we need to spend a
 short time looking at boolean
 expressions.

Boolean Expressions

	Ruby has a simple definition of truth. Any value that is not
	​nil​ or the constant
	​false​ is true—​"cat"​, ​99​,
	​0​, and ​:a_song​ are all considered true.

	In this book, when we want to talk about a general true or
	false value, we use regular Roman type: true and false. When
	we want to refer to the actual constants, we write
	​true​ and ​false​.

	The fact that ​nil​ is considered to be
	false is convenient. For example, IO#gets,
	which returns the next line from a file, returns
	​nil​ at the end of file, enabling you to
	write loops such as this:

	​ 	​while​ line = gets

	​ 	 ​# process line​

	​ 	​end​

	However, C, C++, and Perl programmers sometimes fall into a
	trap. The number zero is ​not​ interpreted as a false
	value. Neither is a zero-length string. This can be a tough habit to
	break.

And, Or, and Not

	 Ruby supports all the standard boolean operators. Both the
	 keyword ​and​ and the operator
	 ​&&​ return their first argument if it is
	 false. Otherwise, they evaluate and return their second
	 argument (this is sometimes known as
	
 ​ shortcircuit​

 evaluation). The only
	 difference in the two forms is precedence
	 (​and​ binds lower than
	 ​&&​).
	
	​ 	nil && 99 ​# => nil​

	​ 	false && 99 ​# => false​

	​ 	​"cat"​ && 99 ​# => 99​

	 Thus, ​&&​ and ​and​ both
	 return a true value only if both of their arguments are
	 true, as expected.
	

	 Similarly, both ​or​ and ​||​ return their first
	 argument unless it is false, in which case they evaluate and
	 return their second argument.
	
	​ 	nil || 99 ​# => 99​

	​ 	false || 99 ​# => 99​

	​ 	​"cat"​ || 99 ​# => "cat"​

	 As with ​and​, the only difference between
	 ​or​ and ​||​ is their precedence.
	 To make life interesting, ​and​ and
	 ​or​ have the same precedence, but
	 ​&&​ has a higher precedence than
	 ​||​.
	

	 A common idiom is to use ​||=​ to assign a value to a
	 variable only if that variable isn’t already
	 set:
	
	​ 	var ||= ​"default value"​

	 This is almost, but not quite, the same as ​var = var || "default
	 value"​. It differs in that no assignment is made at all if the
	 variable is already set. In pseudocode, this might be written as
	 ​var = "default value" unless var​ or as ​var || var = "default
	 value"​.
	

	 ​not​ and ​!​ return the opposite of
	 their operand (​false​ if the operand is
	 true and ​true​ if the operand is
	 false). And, yes, ​not​ and ​!​
	 differ only in precedence.
	

	 All these precedence rules are summarized in
	 Table 13, ​Ruby operators (high to low precedence)​.
	
defined?

	 The
 ​defined?​
 operator
	 returns ​nil​ if its argument (which can
	 be an arbitrary expression) is not defined; otherwise, it
	 returns a description of that argument. If the argument is
	 ​yield​,
 ​defined?​
 returns the string “yield”
	 if a code block is associated with the current
	 context.
	
	​ 	​defined?​ 1 ​# => "expression"​

	​ 	​defined?​ dummy ​# => nil​

	​ 	​defined?​ printf ​# => "method"​

	​ 	​defined?​ String ​# => "constant"​

	​ 	​defined?​ $_ ​# => "global-variable"​

	​ 	​defined?​ Math::PI ​# => "constant"​

	​ 	​defined?​ a = 1 ​# => "assignment"​

	​ 	​defined?​ 42.abs ​# => "method"​

	​ 	​defined?​ nil ​# => "nil"​

Comparing Objects

	 In addition to the boolean operators, Ruby objects support
	 comparison using the methods ​==​, ​===​,
	 ​<=>​, ​=~​, ​eql?​, and
	 ​equal?​ (see Table 5, ​Common comparison operators​). All but ​<=>​
	 are defined in class ​Object​ but are
	 often overridden by descendants to provide appropriate
	 semantics. For example, class ​Array​
	 redefines ​==​ so that two array objects are equal if
	 they have the same number of elements and the corresponding
	 elements are equal.
	

Table 5. Common comparison operators
	Operator	Meaning
	==	Test for equal value.
	===	
		

		 Used to compare each of the items with the target in the
		 ​when​ clause of a ​case​ statement.
		

	
	<=>	
		General comparison operator. Returns -1, 0, or +1,
		depending on whether its receiver is less than, equal to, or
		greater than its argument.
	
	
​<​, ​<=​, ​>=​, ​>​
	
		

		 Comparison operators for less than, less than or
		 equal, greater than or equal, and greater than.
		

	
	=~	Regular expression pattern match.
	eql?	
		

		 True if the receiver and argument have both the same
		 type and equal values. ​1 == 1.0​
		 returns ​true​, but
		 ​1.eql?(1.0)​ is
		 ​false​.
		

	
	equal?	
		

		 True if the receiver and argument have the same
		 object ID.
		

	

	 Both ​==​ and ​=~​ have negated forms,
	 ​!=​ and ​!~​. Ruby
	 first looks for methods called ​!=​ or ​!~​,
	 calling them if found. If not, it will then invoke either ​==​ or
	 ​=~​, negating the result.
	

	 In the following example, Ruby calls the ​==​ method
	 to perform both comparisons:
	
	​ 	​class​ T

	​ 	 ​def​ ==(other)

	​ 	 puts ​"Comparing self == ​#{other}​"​

	​ 	 other == ​"value"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	t = T.new

	​ 	p(t == ​"value"​)

	​ 	p(t != ​"value"​)

Produces:
	​ 	Comparing self == value

	​ 	true

	​ 	Comparing self == value

	​ 	false

	 If instead we explicitly define ​!=​, Ruby calls it:
	
	​ 	​class​ T

	​ 	 ​def​ ==(other)

	​ 	 puts ​"Comparing self == ​#{other}​"​

	​ 	 other == ​"value"​

	​ 	 ​end​

	​ 	 ​def​ !=(other)

	​ 	 puts ​"Comparing self != ​#{other}​"​

	​ 	 other != ​"value"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	t = T.new

	​ 	p(t == ​"value"​)

	​ 	p(t != ​"value"​)

Produces:
	​ 	Comparing self == value

	​ 	true

	​ 	Comparing self != value

	​ 	false

	 You can use a Ruby range as a boolean
	 expression.
	 A
	 range such as ​exp1..exp2​ will evaluate as false
	 until ​exp1​ becomes true. The range will then evaluate as true
	 until ​exp2​ becomes true. Once this happens, the range resets,
	 ready to fire again. We show some examples of this
	 later.
	

	 Prior to Ruby 1.8, you could use a bare regular expression
	 as a boolean expression. This is now deprecated. You can
	 still use the ​~​ operator (described in the reference section) to match
	 ​$_​ against a pattern, but this
	 will probably also disappear in the future.
	
if and unless Expressions

	An ​if​ expression in Ruby is pretty similar
	to ​if​ statements
	in other languages:

	​ 	​if​ artist == ​"Gillespie"​ ​then​

	​ 	 handle = ​"Dizzy"​

	​ 	​elsif​ artist == ​"Parker"​ ​then​

	​ 	 handle = ​"Bird"​

	​ 	​else​

	​ 	 handle = ​"unknown"​

	​ 	​end​

	The ​then​ keyword is optional if you lay out
	your statements on multiple lines:

	​ 	​if​ artist == ​"Gillespie"​

	​ 	 handle = ​"Dizzy"​

	​ 	​elsif​ artist == ​"Parker"​

	​ 	 handle = ​"Bird"​

	​ 	​else​

	​ 	 handle = ​"unknown"​

	​ 	​end​

	However, if you want to lay out your code more tightly, you
	must separate the boolean expression from the following
	statements with the ​then​
	keyword:[48]

	​ 	​if​ artist == ​"Gillespie"​ ​then​ handle = ​"Dizzy"​

	​ 	​elsif​ artist == ​"Parker"​ ​then​ handle = ​"Bird"​

	​ 	​else​ handle = ​"unknown"​

	​ 	​end​

	You can have zero or more ​elsif​ clauses and
	an optional ​else​ clause. And notice that
	there’s no ​e​ in the middle of ​elsif​.

	As we’ve said before, an ​if​ statement is an expression—it
	returns a value. You don’t have to use the value of an ​if​
	statement, but it can come in handy:

	​ 	handle = ​if​ artist == ​"Gillespie"​

	​ 	 ​"Dizzy"​

	​ 	 ​elsif​ artist == ​"Parker"​

	​ 	 ​"Bird"​

	​ 	 ​else​

	​ 	 ​"unknown"​

	​ 	 ​end​

	Ruby also has a negated form of the ​if​ statement:

	​ 	​unless​ duration > 180

	​ 	 listen_intently

	​ 	​end​

	The ​unless​ statement does support
	​else​, but most people seem
	to agree that it’s clearer to switch to an ​if​ statement in these
	cases.

	Finally, for the C fans out there, Ruby also supports the
	C-style conditional expression:

	​ 	cost = duration > 180 ? 0.35 : 0.25

	A conditional expression returns the value of the expression either
	before or after the colon, depending on whether the
	boolean expression before the question mark is true or false. In the
	previous example, if the duration is greater than three minutes,
	the expression returns 0.35. For shorter durations, it returns
	0.25. The result is then assigned to ​cost​.

if and unless Modifiers

	 Ruby shares a neat feature with Perl. Statement modifiers
	 let you tack conditional statements onto the end of a normal
	 statement:
	
	​ 	mon, day, year = $1, $2, $3 ​if​ date =~ /(​\d\d​)-(​\d\d​)-(​\d\d​)/

	​ 	puts ​"a = ​#{a}​"​ ​if​ $DEBUG

	​ 	print total ​unless​ total.zero?

	 For an ​if​ modifier, the preceding expression will be evaluated only
	 if the condition is true. ​unless​ works the other way around:
	
	​ 	File.foreach(​"/etc/passwd"​) ​do​ |line|

	​ 	 ​next​ ​if​ line =~ /^#/ ​# Skip comments​

	​ 	 parse(line) ​unless​ line =~ /^$/ ​# Don't parse empty lines​

	​ 	​end​

	 Because ​if​ itself is an expression, you
	 can get really obscure with statements such as this:
	
	​ 	​if​ artist == ​"John Coltrane"​

	​ 	 artist = ​"'Trane"​

	​ 	​end​ ​unless​ use_nicknames == ​"no"​

	 This path leads to the gates of madness.
	

9.5 case Expressions

 The Ruby ​case​ expression is a powerful beast:
 a multiway ​if​ on steroids. And just to make it even
 more powerful, it comes in two flavors.

 The first form is fairly close to a series of ​if​ statements; it
 lets you list a series of conditions and execute a statement
 corresponding to the first one that’s true:

	​ 	​case​

	​ 	​when​ song.name == ​"Misty"​

	​ 	 puts ​"Not again!"​

	​ 	​when​ song.duration > 120

	​ 	 puts ​"Too long!"​

	​ 	​when​ Time.now.hour > 21

	​ 	 puts ​"It's too late"​

	​ 	​else​

	​ 	 song.play

	​ 	​end​

 The second form of the ​case​ statement is
 probably more common. You specify a target at the top of the
 ​case​ statement, and each
 ​when​ clause lists one or more comparisons to
 be tested against that target:

	​ 	​case​ command

	​ 	​when​ ​"debug"​

	​ 	 dump_debug_info

	​ 	 dump_symbols

	​ 	​when​ /p​\s​+(​\w​+)/

	​ 	 dump_variable($1)

	​ 	​when​ ​"quit"​, ​"exit"​

	​ 	 exit

	​ 	​else​

	​ 	 print ​"Illegal command: ​#{command}​"​

	​ 	​end​

 As with ​if​, ​case​ returns
 the value of the last expression executed, and you can use a
 ​then​ keyword if the expression is on the same
 line as the condition:[49]

	​ 	kind = ​case​ year

	​ 	 ​when​ 1850..1889 ​then​ ​"Blues"​

	​ 	 ​when​ 1890..1909 ​then​ ​"Ragtime"​

	​ 	 ​when​ 1910..1929 ​then​ ​"New Orleans Jazz"​

	​ 	 ​when​ 1930..1939 ​then​ ​"Swing"​

	​ 	 ​else​ ​"Jazz"​

	​ 	 ​end​

 ​case​ operates by comparing the target (the
 expression after the keyword ​case​) with each
 of the comparison expressions after the ​when​
 keywords. This test is done using ​​comparison​ ===
 ​target​​. As long as a class defines meaningful
 semantics for ​===​ (and all the built-in classes do),
 objects of that class can be used in ​case​ expressions.

 For example, regular expressions define ​===​ as a simple pattern match:

	​ 	​case​ line

	​ 	​when​ /title=(.*)/

	​ 	 puts ​"Title is ​#$1​"​

	​ 	​when​ /track=(.*)/

	​ 	 puts ​"Track is ​#$1​"​

	​ 	​end​

 Ruby classes are instances of class
 ​Class​. The ​===​ operator is
 defined in ​Class​ to test whether the
 argument is an instance of the receiver or one of its
 superclasses. So (abandoning the benefits of polymorphism and
 bringing the gods of refactoring down around your ears), you can
 test the class of objects:

	​ 	​case​ shape

	​ 	​when​ Square, Rectangle

	​ 	 ​# ...​

	​ 	​when​ Circle

	​ 	 ​# ...​

	​ 	​when​ Triangle

	​ 	 ​# ...​

	​ 	​else​

	​ 	 ​# ...​

	​ 	​end​

9.6 Loops

 Don’t tell anyone, but Ruby has pretty primitive built-in looping
 constructs.

 The ​while​ loop executes its body zero or more times as long as
 its condition is true. For example, this common idiom reads until
 the input is exhausted:

	​ 	​while​ line = gets

	​ 	 ​# ...​

	​ 	​end​

 The ​until​ loop is the opposite; it executes
 the body ​until​ the condition becomes true:

	​ 	​until​ play_list.duration > 60

	​ 	 play_list.add(song_list.pop)

	​ 	​end​

 As with ​if​ and ​unless​, you can use both of
 the loops as statement modifiers:

	​ 	a = 1

	​ 	a *= 2 ​while​ a < 100

	​ 	a ​# => 128​

	​ 	a -= 10 ​until​ a < 100

	​ 	a ​# => 98​

 Back in the section on
 boolean expressions, we said that a range can be used as a kind
 of flip-flop, returning true when some event happens and then
 staying true until a second event occurs.
 This facility is normally used within loops. In the example that
 follows, we read a text file containing the first ten ordinal numbers
 (“first,” “second,” and so on)
 but print only the lines starting with the one that matches
 “third” and ending with the one that matches “fifth”:

	​ 	file = File.open(​"ordinal"​)

	​ 	​while​ line = file.gets

	​ 	 puts(line) ​if​ line =~ /third/ .. line =~ /fifth/

	​ 	​end​

Produces:
	​ 	third

	​ 	fourth

	​ 	fifth

 You may find folks who come from Perl writing the previous example
 slightly differently:

	​ 	file = File.open(​"ordinal"​)

	​ 	​while​ file.gets

	​ 	 print ​if​ ~/third/ .. ~/fifth/

	​ 	​end​

Produces:
	​ 	third

	​ 	fourth

	​ 	fifth

 This uses some behind-the-scenes magic behavior:

 ​gets​
 assigns the last line read to the
 global variable
 ​$_​,
 the ​~​ operator does a regular expression match against
 ​$_​, and

 ​print​
 with no arguments prints
 ​$_​. This kind of code is falling
 out of fashion in the Ruby community and may end up being
 removed from the language.

 The start and end of a range used in a boolean expression can
 themselves be expressions. These are evaluated each time the
 overall boolean expression is evaluated. For example, the
 following code uses the fact that the variable
 ​$.​ contains the current input line
 number to display line numbers 1 through 3 as well as those
 between a match of ​/eig/​ and ​/nin/​:

	​ 	File.foreach(​"ordinal"​) ​do​ |line|

	​ 	 ​if​ (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)

	​ 	 print line

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	first

	​ 	second

	​ 	third

	​ 	eighth

	​ 	ninth

 You’ll come across a wrinkle when you use ​while​ and ​until​ as statement
 modifiers. If the statement they are modifying is a
 ​begin​...​end​ block,
 the code in the block will always execute
 at least one time, regardless of the value of the boolean expression:

	​ 	print ​"Hello\n"​ ​while​ false

	​ 	​begin​

	​ 	 print ​"Goodbye\n"​

	​ 	​end​ ​while​ false

Produces:
	​ 	Goodbye

Iterators

	If you read the beginning of the previous section, you may have been
	discouraged. “Ruby has pretty primitive built-in looping
	constructs,” it said. Don’t despair, gentle reader, for we have good
	news. Ruby doesn’t need any sophisticated built-in loops, because all
	the fun stuff is implemented using Ruby iterators.

	For example, Ruby doesn’t have a ​for​ loop—at least not the kind
	that iterates over a range of numbers. Instead, Ruby uses methods defined in
	various built-in classes to provide equivalent, but less error-prone,
	functionality.

	Let’s look at some examples:

	​ 	3.times ​do​

	​ 	 print ​"Ho! "​

	​ 	​end​

Produces:
	​ 	Ho! Ho! Ho!

	It’s easy to avoid fence-post and off-by-one errors; this loop will
	execute three times, period. In addition to
	
 ​times​
 , integers can loop over
	specific ranges by calling
	
 ​downto​
 and
	
 ​upto​
 , and all numbers can loop
	using
 ​step​
 . For instance, a
	traditional “for” loop that runs from 0 to 9 (something like
	​for(i=0; i < 10; i++)​) is written as follows:

	​ 	0.upto(9) ​do​ |x|

	​ 	 print x, ​" "​

	​ 	​end​

Produces:
	​ 	0 1 2 3 4 5 6 7 8 9

	A loop from 0 to 12 by 3 can be written as follows:

	​ 	0.step(12, 3) {|x| print x, ​" "​ }

Produces:
	​ 	0 3 6 9 12

	Similarly, iterating over arrays and other containers is easy
	if you use their
 ​each​
 method:

	​ 	[1, 1, 2, 3, 5].each {|val| print val, ​" "​ }

Produces:
	​ 	1 1 2 3 5

	And once a class supports
 ​each​
 , the
	additional methods in the ​Enumerable​ module
	become available. (We talked about this back in the Modules chapter, and we
	document it fully in Enumerable​​.) For
	example, the ​File​ class provides an
	
 ​each​
 method, which returns each line of a
	file in turn. Using the
 ​grep​
 method in
	​Enumerable​, we could iterate over only those
	lines that end with a ​d​:

	​ 	File.open(​"ordinal"​).grep(/d$/) ​do​ |line|

	​ 	 puts line

	​ 	​end​

Produces:
	​ 	second

	​ 	third

	Last, and probably least, is the most basic loop of all. Ruby
	provides a built-in iterator called
 ​loop​
 :

	​ 	loop ​do​

	​ 	 ​# block ...​

	​ 	​end​

	The
 ​loop​
 iterator calls the associated block forever (or at
	least until you break out of the loop, but you’ll have to read ahead
	to find out how to do that).

for ... in

	Earlier we said that the only built-in Ruby looping primitives were
	​while​ and ​until​. What’s this ​for​
	thing, then?
	Well, ​for​ is almost a lump of syntactic sugar.

	When you write this:

	​ 	​for​ song ​in​ playlist

	​ 	 song.play

	​ 	​end​

	Ruby translates it into something like this:

	​ 	playlist.each ​do​ |song|

	​ 	 song.play

	​ 	​end​

	The only difference between the ​for​ loop
	and the
 ​each​
 form is the scope of
	local variables that are defined in the body. This is
	discussed in Section 9.7, ​Variable Scope, Loops, and Blocks​.

	You can use ​for​
	to iterate over any object that responds to the method
 ​each​
 , such
	as an ​Array​ or a ​Range​:

	​ 	​for​ i ​in​ [​'fee'​, ​'fi'​, ​'fo'​, ​'fum'​]

	​ 	 print i, ​" "​

	​ 	​end​

	​ 	​for​ i ​in​ 1..3

	​ 	 print i, ​" "​

	​ 	​end​

	​ 	​for​ i ​in​ File.open(​"ordinal"​).find_all {|line| line =~ /d$/}

	​ 	 print i.chomp, ​" "​

	​ 	​end​

Produces:
	​ 	fee fi fo fum 1 2 3 second third

	As long as your class defines a sensible
 ​each​
 method, you can use
	a ​for​ loop to traverse its objects:

	​ 	​class​ Periods

	​ 	 ​def​ each

	​ 	 ​yield​ ​"Classical"​

	​ 	 ​yield​ ​"Jazz"​

	​ 	 ​yield​ ​"Rock"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	periods = Periods.new

	​ 	​for​ genre ​in​ periods

	​ 	 print genre, ​" "​

	​ 	​end​

Produces:
	​ 	Classical Jazz Rock

break, redo, and next

	The loop control constructs ​break​,
	​redo​, and ​next​ let you
	alter the normal flow through a loop or iterator.[50]

	​break​ terminates the immediately enclosing loop; control resumes
	at the statement following the block. ​redo​ repeats the current
	iteration of the loop from the start but without reevaluating the
	condition or fetching the next element (in an iterator). ​next​
	skips to the end of the loop, effectively starting the next iteration:

	​ 	​while​ line = gets

	​ 	 ​next​ ​if​ line =~ /^​\s​*#/ ​# skip comments​

	​ 	 ​break​ ​if​ line =~ /^END/ ​# stop at end​

	​ 	

	​ 	 ​# substitute stuff in backticks and try again​

	​ 	 ​redo​ ​if​ line.gsub!(/`(.*?)`/) { eval($1) }

	​ 	

	​ 	 ​# process line ...​

	​ 	​end​

	These keywords can also be used within blocks. Although you can use
	them with any block, they typically make the most sense when the block
	is being used for iteration:

	​ 	i=0

	​ 	loop ​do​

	​ 	 i += 1

	​ 	 ​next​ ​if​ i < 3

	​ 	 print i

	​ 	 ​break​ ​if​ i > 4

	​ 	​end​

Produces:
	​ 	345

	A value may be passed to ​break​ and
	​next​. When used in conventional loops, it
	probably makes sense only to do this with
	​break​, where it sets the value returned by
	the loop. (Any value given to ​next​ is
	effectively lost.) If a conventional loop doesn’t execute a
	​break​, its value is
	​nil​.

	​ 	result = ​while​ line = gets

	​ 	 ​break​(line) ​if​ line =~ /answer/

	​ 	 ​end​

	​ 	

	​ 	process_answer(result) ​if​ result

	If you want the nitty-gritty details of how
	​break​ and ​next​ work with
	blocks and procs, take a look at the reference description. If
	you are looking for a way of exiting from nested blocks or
	loops, take a look at Object#catch.

9.7 Variable Scope, Loops, and Blocks

 The ​while​, ​until​, and
 ​for​ loops are built into the language and do
 not introduce new scope; previously existing locals can be used
 in the loop, and any new locals created will be available
 afterward.

 The scoping rules for blocks (such as those used by
 ​loop​ and ​each​) are
 different. Normally, the local variables created in these
 blocks are not accessible outside the block:

	​ 	[1, 2, 3].each ​do​ |x|

	​ 	 y = x + 1

	​ 	​end​

	​ 	[x, y]

Produces:
	​ 	prog.rb:4:in `<main>': undefined local variable or method `x' for main:Object

	​ 	(NameError)

 However, if at the time the block executes a local variable
 already exists with the same name as that of a
 variable in the block, the existing local variable will be used in the
 block. Its value will therefore be available after the block finishes.
 As the following example shows, this applies to normal
 variables in the block but not to the block’s parameters:

	​ 	x = ​"initial value"​

	​ 	y = ​"another value"​

	​ 	[1, 2, 3].each ​do​ |x|

	​ 	 y = x + 1

	​ 	​end​

	​ 	[x, y] ​# => ["initial value", 4]​

 Note that the assignment to the variable doesn’t
 have to be executed; the Ruby interpreter just needs to have seen that the
 variable exists on the left side of an assignment:

	​ 	a = ​"never used"​ ​if​ false

	​ 	[99].each ​do​ |i|

	​ 	 a = i ​# this sets the variable in the outer scope​

	​ 	​end​

	​ 	a ​# => 99​

 You can
 list ​block-local variables​ in the block’s parameter list, preceded by a
 semicolon. Contrast this code, which does not use block-locals:

	​ 	square = ​"yes"​

	​ 	total = 0

	​ 	

	​ 	[1, 2, 3].each ​do​ |val|

	​ 	 square = val * val

	​ 	 total += square

	​ 	​end​

	​ 	

	​ 	puts ​"Total = ​#{total}​, square = ​#{square}​"​

Produces:
	​ 	Total = 14, square = 9

 with the following code, which uses a block-local variable, so ​square​ in
 the outer scope is not affected by a variable of the same name within
 the block:

	​ 	square = ​"yes"​

	​ 	total = 0

	​ 	

	​ 	[1, 2, 3].each ​do​ |val; square|

	​ 	 square = val * val

	​ 	 total += square

	​ 	​end​

	​ 	

	​ 	puts ​"Total = ​#{total}​, square = ​#{square}​"​

Produces:
	​ 	Total = 14, square = yes

 If you are concerned about the scoping of variables with blocks,
 turn on Ruby warnings, and declare your block-local variables
 explicitly.

Footnotes

	[48]	
Ruby 1.8
	allowed you to use a colon character in place of the ​then​
	keyword. This is no longer supported.

	[49]	
Ruby 1.8
 lets you use a colon in place of the ​then​
 keyword. Ruby 1.9 does not support this.

	[50]	
Ruby 1.8 and earlier
 also supported the ​retry​ keyword as a looping
	mechanism. This has been removed in Ruby
	1.9.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 10
Exceptions, catch, and throw

 So far, we’ve been developing code in Pleasantville, a wonderful
 place where nothing ever, ever goes wrong. Every library call
 succeeds, users never enter incorrect data, and resources are
 plentiful and cheap. Well, that’s about to change. Welcome to the
 real world!

 In the real world, errors happen. Good programs (and programmers)
 anticipate them and arrange to handle them gracefully. This isn’t
 always as easy as it may sound. Often the code that detects an
 error does not have the context to know what to do about it. For
 example, attempting to open a file that doesn’t exist is
 acceptable in some circumstances and is a fatal error at other
 times. What’s your file-handling module to do?

 The traditional approach is to use return codes. The

 ​open​
 method could return some specific
 value to say it failed. This value is then propagated back through
 the layers of calling routines until someone wants to take
 responsibility for it. The problem with this approach is that
 managing all these error codes can be a pain. If a function calls

 ​open​
 , then
 ​read​
 ,
 and finally
 ​close​
 and if each can return an
 error indication, how can the function distinguish these error
 codes in the value it returns to ​its​ caller?

 To a large extent,
 ​ exceptions​

 solve this
 problem. Exceptions let you
 package information about an error into an object. That exception
 object is then propagated back up the calling stack automatically
 until the runtime system finds code that explicitly declares that it
 knows how to handle that type of exception.

10.1 The Exception Class

 Information about an exception is encapsulated
 in an object of class
 ​Exception​
 or one of class ​Exception​’s
 children. Ruby predefines a tidy hierarchy of exceptions, shown
 in Figure 1, ​Standard exception hierarchy​. As we’ll see later, this
 hierarchy makes handling exceptions considerably easier.

 When you need to raise an exception, you can use one of the
 built-in ​Exception​ classes, or you can
 create one of your own. Make your own exceptions subclasses of
 ​StandardError​
 or one of its children. If you don’t, your exceptions won’t be
 caught by default.

 Every ​Exception​ has associated with it a message string and a
 stack backtrace. If you define your own exceptions, you can add
 extra information.

	​ 	Exception

	​ 	 NoMemoryError

	​ 	 ScriptError

	​ 	 LoadError

	​ 	 Gem::LoadError

	​ 	 NotImplementedError

	​ 	 SyntaxError

	​ 	 SecurityError

	​ 	 SignalException

	​ 	 Interrupt

	​ 	 StandardError

	​ 	 ArgumentError

	​ 	 Gem::Requirement::BadRequirementError

	​ 	 EncodingError

	​ 	 Encoding::CompatibilityError

	​ 	 Encoding::ConverterNotFoundError

	​ 	 Encoding::InvalidByteSequenceError

	​ 	 Encoding::UndefinedConversionError

	​ 	 FiberError

	​ 	 IndexError

	​ 	 KeyError

	​ 	 StopIteration

	​ 	 IOError

	​ 	 EOFError

	​ 	 LocalJumpError

	​ 	 Math::DomainError

	​ 	 NameError

	​ 	 NoMethodError

	​ 	 RangeError

	​ 	 FloatDomainError

	​ 	 RegexpError

	​ 	 RuntimeError

	​ 	 Gem::Exception

	​ 	 SystemCallError

	​ 	 ThreadError

	​ 	 TypeError

	​ 	 ZeroDivisionError

	​ 	 SystemExit

	​ 	 Gem::SystemExitException

	​ 	 SystemStackError

Figure 1. Standard exception hierarchy

10.2 Handling Exceptions

 Here’s some simple code that uses the
 ​open-uri​
 library to
 download the contents of a web page and write it to a file, line by
 line:

	tut_exceptions/fetch_web_page/fetch1.rb
	​ 	require ​'open-uri'​

	​ 	web_page = open(​"http://pragprog.com/podcasts"​)

	​ 	output = File.open(​"podcasts.html"​, ​"w"​)

	​ 	​while​ line = web_page.gets

	​ 	 output.puts line

	​ 	​end​

	​ 	output.close

 What happens if we get a fatal error halfway through? We
 certainly don’t want to store an incomplete page to the output
 file.

 Let’s add some exception-handling code and see how it
 helps. To do exception handling, we
 enclose the code that could raise an exception in a
 ​begin​/​end​ block and use
 one or more ​rescue​ clauses to tell Ruby the
 types of exceptions we want to handle. Because we specified
 ​Exception​ in the ​rescue​ line,
 we’ll handle exceptions of class
 ​Exception​ and all of its subclasses
 (which covers all Ruby exceptions). In the error-handling
 block, we report the error, close and delete the output file,
 and then reraise the exception:

	tut_exceptions/fetch_web_page/fetch2.rb
	​ 	require ​'open-uri'​

	​ 	page = ​"podcasts"​

	​ 	file_name = ​"​#{page}​.html"​

	​ 	web_page = open(​"http://pragprog.com/​#{page}​"​)

	​ 	output = File.open(file_name, ​"w"​)

	​ 	​begin​

	​ 	 ​while​ line = web_page.gets

	​ 	 output.puts line

	​ 	 ​end​

	​ 	 output.close

	​ 	​rescue​ Exception

	​ 	 STDERR.puts ​"Failed to download ​#{page}​: ​#{$!}​"​

	​ 	 output.close

	​ 	 File.delete(file_name)

	​ 	 raise

	​ 	​end​

 When an exception is raised and independent of any subsequent
 exception handling, Ruby places a reference to the associated
 exception object into the global variable
 ​$!​
 (the exclamation point presumably mirroring our surprise that
 any of ​our​ code could cause errors). In the
 previous example, we used the ​$!​
 variable to format our error message.

 After closing and deleting the file, we call

 ​raise​
 with no parameters, which
 reraises the exception in ​$!​. This
 is a useful technique, because it allows you to write code that
 filters exceptions, passing on those you can’t handle to higher
 levels. It’s almost like implementing an inheritance hierarchy
 for error processing.

 You can have multiple ​rescue​ clauses in a
 ​begin​ block, and each
 ​rescue​ clause can specify multiple exceptions
 to catch. At the end of each ​rescue​ clause,
 you can give Ruby the name of a local variable to receive the
 matched exception. Most people find this more readable than
 using ​$!​ all over the
 place:

	​ 	​begin​

	​ 	 eval string

	​ 	​rescue​ SyntaxError, NameError => boom

	​ 	 print ​"String doesn't compile: "​ + boom

	​ 	​rescue​ StandardError => bang

	​ 	 print ​"Error running script: "​ + bang

	​ 	​end​

 How does Ruby decide which ​rescue​ clause to
 execute? It turns out that the processing is pretty similar to
 that used by the ​case​ statement. For each
 ​rescue​ clause in the ​begin​
 block, Ruby compares the raised exception against each of the
 parameters in turn. If the raised exception matches a
 parameter, Ruby executes the body of the
 ​rescue​ and stops looking. The match is made
 using ​​parameter​===$!​. For most exceptions, this
 means that the match will succeed if the exception named in the
 ​rescue​ clause is the same as the type of the
 currently thrown exception or is a superclass of that
 exception.[51] If you write a
 ​rescue​ clause with no parameter list, the
 parameter defaults to
 ​StandardError​.

 If no ​rescue​ clause matches or if an
 exception is raised outside a
 ​begin​/​end​ block, Ruby
 moves up the stack and looks for
 an exception handler in the caller, then in the caller’s caller,
 and so on.

 Although the parameters to the ​rescue​ clause
 are typically the names of exception classes, they can
 be arbitrary expressions (including method calls) that
 return an ​Exception​ class.

System Errors

	System errors are raised when a call to the operating system
	returns an error code. On POSIX systems, these errors have names such as
	​EAGAIN​ and ​EPERM​. (If you’re on a Unix box,
	you could type ​man errno​ to get a list of these
	errors.)

	Ruby takes these errors and wraps them each in a specific
	exception object. Each is a subclass of
	​SystemCallError​,
	and each is defined in a module called
	​Errno​. This
	means you’ll find exceptions with class names such as
	​Errno::EAGAIN​,
	​Errno::EIO​, and
	​Errno::EPERM​. If you want to get to the
	underlying system error code, ​Errno​
	exception objects each have a class constant called (somewhat
	confusingly)
	​Errno​
	that contains the value.

	​ 	Errno::EAGAIN::Errno ​# => 35​

	​ 	Errno::EPERM::Errno ​# => 1​

	​ 	Errno::EWOULDBLOCK::Errno ​# => 35​

	Note that ​EWOULDBLOCK​ and
	​EAGAIN​ have the same error number. This
	is a feature of the operating system of the computer used to
	produce this book—the two constants map to the same error
	number. To deal with this, Ruby arranges things so that
	​Errno::EAGAIN​ and
	​Errno::EWOULDBLOCK​ are treated
	identically in a ​rescue​ clause. If you ask
	to rescue one, you’ll rescue either. It does this by
	redefining SystemCallError#=== so that
	if two subclasses of ​SystemCallError​
	are compared, the comparison is done on their error number and
	not on their position in the hierarchy.

Tidying Up

	Sometimes you need to guarantee that some processing is done
	at the end of a block of code, regardless of whether an
	exception was raised. For example, you may have a file open
	on entry to the block, and you need to make sure it gets
	closed as the block exits.

	The ​ensure​ clause does just this.
	​ensure​ goes after the last ​rescue​
	clause and contains a chunk of code that will always be
	executed as the block terminates. It doesn’t matter if the
	block exits normally, if it raises and rescues an exception,
	or if it is terminated by an uncaught exception—the
	​ensure​ block will get run:

	​ 	f = File.open(​"testfile"​)

	​ 	​begin​

	​ 	 ​# .. process​

	​ 	​rescue​

	​ 	 ​# .. handle error​

	​ 	​ensure​

	​ 	 f.close

	​ 	​end​

	Beginners commonly make the mistake of putting the
	​File.open​ inside the ​begin​
	block. In this case, that would be incorrect, because
	
 ​open​
 can itself raise an
	exception. If that were to happen, you wouldn’t want to run
	the code in the ​ensure​ block, because there’d be no
	file to close.

	The ​else​ clause is a
	similar, although less useful, construct. If present, it goes
	after the ​rescue​ clauses and before any
	​ensure​. The body of an ​else​
	clause is executed only if no exceptions are raised by the
	main body of code.

	​ 	f = File.open(​"testfile"​)

	​ 	​begin​

	​ 	 ​# .. process​

	​ 	​rescue​

	​ 	 ​# .. handle error​

	​ 	​else​

	​ 	 puts ​"Congratulations-- no errors!"​

	​ 	​ensure​

	​ 	 f.close

	​ 	​end​

Play It Again

	Sometimes you may be able to correct the cause of an
	exception. In those cases, you can use the
	​retry​ statement within a
	​rescue​ clause to repeat the entire
	​begin​/​end​ block. Clearly, tremendous scope exists for
	infinite loops here, so this is a feature to use with caution
	(and with a finger resting lightly on the interrupt key).

	As an example of code that retries on exceptions, take a look
	at the following, adapted from Minero Aoki’s ​net/smtp.rb​
	library:

	​ 	@esmtp = true

	​ 	

	​ 	​begin​

	​ 	 ​# First try an extended login. If it fails, fall back to a normal login​

	​ 	 ​if​ @esmtp ​then​ @command.ehlo(helodom)

	​ 	 ​else​ @command.helo(helodom)

	​ 	 ​end​

	​ 	

	​ 	​rescue​ ProtocolError

	​ 	 ​if​ @esmtp ​then​

	​ 	 @esmtp = false

	​ 	 ​retry​

	​ 	 ​else​

	​ 	 raise

	​ 	 ​end​

	​ 	​end​

	This code tries first to connect to an SMTP server using the
	​EHLO​ command, which is not
	universally supported. If the connection attempt fails, the
	code sets the ​@esmtp​ variable to
	​false​ and retries the connection. If this
	fails a second time, the exception is raised up to the caller.

10.3 Raising Exceptions

 So far, we’ve been on the defensive, handling exceptions raised
 by others. It’s time to turn the
 tables and go on the offensive. (Some say your gentle authors
 are always offensive, but that’s a different book.)

 You can raise exceptions in your code with the Object#raise
 method (or its somewhat judgmental synonym, Object#fail):

	​ 	raise

	​ 	raise ​"bad mp3 encoding"​

	​ 	raise InterfaceException, ​"Keyboard failure"​, caller

 The first form simply reraises the current exception (or a
 ​RuntimeError​ if there is no current
 exception). This is used in exception handlers that
 intercept an exception before passing it on.

 The second form creates a new
 ​RuntimeError​
 exception, setting its message to the given string. This
 exception is then raised up the call stack.

 The third form uses the first argument to create an exception
 and then sets the associated message to the second argument and
 the stack trace to the third argument. Typically the first
 argument will be either the name of a class in the
 ​Exception​ hierarchy or a reference to an
 instance of one of these
 classes.[52]
 The stack trace is normally produced using the Object#caller
 method.

 Here are some typical examples of
 ​raise​
 in action:

	​ 	raise

	​ 	

	​ 	raise ​"Missing name"​ ​if​ name.nil?

	​ 	

	​ 	​if​ i >= names.size

	​ 	 raise IndexError, ​"​#{i}​ >= size (​#{names.size}​)"​

	​ 	​end​

	​ 	

	​ 	raise ArgumentError, ​"Name too big"​, caller

 In the last example, we remove the current routine from the
 stack backtrace, which is often useful in library modules. We do
 this using the
 ​caller​
 method, which
 returns the current stack trace. We can take this further; the
 following code removes two routines from the backtrace by
 passing only a subset of the call stack to the new
 exception:

	​ 	raise ArgumentError, ​"Name too big"​, caller[1..-1]

Adding Information to Exceptions

	You can define your own exceptions to hold any information
	that you need to pass out from the site of an error. For
	example, certain types of network errors may be transient
	depending on the circumstances. If such an error occurs and
	the circumstances are right, you could set a flag in the
	exception to tell the handler that it may be worth retrying
	the operation:

	tut_exceptions/retry_exception.rb
	​ 	​class​ RetryException < RuntimeError

	​ 	 attr :ok_to_retry

	​ 	 ​def​ initialize(ok_to_retry)

	​ 	 @ok_to_retry = ok_to_retry

	​ 	 ​end​

	​ 	​end​

	Somewhere down in the depths of the code, a transient error occurs:

	tut_exceptions/read_data.rb
	​ 	​def​ read_data(socket)

	​ 	 data = socket.read(512)

	​ 	 ​if​ data.nil?

	​ 	 raise RetryException.new(true), ​"transient read error"​

	​ 	 ​end​

	​ 	 ​# .. normal processing​

	​ 	​end​

	Higher up the call stack, we handle the exception:

	​ 	​begin​

	​ 	 stuff = read_data(socket)

	​ 	 ​# .. process stuff​

	​ 	​rescue​ RetryException => detail

	​ 	 ​retry​ ​if​ detail.ok_to_retry

	​ 	 raise

	​ 	​end​

10.4 catch and throw

 Although the exception mechanism of ​raise​ and
 ​rescue​ is great for abandoning execution when
 things go wrong, it’s sometimes nice to be able to jump out of
 some deeply nested construct during normal processing. This is
 where ​catch​ and ​throw​ come
 in
 handy.
 Here’s a trivial example—this code reads a list of words one
 at a time and adds them to an array. When done, it prints the
 array in reverse order. However, if any of the lines in the file
 doesn’t contain a valid word, we want to abandon the whole
 process.

	​ 	word_list = File.open(​"wordlist"​)

	​ 	catch (:done) ​do​

	​ 	 result = []

	​ 	 ​while​ line = word_list.gets

	​ 	 word = line.chomp

	​ 	 throw :done ​unless​ word =~ /^​\w​+$/

	​ 	 result << word

	​ 	 ​end​

	​ 	 puts result.reverse

	​ 	​end​

 ​catch​ defines a block that is labeled with
 the given name (which may be a ​Symbol​ or
 a ​String​). The block is executed normally
 until a ​throw​ is encountered.

 When Ruby encounters a ​throw​, it zips back up
 the call stack looking for a ​catch​ block with
 a matching symbol. When it finds
 it, Ruby unwinds the stack to that point and terminates the
 block. So, in the previous example, if the input does not
 contain correctly formatted lines, the ​throw​
 will skip to the end of the corresponding
 ​catch​, not only
 terminating the ​while​ loop but also skipping the code that writes
 the reversed list. If the ​throw​ is called with the optional
 second parameter, that value is returned as the value of the
 ​catch​. In this example, our word list incorrectly contains the
 line “*wow*.” Without the second parameter to ​throw​, the
 corresponding ​catch​ returns ​nil​.

	​ 	word_list = File.open(​"wordlist"​)

	​ 	word_in_error = catch(:done) ​do​

	​ 	 result = []

	​ 	 ​while​ line = word_list.gets

	​ 	 word = line.chomp

	​ 	 throw(:done, word) ​unless​ word =~ /^​\w​+$/

	​ 	 result << word

	​ 	 ​end​

	​ 	 puts result.reverse

	​ 	​end​

	​ 	​if​ word_in_error

	​ 	 puts ​"Failed: '​#{word_in_error}​' found, but a word was expected"​

	​ 	​end​

Produces:
	​ 	Failed: '*wow*' found, but a word was expected

 The following example uses a ​throw​ to
 terminate interaction with the user if ​!​ is typed in
 response to any prompt:

	tut_exceptions/catchthrow.rb
	​ 	​def​ prompt_and_get(prompt)

	​ 	 print prompt

	​ 	 res = readline.chomp

	​ 	 throw :quit_requested ​if​ res == ​"!"​

	​ 	 res

	​ 	​end​

	​ 	

	​ 	catch :quit_requested ​do​

	​ 	 name = prompt_and_get(​"Name: "​)

	​ 	 age = prompt_and_get(​"Age: "​)

	​ 	 sex = prompt_and_get(​"Sex: "​)

	​ 	 ​# ..​

	​ 	 ​# process information​

	​ 	​end​

 As this example illustrates, the ​throw​ does
 not have to appear within the static scope of the
 ​catch​.

Footnotes

	[51]	
This comparison happens because
 exceptions are classes, and classes in turn are kinds of
 ​Module​. The ​===​ method is
 defined for modules, returning ​true​ if the
 class of the operand is the same as or is a descendant of the
 receiver.

	[52]	
Technically, this argument can be any
 object that responds to the message

 ​exception​
 by returning an object such
 that ​object.kind_of?(Exception)​ is true.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 11
Basic Input and Output

 Ruby provides what at first sight looks like two separate sets of
 I/O routines. The first is the simple interface—we’ve been
 using it pretty much exclusively so far:

	​ 	print ​"Enter your name: "​

	​ 	name = gets

 A whole set of I/O-related methods is implemented in the
 ​Kernel​
 module—
 ​gets​
 ,

 ​open​
 ,
 ​print​
 ,

 ​printf​
 ,
 ​putc​
 ,

 ​puts​
 ,
 ​readline​
 ,

 ​readlines​
 , and

 ​test​
 —that makes it simple and
 convenient to write straightforward Ruby programs. These methods
 typically do I/O to standard input and standard output, which
 makes them useful for writing filters. You’ll find them documented
 under class ​Object​.

 The second way, which gives you a lot more control, is to use ​IO​
 objects.

11.1 What Is an IO Object?

 Ruby defines a single base class,
 ​IO​, to handle
 input and output. This base class is subclassed by classes
 ​File​ and
 ​BasicSocket​
 to provide more specialized behavior, but the principles are the
 same. An ​IO​ object is a bidirectional
 channel between a Ruby program and some external
 resource.[53] An
 ​IO​ object may have more to it than meets
 the eye, but in the end you still simply write to it and read
 from it.

 In this chapter, we’ll be concentrating on class
 ​IO​ and its most commonly used subclass,
 class ​File​. For more details on using the
 socket classes for networking, see the
 library description.

11.2 Opening and Closing Files

 As you may expect, you can create a new file object using File.new:

	​ 	file = File.new(​"testfile"​, ​"r"​)

	​ 	​# ... process the file​

	​ 	file.close

 The first parameter is the filename. The second is the mode
 string, which lets you open the file for reading, writing, or
 both. (Here we opened ​testfile​ for reading
 with an ​"r"​. We could also have used ​"w"​ for
 write or ​"r+"​ for read-write. The full list of allowed
 modes appears in the reference
 section.) You can also optionally specify file
 permissions when creating a file; see the description of File.new for
 details. After opening the file, we can work with it, writing
 and/or reading data as needed. Finally, as responsible software
 citizens, we close the file, ensuring that all buffered data is
 written and that all related resources are freed.

 But here Ruby can make life a little bit easier for you. The
 method File.open
 also opens a file. In regular use, it behaves just like File.new.
 However, if you associate a block with the call,

 ​open​
 behaves differently. Instead of
 returning a new ​File​ object, it invokes
 the block, passing the newly opened ​File​
 as a parameter. When the block exits, the file is automatically
 closed.

	​ 	File.open(​"testfile"​, ​"r"​) ​do​ |file|

	​ 	 ​# ... process the file​

	​ 	​end​ ​# <- file automatically closed here​

 This second approach has an added benefit. In the earlier case,
 if an exception is raised while processing the file, the call to
 ​file.close​ may not happen. Once the file variable goes
 out of scope, then garbage collection will eventually close it,
 but this may not happen for a while. Meanwhile, resources are
 being held open.

 This doesn’t happen with the block form of File.open. If an exception is raised inside the
 block, the file is closed before the exception is propagated on
 to the caller. It’s as if the
 ​open​

 method looks like the following:

	​ 	​class​ File

	​ 	 ​def​ File.open(*args)

	​ 	 result = f = File.new(*args)

	​ 	 ​if​ block_given?

	​ 	 ​begin​

	​ 	 result = ​yield​ f

	​ 	 ​ensure​

	​ 	 f.close

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 result

	​ 	 ​end​

	​ 	​end​

11.3 Reading and Writing Files

 The same methods that we’ve been using for “simple” I/O are available
 for all file objects. So,
 ​gets​
 reads a line from standard
 input (or from any files specified on the command line when the
 script was invoked), and ​file.gets​ reads a line from the file object
 file.

 For example, we could create a program called ​copy.rb​:

	tut_io/copy.rb
	​ 	​while​ line = gets

	​ 	 puts line

	​ 	​end​

 If we run this program with no arguments, it will read lines
 from the console and copy them back to the console. Note that
 each line is echoed once the Return key is pressed. (In this and
 later examples, we show user input in a bold font.) The ​^D​ is the end-of-file character on Unix
 systems.

	​ 	$ ​ruby copy.rb​

	​ 	​These are lines​

	​ 	These are lines

	​ 	​that I am typing​

	​ 	that I am typing

	​ 	​^D​

 We can also pass in one or more filenames on the command line, in
 which case
 ​gets​
 will read from each in turn:

	​ 	$ ​ruby copy.rb testfile​

	​ 	This is line one

	​ 	This is line two

	​ 	This is line three

	​ 	And so on...

 Finally, we can explicitly open the file and read from it:

	​ 	File.open(​"testfile"​) ​do​ |file|

	​ 	 ​while​ line = file.gets

	​ 	 puts line

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	This is line one

	​ 	This is line two

	​ 	This is line three

	​ 	And so on...

 As well as
 ​gets​
 , I/O objects enjoy an additional set of
 access methods, all intended to make our lives easier.

Iterators for Reading

	As well as using the usual loops to read data from an
	​IO​ stream, you can also use various
	Ruby iterators. IO#each_byte
	invokes a block with the next 8-bit byte from the
	​IO​ object (in this case, an object of
	type ​File​). The
	
 ​chr​
 method
	converts an integer to the corresponding ASCII
	character:

	​ 	File.open(​"testfile"​) ​do​ |file|

	​ 	 file.each_byte.with_index ​do​ |ch, index|

	​ 	 print ​"​#{ch.chr}​:​#{ch}​ "​

	​ 	 ​break​ ​if​ index > 10

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 n:110 e:101

	IO#each_line
	calls the block with each line from the file.
	In the next example, we’ll make the original newlines visible using
	String#dump so you can see that we’re not cheating:

	​ 	File.open(​"testfile"​) ​do​ |file|

	​ 	 file.each_line {|line| puts ​"Got ​#{line.dump}​"​ }

	​ 	​end​

Produces:
	​ 	Got "This is line one\n"

	​ 	Got "This is line two\n"

	​ 	Got "This is line three\n"

	​ 	Got "And so on...\n"

	You can pass
 ​each_line​
 any sequence
	of characters as a line separator, and it
	will break up the input accordingly, returning the line ending
	at the end of each line of data. That’s why you see the
	​\n​ characters in the output of the previous example.
	In the next example, we’ll use the character ​e​ as the
	line separator:

	​ 	File.open(​"testfile"​) ​do​ |file|

	​ 	 file.each_line(​"e"​) {|line| puts ​"Got ​#{ line.dump }​"​ }

	​ 	​end​

Produces:
	​ 	Got "This is line"

	​ 	Got " one"

	​ 	Got "\nThis is line"

	​ 	Got " two\nThis is line"

	​ 	Got " thre"

	​ 	Got "e"

	​ 	Got "\nAnd so on...\n"

	If you combine the idea of an iterator with the autoclosing
	block feature, you get IO.foreach. This
	method takes the name of an I/O source, opens it for reading,
	calls the iterator once for every line in the file, and then
	closes the file automatically:

	​ 	IO.foreach(​"testfile"​) {|line| puts line }

Produces:
	​ 	This is line one

	​ 	This is line two

	​ 	This is line three

	​ 	And so on...

	Or, if you prefer, you can retrieve an entire file into a string or
	into an array of lines:

	​ 	​# read into string​

	​ 	str = IO.read(​"testfile"​)

	​ 	str.length ​# => 66​

	​ 	str[0, 30] ​# => "This is line one\nThis is line "​

	​ 	

	​ 	​# read into an array​

	​ 	arr = IO.readlines(​"testfile"​)

	​ 	arr.length ​# => 4​

	​ 	arr[0] ​# => "This is line one\n"​

	Don’t forget that I/O is never certain in an uncertain
	world—exceptions will be raised on most errors, and you should be
	ready to rescue them and take appropriate action.

Writing to Files

	So far, we’ve been merrily calling
	
 ​puts​
 and
	
 ​print​
 , passing in any old object and
	trusting that Ruby will do the right thing (which, of course,
	it does). But what exactly ​is​ it
	doing?

	The answer is pretty simple. With a couple of exceptions,
	every object you pass to
 ​puts​
 and
	
 ​print​
 is converted to a string by
	calling that object’s
 ​to_s​
 method. If
	for some reason the
 ​to_s​
 method
	doesn’t return a valid string, a string is created containing
	the object’s class name and ID, something like
	​#<ClassName:0x123456>​:

	​ 	​# Note the "w", which opens the file for writing​

	​ 	File.open(​"output.txt"​, ​"w"​) ​do​ |file|

	​ 	 file.puts ​"Hello"​

	​ 	 file.puts ​"1 + 2 = ​#{1+2}​"​

	​ 	​end​

	​ 	

	​ 	​# Now read the file in and print its contents to STDOUT​

	​ 	puts File.read(​"output.txt"​)

Produces:
	​ 	Hello

	​ 	1 + 2 = 3

	The exceptions are simple, too. The
	​nil​ object will print as the empty
	string, and an array passed to
	
 ​puts​
 will be written as if each of
	its elements in turn were passed separately to
	
 ​puts​
 .

	What if you want to write binary data and don’t want Ruby
	messing with it? Well, normally you can simply use IO#print and pass in a string containing the
	bytes to be written. However, you can get at the low-level
	input and output routines if you really want—look at the
	documentation for IO#sysread and IO#syswrite.

	And how do you get the binary data into a string in the first
	place? The three common ways are to use a literal, poke it in
	byte by byte, or use Array#pack:[54]

	​ 	str1 = ​"\001\002\003"​ ​# => "\u0001\u0002\u0003"​

	​ 	str2 = ​""​

	​ 	str2 << 1 << 2 << 3 ​# => "\u0001\u0002\u0003"​

	​ 	[1, 2, 3].pack(​"c*"​) ​# => "\x01\x02\x03"​

But I Miss My C++ iostream

	 Sometimes there’s just no accounting for taste. However,
	 just as you can append an object to an
	 ​Array​ using the
	
 ​<<​
 operator, you can also
	 append an object to an output ​IO​
	 stream:
	
	​ 	endl = ​"\n"​

	​ 	STDOUT << 99 << ​" red balloons"​ << endl

Produces:
	​ 	99 red balloons

	 Again, the
 ​<<​
 method uses
	
 ​to_s​
 to convert its arguments to
	 strings before printing them.
	

	 Although we started off disparaging the poor
	
 ​<<​
 operator, there are
	 actually some good reasons for using it. Because other
	 classes (such as ​String​ and
	 ​Array​) also implement a
	
 ​<<​
 operator with similar
	 semantics, you can quite often write code that appends to
	 something using
 ​<<​
 without
	 caring whether it is added to an array, a file, or a
	 string. This kind of flexibility also makes unit testing
	 easy. We discuss this idea in greater detail in the chapter
	 on duck typing.
	
Doing I/O with Strings

	 There are often times where you need to work with code that assumes
	 it’s reading from or writing to one or more files. But you have a
	 problem: the data isn’t in files. Perhaps it’s available instead via a
	 SOAP service, or it has been passed to you as command-line
	 parameters. Or maybe you’re running unit tests, and you don’t want to
	 alter the real file system.
	

	 Enter
	 ​StringIO​
	 objects. They behave just like other I/O objects, but they
	 read and write strings, not files. If you open a
	 ​StringIO​ object for reading, you
	 supply it with a string. All read operations on the
	 ​StringIO​ object then read from this
	 string. Similarly, when you want to write to a
	 ​StringIO​ object, you pass it a string
	 to be filled.
	
	​ 	require ​'stringio'​

	​ 	

	​ 	ip = StringIO.new(​"now is\nthe time\nto learn\nRuby!"​)

	​ 	op = StringIO.new(​""​, ​"w"​)

	​ 	

	​ 	ip.each_line ​do​ |line|

	​ 	 op.puts line.reverse

	​ 	​end​

	​ 	op.string ​# => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"​

11.4 Talking to Networks

 Ruby is fluent in most of the Internet’s protocols, both low-level and
 high-level.

 For those who enjoy groveling around at the network level, Ruby
 comes with a set of classes in the socket library (described
 briefly in this book and in
 detail on the web page of the previous edition of this book at

 ​http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents​
). These
 give you access to TCP, UDP, SOCKS, and Unix domain sockets, as
 well as any additional socket types supported on your
 architecture. The library also provides helper classes to make
 writing servers easier. Here’s a simple program that gets
 information about our user website on a local web server using
 the HTTP ​OPTIONS​
 request:

	​ 	require ​'socket'​

	​ 	

	​ 	client = TCPSocket.open(​'127.0.0.1'​, ​'www'​)

	​ 	client.send(​"OPTIONS /~dave/ HTTP/1.0\n\n"​, 0) ​# 0 means standard packet​

	​ 	puts client.readlines

	​ 	client.close

Produces:
	​ 	HTTP/1.1 200 OK

	​ 	Date: Mon, 27 May 2013 17:31:00 GMT

	​ 	Server: Apache/2.2.22 (Unix) DAV/2 PHP/5.3.15 with Suhosin-Patch mod_ssl/2.2.22

	​ 	OpenSSL/0.9.8r

	​ 	Allow: GET,HEAD,POST,OPTIONS

	​ 	Content-Length: 0

	​ 	Connection: close

	​ 	Content-Type: text/html

 At a higher level, the ​lib/net​ set of
 library modules provides handlers for a set of
 application-level protocols (currently FTP, HTTP, POP, SMTP,
 and telnet). These are documented in the library section. For example, the following program
 lists the images that are displayed on this book’s home
 page. (To save space, we show only the first three):

	​ 	require ​'net/http'​

	​ 	

	​ 	http = Net::HTTP.new(​'pragprog.com'​, 80)

	​ 	response = http.get(​'/book/ruby3/programming-ruby-1-9'​)

	​ 	

	​ 	​if​ response.message == ​"OK"​

	​ 	 puts response.body.scan(/<img alt=".*?" src="(.*?)"/m).uniq[0,3]

	​ 	​end​

Produces:
	​ 	http://pragprog.com/assets/logo-c5c7f9c2f950df63a71871ba2f6bb115.gif

	​ 	http://pragprog.com/assets/drm-free80-9120ffac998173dc0ba7e5875d082f18.png

	​ 	http://imagery.pragprog.com/products/99/ruby3_xlargecover.jpg?1349967653

 Although attractively simple, this example could be improved
 significantly. In particular, it doesn’t do much in the way of error
 handling. It should really report “Not Found” errors (the infamous
 404) and should handle redirects (which happen when a web server gives
 the client an alternative address for the requested page).

 We can take this to a higher level still. By bringing the
 ​open-uri​
 library into a program, the Object#open
 method suddenly recognizes ​http://​ and ​ftp://​ URLs
 in the filename. Not just that—it also handles redirects
 automatically.

	​ 	require ​'open-uri'​

	​ 	

	​ 	open(​'http://pragprog.com'​) ​do​ |f|

	​ 	 puts f.read.scan(/<img alt=".*?" src="(.*?)"/m).uniq[0,3]

	​ 	​end​

Produces:
	​ 	http://pragprog.com/assets/logo-c5c7f9c2f950df63a71871ba2f6bb115.gif

	​ 	http://pragprog.com/assets/drm-free80-9120ffac998173dc0ba7e5875d082f18.png

	​ 	http://imagery.pragprog.com/products/353/jvrails2_xlargebeta.jpg?1368826914

11.5 Parsing HTML

 Having read HTML from a website, you might want to parse information
 out of it. Often, simple regular expressions do the job. In the
 example that follows, we’re using the ​%r{...}​ regular
 expression literal, because the match contains a forward slash character,
 and regular expressions are complex enough without having to add extra
 backslashes.

	​ 	require ​'open-uri'​

	​ 	page = open(​'http://pragprog.com/titles/ruby3/programming-ruby-1-9'​).read

	​ 	​if​ page =~ %r{<title>(.*?)</title>}m

	​ 	 puts ​"Title is ​#{$1.inspect}​"​

	​ 	​end​

Produces:
	​ 	Title is "The Pragmatic Bookshelf | Programming Ruby 1.9"

 But regular expressions won’t always work. For example, if
 someone had an extra space in the ​<title>​ tag,
 the match would have failed. For real-world use, you probably
 want to use a library that can parse HTML (and XML) properly. Although not
 part of Ruby, the Nokogiri library is very
 popular.[55] It’s a very rich library—we’ll
 only scratch the surface here. Documentation is available inside
 the gem.

	​ 	require ​'open-uri'​

	​ 	require ​'nokogiri'​

	​ 	

	​ 	doc = Nokogiri::HTML(open(​"http://pragprog.com/"​))

	​ 	

	​ 	puts ​"Page title is "​ + doc.xpath(​"//title"​).inner_html

	​ 	

	​ 	​# Output the first paragraph in the div with an id="copyright"​

	​ 	​# (nokogiri supports both xpath and css-like selectors)​

	​ 	puts doc.css(​'div#copyright p'​)

	​ 	

	​ 	​# Output the second hyperlink in the site-links div using xpath and css​

	​ 	puts ​"\nSecond hyperlink is"​

	​ 	puts doc.xpath(​'id("site-links")//a[2]'​)

	​ 	puts doc.css(​'#site-links a:nth-of-type(2)'​)

Produces:
	​ 	Page title is The Pragmatic Bookshelf

	​ 	<p>

	​ 	 The Pragmatic Bookshelf™ is an imprint of

	​ 	 The Pragmatic Programmers, LLC.

	​ 	

	​ 	 Copyright © 1999–2013 The Pragmatic Programmers, LLC.

	​ 	 All Rights Reserved.

	​ 	 </p>

	​ 	

	​ 	Second hyperlink is

	​ 	About Us

	​ 	About Us

 Nokogiri can also update and create HTML and XML.

Footnotes

	[53]	
For those who just have to know the
 implementation details, this means that a single
 ​IO​ object can sometimes be managing more
 than one operating system file descriptor. For example, if you
 open a pair of pipes, a single ​IO​ object
 contains both a read pipe and a write pipe.

	[54]	
The
	
 ​pack​
 method takes an array of data and packs
	it into a string. See the description in the reference
	section.

	[55]	
Install it using ​gem install
 nokogiri​.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 12
Fibers, Threads, and Processes

 Ruby gives you two basic ways to organize your program so that you
 can run different parts of it apparently “at the same time.”
 Fibers let you suspend execution of one part of your program and
 run some other part. For more decoupled execution, you can split
 up cooperating tasks ​within​ the program, using multiple
 threads, or you can split up tasks between different programs,
 using multiple processes. Let’s look at each in turn.

12.1 Fibers

 Ruby 1.9 introduced

 ​ fibers​

 . Although the name suggests some
 kind of lightweight thread, Ruby’s fibers are really
 just a very simple coroutine mechanism. They let you write
 programs that look like you are using threads
 without incurring any of the complexity inherent in
 threading. Let’s look at a simple example. We’d like to analyze
 a text file, counting the occurrence of each word. We could do
 this (without using fibers) in a simple loop:

	​ 	counts = Hash.new(0)

	​ 	File.foreach(​"testfile"​) ​do​ |line|

	​ 	 line.scan(/​\w​+/) ​do​ |word|

	​ 	 word = word.downcase

	​ 	 counts[word] += 1

	​ 	 ​end​

	​ 	​end​

	​ 	counts.keys.sort.each {|k| print ​"​#{k}​:​#{counts[k]}​ "​}

Produces:
	​ 	and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

 However, this code is messy—it mixes
 word finding with word counting.
 We could fix this by writing a method that reads the file and yields
 each successive word. But fibers give us a simpler solution:

	​ 	words = Fiber.new ​do​

	​ 	 File.foreach(​"testfile"​) ​do​ |line|

	​ 	 line.scan(/​\w​+/) ​do​ |word|

	​ 	 Fiber.yield word.downcase

	​ 	 ​end​

	​ 	 ​end​

	​ 	 nil

	​ 	​end​

	​ 	

	​ 	counts = Hash.new(0)

	​ 	​while​ word = words.resume

	​ 	 counts[word] += 1

	​ 	​end​

	​ 	counts.keys.sort.each {|k| print ​"​#{k}​:​#{counts[k]}​ "​}

Produces:
	​ 	and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

 The constructor for the
 ​Fiber​ class
 takes a block and returns a fiber object. For now, the code in
 the block is not executed.

 Subsequently, we can call

 ​resume​

 on the fiber
 object. This causes the block to start execution. The file is opened,
 and the
 ​scan​
 method starts extracting individual
 words. However, at this point, ​Fiber.yield​ is
 invoked. This suspends execution of the
 block—the
 ​resume​
 method that we called to run the block
 returns any value given to ​Fiber.yield​.

 Our main program enters the body of the loop and increments the
 count for the first word returned by the fiber. It then loops
 back up to the top of the ​while​ loop, which
 again calls ​words.resume​ while evaluating the
 condition. The
 ​resume​
 call goes back
 into the block, continuing just after it left off (at the line
 after the ​Fiber.yield​ call).

 When the fiber runs out of words in the file, the
 ​foreach​ block exits, and the code in
 the fiber terminates. Just as with a method, the return value of
 the fiber will be the value of the last expression evaluated (in
 this case the ​nil​).[56] The next time

 ​resume​
 is called, it returns this value
 ​nil​. You’ll get a
 ​FiberError​
 if you attempt to call
 ​resume​
 again
 after this.

 Fibers are often used to generate values from infinite sequences on
 demand. Here’s a fiber that returns successive integers divisible by
 2 and not divisible by 3:

	​ 	twos = Fiber.new ​do​

	​ 	 num = 2

	​ 	 loop ​do​

	​ 	 Fiber.yield(num) ​unless​ num % 3 == 0

	​ 	 num += 2

	​ 	 ​end​

	​ 	​end​

	​ 	10.times { print twos.resume, ​" "​ }

Produces:
	​ 	2 4 8 10 14 16 20 22 26 28

 Because fibers are just objects, you can pass them around, store them
 in variables, and so on. Fibers can be resumed only in the thread that
 created them.

 Ruby 2.0 adds a new twist to this—you can now use lazy
 enumerators to gracefully handle infinite lists. These are
 described ​Lazy Enumerators in Ruby 2​.«2.0»

Fibers, Coroutines, and Continuations

	The basic fiber support in Ruby is limited—fibers can yield
	control only back to the code that resumed them. However, Ruby
	comes with two standard libraries that extend this
	behavior. The ​fiber​ library
	(described in the library
	section) adds full coroutine support. Once it is
	loaded, fibers gain a
 ​transfer​

	method,
	allowing them to transfer control to arbitrary other fibers.

	A related but more general mechanism is the
	
 ​ continuation​

 . A
	continuation is a way of recording the state of your running
	program (where it is, the current binding, and so on) and then
	resuming from that state at some point in the future. You can
	use continuations to implement coroutines (and other new
	control structures). Continuations have also been used to
	store the state of a running web application between
	requests—a continuation is created when the application
	sends a response to the browser; then, when the next request
	arrives from that browser, the continuation is invoked, and
	the application continues from where it left off. You enable
	continuations in Ruby by requiring the ​continuation​
	library, described in the library section.

12.2 Multithreading

 Often the simplest way to do two things at once is to use

 ​ Ruby threads​

 . Prior to Ruby 1.9, these were
 implemented as green threads—threads were switched
 within the interpreter. In Ruby 1.9,
 threading is now performed by the operating system. This is an
 improvement, but not quite as big an improvement as you might
 want. Although threads can now take advantage of multiple
 processors (and multiple cores in a single processor), there’s a
 major catch. Many Ruby extension libraries are not thread safe
 (because they were written for the old threading model). So,
 Ruby compromises: it uses native operating system threads but
 operates only a single thread at a time. You’ll never see two
 threads in the same application running Ruby code truly
 concurrently. (You will, however, see threads busy doing, say,
 I/O while another thread executes Ruby code. That’s part of the
 point.)

Creating Ruby Threads

	Creating a new thread is pretty
	straightforward. The code that
	follows is a simple example. It downloads a set of web pages
	in parallel. For each URL that it is asked to download, the
	code creates a separate thread that handles the HTTP
	transaction.

	​ 	require ​'net/http'​

	​ 	

	​ 	pages = ​%w(www.rubycentral.org slashdot.org www.google.com)​

	​ 	

	​ 	threads = pages.map ​do​ |page_to_fetch|

	​ 	 Thread.new(page_to_fetch) ​do​ |url|

	​ 	 http = Net::HTTP.new(url, 80)

	​ 	 print ​"Fetching: ​#{url}​\n"​

	​ 	 resp = http.get(​'/'​)

	​ 	 print ​"Got ​#{url}​: ​#{resp.message}​\n"​

	​ 	 ​end​

	​ 	​end​

	​ 	threads.each {|thr| thr.join }

Produces:
	​ 	Fetching: www.rubycentral.org

	​ 	Fetching: slashdot.org

	​ 	Fetching: www.google.com

	​ 	Got www.google.com: OK

	​ 	Got slashdot.org: OK

	​ 	Got www.rubycentral.org: OK

	Let’s look at this code in more detail, because a few subtle
	things are happening.

	New threads are created with the Thread.new
	call. It is given a block that contains the code to be run in
	a new thread. In our case, the block uses the
	​net/http​
	library to fetch the top page from each of our nominated
	sites. Our tracing clearly shows that these fetches are going
	on in parallel.

	When we create the thread, we pass the required URL as a
	parameter. This parameter is passed to the block as
	​url​. Why do we do this, rather
	than simply using the value of the variable
	​page_to_fetch​ within the block?

	A thread shares all global, instance, and local variables that
	are in existence at the time the thread
	starts. As anyone
	with a kid brother can tell you, sharing isn’t always a good
	thing. In this case, all three threads would share the
	variable ​page_to_fetch​. The first
	thread gets started, and
	​page_to_fetch​ is set to
	​"www.rubycentral.org"​. In the meantime, the loop creating
	the threads is still running. The second time around,
	​page_to_fetch​ gets set to
	​"slashdot.org"​. If the first thread has not yet finished
	using the ​page_to_fetch​ variable,
	it will suddenly start using this new value. These kinds of
	bugs are difficult to track down.

	However, local variables created within a thread’s block are
	truly local to that thread—each thread will have its own
	copy of these variables. In our case, the variable
	​url​ will be set at the time the
	thread is created, and each thread will have its own copy of
	the page address. You can pass any number of arguments into
	the block via Thread.new.

	This code also illustrates a gotcha. Inside the loop, the
	threads use
 ​print​
 to write out the
	messages, rather than
 ​puts​
 . Why?
	Well, behind the scenes,
 ​puts​

	splits its work into two chunks: it writes its argument, and
	then it writes a newline. Between these two, a thread could
	get scheduled, and the output would be interleaved. Calling
	
 ​print​
 with a single string that
	already contains the newline gets around the problem.

Manipulating Threads

	 Another subtlety occurs on the last line in our download
	 program. Why do we call
 ​join​
 on
	 each of the threads we created?
	

	 When a Ruby program terminates, all threads are killed,
	 regardless of their states. However, you can wait for a
	 particular thread to finish by calling that thread’s Thread#join
	 method. The calling thread will block until the given
	 thread is finished. By calling
	
 ​join​
 on each of the requester
	 threads, you can make sure that all three requests have
	 completed before you terminate the main program. If you
	 don’t want to block forever, you can give
	
 ​join​
 a timeout parameter—if the
	 timeout expires before the thread terminates, the
	
 ​join​
 call returns
	 ​nil​. Another variant of
	
 ​join​
 , the method Thread#value,
	 returns the value of the last statement executed by the
	 thread.
	

	 In addition to
 ​join​
 , a few other
	 handy routines are used to manipulate threads. The current
	 thread is always accessible using Thread.current. You can obtain a list of all
	 threads using Thread.list, which returns
	 a list of all ​Thread​ objects that are
	 runnable or stopped. To determine the status of a
	 particular thread, you can use Thread#status and Thread#alive?.
	

	 You can adjust the priority of a thread using
	 Thread#priority=. Higher-priority
	 threads will run before lower-priority threads. We’ll talk
	 more about thread scheduling, and stopping and starting
	 threads, in just a bit.
	
Thread Variables

	 A thread can normally access
	 any variables that are in scope when the thread is created. Variables
	 local to the block containing the thread code are local to the thread and are not
	 shared.
	 But what if you need per-thread variables that can be
	 accessed by other threads—including the main thread?
	 Class ​Thread​ has a
	 facility that allows thread-local variables to be created
	 and accessed by name. You simply treat the thread object as
	 if it were a ​Hash​, writing to
	 elements using
 ​[]=​
 and reading them
	 back using
 ​[]​
 . In the example that
	 follows, each thread records the current value of the
	 variable ​count​ in a
	 thread-local variable with the key ​mycount​. To do
	 this, the code uses the symbol ​:mycount​ when
	 indexing thread objects. (A
 ​ race
	 condition​

 [57] exists in this code, but we
	 haven’t talked about synchronization yet, so we’ll just
	 quietly ignore it for now.)
	
	​ 	count = 0

	​ 	threads = 10.times.map ​do​ |i|

	​ 	 Thread.new ​do​

	​ 	 sleep(rand(0.1))

	​ 	 Thread.current[:mycount] = count

	​ 	 count += 1

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	threads.each {|t| t.join; print t[:mycount], ​", "​ }

	​ 	puts ​"count = ​#{count}​"​

Produces:
	​ 	7, 0, 6, 8, 4, 5, 1, 9, 2, 3, count = 10

	 The main thread waits for the subthreads to finish and then prints
	 that thread’s value of ​count​. Just to make it
	 interesting, each thread waits a random time before recording
	 the value.
	
Threads and Exceptions

	What happens if a thread raises an unhandled exception
	depends on the setting of the
	
 ​abort_on_exception​

	flag (documented in the reference) and on the setting
	of the interpreter’s ​$DEBUG​ flag
	(described in the Ruby options
	section).

	If
 ​abort_on_exception​
 is
	​false​ and the debug flag is not enabled
	(the default condition), an unhandled exception simply kills
	the current thread—all the rest continue to run. In fact,
	you don’t even hear about the exception until you issue a
	
 ​join​
 on the thread that raised it.
	In the following example, thread 1 blows up and fails to
	produce any output. However, you can still see the trace from
	the other threads.

	​ 	threads = 4.times.map ​do​ |number|

	​ 	 Thread.new(number) ​do​ |i|

	​ 	 raise ​"Boom!"​ ​if​ i == 1

	​ 	 print ​"​#{i}​\n"​

	​ 	 ​end​

	​ 	​end​

	​ 	puts ​"Waiting"​

	​ 	sleep 0.1

	​ 	puts ​"Done"​

Produces:
	​ 	0

	​ 	2

	​ 	Waiting

	​ 	3

	​ 	Done

	You normally don’t sleep waiting for threads to
	terminate—you’d use
	
 ​join​
 . If you join to a thread
	that has raised an exception, then that exception will be
	raised in the thread that does the joining:

	​ 	threads = 4.times.map ​do​ |number|

	​ 	 Thread.new(number) ​do​ |i|

	​ 	 raise ​"Boom!"​ ​if​ i == 1

	​ 	 print ​"​#{i}​\n"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"Waiting"​

	​ 	threads.each ​do​ |t|

	​ 	 ​begin​

	​ 	 t.join

	​ 	 ​rescue​ RuntimeError => e

	​ 	 puts ​"Failed: ​#{e.message}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	puts ​"Done"​

Produces:
	​ 	0

	​ 	Waiting

	​ 	2

	​ 	3

	​ 	Failed: Boom!

	​ 	Done

	However, set ​abort_on_exception​
	to ​true​ or use ​-d​ to turn on the
	debug flag, and an unhandled exception kills the main
	thread, so the message ​Done​ never
	appears. (This is different from Ruby 1.8, where the
	exception killed all running threads.)

	​ 	Thread.abort_on_exception = true

	​ 	threads = 4.times.map ​do​ |number|

	​ 	 Thread.new(number) ​do​ |i|

	​ 	 raise ​"Boom!"​ ​if​ i == 1

	​ 	 print ​"​#{i}​\n"​

	​ 	 ​end​

	​ 	​end​

	​ 	puts ​"Waiting"​

	​ 	threads.each {|t| t.join }

	​ 	puts ​"Done"​

Produces:
	​ 	0

	​ 	2

	​ 	prog.rb:4:in `block (2 levels) in <main>': Boom! (RuntimeError)

12.3 Controlling the Thread Scheduler

 In a well-designed application, you’ll normally just let threads
 do their thing; building timing dependencies into a
 multithreaded application is generally considered to be bad
 form,
 because it makes the code far more complex and also prevents the
 thread scheduler from optimizing the execution of your program.

 The ​Thread​ class provides a number of methods
 that control the scheduler. Invoking Thread.stop stops the current thread, and invoking
 Thread#run arranges for a particular thread
 to be run. Thread.pass deschedules the
 current thread, allowing others to run, and Thread#join and ​#value​
 suspend the calling thread until a given thread finishes. These
 last two are the only low-level thread control methods that the
 average program should use. In fact, we now consider most of the
 other low-level thread control methods too dangerous to use
 correctly in programs we write.[58]
 Fortunately, Ruby has support for higher-level thread
 synchronization.

12.4 Mutual Exclusion

 Let’s start by looking at a simple example of a race
 condition—multiple threads updating a shared variable:

	​ 	sum = 0

	​ 	threads = 10.times.map ​do​

	​ 	 Thread.new ​do​

	​ 	 100_000.times ​do​

	​ 	 new_value = sum + 1

	​ 	 print ​"​#{new_value}​ "​ ​if​ new_value % 250_000 == 0

	​ 	 sum = new_value

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	threads.each(&:join)

	​ 	puts ​"\nsum = ​#{sum}​"​

Produces:
	​ 	250000 250000 250000 250000 250000 500000 500000

	​ 	sum = 599999

 We create 10 threads, and each increments the shared
 ​sum​ variable 100,000 times. And
 yet, when the threads all finish, the final value in
 ​sum​ is considerably less than
 1,000,000. Clearly we have a race condition. The reason is
 the
 ​print​
 call that sits between the
 code that calculates the new value and the code that stores it
 back into ​sum​.
 In one thread, the updated value gets calculated—let’s say
 that the value of ​sum​ is
 99,999, so ​new_value​ will be
 100,000. Before storing the new value back into sum, we call

 ​print​
 , and that causes another thread
 to be scheduled (because we’re waiting for the I/O to complete).
 So a second thread also fetches the value of 99,999 and
 increments it. It stores 100,000 into ​sum​, then loops
 around again and stores 100,001, and 100,002, and so
 on. Eventually the original thread continues running because it
 finished writing its message. It immediate stores it’s value of
 100,000 into the sum, overwriting (and losing) all the values
 stored by the other thread(s). We lost data.

 Fortunately, that’s easy to fix. We use the built-in class
 ​Mutex​ to create
 synchronized regions—areas of code that only one thread may
 enter at a time.

 Some grade schools coordinate students’ access to the bathrooms
 during class time using a system of bathroom passes. Each room
 has two passes, one for girls and one for boys. To visit the
 bathroom, you have to take the appropriate pass with you. If
 someone else already has that pass, you have to cross your legs
 and wait for them to return. The bathroom pass controls access
 to the critical resource—you have to own the pass to use the
 resource, and only one person can own it at a time.

 A mutex is like that bathroom pass. You create a mutex to control
 access to a resource and then lock it when you want to use that
 resource. If no one else has it locked, your thread continues to run. If
 someone else has already locked that particular mutex, your thread
 suspends (crossing its legs) until they unlock it.

 Here’s a version of our counting code that uses a mutex to ensure
 that only one thread updates the count at a time:

	​ 	sum = 0

	​ 	mutex = Mutex.new

	​ 	threads = 10.times.map ​do​

	​ 	 Thread.new ​do​

	​ 	 100_000.times ​do​

	​ 	 mutex.lock ​#### one at a time, please​

	​ 	 new_value = sum + 1 ​#​

	​ 	 print ​"​#{new_value}​ "​ ​if​ new_value % 250_000 == 0

	​ 	 sum = new_value ​#​

	​ 	 mutex.unlock ​####​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	threads.each(&:join)

	​ 	puts ​"\nsum = ​#{sum}​"​

Produces:
	​ 	250000 500000 750000 1000000

	​ 	sum = 1000000

 This pattern is so common that the ​Mutex​
 class provides Mutex#synchronize,
 which locks the mutex, runs the code in a block, and then unlocks
 the mutex. This also ensures that the mutex will get unlocked
 even if an exception is thrown while it is locked.

	​ 	sum = 0

	​ 	mutex = Mutex.new

	​ 	threads = 10.times.map ​do​

	​ 	 Thread.new ​do​

	​ 	 100_000.times ​do​

	​ 	 mutex.synchronize ​do​ ​####​

	​ 	 new_value = sum + 1 ​#​

	​ 	 print ​"​#{new_value}​ "​ ​if​ new_value % 250_000 == 0

	​ 	 sum = new_value ​#​

	​ 	 ​end​ ​####​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	threads.each(&:join)

	​ 	puts ​"\nsum = ​#{sum}​"​

Produces:
	​ 	250000 500000 750000 1000000

	​ 	sum = 1000000

 Sometimes you want to claim a lock if a mutex
 is currently unlocked, but you don’t want to suspend the current
 thread if it isn’t. The Mutex#try_lock
 method takes the lock if it can, but returns
 ​false​ if the lock is already taken. The
 following code illustrates a hypothetical currency
 converter. The ​ExchangeRates​ class caches
 rates from an online feed, and a background thread updates that
 cache once an hour. This update takes a minute or so. In the
 main thread, we interact with our user. However, rather than
 just go dead if we can’t claim the mutex that protects the rate
 object, we use
 ​try_lock​
 and print a
 status message if the update is in process.

	​ 	rate_mutex = Mutex.new

	​ 	exchange_rates = ExchangeRates.new

	​ 	exchange_rates.update_from_online_feed

	​ 	

	​ 	Thread.new ​do​

	​ 	 loop ​do​

	​ 	 sleep 3600

	​ 	 rate_mutex.synchronize ​do​

	​ 	 exchange_rates.update_from_online_feed

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	loop ​do​

	​ 	 print ​"Enter currency code and amount: "​

	​ 	 line = gets

	​ 	 ​if​ rate_mutex.try_lock

	​ 	 puts(exchange_rates.convert(line)) ​ensure​ rate_mutex.unlock

	​ 	 ​else​

	​ 	 puts ​"Sorry, rates being updated. Try again in a minute"​

	​ 	 ​end​

	​ 	​end​

 If you are holding the lock on a mutex and you want to
 temporarily unlock it, allowing others to use it, you can call
 Mutex#sleep. We
 could use this to rewrite the previous example:

	​ 	rate_mutex = Mutex.new

	​ 	exchange_rates = ExchangeRates.new

	​ 	exchange_rates.update_from_online_feed

	​ 	

	​ 	Thread.new ​do​

	​ 	 rate_mutex.lock

	​ 	 loop ​do​

	​ 	 rate_mutex.sleep 3600

	​ 	 exchange_rates.update_from_online_feed

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	loop ​do​

	​ 	 print ​"Enter currency code and amount: "​

	​ 	 line = gets

	​ 	 ​if​ rate_mutex.try_lock

	​ 	 puts(exchange_rates.convert(line)) ​ensure​ rate_mutex.unlock

	​ 	 ​else​

	​ 	 puts ​"Sorry, rates being updated. Try again in a minute"​

	​ 	 ​end​

	​ 	​end​

Queues and Condition Variables

	Most of the examples in this chapter use the
	​Mutex​ class for synchronization. However, Ruby
	comes with another library that is particularly useful when
	you need to synchronize work between producers and
	consumers. The ​Queue​
	class, located in the
	​thread​
	library, implements a thread-safe queuing mechanism. Multiple
	threads can add and remove objects from each queue, and each
	addition and removal is guaranteed to be atomic. For an
	example, see the description of the ​thread​
	library.

	A condition variable is a controlled way of communicating an
	event (or a condition) between two threads. One thread can
	wait on the condition, and the other can signal it. The
	​thread​ library extends threads with
	condition variables. Again, see the Monitor library for an
	example.

12.5 Running Multiple Processes

 Sometimes you may want to split a task into several
 process-sized chunks—maybe to take advantage of all those
 cores in your shiny new processor. Or perhaps you need to run a
 separate process that was not written in Ruby. Not a problem:
 Ruby has a number of methods by which you may spawn and manage
 separate processes.

Spawning New Processes

	You have several ways to spawn a separate process; the easiest
	is to run some command and wait for it to complete. You may
	find yourself doing this to run some separate command or
	retrieve data from the host system. Ruby does this for you
	with the
 ​system​
 and backquote (or
	backtick) methods:

	​ 	system(​"tar xzf test.tgz"​) ​# => true​

	​ 	`date` ​# => "Mon May 27 12:31:17 CDT 2013\n"​

	The method Object#system
	executes the given command in a subprocess; it returns
	​true​ if the command was found and
	executed properly. It raises an exception if the
	command cannot be found. It returns
	​false​ if the command ran but returned an
	error. In case of failure, you’ll find the subprocess’s exit
	code in the global variable
	​$?​.

	One problem with
 ​system​
 is that the
	command’s output will simply go to the same destination as
	your program’s output, which may not be what you want. To
	capture the standard output of a subprocess, you can use the
	backquote characters, as with ​‘date‘​ in the previous
	example. Remember that you may need to use String#chomp to remove the line-ending
	characters from the result.

	OK, this is fine for simple cases—we can run some other
	process and get the return status. But many times we need a
	bit more control than that. We’d like to carry on a
	conversation with the subprocess, possibly sending it data and
	possibly getting some back. The method IO.popen
	does just this. The
 ​popen​
 method runs
	a command as a subprocess and connects that subprocess’s
	standard input and standard output to a Ruby
	​IO​ object. Write to the
	​IO​ object, and the subprocess can read
	it on standard input. Whatever the subprocess writes is
	available in the Ruby program by reading from the
	​IO​ object.

	For example, on our systems one of the more useful utilities
	is ​pig​, a program that reads words
	from standard input and prints them in pig latin (or igpay
	atinlay). We can use this when our Ruby programs need to send
	us output that our five-year-olds shouldn’t be able to
	understand:

	​ 	pig = IO.popen(​"local/util/pig"​, ​"w+"​)

	​ 	pig.puts ​"ice cream after they go to bed"​

	​ 	pig.close_write

	​ 	puts pig.gets

Produces:
	​ 	iceway eamcray afterway eythay ogay otay edbay

	This example illustrates both the apparent simplicity and the
	more subtle real-world complexities involved in driving
	subprocesses through pipes. The code certainly looks simple
	enough: open the pipe, write a phrase, and read back the
	response. But it turns out that the
	​pig​ program doesn’t flush the
	output it writes. Our original attempt at this example, which
	had a ​pig.puts​ followed by a ​pig.gets​, hung
	forever. The ​pig​ program processed
	our input, but its response was never written to the pipe. We
	had to insert the ​pig.close_write​ line. This sends
	an end-of-file to ​pig​’s standard
	input, and the output we’re looking for gets flushed as
	​pig​ terminates.

	
 ​popen​
 has one more twist. If the
	command you pass it is a single minus sign (-),
	
 ​popen​
 will fork a new Ruby
	interpreter. Both this
	and the original interpreter will continue running by
	returning from the
 ​popen​
 . The
	original process will receive an ​IO​
	object back, and the child will receive
	​nil​. This works only on operating
	systems that support the fork(2)
	call (and for now this excludes Windows).

	​ 	pipe = IO.popen(​"-"​,​"w+"​)

	​ 	​if​ pipe

	​ 	 pipe.puts ​"Get a job!"​

	​ 	 STDERR.puts ​"Child says '​#{pipe.gets.chomp}​'"​

	​ 	​else​

	​ 	 STDERR.puts ​"Dad says '​#{gets.chomp}​'"​

	​ 	 puts ​"OK"​

	​ 	​end​

Produces:
	​ 	Dad says 'Get a job!'

	​ 	Child says 'OK'

	As well as the
 ​popen​
 method, some
	platforms support Object#fork,
	Object#exec,
	and IO.pipe.
	The filenaming convention of many ​IO​ methods
	and Object#open will also spawn
	subprocesses if you put a ​|​ as the first character of the
	filename (see the introduction to class
	​IO​ for details). Note that you
	​cannot​ create pipes using File.new; it’s just for files.

Independent Children

	Sometimes we don’t need to be quite so hands-on; we’d like to give
	the subprocess its assignment and then go on about our business.
	Later, we’ll check to see whether it has finished. For
	instance, we may want to kick off a long-running external sort:

	​ 	exec(​"sort testfile > output.txt"​) ​if​ fork.nil?

	​ 	​# The sort is now running in a child process​

	​ 	​# carry on processing in the main program​

	​ 	

	​ 	​# ... dum di dum ...​

	​ 	

	​ 	​# then wait for the sort to finish​

	​ 	Process.wait

	The call to Object#fork
	returns a process ID in the parent and returns
	​nil​ in the child, so the child process
	will perform the Object#exec
	call and run sort. Later, we issue a Process.wait
	call, which waits for the sort to complete (and
	returns its process ID).

	If you’d rather be notified when a child exits (instead of
	just waiting around), you can set up a signal handler using
	Object#trap
	(described in the reference). Here we set up a
	trap on ​SIGCLD​, which is the signal sent on “death
	of child process”:

	​ 	trap(​"CLD"​) ​do​

	​ 	 pid = Process.wait

	​ 	 puts ​"Child pid ​#{pid}​: terminated"​

	​ 	​end​

	​ 	

	​ 	fork { exec(​"sort testfile > output.txt"​) }

	​ 	

	​ 	​# Do other stuff...​

Produces:
	​ 	Child pid 22026: terminated

	For more information on using and controlling external
	processes, see the documentation for Object#open and IO.popen, as
	well as the section on the ​Process​
	module.

Blocks and Subprocesses

	IO.popen works with a block in pretty much
	the same way as File.open does. If you
	pass it a command, such as ​date​,
	the block will be passed an ​IO​ object
	as a parameter:

	​ 	IO.popen(​"date"​) {|f| puts ​"Date is ​#{f.gets}​"​ }

Produces:
	​ 	Date is Mon May 27 12:31:17 CDT 2013

	The ​IO​ object will be closed
	automatically when the code block exits, just as it is with
	File.open.

	If you associate a block with
	
 ​fork​
 ,
	the code in the block will be run in a Ruby subprocess, and
	the parent will continue after the block:

	​ 	fork ​do​

	​ 	 puts ​"In child, pid = ​#$$​"​

	​ 	 exit 99

	​ 	​end​

	​ 	pid = Process.wait

	​ 	puts ​"Child terminated, pid = ​#{pid}​, status = ​#{$?.exitstatus}​"​

Produces:
	​ 	In child, pid = 22033

	​ 	Child terminated, pid = 22033, status = 99

	​$?​ is a
	global variable that contains information on the termination
	of a subprocess. See the section on ​Process::Status​
	for more information.

Footnotes

	[56]	
 In
 fact, the ​nil​ is not strictly needed,
 as
 ​foreach​
 will return
 ​nil​ when it terminates. The
 ​nil​ just makes it
 explicit.

	[57]	
A race condition occurs when
	 two or more pieces of code (or hardware) both try to access
	 some shared resource, and the outcome changes depending on
	 the order in which they do so. In the example here, it is
	 possible for one thread to set the value of its
	 ​mycount​ variable to
	 ​count​, but before it gets a
	 chance to increment ​count​, the
	 thread gets descheduled and another thread reuses the same
	 value of ​count​. These issues
	 are fixed by synchronizing the access to shared resources
	 (such as the ​count​
	 variable).

	[58]	
And, worse, some of
 these primitives are unsafe in use. Charles Nutter of JRuby fame
 has a blog post that illustrates one problem:

 ​http://blog.headius.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html​
 .

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 13
Unit Testing

 ​ Unit testing​

 is testing that focuses on
 small chunks (units) of code,
 typically individual methods or lines within methods. This is in
 contrast to most other forms of testing, which consider the system as
 a whole.

 Why focus in so tightly? It’s because ultimately all software is
 constructed in layers; code in one layer relies on the correct
 operation of the code in the layers below. If this underlying
 code turns out to contain bugs, then all higher layers are
 potentially affected. This is a big problem. Fred may write some
 code with a bug one week, and then you may end up calling it,
 indirectly, two months later. When your code generates incorrect
 results, it will take you a while to track down the problem in
 Fred’s method. And when you ask Fred why he wrote it that way,
 the likely answer will be “I don’t remember. That was months
 ago.”

 If instead Fred had unit tested his code when he wrote it, two
 things would have happened. First, he’d have found the bug while
 the code was still fresh in his mind. Second, because the unit
 test was only looking at the code he’d just written, when the bug
 ​did​ appear, he’d only have to look through a handful
 of lines of code to find it, rather than doing archaeology on the
 rest of the code base.

 Unit testing helps developers write better code. It helps
 before the code is actually written, because thinking about testing leads
 you naturally to create better, more decoupled designs. It helps as
 you’re writing the code, because it gives you instant feedback on how
 accurate your code is. And it helps after you’ve written code, both
 because it gives you the ability to check that the code still works
 and because it helps others understand how to use your
 code.

 Unit testing is a Good Thing.

 But why have a chapter on unit testing in the middle of a book on
 Ruby? Well, it’s because unit testing and languages such as Ruby
 seem to go hand in hand. The flexibility of Ruby makes writing
 tests easy, and the tests make it easier to verify that your code
 is working. Once you get into the swing of it, you’ll find
 yourself writing a little code, writing a test or two, verifying
 that everything is copacetic, and then writing some more code.

 Unit testing is also pretty trivial—run a program that calls
 part of your application’s code, get back some results, and then
 check the results are what you expected.

 Let’s say we’re testing a Roman number class. So far, the code is
 pretty simple: it just lets us create an object representing a certain
 number and display that object in Roman numerals:

	unittesting/romanbug.rb
	​ 	​# This code has bugs​

	​ 	​class​ Roman

	​ 	 MAX_ROMAN = 4999

	​ 	

	​ 	 ​def​ initialize(value)

	​ 	 ​if​ value <= 0 || value > MAX_ROMAN

	​ 	 fail ​"Roman values must be > 0 and <= ​#{MAX_ROMAN}​"​

	​ 	 ​end​

	​ 	 @value = value

	​ 	 ​end​

	​ 	

	​ 	 FACTORS = [[​"m"​, 1000], [​"cm"​, 900], [​"d"​, 500], [​"cd"​, 400],

	​ 	 [​"c"​, 100], [​"xc"​, 90], [​"l"​, 50], [​"xl"​, 40],

	​ 	 [​"x"​, 10], [​"ix"​, 9], [​"v"​, 5], [​"iv"​, 4],

	​ 	 [​"i"​, 1]]

	​ 	

	​ 	 ​def​ to_s

	​ 	 value = @value

	​ 	 roman = ​""​

	​ 	 ​for​ code, factor ​in​ FACTORS

	​ 	 count, value = value.divmod(factor)

	​ 	 roman << code ​unless​ count.zero?

	​ 	 ​end​

	​ 	 roman

	​ 	 ​end​

	​ 	​end​

 We could test this code by writing another program, like
 this:

	​ 	require_relative ​'romanbug'​

	​ 	

	​ 	r = Roman.new(1)

	​ 	fail ​"'i' expected"​ ​unless​ r.to_s == ​"i"​

	​ 	

	​ 	r = Roman.new(9)

	​ 	fail ​"'ix' expected"​ ​unless​ r.to_s == ​"ix"​

 However, as the number of tests in a project grows, this kind of
 ad hoc approach can start to get complicated to manage. Over the
 years, various unit testing frameworks have emerged to help
 structure the testing process. Ruby comes with Ryan Davis’ MiniTest.[59]

 MiniTest is largely compatible with Test::Unit but without a lot
 of bells and whistles (test-case runners, GUI support, and so
 on). However, because there are areas where it is different and
 because there are tens of thousands of tests out there that
 assume the Test::Unit API, Ryan has also added a compatibility
 layer to MiniTest. For a little bit more information on the
 differences between the two, see ​MiniTest::Unit vs. Test::Unit​. In this chapter, we’ll be using the
 Test::Unit wrapper, because it automatically runs tests for
 us. But we’ll also be using some of the new assertions available
 in MiniTest.

MiniTest::Unit vs. Test::Unit

 Folks have been using Test::Unit with Ruby for a good number of
 years now. However, the core team decided to replace the testing
 framework that comes as standard with Ruby with something a little
 leaner. Ryan Davis and Eric Hodel wrote MiniTest::Unit as a partial drop-in replacement for
 Test::Unit.

 Most of the assertions in MiniTest mirror those in
 Test::Unit::TestCase. The major differences are the absence of

 ​assert_not_raises​
 and

 ​assert_not_throws​
 and the renaming of
 all the negative assertions. In Test::Unit you’d say

 ​assert_not_nil(x)​
 and

 ​assert_not(x)​
 ; in MiniTest you’d use

 ​refute_nil(x)​
 and

 ​refute(x)​
 .

 MiniTest also drops most of the little-used features of Test::Unit,
 including test cases, GUI runners, and some assertions.

 And, probably most significantly, MiniTest does not automatically
 invoke the test cases when you execute a file that
 contains them.

 So, you have three basic options with this style of unit testing:

	

	 ​require "minitest/unit"​, and use the MiniTest
	 functionality.
	

	

	 ​require "test/unit"​, and use MiniTest with the
	 Test::Unit compatibility layer. This adds in the assertions
	 in ​Additional Test::Unit assertions​, and enables the
	 autorun functionality.
	

	

	 You can install the ​test-unit​ gem and get all the
	 original Test::Unit functionality back, along with a bunch
	 of new assertions.
	

13.1 The Testing Framework

 The Ruby testing framework is basically three facilities wrapped into a
 neat package:

	

	 It gives you a way of expressing individual tests.
	

	

	 It provides a framework for structuring the tests.
	

	

	 It gives you flexible ways of invoking the tests.
	

Assertions == Expected Results

	 Rather than have you write series of individual
	 ​if​ statements in your tests, the testing
	 framework provides a set of assertions that achieve the same
	 thing. Although a number of different styles of assertion
	 exist, they all follow basically the same pattern. Each
	 gives you a way of specifying a desired result
	 and a way of passing in the actual outcome. If the
	 actual doesn’t equal the expected, the assertion outputs a
	 nice message and records the failure.

	 For example, we could rewrite our previous test of the Roman
	 class using the testing framework. For now, ignore the
	 scaffolding code at the start and end, and just look at the
	
 ​assert_equal​
 methods:

	​ 	require_relative ​'romanbug'​

	​ 	require ​'test/unit'​

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	

	​ 	 ​def​ test_simple

	​ 	 assert_equal(​"i"​, Roman.new(1).to_s)

	​ 	 assert_equal(​"ix"​, Roman.new(9).to_s)

	​ 	 ​end​

	​ 	

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.006937s, 144.1545 tests/s, 288.3091 assertions/s.

	​ 	1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 The first assertion says that we’re expecting the Roman number string
	 representation of 1 to be “i,” and the second test says we expect 9
	 to be “ix.” Luckily for us, both expectations are met, and the
	 tracing reports that our tests pass.
	 Let’s add a few more tests:

	​ 	require_relative ​'romanbug'​

	​ 	require ​'test/unit'​

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	 ​def​ test_simple

	​ 	 assert_equal(​"i"​, Roman.new(1).to_s)

	​ 	 assert_equal(​"ii"​, Roman.new(2).to_s)

	​ 	 assert_equal(​"iii"​, Roman.new(3).to_s)

	​ 	 assert_equal(​"iv"​, Roman.new(4).to_s)

	​ 	 assert_equal(​"ix"​, Roman.new(9).to_s)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	F

	​ 	Finished tests in 0.006579s, 151.9988 tests/s, 303.9976 assertions/s.

	​ 	 1) Failure:

	​ 	test_simple(TestRoman) [prog.rb:6]:

	​ 	<"ii"> expected but was

	​ 	<"i">.

	​ 	

	​ 	1 tests, 2 assertions, 1 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 Uh-oh! The second assertion failed. See how the error message uses the
	 fact that the assert knows both the expected and actual values: it
	 expected to get “ii” but instead got “i.” Looking at our code, you can see
	 a clear bug in
 ​to_s​
 . If the count after dividing by
	 the factor is greater than zero, then we should output that many Roman
	 digits. The existing code outputs just one. The fix is easy:

	​ 	​def​ to_s

	​ 	 value = @value

	​ 	 roman = ​""​

	​ 	 ​for​ code, factor ​in​ FACTORS

	​ 	 count, value = value.divmod(factor)

	​ 	 roman << (code * count)

	​ 	 ​end​

	​ 	 roman

	​ 	​end​

	 Now let’s run our tests again:

	​ 	require_relative ​'roman3'​

	​ 	require ​'test/unit'​

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	 ​def​ test_simple

	​ 	 assert_equal(​"i"​, Roman.new(1).to_s)

	​ 	 assert_equal(​"ii"​, Roman.new(2).to_s)

	​ 	 assert_equal(​"iii"​, Roman.new(3).to_s)

	​ 	 assert_equal(​"iv"​, Roman.new(4).to_s)

	​ 	 assert_equal(​"ix"​, Roman.new(9).to_s)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.006027s, 165.9200 tests/s, 829.6001 assertions/s.

	​ 	1 tests, 5 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 Looking good. We can now go a step further and remove some of that
	 duplication:

	​ 	require_relative ​'roman3'​

	​ 	require ​'test/unit'​

	​ 	

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	

	​ 	 NUMBERS = { 1 => ​"i"​, 2 => ​"ii"​, 3 => ​"iii"​, 4 => ​"iv"​, 5 => ​"v"​, 9 => ​"ix"​ }

	​ 	

	​ 	 ​def​ test_simple

	​ 	 NUMBERS.each ​do​ |arabic, roman|

	​ 	 r = Roman.new(arabic)

	​ 	 assert_equal(roman, r.to_s)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.006280s, 159.2357 tests/s, 955.4140 assertions/s.

	​ 	1 tests, 6 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 What else can we test? Well, the constructor checks that the
	 number we pass in can be represented as a Roman number,
	 throwing an exception if it can’t. Let’s test the
	 exception:

	​ 	require_relative ​'roman3'​

	​ 	require ​'test/unit'​

	​ 	

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	

	​ 	 NUMBERS = { 1 => ​"i"​, 2 => ​"ii"​, 3 => ​"iii"​, 4 => ​"iv"​, 5 => ​"v"​, 9 => ​"ix"​ }

	​ 	

	​ 	 ​def​ test_simple

	​ 	 NUMBERS.each ​do​ |arabic, roman|

	​ 	 r = Roman.new(arabic)

	​ 	 assert_equal(roman, r.to_s)

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_range

	​ 	 ​# no exception for these two...​

	​ 	 Roman.new(1)

	​ 	 Roman.new(4999)

	​ 	 ​# but an exception for these​

	​ 	 assert_raises(RuntimeError) { Roman.new(0) }

	​ 	 assert_raises(RuntimeError) { Roman.new(5000) }

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	..

	​ 	Finished tests in 0.006736s, 296.9121 tests/s, 1187.6485 assertions/s.

	​ 	2 tests, 8 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 We could do a lot more testing on our Roman class, but let’s
	 move on to bigger and better things. Before we go, though, we
	 should say that we’ve only scratched the surface of the set
	 of assertions available inside the testing framework. For
	 example, for every positive assertion, such as
	
 ​assert_equal​
 , there’s a negative
	 refutation (in this case
	
 ​refute_equal​
). The additional assertions
	 you get if you load the Test::Unit shim (which we do in this
	 chapter) are listed in ​Additional Test::Unit assertions​, and a full
	 list of the MiniTest assertions is given in Section 13.5, ​Test::Unit assertions​.

	 The final parameter to every assertion is a message that will
	 be output before any failure message. This normally isn’t
	 needed, because the failure messages are normally pretty
	 reasonable. The one exception is the test
 ​refute_nil​
 (or
	
 ​assert_not_nil​
 in Test::Unit), where
	 the message “Expected nil to not be nil” doesn’t help
	 much. In that case, you may want to add some annotation of
	 your own. (This code
	 assumes the existence of some kind of ​User​ class.)

	​ 	require ​'test/unit'​

	​ 	​class​ ATestThatFails < Test::Unit::TestCase

	​ 	 ​def​ test_user_created

	​ 	 user = User.find(1)

	​ 	 refute_nil(user, ​"User with ID=1 should exist"​)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	F

	​ 	Finished tests in 0.007598s, 131.6136 tests/s, 131.6136 assertions/s.

	​ 	 1) Failure:

	​ 	test_user_created(ATestThatFails) [prog.rb:11]:

	​ 	User with ID=1 should exist.

	​ 	Expected nil to not be nil.

	​ 	

	​ 	1 tests, 1 assertions, 1 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

13.2 Structuring Tests

 Earlier we asked you to ignore the scaffolding around our tests. Now
 it’s time to look at it.

 You include the testing framework facilities in your unit
 test either with this:

	​ 	require ​'test/unit'​

 or, for raw MiniTest, with this:

	​ 	require ​'minitest/unit'​

 Unit tests seem to fall quite naturally into high-level
 groupings, called
 ​ test cases​

 , and lower-level groupings,
 which are the test methods themselves. The test cases generally contain
 all the tests relating to a particular facility or feature. Our
 Roman number class is fairly simple, so all the tests for it
 will probably be in a single test case. Within the test case,
 you’ll probably want to organize your assertions into a number
 of test methods, where each method contains the assertions for
 one type of test; one method could check regular number
 conversions, another could test error handling, and so on.

 The classes that represent test cases must be subclasses of
 Test::Unit::TestCase. The methods that hold the assertions must have
 names that start with ​test​. This is important: the testing
 framework uses reflection to find tests to run, and only methods whose
 names start with ​test​ are eligible.

 Quite often you’ll find all the test methods within a test
 case start by setting up a particular scenario. Each test
 method then probes some aspect of that scenario. Finally, each
 method may then tidy up after itself. For example, we could be
 testing a class that extracts jukebox playlists from a
 database. (We’re using the low-level DBI library to access the
 database.)

	​ 	require ​'test/unit'​

	​ 	require_relative ​'playlist_builder'​

	​ 	

	​ 	​class​ TestPlaylistBuilder < Test::Unit::TestCase

	​ 	

	​ 	 ​def​ test_empty_playlist

	​ 	 db = DBI.connect(​'DBI:mysql:playlists'​)

	​ 	 pb = PlaylistBuilder.new(db)

	​ 	 assert_empty(pb.playlist)

	​ 	 db.disconnect

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_artist_playlist

	​ 	 db = DBI.connect(​'DBI:mysql:playlists'​)

	​ 	 pb = PlaylistBuilder.new(db)

	​ 	 pb.include_artist(​"krauss"​)

	​ 	 refute_empty(pb.playlist, ​"Playlist shouldn't be empty"​)

	​ 	 pb.playlist.each ​do​ |entry|

	​ 	 assert_match(/krauss/i, entry.artist)

	​ 	 ​end​

	​ 	 db.disconnect

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_title_playlist

	​ 	 db = DBI.connect(​'DBI:mysql:playlists'​)

	​ 	 pb = PlaylistBuilder.new(db)

	​ 	 pb.include_title(​"midnight"​)

	​ 	 refute_empty(pb.playlist, ​"Playlist shouldn't be empty"​)

	​ 	 pb.playlist.each ​do​ |entry|

	​ 	 assert_match(/midnight/i, entry.title)

	​ 	 ​end​

	​ 	 db.disconnect

	​ 	 ​end​

	​ 	

	​ 	 ​# ...​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	...

	​ 	Finished tests in 0.008272s, 362.6692 tests/s, 5560.9284 assertions/s.

	​ 	3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 Each test starts by connecting to the database and creating a new
 playlist builder. Each test ends by disconnecting from the
 database. (The idea of using a real database in unit tests is
 questionable, because unit tests are supposed to be fast running, context
 independent, and easy to set up, but it illustrates a point.)

 We can extract all this common code into

 ​ setup​

 and
 ​ teardown​

 methods. Within a ​TestCase​ class, a
 method called
 ​setup​

 will be run before each and every test method, and a method
 called
 ​teardown​
 will be run
 after each test method finishes. Let’s emphasize that: the

 ​setup​
 and

 ​teardown​
 methods bracket each test,
 rather than being run once per test case. This is shown in the code that follows.

	​ 	require ​'test/unit'​

	​ 	require_relative ​'playlist_builder'​

	​ 	

	​ 	​class​ TestPlaylistBuilder < Test::Unit::TestCase

	​ 	

	​ 	 ​def​ setup

	​ 	 @db = DBI.connect(​'DBI:mysql:playlists'​)

	​ 	 @pb = PlaylistBuilder.new(@db)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ teardown

	​ 	 @db.disconnect

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_empty_playlist

	​ 	 assert_empty(@pb.playlist)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_artist_playlist

	​ 	 @pb.include_artist(​"krauss"​)

	​ 	 refute_empty(@pb.playlist, ​"Playlist shouldn't be empty"​)

	​ 	 @pb.playlist.each ​do​ |entry|

	​ 	 assert_match(/krauss/i, entry.artist)

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ test_title_playlist

	​ 	 @pb.include_title(​"midnight"​)

	​ 	 refute_empty(@pb.playlist, ​"Playlist shouldn't be empty"​)

	​ 	 @pb.playlist.each ​do​ |entry|

	​ 	 assert_match(/midnight/i, entry.title)

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# ...​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	...

	​ 	Finished tests in 0.007683s, 390.4725 tests/s, 5987.2446 assertions/s.

	​ 	3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 Inside the
 ​teardown​
 method, you can detect whether the
 preceding test succeeded with the
 ​passed?​
 method.

13.3 Organizing and Running Tests

 The test cases we’ve shown so far are all runnable Test::Unit
 programs. If, for example, the test case for the Roman class
 was in a file called ​test_roman.rb​, we
 could run the tests from the command line using this:

	​ 	$ ​ruby test_roman.rb​

	​ 	Run options:

	​ 	# Running tests:

	​ 	..

	​ 	Finished tests in 0.004540s, 440.5286 tests/s, 1762.1145 assertions/s.

	​ 	2 tests, 8 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 Test::Unit is clever enough to run the tests even though there’s no main program. It
 collects all the test case classes and runs each in turn.

 If we want, we can ask it to run just a particular test method:

	​ 	$ ​ruby test_roman.rb -n test_range​

	​ 	Run options: -n test_range

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.004481s, 223.1645 tests/s, 446.3289 assertions/s.

	​ 	1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 or tests whose names match a regular expression:

	​ 	$ ​ruby test_roman.rb -n /range/​

	​ 	Run options: -n /range/

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.005042s, 198.3340 tests/s, 396.6680 assertions/s.

	​ 	1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 This last capability is a great way of grouping your tests. Use
 meaningful names, and you’ll be able to run (for example) all the
 shopping-cart-related tests by simply running tests with names
 matching ​/cart/​.

Where to Put Tests

	 Once you get into unit testing, you may well find yourself generating
	 almost as much test code as production code. All of those tests have
	 to live somewhere. The problem is that if you put them alongside your
	 regular production code source files, your directories start to get
	 bloated—effectively you end up with two files for every production
	 source file.

	 A common solution is to have a ​test/​
	 directory where you place all your test source files. This
	 directory is then placed parallel to the directory containing
	 the code you’re developing. For example, for our Roman
	 numeral class, we may have this:

	​ 	roman/

	​ 	 lib/

	​ 	 roman.rb

	​ 	 ​other files...​

	​ 	

	​ 	 test/

	​ 	 test_roman.rb

	​ 	 ​other tests...​

	​ 	

	​ 	 ​other stuff...​

	 This works well as a way of organizing files but leaves you
	 with a small problem: how do you tell Ruby where to find the
	 library files to test? For example, if our
	 ​TestRoman​ test code was in a
	 ​test/​ subdirectory, how does Ruby know where to find
	 the ​roman.rb​ source file, the thing we’re trying to
	 test?

	 An option that ​doesn’t​ work reliably is to build
	 the path into
 ​require​
 statements in
	 the test code and run the tests from the
	 ​test/​ subdirectory:

	​ 	require ​'test/unit'​

	​ 	require ​'../lib/roman'​

	​ 	

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	 ​# ...​

	​ 	​end​

	 Why doesn’t it work? It’s because our
	 ​roman.rb​ file may itself require other
	 source files in the library we’re writing. It’ll load them
	 using
 ​require​
 (without the leading
	 ​../lib/​), and because they aren’t in Ruby’s
	 ​$LOAD_PATH​,
	 they won’t be found. Our test just won’t run. A second, less
	 immediate problem is that we won’t be able to use these same
	 tests to test our classes once installed on a target system,
	 because then they’ll be referenced simply using
	 ​require ’roman’​.

	 A better solution is to assume that your Ruby program is
	 packaged according to the conventions we’ll be discussing in
	 Section 16.2, ​Organizing Your Source​. In this arrangement, the
	 top-level ​lib​ directory of your application is assumed to be in
	 Ruby’s load path by all other components of the
	 application. Your test code would then be as follows:

	​ 	require ​'test/unit'​

	​ 	require ​'roman'​

	​ 	

	​ 	​class​ TestRoman < Test::Unit::TestCase

	​ 	 ​# ...​

	​ 	​end​

	 And you’d run it using this:

	​ 	$ ​ruby -I path/to/app/lib path/to/app/test/test_roman.rb​

	 The normal case, where you’re already in the application’s
	 directory, would be as follows:

	​ 	$ ​ruby -I lib test/test_roman.rb​

	 This would be a good time to investigate using Rake to automate your
	 testing.

Test Suites

	 After a while, you’ll grow a decent collection of test cases
	 for your application. You may well find that these tend to
	 cluster: one group of cases tests a particular set of
	 functions, and another group tests a different set of
	 functions. If so, you can group those test cases together
	 into
 ​ test suites​

 , letting you run them all as a
	 group.

	 This is easy to do—just create a Ruby
	 file that requires ​test/unit​ and then requires each of the files
	 holding the test cases you want to group. This way, you build yourself
	 a hierarchy of test material.

	

	 You can run individual tests by name.
	

	

	 You can run all the tests in a file by running that file.
	

	

	 You can group a number of files into a test suite and run them
	 as a unit.
	

	

	 You can group test suites into other test suites.
	

	 This gives you the ability to run your unit tests at a level
	 of granularity that you control, testing just one method or
	 testing the entire application.

	 At this point, it’s worthwhile to think about naming
	 conventions. Nathaniel Talbott, the
	 author of Test::Unit, uses the convention that test cases are
	 in files named ​tc_​xxx​​ and
	 test suites are in files named
	 ​ts_​xxx​​. Most people seem to use
	 ​test_​ as the test-case filename prefix:

	​ 	​# file ts_dbaccess.rb​

	​ 	require_relative ​'test/unit'​

	​ 	require_relative ​'test_connect'​

	​ 	require_relative ​'test_query'​

	​ 	require_relative ​'test_update'​

	​ 	require_relative ​'test_delete'​

	 Now, if you run Ruby on the file
	 ​ts_dbaccess.rb​, you execute the
	 test cases in the four files you’ve required.

13.4 RSpec and Shoulda

 The built-in testing framework has a lot going for it. It is simple,
 and it is compatible in style with frameworks from other languages
 (such as JUnit for Java and NUnit for C#).

 However, there’s a growing movement in the Ruby community to
 use a different style of testing. So-called behavior-driven
 development
 encourages people to write tests in terms of your expectations
 of the program’s behavior in a given set of circumstances. In
 many ways, this is like testing according to the content of

 ​ user stories​

 , a common
 requirements-gathering technique in agile methodologies. With
 these testing frameworks, the focus is not on
 assertions. Instead, you write expectations.

 Although both RSpec and Shoulda allow this style of testing,
 they focus on different things. RSpec is very much concerned
 with driving the design side of things. You can write and
 execute specs with RSpec well before you’ve written a line of
 application code. These specs, when run, will output the user
 stories that describe your application. Then, as you fill in
 the code, the specs mutate into tests that validate that your
 code meets your expectations.

 Shoulda, on the other hand, is really more focused on the
 testing side. Whereas RSpec is a complete framework, Shoulda
 works inside a testing framework, Test::Unit or RSpec. You can
 even mix Shoulda tests with regular Test::Unit and RSpec test
 methods.

 Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches

	 The scoring system used in lawn tennis originated in the Middle
	 Ages. As players win successive points, their scores are shown as 15,
	 30, and 40. The next point is a win unless your opponent also has 40. If
	 you’re both tied at 40, then different rules apply—the first player
	 with a clear two-point advantage is the winner.[60]

	 We have to write a class that handles this scoring
	 system. Let’s use RSpec specifications to drive the process.
	 We install RSpec with ​gem install rspec​. We’ll then create our
	 first specification file:

	unittesting/bdd/1/ts_spec.rb
	​ 	describe ​"TennisScorer"​, ​"basic scoring"​ ​do​

	​ 	 it ​"should start with a score of 0-0"​

	​ 	 it ​"should be 15-0 if the server wins a point"​

	​ 	 it ​"should be 0-15 if the receiver wins a point"​

	​ 	 it ​"should be 15-15 after they both win a point"​

	​ 	 ​# ...​

	​ 	​end​

	 This file contains nothing more than a description of an
	 aspect of the tennis scoring class (that we haven’t yet
	 written, by the way). It contains a description of the basic
	 scoring system. Inside the description are a set of four
	 expectations (​it "should start..."​ and so on).
	 We can run this specification using the
	 ​rspec​ command:[61]

	​ 	$ ​rspec ts_spec.rb​

	​ 	****

	​ 	Pending:

	​ 	 TennisScorer basic scoring should start with a score of 0-0

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:2

	​ 	 TennisScorer basic scoring should be 15-0 if the server wins a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:3

	​ 	 TennisScorer basic scoring should be 0-15 if the receiver wins a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:4

	​ 	 TennisScorer basic scoring should be 15-15 after they both win a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:5

	​ 	Finished in 0.00039 seconds

	​ 	4 examples, 0 failures, 4 pending

	 That’s pretty cool. Executing the tests echoes our expectations back at
	 us, telling us that each has yet to be implemented. Coding, like life,
	 is full of these disappointments. However, unlike life, fixing things
	 is just a few keystrokes away. Let’s start by meeting the first
	 expectation—when a game starts, the score should be 0 to 0. We’ll
	 start by fleshing out the test:

	unittesting/bdd/2/ts_spec.rb
	​ 	require_relative ​"tennis_scorer"​

	​ 	

	​ 	describe TennisScorer, ​"basic scoring"​ ​do​

	​ 	 it ​"should start with a score of 0-0"​ ​do​

	​ 	 ts = TennisScorer.new

	​ 	 ts.score.should == ​"0-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 15-0 if the server wins a point"​

	​ 	 it ​"should be 0-15 if the receiver wins a point"​

	​ 	 it ​"should be 15-15 after they both win a point"​

	​ 	​end​

	 Note that we’ve assumed we have a class
	 ​TennisScorer​ in a file called
	 ​tennis_scorer.rb​. Our first expectation now has a code
	 block associated with it. Inside that block, we create a
	 ​TennisScorer​ and then use a funky
	 RSpec syntax to validate that the score starts out at 0 to
	 0. This particular aspect of RSpec probably generates the
	 most controversy—some people love it, others find it
	 awkward. Either way, ​ts.score.should == "0-0"​ is
	 basically the same as an assertion in Test::Unit.

	 We’ll beef up our ​TennisScorer​ class,
	 but only enough to let it satisfy this assertion:

	unittesting/bdd/2/tennis_scorer.rb
	​ 	​class​ TennisScorer

	​ 	 ​def​ score

	​ 	 ​"0-0"​

	​ 	 ​end​

	​ 	​end​

	 We’ll run our spec again:

	​ 	$ ​rspec ts_spec.rb​

	​ 	.***

	​ 	Pending:

	​ 	 TennisScorer basic scoring should be 15-0 if the server wins a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:9

	​ 	 TennisScorer basic scoring should be 0-15 if the receiver wins a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:10

	​ 	 TennisScorer basic scoring should be 15-15 after they both win a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:11

	​ 	Finished in 0.00054 seconds

	​ 	4 examples, 0 failures, 3 pending

	 Note that we now have three pending expectations; the first one has
	 been satisfied.

	 Let’s write the next expectation:

	unittesting/bdd/3/ts_spec.rb
	​ 	require_relative ​"tennis_scorer"​

	​ 	

	​ 	describe TennisScorer, ​"basic scoring"​ ​do​

	​ 	 it ​"should start with a score of 0-0"​ ​do​

	​ 	 ts = TennisScorer.new

	​ 	 ts.score.should == ​"0-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 15-0 if the server wins a point"​ ​do​

	​ 	 ts = TennisScorer.new

	​ 	 ts.give_point_to(:server)

	​ 	 ts.score.should == ​"15-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 0-15 if the receiver wins a point"​

	​ 	 it ​"should be 15-15 after they both win a point"​

	​ 	​end​

	 This won’t run, because our
	 ​TennisScorer​ class doesn’t implement a
	
 ​give_point_to​
 method. Let’s rectify
	 that. Our code isn’t finished, but it lets the test pass:

	unittesting/bdd/3/tennis_scorer.rb
	​ 	​class​ TennisScorer

	​ 	

	​ 	 OPPOSITE_SIDE_OF_NET = { :server => :receiver, :receiver => :server }

	​ 	

	​ 	 ​def​ initialize

	​ 	 @score = { :server => 0, :receiver => 0 }

	​ 	 ​end​

	​ 	

	​ 	 ​def​ score

	​ 	 ​"​#{@score[:server]*15}​-​#{@score[:receiver]*15}​"​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ give_point_to(player)

	​ 	 other = OPPOSITE_SIDE_OF_NET[player]

	​ 	 fail ​"Unknown player ​#{player}​"​ ​unless​ other

	​ 	 @score[player] += 1

	​ 	 ​end​

	​ 	​end​

	 Again, we’ll run the specification:

	​ 	$ ​rspec ts_spec.rb​

	​ 	..**

	​ 	Pending:

	​ 	 TennisScorer basic scoring should be 0-15 if the receiver wins a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:15

	​ 	 TennisScorer basic scoring should be 15-15 after they both win a point

	​ 	 # Not yet implemented

	​ 	 # ./ts_spec.rb:16

	​ 	Finished in 0.00067 seconds

	​ 	4 examples, 0 failures, 2 pending

	 We’re now meeting two of the four initial expectations. But,
	 before we move on, note there’s a bit of duplication in the
	 specification: both our expectations create a new
	 ​TennisScorer​ object. We can fix that
	 by using a ​before​ stanza in the specification. This
	 works a bit like the
 ​setup​
 method in
	 Test::Unit, allowing us to run code before expectations are
	 executed. Let’s use this feature and, at the same time, build
	 out the last two expectations:

	unittesting/bdd/4/ts_spec.rb
	​ 	require_relative ​"tennis_scorer"​

	​ 	

	​ 	describe TennisScorer, ​"basic scoring"​ ​do​

	​ 	 before(:each) ​do​

	​ 	 @ts = TennisScorer.new

	​ 	 ​end​

	​ 	

	​ 	 it ​"should start with a score of 0-0"​ ​do​

	​ 	 @ts.score.should == ​"0-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 15-0 if the server wins a point"​ ​do​

	​ 	 @ts.give_point_to(:server)

	​ 	 @ts.score.should == ​"15-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 0-15 if the receiver wins a point"​ ​do​

	​ 	 @ts.give_point_to(:receiver)

	​ 	 @ts.score.should == ​"0-15"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 15-15 after they both win a point"​ ​do​

	​ 	 @ts.give_point_to(:receiver)

	​ 	 @ts.give_point_to(:server)

	​ 	 @ts.score.should == ​"15-15"​

	​ 	 ​end​

	​ 	​end​

	 Let’s run it:

	​ 	$ ​rspec ts_spec.rb​

	​ 	...​.​

	​ 	Finished in 0.00088 seconds

	​ 	4 examples, 0 failures

	 Finally, RSpec gives us an alternative way of setting up
	 conditions for our tests. The
 ​let​

	 method creates what looks like a variable (it’s actually a
	 dynamically defined method) whose value is given by
	 evaluating a block. This lets us write the following:

	unittesting/bdd/5/ts_spec.rb
	​ 	require_relative ​"tennis_scorer"​

	​ 	

	​ 	describe TennisScorer, ​"basic scoring"​ ​do​

	​ 	

	​ 	 let(:ts) { TennisScorer.new}

	​ 	

	​ 	 it ​"should start with a score of 0-0"​ ​do​

	​ 	 ts.score.should == ​"0-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 15-0 if the server wins a point"​ ​do​

	​ 	 ts.give_point_to(:server)

	​ 	 ts.score.should == ​"15-0"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 0-15 if the receiver wins a point"​ ​do​

	​ 	 ts.give_point_to(:receiver)

	​ 	 ts.score.should == ​"0-15"​

	​ 	 ​end​

	​ 	

	​ 	 it ​"should be 15-15 after they both win a point"​ ​do​

	​ 	 ts.give_point_to(:receiver)

	​ 	 ts.give_point_to(:server)

	​ 	 ts.score.should == ​"15-15"​

	​ 	 ​end​

	​ 	​end​

	 We’re going to stop here, but I suggest that you might want to take
	 this code and continue to develop it. Write expectations such as these:

	​ 	it "should be 40-0 after the server wins three points"

	​ 	it "should be W-L after the server wins four points"

	​ 	it "should be L-W after the receiver wins four points"

	​ 	it "should be Deuce after each wins three points"

	​ 	it "should be A-server after each wins three points and the server gets one more"

	 RSpec has a lot more depth than just the description of
	 expectations. In particular, you can use it with Cucumber, an
	 entire language for describing and running complete user
	 stories. But that’s beyond the scope of this book.

Anyone for Shoulda?

	 RSpec is testing with attitude. On the other hand, Shoulda
	 takes many of the ideas from RSpec and humbly offers them to
	 you for integration into your regular unit tests. For many
	 developers, particularly those with existing Test::Unit
	 tests, this is a good compromise. You get much of the
	 descriptive power of RSpec-style expectations without having
	 to commit to the full
	 framework.

	 Install Shoulda using ​gem install shoulda​.
	 Then, unlike RSpec,
	 write a regular Test::Unit test case. Inside it, though, you can use
	 the Shoulda mini-language to describe your tests.

	 Let’s recast our final RSpec tennis scoring tests using Shoulda:

	unittesting/bdd/4/ts_shoulda.rb
	​ 	require ​'test/unit'​

	​ 	require ​'shoulda'​

	​ 	require_relative ​'tennis_scorer.rb'​

	​ 	

	​ 	​class​ TennisScorerTest < Test::Unit::TestCase

	​ 	

	​ 	 ​def​ assert_score(target)

	​ 	 assert_equal(target, @ts.score)

	​ 	 ​end​

	​ 	

	​ 	 context ​"Tennis scores"​ ​do​

	​ 	 setup ​do​

	​ 	 @ts = TennisScorer.new

	​ 	 ​end​

	​ 	

	​ 	 should ​"start with a score of 0-0"​ ​do​

	​ 	 assert_score(​"0-0"​)

	​ 	 ​end​

	​ 	

	​ 	 should ​"be 15-0 if the server wins a point"​ ​do​

	​ 	 @ts.give_point_to(:server)

	​ 	 assert_score(​"15-0"​)

	​ 	 ​end​

	​ 	

	​ 	 should ​"be 0-15 if the receiver wins a point"​ ​do​

	​ 	 @ts.give_point_to(:receiver)

	​ 	 assert_score(​"0-15"​)

	​ 	 ​end​

	​ 	

	​ 	 should ​"be 15-15 after they both win a point"​ ​do​

	​ 	 @ts.give_point_to(:receiver)

	​ 	 @ts.give_point_to(:server)

	​ 	 assert_score(​"15-15"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	$ ​ruby ts_shoulda.rb​

	​ 	Run options:

	​ 	# Running tests:

	​ 	...​.​

	​ 	Finished tests in 0.008528s, 469.0432 tests/s, 469.0432 assertions/s.

	​ 	4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 Behind the scenes, Shoulda is creating Test::Unit test methods for
	 each ​should​ block in your tests. This is why we can use regular
	 Test::Unit assertions in Shoulda code. But Shoulda also works hard to
	 maintain the right context for our tests. For example, we can nest
	 contexts and their setup blocks, allowing us to have some
	 initialization that’s common to all tests and some that’s common to
	 just a subset. We can apply this to our tennis example. We’ll write
	 nested contexts and put setup blocks at each level. When Shoulda
	 executes our tests, it runs all the appropriate setup blocks for the
	 ​should​ blocks.

	unittesting/bdd/4/ts_shoulda_1.rb
	​ 	require ​'test/unit'​

	​ 	require ​'shoulda'​

	​ 	require_relative ​'tennis_scorer.rb'​

	​ 	

	​ 	​class​ TennisScorerTest < Test::Unit::TestCase

	​ 	 ​def​ assert_score(target)

	​ 	 assert_equal(target, @ts.score)

	​ 	 ​end​

	​ 	 context ​"Tennis scores"​ ​do​

	​ 	 setup ​do​

	​ 	 @ts = TennisScorer.new

	​ 	 ​end​

	​ 	 should ​"start with a score of 0-0"​ ​do​

	​ 	 assert_score(​"0-0"​)

	​ 	 ​end​

	​ 	 context ​"where the server wins a point"​ ​do​

	​ 	 setup ​do​

	​ 	 @ts.give_point_to(:server)

	​ 	 ​end​

	​ 	 should ​"be 15-0"​ ​do​

	​ 	 assert_score(​"15-0"​)

	​ 	 ​end​

	​ 	 context ​"and the oponent wins a point"​ ​do​

	​ 	 setup ​do​

	​ 	 @ts.give_point_to(:receiver)

	​ 	 ​end​

	​ 	 should ​"be 15-15"​ ​do​

	​ 	 assert_score(​"15-15"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 should ​"be 0-15 if the receiver wins a point"​ ​do​

	​ 	 @ts.give_point_to(:receiver)

	​ 	 assert_score(​"0-15"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	 Let’s run it:

	​ 	$ ​ruby ts_shoulda_1.rb​

	​ 	Run options:

	​ 	# Running tests:

	​ 	...​.​

	​ 	Finished tests in 0.008962s, 446.3289 tests/s, 446.3289 assertions/s.

	​ 	4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	 Would we use these nested contexts for this tennis scoring
	 example? We probably wouldn’t as it stands, because the
	 linear form is easier to read. But we use them all the time
	 when we have tests where we want to run through a complex
	 scenario that builds from test to test. This nesting lets us
	 set up an environment, run some tests, then change the
	 environment, run more tests, change it again, run even more
	 tests, and so on. It ends up making tests far more compact
	 and removes a lot of duplication.

13.5 Test::Unit assertions
	
	 ​assert | refute(​boolean​, <message>)​

	

	 Fails if ​boolean​ is (is not)
	 ​false​ or ​nil​.
	

	
	 ​assert_block { ​block​ }​

	

	 Expects the block to return true.
	

	
	 ​assert_ | refute_ empty(​collection​, <message>)​

	

	 Expects ​empty?​ on ​collection​ to return true (false).
	

	
	 ​assert_ | refute_ equal(​expected​, ​actual​, <message>)​

	

	 Expects ​actual​ to equal/not equal
	 ​expected​, using ​==​.
	

	
	 ​assert_ | refute_in_delta(​expected_float​, ​actual_float​,
 ​delta​, <message>)​

	

	 Expects that the actual floating-point value is (is not)
	 within ​delta​ of the expected value.
	

	
	 ​assert_ | refute_ in_epsilon(​expected_float​,
	 ​actual_float​,
	 ​epsilon=0.001​, <message>)​

	

	 Calculates a delta value as ​epsilon * min(expected, actual)​ and
	 then calls the ​_in_delta​ test.
	

	
	 ​assert_ | refute_ includes(​collection​, ​obj​,
	 <message>)​

	

	 Expects ​include?(obj)​ on ​collection​
	 to return true (false).
	

	
	 ​assert_ | refute_ instance_of(​klass​, ​obj​,
	 ​message​)​

	

	 Expects ​obj​ to be (not to be) a instance of
	 ​klass​.
	

	
	 ​assert_ | refute_ kind_of(​klass​, ​obj​,
	 <message>)​

	

	 Expects ​obj​ to be (not to be) a kind of ​klass​.
	

	
	 ​assert_ | refute_ match(​regexp​, ​string​,
	 <message>)​

	

	 Expects ​string​ to (not) match ​regexp​.
	

	
	 ​assert_ | refute_ nil(​obj​, <message>)​

	

	 Expects ​obj​ to be (not) ​nil​.
	

	
	 ​assert_ | refute_ operator(​obj1​, ​operator​,
	 ​obj2​, <message>)​

	

	 Expects the result of sending the message ​operator​ to
	 ​obj1​ with parameter ​obj2​ to be (not to be) true.
	

	
	 ​assert_raises(​Exception​, ...) { ​block​ }​

	

	 Expects the block to raise one of the listed exceptions.
	

	
	 ​assert_ | refute_ respond_to(​obj​, ​message​,
	 <message>)​

	

	 Expects ​obj​ to respond to (not respond to)
	 ​message​ (a symbol).
	

	
	 ​assert_ | refute_ same(​expected​, ​actual​,
	 <message>)​

	

	 Expects ​​expected​.equal?(​actual​)​.
	

	
	 ​assert_send(​send_array​, <message>)​

	

	 Sends the message in ​send_array[1]​ to the
	 receiver in ​send_array[0]​, passing the rest of
	 ​send_array​ as
	 arguments. Expects the return value to be true.
	

	
	 ​assert_throws(​expected_symbol​, <message>)
	 { ​block​ }​

	

	 Expects the block to throw the given symbol.
	

	​flunk(​message​="Epic Fail!")​
	
Always fails.

	​skip(​message​)​
	
Indicates that a test is deliberately not run.

	​pass​
	
Always passes.

Additional Test::Unit assertions
	
	 ​assert_not_equal(​expected​, ​actual​,
	 <message>)​
	
	

	 Expects ​actual​ not to equal ​expected​, using
	 ​==​. Like
 ​refute_equal​
 .
	

	
	 ​assert_not_match(​regexp​, ​string​,
	 <message>)​
	
	

	 Expects ​string​ not to match
	 ​regexp​. Like
	
 ​refute_match​
 .
	

	
	 ​assert_not_nil(​obj​, <message>)​
	
	

	 Expects ​obj​ not to be
	 ​nil​. Like
	
 ​refute_nil​
 .
	

	
	 ​assert_not_same(​expected​, ​actual​,
	 <message>)​
	
	

	 Expects ​!​expected​.equal?(​actual​)​. Like
	
 ​refute_same​
 .
	

	
	 ​assert_nothing_raised(​Exception​, ...) { ​block​ }​
	
	

	 Expects the block not to raise one of the listed exceptions.
	

	
	 ​assert_nothing_thrown(​expected_symbol​,
	 <message>) { ​block​ }​
	
	

	 Expects the block not to throw the given symbol.
	

	
	 ​assert_raise(​Exception​, ...) { ​block​ }​
	
	

	 Synonym for
 ​assert_raises​
 .
	

Footnotes

	[59]	

 In Ruby 1.8, this was Nathaniel Talbott’s Test::Unit
 framework. MiniTest is a rewrite of this.

	[60]	
Some say the
	 0, 15, 30, 40 system is a corruption of the fact that scoring used
	 to be done using the quarters of a clock face. Us, we just think
	 those medieval folks enjoyed a good joke.

	[61]	
We’re
	 running these examples with RSpec2. This will probably be
	 the default version by the time you read this, but I had to
	 use ​gem install rspec --pre​ because it was prerelease
	 when I was writing this chapter.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 14
When Trouble Strikes!

 It’s sad to say, but it is possible to write buggy programs using
 Ruby. Sorry about that.
 But not to worry! Ruby has several features that will help debug your
 programs. We’ll look at these features, and then we’ll show some common
 mistakes you can make in Ruby and how to fix them.

14.1 Ruby Debugger

 Ruby comes with a
 debugger, which is
 conveniently built into the base system. You can run the
 debugger by invoking the interpreter with the
 ​-r debug​ option, along with any other Ruby
 options and the name of your script:

ruby -r debug <debug-options> <programfile> <program-arguments>

 The debugger supports the usual range of features you’d expect,
 including the ability to set breakpoints, to
 step into and step over method calls, and to display stack
 frames and variables. It can also list the
 instance methods defined for a particular object or class, and
 it allows you to list and control separate threads within
 Ruby. All the commands that
 are available under the debugger are listed in Table 6, ​Debugger commands​.

 If your Ruby installation has readline support enabled, you can
 use cursor keys to move back and forth in command history and
 use line-editing commands to amend previous input.

 To give you an idea of what the Ruby debugger is like, here’s
 a sample session:

	​ 	$ ​ruby -r debug t.rb​

	​ 	Debug.rb

	​ 	Emacs support available.

	​ 	t.rb:1:def fact(n)

	​ 	(rdb:1) ​list 1-9​

	​ 	[1, 9] in t.rb

	​ 	=> 1 def fact(n)

	​ 	 2 if n <= 0

	​ 	 3 1

	​ 	 4 else

	​ 	 5 n * fact(n-1)

	​ 	 6 end

	​ 	 7 end

	​ 	 8

	​ 	 9 p fact(5)

	​ 	(rdb:1) ​b 2​

	​ 	Set breakpoint 1 at t.rb:2

	​ 	(rdb:1) ​c​

	​ 	breakpoint 1, fact at t.rb:2

	​ 	t.rb:2: if n <= 0

	​ 	(rdb:1) ​disp n​

	​ 	1: n = 5

	​ 	(rdb:1) ​del 1​

	​ 	(rdb:1) ​watch n==1​

	​ 	Set watchpoint 2

	​ 	(rdb:1) ​c​

	​ 	watchpoint 2, fact at t.rb:fact

	​ 	t.rb:1:def fact(n)

	​ 	1: n = 1

	​ 	(rdb:1) ​where​

	​ 	-->​ ​​#1 t.rb:1:in `fact'​

	​ 	 #2 t.rb:5:in `fact'

	​ 	 #3 t.rb:5:in `fact'

	​ 	 #4 t.rb:5:in `fact'

	​ 	 #5 t.rb:5:in `fact'

	​ 	 #6 t.rb:9

	​ 	(rdb:1) ​del 2​

	​ 	(rdb:1) ​c​

	​ 	120

14.2 Interactive Ruby

 If you want to play with Ruby, we recommend Interactive
 Ruby—irb, for short.
 irb is essentially a Ruby “shell” similar in
 concept to an operating system shell (complete with job control). It
 provides an environment where you can “play around” with the
 language in real time. You launch irb at the command prompt:

irb <irb-options> <ruby_script> <program-arguments>

 irb displays the value of each expression as you complete it. For
 instance:

	​ 	irb(main):001:0> a = 1 +

	​ 	irb(main):002:0* 2 * 3 /

	​ 	irb(main):003:0* 4 % 5

	​ 	=> 2

	​ 	irb(main):004:0> 2+2

	​ 	=> 4

	​ 	irb(main):005:0> ​def​ test

	​ 	irb(main):006:1> puts ​"Hello, world!"​

	​ 	irb(main):007:1> ​end​

	​ 	=> nil

	​ 	irb(main):008:0> test

	​ 	Hello, world!

	​ 	=> nil

	​ 	irb(main):009:0>

 irb also allows you to create subsessions, each one of which
 may have its own context. For example, you can create a
 subsession with the same (top-level) context as the original
 session or create a subsession in the context of a particular
 class or instance. The sample session that follows is a bit longer but shows how you
 can create subsessions and switch between them.

[image: images/trouble/irb_session.png]

	For a full description of all the commands that irb supports, see
	Chapter 18, ​Interactive Ruby Shell​.

	As with the debugger, if your version of Ruby was built with GNU
	readline support, you can use Emacs- or vi-style
	key bindings to edit individual lines or to go back and reexecute or
	edit a previous line—just like a command shell.

	irb is a great learning tool. It’s very handy if you want to try
	an idea quickly and see whether it works.

14.3 Editor Support

 The Ruby interpreter is designed to read a program in one pass;
 this means you can pipe an entire program to the interpreter’s
 standard input, and it will work just fine.

 We can take advantage of this feature to run Ruby code from
 inside an editor. In Emacs, for instance, you can select a
 region of Ruby text and use the command ​Meta-|​ to
 execute Ruby. The Ruby interpreter will use the selected
 region as standard input, and output will go to a buffer named
 ​*Shell Command Output*​. This feature has come in
 quite handy for us while writing this book—just select a few lines
 of Ruby in the middle of a paragraph, and try it!

 You can do something similar in the vi editor using
 ​:%!ruby​, which ​replaces​ the program text
 with its output, or ​:w​␣​!ruby​, which displays
 the output without affecting the buffer. Other editors have
 similar features.[62]

 Some Ruby developers look for IDE support. Several decent alternatives
 are available. Arachno RubyAptana, RubyMine, NetBeans, Ruby in
 Steel, Idea, and so on, all have their devotees. It’s a rapidly
 changing field, so we recommend a quick web search rather than rely
 on the advice here.

 While we are on the subject, this would probably be a good
 place to mention that a Ruby mode for Emacs is included in the
 Ruby source distribution as
 ​ruby-mode.el​ in the
 ​misc/​ subdirectory. Many other editors now
 include support for Ruby; check your documentation for details.

14.4 But It Doesn’t Work!

 So, you’ve read through enough of the book, you start to write your
 very own Ruby program, and it doesn’t work. Here’s a list of common
 gotchas and other tips:

	

	 First and foremost, run your scripts with warnings enabled (the
	 ​-w​ command-line option).
	

	

	 If you happen to forget a comma (,) in an argument
	 list—especially to print—you can produce some very odd error messages.
	

	

	 An attribute setter is not being
	 called. Within a class
	 definition, Ruby will parse
	 ​setter=​ as an assignment to a local variable, not as a method
	 call. Use the form ​self.setter=​ to indicate the method call:
	
	​ 	​class​ Incorrect

	​ 	 attr_accessor :one, :two

	​ 	 ​def​ initialize

	​ 	 one = 1 ​# incorrect - sets local variable​

	​ 	 self.two = 2

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	obj = Incorrect.new

	​ 	obj.one ​# => nil​

	​ 	obj.two ​# => 2​

	

	 Objects that don’t appear to be properly set up may have been
	 victims of an incorrectly spelled
 ​initialize​
 method:
	
	​ 	​class​ Incorrect

	​ 	 attr_reader :answer

	​ 	 ​def​ initialise ​# <-- spelling error​

	​ 	 @answer = 42

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ultimate = Incorrect.new

	​ 	ultimate.answer ​# => nil​

	 The same kind of thing can happen if you misspell the instance variable name:
	
	​ 	​class​ Incorrect

	​ 	 attr_reader :answer

	​ 	 ​def​ initialize

	​ 	 @anwser = 42 ​#<-- spelling error​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ultimate = Incorrect.new

	​ 	ultimate.answer ​# => nil​

	

	 A parse error at the last line of the source often indicates
	 a missing ​end​ keyword, sometimes quite a bit earlier.
	

	

	 This ugly message—​syntax error, unexpected $end,
	 expecting keyword_end​—means that you have an
	 ​end​ missing somewhere in your code. (The
	 ​$end​ in the message means end-of-file, so the
	 message simply means that Ruby hit the end of your code
	 before finding all the ​end​ keywords it
	 was expecting.) Try running with ​-w​,
	 which will warn when it finds ​end​s that
	 aren’t aligned with their opening
	 ​if​/​while​/​class​.
	

	

	 As of Ruby 1.9, block parameters are no longer in the same
	 scope as local variables. This may be incompatibile with
	 older code. Run with the ​-w​ flag to spot these issues:
	
	​ 	entry = ​"wibble"​

	​ 	[1, 2, 3].each ​do​ |entry|

	​ 	 ​# do something with entry​

	​ 	​end​

	​ 	puts ​"Last entry = ​#{entry}​"​

Produces:
	​ 	prog.rb:2: warning: shadowing outer local variable - entry

	​ 	Last entry = wibble

	

	 Watch out for precedence issues, especially when using ​{...}​
	 instead of ​do​...​end​:
	
	​ 	​def​ one(arg)

	​ 	 ​if​ block_given?

	​ 	 ​"block given to 'one' returns ​#{​yield​}​"​

	​ 	 ​else​

	​ 	 arg

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​def​ two

	​ 	 ​if​ block_given?

	​ 	 ​"block given to 'two' returns ​#{​yield​}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	result1 = one two {

	​ 	 ​"three"​

	​ 	}

	​ 	

	​ 	result2 = one two ​do​

	​ 	 ​"three"​

	​ 	​end​

	​ 	

	​ 	puts ​"With braces, result = ​#{result1}​"​

	​ 	puts ​"With do/end, result = ​#{result2}​"​

Produces:
	​ 	With braces, result = block given to 'two' returns three

	​ 	With do/end, result = block given to 'one' returns three

	

	 Output written to a terminal may be buffered. This means
	 you may not see a message you write
	 immediately. In addition,
	 if you write messages to both ​STDOUT​
	 and ​STDERR​, the output may not appear
	 in the order you were expecting. Always use nonbuffered
	 I/O (set ​sync=true​) for debug messages.
	

	

	 If numbers don’t come out right, perhaps they’re strings.
	 Text read from a file will be a
	 ​String​ and will not be automatically
	 converted to a number by Ruby. A call to
	
 ​Integer​
 will work wonders (and
	 will throw an exception if the input isn’t a well-formed
	 integer). The following is a common mistake Perl
	 programmers make:
	
	​ 	​while​ line = gets

	​ 	 num1, num2 = line.split(/,/)

	​ 	 ​# ...​

	​ 	​end​

	 You can rewrite this as follows:
	
	​ 	​while​ line = gets

	​ 	 num1, num2 = line.split(/,/)

	​ 	 num1 = Integer(num1)

	​ 	 num2 = Integer(num2)

	​ 	 ​# ...​

	​ 	​end​

	 Or, you could convert all the strings using
 ​map​
 :
	
	​ 	​while​ line = gets

	​ 	 num1, num2 = line.split(/,/).map {|val| Integer(val) }

	​ 	 ​# ...​

	​ 	​end​

	

	 Unintended aliasing—if you are using an object as the key
	 of a hash, make sure it doesn’t change its hash value (or
	 arrange to call Hash#rehash if it
	 does):
	
	​ 	arr = [1, 2]

	​ 	hash = { arr => ​"value"​ }

	​ 	hash[arr] ​# => "value"​

	​ 	arr[0] = 99

	​ 	hash[arr] ​# => nil​

	​ 	hash.rehash ​# => {[99, 2]=>"value"}​

	​ 	hash[arr] ​# => "value"​

	

	 Make sure the class of the object you are using is what you
	 think it is. If in doubt, use
	 ​puts my_obj.class​.
	

	

	 Make sure your method names start with a lowercase letter and
	 class and constant names start with an uppercase letter.
	

	

	 If method calls aren’t doing what you’d expect, make sure
	 you’ve put parentheses around the arguments.
	

	

	 Make sure the open parenthesis of a method’s parameter
	 list butts up against the end of the method name with no
	 intervening spaces.
	

	

	 Use irb and the debugger.
	

	

	 Use Object#freeze.
	 If you suspect that some unknown portion of code is setting
	 a variable to a bogus value, try freezing the variable.
	 The culprit will then be caught during the attempt to
	 modify the variable.
	

 One major technique makes writing Ruby code both easier and
 more fun. ​Develop your applications
 incrementally.​ Write a few lines
 of code, and then write tests (perhaps using Test::Unit).
 Write a few more lines of code, and then exercise them. One of
 the major benefits of a dynamically typed language is that
 things don’t have to be complete before you use them.

14.5 But It’s Too Slow!

 Ruby is an interpreted, high-level language, and as such it may
 not perform as fast as a lower-level language such as C. In
 the following sections, we’ll list some basic things you can do
 to improve performance; also take a look in the index under
 ​Performance​ for other pointers.

 Typically, slow-running programs have one or two performance
 graveyards, places where execution time goes to die. Find and improve
 them, and suddenly your whole program springs back to life. The trick
 is finding them. The
 ​Benchmark​ module and the Ruby profilers can help.

Benchmark

	 You can use the
	 ​Benchmark​
	 module, also described in the
	 library section, to time sections of code. For
	 example, we may wonder what the overhead of method invocation
	 is. You can use
	 ​Benchmark​ to find out.

	​ 	require ​'benchmark'​

	​ 	include Benchmark

	​ 	

	​ 	LOOP_COUNT = 1_000_000

	​ 	

	​ 	bmbm(12) ​do​ |test|

	​ 	 test.report(​"inline:"​) ​do​

	​ 	 LOOP_COUNT.times ​do​ |x|

	​ 	 ​# nothing​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 test.report(​"method:"​) ​do​

	​ 	 ​def​ method

	​ 	 ​# nothing​

	​ 	 ​end​

	​ 	

	​ 	 LOOP_COUNT.times ​do​ |x|

	​ 	 method

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Rehearsal --

	​ 	inline: 0.100000 0.000000 0.100000 (0.102194)

	​ 	method: 0.140000 0.000000 0.140000 (0.145651)

	​ 	--------------------------------------- total: 0.240000sec

	​ 	

	​ 	 user system total real

	​ 	inline: 0.090000 0.000000 0.090000 (0.098364)

	​ 	method: 0.140000 0.000000 0.140000 (0.146260)

	 You have to be careful when benchmarking, because oftentimes
	 Ruby programs can run slowly because of the overhead of
	 garbage collection. Because this garbage collection can
	 happen any time during your program’s execution, you may find
	 that benchmarking gives misleading results, showing a section
	 of code running slowly when in fact the slowdown was caused
	 because garbage collection happened to trigger while that
	 code was executing. The ​Benchmark​
	 module has the
 ​bmbm​
 method that runs
	 the tests twice, once as a rehearsal and once to measure
	 performance, in an attempt to minimize the distortion
	 introduced by garbage collection. The benchmarking process
	 itself is relatively well mannered—it doesn’t slow down
	 your program much.

The Profiler

	 Ruby comes with a code profiler (documented in the
	 library section).
	 The profiler shows you the number of times each method in the
	 program is called and the average and cumulative time that
	 Ruby spends in those methods.

	 You can add profiling to your code using the command-line
	 option ​-r profile​ or from within the code using
	 ​require "profile"​. Here’s an example:

	trouble/profileeg.rb
	​ 	count = 0

	​ 	words = File.open(​"/usr/share/dict/words"​)

	​ 	

	​ 	​while​ word = words.gets

	​ 	 word = word.chomp!

	​ 	 ​if​ word.length == 12

	​ 	 count += 1

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"​#{count}​ twelve-character words"​

	 The first time we ran this (without profiling) against a
	 dictionary of almost 235,000 words, it took a noticeable time
	 to complete. Wondering if we could improve on this, we added
	 the command-line
	 option ​-r profile​ and tried again. Eventually we saw output that looked like the
	 following:

	​ 	20460 twelve-character words

	​ 	 % cumulative self self total

	​ 	 time seconds seconds calls ms/call ms/call name

	​ 	 9.03 1.21 1.21 234936 0.01 0.01 String#chomp!

	​ 	 8.88 2.40 1.19 234937 0.01 0.01 IO#gets

	​ 	 7.61 3.42 1.02 234936 0.00 0.00 String#length

	​ 	 6.94 4.35 0.93 234936 0.00 0.00 Fixnum#==

	​ 	 0.82 4.46 0.11 20460 0.01 0.01 Fixnum#+

	​ 	 0.00 4.46 0.00 2 0.00 0.00 IO#set_encoding

	​ 	 0.00 4.46 0.00 1 0.00 0.00 IO#open

	​ 	

	 The first thing to notice is that the timings shown are a lot slower
	 than when the program runs without the profiler. Profiling has a
	 serious overhead, but the assumption is that it applies across the
	 board, and therefore the relative numbers are still meaningful. This
	 particular program clearly spends a lot of time in the loop, which
	 executes almost 235,000 times. Each time, it invokes both ​gets​
	 and ​chomp!​. We could probably improve performance if we could
	 either make the stuff in the loop less expensive or eliminate the loop
	 altogether. One way of doing the latter is to read the word list into
	 one long string and then use a pattern to match and extract all twelve
	 character words:

	trouble/profileeg1.rb
	​ 	words = File.read(​"/usr/share/dict/words"​)

	​ 	count = words.scan(/^............​\n​/).size

	​ 	

	​ 	puts ​"​#{count}​ twelve-character words"​

	 Our profile numbers are now a lot better (and the program runs more than
	 five times faster when we take the profiling back out):

	​ 	% ruby -r profile code/trouble/profileeg1.rb

	​ 	20462 twelve-character words

	​ 	% cumulative self self total

	​ 	time seconds seconds calls ms/call ms/call name

	​ 	100.00 0.26 0.26 1 260.00 260.00 String#scan

	​ 	 0.00 0.26 0.00 1 0.00 0.00 Fixnum#to_s

	​ 	 0.00 0.26 0.00 1 0.00 0.00 IO.read

	​ 	 0.00 0.26 0.00 1 0.00 0.00 TracePoint#enable

	​ 	 0.00 0.26 0.00 1 0.00 0.00 Array#size

	​ 	 0.00 0.26 0.00 2 0.00 0.00 IO#set_encoding

	​ 	 0.00 0.26 0.00 2 0.00 0.00 IO#write

	​ 	 0.00 0.26 0.00 1 0.00 0.00 IO#puts

	​ 	 0.00 0.26 0.00 1 0.00 0.00 Kernel#puts

	​ 	 0.00 0.26 0.00 1 0.00 0.00 TracePoint#disable

	​ 	 0.00 0.26 0.00 1 0.00 260.00 #toplevel

	 Remember to check the code without the profiler afterward,
	 though—sometimes the slowdown the profiler introduces can
	 mask other problems.

	 Ruby is a wonderfully transparent and expressive language,
	 but it does not relieve the programmer of the need to apply
	 common sense: creating unnecessary objects, performing
	 unneeded work, and creating bloated code will slow down your
	 programs regardless of the language.

Code Execution Coverage

	 Ruby 1.9.2 comes with low-level code coverage built
	 in to the interpreter (see the ​Coverage​
	 module). It tracks which lines of code were executed
	 in your code.

	 People are starting to build libraries that wrap this
	 low-level functionality with filters, HTML output, and the
	 like. Two examples are Mark Bates’ CoverMe and Christoph
	 Olszowka’s simplecov.

	 Both are installed as gems, and both come with comprehensive
	 instructions on how to integrate them into your test
	 environment.

	 For our simple tennis scoring example, the summary, written
	 as an HTML file, is fairly straightforward:

[image: images/unittesting/simplecov_index.png]

	 Click the name of a file, and you’ll get a display of which lines were executed:

[image: images/unittesting/simplecov_detail.png]

Table 6. Debugger commands
	
empty
	A null command repeats the last command.
	b[reak] [file|class:]line	
	

	 Sets breakpoint at given line in file (default
	 current file) or class.
	

	
	b[reak] [file|class:]name	
Sets breakpoint at method in file or class.

	b[reak]	Displays breakpoints and watchpoints.
	cat[ch] exception	
Stops when exception is raised.

	cat[ch]	Lists current catches.
	c[ont]	Continues execution.
	del[ete] [nnn]	
Deletes breakpoint nnn (default all).

	disp[lay] expr	
Displays value of nnn every time debugger gets control.

	disp[lay]	Shows current displays.
	down nnn=1	
Moves down nnn levels in the call stack.

	f[rame]	
Synonym for ​where​.

	fin[ish]	Finishes execution of the current function.
	h[elp]	Shows summary of commands.
	l[ist] [start–end]	Lists source lines from start to end.
	
m[ethod] i[nstance] obj
	
Displays instance methods of obj.

	m[ethod] Name	Displays instance methods of the class or module name.
	n[ext] nnn=1	
Executes next nnn lines, stepping over methods.

	[p] expr	

	 Evaluates expr in the current
	 context. expr may include assignment to
	 variables and method invocations.
	

	q[uit]	Exits the debugger.
	s[tep] nnn=1	
Executes next nnn lines, stepping into methods.

	th[read] l[ist]	Lists all threads.
	th[read] [c[ur[rent]]]	Displays status of current thread.
	th[read] [c[ur[rent]]] nnn	
Makes thread nnn current and stops it.

	th[read] stop nnn	
Makes thread nnn current and stops it.

	th[read] resume nnn	
Resumes thread nnn.

	th[read] [sw[itch]] nnn	
Switches thread context to nnn.

	tr[ace] (on|off) [all]	Toggles execution trace of current or all threads.
	undisp[lay] [nnn]	Removes display (default all).
	up nnn=1	
Moves up nnn levels in the call stack.

	v[ar] c[onst] Name	Displays constants in class or module name.
	v[ar] g[lobal]	Displays global variables.
	v[ar] l[ocal]	Displays local variables.
	
v[ar] i[stance] obj
	
Displays instance variables of obj.

	wat[ch] expr	Breaks when expression becomes true.
	w[here]	Displays current call stack.

Footnotes

	[62]	

 Many developers use Sublime Text (
 ​http://www.sublimetext.com/​
),
 a cross-platform editor chock full of features, including Ruby code execution.

Copyright © 2013, The Pragmatic Bookshelf.

Part 2
Ruby in Its Setting

	 Chapter
	 15
Ruby and Its World

 It’s an unfortunate fact of life that our applications have to
 deal with the big, bad world. In this chapter, we’ll look at how
 Ruby interacts with its environment. Microsoft Windows users will
 probably also want to look at the platform-specific information.

15.1 Command-Line Arguments

 “In the beginning was the command line.”[63]
 Regardless of the system in which Ruby is deployed, whether it be a
 super-high-end scientific graphics workstation or an embedded PDA
 device, you have to start the Ruby interpreter somehow, and that
 gives us the opportunity to pass in command-line arguments.

 A Ruby command line consists of three parts: options to the Ruby
 interpreter, optionally the name of a program to run, and optionally a
 set of arguments for that program:

ruby <options> <--> <programfile> <arguments>*

 The Ruby options are terminated by the first word on the command line
 that doesn’t start with a hyphen or by the special flag ​--​
 (two hyphens).

 If no filename is present on the command line or if the filename is
 a single hyphen, Ruby reads the program source from standard
 input.

 Arguments for the program itself follow the program name. For example, the following:

	​ 	$ ​ruby -w - "Hello World"​

 will enable warnings, read a program from standard input, and pass it
 the string ​"Hello World"​ as an argument.

Command-Line Options
	​-0[​octal​]​
	

	 The 0 flag (the digit zero) specifies the
	 record separator character (\0, if no
	 digit follows). ​-00​ indicates paragraph mode:
	 records are separated by two successive default record
	 separator characters. \​0777​ reads the entire
	 file at once (because it is an illegal character). Sets
	 ​$/​.
	

	​-a​
	

	 Autosplit mode when used with
	 ​-n​ or ​-p​;
	 equivalent to executing ​$F = $_.split​ at the top
	 of each loop
	 iteration.
	

	​-C ​directory​​
	

	 Changes working directory to ​directory​
	 before executing.
	

	​-c​
	

	 Checks syntax only; does not execute the program.
	

	​--copyright​
	

	 Prints the copyright notice and exits.
	

	​-d, --debug​
	

	 Sets
	 ​$DEBUG​
	 and
	 ​$VERBOSE​
	 to ​true​. This can be
	 used by your programs to enable additional tracing.
	

	​--disable-all​
	

 Disable the rubygems and RUBYOPT options (see the
 following descriptions).«2.0»

	​--disable-gems​
	

	 Stops Ruby from automatically
 loading RubyGems from
 ​require​
 . There is a
 corresponding ​--enable-gems​ option.
	

	​--disable-rubyopt​
	

 Prevents Ruby from
 examining the ​RUBYOPT​ environment variable. You
 should probably set this in an environment you want to
 secure. There is a corresponding ​--enable-rubyopt​
 option.«2.0»
	

	​--dump ​option…​​
	

 Tells Ruby to dump various items of internal
 state. ​options…​ is a comma or space separated list
 containing one or more of ​copyright​,
 ​insns​, ​parsetree​,
 ​parsetree_with_comment​, ​syntax​,
 ​usage​, ​version​, and
 ​yydebug​. This is intended for Ruby core developers.

	​--enable-all​
	

 Enable the rubygems and RUBYOPT options (see the
 following descriptions).«2.0»

	​--enable-gems​
	

	 Allows Ruby to automatically
	 load RubyGems from
 ​require​
 . There is a
 corresponding ​--disable-gems​ option.
	

	​--enable-rubyopt​
	

 Allows Ruby to use
 the ​RUBYOPT​ environment variable. (This is the
 default.) You should
 probably disable this option in an environment you want to
 secure.«2.0»
	

	​-E ​encoding​, --encoding
	​encoding​,
	--encoding=​encoding​​
	

	 Specifies the default character encoding for data read from and written to the
	 outside world. This can be used to set both the external encoding (the
	 encoding to be assumed for file contents) and optionally the
	 default internal encoding (the file contents are transcoded to
	 this when read and transcoded from this when written). The
	 format of the encoding parameter is
	 ​-E ​external​​,
	 ​-E ​external:internal​​,
	 or ​-E ​:internal​​.
	 See Chapter 17, ​Character Encoding​ for details. See also ​-U​.
	

	​-e
	’​command​’​
	

	 Executes
	 command as one line of Ruby source. Several ​-e​’s are
	 allowed, and the commands are treated as multiple lines in the same
	 program. If programfile is omitted when ​-e​ is present,
	 execution stops after the ​-e​ commands have been run. Programs
	 run using ​-e​ have access to the old behavior of ranges and
	 regular expressions in conditions—ranges of integers compare
	 against the current input line number, and regular expressions match
	 against ​$_​.
	

	​--external-encoding=​encoding​​
	

 Specifies the default external coding for the program.«2.0»

	​-F ​pattern​​
	

	 Specifies the input field separator
	 (​$;​)
	 used as the default for
	
 ​split​
 (affects the ​-a​ option).
	

	​-h, --help​
	

	 Displays a short help screen.
	

	​-I ​directories​​
	

	 Specifies directories to be prepended to
	 ​$LOAD_PATH​
	 (​$:​). Multiple
	 ​-I​ options may be present. Multiple directories
	 may appear following each ​-I​, separated by a
	 colon on Unix-like systems and by a semicolon on
	 DOS/Windows systems.
	

	​-i [​extension​]​
	

	 Edits ​ARGV​ files in
	 place. For each file named in
	 ​ARGV​,
	 anything you write to standard output will
	 be saved back as the contents of that file.
	 A backup copy of the file will be made if
	 ​extension​ is supplied.
	
	​ 	$ ​ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.txt​

	​--internal-encoding=​encoding​​
	

 Specifies the default internal coding for the program.«2.0»

	​-l​
	

	 Enables automatic line-ending processing; sets
	 ​$\​
	 to the value of
	 ​$/​
	 and chops every input line automatically.
	

	​-n​
	

	 Assumes a ​while gets; ...; end​ loop around your program.
	 For example, a simple grep command could be implemented as follows:
	
	​ 	$ ​ruby -n -e "print if /wombat/" *.txt​

	​-p​
	

	 Places your program code within the loop
	 ​while gets; ...; print; end​.
	
	​ 	$ ​ruby -p -e "$_.downcase!" *.txt​

	​-r ​library​​
	

	 Requires the named library or gem before executing.
	

	​-S​
	

	 Looks for the program file using the
	 ​RUBYPATH​
	 or
	 ​PATH​
	 environment variable.
	

	​-s​
	

	 Any command-line switches found after the program
	 filename, but before any filename arguments or before a
	 ​--​, are removed from
	 ​ARGV​
	 and set to a global variable named for the switch. In
	 the following example, the effect of this would be to set the variable
	 ​$opt​ to ​"electric"​:
	
	​ 	$ ​ruby -s prog -opt=electric ./mydata​

	​-T​level​​
	

	 Sets the safe level, which among other things enables
	 tainting and untrusted checks (see
	 Chapter 26, ​Locking Ruby in the Safe​). Sets
	 ​$SAFE​.
	

	​-U​
	

	 Sets the default internal encoding to UTF-8.
	 See Chapter 17, ​Character Encoding​ for details. See also ​-E​.
	

	​-v, --verbose​
	

	 Sets
	 ​$VERBOSE​
	 to ​true​, which
	 enables verbose mode. Also prints the version number.
	 In verbose mode, compilation warnings are
	 printed. If no program filename appears on the command line, Ruby exits.
	

	​--version​
	

	 Displays the Ruby version number and exits.
	

	​-w​
	

	 Enables verbose mode. Unlike ​-v​, reads program from
	 standard input if no program files are present on the command line.
	 We recommend running your Ruby programs with ​-w​.
	

	​-W ​level​​
	

	 Sets the level of warnings issued. With a
	 level of two (or with no level specified),
	 equivalent to ​-w​—additional warnings are
	 given. If level is 1, runs at the standard
	 (default) warning level. With ​-W0​, absolutely no
	 warnings are given (including those issued using Object#warn).
	

	​-X ​directory​​
	

	 Changes working directory to directory before executing.
	 This is the same as ​-C directory​.
	

	​-x [​directory​]​
	

	 Strips off text before ​#!ruby​ line and changes working
	 directory to directory if given.
	

	​-y, --yydebug​
	

	 Enables yacc debugging in the parser ​(waaay too much
	 information​).
	

Argument Processing: ARGV and ARGF

	Any command-line arguments after the program filename are
	available to your Ruby program in the global array
	​ARGV​.
	For instance, assume ​test.rb​ contains
	the following program:

	​ 	ARGV.each {|arg| p arg }

	Invoke it with the following command line:

	​ 	$ ​ruby -w test.rb "Hello World" a1 1.6180​

	It’ll generate the following output:

	​ 	"Hello World"

	​ 	"a1"

	​ 	"1.6180"

	There’s a gotcha here for all you C
	programmers—​ARGV[0]​ is the first argument to the
	program, not the program
	name. The name of the current program is available in
	the global variable
	​$0​,
	which is aliased to
	​$PROGRAM_NAME​.
	Notice that all the values in
	​ARGV​ are strings.

	If your program reads from standard input (or uses the
	special object
	​ARGF​, described in the next section),
	the arguments in
	​ARGV​ will be taken to be filenames, and
	Ruby will read from these files. If your program takes a mixture of
	arguments and filenames, make sure you empty the nonfilename arguments
	from the ​ARGV​ array before reading from
	the files.

ARGF

	 It is common for a command line program to take a list of
	 zero or more file names to process. It will then read
	 through these files in turn, doing whatever it does.
	

	 Ruby provides a convenience object, referenced by the name
	 ​ARGF​, that handles access to these
	 files. When your program starts, ​ARGF​
	 is initialized with a reference
	 ​ARGV​. Because this is a
	 reference, changes to make to
	 ​ARGV​ (for example when you
	 remove options as you process them) are seen by
	 ​ARGF​.
	

	 If you read from ​ARGF​
	 (for example by calling ​ARGF.gets​) or from standard
	 input (for example by calling plain
	
 ​gets​
), Ruby will open the file
	 whose name is the first element of
	 ​ARGV​ and perform the I/O on
	 it. If, as you continue to read, you reach the end of that
	 file, Ruby closes it, shifts it out of the
	 ​ARGV​ array, and then opens the
	 next file in the list. At some point, when you finishing
	 reading from the last file,
	 ​ARGV​ will return an end-of-file
	 condition (so
 ​gets​
 will return
	 ​nil​, for example). If
	 ​ARGV​ is initially empty,
	 ​ARGF​ will read from standard input.
	

	 You can get to the name of the file currently being read
	 from using ​ARGF.filename​, and you can get the
	 current ​File​ object as
	 ​ARGF.file​. ​ARGF​ keeps track of the total number of
	 lines read in ​ARGF.lineno​—if you need the line
	 number in the current file, use
	 ​ARGV.file.lineno​. Here’s a program that uses this
	 information:
	
	​ 	​while​ line = gets

	​ 	 printf ​"%d: %10s[%d] %s"​, ARGF.lineno, ARGF.filename, ARGF.file.lineno, line

	​ 	​end​

	 If we run it, passing a couple of file names, it will copy
	 the contents of those files.
	
	​ 	$ ​ruby copy.rb testfile otherfile​

	​ 	1: testfile[1] This is line one

	​ 	2: testfile[2] This is line two

	​ 	3: testfile[3] This is line three

	​ 	4: testfile[4] And so on...

	​ 	5: otherfile[1] ANOTHER LINE ONE

	​ 	6: otherfile[2] AND ANOTHER LINE TWO

	​ 	7: otherfile[3] AND FINALLY THE LAST LINE

In-place Editing

	 In-place editing is a hack inherited from Perl. It allows
	 you to alter the contents of files passed in on the
	 command line, retaining a backup copy of the original
	 contents.
	

	 To turn on in-place editing, give Ruby the file
	 extension to use for the backup file, either
	 with the ​-i [​ext​]​ command line
	 option, or by calling
	 ​ARGF.inplace_mode=​ext​​ in your code.
	

	 Now, as your code reads through each file given on the
	 command line, Ruby will rename the original file by
	 appending the backup extension. It will then create a new
	 file with the original name, and open it for writing on
	 standard output. This all means that if you code a program
	 such as this:
	
	​ 	​while​ line = gets

	​ 	 puts line.chomp.reverse

	​ 	​end​

	 and you invoked it using
	
	​ 	$ ​ruby -i.bak reverse.rb testfile otherfile​

	 You’d find that ​testfile​ and
	 ​otherfile​ would now have reversed
	 lines, and that the original files would be available in
	 ​testfile.bak​ and
	 ​otherfile.bak​.
	

	 For finer control over the I/O to these files, you can use
	 the methods provided by ​ARGF​. They’re rarely used, so
	 rather than document them here, we’ll refer you to ri or
	 the online documentation.
	

15.2 Program Termination

 The method Object#exit
 terminates your program, returning
 a status value to the
 operating system. However, unlike some languages,

 ​exit​
 doesn’t terminate the program
 immediately—
 ​exit​
 first raises a
 ​SystemExit​
 exception, which you may catch, and then performs a number of
 cleanup actions, including running any registered

 ​at_exit​
 methods and object finalizers. See
 the reference for Object#at_exit.

15.3 Environment Variables

 You can access operating system environment variables using the
 predefined variable
 ​ENV​.
 It responds to the same methods as
 ​Hash​.[64]

	​ 	ENV[​'SHELL'​]

	​ 	ENV[​'HOME'​]

	​ 	ENV[​'USER'​]

	​ 	ENV.keys.size

	​ 	ENV.keys[0, 4]

 The values of some environment variables are read by Ruby
 when it first starts. These variables modify the behavior of the interpreter.

 The environment variables used by Ruby are listed in the following table.

	Variable Name	Description
	
​DLN_LIBRARY_PATH​
	
Specifies the search path for dynamically loaded modules.

	
​HOME​
	

	 Points to user’s home directory. This is used when
	 expanding ​~​ in file and directory names.
	

	
	
​LOGDIR​
	

	
	 Specifies the fallback pointer to the user’s home
	 directory if ​$HOME​ is not set. This is used only
	 by Dir.chdir.
	

	
​OPENSSL_CONF​
	
Specifies the location of OpenSSL configuration file.

	
​RUBYLIB​
	

	 Specifies an additional search path for Ruby programs
	 (​$SAFE​ must be 0).
	

	
​RUBYLIB_PREFIX​
	

	 (Windows only) Mangles the ​RUBYLIB​ search path by
	 adding this prefix to each component.
	

	
​RUBYOPT​
	

	 Specifies additional command-line options to Ruby;
	 examined after real command-line options are parsed
	 (​$SAFE​ must be 0).
	

	
​RUBYPATH​
	

	 With ​-S​ option, specifies the search path for
	 Ruby programs (defaults to ​PATH​).
	

	
​RUBYSHELL​
	

	 Specifies shell to use when spawning a process under
	 Windows; if not set, will also check ​SHELL​ or
	 ​COMSPEC​.
	

	
​RUBY_TCL_DLL​
	
Overrides default name for Tcl shared library or DLL.

	
​RUBY_TK_DLL​
	

	 Overrides default name for Tk shared library or DLL. Both
	 this and ​RUBY_TCL_DLL​ must be set for either to
	 be used.
	

 Other environment variables affect the memory allocated
 by the Ruby virtual machine for various tasks.[65]«2.0»

	Variable Name	Description
	
​RUBY_THREAD_VM_STACK_SIZE​
	

 The VM stack size used at thread creation:
 128KB (32 bit CPU) or 256KB (64 bit CPU).

	
​RUBY_THREAD_MACHINE_STACK_SIZE​
	

 The machine stack size used at thread
 creation: 512KB (32 bit CPU) or 1024KB (64 bit CPU).

	
​RUBY_FIBER_VM_STACK_SIZE​
	

 VM stack size used at fiber creation:
 64KB or 128KB.

	
​RUBY_FIBER_MACHINE_STACK_SIZE​
	

 The machine stack size used at fiber
 creation: 256KB or 256KB.

 The current value of these variables can be read using
 RubyVM::DEFAULT_PARAMS.

Writing to Environment Variables

	A Ruby program may write to the ​ENV​
	object. On most systems, this changes the values of the
	corresponding environment variables. However, this change is
	local to the process that makes it and to any subsequently
	spawned child processes. This inheritance of environment
	variables is illustrated in the code that follows. A
	subprocess changes an environment variable, and this change is
	inherited by a process that it then starts. However, the
	change is not visible to the original parent. (This just goes
	to prove that parents never really know what their children
	are doing.)

	​ 	puts ​"In parent, term = ​#{ENV[​'TERM'​]}​"​

	​ 	fork ​do​

	​ 	 puts ​"Start of child 1, term = ​#{ENV[​'TERM'​]}​"​

	​ 	 ENV[​'TERM'​] = ​"ansi"​

	​ 	 fork ​do​

	​ 	 puts ​"Start of child 2, term = ​#{ENV[​'TERM'​]}​"​

	​ 	 ​end​

	​ 	 Process.wait

	​ 	 puts ​"End of child 1, term = ​#{ENV[​'TERM'​]}​"​

	​ 	​end​

	​ 	Process.wait

	​ 	puts ​"Back in parent, term = ​#{ENV[​'TERM'​]}​"​

Produces:
	​ 	In parent, term = xterm-256color

	​ 	Start of child 1, term = xterm-256color

	​ 	Start of child 2, term = ansi

	​ 	End of child 1, term = ansi

	​ 	Back in parent, term = xterm-256color

	Setting an environment variable’s value to ​nil​
	removes the variable from the environment.

15.4 Where Ruby Finds Its Libraries

 You use
 ​require​
 or

 ​load​
 to bring a library into your Ruby
 program. Some of these libraries are supplied with Ruby, some
 you may have installed from the Ruby Application Archive, some
 may have been packaged as RubyGems (of which more later), and
 some you may have written yourself. How does Ruby find
 them?

 Let’s start with the basics. When Ruby is built for your
 particular machine, it predefines a set of standard directories
 to hold library stuff. Where these are depends on the machine in
 question. You can determine this from the command line with
 something like this:

	​ 	$ ​ruby -e 'puts $:'​

 On our OS X box, with RVM installed, this produces the
 following list:

	​ 	/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/ruby/site_ruby/2.0.0

	​ 	/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/ruby/site_ruby/2.0.0/x86_64-darwin12.2.0

	​ 	...

 The ​site_ruby​ directories are intended to
 hold modules and extensions that you’ve added.
 The architecture-dependent directories (​x86_64-darwin...​
 in this case) hold executables and other things specific to this
 particular machine. All these directories are automatically included
 in Ruby’s search for libraries.

 Sometimes this isn’t enough. Perhaps you’re working on a large
 project written in Ruby and you and your colleagues have built a
 substantial library of Ruby code. You want everyone on the team
 to have access to all this code. You have a couple of options
 to accomplish this. If your program runs at a safe level of zero
 (see Chapter 26, ​Locking Ruby in the Safe​), you can set the
 environment variable
 ​RUBYLIB​ to a
 list of one or more directories to be searched.[66] If your
 program is not setuid,
 you can use the command-line parameter ​-I​
 to do the same thing.

 The Ruby variable
 ​$:​ is
 an array of places to search
 for loaded files. As we’ve seen, this variable is initialized
 to the list of standard
 directories, plus any additional ones you specified using ​RUBYLIB​
 and ​-I​. You can always add directories to this array
 from within your running program. Prior to Ruby 1.9, this used to be a common idiom:

	​ 	$: << File.dirname(__FILE__)

	​ 	require ​'other_file'​

 This added the directory of the running file to the search path,
 so ​other_file.rb​ could be found there by
 the subsequent
 ​require​
 . Now we use

 ​require_relative​
 instead.

	​ 	require_relative ​'other_file'​

15.5 RubyGems Integration

 ​This section is based on the start of the chapter on
 RubyGems written by Chad Fowler for the second
 edition of this book.​

 RubyGems is a standardized packaging and
 installation framework for Ruby libraries and applications. RubyGems
 makes it easy to locate, install, upgrade, and uninstall Ruby
 packages.

 Before RubyGems came along, installing a new library involved
 searching the Web, downloading a package, and attempting to install
 it—only to find that its dependencies hadn’t been met. If the
 library you want is packaged using RubyGems, however, you can now simply
 ask RubyGems to install it (and all its dependencies). Everything is
 done for you.

 In the RubyGems world, developers bundle their applications and
 libraries into single files called
 ​ gems​

 .
 These files conform to a standardized format and typically are
 stored in repositories on the Internet (but you can also create your
 own repositories if you want).

 The RubyGems system provides a command-line tool, appropriately
 named ​gem​, for manipulating these gem
 files. It also provides integration into Ruby so that your
 programs can access gems as libraries.

 Prior to Ruby 1.9, it was your responsibility to install the
 RubyGems software on your computer. Now, however, Ruby comes with
 RubyGems baked right in.

Installing Gems on Your Machine

	Your latest project calls for a lot of XML
	generation. You could just hard-code it, but you’ve
	heard about Jim Weirich’s Builder
	library, which constructs XML directly from Ruby
	code.

	Let’s start by seeing whether Builder is available as a
	gem:

	​ 	$ ​gem query --details --remote --name-matches builder​

	​ 	AntBuilder (0.4.3)

	​ 	 Author: JRuby-extras

	​ 	 Homepage: http://jruby-extras.rubyforge.org/

	​ 	 AntBuilder: Use ant from JRuby. Only usable within JRuby

	​ 	builder (2.1.2)

	​ 	 Author: Jim Weirich

	​ 	 Homepage: http://onestepback.org

	​ 	 Builders for MarkUp.

	The ​--details​ option displays the descriptions of any
	gems it finds. The ​--remote​ option searches the
	remote repository. And the ​--name-matches​ option
	says to search the central gem repository for any gem whose
	name matches the regular expression ​/builder/​. (We
	could have used the short-form options ​-d​,
	​-r​, and ​-n​.) The result shows a number of
	gems have ​builder​ in their name; the one we want is just
	plain ​builder​.

	The number after the name shows the latest version. You can
	see a list of all available versions using the ​--all​
	option. We’ll also use the ​list​
	command, as it lets us match on an exact name:

	​ 	$ ​gem list --details --remote --all builder​

	​ 	*** REMOTE GEMS ***

	​ 	

	​ 	builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0, 0.1.1)

	​ 	 Author: Jim Weirich

	​ 	 Homepage: http://onestepback.org

	​ 	 Builders for MarkUp.

	Because we want to install the most recent one, we don’t have to state
	an explicit version on the ​install​ command; the latest is
	downloaded by default:

	​ 	$ ​gem install builder​

	​ 	Successfully installed builder-2.1.2

	​ 	1 gem installed

	​ 	Installing ri documentation for builder-2.1.2...

	​ 	Installing RDoc documentation for builder-2.1.2...

	Several things happened here. First, we see that the latest version of the
	Builder gem (2.1.2) has been installed. Next we see that RubyGems has
	determined that Jim has created documentation for his gem, so it
	sets about extracting it using RDoc.

	If you’re running ​gem install​ on a Unix platform and
	you aren’t using rvm, you’ll need to prefix the command with
	​sudo​, because by default the local
	gems are installed into shared system directories.

	During installation, you can add the
	​-t​ option to the
	​install​ command, causing RubyGems
	to run the gem’s test suite (if one has been created). If the
	tests fail, the installer will prompt you to either keep or
	discard the gem. This is a good way to gain a little more
	confidence that the gem you’ve just downloaded works on your
	system the way the author intended.

	Let’s see what gems we now have installed on our local
	box:

	​ 	$ ​gem list​

	​ 	*** LOCAL GEMS ***

	​ 	builder (2.1.2)

Reading the Gem Documentation

	Being that this is your first time using Builder, you’re not
	exactly sure how to use it. Fortunately, RubyGems installed
	the documentation for Builder on your machine. We just
	have to find it.

	As with most things in RubyGems, the documentation for each
	gem is stored in a central, protected, RubyGems-specific
	place. This will vary by system and by where you may
	explicitly choose to install your gems. The most reliable way
	to find the documents is to ask the
	​gem​ command where your RubyGems
	main directory is located:

	​ 	$ ​gem environment gemdir​

	​ 	/usr/local/lib/ruby/gems/1.9.3

	RubyGems stores generated documentation beneath the ​doc/​
	subdirectory of this directory.

	The easiest way to view gems’ RDoc documentation is to use
	RubyGems’ included ​gem server​ utility. To start
	​gem server​, simply type this:

	​ 	$ ​gem server​

	​ 	Server started at http://[::ffff:0.0.0.0]:8808

	​ 	Server started at http://0.0.0.0:8808

	​gem server​ starts a web server running on whatever
	computer you run it on. By default, it will start on port
	8808 and will serve gems and their documentation from the
	default RubyGems installation directory. Both the port and
	the gem directory are overridable via command-line options,
	using the ​-p​ and ​-d​ options, respectively.

	Once you’ve started the gem server, if you are running it on
 your local computer, you can access the documentation for your
 installed gems by pointing your web browser to

 ​http://localhost:8808​
 . There, you will see a list
 of the gems you have installed with their descriptions and
 links to their RDoc documentation. Click the rdoc link for
 Builder—the result will look something like the following.

[image: images/rubyworld/builder_rdoc.png]
Using a Gem

	Once a gem is installed, you use
	
 ​require​

	to load it into your program:[67]

	​ 	require ​'builder'​

	​ 	

	​ 	xml = Builder::XmlMarkup.new(target: STDOUT, indent: 2)

	​ 	xml.person(type: ​"programmer"​) ​do​

	​ 	 xml.name ​do​

	​ 	 xml.first ​"Dave"​

	​ 	 ​end​

	​ 	 xml.location ​"Texas"​

	​ 	 xml.preference(​"ruby"​)

	​ 	​end​

Produces:
	​ 	<person type="programmer">

	​ 	 <name>

	​ 	 <first>Dave</first>

	​ 	 </name>

	​ 	 <location>Texas</location>

	​ 	 <preference>ruby</preference>

	​ 	</person>

Gems and Versions

	Maybe you first started using Builder a few years ago. Back then the
	interface was a little bit different—with versions prior to Build
	1.0, you could say this:

	​ 	xml = Builder::XmlMarkup.new(STDOUT, 2)

	​ 	xml.person ​do​

	​ 	 name(​"Dave Thomas"​)

	​ 	​end​

	Note that the constructor takes positional parameters. Also, in the
	​do​ block, we can say just ​name(...)​, whereas the current
	Builder requires ​xml.name(...)​.
	We could go through our old code and update it all to work
	with the new-style Builder—that’s probably the best
	long-term solution. But we can also let RubyGems handle the
	issue for us.

	When we asked for a listing of the Builder gems in the
	repository, we saw that multiple versions were
	available:[68]

	​ 	$ ​gem list --details --remote --all builder​

	​ 	*** REMOTE GEMS ***

	​ 	builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0, 0.1.1)

	When we installed Builder previously, we didn’t specify a version, so
	RubyGems automatically installed the latest. But we can also get it to
	install a specific version or a version meeting some given
	criteria. Let’s install the most recent release of Builder with a
	version number less than 1:

	​ 	$ ​gem install builder --version '< 1'​

	​ 	Successfully installed builder-0.1.1

	​ 	1 gem installed

	​ 	Installing ri documentation for builder-0.1.1...

	​ 	Installing RDoc documentation for builder-0.1.1...

	Have we just overwritten the 2.1.2 release of Builder that we’d
	previously installed? Let’s find out by listing our locally installed
	gems:

	​ 	$ ​gem list builder​

	​ 	*** LOCAL GEMS ***

	​ 	builder (2.1.2, 0.1.1)

	Now that we have both versions installed locally, how do we
	tell our legacy code to use the old one while still having our
	new code use the latest version? It turns out that
	
 ​require​
 automatically loads the latest
	version of a gem, so the earlier code will work
	fine. If we want to specify a version number when we load a
	gem, we have to do a little bit more work, making it explicit
	that we’re using RubyGems:

	​ 	gem ​'builder'​, ​'< 1.0'​

	​ 	require ​'builder'​

	​ 	

	​ 	xml = Builder::XmlMarkup.new(STDOUT, 2)

	​ 	xml.person ​do​

	​ 	 name(​"Dave Thomas"​)

	​ 	 location(​"Texas"​)

	​ 	​end​

	The magic is the
 ​gem​
 line, which says, “When looking for the
	Builder gem, consider only those versions less than 1.0.” The subsequent
	
 ​require​
 honors this, so the code loads the correct version of
	Builder and runs. The ​"< 1.0"​ part of the
 ​gem​
 line is a
	version predicate. The numbers that follow are of the form
	​major.minor.patch_level​.
	The various predicates that
	RubyGems supports are:

Table 7. Version operators
	
Operator
	
Description

	
​=​
	
Exact version match. Major, minor, and patch level must be identical.

	
​!=​
	
Any version that is not the one specified.

	
​>​
	
Any version that is greater (even at the patch level) than the one specified.

	
​<​
	
Any version that is less than the one specified.

	
​>=​
	
Any version greater than or equal to the specified version.

	
​<=​
	
Any version less than or equal to the specified version.

	
​~>​
	
	

	 “Boxed” version operator. Version must be greater
	 than or equal to the specified version and less than
	 the specified version after having its minor version
	 number increased by 1. This is to avoid API
	 incompatibilities between minor version releases.
	

	

	You can specify multiple version predicates, so the
	following is valid:

	​ 	gem ​'builder'​, ​'> 0.1'​, ​'< 0.1.5'​

	Unfortunately, after all this work, there’s a problem. Older versions
	of Builder don’t run under 1.9 anyway. You can still run this code in
	Ruby 1.8, but you’d have to update your code to use the new-style
	Builder if you want to use Ruby 1.9.

Gems Can Be More Than Libraries

	As well as installing libraries that can be used inside your
	application code, RubyGems can also install utility programs that you
	can invoke from the command line. Often these utilities are wrappers
	around the libraries included in the gem. For example, Marcel
	Molina’s AWS:S3 gem is a library that gives you
	programmatic access to Amazon’s S3 storage facility. As well as the library
	itself, Marcel provided a command-line utility, ​s3sh​, which lets
	you interact with your S3 assets. When you install the
	gem, ​s3sh​ is automatically loaded into the same ​bin/​
	directory that holds the Ruby interpreter.

	There’s a small problem with these installed utilities. Although gems
	supports versioning of libraries, it does not version command-line
	utilities. With these, it’s “last one in wins.”

15.6 The Rake Build Tool

 As well as the Builder gem, Jim Weirich wrote an
 incredibly useful utility program called Rake. Prior to Ruby 1.9,
 you had to install Rake as a separate gem, but it is now included in
 the base Ruby installation.

 Rake was initially implemented as a Ruby version of Make, the common
 build utility. However, calling Rake a build utility is to miss its
 true power. Really, Rake is an automation tool—it’s a way of putting
 all those tasks that you perform in a project into one neat and tidy
 place.

 Let’s start with a trivial example. As you edit files, you often
 accumulate backup files in your working directories. On Unix systems,
 these files often have the same name as the original files, but with a
 tilde character appended. On Windows boxes, the files often have a
 ​bak​ extension.

 We could write a trivial Ruby program that deletes these files. For a
 Unix box, it might look something like this:

	​ 	require ​'fileutils'​

	​ 	files = Dir[​'*~'​]

	​ 	FileUtils::rm files, verbose: true

 The ​FileUtils​
 module defines methods for manipulating files and directories
 (see the description in the library
 section). Our code uses its
 ​rm​

 method. We use the ​Dir​ class to return a list of
 filenames matching the given pattern and pass that list to

 ​rm​
 .

 Let’s package this code as a Rake
 ​ task​

 —a chunk of code that
 Rake can execute for us.

 By default, Rake searches the current directory (and its
 parents) for a file called
 ​Rakefile​. This
 file contains definitions for the tasks that Rake can run.

 So, put the following code into a file called
 ​Rakefile​:

	​ 	desc ​"Remove files whose names end with a tilde"​

	​ 	task :delete_unix_backups ​do​

	​ 	 files = Dir[​'*~'​]

	​ 	 rm(files, verbose: true) ​unless​ files.empty?

	​ 	​end​

 Although it doesn’t have an ​rb​
 extension, this is actually just a file of Ruby code. Rake
 defines an environment containing methods such as
 ​desc​
 and
 ​task​
 and then executes the
 ​Rakefile​.

 The
 ​desc​
 method provides a single line
 of documentation for the task that follows it. The

 ​task​
 method defines a Rake task that
 can be executed from the command line. The parameter is the name
 of the task (a symbol), and the block that follows is the code
 to be executed. Here we can just use

 ​rm​
 —all the methods in FileUtils are
 automatically available inside Rake files.

 We can invoke this task from the command line:

	​ 	$ ​rake delete_unix_backups​

	​ 	(in /Users/dave/BS2/titles/ruby4/Book/code/rake)

	​ 	rm entry~

 The first line shows us the name of the directory where Rake
 found the Rakefile (remember that this might be in a directory
 above our current working directory). The next line is the
 output of the ​rm​ method, in this case
 showing it deleted the single file ​entry~​.

 OK, now let’s write a second task in the same Rakefile. This one
 deletes Windows backup files.

	​ 	desc ​"Remove files with a .bak extension"​

	​ 	task :delete_windows_backups ​do​

	​ 	 files = Dir[​'*.bak'​]

	​ 	 rm(files, verbose: true) ​unless​ files.empty?

	​ 	​end​

 We can run this with ​rake delete_windows_backups​.

 But let’s say that our application could be used on both platforms,
 and we wanted to let our users delete backup files on either. We
 ​could​ write a combined task, but Rake gives us a better
 way—it lets us
 ​ compose​

 tasks. Here, for example, is a new
 task:

	​ 	desc ​"Remove Unix and Windows backup files"​

	​ 	task :delete_backups => [:delete_unix_backups, :delete_windows_backups] ​do​

	​ 	 puts ​"All backups deleted"​

	​ 	​end​

 The task’s name is ​delete_backups​, and it
 depends on two other tasks. This isn’t some special Rake syntax: we’re
 simply passing the
 ​task​
 method a Ruby hash containing a
 single entry whose key is the task name and whose value is the list of
 antecedent tasks. This causes
 Rake to execute the two platform-specific tasks before executing the
 ​delete_backups​ task:

	​ 	$ ​rake delete_backups​

	​ 	rm entry~

	​ 	rm index.bak list.bak

	​ 	All backups deleted

 Our current Rakefile contains some duplication between the Unix
 and Windows deletion tasks. As it is just Ruby code, we can
 simply define a Ruby method to eliminate this:

	​ 	​def​ delete(pattern)

	​ 	 files = Dir[pattern]

	​ 	 rm(files, verbose: true) ​unless​ files.empty?

	​ 	​end​

	​ 	

	​ 	desc ​"Remove files whose names end with a tilde"​

	​ 	task :delete_unix_backups ​do​

	​ 	 delete ​"*~"​

	​ 	​end​

	​ 	

	​ 	desc ​"Remove files with a .bak extension"​

	​ 	task :delete_windows_backups ​do​

	​ 	 delete ​"*.bak"​

	​ 	​end​

	​ 	

	​ 	desc ​"Remove Unix and Windows backup files"​

	​ 	task :delete_backups => [:delete_unix_backups, :delete_windows_backups] ​do​

	​ 	 puts ​"All backups deleted"​

	​ 	​end​

 If a Rake task is named ​default​, it will be executed if you invoke
 Rake with no parameters.

 You can find the tasks implemented by a Rakefile (or, more accurately,
 the tasks for which there is a description) using this:

	​ 	$ ​rake -T​

	​ 	(in /Users/dave/BS2/titles/ruby4/Book/code/rake)

	​ 	rake delete_backups # Remove Unix and Windows backup files

	​ 	rake delete_unix_backups # Remove files whose names end with a tilde

	​ 	rake delete_windows_backups # Remove files with a .bak extension

 This section only touches on the full power of Rake. It can
 handle dependencies between files (for example, rebuilding an
 executable file if one of the source files has changed), it
 knows about running tests and generating documentation, and it
 can even package gems for you. Martin Fowler has written a good
 overview of Rake if you’re interested in digging
 deeper.[69]
 You might also want to investigate
 Sake,[70]
 a tool that makes Rake tasks available no matter what directory
 you’re in, or
 Thor,[71]
 a tool that makes it easy to write Ruby command-line tools.

15.7 Build Environment

 When Ruby is compiled for a particular architecture, all the
 relevant settings used to build it (including the architecture
 of the machine on which it was compiled, compiler options,
 source code directory, and so on) are written to the module
 ​RbConfig​
 within the library file ​rbconfig.rb​. After installation,
 any Ruby program can use this module to get details on how Ruby
 was compiled:

	​ 	require ​'rbconfig'​

	​ 	include RbConfig

	​ 	CONFIG[​"host"​] ​# => "x86_64-apple-darwin12.2.0"​

	​ 	CONFIG[​"libdir"​] ​# => "/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib"​

 Extension libraries use this configuration file in order to
 compile and link properly on any given architecture. If you
 visit the online page for the previous edition of this book at

 ​http://pragprog.com/titles/ruby3​
 and select the
 ​Contents/Extracts​ tab, you can download a free
 chapter on writing extension libraries.

Footnotes

	[63]	
 This is
 the title of a marvelous essay by Neal Stephenson (available online via

 ​http://www.cryptonomicon.com/beginning.html​
).

	[64]	
​ENV​
 is not actually a hash, but if you need to, you can convert it
 into a ​Hash​ using
 ​ENV#to_hash​.

	[65]	

 This applies to MRI only.

	[66]	
The
 separator between entries is a semicolon on Windows;
 for Unix, it’s a colon.

	[67]	
Prior to Ruby 1.9, before
	you could use a gem in your code, you first had to load a
	support library called ​rubygems​. Ruby now integrates that
	support directly, so this step is no longer needed.

	[68]	
 By the time this book reaches you, the
	list of available versions will likely have changed.

	[69]	

 ​http://martinfowler.com/articles/rake.html​

	[70]	

 ​http://errtheblog.com/posts/60-sake-bomb​

	[71]	

 ​http://github.com/wycats/thor​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 16
Namespaces, Source Files, and Distribution

 As your programs grow (and they all seem to grow over time),
 you’ll find that you’ll need to start organizing your
 code—simply putting everything into a single huge file becomes
 unworkable (and makes it hard to reuse chunks of code in other
 projects). So, we need to find a way to split our project into
 multiple files and then to knit those files together as our
 program runs.

 There are two major aspects to this organization. The first is
 internal to your code: how do you prevent different things with the
 same name from clashing? The second area is related: how do you
 conveniently organize the source files in your project?

16.1 Namespaces

 We’ve already encountered a way that Ruby helps you manage the names
 of things in your programs. If you define methods or constants in a
 class, Ruby ensures that their names can be used only in the context
 of that class (or its objects, in the case of instance methods):

	​ 	​class​ Triangle

	​ 	 SIDES = 3

	​ 	 ​def​ area

	​ 	 ​# ..​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Square

	​ 	 SIDES = 4

	​ 	 ​def​ initialize(side_length)

	​ 	 @side_length = side_length

	​ 	 ​end​

	​ 	 ​def​ area

	​ 	 @side_length * @side_length

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"A triangle has ​#{Triangle::SIDES}​ sides"​

	​ 	

	​ 	sq = Square.new(3)

	​ 	puts ​"Area of square = ​#{sq.area}​"​

Produces:
	​ 	A triangle has 3 sides

	​ 	Area of square = 9

 Both classes define a constant called ​SIDES​ and an instance
 method
 ​area​
 , but these things don’t get confused. You access
 the instance method via objects created from the class, and you access
 the constant by prefixing it with the name of the class followed by a
 double colon.
 The double colon (​::​) is Ruby’s namespace resolution operator. The
 thing to the left must be a class or module, and the thing to the
 right is a constant defined in that class or module.[72]

 So, putting code inside a module or class is a good way of
 separating it from other code. Ruby’s
 ​Math​ module is
 a good example—it defines constants such as
 ​Math::PI​ and ​Math::E​
 and methods such as
 ​Math.sin​
 and

 ​Math.cos​
 . You can access these
 constants and methods via the ​Math​ module
 object:

	​ 	Math::E ​# => 2.718281828459045​

	​ 	Math.sin(Math::PI/6.0) ​# => 0.49999999999999994​

 (Modules have another significant use—they implement Ruby’s

 ​ mixin​

 functionality, which we discussed
 Section 5.3, ​Mixins​.)

 Ruby has an interesting little secret. The names of classes and
 modules are themselves just constants.[73]
 And that means that if you define classes or modules inside
 other classes and modules, the names of those inner classes
 are just contants that follow the same namespacing rules as other constants:

	​ 	​module​ Formatters

	​ 	 ​class​ Html

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	 ​class​ Pdf

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	html_writer = Formatters::Html.new

 You can nest classes and modules inside other classes and modules to
 any depth you want (although it’s rare to see them more than three
 deep).

 So, now we know that we can use classes and modules to partition the
 names used by our programs. The second question to answer is, what do
 we do with the source code?

16.2 Organizing Your Source

 This section covers two related issues: how do we split our source
 code into separate files, and where in the file system do we put those
 files?

 Some languages, such as Java, make this easy. They dictate that each
 outer-level class should be in its own file and that file should be
 named according to the name of the class. Other languages, such as
 Ruby, have no rules relating source files and their content. In Ruby,
 you’re free to organize your code as you like.

 But, in the real world, you’ll find that some kind of
 consistency really helps. It will make it easier for you to
 navigate your own projects, and it will also help when you read
 (or incorporate) other people’s code.

 So, the Ruby community is gradually adopting a kind of de facto
 standard. In many ways, it follows the spirit of the Java model, but
 without some of the inconveniences suffered by our Java brethren.
 Let’s start with the basics.

Small Programs

	Small, self-contained scripts can be in a single file. However, if you
	do this, you won’t easily be able to write automated tests for your
	program, because the test code won’t be able to load the file
	containing your source without the program itself running. So, if you
	want to write a small program that also has automated tests, split
	that program into a trivial driver that provides the external interface
	(the command-line part of the code) and one or more files containing
	the rest. Your tests can then exercise these separate files without
	actually running the main body of your program.

	Let’s try this for real. Here’s a simple program that finds anagrams
	in a dictionary. Feed it one or more words, and it gives you the
	anagrams of each. Here’s an example:

	​ 	$ ​ ruby anagram.rb teaching code​

	​ 	Anagrams of teaching: cheating, teaching

	​ 	Anagrams of code: code, coed

	If we were typing in this program for casual use, we might just enter it
	into a single file (perhaps ​anagram.rb​). It would look something
	like this:[74]

	packaging/anagram.rb
	​ 	#!/usr/bin/env ruby

	​ 	

	​ 	require ​'optparse'​

	​ 	

	​ 	dictionary = ​"/usr/share/dict/words"​

	​ 	

	​ 	OptionParser.new ​do​ |opts|

	​ 	

	​ 	 opts.banner = ​"Usage: anagram [options] word..."​

	​ 	

	​ 	 opts.on(​"-d"​, ​"--dict path"​, String, ​"Path to dictionary"​) ​do​ |dict|

	​ 	 dictionary = dict

	​ 	 ​end​

	​ 	

	​ 	 opts.on(​"-h"​, ​"--help"​, ​"Show this message"​) ​do​

	​ 	 puts opts

	​ 	 exit

	​ 	 ​end​

	​ 	

	​ 	

	​ 	 ​begin​

	​ 	 ARGV << ​"-h"​ ​if​ ARGV.empty?

	​ 	 opts.parse!(ARGV)

	​ 	 ​rescue​ OptionParser::ParseError => e

	​ 	 STDERR.puts e.message, ​"\n"​, opts

	​ 	 exit(-1)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​# convert "wombat" into "abmotw". All anagrams share a signature​

	​ 	​def​ signature_of(word)

	​ 	 word.unpack(​"c*"​).sort.pack(​"c*"​)

	​ 	​end​

	​ 	

	​ 	signatures = Hash.new

	​ 	

	​ 	File.foreach(dictionary) ​do​ |line|

	​ 	 word = line.chomp

	​ 	 signature = signature_of(word)

	​ 	 (signatures[signature] ||= []) << word

	​ 	​end​

	​ 	

	​ 	ARGV.each ​do​ |word|

	​ 	 signature = signature_of(word)

	​ 	 ​if​ signatures[signature]

	​ 	 puts ​"Anagrams of ​#{word}​: ​#{signatures[signature].join(​', '​)}​"​

	​ 	 ​else​

	​ 	 puts ​"No anagrams of ​#{word}​ in ​#{dictionary}​"​

	​ 	 ​end​

	​ 	​end​

	Then someone asks us for a copy, and we start to feel embarrassed. It
	has no tests, and it isn’t particularly well packaged.

	Looking at the code, there are clearly three sections. The
	first twenty-five or so lines do option parsing, the next ten or
	so lines read and convert the dictionary, and the last few lines
	look up each command-line argument and report the result.
	Let’s split our file into four parts:

	
An option parser

	
 A class to hold the lookup table for anagrams

	
 A class that looks up words given on the command line

	
 A trivial command-line interface

	The first three of these are effectively library files, used by the
	fourth.

	Where do we put all these files? The answer is driven by some
	strong Ruby conventions, first seen in Minero Aoki’s
	​setup.rb​ and later enshrined in the
	RubyGems system. We’ll create a directory
	for our project containing (for now) three subdirectories:

	​ 	anagram/ <- top-level

	​ 	 bin/ <- command-line interface goes here

	​ 	 lib/ <- three library files go here

	​ 	 test/ <- test files go here

	Now let’s look at the library files. We know we’re going to be
	defining (at least) three classes. Right now, these classes
	will be used only inside our command-line program, but it’s
	conceivable that other people might want to include one or
	more of our libraries in their own code. This means that we
	should be polite and not pollute the top-level Ruby namespace
	with the names of all our classes and so on. We’ll create just
	one top-level module,
	​Anagram​,
	and then
	place all our classes inside this module. This means that the full
	name of (say) our options-parsing class will be
	​Anagram::Options​.

	This choice informs our decision on where to put the
	corresponding source files. Because class
	​Options​ is inside the module
	​Anagram​, it makes sense to put the
	corresponding file, ​options.rb​, inside a
	directory named ​anagram/​ in the
	​lib/​ directory. This helps people who read
	your code in the future; when they see a name like
	​A::B::C​, they know to look for
	​c.rb​ in the ​b/​
	directory in the ​a/​ directory of your
	library.
	So, we can now flesh out our directory structure with some files:

	​ 	anagram/

	​ 	 bin/

	​ 	 anagram <- command-line interface

	​ 	 lib/

	​ 	 anagram/

	​ 	 finder.rb

	​ 	 options.rb

	​ 	 runner.rb

	​ 	 test/

	​ 	 ... various test files

	Let’s start with the option parser. Its job is to take an array of
	command-line options and return to us the path to the dictionary file
	and the list of words to look up as anagrams. The source, in
	​lib/anagram/options.rb​, looks like this:
	Notice how we define the ​Options​ class inside a top-level
	​Anagram​ module.

	packaging/anagram/lib/anagram/options.rb
	​ 	require ​'optparse'​

	​ 	

	​ 	​module​ Anagram

	​ 	 ​class​ Options

	​ 	 DEFAULT_DICTIONARY = ​"/usr/share/dict/words"​

	​ 	 attr_reader :dictionary, :words_to_find

	​ 	

	​ 	 ​def​ initialize(argv)

	​ 	 @dictionary = DEFAULT_DICTIONARY

	​ 	 parse(argv)

	​ 	 @words_to_find = argv

	​ 	 ​end​

	​ 	

	​ 	 private

	​ 	

	​ 	 ​def​ parse(argv)

	​ 	 OptionParser.new ​do​ |opts|

	​ 	 opts.banner = ​"Usage: anagram [options] word..."​

	​ 	

	​ 	 opts.on(​"-d"​, ​"--dict path"​, String, ​"Path to dictionary"​) ​do​ |dict|

	​ 	 @dictionary = dict

	​ 	 ​end​

	​ 	

	​ 	 opts.on(​"-h"​, ​"--help"​, ​"Show this message"​) ​do​

	​ 	 puts opts

	​ 	 exit

	​ 	 ​end​

	​ 	

	​ 	 ​begin​

	​ 	 argv = [​"-h"​] ​if​ argv.empty?

	​ 	 opts.parse!(argv)

	​ 	 ​rescue​ OptionParser::ParseError => e

	​ 	 STDERR.puts e.message, ​"\n"​, opts

	​ 	 exit(-1)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	Let’s write some unit tests. This should be
	fairly easy, because ​options.rb​ is
	self-contained—the only dependency is to the
	standard Ruby
	​OptionParser​. We’ll
	use the Test::Unit framework, extended with the
	Shoulda gem.[75] We’ll put the source of this
	test in the file ​test/test_options.rb​:

	packaging/anagram/test/test_options.rb
	​ 	require ​'test/unit'​

	​ 	require ​'shoulda'​

	​ 	require_relative ​'../lib/anagram/options'​

	​ 	

	​ 	​class​ TestOptions < Test::Unit::TestCase

	​ 	

	​ 	 context ​"specifying no dictionary"​ ​do​

	​ 	 should ​"return default"​ ​do​

	​ 	 opts = Anagram::Options.new([​"someword"​])

	​ 	 assert_equal Anagram::Options::DEFAULT_DICTIONARY, opts.dictionary

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 context ​"specifying a dictionary"​ ​do​

	​ 	 should ​"return it"​ ​do​

	​ 	 opts = Anagram::Options.new([​"-d"​, ​"mydict"​, ​"someword"​])

	​ 	 assert_equal ​"mydict"​, opts.dictionary

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 context ​"specifying words and no dictionary"​ ​do​

	​ 	 should ​"return the words"​ ​do​

	​ 	 opts = Anagram::Options.new([​"word1"​, ​"word2"​])

	​ 	 assert_equal [​"word1"​, ​"word2"​], opts.words_to_find

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 context ​"specifying words and a dictionary"​ ​do​

	​ 	 should ​"return the words"​ ​do​

	​ 	 opts = Anagram::Options.new([​"-d"​, ​"mydict"​, ​"word1"​, ​"word2"​])

	​ 	 assert_equal [​"word1"​, ​"word2"​], opts.words_to_find

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	The line to note in this file is as follows:

	​ 	require_relative ​'../lib/anagram/options'​

	This is where we load the source of the
	​Options​ class we just wrote. We use
	
 ​require_relative​
 ,
	as it always loads from a path relative to the directory of
	the file that invokes it.

	​ 	$ ​ruby test/test_options.rb​

	​ 	Run options:

	​ 	# Running tests:

	​ 	...​.​

	​ 	Finished tests in 0.010588s, 377.7862 tests/s, 377.7862 assertions/s.

	​ 	4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	The finder code (in
	​lib/anagram/finder.rb​) is modified
	slightly from the original version. To make it easier to test,
	we’ll have the default constructor take a list of words,
	rather than a filename. We’ll then provide an additional
	factory method,
 ​from_file​
 , that takes
	a filename and constructs a new ​Finder​
	from that file’s contents:

	packaging/anagram/lib/anagram/finder.rb
	​ 	​module​ Anagram

	​ 	 ​class​ Finder

	​ 	

	​ 	 ​def​ self.from_file(file_name)

	​ 	 new(File.readlines(file_name))

	​ 	 ​end​

	​ 	

	​ 	 ​def​ initialize(dictionary_words)

	​ 	 @signatures = Hash.new

	​ 	 dictionary_words.each ​do​ |line|

	​ 	 word = line.chomp

	​ 	 signature = Finder.signature_of(word)

	​ 	 (@signatures[signature] ||= []) << word

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ lookup(word)

	​ 	 signature = Finder.signature_of(word)

	​ 	 @signatures[signature]

	​ 	 ​end​

	​ 	

	​ 	 ​def​ self.signature_of(word)

	​ 	 word.unpack(​"c*"​).sort.pack(​"c*"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	Again, we embed the ​Finder​ class inside
	the top-level ​Anagram​ module. And,
	again, this code is self-contained, allowing us to write some
	simple unit tests:

	packaging/anagram/test/test_finder.rb
	​ 	require ​'test/unit'​

	​ 	require ​'shoulda'​

	​ 	require_relative ​'../lib/anagram/finder'​

	​ 	

	​ 	​class​ TestFinder < Test::Unit::TestCase

	​ 	

	​ 	 context ​"signature"​ ​do​

	​ 	 { ​"cat"​ => ​"act"​, ​"act"​ => ​"act"​, ​"wombat"​ => ​"abmotw"​ }.each ​do​

	​ 	 |word, signature|

	​ 	 should ​"be ​#{signature}​ for ​#{word}​"​ ​do​

	​ 	 assert_equal signature, Anagram::Finder.signature_of(word)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 context ​"lookup"​ ​do​

	​ 	 setup ​do​

	​ 	 @finder = Anagram::Finder.new([​"cat"​, ​"wombat"​])

	​ 	 ​end​

	​ 	

	​ 	 should ​"return word if word given"​ ​do​

	​ 	 assert_equal [​"cat"​], @finder.lookup(​"cat"​)

	​ 	 ​end​

	​ 	

	​ 	 should ​"return word if anagram given"​ ​do​

	​ 	 assert_equal [​"cat"​], @finder.lookup(​"act"​)

	​ 	 assert_equal [​"cat"​], @finder.lookup(​"tca"​)

	​ 	 ​end​

	​ 	

	​ 	 should ​"return nil if no word matches anagram"​ ​do​

	​ 	 assert_nil @finder.lookup(​"wibble"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	​end​

	These go in ​test/test_finder.rb​:

	​ 	$ ​ruby test/test_finder.rb​

	​ 	Run options:

	​ 	# Running tests:

	​ 	...​...​

	​ 	Finished tests in 0.009453s, 634.7191 tests/s, 740.5057 assertions/s.

	​ 	6 tests, 7 assertions, 0 failures, 0 errors, 0 skips

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

	We now have all the support code in place. We just need to
	run it. We’ll make the command-line interface—the thing the
	end user actually executes—really thin. It’s in the
	​bin/​ directory in a file called
	​anagram​ (no
	​rb​ extension, because that
	would be unusual in a command).[76]

	packaging/anagram/bin/anagram
	​ 	#! /usr/local/rubybook/bin/ruby

	​ 	require 'anagram/runner'

	​ 	

	​ 	runner = Anagram::Runner.new(ARGV)

	​ 	runner.run

	The code that this script invokes (​lib/anagram/runner.rb​) knits our other
	libraries together:

	packaging/anagram/lib/anagram/runner.rb
	​ 	require_relative ​'finder'​

	​ 	require_relative ​'options'​

	​ 	

	​ 	​module​ Anagram

	​ 	 ​class​ Runner

	​ 	 ​def​ initialize(argv)

	​ 	 @options = Options.new(argv)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ run

	​ 	 finder = Finder.from_file(@options.dictionary)

	​ 	 @options.words_to_find.each ​do​ |word|

	​ 	 anagrams = finder.lookup(word)

	​ 	 ​if​ anagrams

	​ 	 puts ​"Anagrams of ​#{word}​: ​#{anagrams.join(​', '​)}​"​

	​ 	 ​else​

	​ 	 puts ​"No anagrams of ​#{word}​ in ​#{@options.dictionary}​"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	In this case, the two libraries ​finder​
	and ​options​ are in the same directory as
	the runner, so
 ​require_relative​
 finds
	them perfectly.

	Now that all our files are in place, we can run our program from the
	command line:

	​ 	$ ​ruby -I lib bin/anagram teaching code​

	​ 	Anagrams of teaching: cheating, teaching

	​ 	Anagrams of code: code, coed

	There’s nothing like a cheating coed teaching
	code.

16.3 Distributing and Installing Your Code

 Now that we have our code a little tidier, it would be nice to be able
 to distribute it to others. We could just zip or tar it up and send
 them our files, but then they’d have to run the code the way we do,
 remembering to add the correct ​-I lib​ options and so on. They’d
 also have some problems if they wanted to reuse one of our library
 files—it would be sitting in some random directory on their hard
 drive, not in a standard location used by Ruby.
 Instead, we’re looking for a way to take our little application and

 ​ install​

 it in a standard way.

 Now, Ruby already has a standard installation structure on your
 computer. When Ruby is installed, it puts its commands
 (​ruby​, ​ri​,
 ​irb​, and so on) into a directory of
 binary files. It puts its libraries into another directory tree
 and documentation somewhere else. So, one option would be to
 write an installation script that you distribute with your code
 that copies components of your application to the appropriate
 directories on the system that’s installing it.

Being a Good Packaging Citizen

	So, I’ve ignored some stuff that
	you’d want to do before distributing your code to the world. Your
	distributed directory tree really should have a ​README​ file,
	outlining what it does and probably containing a copyright
	statement; an ​INSTALL​ file, giving installation instructions;
	and a ​LICENSE​ file, giving the license it is distributed under.

	You’ll probably want to distribute some documentation,
	too. This would go in a directory called
	​doc/​, parallel with the
	​bin​ and ​lib​ directories.

	You might also want to distribute native C-language extensions with
	your library. These extensions would go into your
	project’s ​ext/​ directory.

Using RubyGems

	
	The RubyGems package management system (which is also just
	called ​Gems​) has become the standard for
	distributing and managing Ruby code packages. As of
	Ruby 1.9, it comes bundled with Ruby
	itself.[77]

	RubyGems is also a great way to package your own code. If you
	want to make your code available to the world, RubyGems is the
	way to go. Even if you’re just sending code to a few friends
	or within your company, RubyGems gives you dependency and
	installation management—one day you’ll be grateful for that.

	RubyGems needs to know information about your project that
	isn’t contained in the directory structure. Instead, you have
	to write a short RubyGems specification: a
	GemSpec.
	Create this in a separate file named
	​​project-name​.gemspec​ in the top-level
	directory of your application (in our case, the file is
	​anagram.gemspec​):

	packaging/anagram/anagram.gemspec
	​ 	Gem::Specification.new ​do​ |s|

	​ 	 s.name = ​"anagram"​

	​ 	 s.summary = ​"Find anagrams of words supplied on the command line"​

	​ 	 s.description = File.read(File.join(File.dirname(__FILE__), ​'README'​))

	​ 	 s.requirements =

	​ 	 [​'An installed dictionary (most Unix systems have one)'​]

	​ 	 s.version = ​"0.0.1"​

	​ 	 s.author = ​"Dave Thomas"​

	​ 	 s.email = ​"dave@pragprog.com"​

	​ 	 s.homepage = ​"http://pragdave.pragprog.com"​

	​ 	 s.platform = Gem::Platform::RUBY

	​ 	 s.required_ruby_version = ​'>=1.9'​

	​ 	 s.files = Dir[​'**/**'​]

	​ 	 s.executables = [​'anagram'​]

	​ 	 s.test_files = Dir[​"test/test*.rb"​]

	​ 	 s.has_rdoc = false

	​ 	​end​

	The
	first line of the spec gives our gem a name. This is
	important—it will be used as part of the package name, and it will
	appear as the name of the gem when installed. Although it can be mixed
	case, we find that confusing, so do our poor brains a favor and
	use lowercase for gem names.

	The version string is significant, because RubyGems will use
	it both for package naming and for dependency
	management. Stick to the
	​x.y.z​ format.[78]

	The platform field tells RubyGems that (in this case) our gem
	is pure Ruby code. It’s also possible to package (for example)
	Windows ​exe​ files inside a gem,
	in which case you’d use
	​Gem::Platform::Win32​.

	The next line is also important (and oft-forgotten by package
	developers). Because we use
	
 ​require_relative​
 , our gem will run
	only with Ruby 1.9 and newer.

	We then tell RubyGems which files to include when creating the gem
	package. Here we’ve been lazy and included everything. You can be more
	specific.

	The ​s.executables​ line tells RubyGems to install the
	​anagram​ command-line script when
	the gem gets installed on a user’s machine.

	To save space, we haven’t added RDoc documentation comments to
	our source files (RDoc is described in Chapter 19, ​Documenting Ruby​). The last line of the spec tells
	RubyGems not to try to extract documentation when the gem is
	installed.

	Obviously I’ve skipped a lot of details here. A full
	description of GemSpecs is available
	online,[79]
	along with other documents on
	RubyGems.[80]

Packaging Your RubyGem

	 Once the gem specification is
	 complete, you’ll want to create the packaged
	 ​gem​ file for
	 distribution. This is as easy as navigating to the top level
	 of your project and typing this:
	
	​ 	$ ​ gem build anagram.gemspec​

	​ 	WARNING: no rubyforge_project specified

	​ 	 Successfully built RubyGem

	​ 	 Name: anagram

	​ 	 Version: 0.0.1

	​ 	 File: anagram-0.0.1.gem

	 You’ll find you now have a file called ​anagram-0.0.1.gem​.
	
	​ 	$ ​ls *gem​

	​ 	anagram-0.0.1.gem

	 You can install it:
	
	​ 	$ ​sudo gem install pkg/anagram-0.0.1.gem​

	​ 	Successfully installed anagram-0.0.1

	​ 	1 gem installed

	 And check to see that it is there:
	
	​ 	$ ​gem list anagram -d​

	​ 	*** LOCAL GEMS ***

	​ 	anagram (0.0.1)

	​ 	 Author: Dave Thomas

	​ 	 Homepage: http://pragdave.pragprog.com

	​ 	 Installed at: /usr/local/lib/ruby/gems/1.9.0

	​ 	

	​ 	 Find anagrams of words supplied on the command line

	 Now you can send your ​gem​
	 file to friends and colleagues or share it from a
	 server. Or, you could go one better and share it from a
	 RubyGems server.
	

	 If you have RubyGems installed on your local box, you can share them
	 over the network to others. Simply run this:
	
	​ 	$ ​gem server​

	​ 	Server started at http://[::ffff:0.0.0.0]:8808

	​ 	Server started at http://0.0.0.0:8808

	 This starts a server (by default on port 8808, but the
	 ​--port​ option overrides that). Other people can
	 connect to your server to list and retrieve RubyGems:
	
	​ 	$ ​gem list --remote --source http://dave.local:8808​

	​ 	*** REMOTE GEMS ***

	​ 	anagram (0.0.1)

	​ 	builder (2.1.2, 0.1.1)

	​ 	..

	 This is particularly useful in a corporate environment.
	

	 You can speed up the serving of gems by creating a static index—see
	 the help for ​gem generate_index​ for details.
	
Serving Public RubyGems

	 RubyGems.org (
 ​http://rubygems.org​
) has
	 become the main repository for public Ruby libraries and
	 projects. And, if you create a RubyGems.org account, you can
	 push your ​gem​ file to their
	 public servers.
	
	​ 	$ ​gem push anagram-0.0.1.gem​

	​ 	Enter your RubyGems.org credentials.

	​ 	Email: dave@pragprog.com

	​ 	Password:

	​ 	Pushing gem to RubyGems.org...

	​ 	Successfully registered gem: anagram (0.0.1)

	 And, at that point, any Ruby user in the world can do this:
	
	​ 	$ ​gem search -r anagram​

	​ 	*** REMOTE GEMS ***

	​ 	anagram (0.0.1)

	 and, even better, can do this:
	
	​ 	$ ​gem install anagram​

Adding Even More Automation

	The Jeweler
	library[81]
	can create a new project skeleton that follows the layout
	guidelines in this chapter. It also provides a set of Rake
	tasks that will help create and manage your project as a gem.

	If you’re a Rails user, you’ll have come across
	​bundler​, a utility
	that manages the gems used by your application. Bundler is
	more general than this: it can be used to manage the gems used
	by any piece of Ruby code.

	Some folks like the extra features of these utilities, while others
	prefer the leaner “roll-your-own” approach. Whatever route you
	take, taking the time to package your applications and libraries will
	pay you back many times over.

See You on GitHub

	 Finally, if you’re developing a Ruby application or library
	 that you’ll be sharing, you’ll probably want to store it on
	 GitHub.[82]
	 Although it started as a public Git repository,
	 GitHub is now a community in its own right. It’s a home
	 away from home for many in the Ruby community.
	

Footnotes

	[72]	
The
 thing to the right of the ​::​ can also be a class or module
 method, but this use is falling out of favor—using a period makes
 it clearer that it’s just a regular old method call.

	[73]	
Remember that
 we said that most everything in Ruby is an object. Well, classes
 and modules are, too. The name that you use for a class, such as
 ​String​, is really just a Ruby constant
 containing the object representing that class.

	[74]	

 You might be wondering about the line ​word.unpack("c*").sort.pack("c*")​.
 This uses the function
 ​unpack​
 to break a string into
 an array of characters, which are then sorted and packed back into a
 string.

	[75]	
We talk about Shoulda in the Unit Testing
	chapter.

	[76]	

	If you’re on Windows, you
	might want to wrap the invocation of this in a
	​cmd​ file.

	[77]	
Prior to RubyGems, folks often
	distibuted a tool called ​setup.rb​
	with their libraries. This would install the library into the
	standard Ruby directory structure on a user’s
	machine.

	[78]	
And read
	
 ​http://www.rubygems.org/read/chapter/7​
 for
	information on what the numbers mean.

	[79]	

 ​http://www.rubygems.org/read/book/4​

	[80]	

 ​http://www.rubygems.org/​

	[81]	

 ​http://github.com/technicalpickles/jeweler​

	[82]	

 ​http://github.com​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 17
Character Encoding

 Prior to Ruby 1.9, Ruby programs were basically
 written using the ASCII character encoding. You could always
 override this with the ​-K​ command-line option, but this
 led to inconsistencies when manipulating strings and doing file
 I/O.

 Ruby 1.9 changed all this. Ruby now supports the idea of character
 encodings. And, what’s more, these encodings can be applied relatively
 independently to your program source files, to objects in your running
 programs, and to the interpretation of I/O streams.

 Before delving into the details, let’s spend a few minutes thinking
 about why we need to separate the encodings of source files,
 variables, and I/O streams. Let’s imagine Yui is a developer in Japan
 who wants to code in her native language. Her editor lets her write
 code using Shift JIS (SJIS), a Japanese
 character encoding, so she writes her variable names using katakana
 and kanji characters. But, by default, Ruby assumes that source files
 are written in ASCII, and the SJIS characters would not be recognized
 as such. However, by setting the encoding to be used when compiling
 the source file, Ruby can now parse her program.

 She converts her program into a gem, and users around the world
 try it. Dan, in the United States, doesn’t read Japanese, so the
 content of her source files makes no sense to him. However,
 because the source files carry their encoding around with them,
 there’s no problem; his Ruby happily compiles her code. But Dan
 wants to test her code against a file that contains regular old
 ASCII characters. That’s no problem, because the file encoding is
 determined by Dan’s locale, not by the encoding of the Ruby
 source. Similarly, Sophie in Paris uses the same gem, but her data
 is encoded in ISO-8859-1 (which is basically ASCII plus a useful
 subset of accented European characters in character positions
 above 127). Again, no problem.

 Back in Japan, Yui has a new feature to add to her
 library. Users want to create short PDF summaries of the data she
 reads, but the PDF-writing library she’s using supports only
 ISO-8859-1 characters. So, regardless of the encoding of the source
 code of her program and the files she reads, she
 needs to be able to create 8859-1 strings at runtime.
 Again, we need to be able to decouple the encoding of
 individual objects from the encoding of everything else.

 If this sounds complex, well...it is. But the good news is that
 the Ruby team spent a long time thinking up ways to make it all
 relatively easy to use when you’re writing code. In this section,
 we’ll look at how to work with the various encodings, and I’ll try
 to list some conventions that will make your code work in the
 brave new multinational world.

17.1 Encodings

 At the heart of the Ruby encoding system is the new
 ​Encoding​
 class.[83] Objects of class ​Encoding​
 each represent a different character encoding. The Encoding.list
 method returns a list of the built-in encodings, and the Encoding.aliases
 method returns a hash where the keys are aliases and the values
 are the corresponding base encoding. We can use these two
 methods to build a table of known encoding
 names:

	encoding/list_encodings.rb
	​ 	encodings = Encoding

	​ 	 .list

	​ 	 .each.with_object({}) ​do​ |enc, full_list|

	​ 	 full_list[enc.name] = [enc.name]

	​ 	 ​end​

	​ 	

	​ 	Encoding.aliases.each ​do​ |alias_name, base_name|

	​ 	 fail ​"​#{base_name}​ ​#{alias_name}​"​ ​unless​ encodings[base_name]

	​ 	 encodings[base_name] << alias_name

	​ 	​end​

	​ 	

	​ 	puts(encodings

	​ 	 .values

	​ 	 .sort_by {|base_name, *| base_name.downcase}

	​ 	 .map ​do​ |base_name, *rest|

	​ 	 ​if​ rest.empty?

	​ 	 base_name

	​ 	 ​else​

	​ 	 ​"​#{base_name}​ (​#{rest.join(​', '​)}​)"​

	​ 	 ​end​

	​ 	 ​end​)

 Table 8, ​Encodings and their aliases​ shows the output, wrapped into columns.

Table 8. Encodings and their aliases
	
ASCII-8BIT (BINARY)

	
Big5

	
Big5-HKSCS (Big5-HKSCS:2008)

	
Big5-UAO

	
CP50220

	
CP50221

	
CP51932

	
CP850 (IBM850)

	
CP852

	
CP855

	
CP949

	
CP950

	
CP951

	
Emacs-Mule

	
EUC-JP (eucJP)

	
EUC-JP-2004 (EUC-JISX0213)

	
EUC-KR (eucKR)

	
EUC-TW (eucTW)

	
eucJP-ms (euc-jp-ms)

	
GB12345

	
GB18030

	
GB1988

	
GB2312 (EUC-CN, eucCN)

	
GBK (CP936)

	
IBM437 (CP437)

	
IBM737 (CP737)

	
IBM775 (CP775)

	
IBM852

	
IBM855

	
IBM857 (CP857)

	
IBM860 (CP860)

	
IBM861 (CP861)

	
IBM862 (CP862)

	
IBM863 (CP863)

	
IBM864 (CP864)

	
IBM865 (CP865)

	
IBM866 (CP866)

	
IBM869 (CP869)

	
ISO-2022-JP (ISO2022-JP)

	
ISO-2022-JP-2 (ISO2022-JP2)

	
ISO-2022-JP-KDDI

	
ISO-8859-1 (ISO8859-1)

	
ISO-8859-10 (ISO8859-10)

	
ISO-8859-11 (ISO8859-11)

	
ISO-8859-13 (ISO8859-13)

	
ISO-8859-14 (ISO8859-14)

	
ISO-8859-15 (ISO8859-15)

	
ISO-8859-16 (ISO8859-16)

	
ISO-8859-2 (ISO8859-2)

	
ISO-8859-3 (ISO8859-3)

	
ISO-8859-4 (ISO8859-4)

	
ISO-8859-5 (ISO8859-5)

	
ISO-8859-6 (ISO8859-6)

	
ISO-8859-7 (ISO8859-7)

	
ISO-8859-8 (ISO8859-8)

	
ISO-8859-9 (ISO8859-9)

	
KOI8-R (CP878)

	
KOI8-U

	
macCentEuro

	
macCroatian

	
macCyrillic

	
macGreek

	
macIceland

	
MacJapanese (MacJapan)

	
macRoman

	
macRomania

	
macThai

	
macTurkish

	
macUkraine

	
Shift_JIS

	
SJIS-DoCoMo

	
SJIS-KDDI

	
SJIS-SoftBank

	
stateless-ISO-2022-JP

	
stateless-ISO-2022-JP-KDDI

	
TIS-620

	
US-ASCII (ASCII, ANSI_X3.4-1968, 646)

	
UTF-16

	
UTF-16BE (UCS-2BE)

	
UTF-16LE

	
UTF-32

	
UTF-32BE (UCS-4BE)

	
UTF-32LE (UCS-4LE)

	
UTF-7 (CP65000)

	
UTF-8 (CP65001)

	
UTF8-DoCoMo

	
UTF8-KDDI

	
UTF8-MAC (UTF-8-MAC, UTF-8-HFS)

	
UTF8-SoftBank

	
Windows-1250 (CP1250)

	
Windows-1251 (CP1251)

	
Windows-1252 (CP1252)

	
Windows-1253 (CP1253)

	
Windows-1254 (CP1254)

	
Windows-1255 (CP1255)

	
Windows-1256 (CP1256)

	
Windows-1257 (CP1257)

	
Windows-1258 (CP1258)

	
Windows-31J (CP932, csWindows31J, SJIS, PCK)

	
Windows-874 (CP874)

 However, that’s not the full story. Encodings in Ruby can be
 dynamically loaded—Ruby actually comes with more encodings than those
 shown in the output from this code.

 Strings, regular expressions, symbols, I/O streams, and program source
 files are all associated with one of these encoding objects.

 Encodings commonly used in Ruby programs include ASCII (7-bit
 characters), ASCII-8BIT,[84] UTF-8, and Shift JIS.

17.2 Source Files

 First and foremost, there’s a simple rule: if you only ever use 7-bit
 ASCII characters in your source, then the source file encoding is
 irrelevant. So, the simplest way to write Ruby source files that just
 work everywhere is to stick to boring old ASCII.

 However, once a source file contains a byte whose top bit is set,
 you’ve just left the comfortable world of ASCII and entered the wild
 and wacky nightmare of character encodings. Here’s how it
 works.

 If your source files are not written using 7-bit ASCII, you
 probably want to tell Ruby about it. Because the encoding is an
 attribute of the source file, and not anything to do with the
 environment where the file is used, Ruby has a way of setting
 the encoding on a file-by-file basis using a new ​magic
 comment​. If the first line of a file[85]
 is a comment (or the second line if the first line is a ​#!​
 shebang line), Ruby scans it looking for the string
 ​coding:​. If it finds it, Ruby then skips any spaces and
 looks for the (case-insensitive) name of an encoding. Thus, to
 specify that a source file is in UTF-8 encoding, you can write
 this:

	​ 	​# coding: utf-8​

 As Ruby is just scanning for ​coding:​, you could also write the following.

	​ 	​# encoding: ascii​

 Emacs users
 might like the fact that this also works:

	​ 	​# -*- encoding: shift_jis -*-​

 (Your favorite editor may also support some kind of flag comment to
 set a file’s encoding.)

 If there’s a shebang line, the encoding comment must be the second
 line of the file:

	​ 	#!/usr/local/rubybook/bin/ruby

	​ 	​# encoding: utf-8​

 Additionally, Ruby detects any files that start with a UTF-8
 byte order mark (BOM). If Ruby sees the byte sequence
 ​\xEF\xBB\xBF​ at the start of a source file, it assumes
 that file is UTF-8 encoded.

 The special constant ​__ENCODING__​ returns the encoding of
 the current source file.

Ruby 1.9 vs. Ruby 2.0

 In Ruby 1.9, the default source file encoding is
 US-ASCII. If your source files contain any characters with
 byte value greater than 127, you’ll need to tell Ruby the
 encoding of the file, or Ruby will report an error,
	probably saying something like “invalid multibyte char.” Here’s an example where we typed some UTF-8
	characters into a Ruby program:«2.0»

	​ 	π = 3.14159

	​ 	puts ​"π = ​#{π}​"​

 With Ruby 1.9, you’ll get an error unless you add the
 ​encoding: utf-8​ comment at the top.

 In Ruby 2.0, however, the default source file encoding is
 UTF-8, and the previous program will run as it stands.

 We can verify that Ruby correctly interprets π as a single character.

	​ 	​# encoding: utf-8​

	​ 	PI = ​"π"​

	​ 	puts ​"The size of a string containing π is ​#{PI.size}​"​

Produces:
	​ 	The size of a string containing π is 1

	Now, let’s get perverse. The two-byte sequence \xcf\x80
	represents π in UTF-8 but is not a valid byte sequence in the SJIS
	encoding. Let’s see what happens if we tell Ruby that this same source
	file is SJIS encoded. (Remember, when we do this, we’re not changing
	the actual bytes in the string—we’re just telling Ruby to interpret
	them with a different set of encoding rules.)

	​ 	​# encoding: sjis​

	​ 	PI = ​"π"​

	​ 	puts ​"The size of a string containing π is ​#{PI.size}​"​

Produces:
	​ 	puts "The size of a string containing π is #{PI.size}"

	​ 	 ^

	​ 	prog.rb:2: invalid multibyte char (Windows-31J)

	​ 	prog.rb:3: syntax error, unexpected tCONSTANT, expecting end-of-input

	This time, Ruby complains because the file contains byte sequences
	that are illegal in the given encoding. And, to make matters even more
	confusing, the parser swallowed up the double quote after the π
	character, presumably while trying to build a valid SJIS
	character. This led to the second error message, because the word ​The​
	is now interpreted as program text.

Source Elements That Have Encodings

	String literals are always encoded using the encoding of the
	source file that contains them, regardless of the content of
	the
	string:

	​ 	​# encoding: utf-8​

	​ 	​def​ show_encoding(str)

	​ 	 puts ​"'​#{str}​' (size ​#{str.size}​) is ​#{str.encoding.name}​"​

	​ 	​end​

	​ 	show_encoding ​"cat"​ ​# latin 'c', 'a', 't'​

	​ 	show_encoding ​"∂og"​ ​# greek delta, latin 'o', 'g'​

Produces:
	​ 	'cat' (size 3) is UTF-8

	​ 	'∂og' (size 3) is UTF-8

	Symbols and regular expression literals that contain only
	7-bit characters are encoded using US-ASCII. Otherwise, they
	will have the encoding of the file that contains them.

	​ 	​# encoding: utf-8​

	​ 	​def​ show_encoding(str)

	​ 	 puts ​"​#{str.inspect}​ is ​#{str.encoding.name}​"​

	​ 	​end​

	​ 	show_encoding :cat

	​ 	show_encoding :∂og

	​ 	

	​ 	show_encoding /cat/

	​ 	show_encoding /∂og/

Produces:
	​ 	:cat is US-ASCII

	​ 	:∂og is UTF-8

	​ 	/cat/ is US-ASCII

	​ 	/∂og/ is UTF-8

	You can create arbitrary Unicode characters in strings and
	regular expressions using the ​\u​
	escape. This has two forms: ​\uxxxx​
	lets you encode a character using four hex digits, and the
	delimited form ​\u{x... x... x...}​ lets you specify a
	variable number of characters, each with a variable number of
	hex digits:

	​ 	​# encoding: utf-8​

	​ 	​"Greek pi: \u03c0"​ ​# => "Greek pi: π"​

	​ 	​"Greek pi: \u{3c0}"​ ​# => "Greek pi: π"​

	​ 	​"Greek \u{70 69 3a 20 3c0}"​ ​# => "Greek pi: π"​

	Literals containing a ​\u​ sequence will always be encoded
	UTF-8, regardless of the source file encoding.

	The String#bytes
	method is a convenient way to inspect the bytes
	in a string object. Notice that in the following code, the 16-bit
	codepoint is converted to a two-byte UTF-8 encoding:

	​ 	​# encoding: utf-8​

	​ 	​"pi: \u03c0"​.bytes ​# => [112, 105, 58, 32, 207, 128]​

Eight-Bit Clean Encodings

	 Ruby supports a virtual encoding called
	 ​ASCII-8BIT​. Despite the ​ASCII​ in the
	 name, this is really intended to be used on data streams
	 that contain binary data (which is why it has an alias of
	 ​BINARY​}). However, you can also use this as an
	 encoding for
	 source files. If you do, Ruby interprets all characters with codes
	 below 128 as regular ASCII and all other characters as valid
	 constituents of variable names. This is basically a neat hack, because it
	 allows you to compile a file written in an encoding you don’t
	 know—the characters with the high-order bit set will be assumed to
	 be printable.
	
	​ 	​# encoding: ascii-8bit​

	​ 	π = 3.14159

	​ 	puts ​"π = ​#{π}​"​

	​ 	puts ​"Size of 'π' = ​#{​'π'​.size}​"​

Produces:
	​ 	π = 3.14159

	​ 	Size of 'π' = 2

	 The last line of output illustrates why ASCII-8BIT is a dangerous
	 encoding for source files. Because it doesn’t know to use UTF-8
	 encoding, the π character looks to Ruby like two separate
	 characters.
	
Source Encoding Is Per-File

	Clearly, a large application will be built from many source
	files. Some of these files may come from other people (possibly as
	libraries or gems). In these cases, you may not have control over the
	encoding used in a file.

	Ruby supports this by allowing different encodings in the files that
	make up a project. Each file starts with the default encoding of
	US-ASCII. The file’s encoding may then be set with either a
	​coding:​ comment or a UTF-8 BOM.

	Here’s a file called ​iso-8859-1.rb​. Notice the explicit encoding.

	encoding/iso-8859-1.rb
	​ 	​# -*- encoding: iso-8859-1 -*-​

	​ 	

	​ 	STRING_ISO = ​"ol\351"​ ​# \x6f \x6c \xe9​

	And here’s its UTF-8 counterpart:

	encoding/utf.rb
	​ 	​# file: utf.rb, encoding: utf-8​

	​ 	

	​ 	STRING_U = ​"∂og"​ ​# \xe2\x88\x82\x6f\x67​

	Now let’s require both of these files into a third file. Just for the
	heck of it, let’s declare the third file to have SJIS encoding:

	​ 	​# encoding: sjis​

	​ 	

	​ 	require_relative ​'iso-8859-1'​

	​ 	require_relative ​'utf'​

	​ 	

	​ 	​def​ show_encoding(str)

	​ 	 puts ​"'​#{str.bytes.to_a}​' (​#{str.size}​ chars, ​#{str.bytesize}​ bytes) "​ +

	​ 	 ​"has encoding ​#{str.encoding.name}​"​

	​ 	​end​

	​ 	

	​ 	show_encoding(STRING_ISO)

	​ 	show_encoding(STRING_U)

	​ 	show_encoding(​"cat"​)

Produces:
	​ 	'[111, 108, 233]' (3 chars, 3 bytes) has encoding ISO-8859-1

	​ 	'[226, 136, 130, 111, 103]' (3 chars, 5 bytes) has encoding UTF-8

	​ 	'[99, 97, 116]' (3 chars, 3 bytes) has encoding Windows-31J

	Each file has an independent encoding, and string literals in
	each retain their own encoding, even when used in a different
	file. All the encoding directive does is tell Ruby how to interpret
	the characters in the file and what encoding to use on literal
	strings and regular expressions. Ruby
	will never change the actual bytes in a source file when reading them
	in.

17.3 Transcoding

 As we’ve already seen, strings, symbols, and regular expressions
 are now labeled with their encoding. You can convert a string
 from one encoding to another using the String#encode
 method. For example, we can convert the word
 ​olé​ from UTF-8 to ISO-8859-1:

	​ 	​# encoding: utf-8​

	​ 	ole_in_utf = ​"olé"​

	​ 	ole_in_utf.encoding ​# => #<Encoding:UTF-8>​

	​ 	ole_in_utf.bytes.to_a ​# => [111, 108, 195, 169]​

	​ 	

	​ 	ole_in_8859 = ole_in_utf.encode(​"iso-8859-1"​)

	​ 	ole_in_8859.encoding ​# => #<Encoding:ISO-8859-1>​

	​ 	ole_in_8859.bytes.to_a ​# => [111, 108, 233]​

 You have to be careful when using
 ​encode​
 —if the target
 encoding doesn’t contain characters that appear in your source string,
 Ruby will throw an exception. For example, the π character is
 available in UTF-8 but not in ISO-8859-1:

	​ 	​# encoding: utf-8​

	​ 	pi = ​"pi = π"​

	​ 	pi.encode(​"iso-8859-1"​)

Produces:
	​ 	 from prog.rb:3:in `<main>'

	​ 	prog.rb:3:in `encode': U+03C0 from UTF-8 to ISO-8859-1

	​ 	(Encoding::UndefinedConversionError)

 You can, however, override this behavior, for example supplying
 a placeholder character to use when no direct translation is
 possible. (See the description of String#encode in
 the reference section for more details.)

	​ 	​# encoding: utf-8​

	​ 	pi = ​"pi = π"​

	​ 	puts pi.encode(​"iso-8859-1"​, :undef => :replace, :replace => ​"??"​)

Produces:
	​ 	pi = ??

 Sometimes you’ll have a string containing binary data and you
 want that data to be interpreted as if it had a particular
 encoding. You can’t use the
 ​encode​

 method for this, because you don’t want to change the byte
 contents of the string—you’re just changing the encoding
 associated with those bytes. Use the String#force_encoding
 method to do this:

	​ 	​# encoding: ascii-8bit​

	​ 	str = ​"\xc3\xa9"​ ​# e-acute in UTF-8​

	​ 	str.encoding ​# => #<Encoding:ASCII-8BIT>​

	​ 	str.force_encoding(​"utf-8"​)

	​ 	str.bytes.to_a ​# => [195, 169]​

	​ 	str.encoding ​# => #<Encoding:UTF-8>​

 Finally, you can use
 ​encode​
 (with two
 parameters) to convert between two encodings if your source
 string is ASCII-8BIT. This might happen if, for example, you’re
 reading data in binary mode from a file and choose not to encode
 it at the time you read it. Here we fake that out by creating an
 ASCII-8BIT string that contains an ISO-8859-1 sequence (our old
 friend ​olé​). We then convert the string to
 UTF-8. To do this, we have to tell

 ​encode​
 the actual encoding of the bytes
 by passing it a second parameter:

	​ 	​# encoding: ascii-8bit​

	​ 	original = ​"ol\xe9"​ ​# e-acute in ISO-8859-1​

	​ 	original.bytes.to_a ​# => [111, 108, 233]​

	​ 	original.encoding ​# => #<Encoding:ASCII-8BIT>​

	​ 	new = original.encode(​"utf-8"​, ​"iso-8859-1"​)

	​ 	new.bytes.to_a ​# => [111, 108, 195, 169]​

	​ 	new.encoding ​# => #<Encoding:UTF-8>​

 If you’re writing programs that will support multiple encodings,
 you probably want to read Section 17.5, ​Default External Encoding​—it will
 greatly simplify your life.

17.4 Input and Output Encoding

 Playing around with encodings within a program is all very well, but
 in most code we’ll want to read data from and write data to external
 files. And, often, that data will be in a particular encoding.

 Ruby’s I/O objects support both encoding and transcoding of data. What
 does this mean?

 Every I/O object has an associated external encoding. This is
 the encoding of the data being read from or written to the
 outside world. Through a piece of magic I’ll describe later, all Ruby programs run with the
 concept of a default external encoding. This is the external
 encoding that will be used by I/O objects unless you override it
 when you create the object (for example, by opening a file).

 Now, your program may want to operate internally in a different
 encoding. For example, some of my files may be encoded with
 ISO-8859-1, but we want our Ruby program to work internally using
 UTF-8. Ruby I/O objects manage this by having an optional
 associated ​internal
 encoding​. If set, then
 input will be transcoded from the external to the internal
 encodings on read operations, and output will be transcoded from
 internal to external encoding on write operations.

 Let’s start with the simple cases. On our OS X box, the
 default external encoding is UTF-8. If we don’t override it, all
 our file I/O will therefore also be in UTF-8. We can query the
 external encoding of an I/O object using the IO#external_encoding
 method:

	​ 	f = File.open(​"/etc/passwd"​)

	​ 	puts ​"File encoding is ​#{f.external_encoding}​"​

	​ 	line = f.gets

	​ 	puts ​"Data encoding is ​#{line.encoding}​"​

Produces:
	​ 	File encoding is UTF-8

	​ 	Data encoding is UTF-8

 Notice that the data is tagged with a UTF-8 encoding even though it
 (presumably) contains just 7-bit ASCII characters. Only literals in
 your Ruby source files have the “change encoding if they contain
 8-bit data” rule.

 You can force the external encoding associated with an I/O object when
 you open it—simply add the name of the encoding, preceded by a
 colon, to the mode string. Note that this in no way changes the data
 that’s read; it simply tags it with the encoding you specify:

	​ 	f = File.open(​"/etc/passwd"​, ​"r:ascii"​)

	​ 	puts ​"File encoding is ​#{f.external_encoding}​"​

	​ 	line = f.gets

	​ 	puts ​"Data encoding is ​#{line.encoding}​"​

Produces:
	​ 	File encoding is US-ASCII

	​ 	Data encoding is US-ASCII

 You can force Ruby to transcode—change the encoding—of data
 it reads and writes by putting two encoding names in the mode
 string, again with a colon before
 each. For example, the file
 ​iso-8859-1.txt​ contains the word
 ​olé​ in ISO-8859-1 encoding, so the e-acute
 (é) character is encoded by the single byte \xe9. I can
 view this file’s contents in hex using the
 ​od​ command-line tool. (Windows users
 can use the ​d​ command in
 ​debug​ to do the same.)

	​ 	0000000 6f 6c e9 0a

	​ 	0000004

 If we try to read it with our default external encoding of UTF-8,
 we’ll encounter a problem:

	​ 	f = File.open(​"iso-8859-1.txt"​)

	​ 	puts f.external_encoding.name

	​ 	line = f.gets

	​ 	puts line.encoding

	​ 	puts line

Produces:
	​ 	UTF-8

	​ 	UTF-8

	​ 	ol?

 The problem is that the binary sequence for the e-acute isn’t the same
 in ISO-8859-1 and UTF-8. Ruby just assumed the file contained UTF-8
 characters, tagging the string it read accordingly.

 We can tell the program that the file contains ISO-8859-1:

	​ 	f = File.open(​"iso-8859-1.txt"​, ​"r:iso-8859-1"​)

	​ 	puts f.external_encoding.name

	​ 	line = f.gets

	​ 	puts line.encoding

	​ 	puts line

Produces:
	​ 	ISO-8859-1

	​ 	ISO-8859-1

	​ 	ol?

 This doesn’t help us much. The string is now tagged with the correct encoding,
 but our operating system is still expecting UTF-8 output.

 The solution is to map the ISO-8859-1 to UTF-8 on input:

	​ 	f = File.open(​"iso-8859-1.txt"​, ​"r:iso-8859-1:utf-8"​)

	​ 	puts f.external_encoding.name

	​ 	line = f.gets

	​ 	puts line.encoding

	​ 	puts line

Produces:
	​ 	ISO-8859-1

	​ 	UTF-8

	​ 	olé

 If you specify two encoding names when opening an I/O object, the first
 is the external encoding, and the second is the internal
 encoding. Data is transcoded from the former to the latter on
 reading and the opposite way on writing.

Binary Files

	In the old days, we Unix users used to make little snide comments
	about the way that Windows users had to open binary files using a
	special binary mode. Well, now the Windows folks can get their own
	back. If you want to open a file containing binary data in Ruby, you
	must now specify the binary flag, which will automatically select the
	8-bit clean ASCII-8BIT encoding. To make things explicit, you can use
	“binary” as an alias for the encoding:

	​ 	f = File.open(​"iso-8859-1.txt"​, ​"rb"​)

	​ 	puts ​"Implicit encoding is ​#{f.external_encoding.name}​"​

	​ 	f = File.open(​"iso-8859-1.txt"​, ​"rb:binary"​)

	​ 	puts ​"Explicit encoding is ​#{f.external_encoding.name}​"​

	​ 	line = f.gets

	​ 	puts ​"String encoding is ​#{line.encoding.name}​"​

Produces:
	​ 	Implicit encoding is ASCII-8BIT

	​ 	Explicit encoding is ASCII-8BIT

	​ 	String encoding is ASCII-8BIT

17.5 Default External Encoding

 If you look at the text files on your computer, the chances are that
 they’ll all use the same encoding. In the United States, that’ll probably be
 UTF-8 or ASCII. In Europe, it might be UTF-8 or ISO-8859-x. If you use
 a Windows box, you may be using a different set of encodings (use the
 console ​chcp​ command to find your current code page). But
 whatever encoding you use, the chances are good that you’ll stick with
 it for the majority of your work.

 On Unix-like boxes, you’ll probably find you have the
 ​LANG​ environment variable set. On
 one of our OS X boxes, it has the value
 ​en_US.UTF-8​

 This says that we’re using the English language in the U.S. territory and
 the default code set is UTF-8. On startup, Ruby looks for this
 environment variable and, if present, sets the default external
 encoding from the code set component. Thus, on this box, Ruby 1.9
 programs run with a default external encoding of UTF-8. If instead we
 were in Japan and the ​LANG​ variable were set to ​ja_JP.sjis​, the
 encoding would be set to Shift JIS. We can look at the default
 external encoding by querying the ​Encoding​
 class. While we’re at it, we’ll experiment with different values in
 the ​LANG​ environment variable:

	​ 	$ ​echo $LANG​

	​ 	en_US.UTF-8

	​ 	$ ​ruby -e 'p Encoding.default_external.name'​

	​ 	"UTF-8"

	​ 	$ ​LANG=ja_JP.sjis ruby -e 'p Encoding.default_external.name'​

	​ 	"Shift_JIS"

	​ 	$ ​LANG= ruby -e 'p Encoding.default_external.name'​

	​ 	"US-ASCII"

 The encoding set from the environment ​does not​
 affect the encoding Ruby uses for source files—it affects
 only the encoding of data read and written by your programs.

 Finally, you can use the ​-E​ command-line option (or the
 long-form ​--encoding​) to set the default external
 encoding of your I/O objects, as shown in the following
 commands.

	​ 	$ ​ruby -E utf-8 -e 'p Encoding.default_external.name'​

	​ 	"UTF-8"

	​ 	$ ​ruby -E sjis -e 'p Encoding.default_external.name'​

	​ 	"Shift_JIS"

	​ 	$ ​ruby -E sjis:iso-8859-1 -e 'p Encoding.default_internal.name'​

	​ 	"ISO-8859-1"

17.6 Encoding Compatibility

 Before Ruby performs operations involving strings or regular
 expressions, it first has to check that the operation makes sense. For
 example, it is valid to perform an equality test between two
 strings with different encodings, but it is not valid to append one to
 the other.
 The basic steps in this checking are as follows:

	
If the two objects have the same encoding, the operation is
 valid.

	
If the two objects each contain only 7-bit characters, the
 operation is permitted regardless of the encodings.

	
If the encodings in the two objects are compatible (which we’ll
 discuss next), the operation is permitted.

	
Otherwise, an exception is raised.

 Let’s say you have a set of text files containing markup. In some of
 the files, authors used the sequence ​…​ to represent an
 ellipsis. In other files, which have UTF-8 encoding, authors used an
 actual ellipsis character (​\u2026​). We want to convert both
 forms to three periods.

 We can start off with a simplistic solution:

	​ 	​# encoding: utf-8​

	​ 	​while​ line = gets

	​ 	 result = line.gsub(/…/, ​"..."​)

	​ 	 .gsub(/​\u​2026/, ​"..."​) ​# unicode ellipsis​

	​ 	 puts result

	​ 	​end​

 In my environment, the content of files is by default assumed to be
 UTF-8. Feed our code ASCII files and UTF-encoded files, and it works
 just fine. But what happens when we feed it a file that contains
 ISO-8859-1 characters?

	​ 	dots.rb:4:in `gsub': broken UTF-8 string (ArgumentError)

 Ruby tried to interpret the input text, which is ISO-8859-1 encoded,
 as UTF-8. Because the byte sequences in the file aren’t valid UTF, it
 failed.

 There are three solutions to this problem. The first is to say that it
 makes no sense to feed files with both ISO-8859 and UTF-8 encoding to
 the same program without somehow differentiating them. That’s
 perfectly true. This approach means we’ll need some command-line
 options, liberal use of
 ​force_encoding​
 , and probably some
 kind of code to delegate the pattern matching to different sets of
 patterns depending on the encoding of each file.

 A second hack is to simply treat both the data and the program as
 ASCII-8BIT and perform all the comparisons based on the underlying
 bytes. This isn’t particularly reliable, but it might work in some
 circumstances.

 The third solution is to choose a master encoding and to transcode
 strings into it before doing the matches. Ruby provides built-in
 support for this with the ​default_internal​ encoding mechanism.

17.7 Default Internal Encoding

 By default, Ruby performs no automatic transcoding when reading and
 writing data. However, two command-line options allow you to change
 this.

 We’ve already seen the ​-E​ option, which sets the
 default encoding applied to the content of external files. When
 you say ​-E ​xxx​​, the default external
 encoding is set to
 ​​xxx​​.
 However, ​-E​ takes a second option. In the same way that you can
 give File#open both external and internal encodings, you
 can also set a default internal encoding using the option ​-E ​external:internal​​.

 Thus, if all your files are written with ISO-8859-1 encoding but you
 want your program to have to deal with their content as if it were
 UTF-8, you can use this:

	​ 	$ ​ruby -E iso-8859-1:utf-8​

 You can specify just an internal encoding by omitting the external
 option but leaving the colon:

	​ 	$ ​ruby -E :utf-8​

 Indeed, because UTF-8 is probably the best of the available
 transcoding targets, Ruby has the ​-U​ command-line option, which
 sets the internal encoding to UTF-8.

 You can query the default internal encoding in your code with
 the Encoding.default_internal
 method. This returns ​nil​ if no
 default internal encoding has been set.

 One last note before we leave this section: if you compare two
 strings with different encodings, Ruby does not normalize
 them. Thus, ​"é"​ tagged with a UTF-8 encoding
 will not compare equal to ​"é"​ tagged with
 ISO-8859-1, because the underlying bytes are different.

17.8 Fun with Unicode

 As Daniel Berger pointed
 out,[86]
 we can now do fun things with method and variable
 names:

	​ 	​# encoding: utf-8​

	​ 	​def​ ∑(*args)

	​ 	 args.inject(:+)

	​ 	​end​

	​ 	

	​ 	puts ∑ 1, 3, 5, 9

Produces:
	​ 	18

 Of course, this way can lead to some pretty obscure and
 hard-to-use code. (For example, is the summation character in
 the previous code a real summation, ​\u2211​, or a Greek
 sigma, ​\u03a3​?) Just because we ​can​ do
 something doesn’t mean we necessarily ​should​....

Footnotes

	[83]	
For a nice, easy read on encodings, charcter
 sets, and Unicode, you could take a look at Joel Spolsky’s 2003
 article on the Web at

 ​http://www.joelonsoftware.com/articles/Unicode.html​
 .

	[84]	
There isn’t actually a character
 encoding called ASCII-8BIT. It’s a Ruby fantasy but a useful
 one. We’ll talk about it shortly.

	[85]	
Or a
 string passed to
 ​eval​

	[86]	

 ​http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 18
Interactive Ruby Shell

 Back in Section 14.2, ​Interactive Ruby​ we introduced irb, a Ruby module
 that lets you enter Ruby programs interactively and see the
 results immediately. This chapter goes into more detail on using
 and customizing irb.

18.1 Command Line

 irb is run from the command line:

irb <irb-options> <ruby_script> <program arguments>

 The command-line options for irb are listed in
 Table 9, ​irb Command-line options​. Typically, you’ll run irb with no options, but
 if you want to run a script and watch the blow-by-blow description as
 it runs, you can provide the name of the Ruby script and any options
 for that script.

 Once started, irb displays a prompt and waits for you to type Ruby code.
 irb understands Ruby,
 so it knows when statements are incomplete. When this happens,
 the cursor will be indented on the next line. (In the
 examples that follow, we’ll use irb’s default prompt.)

	​ 	ruby 2.0 > 1 + 2

	​ 	=> 3

	​ 	ruby 2.0 > 3 +

	​ 	ruby 2.0 > 4

	​ 	=> 7

 You can leave irb by
 typing ​exit​ or
 ​quit​ or by entering an end-of-file
 character (unless ​IGNORE_EOF​ mode is set).

 During an irb session, the work you do is accumulated in irb’s
 workspace. Variables you set, methods you define, and classes you
 create are all remembered and may be used subsequently in that
 session.

	​ 	ruby 2.0 > ​def​ fib_up_to(n)

	​ 	ruby 2.0 ?> f1, f2 = 1, 1

	​ 	ruby 2.0 ?> ​while​ f1 <= n

	​ 	ruby 2.0 ?> puts f1

	​ 	ruby 2.0 ?> f1, f2 = f2, f1+f2

	​ 	ruby 2.0 ?> ​end​

	​ 	ruby 2.0 ?> ​end​

	​ 	=> nil

	​ 	ruby 2.0 > fib_up_to(4)

	​ 	1

	​ 	1

	​ 	2

	​ 	3

	​ 	=> nil

 Notice the ​nil​ return values. These are the results of defining
 the method and then running it—our method printed the Fibonacci
 numbers but then returned ​nil​.

 A great use of irb is experimenting with code you’ve already
 written. Perhaps you want to track down a bug, or maybe you just want
 to play. If you load your program into irb, you can then create
 instances of the classes it defines and invoke its methods. For
 example, the file ​code/irb/fibbonacci_sequence.rb​ contains the following
 method definition:

	irb/fibonacci_sequence.rb
	​ 	​def​ fibonacci_sequence

	​ 	 Enumerator.new ​do​ |generator|

	​ 	 i1, i2 = 1, 1

	​ 	 loop ​do​

	​ 	 generator.yield i1

	​ 	 i1, i2 = i2, i1+i2

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 We can load this into irb and play with the method:

	​ 	ruby 2.0 > load ​'code/irb/fibonacci_sequence.rb'​

	​ 	=> True

	​ 	ruby 2.0 > fibonacci_sequence.first(10)

	​ 	=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

 In this example, we use
 ​load​
 , rather
 than
 ​require​
 , to include the file in
 our session. We do this as a matter of practice:

 ​load​
 allows us to load the same file
 multiple times, so if we find a bug and edit the file, we could
 reload it into our irb session.

Table 9. irb Command-line options
	Option	Description
	
​--back-trace-limit n​
	

	 Displays backtrace information using
	 the top n and last n entries.
	 The default value is 16.
	

	
​--context-mode ​n​​
	

	 ​:CONTEXT_MODE​ is describd later.
	

	
​-d​
	

	 Sets ​$DEBUG​ to true (same as ​ruby -d​).
	

	
​-E ​enc​​
	

	 Same as Ruby’s ​-E​ option.
	

	
​-f​
	

	 Suppresses reading ​>~/.irbrc​.
	

	
​-h, --help​
	
Displays usage information.

	
​-I ​directories​​
	

	 Same as Ruby’s ​-I​ option.
	

	
​--inf-ruby-mode​
	

	 Sets up irb to run in ​inf-ruby-mode​ under
	 Emacs. Same as ​--prompt inf-ruby --noreadline​.
	

	
​--inspect, --noinspect​
	

	 Uses/doesn’t use Object#inspect to format
	 output (​--inspect​ is the default, unless in math
	 mode).
	

	
​--irb_debug ​n​​
	

	 Sets internal debug level to ​n​ (useful only
	 for irb development).
	

	
​-m​
	

	 Math mode (fraction and matrix support is available).
	

	
​--noprompt​
	

	 Does not display a prompt. Same as ​--prompt null​.
	

	
​--prompt ​prompt-mode​​
	

	 Switches prompt. Predefined prompt modes are
	 ​null​, ​default​, ​classic​,
	 ​simple​, ​xmp​, and ​inf-ruby​.
	

	
​--prompt-mode ​prompt-mode​​
	

	 Same as ​--prompt​.
	

	
​-r ​module​​
	

	 Requires ​module​. Same as ​ruby -r​.
	

	
​--readline, --noreadline​
	

	 Uses/doesn’t use ​readline​ extension module.
	

	
​--sample-book-mode​
	

	 Same as ​--prompt simple​.
	

	
​--simple-prompt​
	

	 Same as ​--prompt simple​.
	

	
​--single-irb​
	

	 Nested irb sessions will all share the same context.
	

	
​--tracer​
	

	 Displays trace for execution of commands.
	

	
​-U​
	

	 Same as Ruby’s ​-U​ option.
	

	
​-v, --version​
	

	 Prints the version of irb.
	

Tab Completion

	If your Ruby installation has
	​readline​
	support, then you can use irb’s completion facility. Once
	loaded (and we’ll get to how to load it shortly), completion
	changes the meaning of the
 ​Tab​
 key when
	typing expressions at the irb prompt. When you press
	
 ​Tab​
 partway through a word, irb will
	look for possible completions that make sense at that
	point. If there is only one, irb will fill it in
	automatically. If there’s more than one valid option, irb
	initially does nothing. However, if you hit
	
 ​Tab​
 again, it will display the list of
	valid completions at that point.

	For example, the following snippet shows the middle of an irb
	session, where you just assigned a string object to the
	variable ​a​.

	​ 	ruby 2.0 > a = ​"cat"​

	​ 	=> ​"cat"​

	You now want to try the method String#reverse on this
	object. You start by typing ​a.re​ and hitting
 ​Tab​
 twice.

	​ 	ruby 2.0 > a.reTabTab

	​ 	a.replace a.respond_to? a.reverse a.reverse! a.respond_to_missing?

	irb lists all the methods supported by the object in
	​a​ whose names start with
	​re​. We see the one we want,
	
 ​reverse​
 , and enter the next character
	of its name, ​v​, followed by the
	
 ​Tab​
 key:

	​ 	ruby 2.0 > a.revTAB

	​ 	ruby 2.0 > a.reverse

	​ 	=> "tac"

	irb responds to the
 ​Tab​
 key by
	expanding the name as far as it can go, in this case
	completing the word
 ​reverse​
 . If we
	keyed
 ​Tab​
 twice at this point, it would
	show us the current options,
 ​reverse​

	and
 ​reverse!​
 . However, because
	
 ​reverse​
 is the one we want, we
	instead hit
 ​Enter​
 , and the line of code
	is executed.

	Tab completion isn’t limited to built-in names. If we define a class
	in irb, then tab completion works when we try to invoke one of its
	methods:

	​ 	ruby 2.0 > ​class​ Test

	​ 	ruby 2.0 ?> ​def​ my_method

	​ 	ruby 2.0 ?> ​end​

	​ 	ruby 2.0 ?> ​end​

	​ 	=> nil

	​ 	ruby 2.0 > t = Test.new

	​ 	=> ​#<Test:0x000001009fc8c8>​

	​ 	ruby 2.0 > t.myTAB

	​ 	ruby 2.0 > t.my_method

	​ 	=> nil

	Tab completion is implemented as an extension library. On some systems
	this is loaded by default. On others you’ll need to load it when you
	invoke irb from the command line:

	​ 	$ ​irb -r irb/completion​

	You can also load the completion library when irb is running:

	​ 	ruby 2.0 > require ​'irb/completion'​

	If you use tab completion all the time and if it doesn’t load
	by default, it’s probably most convenient to put the
	
 ​require​
 command into your
	​.irbrc​ file:

Subsessions

	irb supports multiple, concurrent sessions. One is always current;
	the others lie dormant until activated. Entering the command ​irb​
	within irb creates a subsession, entering the ​jobs​ command lists all
	sessions, and entering ​fg​ activates a particular dormant session. This
	example also illustrates the ​-r​ command-line option, which loads
	in the given file before irb starts:

	​ 	dave[ruby4/Book 13:44:16] irb -r ./code/irb/fibonacci_sequence.rb

	​ 	ruby 2.0 > result = fibonacci_sequence.first(5)

	​ 	 => [1, 1, 2, 3, 5]

	​ 	ruby 2.0 > ​# Created nested irb session​

	​ 	ruby 2.0 > irb

	​ 	ruby 2.0 > result = ​%w{ cat dog elk }​

	​ 	 => [​"cat"​, ​"dog"​, ​"elk"​]

	​ 	ruby 2.0 > result.map(&:upcase)

	​ 	 => [​"CAT"​, ​"DOG"​, ​"ELK"​]

	​ 	ruby 2.0 > jobs

	​ 	 => ​#0->irb on main (#<Thread:0x00000100887678>: stop)​

	​ 	​#1->irb#1 on main (#<Thread:0x00000100952710>: running)​

	​ 	ruby 2.0 > fg 0

	​ 	 => ​#<IRB::Irb: @context=#<IRB::Context:0x000001008ea6d8>, ...​

	​ 	ruby 2.0 > result

	​ 	 => [1, 1, 2, 3, 5]

	​ 	ruby 2.0 > fg 1

	​ 	 => ​#<IRB::Irb: @context=#<IRB::Context:0x00000100952670>, ...​

	​ 	ruby 2.0 > result

	​ 	 => [​"cat"​, ​"dog"​, ​"elk"​]

	​ 	ruby 2.0 >

Subsessions and Bindings

	If you specify an object when you create a subsession, that object
	becomes the value of self in that binding. This is a convenient
	way to experiment with objects. In the following example, we create
	a subsession with the string “wombat” as the default object.
	Methods with no receiver will be executed by that object.

	​ 	ruby 2.0 > self

	​ 	 => main

	​ 	ruby 2.0 > irb ​"wombat"​

	​ 	ruby 2.0 > self

	​ 	 => ​"wombat"​

	​ 	ruby 2.0 > upcase

	​ 	 => ​"WOMBAT"​

	​ 	ruby 2.0 > size

	​ 	 => 6

	​ 	ruby 2.0 > gsub(/[aeiou]/, ​'*'​)

	​ 	 => ​"w*mb*t"​

	​ 	ruby 2.0 > irb_exit

	​ 	 => ​#<IRB::Irb: @context=#<IRB::Context:0x000001009dc4d8>, ...​

	​ 	ruby 2.0 > self

	​ 	 => main

	​ 	ruby 2.0 > upcase

	​ 	NameError: undefined local variable ​or​ method `upcase' for main:Object

	​ 	 from (irb):4

	​ 	 from /Users/dave/.rvm/rubies/ruby 2.0/bin/irb:17:in `<main>​'​

	irb is remarkably configurable. You can set configuration options
	with command-line options from within an initialization file
	and while you’re inside irb itself.

Initialization File

	irb uses an initialization file in which you can set commonly
	used options or execute any required Ruby statements. When
	irb is run, it will try to load an initialization file from
	one of the following sources in order:
	​~/.irbrc​, ​.irbrc​,
	​irb.rc​, ​_irbrc​, and
	​$irbrc​.

	Within the initialization file, you may run any arbitrary Ruby code.
	You can also set configuration values. The list of configuration
	variables is given in ​irb Configuration Options​—the
	values that can be used in an initialization file are the symbols
	(starting with a colon). You use these symbols to set values into the
	​IRB.conf​ hash. For example, to
	make ​SIMPLE​ the default prompt mode for all your irb sessions, you could
	have the following in your initialization file:

	​ 	IRB.conf[:PROMPT_MODE] = :SIMPLE

	As an interesting twist on configuring irb, you can set
	​IRB.conf[:IRB_RC]​ to a ​Proc​
	object. This proc will be invoked whenever the irb context is
	changed and will receive the configuration for that context as
	a parameter. You can use this facility to change the
	configuration dynamically based on the context. For example,
	the following ​.irbrc​ file sets the prompt so that only
	the main prompt shows the irb level, but continuation prompts
	and the result still line up:

	​ 	IRB.conf[:IRB_RC] = lambda ​do​ |conf|

	​ 	 leader = ​" "​ * conf.irb_name.length

	​ 	 conf.prompt_i = ​"​#{conf.irb_name}​ --> "​

	​ 	 conf.prompt_s = leader + ​' \-" '​

	​ 	 conf.prompt_c = leader + ​' \-+ '​

	​ 	 conf.return_format = leader + ​" ==> %s\n\n"​

	​ 	 puts ​"Welcome!"​

	​ 	​end​

	An irb session using this ​.irbrc​ file looks like the following:

	​ 	$ ​irb​

	​ 	Welcome!

	​ 	irb --> 1 + 2

	​ 	 ==> 3

	​ 	

	​ 	irb --> 2 +

	​ 	 \-+ 6

	​ 	 ==> 8

Extending irb

	Because the things you type into irb are interpreted as Ruby
	code, you can effectively extend irb by defining new top-level
	methods. For example, you may want to time how long certain
	things take. You can use the
 ​measure​
 method in the
	Benchmark
	library to do this, but it’s more convenient to wrap this in a
	helper method.

	Add the following to your ​.irbrc​ file:

	​ 	​def​ time(&block)

	​ 	 require ​'benchmark'​

	​ 	 result = nil

	​ 	 timing = Benchmark.measure ​do​

	​ 	 result = block.()

	​ 	 ​end​

	​ 	 puts ​"It took: ​#{timing}​"​

	​ 	 result

	​ 	​end​

	The next time you start irb, you’ll be able to use this method to get
	timings:

	​ 	ruby 2.0 > time { 1_000_000.times { "cat".upcase } }

	​ 	It took: 0.320000 0.000000 0.320000 (0.323104)

	​ 	=> 1000000

Interactive Configuration

	Most configuration values are also available while you’re
	running irb. The list in ​irb Configuration Options​ shows these values as
	​conf.​xxx​​. For example, to change your
	prompt back to ​SIMPLE​, you could use the following:

	​ 	ruby 2.0 > 1 +

	​ 	ruby 2.0 > 2

	​ 	 => 3

	​ 	ruby 2.0 > conf.prompt_mode = :SIMPLE

	​ 	=> :SIMPLE

	​ 	>> 1 +

	​ 	?> 2

	​ 	=> 3

irb Configuration Options

	In the descriptions that follow, a label of the form
	​:XXX​ signifies a key used in the
	​IRB.conf​ hash in an
	initialization file, and ​conf.xxx​ signifies a value
	that can be set interactively. The value in square brackets at
	the end of the description is the option’s default.

	​:AUTO_INDENT​ / ​auto_indent_mode​
	

	 If ​true​, irb will indent nested structures as you type them. [true]
	

	​:BACK_TRACE_LIMIT​ / ​back_trace_limit​
	

	 Displays n initial and n final lines of backtrace. [16]
	

	​:CONTEXT_MODE​
	

	 Specifies what binding to use for new workspaces: 0→proc at
	 the top level, 1→binding in a loaded, anonymous file,
	 2→per thread binding in a loaded file,
	 3→binding in a top-level function. [3]
	

	​:DEBUG_LEVEL​ / ​debug_level​
	

	 Sets the internal debug level to
	 ​n​. This is useful if you’re debugging irb’s lexer. [0]
	

	​:IGNORE_EOF​ / ​ignore_eof​
	

	 Specifies the behavior of an end of file received on input.
	 If true, it will be ignored; otherwise, irb will quit. [false]
	

	​:IGNORE_SIGINT​ / ​ignore_sigint​
	

	 If false, ^C (Ctrl+c) will quit irb. If true, ^C
	 during input will cancel input and return to the top level;
	 during execution, ^C will abort the current operation. [true]
	

	​:INSPECT_MODE​ / ​inspect_mode​
	

	 Specifies how values will be displayed:
	 ​true​ means use
 ​inspect​
 ,
	 ​false​ uses
 ​to_s​
 ,
	 and ​nil​ uses
 ​inspect​
 in nonmath mode and
	
 ​to_s​
 in math mode.
	 [nil]
	

	​:IRB_RC​
	

	 Can be set to a proc object that will be called when an irb session
	 (or subsession) is started. [nil]
	

	​last_value​
	

	 The last value output by irb. [...]
	

	​:LOAD_MODULES​ / ​load_modules​
	

	 A list of modules loaded via the ​-r​ command-line option. [[]]
	

	​:MATH_MODE​ / ​math_mode​
	

	 If ​true​, irb runs with the
	 ​mathn​ library loaded (described in
	 the library section) and
	 does not use
 ​inspect​
 to display
	 values. [false]
	

	​prompt_c​
	

	 The prompt for a continuing statement
	 (for example, immediately after an ​if​). [depends]
	

	​prompt_i​
	

	 The standard, top-level prompt. [depends]
	

	​:PROMPT_MODE​ / ​prompt_mode​
	

	 The style of prompt to display. [:DEFAULT]
	

	​prompt_s​
	

	 The prompt for a continuing string. [depends]
	

	​:PROMPT​
	

	 See ​Configuring the Prompt​. [...]
	

	​:RC​ / ​rc​
	

	 If ​false​, do not load an initialization file. [true]
	

	​return_format​
	

	 The format used to display the results of expressions entered interactively. [depends]
	

	​:SAVE_HISTORY​ / ​save_history​
	

	 The number of commands to
	 save between irb sessions. [nil]
	

	​:SINGLE_IRB​
	

	 If true, nested irb sessions will all share
	 the same binding; otherwise, a new binding will be created according to
	 the value of ​:CONTEXT_MODE​. [nil]
	

	​thread​
	

	 A read-only reference to the currently
	 executing ​Thread​ object. [current thread]
	

	​:USE_LOADER​ / ​use_loader​
	

	 Specifies whether irb’s own file reader method is used with
	
 ​load​
 /
 ​require​
 .
	 [false]
	

	​:USE_READLINE​ / ​use_readline​
	

	 irb will use the ​readline​ library
	 (described in the library
	 section) if available, unless this option is set to
	 ​false​, in which case readline will
	 never be used, or ​nil​, in which case
	 readline will not be used in
	 ​inf-ruby-mode​. [depends]
	

	​:USE_TRACER​ / ​use_tracer​
	

	 If true, traces the execution of statements. [false]
	

	​:VERBOSE​ / ​verbose​
	

	 In theory, switches on additional tracing when true; in practice,
	 almost no extra tracing results. [true]
	

18.2 Commands

 At the irb prompt, you can enter any valid Ruby expression and see the
 results. You can also use any of the following commands to control
 the irb session:[87]

	​help ClassName, string, or symbol​
	

	 Displays the ri help for the given thing.
	
	​ 	irb(main):001:0> help ​"String.encoding"​

	​ 	--- String​#encoding​

	​ 	obj.encoding => encoding

	​ 	---

	​ 	Returns the Encoding object that represents the encoding of obj.

	​exit, quit, irb_exit, irb_quit​
	

	 Quits this irb session or subsession.
	 If you’ve used ​cb​ to change bindings (detailed in a moment), exits from
	 this binding mode.
	

	​conf, context, irb_context​
	

	 Displays current configuration. Modifying the configuration is
	 achieved by invoking methods of ​conf​. The list in
	 ​irb Configuration Options​ shows the available ​conf​
	 settings.
	

	 For example, to set the default prompt to something
	 subservient, you could use this:
	
	​ 	irb(main):001:0> conf.prompt_i = ​"Yes, Master? "​

	​ 	=> ​"Yes, Master? "​

	​ 	Yes, Master? 1 + 2

	​cb, irb_change_binding <obj>​
	

	 Creates and enters a new binding (sometimes called a
	 ​workspace​) that has its own scope for local
	 variables. If obj is given, it will be used as
	 ​self​ in the new binding.
	

	​pushb obj, popb​
	

	 Pushes and pops the current binding.
	

	​bindings​
	

	 Lists the current bindings.
	

	​irb_cwws​
	

	 Prints the object that’s the binding of the current workspace.
	

	​irb <obj>​
	

	 Starts an irb subsession. If obj is given, it will be used
	 as ​self​.
	

	​jobs, irb_jobs​
	

	 Lists irb subsessions.
	

	​fg n, irb_fg n​
	

	 Switches into the specified irb subsession. n may be any of the following:
	 an irb subsession number, a thread ID, an irb object, or
	 the object that was the value of self when a subsession was launched.
	

	​kill n, irb_kill n​
	

	 Kills an irb subsession. n may be any of the values as described
	 for ​irb_fg​.
	

	​source filename​
	

	 Loads and executes the given file, displaying the source lines.
	

Configuring the Prompt

	You have a lot of flexibility in configuring the prompts that irb
	uses. Sets of prompts are stored in the prompt hash, ​IRB.conf[:PROMPT]​.

	For example, to establish a new prompt mode called MY_PROMPT, you
	could enter the following (either directly at an irb prompt or in the
	​.irbrc​ file):

	​ 	IRB.conf[:PROMPT][:MY_PROMPT] = { ​# name of prompt mode​

	​ 	 :PROMPT_I => ​'-->'​, ​# normal prompt​

	​ 	 :PROMPT_S => ​'--"'​, ​# prompt for continuing strings​

	​ 	 :PROMPT_C => ​'--+'​, ​# prompt for continuing statement​

	​ 	 :RETURN => ​" ==>%s\n"​ ​# format to return value​

	​ 	}

	Once you’ve defined a prompt, you have to tell irb to use
	it. From the command line, you can use the ​--prompt​
	option. (Notice how the name of the prompt on the command line
	is automatically converted to uppercase, with hyphens changing
	to underscores.)

	​ 	$ ​irb --prompt my-prompt​

	If you want to use this prompt in all your future irb sessions, you
	can set it as a configuration value in your ​.irbrc​ file:

	​ 	IRB.conf[:PROMPT_MODE] = :MY_PROMPT

	The symbols ​:PROMPT_I​, ​:PROMPT_S​, and ​:PROMPT_C​
	specify the format for each of the prompt strings. In a format string, certain
	% sequences are expanded:

Table 10. irb prompt string substitutions
	
Flag
	
Description

	
​%N​
	

	 Current command.
	

	
​%m​
	

	 ​to_s​ of the main object (self).
	

	
​%M​
	

	 ​inspect​ of the main object (self).
	

	
​%l​
	

	 Delimiter type. In strings that are continued across a
	 line break, ​%l​ will display the type of
	 delimiter used to begin the string, so you’ll know how
	 to end it. The delimiter will be one of ​"​,
	 ​’​, ​/​, ​]​, or ​‘​.
	

	
​%​n​i​
	

	 Indent level. The optional number n is used
	 as a width specification to ​printf​, as
	 ​printf("%nd")​.
	

	
​%nn​
	

	 Current line number (n used as with the indent level).
	

	
​%%​
	

	 A literal percent sign.
	

	For instance, the default prompt mode is defined as follows:

	​ 	IRB.conf[:PROMPT][:DEFAULT] = {

	​ 	 :PROMPT_I => ​"%N(%m):%03n:%i> "​,

	​ 	 :PROMPT_S => ​"%N(%m):%03n:%i%l "​,

	​ 	 :PROMPT_C => ​"%N(%m):%03n:%i* "​,

	​ 	 :RETURN => ​"=> %s\n"​

	​ 	}

Saving Your Session History

	 If you have readline support in irb (that is, you can hit
	 the up arrow key and irb recalls the previous command you
	 entered), then you can also configure irb to remember the
	 commands you enter between sessions. Simply add the
	 following to your ​.irbrc​ file:
	
	​ 	IRB.conf[:SAVE_HISTORY] = 50 ​# save last 50 commands​

Footnotes

	[87]	
For some inexplicable reason, many of these
 commands have up to nine different aliases. We don’t bother to show
 all of them.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 19
Documenting Ruby

 Ruby comes bundled with RDoc, a tool that
 extracts and formats documentation that’s embedded in Ruby source
 code files. This tool is used to document the built-in Ruby
 classes and modules. An increasing number of libraries and
 extensions are also documented this way.[88]

 RDoc does two jobs. First, it analyzes Ruby and C source files,
 along with some other formats such as Markdown«2.0»,
 looking for information to document.[89] Second, it takes this information and
 converts it into something readable. The following image shows
 some RDoc output in a browser window. The overlaid box shows the
 source program from which this output was generated.

[image: images/rdoc/ex1.png]

 Even though the source contains no internal documentation, RDoc still
 manages to extract interesting information from it. We have three
 panes at the top of the screen showing the files, classes, and methods
 for which we have documentation. For class ​Counter​, RDoc shows us
 the attributes and methods (including the method signatures). And if
 we clicked a method signature, RDoc would pop up a window
 containing the source code for the corresponding method.

 If our source code contains
 comments, RDoc can use them to
 spice up the documentation it produces.

[image: images/rdoc/ex2.png]

 Notice how the comments before each element now appear in the RDoc output,
 reformatted into HTML. Less obvious is that RDoc has detected
 hyperlink opportunities in our comments: in the class-level comment,
 the reference to ​Counter#inc​ is a hyperlink to the method
 description, and in the comment for the
 ​new​
 method, the
 reference to class ​Counter​ hyperlinks back to the class
 documentation. This is a key feature of RDoc: it is designed to be
 unintrusive in the Ruby source files and to make up for this by
 trying to be clever when producing output.

 RDoc can also be used to produce documentation that can be read by
 the ri command-line utility. For example, if we ask RDoc to
 document the code in the previous example into ri format, we can
 access the documentation from the command line:

	​ 	$ ​ri Counter​

	​ 	-- Class: Counter

	​ 	 Implements a simple accumulator, whose value is

	​ 	 accessed via the attribute counter. Calling the

	​ 	 method Counter#inc increments this value.

	​ 	---

	​ 	

	​ 	Class methods:

	​ 	 new

	​ 	Instance methods:

	​ 	 inc

	​ 	Attributes:

	​ 	 counter

	​ 	--- Counter#inc

	​ 	 inc()

	​ 	---

	​ 	 increment the current value of the count

 Ruby distributions have the built-in classes and modules (and some
 libraries) documented this way.[90]
 Here’s what you see if you type
 ​ri Proc​:

	​ 	$ ​ri Proc​

	​ 	Proc < Object

	​ 	(from ruby core)

	​ 	--

	​ 	Proc objects are blocks of code that have been bound to a set of local

	​ 	variables. Once bound, the code may be called in different contexts and still

	​ 	access those variables.

	​ 	

	​ 	 def gen_times(factor)

	​ 	 return Proc.new {|n| n*factor }

	​ 	 end

	​ 	

	​ 	 times3 = gen_times(3)

	​ 	 times5 = gen_times(5)

	​ 	

	​ 	 times3.call(12) #=> 36

	​ 	 times5.call(5) #=> 25

	​ 	 times3.call(times5.call(4)) #=> 60

	​ 	--

	​ 	Class methods:

	​ 	 new

	​ 	Instance methods:

	​ 	 ===, [], arity, binding, call, curry, hash, inspect, lambda?, parameters,

	​ 	 source_location, to_proc, to_s, yield ==

 Many projects include README files, files containing
 usage notes, Changelogs, and so on. RDoc automatically finds
 and formats these. It calls the result a
 ​page​. You access the list of available pages from ri using the name
 of the project and a colon:«2.0»

	​ 	$ ​ri ruby:​

	​ 	Pages in ruby core

	​ 	

	​ 	ChangeLog

	​ 	NEWS

	​ 	README

	​ 	README.EXT

	​ 	: :

 To read a particular page, add its name after the colon:

	​ 	$ ​ri ruby:NEWS​

	​ 	NEWS for Ruby 2.0.0

	​ 	

	​ 	This document is a list of user visible feature changes made between releases

	​ 	except for bug fixes.

19.1 Adding RDoc to Ruby Code

 RDoc parses
 Ruby source files to extract the major elements (such as classes, modules,
 methods, attributes, and so on). You can choose to associate additional
 documentation with these by simply adding a comment block before the
 element in the file.

 One of the design goals of RDoc was to leave the source code
 looking totally natural. In most cases, there is no need for any
 special markup in your code to get RDoc to produce decent
 looking documentation. For example, comment blocks can be
 written fairly naturally:

	​ 	​# Calculate the minimal-cost path though the graph using Debrinkski's algorithm,​

	​ 	​# with optimized inverse pruning of isolated leaf nodes.​

	​ 	​def​ calculate_path

	​ 	 . . .

	​ 	end

 You can also use Ruby’s block-comments by including the
 documentation in a ​=begin​...​=end​ block. If you use this (which is not generally
 done), the ​=begin​ line must be flagged with an
 ​rdoc​ tag to distinguish the block from other styles of
 documentation.

	​ 	​=begin rdoc​

	​ 	​Calculate the minimal-cost path though the graph using Debrinkski's algorithm,​

	​ 	​with optimized inverse pruning of isolated leaf nodes.​

	​ 	​=end​

	​ 	​def​ calculate_path

	​ 	 . . .

	​ 	end

 Within a documentation comment, paragraphs are lines that share the
 left margin. Text indented past this margin is formatted verbatim.

 Nonverbatim text can be marked up. To set individual words in
 italic, bold, or typewriter fonts, you can use ​_word_​,
 ​*word*​, and ​+word+​, respectively. If you want
 to do this to multiple words or text containing nonword
 characters, you can use ​multiple
 words​, ​more words​, and
 ​<tt>yet more words</tt>​. Putting a
 backslash before inline markup stops it from being interpreted.

 RDoc stops processing comments if it finds a comment line
 starting with ​#--​. This can be used to separate external
 from internal comments or to stop a comment from being associated
 with a method, class, attribute, or module. Documenting can be
 turned back on by starting a line with the comment ​#++​:

	​ 	​# Extract the age and calculate the​

	​ 	​# date of birth.​

	​ 	​#--​

	​ 	​# FIXME: fails if the birthday falls on February 29th, or if the person​

	​ 	​# was born before epoch and the installed Ruby doesn't support negative time_t​

	​ 	​#++​

	​ 	​# The DOB is returned as a Time object.​

	​ 	​#--​

	​ 	​# But should probably change to use Date.​

	​ 	

	​ 	​def​ get_dob(person)

	​ 	 ...

	​ 	​end​

Hyperlinks

	Names of classes, source files, and any method names
	containing an underscore or preceded by a hash
	character are automatically hyperlinked from
	comment text to their description.

	In addition, hyperlinks starting with ​http:​,
	​mailto:​, ​ftp:​, and ​www:​ are
	recognized. An HTTP URL that references an external image file
	is converted into an inline ​​ tag. Hyperlinks
	starting with ​link:​ are assumed to refer to local files
	whose paths are relative to the ​--op​ directory, where
	output files are stored.

	Hyperlinks can also be of the form ​label[url]​, where
	the ​label​ is used in the displayed text and ​url​ is used as
	the target. If the label contains multiple words, surround it
	in braces: ​{two words}[url]​.

Lists

	Lists are typed as indented paragraphs with the following:

	
As asterisk (*) or hyphen (-) for bullet lists

	
A digit followed by a period for numbered lists

	
An uppercase or lowercase letter followed by a period for alpha lists

	For example, you could produce something like the previous text with this:

	​ 	​# Lists are typed as indented paragraphs with​

	​ 	​# * a * or - (for bullet lists),​

	​ 	​# * a digit followed by a period for​

	​ 	​# numbered lists,​

	​ 	​# * an uppercase or lowercase letter followed​

	​ 	​# by a period for alpha lists.​

	Note how subsequent lines in a list item are indented to line up with
	the text in the element’s first line.

	Labeled lists (sometimes called
 ​ description lists​

)
	are typed using square brackets for the label:

	​ 	​# [cat] Small domestic animal​

	​ 	​# [+cat+] Command to copy standard input​

	​ 	​# to standard output​

	Labeled lists may also be produced by putting a double colon
	after the label. This sets the result in tabular form so the
	descriptions all line up in the output.

	​ 	​# cat:: Small domestic animal​

	​ 	​# +cat+:: Command to copy standard input​

	​ 	​# to standard output​

	For both kinds of labeled lists, if the body text starts on the same
	line as the label, then the start of that text determines the block
	indent for the rest of the body. The text may also start on the line
	following the label, indented from the start of the label. This is
	often preferable if the label is long. Both of the following are
	valid labeled list entries:

	​ 	​# <tt>--output</tt> <i>name [, name]</i>::​

	​ 	​# specify the name of one or more output files. If multiple​

	​ 	​# files are present, the first is used as the index.​

	​ 	​#​

	​ 	​# <tt>--quiet:</tt>:: do not output the names, sizes, byte counts,​

	​ 	​# index areas, or bit ratios of units as​

	​ 	​# they are processed.​

Headings

	Headings are entered on lines starting with equals signs. The more
	equals signs, the higher the level of heading:

	​ 	​# = Level One Heading​

	​ 	​# == Level Two Heading​

	​ 	​# and so on...​

	Rules (horizontal lines) are entered using three or
	more hyphens:

	​ 	​# and so it goes...​

	​ 	​# ----​

	​ 	​# The next section...​

Documentation Modifiers

	Method parameter lists are extracted and displayed with the
	method description. If a method calls
	​yield​, then the parameters passed to
	​yield​ will also be displayed. For example:

	​ 	​def​ fred

	​ 	 ​# ...​

	​ 	 ​yield​ line, address

	This will be documented as follows:

	​ 	fred() {|line, address| ... }

	You can override this using a comment containing
	​:yields: ...​ on the same line as the method definition:

	​ 	​def​ fred ​# :yields: index, position​

	​ 	 ​# ...​

	​ 	 ​yield​ line, address

	which will be documented as follows:

	​ 	fred() {|index, position| ... }

	​:yields:​ is an example of a documentation modifier. These appear
	immediately after the start of the document element they are
	modifying.
	Other modifiers include the following:

	​:nodoc: <all>​
	

	 Don’t include this element in the documentation. For classes and
	 modules, the methods, aliases, constants, and attributes directly
	 within the affected class or module will also be omitted from the
	 documentation. By default, though, modules and classes within that
	 class or module will be documented. This is turned off by adding the
	 ​all​ modifier. For example, in the following code, only class
	 ​SM::Input​ will be documented:
	
	​ 	​module​ SM ​#:nodoc:​

	​ 	 ​class​ Input

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​module​ Markup ​#:nodoc: all​

	​ 	 ​class​ Output

	​ 	 ​end​

	​ 	​end​

	​:doc:​
	

	 This forces a method or attribute to be documented even if it
	 wouldn’t otherwise be. This is useful if, for example, you want to
	 include documentation of a particular private method.
	

	​:notnew:​
	

	 (Applicable only to the
 ​initialize​
 instance
	 method.) Normally RDoc assumes that the documentation and
	 parameters for
 ​#initialize​
 are actually for the
	 corresponding class’s
 ​new​
 method and so fakes out a
	
 ​new​
 method for the class. The ​:notnew:​
	 modifier stops this. Remember that
 ​#initialize​
 is
	 protected, so you won’t see the documentation unless you use the
	 ​-a​ command-line option.
	

Other Directives

 Comment blocks can contain other directives:

	​:call-seq: ​lines​...​
	

	 Text up to the next blank comment line is used as the calling sequence
	 when generating documentation (overriding the parsing of the method
	 parameter list). A line is considered blank even if it starts with
	 #. For this one directive, the leading colon is optional.
	

	​:include: ​filename​​
	

	 This includes the contents of the named file at this point. The
	 file will be searched for in the directories listed by
	 the ​--include​ option or in the current
	 directory by default. The contents of the file will be
	 shifted to have the same indentation as the ​:​ at the
	 start of the ​:include:​ directive.
	

	​:title: ​text​​
	

	 This sets the title for the document. It’s equivalent to the ​--title​
	 command-line parameter. (The command-line parameter overrides any ​:title:​
	 directive in the source.)
	

	​:main: ​name​​
	

	 This is equivalent to the ​--main​ command-line parameter, setting
	 the initial page displayed for this documentation.
	

	​:stopdoc:​ / ​:startdoc:​
	

	 This stops and starts adding new
	 documentation elements to the current container. For
	 example, if a class has a number of constants that you don’t
	 want to document, put a ​:stopdoc:​ before the first
	 and a ​:startdoc:​ after the last. If you don’t
	 specify a ​:startdoc:​ by the end of the container,
	 this disables documentation for the entire class or module.
	

	​:enddoc:​
	

	 This documents nothing further at the current lexical level.
	

 A larger example of a file documented using RDoc is shown in Section 19.4, ​Ruby source file documented with RDoc​.

19.2 Adding RDoc to C Extensions

 RDoc understands many of the conventions used when writing extensions
 to Ruby in C.

 If RDoc sees a C function named
 ​Init_​Classname​​, it treats it as a class
 definition—any C comment before the ​Init_​ function
 will be used as the class’s documentation.

 The ​Init_​ function is normally used to associate C
 functions with Ruby method names. For example, a ​Cipher​ extension
 may define a Ruby method
 ​salt=​
 , implemented by the C
 function
 ​salt_set​
 using a call such as this:

	​ 	rb_define_method(cCipher, ​"salt="​, salt_set, 1);

 RDoc parses this call, adding the
 ​salt=​
 method to the class
 documentation. RDoc then searches the C source for the C function

 ​salt_set​
 . If this function is preceded by a comment block,
 RDoc uses this for the method’s documentation.

 This basic scheme works with no effort on your part beyond writing the
 normal documentation in the comments for functions.
 However, RDoc cannot discern the
 calling sequence for the corresponding Ruby method. In this example,
 the RDoc output will show a single argument with the (somewhat
 meaningless) name “arg1.” You can override this using the
 ​call-seq​ directive in the function’s comment. The
 lines following ​call-seq​ (up to a blank line) are used to document
 the calling sequence of the method:

	​ 	​/*​

	​ 	​ * call-seq:​

	​ 	​ * cipher.salt = number​

	​ 	​ * cipher.salt = "string"​

	​ 	​ *​

	​ 	​ * Sets the salt of this cipher to either a binary +number+ or​

	​ 	​ * bits in +string+.​

	​ 	​ */​

	​ 	

	​ 	​static​ VALUE

	​ 	salt_set(cipher, salt)

	​ 	...

 If a method returns a meaningful value, it should be documented in the
 ​call-seq​ following the characters ​->​:

	​ 	​/*​

	​ 	​ * call-seq:​

	​ 	​ * cipher.keylen -> Fixnum or nil​

	​ 	​ */​

 Although RDoc heuristics work well for finding the class and method
 comments for simple extensions, they don’t always work for more
 complex implementations. In these cases, you can use the directives
 ​Document-class:​ and ​Document-method:​ to indicate
 that a C comment relates to a given class or method,
 respectively. The modifiers
 take the name of the Ruby class or method that’s being documented:

	​ 	​/*​

	​ 	​ * Document-method: reset​

	​ 	​ *​

	​ 	​ * Clear the current buffer and prepare to add new​

	​ 	​ * cipher text. Any accumulated output cipher text​

	​ 	​ * is also cleared.​

	​ 	​ */​

 Finally, it is possible in the ​Init_​xxx​​ function to
 associate a Ruby method with a C function in a different C source
 file. RDoc would not find this function without your help: you add a
 reference to the file containing the function definition by adding a
 special comment to the
 ​rb_define_method​
 call. The following
 example tells RDoc to look in the file ​md5.c​ for the function
 (and related comment) corresponding to the
 ​md5​
 method:

	​ 	rb_define_method(cCipher, ​"md5"​, gen_md5, -1); ​/* in md5.c */​

 A C source file documented using RDoc is shown in Section 19.5, ​C source file documented with RDoc​. Note that the bodies of several
 internal methods have been elided to save space.

19.3 Running RDoc

 You run RDoc from the command line:

$ rdoc <options>* <filenames...>*

 Type ​rdoc --help​ for an up-to-date option summary.

 Files are parsed, and the information they contain collected, before
 any output is produced. This allows cross-references between all files
 to be resolved. If a name is a directory, it is traversed. If no
 names are specified, all Ruby files in the current directory (and
 subdirectories) are processed.

 A typical use may be to generate documentation for a package of Ruby
 source (such as RDoc itself):

	​ 	$ ​rdoc​

 This command generates HTML documentation for the files
 in and below the current directory.
 These will be stored in a
 documentation tree starting in the subdirectory ​doc/​.

 RDoc uses file extensions to determine how to process each
 file. Filenames ending with ​rb​
 and ​rbw​ are assumed to be Ruby
 source. Filenames ending ​c​ are
 parsed as C files. ​rdoc​ files are
 formatted as RDoc, and
 ​md​ and
 ​markdown​ as Markdown.«2.0»
 All other files are assumed to contain just markup (with or
 without leading ​#​ comment markers). If directory names
 are passed to RDoc, they are scanned recursively for source
 files only. To include nonsource files such as
 ​README​s in the documentation process, their
 names must be given explicitly on the command line.

 When writing a Ruby library, you often have some source files
 that implement the public interface, but the majority are
 internal and of no interest to the readers of your
 documentation. In these cases, construct a
 ​.document​ file in each of your project’s
 directories. If RDoc enters a directory containing a
 ​.document​ file, it will process only the
 files in that directory whose names match one of the lines in
 that file. Each line in the file can be a filename, a directory
 name, or a wildcard (a file system “glob” pattern). For
 example, to include all Ruby files whose names start with
 ​main​, along with the file
 ​constants.rb​, you could use a
 ​.document​ file containing this:

	​ 	main*.rb

	​ 	constants.rb

 Some project standards ask for documentation in a top-level
 ​README​
 file. You may find it convenient to write this file in RDoc format and
 then use the ​:include:​ directive to incorporate the README
 into the documentation for the main class.

Create Documentation for ri

	RDoc is also used to create documentation that will be later
	displayed using ri.

	When you run ri, it by default looks for documentation in three
	places:[91]

	

	 The ​system​ documentation directory, which holds the
	 documentation distributed with Ruby and which is created by the
	 Ruby install process
	

	

	 The ​site​ directory, which contains sitewide
	 documentation added locally
	

	

	 The ​user​ documentation directory, stored under the user’s
	 own home directory
	

	You can find these three directories using ​ri --list-doc-dirs​.

	​ 	$ ​ri --list-doc-dirs​

	​ 	/Users/dave/.rvm/rubies/ruby-2.0.0-p0/share/ri/2.0.0/system

	​ 	/Users/dave/.rvm/rubies/ruby-2.0.0-p0/share/ri/2.0.0/site

	​ 	/Users/dave/.rdoc

	To add documentation to ri, you need to tell RDoc which output
	directory to use. For your own use, it’s easiest to use the
	​--ri​ option, which installs the documentation into
	​~/.rdoc​:

	​ 	$ ​rdoc --ri file1.rb file2.rb​

	If you want to install sitewide documentation, use the
	​--ri-site​ option:

	​ 	$ ​rdoc --ri-site file1.rb file2.rb​

	The ​--ri-system​ option is normally used only to install
	documentation for Ruby’s built-in classes and standard libraries. You
	can regenerate this documentation from the Ruby source distribution
	(not from the installed libraries themselves):

	​ 	$ ​cd ruby source base/lib​

	​ 	$ ​rdoc --ri-system​

19.4 Ruby source file documented with RDoc
	​ 	​# This module encapsulates functionality related to the​

	​ 	​# generation of Fibonacci sequences.​

	​ 	​#--​

	​ 	​# Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.​

	​ 	​# Licensed under the same terms as Ruby. No warranty is provided.​

	​ 	​module​ Fibonacci

	​ 	

	​ 	 ​# Calculate the first _count_ Fibonacci numbers, starting with 1,1.​

	​ 	 ​#​

	​ 	 ​# :call-seq:​

	​ 	 ​# Fibonacci.sequence(count) -> array​

	​ 	 ​# Fibonacci.sequence(count) {|val| ... } -> nil​

	​ 	 ​#​

	​ 	 ​# If a block is given, supply successive values to the block and​

	​ 	 ​# return +nil+, otherwise return all values as an array.​

	​ 	 ​def​ Fibonacci.sequence(count, &block)

	​ 	 result, block = setup_optional_block(block)

	​ 	 generate ​do​ |val|

	​ 	 ​break​ ​if​ count <= 0

	​ 	 count -= 1

	​ 	 block[val]

	​ 	 ​end​

	​ 	 result

	​ 	 ​end​

	​ 	

	​ 	 ​# Calculate the Fibonacci numbers up to and including _max_.​

	​ 	 ​#​

	​ 	 ​# :call-seq:​

	​ 	 ​# Fibonacci.upto(max) -> array​

	​ 	 ​# Fibonacci.upto(max) {|val| ... } -> nil​

	​ 	 ​#​

	​ 	 ​# If a block is given, supply successive values to the​

	​ 	 ​# block and return +nil+, otherwise return all values as an array.​

	​ 	 ​def​ Fibonacci.upto(max, &block)

	​ 	 result, block = setup_optional_block(block)

	​ 	 generate ​do​ |val|

	​ 	 ​break​ ​if​ val > max

	​ 	 block[val]

	​ 	 ​end​

	​ 	 result

	​ 	 ​end​

	​ 	

	​ 	 private

	​ 	

	​ 	 ​# Yield a sequence of Fibonacci numbers to a block.​

	​ 	 ​def​ Fibonacci.generate

	​ 	 f1, f2 = 1, 1

	​ 	 loop ​do​

	​ 	 ​yield​ f1

	​ 	 f1, f2 = f2, f1+f2

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# If a block parameter is given, use it, otherwise accumulate into an​

	​ 	 ​# array. Return the result value and the block to use.​

	​ 	 ​def​ Fibonacci.setup_optional_block(block)

	​ 	 ​if​ block.nil?

	​ 	 [result = [], lambda {|val| result << val }]

	​ 	 ​else​

	​ 	 [nil, block]

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

19.5 C source file documented with RDoc
	​ 	#include "ruby.h"

	​ 	#include "cdjukebox.h"

	​ 	

	​ 	​static​ VALUE cCDPlayer;

	​ 	​static​ ​void​ cd_free(​void​ *p) { ... }

	​ 	​static​ VALUE cd_alloc(VALUE klass) { ... }

	​ 	​static​ ​void​ progress(CDJukebox *rec, ​int​ percent) { ... }

	​ 	

	​ 	​/* call-seq:​

	​ 	​ * CDPlayer.new(unit) -> new_cd_player​

	​ 	​ *​

	​ 	​ * Assign the newly created CDPlayer to a particular unit​

	​ 	​ */​

	​ 	​static​ VALUE cd_initialize(VALUE self, VALUE unit) {

	​ 	 ​int​ unit_id;

	​ 	 CDJukebox *jb;

	​ 	

	​ 	 Data_Get_Struct(self, CDJukebox, jb);

	​ 	 unit_id = NUM2INT(unit);

	​ 	 assign_jukebox(jb, unit_id);

	​ 	 ​return​ self;

	​ 	}

	​ 	

	​ 	​/* call-seq:​

	​ 	​ * player.seek(int_disc, int_track) -> nil​

	​ 	​ * player.seek(int_disc, int_track) {|percent| } -> nil​

	​ 	​ *​

	​ 	​ * Seek to a given part of the track, invoking the block​

	​ 	​ * with the percent complete as we go.​

	​ 	​ */​

	​ 	​static​ VALUE

	​ 	cd_seek(VALUE self, VALUE disc, VALUE track) {

	​ 	 CDJukebox *jb;

	​ 	 Data_Get_Struct(self, CDJukebox, jb);

	​ 	 jukebox_seek(jb, NUM2INT(disc), NUM2INT(track), progress);

	​ 	 ​return​ Qnil;

	​ 	}

	​ 	

	​ 	​/* call-seq:​

	​ 	​ * player.seek_time -> Float​

	​ 	​ *​

	​ 	​ * Return the average seek time for this unit (in seconds)​

	​ 	​ */​

	​ 	​static​ VALUE

	​ 	cd_seek_time(VALUE self)

	​ 	{

	​ 	 ​double​ tm;

	​ 	 CDJukebox *jb;

	​ 	 Data_Get_Struct(self, CDJukebox, jb);

	​ 	 tm = get_avg_seek_time(jb);

	​ 	 ​return​ rb_float_new(tm);

	​ 	}

	​ 	

	​ 	​/* Interface to the Spinzalot[http://spinzalot.cd]​

	​ 	​ * CD Player library.​

	​ 	​ */​

	​ 	​void​ Init_CDPlayer() {

	​ 	 cCDPlayer = rb_define_class(​"CDPlayer"​, rb_cObject);

	​ 	 rb_define_alloc_func(cCDPlayer, cd_alloc);

	​ 	 rb_define_method(cCDPlayer, ​"initialize"​, cd_initialize, 1);

	​ 	 rb_define_method(cCDPlayer, ​"seek"​, cd_seek, 2);

	​ 	 rb_define_method(cCDPlayer, ​"seek_time"​, cd_seek_time, 0);

	​ 	}

Footnotes

	[88]	
RDoc isn’t the
 only Ruby documentation tool. Those who like a more formal,
 tag-based scheme might want to look at Yard at

 ​http://yardoc.org​
 .

	[89]	
RDoc can also
 document Fortran 77
 programs.

	[90]	

 If you’re using rvm, you’ll need to run ​rvm docs generate​.

	[91]	
You can override the directory location using the
	​--op​ option to RDoc and subsequently using the
	​--doc-dir​ option with ri.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 20
Ruby and the Web

 Ruby is no stranger to the Internet. Not only can you write your
 own SMTP server, FTP daemon, or web server in Ruby, but you can
 also use Ruby for more usual tasks such as CGI programming or as a
 replacement for PHP.

 Many options are available for using Ruby to implement web
 applications, and a single chapter can’t do them all justice. Instead,
 we’ll try to touch some of the highlights and point you toward
 libraries and resources that can help.

 Let’s start with some simple stuff: running Ruby programs as
 Common Gateway Interface (CGI) programs.

20.1 Writing CGI Scripts

 You can use Ruby to write CGI scripts quite easily. To have a
 Ruby script generate HTML output, all you need is something like
 this:

	​ 	#!/usr/bin/ruby

	​ 	print ​"Content-type: text/html\r\n\r\n"​

	​ 	print ​"<html><body>Hello World! It's ​#{Time.now}​</body></html>\r\n"​

 Put this script in a CGI directory, mark it as executable, and
 you’ll be able to access it via your browser. (If your web
 server doesn’t automatically add headers, you’ll need to add the
 response header yourself, as shown in the following code.)

	​ 	#!/usr/bin/ruby

	​ 	print ​"HTTP/1.0 200 OK\r\n"​

	​ 	print ​"Content-type: text/html\r\n\r\n"​

	​ 	print ​"<html><body>Hello World! It's ​#{Time.now}​</body></html>\r\n"​

 However, that’s hacking around at a pretty low level. You’d need to
 write your own request parsing, session management, cookie
 manipulation, output escaping, and so on. Fortunately,
 options are available to make this easier.

20.2 Using cgi.rb

	Class ​CGI​ provides support for writing CGI scripts. With it, you
	can manipulate forms, cookies, and the environment; maintain stateful
	sessions; and so on. It’s a fairly large class, but we’ll take a
	quick look at its capabilities here.

Quoting

	 When dealing with URLs and HTML code, you must be careful to
	 quote certain characters. For instance, a
	 slash character (​/​) has special meaning in a URL,
	 so it must be “escaped” if it’s not part of the path name.
	 That is, any ​/​ in the query portion of the URL will be
	 translated to the string ​%2F​ and must be translated
	 back to a ​/​ for you to use it. Space and ampersand are
	 also special characters. To handle this,
	 ​CGI​ provides the routines CGI.escape and CGI.unescape:
	
	​ 	require ​'cgi'​

	​ 	puts CGI.escape(​"Nicholas Payton/Trumpet & Flugel Horn"​)

Produces:
	​ 	Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

	 More frequently, you may want to escape HTML special characters:
	
	​ 	require ​'cgi'​

	​ 	puts CGI.escapeHTML(​"a < 100 && b > 200"​)

Produces:
	​ 	a < 100 && b > 200

	 To get really fancy, you can decide to escape only certain HTML elements
	 within a string:
	
	​ 	require ​'cgi'​

	​ 	puts CGI.escapeElement(​'<hr>Click Here
'​,​'A'​)

Produces:
	​ 	<hr>Click Here

	 Here only the ​<a...>​
	 element is escaped; other elements are left alone. Each of
	 these methods has an
 ​un-​
 version
	 to restore the original
	 string:
	
	​ 	require ​'cgi'​

	​ 	puts CGI.unescapeHTML(​"a < 100 && b > 200"​)

Produces:
	​ 	a < 100 && b > 200

Query Parameters

	 HTTP requests from the browser to your application may contain
	 parameters, either passed as part of the URL or passed as data embedded in
	 the body of the request.
	

	 Processing of these parameters is complicated by the fact that a value
	 with a given name may be returned multiple times in the same
	 request. For example, say we’re writing a survey to find out why folks
	 like Ruby. The HTML for our form looks like the following.
	
	​ 	​<html>​

	​ 	 ​<head>​

	​ 	 ​<title>​Test Form​</title>​

	​ 	 ​</head>​

	​ 	

	​ 	 ​<body>​

	​ 	 ​<p>​

	​ 	 I like Ruby because:

	​ 	 ​</p>​

	​ 	

	​ 	 ​<form​ action=​"cgi-bin/survey.rb"​​>​

	​ 	 ​<p>​

	​ 	 ​<input​ type=​"checkbox"​ name=​"reason"​ value=​"flexible"​ ​/>​

	​ 	 It's flexible

	​ 	 ​</p>​

	​ 	 ​<p>​

	​ 	 ​<input​ type=​"checkbox"​ name=​"reason"​ value=​"transparent"​ ​/>​

	​ 	 It's transparent

	​ 	 ​</p>​

	​ 	 ​<p>​

	​ 	 ​<input​ type=​"checkbox"​ name=​"reason"​ value=​"perlish"​ ​/>​

	​ 	 It's like Perl

	​ 	 ​</p>​

	​ 	 ​<p>​

	​ 	 ​<input​ type=​"checkbox"​ name=​"reason"​ value=​"fun"​ ​/>​

	​ 	 It's fun

	​ 	 ​</p>​

	​ 	 ​<p>​

	​ 	 Your name: ​<input​ type=​"text"​ name=​"name"​​/>​

	​ 	 ​</p>​

	​ 	 ​<input​ type=​"submit"​​/>​

	​ 	 ​</form>​

	​ 	 ​</body>​

	​ 	​</html>​

	 When someone fills in this form, they might check multiple reasons for
	 liking Ruby (as shown in the following screenshot):

[image: images/web/survey_form.png]

 In this case, the
	 form data corresponding to the name ​reason​ will have three values,
	 corresponding to the three checked boxes.
	

	 Class ​CGI​ gives you access to form data in a couple of
	 ways.
	 First, we can just treat the CGI object as a hash, indexing it with
	 field names and getting back field values.
	
	​ 	require ​'cgi'​

	​ 	cgi = CGI.new

	​ 	cgi[​'name'​] ​# => "Dave Thomas"​

	​ 	cgi[​'reason'​] ​# => "flexible"​

	 However, this doesn’t work well with the
	 ​reason​ field, because we see
	 only one of the three values. We can ask to see them all by
	 using the CGI#params
	 method. The value returned by
	
 ​params​
 acts like a hash containing
	 the request parameters. You can both read and write this
	 hash (the latter allows you to modify the data associated
	 with a request). Note that each of the values in the hash
	 is actually an array.
	
	​ 	cgi = CGI.new

	​ 	cgi.params ​# => {"name"=>["Dave Thomas"], "reason"=>["flexible",​

	​ 	 ​# .. "transparent", "fun"]}​

	​ 	cgi.params[​'name'​] ​# => ["Dave Thomas"]​

	​ 	cgi.params[​'reason'​] ​# => ["flexible", "transparent", "fun"]​

	 You can determine whether a particular parameter is present in a request
	 using CGI#has_key?:
	
	​ 	require ​'cgi'​

	​ 	cgi = CGI.new

	​ 	cgi.has_key?(​'name'​) ​# => true​

	​ 	cgi.has_key?(​'age'​) ​# => false​

Generating HTML with CGI.rb

	 ​CGI​ contains a huge number of
	 methods that can be used to create HTML—one method per
	 element. To enable these methods, you must create a
	 ​CGI​ object by calling CGI.new, passing in the required version of
	 HTML. In these examples, we’ll use html4.
	

	 To make element nesting easier, these methods take their
	 content as code blocks. The code blocks should return a
	 ​String​, which will be used as the
	 content for the element.
	
	​ 	require ​'cgi'​

	​ 	cgi = CGI.new(​"html4"​) ​# add HTML generation methods​

	​ 	cgi.out ​do​

	​ 	 cgi.html ​do​

	​ 	 cgi.head { cgi.title { ​"This Is a Test"​} } +

	​ 	 cgi.body ​do​

	​ 	 cgi.form ​do​

	​ 	 cgi.hr +

	​ 	 cgi.h1 { ​"A Form: "​ } +

	​ 	 cgi.textarea(​"get_text"​) +

	​ 	 cgi.br +

	​ 	 cgi.submit

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	
	
	 Although vaguely interesting, this method of generating
	 HTML is fairly laborious and probably isn’t used much in
	 practice. Most people seem to write the HTML directly, use
	 a templating system, or use an application framework, such
	 as Rails. Unfortunately, we
	 don’t have space here to discuss Rails—take a look at
	 the online documentation at
	
 ​http://rubyonrails.org​
 —but we can look at
	 templating (including erb, the templating engine used
	 by Rails).
	

20.3 Templating Systems

	Templating systems let you separate the presentation and logic
	of your application. It seems that just about everyone who
	writes a web application using Ruby at some point also writes
	a templating system; a quick review page written in 2008 by
	Vidar Hokstad[92]
	lists nineteen. For now, let’s just look at two: Haml and
	erb/eruby. Also, remember to look at
	Builder if
	you need to generate XHTML or XML.

Haml

	 Haml is a library that generates HTML documents from a
	 template.[93]
	 Unlike many other templating systems, Haml uses indentation
	 to indicate nesting (yup, just like Python). For example,
	 you can represent a in Haml using this:
	
	​ 	%ul

	​ 	 %li item one

	​ 	 %li item two

	 Install Haml using this:
	
	​ 	$ ​gem install haml​

	 The Haml input syntax is rich and powerful, and the example that
	 follows touches on only a subset of the features. Lines starting with
	 ​%​ get converted to HTML tags, nested in the output according to
	 their indentation in the input. An equals sign means “substitute
	 in the value of the Ruby code that follows.” A minus sign executes
	 Ruby code but doesn’t substitute the value in—our example uses that
	 to look over the reasons when constructing the table.
	

	 There are many ways of getting values passed in to the
	 template. In this example, we chose to pass in a hash as
	 the second parameter to
	
 ​render​
 . This results in local
	 variables getting set as the template is expanded, one
	 variable for each key in the hash:
	
	​ 	require ​'haml'​

	​ 	engine = Haml::Engine.new(​%{​

	​ 	​%body​

	​ 	​ #welcome-box​

	​ 	​ %p= greeting​

	​ 	​ %p​

	​ 	​ As of​

	​ 	​ = Time.now​

	​ 	​ the reasons you gave were:​

	​ 	​ %table​

	​ 	​ %tr​

	​ 	​ %th Reason​

	​ 	​ %th Rank​

	​ 	​ - for reason in reasons​

	​ 	​ %tr​

	​ 	​ %td= reason[:reason_name]​

	​ 	​ %td= reason[:rank]​

	​ 	​}​)

	​ 	

	​ 	data = {

	​ 	 greeting: ​'Hello, Dave Thomas'​,

	​ 	 reasons: [

	​ 	 { reason_name: ​'flexible'​, rank: ​'87'​ },

	​ 	 { reason_name: ​'transparent'​, rank: ​'76'​ },

	​ 	 { reason_name: ​'fun'​, rank: ​'94'​ },

	​]

	​ 	}

	​ 	

	​ 	puts engine.render(nil, data)

Produces:
	​ 	<body>

	​ 	 <div id='welcome-box'>

	​ 	 <p>Hello, Dave Thomas</p>

	​ 	 </div>

	​ 	 <p>

	​ 	 As of

	​ 	 2013-05-27 12:31:30 -0500

	​ 	 the reasons you gave were:

	​ 	 </p>

	​ 	 <table>

	​ 	 <tr>

	​ 	 <th>Reason</th>

	​ 	 <th>Rank</th>

	​ 	 </tr>

	​ 	 <tr>

	​ 	 <td>flexible</td>

	​ 	 <td>87</td>

	​ 	 </tr>

	​ 	 <tr>

	​ 	 <td>transparent</td>

	​ 	 <td>76</td>

	​ 	 </tr>

	​ 	 <tr>

	​ 	 <td>fun</td>

	​ 	 <td>94</td>

	​ 	 </tr>

	​ 	 </table>

	​ 	</body>

erb and eruby

	 So far we’ve looked at using Ruby to create HTML output, but
	 we can turn the problem inside out; we can actually embed
	 Ruby in an HTML document.
	
	
	
	

	 A number of packages allow you to embed Ruby statements in
	 an HTML
	 document--generically, this markup is known as “eRuby.” There
	 are several different implementations of eRuby , including
	 erubis and erb. erubis is available as a gem, while erb is
	 written in pure Ruby and is included with the standard
	 distribution. We’ll look at erb here.
	

	 Embedding Ruby in HTML is a very powerful concept—it basically gives
	 us the equivalent of a tool such as ASP, JSP, or PHP, but with the
	 full power of Ruby.
	
Using erb

	 erb is a filter. Input text is passed through
	 untouched, with the following exceptions:
	
	Expression	Description
	
<% ​ruby code​ %>
	This executes the Ruby code between the delimiters.
	
<%= ​ruby expression​ %>
	This evaluates the Ruby expression and replaces the sequence with the expression’s value.
	
<%# ​ruby code​ %>
	The Ruby code between the delimiters is ignored (useful for testing).
	
% ​line of ruby code​
	A line that starts with a percent is assumed to contain just Ruby code.

	 You can run erb from the command line:
	
erb <options> <document>

	 If the ​document​ is omitted, erb will read from standard
	 input. The command-line options for erb are:
	
	Option	Description
	
​-d​
	
Sets ​$DEBUG​ to ​true​

	
​-E ​ext[:int]​​
	Sets the default external/internal encodings
	
​-n​
	Displays resulting Ruby script (with line numbers)
	
​-r ​library​​
	Loads the named library
	
​-P​
	
Doesn’t do erb processing on lines starting ​%​

	
​-S ​level​​
	
Sets the ​safe level​

	
​-T ​mode​​
	
Sets the ​trim mode​

	
​-U​
	Sets default encoding to UTF-8
	
​-v​
	Enables verbose mode
	
​-x​
	Displays resulting Ruby script

	 Let’s look at some simple examples. We’ll run the erb executable
	 on the following input:
	
	web/f1.erb
	​ 	% 99.downto(96) do |number|

	​ 	​<%= number %>​ bottles of beer...

	​ 	% end

	 The lines starting with the percent sign simply execute
	 the given Ruby. In this case, it’s a loop that iterates
	 the line between them. The sequence
	 ​<%= number %>​ in the middle line
	 substitutes in the value of ​number​
	 into the output.
	
	​ 	$ ​erb f1.erb​

	​ 	99 bottles of beer...

	​ 	98 bottles of beer...

	​ 	97 bottles of beer...

	​ 	96 bottles of beer...

	 erb works by rewriting its input as a Ruby script and then
	 executing that script. You can see the Ruby that erb generates
	 using the ​-n​ or ​-x​ option:
	
	​ 	$ ​erb -x f1.erb​

	​ 	#coding:ASCII-8BIT

	​ 	_erbout = ''; 99.downto(96) do |number|

	​ 	_erbout.concat((number).to_s); _erbout.concat " bottles of beer...\n"

	​ 	; end

	​ 	_erbout.force_encoding(__ENCODING__)

	 Notice how erb builds a string, ​_erbout​, containing both the
	 static strings from the template and the results of executing
	 expressions (in this case the value of ​number​).
	
Embedding erb in Your Code

	 So far we’ve shown erb running as a command-line filter. However, the
	 most common use is to use it as a library in your own code. (This is
	 what Rails does with its ​erb​ templates.)
	
	​ 	require ​'erb'​

	​ 	

	​ 	SOURCE =

	​ 	​%{<% for number in min..max %>​

	​ 	​The number is <%= number %>​

	​ 	​<% end %>​

	​ 	​}​

	​ 	

	​ 	erb = ERB.new(SOURCE)

	​ 	

	​ 	min = 4

	​ 	max = 6

	​ 	puts erb.result(binding)

Produces:
	​ 	The number is 4

	​ 	

	​ 	The number is 5

	​ 	

	​ 	The number is 6

	 Notice how we can use local variables within the erb
	 template. This works because we pass the current
	
 ​ binding​

 to the
 ​result​

	 method. erb can use this binding to make it look as if the
	 template is being evaluated in the context of the calling
	 code.
	

	 erb comes with excellent documentation: use ri to read
	 it. One thing that Rails users should know is that in the
	 standard version of erb, you can’t use the ​-%>​
	 trick to suppress blank lines. (In the previous example,
	 that’s why we have the extra blank lines in the output.)
	 Take a look at the description of trim modes in the
	 documentation of
 ​ERB.new​
 for
	 alternatives.
	

20.4 Cookies

	Cookies are a way of letting web applications store their state on the
	user’s machine. Frowned upon by some, cookies are still a convenient
	(if unreliable) way of remembering session information.

	The Ruby CGI class handles the loading and saving of cookies
	for you. You can access the cookies associated with the
	current request using the CGI#cookies
	method, and you can set cookies back into the browser by
	setting the ​cookie​ parameter of CGI#out to reference either a single cookie or
	an array of cookies:

	web/cookies.rb
	​ 	#!/usr/bin/ruby

	​ 	require ​'cgi'​

	​ 	

	​ 	COOKIE_NAME = ​'chocolate chip'​

	​ 	

	​ 	cgi = CGI.new

	​ 	values = cgi.cookies[COOKIE_NAME]

	​ 	

	​ 	

	​ 	​if​ values.empty?

	​ 	 msg = ​"It looks as if you haven't visited recently"​

	​ 	​else​

	​ 	 msg = ​"You last visited ​#{values[0]}​"​

	​ 	​end​

	​ 	

	​ 	cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)

	​ 	cookie.expires = Time.now + 30*24*3600 ​# 30 days​

	​ 	cgi.out(​"cookie"​ => cookie) { msg }

Sessions

	 Cookies by themselves still need a bit of work to be useful.
	 We really want ​sessions:​ information that persists
	 between requests from a particular web browser.
	 Sessions are handled by class ​CGI::Session​, which uses cookies
	 but provides a higher-level abstraction.
	

	 As with cookies, sessions emulate a hashlike behavior, letting you
	 associate values with keys. Unlike cookies, sessions store the
	 majority of their data on the server, using the browser-resident
	 cookie simply as a way of uniquely identifying the server-side
	 data. Sessions also give you a choice of storage techniques for this
	 data: it can be held in regular files, in a PStore (see the
	 description), in memory, or even in your own
	 customized store.
	

	 Sessions should be closed after use, because this ensures that their data
	 is written out to the store. When you’ve permanently finished with a
	 session, you should delete it.
	
	web/session.rb
	​ 	require ​'cgi'​

	​ 	require ​'cgi/session'​

	​ 	

	​ 	cgi = CGI.new(​"html4"​)

	​ 	sess = CGI::Session.new(cgi, ​"session_key"​ => ​"rubyweb"​,

	​ 	 ​"prefix"​ => ​"web-session."​)

	​ 	

	​ 	​if​ sess[​'lastaccess'​]

	​ 	 msg = ​"<p>You were last here ​#{sess[​'lastaccess'​]}​.</p>"​

	​ 	​else​

	​ 	 msg = ​"<p>Looks like you haven't been here for a while</p>"​

	​ 	​end​

	​ 	

	​ 	count = (sess[​"accesscount"​] || 0).to_i

	​ 	count += 1

	​ 	

	​ 	msg << ​"<p>Number of visits: ​#{count}​</p>"​

	​ 	

	​ 	sess[​"accesscount"​] = count

	​ 	sess[​"lastaccess"​] = Time.now.to_s

	​ 	sess.close

	​ 	

	​ 	cgi.out {

	​ 	 cgi.html {

	​ 	 cgi.body {

	​ 	 msg

	​ 	 }

	​ 	 }

	​ 	}

	 The code in the previous example used the default storage
	 mechanism for sessions: persistent data was stored in files
	 in your default temporary directory (see Dir.tmpdir). The
	 filenames will all start with ​web-session.​ and will end
	 with a hashed version of the session number. See
	 the documentation for CGI::Session for more information.
	

20.5 Choice of Web Servers

	So far, we’ve been running Ruby scripts under the Apache web
	server. However, Ruby comes bundled with WEBrick, a flexible,
	pure-Ruby HTTP server toolkit. WEBrick is an extensible
	plug-in--based framework that lets you write servers to handle
	HTTP requests and responses. The following is a basic HTTP
	server that serves documents and directory
	indexes:

	web/webrick1.rb
	​ 	#!/usr/bin/ruby

	​ 	require ​'webrick'​

	​ 	include WEBrick

	​ 	

	​ 	s = HTTPServer.new(Port: 2000,DocumentRoot: File.join(Dir.pwd, ​"/html"​))

	​ 	

	​ 	trap(​"INT"​) { s.shutdown }

	​ 	s.start

	The ​HTTPServer​ constructor creates a new web server on port 2000.
	The code sets the document root to be the ​html/​ subdirectory of the
	current directory. It then uses Object#trap to arrange to
	shut down tidily on interrupts before starting the server running. If
	you point your browser at
 ​http://localhost:2000​
 , you should see a
	listing of your ​html​ subdirectory.

	WEBrick can do far more than serve static content. You can use it just
	like a Java servlet container. The following code mounts a simple
	servlet at the location ​/hello​. As requests arrive, the
	
 ​do_GET​
 method is invoked. It uses the response object to
	display the user agent information and parameters from the request.

	web/webrick2.rb
	​ 	#!/usr/bin/ruby

	​ 	

	​ 	require ​'webrick'​

	​ 	include WEBrick

	​ 	

	​ 	s = HTTPServer.new(Port: 2000)

	​ 	

	​ 	​class​ HelloServlet < HTTPServlet::AbstractServlet

	​ 	 ​def​ do_GET(req, res)

	​ 	 res[​'Content-Type'​] = ​"text/html"​

	​ 	 res.body = ​%{​

	​ 	​ <html><body>​

	​ 	​ <p>Hello. You're calling from a ​#{req[​'User-Agent'​]}​</p>​

	​ 	​ <p>I see parameters: ​#{req.query.keys.join(​', '​)}​</p>​

	​ 	​ </body></html>}​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	s.mount(​"/hello"​, HelloServlet)

	​ 	trap(​"INT"​){ s.shutdown }

	​ 	s.start

20.6 Frameworks

	In reality, almost no one uses CGI to write web-based Ruby applications any more. Most of
	the real action these days is with frameworks. Frameworks
	abstract away all this low-level detail and also help you structure
	your code into something that is both easy to write and (probably more
	importantly) easy to maintain.

	
	
	At the time of writing, Ruby on
	Rails[94]
	is the leading web framework for Ruby. It has an incredibly
	active community and a vast set of plug-ins, so the chances are
	good you’ll find a lot of preexisting code to help you
	kick-start your application. Other alternatives include
	Camping, Padrino, Sinatra, and Ramaze.[95] By the time you
	read this, the list will have grown. And, if you fancy writing
	your own framework, consider making it independent of the
	underlying web server by building it on top of
	Rack.[96]

Footnotes

	[92]	

 ​http://www.hokstad.com/mini-reviews-of-19-ruby-template-engines.html​

	[93]	

 ​http://haml-lang.com/​

	[94]	

 ​http://www.rubyonrails.org​

	[95]	

	
 ​http://camping.rubyforge.org/files/README.html​
 ,
	
 ​http://padrinorb.com​
 ,
	
 ​http://www.sinatrarb.com/​
 , and
	
 ​http://ramaze.net/​

	[96]	

 ​http://rack.rubyforge.org/​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 21
Ruby and Microsoft Windows

 Ruby runs in a number of environments. Some of these are
 Unix-based, and others are based on the various flavors of Microsoft
 Windows. Ruby came from people who were Unix-centric, but over the
 years it has developed a whole lot of useful features in the Windows
 world, too. In this chapter, we’ll look at these features and share
 some secrets that let you use Ruby effectively under Windows.

21.1 Running Ruby Under Windows

 You’ll find two versions of the Ruby interpreter in the
 RubyInstaller distribution.

 The ​ruby​ is meant to be used at a
 command prompt (a DOS shell), just as in the Unix version. For
 applications that read and write to the standard input and
 output, this is fine. But this also means that any time you run
 ​ruby​, you’ll get a DOS shell even if
 you don’t want one—Windows will create a new command prompt
 window and display it while Ruby is running. This may not be
 appropriate behavior if, for example, you double-click a Ruby
 script that uses a graphical interface (such as Tk) or if you
 are running a Ruby script as a background task or from inside
 another program.

 In these cases, you will want to use
 ​rubyw​. It is the same as
 ​ruby​ except that it does not provide
 standard in, standard out, or standard error and does not launch
 a DOS shell when run.

 You can set up file associations using the
 ​assoc​ and
 ​ftype​ commands so that Ruby will
 automatically run Ruby when you double-click the name of a Ruby
 script:

	​ 	C:\>​ assoc .rb=RubyScript​

	​ 	C:\>​ ftype RubyScript="C:\ruby1.9\bin\ruby.exe" %1 %*​

 You may have to run the command prompt with elevated privileges
 to make this work. To do this, right-click it in the Start
 menu, and select ​Run As Administrator​.

 If you don’t want to have to type the
 ​rb​, you can add Ruby scripts to
 your ​PATHEXT​:

	​ 	C:\>​ set PATHEXT=.rb;%PATHEXT%​

21.2 Win32API

 If you plan on doing Ruby programming that needs to access some
 Windows 32 API functions directly or that needs to use the entry
 points in some other DLLs, we have good news for you—the
 ​Win32API​
 library.

 As an example, here’s some code that’s part of a larger Windows
 application used by our book fulfillment system to download and
 print invoices and receipts. A web application generates a PDF
 file, which the Ruby script running on Windows downloads into a
 local file. The script then uses the
 ​print​ shell command under Windows to
 print this file.

	​ 	arg = ​"ids=​#{resp.intl_orders.join(​","​)}​"​

	​ 	fname = ​"/temp/invoices.pdf"​

	​ 	

	​ 	site = Net::HTTP.new(HOST, PORT)

	​ 	site.use_ssl = true

	​ 	http_resp, = site.get2(​"/ship/receipt?"​ + arg,

	​ 	 ​'Authorization'​ => ​'Basic '​ +

	​ 	 [​"name:passwd"​].pack(​'m'​).strip)

	​ 	

	​ 	File.open(fname, ​"wb"​) {|f| f.puts(http_resp.body) }

	​ 	

	​ 	shell = Win32API.new(​"shell32"​,​"ShellExecute"​,

	​ 	 [​'L'​,​'P'​,​'P'​,​'P'​,​'P'​,​'L'​], ​'L'​)

	​ 	shell.Call(0, ​"print"​, fname, 0,0, SW_SHOWNORMAL)

 You create a ​Win32API​ object that
 represents a call to a particular DLL entry point by specifying
 the name of the function, the name of the DLL that contains the
 function, and the function signature (argument types and return
 type). In the previous example, the variable
 ​shell​ wraps the Windows function

 ​ShellExecute​
 in the ​shell32​
 DLL. The second parameter is an array of characters describing
 the types of the parameters the method takes: ​n​ and ​l​
 represent numbers, ​i​ represent integers, ​p​ represents
 pointers to data stored in a string, and ​v​ represents a void type (used
 for export parameters only). These strings are case insensitive.
 So, our method takes a number, four string pointers, and a
 number. The last parameter says that the method returns a
 number. The resulting object is a proxy to the underlying

 ​ShellExecute​
 function and can be used
 to make the call to print the file that we downloaded.

 Many of the arguments to DLL functions are binary structures of
 some form. ​Win32API​ handles this by
 using Ruby ​String​ objects to pass the
 binary data back and forth. You will need to pack and unpack
 these strings as necessary.

21.3 Windows Automation

 If groveling around in the low-level Windows API doesn’t
 interest you, Windows Automation may—you can use Ruby as a
 client for Windows Automation thanks to Masaki Suketa’s Ruby extension called
 ​WIN32OLE​.
 Win32OLE is part of the standard Ruby distribution.

 Windows Automation allows an automation controller (a client) to
 issue commands and queries against an automation server, such as
 Microsoft Excel, Word, and so on.

 You can execute an automation server’s method by calling a
 method of the same name from a ​WIN32OLE​
 object. For instance, you can create a new
 ​WIN32OLE​ client that launches a fresh
 copy of Internet Explorer and commands it to visit its home
 page:

	win32/gohome.rb
	​ 	require ​'win32ole'​

	​ 	ie = WIN32OLE.new(​'InternetExplorer.Application'​)

	​ 	ie.visible = true

	​ 	ie.gohome

 You could also make it navigate to a particular page:

	win32/navigate.rb
	​ 	require ​'win32ole'​

	​ 	ie = WIN32OLE.new(​'InternetExplorer.Application'​)

	​ 	ie.visible = true

	​ 	ie.navigate(​"http://www.pragprog.com"​)

 Methods that aren’t known to ​WIN32OLE​
 (such as
 ​visible​
 ,

 ​gohome​
 , or

 ​navigate​
) are passed on to the WIN32OLE#invoke method, which sends the proper
 commands to the server.

Getting and Setting Properties

	An automation server’s properties are automatically set up as attributes of
	the ​WIN32OLE​ object. This means you can set a property by
	assigning to an object attribute. For example, to get and then set
	the ​Height​ property of Explorer, you could
	write this:

	win32/get_set_height.rb
	​ 	require ​'win32ole'​

	​ 	ie = WIN32OLE.new(​'InternetExplorer.Application'​)

	​ 	ie.visible = true

	​ 	puts ​"Height = ​#{ie.Height}​"​

	​ 	ie.Height = 300

	The following example uses the automation interface built into
	the OpenOffice suite to create a spreadsheet and populate some
	cells:[97]

	win32/open_office.rb
	​ 	require ​'win32ole'​

	​ 	

	​ 	​class​ OOSpreadsheet

	​ 	 ​def​ initialize

	​ 	 mgr = WIN32OLE.new(​'com.sun.star.ServiceManager'​)

	​ 	 desktop = mgr.createInstance(​"com.sun.star.frame.Desktop"​)

	​ 	 @doc = desktop.LoadComponentFromUrl(​"private:factory/scalc"​, ​"_blank"​, 0, [])

	​ 	 @sheet = @doc.sheets[0]

	​ 	 ​end​

	​ 	

	​ 	 ​def​ get_cell(row, col)

	​ 	 @sheet.getCellByPosition(col, row, 0)

	​ 	 ​end​

	​ 	

	​ 	 ​# tl: top_left, br: bottom_right​

	​ 	 ​def​ get_cell_range(tl_row, tl_col, br_row, br_col)

	​ 	 @sheet.getCellRangeByPosition(tl_row, tl_col, br_row, br_col, 0)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	spreadsheet = OOSpreadsheet.new

	​ 	cell = spreadsheet.get_cell(1, 0)

	​ 	cell.Value = 1234

	​ 	

	​ 	cells = spreadsheet.get_cell_range(1, 2, 5, 3)

	​ 	cols = cells.Columns.count

	​ 	rows = cells.Rows.count

	​ 	

	​ 	cols.times ​do​ |col_no|

	​ 	 rows.times ​do​ |row_no|

	​ 	 cell = cells.getCellByPosition(col_no, row_no)

	​ 	 cell.Value = (col_no + 1)*(row_no+1)

	​ 	 ​end​

	​ 	​end​

[image: images/win32/oo_sheet_eg.png]
Named Arguments

	Other automation client languages such as Visual Basic have
	the concept of ​named arguments​. Suppose you had
	a Visual Basic routine with the following signature:

	​ 	Song(artist, title, length): rem Visual Basic

	Instead of calling it with all three arguments in the order specified,
	you could use named arguments:

	​ 	Song title := 'Get It On': rem Visual Basic

	This is equivalent to the call ​Song(nil, "Get It On", nil)​.

	In Ruby, you can use this feature by passing a hash with the named
	arguments:

	​ 	Song.new(​'title'​ => ​'Get It On'​)

for each

	Where Visual Basic has a ​for each​ statement to
	iterate over a collection of items in a server, a
	​WIN32OLE​ object has an
	
 ​each​
 method (which takes a block) to
	accomplish the same thing:

	win32/win32each.rb
	​ 	require ​'win32ole'​

	​ 	

	​ 	excel = WIN32OLE.new(​"excel.application"​)

	​ 	

	​ 	excel.Workbooks.Add

	​ 	excel.Range(​"a1"​).Value = 10

	​ 	excel.Range(​"a2"​).Value = 20

	​ 	excel.Range(​"a3"​).Value = ​"=a1+a2"​

	​ 	

	​ 	excel.Range(​"a1:a3"​).each ​do​ |cell|

	​ 	 p cell.Value

	​ 	​end​

Events

	Your automation client written in Ruby can register itself to
	receive events from other programs. This is done using the
	​WIN32OLE_EVENT​ class.

	This example (based on code from the Win32OLE 0.1.1
	distribution) shows the use of an event sink that logs the URLs that a
	user browses to when using Internet Explorer:

	win32/record_navigation.rb
	​ 	require ​'win32ole'​

	​ 	

	​ 	urls_visited = []

	​ 	running = true

	​ 	

	​ 	​def​ default_handler(event, *args)

	​ 	 ​case​ event

	​ 	 ​when​ ​"BeforeNavigate"​

	​ 	 puts ​"Now Navigating to ​#{args[0]}​..."​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ie = WIN32OLE.new(​'InternetExplorer.Application'​)

	​ 	ie.visible = TRUE

	​ 	ie.gohome

	​ 	ev = WIN32OLE_EVENT.new(ie, ​'DWebBrowserEvents'​)

	​ 	

	​ 	ev.on_event {|*args| default_handler(*args)}

	​ 	ev.on_event(​"NavigateComplete"​) {|url| urls_visited << url }

	​ 	ev.on_event(​"Quit"​) ​do​ |*args|

	​ 	 puts ​"IE has quit"​

	​ 	 puts ​"You Navigated to the following URLs: "​

	​ 	 urls_visited.each_with_index ​do​ |url, i|

	​ 	 puts ​"(​#{i+1}​) ​#{url}​"​

	​ 	 ​end​

	​ 	 running = false

	​ 	​end​

	​ 	

	​ 	​# hang around processing messages​

	​ 	WIN32OLE_EVENT.message_loop ​while​ running

Optimizing

	As with most (if not all) high-level languages, it can be all too easy
	to churn out code that is unbearably slow, but that can be easily
	fixed with a little thought.

	With ​WIN32OLE​, you need to be careful with unnecessary dynamic
	lookups. Where possible, it is better to assign a ​WIN32OLE​ object
	to a variable and then reference elements from it, rather than
	creating a long chain of “.” expressions.

	For example, instead of writing this:

	​ 	workbook.Worksheets(1).Range(​"A1"​).value = 1

	​ 	workbook.Worksheets(1).Range(​"A2"​).value = 2

	​ 	workbook.Worksheets(1).Range(​"A3"​).value = 4

	​ 	workbook.Worksheets(1).Range(​"A4"​).value = 8

	we can eliminate the common subexpressions by saving the first part of
	the expression to a temporary variable and then make calls from that
	variable:

	​ 	worksheet = workbook.Worksheets(1)

	​ 	

	​ 	worksheet.Range(​"A1"​).value = 1

	​ 	worksheet.Range(​"A2"​).value = 2

	​ 	worksheet.Range(​"A3"​).value = 4

	​ 	worksheet.Range(​"A4"​).value = 8

	You can also create Ruby stubs for a
	particular Windows type library. These stubs wrap the OLE
	object in a Ruby class with one method per entry
	point. Internally, the stub uses the entry point’s number, not
	name, which speeds access.

	Generate the wrapper class using the
	​olegen.rb​ script, available in
	the Ruby source
	repository.[98]
	Give it the name of type library to reflect on:

	​ 	C:\>​ ruby olegen.rb 'Microsoft TAPI 3.0 Type Library' >tapi.rb​

	The external methods and events of the type library are written as
	Ruby methods to the given file. You can then include it in your
	programs and call the methods directly.

More Help

	If you need to interface Ruby to Windows NT, 2000, or XP, you may
	want to take a look at Daniel Berger’s
	Win32Utils project
	(
 ​http://rubyforge.org/projects/win32utils/​
). There you’ll find
	modules for interfacing to the Windows clipboard, event log,
	scheduler, and so on.

	Also, the ​Fiddle​ library
	(described briefly in the library
	section) allows Ruby programs to invoke methods in
	dynamically loaded shared objects. This means
	your Ruby code can load and invoke entry points in a Windows
	DLL. For example, the following code pops up a message box on
	a Windows machine and determines which button the user
	clicked.

	win32/dl.rb
	​ 	require ​'fiddle'​

	​ 	

	​ 	user32 = DL.dlopen(​"user32.dll"​)

	​ 	msgbox = Fiddle::Function.new(user32[​'MessageBoxA'​],

	​ 	 [TYPE_LONG, TYPE_VOIDP, TYPE_VOIDP, TYPE_INT],

	​ 	 TYPE_INT)

	​ 	MB_OKCANCEL = 1

	​ 	msgbox.call(0, ​"OK?"​, ​"Please Confirm"​, MB_OKCANCEL)

	This code wraps User32 DLL, creating a Ruby method that is a
	proxy to the underlying
 ​MessageBoxA​

	method. It also specifies the return and parameter
	types so that Ruby can correctly marshal them between its
	objects and the underlying operating system types.

	The wrapper object is then used to call the message box entry
	point in the DLL. The return values are the result (in this
	case, the identifier of the button pressed by the user) and an
	array of the parameters passed in (which we ignore).

Footnotes

	[97]	
See
	
 ​http://udk.openoffice.org/common/man/tutorial/office_automation.html​

	for links to resources on automating
	OpenOffice.

	[98]	

 ​http://svn.ruby-lang.org/repos/ruby/trunk/ext/win32ole/sample/olegen.rb​

Copyright © 2013, The Pragmatic Bookshelf.

Part 3
Ruby Crystallized

	 Chapter
	 22
The Ruby Language

 This chapter is a bottom-up look at the Ruby language. Most of
 what appears here is the syntax and semantics of the language
 itself—we mostly ignore the built-in classes and modules (these
 are covered in depth in the reference
 material). However, Ruby sometimes implements features in
 its libraries that in most languages would be part of the basic
 syntax. Where it makes sense, we’ve included some of these methods
 here.

 The contents of this chapter may look familiar—with good reason, as
 we’ve covered most of this earlier.
 This chapter is a self-contained reference for the Ruby
 language.

22.1 Source File Encoding

 Ruby 1.9 programs are by default written in 7-bit ASCII, also called
 US-ASCII. If a code set other than 7-bit ASCII is to be used, place
 a comment containing ​coding:​ followed by the name of an encoding
 on the first line of each source file containing
 non-ASCII characters. The ​coding:​ comment can be on the second
 line of the file if the first line is a shebang comment. Ruby skips
 characters in the comment before the word
 ​coding:​.
 Ruby 2«2.0» assumes the source is written in
 UTF-8. This assumption can be overridden using the same style
 ​coding:​ comment.

	
​# coding: utf-8​
	
​# -*- encoding: iso-8859-1 -*-​
	
​#!/usr/bin/ruby​

	

	

	
​# fileencoding: us-ascii​

	
​UTF-8 source...​
	
​ISO-8859-1 source...​
	
​ASCII source...​

22.2 Source Layout

 Ruby is a line-oriented language. Ruby expressions and
 statements are terminated at the end of a line unless the parser
 can determine that the statement is incomplete, such as if
 the last token on a line is an operator or comma. A semicolon can be
 used to separate multiple expressions on a line. You can also
 put a backslash at the end of a line to continue it onto the
 next. Comments start with ​#​ and run to the end of the
 physical line. Comments are ignored during syntax analysis.

	​ 	a = 1

	​ 	b = 2; c = 3

	​ 	d = 4 + 5 +

	​ 	 6 + 7 ​# no '\' needed​

	​ 	e = 8 + 9 \

	​ 	 + 10 ​# '\' needed​

 Physical lines between a line starting with ​=begin​
 and
 a line starting with ​=end​ are ignored by Ruby and may
 be used to comment out sections of code or to embed
 documentation.

 You can pipe programs to the Ruby interpreter’s standard input
 stream:

	​ 	$ ​echo​ ​'puts "Hello"'​ | ruby

 If Ruby comes across a line anywhere in the source containing
 just ​__END__​, with
 no leading or trailing whitespace, it treats that line as the
 end of the program—any subsequent lines will not be treated as
 program code. However, these lines can be read into the running
 program using the global ​IO​ object
 ​DATA​,
 described in the section about constants.

BEGIN and END Blocks

	Every Ruby source file can declare blocks of code to be run as
	the file is being loaded (the ​BEGIN​ blocks)
	and after the program has finished executing (the
	​END​ blocks):

BEGIN {
 begin code
}

END {
 end code
}

	A program may include multiple ​BEGIN​ and ​END​ blocks.
	​BEGIN​ blocks are executed in the order they are encountered.
	​END​ blocks are executed in reverse order.

General Delimited Input

	As well as the normal quoting mechanism, alternative forms of
	literal strings, arrays of strings and
 symbols«2.0», regular expressions, and shell
	commands are specified using a generalized delimited
	syntax. All these literals start with a percent
	character, followed by a single character that identifies the
	literal’s type. These characters are summarized in the
	following table; the actual literals are described in the
	corresponding sections later in this chapter.

	Type	Meaning	Example
	
​%q​
	
Single-quoted string
	
​%q{\a and #{1+2} are literal}​

	
​%Q​, ​%​
	
Double-quoted string
	
​%Q{\a and #{1+2} are expanded}​

	
​%w​, ​%W​
	
Array of strings
	
​%w[one two three]​

	
​%i​, ​%I​«2.0»
	
Array of symbols
	
​%i[one two three]​

	
​%r​
	
Regular expression pattern
	
​%r{cat|dog}​

	
​%s​
	
A symbol
	
​%s!a symbol!​

	
​%x​
	
Shell command
	
​%x(df -h)​

 Unlike their lowercase counterparts, ​%I​,
 ​%Q​, and ​%W​ will preform interpolation:

	​ 	%i{ one digit​#{1+1} three } # => [:one, :"digit\#{1+1}", :three]​

	​ 	%I{ one digit​#{1+1} three } # => [:one, :digit2, :three]​

	​ 	​%q{ one digit#​{​1+1​}​ three }​ ​# => " one digit\#{1+1} three "​

	​ 	​%Q{ one digit​#{1+1}​ three }​ ​# => " one digit2 three "​

	​ 	​%w{ one digit#​{​1+1​}​ three }​ ​# => ["one", "digit\#{1+1}", "three"]​

	​ 	​%W{ one digit​#{1+1}​ three }​ ​# => ["one", "digit2", "three"]​

	Following the type character is a delimiter, which can be any
	nonalphanumericic or nonmultibyte character. If the delimiter is
	one of the characters ​(​, ​[​, ​{​, or
	​<​, the literal consists of the characters up to
	the matching closing delimiter, taking account of nested
	delimiter pairs. For all other delimiters, the literal
	comprises the characters up to the next occurrence of the
	delimiter character.

	​ 	​%q/this is a string/​

	​ 	​%q-string-​

	​ 	​%q(a ​(​nested​)​ string)​

	Delimited strings may continue over multiple lines; the line
	endings and all spaces at the start of continuation lines
	will be included in the string:

	​ 	meth = ​%q{def fred(a)​

	​ 	​ a.each ​{​|i| puts i ​}

	​ 	​ end}​

22.3 The Basic Types

 The basic types in Ruby are numbers, strings, arrays, hashes, ranges,
 symbols, and regular expressions.

Integer and Floating-Point Numbers

	Ruby integers are objects of class
	​Fixnum​ or
	​Bignum​.
	​ Fixnum​ objects hold integers that fit
	within the native machine word minus 1 bit. Whenever a
	​Fixnum​ exceeds this range, it is
	automatically converted to a ​Bignum​
	object, whose range is effectively limited only by available
	memory. If an operation with a ​Bignum​
	result has a final value that will fit in a
	​Fixnum​, the result will be returned as
	a ​Fixnum​.

	Integers are written using an optional leading sign and an
	optional base indicator (​0​ or ​0o​ for octal,
	​0d​ for decimal, ​0x​ for hex, or ​0b​
	for binary), followed by a string of digits in the appropriate
	base. Underscore characters are ignored in the digit
	string.

	​ 	123456 => 123456 ​# Fixnum​

	​ 	0d123456 => 123456 ​# Fixnum​

	​ 	123_456 => 123456 ​# Fixnum - underscore ignored​

	​ 	-543 => -543 ​# Fixnum - negative number​

	​ 	0xaabb => 43707 ​# Fixnum - hexadecimal​

	​ 	0377 => 255 ​# Fixnum - octal​

	​ 	0o377 => 255 ​# Fixnum - octal​

	​ 	-0b10_1010 => -42 ​# Fixnum - binary (negated)​

	​ 	123_456_789_123_456_789 => 123456789123456789 ​# Bignum​

	A numeric literal with a decimal point and/or an exponent is
	turned into a ​Float​ object,
	corresponding to the native architecture’s ​double​
	data type. You must follow the decimal point with a digit; if
	you write ​1.e3​, Ruby tries to invoke the method
	
 ​e3​
 on the
	​Fixnum​ 1. You must place at
	least one digit before the decimal
	point.

	​ 	12.34 ​# => 12.34​

	​ 	-0.1234e2 ​# => -12.34​

	​ 	1234e-2 ​# => 12.34​

Rational and Complex Numbers

	 Classes that support rational numbers (ratios of
	 integers) and complex numbers are built into the Ruby
	 interpreter. However, Ruby provides no
	 language-level support for these numeric types—there are
	 no rational or complex literals, for example. See the
	 descriptions of ​Complex​
	 and ​Rational​
	 for more information.
	
Strings

	Ruby provides a number of mechanisms for creating literal
	strings. Each generates objects of type
	​String​. The
	different mechanisms vary in terms of how a string is
	delimited and how much substitution is done on the literal’s
	content.
	Literal strings are encoded using the source encoding of the file that
	contains them.

	Single-quoted string literals
	(​’​stuff​’​ and
	​%q/​stuff​/​) undergo the least
	substitution. Both
	convert the sequence ​\\​ into a single backslash, and
	a backslash can be used to escape the single quote or the
	string delimiter. All other backslashes appear literally in
	the string.

	​ 	​'hello'​ ​# => hello​

	​ 	​'a backslash \'\\\''​ ​# => a backslash '\'​

	​ 	​%q/simple string/​ ​# => simple string​

	​ 	​%q(nesting ​(​really​)​ works)​ ​# => nesting (really) works​

	​ 	​%q(escape a\) with backslash)​ ​# => escape a) with backslash​

	​ 	​%q no_blanks_here ​; ​# => no_blanks_here​

	Double-quoted strings
	(​"​stuff​"​, ​%Q/​stuff​/​,}
	and ​%/​stuff​/​) undergo additional
	substitutions; see the following table.

Table 11. Substitutions in double-quoted strings
	
​\#{code}​
	
Value of ​code​
	
​\b​
	
Backspace (0x08)
	
​\t​
	
Tab (0x09)

	
​\​nnn​​
	
Octal ​nnn​
	
​\c​x​​
	
Control-​x​
	
​\uxxxx​
	
Unicode character

	
​\​x​​
	
​x​
	
​\e​
	
Escape (0x1b)
	
​\u{xx xx xx} ​
	
Unicode characters

	
​\C-​x​​
	
Control-​x​
	
​\f​
	
Formfeed (0x0c)
	
​\v​
	
Vertical tab (0x0b)

	
​\M-​x​​
	
Meta-​x​
	
​\n​
	
Newline (0x0a)
	
​\x​nn​​
	
Hex ​nn​

	
​\M-\C-​x​​
	
Meta-control-​x​
	
​\r​
	
Return (0x0d)
	
​​
	

	
​\a​
	
Bell/alert (0x07)
	
​\s​
	
Space (0x20)
	
​​
	

	 Here are some examples:
	
	​ 	a = 123

	​ 	​"\123mile"​ ​# => Smile​

	​ 	​"Greek pi: \u03c0"​ ​# => Greek pi: π​

	​ 	​"Greek \u{70 69 3a 20 3c0}"​ ​# => Greek pi: π​

	​ 	​"Say \"Hello\""​ ​# => Say "Hello"​

	​ 	​%Q!"I said 'nuts'\!," I said!​ ​# => "I said 'nuts'!," I said​

	​ 	​%Q{Try ​#{a + 1}​, not ​#{a - 1}​}​ ​# => Try 124, not 122​

	​ 	​%<Try ​#{a + 1}​, not ​#{a - 1}​>​ ​# => Try 124, not 122​

	​ 	​"Try ​#{a + 1}​, not ​#{a - 1}​"​ ​# => Try 124, not 122​

	​ 	​%{ ​#{ a = 1; b = 2; a + b }​ }​ ​# => 3​

	Last, and probably least (in terms of usage), you can get the
	string corresponding to an ASCII character
	by preceding that character with a question mark.

	?a	"a"	ASCII character
	?\n	"\n"	newline (0x0a)
	?\C-a	"\u0001"	control a (0x65 & 0x9f) == 0x01
	?\M-a	"\xE1"	meta sets bit 7
	?\M-\C-a	"\x81"	meta and control a
	?\C-?	"\u007F"	delete character

	Strings can continue across multiple input lines, in which
	case they will contain newline characters. You can use
	
 ​ here documents​

 to express long string
	literals. When Ruby parses the sequence
	​<<​identifier​​ or
	​<<​quoted string​​, it replaces it
	with a string literal built from successive logical input
	lines. It stops building the string when it
	finds a line that starts with ​identifier​ or
	​quoted string​. You can put a minus sign
	immediately after the ​<<​ characters, in which
	case the terminator can be indented from the margin. If a
	quoted string was used to specify the terminator, its quoting
	rules are applied to the here document; otherwise,
	double-quoting rules apply.

	​ 	print ​<<HERE​

	​ 	​Double quoted \​

	​ 	​here document.​

	​ 	​It is ​#{Time.now}

	​ 	​HERE​

	​ 	

	​ 	print ​<<-'THERE'​

	​ 	​ This is single quoted.​

	​ 	​ The above used #{Time.now}​

	​ 	​ THERE​

Produces:
	​ 	Double quoted here document.

	​ 	It is 2013-05-27 12:31:31 -0500

	​ 	 This is single quoted.

	​ 	 The above used #{Time.now}

	In the previous example the backslash after
	​Double quoted​ caused the logical line to be continued
	with the contents of the next line.

	Adjacent single- and double-quoted strings are
	concatenated to form a single ​String​ object:

	​ 	​'Con'​ ​"cat"​ ​'en'​ ​"ate"​ ​# => "Concatenate"​

	A new ​String​ object is created every
	time a string literal is assigned or passed as a
	parameter.

	​ 	3.times ​do​

	​ 	 print ​'hello'​.object_id, ​" "​

	​ 	​end​

Produces:
	​ 	70214897722200 70214897722080 70214897721960

	There’s more information in the documentation for class ​String​.

Ranges

	Outside the context of a conditional expression,
	​​expr​..​expr​​ and
	​​expr​...​expr​​ construct
	​Range​
	objects.
	The two-dot form is an inclusive range; the one with three
	dots is a range that excludes its last element. See the
	description of class ​Range​ for
	details. Also see the description of conditional expressions for
	other uses of ranges.

Arrays

	Literals of class ​Array​ are created by placing a comma-separated
	series of object references between square brackets. A trailing comma
	is ignored.

	​ 	arr = [fred, 10, 3.14, ​"This is a string"​, barney(​"pebbles"​),]

	Arrays of strings can be constructed using the shortcut
	notations ​%w​ and ​%W​. The lowercase form extracts
	space-separated tokens into successive elements of the
	array. No substitution is performed on the individual
	strings. The uppercase version also converts the words to an
	array but performs all the normal double-quoted string
	substitutions on each individual word. A space between words
	can be escaped with a backslash. This is a form of general
	delimited input, described
	earlier.

	​ 	arr = ​%w(fred wilma barney betty great\ gazoo)​

	​ 	arr ​# => ["fred", "wilma", "barney", "betty", "great gazoo"]​

	​ 	arr = ​%w(Hey!\tIt is now -#{Time.now}-)​

	​ 	arr ​# => ["Hey!\tIt", "is", "now", "-#{Time.now}-"]​

	​ 	arr = ​%W(Hey!\tIt is now -​#{Time.now}​-)​

	​ 	arr ​# => ["Hey! It", "is", "now", "-2013-05-27 12:31:31 -0500-"]​

Hashes

	A literal Ruby ​Hash​ is created by
	placing a list of key/value pairs between braces. Keys and
	values can be separated by the sequence
	​=>​.[99]

	​ 	colors = { ​"red"​ => 0xf00, ​"green"​ => 0x0f0, ​"blue"​ => 0x00f }

	If the keys are symbols, you can use this alternative notation:

	​ 	colors = { red: 0xf00, green: 0x0f0, blue: 0x00f }

	The keys and/or values in a particular hash need not have the same
	type.

Requirements for a Hash Key

	 Hash keys must respond to the message
	
 ​hash​
 by returning a hash code, and
	 the hash code for a given key must not change. The keys
	 used in hashes must also be comparable using
	
 ​eql?​
 . If
	
 ​eql?​
 returns
	 ​true​ for two keys, then those keys must
	 also have the same hash code. This means that certain
	 classes (such as ​Array​ and
	 ​Hash​) can’t conveniently be used as
	 keys, because their hash values can change based on their
	 contents.
	

	 If you keep an external reference to an object that is used as a key
	 and use that reference to alter the object, thus changing its hash code,
	 the hash lookup based on that key may not work. You can force the hash
	 to be reindexed by calling its
 ​rehash​
 method.
	
	​ 	arr = [1, 2, 3]

	​ 	hash = { arr => ​'value'​ }

	​ 	hash[arr] ​# => "value"​

	​ 	arr[1] = 99

	​ 	hash ​# => {[1, 99, 3]=>"value"}​

	​ 	hash[arr] ​# => nil​

	​ 	hash.rehash

	​ 	hash[arr] ​# => "value"​

	 Because strings are the most frequently used keys and
	 because string contents are often changed, Ruby treats
	 string keys specially. If you use a
	 ​String​ object as a hash key, the hash
	 will duplicate the string internally and will use that copy
	 as its key. The copy will be frozen. Any changes made to the
	 original string will not affect the hash.
	

	 If you write your own classes and use instances of them as
	 hash keys, you need to make sure that either (a) the hashes
	 of the key objects don’t change once the objects have been
	 created or (b) you remember to call the Hash#rehash
	 method to reindex the hash whenever a key hash is
	 changed.
	
Symbols

	A Ruby symbol is an identifier corresponding to a string of
	characters, often a name. You construct the symbol for a name
	by preceding the name with a colon, and you can construct the
	symbol for an arbitrary string by preceding a string literal
	with a colon. Substitution occurs in double-quoted strings. A
	particular name or string will always generate the same
	symbol, regardless of how that name is used within the
	program. You can also use the ​%s​ delimited
	notation to create a
	symbol.

	​ 	:Object

	​ 	:my_variable

	​ 	:"Ruby rules"

	​ 	a = ​"cat"​

	​ 	:'catsup' ​# => :catsup​

	​ 	:"#{a}sup" ​# => :catsup​

	​ 	:'#{a}sup' ​# => :"\#{a}sup"​

	Other languages call this process
 ​ interning​

 and call symbols
	
 ​ atoms​

 .

Regular Expressions

 Ruby 1.9 uses the Oniguruma regular expression engine. Ruby
 2.0 uses an extension of this engine called
 ​Onigmo​. We show these extensions with the
 Ruby 2.0 flag.«2.0»

 See Chapter 7, ​Regular Expressions​ for a detailed description of
 regular expressions.

	Regular expression literals are objects of type
	​Regexp​. They are created explicitly
	by calling Regexp.new or implicitly by
	using the literal forms, ​/​pattern​/​ and
	​%r{​pattern​}​. The ​%r​ construct
	is a form of general delimited input (described
	earlier).

/pattern/
/pattern/options
%r{pattern}
%r{pattern}options
Regexp.new(’pattern’ <, options>)

	options is one or more of i (case insensitive), o (substitute
	once), m (. matches newline), and x (allow spaces and comments). You
	can additionally override the default encoding of the pattern with
	n (no encoding-ASCII), e (EUC), s (Shift_JIS), or u (UTF-8).

Regular Expression Patterns

	 (This section contains minor differences from
	 previous versions of this book. Ruby 1.9 uses the
	 Oniguruma regular
	 expression engine.)[100]«2.0»
	

 An asterisk at the end of an entry in the following list
 means that the match is extended beyond ASCII characters if
 Unicode option is set.«2.0»

	​characters​
	

	 All except . | () [\ ^ { + $ * and ? match
	 themselves. To match one of these characters, precede it with a
	 backslash.
	

	
	 ​\a​
	 ​\c​​x​
	 ​\e​
	 ​\f​
	 ​\r​
	 ​\t​
	 ​\u​​nnnn​
	 ​\v​
	 ​\x​​nn​
	 ​\​​nnn​
	 ​\C-\M-​​x​
	 ​\C-​​x​
	 ​\M-​x​​
	
	

	 Match the character derived according to Table 11, ​Substitutions in double-quoted strings​.
	

	​^​, ​$​
	

	 Match the beginning/end of a line.
	

	
	 ​\A​, ​\z​, ​\Z​
	
	

	 Match the beginning/end of the string. ​\Z​
	 ignores trailing
	 ​\n​.
	

	​\d​, ​\h​
	

	 Match any decimal digit or hexadecimal digit
	 ([0-9a-fA-F]).*
	

	​\s​
	

	 Matches any whitespace character: tab,
	 newline, vertical tab, formfeed, return, and
	 space.*
	

	​\w​
	

	 Matches any word character:
	 alphanumerics and
	 underscores.*
	

	
	 ​\D​, ​\H​, ​\S​, ​\W​
	
	

	 The negated forms of ​\d​, ​\h​,
	 ​\s​, and ​\w​, matching characters that
	 are not digits, hexadecimal digits, whitespace, or word
	 characters.*
	

	​\b​, ​\B​
	

	 Match word/nonword boundaries.
	

	​\G​
	

	 The position where a previous repetitive search completed.
	

	​\K​
	

	 Discards the portion of the match to the left
 of the ​\K​.«2.0»
	

	​\R​
	

	 A generic end-of-line sequence.*«2.0»
	

	​\X​
	

	 A Unicode grapheme.*«2.0»
	

	
	 ​\p{​property​}​,
	 ​\P{​property​}​,
	 ​\p{!​property​}​
	
	

	 Match a character that is in/not in the given property
	 (see Table 4, ​Unicode character properties​).
	

	
	 ​.​ (period)
	
	

	 Appearing outside brackets, matches any character except a newline.
	 (With the ​/m​ option, it matches newline, too).
	

	
	 ​[​characters​]​
	
	

	 Matches a single character from the specified set. See
	 ​Character Classes​.
	

	​​re​*​
	

	 Matches zero or more occurrences of ​re​.
	

	​​re​+​
	

	 Matches one or more occurrences of ​re​.
	

	​​re​{m,n}​
	

	 Matches at least ​m​ and at
	 most ​n​ occurrences of ​re​.
	

	​​re​{m,}​
	

	 Matches at least ​m​ occurrences of ​re​.
	

	​​re​{,n}​
	

	 Matches at most ​n​ occurrences of ​re​.
	

	​​re​{m}​
	

	 Matches exactly ​m​ occurrences of ​re​.
	

	​​re​?​
	

	 Matches zero or one occurrence of ​re​.
	

	 The ​?​, ​*​, ​+​, and
	 ​{m,n}​ modifiers are greedy by default. Append
	 a question mark to make them minimal, and append a
	 plus sign to make them possessive (that is, they are
	 greedy and will not backtrack).
	

	
	 ​​re1​ | ​re2​​
	
	

	 Matches
	 either ​re1​ or ​re2​.
	

	​(...)​
	

	 Parentheses
	 group regular expressions and introduce extensions.
	

	
	 ​#{...}​
	
	

	 Substitutes expression in the
	 pattern, as with strings. By default, the
	 substitution is performed each time a regular expression literal is
	 evaluated. With the ​/o​ option, it is performed just the first
	 time.
	

	
	 ​\1, \2, ... \​n​​
	
	

	 Match the value matched by
	 the ​n​th grouped subexpression.
	

	
	 ​(?# ​comment​)​
	
	

	 Inserts a comment
	 into the pattern.
	

	​(?:​re​)​
	

	 Makes ​re​ into a group without generating
	 backreferences.
	

	
	 ​(?=​re​)​, ​(?!​re​)​
	
	

	 Matches if ​re​ is/is not at this point but does not consume it.
	

	
	 ​(?<=​re​)​, ​(?<!​re​)​
	
	

	 Matches if ​re​ is/is not before this point but
	 does not consume it.
	

	
	 ​(?>​re​)​
	
	

	 Matches ​re​ but inhibits subsequent backtracking.
	

	​(?adimux)​, ​(?-imx)​
	

	 Turn
 on/off the corresponding ​a​, ​d​,
 ​i​, ​m​, ​u​, or ​x​
 option.«2.0» If used inside a group, the effect is
 limited to that group.
	

	
	 ​(?adimux:​re​)​, ​(?-imx:​re​)​
	
	

	 Turn on/off the ​i​, ​m​, or ​x​
	 option for ​re​.
	

	
	 ​\​n​​,
	 ​\k’​n​’​,
	 and ​\k<​n​>​
	
	

	 The nth captured subpattern.
	

	
	 ​(?<name>...)​ or ​(?’name’...)​
	
	

	 Name the string captured by the group.
	

	
	 ​\k<name>​ or ​\k’name’​
	
	

	 The contents of the named group.
	

	
	 ​\k<name>+/-n​ or ​\k’name’+/-n​
	
	

	 The contents of the named group at the given relative nesting level.
	

	
	 ​\g<name>​ or ​\g<number>​
	
	

	 Invokes the named or numbered group.
	

22.4 Names

 Ruby names are used to refer to constants, variables, methods,
 classes, and modules. The first character of a name helps Ruby
 distinguish its intended use. Certain names, listed in the
 following table, are reserved words and should not be used as
 variable, method, class, or module names.

Table 12. Reserved words
	__ENCODING__	__FILE__	__LINE__	BEGIN	END	alias	and	begin
	break	case	class	def	defined?	do	else	elsif	end
	ensure	false	for	if	in	module	next	nil	not
	or	redo	rescue	retry	return	self	super	then	true
	undef	unless	until	when	while	yield

 Method names are described later.

 In these descriptions, ​uppercase letter​ means
 ​A​ through ​Z​, and ​digit​
 means ​0​ through ​9​. ​Lowercase
 letter​ means the characters ​a​ through
 ​z​, as well as the underscore (_). In addition, any
 non-7-bit characters that are valid in the current encoding are
 considered to be lowercase.[101]

 A ​name​ is an uppercase letter, a lowercase
 letter, or an underscore, followed by ​name characters​:
 any combination of upper- and lowercase letters, underscores, and
 digits.

 A
 ​ local variable
 name​

 consists of a
 lowercase letter followed by name
 characters. It is conventional to use underscores rather than
 camelCase to write multiword names, but the interpreter does not
 enforce this.

	​ 	fred anObject _x three_two_one

 If the source file encoding is UTF-8, ​∂elta​ and ​été​ are both
 valid local variable names.

 An
 ​ instance variable
 name​

 starts with an
 “at” sign (​@​) followed by name characters. It is
 generally a good idea to use a lowercase letter after the
 ​@​. The ​@​ sign forms part of the
 instance variable name.

	​ 	@name @_ @size

 A
 ​ class variable name​

 starts with two “at” signs
 (​@@​) followed by name characters.

	​ 	@@name @@_ @@Size

 A
 ​ constant name​

 starts with an uppercase letter followed by name
 characters. Class names and module names are constants and follow
 the constant naming conventions.

 By convention, constant object
 references are normally spelled using uppercase letters and
 underscores throughout, while class and module names are
 MixedCase:

	​ 	​module​ Math

	​ 	 ALMOST_PI = 22.0/7.0

	​ 	​end​

	​ 	​class​ BigBlob

	​ 	​end​

 ​ Global variables​

 , and some special
 system variables, start with a dollar sign (​$​) followed by name
 characters. In addition,
 Ruby defines a set of two-character global variable names in which the
 second character is a punctuation character. These predefined
 variables are listed ​Predefined	Variables​. Finally, a global
 variable name can be formed using ​$-​ followed by a single letter
 or underscore. These latter variables typically mirror the setting of
 the corresponding command-line option (see
 ​Execution Environment Variables​ for details):

	​ 	$params $PROGRAM $! $_ $-a $-K

Variable/Method Ambiguity

	When Ruby sees a name such as ​a​ in an expression, it
	needs to determine whether it is a local variable reference or
	a call to a method with no parameters. To decide which is the case, Ruby uses a
	heuristic. As Ruby parses a source file, it keeps track of
	symbols that have been assigned to. It assumes that these
	symbols are variables. When it subsequently comes across a
	symbol that could be a variable or a method call, it checks to
	see whether it has seen a prior assignment to that symbol. If
	so, it treats the symbol as a variable; otherwise, it treats
	it as a method call. As a somewhat pathological case of this,
	consider the following code fragment, submitted by Clemens
	Hintze:

	​ 	​def​ a

	​ 	 puts ​"Function 'a' called"​

	​ 	 99

	​ 	​end​

	​ 	

	​ 	​for​ i ​in​ 1..2

	​ 	 ​if​ i == 2

	​ 	 puts ​"i==2, a=​#{a}​"​

	​ 	 ​else​

	​ 	 a = 1

	​ 	 puts ​"i==1, a=​#{a}​"​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	i==1, a=1

	​ 	Function 'a' called

	​ 	i==2, a=99

	During the parse, Ruby sees the use of
	​a​ in the first ​puts​ statement
	and, because it hasn’t yet seen any assignment to
	​a​, assumes that it is a method
	call. By the time it gets to the second ​puts​ statement,
	though, it ​has​ seen an assignment and so treats
	​a​ as a variable.

	Note that the assignment does not have to be executed—Ruby just has
	to have seen it. This program does not raise an error.

	​ 	a = 1 ​if​ false; a ​# => nil​

22.5 Variables and Constants

 Ruby variables and constants hold references to
 objects.
 Variables themselves do not have an intrinsic type. Instead,
 the type of a variable is defined solely by the messages to
 which the object referenced by the variable
 responds. (When we say that a variable is not typed, we
 mean that any given variable can at different times hold
 references to objects of many different types.)

 A Ruby
 ​ constant​

 is also a reference to an object.
 Constants are
 created when they are first assigned to (normally in a class or module
 definition). Ruby, unlike less flexible languages, lets you alter the value
 of a constant, although this will generate a warning message:

	​ 	MY_CONST = 1

	​ 	puts ​"First MY_CONST = ​#{MY_CONST}​"​

	​ 	

	​ 	MY_CONST = 2 ​# generates a warning but sets MY_CONST to 2​

	​ 	puts ​"Then MY_CONST = ​#{MY_CONST}​"​

Produces:
	​ 	prog.rb:4: warning: already initialized constant MY_CONST

	​ 	prog.rb:1: warning: previous definition of MY_CONST was here

	​ 	First MY_CONST = 1

	​ 	Then MY_CONST = 2

 Note that although constants should not be changed, you can
 alter the internal states of the objects they
 reference (you can freeze objects to prevent
 this). This is because assignment potentially

 ​ aliases​

 objects, creating two
 references to the same object.

	​ 	MY_CONST = ​"Tim"​

	​ 	MY_CONST[0] = ​"J"​ ​# alter string referenced by constant​

	​ 	MY_CONST ​# => "Jim"​

Scope of Constants and Variables

	Constants defined within a class or module may be accessed
	unadorned anywhere within the class or
	module. Outside the class or module, they
	may be accessed using the
 ​ scope operator​

 ,
	​::​, prefixed by an expression that returns the
	appropriate class or module object. Constants defined outside
	any class or module may be accessed unadorned or by using the
	scope operator with no prefix. Constants may not be defined in
	methods. Constants may be added to existing classes and
	modules from the outside by using the class or module name and
	the scope operator before the constant name.

	​ 	OUTER_CONST = 99

	​ 	​class​ Const

	​ 	 ​def​ get_const

	​ 	 CONST

	​ 	 ​end​

	​ 	 CONST = OUTER_CONST + 1

	​ 	​end​

	​ 	Const.new.get_const ​# => 100​

	​ 	Const::CONST ​# => 100​

	​ 	::OUTER_CONST ​# => 99​

	​ 	Const::NEW_CONST = 123

	
 ​ Global
	variables​

 are
	available
	throughout a program. Every reference to a particular global name
	returns the same object. Referencing an uninitialized global variable
	returns ​nil​.

	
 ​ Class
	variables​

 are
	available
	throughout a class or module body. Class variables must be initialized
	before use. A class variable is shared among all instances of a class
	and is available within the class itself.

	​ 	​class​ Song

	​ 	 @@count = 0

	​ 	

	​ 	 ​def​ initialize

	​ 	 @@count += 1

	​ 	 ​end​

	​ 	

	​ 	 ​def​ Song.get_count

	​ 	 @@count

	​ 	 ​end​

	​ 	​end​

	Class variables belong to the innermost enclosing class or
	module. Class variables used at the top level are defined in
	​Object​ and behave like global
	variables. In Ruby 1.9, class variables are
	supposed to be private to the defining class, although as the
	following example shows, there seems to be some
	leakage.

	​ 	​class​ Holder ​# => prog.rb:13: warning: class variable access from toplevel​

	​ 	 @@var = 99

	​ 	

	​ 	 ​def​ Holder.var=(val)

	​ 	 @@var = val

	​ 	 ​end​

	​ 	

	​ 	 ​def​ var

	​ 	 @@var

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	@@var = ​"top level variable"​

	​ 	

	​ 	a = Holder.new

	​ 	a.var ​# => "top level variable"​

	​ 	Holder.var = 123

	​ 	a.var ​# => 123​

	Class variables are inherited by children but propagate
	upward if first defined in a child:

	​ 	​class​ Top

	​ 	 @@A = ​"top A"​

	​ 	 @@B = ​"top B"​

	​ 	 ​def​ dump

	​ 	 puts values

	​ 	 ​end​

	​ 	 ​def​ values

	​ 	 ​"​#{self.class.name}​: @@A = ​#@@A​, @@B = ​#@@B​"​

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ MiddleOne < Top

	​ 	 @@B = ​"One B"​

	​ 	 @@C = ​"One C"​

	​ 	 ​def​ values

	​ 	 ​super​ + ​", C = ​#@@C​"​

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ MiddleTwo < Top

	​ 	 @@B = ​"Two B"​

	​ 	 @@C = ​"Two C"​

	​ 	 ​def​ values

	​ 	 ​super​ + ​", C = ​#@@C​"​

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ BottomOne < MiddleOne; ​end​

	​ 	​class​ BottomTwo < MiddleTwo; ​end​

	​ 	

	​ 	Top.new.dump

	​ 	MiddleOne.new.dump

	​ 	MiddleTwo.new.dump

	​ 	BottomOne.new.dump

	​ 	BottomTwo.new.dump

Produces:
	​ 	Top: @@A = top A, @@B = Two B

	​ 	MiddleOne: @@A = top A, @@B = Two B, C = One C

	​ 	MiddleTwo: @@A = top A, @@B = Two B, C = Two C

	​ 	BottomOne: @@A = top A, @@B = Two B, C = One C

	​ 	BottomTwo: @@A = top A, @@B = Two B, C = Two C

	I recommend against using class variables for these reasons.

	
 ​ Instance
	variables​

 are available
	within instance methods throughout a class body. Referencing
	an uninitialized instance variable returns ​nil​.
	Each object (instance of a class) has a
	unique set of instance variables.

	
 ​ Local variables​

 are unique in that their
	scopes are statically determined but their existence is
	established dynamically.

	A local variable is created dynamically when it is first assigned a value
	during program execution. However, the scope of a local variable is
	statically determined to be the immediately enclosing block, method
	definition, class definition, module definition, or top-level
	program.
	Local variables with the same name are different variables if they
	appear in disjoint scopes.

	
 ​ Method parameters​

 are considered to be
	variables local to that method.

	
 ​ Block parameters​

 are assigned values when
	the block is invoked.

	If a local variable is first assigned in a block, it is local to the
	block.

	If a block uses a variable that is previously defined in the scope
	containing the block’s definition, then the block will share that
	variable with the scope. There are two exceptions to this.
	Block parameters are always local to the block. In addition, variables
	listed after a semicolon at the end of the block parameter list are
	also always local to the block.

	​ 	a = 1

	​ 	b = 2

	​ 	c = 3

	​ 	

	​ 	some_method { |b; c| a = b + 1; c = a + 1; d = c + 1 }

	In this previous example, the variable
	​a​ inside the block is shared with
	the surrounding scope. The variables
	​b​ and
	​c​ are
	not shared, because they are listed in the block’s parameter list, and the
	variable ​d​ is not shared because it occurs only inside the block.

	A block takes on the set of local variables in existence at
	the time that it is created. This forms part of its
	binding. Note that although the
	binding of the variables is fixed at this point, the block
	will have access to the ​current​ values of these
	variables when it executes. The binding preserves these
	variables even if the original enclosing scope is destroyed.

	The bodies of ​while​,
	​until​, and ​for​ loops are
	part of the scope that contains them; previously existing
	locals can be used in the loop, and any new locals created
	will be available outside the bodies afterward.

Predefined	Variables

	The following variables are predefined in the Ruby interpreter. In
	these descriptions, the notation [r/o] indicates that the variables
	are read-only; an error will be raised if a program attempts to modify
	a read-only variable.
	After all, you probably don’t want to change the
	meaning of ​true​ halfway through your program (except perhaps
	if you’re a politician). Entries marked [thread] are thread local.

	Many global variables look something like Snoopy swearing:
	​$_​, ​$!​,
	​$&​, and so on. This is for
	“historical” reasons—most of these variable names come
	from Perl. If you find memorizing all this punctuation
	difficult, you may want to take a look at the ​English​
	library, which gives the commonly used global
	variables more descriptive names.

	In the tables of variables and constants that follow, we show the
	variable name, the type of the referenced object, and a description.

Exception Information
	​$!​ → ​Exception​
	

	 The exception object passed to
	
 ​raise​
 . [thread]
	

	​$@​ → ​Array​
	

	 The stack backtrace
	 generated by the last exception. See the description of
	 Object#caller for
	 details. [thread]
	

Pattern Matching Variables

	 These variables (except ​$=​) are set
	 to ​nil​ after an unsuccessful pattern match.
	
	​$&​ → ​String​
	

	 The string matched
	 (following a successful pattern match). This variable is
	 local to the current scope. [r/o, thread]
	

	​$+​ → ​String​
	

	 The contents of the
	 highest-numbered group matched following a successful
	 pattern match. Thus, in ​"cat" =~ /(c|a)(t|z)/​,
	 ​$+​ will be set to “t.” This
	 variable is local to the current
	 scope. [r/o, thread]
	

	​$‘​ → ​String​
	

	 The string preceding the match
	 in a successful pattern match. This variable is local to the
	 current scope. [r/o, thread]
	

	​$’​ → ​String​
	

	 The string following the match in a
	 successful pattern match. This variable is local to
	 the current scope. [r/o, thread]
	

	​$1...$n​ → ​String​
	

	 The contents of successive
	 groups matched in a pattern match. In ​"cat"
	 =~ /(c|a)(t|z)/​, ​$1​ will
	 be set to “a” and ​$2​ to
	 “t.” This variable is local to the current
	 scope. [r/o, thread]
	

	​$~​ → ​MatchData​
	

	 An object that encapsulates the
	 results of a successful pattern match. The variables
	 ​$&​,
	 ​$‘​,
	 ​$’​, and
	 ​$1​ to
	 ​$9​ are all derived from
	 ​$~​. Assigning to
	 ​$~​ changes the values of these derived
	 variables. This variable is local to the current
	 scope. [thread]
	

	 The variable
	 ​$=​,
	 has been
	 removed from Ruby 1.9.
	
Input/Output Variables
	​$/​ → ​String​
	

	 The input record separator
	 (newline by default). This is the value that routines such
	 as Object#gets use to determine record
	 boundaries. If set to ​nil​,
	
 ​gets​
 will read the entire file.
	

	​$-0​ → ​String​
	

	 Synonym for ​$/​.
	

	​$\​ → ​String​
	

	 The string appended to the output of every call to methods such
	 as Object#print and IO#write. The
	 default value is ​nil​.
	

	​$,​ → ​String​
	

	 The separator string output
	 between the parameters to methods such as Object#print and Array#join. Defaults to
	 ​nil​, which adds no text.
	

	​$.​ → ​Fixnum​
	

	 The number of the last line read from the current
	 input file.
	

	​$;​ → ​String​
	

	 The default separator pattern used by String#split.
	 May be set using the
	 ​-F​ command-line option.
	

	​$<​ → ​ARGF.class​
	

	 Synonym for ​ARGF​. See
	 ​ARGF​.
	

	​$>​ → ​IO​
	

	 The destination stream for
	 Object#print
	 and Object#printf. The
	 default value is ​STDOUT​.
	

	​$_​ → ​String​
	

	 The last line read by Object#gets
	 or Object#readline. Many
	 string-related functions in the
	 ​Kernel​ module operate on
	 ​$_​ by default. The variable
	 is local to the current scope. [thread]
	

	​$-F​ → ​String​
	

	 Synonym for ​$;​.
	

	​$stderr​, ​$stdout​, ​$stdin​, → ​IO​
	

	 The current standard error, standard output, and standard input streams.
	

	 The variables ​$defout​ and
	 ​$deferr​ have been removed from
	 Ruby 1.9.
	
Execution Environment Variables
	​$0​ → ​String​
	

	 The name of the top-level Ruby program being
	 executed.
	 Typically this will be the program’s
	 filename. On some operating systems, assigning to
	 this variable will change the name of the process
	 reported (for example) by the ps(1) command.
	

	​$*​ → ​Array​
	

	 An array of strings containing the command-line
	 options from the invocation of the program. Options
	 used by the Ruby interpreter will have been
	 removed. [r/o]
	

	​$"​ → ​Array​
	

	 An array containing the filenames of modules
	 loaded by
	
 ​require​
 .
	 [r/o]
	

	​$$​ → ​Fixnum​
	

	 The process number of the program being
	 executed. [r/o]
	

	​$?​ → ​Process::Status​
	

	 The exit status of the last child process to
	 terminate. [r/o, thread]
	

	​$:​ → ​Array​
	

	 An array of strings, where each
	 string specifies a directory to be searched for Ruby scripts
	 and binary extensions used by the
	
 ​load​
 and
	
 ​require​

	 methods.
	 The initial value is the value of the arguments passed via
	 the ​-I​ command-line option,
	 followed by an installation-defined standard library
	 location. As of Ruby 1.9.2, the current directory
	 is no longer added to ​$:​. This variable
	 may be updated from within a program to alter the default search
	 path; typically, programs use ​$: << dir​ to append
	 ​dir​ to the path. [r/o]
	

	​$-a​ → ​Object​
	

	 True if the
	 ​-a​ option is specified on
	 the command line. [r/o]
	

	​__callee__​ → ​Symbol​
	

	 The name of the lexically enclosing
	 method.
	

	​$-d​ → ​Object​
	

	 Synonym for
	 ​$DEBUG​.
	

	​$DEBUG​ → ​Object​
	

	 Set to ​true​ if
	 the ​-d​ command-line
	 option is specified.
	

	​__ENCODING__​ → ​String​
	

	 The encoding of the
	 current source file. [r/o]
	

	​__FILE__​ → ​String​
	

	 The name of the current
	 source file. [r/o]
	

	​$F​ → ​Array​
	

	 The array that receives the split input line if the
	 ​-a​ command-line option is used.
	

	​$FILENAME​ → ​String​
	

	 The name of the current input file. Equivalent to
	 ​$<.filename​. [r/o]
	

	​$-i​ → ​String​
	

	 If in-place edit mode is
	 enabled (perhaps using the ​-i​ command-line
	 option), ​$-i​ holds the extension
	 used when creating the backup file. If you set a value
	 into ​$-i​, enables in-place edit
	 mode, as described in the options
	 descriptions.
	

	​$-I​ → ​Array​
	

	 Synonym for
	 ​$:​. [r/o]
	

	​$-l​ → ​Object​
	

	 Set to
	 ​true​ if the
	 ​-l​ option (which enables
	 line-end processing) is present on the command line. See the
	 options description. [r/o]
	

	​__LINE__​ → ​String​
	

	 The current line number in the source
	 file. [r/o]
	

	​$LOAD_PATH​ → ​Array​
	

	 A synonym for
	 ​$:​. [r/o]
	

	​$LOADED_FEATURES​ → ​Array​
	

	 Synonym for
	 ​$"​. [r/o]
	

	​__method__​ → ​Symbol​
	

	 The name of the lexically enclosing
	 method.
	

	​$PROGRAM_NAME​ → ​String​
	

	 Alias for ​$0​.
	

	​$-p​ → ​Object​
	

	 Set to
	 ​true​ if the
	 ​-p​ option (which puts an
	 implicit ​while gets...end​ loop around your
	 program) is present on the command line. See the
	 options description. [r/o]
	

	​$SAFE​ → ​Fixnum​
	

	 The current safe level (see
	 Section 26.1, ​Safe Levels​). This variable’s value may
	 never be reduced by assignment. [thread]
	

	​$VERBOSE​ → ​Object​
	

	 Set to
	 ​true​ if the ​-v​, ​--version​,
	 ​-W​, or
	 ​-w​ option is specified on
	 the command line. Set to ​false​ if no
	 option, or ​-W1​ is given. Set to
	 ​nil​ if ​-W0​ was specified.
	 Setting this option to ​true​ causes the
	 interpreter and some library routines to report additional
	 information. Setting to ​nil​
	 suppresses all warnings (including the output of Object#warn).
	

	​$-v, $-w​ → ​Object​
	

	 Synonyms for ​$VERBOSE​.
	

	​$-W​ → ​Object​
	

	 Return the value set by the
	 ​-W​ command-line option.
	

Standard Objects
	​ARGF​ → ​Object​
	

	 Provides access to a list
	 of files. Used by command line processing. See ​ARGF​.
	

	​ARGV​ → ​Array​
	

	 A synonym for ​$*​.
	

	​ENV​ → ​Object​
	

	 A hash-like object containing the program’s
	 environment variables. An instance of class ​Object​,
	 ​ENV​ implements the full set of ​Hash​ methods. Used
	 to query and set the value of an environment variable, as in
	 ​ENV["PATH"]​ and ​ENV["term"]="ansi"​.
	

	​false​ → ​FalseClass​
	

	 Singleton instance of class
	 ​FalseClass​. [r/o]
	

	​nil​ → ​NilClass​
	

	 The singleton instance of class
	 ​NilClass​. The value of uninitialized
	 instance and global variables. [r/o]
	

	​self​ → ​Object​
	

	 The receiver (object) of the current method. [r/o]
	

	​true​ → ​TrueClass​
	

	 Singleton instance of class ​TrueClass​. [r/o]
	

Global Constants
	​DATA​ → ​IO​
	

	 If the main program file
	 contains the directive
	 ​__END__​, then
	 the constant ​DATA​ will
	 be initialized so that reading from it will return lines
	 following ​__END__​ from the source file.
	

	​FALSE​ → ​FalseClass​
	

	 Constant containing
	 reference to ​false​.
	

	​NIL​ → ​NilClass​
	

	 Constant containing reference
	 to ​nil​.
	

	​RUBY_COPYRIGHT​ → ​String​
	

	 The interpreter copyright.
	

	​RUBY_DESCRIPTION​ → ​String​
	

	 Version number
	 and architecture of the interpreter.
	

	​RUBY_ENGINE​ → ​String​
	

	 The name of the Ruby
	 interpreter. Returns ​"ruby"​ for Matz’s version. Other
	 interpreters include macruby, ironruby, jruby, and
	 rubinius.
	

	​RUBY_PATCHLEVEL​ → ​String​
	

	 The patch
	 level of the interpreter.
	

	​RUBY_PLATFORM​ → ​String​
	

	 The identifier of the platform running
	 this program. This string is in the same form as the platform
	 identifier used by the GNU configure utility (which is not a
	 coincidence).
	

	​RUBY_RELEASE_DATE​ → ​String​
	

	 The date of this release.
	

	​RUBY_REVISION​ → ​String​
	

	 The revision of the interpreter.
	

	​RUBY_VERSION​ → ​String​
	

	 The version number of the interpreter.
	

	​STDERR​ → ​IO​
	

	 The actual standard error stream for the program. The
	 initial value of ​$stderr​.
	

	​STDIN​ → ​IO​
	

	 The actual standard input stream for the program. The
	 initial value of ​$stdin​.
	

	​STDOUT​ → ​IO​
	

	 The actual standard output stream for the program. The
	 initial value of ​$stdout​.
	

	​SCRIPT_LINES__​ → ​Hash​
	

	 If a constant
	 ​SCRIPT_LINES__​ is defined and
	 references a ​Hash​, Ruby will store an
	 entry containing the contents of each file it parses,
	 with the file’s name as the key and an array of strings
	 as the value. See Object#require for an example.
	

	​TOPLEVEL_BINDING​ → ​Binding​
	

	 A
	 ​Binding​
	 object representing the binding at Ruby’s top level—the
	 level where programs are initially executed.
	

	​TRUE​ → ​TrueClass​
	

	 A reference to the object
	 ​true​.
	

	 The constant
	 ​__FILE__​
	 and the variable
	 ​$0​ are often
	 used together to run code only if it appears in the file run
	 directly by the user. For example, library writers often use
	 this to include tests in their libraries that will be run if the
	 library source is run directly, but not if the source is
	 required into another program.
	
	​ 	​# library code ...​

	​ 	

	​ 	​if​ __FILE__ == $0

	​ 	 ​# tests...​

	​ 	​end​

22.6 Expressions, Conditionals, and Loops

 Single terms in an expression may be any of the following:

	

	 ​Literal​. Ruby literals are numbers, strings, arrays,
	 hashes, ranges, symbols, and regular expressions. These are
	 described in Section 22.3, ​The Basic Types​.
	

	

	 ​Shell command​. A shell command is a string
	 enclosed in backquotes or in a general delimited string
	 starting with ​%x​. The string is executed using the
	 host operating system’s standard shell, and the resulting
	 standard output stream is returned as the value of the
	 expression. The execution also sets the
	 ​$?​
	 variable with the command’s exit status.
	
	​ 	filter = ​"*.c"​

	​ 	files = `ls #{filter}`

	​ 	files = %x{ls #{filter}}

	

	 ​Variable reference​ or ​constant
	 reference​. A variable is referenced by citing its
	 name. Depending on scope (see ​Scope of Constants and Variables​),
	 you reference a constant either by citing its name or by
	 qualifying the name, using the name of the class or module
	 containing the constant and the scope operator
	 (​::​).
	
	​ 	barney ​# variable reference​

	​ 	APP_NAMR ​# constant reference​

	​ 	Math::PI ​# qualified constant reference​

	

	 ​Method invocation​. The various ways of invoking a
	 method are described in Section 22.8, ​Invoking a Method​.
	

Operator Expressions

	Expressions may be combined using operators. The Ruby operators in
	precedence order are listed in Table 13, ​Ruby operators (high to low precedence)​. The operators with a ✓ in the Method
	column are implemented as methods and may be overridden.

Table 13. Ruby operators (high to low precedence)
	Method	Operator	Description
	
✓
	
​[] []=​
	
Element reference, element set

	
✓
	
​**​
	
Exponentiation

	
✓
	
​! ~ + -​
	

	 Not, complement, unary plus and minus (method names for
	 the last two are ​+@​ and ​-@​)
	

	
✓
	
​* / %​
	
Multiply, divide, and modulo

	
✓
	
​+ -​
	
Plus and minus

	
✓
	
​>> <<​
	

	 Right and left shift (​<<​ is also used as
	 the append operator)
	

	
✓
	
​&​
	
“And” (bitwise for integers)

	
✓
	
​^ |​
	

	 Exclusive “or” and regular “or” (bitwise for integers)
	

	
✓
	
​<= < > >=​
	
Comparison operators

	
✓
	
​<=> == === != =~ !~​
	
Equality and pattern match operators

	

	
​&&​
	
Logical “and”

	

	
​||​
	
Logical “or”

	

	
​.. ...​
	
Range (inclusive and exclusive)

	

	
​? :​
	
Ternary if-then-else

	

	
​= %= /= -= +=
	 |= &= >>=
	 <<= *= &&=
	 ||= **= ^=​
	
	

	 Assignment
	

	

	
​not​
	
Logical negation

	

	
​or and​
	
Logical composition

	

	
​if unless while until​
	
Expression modifiers

	

	
​begin/end​
	
Block expression

More on Assignment

	The assignment operator assigns one or more
	
 ​ rvalues​

 (the ​r​ stands for
	“right,” because rvalues tend to appear on the right side of
	assignments) to one or more
 ​ lvalues​

	(“left” values). What is meant by assignment depends on
	each individual lvalue.

	As the following shows, if an lvalue is a variable or constant
	name, that variable or constant receives a reference to the
	corresponding rvalue.

	​ 	a = /regexp/

	​ 	b, c, d = 1, ​"cat"​, [3, 4, 5]

	If the lvalue is an object attribute, the corresponding
	attribute-setting method will be called in the receiver,
	passing as a parameter the rvalue:

	​ 	​class​ A

	​ 	 attr_writer :value

	​ 	​end​

	​ 	obj = A.new

	​ 	obj.value = ​"hello"​ ​# equivalent to obj.value=("hello")​

	If the lvalue is an array element reference, Ruby calls the element
	assignment operator (​[]=​) in the receiver, passing as
	parameters any indices that appear between the brackets followed by
	the rvalue. This is illustrated in the following table.

	Element Reference	Actual Method Call
	
​var[] = "one"​
	
​var.[]=("one")​

	
​var[1] = "two"​
	
​var.[]=(1, "two")​

	
​var["a", /^cat/​] = "three"
	
​var.[]=("a", /^cat/, "three")​

	If you are writing an
 ​[]=​
 method
	that accepts a variable number of indices, it might be
	convenient to define it using this:

	​ 	​def​ []=(*indices, value)

	​ 	 ​# ...​

	​ 	​end​

	The value of an assignment expression is its rvalue. This
	is true even if the assignment is to an attribute method that returns
	something different.

Parallel Assignment

	 An assignment expression may have one or more lvalues and
	 one or more rvalues. This section explains how Ruby handles
	 assignment with different combinations of
	 arguments:
	
	

	 If any rvalue is prefixed with an asterisk and
	 implements
 ​to_a​
 , the
	 rvalue is replaced with the elements returned by
	
 ​to_a​
 , with each element forming
	 its own rvalue.
	

	

	 If the assignment contains one lvalue and multiple
	 rvalues, the rvalues are converted to an array and
	 assigned to that lvalue.
	

	

	 If the assignment contains multiple lvalues and one rvalue, the
	 rvalue is expanded if possible into an
	 array of rvalues as described in (1).
	

	

	 Successive rvalues are assigned to the lvalues. This
	 assignment effectively happens in parallel so that (for
	 example) ​a,b=b,a​ swaps the values in
	 ​a​ and
	 ​b​.
	

	

	 If there are more lvalues than rvalues, the excess will have
	 ​nil​ assigned to them.
	

	

	 If there are more rvalues than lvalues, the excess will be
	 ignored.
	

	

	 At most one lvalue can be prefixed by an asterisk. This
	 lvalue will end up being an array and will contain as
	 many rvalues as possible. If there are lvalues to the
	 right of the starred lvalue, these will be assigned from
	 the trailing rvalues, and whatever rvalues are left will
	 be assigned to the splat lvalue.
	

	

	 If an lvalue contains a parenthesized list, the list is treated
	 as a nested assignment statement, and then it is assigned from the
	 corresponding rvalue as described by these rules.
	

	 See ​Parallel Assignment​ for examples of parallel assignment.
	 The value of a parallel assignment is its array of rvalues.
	
Block Expressions
begin
 body
end

	Expressions may be grouped between ​begin​
	and ​end​.
	The value of the block expression
	is the value of the last expression executed.

	Block expressions also play a role in exception handling—see
	Section 22.14, ​Exceptions​.

Boolean Expressions

	Ruby predefines the constants
	​false​ and
	​nil​. Both
	of these values are treated as being false in a boolean
	context. All other values are treated as being true. The
	constant
	​true​ is
	available for when you need an explicit “true” value.

And, Or, Not

	 The ​and​ and ​&&​ operators
	 evaluate their first operand. If false, the expression
	 returns the value of the first operand; otherwise, the
	 expression returns the value of the second operand:
	
expr1 and expr2
expr1 && expr2

	 The ​or​ and ​||​ operators evaluate
	 their first operand. If true, the expression returns the
	 value of their first operand; otherwise, the expression
	 returns the value of the second operand:
	
expr1 or expr2
expr1 || expr2

	 The ​not​ and ​!​ operators evaluate
	 their operand. If true, the expression returns false. If
	 false, the expression returns true.
	

	 The word forms of these operators (​and​,
	 ​or​, and ​not​) have a
	 lower precedence than the corresponding symbol forms
	 (​&&​, ​||​, and ​!​). For details, see Table 13, ​Ruby operators (high to low precedence)​.
	
defined?

	 The ​defined?​ keyword returns
	 ​nil​ if its
	 argument,
	 which can
	 be an arbitrary expression, is not defined. Otherwise, it returns a
	 description of that argument. For examples, check out the
	 tutorial.
	
Comparison Operators

	 The Ruby syntax defines the comparison operators
	 ​==​, ​===​, ​<=>​,
	 ​<​, ​<=​, ​>​,
	 ​>=​, and ​=~​. All these operators are
	 implemented as methods. By convention, the language also
	 uses the standard methods
 ​eql?​
 and
	
 ​equal?​
 (see Table 5, ​Common comparison operators​). Although the operators have
	 intuitive meaning, it is up to the classes that implement
	 them to produce meaningful comparison semantics. The library reference starting
	 describes the comparison semantics for the built-in
	 classes. The module ​Comparable​ provides
	 support for implementing the operators ​==​,
	 ​<​, ​<=​, ​>​, and
	 ​>=​, as well as the method
	
 ​between?​
 in terms of ​<=>​.
	 The operator ​===​ is used in ​case​
	 expressions, described in ​case Expressions​.
	

	 Both ​==​ and ​=~​ have negated forms,
	 ​!=​ and ​!~​. If an object defines these
	 methods, Ruby will call
	 them. Otherwise, ​a != b​ is mapped to
	 ​!(a == b)​, and ​a !~ b​ is
	 mapped to ​!(a =~ b)​.
	
Ranges in Boolean Expressions
if expr1 .. expr2
while expr1 .. expr2

	 A range used in a boolean expression acts as a
	 flip-flop.
	 It has two
	 states, set and unset, and is initially unset.
	
	

	 For the three-dot form of a range, if the flip-flop is unset
	 and ​expr1​ is true, the flip-flop becomes set and
	 the the flip-flop returns true.
	

	

	 If the flip-flop is set, it will return true. However, if
	 ​expr2​ is not true, the flip-flop becomes unset.
	

	

	 If the flip-flop is unset, it returns false.
	

	 The first step differs for the two-dot form of a range. If
	 the flip-flop is unset and ​expr1​ is true, then Ruby
	 only sets the flip-flop if ​expr2​ is not also true.
	

	 The difference is illustrated by the following code:
	
	​ 	a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}

	​ 	a ​# => [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]​

	​ 	

	​ 	a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}

	​ 	a ​# => [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]​

Regular Expressions in Boolean Expressions

	 In versions of Ruby prior to 1.8, a single regular
	 expression in boolean expression was matched against the
	 current value of the variable
	 ​$_​. This behavior is
	 now supported only if the condition appears in a
	 command-line ​-e​ parameter:
	
	​ 	$ ​ruby -ne 'print if /one/' testfile​

	​ 	This is line one

	 In regular code, the use of implicit operands and
	 ​$_​
	 is being slowly phased out, so it is better to use an
	 explicit match against a variable.
	
if and unless Expressions
	
 if boolean-expression <then>
 body
 <elsif boolean-expression then
 body >*
 < else
 body >
end

 	
 unless boolean-expression <then>
 body
 <else
 body >
end

	The ​then​ keyword separates the body from
	the condition.[102] It is
	not required if the body starts on a new line. The value of
	an ​if​ or ​unless​
	expression is the value of the last expression evaluated in
	whichever body is executed.

if and unless Modifiers
expression if boolean-expression
expression unless boolean-expression

	 This evaluates ​expression​ only if ​boolean-expression​ is
	 true (for ​if​) or false (for ​unless​).
	
Ternary Operator
boolean-expression ? expr1 : expr2

	This returns ​expr1​ if ​boolean expression​ is true and
	​expr2​ otherwise.

case Expressions

	Ruby has two forms of ​case​ statement. The
	first allows a series of conditions to be evaluated, executing
	code corresponding to the first condition that is true:

case
when <boolean-expression>+ <then>
 body
when <boolean-expression>+ <then>
 body
...
 <else
 body >
end

	The second form of a case expression takes a target expression
	following the ​case​ keyword. It searches
	for a match starting at the first (top left) comparison,
	using
	​​comparison​ === ​target​​:

case target
when <comparison>+ <then>
 body
when <comparison>+ <then>
 body
...
 <else
 body >
end

	A comparison can be an array reference preceded by an asterisk, in
	which case it is expanded into that array’s elements before the tests
	are performed on each. When a comparison returns true, the search
	stops, and the body associated with the comparison is executed (no
	​break​ is required). ​case​ then returns the value of the last
	expression executed. If no comparison matches, this happens: if an ​else​
	clause is present, its body will be executed; otherwise, ​case​
	silently returns ​nil​.

	The ​then​ keyword separates the
	​when​ comparisons from the bodies and is not
	needed if the body starts on a new line.

	As an optimization in Matz’s Ruby 1.9 and later,
	comparisons between literal strings and between numbers do not
	use ​===​.

Loops
while boolean-expression <do>
 body
end

	This executes ​body​ zero or more times as long as
	​boolean-expression​ is true.

until boolean-expression <do>
 body
end

	This executes ​body​ zero or more times as long as
	​boolean-expression​ is false.

	In both forms, the ​do​ separates
	​boolean-expression​ from the ​body​ and
	can be omitted when the body starts on a new line:

for <name>+ in expression <do>
 body
end

	The ​for​ loop is executed as if it were the
	following
	
 ​each​
 loop, except that local variables defined in the body of
	the ​for​ loop will be available outside the loop, and those
	defined within an iterator block will not.

expression.each do | <name>+ |
 body
end

	
 ​loop​
 , which iterates its associated block, is not
	a language construct—it is a method in module ​Kernel​.

	​ 	loop ​do​

	​ 	 print ​"Input: "​

	​ 	 ​break​ ​unless​ line = gets

	​ 	 process(line)

	​ 	​end​

while and until Modifiers
expression while boolean-expression
expression until boolean-expression

	 If ​expression​ is anything other than a ​begin/end​ block,
	 executes ​expression​ zero or more times while ​boolean-expression​
	 is true (for ​while​) or false (for ​until​).
	

	 If ​expression​ is a ​begin/end​ block, the block will always
	 be executed at least one time.
	
break, redo, and next

	​break​, ​redo​, and
	​next​ alter the normal flow through a
	​while​, ​until​,
	​for​, or iterator-controlled
	loop.[103]

	​break​ terminates the immediately enclosing
	loop—control resumes at the statement following the block.
	​redo​ repeats the loop from the start but
	without reevaluating the condition or fetching the next
	element (in an iterator). The ​next​ keyword
	skips to the end of the loop, effectively starting the next
	iteration.

	​break​ and ​next​ may
	optionally take one or more arguments. If used within a block,
	the given argument(s) are returned as the value of the
	yield. If used within a ​while​,
	​until​, or ​for​ loop, the
	value given to ​break​ is returned as the
	value of the statement. If break is never
	called or if it is called with no value, the loop returns
	​nil​.

	​ 	match = ​for​ line ​in​ ARGF.readlines

	​ 	 ​next​ ​if​ line =~ /^#/

	​ 	 ​break​ line ​if​ line =~ /ruby/

	​ 	 ​end​

22.7 Method Definition
def defname <(arg) >
 body
end

defname ← methodname | expr.methodname

 ​defname​ is both the name of the method and optionally the
 context in which it is valid.

 A ​methodname​ is either a redefinable operator (see
 Table 13, ​Ruby operators (high to low precedence)​) or a name.
 If ​methodname​ is a name, it
 should start with a lowercase letter (or underscore) optionally
 followed by uppercase and lowercase letters, underscores, and digits. A
 ​methodname​ may optionally end with a question mark (​?​),
 exclamation point (​!​), or equal sign (​=​). The
 question mark and exclamation point are simply part of the name. The
 equal sign is also part of the name but additionally signals that
 this method may be used as an lvalue (see the description of
 writeable attributes).

 A method definition using an unadorned method name within a class or
 module definition creates an instance method. An instance method may
 be invoked only by sending its name to a receiver that is an
 instance of the class that defined it (or one of that class’s subclasses).

 Outside a class or module definition, a definition with an unadorned
 method name is added as a private method to class ​Object​.
 It may be called in any context without an explicit receiver.

 A definition using a method name of the form
 ​expr.methodname​ creates a method associated with
 the object that is the value of the expression; the method will
 be callable only by supplying the object referenced by the
 expression as a receiver. This style of definition creates
 per-object or
 ​ singleton methods​

 . You’ll
 find it most often inside class or module definitions, where the
 ​expr​ is either ​self​ or the
 name of the class/module. This effectively creates a class or
 module method (as opposed to an instance method).

	​ 	​class​ MyClass

	​ 	 ​def​ MyClass.method ​# definition​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	MyClass.method ​# call​

	​ 	

	​ 	obj = Object.new

	​ 	​def​ obj.method ​# definition​

	​ 	​end​

	​ 	

	​ 	obj.method ​# call​

	​ 	

	​ 	​def​ (1.class).fred ​# receiver may be an expression​

	​ 	​end​

	​ 	

	​ 	Fixnum.fred ​# call​

 Method definitions may not contain class or module
 definitions. They may contain nested instance or singleton
 method definitions. The internal method is defined when the
 enclosing method is executed. The internal method does
 not act as a closure in the context of the nested
 method—it is self-contained.

	​ 	​def​ toggle

	​ 	 ​def​ toggle

	​ 	 ​"subsequent times"​

	​ 	 ​end​

	​ 	 ​"first time"​

	​ 	​end​

	​ 	

	​ 	toggle ​# => "first time"​

	​ 	toggle ​# => "subsequent times"​

	​ 	toggle ​# => "subsequent times"​

 The body of a method acts as if it were a
 ​begin​/​end​ block, in that
 it may contain exception-handling statements
 (​rescue​, ​else​, and
 ​ensure​).

Method Arguments

	A method definition may have zero or more regular arguments,
 zero or more keyword arguments,«2.0» a optional splat
 argument, an optional double splat argument, and an optional block
 argument. Arguments are separated by commas, and the argument
 list may be enclosed in parentheses.

	A regular argument is a local variable name, optionally
	followed by an equals sign and an expression giving a default
	value. The expression is evaluated at
	the time the method is called. The expressions are evaluated
	from left to right. An expression may reference a parameter
	that precedes it in the argument list.

	​ 	​def​ options(a=99, b=a+1)

	​ 	 [a, b]

	​ 	​end​

	​ 	options ​# => [99, 100]​

	​ 	options(1) ​# => [1, 2]​

	​ 	options(2, 4) ​# => [2, 4]​

	Arguments without default values may appear after
	arguments with defaults. When such a method is called, Ruby will use
	the default values only if fewer parameters are passed to the method
	call than the total number of arguments.

	​ 	​def​ mixed(a, b=50, c=b+10, d)

	​ 	 [a, b, c, d]

	​ 	​end​

	​ 	mixed(1, 2) ​# => [1, 50, 60, 2]​

	​ 	mixed(1, 2, 3) ​# => [1, 2, 12, 3]​

	​ 	mixed(1, 2, 3, 4) ​# => [1, 2, 3, 4]​

	As with parallel assignment, one of the arguments may start
	with an asterisk. If the method call specifies any parameters
	in excess of the regular argument count, all these extra
	parameters will be collected into this newly created array.

	​ 	​def​ varargs(a, *b)

	​ 	 [a, b]

	​ 	​end​

	​ 	varargs(1) ​# => [1, []]​

	​ 	varargs(1, 2) ​# => [1, [2]]​

	​ 	varargs(1, 2, 3) ​# => [1, [2, 3]]​

	This argument need not be the last
	in the argument list. See the description of parallel
	assignment to see how values are assigned to this
	parameter.

	​ 	​def​ splat(first, *middle, last)

	​ 	 [first, middle, last]

	​ 	​end​

	​ 	splat(1, 2) ​# => [1, [], 2]​

	​ 	splat(1, 2, 3) ​# => [1, [2], 3]​

	​ 	splat(1, 2, 3, 4) ​# => [1, [2, 3], 4]​

	If an array argument follows arguments with default values, parameters
	will first be used to override the defaults. The remainder will then
	be used to populate the array.

	​ 	​def​ mixed(a, b=99, *c)

	​ 	 [a, b, c]

	​ 	​end​

	​ 	mixed(1) ​# => [1, 99, []]​

	​ 	mixed(1, 2) ​# => [1, 2, []]​

	​ 	mixed(1, 2, 3) ​# => [1, 2, [3]]​

	​ 	mixed(1, 2, 3, 4) ​# => [1, 2, [3, 4]]​

Keyword Arguments

 Ruby 2 methods may declare keyword arguments using
 the syntax ​name: ​default_value​​ for
 each. These arguments must follow any regular arguments in
 the list.«2.0»

	​ 	​def​ header(name, level: 1, upper: false)

	​ 	 name = name.upcase ​if​ upper

	​ 	 ​"<h​#{level}​>​#{name}​</h​#{level}​>"​

	​ 	​end​

	​ 	

	​ 	header(​"Introduction"​) ​# => "<h1>Introduction</h1>"​

	​ 	header(​"Getting started"​, level:2) ​# => "<h2>Getting started</h2>"​

	​ 	header(​"Conclusion"​, upper: true) ​# => "<h1>CONCLUSION</h1>"​

 If you call a method that has keyword arguments and do not
 provide corresponding values in the method call’s parameter
 list, the default values will be used. If you pass keyword
 parameters that are not defined as arguments, an error will
 be raised unless you also define a double splat argument,
 ​**​arg​​. The double splat argument will
 be set up as a hash containing any uncollected keyword
 parameters passed to the method.

	​ 	​def​ header(name, level: 1, upper: false, **attrs)

	​ 	 name = name.upcase ​if​ upper

	​ 	 attr_string = attrs.map {|k,v| ​%{​#{k}​="​#{v}​"}​}.join(​' '​)

	​ 	 ​"<h​#{level}​ ​#{attr_string}​>​#{name}​</h​#{level}​>"​

	​ 	​end​

	​ 	

	​ 	header(​"TOC"​, class: ​"nav"​, level:2, id: 123)

Block Argument

	 The optional block argument must be the last in the
	 list. Whenever the method is called, Ruby checks
	 for an associated block. If a block is present, it is
	 converted to an object of class ​Proc​ and
	 assigned to the block argument. If no block is present, the
	 argument is set to ​nil​.

	​ 	​def​ example(&block)

	​ 	puts block.inspect

	​ 	​end​

	​ 	

	​ 	example

	​ 	example { ​"a block"​ }

Produces:
	​ 	nil

	​ 	#<Proc:0x007fb2230004d8@prog.rb:6>

Undefining a Method

	The keyword
	​undef​
	allows you to undefine a method.

undef name | symbol ...

	An undefined method still exists; it is simply marked as
	being undefined. If you undefine a method in a child class and
	then call that method on an instance of that child class, Ruby
	will immediately raise a
	​NoMethodError​—it
	will not look for the method in the child’s parents.

22.8 Invoking a Method
 <receiver.>name < parameters > < {block} >
 <receiver::>name < parameters > < {block} >

parameters ← (<param>* <, hashlist> <*array> <&a_proc>)

block ← { blockbody } ​or​ do blockbody end

 The parentheses around the parameters may be omitted if it is
 otherwise unambiguous.

 Initial parameters are assigned to the actual arguments of the
 method. Following these parameters may be a list of
 ​​key​ => ​value​​
 or ​​key​: ​value​​
 pairs. These pairs are collected into a
 single new ​Hash​ object and passed as a single parameter.

 Any parameter may be a prefixed with an
 asterisk.
 If a starred parameter supports the
 ​to_a​
 method, that method is called, and
 the resulting array is expanded inline to provide parameters to the
 method call. If a starred argument does not support
 ​to_a​
 , it
 is simply passed through unaltered.

	​ 	​def​ regular(a, b, *c)

	​ 	 ​"a=​#{a}​, b=​#{b}​, c=​#{c}​"​

	​ 	​end​

	​ 	regular 1, 2, 3, 4 ​# => a=1, b=2, c=[3, 4]​

	​ 	regular(1, 2, 3, 4) ​# => a=1, b=2, c=[3, 4]​

	​ 	regular(1, *[2, 3, 4]) ​# => a=1, b=2, c=[3, 4]​

	​ 	regular(1, *[2, 3], 4) ​# => a=1, b=2, c=[3, 4]​

	​ 	regular(1, *[2, 3], *4) ​# => a=1, b=2, c=[3, 4]​

	​ 	regular(*[], 1, *[], *[2, 3], *[], 4) ​# => a=1, b=2, c=[3, 4]​

 Any parameter may be prefixed with two asterisks (a
 double splat). Such parameters are treated as hashes, and their
 key-value pairs are added as additional parameters to the method
 call.«2.0»

	​ 	​def​ regular(a, b)

	​ 	 ​"a=​#{a}​, b=​#{b}​"​

	​ 	​end​

	​ 	regular(99, a: 1, b: 2) ​# => a=99, b={:a=>1, :b=>2}​

	​ 	

	​ 	others = { c: 3, d: 4 }

	​ 	regular(99, a: 1, b: 2, **others) ​# => a=99, b={:a=>1, :b=>2, :c=>3,​

	​ 	 ​# .. :d=>4}​

	​ 	regular(99, **others, a: 1, b: 2) ​# => a=99, b={:c=>3, :d=>4, :a=>1,​

	​ 	 ​# .. :b=>2}​

	​ 	

	​ 	rest = { e: 5 }

	​ 	

	​ 	regular(99, **others, a: 1, b: 2) ​# => a=99, b={:c=>3, :d=>4, :a=>1,​

	​ 	 ​# .. :b=>2}​

	​ 	regular(99, **others, a: 1, b: 2, **rest) ​# => a=99, b={:c=>3, :d=>4, :a=>1,​

	​ 	 ​# .. :b=>2, :e=>5}​

 When a method defined with keyword arguments is called, Ruby
 matches the keys in the passed hash with each argument, assigning
 values when it finds a match.

	​ 	​def​ keywords(a, b: 2, c: 3)

	​ 	 ​"a=​#{a}​, b=​#{b}​, c=​#{c}​"​

	​ 	​end​

	​ 	

	​ 	keywords(99) ​# => a=99, b=2, c=3​

	​ 	keywords(99, c:98) ​# => a=99, b=2, c=98​

	​ 	

	​ 	args = { b: 22, c: 33}

	​ 	keywords(99, **args) ​# => "a=99, b=22, c=33"​

	​ 	keywords(99, **args, b: ​'override'​) ​# => "a=99, b=override, c=33"​

 If the passed hash contains any
 keys not defined as arguments, Ruby raises a runtime error
 unlesss the method also declares a double splat argument. In
 that case, the double splat receives the excess key-value pairs
 from the passed hash.

	​ 	​def​ keywords1(a, b: 2, c: 3)

	​ 	 ​"a=​#{a}​, b=​#{b}​, c=​#{c}​"​

	​ 	​end​

	​ 	

	​ 	keywords1(99, d: 22, e: 33)

Produces:
	​ 	prog.rb:5:in `<main>': unknown keywords: d, e (ArgumentError)

	​ 	​def​ keywords2(a, b: 2, c: 3, **rest)

	​ 	 ​"a=​#{a}​, b=​#{b}​, c=​#{c}​, rest=​#{rest}​"​

	​ 	​end​

	​ 	

	​ 	keywords2(99, d: 22, e: 33) ​# => a=99, b=2, c=3, rest={:d=>22, :e=>33}​

 A block may be associated with a method call using either a
 literal block (which must start on the same source line as the
 last line of the method call) or a parameter containing a
 reference to a ​Proc​ or
 ​Method​ object prefixed with an ampersand
 character.

	​ 	​def​ some_method

	​ 	 ​yield​

	​ 	​end​

	​ 	

	​ 	some_method { }

	​ 	some_method ​do​

	​ 	​end​

	​ 	

	​ 	a_proc = lambda { 99 }

	​ 	some_method(&a_proc)

 Ruby arranges for the value of Object#block_given?
 to reflect the availability of a block associated with the call,
 regardless of the presence of a block argument. A block
 argument will be set to ​nil​ if no block
 is specified on the call to a method.

	​ 	​def​ other_method(&block)

	​ 	 puts ​"block_given = ​#{block_given?}​, block = ​#{block.inspect}​"​

	​ 	​end​

	​ 	other_method { }

	​ 	other_method

Produces:
	​ 	block_given = true, block = #<Proc:0x007fafc305c3d0@prog.rb:4>

	​ 	block_given = false, block = nil

 A method is called by passing its name to a receiver. If no
 receiver is specified,
 ​self​
 is assumed. The receiver checks for the method definition in
 its own class and then sequentially in its ancestor classes. The
 instance methods of included modules act as if they were in
 anonymous superclasses of the class that includes them. If the
 method is not found, Ruby invokes the method

 ​method_missing​
 in the receiver. The
 default behavior defined in Object#method_missing
 is to report an error and terminate the program.

 When a receiver is explicitly specified in a method invocation,
 it may be separated from the method name using either a period
 (​.​) or two colons (​::​). The only difference
 between these two forms occurs if the method name starts with an
 uppercase letter. In this case, Ruby will assume that
 ​receiver::Thing​ is actually an attempt to access a
 constant called ​Thing​ in the receiver
 ​unless​ the method invocation has a parameter list
 between parentheses. Using ​::​ to indicate a method call
 is mildly deprecated.

	​ 	Foo.Bar() ​# method call​

	​ 	Foo.Bar ​# method call​

	​ 	Foo::Bar() ​# method call​

	​ 	Foo::Bar ​# constant access​

 The return value of a method is the value of the last expression
 executed. The method in the
 following example returns the value of the ​if​
 statement it contains, and that ​if​ statement
 returns the value of one of its branches.

	​ 	​def​ odd_or_even(val)

	​ 	 ​if​ val.odd?

	​ 	 ​"odd"​

	​ 	 ​else​

	​ 	 ​"even"​

	​ 	 ​end​

	​ 	​end​

	​ 	odd_or_even(26) ​# => "even"​

	​ 	odd_or_even(27) ​# => "odd"​

 A ​return​ expression immediately exits a
 method.

return <expr>*

 The value of a ​return​ is ​nil​ if it is called with no
 parameters, the value of its parameter if it is called with one
 parameter, or an array containing all of its parameters if it is
 called with more than one parameter.

super
super < (param *array) > <block>

	Within the body of a method, a call to
	​super​
	acts like a call to the original method, except that the
	search for a method body starts in the superclass of the
	object that contained the original method. If no
	parameters (and no parentheses) are passed to
	​super​, the original method’s parameters
	will be passed; otherwise, the parameters to
	​super​ will be passed.

Operator Methods
expr operator
operator expr
expr1 operator expr2

	If the operator in an operator expression corresponds to a
	redefinable method (see Table 13, ​Ruby operators (high to low precedence)​), Ruby
	will execute the operator expression as if it had been written
	like this:

(expr1).operator() ​or​
(expr1).operator(expr2)
Attribute Assignment
receiver.attrname = rvalue

	When the form receiver.attrname appears
	as an lvalue, Ruby invokes a method named
	
 ​attrname=​
 in the receiver, passing
	rvalue as a single parameter. The value returned by
	this assignment is always rvalue—the return value
	of the method is
	discarded. If you want to access the return value (in the
	unlikely event that it isn’t the rvalue),
	send an explicit message to the method.

	​ 	​class​ Demo

	​ 	 attr_reader :attr

	​ 	 ​def​ attr=(val)

	​ 	 @attr = val

	​ 	 ​"return value"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	d = Demo.new

	​ 	

	​ 	​# In all these cases, @attr is set to 99​

	​ 	d.attr = 99 ​# => 99​

	​ 	d.attr=(99) ​# => 99​

	​ 	d.send(:attr=, 99) ​# => "return value"​

	​ 	d.attr ​# => 99​

Element Reference Operator
receiver[<expr>+]
receiver[<expr>+] = rvalue

	When used as an rvalue, element reference invokes the method
 ​[]​

	in the receiver, passing as parameters the expressions between
	the brackets.

	When used as an lvalue, element reference invokes the method
	
 ​[]=​
 in the receiver, passing as
	parameters the expressions between the brackets, followed by
	the rvalue being assigned.

22.9 Aliasing
alias new_name old_name

 This creates a new name that refers to an existing method,
 operator, global variable, or regular expression backreference
 (​$&​,
 ​$‘​,
 ​$’​, and
 ​$+​). Local variables, instance variables, class
 variables, and constants may not be aliased. The parameters to

 ​alias​
 may be names or symbols.

	​ 	​class​ Fixnum

	​ 	 ​alias​ plus +

	​ 	​end​

	​ 	1.plus(3) ​# => 4​

	​ 	

	​ 	​alias​ $prematch $`

	​ 	​"string"​ =~ /i/ ​# => 3​

	​ 	$prematch ​# => "str"​

	​ 	

	​ 	​alias​ :cmd :`

	​ 	cmd ​"date"​ ​# => "Mon May 27 12:31:34 CDT 2013\n"​

 When a method is aliased, the new name refers to a copy of the
 original method’s body. If the original method is subsequently
 redefined, the aliased name will still invoke the original
 implementation.

	​ 	​def​ meth

	​ 	 ​"original method"​

	​ 	​end​

	​ 	​alias​ original meth

	​ 	​def​ meth

	​ 	 ​"new and improved"​

	​ 	​end​

	​ 	meth ​# => "new and improved"​

	​ 	original ​# => "original method"​

22.10 Class Definition
class <scope::> classname << superexpr>
 body
end

class << obj
 body
end

 A Ruby class definition creates or extends an object of class
 ​Class​ by executing the code in
 body.
 In the first form, a named class is created or extended. The
 resulting ​Class​ object is assigned to a
 constant named classname (keep reading
 for scoping rules). This name should start with an uppercase
 letter. In the second form, an anonymous (singleton) class is
 associated with the specific object.

 If present, superexpr should be an expression that evaluates to a
 ​Class​ object that will be the superclass of the class
 being defined. If omitted, it defaults to class ​Object​.

 Within body, most Ruby expressions are
 executed as the definition is read. However:

	

	 Method definitions will register the methods in a table in
	 the class object.
	

	

	 Nested class and module definitions will be stored in
	 constants within the class, not as global constants. These
	 nested classes and modules can be accessed from outside the
	 defining class using ​::​ to qualify their
	 names.
	
	​ 	​module​ NameSpace

	​ 	 ​class​ Example

	​ 	 CONST = 123

	​ 	 ​end​

	​ 	​end​

	​ 	obj = NameSpace::Example.new

	​ 	a = NameSpace::Example::CONST

	

	 The Module#include method will add the named modules as
	 anonymous superclasses of the class being defined.
	

 The classname in a class definition may be prefixed by the names
 of existing classes or modules using the scope operator
 (​::​). This syntax inserts the new definition into the
 namespace of the prefixing module(s) and/or class(es) but does not
 interpret the definition in the scope of these outer classes. A
 classname with a leading scope operator places that class or
 module in the top-level scope.

 In the following example, class C is inserted into module A’s
 namespace but is not interpreted in the context of A. As a result, the
 reference to ​CONST​ resolves to the top-level constant of that
 name, not A’s version. We also have to fully qualify the singleton
 method name, because ​C​ on its own is not a known constant in the
 context of ​A::C​.

	​ 	CONST = ​"outer"​

	​ 	

	​ 	​module​ A

	​ 	 CONST = ​"inner"​ ​# This is A::CONST​

	​ 	​end​

	​ 	

	​ 	​module​ A

	​ 	 ​class​ B

	​ 	 ​def​ B.get_const

	​ 	 CONST

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	A::B.get_const ​# => "inner"​

	​ 	

	​ 	​class​ A::C

	​ 	 ​def​ (A::C).get_const

	​ 	 CONST

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	A::C.get_const ​# => "outer"​

 Remember that a class definition is executable code. Many of
 the directives used in class definitions (such as

 ​attr​
 and
 ​include​
) are actually
 simply private instance methods of class ​Module​
 (documented in the reference
 section). The value of a class definition is the value of
 the last executed statement.

 Chapter 24, ​Metaprogramming​ describes in more detail how
 ​Class​ objects interact with the rest of the environment.

Creating Objects from Classes
obj = classexpr.new < (args) >

	Class ​Class​ defines the instance method
	Class#new,
	which creates an instance of the class of its receiver
	(classexpr). This is done by
	calling the method classexpr​.allocate​. You can
	override this method, but your implementation must return an
	object of the correct class. It then invokes
	
 ​initialize​
 in the newly created
	object and passes it any arguments originally passed to
	
 ​new​
 .

	If a class definition overrides the class method
 ​new​
 without
	calling
 ​super​
 , no objects of that class can be created, and
	calls to
 ​new​
 will silently return ​nil​.

	Like any other method,
 ​initialize​

	should call ​super​ if it wants to ensure
	that parent classes have been properly initialized. This is
	not necessary when the parent is
	​Object​, because class
	​Object​ does no instance-specific
	initialization.

Class Attribute Declarations

	Class attribute declarations are not part of the Ruby syntax;
	they are simply methods defined in class
	​Module​ that create accessor methods
	automatically.

class name
 attr attribute <, writable>
 attr_reader <attribute>+
 attr_writer <attribute>+
 attr_accessor <attribute>+
end

22.11 Module Definitions
module name
 body
end

 A module is basically a class that cannot be instantiated. Like
 a class, its body is executed during definition, and the
 resulting ​Module​ object is stored in a
 constant. A module may contain class and instance methods and
 may define constants and class variables. As with classes, a
 module’s class methods (sometimes called
 ​ module
 methods​

) are invoked using the
 ​Module​ object as a receiver, and
 constants are accessed using the ​::​ scope resolution
 operator.
 The name in a module definition may optionally be preceded by
 the names of enclosing class(es) and/or module(s).

	​ 	CONST = ​"outer"​

	​ 	​module​ Mod

	​ 	 CONST = 1

	​ 	 ​def​ Mod.method1 ​# module method​

	​ 	 CONST + 1

	​ 	 ​end​

	​ 	​end​

	​ 	​module​ Mod::Inner

	​ 	 ​def​ (Mod::Inner).method2

	​ 	 CONST + ​" scope"​

	​ 	 ​end​

	​ 	​end​

	​ 	Mod::CONST ​# => 1​

	​ 	Mod.method1 ​# => 2​

	​ 	Mod::Inner::method2 ​# => "outer scope"​

Mixins: Including Modules
class|module name
 include expr
end

	A module may be included within the definition of another module or
	class using the
 ​include​
 method. The module or class definition
	containing the
 ​include​
 gains access to the constants, class
	variables, and instance methods of the module it includes.

	If a module is included within a class definition, the
	module’s constants, class variables, and instance methods are
	made available via an anonymous (and inaccessible) superclass
	for that class. Objects of the class will respond to messages
	sent to the module’s instance methods. Calls to methods not
	defined in the class will be passed to the module(s) mixed
	into the class before being passed to any parent class. A
	module may define an
	
 ​initialize​
 method, which will be
	called upon the creation of an object of a class that mixes in
	the module if either the class does not define its own
	
 ​initialize​
 method or the class’s
	
 ​initialize​
 method invokes
	​super​.

	A module may also be included at the top level, in which case the
	module’s constants, class variables, and instance methods become
	available at the top level.

Module Functions

	 Instance methods defined in modules can be mixed-in to a
	 class using ​include​. But what if you want to call
	 the instance methods in a module directly?
	
	​ 	​module​ Math

	​ 	 ​def​ sin(x)

	​ 	 ​#​

	​ 	 ​end​

	​ 	​end​

	​ 	include Math ​# The only way to access Math.sin​

	​ 	sin(1)

	 The method Module#module_function
	 solves this problem by taking module instance
	 methods and copying their definitions into corresponding
	 module methods.
	
	​ 	​module​ Math

	​ 	 ​def​ sin(x)

	​ 	 ​#​

	​ 	 ​end​

	​ 	 module_function :sin

	​ 	​end​

	​ 	Math.sin(1)

	​ 	include Math

	​ 	sin(1)

	 The instance method and module method are two different
	 methods: the method definition is copied by
 ​module_function​
 ,
	 not aliased.
	

	 You can also use
 ​module_function​
 with no parameters, in
	 which case all subsequent methods will be module methods.
	

22.12 Access Control
private <symbol>*
protected <symbol>*
public <symbol>*

 Ruby defines three levels of protection for module and class constants
 and methods:

	

	 ​Public​. Accessible to anyone.
	

	

	 ​Protected​. Can be invoked only by objects of the defining
	 class and its subclasses.
	

	

	 ​Private​. Can be called only in functional form (that
	 is, with an implicit receiver of ​self​). Private methods
	 therefore can be called in the defining class and by that class’s
	 descendents and ancestors, but only within the same object. See
	 Section 3.3, ​Access Control​ for examples.
	

 Each function can be used in two different ways:

	

	 If used with no arguments, the three functions set the default
	 access control of subsequently defined methods.
	

	

	 With arguments, the functions set the access control of the
	 named methods and constants.
	

 Access control is enforced when a method is invoked.

22.13 Blocks, Closures, and Proc Objects

 A code block is a set of Ruby statements and expressions between
 braces or a ​do​/​end​
 pair. The block may start with an argument list between vertical
 bars. A code block may appear only immediately after a method
 invocation. The start of the block (the brace or the
 ​do​) must be on the same logical source line as the
 end of the invocation.

invocation do | a1, a2, ... |
end

invocation { | a1, a2, ... |
}

 Braces have a high precedence; ​do​ has a low
 precedence. If the method invocation has parameters that are
 not enclosed in parentheses, the brace form of a block will bind
 to the last parameter, not to the overall invocation. The
 ​do​ form will bind to the invocation.

 Within the body of the invoked method, the code block may be
 called using the
 ​yield​
 keyword. Parameters passed to

 ​yield​
 will be assigned to arguments in
 the block. A warning will be generated if
 ​yield​ passes multiple parameters to a block
 that takes just one. The return value of the

 ​yield​
 is the value of the last
 expression evaluated in the block or the value passed to a
 ​next​ statement executed in the block.

 A block is a
 ​ closure​

 ; it remembers the context in which it was
 defined, and it uses that context whenever it is called. The context
 includes the value of self, the constants, the class variables,
 the local variables, and any captured block.

	​ 	​class​ BlockExample

	​ 	 CONST = 0

	​ 	 @@a = 3

	​ 	 ​def​ return_closure

	​ 	 a = 1

	​ 	 @a = 2

	​ 	 lambda { [CONST, a, @a, @@a, ​yield​] }

	​ 	 ​end​

	​ 	 ​def​ change_values

	​ 	 @a += 1

	​ 	 @@a += 1

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	eg = BlockExample.new

	​ 	block = eg.return_closure { ​"original"​ }

	​ 	

	​ 	block.call ​# => [0, 1, 2, 3, "original"]​

	​ 	eg.change_values

	​ 	block.call ​# => [0, 1, 3, 4, "original"]​

 Here, the
 ​return_closure​
 method returns
 a lambda that encapsulates access to the local variable
 ​a​, instance variable
 ​@a​, class variable
 ​@@a​, and constant
 ​CONST​. We call the block outside the scope
 of the object that contains these values, but they are still
 available via the closure. If we then call the object to change
 some values, the values accessed via the closure also
 change.

Block Arguments

	Block argument lists are very similar to method argument lists:

	

	 You can specify default values.
	

	

	 You can specify splat (starred) arguments.
	

	

	 The last argument can be prefixed with an ampersand, in which
	 case it will collect any block passed when the original block is called.
	

	

	 Block-local variables are declared by placing them after
	 a semicolon in the argument list.
	

	These changes make it possible to use Module#define_method
	to create methods based on blocks that have similar
	capabilities to methods created using ​def​.

Proc Objects

	Ruby’s blocks are chunks of code attached to a method. Blocks are not objects, but they can be
	converted into objects of class ​Proc​. There are four ways of
	converting a block into a ​Proc​ object.

	

	 By passing a block to a method whose last parameter is prefixed
	 with an ampersand. That parameter will receive the block as a
	 ​Proc​ object.
	
	​ 	​def​ meth1(p1, p2, &block)

	​ 	 puts block.inspect

	​ 	​end​

	​ 	meth1(1,2) { ​"a block"​ }

	​ 	meth1(3,4)

Produces:
	​ 	#<Proc:0x007f97cb12c400@prog.rb:4>

	​ 	nil

	

	 By calling Proc.new, again associating
	 it with a block.[104]
	
	​ 	block = Proc.new { ​"a block"​ }

	​ 	block ​# => #<Proc:0x007fd4a4064638@prog.rb:1>​

	

	 By calling the method Object#lambda,
	 associating a block with the call.
	
	​ 	block = lambda { ​"a block"​ }

	​ 	block ​# => #<Proc:0x007f9d4c12c5c8@prog.rb:1 (lambda)>​

	

	 Using the ​->​
	 syntax.
	
	​ 	lam = ->(p1, p2) { p1 + p2 }

	​ 	lam.call(4, 3) ​# => 7​

	 Note that there cannot be a space between ​->​
	 and the opening parenthesis.
	

	The first two styles of ​Proc​ object are
	identical in use. We’ll call these objects ​raw
	procs​. The third and fourth styles, generated by
	
 ​lambda​
 and ​->​, add some
	functionality to the ​Proc​ object, as
	we’ll see in a minute. We’ll call these objects
	​lambdas​.

	Here’s the big thing to remember: raw procs are basically
	designed to work as the bodies of control structures such as
	loops. Lambdas are intended to act like methods. So, lambdas
	are stricter when checking the parameters passed to them, and a
	​return​ in a lambda exits much as it would
	from a method.

Calling a Proc

	 You call a proc by invoking its methods
	
 ​call​
 ,
 ​yield​
 , or
	
 ​[]​
 . The three forms are
	 identical. Each takes arguments that are passed to the
	 proc, just as if it were a regular method. If the proc
	 is a lambda, Ruby will check that the number of
	 supplied arguments match the expected parameters.
	 You can also invoke a proc using the syntax
	 ​name.(​args...​)​. This is mapped
	 internally into ​name.call(args...)​.
	
Procs, break, and next

	 Within both raw procs and lambdas, executing
	 ​next​ causes the block to exit back to the
	 caller of the block. The return value is the value (or
	 values) passed to ​next​, or
	 ​nil​ if no values are passed.
	
	​ 	​def​ ten_times

	​ 	 10.times ​do​ |i|

	​ 	 ​if​ ​yield​(i)

	​ 	 puts ​"Caller likes ​#{i}​"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ten_times ​do​ |number|

	​ 	 ​next​(true) ​if​ number ==7

	​ 	​end​

Produces:
	​ 	Caller likes 7

	 Within a raw proc, a ​break​ terminates the method
	 that invoked the block. The return value of the method is any
	 parameters passed to the ​break​.
	
Return and Blocks

	A ​return​ from inside a ​raw
	block​ that’s still in scope acts as a return from that
	scope. A return from a block whose original context is no
	longer valid raises an exception
	(​LocalJumpError​
	or
	​ThreadError​
	depending on the context). The following example illustrates
	the first case:

	​ 	​def​ meth1

	​ 	 (1..10).each ​do​ |val|

	​ 	 ​return​ val ​# returns from meth1​

	​ 	 ​end​

	​ 	​end​

	​ 	meth1 ​# => 1​

	The following example shows a return failing because the context of its
	block no longer exists:

	​ 	​def​ meth2(&b)

	​ 	 b

	​ 	​end​

	​ 	

	​ 	res = meth2 { ​return​ }

	​ 	res.call

Produces:
	​ 	 from prog.rb:6:in `call'

	​ 	 from prog.rb:6:in `<main>'

	​ 	prog.rb:5:in `block in <main>': unexpected return (LocalJumpError)

	And here’s a return failing because the block is created in one thread
	and called in another:

	​ 	​def​ meth3

	​ 	 ​yield​

	​ 	​end​

	​ 	

	​ 	t = Thread.new ​do​

	​ 	 meth3 { ​return​ }

	​ 	​end​

	​ 	

	​ 	t.join

Produces:
	​ 	 from prog.rb:2:in `meth3'

	​ 	 from prog.rb:6:in `block in <main>'

	​ 	prog.rb:6:in `block (2 levels) in <main>': unexpected return (LocalJumpError)

	This is also true if you create the raw proc using
	
 ​Proc.new​
 .

	​ 	​def​ meth4

	​ 	 p = Proc.new { ​return​ 99 }

	​ 	 p.call

	​ 	 puts ​"Never get here"​

	​ 	​end​

	​ 	

	​ 	meth4 ​# => 99​

	A lambda
	behaves more like a free-standing method body: a
	​return​ simply returns from the block to the
	caller of the block:

	​ 	​def​ meth5

	​ 	 p = lambda { ​return​ 99 }

	​ 	 res = p.call

	​ 	 ​"The block returned ​#{res}​"​

	​ 	​end​

	​ 	

	​ 	meth5 ​# => "The block returned 99"​

	 Because of this, if you use Module#define_method,
	 you’ll probably want to pass it a proc created using
	
 ​lambda​
 , not Proc.new, because ​return​
	 will work as expected in the former and will generate a
	 ​LocalJumpError​ in the latter.
	

22.14 Exceptions

 Ruby exceptions are objects of class ​Exception​ and its
 descendents (a full list of the built-in exceptions is given in
 Figure 1, ​Standard exception hierarchy​).

Raising Exceptions

	The Object#raise
	method raises an exception:

raise
raise string
raise thing <, string stack trace>

	The first form reraises the exception in
	​$!​
	or a new ​RuntimeError​ if
	​$!​ is ​nil​.
	The second form creates a new
	​RuntimeError​
	exception, setting its message to the given string.
	The third form creates an exception object by invoking the method
	
 ​exception​
 on its first argument, setting this
	exception’s message and backtrace to its second and third arguments.
	Class ​Exception​ and objects of class
	​Exception​ contain a factory method
	called
 ​exception​
 , so an exception
	class name or instance can be used as the first parameter to
	
 ​raise​
 .

	When an exception is raised, Ruby places a reference to the
	​Exception​ object in the global variable ​$!​.

Handling Exceptions

	Exceptions may be handled in the following ways:

	

	 Within the scope of a ​begin​/​end​
	 block:
	
 begin
 code...
 code...
 <rescue parm => var then
 error handling code... >*
 <else
 no exception code...>
 <ensure
 always executed code...>
 end

	

	 Within the body of a method:
	
def method name and args
 code...
 code...
 <rescue parm => var then
 error handling code... >*
 <else
 no exception code...>
 <ensure
 always executed code...>
end

	

	 After the execution of a single statement:
	
statement <rescue statement>*

	A block or method may have multiple ​rescue​
	clauses, and each ​rescue​ clause may specify
	zero or more exception parameters. A ​rescue​
	clause with no parameter is treated as if it had a parameter
	of
	​StandardError​. This
	means that some lower-level exceptions will not be caught by a
	parameterless ​rescue​ class. If you want to
	rescue every exception, use this:

	​ 	​rescue​ Exception => e

	When an exception is raised, Ruby scans the call stack until
	it finds an enclosing
	​begin​/​end​ block, method
	body, or statement with a ​rescue​ modifier.
	For each ​rescue​
	clause in that block, Ruby compares the raised exception
	against each of the ​rescue​ clause’s
	parameters in turn; each parameter is tested using
	​​parameter​===$!​. If the raised exception
	matches a ​rescue​ parameter, Ruby executes
	the body of the ​rescue​ and stops looking.
	If a matching ​rescue​ clause ends with
	​=>​ and a variable name, the variable is set to
	​$!​.

	Although the parameters to the ​rescue​
	clause are typically the names of exception classes, they
	can be arbitrary expressions (including method calls)
	that return an appropriate class.

	If no rescue clause matches the raised exception, Ruby moves
	up the stack looking for a higher-level
	​begin​/​end​ block that
	matches. If an exception propagates to the top level of the
	main thread without being rescued, the program terminates with
	a message.

	If an ​else​ clause is present, its body is executed if no exceptions were
	raised in ​code​. Exceptions raised during the
	execution of the ​else​ clause are not
	captured by ​rescue​ clauses in the same
	block as the ​else​.

	If an ​ensure​ clause is present, its body is
	always executed as the block is exited (even if an uncaught
	exception is in the process of being propagated).

	Within a ​rescue​ clause, ​raise​ with no parameters will
	reraise the exception in ​$!​.

Rescue Statement Modifier

	 A statement may have an optional ​rescue​
	 modifier followed by another statement (and by extension
	 another ​rescue​ modifier, and so on). The
	 ​rescue​ modifier takes no exception
	 parameter and rescues ​StandardError​ and its
	 children.
	

	 If an exception is raised to the left of a ​rescue​ modifier, the
	 statement on the left is abandoned, and the value of the overall line
	 is the value of the statement on the right:
	
	​ 	values = [​"1"​, ​"2.3"​, /pattern/]

	​ 	result = values.map {|v| Integer(v) ​rescue​ Float(v) ​rescue​ String(v) }

	​ 	result ​# => [1, 2.3, "(?-mix:pattern)"]​

Retrying a Block

	 The ​retry​

	 statement can be used within a ​rescue​
	 clause to restart the enclosing ​begin​/​end​ block from the beginning.
	

22.15 catch and throw

 The method Object#catch
 executes its associated block:

catch (object) do
 code...
end

 The method Object#throw
 interrupts the normal processing of statements:

throw(object <, obj>)

 When a ​throw​ is executed, Ruby searches up
 the call stack for the first
 ​catch​

 block with a matching object. If
 it is found, the search stops, and execution resumes past the
 end of the ​catch​’s block. If the

 ​throw​
 is passed a second parameter,
 that value is returned as the value of the

 ​catch​
 . Ruby honors the
 ​ensure​ clauses of any block expressions it
 traverses while looking for a corresponding
 ​catch​.

 If no ​catch​ block matches the
 ​throw​, Ruby raises an
 ​ArgumentError​
 exception at the location of the ​throw​.

Footnotes

	[99]	
As of Ruby 1.9, a comma
	may no longer be used to separate keys and values in hash
	literals. A comma still appears between each key/value
	pair.

	[100]	
Some of the information
	 here is based on
	
 ​http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt​
 .

	[101]	
Such names will not be
 usable from other source files with different encoding.

	[102]	
Prior to Ruby 1.9, you could use a
	colon instead of ​then​. This is no longer
	supported.

	[103]	
The ​retry​
	keyword is no longer permitted in a loop
	context.

	[104]	
There’s also a built-in Object#proc
	 method. In Ruby 1.8, this was equivalent to
	
 ​lambda​
 . In
	 Ruby 1.9 and later, it is the same as
	
 ​Proc.new​
 . Don’t use
	
 ​proc​
 in new code.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 23
Duck Typing

 You’ll have noticed that in Ruby we don’t declare the types of
 variables or methods—everything is just some kind of object.

 Now, it seems like folks react to this in two ways. Some like this
 kind of flexibility and feel comfortable writing code with
 dynamically typed variables and methods. If you’re one of those
 people, you might want to skip to
 Section 23.1, ​Classes Aren’t Types​. Some,
 though, get nervous when they think about all those objects
 floating around unconstrained. If you’ve come to Ruby from a
 language such as C# or Java, where you’re used to giving all your
 variables and methods a type, you may feel that Ruby is just too
 sloppy to use to write “real” applications.

 It isn’t.

 We’d like to spend a couple of paragraphs trying to convince you
 that the lack of static typing is not a problem when it comes to
 writing reliable applications. We’re not trying to criticize
 other languages here. Instead, we’d just like to contrast
 approaches.

 The reality is that the static type systems in most mainstream
 languages don’t really help that much in terms of program
 security. If Java’s type system were reliable, for example, it
 wouldn’t need to implement
 ​Class­Cast­Exception​. The exception is
 necessary, though, because there is runtime type uncertainty in
 Java (as there is in C++, C#, and others). Static typing can be
 good for optimizing code, and it can help IDEs do clever things
 with tooltip help, but we haven’t seen much evidence that it
 promotes more reliable code.

 On the other hand, once you use Ruby for a while, you realize that
 dynamically typed variables actually add to your productivity in
 many ways. You’ll also be surprised to discover that your fears
 about the type chaos were unfounded. Large, long-running Ruby
 programs run significant applications and just don’t throw any
 type-related errors. Why is this?

 Partly, it’s a question of common sense. If you coded in Java
 (pre--Java 1.5), all your containers were effectively untyped:
 everything in a container was just an
 ​Object​, and you cast it to the required
 type when you extracted an element. And yet you probably never saw
 a ​Class­Cast­Exception​ when you ran these programs. The
 structure of the code just didn’t permit it. You put
 ​Person​ objects in, and you later took
 ​Person​ objects out. You just don’t write
 programs that would work in another way.

 Well, it’s the same in Ruby. If you use a variable for some purpose,
 chances are very good that you’ll be using it for the same purpose
 when you access it again three lines later. The kind of chaos that
 ​could​ happen just doesn’t happen.

 On top of that, folks who code Ruby a lot tend to adopt a certain
 style of coding. They write lots of short methods and tend to test
 as they go along. The short methods mean that the scope of most
 variables is limited; there just isn’t that much time for things
 to go wrong with their type. And the testing catches the silly
 errors when they happen; typos and the like just don’t get a
 chance to propagate through the code.

 The upshot is that the “safety” in “type safety” is often
 illusory and that coding in a more dynamic language such as Ruby
 is both safe and productive. So, if you’re nervous about the lack
 of static typing in Ruby, we suggest you try to put those concerns
 on the back burner for a little while and give Ruby a try. We
 think you’ll be surprised how rarely you see errors because of
 type issues and how much more productive you feel once you
 start to exploit the power of dynamic typing.

23.1 Classes Aren’t Types

 The issue of types is actually somewhat deeper than an ongoing debate
 between strong typing advocates and the hippie-freak dynamic typing
 crowd. The real issue is the question, what is a type in the first
 place?

 If you’ve been coding in conventional typed languages, you’ve probably
 been taught that the ​type​ of an object is its
 ​class​—all objects are instances of some class, and that class
 is the object’s type. The class defines the operations (methods)
 the object can support, along with the state (instance variables) on
 which those methods operate. Let’s look at some Java code:

	​ 	Customer c;

	​ 	c = database.findCustomer(​"dave"​); ​/* Java */​

 This fragment declares the variable ​c​ to be of type
 ​Customer​ and sets it to reference the customer object for Dave
 that we’ve created from some database record. So, the type of the
 object in ​c​ is ​Customer​, right?

 Maybe. However, even in Java, the issue is slightly deeper. Java
 supports the concept of
 ​ interfaces​

 , which are a kind of
 emasculated abstract base class. A Java class can be declared as
 implementing multiple interfaces. Using this facility, you may have
 defined your classes as follows:

	​ 	​public​ ​interface​ Customer {

	​ 	 ​long​ getID();

	​ 	 ​Calendar​ getDateOfLastContact();

	​ 	 ​// ...​

	​ 	}

	​ 	

	​ 	​public​ ​class​ Person

	​ 	​implements​ Customer {

	​ 	

	​ 	 ​public​ ​long​ getID() { ... }

	​ 	 ​public​ ​Calendar​ getDateOfLastContact() { ... }

	​ 	 ​// ...​

	​ 	}

 So, even in Java, the class is not always the type—sometimes the type
 is a subset of the class, and sometimes objects implement multiple types.

 In Ruby, the class is never (OK, almost never) the type. Instead, the
 type of an object is defined more by what that object can do.
 In Ruby, we call this
 ​ duck
 typing​

 . If an object walks like a duck and talks like a duck, then
 the interpreter is happy to treat it as if it were a duck.

 Let’s look at an example. Perhaps we’ve written a method to write
 our customer’s name to the end of an open file:

	ducktyping/addcust.rb
	​ 	​class​ Customer

	​ 	 ​def​ initialize(first_name, last_name)

	​ 	 @first_name = first_name

	​ 	 @last_name = last_name

	​ 	 ​end​

	​ 	 ​def​ append_name_to_file(file)

	​ 	 file << @first_name << ​" "​ << @last_name

	​ 	 ​end​

	​ 	​end​

 Being good programmers, we’ll write a unit test for this. Be warned,
 though—it’s messy (and we’ll improve on it shortly):

	​ 	require ​'test/unit'​

	​ 	require_relative ​'addcust'​

	​ 	

	​ 	​class​ TestAddCustomer < Test::Unit::TestCase

	​ 	 ​def​ test_add

	​ 	 c = Customer.new(​"Ima"​, ​"Customer"​)

	​ 	 f = File.open(​"tmpfile"​, ​"w"​) ​do​ |f|

	​ 	 c.append_name_to_file(f)

	​ 	 ​end​

	​ 	 f = File.open(​"tmpfile"​) ​do​ |f|

	​ 	 assert_equal(​"Ima Customer"​, f.gets)

	​ 	 ​end​

	​ 	 ​ensure​

	​ 	 File.delete(​"tmpfile"​) ​if​ File.exist?(​"tmpfile"​)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.007193s, 139.0241 tests/s, 139.0241 assertions/s.

	​ 	1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 We have to do all that work to create a file to write to, then reopen
 it, and read in the contents to verify the correct string was
 written. We also have to delete the file when we’ve finished (but only
 if it exists).

 Instead, though, we could rely on duck typing. All we need is
 something that walks like a file and talks like a file that we can
 pass in to the method under test. And all that means ​in this
 circumstance​ is that we need an object that responds to the

 ​<<​
 method by appending something. Do we have something that
 does this? How about a humble ​String​?

	​ 	require ​'test/unit'​

	​ 	require_relative ​'addcust'​

	​ 	

	​ 	​class​ TestAddCustomer < Test::Unit::TestCase

	​ 	 ​def​ test_add

	​ 	 c = Customer.new(​"Ima"​, ​"Customer"​)

	​ 	 f = ​""​

	​ 	 c.append_name_to_file(f)

	​ 	 assert_equal(​"Ima Customer"​, f)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.006737s, 148.4340 tests/s, 148.4340 assertions/s.

	​ 	1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 The method under test thinks it’s writing to a file, but instead it’s
 just appending to a string. At the end, we can then just test that the
 content is correct.

 We didn’t have to use a string; an
 array would work just as well for the purposes of the test:

	​ 	require ​'test/unit'​

	​ 	require_relative ​'addcust'​

	​ 	

	​ 	​class​ TestAddCustomer < Test::Unit::TestCase

	​ 	 ​def​ test_add

	​ 	 c = Customer.new(​"Ima"​, ​"Customer"​)

	​ 	 f = []

	​ 	 c.append_name_to_file(f)

	​ 	 assert_equal([​"Ima"​, ​" "​, ​"Customer"​], f)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.006641s, 150.5797 tests/s, 150.5797 assertions/s.

	​ 	1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

 Indeed, this form may be more convenient if we wanted to check that
 the correct individual things were inserted.

 So, duck typing is convenient for testing, but what about in the body
 of applications themselves? Well, it turns out that the same
 thing that made the tests easy in the previous example also makes it
 easy to write flexible application code.

 In fact, Dave had an interesting experience where duck
 typing dug him (and a client) out of a hole. He’d written a large
 Ruby-based web application that (among other things) kept a database
 table full of details of participants in a competition. The system
 provided a comma-separated value (CSV) download capability so
 administrators could import this information into their local
 spreadsheets.

 Just before competition time, the phone starts ringing. The download,
 which had been working fine up to this point, was now taking so long
 that requests were timing out. The pressure was intense, because the
 administrators had to use this information to build schedules and send
 out mailings.

 A little experimentation showed that the problem was in the routine
 that took the results of the database query and generated the CSV
 download. The code looked something like this:

	​ 	​def​ csv_from_row(op, row)

	​ 	 res = ​""​

	​ 	 ​until​ row.empty?

	​ 	 entry = row.shift.to_s

	​ 	 ​if​ /[,"]/ =~ entry

	​ 	 entry = entry.gsub(/"/, ​'""'​)

	​ 	 res << ​'"'​ << entry << ​'"'​

	​ 	 ​else​

	​ 	 res << entry

	​ 	 ​end​

	​ 	 res << ​","​ ​unless​ row.empty?

	​ 	 ​end​

	​ 	 op << res << CRLF

	​ 	​end​

	​ 	

	​ 	result = ​""​

	​ 	query.each_row {|row| csv_from_row(result, row)}

	​ 	

	​ 	http.write result

 When this code ran against moderate-size data sets, it performed
 fine. But at a certain input size, it suddenly slowed right down. The
 culprit? Garbage collection. The approach was generating thousands of
 intermediate strings and building one big result string, one line at a
 time. As the big string grew, it needed more space, and garbage
 collection was invoked, which necessitated scanning and removing all
 the intermediate strings.

 The answer was simple and surprisingly effective. Rather than build
 the result string as it went along, the code was changed to store each
 CSV row as an element in an array. This meant that the intermediate
 lines were still referenced and hence were no longer garbage. It also
 meant that we were no longer building an ever-growing string that
 forced garbage collection. Thanks to duck typing, the change was
 trivial:

	​ 	​def​ csv_from_row(op, row)

	​ 	 ​# as before​

	​ 	​end​

	​ 	

	​ 	result = []

	​ 	query.each_row {|row| csv_from_row(result, row)}

	​ 	

	​ 	http.write result.join

 All that changed is that we passed an array into the

 ​csv_from_row​
 method. Because it (implicitly) used duck
 typing, the method itself was not modified; it continued to append the
 data it generated to its parameter, not caring what type that parameter was.
 After the method returned its result, we joined all
 those individual lines into one big string. This one change reduced
 the time to run from more than three minutes to a few seconds.

23.2 Coding like a Duck

 If you want to write your programs using the duck typing
 philosophy, you really need to remember only one thing: an
 object’s type is determined by what it can do, not by its
 class. (In fact, older versions of Ruby had a method Object#type
 that returned the class of an object.)

 What does this mean in practice? At one level, it simply means
 that there’s often little value testing the class of an object.

 For example, you may be writing a routine to add song information to
 a string. If you come from a C# or Java background, you may be
 tempted to write this:

	​ 	​def​ append_song(result, song)

	​ 	 ​# test we're given the right parameters​

	​ 	 ​unless​ result.kind_of?(String)

	​ 	 fail TypeError.new(​"String expected"​)

	​ 	 ​end​

	​ 	 ​unless​ song.kind_of?(Song)

	​ 	 fail TypeError.new(​"Song expected"​)

	​ 	 ​end​

	​ 	

	​ 	 result << song.title << ​" ("​ << song.artist << ​")"​

	​ 	​end​

	​ 	

	​ 	result = ​""​

	​ 	append_song(result, song)

 Embrace Ruby’s duck typing, and you’d write something far simpler:

	​ 	​def​ append_song(result, song)

	​ 	 result << song.title << ​" ("​ << song.artist << ​")"​

	​ 	​end​

	​ 	

	​ 	result = ​""​

	​ 	append_song(result, song)

 You don’t need to check the type of the arguments. If they
 support
 ​<<​
 (in the case of
 result) or
 ​title​
 and

 ​artist​
 (in the case of
 song), everything will just work. If they don’t, your
 method will throw an exception anyway (just as it would have
 done if you’d checked the types). But without the check, your
 method is suddenly a lot more flexible. You could pass it an
 array, a string, a file, or any other object that appends using

 ​<<​
 , and it would just work.

 Now sometimes you may want more than this style of ​laissez-faire​
 programming. You may have good reasons to check that a
 parameter can do what you need. Will you get thrown out of the duck
 typing club if you check the parameter against a class? No, you
 won’t.[105] But you may want to consider checking based on
 the object’s capabilities, rather than its class:

	​ 	​def​ append_song(result, song)

	​ 	 ​# test we're given the right parameters​

	​ 	 ​unless​ result.respond_to?(:<<)

	​ 	 fail TypeError.new(​"'result' needs `<<' capability"​)

	​ 	 ​end​

	​ 	 ​unless​ song.respond_to?(:artist) && song.respond_to?(:title)

	​ 	 fail TypeError.new(​"'song' needs 'artist' and 'title'"​)

	​ 	 ​end​

	​ 	

	​ 	 result << song.title << ​" ("​ << song.artist << ​")"​

	​ 	​end​

	​ 	

	​ 	result = ​""​

	​ 	append_song(result, song)

 However, before going down this path, make sure you’re getting
 a real benefit—it’s a lot of extra code to write and to maintain.

23.3 Standard Protocols and Coercions

 Although not technically part of the language, the interpreter and
 standard library use various protocols to handle issues that other
 languages would deal with using types.

 Some objects have more than one natural representation. For
 example, you may be writing a class to represent Roman numbers
 (I, II, III, IV, V, and so on). This class is not necessarily a
 subclass of ​Integer​, because its objects
 are representations of numbers, not numbers in their own right.
 At the same time, they do have an integer-like quality. It would
 be nice to be able to use objects of our Roman number class
 wherever Ruby was expecting to see an integer.

 To do this, Ruby has the concept of
 ​ conversion
 protocols​

 —an object may elect to have
 itself converted to an object of another class. Ruby has three
 standard ways of doing this.

 We’ve already come across the first. Methods such as
 ​to_s​
 and
 ​to_i​

 convert their receiver into strings and integers. These
 conversion methods are not particularly strict. If an object has
 some kind of decent representation as a string, for example, it
 will probably have a
 ​to_s​
 method. Our
 ​Roman​ class would probably implement

 ​to_s​
 in order to return the string
 representation of a number (VII, for instance).

 The second form of conversion function uses methods with names
 such as
 ​to_str​
 and

 ​to_int​
 . These are strict
 conversion functions. You implement them only if your object can
 naturally be used every place a string or an integer could be
 used. For example, our Roman number objects have a clear
 representation as an integer and so should implement

 ​to_int​
 . When it comes to stringiness,
 however, we have to think a bit harder.

 Roman numbers clearly have a string representation, but are they
 strings? Should we be able to use them wherever we can use a
 string itself? No, probably not. Logically, they’re a
 representation of a number. You can represent them as strings,
 but they aren’t plug-compatible with strings. For this reason, a
 Roman number won’t implement

 ​to_str​
 —it isn’t really a string.
 Just to drive this home, Roman numerals can be converted to
 strings using
 ​to_s​
 , but they aren’t
 inherently strings, so they don’t implement

 ​to_str​
 .

 To see how this works in practice, let’s look at opening a file.
 The first parameter to File.new can be either an existing file
 descriptor (represented by an integer) or a filename to open.
 However, Ruby doesn’t simply look at the first
 parameter and check whether its type is ​Fixnum​ or
 ​String​. Instead, it gives the object passed in the opportunity to
 represent itself as a number or a string. If it were written in Ruby, it
 may look something like this:

	​ 	​class​ File

	​ 	 ​def​ self.new(file, *args)

	​ 	 ​if​ file.respond_to?(:to_int)

	​ 	 IO.new(file.to_int, *args)

	​ 	 ​else​

	​ 	 name = file.to_str

	​ 	 ​# call operating system to open file 'name'​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 So, let’s see what happens if we want to pass a file descriptor
 integer stored as a Roman number into File.new. Because our class implements

 ​to_int​
 , the first

 ​respond_to?​
 test will succeed. We’ll
 pass an integer representation of our number to IO.open, and the file descriptor will be returned,
 all wrapped up in a new ​IO​ object.

 A small number of strict conversion functions are built into the
 standard library.

	
 ​to_ary​
 → ​Array​
	

	 This
	 is used when interpreter needs a parameter to a method to be
	 an array and when expanding parameters and assignments
	 containing the ​*xyz​ syntax.
	
	​ 	​class​ OneTwo

	​ 	 ​def​ to_ary

	​ 	 [1, 2]

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ot = OneTwo.new

	​ 	puts ot

Produces:
	​ 	1

	​ 	2

	
 ​to_a​
 → ​Array​
	

	 This is
	 used when interpreter needs to convert an object into an
	 array for parameter passing or multiple assignment.
	
	​ 	​class​ OneTwo

	​ 	 ​def​ to_a

	​ 	 [1, 2]

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ot = OneTwo.new

	​ 	a, b = *ot

	​ 	puts ​"a = ​#{a}​, b = ​#{b}​"​

	​ 	printf(​"%d -- %d\n"​, *ot)

Produces:
	​ 	a = 1, b = 2

	​ 	1 -- 2

	
 ​to_enum​
 → ​Enumerator​
	

	 This
	 converts an object (presumably a collection) to an
	 enumerator. It’s never called internally by the interpreter.
	

	
 ​to_hash​
 → ​Hash​
	

	 This
	 is used when the interpreter expects to see
	 ​Hash​.
	

	
 ​to_int​
 → ​Integer​
	

	 This
	 is used when the interpreter expects to see an integer value
	 (such as a file descriptor or as a parameter to Object#Integer).
	

	
 ​to_io​
 → ​IO​
	

	 Used when
	 the interpreter is expecting I/O objects (for example, as
	 parameters to the methods IO#reopen
	 or IO.select).
	

	
 ​to_open​
 → ​IO​
	

	 Called
	 (if defined) on the first parameter to IO.open.
	

	
 ​to_path​
 → ​String​
	

	 Called by the interpreter when it is looking for a
	 filename (for
	 example, by File#open).
	

	
 ​to_proc​
 → ​Proc​
	

	
	 Used to convert an object prefixed with an ampersand in a method call.
	
	​ 	​class​ OneTwo

	​ 	 ​def​ to_proc

	​ 	 proc { ​"one-two"​ }

	​ 	 ​end​

	​ 	​end​

	​ 	​def​ silly

	​ 	 ​yield​

	​ 	​end​

	​ 	

	​ 	ot = OneTwo.new

	​ 	silly(&ot) ​# => "one-two"​

	
 ​to_regexp​
 → ​Regexp​
	

	 Invoked
	 by Regexp#try_convert
	 to convert its argument to a regular expression.
	

	
 ​to_str​
 → ​String​
	

	 Used
	 pretty much any place the interpreter is looking for a
	 ​String​ value.
	
	​ 	​class​ OneTwo

	​ 	 ​def​ to_str

	​ 	 ​"one-two"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ot = OneTwo.new

	​ 	puts(​"count: "​ + ot)

	​ 	File.open(ot) ​rescue​ puts $!.message

Produces:
	​ 	count: one-two

	​ 	No such file or directory - one-two

	
 ​to_sym​
 → ​Symbol​
	

	 Expresses
	 the receiver as a symbol. This is used by the
	 interpreter when compiling instruction sequences, but it’s probably not
	 useful in user code.
	

 Note that classes such as ​Integer​ and ​Fixnum​
 implement the
 ​to_int​
 method, and ​String​
 implements
 ​to_str​
 . That way, you can call the strict
 conversion functions polymorphically:

	​ 	​# it doesn't matter if obj is a Fixnum or a​

	​ 	​# Roman number, the conversion still succeeds​

	​ 	num = obj.to_int

The Symbol.to_proc Trick

	Ruby implements the
	
 ​to_proc​

	for objects of class symbol. Say you want to convert an array
	of strings to uppercase. You could write this:

	​ 	names = ​%w{ant bee cat}​

	​ 	result = names.map {|name| name.upcase}

	That’s fairly concise, right? Return a new array where each element is the
	corresponding element in the original, converted to uppercase. But
	you can instead write this:

	​ 	names = ​%w{ant bee cat}​

	​ 	result = names.map(&:upcase)

	Now that’s concise: apply the upcase method to each element of
	names.

	So, how does it work? It relies on Ruby’s type coercions.
	Let’s start at the top.

	When you say ​names.map(&xxx)​, you’re telling Ruby to
	pass the ​Proc​ object in ​xxx​ to
	the
 ​map​
 method as a block. If
	​xxx​ isn’t already a ​Proc​
	object, Ruby tries to coerce it into one by sending it a
	
 ​to_proc​
 message.

	Now ​:upcase​ isn’t a Proc object—it’s a symbol. So
	when Ruby sees ​names.map(&:upcase)​, the first thing
	it does is try to convert the symbol ​:upcase​ into a
	​Proc​ by calling
	
 ​to_proc​
 . And,
	by an incredible coincidence, Ruby implements just such a method. If
	it was written in Ruby, it would look something like this:

	​ 	​def​ to_proc

	​ 	 proc { |obj, *args| obj.send(self, *args) }

	​ 	​end​

	This method creates a ​Proc​, which, when called on an object, sends
	that object the symbol itself. So, when ​names.map(&:upcase)​
	starts to iterate over the strings in names, it’ll call the block,
	passing in the first name and invoking its upcase method.

	It’s an incredibly elegant use of coercion and of closures. However,
	it comes at a price. The use of dynamic method invocations mean that the
	version of our code that uses ​&:upcase​ is about half as fast as
	the more explicitly coded block. This doesn’t worry me personally
	unless I happen to be in a performance-critical section of my code.

Numeric Coercion

	We previously said there were three types of
	conversion performed by the interpreter. We covered loose and strict
	conversion. The third is numeric coercion.

	Here’s the problem. When you write 1+2, Ruby knows to call the
	
 ​+​
 on the object ​1​ (a ​Fixnum​), passing it the
	​Fixnum​ 2 as a parameter. However, when you write 1+2.3, the
	same
 ​+​
 method now receives a ​Float​ parameter. How
	can it know what to do (particularly because checking the classes of your
	parameters is against the spirit of duck typing)?

	The answer lies in Ruby’s coercion protocol, based on the
	method
 ​coerce​
 . The basic
	operation of
	
 ​coerce​

	is simple. It takes two numbers (its receiver and its parameter). It returns a two-element array
	containing representations of these two numbers (but with the
	parameter first, followed by the receiver). The
	
 ​coerce​
 method guarantees that these
	two objects will have the same class and therefore that they
	can be added (or multiplied, compared, or whatever).

	​ 	1.coerce(2) ​# => [2, 1]​

	​ 	1.coerce(2.3) ​# => [2.3, 1.0]​

	​ 	(4.5).coerce(2.3) ​# => [2.3, 4.5]​

	​ 	(4.5).coerce(2) ​# => [2.0, 4.5]​

	The trick is that the receiver calls the
 ​coerce​
 method of its
	parameter to generate this array. This technique, called
 ​ double
	dispatch​

 , allows a method to change its
	behavior based not only on its class but also on the class of its
	parameter. In this case, we’re letting the parameter decide exactly
	​what​ classes of objects should get added (or multiplied,
	divided, and so on).

	Let’s say that we’re writing a new class that’s intended to take part in
	arithmetic. To participate in coercion, we need to implement a
	
 ​coerce​
 method. This takes some other kind of number as a
	parameter and returns an array containing two objects of the same
	class, whose values are equivalent to its parameter and itself.

	For our Roman number class, it’s fairly easy. Internally, each Roman
	number object holds its real value as a ​Fixnum​ in an instance
	variable, ​@value​. The
 ​coerce​
 method checks to see whether the
	class of its parameter is also an ​Integer​. If so, it returns its
	parameter and its internal value. If not, it first converts both
	to floating point.

	​ 	​class​ Roman

	​ 	 ​def​ initialize(value)

	​ 	 @value = value

	​ 	 ​end​

	​ 	 ​def​ coerce(other)

	​ 	 ​if​ Integer === other

	​ 	 [other, @value]

	​ 	 ​else​

	​ 	 [Float(other), Float(@value)]

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​# .. other Roman stuff​

	​ 	​end​

	​ 	

	​ 	iv = Roman.new(4)

	​ 	xi = Roman.new(11)

	​ 	

	​ 	3 * iv ​# => 12​

	​ 	1.2 * xi ​# => 13.2​

	Of course, class ​Roman​ as implemented
	doesn’t know how to do addition. You couldn’t have written
	​xi+3​ in the previous example, because
	​Roman​ doesn’t have a
	
 ​+​
 method. And that’s probably
	as it should be. But let’s go wild and implement addition for Roman
	numbers:

	​ 	​class​ Roman

	​ 	 MAX_ROMAN = 4999

	​ 	

	​ 	 attr_reader :value

	​ 	 protected :value

	​ 	

	​ 	 ​def​ initialize(value)

	​ 	 ​if​ value <= 0 || value > MAX_ROMAN

	​ 	 fail ​"Roman values must be > 0 and <= ​#{MAX_ROMAN}​"​

	​ 	 ​end​

	​ 	 @value = value

	​ 	 ​end​

	​ 	

	​ 	 ​def​ coerce(other)

	​ 	 ​if​ Integer === other

	​ 	 [other, @value]

	​ 	 ​else​

	​ 	 [Float(other), Float(@value)]

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ +(other)

	​ 	 ​if​ Roman === other

	​ 	 other = other.value

	​ 	 ​end​

	​ 	 ​if​ Fixnum === other && (other + @value) < MAX_ROMAN

	​ 	 Roman.new(@value + other)

	​ 	 ​else​

	​ 	 x, y = other.coerce(@value)

	​ 	 x + y

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 FACTORS = [[​"m"​, 1000], [​"cm"​, 900], [​"d"​, 500], [​"cd"​, 400],

	​ 	 [​"c"​, 100], [​"xc"​, 90], [​"l"​, 50], [​"xl"​, 40],

	​ 	 [​"x"​, 10], [​"ix"​, 9], [​"v"​, 5], [​"iv"​, 4],

	​ 	 [​"i"​, 1]]

	​ 	

	​ 	 ​def​ to_s

	​ 	 value = @value

	​ 	 roman = ​""​

	​ 	 ​for​ code, factor ​in​ FACTORS

	​ 	 count, value = value.divmod(factor)

	​ 	 roman << (code * count)

	​ 	 ​end​

	​ 	 roman

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	iv = Roman.new(4)

	​ 	xi = Roman.new(11)

	​ 	

	​ 	iv + 3 ​# => vii​

	​ 	iv + 3 + 4 ​# => xi​

	​ 	iv + 3.14159 ​# => 7.14159​

	​ 	xi + 4900 ​# => mmmmcmxi​

	​ 	xi + 4990 ​# => 5001​

	Finally, be careful with
 ​coerce​
 —try always to coerce into a
	more general type, or you may end up generating coercion loops. This is a situation
	where A tries to coerce to B and when B tries to coerce back to A.

23.4 Walk the Walk, Talk the Talk

 Duck typing can generate controversy. Every now and then a thread flares on
 the mailing lists or someone blogs for or against the concept. Many
 of the contributors to these discussions have some fairly extreme positions.

 Ultimately, though, duck typing isn’t a set of rules; it’s just
 a style of programming. Design your programs to balance paranoia
 and flexibility. If you feel the need to constrain the types of
 objects that the users of a method pass in, ask yourself
 why. Try to determine what could go wrong if you were expecting
 a ​String​ and instead get an
 ​Array​. Sometimes, the difference is
 crucially important. Often, though, it isn’t. Try erring on the
 more permissive side for a while, and see whether bad things
 happen. If not, perhaps duck typing isn’t just for the birds.

Footnotes

	[105]	
The duck typing club doesn’t check to see whether you’re a
 member anyway....

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 24
Metaprogramming

 The Jacquard loom, invented more than 200 years ago,
 was the first device controlled using punched cards—rows of holes in
 each card were used to control the pattern woven into the cloth. But
 imagine if instead of churning out fabric, the loom could
 punch more cards, and those cards could be fed back into the
 mechanism. The machine could be used to create new programming that it
 could then execute. And that would be metaprogramming—writing code
 that writes code.

 Programming is all about building layers of abstractions. As you solve
 problems, you’re building bridges from the unrelenting and mechanical
 world of silicon to the more ambiguous and fluid world we
 inhabit. Some programming languages—such as C—are close to the
 machine. The distance from C code to the application domain can be
 large. Other languages—Ruby, perhaps—provide higher-level
 abstractions and hence let you start coding closer to the target
 domain. For this reason, most people consider a higher-level language
 to be a better starting place for application development (although
 they’ll argue about the choice of language).

 But when you metaprogram, you are no longer limited to the set of
 abstractions built in to your programming language. Instead, you
 create new abstractions that are integrated into the host
 language. In effect, you’re creating a new, domain-specific
 programming language—one that lets you express the
 concepts you need to solve your particular problem.

 Ruby makes metaprogramming easy. As a result, most advanced Ruby
 programmers will use metaprogramming techniques to simplify their
 code. This chapter shows how they do it. It isn’t intended to be an
 exhaustive survey of metaprogramming techniques. Instead, we’ll look at
 the underlying Ruby principles that make metaprogramming
 possible. From there you’ll be able to invent your own metaprogramming
 idioms.

24.1 Objects and Classes

 Classes and objects are obviously central to Ruby, but at first sight
 they can be a little confusing. It seems like there are a lot of concepts:
 classes, objects, class objects, instance methods, class methods,
 singleton classes, and virtual classes. In reality, however, Ruby has
 just a single underlying class and object structure.

 A Ruby object has three components: a set of flags,
 some instance variables, and an associated
 class.
 A Ruby class is itself an object of class
 ​Class​. It
 contains all the things an object has plus a set of method
 definitions and a reference to a superclass (which is itself
 another class).

 And, basically, that’s it. From here, you could work out the details of
 metaprogramming for yourself. But, as always, the devil lurks in the
 details, so let’s dig a little deeper.

self and Method Calling

	Ruby has the concept of the
 ​ current
	object​

 . This current object is referenced by the
	built-in, read-only variable
	​self​. ​self​
	has two significant roles in a running Ruby
	program.

	First, ​self​ controls how Ruby
	finds instance variables. We already said that every object
	carries around a set of instance variables. When you access an
	instance variable, Ruby looks for it in the object referenced
	by ​self​.

	Second, ​self​ plays a vital role
	in method calling. In Ruby, each method call is made on some
	object. This object is called the
	
 ​ receiver​

 of the call. When you make a
	call such as ​items.size​, the object referenced
	by the variable ​items​ is the receiver and
	
 ​size​
 is the method to
	invoke.

	If you make a method call such as ​puts "hi"​,
	there’s no explicit receiver. In this case, Ruby uses the
	current object, ​self​, as the
	receiver. It goes to ​self​’s class
	and looks up the method (in this case,
	
 ​puts​
). If it can’t find the method in
	the class, it looks in the class’s superclass and then in that
	class’s superclass, stopping when it runs out of superclasses
	(which will happen after it has looked in
	​BasicObject​).[106]

	When you make a method call with an explicit receiver (for
	example, invoking ​items.size​), the process is
	surprisingly similar. The only change—but it’s a vitally
	important one—is the fact that
	​self​ is changed for the duration
	of the call. Before starting the method lookup process, Ruby
	sets ​self​ to the receiver (the
	object referenced by ​items​ in
	this case). Then, after the call returns, Ruby restores the
	value that ​self​ had before the
	call.

	Let’s see how this works in practice. Here’s a simple program:

	​ 	​class​ Test

	​ 	 ​def​ one

	​ 	 @var = 99

	​ 	 two

	​ 	 ​end​

	​ 	 ​def​ two

	​ 	 puts @var

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	t = Test.new

	​ 	t.one

Produces:
	​ 	99

	The call to Test.new on the second-to-last
	line creates a new object of class ​Test​,
	assigning that object to the variable
	​t​. Then, on the next line, we call the
	method
 ​t.one​
 . To execute this call, Ruby sets
	​self​ to ​t​ and then
	looks in ​t​’s class for the method
	
 ​one​
 . Ruby finds the method defined on line 2
	and calls it.

	Inside the method, we set the instance variable
	​@var​ to 99. This instance
	variable will be associated with the current object. What is
	that object? Well, the call to
 ​t.one​

	set ​self​ to
	​t​, so within the
	
 ​one​
 method,
	​self​ will be that particular
	instance of class ​Test​.

	On the next line,
 ​one​
 calls
	
 ​two​
 . Because there’s no explicit
	receiver, ​self​ is not
	changed. When Ruby looks for the method
	
 ​two​
 , it looks in
	​Test​, the class of
	​t​.

	The method
 ​two​
 references an instance variable
	​@var​. Again, Ruby looks for this variable in the current object
	and finds the same variable that was set by the method
 ​one​
 .

	The call to
 ​puts​
 at the end of
 ​two​
 works the same
	way. Again, because there’s no explicit receiver, ​self​ will be
	unchanged. Ruby looks for the
 ​puts​
 method in the class of the
	current object but can’t find it. It then looks in ​Test​’s
	superclass, class ​Object​. Again, it doesn’t find
	
 ​puts​
 . However, ​Object​ mixes in the module
	​Kernel​. We’ll talk more about this later; for now we can say that
	mixed-in modules act as if they were superclasses. The ​Kernel​
	module ​does​ define
 ​puts​
 , so the method is found and
	executed.

	After
 ​two​
 and
	
 ​one​
 return, Ruby resets
	​self​ to the value it had before
	the original call to
 ​t.one​
 .

	This explanation may seem labored, but understanding it is vital to
	mastering metaprogramming in Ruby.

self and Class Definitions

	We’ve seen that calling a method with an explicit receiver
	changes ​self​. Perhaps
	surprisingly, ​self​ is also
	changed by a class definition. This is a consequence of the
	fact that class definitions are actually executable code in
	Ruby—if we can execute code, we need to have a current
	object. A simple test shows what this object is:

	​ 	​class​ Test

	​ 	 puts ​"In the definition of class Test"​

	​ 	 puts ​"self = ​#{self}​"​

	​ 	 puts ​"Class of self = ​#{self.class}​"​

	​ 	​end​

Produces:
	​ 	In the definition of class Test

	​ 	self = Test

	​ 	Class of self = Class

	Inside a class definition, ​self​
	is set to the class object of the class being defined. This
	means that instance variables set in a class definition will
	be available to class methods (because
	​self​ will be the same when the
	variables are defined and when the methods execute):

	​ 	​class​ Test

	​ 	 @var = 99

	​ 	 ​def​ self.value_of_var

	​ 	 @var

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Test.value_of_var ​# => 99​

	The fact that ​self​ is set to the class during a class definition
	turns out to be a dramatically elegant decision, but to see why, we’ll
	first need to have a look at singletons.

24.2 Singletons

 Ruby lets you define methods that are specific to a particular
 object. These are called
 ​ singleton
 methods​

 . Let’s start with
 a simple string object:

	​ 	animal = ​"cat"​

	​ 	puts animal.upcase

Produces:
	​ 	CAT

 This results in the following object structure.

[image: images/classes/basic_class.png]

 The
 ​animal​ variable points to an object
 containing (among other things) the value of the string
 (​"cat"​) and a pointer to the object’s class,
 ​String​.

 When we call ​animal.upcase​, Ruby goes to the object
 referenced by the ​animal​ variable
 and then looks up the method
 ​upcase​
 in
 the class object referenced from the
 ​animal​ object. Our animal is a
 string and so has the methods of class
 ​String​ available.

 Now let’s make it more interesting. We’ll define a singleton method on
 the string referenced by ​animal​:

	​ 	animal = ​"cat"​

	​ 	​def​ animal.speak

	​ 	 puts ​"The ​#{self}​ says miaow"​

	​ 	​end​

	​ 	

	​ 	animal.speak

	​ 	puts animal.upcase

Produces:
	​ 	The cat says miaow

	​ 	CAT

 We’ve already seen how the call to ​animal.speak​ works when we
 looked at how methods are invoked. Ruby sets ​self​ to the string object
 ​"cat"​ referenced by ​animal​ and then looks for a method

 ​speak​
 in that object’s class. Surprisingly, it finds it. It’s
 initially surprising because the class of ​"cat"​ is ​String​,
 and ​String​ doesn’t have a
 ​speak​
 method. So, does Ruby
 have some kind of special-case magic for these methods that are
 defined on individual objects?

 Thankfully, the answer is “no.” Ruby’s object model is
 remarkably consistent. When we defined the singleton method for
 the ​"cat"​ object, Ruby created a new anonymous class
 and defined the
 ​speak​
 method in that
 class. This anonymous class is sometimes called a

 ​ singleton
 class​

 and other times
 an

 ​ eigenclass​

 .
 I prefer the former, because it ties in to the idea of singleton
 methods.

 Ruby makes this singleton class the class of the ​"cat"​ object
 and makes ​String​ (which was the original class of ​"cat"​) the
 superclass of the singleton class. The picture looks like this:

[image: images/classes/basic_singleton_class.png]

 Now let’s follow the call to ​animal.speak​. Ruby goes to
 the object referenced by ​animal​ and
 then looks in its class for the method

 ​speak​
 . The class of the
 ​animal​ object is the newly created
 singleton class, and it contains the method we need.

 What happens if we instead call ​animal.upcase​? The
 processing starts the same way: Ruby looks for the method

 ​upcase​
 in the singleton class but fails
 to find it there. It then follows the normal processing rules
 and starts looking up the chain of superclasses. The superclass
 of the singleton is ​String​, and Ruby
 finds the
 ​upcase​
 method there. Notice
 that there is no special-case processing here—Ruby method
 calls always work the same way.

Singletons and Classes

	Earlier, we said that inside a class definition,
	​self​ is set to the class object
	being defined. It turns out that this is the basis for one of
	the more elegant aspects of Ruby’s object model.

	Recall that we can define class methods in Ruby using either
	of the forms ​def self.xxx​ or
	​def ClassName.xxx​:

	​ 	​class​ Dave

	​ 	 ​def​ self.class_method_one

	​ 	 puts ​"Class method one"​

	​ 	 ​end​

	​ 	 ​def​ Dave.class_method_two

	​ 	 puts ​"Class method two"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Dave.class_method_one

	​ 	Dave.class_method_two

Produces:
	​ 	Class method one

	​ 	Class method two

	Now we know why the two forms are identical: inside the class
	definition, ​self​ is set to ​Dave​.

	But now that we’ve looked at singleton methods, we also know that, in
	reality, there is no such thing as class methods in Ruby. Both of the previous
	definitions define singleton methods on the class object. As
	with all other singleton methods, we can then call them via the object
	(in this case, the class ​Dave​).

	Before we created the two singleton methods in class ​Dave​, the
	class pointer in the class object pointed to class ​Class​. (That’s
	a confusing sentence. Another way of saying it is “​Dave​ is a
	class, so the class of ​Dave​ is class ​Class​,” but that’s
	pretty confusing, too.) The situation looks like this:

[image: images/classes/class_singleton.png]

	The object diagram for class ​Dave​ after
	the methods are defined looks like this:

[image: images/classes/class_singleton_after.png]

	Do you see how the singleton
	class is created, just as it was for the animal example? The
	class is inserted as the class of ​Dave​,
	and the original class of ​Dave​ is made
	this new class’s parent.

	We can now tie together the two uses of
	​self​, the current object. We
	talked about how instance variables are looked up in
	​self​, and we talked about how
	singleton methods defined on ​self​
	become class methods. Let’s use these facts to access instance
	variables for class objects:

	​ 	​class​ Test

	​ 	 @var = 99

	​ 	 ​def​ self.var

	​ 	 @var

	​ 	 ​end​

	​ 	 ​def​ self.var=(value)

	​ 	 @var = value

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"Original value = ​#{Test.var}​"​

	​ 	Test.var = ​"cat"​

	​ 	puts ​"New value = ​#{Test.var}​"​

Produces:
	​ 	Original value = 99

	​ 	New value = cat

	Newcomers to Ruby commonly make the mistake of setting
	instance variables inline in the class definition (as we did
	with ​@var​ in the previous code)
	and then attempting to access these variables from instance
	methods. As the code illustrates, this won’t work, because
	instance variables defined in the class body are associated
	with the class object, not with instances of the class.

Another Way to Access the Singleton Class

	We’ve seen how you can create methods in an object’s singleton class
	by adding the object reference to the method definition using
	something like ​def animal.speak​.

	You can do the same using Ruby’s ​class << an_object​
	notation:

	​ 	animal = ​"dog"​

	​ 	​class​ << animal

	​ 	 ​def​ speak

	​ 	 puts ​"The ​#{self}​ says WOOF!"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	animal.speak

Produces:
	​ 	The dog says WOOF!

	Inside this kind of class definition,
	​self​ is set to the singleton
	class for the given object
	(​animal​ in this case). Because
	class definitions return the value of the last statement
	executed in the class body, we can use this fact to get the
	singleton class object:

	​ 	animal = ​"dog"​

	​ 	​def​ animal.speak

	​ 	 puts ​"The ​#{self}​ says WOOF!"​

	​ 	​end​

	​ 	

	​ 	singleton = ​class​ << animal

	​ 	 ​def​ lie

	​ 	 puts ​"The ​#{self}​ lies down"​

	​ 	 ​end​

	​ 	 self ​# << return singleton class object​

	​ 	​end​

	​ 	

	​ 	animal.speak

	​ 	animal.lie

	​ 	puts ​"Singleton class object is ​#{singleton}​"​

	​ 	puts ​"It defines methods ​#{singleton.instance_methods - ​'cat'​.methods}​"​

Produces:
	​ 	The dog says WOOF!

	​ 	The dog lies down

	​ 	Singleton class object is #<Class:#<String:0x007fa6910471f0>>

	​ 	It defines methods [:speak, :lie]

	Note the notation that Ruby uses to denote a singleton class:
	​#<Class:#<String:...>>​.

	Ruby goes to some trouble to stop you from using singleton classes
	outside the context of their original object. For example, you can’t
	create a new instance of a singleton class:

	​ 	singleton = ​class​ << ​"cat"​; self; ​end​

	​ 	singleton.new

Produces:
	​ 	 from prog.rb:2:in `<main>'

	​ 	prog.rb:2:in `new': can't create instance of singleton class (TypeError)

	Let’s tie together what we know about instance variables,
	​self​, and singleton classes.
	We wrote class-level accessor
	methods to let us get and set the value of an instance
	variable defined in a class object. But Ruby already has
	
 ​attr_accessor​
 , which
	defines getter and setter methods. Normally, though, these are
	defined as instance methods and hence will access values
	stored in instances of a class. To make them work with
	class-level instance variables, we have to invoke
	
 ​attr_accessor​
 in the singleton class:

	​ 	​class​ Test

	​ 	 @var = 99

	​ 	 ​class​ << self

	​ 	 attr_accessor :var

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"Original value = ​#{Test.var}​"​

	​ 	Test.var = ​"cat"​

	​ 	puts ​"New value = ​#{Test.var}​"​

Produces:
	​ 	Original value = 99

	​ 	New value = cat

24.3 Inheritance and Visibility

 There’s a wrinkle to when it comes to method definition and class
 inheritance, but it’s fairly obscure. Within a class definition, you
 can change the visibility of a method in an ancestor class.
 For example, you can do something like this:

	​ 	​class​ Base

	​ 	 ​def​ a_method

	​ 	 puts ​"Got here"​

	​ 	 ​end​

	​ 	 private :a_method

	​ 	​end​

	​ 	

	​ 	​class​ Derived1 < Base

	​ 	 public :a_method

	​ 	​end​

	​ 	

	​ 	​class​ Derived2 < Base

	​ 	​end​

 In this example, you would be able to invoke

 ​a_method​
 in instances of class
 ​Derived1​ but not via instances of
 ​Base​ or ​Derived2​.

 So, how does Ruby pull off this feat of having one method
 with two different visibilities? Simply put, it cheats.

 If a subclass changes the visibility of a method in a parent,
 Ruby effectively inserts a hidden proxy method in the subclass
 that invokes the original method using
 ​super​. It then sets the visibility of that
 proxy to whatever you requested. This means that the following
 code:

	​ 	​class​ Derived1 < Base

	​ 	 public :a_method

	​ 	​end​

 is effectively the same as this:

	​ 	​class​ Derived1 < Base

	​ 	 ​def​ a_method(*)

	​ 	 ​super​

	​ 	 ​end​

	​ 	 public :a_method

	​ 	​end​

 The call to ​super​ can access the parent’s method regardless of
 its visibility, so the rewrite allows the subclass to override its
 parent’s visibility rules. Pretty scary, eh?

24.4 Modules and Mixins

 You know that when you include a module into a Ruby class, the
 instance methods in that module become available as instance methods
 of the class.

	​ 	​module​ Logger

	​ 	 ​def​ log(msg)

	​ 	 STDERR.puts Time.now.strftime(​"%H:%M:%S: "​) + ​"​#{self}​ (​#{msg}​)"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Song

	​ 	 include Logger

	​ 	​end​

	​ 	

	​ 	s = Song.new

	​ 	s.log(​"created"​)

Produces:
	​ 	12:31:37: #<Song:0x007f952b0478c0> (created)

 Ruby implements
 ​include​
 very simply:
 the module that you include is effectively added as a superclass
 of the class being defined. It’s as if the module is the parent
 of the class that it is mixed in to. And that would be the end
 of the description except for one small wrinkle. Because the
 module is injected into the chain of superclasses, it must
 itself hold a link to the original parent class. If it didn’t,
 there’d be no way of traversing the superclass chain to look up
 methods. However, you can mix the same module into many
 different classes, and those classes could potentially have
 totally different superclass chains. If there were just one
 module object that we mixed in to all these classes, there’d be
 no way of keeping track of the different superclasses for each.

 To get around this, Ruby uses a clever trick. When you include a
 module in class ​Example​, Ruby constructs
 a new class object, makes it the superclass of
 ​Example​, and then sets the superclass of
 the new class to be the original superclass of
 ​Example​. It then references the module’s methods
 from this new class object in such a way that when you look a
 method up in this class, it actually looks it up in the module:

[image: images/classes/include_module.png]

 A nice side effect of this arrangement is that if you change a module
 after including it in a class, those changes are reflected in the
 class (and the class’s objects). In this way, modules behave just like
 classes.

	​ 	​module​ Mod

	​ 	 ​def​ greeting

	​ 	 ​"Hello"​

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ Example

	​ 	 include Mod

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	puts ​"Before change, greeting is ​#{ex.greeting}​"​

	​ 	

	​ 	​module​ Mod

	​ 	 ​def​ greeting

	​ 	 ​"Hi"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"After change, greeting is ​#{ex.greeting}​"​

Produces:
	​ 	Before change, greeting is Hello

	​ 	After change, greeting is Hi

 If a module itself includes other modules, a chain of proxy classes
 will be added to any class that includes that module, one proxy for
 each module that is directly or indirectly included.

 Finally, Ruby will include a module only once in an inheritance
 chain—including a module that is already included by one of your
 superclasses has no effect.

prepend

 Ruby 2 introduced the
 ​prepend​

 method. Logically, this behaves just like

 ​include​
 , but the methods in the prepended
 module take precedence over those in the host class. Ruby pulls
 off this magic by inserting a dummy class in place of the
 original host class[107]
 and then inserting the prepended module between the
 two.«2.0»

 If a method inside a prepended module has the same name as one
 in the original class, it will be invoked instead of the
 original. The prepended method can then call the original
 using
 ​super​
 .

	​ 	​module​ VanityPuts

	​ 	 ​def​ puts(*args)

	​ 	 args.each ​do​ |arg|

	​ 	 ​super​(​"Dave says: ​#{arg}​"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Object

	​ 	 prepend VanityPuts

	​ 	​end​

	​ 	

	​ 	puts ​"Hello and"​, ​"goodbye"​

Produces:
	​ 	Dave says: Hello and

	​ 	Dave says: goodbye

 However, there is a problem with this—the change we just made
 to class Object is global. We’ll see how to fix that shortly
 when we look at refinements.

extend

	The
 ​include​
 method effectively adds a
	module as a superclass of
	​self​. It is used inside a class
	definition to make the instance methods in the module
	available to instances of the class.

	However, it is sometimes useful to add the instance methods to
	a particular object. You do this using Object#extend. Here’s an
	example:

	​ 	​module​ Humor

	​ 	 ​def​ tickle

	​ 	 ​"​#{self}​ says hee, hee!"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	obj = ​"Grouchy"​

	​ 	obj.extend Humor

	​ 	obj.tickle ​# => "Grouchy says hee, hee!"​

	Stop for a second to think about how this might be implemented.

	When Ruby executes ​obj.tickle​ in this code example,
	it does the usual trick of looking in the class of
	​obj​ for a method called
	
 ​tickle​
 . For
 ​extend​
 to work,
	it has to add the instance methods in the ​Humor​
	module into the superclass chain for the class of
	​obj​. So, just as with singleton method
	definitions, Ruby creates a singleton class for
	​obj​ and then includes the module
	​Humor​ in that class. In fact, just to prove
	that this is all that happens, here’s the C implementation of
	
 ​extend​
 in the current Ruby 1.9 interpreter:

	​ 	​void​ rb_extend_object(VALUE obj, VALUE module) {

	​ 	 rb_include_module(rb_singleton_class(obj), module);

	​ 	}

	There is an interesting trick with
	
 ​extend​
 .
	If you use it
	within a class definition, the module’s methods become class
	methods.
	This is because calling
 ​extend​
 is equivalent to
	​self.extend​, so the methods are added to ​self​, which in a
	class definition is the class itself.

	Here’s an example of adding a module’s methods at the class level:

	​ 	​module​ Humor

	​ 	 ​def​ tickle

	​ 	 ​"​#{self}​ says hee, hee!"​

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ Grouchy

	​ 	 extend Humor

	​ 	​end​

	​ 	

	​ 	Grouchy.tickle ​# => "Grouchy says hee, hee!"​

	Later, we’ll see
	how to use
 ​extend​
 to add macro-style methods
	to a class.

Refinements

 We previously looked at applying a change to a builtin class
 by defining the altered version of a method in a module, and
 then prepending that module in the class. When we subsequently
 call the method on instances of the class, it finds the
 version in the module first.«2.0»

 This technique is time-honored—frameworks such as Ruby on
 Rails rely on it. But it comes with a price—any changes we
 make like this are global. They apply not just to the code we
 wrote for our application, but also to the code in all the
 libraries and gems we use, too. It is possible that a change
 that made our code easier to write breaks someone else’s
 library code that we rely on.[108]

 Ruby 2.0 is experimenting with a new way of dealing with this
 problem. The technique is called ​refinements​.

 Now, before going any further, here is the mandatory
 warning. Refinements are not yet completely worked out. In
 fact, a fair amount of refinement functionality was removed
 just a few weeks before Ruby 2.0 was released. So what
 we’re documenting here may well become outdated as new
 releases of Ruby change the spec. If you are writing code that
 uses refinements, you’ll want to keep track of these changes.

 A refinement is a way of packaging a set of changes to one or
 more classes. These refinements are defined within a module.

 If a Ruby source file then elects to use this module of
 refinements, the change will apply to the source in that
 module past the point where the refinement is used. However
 code outside this file is not affected.

 Let’s make this concrete. Here’s our vanity version of

 ​puts​
 rewritten using refinements.

	​ 	​module​ VanityPuts

	​ 	 refine Object ​do​

	​ 	 private

	​ 	 ​def​ puts(*args)

	​ 	 args.each ​do​ |arg|

	​ 	 Kernel::puts(​"Dave says: ​#{arg}​"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	using VanityPuts

	​ 	

	​ 	puts ​"Hello"​, ​"world"​

Produces:
	​ 	prog.rb:2: warning: Refinements are experimental, and the behavior may change in

	​ 	future versions of Ruby!

	​ 	Dave says: Hello

	​ 	Dave says: world

 The refinement is contained in the module
 ​VanityPuts​. The ​refine​ block takes a
 class and a block. Within the block are the methods
 that you would like to update in that class. At this point, no
 change is made—you have defined a method, but haven’t yet told
 Ruby to use it.

 That’s what the ​using​ clause does. You give it a
 module containing one or more refinements, and it marks the
 refined objects to say “for the rest of this source file, when
 you make a call to an instance of ​Object​, first
 check to see if the method can be found in the refinement. If
 so, invoke it, otherwise invoke the original.

 Let’s step it up a notch. We’ll define three source
 files. Here’s one that contains a refinement definition:

	metaprogramming/ref1/vanity_refinement.rb
	​ 	​module​ VanityPuts

	​ 	 refine Object ​do​

	​ 	 private

	​ 	 ​def​ puts(*args)

	​ 	 args.each ​do​ |arg|

	​ 	 Kernel::puts(​"Dave says: ​#{arg}​"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 And here’s a file that uses this refinement.

	metaprogramming/ref1/file_using_refinement.rb
	​ 	using VanityPuts

	​ 	

	​ 	puts ​"I'm in ​#{File::basename(__FILE__)}​"​

	​ 	

	​ 	​def​ shout(msg)

	​ 	 puts(msg.upcase)

	​ 	​end​

 Finally, let’s run them from a third file:

	​ 	require_relative ​'vanity_refinement'​

	​ 	

	​ 	puts ​"About to require file using refinement"​

	​ 	require_relative ​'file_using_refinement'​

	​ 	puts ​"Back from require"​

	​ 	

	​ 	shout(​"finished"​)

Produces:
	​ 	prog.rb:2: warning: Refinements are experimental, and the behavior may change in

	​ 	future versions of Ruby!

	​ 	About to require file using refinement

	​ 	Dave says: I'm in file_using_refinement.rb

	​ 	Back from require

	​ 	Dave says: FINISHED

 Notice how the
 ​puts​
 calls in the main program
 are unadorned, but the calls in the file that uses the
 refinement has the vanity prefix.

Refinements—use and scoping

 You can define refinements in any module. A refinement may
 only refer to a class (not a module).

 The ​using​ call that activates a refinement module
 can only occur at the top-level scope or in a string that is
 evaluated. ​using​ may not be called inside a class
 or module definition.[109]

 The basic scoping rule is simple. A refinement is
 activated in a source file by calling

 ​using​
 . For the rest of that source file, the
 methods that are defined in that refinement are active.

Designing with Refinements

 Refinements are too new for the community to have come to
 any kind of consensus on the best way to use them. However,
 it seems likey that there are at least two basic use cases.

 The first is the case where a developer wants to make
 changes to a third party class for their own use. For
 example, a tool such as Rake, which issues a lot of calls to
 run external programs using the
 ​system​

 method might want to modify the built-in version of
 ​system​ so that it logs errors differently. However,
 it does not want that logging to apply to other calls to
 ​system​ that are not part of Rake. In this case, the
 code will use the refinement locally within its own source
 files. It will be an implementation detail, hidden from
 users of the code.

 The second use case is where a library writer offers the
 refinement as part of their external interface. For example,
 the Rails Active Support code defines methods such as
 ​hours​, ​minutes​, and ​ago​ on
 numbers, allowing you to write ​3.days.ago​. Right
 now, those changes to numbers are global. But, using
 refinements, the Rails team could code the new methods, but
 not add them in to any system classes. Instead, their API
 would document how to add them for yourself into just those
 source files that uses them. They might tell you to to
 write

	​ 	using Rails::Extensions::Durations

 in any source file that needs to use them.

 Obviously there are many more use cases. And the two we’ve
 mentioned are not mutually exclusive—the Rails framework,
 for example, is likely to want to use these duration-related
 methods itself, as well as making them available via a
 documented refinement. So this is an interesting time to
 work with Ruby—as a community we’ll be discussing how best
 to use refinements for many years.

24.5 Metaprogramming Class-Level Macros

 If you’ve used Ruby for any time at all, you’re likely to have used
 ​attr_accessor​
 , the method that defines reader
 and writer methods for instance variables:

	​ 	​class​ Song

	​ 	 attr_accessor :duration

	​ 	​end​

 If you’ve written a Ruby on Rails application, you’ve probably used

 ​has_many​
 :

	​ 	​class​ Album < ActiveRecord::Base

	​ 	 has_many :tracks

	​ 	​end​

 These are both examples of class-level methods that generate code
 behind the scenes. Because of the way they expand into something
 bigger, folks sometimes call these kinds of methods
 ​ macros​

 .

 Let’s create a trivial example and then build it up into something
 realistic. We’ll start by implementing a simple method that adds
 logging capabilities to instances of a class. We previously did this
 using a module—this time we’ll do it using a class-level
 method. Here’s the first iteration:

	​ 	​class​ Example

	​ 	 ​def​ self.add_logging

	​ 	 ​def​ log(msg)

	​ 	 STDERR.puts Time.now.strftime(​"%H:%M:%S: "​) + ​"​#{self}​ (​#{msg}​)"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 add_logging

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	ex.log(​"hello"​)

Produces:
	​ 	12:31:38: #<Example:0x007fc14310fa20> (hello)

 Clearly, this is a silly piece of code. But bear with me—it’ll
 get better. And we can still learn some stuff from it. First,
 notice that
 ​add_logging​
 is a
 class method—it is defined in the class object’s singleton
 class. That means we can call it later in the class
 definition without an explicit receiver, because
 ​self​ is set to the class object
 inside a class definition.

 Then, notice that the
 ​add_logging​
 method contains a nested
 method definition. This inner definition will get executed only when
 we call the
 ​add_logging​
 method. The result is that

 ​log​
 will be defined as an instance method of class
 ​Example​.

 Let’s take one more step. We can define the

 ​add_logging​
 method in one class and
 then use it in a subclass. This works because the singleton
 class hierarchy parallels the regular class hierarchy. As a
 result, class methods in a parent class are also available in
 the child class, as the following example shows.

	​ 	​class​ Logger

	​ 	 ​def​ self.add_logging

	​ 	 ​def​ log(msg)

	​ 	 STDERR.puts Time.now.strftime(​"%H:%M:%S: "​) + ​"​#{self}​ (​#{msg}​)"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Example < Logger

	​ 	 add_logging

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	ex.log(​"hello"​)

Produces:
	​ 	12:31:38: #<Example:0x007fcc5c0473d0> (hello)

 Think back to the two examples at the start of this
 section. Both work this way.
 ​attr_accessor​
 is an instance method defined in
 class ​Module​ and so is available in all module
 and class definitions.
 ​has_many​
 is a class
 method defined in the ​Base​ class within the Rails
 ​ActiveRecord​ module and so is available to all
 classes that subclass ​ActiveRecord::Base​.

 This example is still not particularly compelling; it would still be
 easier to add the
 ​log​
 method directly as an instance method
 of our ​Logger​ class. But what happens if we want to construct a
 different version of the
 ​log​
 method for each class that uses
 it? For example, let’s add the capability to add a short class-specific identifying
 string to the start of each log message. We want to be able to say
 something like this:

	​ 	​class​ Song < Logger

	​ 	 add_logging ​"Song"​

	​ 	​end​

	​ 	

	​ 	​class​ Album < Logger

	​ 	 add_logging ​"CD"​

	​ 	​end​

 To do this, let’s define the
 ​log​
 method on the
 fly. We can no longer use a straightforward
 ​def​...​end​-style
 definition. Instead, we’ll use one of the cornerstones of
 metaprogramming,

 ​define_method​
 .
 This takes the name of a method and a
 block, defining a method with the given name and with the block
 as the method body. Any arguments in the block definition become
 parameters to the method being defined.

	​ 	​class​ Logger

	​ 	 ​def​ self.add_logging(id_string)

	​ 	 define_method(:log) ​do​ |msg|

	​ 	 now = Time.now.strftime(​"%H:%M:%S"​)

	​ 	 STDERR.puts ​"​#{now}​-​#{id_string}​: ​#{self}​ (​#{msg}​)"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Song < Logger

	​ 	 add_logging ​"Tune"​

	​ 	​end​

	​ 	

	​ 	​class​ Album < Logger

	​ 	 add_logging ​"CD"​

	​ 	​end​

	​ 	

	​ 	song = Song.new

	​ 	song.log(​"rock on"​)

Produces:
	​ 	12:31:38-Tune: #<Song:0x007f9afb90e1b8> (rock on)

 There’s an important subtlety in this code. The body of
 the
 ​log​
 method contains this line:

	​ 	STDERR.puts ​"​#{now}​-​#{id_string}​: ​#{self}​ (​#{msg}​)"​

 The value ​now​ is a local variable,
 and ​msg​ is the parameter to the
 block. But ​id_string​ is the
 parameter to the enclosing
 ​add_logging​

 method. It’s accessible inside the block because block
 definitions create closures, allowing the context in which the
 block is defined to be carried forward and used when the block
 is used. In this case, we’re taking a value from a class-level
 method and using it in an instance method we’re defining. This
 is a common pattern when creating these kinds of class-level
 macros.

 As well as passing parameters from the class method into the body of
 the method being defined, we can also use the parameter to determine
 the name of the method or methods to create. Here’s an example that
 creates a new kind of
 ​attr_accessor​
 that logs all
 assignments to a given instance variable:

	​ 	​class​ AttrLogger

	​ 	 ​def​ self.attr_logger(name)

	​ 	 attr_reader name

	​ 	 define_method(​"​#{name}​="​) ​do​ |val|

	​ 	 puts ​"Assigning ​#{val.inspect}​ to ​#{name}​"​

	​ 	 instance_variable_set(​"@​#{name}​"​, val)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Example < AttrLogger

	​ 	 attr_logger :value

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	ex.value = 123

	​ 	puts ​"Value is ​#{ex.value}​"​

	​ 	ex.value = ​"cat"​

	​ 	puts ​"Value is now ​#{ex.value}​"​

Produces:
	​ 	Assigning 123 to value

	​ 	Value is 123

	​ 	Assigning "cat" to value

	​ 	Value is now cat

 Again, we use the fact that the block defining the method body is a
 closure, accessing the name of the attribute in the log message
 string. Notice we also make use of the fact that
 ​attr_reader​

 is simply a class method—we can call it inside our class method to
 define the reader method for our attribute. Note another common bit of
 metaprogramming—we use
 ​instance_variable_set​
 to set the
 value of an instance variable (duh). There’s a corresponding

 ​_get​
 method that fetches the value of a named instance variable.

Class Methods and Modules

	You can define class methods in one
	class and then use them in subclasses of that
	class. But it is often inappropriate to use subclassing,
	either because we already have to subclass some other class or because
	our design aesthetic rebels against making ​Song​ a
	subclass of ​Logger​.

	In these cases, you can use a module to hold your metaprogramming
	implementation. As we’ve seen, using
 ​extend​
 inside a class
	definition will add the methods in a module as class methods to the
	class being defined:

	​ 	​module​ AttrLogger

	​ 	 ​def​ attr_logger(name)

	​ 	 attr_reader name

	​ 	 define_method(​"​#{name}​="​) ​do​ |val|

	​ 	 puts ​"Assigning ​#{val.inspect}​ to ​#{name}​"​

	​ 	 instance_variable_set(​"@​#{name}​"​, val)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ Example

	​ 	 extend AttrLogger

	​ 	 attr_logger :value

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	ex.value = 123

	​ 	puts ​"Value is ​#{ex.value}​"​

	​ 	ex.value = ​"cat"​

	​ 	puts ​"Value is now ​#{ex.value}​"​

Produces:
	​ 	Assigning 123 to value

	​ 	Value is 123

	​ 	Assigning "cat" to value

	​ 	Value is now cat

	Things get a little trickier if you want to add both class methods and
	instance methods into the class being defined. Here’s one technique,
	used extensively in the implementation of Rails. It
	makes use of a Ruby hook method,
	
 ​included​
 , which is called
	automatically by Ruby when you include a module into a class. It is
	passed the class object of the class being defined.

	​ 	​module​ GeneralLogger

	​ 	 ​# Instance method to be added to any class that includes us​

	​ 	 ​def​ log(msg)

	​ 	 puts Time.now.strftime(​"%H:%M: "​) + msg

	​ 	 ​end​

	​ 	

	​ 	 ​# module containing class methods to be added​

	​ 	 ​module​ ClassMethods

	​ 	 ​def​ attr_logger(name)

	​ 	 attr_reader name

	​ 	 define_method(​"​#{name}​="​) ​do​ |val|

	​ 	 log ​"Assigning ​#{val.inspect}​ to ​#{name}​"​

	​ 	 instance_variable_set(​"@​#{name}​"​, val)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# extend host class with class methods when we're included​

	​ 	 ​def​ self.included(host_class)

	​ 	 host_class.extend(ClassMethods)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Example

	​ 	 include GeneralLogger

	​ 	

	​ 	 attr_logger :value

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	ex.log(​"New example created"​)

	​ 	ex.value = 123

	​ 	puts ​"Value is ​#{ex.value}​"​

	​ 	ex.value = ​"cat"​

	​ 	puts ​"Value is ​#{ex.value}​"​

Produces:
	​ 	12:31: New example created

	​ 	12:31: Assigning 123 to value

	​ 	Value is 123

	​ 	12:31: Assigning "cat" to value

	​ 	Value is cat

	Notice how the
 ​included​
 callback is used to extend the host class
	with the methods defined in the inner module ​ClassMethods​.

	Now, as an exercise, try executing the previous example in your
	head. For each line of code, work out the value of ​self​. Master this,
	and you’ve pretty much mastered this style of metaprogramming in Ruby.

24.6 Two Other Forms of Class Definition

 Just in case you thought we’d exhausted the ways of defining Ruby
 classes, let’s look at two other options.

Subclassing Expressions

	The first form is really nothing new—it’s simply a generalization of
	the regular class definition syntax. You know that you can write this:

	​ 	​class​ Parent

	​ 	 ...

	​ 	​end​

	​ 	​class​ Child < Parent

	​ 	 ...

	​ 	​end​

	What you might not know is that the thing to the right of the
	​<​ needn’t be just a class name; it can be any
	expression that returns a class object. In this code example,
	we have the constant ​Parent​. A constant
	is a simple form of expression, and in this case the constant
	​Parent​ holds the class object of the
	first class we defined.

	Ruby comes with a class called
	​Struct​,
	which allows you to define classes that contain just data
	attributes. For example, you could write this:

	​ 	Person = Struct.new(:name, :address, :likes)

	​ 	

	​ 	dave = Person.new(​'Dave'​, ​'TX'​)

	​ 	dave.likes = ​"Programming Languages"​

	​ 	puts dave

Produces:
	​ 	#<struct Person name="Dave", address="TX", likes="Programming Languages">

	The return value from ​Struct.new(...)​ is a class
	object. By assigning it to the constant
	​Person​, we can thereafter use
	​Person​ as if it were any other class.

	But say we wanted to change the
 ​to_s​

	method of our structure.

	We could do it by opening up the class and writing the
	following method.

	​ 	Person = Struct.new(:name, :address, :likes)

	​ 	​class​ Person

	​ 	 ​def​ to_s

	​ 	 ​"​#{self.name}​ lives in ​#{self.address}​ and likes ​#{self.likes}​"​

	​ 	 ​end​

	​ 	​end​

	However, we can do this more elegantly (although at the cost of an
	additional class object) by writing this:

	​ 	​class​ Person < Struct.new(:name, :address, :likes)

	​ 	 ​def​ to_s

	​ 	 ​"​#{self.name}​ lives in ​#{self.address}​ and likes ​#{self.likes}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	dave = Person.new(​'Dave'​, ​'Texas'​)

	​ 	dave.likes = ​"Programming Languages"​

	​ 	puts dave

Produces:
	​ 	Dave lives in Texas and likes Programming Languages

Creating Singleton Classes

	Let’s look at some Ruby code:

	​ 	​class​ Example

	​ 	​end​

	​ 	ex = Example.new

	When we call ​Example.new​, we’re invoking the method

 ​new​
 on the class object
 ​Example​. This is a regular method call—Ruby
 looks for the method
 ​new​
 in the class of the
 object (and the class of ​Example​ is
 ​Class​) and invokes it. So we can also invoke
 Class#new
 directly:

	​ 	some_class = Class.new

	​ 	puts some_class.class

Produces:
	​ 	Class

	If you pass ​Class.new​ a block, that block is used as the body of the class:

	​ 	some_class = Class.new ​do​

	​ 	 ​def​ self.class_method

	​ 	 puts ​"In class method"​

	​ 	 ​end​

	​ 	 ​def​ instance_method

	​ 	 puts ​"In instance method"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	some_class.class_method

	​ 	obj = some_class.new

	​ 	obj.instance_method

Produces:
	​ 	In class method

	​ 	In instance method

	By default, these classes will be direct descendents of
	​Object​. You can give them a different
	parent by passing the parent’s class as a parameter:

	​ 	some_class = Class.new(String) ​do​

	​ 	 ​def​ vowel_movement

	​ 	 tr ​'aeiou'​, ​'*'​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	obj = some_class.new(​"now is the time"​)

	​ 	puts obj.vowel_movement

Produces:
	​ 	n*w *s th* t*m*

How Classes Get Their Names

	 You may have noticed that the classes created by
	 ​Class.new​ have no name. However, if you assign the
	 class object for a class with no name to a constant, Ruby
	 automatically names the class after the constant:
	
	​ 	some_class = Class.new

	​ 	obj = some_class.new

	​ 	puts ​"Initial name is ​#{some_class.name}​"​

	​ 	SomeClass = some_class

	​ 	puts ​"Then the name is ​#{some_class.name}​"​

	​ 	puts ​"also works via the object: ​#{obj.class.name}​"​

Produces:
	​ 	Initial name is

	​ 	Then the name is SomeClass

	​ 	also works via the object: SomeClass

	We can use these dynamically constructed classes to extend Ruby in
	interesting ways. For example, here’s a simple reimplementation of the
	Ruby ​Struct​ class:

	​ 	​def​ MyStruct(*keys)

	​ 	 Class.new ​do​

	​ 	 attr_accessor *keys

	​ 	 ​def​ initialize(hash)

	​ 	 hash.each ​do​ |key, value|

	​ 	 instance_variable_set(​"@​#{key}​"​, value)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Person = MyStruct :name, :address, :likes

	​ 	dave = Person.new(name: ​"dave"​, address: ​"TX"​, likes: ​"Stilton"​)

	​ 	chad = Person.new(name: ​"chad"​, likes: ​"Jazz"​)

	​ 	chad.address = ​"CO"​

	​ 	

	​ 	puts ​"Dave's name is ​#{dave.name}​"​

	​ 	puts ​"Chad lives in ​#{chad.address}​"​

Produces:
	​ 	Dave's name is dave

	​ 	Chad lives in CO

24.7 instance_eval and class_eval

 The methods Object#instance_eval,
 Module#class_eval,
 and Module#module_eval
 let you set ​self​ to be some
 arbitrary object, evaluate the code in a block with, and then
 reset ​self​:

	​ 	​"cat"​.instance_eval ​do​

	​ 	 puts ​"Upper case = ​#{upcase}​"​

	​ 	 puts ​"Length is ​#{self.length}​"​

	​ 	​end​

Produces:
	​ 	Upper case = CAT

	​ 	Length is 3

 Both forms also take a string, but this is considered a little dangerous.

 First, it is slow—calling eval effectively compiles the code
 in the string before executing it. But, even worse,

 ​eval​
 can be dangerous. If there’s any chance
 that external data—stuff that comes from outside your
 application—can wind up inside the parameter to

 ​eval​
 , then you have a security hole, because
 that external data may end up containing arbitrary code that
 your application will blindly execute.

 That said, here’s an example using a string parameter:

	​ 	​"cat"​.instance_eval(​'puts "Upper=#{upcase}, length=#{self.length}"'​)

Produces:
	​ 	Upper=CAT, length=3

 ​class_eval​
 and

 ​instance_eval​
 both set
 ​self​ for the duration of the
 block. However, they differ in the way they set up the
 environment for method
 definition.
 ​class_eval​
 sets things up
 as if you were in the body of a class definition, so method
 definitions will define instance methods:

	​ 	​class​ MyClass

	​ 	​end​

	​ 	

	​ 	MyClass.class_eval ​do​

	​ 	 ​def​ instance_method

	​ 	 puts ​"In an instance method"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	obj = MyClass.new

	​ 	obj.instance_method

Produces:
	​ 	In an instance method

 In contrast, calling
 ​instance_eval​
 on a
 class acts as if you were working inside the singleton class of
 ​self​. Therefore, any methods you
 define will become class methods.

	​ 	​class​ MyClass

	​ 	​end​

	​ 	

	​ 	MyClass.instance_eval ​do​

	​ 	 ​def​ class_method

	​ 	 puts ​"In a class method"​

	​ 	 ​end​

	​ 	​end​

	​ 	MyClass.class_method

Produces:
	​ 	In a class method

 It might be helpful to remember that, when defining methods,

 ​class_eval​
 and

 ​instance_eval​
 have precisely the wrong
 names:
 ​class_eval​
 defines instance
 methods, and
 ​instance_eval​
 defines
 class methods. Go figure.

 Ruby has variants of these methods. Object#instance_exec,
 Module#class_exec,
 and Module#module_exec
 behave identically to their ​_eval​ counterparts but take
 only a block (that is, they do not take a string). Any arguments
 given to the methods are passed in as block parameters. This is
 an important feature. Previously it was impossible to pass an
 instance variable into a block given to one of the
 ​_eval​ methods—because
 ​self​ is changed by the call, these
 variables go out of scope. With the ​_exec​ form, you can
 now pass them in:

	​ 	@animal = ​"cat"​

	​ 	​"dog"​.instance_exec(@animal) ​do​ |other|

	​ 	 puts ​"​#{other}​ and ​#{self}​"​

	​ 	​end​

Produces:
	​ 	cat and dog

instance_eval and Constants

	Ruby 1.9 changed the way Ruby looks up constants when
	executing a block using
 ​instance_eval​

	and
 ​class_eval​
 . Ruby
	1.9.2 then reverted the change. In Ruby 1.8
	and Ruby 1.9.2, constants are looked up in the lexical
	scope in which they were referenced. In Ruby 1.9.0, they
	are looked up in the scope in which
	
 ​instance_eval​
 is called. This
	(artificial) example shows the behavior at the time I last
	built this book—it may well have changed again by the time
	you run it....

	​ 	​module​ One

	​ 	 CONST = ​"Defined in One"​

	​ 	 ​def​ self.eval_block(&block)

	​ 	 instance_eval(&block)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​module​ Two

	​ 	 CONST = ​"Defined in Two"​

	​ 	 ​def​ self.call_eval_block

	​ 	 One.eval_block ​do​

	​ 	 CONST

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Two.call_eval_block ​# => "Defined in Two"​

	In Ruby 1.9.0, this same code would evaluate to ​"Defined in One"​.

instance_eval and Domain-Specific Languages

	It turns out that
 ​instance_eval​
 has a pivotal role to play
	in a certain type of domain-specific language (DSL).
	For example, we might be writing a simple DSL for turtle
	graphics.[110] To draw a set of
	three 5x5 squares, we might write the following:[111]

	​ 	3.times ​do​

	​ 	 forward(8)

	​ 	 pen_down

	​ 	 4.times ​do​

	​ 	 forward(4)

	​ 	 left

	​ 	 ​end​

	​ 	 pen_up

	​ 	​end​

	Clearly,
 ​pen_down​
 ,
	
 ​forward​
 ,
	
 ​left​
 , and
	
 ​pen_up​
 can be implemented as Ruby
	methods. However, to call them without a receiver like this,
	either we have to be within a class that defines them (or is a
	child of such a class) or we have to make the methods global.
	
 ​instance_eval​
 to the rescue. We can
	define a class ​Turtle​ that defines the
	various methods we need as instance methods. We’ll also define
	a
 ​walk​
 method, which will execute our
	turtle DSL, and a
 ​draw​
 method to draw
	the resulting picture:

	​ 	​class​ Turtle

	​ 	 ​def​ left; ... ​end​

	​ 	 ​def​ right; ... ​end​

	​ 	 ​def​ forward(n); ... ​end​

	​ 	 ​def​ pen_up; .. ​end​

	​ 	 ​def​ pen_down; ... ​end​

	​ 	 ​def​ walk(...); ​end​

	​ 	 ​def​ draw; ... ​end​

	​ 	​end​

	If we implement
 ​walk​
 correctly, we can then write this:

	​ 	turtle = Turtle.new

	​ 	turtle.walk ​do​

	​ 	 3.times ​do​

	​ 	 forward(8)

	​ 	 pen_down

	​ 	 4.times ​do​

	​ 	 forward(4)

	​ 	 left

	​ 	 ​end​

	​ 	 pen_up

	​ 	 ​end​

	​ 	​end​

	​ 	turtle.draw

	So, what is the correct implementation of
 ​walk​
 ? Well, we
	clearly have to use
 ​instance_eval​
 , because we want the
	DSL commands in the block to call the methods in the turtle object. We
	also have to arrange to pass the block given to the
 ​walk​

	method to be evaluated by that
 ​instance_eval​
 call. Our
	implementation looks like this:

	​ 	​def​ walk(&block)

	​ 	 instance_eval(&block)

	​ 	​end​

	Notice how we captured the block into a variable and then expanded
	that variable back into a block in the call to
	
 ​instance_eval​
 .

	See Section 24.11, ​The Turtle Graphics Program​ for a complete listing of the
	turtle program.

	Is this a good use of
 ​instance_eval​
 ? It depends on the
	circumstances. The benefit is that the code inside the block looks
	simple—you don’t have to make the receiver explicit:

	​ 	4.times ​do​

	​ 	 turtle.forward(4)

	​ 	 turtle.left

	​ 	​end​

	There’s a drawback, though. Inside the block, scope isn’t what you
	think it is, so this code wouldn’t work:

	​ 	@size = 4

	​ 	turtle.walk ​do​

	​ 	 4.times ​do​

	​ 	 turtle.forward(@size)

	​ 	 turtle.left

	​ 	 ​end​

	​ 	​end​

	Instance variables are looked up in
	​self​, and
	​self​ in the block isn’t the same
	as ​self​ in the code that sets the
	instance variable ​@size​. Because
	of this, most people are moving away from this style of
	​instance_eval​ed block.

24.8 Hook Methods

 In ​Class Methods and Modules​, we defined
 a method called
 ​included​
 in our ​GeneralLogger​
 module. When this module was included in a class, Ruby automatically
 invoked this
 ​included​
 method, allowing our module to add
 class methods to the host class.

 ​included​
 is an example of a
 ​ hook method​

 (sometimes
 called a
 ​ callback​

). A hook method is a method that you write
 but that Ruby calls from within the interpreter when some particular
 event occurs. The interpreter looks for these methods by name—if you
 define a method in the right context with an appropriate name, Ruby
 will call it when the corresponding event happens.

 The methods that can be invoked from within the interpreter are:

	Method-related hooks
	

	
 ​method_added​
 ,
	
 ​method_missing​
 ,
	
 ​method_removed​
 ,
	
 ​method_undefined​
 ,
	
 ​singleton_method_added​
 ,
	
 ​singleton_method_removed​
 ,
	
 ​singleton_method_undefined​

	

	Class and module-related hooks
	

	
 ​append_features​
 ,
	
 ​const_missing​
 ,
	
 ​extend_object​
 ,
	
 ​extended​
 ,
	
 ​included​
 ,
	
 ​inherited​
 ,
	
 ​initialize_clone​
 ,
	
 ​initialize_copy​
 ,
	
 ​initialize_dup​

	

	Object marshaling hooks
	

	
 ​marshal_dump​
 ,
 ​marshal_load​

	

	Coercion hooks
	

	
 ​coerce​
 ,
 ​induced_from​
 , ​to_​xxx​​
	

 We won’t discuss all of them in this chapter—instead, we’ll
 show just a few examples of use. The reference section of this
 book describes the individual methods, and Chapter 23, ​Duck Typing​ discusses the coercion methods in more
 detail.

The inherited Hook

	If a class defines a class method called
	
 ​inherited​
 ,
	Ruby will call it whenever that class is subclassed (that is,
	whenever any class inherits from the original).

	This hook is often used in situations where a base class
	needs to keep track of its children. For example, an online store
	might offer a variety of shipping options. Each might be represented
	by a separate class, and each of these classes could be a subclass of
	a single ​Shipping​ class. This parent class could keep track of all
	the various shipping options by recording every class that subclasses
	it. When it comes time to display the shipping options to the user,
	the application could call the base class, asking it for a list of its
	children:

	​ 	​class​ Shipping ​# Base class​

	​ 	 @children = [] ​# this variable is in the class, not instances​

	​ 	

	​ 	 ​def​ self.inherited(child)

	​ 	 @children << child

	​ 	 ​end​

	​ 	

	​ 	 ​def​ self.shipping_options(weight, international)

	​ 	 @children.select {|child| child.can_ship(weight, international)}

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ MediaMail < Shipping

	​ 	 ​def​ self.can_ship(weight, international)

	​ 	 !international

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ FlatRatePriorityEnvelope < Shipping

	​ 	 ​def​ self.can_ship(weight, international)

	​ 	 weight < 64 && !international

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ InternationalFlatRateBox < Shipping

	​ 	 ​def​ self.can_ship(weight, international)

	​ 	 weight < 9*16 && international

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"Shipping 16oz domestic"​

	​ 	puts Shipping.shipping_options(16, false)

	​ 	

	​ 	puts ​"\nShipping 90oz domestic"​

	​ 	puts Shipping.shipping_options(90, false)

	​ 	

	​ 	puts ​"\nShipping 16oz international"​

	​ 	puts Shipping.shipping_options(16, true)

Produces:
	​ 	Shipping 16oz domestic

	​ 	MediaMail

	​ 	FlatRatePriorityEnvelope

	​ 	

	​ 	Shipping 90oz domestic

	​ 	MediaMail

	​ 	

	​ 	Shipping 16oz international

	​ 	InternationalFlatRateBox

	Command interpreters often use this pattern:
	the base class keeps a track of available commands, each of
	which is implemented in a subclass.

The method_missing Hook

	Earlier, we saw how Ruby executes a
	method call by looking for the method, first in the object’s
	class, then in its superclass, then in that class’s
	superclass, and so on. If the method call has an explicit
	receiver, then private methods are skipped in this search. If
	the method is not found by the time we run out of superclasses
	(because ​BasicObject​ has no
	superclass), then Ruby tries to invoke the hook method
	
 ​method_missing​

	on the original object. Again, the same process is
	followed—Ruby first looks in the object’s class, then in its
	superclass, and so on. However, Ruby predefines its own
	version of
 ​method_missing​
 in class
	​BasicObject​, so typically the search
	stops there. The built-in
	
 ​method_missing​
 basically raises an
	exception (either a ​NoMethodError​
	or a ​NameError​
	depending on the circumstances).

	The key here is that
 ​method_missing​
 is simply a Ruby
	method. We can override it in our own classes to handle calls to
	otherwise undefined methods in an application-specific way.

	
 ​method_missing​
 has a simple signature, but many people get it wrong:

	​ 	​def​ method_missing(name, *args, &block) ​# ...​

	The ​name​ argument receives the name of the method that couldn’t
	be found. It is passed as a symbol. The ​args​ argument is an
	array of the arguments that were passed in the original call. And the
	oft-forgotten ​block​ argument will receive any block passed to
	the original method.

	​ 	​def​ method_missing(name, *args, &block)

	​ 	 puts ​"Called ​#{name}​ with ​#{args.inspect}​ and ​#{block}​"​

	​ 	​end​

	​ 	

	​ 	wibble

	​ 	wobble 1, 2

	​ 	wurble(3, 4) { stuff }

Produces:
	​ 	Called wibble with [] and

	​ 	Called wobble with [1, 2] and

	​ 	Called wurble with [3, 4] and #<Proc:0x007fd7d910fb18@prog.rb:7>

	Before we get too deep into the details, I’ll offer a tip
	about etiquette. There are two main ways that people use
	
 ​method_missing​
 . The first intercepts
	every use of an undefined method and handles it. The second is
	more subtle; it intercepts all calls but handles only some of
	them. In the latter case, it is important to forward on the
	call to a superclass if you decide not to handle it in your
	
 ​method_missing​
 implementation:

	​ 	​class​ MyClass < OtherClass

	​ 	 ​def​ method_missing(name, *args, &block)

	​ 	 ​if​ <some condition>

	​ 	 ​# handle call​

	​ 	 ​else​

	​ 	 ​super​ ​# otherwise pass it on​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	If you fail to pass on calls that you don’t handle, your application
	will silently ignore calls to unknown methods in your class.

	Let’s show a couple of uses of
 ​method_missing​
 .

method_missing to Simulate Accessors

	 The
	 ​OpenStruct​
	 class is distributed with Ruby. It allows you to write
	 objects with attributes that are created dynamically by
	 assignment. (We describe it in more detail in the library documentation.) For example, you could write this:
	
	​ 	require ​'ostruct'​

	​ 	obj = OpenStruct.new(name: ​"Dave"​)

	​ 	obj.address = ​"Texas"​

	​ 	obj.likes = ​"Programming"​

	​ 	

	​ 	puts ​"​#{obj.name}​ lives in ​#{obj.address}​ and likes ​#{obj.likes}​"​

Produces:
	​ 	Dave lives in Texas and likes Programming

	 Let’s use
 ​method_missing​
 to write
	 our own version of ​OpenStruct​:
	
	​ 	​class​ MyOpenStruct < BasicObject

	​ 	 ​def​ initialize(initial_values = {})

	​ 	 @values = initial_values

	​ 	 ​end​

	​ 	 ​def​ _singleton_class

	​ 	 ​class​ << self

	​ 	 self

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​def​ method_missing(name, *args, &block)

	​ 	 ​if​ name[-1] == ​"="​

	​ 	 base_name = name[0..-2].intern

	​ 	 _singleton_class.instance_exec(name) ​do​ |name|

	​ 	 define_method(name) ​do​ |value|

	​ 	 @values[base_name] = value

	​ 	 ​end​

	​ 	 ​end​

	​ 	 @values[base_name] = args[0]

	​ 	 ​else​

	​ 	 _singleton_class.instance_exec(name) ​do​ |name|

	​ 	 define_method(name) ​do​

	​ 	 @values[name]

	​ 	 ​end​

	​ 	 ​end​

	​ 	 @values[name]

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	obj = MyOpenStruct.new(name: ​"Dave"​)

	​ 	obj.address = ​"Texas"​

	​ 	obj.likes = ​"Programming"​

	​ 	

	​ 	puts ​"​#{obj.name}​ lives in ​#{obj.address}​ and likes ​#{obj.likes}​"​

Produces:
	​ 	Dave lives in Texas and likes Programming

	 Notice how we base our class on
	 ​BasicObject​,
	 a class introduced in
	 Ruby 1.9. ​BasicObject​ is the
	 root of Ruby’s object hierarchy and contains only a minimal
	 number of methods:
	
	​ 	p BasicObject.instance_methods

Produces:
	​ 	[:==, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__, :__id__]

	 This is good, because it means that our
	 ​MyOpenStruct​ class will be able to
	 have attributes such as
 ​display​
 or
	
 ​class​
 . If instead
	 we’d based ​MyOpenStruct​ on class ​Object​, then these names,
	 along with forty-nine others, would have been predefined and hence wouldn’t
	 trigger
 ​method_missing​
 .
	

	 Notice also another common pattern inside
	
 ​method_missing​
 . The first time we
	 reference or assign to an attribute of our object, we access
	 or update the ​@values​ hash
	 appropriately. But we also define the method that the caller
	 was trying to access. This means that the next time this
	 attribute is used, it will use the method and not invoke
	
 ​method_missing​
 . This may or may not
	 be worth the trouble, depending on the access patterns to
	 your object.
	

	 Also notice how we had to jump through some hoops to define
	 the method. We want to define the method only for the
	 current object. This means we have to put the method into
	 the object’s singleton class. We can do that using
	
 ​instance_exec​
 and
	
 ​define_method​
 . But
	 that means we have to use the ​class << self​ trick to get the
	 object’s singleton class.
	 Through an interesting
	 implementation subtlety,
 ​define_method​
 will always define an
	 instance method, independent of whether it is invoked via
	
 ​instance_exec​
 or
 ​class_exec​
 .
	

	 However, this code reveals a dark underbelly of using
 ​method_missing​
 and
	 ​BasicObject​:
	
	​ 	obj = MyOpenStruct.new(name: ​"Dave"​)

	​ 	obj.address = ​"Texas"​

	​ 	

	​ 	o1 = obj.dup

	​ 	o1.name = ​"Mike"​

	​ 	o1.address = ​"Colorado"​

Produces:
	​ 	prog.rb:37:in `<main>': undefined method `name=' for nil:NilClass

	​ 	(NoMethodError)

	 The
 ​dup​
 method is not defined by ​BasicObject​; it appears
	 in class ​Object​. So when we called
 ​dup​
 , it was picked up
	 by our
 ​method_missing​
 handler, and we just returned ​nil​ (because we
	 don’t have yet have an attribute called ​dup​). We could fix this
	 so that it at least reports an error:
	
	​ 	​def​ method_missing(name, *args, &block)

	​ 	 ​if​ name[-1] == ​"="​

	​ 	 ​# as before...​

	​ 	 ​else​

	​ 	 ​super​ ​unless​ @values.has_key? name

	​ 	 ​# as before...​

	​ 	 ​end​

	​ 	​end​

	 This class now reports an error if we call
 ​dup​
 (or any
	 other method) on it. However, we still can’t
 ​dup​
 or
	
 ​clone​
 it (or inspect, convert to a string, and so on). Although
	 ​BasicObject​ seems like a natural fit for
 ​method_missing​
 , you may find it to
	 be more trouble than it’s worth.
	
method_missing as a Filter

	 As the previous example showed,
	
 ​method_missing​
 has some drawbacks
	 if you use it to intercept all calls. It is probably better
	 to use it to recognize certain patterns of call, passing on
	 those it doesn’t recognize to its parent class to handle.
	

	 An example of this is the dynamic finder facility in the
	 Ruby on Rails
	 ​ActiveRecord​
	 module. ActiveRecord is the object-relational library in
	 Rails—it allows you to access relational databases as if
	 they were object stores. One particular feature allows you
	 to find rows that match the criteria of having given values
	 in certain columns. For example, if an Active Record class
	 called ​Book​ were mapping a relational
	 table called ​books​ and the
	 ​books​ table included columns called
	 ​title​ and
	 ​author​, you could write this:
	
	​ 	pickaxe = Book.find_by_title(​"Programming Ruby"​)

	​ 	daves_books = Book.find_all_by_author(​"Dave Thomas"​)

	 Active Record does not predefine all these potential finder
	 methods. Instead, it uses our old friend
	
 ​method_missing​
 . Inside that method,
	 it looks for calls to undefined methods that match the
	 pattern ​/^find_(all_)?by_(.*)/​.[112]
	 If the method being invoked does not match this pattern or
	 if the fields in the method name don’t correspond to
	 columns in the database table, Active Record calls
	
 ​super​
 so that a genuine
	
 ​method_missing​
 report will be
	 generated.
	

24.9 One Last Example

 Let’s bring together all the metaprogramming topics we’ve discussed
 in a final example by writing a module that allows us to trace the
 execution of methods in any class that mixes the module in. This would
 let us write the following:

	​ 	require_relative ​'trace_calls'​

	​ 	​class​ Example

	​ 	 ​def​ one(arg)

	​ 	 puts ​"One called with ​#{arg}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ex1 = Example.new

	​ 	ex1.one(​"Hello"​) ​# no tracing from this call​

	​ 	

	​ 	​class​ Example

	​ 	 include TraceCalls

	​ 	 ​def​ two(arg1, arg2)

	​ 	 arg1 + arg2

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ex1.one(​"Goodbye"​) ​# but we see tracing from these two​

	​ 	puts ex1.two(4, 5)

Produces:
	​ 	One called with Hello

	​ 	==> calling one with ["Goodbye"]

	​ 	One called with Goodbye

	​ 	<== one returned nil

	​ 	==> calling two with [4, 5]

	​ 	<== two returned 9

	​ 	9

 We can see immediately that there’s a subtlety here. When we mix
 the
 ​TraceCalls​
 module into a class, it has to add tracing to any existing
 instance methods in that class. It also has to arrange to add
 tracing to any methods we subsequently add.

 Let’s start with the full listing of the ​TraceCalls​ module:

	metaprogramming/trace_calls.rb
	​ 	​module​ TraceCalls

	​ 	 ​def​ self.included(klass)

	​ 	 klass.instance_methods(false).each ​do​ |existing_method|

	​ 	 wrap(klass, existing_method)

	​ 	 ​end​

	​ 	 ​def​ klass.method_added(method) ​# note: nested definition​

	​ 	 ​unless​ @trace_calls_internal

	​ 	 @trace_calls_internal = true

	​ 	 TraceCalls.wrap(self, method)

	​ 	 @trace_calls_internal = false

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​def​ self.wrap(klass, method)

	​ 	 klass.instance_eval ​do​

	​ 	 method_object = instance_method(method)

	​ 	

	​ 	 define_method(method) ​do​ |*args, &block|

	​ 	 puts ​"==> calling ​#{method}​ with ​#{args.inspect}​"​

	​ 	 result = method_object.bind(self).call(*args, &block)

	​ 	 puts ​"<== ​#{method}​ returned ​#{result.inspect}​"​

	​ 	 result

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 When we include this module in a class, the
 ​included​
 hook
 method gets invoked. It first uses the
 ​instance_methods​

 reflection method to find all the existing instance methods in the host
 class (the ​false​ parameter limits the list to methods in the
 class itself, and not in its superclasses). For each existing method,
 the module calls a helper method,
 ​wrap​
 , to add some tracing
 code to it. We’ll talk about
 ​wrap​
 shortly.

 Next, the
 ​included​
 method uses another
 hook,

 ​method_added​
 . This
 is called by Ruby whenever a method is defined in the
 receiver. Note that we define this method in the class passed to
 the
 ​included​
 method. This means that
 the method will be called when methods are added to this host
 class and not to the module. This is what allows us to include
 ​TraceCalls​ at the top of a class and then
 add methods to that class—all those method definitions will be
 handled by
 ​method_added​
 .

 Now look at the code inside the

 ​method_added​
 method. We have to deal
 with a potential problem here. As you’ll see when we look at the

 ​wrap​
 method, we add tracing to a method
 by creating a new version of the method that calls the
 old. Inside
 ​method_added​
 , we call the

 ​wrap​
 function to add this tracing. But
 inside
 ​wrap​
 , we’ll define a new method to handle this wrapping,
 and that definition will invoke

 ​method_added​
 again, and then we’d call

 ​wrap​
 again, and so on, until the stack
 gets exhausted. To prevent this, we use an instance variable and
 do the wrapping only if we’re not already doing it.

 The
 ​wrap​
 method takes a class object and the name of a method
 to wrap. It finds the original definition of that method (using

 ​instance_method​
)
 and saves it. It then redefines this method.
 This new method outputs some tracing and then calls the original,
 passing in the parameters and block from the wrapper.[113]
 Note how we call the method by binding the method object to the
 current instance and then invoking that bound method.

 The key to understanding this code, and most metaprogramming code, is
 to follow the basic principles we worked out at the start of this
 chapter—how ​self​ changes as methods are called and classes are
 defined and how methods are called by looking for them in the class
 of the receiver. If you get stuck, do what we do and draw little boxes
 and arrows. We find it useful to stick with the convention used in
 this chapter: class links go to the right, and superclass links go
 up. Given an object, a method call is then a question of finding the
 receiver object, going right once, and then following the superclass chain
 up as far as you need to go.

24.10 Top-Level Execution Environment

 Finally, there’s one small detail we have to cover to complete the
 metaprogramming environment. Many times in this book we’ve claimed
 that everything in Ruby is an object. However, we’ve used one thing
 time and time again that appears to contradict this—the top-level
 Ruby execution environment:

	​ 	puts ​"Hello, World"​

 Not an object in sight. We may as well be writing some variant of
 Fortran or Basic. But dig deeper, and you’ll come across objects
 and classes lurking in even the simplest code.

 We know that the literal ​"Hello, World"​ generates a
 Ruby ​String​, so that’s one object. We
 also know that the bare method call to

 ​puts​
 is effectively the same as
 ​self.puts​. But what is ​self​?

	​ 	self.class ​# => Object​

 At the top level, we’re executing code in the context of some
 predefined object. When we define methods, we’re actually
 creating (private) instance methods for class
 ​Object​. This
 is fairly subtle; as they are in class
 ​Object​, these methods are available
 everywhere. And because we’re in the context of
 ​Object​, we can use all of
 ​Object​’s methods (including those mixed
 in from ​Kernel​) in function form. This
 explains why we can call ​Kernel​ methods
 such as
 ​puts​
 at the top level (and
 indeed throughout Ruby); it’s because these methods are part of
 every object. Top-level instance variables also belong to this
 top-level object.

 Metaprogramming is one of Ruby’s sharpest tools. Don’t be afraid to
 use it to raise up the level at which you program. But, at the same
 time, use it only when necessary—overly metaprogrammed applications
 can become pretty obscure pretty quickly.

24.11 The Turtle Graphics Program
	​ 	​class​ Turtle

	​ 	 ​# directions: 0 = E, 1 = S, 2 = W, 3 = N​

	​ 	 ​# axis: 0 = x, 1 = y​

	​ 	 ​def​ initialize

	​ 	 @board = Hash.new(​" "​)

	​ 	 @x = @y = 0

	​ 	 @direction = 0

	​ 	 pen_up

	​ 	 ​end​

	​ 	

	​ 	 ​def​ pen_up

	​ 	 @pen_down = false

	​ 	 ​end​

	​ 	

	​ 	 ​def​ pen_down

	​ 	 @pen_down = true

	​ 	 mark_current_location

	​ 	 ​end​

	​ 	

	​ 	 ​def​ forward(n=1)

	​ 	 n.times { move }

	​ 	 ​end​

	​ 	

	​ 	 ​def​ left

	​ 	 @direction -= 1

	​ 	 @direction = 3 ​if​ @direction < 0

	​ 	 ​end​

	​ 	

	​ 	 ​def​ right

	​ 	 @direction += 1

	​ 	 @direction = 0 ​if​ @direction > 3

	​ 	 ​end​

	​ 	

	​ 	 ​def​ walk(&block)

	​ 	 instance_eval(&block)

	​ 	 ​end​

	​ 	

	​ 	 ​def​ draw

	​ 	 min_x, max_x = @board.keys.map{|x,y| x}.minmax

	​ 	 min_y, max_y = @board.keys.map{|x,y| y}.minmax

	​ 	 min_y.upto(max_y) ​do​ |y|

	​ 	 min_x.upto(max_x) ​do​ |x|

	​ 	 print @board[[x,y]]

	​ 	 ​end​

	​ 	 puts

	​ 	 ​end​

	​ 	 ​end​

	​ 	 private

	​ 	

	​ 	 ​def​ move

	​ 	 increment = @direction > 1 ? -1 : 1

	​ 	 ​if​ @direction.even?

	​ 	 @x += increment

	​ 	 ​else​

	​ 	 @y += increment

	​ 	 ​end​

	​ 	 mark_current_location

	​ 	 ​end​

	​ 	

	​ 	 ​def​ mark_current_location

	​ 	 @board[[@x,@y]] = ​"#"​ ​if​ @pen_down

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	turtle = Turtle.new

	​ 	turtle.walk ​do​

	​ 	 3.times ​do​

	​ 	 forward(8)

	​ 	 pen_down

	​ 	 4.times ​do​

	​ 	 forward(4)

	​ 	 left

	​ 	 ​end​

	​ 	 pen_up

	​ 	 ​end​

	​ 	​end​

	​ 	turtle.draw

Produces:
	​ 	##### ##### #####

	​ 	# # # # # #

	​ 	# # # # # #

	​ 	# # # # # #

	​ 	##### ##### #####

Footnotes

	[106]	
If
	it can’t find the method in the object’s class
	hierarchy, Ruby looks for a method called
	
 ​method_missing​
 on the original
	receiver, starting back at the class of
	​self​ and then looking up the
	superclass
	chain.

	[107]	

 Actually, it inserts the dummy class above the original
 class, and then moves the methods from the original to the
 copy.

	[108]	

 This is clearly a problem in theory. Does it happen in
 practice? Actually, surprisingly little. But you can never
 be sure that things will quite work as you expect. Even if
 you don’t override these classes, it is possible you’re
 using two separate libraries whose patches to third-party
 classes clash.

	[109]	

 This is the area where we’re likely to see changes in the
 future.

	[110]	
In turtle graphics systems, you imagine you have a
	turtle you can command to move forward n squares, turn left, and
	turn right. You can also make the turtle raise and lower a pen. If
	the pen is lowered, a line will be drawn tracing the turtle’s
	subsequent movements. Very few of these turtles exist in the wild,
	so we tend to simulate them inside computers.

	[111]	
Yes, the ​forward(4)​ is correct in this
	code. The initial point is always drawn.

	[112]	
It also
	 looks for
	 ​/^find_or_(initialize|create)_by_(.*)/​.

	[113]	
The
 ability of a block to take a block parameter was added in Ruby 1.9.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 25
Reflection, ObjectSpace, and
 Distributed Ruby

 One of the advantages of dynamic languages such as Ruby is the ability
 to
 ​ introspect​

 —to examine aspects of a program from
 within the program itself. This is also called

 ​ reflection​

 .

 When people introspect, we think about our thoughts and feelings. This
 is interesting, because we’re using thought to analyze thought. It’s
 the same when programs use introspection—a program can discover the following
 information about itself:

	
What objects it contains

	
Its class hierarchy

	
The attributes and methods of objects

	
Information on methods

 Armed with this information, we can look at particular objects and
 decide which of their methods to call at runtime—even if the class
 of the object didn’t exist when we first wrote the code. We can also
 start doing clever things, perhaps modifying the program while it’s
 running. Later in this chapter we’ll look at distributed Ruby and
 marshaling, two reflection-based technologies that let us send objects
 around the world and through time.

25.1 Looking at Objects

 Have you ever craved the ability to traverse all the
 living objects in your program? We have! Ruby lets you perform
 this trick with ObjectSpace.each_object.
 We can use it to do all sorts of neat
 tricks.

 For example, to iterate over all objects of type
 ​Complex​, you’d write the following:

	​ 	a = Complex(1, 2)

	​ 	b = Complex(99, -100)

	​ 	ObjectSpace.each_object(Complex) {|x| puts x }

Produces:
	​ 	0+1i

	​ 	99-100i

	​ 	1+2i

 Where did that extra number, ​(0+1i)​, come from? We
 didn’t define it in our program. Well, the
 ​Complex​ class defines a constant for
 ​I​, the square root of -1. Since we are examining
 all living objects in the system, these turn up as well.

 Let’s try the same example with different values. This time, they’re
 objects of type ​Fixnum​:

	​ 	a = 102

	​ 	b = 95

	​ 	ObjectSpace.each_object(Fixnum) {|x| p x }

 ​(Produces no output.)​

 Neither of the ​Fixnum​ objects we created showed
 up. That’s because ​ObjectSpace​ doesn’t know about
 objects with immediate values: ​Fixnum​,
 ​Symbol​, ​true​,
 ​false​, ​nil​,
 and (on 64-bit platforms) most
 ​Float​s.«2.0»

Looking Inside Objects

	Once you’ve found an interesting object, you may be tempted to find
	out just what it can do. Unlike static languages, where a variable’s
	type determines its class, and hence the methods it supports, Ruby
	supports liberated objects. You really cannot tell exactly what an
	object can do until you look under its hood.[114] We talk about this in
	Chapter 23, ​Duck Typing​.

	For instance, we can get a list of all the methods to which an
	object will respond (these include methods in an object’s
	class and that class’s
	ancestors):

	​ 	r = 1..10 ​# Create a Range object​

	​ 	list = r.methods

	​ 	list.length ​# => 111​

	​ 	list[0..3] ​# => [:==, :===, :eql?, :hash]​

	We can check to see whether an object responds to a particular
	method:

	​ 	r = 1..10

	​ 	r.respond_to?(​"frozen?"​) ​# => true​

	​ 	r.respond_to?(:has_key?) ​# => false​

	​ 	​"me"​.respond_to?(​"=="​) ​# => true​

	We can ask for an object’s class and unique object ID
	and test its relationship to other
	classes:

	​ 	num = 1

	​ 	num.object_id ​# => 3​

	​ 	num.class ​# => Fixnum​

	​ 	num.kind_of? Fixnum ​# => true​

	​ 	num.kind_of? Numeric ​# => true​

	​ 	num.instance_of? Fixnum ​# => true​

	​ 	num.instance_of? Numeric ​# => false​

25.2 Looking at Classes

 Knowing about objects is one part of reflection, but to get the
 whole picture, you also need to be able to look at classes—the
 methods and constants that they contain.

 Looking at the class hierarchy is easy. You can get the parent
 of any particular class using Class#superclass. For
 classes ​and​ modules, the Module#ancestors
 method lists both superclasses and mixed-in
 modules:

	​ 	klass = Fixnum

	​ 	​begin​

	​ 	 print klass

	​ 	 klass = klass.superclass

	​ 	 print ​" < "​ ​if​ klass

	​ 	​end​ ​while​ klass

	​ 	puts

	​ 	p Fixnum.ancestors

Produces:
	​ 	Fixnum < Integer < Numeric < Object < BasicObject

	​ 	[Fixnum, Integer, Numeric, Comparable, Object, Kernel, BasicObject]

 If you want to build a complete class hierarchy, just run that
 code for every class in the system. We can use
 ​ObjectSpace​ to iterate over all
 ​Class​
 objects:

	​ 	ObjectSpace.each_object(Class) ​do​ |klass|

	​ 	 ​# ...​

	​ 	​end​

Looking Inside Classes

	We can find out a bit more about the methods and constants in
	a particular object. We can ask for methods
	by access level, and we can ask for just singleton methods.
	We can also take a look at the object’s constants, local, and
	instance variables:

	​ 	​class​ Demo

	​ 	 @@var = 99

	​ 	 CONST = 1.23

	​ 	private

	​ 	 ​def​ private_method

	​ 	 ​end​

	​ 	protected

	​ 	 ​def​ protected_method

	​ 	 ​end​

	​ 	public

	​ 	 ​def​ public_method

	​ 	 @inst = 1

	​ 	 i = 1

	​ 	 j = 2

	​ 	 local_variables

	​ 	 ​end​

	​ 	 ​def​ Demo.class_method

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Demo.private_instance_methods(false) ​# => [:private_method]​

	​ 	Demo.protected_instance_methods(false) ​# => [:protected_method]​

	​ 	Demo.public_instance_methods(false) ​# => [:public_method]​

	​ 	Demo.singleton_methods(false) ​# => [:class_method]​

	​ 	Demo.class_variables ​# => [:@@var]​

	​ 	Demo.constants(false) ​# => [:CONST]​

	​ 	

	​ 	demo = Demo.new

	​ 	demo.instance_variables ​# => []​

	​ 	​# Get 'public_method' to return its local variables​

	​ 	​# and set an instance variable​

	​ 	demo.public_method ​# => [:i, :j]​

	​ 	demo.instance_variables ​# => [:@inst]​

	You may be wondering what all the ​false​ parameters were in the
	previous code. As of Ruby 1.8, these reflection methods will by
	default recurse into parent classes, their parents, and so on, up
	the ancestor chain. Passing in ​false​ stops this kind of
	prying.

	Given a list of method names, we may now be tempted to try calling them.
	Fortunately, that’s easy with Ruby.

25.3 Calling Methods Dynamically

 The Object#send
 method lets you tell any object to invoke a method by name.

	​ 	​"John Coltrane"​.send(:length) ​# => 13​

	​ 	​"Miles Davis"​.send(​"sub"​, /iles/, ​'.'​) ​# => "M. Davis"​

 Another way of invoking methods dynamically uses
 ​Method​
 objects. A ​Method​
 object is like a ​Proc​ object: it
 represents a chunk of code and a context in which it
 executes. In this case, the code is the body of the method, and
 the context is the object that created the method. Once we have
 our ​Method​ object, we can execute it
 sometime later by sending it the message

 ​call​
 :

	​ 	trane = ​"John Coltrane"​.method(:length)

	​ 	miles = ​"Miles Davis"​.method(​"sub"​)

	​ 	

	​ 	trane.call ​# => 13​

	​ 	miles.call(/iles/, ​'.'​) ​# => "M. Davis"​

 You can pass the ​Method​ object around as
 you would any other object, and when you invoke Method#call,
 the method is run just as if you had invoked it on the original
 object. It’s like having a C-style function pointer but in a
 fully object-oriented style.

 You can use ​Method​ objects where you
 could use proc objects. For example, they work with
 iterators:

	​ 	​def​ double(a)

	​ 	 2*a

	​ 	​end​

	​ 	

	​ 	method_object = method(:double)

	​ 	

	​ 	[1, 3, 5, 7].map(&method_object) ​# => [2, 6, 10, 14]​

 ​Method​ objects are bound to one
 particular object. You can create
 ​ unbound​

 methods (of class
 ​UnboundMethod​)
 and then subsequently bind them to one or more objects. The
 binding creates a new ​Method​ object. As
 with aliases, unbound methods are references to the definition
 of the method at the time they are created:

	​ 	unbound_length = String.instance_method(:length)

	​ 	​class​ String

	​ 	 ​def​ length

	​ 	 99

	​ 	 ​end​

	​ 	​end​

	​ 	str = ​"cat"​

	​ 	str.length ​# => 99​

	​ 	bound_length = unbound_length.bind(str)

	​ 	bound_length.call ​# => 3​

 Because good things come in threes, here’s yet another way to invoke
 methods dynamically. The

 ​eval​

 method (and its variations such as

 ​class_eval​
 ,

 ​module_eval​
 , and

 ​instance_eval​
) will parse and execute
 an arbitrary string of legal Ruby source code.

	​ 	trane = ​%q{"John Coltrane".length}​

	​ 	miles = ​%q{"Miles Davis".sub(/iles/, '.')}​

	​ 	

	​ 	eval trane ​# => 13​

	​ 	eval miles ​# => "M. Davis"​

 When using
 ​eval​
 , it can be helpful to
 state explicitly the context in which the expression should be
 evaluated, rather than using the current context. You
 obtain a context using Object#binding
 at the desired point:

	​ 	​def​ get_a_binding

	​ 	 val = 123

	​ 	 binding

	​ 	​end​

	​ 	

	​ 	val = ​"cat"​

	​ 	

	​ 	the_binding = get_a_binding

	​ 	eval(​"val"​, the_binding) ​# => 123​

	​ 	eval(​"val"​) ​# => "cat"​

 The first
 ​eval​
 evaluates
 ​val​ in the context of the binding
 ​as it was​ when the method

 ​get_a_binding​
 was executing. In this
 binding, the variable ​val​ had a
 value of 123. The second
 ​eval​

 evaluates ​eval​ in the top-level
 binding, where it has the value ​"cat"​.

Performance Considerations

	As we’ve seen in this section, Ruby gives us several ways to
	invoke an arbitrary method of some object: Object#send, Method#call, and
	the various flavors of
 ​eval​
 .

	You may prefer to use any one of these techniques depending on
	your needs, but be aware that, as the following benchmark shows,
 ​eval​

	is significantly slower than the others (or, for optimistic
	readers,
 ​send​
 and
	
 ​call​
 are significantly faster than
	
 ​eval​
).

	​ 	require ​'benchmark'​

	​ 	include Benchmark

	​ 	

	​ 	test = ​"Stormy Weather"​

	​ 	m = test.method(:length)

	​ 	n = 100000

	​ 	

	​ 	bm(12) ​do​ |x|

	​ 	 x.report(​"call"​) { n.times { m.call } }

	​ 	 x.report(​"send"​) { n.times { test.send(:length) } }

	​ 	 x.report(​"eval"​) { n.times { eval ​"test.length"​ } }

	​ 	​end​

Produces:
	​ 	 user system total real

	​ 	call 0.020000 0.000000 0.020000 (0.022150)

	​ 	send 0.020000 0.000000 0.020000 (0.019678)

	​ 	eval 1.230000 0.000000 1.230000 (1.237393)

25.4 System Hooks

 A
 ​ hook​

 is a technique that lets you trap some Ruby event, such
 as object creation. Let’s take a look at some common Ruby hook techniques.

Hooking Method Calls

	The simplest hook technique in Ruby is to intercept calls to
	methods in system classes. Perhaps you want to log all the
	operating system commands your program executes. Simply rename
	the method Kernel.system, and substitute it with one of
	your own that both logs the command and calls the original
	​Kernel​
	method:

	​ 	​class​ Object

	​ 	 alias_method :old_system, :system

	​ 	 ​def​ system(*args)

	​ 	 old_system(*args).tap ​do​ |result|

	​ 	 puts ​"system(​#{args.join(​', '​)}​) returned ​#{result.inspect}​"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	system(​"date"​)

	​ 	system(​"kangaroo"​, ​"-hop 10"​, ​"skippy"​)

Produces:
	​ 	Mon May 27 12:31:42 CDT 2013

	​ 	system(date) returned true

	​ 	system(kangaroo, -hop 10, skippy) returned nil

	The problem with this technique is that you’re relying on there not
	being an existing method called
 ​old_system​
 . A better
	alternative is to make use of method objects, which are effectively
	anonymous:

	​ 	​class​ Object

	​ 	 old_system_method = instance_method(:system)

	​ 	 define_method(:system) ​do​ |*args|

	​ 	 old_system_method.bind(self).call(*args).tap ​do​ |result|

	​ 	 puts ​"system(​#{args.join(​', '​)}​) returned ​#{result.inspect}​"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	

	​ 	system(​"date"​)

	​ 	system(​"kangaroo"​, ​"-hop 10"​, ​"skippy"​)

Produces:
	​ 	Mon May 27 12:31:43 CDT 2013

	​ 	system(date) returned true

	​ 	system(kangaroo, -hop 10, skippy) returned nil

 Ruby 2.0 gives us a new way of doing this. Modules
 can be used to include new instance methods in some other
 module or class. Until now, these methods were added behind
 the host module or class’s own methods—if the module defined a
 method with the same name as one in the host, the host method
 would be called. Ruby 2 adds the
 ​prepend​
 method to
 modules. This lets you insert the module’s methods
 ​before​ the host’s. Within the module’s methods,
 calling
 ​super​
 calls the host’s method of the
 same name. This gives us:«2.0»

	​ 	​module​ SystemHook

	​ 	 private

	​ 	 ​def​ system(*args)

	​ 	 ​super​.tap ​do​ |result|

	​ 	 puts ​"system(​#{args.join(​', '​)}​) returned ​#{result.inspect}​"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Object

	​ 	 prepend SystemHook

	​ 	​end​

	​ 	

	​ 	system(​"date"​)

	​ 	system(​"kangaroo"​, ​"-hop 10"​, ​"skippy"​)

Produces:
	​ 	Mon May 27 12:31:43 CDT 2013

	​ 	system(date) returned true

	​ 	system(kangaroo, -hop 10, skippy) returned nil

Object Creation Hooks

	Ruby lets you get involved when objects are
	created. If you can be present
	when every object is born, you can do all sorts of interesting
	things: you can wrap them, add methods to them, remove methods
	from them, and add them to containers to implement
	persistence—you name it. We’ll show a simple example
	here. We’ll add a timestamp to every object as it’s
	created. First, we’ll add a
	​timestamp​ attribute to every
	object in the system. We can do this by hacking class
	​Object​ itself:

	​ 	​class​ Object

	​ 	 attr_accessor :timestamp

	​ 	​end​

	Then, we need to hook object creation to add this timestamp. One way to
	do this is to do our method-renaming trick on Class#new, the
	method that’s called to allocate space for a new object. The technique
	isn’t perfect—some built-in objects, such as literal strings, are
	constructed without calling
 ​new​
 —but it’ll work just fine
	for objects we write.

	​ 	​class​ Class

	​ 	 old_new = instance_method :new

	​ 	 define_method :new ​do​ |*args, &block|

	​ 	 result = old_new.bind(self).call(*args, &block)

	​ 	 result.timestamp = Time.now

	​ 	 result

	​ 	 ​end​

	​ 	​end​

	Finally, we can run a test. We’ll create a couple of objects a few
	milliseconds apart and check their timestamps:

	​ 	​class​ Test

	​ 	​end​

	​ 	

	​ 	obj1 = Test.new

	​ 	sleep(0.002)

	​ 	obj2 = Test.new

	​ 	obj1.timestamp.to_f ​# => 1369675903.251721​

	​ 	obj2.timestamp.to_f ​# => 1369675903.2541282​

25.5 Tracing Your Program’s Execution

 While we’re having fun reflecting on all the objects and classes
 in our programs, let’s not forget about the humble statements
 that make our code actually do things. It turns out that Ruby
 lets us look at these statements, too.

 First, you can watch the interpreter as it executes
 code. In older Rubies, you use

 ​set_trace_func​
 ,
 while in Ruby 2«2.0» you use the
 ​TracePoint​
 class. Both are used to execute a proc with all sorts of juicy
 debugging information whenever a new source line is executed,
 methods are called, objects are created, and so on.

 The reference section contains full descriptions of
 ​set_trace_func​

 and ​TracePoint​,
 but here’s a taste:

	​ 	​class​ Test

	​ 	 ​def​ test

	​ 	 a = 1

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	TracePoint.trace ​do​ |tp|

	​ 	 p tp

	​ 	​end​

	​ 	t = Test.new

	​ 	t.test

Produces:
	​ 	#<TracePoint:c_return `trace'@prog.rb:7>

	​ 	#<TracePoint:line@prog.rb:10>

	​ 	#<TracePoint:c_call `new'@prog.rb:10>

	​ 	#<TracePoint:c_call `initialize'@prog.rb:10>

	​ 	#<TracePoint:c_return `initialize'@prog.rb:10>

	​ 	#<TracePoint:c_return `new'@prog.rb:10>

	​ 	#<TracePoint:line@prog.rb:11>

	​ 	#<TracePoint:call `test'@prog.rb:2>

	​ 	#<TracePoint:line@prog.rb:3 in `test'>

	​ 	#<TracePoint:return `test'@prog.rb:4>

 The method
 ​trace_var​
 (described in the
 reference section) lets you add a hook to a global variable; whenever
 an assignment is made to the global, your proc is invoked.

How Did We Get Here?

	That’s a fair question...one we ask ourselves regularly. Mental lapses
	aside, in Ruby you can find out “how you got there”
	using the method
 ​caller​
 ,
	which returns an array of
	strings representing the current call stack:

	​ 	​def​ cat_a

	​ 	 puts caller

	​ 	​end​

	​ 	​def​ cat_b

	​ 	 cat_a

	​ 	​end​

	​ 	​def​ cat_c

	​ 	 cat_b

	​ 	​end​

	​ 	cat_c

Produces:
	​ 	prog.rb:5:in `cat_b'

	​ 	prog.rb:8:in `cat_c'

	​ 	prog.rb:10:in `<main>'

	Ruby 1.9 also introduces
 ​__callee__​
 , which returns the name of
	the current method.

Source Code

	Ruby executes programs from plain old files. You can look at these files
	to examine the source code that makes up your program using one of a number
	of techniques.

	The special variable
	​__FILE__​
	contains the name of the
	current source file. This leads to a fairly short (if cheating)
	Quine—a program that outputs its own source code:

	​ 	print File.read(__FILE__)

Produces:
	​ 	print File.read(__FILE__)

	As we saw in the previous section, the method Object#caller
	returns the call stack as a list. Each entry in this list starts off
	with a filename, a colon, and a line number in that file. You can
	parse this information to display source. In the following example,
	we have a main program, ​main.rb​, that calls a method in a
	separate file, ​sub.rb​. That method in turns invokes a block,
	where we traverse the call stack and write out the source lines
	involved. Notice the use of a hash of file contents, indexed by the
	filename.

	Here’s the code that dumps out the call stack, including source
	information:

	ospace/caller/stack_dumper.rb
	​ 	​def​ dump_call_stack

	​ 	 file_contents = {}

	​ 	 puts ​"File Line Source Line"​

	​ 	 puts ​"---------------+----+------------"​

	​ 	 caller.each ​do​ |position|

	​ 	 ​next​ ​unless​ position =~ /​\A​(.*?):(​\d​+)/

	​ 	 file = $1

	​ 	 line = Integer($2)

	​ 	 file_contents[file] ||= File.readlines(file)

	​ 	 printf(​"%-15s:%3d - %s"​, File.basename(file), line,

	​ 	 file_contents[file][line-1].lstrip)

	​ 	 ​end​

	​ 	​end​

	The (trivial) file ​sub.rb​ contains a single method:

	ospace/caller/sub.rb
	​ 	​def​ sub_method(v1, v2)

	​ 	 main_method(v1*3, v2*6)

	​ 	​end​

	The following is the main program, which invokes the stack dumper after
	being called back by the submethod.

	​ 	require_relative ​'sub'​

	​ 	require_relative ​'stack_dumper'​

	​ 	

	​ 	​def​ main_method(arg1, arg2)

	​ 	 dump_call_stack

	​ 	​end​

	​ 	

	​ 	sub_method(123, ​"cat"​)

Produces:
	​ 	File Line Source Line

	​ 	---------------+----+------------

	​ 	prog.rb : 5 - dump_call_stack

	​ 	sub.rb : 2 - main_method(v1*3, v2*6)

	​ 	prog.rb : 8 - sub_method(123, "cat")

	The
	​SCRIPT_LINES__​
	constant is closely related to this technique. If a program
	initializes a constant called
	​SCRIPT_LINES__​ with a hash, that hash
	will receive a new entry for every file subsequently loaded
	into the interpreter using
 ​require​
 or
	
 ​load​
 . The entry’s key is the name of
	the file, and the value is the source of the file as an array
	of strings.

25.6 Behind the Curtain: The Ruby VM

 Ruby 1.9 comes with a new virtual machine, called
 YARV. As well as being
 faster
 than the old interpreter, YARV exposes some of its state via Ruby
 classes.

 If you’d like to know what Ruby is doing with all that code you’re
 writing, you can ask YARV to show you the intermediate code that it is
 executing. You can ask it to compile the Ruby code in a string or in a
 file and then disassemble it and even run it.[115] Here’s a trivial example:

	​ 	code = RubyVM::InstructionSequence.compile(​'a = 1; puts 1 + a'​)

	​ 	puts code.disassemble

Produces:
	​ 	== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========

	​ 	local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)

	​ 	[2] a

	​ 	0000 trace 1 (1)

	​ 	0002 putobject_OP_INT2FIX_O_1_C_

	​ 	0003 setlocal_OP__WC__0 2

	​ 	0005 trace 1

	​ 	0007 putself

	​ 	0008 putobject_OP_INT2FIX_O_1_C_

	​ 	0009 getlocal_OP__WC__0 2

	​ 	0011 opt_plus <callinfo!mid:+, argc:1, ARGS_SKIP>

	​ 	0013 opt_send_simple <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>

	​ 	0015 leave

 Maybe you want to know how Ruby handles ​#{...}​
 substitutions in strings. Ask the VM.

	​ 	code = RubyVM::InstructionSequence.compile(​'a = 1; puts "a = #{a}."'​)

	​ 	puts code.disassemble

Produces:
	​ 	== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========

	​ 	local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)

	​ 	[2] a

	​ 	0000 trace 1 (1)

	​ 	0002 putobject_OP_INT2FIX_O_1_C_

	​ 	0003 setlocal_OP__WC__0 2

	​ 	0005 trace 1

	​ 	0007 putself

	​ 	0008 putobject "a = "

	​ 	0010 getlocal_OP__WC__0 2

	​ 	0012 tostring

	​ 	0013 putobject "."

	​ 	0015 concatstrings 3

	​ 	0017 opt_send_simple <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>

	​ 	0019 leave

 For a full list of the opcodes, print out ​RubyVM::INSTRUCTION_NAMES​.

25.7 Marshaling and Distributed Ruby

 Ruby features the ability to
 ​ serialize​

 objects, letting you
 store them somewhere and reconstitute them when needed. You can
 use this facility, for instance, to save a tree of objects that
 represent some portion of application state—a document, a CAD
 drawing, a piece of music, and so on.

 Ruby calls this kind of serialization

 ​ marshaling​

 (think of railroad marshaling
 yards where individual cars are assembled in sequence into a
 complete train, which is then dispatched somewhere). Saving an
 object and some or all of its components is done using the
 method Marshal.dump.
 Typically, you will dump an entire object tree starting with
 some given object. Later, you can reconstitute the object using
 Marshal.load.

 Here’s a short example. We have a class
 ​Chord​ that holds a collection of musical
 notes. We’d like to save away a particularly wonderful chord so
 we can e-mail it to a couple hundred of our closest
 friends so they can load it into their copy of Ruby and savor
 it too. Let’s start with the classes for
 ​Note​ and ​Chord​:

	ospace/chord.rb
	​ 	Note = Struct.new(:value) ​do​

	​ 	 ​def​ to_s

	​ 	 value.to_s

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Chord

	​ 	 ​def​ initialize(arr)

	​ 	 @arr = arr

	​ 	 ​end​

	​ 	

	​ 	 ​def​ play

	​ 	 @arr.join(​'-'​)

	​ 	 ​end​

	​ 	​end​

 Now we’ll create our masterpiece and use Marshal.dump to save a serialized version to
 disk:

	ospace/chord.rb
	​ 	c = Chord.new([Note.new(​"G"​),

	​ 	 Note.new(​"Bb"​),

	​ 	 Note.new(​"Db"​),

	​ 	 Note.new(​"E"​)])

	​ 	

	​ 	File.open(​"posterity"​, ​"w+"​) ​do​ |f|

	​ 	 Marshal.dump(c, f)

	​ 	​end​

 Finally, our grandchildren read it in and are transported by our
 creation’s beauty:

	​ 	chord = Marshal.load(File.open(​"posterity"​))

	​ 	chord.play ​# => "G-Bb-Db-E"​

Custom Serialization Strategy

	Not all objects can be dumped: bindings, procedure objects,
	instances of class ​IO​, and singleton
	objects cannot be saved outside the running Ruby environment
	(a
	​TypeError​
	will be raised if you try). Even if your object doesn’t
	contain one of these problematic objects, you may want to take
	control of object serialization yourself.

	​Marshal​ provides the hooks you need. In
	the objects that require custom serialization, simply
	implement two instance methods: one called
 ​marshal_dump​
 , which writes the object
	out to a string, and one called
	
 ​marshal_load​
 , which reads a string
	that you had previously created and uses it to initialize a
	newly allocated object. (In earlier Ruby versions you’d use
	methods called
 ​_dump​
 and
	
 ​_load​
 ,
	but the new versions play better with Ruby’s object allocation
	scheme.) The instance method
	
 ​marshal_dump​
 should return an object
	representing the state to be dumped. When the object is
	subsequently reconstituted using Marshal.load,
	the method
 ​marshal_load​
 will be
	called with this object and will use it to set the state of
	its receiver—it will be run in the context of an allocated
	but not initialized object of the class being loaded.

	For instance, here is a sample class that defines its own
	serialization. For whatever reasons,
	​Special​ doesn’t want to save one of its
	internal data members,
	​@volatile​. The author has decided
	to serialize the two other instance variables in an array.

	​ 	​class​ Special

	​ 	 ​def​ initialize(valuable, volatile, precious)

	​ 	 @valuable = valuable

	​ 	 @volatile = volatile

	​ 	 @precious = precious

	​ 	 ​end​

	​ 	

	​ 	 ​def​ marshal_dump

	​ 	 [@valuable, @precious]

	​ 	 ​end​

	​ 	

	​ 	 ​def​ marshal_load(variables)

	​ 	 @valuable = variables[0]

	​ 	 @precious = variables[1]

	​ 	 @volatile = ​"unknown"​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ to_s

	​ 	 ​"​#@valuable​ ​#@volatile​ ​#@precious​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	obj = Special.new(​"Hello"​, ​"there"​, ​"World"​)

	​ 	puts ​"Before: obj = ​#{obj}​"​

	​ 	data = Marshal.dump(obj)

	​ 	

	​ 	obj = Marshal.load(data)

	​ 	puts ​"After: obj = ​#{obj}​"​

Produces:
	​ 	Before: obj = Hello there World

	​ 	After: obj = Hello unknown World

	For more details, see the reference section.

YAML for Marshaling

	The ​Marshal​ module is built into the
	interpreter and uses a binary format to store objects
	externally. Although fast, this binary format has one major
	disadvantage: if the interpreter changes significantly, the
	marshal binary format may also change, and old dumped files
	may no longer be loadable.

	An alternative is to use a less fussy external format, preferably one
	using text rather than binary files. One option, supplied as a
	standard library, is
	YAML.[116]

	We can adapt our previous marshal example to use YAML. Rather than
	implement specific loading and dumping methods to control the marshal
	process, we simply define the method
 ​to_yaml_properties​
 ,
	which returns a list of instance variables to be saved:

	ospace/yaml.rb
	​ 	require ​'yaml'​

	​ 	

	​ 	​class​ Special

	​ 	 ​def​ initialize(valuable, volatile, precious)

	​ 	 @valuable = valuable

	​ 	 @volatile = volatile

	​ 	 @precious = precious

	​ 	 ​end​

	​ 	

	​ 	 ​def​ to_yaml_properties

	​ 	 ​%w{ @precious @valuable }​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ to_s

	​ 	 ​"​#@valuable​ ​#@volatile​ ​#@precious​"​

	​ 	 ​end​

	​ 	​end​

	​ 	obj = Special.new(​"Hello"​, ​"there"​, ​"World"​)

	​ 	

	​ 	puts ​"Before: obj = ​#{obj}​"​

	​ 	data = YAML.dump(obj)

	​ 	obj = YAML.load(data)

	​ 	puts ​"After: obj = ​#{obj}​"​

Produces:
	​ 	Before: obj = Hello there World

	​ 	After: obj = Hello World

	We can take a look at what YAML creates as the serialized form of the
	object—it’s pretty simple:

	​ 	obj = Special.new(​"Hello"​, ​"there"​, ​"World"​)

	​ 	puts YAML.dump(obj)

Produces:
	​ 	--- !ruby/object:Special

	​ 	precious: World

	​ 	valuable: Hello

Distributed Ruby

	Since we can serialize an object or a set of objects into a
	form suitable for out-of-process storage, we can transmit
	objects from one process to another. Couple this capability
	with the power of networking, and
	​voilà​—you have a distributed object
	system. To save you the trouble of having to write the code,
	we suggest using Masatoshi Seki’s Distributed Ruby library
	(drb), which is now available as a standard Ruby
	library.

	Using drb,
	a Ruby process may act as a server, as a client, or as both. A
	drb server acts as a source of objects, while a client is a user of
	those objects. To the client, it appears that the objects are local,
	but in reality the code is still being executed remotely.

	A server starts a service by associating an object with a given port.
	Threads are created internally to handle incoming requests on that
	port, so remember to join the drb thread before exiting your program:

	​ 	require ​'drb'​

	​ 	

	​ 	​class​ TestServer

	​ 	 ​def​ add(*args)

	​ 	 args.inject {|n,v| n + v}

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	server = TestServer.new

	​ 	DRb.start_service(​'druby://localhost:9000'​, server)

	​ 	DRb.thread.join ​# Don't exit just yet!​

	A simple drb client simply creates a local drb object and associates
	it with the object on the remote server; the local object is a proxy:

	ospace/drb/drb_client.rb
	​ 	require ​'drb'​

	​ 	DRb.start_service()

	​ 	obj = DRbObject.new(nil, ​'druby://localhost:9000'​)

	​ 	​# Now use obj​

	​ 	puts ​"Sum is: ​#{obj.add(1, 2, 3)}​"​

	The client connects to the server and calls the method
	
 ​add​
 , which uses the magic of
	
 ​inject​
 to sum its arguments. It
	returns the result, which the client prints out:

	​ 	Sum is: 6

	The initial ​nil​ argument to
	
 ​DRbObject​
 indicates that we want to
	attach to a new distributed object. We could also use an
	existing object.

	Ho hum, you say. This sounds like Java’s RMI or CORBA or
	whatever. Yes, it is a functional distributed object
	mechanism—but it is written in just a few hundred lines of
	Ruby code. No C, nothing fancy, just plain old Ruby code. Of
	course, it has no naming service, trader service, or
	anything like you’d see in CORBA, but it is simple and
	reasonably fast. On a 2.5GHz Power Mac system, this sample
	code runs at about 1,300 remote message calls per second. And
	if you do need naming services, DRb has a ring server that
	might fit the bill.

	And, if you like the look of Sun’s JavaSpaces, the basis of
	the JINI architecture, you’ll be interested to know that drb
	is distributed with a short module that does the same kind of
	thing. JavaSpaces is based on a technology called Linda. To
	prove that its Japanese author has a sense of humor, Ruby’s
	version of Linda is known as
	Rinda.

25.8 Compile Time? Runtime? Anytime!

 The important thing to remember about Ruby is that there isn’t a big
 difference between “compile time” and “runtime.” It’s all the
 same. You can add code to a running process. You
 can redefine methods on the fly, change their scope from public
 to private, and so on. You can even alter basic types, such
 as ​Class​ and ​Object​.

 Once you get used to this flexibility, it is hard to go back to a
 static language such as C++ or even to a half-static language such as
 Java.

 But then, why would you want to do that?

Footnotes

	[114]	
Or under its bonnet, for
	objects created to the east of the Atlantic

	[115]	
People often
 ask whether they can dump the opcodes out and later reload them. The
 answer is no—the interpreter has the code to do this, but it is
 disabled because there is not yet an intermediate code verifier for
 YARV.

	[116]	

 ​http://www.yaml.org​
 . YAML stands for YAML Ain’t
	Markup Language, but that hardly seems important.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 26
Locking Ruby in the Safe

 Walter Webcoder has a great idea for a
 portal site: the Web Arithmetic Page. Surrounded by all sorts of
 cool mathematical links and banner ads that will make him rich is
 a simple web form containing a text field and a button. Users type
 an arithmetic expression into the field, click the button, and the
 answer is displayed. All the world’s calculators become obsolete
 overnight; Walter cashes in and retires to devote his life to his
 collection of car license plate numbers.

 Implementing the calculator is easy, thinks Walter. He accesses the
 contents of the form field using Ruby’s CGI library and uses
 the
 ​eval​
 method to evaluate the string as an expression:

	​ 	require ​'cgi'​

	​ 	

	​ 	cgi = CGI.new(​"html4"​)

	​ 	

	​ 	expr = cgi[​"expression"​].to_s ​# Fetch the value of the form field "expression"​

	​ 	

	​ 	​begin​

	​ 	 result = eval(expr)

	​ 	​rescue​ Exception => detail

	​ 	 ​# handle bad expressions​

	​ 	​end​

	​ 	

	​ 	​# display result back to user...​

 Roughly seven seconds after Walter puts the application online, a
 twelve-year-old from Waxahachie with glandular problems and no
 real life types ​system("rm *")​ into the form, and
 like his computer’s files, Walter’s dreams come tumbling
 down.

 Walter learned an important lesson. ​All external data is
 dangerous. Don’t let it close to interfaces that can modify your
 system.​ In this case, the content of the form field was the
 external data, and the call to
 ​eval​
 was
 the security breach, allowing arbitrary code to be executed on
 Walter’s server.

 Fortunately, Ruby provides support for reducing this risk. All
 information from the outside world can be marked as

 ​ tainted​

 . When running in a safe mode,
 potentially dangerous methods will raise a
 ​SecurityError​
 if passed a tainted object.

26.1 Safe Levels

 The variable
 ​$SAFE​
 determines Ruby’s level of paranoia.

	$SAFE	Constraints
	0	

	 No checking of the use of externally supplied (tainted) data is
	 performed. This is Ruby’s default mode.
	

	

	 ≥ 1
	
	

	 Ruby disallows the use of tainted data by potentially
	 dangerous operations.
	

	

	 ≥ 2
	
	

	 Ruby prohibits the loading of program files from globally
	 writable locations.
	

	

	 ≥ 3
	
	

	 All newly created objects are considered tainted and untrusted.
	

	

	 ≥ 4
	
	

	 Ruby effectively partitions the running program in two. Nontrusted
	 objects may not be modified.
	

 (For more details of the checks
 performed at each safe level, refer to Section 26.4, ​Definition of the safe levels​.)

 The default value of ​$SAFE​ is zero
 under most circumstances. However, if a Ruby script is run
 setuid or setgid[117] or if it run under
 ​mod_ruby​, its safe level is automatically set to 1. The
 safe level may also be set by using the
 ​-T​
 command-line option and by assigning to
 ​$SAFE​ within the program. It is
 not possible to lower the value of
 ​$SAFE​ by assignment.

 The current value of ​$SAFE​ is
 inherited when new threads are created. However, within each
 thread, the value of ​$SAFE​ may be
 changed without affecting the value in other threads. This
 facility may be used to implement secure
 “sandboxes,” areas where external code may run
 safely without risk to the rest of your application or
 system. Do this by wrapping code that you load from a file in
 its own, anonymous module. This will protect
 your program’s namespace from any unintended alteration.

	​ 	File.open(filename,​"w"​) ​do​ |f|

	​ 	 f.print ... ​# write untrusted program into file.​

	​ 	​end​

	​ 	Thread.start ​do​

	​ 	 $SAFE = 4

	​ 	 load(filename, true)

	​ 	​end​

 With a ​$SAFE​ level of 4, you can
 load ​only​ wrapped files. See the description of
 Object#load
 for details.

 The safe level in effect when a ​Proc​
 object is created is stored with that object. The safe level may be set during the execution
 of a proc object without affecting the safe level of the code
 that invoked that proc. A proc may not be passed to a method if
 it is tainted and the current safe level is greater than that in
 effect when the block was created.

26.2 Tainted Objects

 Any Ruby object derived from some external source (for example, a
 string read from a file or an environment variable) is automatically
 marked as being tainted. If your program uses a tainted object to
 derive a new object, then that new object will also be tainted, as
 shown in the following code. Any
 object with external data somewhere in its past will be tainted. This
 tainting process is performed regardless of the current safe level. You
 can see whether an object is tainted using
 Object#tainted?.

	​ 	​# internal data​

	​ 	

	​ 	x1 = ​"a string"​

	​ 	x1.tainted? ​# => false​

	​ 	

	​ 	x2 = x1[2, 4]

	​ 	x2.tainted? ​# => false​

	​ 	

	​ 	x1 =~ /([a-z])/ ​# => 0​

	​ 	$1.tainted? ​# => false​

	​ 	​# external data​

	​ 	

	​ 	y1 = ENV[​"HOME"​]

	​ 	y1.tainted? ​# => true​

	​ 	

	​ 	y2 = y1[2, 4]

	​ 	y2.tainted? ​# => true​

	​ 	

	​ 	y1 =~ /([a-z])/ ​# => 2​

	​ 	$1.tainted? ​# => true​

 You can taint any object by invoking its

 ​taint​
 method. If the safe level is less than 3, you can
 remove the taint from an object by invoking

 ​untaint​
 .[118] This is not something to do
 lightly.

26.3 Trusted Objects

 Ruby 1.9 adds
 ​ trust​

 , a new
 dimension to the concept of safety. All objects are marked as
 being ​trusted​ or ​untrusted​. In
 addition, running code can be trusted or not. And, when you’re
 running untrusted code, objects that you create are untrusted,
 and the only objects that you can modify are those that are
 marked untrusted. What this in effect means is that you can
 create a sandbox to execute untrusted code, and code in that
 sandbox cannot affect objects outside that sandbox.

 Let’s get more specific. Objects created while Ruby’s safe level is
 less than 3 are trusted. However, objects created while the safe level
 is 3 or 4 will be untrusted. Code running at safe levels 3 and 4 is
 also considered to be untrusted. Because untrusted code can
 modify only untrusted objects, code at safe levels 3 and 4 will not be able
 to modify objects created at a lower safe level.

	​ 	dog = ​"dog is trusted"​

	​ 	cat = lambda { $SAFE = 3; ​"cat is untrusted"​ }.call

	​ 	

	​ 	puts ​"dog.untrusted? = ​#{dog.untrusted?}​"​

	​ 	puts ​"cat.untrusted? = ​#{cat.untrusted?}​"​

	​ 	

	​ 	​# running at safe level 1, these operations will succeed​

	​ 	puts dog.upcase!

	​ 	puts cat.upcase!

	​ 	

	​ 	​# running at safe level 4, we can modify the cat​

	​ 	lambda { $SAFE = 4; cat.downcase! }.call

	​ 	puts ​"cat is now '​#{cat}​'"​

	​ 	

	​ 	​# but we can't modify the dog​

	​ 	lambda { $SAFE = 4; dog.downcase! }.call

	​ 	puts ​"so we never get here"​

Produces:
	​ 	 from prog.rb:16:in `block in <main>'

	​ 	 from prog.rb:16:in `call'

	​ 	 from prog.rb:16:in `<main>'

	​ 	dog.untrusted? = false

	​ 	cat.untrusted? = true

	​ 	DOG IS TRUSTED

	​ 	CAT IS UNTRUSTED

	​ 	cat is now 'cat is untrusted'

	​ 	prog.rb:16:in `downcase!': Insecure: can't modify string (SecurityError)

 You can set and unset the trusted status of an object using Object#untrust
 and Object#trust
 (but you have to be at below safe level 4 to call

 ​untrust​
 and below safe level 3 to call

 ​trust​
). The method Object#untrusted?
 returns ​true​ if an object is untrusted.

26.4 Definition of the safe levels
	​$SAFE​ ≥ 1
		

	 The environment variables ​RUBYLIB​ and
	 ​RUBYOPT​ are not processed, and the current
	 directory is not added to the
	 path.
	

	

	 The command-line options ​-e​, ​-i​,
	 ​-I​, ​-r​, ​-s​, ​-S​, and
	 ​-x​ are not allowed.
	

	

	 Can’t start processes from ​$PATH​ if any directory
	 in it is world-writable.
	

	

	 Can’t manipulate or chroot to a directory whose name is a tainted string.
	

	

	 Can’t glob tainted strings.
	

	

	 Can’t eval tainted strings.
	

	

	 Can’t load or require a file whose name is a tainted string
	 (unless the load is wrapped).
	

	

	 Can’t manipulate or query the status of a file or pipe whose
	 name is a tainted string.
	

	

	 Can’t execute a system command or exec a program from a
	 tainted string.
	

	

	 Can’t pass
 ​trap​
 a tainted string.
	

	​$SAFE​ ≥ 2
		

	 Can’t change, make, or remove directories, or use chroot.
	

	

	 Can’t load a file from a world-writable directory.
	

	

	 Can’t load a file from a tainted filename starting with ~.
	

	

	 Can’t use File#chmod, File#chown, File#lstat,
	 File.stat, File#truncate, File.umask,
	 File#flock, IO#ioctl,
	 IO#stat, Object#fork,
	 Object#syscall, Object#trap. Process.setpgid, Process.setsid, Process.setpriority, or Process.egid=.
	

	

	 Can’t handle signals using
 ​trap​
 .
	

	​$SAFE​ ≥ 3
		

	 All objects are tainted when they are created.
	

	

	 Can’t untaint objects.
	

	

	 Can’t add trust to an object.
	

	

	 Objects are created untrusted.
	

	​$SAFE​ ≥ 4
		

	 Can’t modify a nontainted array, hash, or string.
	

	

	 Can’t modify a global variable.
	

	

	 Can’t access instance variables of nontainted objects.
	

	

	 Can’t change an environment variable.
	

	

	 Can’t close or reopen nontainted files.
	

	

	 Can’t freeze nontainted objects.
	

	

	 Can’t change visibility of methods (private/public/protected).
	

	

	 Can’t make an alias in a nontainted class or module.
	

	

	 Can’t get metainformation (such as method or variable lists).
	

	

	 Can’t define, redefine, remove, or undef a method in a nontainted
	 class or module.
	

	

	 Can’t modify ​Object​.
	

	

	 Can’t remove instance variables or constants from nontainted
	 objects.
	

	

	 Can’t manipulate threads, terminate a thread other than the
	 current thread, or set
	
 ​abort_on_exception​
 .
	

	

	 Can’t have thread-local variables.
	

	

	 Can’t raise an exception in a thread with a lower
	 ​$SAFE​ value.
	

	

	 Can’t move threads between ThreadGroups.
	

	

	 Can’t invoke
 ​exit​
 ,
	
 ​exit!​
 , or
	
 ​abort​
 .
	

	

	 Can load only wrapped files and can’t include modules
	 in untainted classes and modules.
	

	

	 Can’t convert symbol identifiers to object references.
	

	

	 Can’t write to files or pipes.
	

	

	 Can’t use
 ​autoload​
 .
	

	

	 Can’t taint objects.
	

	

	 Can’t untrust an object.
	

Footnotes

	[117]	
A Unix script may be flagged to be
 run under a different user or group ID than the person running
 it. This allows the script to have privileges that the user does
 not have; the script can access resources that the user would
 otherwise be prohibited from using. These scripts are called

 ​ setuid​

 or

 ​ setgid​

 .

	[118]	
You can also use some devious tricks to do
 this without using
 ​untaint​
 . We’ll leave it up to your
 darker side to find them.

Copyright © 2013, The Pragmatic Bookshelf.

Part 4
Ruby Library Reference

	 Chapter
	 27
Built-in Classes and Modules

 This chapter documents the classes and modules built into the
 standard Ruby language. They are available to every Ruby program
 automatically; no
 ​require​
 is required. This
 section does not contain the various predefined variables and
 constants; they are listed in ​Predefined	Variables​.

 In the descriptions that follow, we show sample invocations for
 each method.

new
	String.new(val) → str

 This description shows a class method that is called as
 ​String.new​. The italic parameter indicates that a single
 string is passed in, and the arrow indicates that another string is
 returned from the method. Because this return value has a
 different name than that of the parameter, it represents a
 different object.

 When we illustrate instance methods, we show a sample call with a dummy
 object name in italics as the receiver.

lines
	str.lines(sep=$/) { |line| … } → str

 The parameter to String#lines is shown to have a default
 value; call
 ​lines​
 with no parameter, and
 the value of ​$/​ will be used. This
 method is an iterator, so the call is followed by a
 block. String#lines returns its receiver, so the receiver’s name
 (​str​ in this case) appears again after the arrow.

 Some methods have optional parameters. We show these parameters
 between angle brackets, <xxx>. We use the notation
 <xxx>* to indicate zero or more occurrences of xxx, and we
 use <xxx>+ to indicate one or more occurrences of
 xxx.

index
	str.index(string <, offset>)
	 → int or ​nil​

 Finally, for methods that can be called in several different forms,
 we list each form on a separate line.

27.1 Alphabetical Listing

 Standard classes are listed alphabetically, followed
 by the standard modules. Within each, we list the class (or
 module) methods, followed by the instance methods.

ArrayBasicObjectBignumBindingClassComplexDirEncodingEnumeratorExceptionFalseClassFiberFileFile::StatFixnumFloatHashIntegerIOMatchDataMethodModuleMutexNilClassNumericObjectProcProcess::StatusRandomRangeRationalRegexpStringStructStruct::TmsSymbolThreadThreadGroupTimeTracePointTrueClassUnboundMethod
Built-in Modules
ComparableEnumerableErrnoFileTestGCGC::ProfilerKernelMarshalMathObjectSpaceProcessProcess::GIDProcess::SysProcess::UIDSignal

Class Array < Object
	Relies on:
	each, <=>

 Arrays are ordered, integer-indexed collections of any object.
 Array indexes start at 0, as in C or Java. A negative index is
 relative to the end of the array; that is, an index of -1
 indicates the last element of the array, -2 is the next-to-last
 element in the array, and so on.

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Array: Class methods
[]
	Array[<obj>*] → an_array

	 Returns a new array populated with the given objects. Equivalent to
	 the operator form ​Array.[...]​.
	
	​ 	Array.[](1, ​'a'​, /^A/) ​# => [1, "a", /^A/]​

	​ 	Array[1, ​'a'​, /^A/] ​# => [1, "a", /^A/]​

	​ 	[1, ​'a'​, /^A/] ​# => [1, "a", /^A/]​

new
	Array.new → an_array
	Array.new (size=0, obj=​nil​)
	 → an_array
	
	Array.new(array) → an_array
	Array.new(size) { |i| … } → an_array

	 Returns a new array. In the first form, the new array is
	 empty. In the second, it is created with size copies of obj
	 (that is, size references to the same
	 obj). The third form creates a copy of the array
	 passed as a parameter (the array is generated by calling
	
 ​to_ary​
 on the parameter). In the last form, an array
	 of the given size is created. Each element in this array is
	 calculated by passing the element’s index to the given block and
	 storing the return value.
	
	​ 	Array.new ​# => []​

	​ 	Array.new(2) ​# => [nil, nil]​

	​ 	Array.new(5, ​"A"​) ​# => ["A", "A", "A", "A", "A"]​

	​ 	​# only one instance of the default object is created​

	​ 	a = Array.new(2, Hash.new)

	​ 	a[0][​'cat'​] = ​'feline'​

	​ 	a ​# => [{"cat"=>"feline"}, {"cat"=>"feline"}]​

	​ 	a[1][​'cat'​] = ​'Felix'​

	​ 	a ​# => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]​

	​ 	a = Array.new(2) { Hash.new } ​# Multiple instances​

	​ 	a[0][​'cat'​] = ​'feline'​

	​ 	a ​# => [{"cat"=>"feline"}, {}]​

	​ 	squares = Array.new(5) {|i| i*i}

	​ 	squares ​# => [0, 1, 4, 9, 16]​

	​ 	

	​ 	copy = Array.new(squares) ​# initialized by copying​

	​ 	squares[5] = 25

	​ 	squares ​# => [0, 1, 4, 9, 16, 25]​

	​ 	copy ​# => [0, 1, 4, 9, 16]​

try_convert
	Array.try_convert(obj)
	 → an_array or ​nil​

	 If obj is not already an array, attempts to
	 convert it to one by calling its
	
 ​to_ary​
 method. Returns ​nil​ if no
	 conversion could be made.
	
	​ 	​class​ Stooges

	​ 	 ​def​ to_ary

	​ 	 [​"Larry"​, ​"Curly"​, ​"Moe"​]

	​ 	 ​end​

	​ 	​end​

	​ 	Array.try_convert(Stooges.new) ​# => ["Larry", "Curly", "Moe"]​

	​ 	Array.try_convert(​"Shemp"​) ​# => nil​

Array: Instance methods
&
	arr & other_array
 → an_array

	 Set Intersection—Returns a new array
	 containing elements common to the two arrays, with no duplicates. The rules for
	 comparing elements are the same as for hash keys.
	 If you need setlike behavior, see the
	 library class .​Set​.
	
	​ 	[1, 1, 3, 5] & [1, 2, 3] ​# => [1, 3]​

*
	arr * int → an_array
	arr * str → a_string

	 Repetition—With an argument that
	 responds to
 ​to_str​
 , equivalent to
	 ​arr.join(str)​. Otherwise, returns a new array
	 built by concatenating int copies of arr.
	
	​ 	[1, 2, 3] * 3 ​# => [1, 2, 3, 1, 2, 3, 1, 2, 3]​

	​ 	[1, 2, 3] * ​"--"​ ​# => "1--2--3"​

+
	arr + other_array
	 → an_array

	 Concatenation—Returns a new array built by concatenating the
	 two arrays together to produce a third array.
	
	​ 	[1, 2, 3] + [4, 5] ​# => [1, 2, 3, 4, 5]​

-
	arr - other_array
	 → an_array

	 Array Difference—Returns a new array that is a copy of
	 the original array, removing any items that also appear in
	 other_array. If you need setlike behavior, see the
	 library class ​Set​.
	
	​ 	[1, 1, 2, 2, 3, 3, 4, 5] - [1, 2, 4] ​# => [3, 3, 5]​

<<
	arr << obj → arr

	 Append—Pushes the given object on to the end of this array. This
	 expression returns the array itself, so several appends
	 may be chained together. See also Array#push.
	
	​ 	[1, 2] << ​"c"​ << ​"d"​ << [3, 4] ​# => [1, 2, "c", "d", [3, 4]]​

<=>
	arr <=> other_array
	 → -1, 0, +1, or ​nil​

	 Comparison—Returns an integer -1, 0, or +1 if this array
	 is less than, equal to, or greater than
	 other_array. Successive objects in each array are
	 compared using
 ​<=>​
 . If any pair
	 are not equal, then that inequality is the return
	 value. If all pair are equal, then the longer array is considered greater.
	 Thus, two
	 arrays are “equal” according to Array#<=> if and only if they have the
	 same length and the values of each corresponding element are equal.
	 ​nil​ is returned if the argument
	 is not comparable to arr.
	
	​ 	[​"a"​, ​"a"​, ​"c"​] <=> [​"a"​, ​"b"​, ​"c"​] ​# => -1​

	​ 	[1, 2, 3, 4, 5, 6] <=> [1, 2] ​# => 1​

	​ 	[1, 2, 3, 4, 5, 6] <=> ​"wombat"​ ​# => nil​

==
	arr == obj
	 → ​true​ or ​false​

	 Equality—Two arrays are equal if they contain the same number
	 of elements and if each element is equal to (according to
	 Object#==) the corresponding element in the other array.
	 If obj is not an array, attempt to convert it using
	
 ​to_ary​
 and return obj==arr.
	
	​ 	[​"a"​, ​"c"​] == [​"a"​, ​"c"​, 7] ​# => false​

	​ 	[​"a"​, ​"c"​, 7] == [​"a"​, ​"c"​, 7] ​# => true​

	​ 	[​"a"​, ​"c"​, 7] == [​"a"​, ​"d"​, ​"f"​] ​# => false​

[]
	arr[int]
	 → obj or ​nil​
	arr[start, length]
	 → an_array or ​nil​
	arr[range]
	 → an_array or ​nil​
	

	 Element Reference—Returns the element at index
	 int; returns a length element subarray
	 starting at index start; or returns a subarray
	 specified by range. Negative indices count
	 backward from the end of the array (-1 is the last
	 element). Returns ​nil​ if the index of
	 the first element selected is greater than the array
	 size. If the start index equals the array size and a
	 length or range parameter is given, an
	 empty array is returned. Equivalent to Array#slice.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​]

	​ 	a[2] + a[0] + a[1] ​# => "cab"​

	​ 	a[6] ​# => nil​

	​ 	a[1, 2] ​# => ["b", "c"]​

	​ 	a[1..3] ​# => ["b", "c", "d"]​

	​ 	a[4..7] ​# => ["e"]​

	​ 	a[6..10] ​# => nil​

	​ 	a[-3, 3] ​# => ["c", "d", "e"]​

	​ 	​# special cases​

	​ 	a[5] ​# => nil​

	​ 	a[5, 1] ​# => []​

	​ 	a[5..10] ​# => []​

[]=
	arr[int] = obj
	 → obj
	arr[start, length] = obj
	 → obj}
	arr[range] = obj
	 → obj

	 Element Assignment—Sets the element at index
	 int, replaces a subarray starting at index
	 start and continuing for length
	 elements, or replaces a subarray specified by
	 range. If int is greater than the
	 size of the array, the array grows automatically. A negative
	 int counts backward from the end of the
	 array. Inserts elements if length is zero. If
	 obj is an array, the form with the single index
	 inserts that array into arr, and the forms
	 with a length or with a range replace the given
	 elements in arr with the array contents. An
	 ​IndexError​ is raised if a negative index
	 points past the beginning of the array. (Prior to
	 Ruby 1.9, assigning ​nil​ with the second
	 and third forms of element assignment deleted the
	 corresponding array elements; it now assigns
	 ​nil​ to them.) See also Array#push and Array#unshift.
	
	​ 	a = Array.new ​# => []​

	​ 	a[4] = ​"4"​; a ​# => [nil, nil, nil, nil, "4"]​

	​ 	a[0] = [1, 2, 3]; a ​# => [[1, 2, 3], nil, nil, nil, "4"]​

	​ 	a[0, 3] = [​'a'​, ​'b'​, ​'c'​]; a ​# => ["a", "b", "c", nil, "4"]​

	​ 	a[1..2] = [1, 2]; a ​# => ["a", 1, 2, nil, "4"]​

	​ 	a[0, 2] = ​"?"​; a ​# => ["?", 2, nil, "4"]​

	​ 	a[0..2] = ​"A"​, ​"B"​, ​"C"​; a ​# => ["A", "B", "C", "4"]​

	​ 	a[-1] = ​"Z"​; a ​# => ["A", "B", "C", "Z"]​

	​ 	a[1..-1] = nil; a ​# => ["A", nil]​

|
	arr | other_array → an_array

	 Set Union—Returns a new array by joining this array with
	 other_array, removing duplicates. The rules for
	 comparing elements are the same as for hash keys.
	 If you need setlike behavior, see the
	 library class ​Set​.
	
	​ 	[​"a"​, ​"b"​, ​"c"​] | [​"c"​, ​"d"​, ​"a"​] ​# => ["a", "b", "c", "d"]​

assoc
	arr.assoc(obj) → an_array or ​nil​

	 Searches through an array whose elements are also arrays
	 comparing obj with the first element of each contained array
	 using obj​.==​.
	 Returns the first contained array that matches (that
	 is, the first ​assoc​iated array)
	 or ​nil​ if no match is found.
	 See also Array#rassoc.
	
	​ 	s1 = [​"colors"​, ​"red"​, ​"blue"​, ​"green"​]

	​ 	s2 = [​"letters"​, ​"a"​, ​"b"​, ​"c"​]

	​ 	s3 = ​"foo"​

	​ 	a = [s1, s2, s3]

	​ 	a.assoc(​"letters"​) ​# => ["letters", "a", "b", "c"]​

	​ 	a.assoc(​"foo"​) ​# => nil​

at
	arr.at(int)
	 → obj or ​nil​

	 Returns the element at index int. A
	 negative index counts from the end of arr. Returns ​nil​
	 if the index is out of range. See also Array#[].
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​]

	​ 	a.at(0) ​# => "a"​

	​ 	a.at(-1) ​# => "e"​

bsearch
	arr.bsearch { |val| … }
	 → obj or
	​nil​

 Assuming arr is sorted in ascending
 order, performs a binary search in ​O(log n)​
 time. The method operates in two modes depending on the
 values returned by the block:«2.0»
	

 To find the minimum value in arr greater than or
 equal to the required value, have the block return false if
 its argument is less than that value, true otherwise.

	​ 	arr = ​%w{ ant bee cat dog elk fox gnu }​

	​ 	arr.bsearch {|val| val >= ​"c"​ } ​# => "cat"​

	​ 	arr.bsearch {|val| val >= ​"cod"​ } ​# => "dog"​

	​ 	arr.bsearch {|val| val >= ​"kea"​ } ​# => nil​

 To find a value in the array that lies between two limits,
 write the block to return a positive number if the argument is
 less than the lower bound, a negative number if it is
 greater than the upper bound, or zero if it is inclusively between the bounds.

	​ 	arr = [1, 1, 2, 3, 5, 8, 13, 21, 34]

	​ 	res = arr.bsearch ​do​ |val|

	​ 	 ​case​

	​ 	 ​when​ val < 19 ​then​ +1

	​ 	 ​when​ val > 23 ​then​ -1

	​ 	 ​else​ 0

	​ 	 ​end​

	​ 	​end​

	​ 	res ​# => 21​

combination
	arr.combination(size) → enumerator
	arr.combination(size) { |array| … } → arr

	 Constructs all combinations of the elements of arr of length
	 size. If called with a block, passes each combination to
	 that block; otherwise, returns an enumerator object. An empty
	 result is generated if no combinations of the given length
	 exist. See also Array#permutation.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.combination(1).to_a ​# => [["a"], ["b"], ["c"]]​

	​ 	a.combination(2).to_a ​# => [["a", "b"], ["a", "c"], ["b", "c"]]​

	​ 	a.combination(3).to_a ​# => [["a", "b", "c"]]​

	​ 	a.combination(4).to_a ​# => []​

collect!
	arr.collect! { |obj| … } → arr

	 Invokes block once for each element of arr, replacing the
	 element with the value returned by block.
	 See also Enumerable#collect.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​]

	​ 	a.collect! {|x| x + ​"!"​ } ​# => ["a!", "b!", "c!", "d!"]​

	​ 	a ​# => ["a!", "b!", "c!", "d!"]​

compact
	arr.compact → an_array

	 Returns a copy of arr with
	 all ​nil​ elements removed.
	
	​ 	[​"a"​, nil, ​"b"​, nil, ​"c"​, nil].compact ​# => ["a", "b", "c"]​

compact!
	arr.compact! → arr or ​nil​

	 Removes ​nil​ elements from arr.
	 Returns ​nil​ if no changes were made.
	
	​ 	[​"a"​, nil, ​"b"​, nil, ​"c"​].compact! ​# => ["a", "b", "c"]​

	​ 	[​"a"​, ​"b"​, ​"c"​].compact! ​# => nil​

concat
	arr.concat(other_array)
 → arr

	 Appends the elements in other_array to arr.
	
	​ 	[​"a"​, ​"b"​].concat([​"c"​, ​"d"​]) ​# => ["a", "b", "c", "d"]​

count
	arr.count(obj)
 → int
	arr.count { |obj| … } → int

	 Returns the count of objects in arr that equal obj or
	 for which the block returns a true value.
	 Shadows the corresponding method in ​Enumerable​.
	
	​ 	[1, 2, 3, 4].count(3) ​# => 1​

	​ 	[1, 2, 3, 4].count {|obj| obj > 2 } ​# => 2​

cycle
	arr.cycle { |obj| … } → ​nil​ or enumerator
	arr.cycle(times) { |obj| … } → ​nil​ or enumerator

	 Returns ​nil​ if arr
	 has no elements; otherwise, passes the elements, one at a
	 time to the block. When it reaches the end, it repeats. The
	 number of times it repeats is set by the parameter. If the
	 parameter is missing, cycles forever. Returns an
	 ​Enumerator​ object if no block is
	 given.
	
	​ 	[1,2,3].cycle(3) ​# => #<Enumerator: [1, 2, 3]:cycle(3)>​

	​ 	[1,2,3].cycle(3).to_a ​# => [1, 2, 3, 1, 2, 3, 1, 2, 3]​

	​ 	columns = [1, 2, 3]

	​ 	data = ​%w{ a b c d e f g h }​

	​ 	columns.cycle ​do​ |column_number|

	​ 	 print column_number, ​":"​, data.shift, ​"\t"​

	​ 	 puts ​if​ column_number == columns.last

	​ 	 ​break​ ​if​ data.empty?

	​ 	​end​

Produces:
	​ 	1:a 2:b 3:c

	​ 	1:d 2:e 3:f

	​ 	1:g 2:h

delete
	arr.delete(obj)
 → obj or ​nil​
	arr.delete(obj) { … }
 → obj or ​nil​

	Deletes items from arr that are equal to obj.
	If the item is not found, returns ​nil​. If the optional
	code block is given, returns the result of block if the item
	is not found.

	​ 	a = [​"a"​, ​"b"​, ​"b"​, ​"b"​, ​"c"​]

	​ 	a.delete(​"b"​) ​# => "b"​

	​ 	a ​# => ["a", "c"]​

	​ 	a.delete(​"z"​) ​# => nil​

	​ 	a.delete(​"z"​) { ​"not found"​ } ​# => "not found"​

delete_at
	arr.delete_at(index)
 → obj or ​nil​

	 Deletes the element at the specified index, returning that
	 element or ​nil​ if the index is out of range.
	 See also Array#slice!.
	
	​ 	a = ​%w(ant bat cat dog)​

	​ 	a.delete_at(2) ​# => "cat"​

	​ 	a ​# => ["ant", "bat", "dog"]​

	​ 	a.delete_at(99) ​# => nil​

delete_if
	arr.delete_if { |item| … }
 → arr

	 Deletes every element of arr for which block
	 evaluates to ​true​.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.delete_if {|x| x >= ​"b"​ } ​# => ["a"]​

each
	arr.each { |item| … } → arr

	 Calls block once for each element in arr, passing that
	 element as a parameter.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.each {|x| print x, ​" -- "​ }

Produces:
	​ 	a -- b -- c --

each_index
	arr.each_index
	 { |index| … } → arr

	 Same as Array#each but passes the index of the element instead of
	 the element itself.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.each_index {|x| print x, ​" -- "​ }

Produces:
	​ 	0 -- 1 -- 2 --

empty?
	arr.empty?
	 → ​true​ or ​false​

	 Returns ​true​ if arr array contains no elements.
	
	​ 	[].empty? ​# => true​

	​ 	[1, 2, 3].empty? ​# => false​

eql?
	arr.eql?(other)
 → ​true​ or ​false​

	 Returns ​true​ if arr and other are the same
	 object or if other is an object of class ​Array​ with
	 the same length and content as arr. Elements in the arrays
	 are compared using Object#eql?. See also
	 Array#<=>.
	
	​ 	[​"a"​, ​"b"​, ​"c"​].eql?([​"a"​, ​"b"​, ​"c"​]) ​# => true​

	​ 	[​"a"​, ​"b"​, ​"c"​].eql?([​"a"​, ​"b"​]) ​# => false​

	​ 	[​"a"​, ​"b"​, ​"c"​].eql?([​"b"​, ​"c"​, ​"d"​]) ​# => false​

fetch
	arr.fetch(index) → obj
	arr.fetch(index, default) → obj
	arr.fetch(index) { |i| … } → obj
	

	 Tries to return the element at position index. If
	 the index lies outside the array, the first form throws an
	 ​IndexError​
	 exception, the second form returns
	 default, and the third form returns the value of
	 invoking the block, passing in the index. Negative values of
	 index count from the end of the array.
	
	​ 	a = [11, 22, 33, 44]

	​ 	a.fetch(1) ​# => 22​

	​ 	a.fetch(-1) ​# => 44​

	​ 	a.fetch(-1, ​'cat'​) ​# => 44​

	​ 	a.fetch(4, ​'cat'​) ​# => "cat"​

	​ 	a.fetch(4) {|i| i*i } ​# => 16​

fill
	arr.fill(obj) → arr
	arr.fill(obj, start <, length>) → arr
	arr.fill(obj, range) → arr
	arr.fill { |i| … } → arr
	arr.fill(start <, length>) { |i| … } → arr
	arr.fill(range) { |i| … } → arr

	 The first three forms set the selected elements of arr
	 (which may be the entire array) to obj. A start
	 of ​nil​ is equivalent to zero. A length of ​nil​ is
	 equivalent to arr.
 ​length​
 . The last three forms fill
	 the array with the value of the block. The block is passed the
	 absolute index of each element to be filled.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​]

	​ 	a.fill(​"x"​) ​# => ["x", "x", "x", "x"]​

	​ 	a.fill(​"z"​, 2, 2) ​# => ["x", "x", "z", "z"]​

	​ 	a.fill(​"y"​, 0..1) ​# => ["y", "y", "z", "z"]​

	​ 	a.fill {|i| i*i} ​# => [0, 1, 4, 9]​

	​ 	a.fill(-3) {|i| i+100} ​# => [0, 101, 102, 103]​

find_index
	arr.find_index(obj)
	 → int or ​nil​
	arr.find_index { |item| … }
	 → int or ​nil​
	arr.find_index → enumerator

	 Returns the index of the first object in
	 arr that is
 ​==​
 to
	 obj or for which the block returns a true value.
	 Returns ​nil​ if no match is found. See
	 also Enumerable#select and
	 Array#rindex.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"b"​]

	​ 	a.find_index(​"b"​) ​# => 1​

	​ 	a.find_index(​"z"​) ​# => nil​

	​ 	a.find_index {|item| item > ​"a"​} ​# => 1​

flatten
	arr.flatten(level = -1) → an_array

	 Returns a new array that is a flattening of this
	 array (recursively). That is, for every element that is an
	 array, extracts its elements into the new array. The level
	 parameter controls how deeply the flattening occurs. If less
	 than zero, all subarrays are expanded. If zero, no flattening
	 takes place. If greater than zero, only that depth of subarray
	 is expanded.
	
	​ 	s = [1, 2, 3] ​# => [1, 2, 3]​

	​ 	t = [4, 5, 6, [7, 8]] ​# => [4, 5, 6, [7, 8]]​

	​ 	a = [s, t, 9, 10] ​# => [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]​

	​ 	a.flatten(0) ​# => [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]​

	​ 	a.flatten ​# => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]​

	​ 	a.flatten(1) ​# => [1, 2, 3, 4, 5, 6, [7, 8], 9, 10]​

	​ 	a.flatten(2) ​# => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]​

flatten!
	arr.flatten!(level = -1)
 → arr or ​nil​

	 Same as Array#flatten but modifies the receiver in place.
	 Returns ​nil​ if no modifications were made (i.e., arr
	 contains no subarrays).
	
	​ 	a = [1, 2, [3, [4, 5]]]

	​ 	a.flatten! ​# => [1, 2, 3, 4, 5]​

	​ 	a.flatten! ​# => nil​

	​ 	a ​# => [1, 2, 3, 4, 5]​

frozen?
	arr.frozen? → ​true​ or ​false​

	 Returns ​true​ if arr is frozen or if it is in the middle
	 of being sorted.
	

Table 14. Template characters for ​Array.pack​
	Directive	Meaning
	
@
	

 Move to absolute position

	

 A

	

 Sequence of bytes (space padded, count is width)

	

 a

	

 Sequence of bytes (null padded, count is width)

	

 B

	

 Bit string (most significant first)

	

 b

	

 Bit string (least significant first)

	

 C

	

 Unsigned byte

	

 c

	

 Byte

	

 D, d

	

 Double-precision float, native format

	

 E

	

 Double-precision float, little-endian byte order

	

 e

	

 Single-precision float, little-endian byte order

	

 F, f

	

 Single-precision float, native format

	

 G

	

 Double-precision float, network (big-endian) byte order

	

 g

	

 Single-precision float, network (big-endian) byte order

	

 H

	

 Hex string (high nibble first)

	

 h

	

 Hex string (low nibble first)

	

 I

	

 Unsigned integer

	

 i

	

 Integer

	

 L

	

 Unsigned long

	

 l

	

 Long

	

 M

	

 Quoted printable, MIME encoding (see RFC2045)

	

 m

	

 Base64-encoded string; by default adds linefeeds every 60 characters;
 "m0" suppresses linefeeds

	

 N

	

 Long, network (big-endian) byte order

	

 n

	

 Short, network (big-endian) byte order

	

 P

	

 Pointer to a structure (fixed-length string)

	

 p

	

 Pointer to a null-terminated string

	

 Q, q

	

 64-bit number

	

 S

	

 Unsigned short

	

 s

	

 Short

	

 U

	

 UTF-8

	

 u

	

 UU-encoded string

	

 V

	

 Long, little-endian byte order

	

 v

	

 Short, little-endian byte order

	

 w

	

 BER-compressed integer°

	

 X

	

 Back up a byte

	

 x

	

 Null byte

	

 Z

	

 Same as “a,” except a null byte is appended if the * modifier is given

	
 	

 ° The octets of a BER-compressed integer
 represent an unsigned integer in base
 128, most significant digit first, with as few digits as
 possible. Bit eight (the high bit) is set on each byte
 except the last (​Self-Describing Binary Data
 Representation​, MacLeod).

index
	arr.index(obj) → int or ​nil​
	arr.index { |item| … } → int or ​nil​

	 Synonym for Array#find_index.
	

insert
	arr.insert(index,
	 <obj>+}) → arr

	 If index is not negative, inserts the given values
	 before the element with the given index. If index is negative,
	 adds the values after the element with the given index (counting from the end).
	
	​ 	a = ​%w{ a b c d }​

	​ 	a.insert(2, 99) ​# => ["a", "b", 99, "c", "d"]​

	​ 	a.insert(-2, 1, 2, 3) ​# => ["a", "b", 99, "c", 1, 2, 3, "d"]​

	​ 	a.insert(-1, ​"e"​) ​# => ["a", "b", 99, "c", 1, 2, 3, "d", "e"]​

join
	arr.join(separator=​$,​)
 → str

	 Returns a string created by converting each element of
	 the array to a string and concatenating them, separated each
	 by separator.
	
	​ 	[​"a"​, ​"b"​, ​"c"​].join ​# => "abc"​

	​ 	[​"a"​, ​"b"​, ​"c"​].join(​"-"​) ​# => "a-b-c"​

keep_if
	arr.keep_if { |obj| … }
	 → array or enumerator

	 Modifies arr by removing all elements for which
	 ​block​ is false (see also Enumerable#select and Array.select!).
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	a = [1, 2, 3, 4, 5, 6, 7, 8, 9]

	​ 	a.keep_if {|element| element < 6 } ​# => [1, 2, 3, 4, 5]​

	​ 	a ​# => [1, 2, 3, 4, 5]​

	​ 	a.keep_if(&:odd?) ​# => [1, 3, 5]​

	​ 	a ​# => [1, 3, 5]​

last
	arr.last → obj or ​nil​
	arr.last(count) → an_array

	 Returns the last element, or last count elements,
	 of arr. If the array is empty, the first form
	 returns ​nil​, and the second returns an
	 empty array. (
 ​first​
 is defined by
	 ​Enumerable​.)
	
	​ 	[​"w"​, ​"x"​, ​"y"​, ​"z"​].last ​# => "z"​

	​ 	[​"w"​, ​"x"​, ​"y"​, ​"z"​].last(1) ​# => ["z"]​

	​ 	[​"w"​, ​"x"​, ​"y"​, ​"z"​].last(3) ​# => ["x", "y", "z"]​

length
	arr.length → int

	 Returns the number of elements in arr.
	
	​ 	[1, nil, 3, nil, 5].length ​# => 5​

map!
	arr.map! { |obj| … }
	 → arr

	 Synonym for Array#collect!.
	

pack
	arr.pack (template)
	 → binary_string

	 Packs the contents of arr into
	 a binary sequence according to the directives in
	 template (see Table 14, ​Template characters for ​Array.pack​​). Directives ​A​, ​a​,
	 and ​Z​ may be followed by a count, which gives the
	 width of the resulting field. The remaining directives also
	 may take a count, indicating the number of array elements to
	 convert. If the count is an asterisk (​*​), all
	 remaining array elements will be converted. The directives
	 ​s S i I l L​ may be followed by an underscore
	 (​_​) or bang (​!​) to use
	 the underlying platform’s native size for the specified
	 type; otherwise, they use a platform-independent
	 size. The directives ​s S i I l L q Q​ may
	 be followed by a less than sign to signify little endian or
	 greater than sign for big endian.
	 Spaces
	 are ignored in the template string. Comments starting with
	 ​#​ to the next newline or end of string are also ignored.
	 See also String#unpack.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	n = [65, 66, 67]

	​ 	a.pack(​"A3A3A3"​) ​# => "a␣␣b␣␣c␣␣"​

	​ 	a.pack(​"a3a3a3"​) ​# => "a\0\0b\0\0c\0\0"​

	​ 	n.pack(​"ccc"​) ​# => "ABC"​

permutation
	arr.permutation(size=arr.size)
	 → enumerator
	arr.permutation(size=arr.size) { |array| … }
	 → arr}

	 Constructs all permutations of the elements of arr of length
	 size. If called with a block, passes each permutation to
	 that block; otherwise, returns an enumerator object. An empty
	 result is generated if no permutations of the given length
	 exist. See also Array#combination.
	
	​ 	words = {}

	​ 	File.readlines(​"/usr/share/dict/words"​).map(&:chomp).each ​do​ |word|

	​ 	 words[word.downcase] = 1

	​ 	​end​

	​ 	

	​ 	

	​ 	​%w{ c a m e l }​.permutation ​do​ |letters|

	​ 	 anagram = letters.join

	​ 	 puts anagram ​if​ words[anagram]

	​ 	​end​

Produces:
	​ 	camel

	​ 	clame

	​ 	cleam

	​ 	macle

pop
	arr.pop(<n>*) → obj or ​nil​

	 Removes the last element (or the last n
	 elements) from arr. Returns whatever is removed
	 or ​nil​ if the array is empty.
	
	​ 	a = ​%w{ f r a b j o u s }​

	​ 	a.pop ​# => "s"​

	​ 	a ​# => ["f", "r", "a", "b", "j", "o", "u"]​

	​ 	a.pop(3) ​# => ["j", "o", "u"]​

	​ 	a ​# => ["f", "r", "a", "b"]​

product
	arr.product(<arrays>*)
 → result_array
	arr.product(<arrays>*)
	 <combination>
 → arr

	 Generates all combinations of selecting an element each from
	 arr and from any arrays passed as arguments. The number of
	 elements in the result is the product of the lengths of arr
	 and the lengths of the arguments (so if any of these arrays is
	 empty, the result will be an empty array). Each element in the
	 result is an array containing n+1 elements, where n is the
	 number of arguments. If a block is present,
	 it will be passed each combination, and arr will
	 be returned.
	
	​ 	suits = ​%w{ C D H S }​

	​ 	ranks = [*2..10, *​%w{ J Q K A }​]

	​ 	card_deck = suits.product(ranks).shuffle

	​ 	card_deck.first(13) ​# => [["S", 8], ["D", "K"], ["C", 9], ["S", "A"], ["H", "K"],​

	​ 	 ​# .. ["S", 4], ["S", 7], ["D", 2], ["H", 6], ["S", "Q"],​

	​ 	 ​# .. ["D", 3], ["D", 4], ["H", 10]]​

push
	arr.push(<obj>*)
 → arr

	 Appends the given argument(s) to arr.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.push(​"d"​, ​"e"​, ​"f"​) ​# => ["a", "b", "c", "d", "e", "f"]​

rassoc
	arr.rassoc(key)
 → an_array or ​nil​

	 Searches through the array whose elements are also arrays.
	 Compares key with the second element of each contained
	 array using ​==​. Returns the first contained array that
	 matches. See also Array#assoc.
	
	​ 	a = [[1, ​"one"​], [2, ​"two"​], [3, ​"three"​], [​"ii"​, ​"two"​]]

	​ 	a.rassoc(​"two"​) ​# => [2, "two"]​

	​ 	a.rassoc(​"four"​) ​# => nil​

reject!
	arr.reject! { |item| … }
 → arr or ​nil​

	 Equivalent to Array#delete_if but returns
	 ​nil​ if arr is unchanged. Also see
	 Enumerable#reject.
	

repeated_combination
	arr.repeated_combination(length) { |comb| … }
	 → arr
	arr.repeated_combination(length) → enum

	 Creates the set of combinations of length
	 length of the elements of arr. If
	 length is greater than ​arr.size​,
	 elements will be allowed to repeat. Passes each combination to
	 the block, or returns an enumerator if no block
	 is given.
	
	​ 	a = [1, 2, 3]

	​ 	a.repeated_combination(2).to_a ​# => [[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3,​

	​ 	 ​# .. 3]]​

	​ 	a.repeated_combination(3).to_a ​# => [[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 2],​

	​ 	 ​# .. [1, 2, 3], [1, 3, 3], [2, 2, 2], [2, 2, 3],​

	​ 	 ​# .. [2, 3, 3], [3, 3, 3]]​

repeated_permutation
	arr.repeated_permutation(length) { |comb| … }
	 → arr
	arr.repeated_permutation(length) → enum

	 Creates the set of permutations of length
	 length of the elements of arr. If
	 length is greater than ​arr.size​
	 elements will be allowed to repeat. Passes each permutation to
	 the block, or returns an enumerator if no block
	 given.
	
	​ 	a = [:a, :b]

	​ 	a.repeated_permutation(2).to_a ​# => [[:a, :a], [:a, :b], [:b, :a], [:b, :b]]​

	​ 	a.repeated_permutation(3).to_a ​# => [[:a, :a, :a], [:a, :a, :b], [:a, :b, :a],​

	​ 	 ​# .. [:a, :b, :b], [:b, :a, :a], [:b, :a, :b],​

	​ 	 ​# .. [:b, :b, :a], [:b, :b, :b]]​

replace
	arr.replace(other_array) → arr

	 Replaces the contents of arr with the contents of
	 other_array, truncating or expanding arr if necessary.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​]

	​ 	a.replace([​"x"​, ​"y"​, ​"z"​]) ​# => ["x", "y", "z"]​

	​ 	a ​# => ["x", "y", "z"]​

reverse
	arr.reverse → an_array

	 Returns a new array using arr’s elements in reverse order.
	
	​ 	[​"a"​, ​"b"​, ​"c"​].reverse ​# => ["c", "b", "a"]​

	​ 	[1].reverse ​# => [1]​

reverse!
	arr.reverse! → arr

	 Reverses arr in place.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.reverse! ​# => ["c", "b", "a"]​

	​ 	a ​# => ["c", "b", "a"]​

	​ 	[1].reverse! ​# => [1]​

reverse_each
	arr.reverse_each <item>} }
 → arr

	 Same as Array#each but traverses arr in reverse order.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.reverse_each {|x| print x, ​" "​ }

Produces:
	​ 	c b a

rindex
	arr.rindex(obj) → int or ​nil​
	arr.rindex { |item| … } → int or ​nil​

	 Returns the index of the last object in
	 arr that is
 ​==​
 to
	 obj or for which the block returns a true value.
	 Returns ​nil​ if no match is found. See
	 also Enumerable#select and
	 Array#index.
	
	​ 	a = [​"a"​, ​"b"​, ​"e"​, ​"b"​, ​"d"​]

	​ 	a.rindex(​"b"​) ​# => 3​

	​ 	a.rindex(​"z"​) ​# => nil​

	​ 	a.rindex {|item| item =~ /[aeiou]/} ​# => 2​

rotate
	arr.rotate(places=1) → new_array

	 Returns a new array containing the elements of
	 arr rotated places positions (so
	 that the element that originally was at
	 ​arr[places]​ is now at the front of the
	 array. places may be negative.
	
	​ 	a = [1, 2, 3, 4, 5]

	​ 	a.rotate(2) ​# => [3, 4, 5, 1, 2]​

	​ 	a.rotate(-2) ​# => [4, 5, 1, 2, 3]​

rotate!
	arr.rotate(places=1) → arr

	 Rotate arr in place.
	

sample
	arr.sample(n=1)
	 → an_array or ​nil​

	 Returns ​min(n,
	 arr.size)​ random elements from
	 arr or ​nil​ if
	 arr is empty and n is not given.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​]

	​ 	a.sample ​# => "c"​

	​ 	a.sample(3) ​# => ["b", "a", "c"]​

	​ 	a.sample(6) ​# => ["b", "d", "a", "c"]​

	​ 	b = []

	​ 	b.sample ​# => nil​

select!
	arr.select! { |obj| … }
	 → array, ​nil​,
	or enumerator

	 Modifies arr by removing all elements for which
	 ​block​ is false (see also Enumerable#select and Array#keep_if).
	 Returns ​nil​ if no changes were made, returns
	 an ​Enumerator​ object if no block is
	 given, or returns arr.
	
	​ 	a = [1, 2, 3, 4, 5, 6, 7, 8, 9]

	​ 	a.select! {|element| element < 6 } ​# => [1, 2, 3, 4, 5]​

	​ 	a ​# => [1, 2, 3, 4, 5]​

	​ 	a.select! {|element| element < 8 } ​# => nil​

	​ 	a ​# => [1, 2, 3, 4, 5]​

shift
	arr.shift(n = 1) → obj or ​nil​

	 Returns the first n elements
	 (or the first element with
	 no argument) of arr and removes it (shifting all other
	 elements down by one). Returns ​nil​ if the array is empty.
	
	​ 	args = [​"-m"​, ​"-q"​, ​"-v"​, ​"filename"​]

	​ 	args.shift ​# => "-m"​

	​ 	args.shift(2) ​# => ["-q", "-v"]​

	​ 	args ​# => ["filename"]​

shuffle
	arr.shuffle → an_array
	arr.shuffle(random: rng) → an_array

	 Returns an array containing the elements of
 arr in random order. You can
 pass it a random number generator using the ​random:​
 keyword parameter. Passing rngs with the same seed makes the
 shuffle deterministic.«2.0»
	
	​ 	[1, 2, 3, 4, 5].shuffle ​# => [4, 5, 2, 1, 3]​

	​ 	[1, 2, 3, 4, 5].shuffle ​# => [5, 2, 1, 4, 3]​

	​ 	[1, 2, 3, 4, 5].shuffle(random: Random.new(123)) ​# => [2, 4, 5, 1, 3]​

	​ 	[1, 2, 3, 4, 5].shuffle(random: Random.new(123)) ​# => [2, 4, 5, 1, 3]​

shuffle!
	arr.shuffle! → an_array
	arr.shuffle!(random: rng) → an_array

	 Randomizes the order of the elements of
 arr in place.
	

size
	arr.size → int

	 Synonym for Array#length.
	

slice
	arr.slice(int)
	 → obj
	arr.slice(start, length)
	 → an_array
	arr.slice(range)
	 → an_array

	 Synonym for Array#[].
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​]

	​ 	a.slice(2) + a.slice(0) + a.slice(1) ​# => "cab"​

	​ 	a.slice(6) ​# => nil​

	​ 	a.slice(1, 2) ​# => ["b", "c"]​

	​ 	a.slice(1..3) ​# => ["b", "c", "d"]​

	​ 	a.slice(4..7) ​# => ["e"]​

	​ 	a.slice(6..10) ​# => nil​

	​ 	a.slice(-3, 3) ​# => ["c", "d", "e"]​

	​ 	​# special cases​

	​ 	a.slice(5) ​# => nil​

	​ 	a.slice(5, 1) ​# => []​

	​ 	a.slice(5..10) ​# => []​

slice!
	arr.slice!(int)
	 → obj or ​nil​
	arr.slice!(start, length)
	 → an_array or ​nil​
	arr.slice!(range)
	 → an_array or ​nil​

	 Deletes the element(s) given by an index (optionally with a
	 length) or by a range. Returns the deleted object, subarray, or
	 ​nil​ if the index is out of range.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.slice!(1) ​# => "b"​

	​ 	a ​# => ["a", "c"]​

	​ 	a.slice!(-1) ​# => "c"​

	​ 	a ​# => ["a"]​

	​ 	a.slice!(100) ​# => nil​

	​ 	a ​# => ["a"]​

sort!
	arr.sort! → arr
	arr.sort! { |a,b| … } → arr

	 Sorts arr in place (see Enumerable#sort). arr is
	 effectively frozen while a sort is in progress.
	
	​ 	a = [​"d"​, ​"a"​, ​"e"​, ​"c"​, ​"b"​]

	​ 	a.sort! ​# => ["a", "b", "c", "d", "e"]​

	​ 	a ​# => ["a", "b", "c", "d", "e"]​

sort_by!
	arr.sort_by! { |a| … } → arr
	arr.sort_by! → enum

	 Sorts arr in place (see Enumerable#sort_by). arr is
	 effectively frozen while a sort is in progress.
	
	​ 	a = [5, 2, 7, 4, 8, 9]

	​ 	​# Sort even numbers before odd, and then by rank​

	​ 	a.sort_by! {|e| [e & 1, e] } ​# => [2, 4, 8, 5, 7, 9]​

	​ 	a ​# => [2, 4, 8, 5, 7, 9]​

to_a
	arr.to_a → arr
	array_subclass.to_a → array

	 If arr is an array, returns arr. If arr is
	 a subclass of
	 ​Array​, invokes
 ​to_ary​
 and uses the result to
	 create a new array object.
	

to_ary
	arr.to_ary → arr

	 Returns arr.
	

to_s
	arr.to_s → str

	 Returns a string representation of arr. (In Ruby 1.9, the array as a literal.)
	
	​ 	[1, 3, 5, 7, 9].to_s ​# => "[1, 3, 5, 7, 9]"​

transpose
	arr.transpose → an_array

	 Assumes that arr is an array of arrays and transposes the
	 rows and columns.
	
	​ 	a = [[1,2], [3,4], [5,6]]

	​ 	a.transpose ​# => [[1, 3, 5], [2, 4, 6]]​

uniq
	arr.uniq <element>
	 → an_array

	 Returns a new array by removing duplicate values in
	 arr, where duplicates are detected by
	 comparing using
 ​eql?​
 and
	
 ​hash​
 . If the block is
	 present, the comparisons are made based on the values
	 returned by that block for each element in the array.
	
	​ 	a = ​%w{ C a a b b A c a }​

	​ 	a.uniq ​# => ["C", "a", "b", "A", "c"]​

	​ 	a.uniq {|element| element.downcase } ​# => ["C", "a", "b"]​

	​ 	a.uniq(&:upcase) ​# => ["C", "a", "b"]​

uniq!
	arr.uniq!
	 <element> → arr or ​nil​

	 Same as Array#uniq but modifies
	 the receiver in place. Returns
	 ​nil​ if no changes are made (that is, no
	 duplicates are found).
	
	​ 	a = [​"a"​, ​"a"​, ​"b"​, ​"b"​, ​"c"​]

	​ 	a.uniq! ​# => ["a", "b", "c"]​

	​ 	b = [​"a"​, ​"b"​, ​"c"​]

	​ 	b.uniq! ​# => nil​

unshift
	arr.unshift(<obj>+})
	 → arr

	 Prepends object(s) to arr.
	
	​ 	a = [​"b"​, ​"c"​, ​"d"​]

	​ 	a.unshift(​"a"​) ​# => ["a", "b", "c", "d"]​

	​ 	a.unshift(1, 2) ​# => [1, 2, "a", "b", "c", "d"]​

values_at
	arr.values_at(<selector>*)
	 → an_array

	 Returns an array containing the elements in
	 arr corresponding to the given selector(s). The selectors
	 may be either integer indices or ranges. Returns
 ​nil​ for selectors beyond the bounds of the array.«2.0»
	
	​ 	a = ​%w{ a b c d e f }​

	​ 	a.values_at(1, 3, 5) ​# => ["b", "d", "f"]​

	​ 	a.values_at(1, 3, 5, 7) ​# => ["b", "d", "f", nil]​

	​ 	a.values_at(-1, -3, -5, -7) ​# => ["f", "d", "b", nil]​

	​ 	a.values_at(1..3, 2...5) ​# => ["b", "c", "d", "c", "d", "e"]​

	​ 	a.values_at(5..7, 1..2) ​# => ["f", nil, nil, "b", "c"]​

Class BasicObject

 ​BasicObject​ is the root of Ruby’s
 class hierarchy. It deliberately has just a few methods,
 allowing it to be conveniently
 used as the basis for a number of metaprogramming techniques.

 If you write code in a direct descendent of ​BasicObject​, you
 will not have unqualified access to the methods in ​Kernel​, which
 normally get mixed in to ​Object​. This example illustrates how to
 invoke ​Kernel​ methods explicitly:

	​ 	​class​ SimpleBuilder < BasicObject

	​ 	 ​def​ __puts_at_indent__(string)

	​ 	 ::Kernel.puts ​" "​ * @indent + string

	​ 	 ​end​

	​ 	 ​def​ method_missing(name, *args, &block)

	​ 	 @indent ||= 0

	​ 	 __puts_at_indent__(​"<​#{name}​>"​)

	​ 	 @indent += 2

	​ 	 __puts_at_indent__(args.join) ​unless​ args.empty?

	​ 	 ​yield​ ​if​ ::Kernel.block_given?

	​ 	 @indent -= 2

	​ 	 __puts_at_indent__(​"</​#{name}​>"​)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	r = SimpleBuilder.new

	​ 	r.person ​do​

	​ 	 r.name ​"Dave"​

	​ 	 r.address ​do​

	​ 	 r.street ​"123 Main"​

	​ 	 r.city ​"Pleasantville"​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	<person>

	​ 	 <name>

	​ 	 Dave

	​ 	 </name>

	​ 	 <address>

	​ 	 <street>

	​ 	 123 Main

	​ 	 </street>

	​ 	 <city>

	​ 	 Pleasantville

	​ 	 </city>

	​ 	 </address>

	​ 	</person>

BasicObject: Instance methods
!
	! obj → ​true​ or ​false​

	 Returns ​false​ unless obj is false. Because it’s
	 in ​BasicObject​, ​!​ is defined for all objects
	 in Ruby.
	

==
	obj == other_obj
	 → ​true​ or ​false​

	 Equality—At the ​BasicObject​ level, ​==​ returns
	 ​true​ only if obj and other_obj are the same
	 object. Typically, this method is overridden in descendent
	 classes to provide class-specific meaning.
	

!=
	obj != other → ​true​ or ​false​

	 Returns the opposite of BasicObject#==.
	

__id__
	obj.__id__ → fixnum

	 Synonym for Object#object_id. Prior to Ruby 1.9.3, this
	 was an instance method of class
	 ​Object​.
	

equal?
	obj.equal?(other_obj) → ​true​ or ​false​

	 Alias for BasicObject#==.
	

instance_eval
	
	 obj.instance_eval(
	 string <, file line>)
	 → other_obj
	obj.instance_eval { |obj| … }
	 → other_obj}

	 Evaluates a string containing Ruby source code, or the
	 given block, within the context of the receiver
	 (obj). To set the context, the variable
	 ​self​ is set to obj
	 while the code is executing, giving the code access to
	 obj’s instance variables. In the version of
	
 ​instance_eval​
 that takes a
	 ​String​, the optional second and
	 third parameters supply a filename and starting line
	 number that are used when reporting compilation errors.
	
	​ 	​class​ Klass

	​ 	 ​def​ initialize

	​ 	 @secret = 99

	​ 	 ​end​

	​ 	​end​

	​ 	k = Klass.new

	​ 	k.instance_eval { @secret } ​# => 99​

	 When metaprogramming,
 ​instance_eval​
 is often used to
	 execute the methods in a block in the context of the caller:
	
	​ 	​class​ Recorder < BasicObject

	​ 	 attr_reader :__calls__

	​ 	 ​def​ method_missing(name, *args, &block)

	​ 	 @__calls__ ||= []

	​ 	 @__calls__ << [name, args]

	​ 	 ​end​

	​ 	 ​def​ record(&block)

	​ 	 instance_eval(&block)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	r = Recorder.new

	​ 	r.record ​do​

	​ 	 disable ​"safety"​

	​ 	 pull ​"control rod"​, dir: ​"out"​

	​ 	 run

	​ 	​end​

	​ 	

	​ 	p r.__calls__

Produces:
	​ 	[[:disable, ["safety"]], [:pull, ["control rod", {:dir=>"out"}]], [:run, []]]

instance_exec
	obj.instance_exec(<args>*) { |args| … }
	 → other_obj

	 Executes the block with
	 ​self​ set to obj,
	 passing args as parameters to the
	 block.
	
	​ 	​class​ Dummy < BasicObject

	​ 	 ​def​ initialize

	​ 	 @iv = 33

	​ 	 ​end​

	​ 	 ​def​ double_and_call(value, &block)

	​ 	 instance_exec(value*2, &block)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	d = Dummy.new

	​ 	d.double_and_call(22) ​do​ |param|

	​ 	 ::Kernel::puts ​"Parameter = ​#{param}​"​

	​ 	 ::Kernel::puts ​"@iv = ​#{@iv}​"​

	​ 	​end​

Produces:
	​ 	Parameter = 44

	​ 	@iv = 33

__send__
	obj.__send__(symbol
	 <, args>* <, &block>) → other_obj

	 Invokes the method identified by symbol, passing it any
	 arguments and block.
	
	​ 	​class​ Klass < BasicObject

	​ 	 ​def​ hello(*args)

	​ 	 ​"Hello "​ + args.join(​' '​)

	​ 	 ​end​

	​ 	​end​

	​ 	k = Klass.new

	​ 	k.__send__ :hello, ​"gentle"​, ​"readers"​ ​# => "Hello gentle readers"​

BasicObject: Private instance methods
method_missing
	
	 method_missing(symbol <, *args>)
	 → other_obj

	 Invoked by Ruby when obj is sent a message it cannot
	 handle. symbol is the symbol for the method called, and
	 args are any arguments that were passed to it.
	
 ​method_missing​
 can be used to implement proxies,
	 delegators, and forwarders. It can also be used to simulate the
	 existence of methods in the receiver, as the example at the
	 start of this section shows.
	

singleton_method_added
	singleton_method_added(symbol)

	 Invoked as a callback whenever a singleton
	 method is added to the receiver.
	
	​ 	​module​ Chatty

	​ 	 ​def​ Chatty.singleton_method_added(id)

	​ 	 puts ​"Adding ​#{id}​ to ​#{self.name}​"​

	​ 	 ​end​

	​ 	 ​def​ self.one() ​end​

	​ 	 ​def​ two() ​end​

	​ 	​end​

	​ 	​def​ Chatty.three() ​end​

Produces:
	​ 	Adding singleton_method_added to Chatty

	​ 	Adding one to Chatty

	​ 	Adding three to Chatty

	 You can add the hook to any object:
	
	​ 	obj = ​"cat"​

	​ 	

	​ 	​def​ obj.singleton_method_added(id)

	​ 	 puts ​"Adding ​#{id}​ to ​#{self}​"​

	​ 	​end​

	​ 	

	​ 	​def​ obj.speak

	​ 	 puts ​"meow"​

	​ 	​end​

Produces:
	​ 	Adding singleton_method_added to cat

	​ 	Adding speak to cat

singleton_method_removed
	singleton_method_removed(symbol)

	 Invoked as a callback whenever a singleton
	 method is removed from the receiver.
	
	​ 	​module​ Chatty

	​ 	 ​def​ Chatty.singleton_method_removed(id)

	​ 	 puts ​"Removing ​#{id}​"​

	​ 	 ​end​

	​ 	 ​def​ self.one() ​end​

	​ 	 ​def​ two() ​end​

	​ 	 ​def​ Chatty.three() ​end​

	​ 	

	​ 	 ​class​ <<self

	​ 	 remove_method :three

	​ 	 remove_method :one

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Removing three

	​ 	Removing one

singleton_method_undefined
	singleton_method_undefined(symbol)

	 Invoked as a callback whenever a singleton
	 method is undefined in the receiver.
	
	​ 	​module​ Chatty

	​ 	 ​def​ Chatty.singleton_method_undefined(id)

	​ 	 puts ​"Undefining ​#{id}​"​

	​ 	 ​end​

	​ 	 ​def​ Chatty.one() ​end​

	​ 	 ​class​ << self

	​ 	 undef_method(:one)

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Undefining one

Class Bignum < Integer

 ​Bignum​ objects hold integers outside the range of
 ​Fixnum​—​Bignum​ objects are created automatically when
 integer calculations would otherwise overflow. When a
 calculation involving ​Bignum​ objects returns a result that will
 fit in a ​Fixnum​, the result is automatically converted.

 For the purposes of the bitwise operations and
 ​[]​
 , a
 ​Bignum​ is treated as if it were an infinite-length bitstring
 with 2’s complement representation.

 While ​Fixnum​ values are immediate, ​Bignum​ objects are
 not—assignment and parameter passing work with references to
 objects, not the objects themselves.

Bignum: Instance methods
Arithmetic operations
	

	 Performs various arithmetic operations on big.
	
	
	
big
	+ 	
 number
	 Addition
	
big
	--	
 number
	 Subtraction
	
big
	* 	
 number
	 Multiplication
	
big
	/ 	
 number
	 Division
	
big
	%	
 number
	 Modulo
	
big
	**	
 number
	 Exponentiation
	
big
	-@	

	 Unary minus

Bit operations
	

	 Performs various operations on the binary representations of
	 the ​Bignum​.
	
	
~ big
	

	

	
 Invert bits

	
big
	
 |
	
 number
	
 Bitwise ​or​

	
big
	
 &
	
 number
	
 Bitwise ​and​

	
big
	
 ^
	
 number
	
 Bitwise exclusive or

	
big
	
 <<
	
 number
	
 Left-shift ​number​ bits

	
big
	
 >>
	
 number
	
 Right-shift ​number​ bits (with sign extension)

<=>
	big <=> number
	 → -1, 0, +1, or ​nil​

	 Comparison—Returns -1, 0, or +1 depending on
	 whether big is less
	 than, equal to, or greater than number. This is the
	 basis for the tests in ​Comparable​.
	

==
	big == obj → ​true​ or ​false​

	 Returns ​true​ only if obj has
	 the same value as big. Contrast this with Bignum#eql?,
	 which requires obj to be a ​Bignum​.
	
	​ 	68719476736 == 68719476736.0 ​# => true​

[]
	big[n] → 0, 1

	 Bit Reference—Returns the nth bit in
	 the (assumed) binary representation of big,
	 where big[0] is the least significant bit.
	
	​ 	a = 9**15 ​# that's 9 raised to the 15th power​

	​ 	

	​ 	50.downto(0) ​do​ |n|

	​ 	 print a[n]

	​ 	​end​

Produces:
	​ 	000101110110100000111000011110010100111100010111001

abs
	big.abs → bignum

	 Returns the absolute value of big.
	
	​ 	1234567890987654321.abs ​# => 1234567890987654321​

	​ 	-1234567890987654321.abs ​# => 1234567890987654321​

div
	big.div(number) → other_number

	 Synonym for Bignum#/.
	
	​ 	-1234567890987654321.div(13731) ​# => -89910996357706​

	​ 	-1234567890987654321.div(13731.0) ​# => -89910996357706​

	​ 	-1234567890987654321.div(-987654321) ​# => 1249999989​

divmod
	big.divmod(number) → array

	 See Numeric#divmod.
	

eql?
	big.eql?(obj) → ​true​ or ​false​

	 Returns ​true​ only if obj is a ​Bignum​ with
	 the same value as big. Contrast this with Bignum#==,
	 which performs type conversions.
	
	​ 	68719476736.eql? 68719476736 ​# => true​

	​ 	68719476736 == 68719476736 ​# => true​

	​ 	68719476736.eql? 68719476736.0 ​# => false​

	​ 	68719476736 == 68719476736.0 ​# => true​

fdiv
	big.fdiv(number) → float

	Returns the floating-point result of dividing big by
	number. Alias for Bignum#quo.

	​ 	-1234567890987654321.fdiv(13731) ​# => -89910996357705.52​

	​ 	-1234567890987654321.fdiv(13731.0) ​# => -89910996357705.52​

	​ 	-1234567890987654321.fdiv(-987654321) ​# => 1249999989.609375​

magnitude
	big.magnitude → bignum

	 Returns the magnitude of big (the distance of big from the
	 origin of the number line). Synonym for Bignum#abs. See also
	 Complex#magnitude.
	

modulo
	big.modulo(number) → number

	 Synonym for Bignum#%.
	

remainder
	big.remainder(number) → other_number

	 Returns the remainder after dividing big by
	 number.
	
	​ 	-1234567890987654321.remainder(13731) ​# => -6966​

	​ 	-1234567890987654321.remainder(13731.24) ​# => -9906.22531493148​

size
	big.size → integer

	 Returns the number of bytes in the machine representation
	 of big.
	
	​ 	(256**10 - 1).size ​# => 12​

	​ 	(256**20 - 1).size ​# => 20​

	​ 	(256**40 - 1).size ​# => 40​

to_f
	big.to_f → float

	 Converts big to a ​Float​. If big doesn’t fit in a
	 ​Float​, the result is infinity.
	

to_s
	big.to_s(base=10) → str

	 Returns a string containing the representation of big radix
	 base (2 to 36).
	
	​ 	12345654321.to_s ​# => "12345654321"​

	​ 	12345654321.to_s(2) ​# => "1011011111110110111011110000110001"​

	​ 	12345654321.to_s(8) ​# => "133766736061"​

	​ 	12345654321.to_s(16) ​# => "2dfdbbc31"​

	​ 	12345654321.to_s(26) ​# => "1dp1pc6d"​

	​ 	78546939656932.to_s(36) ​# => "rubyrules"​

Class Binding < Object

 Objects of class ​Binding​ encapsulate the execution
 context at some particular place in the code and retain this
 context for future use. Access to the variables, methods, value
 of ​self​, and possibly an iterator block
 accessible in this context are all retained. Binding objects can
 be created using Object#binding
 and are made available to the callback of Object#set_trace_func
 and to the block passed to TracePoint.new«2.0».

 These binding objects can be passed as the second argument of the
 Object#eval
 method, establishing an environment for the evaluation.

	​ 	​class​ Demo

	​ 	 ​def​ initialize(n)

	​ 	 @secret = n

	​ 	 ​end​

	​ 	 ​def​ get_binding

	​ 	 ​return​ binding()

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	k1 = Demo.new(99)

	​ 	b1 = k1.get_binding

	​ 	k2 = Demo.new(-3)

	​ 	b2 = k2.get_binding

	​ 	

	​ 	​# Pass to eval...​

	​ 	eval(​"@secret"​, b1) ​# => 99​

	​ 	​# Or eval via binding...​

	​ 	b2.eval(​"@secret"​) ​# => -3​

	​ 	

	​ 	eval(​"@secret"​) ​# => nil​

Binding: Instance methods
eval
	bind.eval(string <, file line>)
	 → obj

	 Evaluates the Ruby code in string using the context of
	 bind. Equivalent to calling Object#eval with a second
	 argument of bind. See the start of this section for an example.
	

Class Class < Module

 Classes in Ruby are first-class objects—each is an instance of
 class ​Class​.

 When a new class is defined (typically using
 ​class SomeName ... end​), an object of type ​Class​ is created
 and assigned to a constant (​SomeName​, in this case). When
 ​Name.new​ is called to create a new object, the
 ​new​

 instance method in ​Class​ is run by default, which in turn invokes

 ​allocate​
 to allocate memory for the object, before finally
 calling the new object’s
 ​initialize​
 method.

Class: Class methods
new
	Class.new(super_class=​Object​) <>
	 → cls

	 Creates a new anonymous (unnamed) class with the given superclass (or
	 ​Object​ if no parameter is given). If called with a block,
	 that block is used as the body of the class. Within the block, ​self​ is
	 set to the class instance.
	
	​ 	name = ​"Dave"​

	​ 	FriendlyClass = Class.new ​do​

	​ 	 define_method :hello ​do​

	​ 	 ​"Hello, ​#{name}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	f = FriendlyClass.new

	​ 	f.hello ​# => "Hello, Dave"​

Class: Instance methods
allocate
	cls.allocate → obj

	 Allocates space for a new object of cls’s class. The returned object
	 must be an instance of cls. Calling
 ​new​
 is basically
	 the same as calling the class method
 ​allocate​
 to
	 create an object, followed by calling
 ​initialize​
 on
	 that new object. You cannot override
 ​allocate​
 in
	 normal programs; Ruby invokes it without going through
	 conventional method dispatch.
	
	​ 	​class​ MyClass

	​ 	 ​def​ self.another_new(*args)

	​ 	 o = allocate

	​ 	 o.send(:initialize, *args)

	​ 	 o

	​ 	 ​end​

	​ 	 ​def​ initialize(a, b, c)

	​ 	 @a, @b, @c = a, b, c

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	mc = MyClass.another_new(4, 5, 6)

	​ 	mc.inspect ​# => "#<MyClass:0x007fbdab10f430 @a=4, @b=5, @c=6>"​

new
	cls.new(<args>*) → obj

	 Calls
 ​allocate​
 to create a new object of cls’s class and
	 then invokes the newly created object’s
	
 ​initialize​
 method, passing it args.
	

superclass
	cls.superclass → super_class or ​nil​

	 Returns the superclass of cls or returns ​nil​.
	
	​ 	Class.superclass ​# => Module​

	​ 	Object.superclass ​# => BasicObject​

	​ 	BasicObject.superclass ​# => nil​

Class: Private instance methods
inherited
	cls.inherited(sub_class)

	 Invoked by Ruby when a subclass
	 of cls is created. The new subclass is passed as a
	 parameter.
	
	​ 	​class​ Top

	​ 	 ​def​ self.inherited(sub)

	​ 	 puts ​"New subclass: ​#{sub}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Middle < Top

	​ 	​end​

	​ 	

	​ 	​class​ Bottom < Middle

	​ 	​end​

Produces:
	​ 	New subclass: Middle

	​ 	New subclass: Bottom

Module Comparable
	Relies on:
	<=>

 The ​Comparable​ mixin is used by classes
 whose objects may be ordered. The class must define the

 ​<=>​
 operator, which compares the receiver
 against another object, returning -1, 0, or +1 depending on
 whether the receiver is less than, equal to, or greater than the
 other object. ​Comparable​ uses

 ​<=>​
 to implement the conventional
 comparison operators (​<​, ​<=​, ​==​,
 ​>=​, and ​>​) and the method

 ​between?​
 .

	​ 	​class​ CompareOnSize

	​ 	 include Comparable

	​ 	 attr :str

	​ 	 ​def​ <=>(other)

	​ 	 str.length <=> other.str.length

	​ 	 ​end​

	​ 	 ​def​ initialize(str)

	​ 	 @str = str

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	s1 = CompareOnSize.new(​"Z"​)

	​ 	s2 = CompareOnSize.new([1,2])

	​ 	s3 = CompareOnSize.new(​"XXX"​)

	​ 	

	​ 	s1 < s2 ​# => true​

	​ 	s2.between?(s1, s3) ​# => true​

	​ 	s3.between?(s1, s2) ​# => false​

	​ 	[s3, s2, s1].sort ​# => ["Z", [1, 2], "XXX"]​

Comparable: Instance methods
Comparisons
	obj < other_object → ​true​ or ​false​
	obj <= other_object → ​true​ or ​false​
	obj == other_object → ​true​ or ​false​
	obj >= other_object → ​true​ or ​false​
	obj > other_object → ​true​ or ​false​

	 Compares two objects based on the receiver’s
 ​<=>​
 method.
	

between?
	obj.between?(min, max)
	 → ​true​ or ​false​

	 Returns ​false​ if
	 obj ​<=>​ min
	 is less than zero or if
	 obj ​<=>​ max
	 is greater than zero; returns
	 ​true​ otherwise.
	
	​ 	3.between?(1, 5) ​# => true​

	​ 	6.between?(1, 5) ​# => false​

	​ 	​'cat'​.between?(​'ant'​, ​'dog'​) ​# => true​

	​ 	​'gnu'​.between?(​'ant'​, ​'dog'​) ​# => false​

Class Complex < Numeric

 Represents complex numbers, represented internally as
 numbers with a real part and an imaginary part, both of which can
 be any scalar number. Note that scalar comparison
 operations (​<=>​, ​<​, and so on) are not
 defined on complex numbers (which would argue that
 ​Complex​ should not be a subclass of
 ​Numeric​, but that ship has sailed). Also see the
 standard library named ​complex​ for a way
 to add complex number support to standard math functions; also see
 the ​mathn​
 library for a way of integrating complex numbers into
 regular arithmetic (so that the square root of -1 returns
 ​Complex::I​).

	​ 	v1 = Complex(2,3) ​# => (2+3i)​

	​ 	v2 = Complex(​"0+2i"​) ​# => (0+2i)​

	​ 	v1 + v2 ​# => (2+5i)​

	​ 	v1 * v2 ​# => (-6+4i)​

	​ 	v2**2 ​# => (-4+0i)​

	​ 	v2**2 == -4 ​# => true​

	​ 	​# Euler's theorem​

	​ 	include Math

	​ 	E**(PI*Complex::I) ​# => (-1.0+1.2246467991473532e-16i)​

 Constants

	Complex::I
	The imaginary unit.

Complex: Class methods
polar
	Complex.polar(magnitude, angle)
	 → complex

	 Returns the complex number represented by the given polar coordinates.
	
	​ 	Complex.polar(1.23, 0.5) ​# => 1.0794265511251584+0.5896934124831696i​

	​ 	Complex.polar(1, Math::PI/2) ​# => 6.123233995736766e-17+1.0i​

rect
	Complex.rect(read, imag)
	 → complex

	 Returns the complex number represented by the given real and imaginary parts.
	
	​ 	Complex.rect(1.23, 0.5) ​# => 1.23+0.5i​

rectangular
	Complex.rectangular(read, imag)
	 → complex

	 Synonym for Complex.rect.
	

Complex: Instance methods
Arithmetic operations
	

	 Performs various arithmetic operations on
	 complex.
	
	
complex
	
+
	
numeric
	
Addition

	
complex
	
--
	
numeric
	
Subtraction

	
complex
	
*
	
numeric
	
Multiplication

	
complex
	
/
	
numeric
	
Division

	
complex
	
**
	
numeric
	
Exponentiation

	
complex
	
-@
	

	
Unary minus

	
complex
	
-+
	

	
Unary plus

==
	complex == other → ​true​ or ​false​

	 Returns ​true​ if complex does equals other,
	 converting other to a complex number if necessary.
	
	​ 	Complex::I == Complex(0,1) ​# => true​

	​ 	Complex::I == Complex(1,0) ​# => false​

	​ 	Complex(1,0) == 1 ​# => true​

	​ 	Complex(1,0) == ​"1"​ ​# => false​

abs
	complex.abs → number

	 Synonym for Complex#magnitude.
	

abs2
	complex.abs2 → number

	 Returns the square of the absolute value (magnitude) of complex.
	
	​ 	Complex::I.abs2 ​# => 1​

	​ 	Complex(1,1).abs2 ​# => 2​

angle
	complex.angle → number

	 Returns the angle between the x-axis and a line from the origin
	 to complex. By convention, ​Complex(0,0).angl​} is 0.
	
	​ 	Complex(1, 0).angle ​# => 0.0​

	​ 	Complex(1, 1).angle ​# => 0.7853981633974483​

	​ 	Complex(0, 1).angle ​# => 1.5707963267948966​

arg
	complex.arg → number

	 Synonym for Complex#angle.
	

conj
	complex.conj → a_complex

	 Synonym for Complex#conjugate.
	

conjugate
	complex.conjugate → a_complex

	 Returns the conjugate of complex (the reflection of complex around
	 the x-axis).
	
	​ 	Complex::I.conjugate ​# => (0-1i)​

	​ 	Complex(1,1).conjugate ​# => (1-1i)​

denominator
	complex.denominator → number

	 Returns the lowest common multiple of the denominators of the
	 real and imaginary parts of complex.
	
	​ 	Complex(​"1/3+1/4i"​).denominator ​# => 12​

	​ 	Complex(-2, 4).denominator ​# => 1​

eql?
	complex.eql(other)
	 → ​true​ or ​false​

	 Returns ​true​ only if other is a complex number with real
	 and imaginary parts
 ​eql?​
 to complex’s.
	
	​ 	Complex(1, 0).eql?(Complex(1,0)) ​# => true​

	​ 	Complex(1, 0).eql?(Complex(1.0, 0)) ​# => false​

	​ 	Complex(1, 0).eql?(1) ​# => false​

	​ 	Complex(1, 0) == Complex(1,0) ​# => true​

	​ 	Complex(1, 0) == Complex(1.0, 0) ​# => true​

	​ 	Complex(1, 0) == 1 ​# => true​

fdiv
	complex.fdiv(other) → a_complex

	 Returns complex / other after converting the real and
	 imaginary parts of complex to floats. (Contrast with Complex#quo.)
	
	​ 	c1 = Complex(1, 2)

	​ 	c2 = Complex(2, 2)

	​ 	c1 /c2 # => ((3/4)+(1/4)*i)

	​ 	c1.fdiv(c2) ​# => (0.75+0.25i)​

imag
	complex.imag → number

	 Returns the imaginary part of complex.
	
	​ 	Complex(2, -3).imag ​# => -3​

imaginary
	complex.imaginary → number

	 Synonym for Complex#imag.
	

magnitude
	complex.magnitude → int or float

	 Returns the magnitude of complex (the distance of
	 complex from the origin of the number line). The
	 positive square root of real2 + imag2.
	
	​ 	Complex(1, 1).magnitude ​# => 1.4142135623730951​

	​ 	Complex(3, 4).magnitude ​# => 5.0​

	​ 	Complex::I.magnitude ​# => 1​

numerator
	complex.numerator → a_complex

	 Returns the numerator, treating the real and complex parts
	 of complex as fractions to be combined over a
	 common denominator.
	
	​ 	c = Complex(​'2/3+3/4i'​)

	​ 	c.numerator ​# => (8+9i)​

	​ 	c.denominator ​# => 12​

phase
	complex.phase → [magnitude, angle]

	 Returns the phase angle of complex (the angle
	 between the positive x-axis and the line from the origin to
	 (real, imag)), measured in radians.
	
	​ 	Complex(3, 4).phase ​# => 0.9272952180016122​

	​ 	Complex(-3, 4).phase ​# => 2.214297435588181​

polar
	complex.polar → [magnitude, angle]

	 Returns complex as polar coordinates.
	
	​ 	Complex(1,1).polar ​# => [1.4142135623730951, 0.7853981633974483]​

	​ 	Complex(-2,-3).polar ​# => [3.605551275463989, -2.158798930342464]​

quo
	complex.quo(other) → a_complex

	 Returns complex / other after converting the real and
	 imaginary parts of complex to rational numbers. (Contrast with
	 Complex#fdiv.)
	
	​ 	c1 = Complex(1, 2)

	​ 	c2 = Complex(2, 2)

	​ 	c1 /c2 # => ((3/4)+(1/4)*i)

	​ 	c1.quo(c2) ​# => ((3/4)+(1/4)*i)​

rationalize
	complex.rationalize(eps=nil) → rational

	 Returns the real part of complex as a rational number, raising
	 an exception if the imaginary part is not zero. The argument is always ignored. Effectively a
	 synonym for Complex.to_r.
	
	​ 	Complex(2.5, 0).rationalize ​# => (5/2)​

rect
	complex.rect → [complex.real, complex.imag]

	 Returns an array containing the real and imaginary components of complex.
	
	​ 	Complex::I.rect ​# => [0, 1]​

rectangular
	complex.rectangular → [complex.real, complex.imag]

	Synonym for Complex#rect.

real
	complex.real → number

	 Returns the real part of complex.
	
	​ 	Complex(2, 3).real ​# => 2​

real?
	complex.real? → false

	 Complex numbers are never real numbers (even if their imaginary part
	 is zero).
	
	​ 	Complex(1, 1).real? ​# => false​

	​ 	Complex(1, 0).real? ​# => false​

to_f
	complex.to_f → float

	 Returns the real part of complex as a float, raising an exception if the
	 imaginary part is not zero.
	
	​ 	Complex(2, 0).to_f ​# => 2.0​

to_i
	complex.to_i → integer

	 Returns the real part of complex as an integer, raising an exception if the
	 imaginary part is not zero.
	
	​ 	Complex(2.2, 0).to_i ​# => 2​

to_r
	complex.to_r → rational

	 Returns the real part of complex as a rational number, raising
	 an exception if the imaginary part is not zero.
	
	​ 	Complex(2.5, 0).to_r ​# => (5/2)​

Class Dir < Object

 Objects of class ​Dir​ are directory streams
 representing directories in the underlying file system. They
 provide a variety of ways to list directories and their contents.
 See also ​File​.

 The directory used in these examples contains the two regular
 files (​config.h​ and
 ​main.rb​), the parent directory
 (​..​), and the directory itself
 (​.​).

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Dir: Class methods
[]
	Dir[glob_pattern] → array

	 Equivalent to calling ​Dir.glob(glob_pattern,0)​.
	

chdir
	Dir.chdir(< dir>) → 0
	Dir.chdir(< dir>) { |path| … }
	 → obj

	 Changes the current working directory of the process to the
	 given string. When called without an argument, changes the
	 directory to the value of the environment variable
	 ​HOME​ or
	 ​LOGDIR​.
	 Raises a ​SystemCallError​ (probably
	 ​Errno::ENOENT​) if the target
	 directory does not exist.
	

	 If a block is given, it is passed the name of the new
	 current directory, and the block is executed with that as
	 the current directory. The original working directory is
	 restored when the block exits. The return value of
	
 ​chdir​
 is the value of the
	 block.
 ​chdir​
 blocks can be nested,
	 but in a multithreaded program an error will be raised if a
	 thread attempts to open a
 ​chdir​

	 block while another thread has one open. This is because the
	 underlying operating system only understands the concept of
	 a single current working directory at any one time.
	
	​ 	Dir.chdir(​"/private/var/log"​) ​# => 0​

	​ 	Dir.pwd ​# => "/private/var/log"​

	​ 	Dir.chdir(​"/private/tmp"​) ​do​

	​ 	 Dir.pwd ​# => "/private/tmp"​

	​ 	 Dir.chdir(​"/usr"​) ​do​

	​ 	 Dir.pwd ​# => "/usr"​

	​ 	 ​end​

	​ 	 Dir.pwd ​# => "/private/tmp"​

	​ 	​end​

	​ 	Dir.pwd ​# => "/private/var/log"​

chroot
	Dir.chroot(dirname) → 0

	 Changes this process’s idea of the file system root. Only a
	 privileged process may make this call. Not available on all
	 platforms. On Unix systems, see chroot(2) for more
	 information.
	
	​ 	Dir.chdir("/production/secure/root")

	​ 	Dir.chroot("/production/secure/root") #=> 0

	​ 	Dir.pwd #=> "/"

delete
	Dir.delete(dirname) → 0

	 Deletes the named directory. Raises a subclass of
	 ​SystemCallError​ if the directory isn’t empty.
	

entries
	Dir.entries(dirname) → array

	 Returns an array containing all of the filenames in the given
	 directory. Will raise a ​SystemCallError​ if the named directory
	 doesn’t exist.
	
	​ 	Dir.entries(​"testdir"​) ​# => [".", "..", ".svn", "config.h", "main.rb"]​

exist?
	Dir.exist?(path) → ​true​ or ​false​

	 Returns ​true​ if
	 path exists and is a directory. Alias for File.directory?.
	
	​ 	Dir.exist?(​"/tmp"​) ​# => true​

	​ 	Dir.exist?(​"/temp"​) ​# => false​

exists?
	Dir.exists?(path) → ​true​ or ​false​

	 Alias for Dir.exist?.
	

foreach
	Dir.foreach(dirname) { |filename| … } → ​nil​

	 Calls the block once for each entry in the dirname,
	 passing the filename as a parameter.
	
	​ 	Dir.foreach(​"testdir"​) {|x| puts ​"Got ​#{x}​"​ }

Produces:
	​ 	Got .

	​ 	Got ..

	​ 	Got .svn

	​ 	Got config.h

	​ 	Got main.rb

getwd
	Dir.getwd → dirname

	 Returns a string containing the canonical path to the
	 current working directory of this process. Note that on
	 some operating systems this name may not be the name you
	 gave to Dir.chdir. On OS X, for
	 example, ​/tmp​ is a symlink.
	
	​ 	Dir.chdir(​"/tmp"​) ​# => 0​

	​ 	Dir.getwd ​# => "/private/tmp"​

glob
	Dir.glob(glob_pattern, <flags>) → array
	Dir.glob(glob_pattern, <flags>) { |filename| … }
	 → ​false​

	 Returns the filenames found by expanding the pattern given
	 in glob_pattern, either as elements in
	 array or as parameters to the block. Note that
	 this pattern is not a regexp (it’s closer to a shell glob).
	 See File.fnmatch
	 for the meaning of the
	 flags parameter. Case sensitivity depends on your
	 system (so ​File::FNM_CASEFOLD​ is
	 ignored). Metacharacters in the pattern are as follows:
	
	
​*​
	

	 Any sequence of characters in a filename: ​*​ will
	 match all files, ​c*​ will match all files
	 beginning with ​c​, ​*c​ will match all
	 files ending with ​c​, and ​*c*​ will
	 match all files that have ​c​ in their name.
	

	
​**​
	

	 Matches zero or more directories (so ​**/fred​ matches
	 a file named ​fred​ in or below the current directory).
	

	
​?​
	

	 Matches any one character in a filename.
	

	
​[​chars​]​
	

	 Matches any one of
	 ​chars​. If the first character in
	 ​chars​ is ^, matches any character not in the
	 remaining set.
	

	
​{​patt​,...}​
	

	 Matches one of the patterns specified between braces. These patterns
	 may contain other metacharacters.
	

	
​\​
	

	 Removes any special significance in the next character.
	

	​ 	Dir.chdir(​"testdir"​) ​# => 0​

	​ 	Dir[​"config.?"​] ​# => ["config.h"]​

	​ 	Dir.glob(​"config.?"​) ​# => ["config.h"]​

	​ 	Dir.glob(​"*.[a-z][a-z]"​) ​# => ["main.rb"]​

	​ 	Dir.glob(​"*.[^r]*"​) ​# => ["config.h"]​

	​ 	Dir.glob(​"*.{rb,h}"​) ​# => ["main.rb", "config.h"]​

	​ 	Dir.glob(​"*"​) ​# => ["config.h", "main.rb"]​

	​ 	Dir.glob(​"*"​, File::FNM_DOTMATCH) ​# => [".", "..", ".svn", "config.h", "main.rb"]​

	​ 	

	​ 	Dir.chdir(​".."​) ​# => 0​

	​ 	Dir.glob(​"code/**/fib*.rb"​) ​# => ["code/irb/fibonacci_sequence.rb",​

	​ 	 ​# .. "code/rdoc/fib_example.rb"]​

	​ 	Dir.glob(​"**/rdoc/fib*.rb"​) ​# => ["code/rdoc/fib_example.rb"]​

home
	Dir.home(<user_name>) → string

	 Returns the home directory of the given user (or
	 the current user if no argument is given).
	
	​ 	Dir.home ​# => "/Users/dave"​

	​ 	Dir.home(​"nobody"​) ​# => "/var/empty"​

mkdir
	Dir.mkdir(dirname <, permissions>) → 0

	 Makes a new directory named dirname, with
	 permissions specified by the optional parameter
	 permissions. The permissions may be modified by
	 the value of File.umask and are ignored
	 on Windows. Raises a ​SystemCallError​ if the
	 directory cannot be created. See also the discussion of permissions.
	

new
	Dir.new(dirname <, :encoding => enc>) → dir

	 Returns a new directory object for the named
	 directory. The optional hash parameter lets you
	 specify the encoding used by filenames. If not given, it
	 defaults to the file system local on the current machine.
	

open
	Dir.open(dirname <, :encoding => enc>) → dir
	Dir.open(dirname <, :encoding => enc>) { |dir| … }
	 → obj

	 With no block,
 ​open​
 is a synonym for Dir.new.
	 If a block is present, it is passed dir as a parameter. The
	 directory is closed at the end of the block, and Dir.open
	 returns the value of the block.
	

pwd
	Dir.pwd → dirname

	 Synonym for Dir.getwd.
	

rmdir
	Dir.rmdir(dirname) → ​0​

	 Synonym for Dir.delete.
	

unlink
	Dir.unlink(dirname) → ​0​

	 Synonym for Dir.delete.
	

Dir: Instance methods
close
	dir.close → ​nil​

	 Closes the directory stream.
	 Any further attempts to access dir will raise an
	 ​IOError​.
	
	​ 	d = Dir.new(​"testdir"​)

	​ 	d.close ​# => nil​

each
	dir.each { |filename| … } → dir

	 Calls the block once for each entry in this directory,
	 passing the filename of each entry as a parameter to the block.
	
	​ 	d = Dir.new(​"testdir"​)

	​ 	d.each {|name| puts ​"Got ​#{name}​"​ }

Produces:
	​ 	Got .

	​ 	Got ..

	​ 	Got .svn

	​ 	Got config.h

	​ 	Got main.rb

path
	dir.path → dirname

	 Returns the path parameter passed to dir’s constructor.
	
	​ 	d = Dir.new(​".."​)

	​ 	d.path ​# => ".."​

pos
	dir.pos → int

	 Synonym for Dir#tell.
	

pos=
	dir.pos(int) → int

	 Synonym for Dir#seek but returns the position parameter.
	
	​ 	d = Dir.new(​"testdir"​) ​# => #<Dir:testdir>​

	​ 	d.read ​# => "."​

	​ 	i = d.pos ​# => 1​

	​ 	d.read ​# => ".."​

	​ 	d.pos = i ​# => 1​

	​ 	d.read ​# => ".."​

read
	dir.read → filename or ​nil​

	 Reads the next entry from dir and returns it as a
	 string. Returns ​nil​ at the end of the stream.
	
	​ 	d = Dir.new(​"testdir"​)

	​ 	d.read ​# => "."​

	​ 	d.read ​# => ".."​

	​ 	d.read ​# => ".svn"​

rewind
	dir.rewind → dir

	 Repositions dir to the first entry.
	
	​ 	d = Dir.new(​"testdir"​)

	​ 	d.read ​# => "."​

	​ 	d.rewind ​# => #<Dir:testdir>​

	​ 	d.read ​# => "."​

seek
	dir.seek(int) → dir

	 Seeks to a particular location in dir.
	 int must be a value returned by
	 Dir#tell (it is not necessarily a simple index into the entries).
	
	​ 	d = Dir.new(​"testdir"​) ​# => #<Dir:testdir>​

	​ 	d.read ​# => "."​

	​ 	i = d.tell ​# => 1​

	​ 	d.read ​# => ".."​

	​ 	d.seek(i) ​# => #<Dir:testdir>​

	​ 	d.read ​# => ".."​

tell
	dir.tell → int

	 Returns the current position in dir. See also Dir#seek.
	
	​ 	d = Dir.new(​"testdir"​)

	​ 	d.tell ​# => 0​

	​ 	d.read ​# => "."​

	​ 	d.tell ​# => 1​

to_path
	dir.to_path → dirname

	 Synonym for Dir.path.
	

Class Encoding < Object

 An encoding describes how to map the binary data in the
 internal representation of strings into characters. Ruby has support
 for a large number of encodings built in—others can be loaded
 dynamically at runtime.

 Encodings are identified by name (​UTF-8​ or
 ​ISO-8859-1​, for example). They are represented by
 ​encoding​ objects. The
 ​Encoding​ class contains predefined
 constants for these encoding objects. Often there are multiple
 objects for the same encoding. For example, the constants
 ​Encoding::IBM860​ and
 ​Encoding::CP860​ are both representations of
 the encoding named IBM860. In the two-part table Table 15, ​Encoding names and class names​,
 the first column shows the names of the encodings, and the second
 column lists the names on the constants in the
 ​Encoding​ class for the corresponding
 encoding object(s). An entry such as ​ISO-8859-1 -- 11​
 indicates that there are eleven separate encodings (with the
 obvious names).

 Encodings are used when opening files, creating strings, and so
 on. The methods that accept an encoding as a parameter will take
 either an encoding name or an encoding object. Use of the object is
 marginally faster.

 Chapter 17, ​Character Encoding​ is devoted to a discussion of encodings.

Encoding: Class methods
aliases
	Encoding.aliases → hash

	 Returns a hash whose keys are aliases for encodings and whose
	 values are the corresponding base encoding names.
	
	​ 	Encoding.aliases[​"BINARY"​] ​# => "ASCII-8BIT"​

compatible?
	Encoding.compatible?(str1, str2)
	 → enc or ​nil​

	 Determines whether two strings have compatible encodings
	 (meaning, for example, that you could concatenate them). Returns
	 the encoding of the string that would result from the
	 concatenation or ​nil​ if the strings are not compatible.
	
	​ 	​# encoding: utf-8​

	​ 	ascii1 = ​"ant"​

	​ 	ascii2 = ​"bee"​

	​ 	iso = ​"\xee"​

	​ 	iso.force_encoding(Encoding::ISO_8859_1)

	​ 	utf = ​"∂og"​

	​ 	

	​ 	Encoding.compatible?(ascii1, ascii2) ​# => #<Encoding:UTF-8>​

	​ 	Encoding.compatible?(ascii1, iso) ​# => #<Encoding:ISO-8859-1>​

	​ 	Encoding.compatible?(ascii1, utf) ​# => #<Encoding:UTF-8>​

	​ 	Encoding.compatible?(iso, utf) ​# => nil​

Table 15. Encoding names and class names
	
Encoding
	
Class name(s)
	
Encoding
	
Class name(s)

	
​ASCII-8BIT​
	
​ASCII_8BIT, BINARY​
	
​Big5​
	
​Big5, BIG5​

	
​Big5-HKSCS​
	
​Big5_HKSCS, BIG5_HKSCS, Big5_HKSCS_2008, BIG5_HKSCS_2008​
	
​Big5-UAO​
	
​Big5_UAO, BIG5_UAO​

	
​CP50220​
	
​CP50220​
	
​CP50221​
	
​CP50221​

	
​CP51932​
	
​CP51932​
	
​CP850​
	
​CP850, IBM850​

	
​CP852​
	
​CP852​
	
​CP855​
	
​CP855​

	
​CP949​
	
​CP949​
	
​CP950​
	
​CP950​

	
​CP951​
	
​CP951​
	
​Emacs-Mule​
	
​Emacs_Mule, EMACS_MULE​

	
​EUC-JP​
	
​EUC_JP, EucJP, EUCJP​
	
​EUC-JP-2004​
	
​EUC_JP_2004, EUC_JISX0213​

	
​EUC-KR​
	
​EUC_KR, EucKR, EUCKR​
	
​EUC-TW​
	
​EUC_TW, EucTW, EUCTW​

	
​eucJP-ms​
	
​EucJP_ms, EUCJP_MS, EUC_JP_MS​
	
​GB12345​
	
​GB12345​

	
​GB18030​
	
​GB18030​
	
​GB1988​
	
​GB1988​

	
​GB2312​
	
​EUC_CN, EucCN, EUCCN​
	
​GBK​
	
​GBK, CP936​

	
​IBM437​
	
​IBM437, CP437​
	
​IBM737​
	
​IBM737, CP737​

	
​IBM775​
	
​IBM775, CP775​
	
​IBM852​
	
​IBM852​

	
​IBM855​
	
​IBM855​
	
​IBM857​
	
​IBM857, CP857​

	
​IBM860 -- 6​
	
​IBM860 -- 6, CP8600 -- 6​
	
​IBM869​
	
​IBM869, CP869​

	
​ISO-2022-JP​
	
​ISO_2022_JP, ISO2022_JP​
	
​ISO-2022-JP-2​
	
​ISO_2022_JP_2, ISO2022_JP2​

	
​ISO-2022-JP-KDDI​
	
​ISO_2022_JP_KDDI​
	
​ISO-8859-1 -- 11​
	
​ISO8859_1 -- 11​

	
​ISO-8859-13 -- 16​
	
​ISO8859_13 -- 16​
	
​KOI8-R​
	
​KOI8_R, CP878​

	
​KOI8-U​
	
​KOI8_U​
	
​macCentEuro​
	
​MacCentEuro, MACCENTEURO​

	
​macCroatian​
	
​MacCroatian, MACCROATIAN​
	
​macCyrillic​
	
​MacCyrillic, MACCYRILLIC​

	
​macGreek​
	
​MacGreek, MACGREEK​
	
​macIceland​
	
​MacIceland, MACICELAND​

	
​MacJapanese​
	
​MacJapanese, MACJAPANESE, MacJapan, MACJAPAN​
	
​macRoman​
	
​MacRoman, MACROMAN​

	
​macRomania​
	
​MacRomania, MACROMANIA​
	
​macThai​
	
​MacThai, MACTHAI​

	
​macTurkish​
	
​MacTurkish, MACTURKISH​
	
​macUkraine​
	
​MacUkraine, MACUKRAINE​

	
​Shift_JIS​
	
​Shift_JIS, SHIFT_JIS​
	
​SJIS-DoCoMo​
	
​SJIS_DoCoMo, SJIS_DOCOMO​

	
​SJIS-KDDI​
	
​SJIS_KDDI​
	
​SJIS-SoftBank​
	
​SJIS_SoftBank, SJIS_SOFTBANK​

	
​stateless-ISO-2022-JP​
	
​Stateless_ISO_2022_JP, STATELESS_ISO_2022_JP​
	
​stateless-ISO-2022-JP-KDDI​
	
​Stateless_ISO_2022_JP_KDDI, STATELESS_ISO_2022_JP_KDDI​

	
​TIS-620​
	
​TIS_620​
	
​US-ASCII​
	
​US_ASCII, ASCII, ANSI_X3_4_1968​

	
​UTF-16​
	
​UTF_16​
	
​UTF-16BE​
	
​UTF_16BE, UCS_2BE​

	
​UTF-16LE​
	
​UTF_16LE​
	
​UTF-32​
	
​UTF_32​

	
​UTF-32BE​
	
​UTF_32BE, UCS_4BE​
	
​UTF-32LE​
	
​UTF_32LE, UCS_4LE​

	
​UTF-7​
	
​UTF_7, CP65000​
	
​UTF-8​
	
​UTF_8, CP65001​

	
​UTF8-DoCoMo​
	
​UTF8_DoCoMo, UTF8_DOCOMO​
	
​UTF8-KDDI​
	
​UTF8_KDDI​

	
​UTF8-MAC​
	
​UTF8_MAC, UTF_8_MAC, UTF_8_HFS​
	
​UTF8-SoftBank​
	
​UTF8_SoftBank, UTF8_SOFTBANK​

	
​Windows-1250 -- 1258​
	
​Windows_1250 -- 1258, WINDOWS_1250 -- 1258, CP1250 -- 1258​
	
​Windows-31J​
	
​Windows_31J, WINDOWS_31J, CP932, CsWindows31J, CSWINDOWS31J, SJIS, PCK​

	
​Windows-874​
	
​Windows_874, WINDOWS_874, CP874​

default_external
	Encoding.default_external → enc

	 Returns the default external encoding, used when reading and
	 writing data from I/O streams.
	
	​ 	Encoding.default_external ​# => #<Encoding:UTF-8>​

default_external=
	Encoding.default_external = enc

	 Sets the default external encoding.
	

default_internal
	Encoding.default_internal → enc or ​nil​

	 Returns the default internal encoding, used when transcoding data read and written. Returns
	 ​nil​ if no default encoding is set.
	

default_internal=
	Encoding.default_internal = enc

	 Sets the default internal encoding.
	
	​ 	Encoding.default_internal = ​'utf-8'​

	​ 	Encoding.default_internal ​# => #<Encoding:UTF-8>​

find
	Encoding.find(name) → enc

	 Returns the encoding object for the given encoding name or throws
	 an ​ArgumentError​.
	
	​ 	Encoding.find(​"Shift_JIS"​) ​# => #<Encoding:Shift_JIS>​

list
	Encoding.list → array

	 Returns a list of the encoding objects loaded into the current interpreter.
	

locale_charmap
	Encoding.locale_charmap → name

	 Returns the name of the charmap of the current locale. This is
	 normally set externally, often in an environment variable or other
	 operating-system context.
	
	​ 	ENV[​"LANG"​] ​# => "en_US.UTF-8"​

	​ 	Encoding.locale_charmap ​# => "UTF-8"​

name_list
	Encoding.name_list → array

	 Returns a list of the names of loaded encodings.
	
	​ 	Encoding.name_list.sort.first(5) ​# => ["646", "ANSI_X3.4-1968", "ASCII",​

	​ 	 ​# .. "ASCII-8BIT", "BINARY"]​

Encoding: Instance methods
ascii_compatible?
	enc.ascii_compatible? → ​true​ or ​false​

	 Returns true if the lower 127 codepoints in the encoding overlay the ASCII character set.
	
	​ 	Encoding::UTF_8.ascii_compatible? ​# => true​

	​ 	Encoding::SJIS.ascii_compatible? ​# => true​

	​ 	Encoding::UTF_7.ascii_compatible? ​# => false​

dummy?
	enc.dummy? → ​true​ or ​false​

	 Dummy encodings are placeholders for encodings that cannot be handled
	 properly by the current mechanism of Ruby multinationalization, often because
	 they are stateful.
	
	​ 	Encoding::UTF_7.dummy? ​# => true​

	​ 	Encoding::UTF_8.dummy? ​# => false​

name
	enc.name → string

	 Returns the name of enc.
	
	​ 	Encoding::UTF_8.name ​# => "UTF-8"​

	​ 	Encoding::CP65001.name ​# => "UTF-8"​

names
	enc.names → [<string>+]

	 Returns the name of enc, along with the names of enc’s aliases.
	
	​ 	Encoding::ISO8859_1.names ​# => ["ISO-8859-1", "ISO8859-1"]​

	​ 	Encoding::ASCII.names ​# => ["US-ASCII", "ASCII", "ANSI_X3.4-1968", "646"]​

replicate
	enc.replicate(name) → new_encoding

	 Create a copy of the encoding enc with
	 the given name (which must be unique).
	

Module Enumerable
	Relies on:
	each, <=>

 The ​Enumerable​ mixin provides collection
 classes with traversal and searching methods and with the ability
 to sort.
 The class must provide a method
 ​each​
 , which yields
 successive members of the collection. If Enumerable#max,

 ​min​
 ,
 ​sort​
 , or
 ​sort_by​

 is used, the objects in the
 collection must also implement a meaningful ​<=>​ operator, because
 these methods rely on an ordering between members of the collection.

 Ruby 1.9 adds a substantial number of methods to this module,
 as well as changing the semantics of many others. Even experienced
 Ruby programmers should probably read this section carefully.

Enumerable: Instance methods
all?
	enum.all? <obj>
	 → ​true​ or ​false​

	 Passes each element of the collection to the given block. The
	 method returns ​true​ if the block never returns
	 ​false​ or ​nil​.
	 If the block is not given, Ruby adds an implicit
	 block of ​{|obj| obj}​ (that is,
 ​all?​
 will return
	 ​true​ only if no collection member is
	 ​false​ or ​nil​).
	
	​ 	[nil, true, 99].all? ​# => false​

any?
	enum.any? <obj>
	 → ​true​ or ​false​

	 Passes elements of the collection in turn to the given
	 block. The method returns ​true​ (and
	 stops calling the block) if the block ever returns a value
	 other than ​false​ or
	 ​nil​. If the block is not given, Ruby
	 adds an implicit block of ​{|obj|~obj}​ (that is,
	
 ​any?​
 will return
	 ​true​ if at least one of the collection
	 members is not ​false​ or
	 ​nil​). See also Enumerable#none? and Enumerable#one?.
	
	​ 	[nil, true, 99].any? ​# => true​

chunk
	enum.chunk { |element| … } → enumerator
	enum.chunk(state) { |element, state| … }
	 → enumerator

	 Passes each element of enum to the
	 block. Use the value returned from the block as a key, and
	 group successive elements with the same key together. The
	 enumerator that is returned will yield the key
	 and the successive values corresponding to that key. Here’s
	 a simple example that returns sequences of words that have
	 the same length:
	
	​ 	enum = ​%w{ ant bee coyote dophin elk }​.chunk(&:size)

	​ 	enum.next ​# => [3, ["ant", "bee"]]​

	​ 	enum.next ​# => [6, ["coyote", "dophin"]]​

	​ 	enum.next ​# => [3, ["elk"]]​

	 If the block returns the values ​nil​ or
	 ​:_separator​, the corresponding value is not stored
	 in the output enumerator, and a new output element is started.
	
	​ 	enum = [1, 2, 3, 4, 5].chunk {|element| element.odd? ? :odd : :_separator}

	​ 	enum.to_a ​# => [[:odd, [1]], [:odd, [3]], [:odd, [5]]]​

	 The following example uses the fact that a failing pattern
	 match returns ​nil​:
	
	​ 	​# This code reads its own source and returns each comment block​

	​ 	File.foreach(__FILE__).chunk ​do​ |line|

	​ 	 ​# A comment is a group of consecutive​

	​ 	 ​# lines starting with '#'​

	​ 	 line =~ /^​\s​*#/

	​ 	​end​.each ​do​ |_, lines|

	​ 	 p lines

	​ 	​end​

Produces:
	​ 	["# This code reads its own source and returns each comment block\n"]

	​ 	[" # A comment is a group of consecutive\n", " # lines starting with '#'\n"]

	 If the block returns ​:_alone​, this value is put
	 into its own output element—it will not be grouped with
	 the previous element even if that element’s block also
	 returned ​:_alone​.
	
	​ 	enum = [1, 2, 3].chunk { :_alone }

	​ 	enum.to_a ​# => [[:_alone, [1]], [:_alone, [2]], [:_alone, [3]]]​

	 If a state parameter is present, it is passed as
	 the second parameter to every call to the block, permitting
	 state to be maintained across calls.
	

	 See also Enumerable.slice_before.
	

collect
	enum.collect { |obj| … }
	 → array or enumerator

	 Returns a new array containing the results of running
	 ​block​ once for every element in
	 enum. Returns an
	 ​Enumerator​ object if no block is
	 given.
	
	​ 	(1..4).collect {|i| i*i } ​# => [1, 4, 9, 16]​

	​ 	(1..4).collect { ​"cat"​ } ​# => ["cat", "cat", "cat", "cat"]​

	​ 	(1..4).collect(&:even?) ​# => [false, true, false, true]​

collect_concat
	enum.collect_concat { |obj| … } → array
	enum.collect_concat → enumerator

	 Synonym for (the better named) Enumerable.flat_map.
	

count
	enum.count(obj) → int
	enum.count { |obj| … } → int

	 Returns the count of objects in enum that equal obj or for
	 which the block returns a true value. Returns the count of all
	 elements in enum if neither a block nor an argument is
	 given.
	
	​ 	(1..4).count ​# => 4​

	​ 	(1..4).count(3) ​# => 1​

	​ 	(1..4).count {|obj| obj > 2 } ​# => 2​

cycle
	enum.cycle { |obj| … }
	 → ​nil​ or enumerator
	enum.cycle(times) { |obj| … }
	 → ​nil​ or enumerator

	Returns ​nil​ if enum
	has no elements; otherwise, passes the elements, one at a time,
	to the block, repeating when it reaches the end. The number
	of times it repeats is set by the parameter. If the parameter
	is missing, cycles forever. Equivalent to
	enum​.to_a.cycle​. See also Array#cycle.
	Returns an ​Enumerator​ object if no block is given.

	​ 	(​'a'​..​'c'​).cycle(2) ​# => #<Enumerator: "a".."c":cycle(2)>​

	​ 	(​'a'​..​'c'​).cycle(2).to_a ​# => ["a", "b", "c", "a", "b", "c"]​

detect
	enum.detect(ifnone = ​nil​)
	 { |obj| … } → obj or ​nil​
	or enumerator

	 Passes each entry in enum to
	 ​block​. Returns the first for which
	 ​block​ is not false. Returns
	 ​nil​ if no object matches unless the
	 proc ifnone is given, in which case it is called
	 and its result is returned. Returns an
	 ​Enumerator​ object if no block is
	 given.
	
	​ 	(1..10).detect {|i| i % 5 == 0 ​and​ i % 7 == 0 } ​# => nil​

	​ 	(1..100).detect {|i| i % 5 == 0 ​and​ i % 7 == 0 } ​# => 35​

	​ 	sorry = lambda { ​"not found"​ }

	​ 	(1..10).detect(sorry) {|i| i > 50} ​# => "not found"​

drop
	enum.drop(n) → an_array

	 Returns an array containing all but the first
	 ​n​ elements of enum.
	
	​ 	[1, 1, 2, 3, 5, 8, 13].drop(4) ​# => [5, 8, 13]​

	​ 	[1, 1, 2, 3, 5, 8, 13].drop(99) ​# => []​

drop_while
	enum.drop_while { |item| … }
	 → an_array or enumerator

	Passes elements in turn to the block until the block does not return a true value.
	Starting with that element, copies the remainder to an array and returns it.
	Returns an ​Enumerator​ object if no block is given.

	​ 	[1, 1, 2, 3, 5, 8, 13].drop_while {|item| item < 6 } ​# => [8, 13]​

each_cons
	enum.each_cons(length) { |array| … }
	 → ​nil​ or enumerator

	Passes to the block each consecutive subarray of size length from enum.
	Returns an ​Enumerator​ object if no block is given.

	​ 	(1..4).each_cons(2) {|array| p array }

Produces:
	​ 	[1, 2]

	​ 	[2, 3]

	​ 	[3, 4]

each_entry
	enum.each_entry { |element| … } → enum
	enum.each_entry → enumerator

	 Repeatedly calls
 ​enum.each​
 ,
	 passing the result to the block. If
 ​each​
 returns
	 a single value, it is passed unchanged to the block. If a
	 call to each returns multiple values, they are packaged into
	 an array and passed to the block.
	
	​ 	​class​ Generator

	​ 	 include Enumerable

	​ 	 ​def​ each

	​ 	 ​yield​ 1

	​ 	 ​yield​ 2, 3

	​ 	 ​yield​ 4

	​ 	 ​end​

	​ 	​end​

	​ 	g = Generator.new

	​ 	g.each {|entry| print entry, ​" : "​}

	​ 	puts

	​ 	g.each_entry {|entry| print entry, ​" : "​}

Produces:
	​ 	1 : 2 : 4 :

	​ 	1 : [2, 3] : 4 :

each_slice
	enum.each_slice(length) { |array| … }
	 → ​nil​ or enumerator

	 Divides enum into slices of size
	 length, passing each in turn to the block.
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	(1..10).each_slice(4) {|array| p array }

Produces:
	​ 	[1, 2, 3, 4]

	​ 	[5, 6, 7, 8]

	​ 	[9, 10]

each_with_index
	enum.each_with_index(<args>*) { |obj, index| … }
	 → enum or enumerator

	 Calls ​block​, passing in successive items from enum and
	 the corresponding index. If any arguments are given, they are
	 passed to
 ​each​
 during the iteration.
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	​%w(cat dog wombat)​.each_with_index ​do​ |item, index|

	​ 	 puts ​"​#{item}​ is at position ​#{index}​"​

	​ 	​end​

Produces:
	​ 	cat is at position 0

	​ 	dog is at position 1

	​ 	wombat is at position 2

each_with_object
	enum.each_with_object(memo)
	 → memo or enumerator

	 Calls ​block​ with the
	 item and the memo object, for each item in enum.
	 Returns an ​Enumerator​ object if no
	 block is given.
	
	​ 	hash = ​%w(cat dog wombat)​.each_with_object({}) ​do​ |item, memo|

	​ 	 memo[item] = item.upcase.reverse

	​ 	 ​end​

	​ 	 hash ​# => {"cat"=>"TAC", "dog"=>"GOD", "wombat"=>"TABMOW"}​

entries
	enum.entries → array

	 Synonym for Enumerable#to_a.
	

find
	enum.find(ifnone = ​nil​)
	 { |obj| … } → obj or ​nil​

	 Synonym for Enumerable#detect.
	

find_all
	enum.find_all { |obj| … }
	 → array or enumerator

	 Returns an array containing all elements of enum for which
	 ​block​ is not false (see also Enumerable#reject).
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	(1..10).find_all {|i| i % 3 == 0 } ​# => [3, 6, 9]​

find_index
	enum.find_index(obj)
	 → int or ​nil​
	enum.find_index { |obj| … }
	 → int or ​nil​ or enumerator

	Returns the index of the first object in
	 arr that is
 ​==​
 to
	 obj or for which the block returns a true value.
	 Returns ​nil​ otherwise. See also Enumerable#reject. Returns an
	 ​Enumerator​ object if no block is
	given.

	​ 	​%w{ant bat cat dog}​.find_index {|item| item =~ /g/ } ​# => 3​

	​ 	​%w{ant bat cat dog}​.find_index {|item| item =~ /h/ } ​# => nil​

first
	enum.first
	 → an_object or ​nil​
	enum.first(n) → an_array

	 With no parameters, returns the first item of
	 enum or ​nil​. With a
	 parameter, returns the first ​n​ items of
	 enum.
	
	​ 	​%w{ant bat cat dog}​.first ​# => "ant"​

	​ 	​%w{ant bat cat dog}​.first(2) ​# => ["ant", "bat"]​

flat_map
	enum.flat_map { |obj| … } → array
	enum.flat_map → enumerator

	 Passes each element in enum to the
	 block. If the returned value is an array (or is compatible
	 with an array), append each element to the result; otherwise,
	 append the block return value to the result. The effect is a
	 single-level flattening of any returned value. If no block
	 is given, return an enumerator.
	
	​ 	[1, 2, 3].flat_map {|e| [e, 100-e]} ​# => [1, 99, 2, 98, 3, 97]​

grep
	enum.grep(pattern) → array
	enum.grep(pattern) { |obj| … } → array

	 Returns an array of every element in enum for which
	 ​pattern === element​. If the optional ​block​ is
	 supplied, each matching element is passed to it, and the block’s
	 result is stored in the output array.
	
	​ 	(1..100).grep 38..44 ​# => [38, 39, 40, 41, 42, 43, 44]​

	​ 	c = IO.constants

	​ 	c.grep(/SEEK/) ​# => [:SEEK_SET, :SEEK_CUR, :SEEK_END]​

	​ 	res = c.grep(/SEEK/) {|v| IO.const_get(v) }

	​ 	res ​# => [0, 1, 2]​

	​ 	[123, 9**11, 12.34].grep(Integer) ​# => [123, 31381059609]​

group_by
	enum.group_by { |item| … }
	 → hash or enumerator

	 Partitions enum by calling the block for
	 each item and using the result returned by the block to
	 group the items into buckets. Returns a hash where the keys
	 are the objects returned by the block, and the values for a
	 key are those items for which the block returned that
	 object. Returns an ​Enumerator​ object
	 if no block is given.
	
	​ 	p (1..5).group_by {|item| item.even? ? ​"even"​ : ​"odd"​ }

Produces:
	​ 	{"odd"=>[1, 3, 5], "even"=>[2, 4]}

include?
	enum.include?(obj)
	 → ​true​ or ​false​

	 Returns ​true​ if any member of enum equals
	 obj. Equality is tested using
 ​==​
 .
	
	​ 	IO.constants.include? :SEEK_SET ​# => true​

	​ 	IO.constants.include? :SEEK_NO_FURTHER ​# => false​

inject
	enum.inject(initial)
	 { |memo, obj| … } → obj
	enum.inject(initial, sym) → obj
	enum.inject { |memo, obj| … } → obj
	enum.inject(sym) → obj

	 Combines the items in enum by iterating over them. For each
	 item, passes an accumulator object (called memo in the
	 examples) and the item itself to the block or invokes
	 ​memo.send(sym, obj)​. At each step, memo is set to the
	 value returned by the block on the previous step. The value
	 returned by
 ​inject​
 is the final value returned by the
	 block. The first two forms let you supply an initial value for
	 memo. The second two forms use the first element of the
	 collection as the initial value (and skip that element while
	 iterating). Some languages call this operation
 ​foldl​
 or
	
 ​reduce​
 . Ruby supports the latter as an alias for
	
 ​inject​
 .
	
	​ 	​# Sum some numbers. These forms do the same thing​

	​ 	(5..10).inject(0) {|sum, n| sum + n } ​# => 45​

	​ 	(5..10).inject {|sum, n| sum + n } ​# => 45​

	​ 	(5..10).inject(0, :+) ​# => 45​

	​ 	(5..10).inject(:+) ​# => 45​

	​ 	​# Multiply some numbers​

	​ 	(5..10).inject(1) {|product, n| product * n } ​# => 151200​

	​ 	(5..10).inject(&:*) ​# => 151200​

	​ 	

	​ 	​# find the longest word​

	​ 	longest_word = ​%w{ cat sheep bear }​.inject ​do​ |memo, word|

	​ 	 memo.length > word.length ? memo : word

	​ 	​end​

	​ 	longest_word ​# => "sheep"​

	​ 	

	​ 	​# find the length of the longest word​

	​ 	longest_length = ​%w{ cat sheep bear }​.inject(0) ​do​ |memo, word|

	​ 	 memo >= word.length ? memo : word.length

	​ 	​end​

	​ 	longest_length ​# => 5​

lazy
	enum.lazy → lazy_enum

	 Returns a lazy enumerator for this enumerable
	 object. See the description of
	 lazy enumerators for more details.«2.0»
	

map
	enum.map { |obj| … } → array

	 Synonym for Enumerable#collect.
	

max
	enum.max → obj
	enum.max { |a,b| … } → obj

	 Returns the object in enum with the maximum value. The first
	 form assumes all objects implement
 ​<=>​
 ; the second
	 uses the block to return ​a <=> b​.
	
	​ 	a = ​%w(albatross dog horse)​

	​ 	a.max ​# => "horse"​

	​ 	a.max {|a,b| a.length <=> b.length } ​# => "albatross"​

max_by
	enum.max_by { |item| … }
	 → obj or enumerator

	Passes each item in the collection to the block. Returns the item corresponding
	to the largest value returned by the block.
	Returns an ​Enumerator​ object if no block is given.

	​ 	a = ​%w(albatross dog horse fox)​

	​ 	a.max_by {|item| item.length } ​# => "albatross"​

	​ 	a.max_by {|item| item.reverse } ​# => "fox"​

member?
	enum.member?(obj) → ​true​ or ​false​

	 Synonym for Enumerable#include?.
	

min
	enum.min → obj
	enum.min { |a,b| … } → obj

	 Returns the object in enum with the minimum value. The first
	 form assumes all objects implement ​Comparable​; the second
	 uses the block to return ​a <=> b​.
	
	​ 	a = ​%w(albatross dog horse)​

	​ 	a.min ​# => "albatross"​

	​ 	a.min {|a,b| a.length <=> b.length } ​# => "dog"​

min_by
	enum.min_by { |item| … }
	 → obj or enumerator

	 Passes each item in the collection to the block. Returns the item corresponding
	 to the smallest value returned by the block.
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	a = ​%w(albatross dog horse fox)​

	​ 	a.min_by {|item| item.length } ​# => "dog"​

	​ 	a.min_by {|item| item.reverse } ​# => "horse"​

minmax
	enum.minmax → [min, max]
	enum.minmax { |a,b| … } → [min, max]

	 Compares the elements of enum using either
	 ​<=>​ or the given block, returning the minimum
	 and maximum values.
	
	​ 	a = ​%w(albatross dog horse)​

	​ 	a.minmax ​# => ["albatross", "horse"]​

	​ 	a.minmax {|a,b| a.length <=> b.length } ​# => ["dog", "albatross"]​

minmax_by
	enum.minmax_by { |item| … }
	 → [min, max] or enumerator

	 Passes each item in enum to the block. Returns the items corresponding
	 to the smallest and largest values returned by the block.
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	a = ​%w(albatross dog horse fox)​

	​ 	a.minmax_by {|item| item.length } ​# => ["dog", "albatross"]​

	​ 	a.minmax_by {|item| item.reverse } ​# => ["horse", "fox"]​

none?
	enum.none? <obj>
	 → ​true​ or ​false​

	 Passes each element of the collection to the given
	 block. The method returns ​true​ if the
	 block never returns a value other than
	 ​false​ or ​nil​. If
	 the block is not given, Ruby adds an implicit block of
	 ​{|obj| obj}​ (that is,
	
 ​none?​
 will return
	 ​false​ if any of the collection
	 members is not ​false​ or
	 ​nil​). See also Enumerable#any? and Enumerable#one?.
	
	​ 	[nil, true, 99].none? ​# => false​

one?
	enum.one? <obj>
	 → ​true​ or ​false​

	 Passes each element of the collection to the given
	 block. The method returns ​true​ if the
	 block returns true exactly one time. If the block is not
	 given, Ruby adds an implicit block of
	 ​{|obj| obj}​ (that is,
	
 ​one?​
 will return
	 ​true​ if at least one of the collection
	 members is not ​false​ or
	 ​nil​). See also Enumerable#any? and Enumerable#none?.
	
	​ 	[nil, nil, 99].one? ​# => true​

partition
	enum.partition { |obj| … }
	 → [true_array, false_array] or enumerator

	 Returns two arrays, the first containing the elements of
	 enum for which the block evaluates to true and the second
	 containing the rest.
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	(1..6).partition {|i| (i&1).zero?} ​# => [[2, 4, 6], [1, 3, 5]]​

reduce
	enum.reduce(initial)
	 { |memo, obj| … } → obj
	enum.reduce(initial, sym)
	 → obj
	enum.reduce { |memo, obj| … }
	 → obj
	enum.reduce(sym) → obj

	Synonym for Enumerable#inject.

reject
	enum.reject { |obj| … }
	 → array or enumerator

	 Returns an array containing the elements of enum for which
	 ​block​ is false (see also Enumerable#find_all).
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	(1..10).reject {|i| i % 3 == 0 } ​# => [1, 2, 4, 5, 7, 8, 10]​

reverse_each
	enum.reverse_each { |obj| … } → enum

	 Invokes the block with the elements of
	 enum in reverse order. Creates an intermediate
	 array internally, so this might be expensive on large
	 collections. Returns an ​Enumerator​
	 object if no block is given.
	
	​ 	(1..5).reverse_each {|i| print i, ​" "​ }

Produces:
	​ 	5 4 3 2 1

select
	enum.select { |obj| … } → array

	 Synonym for Enumerable#find_all.
	

slice_before
	enum.slice_before(pattern) → enumerator
	enum.slice_before(
	 <state>)
	 { |element, <state>| … } → enumerator

	 Chunks enum into a set of arrays and
	 returns an enumerator of those arrays. A new array is started
	 whenever the next element matches the pattern (using
	 ​===​ when the block returns true). Think of this
	 as a generalized String#split
	 method.
	
	​ 	p DATA.map(&:chomp).slice_before(/​\w​:/).to_a

	​ 	​__END__​

	​ 	​colors​

	​ 	​ red​

	​ 	​ yellow​

	​ 	​pitches​

	​ 	​ high​

	​ 	​ low​

	​ 	​ middle​

Produces:
	​ 	[["colors", " red", " yellow", "pitches", " high", " low", " middle"]]

	 Collapse sequences of three or more consecutive things into
	 first--last.
	
	​ 	input = [1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 15]

	​ 	

	​ 	​def​ returning(value) ​# helper returns its parameter after calling the block​

	​ 	 ​yield​

	​ 	 value

	​ 	​end​

	​ 	

	​ 	State = Struct.new(:last_value) ​# Need to box the value to make it mutable​

	​ 	

	​ 	​# divide the input into runs of consecutive numbers​

	​ 	slices = input.slice_before(State.new(input.first)) ​do​ |value, state|

	​ 	 returning(value != state.last_value.succ) ​do​

	​ 	 state.last_value = value

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	p(slices.map ​do​ |runs| ​# replace runs of 3 or more with first–last​

	​ 	 runs.size < 3 ? runs : ​"​#{ runs.first }​-​#{ runs.last }​"​

	​ 	​end​.join(​', '​))

Produces:
	​ 	"1-5, 8, 9, 11-13, 15"

sort
	enum.sort → array
	enum.sort { |a, b| … } → array

	 Returns an array containing the items in enum sorted, either
	 according to their own
 ​<=>​
 method or by using the
	 results of the supplied block. The block should return -1, 0, or
	 +1 depending on the comparison between a and
	 b. See also Enumerable#sort_by.
	
	​ 	(1..10).sort {|a,b| b <=> a} ​# => [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]​

sort_by
	enum.sort_by { |obj| … } → array

	 Sorts enum using keys generated by mapping the
	 values in enum through the given block, using the result of that
	 block for element comparison.
	
	​ 	​%w{ apple pear fig }​.sort_by {|word| word.length} ​# => ["fig", "pear", "apple"]​

	 Internally,
 ​sort_by​
 generates an
	 array of tuples containing the original collection element and
	 the mapped value. This makes
	
 ​sort_by​
 fairly expensive when the keysets are simple.
	
	​ 	require ​'benchmark'​

	​ 	a = (1..100000).map {rand(100000)}

	​ 	Benchmark.bm(10) ​do​ |b|

	​ 	 b.report(​"Sort"​) { a.sort }

	​ 	 b.report(​"Sort by"​) { a.sort_by {|val| val } }

	​ 	​end​

Produces:
	​ 	 user system total real

	​ 	Sort 0.030000 0.000000 0.030000 (0.026899)

	​ 	Sort by 0.140000 0.000000 0.140000 (0.145687)

	 However, in cases where comparing the keys is a nontrivial
	 operation, the algorithm used by
	
 ​sort_by​
 is considerably
	 faster.
	

	
 ​sort_by​
 can also be useful for multilevel sorts.
	 One trick, which relies on the fact that arrays are compared
	 element by element, is to have the block return an array
	 of each of the comparison keys. For example, to sort a list of
	 words first on their length and then alphabetically, you could
	 write the following:
	
	​ 	words = ​%w{ puma cat bass ant aardvark gnu fish }​

	​ 	sorted = words.sort_by {|w| [w.length, w] }

	​ 	sorted ​# => ["ant", "cat", "gnu", "bass", "fish", "puma", "aardvark"]​

	 Returns an ​Enumerator​ object if no block is given.
	

take
	enum.take(n) → array

	 Returns an array containing the first n
	 items from enum.
	
	​ 	(1..7).take(3) ​# => [1, 2, 3]​

	​ 	{ ​'a'​=>1, ​'b'​=>2, ​'c'​=>3 }.take(2) ​# => [["a", 1], ["b", 2]]​

take_while
	enum.take_while { |item| … }
	 → array or enumerator

	 Passes successive items to the block, adding them to the result array until the block
	 returns ​false​ or ​nil​.
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	(1..7).take_while {|item| item < 3 } ​# => [1, 2]​

	​ 	[2, 4, 6, 9, 11, 16].take_while(&:even?) ​# => [2, 4, 6]​

to_a
	enum.to_a(*args) → array

	 Returns an array containing the items in enum. This is done
	 using the
 ​each​
 method. Any arguments passed
	 to
 ​to_a​
 are passed to each.
	
	​ 	(1..7).to_a ​# => [1, 2, 3, 4, 5, 6, 7]​

	​ 	{ ​'a'​=>1, ​'b'​=>2, ​'c'​=>3 }.to_a ​# => [["a", 1], ["b", 2], ["c", 3]]​

zip
	enum.zip(<arg>+)
	 → array
	enum.zip(<arg>+) { |arr| … }
	 → ​nil​

	 Converts any arguments to arrays and then merges elements of
	 enum with corresponding elements from each
	 argument. The result is an array containing the same number
	 of elements as enum. Each element is an
	 ​n​-element array, where ​n​ is one
	 more than the count of arguments. If the size of any
	 argument is less than the number of elements in
	 enum, ​nil​ values are
	 supplied. If a block given, it is invoked for each output
	 array; otherwise, an array of arrays is returned.
	
	​ 	a = [4, 5, 6]

	​ 	b = [7, 8, 9]

	​ 	

	​ 	(1..3).zip(a, b) ​# => [[1, 4, 7], [2, 5, 8], [3, 6, 9]]​

	​ 	[1, 2].zip([3]) ​# => [[1, 3], [2, nil]]​

	​ 	(1..3).zip ​# => [[1], [2], [3]]​

Class Enumerator < Object
	Relies on:
	each, <=>

 ​Enumerator​ allows you to capture the concept of an enumeration
 as an object. This allows you to store enumerations in variables,
 pass them as parameters, and so on.

 You can also create enumerators with the method Object#to_enum
 (or via its alias,
 ​enum_for​
).
 By default, these methods look for an
 ​each​
 method in the object you’re
 enumerating, but this can be overridden by passing the name
 of a method (and possibly parameters to be used) that invokes a
 block for each item to be enumerated.

	​ 	str = ​"quick brown fox"​

	​ 	​case​ what_to_process ​# set elsewhere to :by_word​

	​ 	​when​ :by_bytes

	​ 	 enum = str.to_enum(:each_byte)

	​ 	​when​ :by_word

	​ 	 enum = str.to_enum(:scan, /​\w​+/)

	​ 	​end​

	​ 	enum.each {|item| p item}

Produces:
	​ 	"quick"

	​ 	"brown"

	​ 	"fox"

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Enumerator: Class methods
new
	Enumerator.new(<size=nil>) { |yielder| … } → enum

	 Constructs an enumerator based on the
	 block. The block is passed an object of class
	 ​Enumerator::Yielder​. You
	 can use the
 ​<<​
 or
	
 ​yield​
 methods of this yielder to
	 supply values to be returned by the enumerator. This process
	 is performed lazily (similar to the way that fibers can be
	 used to generate sequences).
	
	​ 	​def​ multiples_of(n)

	​ 	 Enumerator.new ​do​ |yielder|

	​ 	 number = 0

	​ 	 loop ​do​

	​ 	 yielder.yield number

	​ 	 number += n

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	twos = multiples_of(2)

	​ 	threes = multiples_of(3)

	​ 	

	​ 	5.times ​do​

	​ 	 puts ​"​#{twos.next}​ ​#{threes.next}​"​

	​ 	​end​

Produces:
	​ 	0 0

	​ 	2 3

	​ 	4 6

	​ 	6 9

	​ 	8 12

 The optional argument specifies the value that will
 be returned by the
 ​size​
 method for this
 enumerator. If can be nil (meaning the size cannot be
 determined), a number, or a proc that returns a
 number.«2.0»

Enumerator: Instance methods
each
	enum.each { |item, ...| … } → obj

	 Calls the block for each item in the enumeration. This does not
	 create an intermediate array. Instead, the original iterating
	 method (the one used when creating the enumerator) is called,
	 passing it the block passed to this method. The block receives
	 as many parameters as the original method passes.
	
	​ 	enum = (1..10).enum_for(:each_slice, 3)

	​ 	enum.each { |item| p item }

Produces:
	​ 	[1, 2, 3]

	​ 	[4, 5, 6]

	​ 	[7, 8, 9]

	​ 	[10]

	 Note that because ​Enumerator​ defines each and includes
	 ​Enumerable​, all the enumerable methods are available too.
	
	​ 	enum = ​"quick brown fox"​.enum_for(:scan, /​\w​+/)

	​ 	enum.minmax ​# => ["brown", "quick"]​

each_with_index
	enum.each_with_index { |item, ..., index| … } → obj

	 Same as
 ​each​
 but appends an index argument when
	 calling the block. Returns a new ​Enumerator​ if no block is given.
	
	​ 	enum = (1..10).enum_for(:each_slice, 3)

	​ 	enum.each_with_index ​do​ |subarray, index|

	​ 	 puts ​"​#{index}​: ​#{subarray}​"​

	​ 	​end​

Produces:
	​ 	0: [1, 2, 3]

	​ 	1: [4, 5, 6]

	​ 	2: [7, 8, 9]

	​ 	3: [10]

each_with_object
	enum.each_with_object(memo) { |item, memo| … }
	 → memo or enumerator

	 Calls ​block​ for each item in enum, passing it the item and
	 the parameter passed initially to
 ​each_with_object​
 .
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	animals = ​%w(cat dog wombat)​.to_enum

	​ 	hash = animals.each_with_object({}) ​do​ |item, memo|

	​ 	 memo[item] = item.upcase.reverse

	​ 	​end​

	​ 	hash ​# => {"cat"=>"TAC", "dog"=>"GOD", "wombat"=>"TABMOW"}​

feed
	enum.feed(obj) → ​nil​

	 In a normal looping construct, the
	 ​next​ keyword can take an optional
	 parameter, which is returned to the code that is
	 controlling the iteration as the value returned by
	 ​yield​. ​enum.feed​ does
	 the same thing for enumerators, setting the value returned
	 by ​yield​ in the underlying enumerable to
	 obj.
	

next
	enum.next → obj

	 Returns the next item in the enumeration. Raises
	 ​StopIteration​
	 if you call it past the last item. Internally
	 this is implemented using fibers and so cannot be called across
	 threads. See also Enumerator.next_values.
	
	​ 	array = [1, 2, 3, 4]

	​ 	e1 = array.to_enum

	​ 	e2 = array.to_enum

	​ 	e1.next ​# => 1​

	​ 	e1.next ​# => 2​

	​ 	e2.next ​# => 1​

	 If the underlying method called by the enumerator has side
	 effects (such as moving your position while reading a file),
	 those side effects will be triggered. For this reason,
	
 ​next​
 breaks the abstraction
	 provided by ​Enumerator​.
	
	​ 	f = File.open(​"testfile"​)

	​ 	enum1 = f.to_enum(:each_byte)

	​ 	enum2 = f.to_enum

	​ 	enum1.next ​# => 84​

	​ 	enum1.next ​# => 104​

	​ 	enum2.next ​# => "is is line one\n"​

	​ 	f.gets ​# => "This is line two\n"​

	​ 	enum2.next ​# => "This is line three\n"​

next_values
	enum.next_values → array

	 Enumerator.next returns
	 successive values yielded by enum. However, it
	 effectively uses raw proc semantics and so is unable to
	 distinguish the case when the iterator yields
	 ​nil​ and the case where the yield is
	 passed no parameter. Similarly, it cannot distinguish
	 ​yield 1,2​ from ​yield [1,2]​—both are
	 received as
	 ​[1,2]​.
 ​next_values​

	 overcomes this by always returning an array, and that array
	 contains exactly what was passed to the yield.
	
	​ 	​def​ each

	​ 	 ​yield​ 1

	​ 	 ​yield​ nil

	​ 	 ​yield​ 2, 3

	​ 	 ​yield​ [4,5]

	​ 	​end​

	​ 	enum = to_enum

	​ 	enum.next ​# => 1​

	​ 	enum.next ​# => nil​

	​ 	enum.next ​# => [2, 3]​

	​ 	enum.next ​# => [4, 5]​

	​ 	

	​ 	enum = to_enum

	​ 	enum.next_values ​# => [1]​

	​ 	enum.next_values ​# => [nil]​

	​ 	enum.next_values ​# => [2, 3]​

	​ 	enum.next_values ​# => [[4, 5]]​

peek
	enum.peek → obj

	 Returns the value that would be returned by
	 calling
 ​next​
 but does not consume
	 that value. Raises a ​StopIteration​
	 exception if called past the end of enum.
	
	​ 	enum = ​%w{ ant bee cat }​.to_enum

	​ 	enum.peek ​# => "ant"​

	​ 	enum.peek ​# => "ant"​

	​ 	enum.next ​# => "ant"​

	​ 	enum.peek ​# => "bee"​

peek_values
	enum.peek_values → array

	 Returns the value that would be returned by calling
	
 ​next_values​
 .
	

rewind
	enum.rewind → enum

	 Resets the sequence of values to be returned by
	
 ​next​
 .
	
	​ 	array = [1, 2, 3, 4]

	​ 	e1 = array.to_enum

	​ 	e2 = array.to_enum

	​ 	e1.next ​# => 1​

	​ 	e1.next ​# => 2​

	​ 	e2.next ​# => 1​

	​ 	e1.rewind

	​ 	e1.next ​# => 1​

	​ 	e2.next ​# => 2​

	 Has no effect if the underlying method of the
	 enumerator has side effects and therefore cannot be rewound.
	

size
	enum.size → int or
	​nil​

 Returns the size of this collection, or
 ​nil​ if the size cannot be calculated
 (this may or may not be the case with a lazy
 enumerator).«2.0»

	​ 	File.open(​"/etc/passwd"​).to_enum.size ​# => nil​

	​ 	(1..Float::INFINITY).size ​# => Infinity​

	​ 	loop.size ​# => Infinity​

	​ 	(1..10).find.size ​# => nil​

with_index
	enum.with_index { |item, ..., index| … } → obj

	 Synonym for
 ​each_with_index​
 .
	

with_object
	enum.with_object(memo) { |item, memo| … }
	 → memo or enumerator

Synonym for
 ​each_with_object​
 .
	

Module Errno

 Ruby exception objects are subclasses of
 ​Exception​. However, operating systems
 typically report errors using plain integers. Module
 ​Errno​ is created dynamically to map these
 operating system errors to Ruby classes, with each error number
 generating its own subclass of
 ​SystemCallError​. Because
 the subclass is created in module ​Errno​,
 its name will start ​Errno::​.

	​ 	Exception

	​ 	 StandardError

	​ 	 SystemCallError

	​ 	 Errno::XXX

 The names of the ​Errno::​ classes depend on the environment in
 which Ruby runs. On a typical Unix or Windows platform, you’ll find Ruby has
 ​Errno​ classes such as ​Errno::EACCES​,
 ​Errno::EAGAIN​, ​Errno::EINTR​, and so on.

 The integer operating system error number corresponding to a
 particular error is available as the class constant
 ​Errno::​error​::Errno​.

	​ 	Errno::EACCES::Errno ​# => 13​

	​ 	Errno::EAGAIN::Errno ​# => 35​

	​ 	Errno::EINTR::Errno ​# => 4​

 The full list of operating system errors on your particular
 platform is available as the constants of
 ​Errno​. Any user-defined exceptions in this
 module (including subclasses of existing exceptions) must also
 define an ​Errno​ constant.

	​ 	Errno.constants[0..4] ​# => [:NOERROR, :EPERM, :ENOENT, :ESRCH, :EINTR]​

 As of Ruby 1.8, exceptions are matched in
 ​rescue​ clauses using Module#===. The
 ​===​
 method
 is overridden for class ​SystemCallError​ to
 compare based on the
 ​Errno​
 value. Thus,
 if two distinct ​Errno​ classes have the same
 underlying
 ​Errno​
 value,
 they will be treated as the same exception by a ​rescue​ clause.

Class Exception < Object

 Descendents of class ​Exception​ are used to
 communicate between
 ​raise​
 methods and
 ​rescue​ statements in
 ​begin​/​end​
 blocks. ​Exception​ objects carry information
 about the exception—its type (the exception’s class name), an
 optional descriptive string, and optional traceback information.

 The standard library defines the exceptions shown in Figure 1, ​Standard exception hierarchy​. Note that Ruby 1.9 has changed the
 hierarchy slightly. In particular,
 ​SecurityError​ is no longer a subclass of
 ​StandardError​ and so will not be rescued
 implicitly.

 See also the description of
 ​Errno​.

Exception: Class methods
exception
	Exception.exception(<message>) → exc

	 Creates and returns a new exception object, optionally setting the message to
	 message.
	

new
	 Exception.new(<message>) → exc

	 Creates and returns a new exception object, optionally setting the message to
	 message.
	

Exception: Instance methods
==
	exc == other
	 → ​true​ or ​false​

	 Returns true only if other shares the same message and backtrace as exc.
	

backtrace
	exc.backtrace → array

	 Returns any backtrace associated with the exception. The
	 backtrace is an array of strings, each containing
	 either ​filename:line: in ‘method’​ or ​filename:line​.
	
	​ 	 ​def​ a

	​ 	 raise ​"boom"​

	​ 	 ​end​

	​ 	 ​def​ b

	​ 	 a()

	​ 	 ​end​

	​ 	 ​begin​

	​ 	 b()

	​ 	 ​rescue​ => detail

	​ 	 print detail.backtrace.join(​"\n"​)

	​ 	​end​

Produces:
	​ 	prog.rb:2:in `a'

	​ 	prog.rb:5:in `b'

	​ 	prog.rb:8:in `<main>'

exception
	 exc.exception(<message>)
	 → exc or exception

	 With no argument, returns the receiver. Otherwise, creates a new
	 exception object of the same class as the receiver but with a
	 different message.
	

message
	exc.message → msg

	 Returns the message associated with this exception.
	

set_backtrace
	exc.set_backtrace(array)
	 → array

	 Sets the backtrace information associated with exc. The
	 argument must be an array of ​String​ objects in the format
	 described in Exception#backtrace.
	

status
	exc.status → status

	 (​SystemExit​
	 only.) Returns the exit status associated with
	 this ​SystemExit​ exception. Normally this status is set
	 using the Object#exit.
	
	​ 	​begin​

	​ 	 exit(99)

	​ 	​rescue​ SystemExit => e

	​ 	 puts ​"Exit status is: ​#{e.status}​"​

	​ 	​end​

Produces:
	​ 	Exit status is: 99

success?
	exc.success? → ​true​ or ​false​

	 (​SystemExit​
	 only.) Returns ​true​ if the exit status
	 is ​nil​ or zero.
	
	​ 	​begin​

	​ 	 exit(99)

	​ 	​rescue​ SystemExit => e

	​ 	 print ​"This program "​

	​ 	 ​if​ e.success?

	​ 	 print ​"did"​

	​ 	 ​else​

	​ 	 print ​"did not"​

	​ 	 ​end​

	​ 	 puts ​" succeed"​

	​ 	​end​

Produces:
	​ 	This program did not succeed

to_s
	exc.to_s → msg

	 Returns the message associated with this exception (or the name of the
	 exception if no message is set).
	
	​ 	​begin​

	​ 	 raise ​"The message"​

	​ 	​rescue​ Exception => e

	​ 	 puts e.to_s

	​ 	 ​# This is the same as the previous puts​

	​ 	 puts e

	​ 	​end​

Produces:
	​ 	The message

	​ 	The message

Class FalseClass < Object

 The global value ​false​ is the only instance of class
 ​FalseClass​ and represents a logically false value in boolean
 expressions. The class provides operators allowing ​false​
 to participate correctly in logical expressions.

FalseClass: Instance methods
&
	​false​ & obj → ​false​

	 And—Returns ​false​. obj is always evaluated because it
	 is the argument to a method call—no short-circuit
	 evaluation is performed in this case. In other words, the following code,
	 which uses ​&&​, will not invoke the lookup method.
	
	​ 	​def​ lookup(val)

	​ 	 puts ​"Looking up ​#{val}​"​

	​ 	 ​return​ true

	​ 	​end​

	​ 	false && lookup(​"cat"​)

	However, this code, using ​&​, will:

	​ 	false & lookup(​"cat"​)

Produces:
	​ 	Looking up cat

^
	​false​ ^ obj
	 → ​true​ or ​false​

	 Exclusive Or—If obj is ​nil​
	 or ​false​, returns
	 ​false​; otherwise, returns
	 ​true​.
	

|
	​false​ | obj → ​true​ or ​false​

	 Or—Returns ​false​ if obj is
	 ​nil​ or ​false​; ​true​ otherwise.
	

Class Fiber < Object

 A fiber is a lightweight asymetrical coroutine. Code in a
 fiber is created in a suspended state. It runs when resumed and
 can suspend itself (passing a value back to the code that resumed
 it). There is a full description of fibers in Section 12.1, ​Fibers​.

	​ 	fibonaccis = Fiber.new ​do​

	​ 	 n1 = n2 = 1

	​ 	 loop ​do​

	​ 	 Fiber.yield n1

	​ 	 n1, n2 = n2, n1+n2

	​ 	 ​end​

	​ 	 ​end​

	​ 	 10.times { print fibonaccis.resume, ​' '​ }

Produces:
	​ 	1 1 2 3 5 8 13 21 34 55

Fiber: Class methods
new
	Fiber.new { … } → fiber

	 Uses the block as a new, suspended fiber.
	

yield
	Fiber.yield(<val>*) → obj

	 Suspends execution of the current fiber. Any parameters will be
	 returned as the value of the
 ​resume​
 call that awoke the
	 fiber. Similarly, any values passed to
 ​resume​
 will
	 become the return value of the subsequent
 ​yield​
 .
	
	​ 	f = Fiber.new ​do​ |first|

	​ 	 print first

	​ 	 letter = ​"A"​

	​ 	 loop ​do​

	​ 	 print Fiber.yield(letter)

	​ 	 letter = letter.succ

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	10.times { |number| print f.resume(number) }

Produces:
	​ 	0A1B2C3D4E5F6G7H8I9J

Fiber: Instance methods
resume
	fiber.resume(<val>*) → obj

	 Resumes fiber. See Fiber.yield
	 for a discussion and example of parameter
	 passing. It is an error to resume a fiber that is being used as a coroutine (one that
	 calls
 ​transfer​
). See Fiber​​.«2.0»
	

Class File < IO

 A ​File​ is an abstraction of any file object
 accessible by the program and is closely associated with class
 ​IO​, described later. ​File​ includes the
 methods of module ​FileTest​ as class
 methods, allowing you to write (for example)
 ​File.exist?("foo")​.

 Files may be opened in binary mode (where the contents are
 transferred as 8-bit bytes in binary encoding) or text mode (where
 the contents are interpreted as codepoints in a
 particular encoding). These options are controlled by the
 ​mode​ parameter when a file is opened.

 Each file has three associated times:

 ​ atime​

 is the time the file was last
 accessed,
 ​ ctime​

 is the time that the file
 status (not necessarily the file contents) were last
 changed, and
 ​ mtime​

 is the time the
 file’s data was last modified. In Ruby, all these times are
 returned as ​Time​
 objects.

 In this section, ​permission bits​
 are a platform-specific set of bits that indicate permissions of a
 file. On Unix-based systems, permissions are viewed as a set of
 three octets, for the owner, the group, and the rest of the world. For
 each of these entities, permissions may be set to read, write, or
 execute the file.

	Owner		Group		Other
	r	w	x		r	w	x		r	w	x
	400	200	100		40	20	10		4	2	1

 The permission bits ​0644​ (in octal) would thus be interpreted as
 read/write for owner and read-only for group and other. Higher-order bits
 may also be used to indicate the type of file (plain, directory,
 pipe, socket, and so on) and various other special features. If the
 permissions are for a directory, the meaning of the execute bit
 changes; when set, the directory can be searched.

 Non-POSIX operating systems may not support the full set of possible permissions.
 In this case, the remaining permission bits
 will be synthesized to resemble typical values. For instance, on
 Windows the default permission bits are ​0644​, which means
 read/write for owner and read-only for all others. The only change
 that can be made is to make the file read-only, which is reported as
 ​0444​.

 The constant
 ​File::NULL​
 is the name of your system’s null device. Reading from it returns
 end-of-file, and writing to it is ignored.

 See also ​Pathname​ and ​IO​.

File: Class methods
absolute_path
	File.absolute_path(filename <, dirstring>)
	 → filename

	 Converts a path to an absolute path. Relative paths are
	 referenced from the current working directory of the process
	 unless dirstring is given, in which case it will
	 be used as the starting point. Path names starting with
	 ​~​ are not expanded, in contrast with File#expand_path.
	
	​ 	puts File.absolute_path(​"bin"​)

	​ 	puts File.absolute_path(​"../../bin"​, ​"/tmp/x"​)

Produces:
	​ 	/Users/dave/BS2/published/ruby4/Book/bin

	​ 	/bin

atime
	File.atime(filename) → time

	 Returns a ​Time​ object containing the last access time for
	 the named file or returns epoch if the file has not been accessed.
	
	​ 	File.atime(​"testfile"​) ​# => 2013-05-27 12:32:02 -0500​

basename
	File.basename(filename <, suffix>)
 → string

	Returns the last component of the filename given in
	filename.
	If suffix is given and is present at the end
	of filename, it is removed. Any extension can be removed
	by giving an extension of ​.*​.

	​ 	File.basename(​"/home/gumby/work/ruby.rb"​) ​# => "ruby.rb"​

	​ 	File.basename(​"/home/gumby/work/ruby.rb"​, ​".rb"​) ​# => "ruby"​

	​ 	File.basename(​"/home/gumby/work/ruby.rb"​, ​".*"​) ​# => "ruby"​

blockdev?
	File.blockdev?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is a
	 block device and returns ​false​ if it
	 isn’t or if the operating system doesn’t support this
	 feature.
	
	​ 	File.blockdev?(​"testfile"​) ​# => false​

chardev?
	File.chardev?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is a
	 character device and returns ​false​ if
	 it isn’t or if the operating system doesn’t support this
	 feature.
	
	​ 	File.chardev?(​"/dev/tty"​) ​# => true​

chmod
	File.chmod(permission <, filename>+)
	 → int

	 Changes permission bits on the named file(s) to the bit
	 pattern represented by permission. Actual
	 effects are operating system dependent (see the beginning of
	 this section). On Unix systems, see chmod(2) for details. Returns the number of files
	 processed.
	
	​ 	File.chmod(0644, ​"testfile"​, ​"some_other_file"​) ​# => 2​

chown
	File.chown(owner, group <, filename>+)
	 → int

	 Changes the owner and/or group of the named file(s) to the given
	 numeric owner and group IDs.
	 Only a process with superuser
	 privileges may change the owner of a file. The current owner of
	 a file may change the file’s group to any group to which the
	 owner belongs. A ​nil​ or -1 owner or group ID is
	 ignored.
	 Returns the number of files processed.
	
	​ 	File.chown(nil, 100, "testfile")

ctime
	File.ctime(filename)
	 → time

	 Returns a ​Time​ object containing the time that the file
	 status associated with the named file was changed.
	
	​ 	File.ctime(​"testfile"​) ​# => 2013-05-27 12:32:04 -0500​

delete
	File.delete(<filename>+) → int

	 Deletes the named file(s). Returns the number of files processed.
	 See also Dir.rmdir.
	
	​ 	File.open(​"testrm"​, ​"w+"​) {}

	​ 	File.delete(​"testrm"​) ​# => 1​

directory?
	File.directory?(path)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is a
	 directory; returns ​false​ otherwise.
	
	​ 	File.directory?(​"."​) ​# => true​

dirname
	File.dirname(filename) → filename

	 Returns all components of the filename given in
	 filename except the last one.
	
	​ 	File.dirname(​"/home/gumby/work/ruby.rb"​) ​# => "/home/gumby/work"​

	​ 	File.dirname(​"ruby.rb"​) ​# => "."​

executable?
	File.executable?(filename) → ​true​ or ​false​

	 Returns ​true​ if the named file is
	 executable. The tests are made using the effective owner of
	 the process.
	
	​ 	File.executable?(​"testfile"​) ​# => false​

executable_real?
	File.executable_real?(filename)
	 → ​true​ or ​false​

	 Same as File#executable? but tests using the real owner of the
	 process.
	

exist?
	File.exist?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file or directory exists.
	
	​ 	File.exist?(​"testfile"​) ​# => true​

exists?
	File.exists? (filename)
	 → ​true​ or ​false​

	 Synonym for File.exist?.
	

expand_path
	File.expand_path(filename <, dirstring>)
	 → filename

	 Converts a path name to an absolute path
	 name. Relative paths are
	 referenced from the current working directory of the process
	 unless dirstring is given, in which case it will
	 be used as the starting point. The given path name may
	 start with a ​~​, which expands to the process
	 owner’s home directory (the environment variable
	 ​HOME​ must be set correctly).
	 ​~​user​​ expands to the named user’s home
	 directory. See also File#absolute_path.
	
	​ 	File.expand_path(​"~/bin"​) ​# => "/Users/dave/bin"​

	​ 	File.expand_path(​"../../bin"​, ​"/tmp/x"​) ​# => "/bin"​

extname
	File.extname(path) → string

	 Returns the extension (the portion of filename in path
	 after the period).
	
	​ 	File.extname(​"test.rb"​) ​# => ".rb"​

	​ 	File.extname(​"a/b/d/test.rb"​) ​# => ".rb"​

	​ 	File.extname(​"test"​) ​# => ""​

file?
	File.file?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is a regular file (not a device
	 file, directory, pipe, socket, and so on).
	
	​ 	File.file?(​"testfile"​) ​# => true​

	​ 	File.file?(​"."​) ​# => false​

fnmatch
	File.fnmatch(glob_pattern, path, <flags>)
	 → ​true​ or ​false​

	 Returns true if path matches against
	 glob_pattern. The pattern is not a regular
	 expression; instead, it follows rules similar to shell
	 filename globbing. A
 ​ glob_pattern​

 may
	 contain the following metacharacters.
	
	
​*​
	
Matches zero or more characters in a file or directory name.

	
​**​
	

	 Matches zero or more characters, ignoring name boundaries. Most
	 often used to scan subdirectories recursively.
	

	
​?​
	
Matches any single character.

	
​[​charset​]​
	

	 Matches any character from the given
	 set of characters. A range of characters is written as
	 ​​from​-​to​​. The set may be negated
	 with an initial caret (​^​).
	

	
​\​
	

	 Escapes any special meaning of the next character.
	

	 flags is a bitwise OR of the
	 ​FNM_xxx​ constants.
	
	
​FNM_EXTGLOB​
	

 Expand braces in the pattern.«2.0»
	

	
​FNM_NOESCAPE​
	

	 A backslash does not escape special
	 characters in globs, and a backslash in the pattern must match a
	 backslash in the filename.
	

	
​FNM_PATHNAME​
	

	 Forward slashes in the filename are treated
	 as separating parts of a path and so must be explicitly matched
	 in the pattern.
	

	
​FNM_DOTMATCH​
	

	 If this option is not specified, filenames
	 containing
	 leading periods must be matched by an explicit period in the
	 pattern. A leading period is one at the start of the filename
	 or (if ​FNM_PATHNAME​ is specified) following a slash.
	

	
​FNM_CASEFOLD​
	

	 Filename matches are case insensitive.
	

	 See also Dir.glob.
	
	​ 	File.fnmatch(​'cat'​, ​'cat'​) ​# => true​

	​ 	File.fnmatch(​'cat'​, ​'category'​) ​# => false​

	​ 	File.fnmatch(​'c?t'​, ​'cat'​) ​# => true​

	​ 	File.fnmatch(​'c\?t'​, ​'cat'​) ​# => false​

	​ 	File.fnmatch(​'c??t'​, ​'cat'​) ​# => false​

	​ 	File.fnmatch(​'c*'​, ​'cats'​) ​# => true​

	​ 	File.fnmatch(​'c/**/t'​, ​'c/a/b/c/t'​) ​# => true​

	​ 	File.fnmatch(​'c**t'​, ​'c/a/b/c/t'​) ​# => true​

	​ 	File.fnmatch(​'c**t'​, ​'cat'​) ​# => true​

	​ 	File.fnmatch(​'**.txt'​, ​'some/dir/tree/notes.txt'​) ​# => true​

	​ 	File.fnmatch(​'c*t'​, ​'cat'​) ​# => true​

	​ 	File.fnmatch(​'c\at'​, ​'cat'​) ​# => true​

	​ 	File.fnmatch(​'c\at'​, ​'cat'​, File::FNM_NOESCAPE) ​# => false​

	​ 	File.fnmatch(​'a?b'​, ​'a/b'​) ​# => true​

	​ 	File.fnmatch(​'a?b'​, ​'a/b'​, File::FNM_PATHNAME) ​# => false​

	​ 	File.fnmatch(​'*'​, ​'.profile'​) ​# => false​

	​ 	File.fnmatch(​'*'​, ​'.profile'​, File::FNM_DOTMATCH) ​# => true​

	​ 	File.fnmatch(​'*'​, ​'dave/.profile'​) ​# => true​

	​ 	File.fnmatch(​'*'​, ​'dave/.profile'​, File::FNM_DOTMATCH) ​# => true​

	​ 	File.fnmatch(​'*'​, ​'dave/.profile'​, File::FNM_PATHNAME) ​# => false​

	​ 	File.fnmatch(​'*/*'​, ​'dave/.profile'​, File::FNM_PATHNAME) ​# => false​

	​ 	STRICT = File::FNM_PATHNAME | File::FNM_DOTMATCH

	​ 	File.fnmatch(​'*/*'​, ​'dave/.profile'​, STRICT) ​# => true​

fnmatch?
	File.fnmatch?(glob_pattern, path, <flags>)
	 → (​true​ or ​false​)

	 Synonym for File#fnmatch.
	

ftype
	File.ftype(filename) → filetype

	 Identifies the type of the named file. The return string is
	 one of ​file​, ​directory​,
	 ​characterSpecial​, ​blockSpecial​,
	 ​fifo​, ​link​, ​socket​, or
	 ​unknown​.
	
	​ 	File.ftype(​"testfile"​) ​# => "file"​

	​ 	File.ftype(​"/dev/tty"​) ​# => "characterSpecial"​

	​ 	system(​"mkfifo wibble"​) ​# => true​

	​ 	File.ftype(​"wibble"​) ​# => "fifo"​

grpowned?
	File.grpowned?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the effective group ID of the process is the same
	 as the group ID of the named file.
	 On Windows, returns ​false​.
	
	​ 	File.grpowned?(​"/etc/passwd"​) ​# => false​

identical?
	File.identical?(name1, name2)
	 → ​true​ or ​false​

	 Returns ​true​ only if
	 name1 and name2 refer to the same
	 file. Two separate files with the same content are not
	 considered to be identical.
	
	​ 	File.identical?(​"testfile"​, ​"./code/../testfile"​) ​# => true​

	​ 	File.symlink(​"testfile"​, ​"wibble"​)

	​ 	File.identical?(​"testfile"​, ​"wibble"​) ​# => true​

	​ 	File.link(​"testfile"​, ​"wobble"​)

	​ 	File.identical?(​"testfile"​, ​"wobble"​) ​# => true​

	​ 	File.identical?(​"wibble"​, ​"wobble"​) ​# => true​

join
	File.join(<string>+)
	 → filename

	 Returns a new string formed by joining the strings using
	 ​File::SEPARATOR​. The various separators
	 are as follows:
	
	
​ALT_SEPARATOR​
	
Alternate path separator (\ on Windows, ​nil​ otherwise)

	
​PATH_SEPARATOR​
	

	 Separator for filenames in
	 a search path (such as ​:​ or ​;​)
	

	
​SEPARATOR​
	

	 Separator for directory
	 components in a filename (such as ​\​ or ​/​)
	

	
​Separator​
	
Alias for ​SEPARATOR​

	​ 	File.join(​"usr"​, ​"mail"​, ​"gumby"​) ​# => "usr/mail/gumby"​

lchmod
	File.lchmod(permission, <filename>+)
	 → 0

	 Equivalent to File.chmod but does not follow symbolic
	 links (so it will change the permissions associated with the
	 link, not the file referenced by the link). Often not available.
	

lchown
	File.lchown(owner, group, <filename>+)
	 → 0

	 Equivalent to File.chown but does not follow symbolic
	 links (so it will change the owner associated with the
	 link, not the file referenced by the link). Often not available.
	

link
	File.link(oldname, newname) → 0

	 Creates a new name for an existing file using a hard link.
	 Will not overwrite newname if it already exists
	 (in which case
 ​link​
 raises a
	 subclass of ​SystemCallError​). Not
	 available on all platforms.
	
	​ 	File.link(​"testfile"​, ​"testfile.2"​) ​# => 0​

	​ 	f = File.open(​"testfile.2"​)

	​ 	f.gets ​# => "This is line one\n"​

	​ 	File.delete(​"testfile.2"​)

lstat
	File.lstat(filename) → stat

	 Returns status information for file as an object
	 of type ​File::Stat​. Same as IO#stat but
	 does not follow the last symbolic link. Instead, reports on
	 the link itself.
	
	​ 	File.symlink(​"testfile"​, ​"link2test"​) ​# => 0​

	​ 	File.stat(​"testfile"​).size ​# => 66​

	​ 	File.lstat(​"link2test"​).size ​# => 8​

	​ 	File.stat(​"link2test"​).size ​# => 66​

mtime
	File.mtime(filename) → time

	 Returns a ​Time​ object containing the modification time for
	 the named file.
	
	​ 	File.mtime(​"testfile"​) ​# => 2013-05-16 20:00:29 -0500​

	​ 	File.mtime(​"/tmp"​) ​# => 2013-05-27 11:52:10 -0500​

new
	File.new(filename,
 mode="r"
 <, permission>
 <options>)
 → file
	File.new(integer_fd <, mode options>)
	 → file

	 If the first
	 parameter is an integer (or can be converted to an integer
	 using
 ​to_int​
), it is
	 the file descriptor or an already-open file. In that case,
	 the call is passed to IO.new
	 for processing.
	

	 More commonly, opens the file named by filename
	 according to mode (the default is ​"r"​)
	 and returns a new ​File​ object. The
	 mode contains information on the way the
	 file is to be opened and optionally on the encodings to be
	 associated with the file data. Modes are most
	 commonly represented as a string but can be expressed as an
	 integer. Mode strings have the form
	 ​file-mode[:external-encoding[:internal-encoding]]"​. The
	 ​file-mode​ portion is one of the options listed in
	 the following table. The two encodings are the names (or
	 aliases) of encodings supported by your interpreter. See
	 Chapter 17, ​Character Encoding​ for more information.

Table 16. Mode values
	
​r​
	

	 Read-only, starts at beginning of file (default mode).
	

	
​r+​
	

	 Read/write, starts at beginning of file.
	

	
​w​
	

	 Write-only, truncates an existing file to zero length or
	 creates a new file for writing.
	

	
​w+​
	

	 Read/write, truncates existing file to zero length or
	 creates a new file for reading and writing.
	

	
​a​
	

	 Write-only, starts at end of file if file exists;
	 otherwise, creates a new file for writing.
	

	
​a+​
	

	 Read/write, starts at end of file if file exists;
	 otherwise, creates a new file for reading and writing.
	

	
​b​
	

	 Binary file mode (may appear with any of the key letters
	 listed earlier). As of Ruby 1.9, this modifier
	 should be supplied on all ports opened in binary mode (on
	 Unix as well as on DOS/Windows). To read a file in binary
	 mode and receive the data as a stream of bytes, use the
	 modestring ​"rb:ascii-8bit"​.
	

	When expressed as an integer, the mode is specified by OR-ing
	together the values in the following table. If your system
	does not support the underlying functionality, the constants
	will not be defined. The descriptions below are just hints at
	the underlying functionality—see the man page for open(2)
	for the details.

	
​File::APPEND​
	

	 Opens the file in append mode; all writes will occur at
	 end of file.
	

	
​File::ASYNC​
	

	 Generate a signal when input or output become possible.

	
​File::BINARY​
	

	 Use Ruby’s binary mode.

	
​File::CREAT​
	

	 Creates the file on open if it does not exist.

	
​File::DIRECT​
	

	 Try to minimize the effects of caching.

	
​File::DSYNC​
	

	 Opens for synchronous I/O, blocking until buffered data (but not necessarily inode information)
	 is written.

	
​File::EXCL​
	

	 When used with ​File::CREAT​,
	 opens will fail if the file exists.

	
​File::NOATIME​
	

	 Do not update the file’s last access time on reading.

	
​File::NOCTTY​
	

	 When opening a terminal device (see IO#isatty), does not allow it to
	 become the controlling terminal.

	
​File::NOFOLLOW​
	

	 Do not open the file if the name is a symbolic link.

	
​File::NONBLOCK​
	

	 Opens the file in nonblocking mode.

	
​File::RDONLY​
	

	 Opens for reading only.

	
​File::RDWR​
	

	 Opens for reading and writing.

	
​File::SYNC​
	

	 Opens for synchronous I/O, blocking until buffered data is written.

	
​File::TRUNC​
	

	 Opens the file and truncates it to zero length
	 if the file exists.

	
​File::WRONLY​
	

	 Opens for writing only.

	 Optional permission bits may be
	 given in permission. These bits are
	 platform dependent; on Unix systems, see open(2) for details.
	

	 If the final parameter is a hash, it is used to control
	 options, as described in the following table. The mode can
	 be passed as one of the options of this hash.
	

Table 17. File and I/O open options
	

	 ​autoclose:​
	
	

	 If ​false​, the underlying file will
	 not be closed when this I/O object is finalized.
	

	

	 ​binmode:​
	
	

	 Opens the IO object in binary mode if true (same as ​mode: "b"​).
	

	

	 ​encoding:​
	
	

	 Specifies both external and internal encodings as
	 ​"external:internal"​ (same format used in
	 ​mode​ parameter.
	

	

	 ​external_encoding:​
	
	

	 Specifies the external encoding.
	

	

	 ​internal_encoding:​
	
	

	 Specifies
	 the internal encoding.
	

	

	 ​mode:​
	
	

	 Specifies
	 what would have been the mode parameter (so ​File.open("xx", "r:utf-8")​
	 is the same as ​File.open("xx", mode: "r:utf-8")​.
	

	

	 ​perm:​
	
	

	 Specifies
	 what would have been the permission parameter.
	

	

	 ​textmode:​
	
	

	 Open the file in text mode (the default).
	

		
	

		In addition, the options parameter can use the key/value pairs
		that are specified to String.encode to
		control the processing of text data. See Table 22, ​Options to ​encode​ and ​encode!​​.
	

	

	 See also IO.open for a block form of File.new.
	
	​ 	​# open for reading, default external encoding​

	​ 	f = File.new(​"testfile"​, ​"r"​)

	​ 	

	​ 	​# open for reading, assume contents are utf-8​

	​ 	f = File.new(​"testfile"​, ​"r:utf-8"​)

	​ 	

	​ 	​# Same, using an options hash​

	​ 	f = File.new(​"testfile"​, mode: ​"r"​, external_encoding: ​"utf-8"​)

	​ 	

	​ 	​# Translate cr/lf to just lf (a String#encode option)​

	​ 	f = File.new(​"testfile"​, universal_newline: true)

	​ 	

	​ 	​# open for read/write. external utf-8 data will be converted to iso-8859-1​

	​ 	​# when read, and converted from 8859-1 to utf-8 on writing​

	​ 	f = File.new(​"newfile"​, ​"w+:utf-8:iso-8859-1"​)

	​ 	

	​ 	​# same as specifying "w+"​

	​ 	f = File.new(​"newfile"​, File::CREAT|File::TRUNC|File::RDWR, 0644)

owned?
	File.owned?(filename)
	 → ​true​ or
	​false​

	 Returns ​true​ if the effective user ID of the process is the same
	 as the owner of the named file.
	
	​ 	File.owned?(​"/etc/passwd"​) ​# => false​

path
	File.path(obj) → string

	 Returns the path of obj. If
	 obj responds to
 ​to_path​
 , its value is
	 returned. Otherwise, attempt to convert obj to a
	 string and return that value.
	
	​ 	File.path(​"testfile"​) ​# => "testfile"​

	​ 	File.path(​"/tmp/../tmp/xxx"​) ​# => "/tmp/../tmp/xxx"​

	​ 	f = File.open(​"/tmp/../tmp/xxx"​)

	​ 	File.path(f) ​# => "/tmp/../tmp/xxx"​

pipe?
	File.pipe?(filename) → ​true​ or ​false​

	 Returns ​true​ if the OS supports pipes and
	 the named file is one; ​false​ otherwise.
	
	​ 	File.pipe?(​"testfile"​) ​# => false​

readable?
	File.readable?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is readable by the effective
	 user ID of this process.
	
	​ 	File.readable?(​"testfile"​) ​# => true​

readable_real?
	File.readable_real?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is readable by the real
	 user ID of this process.
	
	​ 	File.readable_real?(​"testfile"​) ​# => true​

readlink
	File.readlink(filename) → filename

	 Returns the given symbolic link as a string.
	 Not available on all platforms.
	
	​ 	File.symlink(​"testfile"​, ​"link2test"​) ​# => 0​

	​ 	File.readlink(​"link2test"​) ​# => "testfile"​

realdirpath
	File.realdirpath(path <, relative_to>)
	 → string

	 Converts path to a full file path, with
	 all symlinks resolved and relative paths made absolute. If a
	 second parameter if present, it is used as the base for
	 resolving leading relative path segments. The actual file
	 (the past component of the path) need not exist.
	
	​ 	puts File.realdirpath(​"/var/log/system.log"​)

	​ 	puts File.realdirpath(​"../Common/xml"​)

	​ 	puts File.realdirpath(​"Sites"​, ​"/Users/dave"​)

Produces:
	​ 	/private/var/log/system.log

	​ 	/Users/dave/BS2/published/ruby4/Common/xml

	​ 	/Users/dave/Sites

realpath
	File.realpath(path <, relative_to>)
	 → string

	 Converts path to a full file path, with
	 all symlinks resolved and relative paths made absolute. If a
	 second parameter if present, it is used as the base for
	 resolving leading relative path segments.
	
	​ 	puts File.realpath(​"/var/log/system.log"​)

	​ 	puts File.realpath(​"../PerBook/util/xml/ppbook.dtd"​)

	​ 	puts File.realpath(​"Sites/index.html"​, ​"/Users/dave"​)

Produces:
	​ 	/private/var/log/system.log

	​ 	/Users/dave/BS2/published/ruby4/PerBook/util/xml/ppbook.dtd

	​ 	/Users/dave/Sites/index.html

rename
	File.rename(oldname, newname) → 0

	 Renames the given file or directory to the new name.
	 Raises a ​SystemCallError​ if the file cannot be renamed.
	
	​ 	File.rename(​"afile"​, ​"afile.bak"​) ​# => 0​

setgid?
	File.setgid?(filename)
 → ​true​ or ​false​

	Returns ​true​ if the named file’s set-group-id
	permission bit is set and returns ​false​ if it isn’t or
	if the operating system doesn’t support this feature.

	​ 	File.setgid?(​"/usr/sbin/lpc"​) ​# => false​

setuid?
	File.setuid?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file’s set-user-id
	 permission bit is set and returns ​false​ if it isn’t or
	 if the operating system doesn’t support this feature.
	
	​ 	File.setuid?(​"/bin/su"​) ​# => false​

size
	File.size(filename) → int

	 Returns the size of the file in bytes.
	
	​ 	File.size(​"testfile"​) ​# => 66​

size?
	File.size?(filename)
	 → int or ​nil​

	 Returns ​nil​ if the named file is of zero length; otherwise,
	 returns the size. Usable as a condition in tests.
	
	​ 	File.size?(​"testfile"​) ​# => 66​

	​ 	File.size?(​"/dev/zero"​) ​# => nil​

socket?
	File.socket?(filename)
	 → ​true​ or ​false​

	 Returns ​true​ if the named file is a
	 socket and returns ​false​ if it isn’t or
	 if the operating system doesn’t support this feature.
	

split
	File.split(filename) → array

	 Splits the given string into a directory and a file
	 component and returns them in a two-element array. See also
	 File.dirname and File.basename.
	
	​ 	File.split(​"/home/gumby/.profile"​) ​# => ["/home/gumby", ".profile"]​

	​ 	File.split(​"ruby.rb"​) ​# => [".", "ruby.rb"]​

stat
	File.stat(filename) → stat

	 Returns a ​File::Stat​ object for the named file
	 (see ​File::Stat​).
	
	​ 	stat = File.stat(​"testfile"​)

	​ 	stat.mtime ​# => 2013-05-16 20:00:29 -0500​

	​ 	stat.ftype ​# => "file"​

sticky?
	File.sticky?(filename) → ​true​ or ​false​

	 Returns ​true​ if the named file has its sticky bit set and returns
	 ​false​ if it doesn’t or if the operating system doesn’t
	 support this feature.
	

symlink
	File.symlink(oldname, newname)
	 → 0 or ​nil​

	 Creates a symbolic link called newname for the
	 file oldname.
	 Returns ​nil​ on all platforms that do not support
	 symbolic links.
	
	​ 	File.symlink(​"testfile"​, ​"link2test"​) ​# => 0​

symlink?
	File.symlink?(filename) → ​true​ or ​false​

	 Returns ​true​ if the named file is a symbolic link and returns
	 ​false​ if it isn’t or if the operating system doesn’t
	 support this feature.
	
	​ 	File.symlink(​"testfile"​, ​"link2test"​) ​# => 0​

	​ 	File.symlink?(​"link2test"​) ​# => true​

truncate
	File.truncate(filename, int) → 0

	 Truncates the file filename to be at most int
	 bytes long. Not available on all platforms.
	
	​ 	f = File.new(​"out"​, ​"w"​)

	​ 	f.write(​"1234567890"​) ​# => 10​

	​ 	f.close ​# => nil​

	​ 	File.truncate(​"out"​, 5) ​# => 0​

	​ 	File.size(​"out"​) ​# => 5​

umask
	File.umask(<int>) → int

	 Returns the current umask value for this process.
	 If the
	 optional argument is given, sets the umask to that value and
	 returns the previous value. Umask values are ​excluded​
	 from the default permissions; so, a umask of ​0222​ would make
	 a file read-only for everyone.
	 See also the discussion of permissions.
	
	​ 	File.umask(0006) ​# => 18​

	​ 	File.umask ​# => 6​

unlink
	File.unlink(<filename>+) → int

	 Synonym for File.delete.
	 See also Dir.rmdir.
	
	​ 	File.open(​"testrm"​, ​"w+"​) {} ​# => nil​

	​ 	File.unlink(​"testrm"​) ​# => 1​

utime
	File.utime(accesstime, modtime <, filename>+)
	 → int

	 Changes the access and modification times on a number of files.
	 The times must be instances of class ​Time​ or integers
	 representing the number of seconds since epoch.
	 Returns the number of files processed.
	 Not available on all platforms.
	
	​ 	File.utime(0, 0, ​"testfile"​) ​# => 1​

	​ 	File.mtime(​"testfile"​) ​# => 1969-12-31 18:00:00 -0600​

	​ 	File.utime(0, Time.now, ​"testfile"​) ​# => 1​

	​ 	File.mtime(​"testfile"​) ​# => 2013-05-27 12:32:07 -0500​

world_readable?
	File.world_readable?(filename)
	 → perm_int or ​nil​

	 If filename is readable by others,
	 returns an integer representing the file permission bits of
	 filename. Returns ​nil​
	 otherwise. The meaning of the bits is platform dependent; on
	 Unix systems, see stat(2).
	
	​ 	File.world_readable?(​"/etc/passwd"​) ​# => 420​

	​ 	File.world_readable?(​"/etc/passwd"​).to_s(8) ​# => "644"​

world_writable?
	File.world_writable?(filename)
	 → perm_int or ​nil​

	 If filename is writable by others,
	 returns an integer representing the file permission bits of
	 filename. Returns ​nil​
	 otherwise. The meaning of the bits is platform dependent; on
	 Unix systems, see stat(2).
	
	​ 	File.world_writable?(​"/etc/passwd"​) ​# => nil​

	​ 	File.world_writable?(​"/tmp"​) ​# => 511​

	​ 	File.world_writable?(​"/tmp"​).to_s(8) ​# => "777"​

writable?
	File.writable?(filename) → ​true​ or ​false​

	 Returns ​true​ if the named file is writable by the effective
	 user ID of this process.
	
	​ 	File.writable?(​"/etc/passwd"​) ​# => false​

	​ 	File.writable?(​"testfile"​) ​# => true​

writable_real?
	File.writable_real?(filename) → ​true​ or ​false​

	 Returns ​true​ if the named file is writable by the real
	 user ID of this process.
	

zero?
	File.zero?(filename) → ​true​ or ​false​

	 Returns ​true​ if the named file is of
	 zero length and returns ​false​
	 otherwise.
	
	​ 	File.zero?(​"testfile"​) ​# => false​

	​ 	File.open(​"zerosize"​, ​"w"​) {}

	​ 	File.zero?(​"zerosize"​) ​# => true​

File: Instance methods
atime
	file.atime → time

	 Returns a ​Time​ object containing the last access time for
	 file or returns epoch if the file has not been accessed.
	
	​ 	File.new(​"testfile"​).atime ​# => 1969-12-31 18:00:00 -0600​

chmod
	file.chmod(permission) → 0

	 Changes permission bits on file to the bit
	 pattern represented by permission. Actual
	 effects are platform dependent; on Unix systems, see
	 chmod(2) for details. Follows
	 symbolic links. See the discussion of
	 permissions. Also see File.lchmod.
	
	​ 	f = File.new(​"out"​, ​"w"​);

	​ 	f.chmod(0644) ​# => 0​

chown
	file.chown(owner, group) → 0

	 Changes the owner and group of file to the given
	 numeric owner and group IDs.
	 Only a process with superuser
	 privileges may change the owner of a file. The current owner of
	 a file may change the file’s group to any group to which the
	 owner belongs. A ​nil​ or -1 owner or group ID is
	 ignored. Follows symbolic links. See also File.lchown.
	
	​ 	File.new("testfile").chown(502, 400)

ctime
	file.ctime → time

	 Returns a ​Time​ object containing the time that the file
	 status associated with file was changed.
	
	​ 	File.new(​"testfile"​).ctime ​# => 2013-05-27 12:32:07 -0500​

flock
	file.flock (locking_constant)
	 → 0 or ​false​

	 Locks or unlocks a
	 file according to locking_constant (a logical
	 ​or​ of the following values).
	

Table 18. Lock-mode constants
	
​LOCK_EX​
	

	 Exclusive lock. Only one process may hold an exclusive
	 lock for a given file at a time.
	

	
​LOCK_NB​
	

	 Don’t block when locking. May be combined with other lock
	 options using | ​(or)​
	

	
​LOCK_SH​
	

	 Shared lock. Multiple processes may each hold a shared
	 lock for a given file at the same time.
	

	
​LOCK_UN​
	

	 Unlock.
	

	 Returns
	 ​false​ if
	 ​File::LOCK_NB​ is specified, and the
	 operation would otherwise have blocked. Not available on
	 all platforms.
	
	​ 	File.new(​"testfile"​).flock(File::LOCK_UN) ​# => 0​

lstat
	file.lstat → stat

	 Same as IO#stat but does not follow the last symbolic link.
	 Instead, reports on the link itself.
	
	​ 	File.symlink(​"testfile"​, ​"link2test"​) ​# => 0​

	​ 	File.stat(​"testfile"​).size ​# => 66​

	​ 	f = File.new(​"link2test"​)

	​ 	f.lstat.size ​# => 8​

	​ 	f.stat.size ​# => 66​

mtime
	file.mtime → time

	 Returns a ​Time​ object containing the modification time for
	 file.
	
	​ 	File.new(​"testfile"​).mtime ​# => 2013-05-27 12:32:07 -0500​

path
	file.path → filename

	 Returns the path name used to create file as a string. Does not
	 normalize the name.
	
	​ 	File.new(​"testfile"​).path ​# => "testfile"​

	​ 	File.new(​"/tmp/../tmp/xxx"​, ​"w"​).path ​# => "/tmp/../tmp/xxx"​

size
	file.size(filename) → int

	 Returns the size of file in bytes.
	
	​ 	File.open(​"testfile"​).size ​# => 66​

to_path
	file.to_path → filename

	 Alias for File#path.
	

truncate
	file.truncate(int) → 0

	 Truncates file to at most int bytes. The file
	 must be opened for writing.
	 Not available on all platforms.
	
	​ 	f = File.new(​"out"​, ​"w"​)

	​ 	f.syswrite(​"1234567890"​) ​# => 10​

	​ 	f.truncate(5) ​# => 0​

	​ 	f.close() ​# => nil​

	​ 	File.size(​"out"​) ​# => 5​

Class File::Stat < Object

 Objects of class ​File::Stat​ encapsulate common status information for
 ​File​ objects. The information is recorded at the
 moment the ​File::Stat​ object is created; changes made to the file
 after that point will not be reflected.
 ​File::Stat​ objects are returned by IO#stat,
 File.stat, File#lstat, and File.lstat.
 Many of these methods may return platform-specific
 values, and not all values are meaningful on all systems.
 See also Object#test.

 Mixes in

	Comparable
	
<, <=, ==, >, >=, between?

File::Stat: Instance methods
<=>
	statfile <=> other_stat → -1, 0, 1

	 Compares ​File::Stat​ objects by comparing their respective
	 modification times.
	
	​ 	f1 = File.new(​"f1"​, ​"w"​)

	​ 	sleep 1

	​ 	f2 = File.new(​"f2"​, ​"w"​)

	​ 	f1.stat <=> f2.stat ​# => -1​

	​ 	​# Methods in Comparable are also available​

	​ 	f1.stat > f2.stat ​# => false​

	​ 	f1.stat < f2.stat ​# => true​

atime
	statfile.atime → time

	 Returns a ​Time​ object containing the last access time for
	 statfile or returns epoch if the file has not been accessed.
	
	​ 	File.stat(​"testfile"​).atime ​# => 1969-12-31 18:00:00 -0600​

	​ 	File.stat(​"testfile"​).atime.to_i ​# => 0​

blksize
	statfile.blksize → int

	 Returns the native file system’s block size.
	 Will return ​nil​ on platforms that don’t support this information.
	
	​ 	File.stat(​"testfile"​).blksize ​# => 4096​

blockdev?
	statfile.blockdev? → ​true​ or ​false​

	 Returns ​true​ if the file is a block
	 device and returns ​false​ if it isn’t or
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).blockdev? ​# => false​

	​ 	File.stat(​"/dev/disk0"​).blockdev? ​# => true​

blocks
	statfile.blocks → int

	 Returns the number of native file system blocks allocated for
	 this file or returns ​nil​
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).blocks ​# => 8​

chardev?
	statfile.chardev? → ​true​ or ​false​

	 Returns ​true​ if the file is a character
	 device and returns ​false​ if it isn’t or
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"/dev/tty"​).chardev? ​# => true​

	​ 	File.stat(​"testfile"​).chardev? ​# => false​

ctime
	statfile.ctime → time

	 Returns a ​Time​ object set to the time that the file
	 status associated with statfile was changed.
	
	​ 	File.stat(​"testfile"​).ctime ​# => 2013-05-27 12:32:07 -0500​

dev
	statfile.dev → int

	 Returns an integer representing the device on which statfile
	 resides. The bits in the device integer will often encode major
	 and minor device information.
	
	​ 	File.stat(​"testfile"​).dev ​# => 16777219​

	​ 	​"%x"​ % File.stat(​"testfile"​).dev ​# => "1000003"​

dev_major
	statfile.dev_major → int

	 Returns the major part of File::Stat#dev or
	 ​nil​
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).dev_major ​# => 1​

dev_minor
	statfile.dev_minor → int

	 Returns the minor part of File::Stat#dev or ​nil​
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).dev_minor ​# => 3​

directory?
	statfile.directory? → ​true​ or ​false​

	 Returns ​true​ if statfile is
	 a directory and returns ​false​
	 otherwise.
	
	​ 	File.stat(​"testfile"​).directory? ​# => false​

	​ 	File.stat(​"."​).directory? ​# => true​

executable?
	statfile.executable? → ​true​ or ​false​

	 Returns ​true​ if statfile is executable or if the
	 operating system doesn’t distinguish executable files from
	 nonexecutable files. The tests are made using the effective
	 owner of the process.
	
	​ 	File.stat(​"testfile"​).executable? ​# => false​

executable_real?
	statfile.executable_real? → ​true​ or ​false​

	 Same as
 ​executable?​
 but tests using
	 the real owner of the process.
	

file?
	statfile.file? → ​true​ or ​false​

	 Returns ​true​ if statfile is a regular file (not a device
	 file, pipe, socket, and so on).
	
	​ 	File.stat(​"testfile"​).file? ​# => true​

ftype
	statfile.ftype → type_string

	 Identifies the type of statfile.
	 The return string is one of the following:
	 ​file​,
	 ​directory​,
	 ​characterSpecial​,
	 ​blockSpecial​,
	 ​fifo​,
	 ​link​,
	 ​socket​, or
	 ​unknown​.
	
	​ 	File.stat(​"/dev/tty"​).ftype ​# => "characterSpecial"​

gid
	statfile.gid → int

	 Returns the numeric group ID of the owner of statfile.
	
	​ 	File.stat(​"testfile"​).gid ​# => 20​

grpowned?
	statfile.grpowned? → ​true​ or ​false​

	 Returns true if the effective group ID of the process is the same
	 as the group ID of statfile.
	 On Windows, returns ​false​.
	
	​ 	File.stat(​"testfile"​).grpowned? ​# => true​

	​ 	File.stat(​"/etc/passwd"​).grpowned? ​# => false​

ino
	statfile.ino → int

	 Returns the inode number for statfile.
	
	​ 	File.stat(​"testfile"​).ino ​# => 29399443​

mode
	statfile.mode → int

	 Returns an integer representing the permission bits of
	 statfile. The meaning of the bits is platform dependent; on Unix
	 systems, see stat(2).
	
	​ 	File.chmod(0644, ​"testfile"​) ​# => 1​

	​ 	File.stat(​"testfile"​).mode.to_s(8) ​# => "100644"​

mtime
	statfile.mtime → time

	 Returns a ​Time​ object containing the
	 modification time for statfile.
	
	​ 	File.stat(​"testfile"​).mtime ​# => 2013-05-27 12:32:07 -0500​

nlink
	statfile.nlink → int

	 Returns the number of hard links to statfile.
	
	​ 	File.stat(​"testfile"​).nlink ​# => 1​

	​ 	File.link(​"testfile"​, ​"testfile.bak"​) ​# => 0​

	​ 	File.stat(​"testfile"​).nlink ​# => 2​

owned?
	statfile.owned? → ​true​ or ​false​

	 Returns ​true​ if the effective user ID of the process is the same
	 as the owner of statfile.
	
	​ 	File.stat(​"testfile"​).owned? ​# => true​

	​ 	File.stat(​"/etc/passwd"​).owned? ​# => false​

pipe?
	statfile.pipe? → ​true​ or ​false​

	 Returns ​true​ if the operating system supports pipes and
	 statfile is a pipe.
	

rdev
	statfile.rdev → int

	 Returns an integer representing the device type on which
	 statfile (which should be a special file)
	 resides. Returns ​nil​
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"/dev/disk0s1"​).rdev ​# => 16777217​

	​ 	File.stat(​"/dev/tty"​).rdev ​# => 33554432​

rdev_major
	statfile.rdev_major → int

	 Returns the major part of File::Stat#rdev or
	 ​nil​
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"/dev/disk0s1"​).rdev_major ​# => 1​

	​ 	File.stat(​"/dev/tty"​).rdev_major ​# => 2​

rdev_minor
	statfile.rdev_minor → int

	 Returns the minor part of File::Stat#rdev or ​nil​
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"/dev/disk0s1"​).rdev_minor ​# => 1​

	​ 	File.stat(​"/dev/tty"​).rdev_minor ​# => 0​

readable?
	statfile.readable? → ​true​ or ​false​

	 Returns ​true​ if statfile is readable by the effective
	 user ID of this process.
	
	​ 	File.stat(​"testfile"​).readable? ​# => true​

readable_real?
	statfile.readable_real? → ​true​ or ​false​

	 Returns ​true​ if statfile is readable by the real
	 user ID of this process.
	
	​ 	File.stat(​"testfile"​).readable_real? ​# => true​

	​ 	File.stat(​"/etc/passwd"​).readable_real? ​# => true​

setgid?
	statfile.setgid? → ​true​ or ​false​

	 Returns ​true​ if statfile has
	 the set-group-id permission bit set
	 and returns ​false​ if it doesn’t or
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).setgid? ​# => false​

	​ 	File.stat(​"/usr/sbin/postdrop"​).setgid? ​# => true​

setuid?
	statfile.setuid? → ​true​ or ​false​

	 Returns ​true​ if statfile has the set-user-id
	 permission bit set and returns ​false​ if it doesn’t or
	 if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).setuid? ​# => false​

	​ 	File.stat(​"/usr/bin/su"​).setuid? ​# => true​

size
	statfile.size → int

	 Returns the size of statfile in bytes.
	
	​ 	File.stat(​"/dev/zero"​).size ​# => 0​

	​ 	File.stat(​"testfile"​).size ​# => 66​

size?
	statfile.size? → int or ​nil​

	 Returns ​nil​ if statfile is a zero-length file; otherwise,
	 returns the file size. Usable as a condition in tests.
	
	​ 	File.stat(​"/dev/zero"​).size? ​# => nil​

	​ 	File.stat(​"testfile"​).size? ​# => 66​

socket?
	statfile.socket? → ​true​ or ​false​

	 Returns ​true​ if statfile is
	 a socket and returns ​false​ if it isn’t
	 or if the operating system doesn’t support this feature.
	
	​ 	File.stat(​"testfile"​).socket? ​# => false​

sticky?
	statfile.sticky? → ​true​ or ​false​

	 Returns ​true​ if statfile has its sticky bit set and returns
	 ​false​ if it doesn’t or if the operating system doesn’t
	 support this feature.
	
	​ 	File.stat(​"testfile"​).sticky? ​# => false​

symlink?
	statfile.symlink? → ​true​ or ​false​

	 Returns ​true​ if statfile is a symbolic link; returns
	 ​false​ if it isn’t or if the operating system doesn’t
	 support this feature. Because File.stat automatically follows
	 symbolic links,
 ​symlink?​
 will always be
	 ​false​ for an object returned by File.stat.
	
	​ 	File.symlink(​"testfile"​, ​"alink"​) ​# => 0​

	​ 	File.stat(​"alink"​).symlink? ​# => false​

	​ 	File.lstat(​"alink"​).symlink? ​# => true​

uid
	statfile.uid → int

	 Returns the numeric user ID of the owner of statfile.
	
	​ 	File.stat(​"testfile"​).uid ​# => 501​

world_readable?
	statfile.world_readable?(filename)
	 → perm_int or ​nil​

	 If filename is readable by others,
	 returns an integer representing the file permission bits of
	 filename. Returns ​nil​
	 otherwise. The meaning of the bits is platform dependent; on
	 Unix systems, see stat(2).
	
	​ 	File.stat(​"/etc/passwd"​).world_readable? ​# => 420​

	​ 	File.stat(​"/etc/passwd"​).world_readable?.to_s(8) ​# => "644"​

world_writable?
	statfile.world_writable?(filename)
	 → perm_int or ​nil​

	 If filename is writable by others,
	 returns an integer representing the file permission bits of
	 filename. Returns ​nil​
	 otherwise. The meaning of the bits is platform dependent; on
	 Unix systems, see stat(2).
	
	​ 	File.stat(​"/etc/passwd"​).world_writable? ​# => nil​

	​ 	File.stat(​"/tmp"​).world_writable? ​# => 511​

	​ 	File.stat(​"/tmp"​).world_writable?.to_s(8) ​# => "777"​

writable?
	statfile.writable? → ​true​ or ​false​

	 Returns ​true​ if statfile is writable by the effective
	 user ID of this process.
	
	​ 	File.stat(​"testfile"​).writable? ​# => true​

writable_real?
	statfile.writable_real?
	 → ​true​ or ​false​

	 Returns ​true​ if statfile is writable by the real
	 user ID of this process.
	
	​ 	File.stat(​"testfile"​).writable_real? ​# => true​

zero?
	statfile.zero? → ​true​ or ​false​

	 Returns ​true​ if statfile
	 is a zero-length file; returns ​false​
	 otherwise.
	
	​ 	File.stat(​"testfile"​).zero? ​# => false​

Module FileTest

 ​FileTest​ implements file test operations similar to
 those used in ​File::Stat​. The methods in
 ​FileTest​ are duplicated in class
 ​File​. Rather than repeat
 the documentation here, we list the names of the methods and refer
 you to the documentation for ​File​.
 ​FileTest​ appears to be a somewhat vestigial module.

 The ​FileTest​ methods are:

 ​blockdev?​
 ,

 ​chardev?​
 ,

 ​directory?​
 ,

 ​executable?​
 ,

 ​executable_real?​
 ,

 ​exist?​
 ,

 ​exists?​
 ,

 ​file?​
 ,

 ​grpowned?​
 ,

 ​identical?​
 ,

 ​owned?​
 ,

 ​pipe?​
 ,

 ​readable?​
 ,

 ​readable_real?​
 ,

 ​setgid?​
 ,

 ​setuid?​
 ,

 ​size​
 ,

 ​size?​
 ,

 ​socket?​
 ,

 ​sticky?​
 ,

 ​symlink?​
 ,

 ​world_readable?​
 ,

 ​world_writable?​
 ,

 ​writable?​
 ,

 ​writable_real?​
 ,

 ​zero?​

Class Fixnum < Integer

 A ​Fixnum​ holds integer values that can be
 represented in a native machine word (minus 1 bit). If any
 operation on a ​Fixnum​ exceeds this range,
 the value is converted to a
 ​Bignum​.

 ​Fixnum​ objects have immediate
 value. This means that when they
 are assigned or passed as parameters, the actual object is passed,
 rather than a reference to that object. Assignment does not alias
 ​Fixnum​ objects. Because there is
 effectively only one ​Fixnum​ object instance
 for any given integer value, you cannot, for example, add a
 singleton method to a ​Fixnum​.

Fixnum: Instance methods
Arithmetic operations
	

	 Performs various arithmetic operations on
	 fix.
	
	
fix
	
+
	
numeric
	
Addition

	
fix
	
--
	
numeric
	
Subtraction

	
fix
	
*
	
numeric
	
Multiplication

	
fix
	
/
	
numeric
	
Division

	
fix
	
%
	
numeric
	
Modulo

	
fix
	
**
	
numeric
	
Exponentiation

	
fix
	
-@
	

	
Unary minus

Bit operations
	

	 Performs various operations on the binary representations of
	 the ​Fixnum​.
	
	
~ fix
	

	

	
Invert bits

	
fix
	
|
	
numeric
	
Bitwise ​or​

	
fix
	
&
	
numeric
	
Bitwise ​and​

	
fix
	
^
	
numeric
	
Bitwise ​exclusive or​

	
fix
	
<<
	
numeric
	
Left-shift numeric bits

	
fix
	
>>
	
numeric
	
Right-shift numeric bits (with sign extension)

Comparisons
	

	 Compares fix to other numbers.
	 ​Fixnum​.
	
 ​<​
 ,
	
 ​<=​
 ,
	
 ​==​
 ,
	
 ​>=​
 , and
	
 ​>​
 .
	

<=>
	fix <=> numeric
	 → -1, 0, +1, or ​nil​

	 Comparison—Returns -1, 0, or +1 depending on whether
	 fix is less than, equal to, or greater than
	 numeric. Although ​Fixnum​’s
	 grandparent mixes in
	 ​Comparable​,
	 ​Fixnum​ does not use that module for
	 performing comparisons, instead implementing the comparison
	 operators explicitly.
	
	​ 	42 <=> 13 ​# => 1​

	​ 	13 <=> 42 ​# => -1​

	​ 	-1 <=> -1 ​# => 0​

[]
	fix[n] → 0, 1

	 Bit Reference—Returns the nth bit in the binary
	 representation of fix, where fix[0] is the least significant
	 bit.
	
	​ 	a = 0b11001100101010

	​ 	30.downto(0) {|n| print a[n] }

Produces:
	​ 	0000000000000000011001100101010

abs
	fix.abs → int

	 Returns the absolute value of fix.
	
	​ 	-12345.abs ​# => 12345​

	​ 	12345.abs ​# => 12345​

div
	fix.div(numeric) → integer

	 Division that always produces an integral result. Not affected
	 by the ​mathn​ library (unlike Fixnum#/).
	
	​ 	654321.div(13731) ​# => 47​

	​ 	654321.div(13731.34) ​# => 47​

even?
	fix.even? → ​true​ or ​false​

	 Returns ​true​ if fix is even.
	
	​ 	1.even? ​# => false​

	​ 	2.even? ​# => true​

divmod
	fix.divmod(numeric) → array

	 See Numeric#divmod.
	

fdiv
	fix.fdiv(numeric) → float

	 Returns the floating-point result of dividing fix by
	 numeric.
	
	​ 	63.fdiv(9) ​# => 7.0​

	​ 	654321.fdiv(13731) ​# => 47.652829364212366​

	​ 	654321.fdiv(13731.24) ​# => 47.65199646936475​

magnitude
	fix.magnitude → int

	 Returns the magnitude of fix (the distance of fix from the origin of
	 the number line). Synonym for Fixnum#abs. See also
	 Complex#magnitude.
	

modulo
	fix.modulo(numeric) → numeric

	 Synonym for Fixnum#%.
	
	​ 	654321.modulo(13731) ​# => 8964​

	​ 	654321.modulo(13731.24) ​# => 8952.72000000001​

odd?
	fix.odd? → ​true​ or ​false​

	 Returns ​true​ if fix is odd.
	
	​ 	1.odd? ​# => true​

	​ 	2.odd? ​# => false​

size
	fix.size → int

	 Returns the number of ​bytes​ in the machine representation
	 of a ​Fixnum​.
	
	​ 	1.size ​# => 8​

	​ 	-1.size ​# => 8​

	​ 	2147483647.size ​# => 8​

succ
	fix.succ → int

	 Returns fix + 1.
	
	​ 	1.succ ​# => 2​

	​ 	-1.succ ​# => 0​

to_f
	fix.to_f → float

	 Converts fix to a ​Float​.
	

to_s
	fix.to_s(base=10) → string

	 Returns a string containing the representation of fix radix
	 base (2 to 36).
	
	​ 	12345.to_s ​# => "12345"​

	​ 	12345.to_s(2) ​# => "11000000111001"​

	​ 	12345.to_s(8) ​# => "30071"​

	​ 	12345.to_s(10) ​# => "12345"​

	​ 	12345.to_s(16) ​# => "3039"​

	​ 	12345.to_s(36) ​# => "9ix"​

	​ 	84823723233035811745497171.to_s(36) ​# => "anotherrubyhacker"​

zero?
	fix.zero? → ​true​ or ​false​

	 Returns ​true​ if fix is zero.
	
	​ 	42.zero? ​# => false​

	​ 	0.zero? ​# => true​

Class Float < Numeric

 ​Float​ objects hold real numbers using the native
 architecture’s double-precision floating-point representation.

 Constants

	DIG
	Precision of ​Float​ (in decimal digits).
	EPSILON
	The smallest ​Float​ such that
 1.0+​EPSILON​ != 1.0.
	INFINITY
	Positive infinity.
	MANT_DIG
	The number of mantissa digits (base ​RADIX​).
	MAX
	The largest ​Float​.
	MAX_10_EXP
	The maximum integer x such that 10x is a
 finite ​Float​.
	MAX_EXP
	The maximum integer x such that
 FLT_RADIXx-1 is a finite ​Float​.
	MIN
	The smallest ​Float​.
	MIN_10_EXP
	The minimum integer x such that 10x is a
 finite ​Float​.
	MIN_EXP
	The minimum integer x such that
 FLT_RADIXx-1 is a finite ​Float​.
	NAN
	A value that is not a valid number.
	RADIX
	The radix of floating-point representations.
	ROUNDS
	
	The rounding mode for floating-point
	operations. Possible values include -1 if the mode is indeterminate,
	0 if rounding is toward zero,
	1 if rounding is to nearest representable value,
	2 if rounding is toward infinity, and
	3 if rounding is toward minus infinity.

Float: Instance methods
Arithmetic operations
	

	 Performs various arithmetic operations on
	 flt.
	
	

	 flt
	
+
	
numeric
	
Addition

	

	 flt
	
--
	
numeric
	
Subtraction

	

	 flt
	
*
	
numeric
	
Multiplication

	

	 flt
	
/
	
numeric
	
Division

	

	 flt
	
%
	
numeric
	
Modulo

	

	 flt
	
**
	
numeric
	
Exponentiation

	

	 flt
	
-@
	

	
Unary minus

Comparisons
	

	 Compares flt to other numbers.
	
 ​<​
 ,
	
 ​<=​
 ,
	
 ​==​
 ,
	
 ​>=​
 ,
	
 ​>​
 .
	

<=>
	flt <=> numeric
	 → -1, 0, +1, or ​nil​

	 Returns -1, 0, or +1 depending on whether flt is less
	 than, equal to, or greater than numeric.
	

==
	flt == obj
	 → ​true​ or ​false​

	 Returns ​true​ only if obj has
	 the same value as flt. Contrast this with Float#eql?,
	 which requires obj to be a ​Float​.
	
	​ 	1.0 == 1.0 ​# => true​

	​ 	(1.0).eql?(1.0) ​# => true​

	​ 	1.0 == 1 ​# => true​

	​ 	(1.0).eql?(1) ​# => false​

abs
	flt.abs → numeric

	 Returns the absolute value of flt.
	
	​ 	(-34.56).abs ​# => 34.56​

	​ 	-34.56.abs ​# => 34.56​

ceil
	flt.ceil → int

	 Returns the smallest integer greater than or equal to flt.
	
	​ 	1.2.ceil ​# => 2​

	​ 	2.0.ceil ​# => 2​

	​ 	(-1.2).ceil ​# => -1​

	​ 	(-2.0).ceil ​# => -2​

divmod
	flt.divmod(numeric) → array

	 See Numeric#divmod.
	

eql?
	flt.eql?(obj) → ​true​ or ​false​

	 Returns ​true​ only if obj is a ​Float​ with
	 the same value as flt. Contrast this with Float#==,
	 which performs type conversions.
	
	​ 	1.0.eql?(1) ​# => false​

	​ 	1.0 == 1 ​# => true​

fdiv
	flt.fdiv(number) → float

	 Returns the floating-point result of dividing flt by
	 number. Alias for Float#quo.
	
	​ 	63.0.fdiv(9) ​# => 7.0​

	​ 	1234.56.fdiv(3.45) ​# => 357.8434782608695​

finite?
	flt.finite? → ​true​ or ​false​

	 Returns ​true​ if flt is a valid IEEE floating-point
	 number (it is not infinite, and
 ​nan?​
 is ​false​).
	
	​ 	(42.0).finite? ​# => true​

	​ 	(1.0/0.0).finite? ​# => false​

floor
	flt.floor → int

	 Returns the largest integer less than or equal to flt.
	
	​ 	1.2.floor ​# => 1​

	​ 	2.0.floor ​# => 2​

	​ 	(-1.2).floor ​# => -2​

	​ 	(-2.0).floor ​# => -2​

infinite?
	flt.infinite? → ​nil​, -1, +1

	 Returns ​nil​, -1, or +1 depending on whether flt is finite,
	 -infinity, or +infinity.
	
	​ 	(0.0).infinite? ​# => nil​

	​ 	(-1.0/0.0).infinite? ​# => -1​

	​ 	(+1.0/0.0).infinite? ​# => 1​

magnitude
	flt.magnitude → float

	 Returns the magnitude of flt (the distance of flt from the
	 origin of the number line). Synonym for Float#abs. See also
	 Complex#magnitude.
	

modulo
	flt.modulo(numeric) → numeric

	 Synonym for Float#%.
	
	​ 	6543.21.modulo(137) ​# => 104.21000000000004​

	​ 	6543.21.modulo(137.24) ​# => 92.92999999999961​

nan?
	flt.nan? → ​true​ or ​false​

	 Returns ​true​ if flt is an invalid IEEE
	 floating-point number.
	
	​ 	(-1.0).nan? ​# => false​

	​ 	(0.0/0.0).nan? ​# => true​

quo
	flt.quo(number) → float

	 Returns the floating-point result of dividing flt by
	 number.
	
	​ 	63.0.quo(9) ​# => 7.0​

	​ 	1234.56.quo(3.45) ​# => 357.8434782608695​

rationalize
	flt.rationalize(<epsilon>) → rational

	 Converts flt to a rational number with
	 an approximate precision of epsilon. If
	 epsilon is not given, a value will be chosen
	 that preserves as many significant digits of the mantissa as possible.
	
	​ 	1.3.rationalize ​# => (13/10)​

	​ 	1.333.rationalize ​# => (1333/1000)​

	​ 	1.33333333333333333.rationalize ​# => (4/3)​

	​ 	1.3333.rationalize(0.001) ​# => (4/3)​

	​ 	1.3333.rationalize(1) ​# => (1/1)​

	​ 	Math::PI.rationalize(0.01) ​# => (22/7)​

round
	flt.round(digits=0) → numeric

	 Rounds flt to the nearest integer if the parameter is
	 omitted or zero or rounds to the given number of digits.
	
	​ 	1.5.round ​# => 2​

	​ 	(-1.5).round ​# => -2​

	​ 	3.14159.round ​# => 3​

	​ 	3.14159.round(4) ​# => 3.1416​

	​ 	3.14159.round(2) ​# => 3.14​

to_f
	flt.to_f → flt

	 Returns flt.
	

to_i
	flt.to_i → int

	 Returns flt truncated to an integer.
	
	​ 	1.5.to_i ​# => 1​

	​ 	(-1.5).to_i ​# => -1​

to_int
	flt.to_int → int

	 Synonym for Float#to_i.
	

to_r
	flt.to_r → number

	 Converts flt to a rational number.
	
	​ 	1.5.to_r ​# => 3/2​

	​ 	(1.0/3).to_r ​# => 6004799503160661/18014398509481984​

to_s
	flt.to_s → string

	 Returns a string containing a representation of
	 flt. As well as a fixed or exponential form of
	 the number, the call may return ​NaN​,
	 ​Infinity​, and ​-Infinity​.
	

truncate
	flt.truncate → int

	 Synonym for Float#to_i.
	

zero?
	flt.zero? → ​true​ or ​false​

	 Returns ​true​ if flt is 0.0.
	

Module GC

 The ​GC​ module provides an interface to Ruby’s mark and sweep garbage
 collection mechanism.
 Some of the underlying methods are also
 available via the ​ObjectSpace​ module, described
 later.

GC: Module methods
count
	GC.count → int

	 Returns a count of the number of times ​GC​ has run in the current process.
	
	​ 	GC.count ​# => 4​

	​ 	res = ​""​

	​ 	10_000.times { res += ​"wibble"​ }

	​ 	GC.count ​# => 42​

disable
	GC.disable → ​true​ or ​false​

	 Disables garbage collection, returning ​true​ if garbage
	 collection was already disabled.
	
	​ 	GC.disable ​# => false​

	​ 	GC.disable ​# => true​

enable
	GC.enable → ​true​ or ​false​

	 Enables garbage collection, returning ​true​ if garbage
	 collection was disabled.
	
	​ 	GC.disable ​# => false​

	​ 	GC.enable ​# => true​

	​ 	GC.enable ​# => false​

start
	GC.start → ​nil​

	 Initiates garbage collection, unless manually disabled.
	
	​ 	GC.start ​# => nil​

stat
	GC.stat → stats_hash

	 Returns a hash containing GC statistics. The
	 contents of this hash are implementation dependend. The
	 method may not be present in all Ruby implementations.
	
	​ 	GC.stat ​# => {:count=>4, :heap_used=>43, :heap_length=>43, :heap_increment=>0,​

	​ 	 ​# .. :heap_live_num=>13938, :heap_free_num=>8659, :heap_final_num=>41,​

	​ 	 ​# .. :total_allocated_object=>36625, :total_freed_object=>22687}​

stress
	GC.stress → ​true​ or ​false​

	Returns the current value of the stress flag (see
	GC.stress=).

stress=
	GC.stress = ​true​ or ​false​ → ​true​ or ​false​

	 Ruby will normally run garbage collection periodically. Setting
	 the stress flag to true forces garbage collection to occur every
	 time Ruby allocates a new object. This is typically used only
	 for testing extensions (and Ruby itself).
	
	​ 	GC.stress = true

GC: Instance methods
garbage_collect
	garbage_collect → ​nil​

	 Equivalent to GC.start.
	
	​ 	include GC

	​ 	garbage_collect ​# => nil​

Module GC::Profiler

 Provides low-level information on the state of garbage collection.

	​ 	GC::Profiler.enable

	​ 	animal = ​"cat"​

	​ 	22.times { animal *= 2 }

	​ 	printf ​"Took %0.4fs in GC\n"​, GC::Profiler.total_time

	​ 	GC::Profiler.report

	​ 	GC::Profiler.disable

Produces:
	​ 	Took 0.0040s in GC

	​ 	GC 8 invokes.

	​ 	Index Invoke Use Size Total Total GC Time(ms)

	​ 	 Time(sec) (byte) Size(byte) Object

	​ 	 1 0.034 334160 700040 17501 1.286000

	​ 	 2 0.039 329320 700040 17501 1.358000

	​ 	 3 0.045 329320 700040 17501 1.351000

	​ 	 4 0.056 329320 700040 17501 1.347000

GC::Profiler: Module methods
clear
	
	 GC::Profiler.clear → ​nil​
	

	 Clears existing profile data.
	

disable
	
	 GC::Profiler.disable → ​nil​
	

	 Disables the collection of profile data.
	

enable
	
	 GC::Profiler.enable → ​nil​
	

	 Enables the collection of profile data.
	

enabled?
	
	 GC::Profiler.enabled? → ​true​ or ​false​
	

	 Returns ​true​ if profile collection is enabled.
	

raw_data
	
	 GC::Profiler.raw_data → array of hashes
	

 Return raw profiling data, in time order, as an
 array of hashes, where each hash contains a data sample.«2.0»
	
	​ 	GC::Profiler.enable

	​ 	

	​ 	animal = ​"cat"​

	​ 	22.times { animal *= 2 }

	​ 	

	​ 	p GC::Profiler.raw_data.size

	​ 	p GC::Profiler.raw_data[0, 2]

Produces:
	​ 	5

	​ 	[{:GC_TIME=>1.0999999999997123e-05, :GC_INVOKE_TIME=>0.03359,

	​ 	:HEAP_USE_SIZE=>691000, :HEAP_TOTAL_SIZE=>700040, :HEAP_TOTAL_OBJECTS=>17501,

	​ 	:GC_IS_MARKED=>false}, {:GC_TIME=>0.0014199999999999977,

	​ 	:GC_INVOKE_TIME=>0.033891, :HEAP_USE_SIZE=>331080, :HEAP_TOTAL_SIZE=>700040,

	​ 	:HEAP_TOTAL_OBJECTS=>17501, :GC_IS_MARKED=>0}]

report
	
	 GC::Profiler.report(to=STDOUT) → ​nil​
	

	 Writes the profile result to the given stream.
	

result
	
	 GC::Profiler.result → ​string​
	

	 Returns a string containing a summary of the profile data.
	

total_time
	
	 GC::Profiler.total_time → ​float​
	

	 Returns the total time spend in garbage collection during this profile run.
	

Class Hash < Object
	Relies on:
	each, <=>

 A ​Hash​ is a collection of key/value pairs. It is similar to an
 ​Array​, except that indexing is done via arbitrary keys of any
 object type, not an integer index. The order in which keys and/or
 values are returned by the various iterators over hash contents will
 generally be the order that those entries were initially inserted
 into the hash.

 Hashes have a ​default value​. This value is returned when an attempt is made
 to access keys that do not exist in the hash. By default, this value is
 ​nil​.

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Hash: Class methods
[]
	Hash[<key => value>*]
 → hsh
	Hash[obj] → hsh

	Creates a new hash populated with the given
	objects. Equivalent to creating a hash using the literal ​{
	key => value, ...}​. Keys and
	values occur in pairs, so there must be an even number of
	arguments. In the second form, obj must respond to
	
 ​to_hash​
 .

	​ 	Hash[​"a"​, 100, ​"b"​, 200] ​# => {"a"=>100, "b"=>200}​

	​ 	Hash[​"a"​ => 100, ​"b"​ => 200] ​# => {"a"=>100, "b"=>200}​

	​ 	{ ​"a"​ => 100, ​"b"​ => 200 } ​# => {"a"=>100, "b"=>200}​

new
	Hash.new → hsh
	Hash.new(obj) → hsh
	Hash.new { |hash, key| … } → hsh

	 Returns a new, empty hash. If this hash is subsequently
	 accessed by a key that doesn’t correspond to a hash entry, the
	 value returned depends on the style of
 ​new​
 used to
	 create the hash. In the first form, the access returns ​nil​.
	 If obj is
	 specified, this single object will be used for all ​default
	 values​. If a block is specified, it will be called with the
	 hash object and the key, and it should return
	 the default value. It is the block’s responsibility to store the
	 value in the hash if required.
	
	​ 	h = Hash.new(​"Go Fish"​)

	​ 	h[​"a"​] = 100

	​ 	h[​"b"​] = 200

	​ 	h[​"a"​] ​# => 100​

	​ 	h[​"c"​] ​# => "Go Fish"​

	​ 	​# The following alters the single default object​

	​ 	h[​"c"​].upcase! ​# => "GO FISH"​

	​ 	h[​"d"​] ​# => "GO FISH"​

	​ 	h.keys ​# => ["a", "b"]​

	​ 	​# While this creates a new default object each time​

	​ 	h = Hash.new {|hash, key| hash[key] = ​"Go Fish: ​#{key}​"​ }

	​ 	h[​"c"​] ​# => "Go Fish: c"​

	​ 	h[​"c"​].upcase! ​# => "GO FISH: C"​

	​ 	h[​"d"​] ​# => "Go Fish: d"​

	​ 	h.keys ​# => ["c", "d"]​

try_convert
	Hash.try_convert(obj)
	 → a_hash or ​nil​

	 If obj is not already a hash, attempts to
	 convert it to one by calling its
	
 ​to_hash​
 method. Returns ​nil​ if no
	 conversion could be made.
	
	​ 	 ​class​ ConfigFile

	​ 	 ​def​ initialize(name)

	​ 	 @content = File.read(name)

	​ 	 ​end​

	​ 	 ​def​ to_hash

	​ 	 result = {}

	​ 	 @content.scan(/^(​\w​+):​\s​*(.*)/) ​do​ |name, value|

	​ 	 result[name] = value

	​ 	 ​end​

	​ 	 result

	​ 	 ​end​

	​ 	​end​

	​ 	config = ConfigFile.new(​"some_config"​)

	​ 	Hash.try_convert(config) ​# => {"user_name"=>"dave", "password"=>"wibble"}​

Hash: Instance methods
==
	hsh == obj → ​true​ or ​false​

	 Equality—Two hashes are equal if
	 they contain the same number of keys and the value corresponding
	 to each key in the first hash is equal (using ​==​) to the
	 value for the same key in the second.
	 If obj is not a hash, attempts to convert it using
	
 ​to_hash​
 and returns obj == hsh.
	
	​ 	h1 = { ​"a"​ => 1, ​"c"​ => 2 }

	​ 	h2 = { 7 => 35, ​"c"​ => 2, ​"a"​ => 1 }

	​ 	h3 = { ​"a"​ => 1, ​"c"​ => 2, 7 => 35 }

	​ 	h4 = { ​"a"​ => 1, ​"d"​ => 2, ​"f"​ => 35 }

	​ 	h1 == h2 ​# => false​

	​ 	h2 == h3 ​# => true​

	​ 	h3 == h4 ​# => false​

[]
	hsh[key] → value

	 Element Reference—Retrieves the value stored for
	 key. If not found, returns the default value
	 (see Hash.new for details).
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h[​"a"​] ​# => 100​

	​ 	h[​"c"​] ​# => nil​

[]=
	hsh[key] = value → value

	 Element Assignment—Associates the value given by
	 value with the key given by key.
	 key should not have its value changed while it is
	 in use as a key (a ​String​ passed as a key will be
	 duplicated and frozen).
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h[​"a"​] = 9

	​ 	h[​"c"​] = 4

	​ 	h ​# => {"a"=>9, "b"=>200, "c"=>4}​

assoc
	hsh.assoc(key) → [key, val] or ​nil​

	 Returns the two element array ​[key, hsh[key]]​
	 or ​nil​ if key does not reference an entry in the
	 hash.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 } ​# => {"a"=>100, "b"=>200}​

	​ 	h.assoc(​"a"​) ​# => ["a", 100]​

	​ 	h.assoc(​"c"​) ​# => nil​

clear
	hsh.clear → hsh

	 Removes all key/value pairs from hsh.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 } ​# => {"a"=>100, "b"=>200}​

	​ 	h.clear ​# => {}​

compare_by_identity
	hsh.compare_by_identity → hsh

	 Hashes normally compare key values using
 ​eql?​
 , which
	 returns ​true​ if two objects have the same
	 ​value​. If you call
 ​compare_by_identity​
 , keys
	 will instead be considered to be equal only if they are the same
	 object. Note that when strings are used as keys, they are
	 automatically duplicated, so you will never be able to
	 retrieve a string-keyed entry if keys are compared using
	 identity.
	
	​ 	key = ​"key"​

	​ 	h = { key => 100, 99 => ​"ninety nine"​ }

	​ 	h[key] ​# => 100​

	​ 	h[​"key"​] ​# => 100​

	​ 	h[99] ​# => "ninety nine"​

	​ 	h.compare_by_identity

	​ 	h[key] ​# => nil​

	​ 	h[​"key"​] ​# => nil​

	​ 	h[99] ​# => "ninety nine"​

compare_by_identity?
	hsh.compare_by_identity? → ​true​ or ​false​

	 Returns ​true​ if hsh compares keys by identity.
	

default
	hsh.default(key=​nil​) → obj

	 Returns the default value, the value that would be returned by
	 hsh[key] if key
	 did not exist in hsh.
	 See also Hash.new and Hash#default=.
	
	​ 	h = Hash.new ​# => {}​

	​ 	h.default ​# => nil​

	​ 	h.default(2) ​# => nil​

	​ 	

	​ 	h = Hash.new(​"cat"​) ​# => {}​

	​ 	h.default ​# => "cat"​

	​ 	h.default(2) ​# => "cat"​

	​ 	

	​ 	h = Hash.new {|h,k| h[k] = k.to_i*10} ​# => {}​

	​ 	h.default ​# => nil​

	​ 	h.default(2) ​# => 20​

default=
	hsh.default = obj → hsh

	 Sets the value returned for a key that does
	 not exist in the hash. Use Hash#default_proc=
	 to set the proc to be called to calculate a default.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.default = ​"Go fish"​

	​ 	h[​"a"​] ​# => 100​

	​ 	h[​"z"​] ​# => "Go fish"​

	​ 	​# This doesn't do what you might hope... (but see default_proc=)​

	​ 	h.default = lambda { |hash, key| hash[key] = key + key }

	​ 	h[2] ​# => #<Proc:0x007fd91290e870@prog.rb:6 (lambda)>​

	​ 	h[​"cat"​] ​# => #<Proc:0x007fd91290e870@prog.rb:6 (lambda)>​

default_proc
	hsh.default_proc → obj or ​nil​

	 If Hash.new was invoked with a block, returns that block;
	 otherwise, returns ​nil​.
	
	​ 	h = Hash.new {|h,k| h[k] = k*k } ​# => {}​

	​ 	p = h.default_proc ​# => #<Proc:0x007fbfe2847a20@prog.rb:1>​

	​ 	a = [] ​# => []​

	​ 	p.call(a, 2)

	​ 	a ​# => [nil, nil, 4]​

default_proc=
	hsh.default_proc = proc → proc or ​nil​

	 Sets the proc to be called to calculate values to
	 be returned when a hash is accessed with a key it does not
	 contain. Removes the default proc if
	 passed ​nil​.«2.0»
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.default = ​"Go fish"​

	​ 	h[​"a"​] ​# => 100​

	​ 	h[​"z"​] ​# => "Go fish"​

	​ 	h.default_proc = lambda { |hash, key| hash[key] = key + key }

	​ 	h[2] ​# => 4​

	​ 	h[​"cat"​] ​# => "catcat"​

delete
	hsh.delete(key) → value
	hsh.delete(key) { |key| … }
	 → value

	 Deletes from hsh the entry whose key is to
	 key, returning the corresponding value.
	 If the key is not found, returns ​nil​.
	 If the optional code block is given
	 and the key is not found, passes it the key and returns
	 the result of block.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.delete(​"a"​) ​# => 100​

	​ 	h.delete(​"z"​) ​# => nil​

	​ 	h.delete(​"z"​) {|el| ​"​#{el}​ not found"​ } ​# => "z not found"​

delete_if
	hsh.delete_if <key, value>
	 → hsh or enumerator

	 Deletes every key/value pair from hsh for which
	 block is true. Returns an
	 ​Enumerator​ object if no block is
	 given.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200, ​"c"​ => 300 }

	​ 	h.delete_if {|key, value| key >= ​"b"​ } ​# => {"a"=>100}​

each
	hsh.each { |key, value| … } → hsh

	 Calls block once for each key in hsh, passing the key
	 and value as parameters.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.each {|key, value| puts ​"​#{key}​ is ​#{value}​"​ }

Produces:
	​ 	a is 100

	​ 	b is 200

each_key
	hsh.each_key { |key| … } → hsh

	 Calls block once for each key in hsh, passing the key
	 as a parameter.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.each_key {|key| puts key }

Produces:
	​ 	a

	​ 	b

each_pair
	hsh.each_pair { |key, value| … } → hsh

	 Synonym for Hash#each.
	

each_value
	hsh.each_value { |value| … } → hsh

	 Calls block once for each key in hsh, passing the value
	 as a parameter.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.each_value {|value| puts value }

Produces:
	​ 	100

	​ 	200

empty?
	hsh.empty? → ​true​ or ​false​

	 Returns ​true​ if hsh contains no key/value pairs.
	
	​ 	{}.empty? ​# => true​

fetch
	hsh.fetch(key <, default>)
	 → obj
	hsh.fetch(key) { |key| … }
	 → obj}

	 Returns a value from the hash for the given key. If the key
	 can’t be found, several options exist. With no other
	 arguments, it will raise an ​IndexError​ exception; if
	 default is given, then that will be returned; if the
	 optional code block is specified, then that will be run and its
	 result returned.
 ​fetch​
 does not evaluate any default
	 values supplied when the hash was created—it looks only for
	 keys in the hash.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.fetch(​"a"​) ​# => 100​

	​ 	h.fetch(​"z"​, ​"go fish"​) ​# => "go fish"​

	​ 	h.fetch(​"z"​) {|el| ​"go fish, ​#{el}​"​} ​# => "go fish, z"​

	 The following example shows that an exception is raised if the
	 key is not found and a default value is not supplied.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.fetch(​"z"​)

Produces:
	​ 	 from prog.rb:2:in `<main>'

	​ 	prog.rb:2:in `fetch': key not found: "z" (KeyError)

flatten
	hsh.flatten(depth = 1) → an_array

	 Converts hsh to an array and then
	 invokes Array#flatten!
	 on the result.
	
	​ 	h = { feline: [​"felix"​, ​"tom"​], equine: ​"ed"​ }

	​ 	h.flatten ​# => [:feline, ["felix", "tom"], :equine, "ed"]​

	​ 	h.flatten(1) ​# => [:feline, ["felix", "tom"], :equine, "ed"]​

	​ 	h.flatten(2) ​# => [:feline, "felix", "tom", :equine, "ed"]​

has_key?
	hsh.has_key?(key) → ​true​ or ​false​

	 Returns ​true​ if the given key is present in hsh.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.has_key?(​"a"​) ​# => true​

	​ 	h.has_key?(​"z"​) ​# => false​

has_value?
	hsh.has_value?(value) → ​true​ or ​false​

	 Returns ​true​ if the given value is present for some key in
	 hsh.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.has_value?(100) ​# => true​

	​ 	h.has_value?(999) ​# => false​

include?
	hsh.include?(key) → ​true​ or ​false​

	 Synonym for Hash#has_key?.
	

index
	hsh.index(value) → key

	 Deprecated—use Hash#key instead.
	

invert
	hsh.invert → other_hash

	 Returns a new hash created by using hsh’s values as keys and using
	 the keys as values. If hsh has duplicate values, the result
	 will contain only one of them as a key—which one is not predictable.
	
	​ 	h = { ​"n"​ => 100, ​"m"​ => 100, ​"y"​ => 300, ​"d"​ => 200, ​"a"​ => 0 }

	​ 	h.invert ​# => {100=>"m", 300=>"y", 200=>"d", 0=>"a"}​

keep_if
	hsh.keep_if { |key, value| … }
	 → hsh or enumerator

	 Modifies hsh by removing all elements for which
	 ​block​ is false (see also Enumerable#select and Hash.select!.)
	 Returns an ​Enumerator​ object if no block is given.
	
	​ 	a = { a: 1, b: 2, c: 3}

	​ 	a.keep_if {|key, value| key =~ /[bc]/ } ​# => {:b=>2, :c=>3}​

	​ 	a ​# => {:b=>2, :c=>3}​

	​ 	a.keep_if {|key, value| value.odd? } ​# => {:c=>3}​

	​ 	a ​# => {:c=>3}​

key
	hsh.key(value) → key or ​nil​

	 Returns the key of the first hash entry whose value is value.
	
	​ 	h = { a: 100, b: 200, c: 100 }

	​ 	h.key(100) ​# => :a​

	​ 	h.key(200) ​# => :b​

	​ 	h.key(300) ​# => nil​

key?
	hsh.key?(key) → ​true​ or ​false​

	 Synonym for Hash#has_key?.
	

keys
	hsh.keys → array

	 Returns a new array populated with the keys from this hash.
	 See also Hash#values.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200, ​"c"​ => 300, ​"d"​ => 400 }

	​ 	h.keys ​# => ["a", "b", "c", "d"]​

length
	hsh.length → fixnum

	 Returns the number of key/value pairs in the hash.
	
	​ 	h = { ​"d"​ => 100, ​"a"​ => 200, ​"v"​ => 300, ​"e"​ => 400 }

	​ 	h.length ​# => 4​

	​ 	h.delete(​"a"​) ​# => 200​

	​ 	h.length ​# => 3​

member?
	hsh.member?(key) → ​true​ or ​false​

	 Synonym for Hash#has_key?.
	

merge
	hsh.merge(other_hash) → result_hash
	hsh.merge(other_hash)
	 { |key, old_val, new_val| … }
	 → result_hash

	 Returns a new hash containing the contents of
	 other_hash and the contents of hsh. With no block
	 parameter, overwrites entries in hsh with duplicate keys
	 with those from other_hash. If a block is specified, it is called with
	 each duplicate key and the values from the two hashes. The value
	 returned by the block is stored in the new hash.
	
	​ 	h1 = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h2 = { ​"b"​ => 254, ​"c"​ => 300 }

	​ 	h1.merge(h2) ​# => {"a"=>100, "b"=>254, "c"=>300}​

	​ 	h1.merge(h2) {|k,o,n| o} ​# => {"a"=>100, "b"=>200, "c"=>300}​

	​ 	h1 ​# => {"a"=>100, "b"=>200}​

merge!
	hsh.merge!(other_hash) → hsh
	hsh.merge!(other_hash)
	 { |key, old_val, new_val| … }
	 → hsh

	 Like Hash#merge but changes the contents of hsh.
	
	​ 	h1 = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h2 = { ​"b"​ => 254, ​"c"​ => 300 }

	​ 	h1.merge!(h2) ​# => {"a"=>100, "b"=>254, "c"=>300}​

	​ 	h1 ​# => {"a"=>100, "b"=>254, "c"=>300}​

rassoc
	hsh.rassoc(val) → [key, val] or ​nil​

	 Searches hsh for the first element whose
	 value is val, returning the key and value as a
	 two-element array. Returns ​nil​ if the
	 value does not occur in the hash.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200, ​"c"​ => 100 }

	​ 	h.rassoc(100) ​# => ["a", 100]​

	​ 	h.rassoc(200) ​# => ["b", 200]​

rehash
	hsh.rehash → hsh

	 Rebuilds the hash based on the current hash values for each key.
	 If values of key objects have changed since they were inserted,
	 this method will reindex hsh.
	 If Hash#rehash is called while an
	 iterator is traversing the hash, an ​IndexError​ will be
	 raised in the iterator.
	
	​ 	a = [​"a"​, ​"b"​]

	​ 	c = [​"c"​, ​"d"​]

	​ 	h = { a => 100, c => 300 }

	​ 	h[a] ​# => 100​

	​ 	a[0] = ​"z"​

	​ 	h[a] ​# => nil​

	​ 	h.rehash ​# => {["z", "b"]=>100, ["c", "d"]=>300}​

	​ 	h[a] ​# => 100​

reject
	hsh.reject { |key, value| … }
	 → hash

	 Same as Hash#delete_if but uses (and
	 returns) a copy of hsh. Equivalent to
	 ​hsh.dup.delete_if​.
	

reject!
	hsh.reject! <key, value>
	 → hsh or enumerator

	 Equivalent to Hash#delete_if but returns ​nil​ if no
	 changes were made. Returns an ​Enumerator​ object if no block is given.
	

replace
	hsh.replace(other_hash) → hsh

	 Replaces the contents of hsh with the contents of
	 other_hash.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200 }

	​ 	h.replace({ ​"c"​ => 300, ​"d"​ => 400 }) ​# => {"c"=>300, "d"=>400}​

select
	hsh.select { |key, value| … } → hash

	 Returns a new hash consisting of ​[key, value]​
	 pairs for which the block returns true. Also see
	 Hash#values_at. (This behavior differs from Ruby 1.8,
	 which returns an array of arrays.)
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200, ​"c"​ => 300 }

	​ 	h.select {|k,v| k > ​"a"​} ​# => {"b"=>200, "c"=>300}​

	​ 	h.select {|k,v| v < 200} ​# => {"a"=>100}​

select!
	hsh.select! { |key, value| … }
	 → hsh, ​nil​,
	or enumerator

	 Modifies hsh by removing all elements for which
	 ​block​ is false (see also Enumerable#select and Hash#keep_if).
	 Returns ​nil​ if no changes were made or returns
	 an ​Enumerator​ object if no block is
	 given. Otherwise, returns hsh.
	
	​ 	a = { a: 1, b:2, c: 3}

	​ 	a.select! {|key, value| value < 2 } ​# => {:a=>1}​

	​ 	a ​# => {:a=>1}​

	​ 	a.select! {|key, value| value < 3 } ​# => nil​

	​ 	a ​# => {:a=>1}​

shift
	hsh.shift → array or ​nil​

	 Removes a key/value pair from hsh and returns it
	 as the two-item array ​[key, value]​. If
	 the hash is empty, returns
	 the default value, calls the default proc (with a key value of ​nil​),
	 or returns ​nil​.
	
	​ 	h = { 1 => ​"a"​, 2 => ​"b"​, 3 => ​"c"​ }

	​ 	h.shift ​# => [1, "a"]​

	​ 	h ​# => {2=>"b", 3=>"c"}​

size
	hsh.size → fixnum

	 Synonym for Hash#length.
	

sort
	hsh.sort → array
	hsh.sort { |a, b| … } → array

	 Converts hsh to a nested array of ​[key,
	 value]​ arrays and sorts it, using Array#sort. (Technically this is just the
	
 ​sort​
 method of
	 ​Enumerable​. It’s documented here
	 because it’s unusual for
 ​sort​
 to
	 return a different type.)
	
	​ 	h = { ​"a"​ => 20, ​"b"​ => 30, ​"c"​ => 10 }

	​ 	h.sort ​# => [["a", 20], ["b", 30], ["c", 10]]​

	​ 	h.sort {|a,b| a[1]<=>b[1] } ​# => [["c", 10], ["a", 20], ["b", 30]]​

store
	hsh.store(key, value) → value

	 Synonym for Element Assignment (Hash#[]=).
	

to_a
	hsh.to_a → array

	 Converts hsh to a nested array of ​[key,
	 value]​ arrays.
	
	​ 	h = { ​"c"​ => 300, ​"a"​ => 100, ​"d"​ => 400, ​"c"​ => 300 }

	​ 	h.to_a ​# => [["c", 300], ["a", 100], ["d", 400]]​

to_h
	hsh.to_h → hsh

 Returns the hash. Converts the receiver to a hash
 if send to a subclass of ​Hash​.«2.0»
	

to_hash
	hsh.to_hash → hsh

	 See the discussion in the ducktyping chapter.
	

to_s
	hsh.to_s → string

	 Converts hsh to a string by converting the hash
	 to an array of ​[key, value]​ pairs and
	 then converting that array to a string using Array#join with the default separator.
	
	​ 	h = { ​"c"​ => 300, ​"a"​ => 100, ​"d"​ => 400, ​"c"​ => 300 }

	​ 	h.to_s ​# => "{\"c\"=>300, \"a\"=>100, \"d\"=>400}"​

update
	hsh.update(other_hash) → hsh
	hsh.update(other_hash)
	 { |key, old_val,new_val| … }
	 → hsh

	 Synonym for Hash#merge!.
	

value?
	hsh.value?(value) → ​true​ or ​false​

	 Synonym for Hash#has_value?.
	

values
	hsh.values → array

	 Returns an array populated with the values from hsh.
	 See also Hash#keys.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200, ​"c"​ => 300 }

	​ 	h.values ​# => [100, 200, 300]​

values_at
	hsh.values_at(<key>+) → array

	 Returns an array consisting of values for the given key(s).
	 Will insert the ​default value​ for keys that are not found.
	
	​ 	h = { ​"a"​ => 100, ​"b"​ => 200, ​"c"​ => 300 }

	​ 	h.values_at(​"a"​, ​"c"​) ​# => [100, 300]​

	​ 	h.values_at(​"a"​, ​"c"​, ​"z"​) ​# => [100, 300, nil]​

	​ 	h.default = ​"cat"​

	​ 	h.values_at(​"a"​, ​"c"​, ​"z"​) ​# => [100, 300, "cat"]​

Class Integer < Numeric
	Subclasses are:
	Bignum, Fixnum

 ​Integer​ is the basis for the two concrete
 classes that hold whole numbers, ​Bignum​
 and ​Fixnum​.

Integer: Instance methods
ceil
	int.ceil → integer

	 Synonym for Integer#to_i.
	

chr
	int.chr → string
	int.chr(encoding) → string

	 Returns a string containing the character represented by the
	 receiver’s value. Values less that 128 are always returned
	 as ASCII. The encoding of strings representing higher values
	 can be set using the optional parameter.
	
	​ 	65.chr ​# => "A"​

	​ 	?a.chr ​# => "a"​

	​ 	233.chr ​# => "\xE9"​

	​ 	233.chr(Encoding::UTF_8) ​# => "é"​

denominator
	int.denominator → integer

	 Converts the denominator of the rational
	 representation of int.
	
	​ 	1.denominator ​# => 1​

	​ 	1.5.denominator ​# => 2​

	​ 	num = 1.0/3

	​ 	num.to_r ​# => (6004799503160661/18014398509481984)​

	​ 	num.denominator ​# => 18014398509481984​

downto
	int.downto(integer) { |i| … } → int

	 Iterates block, passing decreasing values
	 from int down to and including integer.
	
	​ 	5.downto(1) {|n| print n, ​".. "​ }

	​ 	print ​" Liftoff!\n"​

Produces:
	​ 	5.. 4.. 3.. 2.. 1.. Liftoff!

even?
	int.even? → ​true​ or ​false​

	 Returns ​true​ if int is even.
	
	​ 	1.even? ​# => false​

	​ 	2.even? ​# => true​

floor
	int.floor → integer

	 Returns the largest integer less than or equal to
	 int. Equivalent to Integer#to_i.
	
	​ 	1.floor ​# => 1​

	​ 	(-1).floor ​# => -1​

gcd
	int.gcd(other_integer) → integer

	 Returns the greatest common denominator of int and
	 other_integer.
	
	​ 	10.gcd(15) ​# => 5​

	​ 	10.gcd(16) ​# => 2​

	​ 	10.gcd(17) ​# => 1​

gcdlcm
	int.gcdlcm(other_integer) → [gcd, lcm]

	 Returns both the GCD and the LCM of int and other_integer.
	
	​ 	10.gcdlcm(15) ​# => [5, 30]​

	​ 	10.gcdlcm(16) ​# => [2, 80]​

	​ 	10.gcdlcm(17) ​# => [1, 170]​

integer?
	int.integer? → ​true​

	 Always returns ​true​.
	

lcm
	int.lcm(other_integer) → integer

	 Returns the lowest common multiple of int and
	 other_integer.
	
	​ 	10.lcm(15) ​# => 30​

	​ 	10.lcm(20) ​# => 20​

	​ 	10.lcm(-2) ​# => 10​

next
	int.next → integer

	 Returns the ​Integer​ equal to int+1.
	
	​ 	1.next ​# => 2​

	​ 	(-1).next ​# => 0​

numerator
	int.numerator → integer

	 Converts the numerator of the rational representation of int.
	
	​ 	1.numerator ​# => 1​

	​ 	1.5.numerator ​# => 3​

	​ 	num = 1.0/3

	​ 	num.to_r ​# => (6004799503160661/18014398509481984)​

	​ 	num.numerator ​# => 6004799503160661​

odd?
	int.odd? → ​true​ or ​false​

	 Returns ​true​ if int
	 is odd.
	
	​ 	1.odd? ​# => true​

	​ 	2.odd? ​# => false​

ord
	int.ord → int

	 The
 ​ord​
 method was added to assist in the migration
	 from Ruby 1.8 to 1.9. It allows ​?A.ord​ to return 65. If
	 ​?A​ returns a string,
 ​ord​
 will be called on that
	 string and return 65; if ​?A​ returns an integer, then
	 Numeric#ord is called, which is basically a no-op.
	

pred
	int.pred → integer

	 Returns int - 1.
	

rationalize
	int.rationalize(eps=nil) → rational

	 Returns the rational number ​int/1​.
	 The argument is always ignored. Effectively a
	 synonym for Integer.to_r.
	
	​ 	99.rationalize ​# => (99/1)​

	​ 	-12345678.rationalize(99) ​# => (-12345678/1)​

round
	int.round → integer

	 Synonym for Integer#to_i.
	

succ
	int.succ → integer

	 Synonym for Integer#next.
	

times
	int.times { |i| … } → int

	 Iterates block int times, passing in values from zero to
	 int - 1.
	
	​ 	5.times ​do​ |i|

	​ 	 print i, ​" "​

	​ 	​end​

Produces:
	​ 	0 1 2 3 4

to_i
	int.to_i → int

	 Returns int.
	

to_int
	int.to_int → integer

	 Synonym for Integer#to_i.
	

to_r
	int.to_r → number

	 Converts int to a rational number.
	
	​ 	1.to_r ​# => 1/1​

	​ 	-1.to_r ​# => -1/1​

truncate
	int.truncate → integer

	 Synonym for Integer#to_i.
	

upto
	int.upto(integer) { |i| … }
	 → int

	 Iterates block, passing in integer values from
	 int up to and including integer.
	
	​ 	5.upto(10) {|i| print i, ​" "​ }

Produces:
	​ 	5 6 7 8 9 10

Class IO < Object
	Subclasses are:
	File

 Class ​IO​ is the basis for all input and
 output in Ruby. An I/O stream may be

 ​ duplexed​

 (that is, bidirectional) and so may
 use more than one native operating system stream.

 Many of the examples in this section use class ​File​, the only
 standard subclass of ​IO​. The two classes are closely associated.

 As used in this section,
 ​ portname​

 may take
 any of the following forms:

	

	A plain string represents a filename suitable for the
	underlying operating system.

	

	A string starting with ​|​ indicates a subprocess. The
	remainder of the string following ​|​ is invoked as a
	process with appropriate input/output channels connected to it.

	

	A string equal to ​|-​ will create another Ruby
	instance as a subprocess.

 The ​IO​ class uses the Unix abstraction of ​file
 descriptors​ (fds), small integers that represent open
 files. Conventionally, standard input has an fd of 0, standard
 output has an fd of 1, and standard error has an fd of 2.

 Ruby will convert path names between different operating system
 conventions if possible. For instance, on Windows the
 filename ​/gumby/ruby/test.rb​ will be opened as
 ​\gumby\ruby\test.rb​. When specifying a
 Windows-style filename in a double-quoted Ruby string, remember to escape the
 backslashes.

	​ 	"c:\\gumby\\ruby\\test.rb"

 Our examples here will use the Unix-style forward slashes;
 ​File::SEPARATOR​ can be used to get the platform-specific
 separator character.

 I/O ports may be opened in any one of several different modes, which are
 shown in this section as
 ​ mode​

 . This mode string must be one of the
 values listed in Table 16, ​Mode values​. As of Ruby 1.9,
 the mode may also contain information on the external and
 internal encoding of the data associated with the port. If an
 external encoding is specified, Ruby assumes that the data it
 received from the operating system uses that encoding. If no
 internal encoding is given, strings read from the port will have
 this encoding. If an internal encoding is given, data will be
 transcoded from the external to the internal encoding, and strings
 will have that encoding. The reverse happens on output.

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

IO: Class methods
binread
	IO.binread(name <, length offset>)
	 → string

	 Opens name with mode ​rb:ASCII-8BIT​, reads
	 length bytes starting at offset, and then closes the
	 file. The bytes are returned in a string with ​ASCII-8BIT​
	 encoding. offset defaults to 0, and length defaults
	 to the number of bytes between offset and the end of the
	 file.
	
	​ 	IO.binread(​"testfile"​, 20) ​# => "This is line one\nThi"​

	​ 	IO.binread(​"testfile"​, 20, 20) ​# => "s is line two\nThis i"​

	​ 	str = IO.binread(​"testfile"​)

	​ 	str.encoding ​# => #<Encoding:ASCII-8BIT>​

	​ 	str1 = IO.read(​"testfile"​)

	​ 	str1.encoding ​# => #<Encoding:UTF-8>​

binwrite
	IO.binwrite(portname, string
	 <, offset>
	 <, options>)
	 → int

	 Opens the file for writing with mode
	 ​wb:ASCII-8BIT​, optionally seeks to the given
	 offset, and then writes string. Returns the
	 number of bytes written. The file is truncated before
	 writing if no offset is specified.
	

	 options is an optional hash used to pass
	 parameters to the underlying
 ​open​
 call used
	 by
 ​write​
 . See IO.foreach
	 for details.
	

copy_stream
	IO.copy_stream(from, to
	 <, max_length offset>)
	 → integer

	 Copies from to to. These may be specified either as
	 filenames or as open I/O streams. You may optionally specify a
	 maximum length to copy and a byte offset to start the copy
	 from. Returns the number of bytes copied.
	
	​ 	IO.copy_stream(​"testfile"​, ​"newfile"​, 10, 10)

	​ 	ip = File.open(​"/etc/passwd"​)

	​ 	op = File.open(​"extract"​, ​"w"​)

	​ 	op.puts ​"First 20 characters of /etc/passwd"​

	​ 	IO.copy_stream(ip, op, 20)

	​ 	op.puts ​"\nEnd of extract"​

	​ 	op.close

	​ 	puts File.readlines(​"extract"​)

Produces:
	​ 	First 20 characters of /etc/passwd

	​ 	##

	​ 	# User Database

	​ 	#

	​ 	End of extract

for_fd
	IO.for_fd(int, mode) → io

	 Synonym for IO.new.
	

foreach
	IO.foreach(portname, separator=​$/​ <, options>) { |line| … } → ​nil​
	IO.foreach(portname, limit <, options>) { |line| … } → ​nil​
	IO.foreach(portname, separator, limit <, options>) { |line| … } → ​nil​

	Executes the block for every line in the named I/O
	port, where lines are separated by separator. If
	separator is ​nil​, the entire
	file is passed as a single string. If the limit
	argument is present and positive, at most that many characters
	will be returned in each iteration. If only the
	limit argument is given and that argument is
	negative, then encodings will be ignored while looking for the
	record separator, which increases performance.

	​ 	IO.foreach(​"testfile"​) {|x| puts ​"GOT: ​#{x}​"​ }

Produces:
	​ 	GOT: This is line one

	​ 	GOT: This is line two

	​ 	GOT: This is line three

	​ 	GOT: And so on...

	options is an optional hash used to pass
	parameters to the underlying
 ​open​

	call used by
 ​read​
 . It may contain one
	or more of the following:

	

	 ​encoding:​
	
	

	 The encoding for the string, either as
	 ​"external"​ or ​"external:internal"​
	

	

	 ​mode:​
	
	

	 The mode string to be passed to open
	

	

	 ​open_args:​
	
	

	 An array containing the arguments to be
	 passed to open; other options are ignored if this one is present
	

	​ 	IO.foreach(​"testfile"​, nil, mode: ​"rb"​, encoding: ​"ascii-8bit"​) ​do​ |content|

	​ 	 puts content.encoding

	​ 	​end​

	​ 	IO.foreach(​"testfile"​, nil, open_args: [​"r:iso-8859-1"​]) ​do​ |content|

	​ 	 puts content.encoding

	​ 	​end​

Produces:
	​ 	ASCII-8BIT

	​ 	ISO-8859-1

new
	IO.new(integer_fd,
 mode="r"
 <, options>)
 → io

	 Returns a new ​IO​ object (a stream)
	 for the given integer file descriptor and mode. The mode and
	 options may be given as for File.new (see
	 Table 16, ​Mode values​, and see Table 17, ​File and I/O open options​). See also IO#fileno and IO.for_fd.
	
	​ 	a = IO.new(2, ​"w"​) ​# '2' is standard error​

	​ 	STDERR.puts ​"Hello"​

	​ 	a.puts ​"World"​

Produces:
	​ 	Hello

	​ 	World

	​ 	​# encoding: utf-8​

	​ 	b = IO.new(2, mode: ​"w"​, encoding: ​"utf-8"​, crlf_newline: true)

	​ 	b.puts ​"olé"​

Produces:
	​ 	olé

open
	IO.open(<args>+) → io
	IO.open(<args>+) { |io| … } → obj

	 IO.open creates a new
	 ​IO​ object, passing args
	 to that object’s
 ​initialize​

	 method. If no block is given, simply returns that
	 object. If a block is given, passes the
	 ​IO​ object to the block. When the
	 block exits (even via exception or program termination),
	 the io object will be closed. If the block is
	 present, IO.open returns the value of
	 the block. The rough implementation is as follows:
	
	​ 	​class​ IO

	​ 	 ​def​ open(*args)

	​ 	 file = return_value = self.new(*args)

	​ 	 ​begin​

	​ 	 return_value = ​yield​(file)

	​ 	 ​ensure​

	​ 	 file.close

	​ 	 ​end​ ​if​ block_given?

	​ 	 return_value

	​ 	 ​end​

	​ 	​end​

	 Note that subclasses of ​IO​ such as
	 ​File​ can
	 use ​open​ even though their
	 constructors take different parameters. Calling
	 ​File.open(...)​ will invoke
	 ​File​’s constructor, not
	 ​IO​’s.
	
	​ 	IO.open(1, ​"w"​) ​do​ |io|

	​ 	 io.puts ​"Writing to stdout"​

	​ 	​end​

Produces:
	​ 	Writing to stdout

	​ 	File.open(​"testfile"​, mode: ​"r"​, encoding: ​"utf-8"​) ​do​ |f|

	​ 	 puts f.read

	​ 	​end​

Produces:
	​ 	This is line one

	​ 	This is line two

	​ 	This is line three

	​ 	And so on...

pipe
	IO.pipe → [read_io, write_io]
	IO.pipe(encoding_string <, encoding_options>)
	 → [read_io, write_io]
	IO.pipe(external, internal <, encoding_options>)
	 → [read_io, write_io]
	IO.pipe(... as above ...) { |read_io, write_io| … }

	 Creates a pair of pipe endpoints (connected to each other) and
	 returns them as a two-element array of ​IO​ objects.
	 write_io is automatically placed into sync mode. Not
	 available on all platforms.
	

	 Encodings for the pipes can be specified as a string
	 (​"external"​ or ​"external:internal"​) or as
	 two arguments specifying the external and internal encoding
	 names (or encoding objects). If both external and internal
	 encodings are present, the encoding_options
	 parameter specifies conversion options (see Table 22, ​Options to ​encode​ and ​encode!​​).
	

	 If a block is given, it is passed the two I/O objects. They
	 will be closed at the end of the block if they are still
	 open.
	

	 In the following example, the two processes close the ends of the
	 pipe that they are not using. This is not just a cosmetic
	 nicety. The read end of a pipe will not generate an end-of-file
	 condition if any writers have the pipe still open. In
	 the case of the parent process, the ​rd.read​ will never
	 return if it does not first issue a ​wr.close​.
	
	​ 	IO.pipe ​do​ |rd, wr|

	​ 	 ​if​ fork

	​ 	 wr.close

	​ 	 puts ​"Parent got: <​#{rd.read}​>"​

	​ 	 rd.close

	​ 	 Process.wait

	​ 	 ​else​

	​ 	 rd.close

	​ 	 puts ​"Sending message to parent"​

	​ 	 wr.write ​"Hi Dad"​

	​ 	 wr.close

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Sending message to parent

	​ 	Parent got: <Hi Dad>

popen
	IO.popen(cmd, mode="r") → io
	IO.popen(cmd, mode="r") { |io| … } → obj

	 Runs the specified command string as a subprocess; the
	 subprocess’s standard input and output will be connected to
	 the returned ​IO​ object. The
	 parameter cmd may be a string or (in Ruby 1.9) an
	 array of strings. In the latter case, the
	 array is used as the ​argv​ parameter for the new
	 process, and no special shell processing is performed on the
	 strings. In addition, if the array starts with a hash, it
	 will be used to set environment variables in the subprocess,
	 and if it ends with a hash, the hash will be used to set
	 execution options for the subprocess. See Object#spawn for details. If cmd
	 is a string, it will be subject to shell expansion. If the
	 cmd string starts with a minus sign (​-​)
	 and the operating system supports fork(2), then the current Ruby process is forked. The
	 default mode for the new file object is ​r​, but
	 mode may be set to any of the modes in Table 16, ​Mode values​.
	

	 If a block is given, Ruby will run the command as a child
	 connected to Ruby with a pipe. Ruby’s end of the pipe will be
	 passed as a parameter to the block. In this case, IO.popen
	 returns the value of the block.
	

	 If a block is given with a cmd_string of
	 ​"-"​, the block will be run in two separate
	 processes: once in the parent and once in a child. The
	 parent process will be passed the pipe object as a parameter
	 to the block, the child version of the block will be passed
	 ​nil​, and the child’s standard in and
	 standard out will be connected to the parent through the
	 pipe. Not available on all platforms. Also see the
	 ​Open3​
	 library and Object#exec.
	
	​ 	pipe = IO.popen(​"uname"​)

	​ 	p(pipe.readlines)

	​ 	puts ​"Parent is ​#{Process.pid}​"​

	​ 	IO.popen(​"date"​) {|pipe| puts pipe.gets }

	​ 	IO.popen(​"-"​) {|pipe| STDERR.puts ​"​#{Process.pid}​ is here, pipe=​#{pipe}​"​ }

	​ 	Process.waitall

Produces:
	​ 	["Darwin\n"]

	​ 	Parent is 23465

	​ 	Mon May 27 12:32:20 CDT 2013

	​ 	23465 is here, pipe=#<IO:0x007f935290e768>

	​ 	23468 is here, pipe=

	 Here’s an example that uses the Ruby 1.9 options to merge
	 standard error and standard output into a single stream. Note that buffering
	 means that the error output comes back ahead of the standard output.
	
	​ 	pipe = IO.popen([​"bc"​, { STDERR => STDOUT }], ​"r+"​)

	​ 	pipe.puts ​'1 + 3; bad_function()'​

	​ 	pipe.close_write

	​ 	puts pipe.readlines

Produces:
	​ 	Runtime error (func=(main), adr=8): Function bad_function not defined.

	​ 	4

read
	IO.read(portname, <length=$/
	 offset>
	 <, options>) → string

	 Opens the file, optionally seeks to the given offset, and then
	 returns length bytes (defaulting to the rest of the file).
	
 ​read​
 ensures the file is closed before returning.
	

	 options is an optional hash used to pass parameters to the
	 underlying
 ​open​
 call used by
 ​read​
 . See
	 IO.foreach for details.
	
	​ 	IO.read(​"testfile"​) ​# => "This is line one\nThis is line two\nThis is​

	​ 	 ​# .. line three\nAnd so on...\n"​

	​ 	IO.read(​"testfile"​, 20) ​# => "This is line one\nThi"​

	​ 	IO.read(​"testfile"​, 20, 10) ​# => "ne one\nThis is line "​

readlines
	IO.readlines(portname, separator=​$/​
	 <, options>) → array
	IO.readlines(portname, limit <, options>)
	 → array
	IO.readlines(portname, separator, limit
	 <, options>) → array

	 Reads the entire file specified by portname as individual
	 lines and returns those lines in an array. Lines are
	 separated by separator. If separator is ​nil​, the
	 entire file is passed as a single string. If the limit
	 argument is present and positive, at most that many characters
	 will be returned in each iteration. If only the limit
	 argument is given and that argument is negative, then encodings
	 will be ignored while looking for the record separator, which
	 increases performance.
	 options is an optional hash used to pass parameters to the
	 underlying
 ​open​
 call used by
 ​read​
 . See
	 IO.foreach for details.
	
	​ 	a = IO.readlines(​"testfile"​)

	​ 	a[0] ​# => "This is line one\n"​

select
	IO.select(read_array <, write_array
	error_array timeout>)
	 → array or ​nil​

	 See Object#select.
	

sysopen
	IO.sysopen(path, <mode perm>)
	 → int

	 Opens the given path, returning the underlying file descriptor
	 as a ​Fixnum​.
	
	​ 	IO.sysopen(​"testfile"​) ​# => 5​

try_convert
	IO.try_convert(obj) → an_io or ​nil​

	 If obj is not already an I/O object, attempts to
	 convert it to one by calling its
	
 ​to_io​
 method. Returns ​nil​ if no
	 conversion could be made.
	
	​ 	​class​ SillyIOObject

	​ 	 ​def​ to_io

	​ 	 STDOUT

	​ 	 ​end​

	​ 	 ​end​

	​ 	 IO.try_convert(SillyIOObject.new) ​# => #<IO:<STDOUT>>​

	​ 	 IO.try_convert(​"Shemp"​) ​# => nil​

write
	IO.write(portname, string
	 <, offset>
	 <, options>)
	 → int

	 Opens the file for writing, optionally seeks to
	 the given offset, and then writes string. Returns
	 the number of bytes written. The file is truncated before
	 writing if no offset is specified.
	

	 options is an optional hash used to pass parameters to the
	 underlying
 ​open​
 call used by
 ​read​
 . See
	 IO.foreach for details.
	
	​ 	IO.write(​"somefile"​, ​"my string"​) ​# => 9​

	​ 	IO.read(​"somefile"​) ​# => "my string"​

	​ 	IO.write(​"somefile"​, ​"adden"​, 1) ​# => 5​

	​ 	IO.read(​"somefile"​) ​# => "maddening"​

IO: Instance methods
<<
	io << obj → io

	 String Output—Writes obj to io.
	 obj will be
	 converted to a string using
 ​to_s​
 .
	
	​ 	STDOUT << ​"Hello "​ << ​"world!\n"​

Produces:
	​ 	Hello world!

advise
	io.advise(advice, offset=0, length=0)
	 → ​nil​

	 Help your operating system optimize I/O by telling
	 it how you plan to access this I/O object. The first
	 parameter is a symbol from this table:
	

Table 19. advice parameter to
 ​advise​

	

	 ​:normal​
	
	

	 No particular access	pattern is being given.
	

	

	 ​:sequential​
	
	

	 The portion will be read sequentially.
	

	

	 ​:random​
	
	

	 The portion will be read in random order.
	

	

	 ​:willneed​
	
	

	 The portion will be needed in the near future.
	

	

	 ​:dontneed​
	
	

	 The portion will not be needed in the near future.
	

	

	 ​:noreuse​
	
	

	 The portion will not be reused in the near future.
	

	 The second and third parameters denote the region of the
	 file to be accessed. Their default values of zeroes mean the
	 entire file. See the ​posix_fadvise(2)​ man page for
	 details.
	

autoclose=
	io.autoclose = ​true​ or ​false​
	 → io

	 Normally when an I/O object is finalized, the
	 corresponding fd is automatically closed. By setting
	 ​autoclose=false​, you prevent this behavior. This is
	 useful if you’re using an I/O object to access an fd that’s
	 open elsewhere in your program, and you don’t want to affect
	 that other object.
	

autoclose?
	io.autoclose? → ​true​ or ​false​

	 Returns the state of the autoclose flag for io.
	

binmode
	io.binmode → io

	 Puts io into binary mode. It is more
	 common to use the ​"b"​ modifier in the mode string
	 to set binary mode when you open a file. Binary mode is
	 required when reading or writing files containing bit
	 sequences that are not valid in the encoding of the file.
	 Once a stream is in binary mode, it cannot be reset to
	 nonbinary mode.
	

binmode?
	io.binmode? → ​true​ or ​false​

	 Returns ​true​ if io is in binary mode.
	
	​ 	f = File.open(​"/etc/passwd"​)

	​ 	f.binmode? ​# => false​

	​ 	f = File.open(​"/etc/passwd"​, ​"rb:binary"​)

	​ 	f.binmode? ​# => true​

bytes
	io.bytes → enumerator

	 Returns an enumerator that iterates over the bytes
	 (not characters) in io, returning each as an
	 integer. See also IO#getbyte.
 Deprecated in Ruby 2.0.«2.0»
	
	​ 	enum = File.open(​"testfile"​).bytes ​# => prog.rb:1: warning: IO#bytes is​

	​ 	 ​# .. deprecated; use #each_byte instead​

	​ 	enum.first(10) ​# => [84, 104, 105, 115, 32, 105, 115, 32,​

	​ 	 ​# .. 108, 105]​

chars
	io.chars → enumerator

	 Returns an enumerator that allows iteration over the characters
	 in io.
 Deprecated in Ruby 2.0.«2.0»
	
	​ 	enum = File.open(​"testfile"​).chars ​# => prog.rb:1: warning: IO#chars is​

	​ 	 ​# .. deprecated; use #each_char instead​

	​ 	enum.first(7) ​# => ["T", "h", "i", "s", " ", "i", "s"]​

close
	io.close → ​nil​

	 Closes io and flushes any pending writes to the
	 operating system.
	 The stream is unavailable for any further
	 data operations; an ​IOError​ is raised if such an attempt is
	 made. I/O streams are automatically closed when they are claimed
	 by the garbage collector.
	

close_on_exec?
	io.close_on_exec? → ​true​ or ​false​

	 Returns the state of the
 ​ close on
	 exec​

 flag for io. Raises
	 ​NotImplemented​ if not
	 available.
	

close_on_exec=
	io.close_on_exec = ​true​ or ​false​ → ​nil​

	 Sets the ​close on exec​ flag for
	 io. Raises ​NotImplemented​
	 if not available. I/O objects with this flag set will be
	 closed across ​exec()​ calls.
	

close_read
	io.close_read → ​nil​

	 Closes the read end of a duplex I/O stream (in other words, one that
	 contains both a read and a write stream, such as a pipe).
	 Raises ​IOError​ if the stream is not duplexed.
	
	​ 	f = IO.popen(​"/bin/sh"​,​"r+"​)

	​ 	f.close_read

	​ 	f.readlines

Produces:
	​ 	 from prog.rb:3:in `<main>'

	​ 	prog.rb:3:in `readlines': not opened for reading (IOError)

close_write
	io.close_write → ​nil​

	 Closes the write end of a duplex I/O stream (in other words, one that
	 contains both a read and a write stream, such as a pipe).
	 Will raise ​IOError​ if the stream is not duplexed.
	

closed?
	io.closed? → ​true​ or ​false​

	 Returns ​true​ if io is
	 completely closed (for duplex streams, both reader and
	 writer) and returns ​false​ otherwise.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.close ​# => nil​

	​ 	f.closed? ​# => true​

	​ 	f = IO.popen(​"/bin/sh"​,​"r+"​)

	​ 	f.close_write ​# => nil​

	​ 	f.closed? ​# => false​

	​ 	f.close_read ​# => nil​

	​ 	f.closed? ​# => true​

codepoints
	io.codepoints { |codepoint| … } → io
	io.codepoints → enumerator

	 Synonym for IO#each_codepoint.
 Deprecated in Ruby 2.0.«2.0»
	

each
	io.each(separator=​$/​) { |line| … }
	 → io
	io.each(limit) { |line| … }
	 → io
	io.each(separator, limit) { |line| … }
	 → io
	io.each(args..)
	 → enum

	 Executes the block for every line in io, where lines are
	 separated by separator. If separator is ​nil​, the
	 entire file is passed as a single string. If the limit
	 argument is present and positive, at most that many characters
	 will be returned in each iteration. If only the limit
	 argument is given and that argument is negative, then encodings
	 will be ignored while looking for the record separator, which
	 increases performance.
	 Returns an enumerator if no block is given.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.each {|line| puts ​"​#{f.lineno}​: ​#{line}​"​ }

Produces:
	​ 	1: This is line one

	​ 	2: This is line two

	​ 	3: This is line three

	​ 	4: And so on...

each_byte
	io.each_byte { |byte| … } → ​nil​
	io.each_byte → enum

	Calls the given block once for each byte (a ​Fixnum​ in the
 range 0 to 255) in io, passing the byte as an argument.
 The stream must be opened for reading, or ​IOerror​ will
 be raised. Returns an enumerator if no block is given.

	​ 	f = File.new(​"testfile"​)

	​ 	checksum = 0

	​ 	f.each_byte {|x| checksum ^= x } ​# => #<File:testfile>​

	​ 	checksum ​# => 12​

each_char
	io.each_char { |char| … } → ​nil​
	io.each_char → enum

Calls the given block, passing it each character (a string
	of length 1) in io. The stream must be opened for
	reading, or an ​IOerror​ will be
	raised. Returns an enumerator if no block is
	given.
	
	​ 	f = File.new(​"testfile"​)

	​ 	result = []

	​ 	f.each_char {|ch| result << ch} ​# => #<File:testfile>​

	​ 	result[0, 5] ​# => ["T", "h", "i", "s", " "]​

each_codepoint
	io.each_codepoint { |codepoint| … } → io
	io.each_codepoint → enumerator

	 Iterates over the codepoints in io,
	 returning each as an integer. With no block, an enumerator
	 is returned.
	
	​ 	​#encoding: utf-8​

	​ 	File.open(​"/tmp/testfile"​, ​"w:utf-8"​) { |f| f.puts ​"∂og"​ }

	​ 	File.open(​"/tmp/testfile"​) ​do​ |f|

	​ 	 f.each_codepoint { |codepoint| printf ​"%#X "​, codepoint }

	​ 	​end​

Produces:
	​ 	0X2202 0X6F 0X67 0XA

each_line
	io.each_line(...) { |line| … } → io

	 Synonym for IO#each.
	

eof
	io.eof → ​true​ or ​false​

	 Returns ​true​ if io is at the end
	 of the file. The stream must be opened for reading, or an
	 ​IOError​ will be raised.
	
	​ 	f = File.open(​"testfile"​)

	​ 	f.eof ​# => false​

	​ 	dummy = f.readlines

	​ 	f.eof ​# => true​

eof?
	io.eof? → ​true​ or ​false​

	 Synonym for IO#eof.
	

external_encoding
	io.external_encoding → encoding

	 Returns the encoding object representing the external encoding of
	 this I/O object.
	
	​ 	io = File.open(​"testfile"​, ​"r:utf-8:iso-8859-1"​)

	​ 	io.external_encoding ​# => #<Encoding:UTF-8>​

	​ 	io.internal_encoding ​# => #<Encoding:ISO-8859-1>​

fcntl
	io.fcntl(cmd, arg) → int

	 Provides a mechanism for issuing low-level commands to
	 control or query file-oriented I/O streams. Commands (which
	 are integers), arguments, and the result are platform
	 dependent. If arg is a number, its value is
	 passed directly. If it is a string, it is interpreted as a
	 binary sequence of bytes. On Unix platforms, see fcntl(2) for details. See the ​Fcntl​
	 module for symbolic names
	 for the first argument. Not implemented on all platforms.
	

fdatasync
	io.fdatasync → 0

	 Uses the operating system’s fdatasync(2) call to write all buffered
	 data associated with io. Raises an exception if
	 the operating system does not support
	 fdatasync(2).
	

fileno
	io.fileno → int

	 Returns an integer representing the numeric file descriptor for io.
	
	​ 	STDIN.fileno ​# => 0​

	​ 	STDOUT.fileno ​# => 1​

flush
	io.flush → io

	 Flushes any buffered data within io to the underlying
	 operating system (note that this is Ruby internal buffering only; the
	 OS may buffer the data as well).
	
	​ 	STDOUT.print ​"no newline"​

	​ 	STDOUT.flush

Produces:
	​ 	no newline

fsync
	io.fsync → 0 or ​nil​

	 Immediately writes all buffered data in io to
	 disk. Returns ​nil​ if the underlying
	 operating system does not support fsync(2). Note that
 ​fsync​

	 differs from using IO#sync=. The latter
	 ensures that data is flushed from Ruby’s buffers but does
	 not guarantee that the underlying operating system actually
	 writes it to disk.
	

getbyte
	io.getbyte → fixnum or ​nil​

	 Returns the next 8-bit byte (as opposed to an encoded
	 character) from io or returns ​nil​ at the end of the file. See also
	 IO#bytes.
	
	​ 	file = File.open(​"testfile"​)

	​ 	file.getbyte ​# => 84​

	​ 	file.getbyte ​# => 104​

getc
	io.getc → string or ​nil​

	 Gets the next character from io.
	 Returns ​nil​ if called at the end of the file.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.getc ​# => "T"​

	​ 	f.getc ​# => "h"​

gets
	io.gets(separator=​$/​)
	 → string or ​nil​
	io.gets(limit)
	 → string or ​nil​
	io.gets(separator, limit)
	 → string or ​nil​

	Reads the next “line” from the I/O stream; lines
	are separated by separator. A separator of
	​nil​ reads the entire contents, and a
	zero-length separator reads the input a paragraph at a time
	(two or more successive newlines in the input separate
	paragraphs). If the limit argument is present and
	positive, at most that many characters will be returned in
	each iteration. If only the limit argument is given
	and that argument is negative, then encodings will be ignored
	while looking for the record separator, which increases
	performance. The line read in will be returned and also
	assigned to
	​$_​
	(although the setting of ​$_​ is
	considered ugly—it may be removed in future). Returns
	​nil​ if called at the end of the file.

	​ 	file = File.new(​"testfile"​)

	​ 	file.gets ​# => "This is line one\n"​

	​ 	$_ ​# => "This is line one\n"​

	​ 	file.gets(10) ​# => "This is li"​

	​ 	file.gets(​"line"​) ​# => "ne two\nThis is line"​

	​ 	file.gets(​"line"​, 4) ​# => " thr"​

internal_encoding
	io.internal_encoding → encoding

	 Returns the encoding object representing the internal encoding of
	 this I/O object.
	
	​ 	io = File.open(​"testfile"​, ​"r:utf-8:iso-8859-1"​)

	​ 	io.external_encoding ​# => #<Encoding:UTF-8>​

	​ 	io.internal_encoding ​# => #<Encoding:ISO-8859-1>​

ioctl
	io.ioctl(cmd, arg) → int

	 Provides a mechanism for issuing low-level commands to
	 control or query I/O devices. The command (which is an
	 integer), arguments, and results are platform dependent. If
	 arg is a number, its value is passed directly.
	 If it is a string, it is interpreted as a binary sequence of
	 bytes. On Unix platforms, see ioctl(2) for details. Not implemented on all
	 platforms.
	

isatty
	io.isatty → ​true​ or ​false​

	Returns ​true​ if io is associated with a
	terminal device (tty) and returns ​false​ otherwise.

	​ 	File.new(​"testfile"​).isatty ​# => false​

	​ 	File.new(​"/dev/tty"​).isatty ​# => true​

lineno
	io.lineno → int

	 Returns the current line number in io, which
	 must be opened for
	 reading.
 ​lineno​
 counts the number
	 of times
 ​gets​
 is called, rather
	 than the number of newlines encountered. The two values will
	 differ if
 ​gets​
 is called with a
	 separator other than newline. See also the
	 ​$.​
	 variable.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.lineno ​# => 0​

	​ 	f.gets ​# => "This is line one\n"​

	​ 	f.lineno ​# => 1​

	​ 	f.gets ​# => "This is line two\n"​

	​ 	f.lineno ​# => 2​

lineno=
	io.lineno = int → int

	 Manually sets the current line number to the given
	 value. ​$.​ is updated only on
	 the next read.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.gets ​# => "This is line one\n"​

	​ 	$. ​# => 1​

	​ 	f.lineno = 1000

	​ 	f.lineno ​# => 1000​

	​ 	$. ​# => 1​

	​ 	f.gets ​# => "This is line two\n"​

	​ 	$. ​# => 1001​

lines
	io.lines(separator=​$/​)
	 → enumerator
	io.lines(limit) → enumerator
	io.lines(separator, limit) → enumerator

	 Returns an enumerator that allows iteration over
	 the lines in io, where lines are terminated by
	 separator. If separator is
	 ​nil​, the entire file is passed as a
	 single string. If the limit argument is present
	 and positive, at most that many characters will be returned
	 in each iteration. If only the limit argument is
	 given and that argument is negative, then encodings will be
	 ignored while looking for the record separator, which
	 increases performance.
 Deprecated in Ruby 2.0.«2.0»
	

pid
	io.pid → int

	 Returns the process ID of a child process associated with
	 io. This will be set by IO.popen.
	
	​ 	pipe = IO.popen(​"-"​)

	​ 	​if​ pipe

	​ 	 STDERR.puts ​"In parent, child pid is ​#{pipe.pid}​"​

	​ 	 pipe.close

	​ 	​else​

	​ 	 STDERR.puts ​"In child, pid is ​#{$$}​"​

	​ 	​end​

Produces:
	​ 	In parent, child pid is 23528

	​ 	In child, pid is 23528

pos
	io.pos → int

	 Returns the current offset (in bytes) of io.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.pos ​# => 0​

	​ 	f.gets ​# => "This is line one\n"​

	​ 	f.pos ​# => 17​

pos=
	io.pos = int → 0

	 Seeks to the given position (in bytes) in io.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.pos = 17

	​ 	f.gets ​# => "This is line two\n"​

print
	io.print(<obj=$_>*)
	 → ​nil​

	 Writes the given object(s) to io. The stream
	 must be opened for writing. If the output record separator
	 (​$\​)
	 is not ​nil​, it will be appended to the
	 output. If no arguments are given, prints
	 ​$_​. Objects that aren’t
	 strings will be converted by calling their
	
 ​to_s​
 method. Returns
	 ​nil​.
	
	​ 	STDOUT.print(​"This is "​, 100, ​" percent.\n"​)

Produces:
	​ 	This is 100 percent.

printf
	io.printf(format <, obj>*)
	 → ​nil​

	 Formats and writes to io, converting parameters
	 under control of the format string. See the description
	 Object#sprintf for details.
	

putc
	io.putc(obj) → obj

	 If obj is a string, write its first
	 character. Otherwise treat obj as a number, and
	 write its low-order byte as a character. Note that this is
	 not encoding safe, because the byte may be just part of a
	 multibyte sequence.
	
	​ 	​#encoding: utf-8​

	​ 	STDOUT.putc ​"ABC"​

	​ 	STDOUT.putc ​"∂og"​

	​ 	STDOUT.putc 65

Produces:
	​ 	A∂A

puts
	io.puts(<obj>*) → ​nil​

	 Writes the given objects to io as with
	 IO#print. Writes a newline
	 after any that do not already end with a newline sequence. If called with
	 an array argument, writes each element on a new line.
	 If called without arguments,
	 outputs a single newline.
	
	​ 	STDOUT.puts(​"this"​, ​"is"​, ​"a"​, ​"test"​)

Produces:
	​ 	this

	​ 	is

	​ 	a

	​ 	test

read
	io.read(<int buffer>)
	 → string or ​nil​

	 Reads at most int bytes from the I/O stream or to
	 the end of the file if int is omitted. Returns
	 ​nil​ if called at the end of the file. If
	 buffer (a string) is provided, it is resized
	 accordingly, and input is read directly into it.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.read(16) ​# => "This is line one"​

	​ 	str = ​"cat"​

	​ 	f.read(10, str) ​# => "\nThis is l"​

	​ 	str ​# => "\nThis is l"​

readbyte
	io.readbyte → fixnum

	 Returns the next 8-bit byte (as opposed to an encoded
	 character) from io, raising ​EOFError​ at end of file. See also
	 IO#bytes.
	

readchar
	io.readchar → string

	 Reads a character as with IO#getc but raises an ​EOFError​
	 on end of file.
	

readline
	io.readline(separator=​$/​)
	 → string or ​nil​
	io.readline(limit)
	 → string or ​nil​
	io.readline(separator, limit)
	 → string or ​nil​

	Reads a line as with IO#gets but
	raises an ​EOFError​ on end of
	file.

readlines
	io.readlines(separator=​$/​)
	 → array
	io.readlines(limit) → array
	io.readlines(separator, limit) → array

	Returns all of the lines in io as an array. Lines
	are separated by the optional separator. If
	separator is ​nil​, the entire
	file is passed as a single string. If the limit
	argument is present and positive, at most that many characters
	will be returned in each iteration. If only the
	limit argument is given and that argument is
	negative, then encodings will be ignored while looking for the
	record separator, which increases performance.

	​ 	f = File.new(​"testfile"​)

	​ 	f.readlines ​# => ["This is line one\n", "This is line two\n", "This is​

	​ 	 ​# .. line three\n", "And so on...\n"]​

	​ 	f = File.new(​"testfile"​)

	​ 	f.readlines(​"line"​) ​# => ["This is line", " one\nThis is line", " two\nThis is​

	​ 	 ​# .. line", " three\nAnd so on...\n"]​

	​ 	f = File.new(​"testfile"​)

	​ 	f.readlines(10) ​# => ["This is li", "ne one\n", "This is li", "ne two\n",​

	​ 	 ​# .. "This is li", "ne three\n", "And so on.", "..\n"]​

readpartial
	io.readpartial(limit, result="")
	 → result

	 Data read from files and devices is normally
	 buffered. When reading line by line (for example using IO#gets), Ruby will read many lines at a time
	 into an internal buffer and then return lines from that
	 buffer. This buffering is normally transparent—Ruby will
	 refill the buffer automatically when required. However, when
	 reading from a device or pipe (as opposed to a file), you
	 sometimes want to read whatever is in the buffer, reading
	 from the device or pipe only if the buffer is empty when the
	 read starts. This is what
	
 ​readpartial​
 does—it returns any data
	 available in local buffers immediately, only
	 reading
	 from the device or pipe (potentially blocking) if the
	 buffer is empty. Raises
	 ​EOFError​
	 when it reached EOF. See also
	 IO#read_nonblock.
	

	 The following example comes from the internal documentation,
	 with thanks to the anonymous author:
	
	​ 	r, w = IO.pipe ​# buffer pipe content​

	​ 	w << ​"abc"​ ​# "" "abc".​

	​ 	r.readpartial(4096) ​#=> "abc" "" ""​

	​ 	r.readpartial(4096) ​# blocks because buffer and pipe is empty.​

	​ 	

	​ 	r, w = IO.pipe ​# buffer pipe content​

	​ 	w << ​"abc"​ ​# "" "abc"​

	​ 	w.close ​# "" "abc" EOF​

	​ 	r.readpartial(4096) ​#=> "abc" "" EOF​

	​ 	r.readpartial(4096) ​# raises EOFError​

	​ 	

	​ 	r, w = IO.pipe ​# buffer pipe content​

	​ 	w << ​"abc\ndef\n"​ ​# "" "abc\ndef\n"​

	​ 	r.gets ​#=> "abc\n" "def\n" ""​

	​ 	w << ​"ghi\n"​ ​# "def\n" "ghi\n"​

	​ 	r.readpartial(4096) ​#=> "def\n" "" "ghi\n"​

	​ 	r.readpartial(4096) ​#=> "ghi\n" "" ""​

read_nonblock
	io.readpartial(limit, result="")
 → result

	Effectively the same as IO#readpartial, except in cases
	where no buffered data is available. In this case, it puts io
	into nonblocking mode before attempting to read data. This means
	that the call may return ​EAGAIN​ and ​EINTR​
	errors, which should be handled by the caller.

reopen
	io.reopen(other_io) → io
	io.reopen(path, mode) → io

	 Reassociates
	 io with the I/O stream given in other_io or to a
	 new stream opened on path. This may dynamically change
	 the actual class of this stream.
	
	​ 	f1 = File.new(​"testfile"​)

	​ 	f2 = File.new(​"testfile"​)

	​ 	f2.readlines[0] ​# => "This is line one\n"​

	​ 	f2.reopen(f1) ​# => #<File:testfile>​

	​ 	f2.readlines[0] ​# => "This is line one\n"​

rewind
	io.rewind → 0

	 Positions io to the beginning of input, resetting
	
 ​lineno​
 to zero.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.readline ​# => "This is line one\n"​

	​ 	f.rewind ​# => 0​

	​ 	f.lineno ​# => 0​

	​ 	f.readline ​# => "This is line one\n"​

seek
	io.seek(int, whence=SEEK_SET)
	 → 0

	 Seeks to a given offset int in the stream according
	 to the value of whence.
	
	

	 IO::SEEK_CUR
	
	

	 Seeks to int plus current position
	

	

	 IO::SEEK_END
	
	

	 Seeks to int plus end of stream (you probably
 want a negative value for int)
	

	

	 IO::SEEK_SET
	
	

	 Seeks to the absolute location given by
 int
	

	​ 	f = File.new(​"testfile"​)

	​ 	f.seek(-13, IO::SEEK_END) ​# => 0​

	​ 	f.readline ​# => "And so on...\n"​

set_encoding
	io.set_encoding(external, internal=external <, options>)
	 → io
	io.set_encoding(
	"external-name:internal-name" <, options>)
	 → io

	 Sets the external and internal encodings for
	 io. In the first form, encodings can be specified
	 by name (using strings) or as encoding objects. In the
	 second form, the external and internal encoding names are
	 separated by a colon in a string. If present,
	 options specifies the conversion options.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.internal_encoding ​# => nil​

	​ 	f.external_encoding ​# => #<Encoding:UTF-8>​

	​ 	f.set_encoding(​"ascii-8bit:iso-8859-1"​) ​# => #<File:testfile>​

	​ 	f.internal_encoding ​# => #<Encoding:ISO-8859-1>​

	​ 	f.external_encoding ​# => #<Encoding:ASCII-8BIT>​

stat
	io.stat → stat

	 Returns status information for io as an object of
	 type ​File::Stat​.
	
	​ 	f = File.new(​"testfile"​)

	​ 	s = f.stat

	​ 	​"%o"​ % s.mode ​# => "100644"​

	​ 	s.blksize ​# => 4096​

	​ 	s.atime ​# => 2013-05-27 12:32:23 -0500​

sync
	io.sync → ​true​ or ​false​

	 Returns the current sync mode of io. When sync
	 mode is true, all output is immediately flushed to the
	 underlying operating system and is not buffered by Ruby.
	 See also IO#fsync.
	

sync=
	io.sync = ​true​ or ​false​ → ​true​ or ​false​

	 Sets the sync mode to ​true​ or ​false​. When
	 sync mode is true, all output is immediately flushed to the
	 underlying operating system and is not buffered internally.
	 Returns the new state. See also IO#fsync.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.sync = true

sysread
	io.sysread(int <, buffer>)
	 → string

	 Reads int bytes from io using a
	 low-level read and returns them as a string. If
	 buffer (a string) is provided, input is read
	 directly in to it. Do not mix with other methods that read
	 from io, or you may get unpredictable results.
	 Raises ​SystemCallError​ on error and
	 ​EOFError​ at the end of the
	 file.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.sysread(16) ​# => "This is line one"​

	​ 	str = ​"cat"​

	​ 	f.sysread(10, str) ​# => "\nThis is l"​

	​ 	str ​# => "\nThis is l"​

sysseek
	io.sysseek(offset, whence=SEEK_SET)
	 → int

	 Seeks to a given offset in the stream according to the
	 value of whence (see IO#seek for values of
	 whence). Returns the new offset into the file.
	
	​ 	f = File.new(​"testfile"​)

	​ 	f.sysseek(-13, IO::SEEK_END) ​# => 53​

	​ 	f.sysread(10) ​# => "And so on."​

syswrite
	io.syswrite(string) → int

	 Writes the given string to io using a low-level write.
	 Returns the number of bytes written. Do not mix with other
	 methods that write to io, or you may get unpredictable
	 results. Raises ​SystemCallError​ on error.
	
	​ 	f = File.new(​"out"​, ​"w"​)

	​ 	f.syswrite(​"ABCDEF"​) ​# => 6​

tell
	io.tell → int

	 Synonym for IO#pos.
	

to_i
	io.to_i → int

	 Synonym for IO#fileno.
	

to_io
	io.to_io → io

	 Returns io.
	

tty?
	io.tty? → ​true​ or ​false​

	 Synonym for IO#isatty.
	

ungetbyte
	io.ungetbyte(string or int)
	 → ​nil​

	Pushes back one or more bytes onto io, such that a subsequent
	buffered read will return them. Has no effect with unbuffered
	reads (such as IO#sysread).

	​ 	f = File.new(​"testfile"​) ​# => #<File:testfile>​

	​ 	c = f.getbyte ​# => 84​

	​ 	f.ungetbyte(c) ​# => nil​

	​ 	f.getbyte ​# => 84​

	​ 	f.ungetbyte(​"cat"​) ​# => nil​

	​ 	f.getbyte ​# => 99​

	​ 	f.getbyte ​# => 97​

ungetc
	io.ungetc(string) → ​nil​

	 Pushes back one or more characters onto io,
	 such that a subsequent buffered read will return them.
	 Has no effect with unbuffered reads (such as
	 IO#sysread).
	
	​ 	​# encoding: utf-8​

	​ 	f = File.new(​"testfile"​) ​# => #<File:testfile>​

	​ 	c = f.getc ​# => "T"​

	​ 	f.ungetc(c) ​# => nil​

	​ 	f.getc ​# => "T"​

	​ 	f.ungetc(​"∂og"​) ​# => nil​

	​ 	f.getc ​# => "∂"​

	​ 	f.getc ​# => "o"​

write
	io.write(string) → int

	 Writes the given string to io.
	 The stream must be opened for writing. If the
	 argument is not a string, it will be converted to a string using
	
 ​to_s​
 . Returns the number of bytes written.
	
	​ 	count = STDOUT.write(​"This is a test\n"​)

	​ 	puts ​"That was ​#{count}​ bytes of data"​

Produces:
	​ 	This is a test

	​ 	That was 15 bytes of data

write_nonblock
	io.write_nonblock(string) → int

	 Writes the given string to io after setting
	 io into nonblocking mode. The stream must be
	 opened for writing. If the argument is not a string, it
	 will be converted to a string using
	
 ​to_s​
 . Returns the number of bytes
	 written. Your application should expect to receive errors
	 typical of nonblocking I/O (including
	 ​EAGAIN​ and
	 ​EINTR​).
	

Module Kernel

 The ​Kernel​ module is included by class ​Object​, so its
 methods are available in every Ruby object. The ​Kernel​
 methods are documented in class ​Object​.

Module Marshal

 The marshaling library converts collections of Ruby objects into a
 byte stream, allowing them to be stored outside the currently
 active script. This data may subsequently be read and the original
 objects reconstituted. Marshaling is described in Section 25.7, ​Marshaling and Distributed Ruby​. Also see the YAML
 library.

 Marshaled data has major and minor version numbers stored along with
 the object information. In normal use, marshaling can load only
 data written with the same major version number and an equal or
 lower minor version number. If Ruby’s “verbose” flag is set
 (normally using ​-d​,
 ​-v​,
 ​-w​, or ​--verbose​),
 the major and minor numbers must match exactly. Marshal versioning
 is independent of Ruby’s version numbers. You can extract the
 version by reading the first two bytes of marshaled data.

 Some objects cannot be dumped: if the objects to be dumped include
 bindings, procedure or method objects, instances of class
 ​IO​, or singleton objects, or if you try to
 dump anonymous classes or modules, a
 ​TypeError​ will be raised.

 If your class has special serialization needs (for example, if you
 want to serialize in some specific format) or if it contains
 objects that would otherwise not be serializable, you can
 implement your own serialization strategy using the instance
 methods
 ​marshal_dump​
 and

 ​marshal_load​
 . If an object to be marshaled
 responds
 to
 ​marshal_dump​
 , that method is called instead of

 ​_dump​
 .
 ​marshal_dump​
 can return an object of any
 class (not just a string). A class that implements

 ​marshal_dump​
 must also implement
 ​marshal_load​
 ,
 which is called as an instance method of a newly allocated object
 and passed the object originally created by
 ​marshal_dump​
 .

 The following code uses this to store a ​Time​
 object in the serialized version of an object. When loaded, this
 object is passed to
 ​marshal_load​
 , which converts this time
 to a printable form, storing the result in an instance variable.

	​ 	​class​ TimedDump

	​ 	 attr_reader :when_dumped

	​ 	 attr_accessor :other_data

	​ 	

	​ 	 ​def​ marshal_dump

	​ 	 [Time.now, @other_data]

	​ 	 ​end​

	​ 	 ​def​ marshal_load(marshal_data)

	​ 	 @when_dumped = marshal_data[0].strftime(​"%I:%M%p"​)

	​ 	 @other_data = marshal_data[1]

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	t = TimedDump.new

	​ 	t.other_data = ​"wibble"​

	​ 	t.when_dumped ​# => nil​

	​ 	

	​ 	str = Marshal.dump(t)

	​ 	

	​ 	newt = Marshal.load(str)

	​ 	newt.when_dumped ​# => "12:32PM"​

	​ 	newt.other_data ​# => "wibble"​

 Constants

	MAJOR_VERSION
	Major part of marshal format version number
	MINOR_VERSION
	Minor part of marshal format version number

Marshal: Module methods
dump
	 dump(obj <, io> , limit=-1)
 → io

	 Serializes obj and all descendent objects. If
	 io is specified, the serialized data will be written to
	 it; otherwise, the data will be returned as a ​String​. If
	 limit is specified, the traversal of subobjects will be
	 limited to that depth. If the limit is negative, no checking
	 of depth will be performed.
	
	​ 	​class​ Klass

	​ 	 ​def​ initialize(str)

	​ 	 @str = str

	​ 	 ​end​

	​ 	 ​def​ say_hello

	​ 	 @str

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	o = Klass.new(​"hello\n"​)

	​ 	data = Marshal.dump(o)

	​ 	obj = Marshal.load(data)

	​ 	obj.say_hello ​# => "hello\n"​

load
	load(from <, proc>) → obj

	 Returns the result of converting the serialized data in
	 from into a Ruby object (possibly with associated
	 subordinate objects). from may be either an instance of
	 ​IO​ or an object that responds to
 ​to_str​
 . If
	 proc is specified, it will be passed each object as it
	 is deserialized.
	

restore
	restore(from <, proc>) → obj

	 A synonym for Marshal.load.
	

Class MatchData < Object

 All pattern matches set the special variable
 ​$~​ to a
 ​MatchData​ object containing information
 about the match. The methods Regexp#match and
 Regexp.last_match also return a
 ​MatchData​ object. The object encapsulates
 all the results of a pattern match, results normally accessed
 through the special variables ​$&​,
 ​$’​,
 ​$‘​, ​$1​,
 ​$2​, and so on—see the list for details.

MatchData: Instance methods
[]
	match[i] → string
	match[name] → string
	match[start, length] → array
	match[range] → array

	 Match Reference—​MatchData​ acts as an array and/or
	 hash and may be accessed using the normal indexing
	 techniques. Numeric indices return the captures at the
	 corresponding position in the regular expression (starting
	 at 1), and symbol indices return the corresponding
	 named capture. match[0] is equivalent
	 to the special variable
	 ​$&​
	 and returns the entire matched string. See also MatchData#values_at.
	
	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m[0] ​# => "HX1138"​

	​ 	m[1, 2] ​# => ["H", "X"]​

	​ 	m[1..3] ​# => ["H", "X", "113"]​

	​ 	m[-3, 2] ​# => ["X", "113"]​

	​ 	m = /..(?<digit_prefix>​\d​+)​\d​/.match(​"THX1138."​)

	​ 	m[:digit_prefix] ​# => "113"​

begin
	match.begin(n) → int
	match.begin(name) → int

	 Returns the offset in the original string of the start of the
	 ​n​th capture or the named
	 capture.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.begin(0) ​# => 1​

	​ 	m.begin(2) ​# => 2​

	​ 	m = /..(?<digit_prefix>​\d​+)​\d​/.match(​"THX1138."​)

	​ 	m.begin(:digit_prefix) ​# => 3​

captures
	match.captures → array

	 Returns the array of all the matching
	 groups. Compare to MatchData#to_a, which returns
	 both the complete matched string and all the matching groups.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.captures ​# => ["H", "X", "113", "8"]​

	
 ​captures​
 is useful when extracting parts of
	 a match in an assignment.

	​ 	f1, f2, f3 = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​).captures

	​ 	f1 ​# => "H"​

	​ 	f2 ​# => "X"​

	​ 	f3 ​# => "113"​

end
	match.end(n) → int
	match.end(name) → int

	 Returns the offset in the original string of the end of the
	 ​n​th capture or
	 the named capture.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.end(0) ​# => 7​

	​ 	m.end(2) ​# => 3​

	​ 	m = /..(?<digit_prefix>​\d​+)​\d​/.match(​"THX1138."​)

	​ 	m.end(:digit_prefix) ​# => 6​

length
	match.length → int

	 Returns the number of elements in the match array.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.length ​# => 5​

	​ 	m.size ​# => 5​

names
	match.names → array

	 Returns the list of named captures in the regular expression that
	 created match.

	​ 	m = /(?<prefix>[A-Z]+)(?<hyphen>-?)(?<digits>​\d​+)/.match(​"THX1138."​)

	​ 	m.names ​# => ["prefix", "hyphen", "digits"]​

	​ 	m.captures ​# => ["THX", "", "1138"]​

	​ 	m[:prefix] ​# => "THX"​

offset
	match.offset(n) → array
	match.offset(name) → array

	 Returns an array containing the beginning and ending
	 offsets of the ​n​th or named capture.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.offset(0) ​# => [1, 7]​

	​ 	m.offset(4) ​# => [6, 7]​

	​ 	m = /..(?<digit_prefix>​\d​+)​\d​/.match(​"THX1138."​)

	​ 	m.offset(:digit_prefix) ​# => [3, 6]​

post_match
	match.post_match → string

	 Returns the portion of the original string after the current
	 match. (Same as the special variable
	 ​$’​.)

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138: The Movie"​)

	​ 	m.post_match ​# => ": The Movie"​

pre_match
	match.pre_match → string

	 Returns the portion of the original string before the current
	 match. (Same as ​$‘​.)

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.pre_match ​# => "T"​

regexp
	match.regexp → a_regexp

	 Returns the regexp object for the regular expression that
	 created match.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138: The Movie"​)

	​ 	m.regexp ​# => /(.)(.)(\d+)(\d)/​

size
	match.size → int

	 A synonym for MatchData#length.

string
	match.string → string

	 Returns a frozen copy of the string passed in to match.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.string ​# => "THX1138."​

to_a
	match.to_a → array

	 Returns the array of matches. Unlike
	 MatchData#captures, returns
	 the full string matched.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.to_a ​# => ["HX1138", "H", "X", "113", "8"]​

to_s
	match.to_s → string

	 Returns the entire matched string.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.to_s ​# => "HX1138"​

values_at
	match.values_at(<index>*)
 → array

	 Returns the matches corresponding to the given indices.

	​ 	m = /(.)(.)(​\d​+)(​\d​)/.match(​"THX1138."​)

	​ 	m.values_at(3,1,2) ​# => ["113", "H", "X"]​

	​ 	m.values_at(0, 4) ​# => ["HX1138", "8"]​

Module Math

 The ​Math​ module contains module methods for basic
 trigonometric and transcendental functions. See class ​Float​ for a list
 of constants that define Ruby’s floating-point accuracy.

 Constants

	E
	An approximation of ​e​ (base of natural logarithms)
	PI
	An approximation of π

Math: Module methods
acos
	Math.acos(x) → float

	 Computes the arc cosine of x. Returns 0..π.
	

acosh
	Math.acosh(x) → float

	 Computes the inverse hyperbolic cosine of x.
	

asin
	Math.asin(x) → float

	 Computes the arc sine of x. Returns
	 -π/2..π/2.
	

asinh
	Math.asinh(x) → float

	 Computes the inverse hyperbolic sine of x.
	

atan
	Math.atan(x) → float

	 Computes the arc tangent of x. Returns
	 -π/2..π/2.
	

atanh
	Math.atanh(x) → float

	 Computes the inverse hyperbolic tangent of x.
	

atan2
	Math.atan2(y, x) → float

	 Computes the arc tangent given y and x. Returns -π..π.
	

cbrt
	Math.cbrt(numeric) → float

	 Returns the cube root of numeric.
	

cos
	Math.cos(x) → float

	 Computes the cosine of x (expressed in radians). Returns -1..1.
	

cosh
	Math.cosh(x) → float

	 Computes the hyperbolic cosine of x (expressed in
	 radians).
	

erf
	Math.erf(x) → float

	 Returns the error function of x.
	

erfc
	Math.erfc(x) → float

	 Returns the complementary error function of x.
	

exp
	Math.exp(x) → float

	 Returns ex.
	

frexp
	Math.frexp(numeric) → [fraction, exponent]

	 Returns the normalized
	 fraction (a ​Float​) and exponent (a
	 ​Fixnum​) of numeric.
	
	​ 	fraction, exponent = Math.frexp(1234) ​# => [0.6025390625, 11]​

	​ 	fraction * 2**exponent ​# => 1234.0​

gamma
	Math.gamma(x) → float

	 Returns the gamma function. For integral x,
	 ​gamma(x)​ approximates ​factorial(x-1)​.
	
	​ 	Math.gamma(2) ​# => 1.0​

	​ 	Math.gamma(3) ​# => 2.0​

	​ 	Math.gamma(4) ​# => 6.0​

	​ 	Math.gamma(10.34) ​# => 784993.6091493163​

hypot
	Math.hypot(x, y) → float

	 Returns ​sqrt(x2 + y2)​, the hypotenuse of a right-angled
	 triangle with sides x and y.
	
	​ 	Math.hypot(3, 4) ​# => 5.0​

ldexp
	Math.ldexp(float, n) → float

	 Returns the value of float × 2n.
	
	​ 	fraction, exponent = Math.frexp(1234)

	​ 	Math.ldexp(fraction, exponent) ​# => 1234.0​

lgamma
	Math.lgamma(x) → [float, sign]

	 The first element of the returned array is the natural logarithm
	 of the absolute value of the gamma function of x. The second
	 value is -1 if the gamma function returned a negative number, +1 otherwise.
	

log
	Math.log(numeric <, base=E>)
	 → float

	 Returns logarithm of numeric. With no
	 base parameter, returns the natural logarith.
	

log10
	Math.log10(numeric) → float

	 Returns the base 10 logarithm of numeric.
	

log2
	Math.log2(numeric) → float

	Returns the base 2 logarithm of numeric.

sin
	Math.sin(numeric) → float

	 Computes the sine of numeric (expressed in
	 radians). Returns -1..1.
	

sinh
	Math.sinh(float) → float

	 Computes the hyperbolic sine of numeric (expressed in
	 radians).
	

sqrt
	Math.sqrt(float) → float

	 Returns the non-negative square root of numeric.
	 Raises ​ArgError​ if numeric is less than zero.
	

tan
	Math.tan(float) → float

	 Returns the tangent of numeric (expressed in radians).
	

tanh
	Math.tanh(float) → float

	 Computes the hyperbolic tangent of numeric (expressed in
	 radians).
	

Class Method < Object

 Method objects are created by Object#method. They
 are associated with a particular object (not just with a
 class). They may be used to invoke the method within the object
 and as a block associated with an iterator. They may also be
 unbound from one object (creating an
 ​UnboundMethod​)
 and bound to another.

	​ 	​def​ square(n)

	​ 	 n*n

	​ 	​end​

	​ 	

	​ 	meth = self.method(:square)

	​ 	

	​ 	meth.call(9) ​# => 81​

	​ 	[1, 2, 3].collect(&meth) ​# => [1, 4, 9]​

Method: Instance methods
[]
	meth[<args>*] → object

	 Synonym for Method#call.
	

==
	meth == other → ​true​ or ​false​

	 Returns ​true​ if meth is the same method as other.
	
	​ 	​def​ fred()

	​ 	 puts ​"Hello"​

	​ 	​end​

	​ 	

	​ 	​alias​ bert fred ​# => nil​

	​ 	

	​ 	m1 = method(:fred)

	​ 	m2 = method(:bert)

	​ 	

	​ 	m1 == m2 ​# => true​

arity
	meth.arity → fixnum

	 Returns a non-negative
	 integer for methods that take a fixed number
	 of arguments. For Ruby methods that take a variable number of
	 arguments, returns -n-1, where n is the number of required
	 arguments. For methods written in C, returns -1 if the call
	 takes a variable number of arguments.
	 See also Method#parameters.
	
	​ 	​class​ C

	​ 	 ​def​ one; ​end​

	​ 	 ​def​ two(a); ​end​

	​ 	 ​def​ three(*a); ​end​

	​ 	 ​def​ four(a, b); ​end​

	​ 	 ​def​ five(a, b, *c); ​end​

	​ 	 ​def​ six(a, b, *c, &d); ​end​

	​ 	​end​

	​ 	

	​ 	c = C.new

	​ 	c.method(:one).arity ​# => 0​

	​ 	c.method(:two).arity ​# => 1​

	​ 	c.method(:three).arity ​# => -1​

	​ 	c.method(:four).arity ​# => 2​

	​ 	c.method(:five).arity ​# => -3​

	​ 	c.method(:six).arity ​# => -3​

	​ 	​"cat"​.method(:size).arity ​# => 0​

	​ 	​"cat"​.method(:replace).arity ​# => 1​

	​ 	​"cat"​.method(:squeeze).arity ​# => -1​

	​ 	​"cat"​.method(:count).arity ​# => -1​

call
	meth.call(<args>*) → object

	 Invokes the meth with the specified
	 arguments, returning the method’s return value.
	
	​ 	m = 12.method(​"+"​)

	​ 	m.call(3) ​# => 15​

	​ 	m.call(20) ​# => 32​

eql?
	meth.eql?(other) → ​true​ or ​false​

	 Returns ​true​ if meth is the
	 same method as other.
	
	​ 	​def​ fred()

	​ 	 puts ​"Hello"​

	​ 	​end​

	​ 	

	​ 	​alias​ bert fred ​# => nil​

	​ 	

	​ 	m1 = method(:fred)

	​ 	m2 = method(:bert)

	​ 	m1.eql?(m2) ​# => true​

name
	meth.name → string

	 Returns the name of the method meth.
	
	​ 	method = ​"cat"​.method(:upcase)

	​ 	method.name ​# => :upcase​

owner
	meth.owner → module

	Returns the class or module in which meth is defined.

	​ 	method = ​"cat"​.method(:upcase)

	​ 	method.owner ​# => String​

parameters
	meth.parameters → array

	 Returns an array describing the parameters taken
	 by the method. Each entry in the array is itself an
	 array. The first entry of each subarray contains the role of
	 the parameter (​:req​ for required, ​:opt​ for
	 optional, ​:rest​ for a splat parameter, and
	 ​:block​ for a block). If the parameter has a name,
	 it will be the second entry in the subarray.
	
	​ 	​def​ m(a, b=1, *c, &d)

	​ 	​end​

	​ 	method(:m).parameters ​# => [[:req, :a], [:opt, :b], [:rest, :c], [:block, :d]]​

receiver
	meth.receiver → obj

	 Returns the object on which meth is defined.
	
	​ 	method = ​"cat"​.method(:upcase)

	​ 	method.receiver ​# => "cat"​

source_location
	meth.source_location
	 → [filename, lineno] or ​nil​

	 Returns the source filename and line number where
	 meth was defined or ​nil​
	 if ​self​ was not defined in Ruby source.
	
	​ 	internal_method = ​"cat"​.method(:upcase)

	​ 	internal_method.source_location ​# => nil​

	​ 	

	​ 	require ​'set'​

	​ 	set = Set.new

	​ 	ruby_method = set.method(:clear)

	​ 	ruby_method.source_location[0] ​# => "/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/r​

	​ 	 ​# .. uby/2.0.0/set.rb"​

	​ 	ruby_method.source_location[1] ​# => 131​

to_proc
	meth.to_proc → prc

	 Returns a ​Proc​ object corresponding to this method. Because
	
 ​to_proc​
 is called by the interpreter when passing
	 block arguments, method objects may be used following an
	 ampersand to pass a block to another method call.
	 See the example at the start of this section.
	

unbind
	meth.unbind → unbound_method

	 Dissociates meth from its current receiver. The
	 resulting
	 ​UnboundMethod​
	 can subsequently be bound to a new object of the same class
	 (see ​UnboundMethod​).
	

Class Module < Object
	Subclasses are:
	Class

 A ​Module​ is a collection of methods and
 constants. The methods in a module may be instance methods or
 module methods. Instance methods appear as methods in a class when
 the module is included; module methods do not. Conversely, module
 methods may be called without creating an encapsulating object,
 and instance methods may not. See also Module#module_function.

 In the descriptions that follow, the
 parameter symbol refers to a name, which is either a
 quoted string or a symbol (such as ​:name​).

	​ 	​module​ Mod

	​ 	 include Math

	​ 	 CONST = 1

	​ 	 ​def​ meth

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

	​ 	Mod.class ​# => Module​

	​ 	Mod.constants ​# => [:CONST, :DomainError, :PI, :E]​

	​ 	Mod.instance_methods ​# => [:meth]​

Module: Class methods
constants
	Module.constants → array
	Module.constants(include_parents) → array

	With no argument, returns a list of the top-level
	constants in the interpreter. With one argument, returns the
	constants defined in class ​Module​ (and
	its parents if the argument is
	​true​). This somewhat obscure interface is
	because ​Module​ is a kind of
	​Class​, and ​Class​
	is a subclass of ​Module​. The first form
	of call is a true call to the class method
	
 ​constants​
 , while the second form
	actually proxies to the instance method form (see Module#constants later in this
	section).

	​ 	​module​ Mixin

	​ 	 CONST_MIXIN = 1

	​ 	​end​

	​ 	​class​ Module

	​ 	 include Mixin

	​ 	 SPURIOUS_CONSTANT = 2

	​ 	​end​

	​ 	Module.constants.sort[1..3] ​# => [:ARGV, :ArgumentError, :Array]​

	​ 	Module.constants.include? :CONST_MIXIN ​# => false​

	​ 	Module.constants(false) ​# => [:SPURIOUS_CONSTANT]​

	​ 	Module.constants(true) ​# => [:SPURIOUS_CONSTANT, :CONST_MIXIN]​

nesting
	Module.nesting → array

	 Returns the list of modules nested at the point of call.
	
	​ 	​module​ M1

	​ 	 ​module​ M2

	​ 	 nest = Module.nesting

	​ 	 p nest

	​ 	 p nest[0].name

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	[M1::M2, M1]

	​ 	"M1::M2"

new
	Module.new → mod
	Module.new { |mod| … } → mod

	 Creates a new anonymous module. If a block is given, it is
	 passed the module object, and the block is evaluated in the
	 context of this module using
 ​module_eval​
 .
	
	​ 	Fred = Module.new ​do​

	​ 	 ​def​ meth1

	​ 	 ​"hello"​

	​ 	 ​end​

	​ 	 ​def​ meth2

	​ 	 ​"bye"​

	​ 	 ​end​

	​ 	​end​

	​ 	a = ​"my string"​

	​ 	a.extend(Fred) ​# => "my string"​

	​ 	a.meth1 ​# => "hello"​

	​ 	a.meth2 ​# => "bye"​

Module: Instance methods
<, <=, ==, >, >=
	mod ​relop​ module
 → ​true​, ​false​ or
 ​nil​

	Hierarchy Query—One module is considered greater than
	another if it is included in (or is a
	parent class of) the other module.
	The other operators are
	defined accordingly. If there is no relationship
	between the modules, all operators return ​nil​.

	​ 	​module​ Mixin

	​ 	​end​

	​ 	

	​ 	​module​ Parent

	​ 	 include Mixin

	​ 	​end​

	​ 	

	​ 	​module​ Unrelated

	​ 	​end​

	​ 	

	​ 	Parent > Mixin ​# => false​

	​ 	Parent < Mixin ​# => true​

	​ 	Parent <= Parent ​# => true​

	​ 	Parent < Unrelated ​# => nil​

	​ 	Parent > Unrelated ​# => nil​

<=>
	mod <=> other_mod → -1, 0, +1

	 Comparison—Returns -1 if mod includes other_mod,
	 0 if mod is
	 the same module as other_mod, and +1 if mod is included by
	 other_mod or if mod has no relationship with
	 other_mod.
	

===
	mod === obj → ​true​ or ​false​

	 Case Equality—Returns ​true​ if obj is an instance of mod
	 or one of mod’s descendents. Of limited use for modules but
	 can be used in ​case​ statements to test objects by class.
	

ancestors
	mod.ancestors → array

	 Returns a list of modules included in mod (including mod
	 itself).
	
	​ 	​module​ Mod

	​ 	 include Math

	​ 	 include Comparable

	​ 	​end​

	​ 	

	​ 	Mod.ancestors ​# => [Mod, Comparable, Math]​

	​ 	Math.ancestors ​# => [Math]​

autoload
	mod.autoload(name, file_name)
	 → ​nil​

	 Registers file_name to be loaded (using Object#require)
	 the first time that module name
	 (which may be a ​String​ or a ​Symbol​) is accessed in the
	 namespace of mod. Note that the autoloaded file is
	 evaluated in the top-level context. In this example,
	 ​module_b.rb​ contains the following:
	
	​ 	​module​ A::B ​# in module_b.rb​

	​ 	 ​def​ doit

	​ 	 puts ​"In Module A::B"​

	​ 	 ​end​

	​ 	 module_function :doit

	​ 	​end​

	 Other code can then include this module automatically.
	
	​ 	​module​ A

	​ 	 autoload(:B, ​"module_b"​)

	​ 	​end​

	​ 	

	​ 	A::B.doit ​# autoloads "module_b"​

Produces:
	​ 	In Module A::B

autoload?
	mod.autoload?(name)
	 → file_name or ​nil​

	 Returns the name of the file that will be autoloaded when the string or symbol
	 name is referenced in the context of mod or
	 returns ​nil​ if there is no associated autoload.
	
	​ 	​module​ A

	​ 	 autoload(:B, ​"module_b"​)

	​ 	​end​

	​ 	A.autoload?(:B) ​# => "module_b"​

	​ 	A.autoload?(:C) ​# => nil​

class_eval
	mod.class_eval(string <, file_name
	 line_number>) → obj
	mod.class_eval { … } → obj

	 Synonym for Module#module_eval.
	

class_exec
	mod.class_exec(<args>+) { |args| … }
	 → obj

	 Synonym for Module#module_exec.
	

class_variable_defined?
	mod.class_variable_defined?(name) → ​true​ or ​false​

	 Returns true if the named class variable is defined in
	 mod. The two @ signs are a required part of the name.
	
	​ 	​class​ One

	​ 	 @@var1 = ​"wibble"​

	​ 	​end​

	​ 	One.class_variable_defined?(:@@var1) ​# => true​

	​ 	One.class_variable_defined?(:@@var2) ​# => false​

class_variable_get
	mod.class_variable_get(name) → obj

	 Returns the value of the named class variable. The two @ signs
	 must appear in the name.
	
	​ 	​class​ One

	​ 	 @@var1 = ​"wibble"​

	​ 	​end​

	​ 	One.class_variable_get(:@@var1) ​# => "wibble"​

	​ 	One.class_variable_get(​"@@var1"​) ​# => "wibble"​

class_variable_set
	mod.class_variable_set(name, value) → value

	 Sets the value of the named class variable. The two @ signs
	 must appear in the name.
	
	​ 	​class​ One

	​ 	 @@var1 = ​"wibble"​

	​ 	​end​

	​ 	One.class_variable_set(:@@var1, 99) ​# => 99​

	​ 	One.class_variable_get(​"@@var1"​) ​# => 99​

class_variables
	mod.class_variables → array

	 Returns an array of the names of class variables in
	 mod. (As of Ruby 1.9, class variables are no longer
	 shared with child classes, so this listing is restricted to the
	 class variables defined in mod.)
	
	​ 	​class​ One

	​ 	 @@var1 = 1

	​ 	​end​

	​ 	​class​ Two < One

	​ 	 @@var2 = 2

	​ 	​end​

	​ 	One.class_variables ​# => [:@@var1]​

	​ 	Two.class_variables ​# => [:@@var2, :@@var1]​

const_defined?
	mod.const_defined?(symbol
	 <search_parents=true>)
	 → ​true​ or ​false​

	 Returns ​true​ if a constant with the given name is
	 defined by mod or the parents of mod (if the second
	 parameter is ​true​).
	
	​ 	Math.const_defined? ​"PI"​ ​# => true​

const_get
	mod.const_get(symbol) → obj

	 Returns the value of the named constant in
	 mod. Ruby 2.0 allows this name to be
	 qualified by one or more module names.«2.0»
	
	​ 	Math.const_get :PI ​# => 3.141592653589793​

	​ 	Object.const_get(​"Math::PI"​) ​# => 3.141592653589793​

const_missing
	mod.const_missing(symbol) → obj

	 Invoked when a reference is made to an undefined constant in
	 mod. It is passed a symbol for the undefined constant and
	 returns a value to be used for that constant. The
	 following code is very poor style. If a reference is made to
	 an undefined constant, it attempts to load a file whose name is
	 the lowercase version of the constant (thus, class ​Fred​ is
	 assumed to be in file ​fred.rb​). If found, it returns the
	 value of the loaded class. It therefore implements a perverse
	 kind of autoload facility.
	
	​ 	​def​ Object.const_missing(name)

	​ 	 @looked_for ||= {}

	​ 	 str_name = name.to_s

	​ 	 raise ​"Class not found: ​#{name}​"​ ​if​ @looked_for[str_name]

	​ 	 @looked_for[str_name] = 1

	​ 	 file = str_name.downcase

	​ 	 require file

	​ 	 klass = const_get(name)

	​ 	 ​return​ klass ​if​ klass

	​ 	 raise ​"Class not found: ​#{name}​"​

	​ 	​end​

const_set
	mod.const_set(symbol, obj) → obj

	 Sets the named constant to the given object, returning that
	 object. Creates a new constant if no constant with the given
	 name previously existed.
	
	​ 	Math.const_set(​"HIGH_SCHOOL_PI"​, 22.0/7.0) ​# => 3.142857142857143​

	​ 	Math::HIGH_SCHOOL_PI - Math::PI ​# => 0.0012644892673496777​

constants
	mod.constants(include_parents = ​true​)
	 → array

	 Returns an array of the names of the constants accessible in
	 mod. If the parameter is true, this includes the names of
	 constants in any included modules.
	
	​ 	IO.constants(false) ​# => [:WaitReadable, :WaitWritable, :SEEK_SET, :SEEK_CUR,​

	​ 	 ​# .. :SEEK_END]​

	​ 	​# Now include stuff defined in module File::Constants​

	​ 	IO.constants(true)[1,6] ​# => [:WaitWritable, :SEEK_SET, :SEEK_CUR, :SEEK_END,​

	​ 	 ​# .. :RDONLY, :WRONLY]​

include?
	mod.include?(other_mod) → ​true​ or ​false​

	 Returns ​true​ if other_mod is included in mod or
	 one of mod’s ancestors.
	
	​ 	​module​ A

	​ 	​end​

	​ 	

	​ 	​class​ B

	​ 	 include A

	​ 	​end​

	​ 	

	​ 	​class​ C < B

	​ 	​end​

	​ 	

	​ 	B.include?(A) ​# => true​

	​ 	C.include?(A) ​# => true​

	​ 	A.include?(A) ​# => false​

included_modules
	mod.included_modules → array

	 Returns the list of modules included in mod.
	
	​ 	​module​ Mixin

	​ 	​end​

	​ 	

	​ 	​module​ Outer

	​ 	 include Mixin

	​ 	​end​

	​ 	

	​ 	Mixin.included_modules ​# => []​

	​ 	Outer.included_modules ​# => [Mixin]​

instance_method
	mod.instance_method(symbol) → unbound_method

	 Returns an
	 ​UnboundMethod​
	 representing the given instance method in mod.
	
	​ 	​class​ Interpreter

	​ 	 ​def​ do_a() print ​"there, "​; ​end​

	​ 	 ​def​ do_d() print ​"Hello "​; ​end​

	​ 	 ​def​ do_e() print ​"!\n"​; ​end​

	​ 	 ​def​ do_v() print ​"Dave"​; ​end​

	​ 	

	​ 	 Dispatcher = {

	​ 	 ​'a'​ => instance_method(:do_a),

	​ 	 ​'d'​ => instance_method(:do_d),

	​ 	 ​'e'​ => instance_method(:do_e),

	​ 	 ​'v'​ => instance_method(:do_v)

	​ 	 }

	​ 	

	​ 	 ​def​ interpret(string)

	​ 	 string.each_char {|ch| Dispatcher[ch].bind(self).call }

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	interpreter = Interpreter.new

	​ 	interpreter.interpret(​'dave'​)

Produces:
	​ 	Hello there, Dave!

instance_methods
	mod.instance_methods(inc_super=​true​)
	 → array

	 Returns an array containing the names of public and
	 protected instance methods in the receiver. For a module,
	 these are the public methods; for a class, they are the
	 instance (not singleton) methods. With no argument or with
	 an argument that is true, the methods in mod
	 and mod’s superclasses are returned. When
	 called with a module as a receiver or with a parameter
	 that is false, the instance methods in mod are
	 returned.
	
	​ 	​module​ A

	​ 	 ​def​ method1

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ B

	​ 	 ​def​ method2

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ C < B

	​ 	 ​def​ method3

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	A.instance_methods ​# => [:method1]​

	​ 	B.instance_methods(false) ​# => [:method2]​

	​ 	C.instance_methods(false) ​# => [:method3]​

	​ 	C.instance_methods(true).length ​# => 56​

method_defined?
	mod.method_defined?(symbol)
	 → ​true​ or ​false​

	 Returns ​true​ if the named method is defined by mod
	 (or its included modules and, if mod is a class, its
	 ancestors). Public and protected methods are matched.
	
	​ 	​module​ A

	​ 	 ​def​ method1; ​end​

	​ 	​end​

	​ 	​class​ B

	​ 	 ​def​ method2; ​end​

	​ 	​end​

	​ 	​class​ C < B

	​ 	 include A

	​ 	 ​def​ method3; ​end​

	​ 	​end​

	​ 	

	​ 	A.method_defined? :method1 ​# => true​

	​ 	C.method_defined? ​"method1"​ ​# => true​

	​ 	C.method_defined? ​"method2"​ ​# => true​

	​ 	C.method_defined? ​"method3"​ ​# => true​

	​ 	C.method_defined? ​"method4"​ ​# => false​

module_eval
	mod.module_eval(string <, file_name
	 line_number>) → obj
	mod.module_eval { … } → obj

	 Evaluates the string or block in the context of mod. This can
	 be used to add methods to a class.
 ​module_eval​
 returns
	 the result of evaluating its argument. The optional
	 file_name and line_number parameters set the text for
	 error messages.
	
	​ 	​class​ Thing

	​ 	​end​

	​ 	a = ​%q{def hello() "Hello there!" end}​

	​ 	Thing.module_eval(a)

	​ 	puts Thing.new.hello()

	​ 	Thing.module_eval(​"invalid code"​, ​"dummy"​, 123)

Produces:
	​ 	Hello there!

	​ 	dummy:123:in `<main>': undefined local variable

	​ 	 or method `code' for Thing:Class

module_exec
	mod.module_exec(<args>+) { |args| … } → obj

	 Behaves the same as the block form for
	 Module#module_eval, except any parameters passed to the
	 method are in turn passed to the block. This gives you a way
	 of passing in values that would otherwise not be in scope in
	 the block (because self is changed).
	
	​ 	​class​ Thing

	​ 	​end​

	​ 	name = :new_instance_variable

	​ 	Thing.module_exec(name) ​do​ |iv_name|

	​ 	 attr_accessor iv_name

	​ 	​end​

	​ 	t = Thing.new

	​ 	t.new_instance_variable = ​"wibble"​

	​ 	p t

Produces:
	​ 	#<Thing:0x007f9b01847fa8 @new_instance_variable="wibble">

name
	mod.name → string

	 Returns the name of the module mod.
	

private_class_method
	mod.private_class_method(<symbol>+)
	 → ​nil​

	 Makes existing class methods private. Often used to hide the default
	 constructor
 ​new​
 .
	
	​ 	​class​ SimpleSingleton ​# Not thread safe​

	​ 	 private_class_method :new

	​ 	 ​def​ SimpleSingleton.create(*args, &block)

	​ 	 @me = new(*args, &block) ​if​ ! @me

	​ 	 @me

	​ 	 ​end​

	​ 	​end​

private_constant
	mod.private_constant(<symbol>+)
	 → mod

	 Makes the given constants (which must already
	 have been defined) private to the module. A private
	 constant cannot be referenced using the module name as a
	 scope, so they effectively can only be accessed within the
	 context of the module itself.
	
	​ 	​module​ A

	​ 	 B = ​"my constant"​

	​ 	 private_constant :B

	​ 	 puts ​"Inside A, B = ​#{B.inspect}​"​

	​ 	​end​

	​ 	

	​ 	puts ​"Outside A, A::B = ​#{A::B.inspect}​"​

Produces:
	​ 	Inside A, B = "my constant"

	​ 	prog.rb:7:in `<main>': private constant A::B referenced (NameError)

private_instance_methods
	mod.private_instance_methods(inc_super=​true​)
	 → array

	 Returns a list of the private instance methods defined in
	 mod. If the optional parameter is true, the
	 methods of any ancestors are included.
	
	​ 	​module​ Mod

	​ 	 ​def​ method1; ​end​

	​ 	 private :method1

	​ 	 ​def​ method2; ​end​

	​ 	​end​

	​ 	Mod.instance_methods ​# => [:method2]​

	​ 	Mod.private_instance_methods ​# => [:method1]​

private_method_defined?
	mod.private_method_defined?(symbol) → ​true​ or ​false​

	 Returns ​true​ if the named private method is defined by mod
	 (or its included modules and, if mod is a class, its
	 ancestors).
	
	​ 	​module​ A

	​ 	 ​def​ method1; ​end​

	​ 	​end​

	​ 	​class​ B

	​ 	 private

	​ 	 ​def​ method2; ​end​

	​ 	​end​

	​ 	​class​ C < B

	​ 	 include A

	​ 	 ​def​ method3; ​end​

	​ 	​end​

	​ 	

	​ 	A.method_defined? :method1 ​# => true​

	​ 	C.private_method_defined? ​"method1"​ ​# => false​

	​ 	C.private_method_defined? ​"method2"​ ​# => true​

	​ 	C.method_defined? ​"method2"​ ​# => false​

protected_instance_methods
	mod.protected_instance_methods(inc_super=​true​)
	 → array

	 Returns a list of the protected instance methods defined
	 in mod. If the optional parameter is true, the
	 methods of any ancestors are included.
	

protected_method_defined?
	mod.protected_method_defined?(symbol)
	 → ​true​ or ​false​

	 Returns ​true​ if the named protected method is defined by mod
	 (or its included modules and, if mod is a class, its
	 ancestors).
	
	​ 	​module​ A

	​ 	 ​def​ method1; ​end​

	​ 	​end​

	​ 	​class​ B

	​ 	 protected

	​ 	 ​def​ method2; ​end​

	​ 	​end​

	​ 	​class​ C < B

	​ 	 include A

	​ 	 ​def​ method3; ​end​

	​ 	​end​

	​ 	

	​ 	A.method_defined? :method1 ​# => true​

	​ 	C.protected_method_defined? ​"method1"​ ​# => false​

	​ 	C.protected_method_defined? ​"method2"​ ​# => true​

	​ 	C.method_defined? ​"method2"​ ​# => true​

public_class_method
	mod.public_class_method(<symbol>+)
	 → ​nil​

	 Makes a list of existing class methods public.
	

public_constant
	mod.public_constant(<symbol>+)
	 → mod

	 Makes the given constants (which must already
	 have been defined) public, overriding the effect of a
	 previous call to
	
 ​privante_constant​
 .
	
	​ 	​module​ A

	​ 	 B = ​"my constant"​

	​ 	 private_constant :B

	​ 	 puts ​"Inside A, B = ​#{B.inspect}​"​

	​ 	 public_constant :B

	​ 	​end​

	​ 	

	​ 	puts ​"Outside A, A::B = ​#{A::B.inspect}​"​

Produces:
	​ 	Inside A, B = "my constant"

	​ 	Outside A, A::B = "my constant"

public_instance_method
	mod.public_instance_method(symbol)
	 → unbound_method

	 Returns an
	 ​UnboundMethod​
	 representing the given public instance
	 method in mod. See also Module#instance_method, which
	 ignores scope.
	
	​ 	​class​ Test

	​ 	 ​def​ method_a; ​end​

	​ 	private

	​ 	 ​def​ method_b; ​end​

	​ 	​end​

	​ 	puts ​"method_a is ​#{Test.public_instance_method(:method_a)}​"​

	​ 	puts ​"method_b is ​#{Test.public_instance_method(:method_b)}​"​

Produces:
	​ 	 from prog.rb:7:in `<main>'

	​ 	method_a is #<UnboundMethod: Test#method_a>

	​ 	prog.rb:7:in `public_instance_method': method `method_b' for class `Test' is

	​ 	private (NameError)

public_instance_methods
	mod.public_instance_methods(inc_super=​true​)
	 → array

	 Returns a list of the public instance methods defined in
	 mod. If the optional parameter is true, the
	 methods of any ancestors are included.
	

public_method_defined?
	mod.public_method_defined?(symbol) → ​true​ or ​false​

	 Returns ​true​ if the named public method is defined by mod
	 (or its included modules and, if mod is a class, its
	 ancestors).
	
	​ 	​module​ A

	​ 	 ​def​ method1; ​end​

	​ 	​end​

	​ 	​class​ B

	​ 	 protected

	​ 	 ​def​ method2; ​end​

	​ 	​end​

	​ 	​class​ C < B

	​ 	 include A

	​ 	 ​def​ method3; ​end​

	​ 	​end​

	​ 	

	​ 	A.method_defined? :method1 ​# => true​

	​ 	C.public_method_defined? ​"method1"​ ​# => true​

	​ 	C.public_method_defined? ​"method2"​ ​# => false​

	​ 	C.method_defined? ​"method2"​ ​# => true​

remove_class_variable
	remove_class_variable(symbol) → obj

	 Removes the definition of the symbol, returning that
	 variable’s value. Prior to Ruby 1.9, this method was private.
	
	​ 	​class​ Dummy

	​ 	 @@var = 99

	​ 	​end​

	​ 	Dummy.class_eval { p ​defined?​ @@var }

	​ 	puts Dummy.remove_class_variable(:@@var)

	​ 	Dummy.class_eval { p ​defined?​ @@var }

Produces:
	​ 	prog.rb:4: warning: class variable access from toplevel

	​ 	nil

	​ 	prog.rb:6: warning: class variable access from toplevel

	​ 	99

	​ 	nil

Module: Private instance methods
alias_method
	alias_method(new_id, old_id) → mod

	 Makes new_id
	 a new copy of the method old_id. This can be
	 used to retain access to methods that
	 are overridden.
	
	​ 	​module​ Mod

	​ 	 alias_method :orig_exit, :exit

	​ 	 ​def​ exit(code=0)

	​ 	 puts ​"Exiting with code ​#{code}​"​

	​ 	 orig_exit(code)

	​ 	 ​end​

	​ 	​end​

	​ 	include Mod

	​ 	exit(99)

Produces:
	​ 	Exiting with code 99

append_features
	append_features(other_mod)
	 → mod

	 When this module is included in another, Ruby calls
	
 ​append_features​
 in this module, passing
	 it the receiving module in other_mod. Ruby’s
	 default implementation is to add the constants, methods,
	 and module variables of this module to
	 other_mod if this module has not already been
	 added to other_mod or one of its
	 ancestors. Prior to Ruby 1.8, user code often redefined
	
 ​append_features​
 , added its own
	 functionality, and then invoked
 ​super​
 to
	 handle the real include. Now you should instead implement
	 the method Module#included.
	

attr
	attr(<symbol>+) → ​nil​

	 An alias for Module#attr_reader (as of Ruby 1.9).
	

attr_accessor
	attr_accessor(<symbol>+) → ​nil​

	 Creates a reader and a writer method for each symbol passed as
	 an argument. These methods provide access to the underlying
	 instance variables of the name name (with a leading @ sign).
	
	​ 	​class​ Test

	​ 	 attr_accessor :name, :likes

	​ 	 ​def​ initialize(name, likes)

	​ 	 @name = name

	​ 	 @likes = likes

	​ 	 ​end​

	​ 	​end​

	​ 	d = Test.new(​"Dave"​, ​"Ruby"​)

	​ 	d.name = ​"Chad"​

	​ 	d.name ​# => "Chad"​

	​ 	d.likes ​# => "Ruby"​

attr_reader
	attr_reader(<symbol>+) → ​nil​

	 Creates instance variables and corresponding methods that
	 return their values.
	
	​ 	​class​ Test

	​ 	 attr_reader :name, :likes

	​ 	 ​def​ initialize(name, likes)

	​ 	 @name = name

	​ 	 @likes = likes

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	d = Test.new(​"Dave"​, ​"Ruby"​)

	​ 	d.name ​# => "Dave"​

	​ 	d.likes ​# => "Ruby"​

attr_writer
	attr_writer(<symbol>+) → ​nil​

	 Creates an accessor method to allow assignment to the attribute
	 symbol​.id2name​.
	
	​ 	​class​ Test

	​ 	 attr_writer :name, :likes

	​ 	 ​def​ initialize(name, likes)

	​ 	 @name = name

	​ 	 @likes = likes

	​ 	 ​end​

	​ 	​end​

	​ 	d = Test.new(​"Dave"​, ​"Ruby"​)

	​ 	d.name = ​"Chad"​

	​ 	d ​# => #<Test:0x007fc52210f8a8 @name="Chad", @likes="Ruby">​

define_method
	define_method(symbol, method) → method
	define_method(symbol) { … } → proc

	 Defines an instance method in the receiver. The
	 method parameter can be a
	 ​Proc​,
	 a ​Method​, or an
	 ​UnboundMethod​
	 object. If a block is specified, it is used as the method
	 body. This block is evaluated using
	
 ​instance_eval​
 . This is tricky to
	 demonstrate because
 ​define_method​

	 is private. (This is why we resort to the
	
 ​send​
 hack in this example.) See
	 also Object#define_singleton_method.
	
	​ 	​class​ A

	​ 	 ​def​ fred

	​ 	 puts ​"In Fred"​

	​ 	 ​end​

	​ 	 ​def​ create_method(name, &block)

	​ 	 self.class.send(:define_method, name, &block)

	​ 	 ​end​

	​ 	 define_method(:wilma) { puts ​"Charge it!"​ }

	​ 	​end​

	​ 	​class​ B < A

	​ 	 define_method(:barney, instance_method(:fred))

	​ 	​end​

	​ 	b = B.new

	​ 	b.barney

	​ 	b.wilma

	​ 	b.create_method(:betty) { p self }

	​ 	b.betty

Produces:
	​ 	In Fred

	​ 	Charge it!

	​ 	#<B:0x007fb6bb846600>

	 Note that it is possible to define methods with names that are
	 not valid if you were to use the ​def​ keyword. These methods
	 cannot be invoked directly.
	
	​ 	​class​ Silly

	​ 	 define_method(​"Oh !@!#^!"​) { ​"As Snoopy says"​ }

	​ 	​end​

	​ 	Silly.new.send(​"Oh !@!#^!"​) ​# => "As Snoopy says"​

extend_object
	extend_object(obj) → obj

	 Extends the specified object by adding this module’s constants
	 and methods (which are added as singleton methods). This is the
	 callback method used by Object#extend.
	
	​ 	​module​ Picky

	​ 	 ​def​ Picky.extend_object(o)

	​ 	 ​if​ String === o

	​ 	 puts ​"Can't add Picky to a String"​

	​ 	 ​else​

	​ 	 puts ​"Picky added to ​#{o.class}​"​

	​ 	 ​super​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	(s = Array.new).extend Picky ​# Call Object.extend​

	​ 	(s = ​"quick brown fox"​).extend Picky

Produces:
	​ 	Picky added to Array

	​ 	Can't add Picky to a String

extended
	extended(other_mod)

	 Callback invoked whenever the receiver is used to extend an object.
	 The object is passed as a parameter.
	 This should be used in preference to
	 Module#extend_object if your code wants to perform
	 some action when a module is used to extend an object.
	
	​ 	​module​ A

	​ 	 ​def​ A.extended(obj)

	​ 	 puts ​"​#{self}​ extending '​#{obj}​'"​

	​ 	 ​end​

	​ 	​end​

	​ 	​"cat"​.extend(A)

Produces:
	​ 	A extending 'cat'

include
	include(<other_mod>+) → mod

	 Includes the listed modules in
	 self. Typically used to make the instance
	 methods in the included modules available in the
	 receiver. Equivalent to the
	 following code:
	
	​ 	​def​ include(*modules)

	​ 	 modules.reverse_each ​do​ |mod|

	​ 	 mod.append_features(self) ​# make the methods available​

	​ 	 mod.included(self) ​# invoke a callback​

	​ 	 ​end​

	​ 	​end​

 See also Module#prepend.«2.0»

included
	included(other_mod)

	 Callback invoked whenever the receiver is included in another
	 module or class. This should be used in preference to
	 Module#append_features if your code wants to perform
	 some action when a module is included in another.
	
	​ 	​module​ A

	​ 	 ​def​ A.included(mod)

	​ 	 puts ​"​#{self}​ included in ​#{mod}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	​module​ Enumerable

	​ 	 include A

	​ 	​end​

Produces:
	​ 	A included in Enumerable

method_added
	method_added(symbol)

	 Invoked as a callback whenever a method is added to the receiver.
	
	​ 	​module​ Chatty

	​ 	 ​def​ Chatty.method_added(id)

	​ 	 puts ​"Adding ​#{id.id2name}​"​

	​ 	 ​end​

	​ 	 ​def​ one; ​end​

	​ 	​end​

	​ 	​module​ Chatty

	​ 	 ​def​ two; ​end​

	​ 	​end​

Produces:
	​ 	Adding one

	​ 	Adding two

method_removed
	method_removed(symbol)

	 Invoked as a callback whenever a method is removed from the receiver.
	
	​ 	​module​ Chatty

	​ 	 ​def​ Chatty.method_removed(id)

	​ 	 puts ​"Removing ​#{id.id2name}​"​

	​ 	 ​end​

	​ 	 ​def​ one

	​ 	 ​end​

	​ 	​end​

	​ 	​module​ Chatty

	​ 	 remove_method(:one)

	​ 	​end​

Produces:
	​ 	Removing one

method_undefined
	method_undefined(symbol)

	 Invoked as a callback whenever a method is undefined in the receiver.
	
	​ 	​module​ Chatty

	​ 	 ​def​ Chatty.method_undefined(id)

	​ 	 puts ​"Undefining ​#{id.id2name}​"​

	​ 	 ​end​

	​ 	 ​def​ one

	​ 	 ​end​

	​ 	​end​

	​ 	​module​ Chatty

	​ 	 undef_method(:one)

	​ 	​end​

Produces:
	​ 	Undefining one

module_function
	module_function(<symbol>*) → mod

	 Creates module functions for the named methods. These
	 functions may be called with the module as a
	 receiver. Module functions are copies of the original
	 and so may be changed independently. The instance-method
	 versions are made private. If used with no arguments,
	 subsequently defined methods become module functions.
	
	​ 	​module​ Mod

	​ 	 ​def​ one

	​ 	 ​"This is one"​

	​ 	 ​end​

	​ 	 module_function :one

	​ 	​end​

	​ 	

	​ 	​class​ Cls

	​ 	 include Mod

	​ 	 ​def​ call_one

	​ 	 one

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Mod.one ​# => "This is one"​

	​ 	c = Cls.new

	​ 	c.call_one ​# => "This is one"​

	​ 	​module​ Mod

	​ 	 ​def​ one

	​ 	 ​"This is the new one"​

	​ 	 ​end​

	​ 	​end​

	​ 	Mod.one ​# => "This is one"​

	​ 	c.call_one ​# => "This is the new one"​

prepend
	prepend(<other_mod>+) → mod

	 Includes the listed modules in self. Unlike
 Module#include. if the module
 contains methods with the same names as those in the
 including module, the included modules methods take
 precedence.«2.0»
	
	​ 	​module​ Mod

	​ 	 ​def​ meth; ​"In module Mod"​; ​end​

	​ 	​end​

	​ 	​class​ Cls1

	​ 	 ​def​ meth; ​"In class Cls1"​; ​end​

	​ 	 include Mod

	​ 	​end​

	​ 	​class​ Cls2

	​ 	 ​def​ meth; ​"In class Cls2"​; ​end​

	​ 	 prepend Mod

	​ 	​end​

 See also Module#include.«2.0»

private
	private(<symbol>*) → mod

	 With no arguments, sets the default visibility for
	 subsequently defined methods to private. With arguments, sets the named methods
	 to have private visibility. See “Access Control”.
	
	​ 	​module​ Mod

	​ 	 ​def​ a; ​end​

	​ 	 ​def​ b; ​end​

	​ 	

	​ 	 private

	​ 	

	​ 	 ​def​ c; ​end​

	​ 	

	​ 	 private :a

	​ 	​end​

	​ 	Mod.private_instance_methods ​# => [:a, :c]​

protected
	protected(<symbol>*) → mod

	 With no arguments, sets the default visibility for
	 subsequently defined methods to protected. With arguments, sets the named methods
	 to have protected visibility. See “Access Control”.
	

public
	public(<symbol>*) → mod

	 With no arguments, sets the default visibility for
	 subsequently defined methods to public. With arguments, sets the named methods
	 to have public visibility. See “Access Control”.
	

refine
	refine(class) { … } → refmod

 Defines a refinement for the given class. This is
 activated from the top-level of a source file with the
 Object#using method, which applies the
 methods defined in the block to the given class for the
 remainder of that source file. The tutorial has more
 information.«2.0»
 ​refine​ returns a special kind of module object
 that represents the change to be made to the host class.

	​ 	​module​ SuperUpcase

	​ 	 refine String ​do​

	​ 	 ​def​ upcase

	​ 	 ​"!​#{​super​}​!"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	puts ​"wombat"​.upcase

	​ 	using SuperUpcase

	​ 	puts ​"wombat"​.upcase

Produces:
	​ 	WOMBAT

	​ 	!WOMBAT!

remove_const
	remove_const(symbol) → obj

	 Removes the definition of the given constant, returning that
	 constant’s value. Predefined classes and singleton objects (such
	 as true) cannot be removed.
	

remove_method
	remove_method(symbol) → mod

	 Removes the method identified by symbol from
	 the current class. For an example, see Module#undef_method.
	

undef_method
	undef_method(<symbol>+) → mod

	 Prevents the current class from responding to calls to the named
	 method(s). Contrast this with
	
 ​remove_method​
 , which
	 deletes the method from the particular class; Ruby will still
	 search superclasses and mixed-in modules for a possible
	 receiver.
	
	​ 	​class​ Parent

	​ 	 ​def​ hello

	​ 	 puts ​"In parent"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Child < Parent

	​ 	 ​def​ hello

	​ 	 puts ​"In child"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	c = Child.new

	​ 	c.hello

	​ 	

	​ 	​class​ Child

	​ 	 remove_method :hello ​# remove from child, still in parent​

	​ 	​end​

	​ 	c.hello

	​ 	

	​ 	​class​ Child

	​ 	 undef_method :hello ​# prevent any calls to 'hello'​

	​ 	​end​

	​ 	c.hello

Produces:
	​ 	In child

	​ 	In parent

	​ 	prog.rb:24:in `<main>': undefined method `hello' for #<Child:0x007fcfa4042ee8>

	​ 	(NoMethodError)

Class Mutex < Object

 A mutex is a semaphore object that can be used to synchronize access
 to resources shared across threads. We discussed mutexes
 (and other synchronization mechanisms) in
 Section 12.4, ​Mutual Exclusion​. Because the code examples tend to be long, we
 haven’t duplicated them in this library description.

Mutex: Instance methods
lock
	mutex.lock → mutex

	 Takes a lock on mutex. Suspends if
	 mutex is already locked by another thread and
	 raises a
	 ​ThreadError​
	 if the mutex is already locked by the calling thread
 or if called from a trap handler«2.0».
	

locked?
	mutex.locked? → ​true​ or ​false​

	 Returns the current locked state of mutex.
	

owned?
	mutex.owned? → ​true​ or ​false​

	 Returns ​true​ if the mutex is
	 held by the current thread. Experimental in
	 Ruby 2.0«2.0».
	

sleep
	mutex.sleep(time | ​nil​) → seconds_slept

	 Releases the current thread’s lock on mutex,
	 sleeps for time seconds (or forever if
	 ​nil​ is passed), and then regains the
	 lock. Returns the number of seconds actually
	 slept. This may be less than the number requested,
	 so it is wise to check. May not be called
	 from a trap handler«2.0».

	

synchronize
	mutex.synchronize { … } → obj

	 Locks mutex, executes the block, and then unlocks
	 mutex. Returns the value returned by the block.
 May not be called from a trap handler«2.0».
	

try_lock
	mutex.try_lock → ​true​ or ​false​

	 If mutex is not currently locked, locks it and
	 returns ​true​. Otherwise, returns
	 ​false​. (That is,
	
 ​try_lock​
 is like
	
 ​lock​
 , but it will never wait for a
	 mutex to become available.)
 May not be called from a trap handler«2.0».
	

unlock
	mutex.unlock → mutex

	 Unlock mutex, which must be locked by the current thread.
 May not be called from a trap handler«2.0».
	

Class NilClass < Object

 The class of the singleton object ​nil​.

NilClass: Instance methods
&
	​nil​ & obj → ​false​

	 And—Returns ​false​. Because obj is an
	 argument to a method call, it is always evaluated; there is no
	 short-circuit evaluation in this case.
	
	​ 	nil && puts(​"logical and"​)

	​ 	nil & puts(​"and"​)

Produces:
	​ 	and

^
	​nil​ ^ obj → ​true​ or ​false​

	 Exclusive Or—Returns ​false​ if obj is ​nil​ or
	 ​false​ and returns
	 ​true​ otherwise.
	

|
	​nil​ | obj → ​true​ or ​false​

	 Or—Returns ​false​ if obj is
	 ​nil​ or ​false​ and returns ​true​ otherwise.
	
	​ 	nil | false ​# => false​

	​ 	nil | 99 ​# => true​

nil?
	​nil​.nil? → ​true​

	 Always returns ​true​.
	

rationalize
	int.rationalize(eps=nil) → Rational(0)

	 Returns ​Rational("0")​. The argument is always
	 ignored.
	
	​ 	nil.rationalize ​# => (0/1)​

to_a
	​nil​.to_a → []

	 Always returns an empty array.
	
	​ 	nil.to_a ​# => []​

to_c
	​nil​.to_c → Complex(0,0)

	 Always returns the origin of the complex plane.
	
	​ 	nil.to_c ​# => (0+0i)​

to_f
	​nil​.to_f → 0.0

	 Always returns zero.
	
	​ 	nil.to_f ​# => 0.0​

to_h
	​nil​.to_h → {}

	 Always returns an empty hash.«2.0»
	
	​ 	nil.to_h ​# => {}​

to_i
	​nil​.to_i → 0

	 Always returns zero.
	
	​ 	nil.to_i ​# => 0​

to_r
	​nil​.to_r → Rational(0,1)

	 Always returns zero as a rational number.
	
	​ 	nil.to_r ​# => (0/1)​

to_s
	​nil​.to_s → ""

	 Always returns the empty string.
	
	​ 	nil.to_s ​# => ""​

Class Numeric < Object
	Subclasses are:
	Float, Integer

 Numeric is the fundamental base type for the abstract class
 ​Integer​ and the concrete number classes
 ​Bignum​,
 ​Complex​,
 ​Float​, ​Fixnum​, and
 ​Rational​. Many methods in
 ​Numeric​ are overridden in child classes, and
 ​Numeric​ takes some liberties by calling methods in
 these child classes. Here’s a complete list of the methods defined in all
 five classes:

Table 20. Methods in the numeric classes
		Numeric	Integer	Fixnum	Bignum	Float	Rational	Complex
	
​%​
	
✓
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​&​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​*​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​**​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​+​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​+@​
	
✓
	
–
	
–
	
–
	
–
	
–
	
–

	
​-​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​-@​
	
✓
	
–
	
✓
	
✓
	
✓
	
–
	
✓

	
​/​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​<​
	
–
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​<<​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​<=​
	
–
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​<=>​
	
✓
	
–
	
✓
	
✓
	
✓
	
✓
	
–

	
​==​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​===​
	
–
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​>​
	
–
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​>=​
	
–
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​>>​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​[]​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​^​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​abs​
	
✓
	
–
	
✓
	
✓
	
✓
	
–
	
✓

	
​abs2​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​angle​
	
✓
	
–
	
–
	
–
	
✓
	
–
	
✓

	
​arg​
	
✓
	
–
	
–
	
–
	
✓
	
–
	
✓

	
​ceil​
	
✓
	
✓
	
–
	
–
	
✓
	
✓
	
–

	
​chr​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​coerce​
	
✓
	
–
	
–
	
✓
	
✓
	
✓
	
✓

	
​conj​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​conjugate​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​denominator​
	
✓
	
✓
	
–
	
–
	
✓
	
✓
	
✓

	
​div​
	
✓
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​divmod​
	
✓
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​downto​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​eql?​
	
✓
	
–
	
–
	
✓
	
✓
	
–
	
✓

	
​even?​
	
–
	
✓
	
✓
	
✓
	
–
	
–
	
–

	
​fdiv​
	
✓
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​finite?​
	
–
	
–
	
–
	
–
	
✓
	
–
	
–

	
​floor​
	
✓
	
✓
	
–
	
–
	
✓
	
✓
	
–

	
​gcd​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​gcdlcm​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​i​
	
✓
	
–
	
–
	
–
	
–
	
–
	
–

	
​imag​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​imaginary​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​infinite?​
	
–
	
–
	
–
	
–
	
✓
	
–
	
–

	
​integer?​
	
✓
	
✓
	
–
	
–
	
–
	
–
	
–

	
​lcm​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​magnitude​
	
✓
	
–
	
✓
	
✓
	
✓
	
–
	
✓

	
​modulo​
	
✓
	
–
	
✓
	
✓
	
✓
	
–
	
–

	
​nan?​
	
–
	
–
	
–
	
–
	
✓
	
–
	
–

	
​next​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​nonzero?​
	
✓
	
–
	
–
	
–
	
–
	
–
	
–

	
​numerator​
	
✓
	
✓
	
–
	
–
	
✓
	
✓
	
✓

	
​odd?​
	
–
	
✓
	
✓
	
✓
	
–
	
–
	
–

	
​ord​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​phase​
	
✓
	
–
	
–
	
–
	
✓
	
–
	
✓

	
​polar​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​pred​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​quo​
	
✓
	
–
	
–
	
–
	
✓
	
✓
	
✓

	
​rationalize​
	
–
	
✓
	
–
	
–
	
✓
	
✓
	
✓

	
​real​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​real?​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​rect​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​rectangular​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​remainder​
	
✓
	
–
	
–
	
✓
	
–
	
–
	
–

	
​round​
	
✓
	
✓
	
–
	
–
	
✓
	
✓
	
–

	
​size​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​step​
	
✓
	
–
	
–
	
–
	
–
	
–
	
–

	
​succ​
	
–
	
✓
	
✓
	
–
	
–
	
–
	
–

	
​times​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​to_c​
	
✓
	
–
	
–
	
–
	
–
	
–
	
✓

	
​to_f​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​to_i​
	
–
	
✓
	
–
	
–
	
✓
	
✓
	
✓

	
​to_int​
	
✓
	
✓
	
–
	
–
	
✓
	
–
	
–

	
​to_r​
	
–
	
✓
	
–
	
–
	
✓
	
✓
	
✓

	
​to_s​
	
–
	
–
	
✓
	
✓
	
✓
	
✓
	
✓

	
​truncate​
	
✓
	
✓
	
–
	
–
	
✓
	
✓
	
–

	
​upto​
	
–
	
✓
	
–
	
–
	
–
	
–
	
–

	
​zero?​
	
✓
	
–
	
✓
	
–
	
✓
	
–
	
–

	
​|​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

	
​~​
	
–
	
–
	
✓
	
✓
	
–
	
–
	
–

 Mixes in

	Comparable
	
<, <=, ==, >, >=, between?

Numeric: Instance methods
+@
	+num → num

	 Unary Plus—Returns the receiver’s value.
	

-@
	--num → numeric

	 Unary Minus—Returns the receiver’s value, negated.
	

<=>
	num <=> other → 0 or ​nil​

	 Returns zero if num equals other and returns ​nil​ otherwise.
	

%
	num % numeric → numeric

	 Synonym for Numeric#module. Equivalent to
	 ​num.divmod(numeric)[1]​.
	

abs
	num.abs → numeric

	 Returns the absolute value of num.
	
	​ 	12.abs ​# => 12​

	​ 	(-34.56).abs ​# => 34.56​

	​ 	-34.56.abs ​# => 34.56​

abs2
	num.abs2 → numeric

	Returns the square of (the absolute value of) num.

	​ 	12.abs2 ​# => 144​

	​ 	(-34.56).abs2 ​# => 1194.3936​

	​ 	-34.56.abs2 ​# => 1194.3936​

angle
	num.angle → numeric

	 For noncomplex numbers, returns π for negative
	 numbers, 0 otherwise. See ​Complex​ for
	 more details.
	

arg
	num.arg → numeric

	 Synonym for Numeric#angle.
	

ceil
	num.ceil → int

	 Returns the smallest integer greater than or equal to
	 num. Class ​Numeric​ achieves this by converting itself to a
	 ​Float​ and then invoking Float#ceil.
	
	​ 	1.ceil ​# => 1​

	​ 	1.2.ceil ​# => 2​

	​ 	(-1.2).ceil ​# => -1​

	​ 	(-1.0).ceil ​# => -1​

coerce
	num.coerce(numeric) → array

	
 ​coerce​
 is both an instance method
	 of ​Numeric​ and part of a type
	 conversion protocol. When a number is asked to perform an
	 operation and it is passed a parameter of a class different
	 from its own, it must first coerce both itself and that
	 parameter into a common class so that the operation makes
	 sense. For example, in the expression ​1 + 2.5​, the
	 ​Fixnum​ ​1​ must be converted to a
	 ​Float​ to make it compatible with
	 ​2.5​. This conversion is performed by
	
 ​coerce​
 . For all numeric objects,
	 coerce is straightforward: if numeric is the same
	 type as num, returns an array containing
	 numeric and num. Otherwise, returns an
	 array with both numeric and num
	 represented as ​Float​ objects.
	
	​ 	1.coerce(2.5) ​# => [2.5, 1.0]​

	​ 	1.2.coerce(3) ​# => [3.0, 1.2]​

	​ 	1.coerce(2) ​# => [2, 1]​

	 If a numeric object is asked to operate on a non-numeric, it
	 tries to invoke
 ​coerce​
 on that other object. For
	 example, if you write this:
	
	​ 	1 + ​"2"​

	 then Ruby will effectively execute the code as follows:
	
	​ 	n1, n2 = ​"2"​.coerce(1)

	​ 	n2 + n1

	 In the more general case, this won’t work, because most non-numerics
	 don’t define a
 ​coerce​
 method. However, you can use this
	 (if you feel so inclined) to implement part of Perl’s automatic
	 conversion of strings to numbers in expressions.
	
	​ 	​class​ String

	​ 	 ​def​ coerce(other)

	​ 	 ​case​ other

	​ 	 ​when​ Integer

	​ 	 ​begin​

	​ 	 ​return​ other, Integer(self)

	​ 	 ​rescue​

	​ 	 ​return​ Float(other), Float(self)

	​ 	 ​end​

	​ 	 ​when​ Float

	​ 	 ​return​ other, Float(self)

	​ 	 ​else​ ​super​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	1 + ​"2"​ ​# => 3​

	​ 	1 - ​"2.3"​ ​# => -1.2999999999999998​

	​ 	1.2 + ​"2.3"​ ​# => 3.5​

	​ 	1.5 - ​"2"​ ​# => -0.5​

	
 ​coerce​
 is discussed in the tutorial.

conj
	num.conj → num

	 Synonym for Numeric#conjugate.
	

conjugate
	num.conjugate → num

	 Returns the complex conjugate of num. For noncomplex numbers,
	 returns num.
	

denominator
	num.denominator → integer

	 Returns the denominator of the rational representation of num.
	
	​ 	1.denominator ​# => 1​

	​ 	1.5.denominator ​# => 2​

	​ 	num = 1.0/3

	​ 	num.to_r ​# => (6004799503160661/18014398509481984)​

	​ 	num.denominator ​# => 18014398509481984​

div
	num.div(numeric) → int

	 Uses / to perform division and then converts the result to an
	 integer. ​Numeric​ does not define the / operator; this
	 is left to subclasses.
	

divmod
	num.divmod(numeric) → array

	 Returns an array containing
	 the quotient and modulus obtained by
	 dividing num by numeric.
	 If ​q,r = x.divmod(y)​, then ​q = floor(float(x) / float(y))​ and
	 ​x = q * y + r​.
	 The quotient is rounded toward -infinity.
	

Table 21. Division, modulo, and remainder
	a	b	a.divmod(b)	a/b	a.modulo(b)	(a.remainder(b)
	
	

		The modulo operator % always has the sign of the divisor, whereas
		
 ​remainder​
 has the sign of the dividend.
	

	
	13	4	[3, 1]	3	1	1
	13	-4	[-4, -3]	-4	-3	1
	-13	4	[-4, 3]	-4	3	-1
	-13	-4	[3, -1]	3	-1	-1
	11.5	4	[2, 3.5]	2.875	3.5	3.5
	11.5	-4	[-3, -0.5]	-2.875	-0.5	3.5
	-11.5	4	[-3, 0.5]	-2.875	0.5	-3.5
	-11.5	-4	[2, -3.5]	2.875	-3.5	-3.5

eql?
	num.eql?(numeric) → ​true​ or ​false​

	 Returns ​true​ if num and numeric are the same
	 type and have equal values.
	
	​ 	1 == 1.0 ​# => true​

	​ 	1.eql?(1.0) ​# => false​

	​ 	(1.0).eql?(1.0) ​# => true​

fdiv
	num.fdiv(numeric) → numeric

	 Synonym for Numeric#quo.
	

floor
	num.floor → int

	 Returns the largest integer less than or equal to
	 num. ​Numeric​ implements this by converting int
	 to a ​Float​ and invoking Float#floor.
	
	​ 	1.floor ​# => 1​

	​ 	(-1).floor ​# => -1​

i
	num.i → Complex(0, num)

	Returns the complex number whose imaginary part is num.

imag
	num.imag → 0

	Synonym for Numeric#imaginary.

imaginary
	num.image → 0

	Returns the imaginary part of num. Always 0 unless num is a
	complex number.

	​ 	1.imaginary ​# => 0​

integer?
	num.integer? → ​true​ or ​false​

	 Returns ​true​ if num is an ​Integer​ (including
	 ​Fixnum​ and ​Bignum​).
	

magnitude
	num.magnitude → int or float

	 Returns the magnitude of num (the distance of num from the
 origin of the number line). See also Complex#magnitude.
	
	​ 	3.magnitude ​# => 3​

	​ 	-3.0.magnitude ​# => 3.0​

modulo
	num.modulo(numeric) → numeric

	 Equivalent to ​num.divmod(numeric)[1]​.
	

nonzero?
	num.nonzero? → num or ​nil​

	 Returns num if num is not zero and returns ​nil​ otherwise. This
	 behavior is useful when chaining comparisons.
	
	​ 	a = ​%w(z Bb bB bb BB a aA Aa AA A)​

	​ 	b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }

	​ 	b ​# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]​

numerator
	num.numerator → integer

	 Returns the numerator of the rational representation of num.
	
	​ 	1.numerator ​# => 1​

	​ 	1.5.numerator ​# => 3​

	​ 	num = 1.0/3

	​ 	num.to_r ​# => (6004799503160661/18014398509481984)​

	​ 	num.numerator ​# => 6004799503160661​

phase
	num.phase → [magnitude, angle]

	 Returns the phase angle of num. See ​Complex​ for more
	 information. For noncomplex numbers, returns 0 if num is
	 nonnegative, π otherwise.
	
	​ 	123.phase ​# => 0​

polar
	num.polar → [magnitude, angle]

	 Returns num in polar form. See ​Complex​ for more information. For
	 noncomplex numbers, returns ​[num,0]​.
	
	​ 	123.polar ​# => [123, 0]​

quo
	num.quo(numeric) → numeric

	 Equivalent to Numeric#/ but
	 overridden in subclasses. The intent of
	
 ​quo​
 is to return the most accurate
	 result of division (in context). Thus, ​1.quo(2)​
	 will equal the rational number
	 1/2, while
	 ​1/2​ equals 0.
	

real
	num.real → num

	 Returns the real part of num. Always num unless num is a
	 complex number.
	
	​ 	1.real ​# => 1​

	​ 	1.5.real ​# => 1.5​

real?
	num.real? → ​true​

	 All the built-in numeric classes except ​Complex​ represent
	 scalar types and hence respond ​true​ to
	
 ​real?​
 .
	
	​ 	1.real? ​# => true​

	​ 	1.0.real? ​# => true​

	​ 	Complex(1,0).real? ​# => false​

rect
	num.rect → [num, 0]

	 Returns an array containing the real and imaginary components of
	 num. See also Complex#rect.
	
	​ 	1.5.rect ​# => [1.5, 0]​

rectangular
	num.rectangular → [num, 0]

	 Synonym for Numeric#rect.
	

remainder
	num.remainder(numeric)
	 → another_numeric

	 Returns ​num -
	 (num/numeric).truncate​. See
	 Table 21, ​Division, modulo, and remainder​.
	

round
	num.round → int

	 Rounds num to the nearest integer.
	

step
	num.step(end_num, step)
	 { |i| … }
	 → num
	num.step(end_num, step)
	 → enumerator

	 Invokes block with the sequence of numbers
	 starting at num, incremented by
	 step on each call. The loop finishes when the
	 value to be passed to the block is greater than
	 end_num (if step is positive) or less
	 than end_num (if step is negative). If
	 all the arguments are integers, the loop operates using an
	 integer counter. If any of the arguments are floating-point
	 numbers, all are converted to floats, and the loop is
	 executed ​floor(n + n*Float::EPSILON)+1​ times,
	 where ​n = (end_num -
	 num)/step​. Otherwise, the loop starts
	 at num, uses either the ​<​ or
	 ​>​ operator to compare the counter against
	 end_num, and increments itself using the
	 ​+​ operator. Returns an enumerator if no
	 block is given.
	
	​ 	1.step(10, 2) {|i| print i, ​" "​ }

Produces:
	​ 	1 3 5 7 9

	​ 	Math::E.step(Math::PI, 0.2) {|f| print f, ​" "​ }

Produces:
	​ 	2.718281828459045 2.9182818284590453 3.118281828459045

to_c
	num.to_c → complex

	 Returns num as a complex number.
	
	​ 	123.to_c ​# => 123+0i​

to_int
	num.to_int → int

	 Invokes the child class’s
 ​to_i​
 method to convert
	 num to an integer.
	

truncate
	num.truncate → int

	 Returns num truncated to an integer.
	

zero?
	num.zero? → ​true​ or ​false​

	 Returns ​true​ if num has a zero value.
	

Class Object < BasicObject
	Subclasses are:
	

 ​Object​ is the parent class of (almost) all
 classes in Ruby. Its methods are therefore available to all
 objects unless explicitly overridden.

 ​Object​ mixes in the
 ​Kernel​ module, making the built-in kernel
 functions globally accessible. Although the instance methods of
 ​Object​ are defined by the
 ​Kernel​ module, we have chosen to document
 them here for clarity.

 In the descriptions that follow, the
 parameter symbol refers to a name, which is either a
 quoted string or a symbol (such as ​:name​).

Object: Instance methods
===
	obj === other_obj → ​true​ or ​false​

	 Case Equality—A synonym for Object#== but typically overridden by
	 descendents to provide meaningful semantics in ​case​
	 statements.
	

<=>
	obj <=> other_obj
	 → 0 or ​nil​

	 Comparison—For objects, returns 0 if other_obj
	 is the same object as, or is equal to,
	 obj. Otherwise, returns ​nil​
	 (which should be interpreted to mean that there’s no meaning
	 to the comparison). Overridden by subclasses that have
	 comparison semantics.
	

=~
	obj =~ other_obj → ​nil​

	Pattern Match—Overridden by descendents (notably ​Regexp​
	and ​String​) to provide meaningful
	pattern-match semantics.

!~
	obj !~ other_obj → !(obj =~ other_obj)

	 Opposite of
 ​=~​
 .
	

class
	obj.class → klass

	 Returns the class object of obj. This method must always be
	 called with an explicit receiver, because
 ​class​
 is also a
	 reserved word in Ruby.
	
	​ 	1.class ​# => Fixnum​

	​ 	self.class ​# => Object​

clone
	obj.clone → other_obj

	 Produces a shallow copy of obj—the instance
	 variables of obj are copied, but not the objects
	 they reference. Copies the frozen and tainted state of
	 obj, along with any associated singleton
	 class. See also the discussion under Object#dup.
	
	​ 	​class​ Klass

	​ 	 attr_accessor :str

	​ 	​end​

	​ 	s1 = Klass.new ​# => #<Klass:0x007fc1bb10ee90>​

	​ 	s1.str = ​"Hello"​ ​# => "Hello"​

	​ 	s2 = s1.clone ​# => #<Klass:0x007fc1bb10e940 @str="Hello">​

	​ 	s2.str[1,4] = ​"i"​ ​# => "i"​

	​ 	s1.inspect ​# => "#<Klass:0x007fc1bb10ee90 @str=\"Hi\">"​

	​ 	s2.inspect ​# => "#<Klass:0x007fc1bb10e940 @str=\"Hi\">"​

define_singleton_method
	obj.define_singleton_method(symbol, method)
	 → method
	obj.define_singleton_method(symbol) { … } → proc

	 Defines a singleton method in the receiver. The
	 method parameter can be a
	 ​Proc​,
	 ​Method​, or
	 ​UnboundMethod​
	 object. If a block is specified, it is used as the method
	 body. This block is evaluated using
	
 ​instance_eval​
 . See also Module#define_method.
	
	​ 	a = ​"cat"​

	​ 	a.define_singleton_method(:speak) ​do​

	​ 	 ​"​#{self}​ says miaow"​

	​ 	​end​

	​ 	a.speak ​# => "cat says miaow"​

	
 ​define_singleton_method​
 is also
	 useful with Module#class_eval:
	
	​ 	​class​ Test

	​ 	 class_eval ​do​

	​ 	 define_method(:one) { puts ​"instance method"​ }

	​ 	 define_singleton_method(:two) { puts ​"class method"​ }

	​ 	 ​end​

	​ 	​end​

	​ 	t = Test.new

	​ 	t.one

	​ 	Test.two

Produces:
	​ 	instance method

	​ 	class method

display
	obj.display(port=​$>​)
	 → ​nil​

	 Prints obj on the given port (default ​$>​). Equivalent
	 to the following:
	
	​ 	​def​ display(port=$>)

	​ 	 port.write self

	​ 	​end​

	 For example:
	
	​ 	1.display

	​ 	​"cat"​.display

	​ 	[4, 5, 6].display

Produces:
	​ 	1cat[4, 5, 6]

dup
	obj.dup → other_obj

	 Produces a shallow copy of
	 obj—the instance variables of obj
	 are copied, but not the objects they
	 reference.
 ​dup​
 copies the tainted
	 state of obj. See also the discussion under Object#clone. In general,
	
 ​dup​
 duplicates just the state of an
	 object, while
 ​clone​
 also copies the
	 state, any associated singleton class, and any internal
	 flags (such as whether the object is frozen). The taint
	 status is copied by both
 ​dup​
 and
	
 ​clone​
 .
	

enum_for
	obj.enum_for(using=:each, <args>+
	 → enumerator
	obj.enum_for(using=:each, <args>+
	 { |*args| … } → enumerator

	 Synonym for Object#to_enum.
	

eql?
	obj.eql?(other_obj)
	 → ​true​ or ​false​

	 Returns ​true​ if obj and other_obj have the
	 same value. Used by ​Hash​ to test
	 members for equality. For objects of class ​Object​,
	
 ​eql?​
 is synonymous with
 ​==​
 . Subclasses
	 normally continue this tradition, but there are
	 exceptions. ​Numeric​ types, for example, perform type
	 conversion across
 ​==​
 , but not across
 ​eql?​
 . This means the following:
	
	​ 	1 == 1.0 ​# => true​

	​ 	1.eql? 1.0 ​# => false​

extend
	obj.extend(<mod>+) → obj

	 Mix the instance methods from each of the given modules in
	 to obj. See Chapter 24, ​Metaprogramming​
	 for information on how this works. See also Module#extend_object.
	
	​ 	​module​ Mod

	​ 	 ​def​ hello

	​ 	 ​"Hello from Mod.\n"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Klass

	​ 	 ​def​ hello

	​ 	 ​"Hello from Klass.\n"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	k = Klass.new

	​ 	k.hello ​# => "Hello from Klass.\n"​

	​ 	k.extend(Mod) ​# => #<Klass:0x007f9fe190f208>​

	​ 	k.hello ​# => "Hello from Mod.\n"​

	 Writing ​obj.extend(Mod)​ is basically the same as the following:
	
	​ 	​class​ <<obj

	​ 	 include Mod

	​ 	​end​

freeze
	obj.freeze → obj

	 Prevents further modifications to obj. A ​RuntimeError​
	 will be raised if modification is attempted. You cannot
	 unfreeze a frozen object.
	 See also Object#frozen?.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.freeze

	​ 	a << ​"z"​

Produces:
	​ 	prog.rb:3:in `<main>': can't modify frozen Array (RuntimeError)

frozen?
	obj.frozen? → ​true​ or ​false​

	 Returns the freeze status of obj.
	
	​ 	a = [​"a"​, ​"b"​, ​"c"​]

	​ 	a.freeze ​# => ["a", "b", "c"]​

	​ 	a.frozen? ​# => true​

hash
	obj.hash → fixnum

	 Generates a ​Fixnum​ hash value for
	 obj. This function must have the property that
	 ​a.eql?(b)​ implies ​a.hash == b.hash​. The
	 hash value is used by class ​Hash​.
	 Any hash value that exceeds the capacity of a
	 ​Fixnum​ will be truncated before being
	 used. For instances of class ​Object​,
	 the hash is also the
	
 ​object_id​
 . This will not always be
	 the case for subclasses.
	

initialize_clone
	obj.initialize_clone(other)
	 → other_obj or obj

	 Invoked as a callback by Object#clone to initialize the cloned
	 object. The default implementation is to call
	
 ​initialize_copy​
 .
	

initialize_copy
	obj.initialize_copy(other)
	 → other_obj or obj

	 Part of the protocol used by Object#dup and
 ​#clone​
 ,
	
 ​initialize_copy​
 is the fallback
	 method invoked by Object#initialize_clone
	 and
 ​#initialize_dup​
 . If you need
	 specialized copy semantics depending on whether
	
 ​clone​
 or
	
 ​dup​
 is called, override those more
	 specific callbacks. If you want common behavior, override
	
 ​initialize_copy​
 .
	

	 These methods
	 should copy across any state information that
	
 ​dup​
 and
	
 ​clone​
 cannot copy themselves. For
	 example, in the following code,
	 ​a​ and
	 ​b​ reference two instances of
	 the container class, but each instance shares a single
	 string object:
	
	​ 	​class​ Container

	​ 	 attr_accessor :content

	​ 	​end​

	​ 	a = Container.new

	​ 	a.content = ​"cat"​

	​ 	b = a.dup

	​ 	a.content[1..-1] = ​"anary"​

	​ 	a.content ​# => "canary"​

	​ 	b.content ​# => "canary"​

	 The next example uses
 ​initialize_copy​
 to create a new
	 string in the duplicated object.
	
	​ 	​class​ Container

	​ 	 attr_accessor :content

	​ 	 ​def​ initialize_copy(other)

	​ 	 @content = String.new(other.content)

	​ 	 ​end​

	​ 	​end​

	​ 	a = Container.new

	​ 	a.content = ​"cat"​

	​ 	b = a.dup

	​ 	a.content[1..-1] = ​"anary"​

	​ 	a.content ​# => "canary"​

	​ 	b.content ​# => "cat"​

initialize_dup
	obj.initialize_dup(other)
	 → other_obj or obj

	 Invoked as a callback by Object#dup to initialize the duplicated
	 object. The default implementation is to call
	
 ​initialize_copy​
 .
	

inspect
	obj.inspect → string

	 Returns a string containing a human-readable representation
	 of obj. For objects of classes written in Ruby,
	 displays the values of instance variables along with the
	 class name if any instance variables
	 exist. Override this in subclasses to change their
	 behavior when inspected.«2.0»
	
	​ 	[1, 2, 3..4, ​'five'​].inspect ​# => [1, 2, 3..4, "five"]​

	​ 	Time.new.inspect ​# => 2013-05-27 12:32:34 -0500​

	​ 	​class​ Demo

	​ 	 ​def​ initialize; @a, @b = 1, 2; ​end​

	​ 	​end​

	​ 	Demo.new.inspect ​# => #<Demo:0x007fb6d190f1e8 @a=1, @b=2>​

instance_of?
	obj.instance_of?(klass)
	 → ​true​ or ​false​

	 Returns ​true​ if obj is an instance of the
	 given class. See also Object#kind_of?.
	

instance_variable_defined?
	obj.instance_variable_defined?(name)
	 → ​true​ or ​false​

	 Returns ​true​ if the named variable is
	 defined. Note that a common idiom, testing to see whether
	 ​@fred​ is
	 ​nil​, is incorrect in two ways: first
	 the variable could be defined but set to
	 ​nil​, and second it will generate a
	 warning if debug mode is enabled.
	
	​ 	​class​ Fred

	​ 	 ​def​ initialize(p1, p2)

	​ 	 @a, @b = p1, p2

	​ 	 ​end​

	​ 	​end​

	​ 	fred = Fred.new(​'cat'​, 99)

	​ 	fred.instance_variable_defined?(:@a) ​# => true​

	​ 	fred.instance_variable_defined?(​"@b"​) ​# => true​

	​ 	fred.instance_variable_defined?(:@c) ​# => false​

instance_variable_get
	obj.instance_variable_get(symbol)
	 → other_obj

	 Returns the value of the given instance variable (or throws a
	 ​NameError​ exception). The @ part of the variable name
	 should be included for regular instance variables.
	
	​ 	​class​ Fred

	​ 	 ​def​ initialize(p1, p2)

	​ 	 @a, @b = p1, p2

	​ 	 ​end​

	​ 	​end​

	​ 	fred = Fred.new(​'cat'​, 99)

	​ 	fred.instance_variable_get(:@a) ​# => "cat"​

	​ 	fred.instance_variable_get(​"@b"​) ​# => 99​

instance_variable_set
	obj.instance_variable_set(symbol, other_obj)
	 → other_obj

	 Sets the instance variable names by symbol to
	 other_obj, thereby frustrating the efforts of the class’s
	 author to attempt to provide proper encapsulation.
	
	​ 	​class​ Fred

	​ 	 ​def​ initialize(p1, p2)

	​ 	 @a, @b = p1, p2

	​ 	 ​end​

	​ 	​end​

	​ 	fred = Fred.new(​'cat'​, 99)

	​ 	fred.instance_variable_set(:@a, ​'dog'​)

	​ 	fred.inspect ​# => #<Fred:0x007fcd9b047d40 @a="dog", @b=99>​

instance_variables
	obj.instance_variables → array

	 Returns an array of instance variable names for the
	 receiver. Note that simply defining an accessor does not create
	 the corresponding instance variable.
	
	​ 	​class​ Fred

	​ 	 attr_accessor :a1

	​ 	 ​def​ initialize

	​ 	 @iv = 3

	​ 	 ​end​

	​ 	​end​

	​ 	Fred.new.instance_variables ​# => [:@iv]​

is_a?
	obj.is_a?(klass)
	 → ​true​ or ​false​

	 Synonym for Object#kind_of?.
	

kind_of?
	obj.kind_of?(klass)
	 → ​true​ or ​false​

	 Returns ​true​ if klass is the class of obj or
	 if klass is one of the superclasses of obj or modules included
	 in obj.
	
	​ 	​module​ M

	​ 	​end​

	​ 	​class​ A

	​ 	 include M

	​ 	​end​

	​ 	​class​ B < A; ​end​

	​ 	​class​ C < B; ​end​

	​ 	

	​ 	b = B.new

	​ 	b.instance_of? A ​# => false​

	​ 	b.instance_of? B ​# => true​

	​ 	b.instance_of? C ​# => false​

	​ 	b.instance_of? M ​# => false​

	​ 	b.kind_of? A ​# => true​

	​ 	b.kind_of? B ​# => true​

	​ 	b.kind_of? C ​# => false​

	​ 	b.kind_of? M ​# => true​

method
	obj.method(symbol)
	 → meth

	 Looks up the named method in obj, returning a
	 ​Method​ object (or
	 raising ​NameError​). The ​Method​
	 object is a closure, so instance variables and the value of
	 ​self​ remain available.
	
	​ 	​class​ Demo

	​ 	 ​def​ initialize(n)

	​ 	 @iv = n

	​ 	 ​end​

	​ 	 ​def​ hello()

	​ 	 ​"Hello, @iv = ​#{@iv}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	k = Demo.new(99)

	​ 	m = k.method(:hello)

	​ 	m.call ​# => "Hello, @iv = 99"​

	​ 	

	​ 	l = Demo.new(​'Fred'​)

	​ 	m = l.method(​"hello"​)

	​ 	m.call ​# => "Hello, @iv = Fred"​

methods
	obj.methods(regular=​true​) → array

	If regular is ​true​, returns a list of the names of
	methods publicly accessible in obj and obj’s
	ancestors. Otherwise, returns a list of obj’s singleton methods.

	​ 	​class​ Klass

	​ 	 ​def​ my_method; ​end​

	​ 	 ​end​

	​ 	 k = Klass.new

	​ 	 ​def​ k.single; ​end​

	​ 	 k.methods[0..6] ​# => [:single, :my_method, :nil?, :===, :=~, :!~, :eql?]​

	​ 	 k.methods.length ​# => 56​

	​ 	 k.methods(false) ​# => [:single]​

nil?
	obj.nil? → ​true​ or ​false​

	 All objects except ​nil​ return ​false​.
	

object_id
	obj.object_id → fixnum

	 Returns an integer identifier for obj. The same number will be
	 returned on all calls to
 ​object_id​
 for a given object, and no
	 two active objects will share an ID. Object#object_id is a
	 different concept from the ​:name​ notation, which returns the
	 symbol ID of ​name​. Replaces the deprecated Object#id.
	

private_methods
	obj.private_methods → array

	 Returns a list of private methods accessible within obj. This
	 will include the private methods in obj’s ancestors, along
	 with any mixed-in module functions.
	

protected_methods
	obj.protected_methods → array

	 Returns the list of protected methods accessible to obj.
	

public_method
	obj.public_method(symbol) → meth

	 Looks up the named public method in obj, returning a
	 ​Method​
	 object (or raising ​NameError​ if the method is not found or
	 if it is found but not public).
	
	​ 	​class​ Demo

	​ 	 ​def​ initialize(n)

	​ 	 @iv = n

	​ 	 ​end​

	​ 	 ​def​ hello()

	​ 	 puts ​"Hello, @iv = ​#{@iv}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	k = Demo.new(99)

	​ 	m = k.public_method(:hello)

	​ 	m.call

	​ 	

	​ 	l = Demo.new(​'Fred'​)

	​ 	m = l.public_method(:initialize)

	​ 	m.call

Produces:
	​ 	 from prog.rb:15:in `<main>'

	​ 	Hello, @iv = 99

	​ 	prog.rb:15:in `public_method': method `initialize' for class `Demo' is private

	​ 	(NameError)

public_methods
	obj.public_methods → array

	 Synonym for Object#methods.
	

public_send
	obj.public_send(name, <args>+)
	 → obj

	 Invokes obj’s public method name, passing in any
	 arguments. Returns the value returned by the method. See also
	
 ​send​
 , which will also call private and protected
	 methods.
	

respond_to?
	obj.respond_to?(symbol,
	include_priv=​false​)
	 → ​true​ or ​false​

	 Returns ​true​ if obj responds
	 to the given method. Private and
	 protected«2.0» methods are included in the search only
	 if the optional second parameter evaluates to
	 ​true​.
	

respond_to_missing?
	obj.respond_to_missing?(symbol,
	include_priv=​false​)
	 → ​true​ or ​false​

	 A callback invoked by the interpreter if
	
 ​respond_to?​
 is called and does not
	 find a method. This allows classes to indicate that they implement
	 methods via
	
 ​method_missing​
 .
	
	​ 	​class​ Example

	​ 	 ​def​ regular

	​ 	 ​end​

	​ 	 ​def​ method_missing(name, *args, &block)

	​ 	 ​if​ name == :dynamic

	​ 	 ​# do something​

	​ 	 ​else​

	​ 	 ​super​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​def​ respond_to_missing?(name, include_priv)

	​ 	 name == :dynamic

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	ex = Example.new

	​ 	ex.respond_to?(:regular) ​# => true​

	​ 	ex.respond_to?(:dynamic) ​# => true​

	​ 	ex.respond_to?(:other) ​# => false​

send
	obj.send(symbol
	 <, args>* <, &block>) → other_obj

	 Invokes the method identified by symbol, passing it any
	 arguments and block. You can use BasicObject#__send__ if the
	 name
 ​send​
 clashes with an existing method in obj.
	
	​ 	​class​ Klass

	​ 	 ​def​ hello(*args)

	​ 	 ​"Hello "​ + args.join(​' '​)

	​ 	 ​end​

	​ 	​end​

	​ 	k = Klass.new

	​ 	k.send :hello, ​"gentle"​, ​"readers"​ ​# => "Hello gentle readers"​

singleton_class
	obj.singleton_class
	 → klass

	 Returns the singleton class of obj,
	 creating one if necessary.
	 ​TrueClass​,
	 ​FalseClass​, and
	 ​NilClass​ are their own singleton
	 classes. ​Fixnum​ has no singleton
	 class.
	
	​ 	obj = ​"cat"​

	​ 	old_way = ​class​ << obj; self; ​end​

	​ 	new_way = obj.singleton_class

	​ 	

	​ 	old_way ​# => #<Class:#<String:0x007fa2b1864060>>​

	​ 	new_way ​# => #<Class:#<String:0x007fa2b1864060>>​

	​ 	new_way == old_way ​# => true​

singleton_methods
	obj.singleton_methods(all=​true​)
	 → array

	 Returns an array of the names of singleton methods for
	 obj. If the optional all parameter is
	 true, the list will include methods in modules included in
	 obj. (The parameter defaults to
	 ​false​ in versions of Ruby
	 prior to January 2004.)
	
	​ 	​module​ Other

	​ 	 ​def​ three(); ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Single

	​ 	 ​def​ Single.four(); ​end​

	​ 	​end​

	​ 	

	​ 	a = Single.new

	​ 	

	​ 	​def​ a.one(); ​end​

	​ 	

	​ 	​class​ << a

	​ 	 include Other

	​ 	 ​def​ two(); ​end​

	​ 	​end​

	​ 	

	​ 	Single.singleton_methods ​# => [:four]​

	​ 	a.singleton_methods(false) ​# => [:one, :two]​

	​ 	a.singleton_methods(true) ​# => [:one, :two, :three]​

	​ 	a.singleton_methods ​# => [:one, :two, :three]​

taint
	obj.taint → obj

	 Marks obj as tainted. If
	 the
	 ​$SAFE​
	 level is greater than zero, some objects
	 will be tainted on creation.
	 See Chapter 26, ​Locking Ruby in the Safe​.
	

tainted?
	obj.tainted? → ​true​ or ​false​

	 Returns ​true​ if the object is tainted.
	
	​ 	a = ​"cat"​

	​ 	a.tainted? ​# => false​

	​ 	a.taint ​# => "cat"​

	​ 	a.tainted? ​# => true​

	​ 	a.untaint ​# => "cat"​

	​ 	a.tainted? ​# => false​

tap
	obj.tap { |val| … } → obj

	 Invokes the block, passing obj as a parameter. Returns
	 obj. Allows you to write code that takes part in a method
	 chain but that does not affect the overall value of the chain.
	
	​ 	puts ​"dog"​

	​ 	 .reverse

	​ 	 .tap {|o| puts ​"Reversed: ​#{o}​"​}

	​ 	 .capitalize

Produces:
	​ 	Reversed: god

	​ 	God

to_enum
	obj.to_enum(using=:each,
	 <args>+) → enumerator
	obj.to_enum(using=:each, <args>+
	 { |*args| … } → enumerator

	 Returns an
	 ​Enumerator​
	 object that will traverse the content
	 of obj. By default, this enumerator will invoke the
	
 ​each​
 method of self, but this can be overridden by
	 passing a different method name as the first parameter. Any
	 additional arguments passed to
 ​to_enum​
 will be passed
	 to the enumerator method.
	
	​ 	by_bytes = ​"∂og"​.to_enum(:each_byte)

	​ 	by_bytes.next ​# => 226​

	​ 	by_bytes.next ​# => 136​

	​ 	by_bytes.next ​# => 130​

	​ 	by_bytes.next ​# => 111​

	​ 	

	​ 	by_chars = ​"∂og"​.to_enum(:each_char)

	​ 	by_chars.next ​# => "∂"​

	​ 	by_chars.next ​# => "o"​

	​ 	by_chars.next ​# => "g"​

 If the block is present, it is called to return the
 size of the collection without actually iterating over each
 element. This facilitates calculating the size of lazily
 evaluated enumerations.«2.0»

to_s
	obj.to_s → string

	 Returns a string representing obj. The default
 ​to_s​

	 prints the object’s class and an encoding of the object ID. As a
	 special case, the top-level object that is the initial execution
	 context of Ruby programs returns “main.”
	

trust
	obj.trust → obj

	 Marks obj as trusted. (See the section on trust.)
	

untaint
	obj.untaint → obj

	 Removes the taint from obj.
	

untrust
	obj.untrust → obj

	 Marks obj as untrusted. (See the section on trust.)
	

untrusted?
	obj.untrusted? → ​true​ or ​false​

	 Returns ​true​ if obj
	 is untrusted, ​false​ otherwise.
	

Object: Private instance methods
__callee__
	__callee__ → symbol or ​nil​

	 Returns the name of the current method or
	 ​nil​ outside the context of a
	 method. If a method is called by an
	 aliased name, that alias is returned, and not the original
	 name.«2.0»
	
	​ 	​def​ fred

	​ 	 puts ​"I'm in ​#{__callee__.inspect}​"​

	​ 	​end​

	​ 	fred

	​ 	puts ​"Then in ​#{__callee__.inspect}​"​

Produces:
	​ 	I'm in :fred

	​ 	Then in nil

__dir__
	__dir__ → string

	 The absolute path to the directory of the file
	 containing the call to this method.«2.0»
	

__method__
	__method__ → symbol or ​nil​

	 Synonym for
 ​__callee__​
 .
	

‘ (backquote)
	‘​cmd​‘ → string

	 Returns the standard output of running cmd in a
	 subshell. The built-in syntax ​%x{...}​ described
	 in the tutorial uses this method. Sets
	 ​$?​
	 to the process status.
	
	​ 	`date` ​# => "Mon May 27 12:32:35 CDT 2013\n"​

	​ 	`ls testdir`.split[1] ​# => "main.rb"​

	​ 	`echo oops && exit 99` ​# => "oops\n"​

	​ 	$?.exitstatus ​# => 99​

Array
	Array(arg) → array

	 Returns arg as an ​Array​. First tries to call
	 arg​.to_ary​ and then arg​.to_a​. If both
	 fail, creates a single element array containing arg
	 (or an empty array if arg is ​nil​).
	
	​ 	Array(1..5) ​# => [1, 2, 3, 4, 5]​

Complex
	Complex(real, imag=0) → complex

	 Returns the complex number with the given real and imaginary parts.
	
	​ 	Complex(1) ​# => 1+0i​

	​ 	Complex(​"1"​) ​# => 1+0i​

	​ 	Complex(​"1"​, ​"3/2"​) ​# => 1+3/2i​

	​ 	Complex(​"3+2i"​) ​# => 3+2i​

Float
	Float(arg) → float

	 Returns arg converted to a float. Numeric types
	 are converted directly; strings are converted by
	 interpreting their content as either a decimal or
	 (with a loading 0x) a hexadecimal floating-point
	 constant—see the ​%a​ field specifier to
	 sprintf; the rest are converted using
	 arg.​to_f​. Converting
	 ​nil​ generates a
	 ​TypeError​.
	
	​ 	Float(1) ​# => 1.0​

	​ 	Float(​"123.456"​) ​# => 123.456​

	​ 	Float(​"0x1.921fb54442d18p+1"​) ​# => 3.141592653589793​

Hash
	Hash(arg) → hash

	 Convert arg to a hash by calling its
	
 ​to_hash​
 method.«2.0»
	
	​ 	Hash(nil) ​# => {}​

	​ 	Hash(x: 23, y: 67) ​# => {:x=>23, :y=>67}​

	​ 	h1 = { a:1, c:3 }

	​ 	h2 = { b:2, d:4 }

	​ 	Hash(**h1, **h2) ​# => {:a=>1, :c=>3, :b=>2, :d=>4}​

Integer
	Integer(arg) → int

	 Converts arg to a ​Fixnum​
	 or ​Bignum​. Numeric types are
	 converted directly (floating-point numbers are
	 truncated). If arg is a
	 ​String​, leading radix indicators
	 (​0​, ​0b​, and ​0x​) are
	 honored. Others are converted using
	
 ​to_int​
 and
	
 ​to_i​
 . This behavior is different
	 from that of String#to_i.
	 Converting ​nil​ generates a
	 ​TypeError​.
	
	​ 	Integer(123.999) ​# => 123​

	​ 	Integer(​"0x1a"​) ​# => 26​

Rational
	Rational(numerator, denominator=1)
	 → rational

	 Returns the rational number with the given representation.
	
	​ 	Rational(1) ​# => 1/1​

	​ 	Rational(​"1"​) ​# => 1/1​

	​ 	Rational(​"1"​, ​"2"​) ​# => 1/2​

	​ 	Rational(1, 0.5) ​# => 2/1​

	​ 	Rational(​"3/2"​) ​# => 3/2​

	​ 	Rational(​"3/2"​, ​"4/5"​) ​# => 15/8​

String
	String(arg) → string

	 Converts arg to a ​String​ by calling its
	
 ​to_s​
 method.
	
	​ 	String(self) ​# => "main"​

	​ 	String(self.class) ​# => "Object"​

	​ 	String(123456) ​# => "123456"​

abort
	abort
	abort(msg)

	 Terminates execution immediately with an exit code of 1. The
	 optional ​String​ parameter is written to standard error before
	 the program terminates.
	

at_exit
	at_exit { … } → proc

	 Converts block to a ​Proc​ object
	 and registers it for
	 execution when the program exits. If multiple handlers are
	 registered, they are executed in reverse order of registration.
	
	​ 	​def​ do_at_exit(str1)

	​ 	 at_exit { print str1 }

	​ 	​end​

	​ 	at_exit { puts ​"cruel world"​ }

	​ 	do_at_exit(​"goodbye "​)

	​ 	exit

Produces:
	​ 	goodbye cruel world

autoload
	autoload(name, file_name) → ​nil​

	 Registers file_name to be loaded (using
	 Object#require) the first time that the module
	 name (which may be a ​String​ or a symbol) is accessed.
	
	​ 	autoload(:MyModule, ​"/usr/local/lib/modules/my_module.rb"​)

	 Module.autoload lets you define namespace-specific
	 autoload hooks:
	
	​ 	​module​ X

	​ 	 autoload :XXX, ​"xxx.rb"​

	​ 	​end​

	 Note that ​xxx.rb​ should define a
	 class in the correct namespace. That is, in this example,
	 ​xxx.rb​ should contain the
	 following:
	
	​ 	​class​ X::XXX

	​ 	 ​# ...​

	​ 	​end​

autoload?
	autoload?(name) → file_name or ​nil​

	 Returns the name of the file that will be autoloaded when the
	 string or symbol name is referenced in the top-level
	 context or returns ​nil​ if there is no associated autoload.
	
	​ 	autoload(:Fred, ​"module_fred"​) ​# => nil​

	​ 	autoload?(:Fred) ​# => "module_fred"​

	​ 	autoload?(:Wilma) ​# => nil​

binding
	binding → a_binding

	 Returns a ​Binding​ object, describing the
	 variable and method bindings at the point of call. This
	 object can be used when calling
 ​eval​
 to
	 execute the evaluated command in this environment. Also see
	 the description of class
	 ​Binding​.
	
	​ 	​def​ get_binding(param)

	​ 	 ​return​ binding

	​ 	​end​

	​ 	b = get_binding(​"hello"​)

	​ 	eval(​"param"​, b) ​# => "hello"​

block_given?
	block_given? → ​true​ or ​false​

	 Returns ​true​ if ​yield​ executes a block
	 in the current context.
	
	​ 	def try

	​ 	 if block_given?

	​ 	 yield

	​ 	 else

	​ 	 "no block"

	​ 	 end

	​ 	end

	​ 	try ​# => "no block"​

	​ 	try { ​"hello"​ } ​# => "hello"​

	​ 	block = lambda { ​"proc object"​ }

	​ 	try(&block) ​# => "proc object"​

caller
	caller(<start max_size>) → array
	caller(<range>) → array

	 Returns the current execution stack—an array containing
	 strings in the form ​file:line​ or
	 ​file:line: in ‘method’​. The optional
	 start parameter determines the number of initial
	 stack entries to omit from the result. The optional
	 max_size parameter sets the maximum size of the
	 returned array.«2.0» Alternatively, passing a range
	 parameter retrieves the given stack entries.
	
	​ 	​def​ a(skip)

	​ 	 caller(skip)

	​ 	​end​

	​ 	​def​ b(skip)

	​ 	 a(skip)

	​ 	​end​

	​ 	​def​ c(skip)

	​ 	 b(skip)

	​ 	​end​

	​ 	c(0) ​# => ["prog.rb:2:in `a'", "/tmp/prog.rb:5:in `b'", "/tmp/prog.rb:8:in​

	​ 	 ​# .. `c'", "/tmp/prog.rb:10:in `<main>'"]​

	​ 	c(1) ​# => ["prog.rb:5:in `b'", "/tmp/prog.rb:8:in `c'", "/tmp/prog.rb:11:in​

	​ 	 ​# .. `<main>'"]​

	​ 	c(2) ​# => ["prog.rb:8:in `c'", "/tmp/prog.rb:12:in `<main>'"]​

	​ 	c(3) ​# => ["prog.rb:13:in `<main>'"]​

caller_locations
	caller_locations → array of caller sites

 Returns an array containing the call stack.«2.0»

	​ 	​def​ outer

	​ 	 inner

	​ 	​end​

	​ 	

	​ 	​def​ inner

	​ 	 p caller_locations

	​ 	​end​

	​ 	

	​ 	puts outer

Produces:
	​ 	["prog.rb:2:in `outer'", "/tmp/prog.rb:9:in `<main>'"]

	​ 	prog.rb:2:in `outer'

	​ 	prog.rb:9:in `<main>'

catch
	catch(object=Object.new) { … } → obj

	
 ​catch​
 executes its block. If a
	
 ​throw​
 is encountered, Ruby searches
	 up its stack for a
 ​catch​
 block with
	 a parameter identical to the
	
 ​throw​
 ’s parameter. If found, that
	 block is terminated, and
 ​catch​

	 returns the value given as the second parameter to
	
 ​throw​
 . If
	
 ​throw​
 is not called, the block
	 terminates normally, and the value of
	
 ​catch​
 is the value of the last
	 expression evaluated.
 ​catch​

	 expressions may be nested, and the
	
 ​throw​
 call need not be in lexical
	 scope. Prior to Ruby 1.9, the parameters to
	
 ​catch​
 and
	
 ​throw​
 had to be symbols—they can
	 now be any object. When using literals, it probably makes
	 sense to use only immediate objects.
	
	​ 	​def​ routine(n)

	​ 	 print n, ​' '​

	​ 	 throw :done ​if​ n <= 0

	​ 	 routine(n-1)

	​ 	​end​

	​ 	catch(:done) { routine(4) }

Produces:
	​ 	4 3 2 1 0

chomp
	chomp(<rs>) → $_ or <string>

	 Equivalent to ​$_ = $_.chomp(rs)​, except
	 no assignment is made if
 ​chomp​
 doesn’t
	 change ​$_​. See String#chomp. Available only
	 if the ​-n​ or ​-p​ command-line options are
	 present.
	

chop
	chop → string

	 (Almost) equivalent to ​$_.dup.chop!​, except that if
	
 ​chop​
 performs no action,
	 ​$_​ is unchanged and
	 ​nil​ is not returned. See String#chop!. Available only
	 if the ​-n​ or ​-p​ command-line option is
	 present.
	

define_method
	define_method(symbol, method) → method
	define_method(symbol) { … } → proc

	 Defines a global method.«2.0»
	 The behavior is analogous to
	 Module#define_method.
	
	​ 	define_method(:adder, -> (a, b) { a+b })

	​ 	

	​ 	adder(1, 2) ​# => 3​

	​ 	adder(​"cat"​, ​"dog"​) ​# => "catdog"​

	 Note that it is possible to define methods with names that are
	 not valid if you were to use the ​def​ keyword. These methods
	 cannot be invoked directly.
	
	​ 	​class​ Silly

	​ 	 define_method(​"Oh !@!#^!"​) { ​"As Snoopy says"​ }

	​ 	​end​

	​ 	Silly.new.send(​"Oh !@!#^!"​) ​# => "As Snoopy says"​

eval
	eval(string <, binding file
	line>) → obj

	 Evaluates the Ruby expression(s) in string. If
	 binding is given, the evaluation is performed in its
	 context. The binding must be a ​Binding​
	 object. If the optional file and line
	 parameters are present, they will be used when reporting syntax
	 errors.
	
	​ 	​def​ get_binding(str)

	​ 	 ​return​ binding

	​ 	​end​

	​ 	str = ​"hello"​

	​ 	eval ​"str + ' Fred'"​ ​# => "hello Fred"​

	​ 	eval ​"str + ' Fred'"​, get_binding(​"bye"​) ​# => "bye Fred"​

	 Local variables assigned within an
	
 ​eval​
 are available after the
	
 ​eval​
 only if they were defined at
	 the outer scope before the
 ​eval​

	 executed. In this way,
 ​eval​
 has
	 the same scoping rules as blocks.
	
	​ 	a = 1

	​ 	eval ​"a = 98; b = 99"​

	​ 	puts a

	​ 	puts b

Produces:
	​ 	98

	​ 	prog.rb:4:in `<main>': undefined local variable or method `b' for main:Object

	​ 	(NameError)

exec
	exec(<env,> command <, args>*,
	 <options>)

	Replaces the current process by running the given
	external command. If
	
 ​exec​
 is given a single argument, that
	argument is taken as a line that is subject to shell expansion
	before being executed. If command contains a
	newline or any of the characters
	​?*?{}[]<>()~&|$;’‘"​, or under Windows if
	command looks like a shell-internal command (for
	example ​dir​), command is
	run under a shell. On Unix system, Ruby does this by
	prepending ​sh -c​. Under Windows, it uses the name of
	a shell in either ​RUBYSHELL​ or
 ​COMSPEC​.

	If multiple arguments are given, the second and subsequent
	arguments are passed as parameters to command with
	no shell expansion. If the first argument is a two-element
	array, the first element is the command to be executed, and
	the second argument is used as the ​argv[0]​ value,
	which may show up in process listings. In MSDOS environments,
	the command is executed in a subshell; otherwise, one of the
	exec(2) system calls is used, so the running command may
	inherit some of the environment of the original program
	(including open file descriptors). Raises
	​SystemCallError​
	if the command couldn’t execute (typically
	​Errno::ENOENT​).

	​ 	exec ​"echo *"​ ​# echoes list of files in current directory​

	​ 	​# never get here​

	​ 	

	​ 	exec ​"echo"​, ​"*"​ ​# echoes an asterisk​

	​ 	​# never get here​

	env, if present, is a hash that adds to the
	environment variables in the subshell. An entry with a
	​nil​ value clears the corresponding
	environment variable. The keys must be strings.
	options, if present, is a hash that controls the
	setup of the subshell. The possible keys and their meanings
	are listed under
 ​#spawn​
 . See also Object#spawn and Object#system.

exit
	exit(​true​ | ​false​ | status=1)

	 Initiates the termination of the Ruby script. If called in
	 the scope of an exception handler, raises a
	 ​SystemExit​
	 exception. This exception may be caught. Otherwise, exits
	 the process using exit(2). The
	 optional parameter is used to return a status code to the
	 invoking environment. With an argument of
	 ​true​, exits with a status of zero. With
	 an argument that is ​false​ (or no
	 argument), exits with a status of 1; otherwise, exits with
	 the given status. The default exit value is 1.
	
	​ 	fork { exit 99 }

	​ 	Process.wait

	​ 	puts ​"Child exits with status: ​#{$?.exitstatus}​"​

	​ 	 ​begin​

	​ 	 exit

	​ 	 puts ​"never get here"​

	​ 	 ​rescue​ SystemExit

	​ 	 puts ​"rescued a SystemExit exception"​

	​ 	 ​end​

	​ 	 puts ​"after begin block"​

Produces:
	​ 	Child exits with status: 99

	​ 	rescued a SystemExit exception

	​ 	after begin block

	 Just prior to termination, Ruby executes
	 any
 ​at_exit​
 functions and runs any object finalizers (see
	 ​ObjectSpace​).
	
	​ 	at_exit { puts ​"at_exit function"​ }

	​ 	ObjectSpace.define_finalizer(​"xxx"​, lambda { |obj| puts ​"in finalizer"​ })

	​ 	exit

Produces:
	​ 	at_exit function

	​ 	in finalizer

exit!
	exit!(​true​ | ​false​ | status=1)

	Similar to Object#exit, but exception handling,
	
 ​at_exit​
 functions, and finalizers are
	bypassed.

fail
	fail
	fail(message)
	fail(exception <, message array>)}

	 Synonym for Object#raise.
	

fork
	fork <> → int or ​nil​

	 Creates a subprocess. If a block is specified, that block is run
	 in the subprocess, and the subprocess terminates with a status of
	 zero. Otherwise, the
 ​fork​
 call returns twice, once in
	 the parent, returning the process ID of the child, and once in
	 the child, returning ​nil​. The child process can exit using
	 Object#exit! to avoid running any
 ​at_exit​

	 functions. The parent process should use Process.wait to
	 collect the termination statuses of its children or it should call
	 Process.detach to register disinterest in their status;
	 otherwise, the operating system may accumulate zombie processes.
	
	​ 	fork ​do​

	​ 	 3.times {|i| puts ​"Child: ​#{i}​"​ }

	​ 	​end​

	​ 	3.times {|i| puts ​"Parent: ​#{i}​"​ }

	​ 	Process.wait

Produces:
	​ 	Parent: 0

	​ 	Child: 0

	​ 	Parent: 1

	​ 	Child: 1

	​ 	Parent: 2

	​ 	Child: 2

format
	format(format_string <, arg>*) → string

	 Synonym for Object#sprintf.
	

gem
	gem(gem_name <, version>)
	 → ​true​ or ​false​

	 Adds the given gem to the applications include
	 path so that subsequent
 ​requires​

	 will search. Defaults to the latest version of the gem if no
	 version information is given. See ​Gems and Versions​ for more information and
	 examples.
	

gem_original_require
	gem_original_require <filename>+

	 The version of Object#require that does not know about RubyGems.
	

gets
	gets(separator=​$/​)
	 → string or ​nil​

	 Returns (and assigns to
	 ​$_​)
	 the next line from the list
	 of files in ​ARGV​ (or
	 ​$*​) or from standard input
	 if no files are present on the command line. Returns ​nil​ at
	 end of file. The optional argument specifies the record
	 separator. The separator is included with the contents of each
	 record. A separator of ​nil​ reads the entire contents, and a
	 zero-length separator reads the input one paragraph at a time,
	 where paragraphs are divided by two consecutive newlines. If
	 multiple filenames are present in ​ARGV​,
 ​gets(nil)​

	 reads the contents one file at a time.
	 Programming using ​$_​ as an implicit
	 parameter is losing favor in the Ruby community.
	
	​ 	ARGV << ​"testfile"​

	​ 	print ​while​ gets

Produces:
	​ 	This is line one

	​ 	This is line two

	​ 	This is line three

	​ 	And so on...

global_variables
	global_variables → array

	 Returns an array of the names of global variables.
	
	​ 	global_variables.grep /std/ ​# => [:$stdin, :$stdout, :$stderr]​

gsub
	gsub(pattern, replacement)
	 → string
	gsub(pattern) { … }
	 → string

	 Equivalent to ​$_.gsub(...)​, except that ​$_​
	 will be updated if substitution occurs.
	 Available only when the ​-n​ or ​-p​ command-line
	 option is present.
	

initialize
	initialize(< arg >+)

	 Called as the third and final step in object construction,
	
 ​initialize​
 is responsible for setting up the initial
	 state of the new object. You use the
	 initialize
	 method the same way you’d use constructors in other
	 languages. If you subclass classes other than ​Object​, you
	 will probably want to call
	
 ​super​
 to invoke the
	 parent’s initializer.
	
	​ 	​class​ A

	​ 	 ​def​ initialize(p1)

	​ 	 puts ​"Initializing A: p1 = ​#{p1}​"​

	​ 	 @var1 = p1

	​ 	 ​end​

	​ 	​end​

	​ 	​class​ B < A

	​ 	 attr_reader :var1, :var2

	​ 	 ​def​ initialize(p1, p2)

	​ 	 ​super​(p1)

	​ 	 puts ​"Initializing B: p2 = ​#{p2}​"​

	​ 	 @var2 = p2

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	b = B.new(​"cat"​, ​"dog"​)

	​ 	puts b.inspect

Produces:
	​ 	Initializing A: p1 = cat

	​ 	Initializing B: p2 = dog

	​ 	#<B:0x007f817990eaa0 @var1="cat", @var2="dog">

iterator?
	iterator? → ​true​ or ​false​

	 Deprecated synonym for Object#block_given?.
	

lambda
	lambda { … } → proc

	 Creates a new procedure object from the given block. See the discussion
	 in the tutorial for an explanation of the
	 difference between procedure objects created using
	
 ​lambda​
 and those created using Proc.new. Note
	 that
 ​lambda​

	 is now preferred over
 ​proc​
 .
	
	​ 	prc = lambda { ​"hello"​ }

	​ 	prc.call ​# => "hello"​

load
	load(file_name, wrap=​false​) → ​true​

	 Loads and executes the Ruby
	 program in the file file_name. If the filename does not
	 resolve to an absolute path, the file is searched for in the
	 library directories listed in ​$:​. If the optional
	 wrap parameter is ​true​, the loaded script will be
	 executed under an anonymous module, protecting the calling
	 program’s global namespace. In no circumstance will any local
	 variables in the loaded file be propagated to the
	 loading environment.
	

local_variables
	local_variables → array

	 Returns the names of the current local variables.
	
	​ 	fred = 1

	​ 	​for​ i ​in​ 1..10

	​ 	 ​# ...​

	​ 	​end​

	​ 	local_variables ​# => [:fred, :i]​

	 Note that local variables are associated with
	 bindings.
	
	​ 	​def​ fred

	​ 	 a = 1

	​ 	 b = 2

	​ 	 binding

	​ 	​end​

	​ 	freds_binding = fred

	​ 	eval(​"local_variables"​, freds_binding) ​# => [:a, :b]​

loop
	loop <>

	 Repeatedly executes the block.
	
	​ 	loop ​do​

	​ 	 print ​"Type something: "​

	​ 	 line = gets

	​ 	 ​break​ ​if​ line.nil? || line =~ /^[qQ]/

	​ 	 ​# ...​

	​ 	​end​

	
 ​loop​
 silently rescues the
	 ​StopIteration​
	 exception, which works well with external
	 iterators.
	
	​ 	enum1 = [1, 2, 3].to_enum

	​ 	enum2 = [10, 20].to_enum

	​ 	loop ​do​

	​ 	 puts enum1.next + enum2.next

	​ 	 ​end​

Produces:
	​ 	11

	​ 	22

open
	open(name <, mode permission>)
	 → io or ​nil​
	open(name <, mode permission>)
	 { |io| … } → obj

	 Creates an ​IO​ object connected to the given stream, file,
	 or subprocess.
	

	 If name does not start with a pipe character
	 (​|​), treats it as the name of a file to open using
	 the specified mode defaulting to ​"r"​ (see
	 Table 16, ​Mode values​). If a file is
	 being created, its initial permissions may be set using the
	 third parameter, which is an integer. If this third
	 parameter is present, the file will be opened using the
	 low-level open(2) call rather
	 than the fopen(3) call.
	

	 If a block is specified, it will be invoked with the ​IO​
	 object as a parameter, which will be
	 closed when the block terminates. The call
	 returns the value of the block in this case.
	

	 If name starts with a pipe character, a
	 subprocess is created, connected to the caller by a pair of
	 pipes. The returned ​IO​ object may be
	 used to write to the standard input and read from the
	 standard output of this subprocess. If the command
	 following ​|​ is a single minus sign, Ruby forks,
	 and this subprocess is connected to the parent. In the
	 subprocess, the
 ​open​
 call returns
	 ​nil​. If
	 the command is not ​"--"​, the subprocess runs the command. If
	 a block is associated with an ​open("|--")​ call, that
	 block will be run twice—once in the parent and once in the
	 child. The block parameter will be an ​IO​ object in the
	 parent and ​nil​ in the child. The parent’s ​IO​ object will
	 be connected to the child’s ​STDIN​
	 and ​STDOUT​.
	 The subprocess will be terminated at the end of the
	 block.
	
	​ 	open(​"testfile"​, ​"r:iso-8859-1"​) ​do​ |f|

	​ 	 print f.gets

	​ 	​end​

Produces:
	​ 	This is line one

	 Open a subprocess, and read its output:

	​ 	cmd = open(​"|date"​)

	​ 	print cmd.gets

	​ 	cmd.close

Produces:
	​ 	Mon May 27 12:32:39 CDT 2013

 Open a subprocess running the same Ruby program:

	​ 	f = open(​"|-"​, ​"w+"​)

	​ 	​if​ f.nil?

	​ 	 puts ​"in Child"​

	​ 	 exit

	​ 	​else​

	​ 	 puts ​"Got: ​#{f.gets}​"​

	​ 	​end​

Produces:
	​ 	Got: in Child

 Open a subprocess using a block to receive the I/O object:

	​ 	open(​"|-"​) ​do​ |f|

	​ 	 ​if​ f.nil?

	​ 	 puts ​"in Child"​

	​ 	 ​else​

	​ 	 puts ​"Got: ​#{f.gets}​"​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Got: in Child

p
	p(<obj>+) → obj

	 For each object, writes obj​.inspect​
	 followed by the current output record separator to the
	 program’s standard output. Also see the ​PrettyPrint​
	 library.
	 Returns obj.
	
	​ 	Info = Struct.new(:name, :state)

	​ 	p Info[​'dave'​, ​'TX'​]

Produces:
	​ 	#<struct Info name="dave", state="TX">

print
	print(<obj>*) → ​nil​

	 Prints each object in turn to
	 ​STDOUT​.
	 If the output field separator
	 (​$,​)
	 is not ​nil​, its contents will appear
	 between each field. If the output record separator
	 (​$\​)
	 is not ​nil​, it will be appended to the
	 output. If no arguments are given, prints
	 ​$_​. Objects that aren’t strings
	 will be converted by calling their
	
 ​to_s​

	
 ​print​
 method.
	
	​ 	print ​"cat"​, [1,2,3], 99, ​"\n"​

	​ 	$, = ​", "​

	​ 	$\ = ​"\n"​

	​ 	print ​"cat"​, [1,2,3], 99

Produces:
	​ 	cat[1, 2, 3]99

	​ 	cat, [1, 2, 3], 99

printf
	printf(io, format <, obj>*)
	 → ​nil​
	printf(format <, obj>*)
	 → ​nil​

	Equivalent to the following:

	​ 	 io.write(sprintf(format, obj, ...))

	​ 	​# or​

	​ 	 write(sprintf(format, obj, ...))

proc
	proc { … } → a_proc

	 Creates a new procedure object from the given block.
	 Use Object#lambda instead.
	
	​ 	prc = proc {|name| ​"Goodbye, ​#{name}​"​ }

	​ 	prc.call(​'Dave'​) ​# => "Goodbye, Dave"​

putc
	putc(obj) → obj

	 Equivalent to ​STDOUT.putc(obj)​. If obj is
	 a string, output its first character; otherwise,
	 attempts to convert obj to an integer and outputs the
	 corresponding character code.
	
	​ 	putc 65

	​ 	putc 66.123

	​ 	putc ​"CAT"​

	​ 	putc 12 ​# newline​

Produces:
	​ 	ABC

puts
	puts(<arg>*) → ​nil​

	 Equivalent to ​STDOUT.puts(arg...)​.
	

raise
	raise
	raise(message)
	raise(exception <, message array>)

	 With no arguments, raises the exception in
	 ​$!​ or raises a
	 ​RuntimeError​ if
	 ​$!​ is
	 ​nil​.
	 With a single ​String​ argument
	 (or an argument that responds to
	
 ​to_str​
), raises a
	 ​RuntimeError​ with the string as a message. Otherwise, the
	 first parameter should be the name of an ​Exception​ class (or
	 an object that returns an ​Exception​ when its
	
 ​exception​
 method is called). The optional second
	 parameter sets the message associated with the exception, and
	 the third parameter is an array of callback
	 information. Exceptions are caught by the ​rescue​ clause of
	 ​begin​...​end​ blocks.
	
	​ 	raise ​"Failed to create socket"​

	​ 	raise ArgumentError, ​"No parameters"​, caller

rand
	rand(max=0) → number
	rand(range) → number

	 Converts max to an integer using max1 = max.to_i.abs. If the result is
	 zero or ​nil​, returns a pseudorandom
	 floating-point number greater than or equal to 0.0 and less
	 than 1.0. Otherwise, returns a pseudorandom integer greater
	 than or equal to zero and less than max1. If a range is passed,
	 return a random number in that range. Object#srand may be used to ensure repeatable
	 sequences of random numbers between different runs of the
	 program. See also class ​Random​.
	
	​ 	srand 1234 ​# => 272125880215485747773990619030416710243​

	​ 	[rand, rand] ​# => [0.1915194503788923, 0.6221087710398319]​

	​ 	[rand(10), rand(1000)] ​# => [4, 664]​

	​ 	srand 1234 ​# => 1234​

	​ 	[rand, rand] ​# => [0.1915194503788923, 0.6221087710398319]​

	​ 	rand(5..10) ​# => 9​

	​ 	rand(1.1..1.2) ​# => 1.1612111893665362​

readline
	readline(<separator=$/>)
	 → string

	 Equivalent to Object#gets, except
 ​readline​
 raises
	 ​EOFError​ at end of file.
	

readlines
	readlines(<separator=$/>)
	 → array

	 Returns an array containing each of the lines returned by
	 calling ​gets(separator)​.
	

remove_instance_variable
	remove_instance_variable(symbol) → other_obj

	 Removes the named instance variable from obj, returning that
	 variable’s value.
	
	​ 	​class​ Dummy

	​ 	 ​def​ initialize

	​ 	 @var = 99

	​ 	 ​end​

	​ 	 ​def​ remove

	​ 	 remove_instance_variable(:@var)

	​ 	 ​end​

	​ 	 ​def​ var_defined?

	​ 	 ​defined?​ @var

	​ 	 ​end​

	​ 	​end​

	​ 	d = Dummy.new

	​ 	d.var_defined? ​# => "instance-variable"​

	​ 	d.remove ​# => 99​

	​ 	d.var_defined? ​# => nil​

require
	require(library_name) → ​true​ or ​false​

	 Ruby tries to load library_name, returning
	 ​true​ if successful. If the filename is
	 not an absolute path, it will be searched for in
	 the directories listed in
	 ​$:​.
	 If the file has the extension
	 ​rb​, it is loaded as a source
	 file; if the extension is ​so​,
	 ​.o​, or
	 ​.dll​,[119] Ruby loads the shared library as a Ruby
	 extension. Otherwise, Ruby tries adding
	 ​rb​,
	 ​.so​, and so on, to the
	 name. The name of the loaded feature is added to the array in
	 ​$"​.
	 A feature will not be loaded if its name already appears in
	 ​$"​.[120]
 ​require​
 returns ​true​ if the
	 feature was successfully loaded.
	
	​ 	require ​'my-library.rb'​

	​ 	require ​'db-driver'​

require_relative
	require_relative(library_path)
	 → ​true​ or ​false​

	 Requires a library whose path is relative to the file containing
	 the call. Thus, if the directory ​/usr/local/mylib/bin​ contains
	 the file ​myprog.rb​ and that program contains the
	 following line:
	
	​ 	require_relative ​"../lib/mylib"​

	 then Ruby will look for ​mylib​ in
	 ​/usr/local/mylib/lib​.
	

	
 ​require_relative​
 cannot be called interactively in irb.
	

select
	select(read_array <, write_array
	error_array timeout>)
	 → array or ​nil​

	 Performs a low-level
 ​select​
 call,
	 which waits for data to become available from input/output
	 devices. The first three parameters are arrays of
	 ​IO​ objects or
	 ​nil​. The last is a timeout in seconds,
	 which should be an ​Integer​ or a
	 ​Float​. The call waits for data to
	 become available for any of the ​IO​
	 objects in read_array, for buffers to have
	 cleared sufficiently to enable writing to any of the devices
	 in write_array, or for an error to occur on the
	 devices in error_array. If one or more of these
	 conditions are met, the call returns a three-element array
	 containing arrays of the ​IO​ objects
	 that were ready. Otherwise, if there is no change in status
	 for timeout seconds, the call returns
	 ​nil​. If all parameters are
	 ​nil​, the current thread sleeps forever.
	
	​ 	select([STDIN], nil, nil, 1.5) ​# => nil​

set_trace_func
	set_trace_func(proc) → proc
	set_trace_func(​nil​) → ​nil​

 (This method has been replaced by the
 ​TracePoint​ class in Ruby 2.0.)«2.0»
 Establishes proc as the handler for tracing or
 disables tracing if the parameter is
 ​nil​. proc takes up to six
 parameters: an event name, a filename, a line number, an
 object ID, a binding, and the name of a
 class. proc is invoked whenever an event
 occurs. Events are ​call​ (calls a Ruby method),
 ​c-call​ (calls a C-language routine),
 ​c-return​ (returns from a C-language routine),
 ​class​ (starts a class or module definition),
 ​end​ (finishes a class or module definition),
 ​line​ (executes code on a new line), ​raise​
 (raises an exception), and ​return​ (returns from a
 Ruby method). Tracing is disabled within the context of
 proc.
	 See the example in the tutorial for more
	 information.
	

sleep
	sleep(numeric=0) → fixnum

	 Suspends the current thread for numeric seconds
	 (which may be a ​Float​ with fractional
	 seconds). Returns the actual number of seconds slept
	 (rounded), which may be less than that asked for if the
	 thread was interrupted by a ​SIGALRM​ or if another
	 thread calls Thread#run. An argument of
	 zero causes
 ​sleep​
 to return immediately.
	
	​ 	Time.now ​# => 2013-05-27 12:32:41 -0500​

	​ 	sleep 1.9 ​# => 2​

	​ 	Time.now ​# => 2013-05-27 12:32:43 -0500​

spawn
	spawn(<env,> command <, args>*, <options>)
	 → pid

	 Executes command in a subshell,
	 returning immediately. (Compare with Object#system, which waits for the command to
	 complete before returning to the caller.) Returns the
	 process ID for the subprocess running the command.
	

	 The command can be a string, which is passed to
	 the system shell for interpretation or a command name
	 followed by zero or more arguments. In this case, the
	 command is executed and passed the given arguments—the
	 shell is not involved. The command name may be a string or a
	 two-element array, where the first element is the command
	 itself and the second is the ​argv[0]​ value to be
	 passed to exec(2). The latter may be used to change the
	 process name on systems that support it.
	
	​ 	pid = spawn(​"echo hello"​)

	​ 	puts ​"Back in main program"​

	​ 	STDOUT.flush

	​ 	rc, status = Process::waitpid2(pid)

	​ 	puts ​"Status = ​#{status}​"​

Produces:
	​ 	Back in main program

	​ 	hello

	​ 	Status = pid 23941 exit 0

	 env, if present, is a hash that adds to the environment
	 variables in the subshell. An entry with a ​nil​ value clears
	 the corresponding environment variable. The keys must be strings.
	
	​ 	pid = spawn({​"FRED"​ => ​"caveman"​}, ​"echo FRED = $FRED"​)

	​ 	Process::waitpid2(pid)

Produces:
	​ 	FRED = caveman

	 The options hash
	 controls the setup of the subshell. Keys and
	 their meanings are:
	
	Option	Effect on new process
	
:pgroup => true | 0 | int
	

	 If ​true​ or ​0​, the new
	 process will be a process group leader. Otherwise, the
	 process will belong to group int.
	

	
:rlimit_​xxx​ => val | [cur, max]
	

	 Sets a resource limit. See Process.getrlimit for more information.
	

	
:unsetenv_others => true
	

	 Clears all environment variables; then sets only those
	 passed in the env parameter.
	

	
:chdir => dir
	

	 Changes to directory dir before running the
	 process.
	

	
:umask => int
	

	 Specifies the umask for the process.
	

	
fd_desc => stream
	

	 Sets the process’s standard input, output, or error to
	 stream. See the description that follows this
	 table for information.
	

	
:close_others => true | false
	

	 By default, all file descriptors apart from 0, 1, and 2
	 are closed. You can specify ​false​
	 to leave them open.
	

	
io_obj => :close
	

	 Explicitly closes the file descriptor corresponding to
	 io_obj in the child process.
	

	 The fd_desc parameter identifies an I/O stream to be
	 opened or assigned in the child process. It can be one of
	 ​:in​, ​STDIN​, or ​0​ to represent standard
	 input; ​:out​, ​STDOUT​, or ​1​ for
	 standard output; or ​:err​, ​STDERR​, or ​2​
	 for standard error. It can also be an array containing one or
	 more of these, in which case all fds in the array will be opened on
	 the same stream.
	

	 The stream parameter can be the following:
	
	

	 One of ​:in​, ​STDIN​, or ​0​ to represent
	 the current standard input; ​:out​, ​STDOUT​, or
	 ​1​ for the current standard output; or
	 ​:err​, ​STDERR​, or ​2​ for the
	 current standard error.
	

	

	 A string representing the name of a file or device.
	

	

	 An array. If it contains ​[:child, fd]​,
	 redirects to the fd of the child process. Otherwise, the
	 first element is the name of a file or device, the
	 optional second element is the mode, and the optional
	 third element the permission. See the description of File#new
	 for details.
	

	 This example shows the options in action:
	
	​ 	reader, writer = IO.pipe

	​ 	pid = spawn(​"echo '4*a(1)' | bc -l"​, [STDERR, STDOUT] => writer)

	​ 	writer.close

	​ 	Process::waitpid2(pid)

	​ 	reader.gets ​# => "3.14159265358979323844\n"​

sprintf
	sprintf(format_string <, arguments>*)
	 → string

	 Returns the string resulting
	 from applying format_string to any additional arguments.
	 Within the format string, any characters other than format
	 sequences are copied to the result.
	

	 A format sequence consists of a percent sign; followed by
	 optional flags, width, and precision indicators;
	 an optional name; and then terminated
	 with a field type character. The field type controls how the
	 corresponding
 ​sprintf​
 argument is
	 to be interpreted,
	 and the flags modify that interpretation.
	

	 The flag characters are:
	
	Flag	Applies To	Meaning
	
␣ (space)
	
bdEefGgiouXx
	

 Leaves a
 space at the start of positive numbers.

	
digit​$​
	
all
	

 Specifies the absolute argument number
 for this field. Absolute and relative argument numbers
 cannot be mixed in a
 ​sprintf​
 string.

	
​#​
	
beEfgGoxX
	

 Uses an alternative format. For the conversions ​b​,
 ​o​, ​X​, and ​x​, prefixes the result with
 ​b​, ​0​, ​0X​, ​0x​,
 respectively. For ​E​, ​e​, ​f​,
 ​G​, and ​g​, forces a decimal point to be added,
 even if no digits follow. For ​G​ and ​g​, does
 not remove trailing zeros.

	
​+​
	
bdEefGgiouXx
	

 Adds a leading plus sign to positive numbers.

	
​-​
	
all
	

 Left-justifies the result of this conversion.

	
​0​ (zero)
	
bdEefGgiouXx
	

 Pads with zeros, not spaces.

	
​*​
	
all
	

 Uses the next argument as the field width. If
 negative, left-justifies the result. If the asterisk is
 followed by a number and a dollar sign, uses
 the indicated argument as the width.

	 The field width is an optional integer, followed optionally by a
	 period and a precision. The width specifies the minimum number
	 of characters that will be written to the result for this
	 field. For numeric fields, the precision controls the number of
	 decimal places displayed. As of Ruby 1.9, the number zero is
	 converted to a zero-length string if a precision of 0 is
	 given. For string fields, the precision determines the maximum
	 number of characters to be copied from the string. (Thus, the
	 format sequence ​%10.10s​ will always contribute exactly ten
	 characters to the result.)
	

	 The field type characters are:
	
	Field	Conversion
	
​A​
	
Same as %a, but uses uppercase X and P.

	
​a​
	

 Converts a float into hexadecimal representation
 0x​significand​pdecimal-exp.

	
​B​
	
Converts argument as a binary number (0B0101 if # modifier used).

	
​b​
	
Converts argument as a binary number (0b0101 if # modifier used).

	
​c​
	
Argument is the numeric code for a single character.

	
​d​
	
Converts argument as a decimal number.

	
​E​
	
Equivalent to ​e​ but uses an uppercase E to indicate the exponent.

	
​e​
	

 Converts floating point-argument into exponential notation with
 one digit before the decimal point. The precision determines the
 number of fractional digits (default six).

	
​f​
	

 Converts floating-point argument as
 ​[␣|-]ddd.ddd​, where the precision determines the
 number of digits after the decimal point.

	
​G​
	
Equivalent to ​g​ but uses an uppercase E in
 exponent form.

	
​g​
	

 Converts a floating-point number using exponential form if the
 exponent is less than -4 or greater than or equal to the
 precision, or in ​d.dddd​ form otherwise.

	
​i​
	
Identical to ​d​.

	
​o​
	
Converts argument as an octal number.

	
​p​
	
The value of ​argument.inspect​.

	
​s​
	

 Argument is a string to be substituted. If the format sequence
 contains a precision, at most that many characters will be
 copied.

	
​u​
	
Treats argument as an unsigned decimal number.

	
​X​
	

 Converts argument to hexadecimal with uppercase
 letters. Negative numbers will be displayed with two leading
 periods (representing an infinite string of leading
 ​FF​s).

	
​x​
	

 Converts argument to hexadecimal. Negative numbers will be
 displayed with two leading periods (representing an infinite
 string of leading ​FF​s).

 Here are some examples of
 ​sprintf​
 in action:

	​ 	sprintf(​"%d %04x"​, 123, 123) ​# => "123␣007b"​

	​ 	sprintf(​"%08b '%4s'"​, 123, 123) ​# => "01111011␣'␣123'"​

	​ 	sprintf(​"%1$*2$s %2$d %1$s"​, ​"hello"​, 8) ​# => "␣␣␣hello␣8␣hello"​

	​ 	sprintf(​"%1$*2$s %2$d"​, ​"hello"​, -8) ​# => "hello␣␣␣␣-8"​

	​ 	sprintf(​"%+g:% g:%-g"​, 1.23, 1.23, 1.23) ​# => "+1.23:␣1.23:1.23"​

	 In Ruby 1.9, you can pass a hash as the second
	 argument and insert values from this hash into the
	 string. The notation ​<name>​ can be used
	 between a percent sign and a field-type character, in which
	 case the name will be used to look up a value in the hash,
	 and that value will be formatted according to the field
	 specification. The notation ​{name}​ is equivalent to
	 ​<name>​s, substituting the corresponding value
	 as a string. You can use width and other flag characters
	 between the opening percent sign and the
	 ​{​.
	
	​ 	sprintf(​"%<number>d %04<number>x"​, number: 123) ​# => "123␣007b"​

	​ 	sprintf(​"%08<number>b '%5{number}'"​, number: 123) ​# => "01111011␣'␣␣123'"​

	​ 	sprintf(​"%6<k>s: %<v>s"​, k: ​"Dave"​, v: ​"Ruby"​) ​# => "␣␣Dave:␣Ruby"​

	​ 	sprintf(​"%6{k}: %{v}"​, k: ​"Dave"​, v: ​"Ruby"​) ​# => "␣␣Dave:␣Ruby"​

srand
	srand(<number>) → old_seed

	 Seeds the pseudorandom number generator to the value of
	 number.
 ​to_i​
 . If
	 number is omitted or zero, uses Random.new_seed. (This is also the
	 behavior if Object#rand is called without
	 previously calling
 ​srand​
 but without the
	 sequence.) By setting the seed to a known value, scripts
	 that use
 ​rand​
 can be made deterministic
	 during testing. The previous seed value is returned. Also
	 see Object#rand and class ​Random​.
	

sub
	sub(pattern, replacement) → $_
	sub(pattern) { block } → $_

	 Equivalent to ​$_.sub(args)​, except that
	 ​$_​ will be updated if
	 substitution occurs. Available only if the
	 ​-n​ or ​-p​ command-line
 option is present.
	

syscall
	syscall(fixnum <, args>*) → int

	 Calls the operating system function identified by
	 fixnum. The arguments must be either
	 ​String​ objects or
	 ​Integer​ objects that fit within a
	 native long. Up to nine parameters may be passed. The
	 function identified by fixnum is system
	 dependent. On some Unix systems, the numbers may be obtained
	 from a header file called ​syscall.h​. System
	 is not always available.
	
	​ 	syscall 4, 1, ​"hello\n"​, 6 ​# '4' is write(2) on our system​

system
	system(<env,> command <, args>*, <options>)
	 → ​true​ or ​false​~or ​nil​

	Executes command in a subshell, returning
	​true​ if the command was found and ran
	successfully, ​false​ if the command exited
	with a nonzero exit status, and ​nil​ if
	the command failed to execute. An error status is available in
	​$?​. The
	arguments are processed in the same way as for Object#exec. env, if present, is a
	hash that adds to the environment variables in the
	subshell. An entry with a ​nil​ value
	clears the corresponding environment variable. The keys must
	be strings. options, if present, is a hash that
	controls the setup of the subshell. The possible keys and
	their meanings are listed under the
	
 ​spawn​
 method.

	​ 	system(​"echo *"​)

	​ 	system(​"echo"​, ​"*"​)

	​ 	system({​"WILMA"​ => ​"shopper"​}, ​"echo $WILMA"​)

Produces:
	​ 	config.h main.rb

	​ 	*

	​ 	shopper

test
	test(cmd, file1 <, file2>)
	 → obj

	 Uses cmd to perform various tests on
	 file1 (see the first table that follows) or on file1 and
	 file2 (see the second table).
	
	Flag	Description	Returns
	?A	
Last access time for file1
	
Time

	?b	
True if file1 is a block device
	
​true​ or ​false​

	?c	
True if file1 is a character device
	
​true​ or ​false​

	?C	
Last change time for file1
	
Time

	?d	
True if file1 exists and is a directory
	
​true​ or ​false​

	?e	
True if file1 exists
	
​true​ or ​false​

	?f	
True if file1 exists and is a regular file
	
​true​ or ​false​

	?g	
True if file1 has the ​setgid​ bit set (​false​ under NT)
	
​true​ or ​false​

	?G	
True if file1 exists and has a group ownership equal to the caller’s group
	
​true​ or ​false​

	?k	
True if file1 exists and has the sticky bit set
	
​true​ or ​false​

	?l	
True if file1 exists and is a symbolic link
	
​true​ or ​false​

	?M	
Last modification time for file1
	
Time

	?o	
True if file1 exists and is owned by the caller’s effective UID
	
​true​ or ​false​

	?O	
True if file1 exists and is owned by the caller’s real UID
	
​true​ or ​false​

	?p	
True if file1 exists and is a fifo
	
​true​ or ​false​

	?r	
True if file1 is readable by the effective UID/GID of the caller
	
​true​ or ​false​

	?R	
True if file1 is readable by the real UID/GID of the caller
	
​true​ or ​false​

	?s	
If file1 has nonzero size, returns the size; otherwise, returns ​nil​
	
Integer or ​nil​

	?S	
True if file1 exists and is a socket
	
​true​ or ​false​

	?u	
True if file1 has the setuid bit set
	
​true​ or ​false​

	?w	
True if file1 exists and is writable by the effective UID/ GID
	
​true​ or ​false​

	?W	
True if file1 exists and is writable by the real UID/GID
	
​true​ or ​false​

	?x	
True if file1 exists and is executable by the effective UID/GID
	
​true​ or ​false​

	?X	
True if file1 exists and is executable by the real UID/GID
	
​true​ or ​false​

	?z	
True if file1 exists and has a zero length
	
​true​ or ​false​

	Flag	Description
	?-	
True if file1 is a hard link to file2

	?=	
True if the modification times of file1 and file2 are equal

	
?<
	
True if the modification time of file1 is prior to that of file2

	
?>
	
True if the modification time of file1 is after that of file2

throw
	throw(symbol <, obj>)

	 Transfers control to the end of the active
 ​catch​
 block
	 waiting for symbol. Raises ​NameError​ if
	 there is no
 ​catch​
 block
	 for the symbol. The optional second
	 parameter supplies a return value for the
 ​catch​
 block,
	 which otherwise defaults to ​nil​. For examples, see
	 Object#catch.
	

trace_var
	trace_var(symbol, cmd) → ​nil​
	trace_var(symbol) { |val| … }
 → ​nil​

	 Controls tracing of assignments to global variables. The
	 parameter symbol identifies the variable (as either a
	 string name or a symbol identifier).
	 cmd (which may be a string or a ​Proc​ object) or the block
	 is executed whenever the variable is assigned and
	 receives the variable’s new value as a
	 parameter. Only explicit assignments are traced.
	 Also see Object#untrace_var.
	
	​ 	trace_var :$dave, lambda {|v| puts ​"$dave is now '​#{v}​'"​ }

	​ 	$dave = ​"hello"​

	​ 	$dave.sub!(/ello/, ​"i"​)

	​ 	$dave += ​" Dave"​

Produces:
	​ 	$dave is now 'hello'

	​ 	$dave is now 'hi Dave'

trap
	trap(signal, proc) → obj
	trap(signal) { … } → obj

	 See the
	 ​Signal​
	 module.
	

untrace_var
	untrace_var(symbol <, cmd>)
	 → array or ​nil​

	 Removes tracing for the specified command on the given
	 global variable and returns ​nil​. If no
	 command is specified, removes all tracing for that variable.

	

using
	using mod

 Applies the refinements defined in the given
 module. The refinements apply to the current file
 (or string if ​eval​ is being used)
 from the point where ​using​ is called.«2.0»

	​ 	​module​ SuperUpcase

	​ 	 refine String ​do​

	​ 	 ​def​ upcase

	​ 	 ​"!WOW! ​#{​super​}​ !WOW!"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​"wombat"​.upcase ​# => "WOMBAT"​

	​ 	using SuperUpcase

	​ 	​"wombat"​.upcase ​# => "!WOW! WOMBAT !WOW!"​

warn
	warn <msgs>+

	 Writes the given message to ​STDERR​
	 (unless
	 ​$VERBOSE​
	 is ​nil​, perhaps because the
	 ​-W0​ command-line option was given). If multiple
	 messages are given, writes each on a new line.«2.0»
	
	​ 	warn ​"Danger, Will Robinson!"​

Produces:
	​ 	Danger, Will Robinson!

Module ObjectSpace

 The ​ObjectSpace​ module contains a number of
 routines that interact with the garbage collection facility and
 allow you to traverse all living objects with an
 iterator.

 ​ObjectSpace​ also provides support for object
 finalizers. These are procs that will be called when a specific object is
 about to be destroyed by garbage collection.

	​ 	include ObjectSpace

	​ 	

	​ 	a, b, c = ​"A"​, ​"B"​, ​"C"​

	​ 	puts ​"a's id is ​#{a.object_id}​"​

	​ 	puts ​"b's id is ​#{b.object_id}​"​

	​ 	puts ​"c's id is ​#{c.object_id}​"​

	​ 	

	​ 	define_finalizer(a, lambda {|id| puts ​"Finalizer one on ​#{id}​"​ })

	​ 	define_finalizer(b, lambda {|id| puts ​"Finalizer two on ​#{id}​"​ })

	​ 	define_finalizer(c, lambda {|id| puts ​"Finalizer three on ​#{id}​"​ })

Produces:
	​ 	a's id is 70124883293000

	​ 	b's id is 70124883292960

	​ 	c's id is 70124883292880

	​ 	Finalizer three on 70124883292880

	​ 	Finalizer two on 70124883292960

	​ 	Finalizer one on 70124883293000

ObjectSpace: Module methods
_id2ref
	ObjectSpace._id2ref(object_id) → obj

	 Converts an object ID to a reference to the object.
	 May not be
	 called on an object ID passed as a parameter to a finalizer.
	
	​ 	s = ​"I am a string"​ ​# => "I am a string"​

	​ 	oid = s.object_id ​# => 70207029149080​

	​ 	r = ObjectSpace._id2ref(oid) ​# => "I am a string"​

	​ 	r ​# => "I am a string"​

	​ 	r.equal?(s) ​# => true​

count_objects
	ObjectSpace.count_objects → histogram_hash

	 Returns a hash where the keys are the interpreter-specific
	 internal object types and the values are the number of objects
	 of each type.
	
	​ 	ObjectSpace.count_objects ​# => {:TOTAL=>17493, :FREE=>60, :T_OBJECT=>49,​

	​ 	 ​# .. :T_CLASS=>471, :T_MODULE=>21, :T_FLOAT=>4,​

	​ 	 ​# .. :T_STRING=>7748, :T_REGEXP=>64, :T_ARRAY=>1464,​

	​ 	 ​# .. :T_HASH=>57, :T_BIGNUM=>3, :T_FILE=>17,​

	​ 	 ​# .. :T_DATA=>701, :T_MATCH=>20, :T_COMPLEX=>1,​

	​ 	 ​# .. :T_RATIONAL=>2, :T_NODE=>6790, :T_ICLASS=>21}​

define_finalizer
	ObjectSpace.define_finalizer(obj, a_proc=proc())

	 Adds a_proc as a finalizer, called when obj is
	 about to be destroyed. Note that if you use
 ​lambda​
 to
	 create the proc object, you must remember to include a parameter
	 with the block. If you don’t, the invocation of the lambda will
	 silently fail when the finalizer is called because of a mismatch
	 in the expected and actual parameter count.
	

each_object
	ObjectSpace.each_object(< class_or_mod>)
 { |obj| … } → fixnum

	 Calls the block once for each living, nonimmediate object in
	 this Ruby process. If class_or_mod is specified,
	 calls the block for only those classes or modules that match
	 (or are a subclass of) class_or_mod. Returns the
	 number of objects found. Immediate objects
	 (​Fixnum​s,
	 ​Symbol​s ​true​,
	 ​false​, and ​nil​)
	 are never returned. In the following example,
	
 ​each_object​
 returns both the
	 numbers we defined and several constants defined in the
	 ​Math​ module:
	
	​ 	a = 102.7

	​ 	b = 95 ​# Fixnum: won't be returned​

	​ 	c = 12345678987654321

	​ 	count = ObjectSpace.each_object(Numeric) {|x| p x }

	​ 	puts ​"Total count: ​#{count}​"​

Produces:
	​ 	(0+1i)

	​ 	9223372036854775807

	​ 	3

	​ 	NaN

	​ 	Infinity

	​ 	1.7976931348623157e+308

	​ 	2.2250738585072014e-308

	​ 	274193223623034780067407936393989039126

	​ 	12345678987654321

	​ 	Total count: 9

garbage_collect
	ObjectSpace.garbage_collect → ​nil​

	 Initiates garbage collection (see module ​GC​).
	

undefine_finalizer
	ObjectSpace.undefine_finalizer(obj)

	 Removes all finalizers for obj.
	

Class Proc < Object

 ​Proc​ objects are blocks of code that have been bound to a set
 of local variables. Once bound, the code may be called in different
 contexts and still access those variables.

	​ 	​def​ gen_times(factor)

	​ 	 ​return​ Proc.new {|n| n*factor }

	​ 	​end​

	​ 	

	​ 	times3 = gen_times(3)

	​ 	times5 = gen_times(5)

	​ 	

	​ 	times3.call(12) ​# => 36​

	​ 	times5.call(5) ​# => 25​

	​ 	times3.call(times5.call(4)) ​# => 60​

Proc: Class methods
new
	Proc.new { … } → a_proc
	Proc.new → a_proc

	 Creates a new ​Proc​ object, bound to
	 the current context. Proc.new may be
	 called without a block only within a method with an attached
	 block, in which case that block is converted to the
	 ​Proc​ object.
	
	​ 	​def​ proc_from

	​ 	 Proc.new

	​ 	​end​

	​ 	proc = proc_from { ​"hello"​ }

	​ 	proc.call ​# => "hello"​

Proc: Instance methods
[]
	prc[<params>*] → obj

	 Synonym for Proc#call.
	

==
	

	 Removed in Ruby 2.0«2.0».
	

===
	prc === other → obj

	 Equivalent to
	 ​prc.call(other)​. Allows you
	 to use procs in ​when​ clauses of
	 ​case​ expressions, so you can write stuff
	 such as:
	
	​ 	even = lambda {|num| num.even? }

	​ 	

	​ 	(0..3).each ​do​ |num|

	​ 	 ​case​ num

	​ 	 ​when​ even ​then​ puts ​"​#{num}​ is even"​

	​ 	 ​else​ puts ​"​#{num}​ is not even"​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	0 is even

	​ 	1 is not even

	​ 	2 is even

	​ 	3 is not even

arity
	prc.arity → integer

	 Returns the number of arguments required by the block. If the
	 block is declared to take no arguments, returns 0. If the
	 block is known to take exactly n arguments, returns n. If
	 the block has optional arguments, returns -(n+1), where n is
	 the number of mandatory arguments.
	 A ​proc​ with no argument declarations
	 also returns -1, because it can accept (and ignore) an arbitrary
	 number of parameters.
	
	​ 	Proc.new {}.arity ​# => 0​

	​ 	Proc.new {||}.arity ​# => 0​

	​ 	Proc.new {|a|}.arity ​# => 1​

	​ 	Proc.new {|a,b|}.arity ​# => 2​

	​ 	Proc.new {|a,b,c|}.arity ​# => 3​

	​ 	Proc.new {|*a|}.arity ​# => -1​

	​ 	Proc.new {|a,*b|}.arity ​# => -2​

	 In Ruby 1.9,
 ​arity​
 is defined as the number of
	 parameters that would not be ignored. In 1.8, ​Proc.new {}.arity​
	 returns -1, and in 1.9 it returns 0.
	

binding
	prc.binding → binding

	 Returns the binding associated with prc.
	
	​ 	​def​ some_method

	​ 	 a = ​"wibble"​

	​ 	 lambda {}

	​ 	​end​

	​ 	

	​ 	prc = some_method

	​ 	eval ​"a"​, prc.binding ​# => "wibble"​

call
	prc.call(<params>*) → obj

	 Invokes the block, setting the block’s parameters to the values
	 in params using something close to method-calling semantics.
	 Returns the value of the last expression evaluated
	 in the block.
	
	​ 	a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}

	​ 	a_proc.call(9, 1, 2, 3) ​# => [9, 18, 27]​

	​ 	a_proc[9, 1, 2, 3] ​# => [9, 18, 27]​

	 If the block being called accepts a single parameter and you
	 give
 ​call​
 more than one parameter, only the first will
	 be passed to the block. This is a change from Ruby 1.8.
	
	​ 	a_proc = Proc.new {|a| puts a}

	​ 	a_proc.call(1,2,3)

Produces:
	​ 	1

	 If you want a block to receive an arbitrary number of arguments,
	 define it to accept ​*args​.
	
	​ 	a_proc = Proc.new {|*a| p a}

	​ 	a_proc.call(1,2,3)

Produces:
	​ 	[1, 2, 3]

	 Blocks created using Object#lambda
	 check that they are called with exactly the right number of
	 parameters.
	
	​ 	p_proc = Proc.new {|a,b| puts ​"Sum is: ​#{a + b}​"​ }

	​ 	p_proc.call(1,2,3)

	​ 	p_proc = lambda {|a,b| puts ​"Sum is: ​#{a + b}​"​ }

	​ 	p_proc.call(1,2,3)

Produces:
	​ 	 from prog.rb:4:in `call'

	​ 	 from prog.rb:4:in `<main>'

	​ 	Sum is: 3

	​ 	prog.rb:3:in `block in <main>': wrong number of arguments (3 for 2)

	​ 	(ArgumentError)

curry
	prc.curry → curried_proc

	 If you have a proc that takes arguments, you
	 normally have to supply all of those arguments if you want
	 the proc to execute successfully. However, it is also
	 possible to consider an ​n​ argument proc to be the same as
	 a single-argument proc that returns a new proc that has this
	 first argument fixed and that takes ​n-1​ arguments. If you
	 repeat this process recursively for each of these subprocs,
	 you end up with a proc that will take from zero to ​n​
	 arguments. If you pass it all ​n​, it simply executes the
	 proc with those arguments. If you pass it ​m​ arguments
	 (where ​m​ < ​n​), it returns a new proc that has those
	 arguments prebaked in and that takes ​m-n​ arguments. In this
	 way, it is possible to partially apply arguments to a
	 proc.
	
	​ 	add_three_numbers = lambda {|a,b,c| a + b + c}

	​ 	add_10_to_two_numbers = add_three_numbers.curry[10]

	​ 	add_33_to_one_number = add_10_to_two_numbers[23]

	​ 	

	​ 	add_three_numbers[1,2,3] ​# => 6​

	​ 	add_10_to_two_numbers[1,2] ​# => 13​

	​ 	add_33_to_one_number[1] ​# => 34​

lambda?
	prc.lambda? → ​true​ or ​false​

	 Returns ​true​ if prc has lambda semantics (that is,
	 if argument passing acts as it does with method calls). See the
	 discussion in Section 22.13, ​Blocks, Closures, and Proc Objects​.
	

parameters
	prc.parameters → array

	 Returns a description of the method’s parameter list. See
	 Method#parameters for details.
	
	​ 	lambda {|a, b=1, *c, &d| }.parameters ​# => [[:req, :a], [:opt, :b], [:rest, :c],​

	​ 	 ​# .. [:block, :d]]​

source_location
	prc.source_location
	 → [filename, lineno] or ​nil​

	 Returns the source filename and line number where
	 prc was defined or ​nil​ if
	 proc was not defined in Ruby source.
	
	​ 	variable = 123

	​ 	prc = lambda { ​"some proc"​ }

	​ 	prc.source_location ​# => ["prog.rb", 2]​

to_proc
	prc.to_proc → prc

	 Part of the protocol for converting objects to ​Proc​
	 objects. Instances of class ​Proc​ simply return themselves.
	

to_s
	prc.to_s → string

	 Returns a description of prc, including information on where it
	 was defined.
	
	​ 	​def​ create_proc

	​ 	 Proc.new

	​ 	​end​

	​ 	

	​ 	my_proc = create_proc { ​"hello"​ }

	​ 	my_proc.to_s ​# => "#<Proc:0x007fc7f4864318@prog.rb:5>"​

yield
	prc.yield(<params>*) → obj

	 Synonym for Proc#call.
	

Module Process

 The ​Process​ module is a collection of methods used to manipulate
 processes. Programs that want to manipulate real and effective user
 and group IDs should also look at the ​Process::GID​
 and ​Process::UID​ modules. Much of the functionality here is
 duplicated in the ​Process::Sys​ module.

 Constants

	PRIO_PGRP
	Process group priority.
	PRIO_PROCESS
	Process priority.
	PRIO_USER
	User priority.
	WNOHANG
	Does not block if no child has exited. Not
 available on all platforms.
	WUNTRACED
	Returns stopped children as well. Not
 available on all platforms.
	RLIM[IT]_​xxx​
	Used by
 ​getrlimit​
 and

 ​setrlimit​
 .

Process: Module methods
abort
	abort
	abort(msg)

	 Synonym for Object#abort.
	

daemon
	Process.daemon(stay_in_dir = ​false​,
	keep_stdio_open = ​false​)
	 → 0 or -1

	 Puts the current process into the background
	 (either by forking and calling Process.setsid or by using the daemon(3) call if available). Sets the
	 current working directory to ​/​ unless
	 stay_in_dir is
	 ​true​. Redirects standard input, output,
	 and error to ​/dev/null​ unless
	 keep_stdio_open is true. Not available on all
	 platforms.
	

detach
	Process.detach(pid) → thread

	 Some operating systems retain the status of terminated child
	 processes until the parent collects that status (normally
	 using some variant of
 ​wait()​
). If
	 the parent never collects this status, the child stays
	 around as a
 ​ zombie​

 process. Process.detach prevents this by setting up a
	 separate Ruby thread whose sole job is to reap the status of
	 the process pid when it terminates. Use
	
 ​detach​
 only when you do not intend
	 to explicitly wait for the child to
	 terminate.
 ​detach​
 checks the status
	 only periodically (currently once each second).
	

	 In this first example, we don’t reap the first child process, so
	 it appears as a zombie in the process status display.
	
	​ 	pid = fork { sleep 0.1 }

	​ 	sleep 1

	​ 	system(​"ps -o pid,state -p ​#{pid}​"​)

Produces:
	​ 	dyld: DYLD_ environment variables being ignored because main executable (/bin/ps)

	​ 	is setuid or setgid

	​ 	 PID STAT

	​ 	24002 Z+

	 In the next example, Process.detach is used to reap the
	 child automatically—no child processes are left running.
	
	​ 	pid = fork { sleep 0.1 }

	​ 	Process.detach(pid)

	​ 	sleep 1

	​ 	system(​"ps -o pid,state -p ​#{pid}​"​)

Produces:
	​ 	dyld: DYLD_ environment variables being ignored because main executable (/bin/ps)

	​ 	is setuid or setgid

	​ 	 PID STAT

egid
	Process.egid → int

	 Returns the effective group ID for this process.
	
	​ 	Process.egid ​# => 20​

egid=
	Process.egid= int → int

	 Sets the effective group ID for this process.
	

euid
	Process.euid → int

	 Returns the effective user ID for this process.
	
	​ 	Process.euid ​# => 501​

euid=
	Process.euid= int

	 Sets the effective user ID for this process.
	 Not available on all platforms.
	

exec
	Process.exec(<env,> command <, args>*,
	 <options>)

	 Synonym for Object#exec.
	

exit
	Process.exit(int=0)

	 Synonym for Object#exit.
	

exit!
	Process.exit!(​true​ | ​false​ | status=1)

	 Synonym for Object#exit!.
	 No exit handlers are run.
	 0, 1, or status is returned to the underlying system as the exit
	 status.
	
	​ 	Process.exit!(0)

fork
	Process.fork <> → int or ​nil​

	 See Object#fork.
	

getpgid
	Process.getpgid(int) → int

	 Returns the process group ID for the given process ID.
	 Not available on all platforms.
	
	​ 	Process.getpgid(Process.ppid()) ​# => 21366​

getpgrp
	Process.getpgrp → int

	 Returns the process group ID for this process.
	 Not available on all platforms.
	
	​ 	Process.getpgid(0) ​# => 21366​

	​ 	Process.getpgrp ​# => 21366​

getpriority
	Process.getpriority(kind, int) → int

	 Gets the scheduling priority
	 for specified process, process group, or user.
	 The kind parameter indicates the kind of entity to find:
	 ​Process::PRIO_PGRP​,
	 ​Process::PRIO_USER​, or
	 ​Process::PRIO_PROCESS​. int
	 is an ID indicating the particular process, process group,
	 or user (an ID of 0 means ​current​). Lower
	 priorities are more favorable for scheduling. Not available
	 on all platforms.
	
	​ 	Process.getpriority(Process::PRIO_USER, 0) ​# => 0​

	​ 	Process.getpriority(Process::PRIO_PROCESS, 0) ​# => 0​

getrlimit
	Process.getrlimit(name) → [current, max]

	 Returns the current and maximum resource limit for
	 the named resource. The name may be a symbol or a string
	 from the following list. It may also be an
	 operating-specific integer constant. The
	 ​Process​ module defines constants
	 corresponding to these integers: the constants are named
	 ​RLIMIT_​ followed by one of the
	 following: ​AS​,
	 ​CORE​, ​CPU​,
	 ​DATA​, ​FSIZE​,
	 ​MEMLOCK​, ​NOFILE​,
	 ​NPROC​, ​RSS​, or
	 ​STACK​. Consult your system’s
	 getrlimit(2) man page for
	 details. The return array may contain actual values or one
	 of the constants ​RLIM_INFINITY​,
	 ​RLIM_SAVED_CUR​, or
	 ​RLIM_SAVED_MAX​. Not available on all
	 platforms. See also Process.setrlimit.
	
	​ 	Process.getrlimit(:STACK) ​# => [8388608, 67104768]​

	​ 	Process.getrlimit(​"STACK"​) ​# => [8388608, 67104768]​

	​ 	Process.getrlimit(Process::RLIMIT_STACK) ​# => [8388608, 67104768]​

getsid
	Process.getsid → int

 Returns the session id (if supported).«2.0»

gid
	Process.gid → int

	 Returns the group ID for this process.
	
	​ 	Process.gid ​# => 20​

gid=
	Process.gid= int → int

	 Sets the group ID for this process.
	

groups
	Process.groups → groups

	 Returns an array of integer supplementary group IDs. Not
	 available on all platforms. See also Process.maxgroups.
	
	​ 	Process.groups ​# => [20, 405, 402, 401, 403, 12, 33, 61, 79, 80, 81, 98, 100,​

	​ 	 ​# .. 204, 404]​

groups=
	Process.groups = array → groups

	 Sets the supplementary group IDs from the given array, which may contain
	 either numbers or group names (as strings). Not
	 available on all platforms. Available only to superusers.
	 See also Process.maxgroups.
	

initgroups
	Process.initgroups(user, base_group) → groups

	 Initializes the group access list using the operating system’s
	
 ​initgroups​
 call. Not available on all platforms. May require
	 superuser privilege.
	
	​ 	Process.initgroups(​"dave"​, 500)

kill
	Process.kill(signal, <pid>+) → int

	 Sends the given signal to the specified process
	 ID(s) or to the current process
	 if pid is
	 zero. signal may be an integer signal number or a string
	 or symbol representing a POSIX signal name (either
	 with or without a ​SIG​ prefix). If signal is negative
	 (or starts with a ​-​ sign), kills process groups instead of
	 processes. Not all signals are available on all platforms.
	
	​ 	pid = fork ​do​

	​ 	 Signal.trap(:USR1) { puts ​"Ouch!"​; exit }

	​ 	 ​# ... do some work ...​

	​ 	​end​

	​ 	​# ...​

	​ 	Process.kill(:USR1, pid)

	​ 	Process.wait

Produces:
	​ 	Ouch!

maxgroups
	Process.maxgroups → count

	 The ​Process​ module has a limit on the number of
	 supplementary groups it supports in the calls Process.groups
	 and Process.groups=. The
 ​maxgroups​
 call returns that
	 limit, and the
 ​maxgroups=​
 call sets it.
	
	​ 	Process.maxgroups ​# => 16​

maxgroups=
	Process.maxgroups= limit → count

	 Sets the maximum number of supplementary group IDs that can be
	 processed by the
 ​groups​
 and
 ​groups=​
 methods.
	 If a number larger
	 than 4096 is given, 4096 will be used.
	

pid
	Process.pid → int

	 Returns the process ID of this process. Not available on
	 all platforms.
	
	​ 	Process.pid ​# => 24032​

ppid
	Process.ppid → int

	 Returns the process ID of the parent of this process.
	 Always returns 0 on Windows.
	 Not available on all platforms.
	
	​ 	puts ​"I am ​#{Process.pid}​"​

	​ 	Process.fork { puts ​"Parent is ​#{Process.ppid}​"​ }

Produces:
	​ 	I am 24034

	​ 	Parent is 24034

setpgid
	Process.setpgid(pid, int) → 0

	 Sets the process group ID of pid (0 indicates
	 this process) to int. Not available on all
	 platforms.
	

setpgrp
	Process.setpgrp → 0

	 Equivalent to ​setpgid(0,0)​.
	 Not available on all platforms.
	

setpriority
	Process.setpriority(kind, int, int_priority)
	 → 0

	 See Process#getpriority.
	
	​ 	Process.setpriority(Process::PRIO_USER, 0, 19) ​# => 0​

	​ 	Process.setpriority(Process::PRIO_PROCESS, 0, 19) ​# => 0​

	​ 	Process.getpriority(Process::PRIO_USER, 0) ​# => 19​

	​ 	Process.getpriority(Process::PRIO_PROCESS, 0) ​# => 19​

setrlimit
	Process.setrlimit(name,
	soft_limit, hard_limit=soft_limit)
	 → ​nil​

	 Sets the limit for the named resource. See Process.getrlimit for a description of
	 resource naming. Your system’s setrlimit(2) man page will have a description of the limits. Not
	 available on all platforms.
	

setsid
	Process.setsid → int

	 Establishes this process as a new session and process group
	 leader, with no controlling tty.
	 Returns the session ID.
	 Not available on all platforms.
	
	​ 	Process.setsid ​# => 24039​

spawn
	Process.spawn(<env,> command <, args>*, <options>)
		 → pid

	 Synonym for Object#spawn.
	

times
	Process.times → struct_tms

	 Returns a ​Tms​ structure (see ​Struct::Tms​)
	 that contains user and system CPU times for this process.
	
	​ 	t = Process.times

	​ 	[t.utime, t.stime] ​# => [0.03, 0.01]​

uid
	Process.uid → int

	 Returns the user ID of this process.
	
	​ 	Process.uid ​# => 501​

uid=
	Process.uid= int → numeric

	 Sets the (integer) user ID for this process.
	 Not available on all platforms.
	

wait
	Process.wait → int

	 Waits for any child process to exit and returns the
	 process ID of that child. Also sets
	 ​$?​
	 to the
	 ​Process::Status​
	 object containing information on that
	 process. Raises a
	 ​SystemError​ if there are no child
	 processes. Not available on all platforms.
	
	​ 	Process.fork { exit 99 } ​# => 24046​

	​ 	Process.wait ​# => 24046​

	​ 	$?.exitstatus ​# => 99​

waitall
	Process.waitall → [[pid1,status], ...]

	 Waits for all children, returning an array of
	 pid/status pairs (where status is an object of class
	 ​Process::Status​).
	
	​ 	fork { sleep 0.2; exit 2 } ​# => 24049​

	​ 	fork { sleep 0.1; exit 1 } ​# => 24050​

	​ 	fork { exit 0 } ​# => 24051​

	​ 	Process.waitall ​# => [[24051, #<Process::Status: pid 24051 exit 0>],​

	​ 	 ​# .. [24050, #<Process::Status: pid 24050 exit 1>],​

	​ 	 ​# .. [24049, #<Process::Status: pid 24049 exit 2>]]​

wait2
	Process.wait2 → [pid, status]

	 Waits for any child process to exit and returns an array
	 containing the process ID and the exit status (a
	 ​Process::Status​ object)
	 of that child.
	 Raises a ​SystemError​ if no child processes exist.
	
	​ 	Process.fork { exit 99 } ​# => 24054​

	​ 	pid, status = Process.wait2

	​ 	pid ​# => 24054​

	​ 	status.exitstatus ​# => 99​

waitpid
	Process.waitpid(pid, int=0) → pid

	 Waits for a child process to exit depending on the value of
	 pid:
	
	< -1	

		Any child whose progress group ID equals the absolute
		value of pid
	

	-1	
Any child (equivalent to
 ​wait​
)

	0	
Any child whose process group ID equals that of the current process

	> 0	The child with the given PID

	 int may be
	 a logical or of the flag values
	 ​Process::WNOHANG​ (do not block if no child available)
	 or ​Process::WUNTRACED​ (return stopped children that haven’t
	 been reported).
	 Not all flags are available on all platforms, but a flag value
	 of zero will work on all platforms.
	
	​ 	include Process

	​ 	pid = fork { sleep 2 } ​# => 24057​

	​ 	Time.now ​# => 2013-05-27 12:32:49 -0500​

	​ 	waitpid(pid, Process::WNOHANG) ​# => nil​

	​ 	Time.now ​# => 2013-05-27 12:32:49 -0500​

	​ 	waitpid(pid, 0) ​# => 24057​

	​ 	Time.now ​# => 2013-05-27 12:32:51 -0500​

waitpid2
	Process.waitpid2(pid, int=0)
	 → [pid, status]

	 Waits for the given child process to exit, returning that
	 child’s process ID and exit status (a ​Process::Status​
	 object). int may be a logical or of the values
	 ​Process::WNOHANG​ (do not block if no child available) or
	 ​Process::WUNTRACED​ (return stopped children that haven’t
	 been reported). Not all flags are available on all platforms,
	 but a flag value of zero will work on all platforms.
	

Module Process::GID

 Provides a higher-level (and more portable) interface to the
 underlying operating system’s concepts of real, effective, and
 saved group IDs. Discussing the semantics of these IDs is well
 beyond the scope of this book; readers who want to know more
 should consult POSIX documentation or read the intro(2) man pages on a recent Unix
 platform. All these methods throw
 ​NotImplementedError​ if the host operating
 does not support a sufficient set of calls. The descriptions that
 follow are based on notes in ruby-talk:76218 by Hidetoshi
 Nagai.

Process::GID: Module methods
change_privilege
	​Process::GID​.change_privilege(gid)
	 → gid

	 Sets the real, effective, and saved group IDs to
	 gid, raising an exception on failure (in which
	 case the state of the IDs is not known). This method is not
	 compatible with Process.gid=.
	

eid
	​Process::GID​.eid → egid

	 Returns the effective group ID for this process. Synonym for
	 Process.egid.
	

eid=
	​Process::GID​.eid = egid

	 Synonym for Process::GID.grant_privilege.
	

grant_privilege
	​Process::GID​.grant_privilege(egid)
	 → egid

	 Sets the effective group ID to egid, raising an exception
	 on failure. On some environments this may also change the
	 saved group ID (see
 ​re_exchangeable?​
).
	

re_exchange
	​Process::GID​.re_exchange → egid

	 Exchanges the real and effective group IDs, setting the saved
	 group ID to the new effective group ID. Returns the new
	 effective group ID.
	

re_exchangeable?
	​Process::GID​.re_exchangeable
	 → ​true​ or ​false​

	 Returns ​true​ if real and effective group IDs can be
	 exchanged on the host operating system and returns ​false​ otherwise.
	

rid
	​Process::GID​.rid → gid

	 Returns the real group ID for this process. Synonym for
	 Process.gid.
	

sid_available?
	​Process::GID​.sid_available? → ​true​ or ​false​

	 Returns ​true​ if the underlying platform
	 supports saved group IDs and returns
	 ​false​ otherwise. Currently, Ruby
	 assumes support if the operating system has setresgid(2) or setegid(2) calls or if the configuration includes the
	 ​POSIX_SAVED_IDS​ flag.
	

switch
	​Process::GID​.switch → egid
	​Process::GID​.switch { … } → obj

	 Handles the toggling of group privilege. In the block
	 form, automatically toggles the IDs back when the block
	 terminates (but only if the block doesn’t use other
	 calls into ​Process::GID​ calls,
	 which would interfere). Without a block, returns the
	 original effective group ID.
	

Class Process::Status < Object

 ​Process::Status​ encapsulates the
 information on the status of a running or terminated system
 process. The built-in variable
 ​$?​ is
 either ​nil​ or a
 ​Process::Status​ object.

	​ 	fork { exit 99 } ​# => 24060​

	​ 	Process.wait ​# => 24060​

	​ 	$?.class ​# => Process::Status​

	​ 	$?.to_i ​# => 25344​

	​ 	$? >> 8 ​# => 99​

	​ 	$?.stopped? ​# => false​

	​ 	$?.exited? ​# => true​

	​ 	$?.exitstatus ​# => 99​

 POSIX systems record information on processes using a 16-bit
 integer. The lower bits record the process status (stopped,
 exited, signaled), and the upper bits possibly contain additional
 information (for example, the program’s return code in the case of
 exited processes). Before Ruby 1.8, these bits were exposed directly to
 the Ruby program. Ruby now encapsulates these in a
 ​Process::Status​ object. To maximize compatibility, however,
 these objects retain a bit-oriented interface. In the descriptions
 that follow, when we talk about the integer value of stat, we’re
 referring to this 16-bit value.

Process::Status: Instance methods
==
	stat == other → ​true​ or ​false​

	 Returns ​true​ if the integer value of stat equals
	 other.
	

&
	stat & num → fixnum

	 Logical AND of the bits in stat with num.
	
	​ 	fork { exit 0x37 }

	​ 	Process.wait

	​ 	sprintf(​'%04x'​, $?.to_i) ​# => "3700"​

	​ 	sprintf(​'%04x'​, $? & 0x1e00) ​# => "1600"​

>>
	stat >> num → fixnum

	 Shifts the bits in stat right num places.
	
	​ 	fork { exit 99 } ​# => 24066​

	​ 	Process.wait ​# => 24066​

	​ 	$?.to_i ​# => 25344​

	​ 	$? >> 8 ​# => 99​

coredump?
	stat.coredump → ​true​ or ​false​

	 Returns ​true​ if stat generated a core dump when it
	 terminated. Not available on all platforms.
	

exited?
	stat.exited? → ​true​ or ​false​

	 Returns ​true​ if stat exited normally (for example
	 using an
 ​exit​
 call or finishing the program).
	

exitstatus
	stat.exitstatus → fixnum or ​nil​

	 Returns the least significant 8 bits of the return code of
	 stat. Available only if
	
 ​exited?​
 is
	 ​true​.
	
	​ 	fork { } ​# => 24069​

	​ 	Process.wait ​# => 24069​

	​ 	$?.exited? ​# => true​

	​ 	$?.exitstatus ​# => 0​

	​ 	

	​ 	fork { exit 99 } ​# => 24070​

	​ 	Process.wait ​# => 24070​

	​ 	$?.exited? ​# => true​

	​ 	$?.exitstatus ​# => 99​

pid
	stat.pid → fixnum

	 Returns the ID of the process associated with this status object.
	
	​ 	fork { exit } ​# => 24073​

	​ 	Process.wait ​# => 24073​

	​ 	$?.pid ​# => 24073​

signaled?
	stat.signaled? → ​true​ or ​false​

	 Returns ​true​ if stat terminated because of an
	 uncaught signal.
	
	​ 	pid = fork { sleep 100 }

	​ 	Process.kill(9, pid) ​# => 1​

	​ 	Process.wait ​# => 24076​

	​ 	$?.signaled? ​# => true​

stopped?
	stat.stopped? → ​true​ or ​false​

	 Returns ​true​ if this process is stopped. This is returned
	 only if the corresponding
 ​wait​
 call had the
	 ​WUNTRACED​ flag set.
	

success?
	stat.success? → ​nil​, or ​true​ or ​false​

	 Returns ​true​ if stat refers
	 to a process that exited successfully, returns
	 ​false​ if it exited with a failure, and
	 returns ​nil​ if stat does not
	 refer to a process that has exited.
	

stopsig
	stat.stopsig → fixnum or ​nil​

	 Returns the number of the signal that caused stat to stop (or
	 ​nil​ if ​self{}​ is not stopped).
	

termsig
	stat.termsig → fixnum or ​nil​

	 Returns the number of the signal that caused stat to terminate (or
	 ​nil​ if ​self{}​ was not terminated by an uncaught signal).
	

to_i
	stat.to_i → fixnum

	 Returns the bits in stat as a ​Fixnum​. Poking around in
	 these bits is platform dependent.
	
	​ 	fork { exit 0xab } ​# => 24079​

	​ 	Process.wait ​# => 24079​

	​ 	sprintf(​'%04x'​, $?.to_i) ​# => "ab00"​

to_s
	stat.to_s → string

	 Equivalent to ​stat.to_i.to_s​.
	

Module Process::Sys

 ​Process::Sys​ provides system call--level
 access to the process user and group environment. Many of the
 calls are aliases of those in the
 ​Process​
 module and are packaged here for completeness. See also
 ​Process::GID​
 and
 ​Process::UID​
 for a higher-level (and more portable) interface.

Process::Sys: Module methods
getegid
	​Process::Sys​.getegid → gid

	 Returns the effective group ID for this process. Synonym for
	 Process.egid.
	

geteuid
	​Process::Sys​.getugid → uid

	 Returns the effective user ID for this process. Synonym for
	 Process.euid.
	

getgid
	​Process::Sys​.getgid → gid

	 Returns the group ID for this process. Synonym for Process.gid.
	

getuid
	​Process::Sys​.getuid → uid

	 Returns the user ID for this process. Synonym for Process.uid.
	

issetugid
	​Process::Sys​.issetugid → ​true​ or ​false​

	 Returns ​true​ if this process was made
	 setuid or setgid as a result of the last
	
 ​execve()​
 system call and returns
	 ​false​ if not. Raises
	 ​NotImplementedError​ on systems that
	 don’t support issetugid(2).
	

setegid
	​Process::Sys​.setegid(gid)

	 Sets the effective group ID to gid, failing if
	 the underlying system call fails. Raises
	 ​NotImplementedError​ on systems that
	 don’t support setegid(2).
	

seteuid
	​Process::Sys​.seteuid(uid)

	 Sets the effective user ID to uid, failing if the
	 underlying system call fails. Raises
	 ​NotImplementedError​ on systems that
	 don’t support seteuid(2).
	

setgid
	​Process::Sys​.setgid(gid)

	 Sets the group ID to gid, failing if the
	 underlying system call fails. Raises
	 ​NotImplementedError​ on systems that
	 don’t support setgid(2).
	

setregid
	​Process::Sys​.setregid(rgid, egid)

	 Sets the real and effective group IDs to rgid
	 and egid, failing if the underlying system call
	 fails. Raises
	 ​NotImplementedError​ on
	 systems that don’t support setregid(2).
	

setresgid
	​Process::Sys​.setresgid(rgid, egid, sgid)

	 Sets the real, effective, and saved group IDs to
	 rgid, egid, and sgid,
	 failing if the underlying system call fails. Raises
	 ​NotImplementedError​ on
	 systems that don’t support setresgid(2).
	

setresuid
	​Process::Sys​.setresuid(ruid, euid, suid)

	 Sets the real, effective, and saved user IDs to
	 ruid, euid, and suid,
	 failing if the underlying system call fails. Raises
	 ​NotImplementedError​ on systems
	 that don’t support setresuid(2).
	

setreuid
	​Process::Sys​.setreuid(ruid, euid)

	 Sets the real and effective user IDs to ruid and
	 euid, failing if the underlying system call
	 fails. Raises ​NotImplementedError​ on
	 systems that don’t support setreuid(2).
	

setrgid
	​Process::Sys​.setrgid(rgid)

	 Sets the real group ID to rgid, failing if the
	 underlying system call fails. Raises
	 ​NotImplementedError​ on systems
	 that don’t support setrgid(2).
	

setruid
	​Process::Sys​.setruid(ruid)

	 Sets the real user ID to ruid, failing if the
	 underlying system call fails. Raises
	 ​NotImplementedError​ on systems
	 that don’t support setruid(2).
	

setuid
	​Process::Sys​.setuid(uid)

	 Sets the user ID to uid, failing if the
	 underlying system call fails. Raises
	 ​NotImplementedError​ on systems
	 that don’t support setuid(2).
	

Module Process::UID

 Provides a higher-level (and more portable) interface to the
 underlying operating system’s concepts of real, effective, and
 saved user IDs. For more information, see the introduction to
 ​Process::GID​.

Process::UID: Module methods
change_privilege
	Process::UID.change_privilege(uid) → uid

	 Sets the real, effective, and saved user IDs to
	 uid, raising an exception on failure (in which
	 case the state of the IDs is not known). Not compatible
	 with Process.uid=.
	

eid
	Process::UID.eid → euid

	 Returns the effective user ID for this process. Synonym for
	 Process.euid.
	

eid=
	Process::UID.eid = euid

	 Synonym for Process::UID.grant_privilege.
	

grant_privilege
	Process::UID.grant_privilege(euid) → euid

	 Sets the effective user ID to euid, raising an exception
	 on failure. On some environments this may also change the
	 saved user ID.
	

re_exchange
	Process::UID.re_exchange → euid

	 Exchanges the real and effective user IDs, setting the saved
	 user ID to the new effective user ID. Returns the new
	 effective user ID.
	

re_exchangeable?
	Process::UID.re_exchangeable → ​true​ or ​false​

	 Returns ​true​ if real and effective user IDs can be
	 exchanged on the host operating system and returns ​false​ otherwise.
	

rid
	Process::UID.rid → uid

	 Returns the real user ID for this process. Synonym for
	 Process.uid.
	

sid_available?
	Process::UID.sid_available? → ​true​ or ​false​

	 Returns ​true​ if the underlying platform
	 supports saved user IDs and returns
	 ​false​ otherwise. Currently, Ruby
	 assumes support if the operating system has setresuid(2) or seteuid(2) calls or if the configuration includes the
	 ​POSIX_SAVED_IDS​ flag.
	

switch
	Process::UID.switch → euid
	Process::UID.switch { … } → obj

	 Handles the toggling of user privilege. In the
	 block form, automatically toggles the IDs back when the block
	 terminates (as long as the block doesn’t use other Process::UID
	 calls to interfere). Without a block, returns the original
	 effective user ID.
	

Class Range < Object

 A ​Range​ represents an interval—a set of
 values with a start and an end. Ranges may be constructed using
 the ​​s​..​e​​ and
 ​​s​...​e​​ literals or using Range.new. Ranges constructed using ​..​ run
 from the start to the end inclusively. Those created using
 ​...​ exclude the end value. When used as an iterator,
 ranges return each value in the sequence.

	​ 	(-1..-5).to_a ​# => []​

	​ 	(-5..-1).to_a ​# => [-5, -4, -3, -2, -1]​

	​ 	(​'a'​..​'e'​).to_a ​# => ["a", "b", "c", "d", "e"]​

	​ 	(​'a'​...​'e'​).to_a ​# => ["a", "b", "c", "d"]​

 Ranges can be constructed using objects of any type, as long as the
 objects can be compared using their ​<=>​ operator and they
 support the
 ​succ​
 method to return the next object in
 sequence.

	​ 	​class​ Xs ​# represent a string of 'x's​

	​ 	 include Comparable

	​ 	 attr :length

	​ 	 ​def​ initialize(n)

	​ 	 @length = n

	​ 	 ​end​

	​ 	 ​def​ succ

	​ 	 Xs.new(@length + 1)

	​ 	 ​end​

	​ 	 ​def​ <=>(other)

	​ 	 @length <=> other.length

	​ 	 ​end​

	​ 	 ​def​ inspect

	​ 	 ​'x'​ * @length

	​ 	 ​end​

	​ 	​end​

	​ 	r = Xs.new(3)..Xs.new(6) ​# => xxx..xxxxxx​

	​ 	r.to_a ​# => [xxx, xxxx, xxxxx, xxxxxx]​

	​ 	r.member?(Xs.new(5)) ​# => true​

 In the previous code example, class ​Xs​ includes the
 ​Comparable​ module. This is because Enumerable#member?
 checks for equality using
 ​==​
 . Including ​Comparable​
 ensures that the
 ​==​
 method is defined in terms of the

 ​<=>​
 method implemented in ​Xs​.

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Range: Class methods
new
	Range.new(start, end, exclusive​=false​) → rng

	 Constructs a range using the given start and end. If the
	 third parameter is omitted or is false, the range will
	 include the end object; otherwise, it will be excluded.
	

Range: Instance methods
==
	rng == obj → ​true​ or ​false​

	 Returns ​true​ if obj is a
	 range whose beginning and end are the same as those in
	 rng (compared using ​==​) and whose
	 ​exclusive​ flag is the same as rng.
	

===
	rng === val → ​true​ or ​false​

	 If rng excludes its end, returns rng.start
	 ≤ val < rng.end. If rng is inclusive,
	 returns rng.start ≤ val ≤ rng.end. Note
	 that this implies that val need not be a member
	 of the range itself (for example, a float could fall between
	 the start and end values of a range of integers).
	 Implemented by calling
	
 ​include?​
 . Conveniently, the
	 ​===​ operator is used by ​case​ statements.
	
	​ 	​case​ 74.95

	​ 	​when​ 1...50 ​then​ puts ​"low"​

	​ 	​when​ 50...75 ​then​ puts ​"medium"​

	​ 	​when​ 75...100 ​then​ puts ​"high"​

	​ 	​end​

Produces:
	​ 	medium

begin
	rng.begin → obj

	 Returns the first object of rng.
	

bsearch
	rng.bsearch { |val| … }
	 → obj or
	​nil​>

 The same basic functionality as Array#bsearch. However, the range variant
 is typically used to search for something outside the range
 itself. For example, the range values could be used as a
 parameter to a function, or to index into some other
 collection. Remember though that the value returned by that
 function or collection must increase as its parameter
 increases.«2.0»

 Here’s a (poor) method that finds the number of binary digits
 required to represent a number:

	​ 	​def​ bit_size(n)

	​ 	 (0...(8*n.size)).bsearch { |bitno| (1 << bitno) > n }

	​ 	​end​

	​ 	

	​ 	[0x05, 0x50, 0x5a010000].each ​do​ |n|

	​ 	 printf ​"Bitsize of %b is %d\n"​, n, bit_size(n)

	​ 	​end​

Produces:
	​ 	Bitsize of 101 is 3

	​ 	Bitsize of 1010000 is 7

	​ 	Bitsize of 1011010000000010000000000000000 is 31

 And here’s a somewhat surprising example that finds
 ​x​ for which ​sin(x)​ equals
 0.5.

	​ 	(0.0..Math::PI/2).bsearch {|x| Math.sin(x) >= 0.5} ​# => 0.5235987755982989​

 On my box, it has the answer correct to 1% within 14
 iterations, and takes 62 iterations to find it to the limit
 of Float precision.

cover?
	rng.cover?(obj) → ​true​ or ​false​

	 Returns ​true​ if obj
	 lies between the start and end of the range. For ranges
	 defined with ​min..max​, this
	 means min ≤ obj ≤ max. For ranges defined
	 with ​min...max​, it means
	 min ≤ obj < max.
	
	​ 	(1..10).cover?(0) ​# => false​

	​ 	(1..10).cover?(5) ​# => true​

	​ 	(1..10).cover?(9.5) ​# => true​

	​ 	(1..10).cover?(10) ​# => true​

	​ 	(1...10).cover?(10) ​# => false​

each
	rng.each { |i| … } → rng

	 Iterates over the elements rng, passing each in
	 turn to the block. Successive elements are generated using
	 the
 ​succ​
 method.
	
	​ 	(10..15).each ​do​ |n|

	​ 	 print n, ​' '​

	​ 	​end​

Produces:
	​ 	10 11 12 13 14 15

end
	rng.end → obj

	 Returns the object that defines the end of rng.
	
	​ 	(1..10).end ​# => 10​

	​ 	(1...10).end ​# => 10​

eql?
	rng.eql?(obj) → ​true​ or ​false​

	 Returns ​true​ if obj is a
	 range whose beginning and end are the same as those in
	 rng (compared using
	
 ​eql?​
) and whose
	 ​exclusive​ flag is the same as rng.
	

exclude_end?
	rng.exclude_end? → ​true​ or ​false​

	 Returns ​true​ if rng excludes its end value.
	

first
	rng.first(n = 1) → obj or array

	Returns the first (or first n) elements of rng.

	​ 	(​'aa'​..​'bb'​).first ​# => "aa"​

	​ 	(​'aa'​..​'bb'​).first(5) ​# => ["aa", "ab", "ac", "ad", "ae"]​

include?
	rng.include?(val) → ​true​ or ​false​

	 Returns ​true​ if val is one
	 of the values in rng (that is, if Range#each would return val at some
	 point). If the range is defined to span numbers,
	 this method returns ​true​ if the value lies between the start
	 and end of the range, even if it is not actually a member
	 (that is, it has the same behavior as Range#cover?). Otherwise, the
	 parameter must be a member of the range.
	
	​ 	r = 1..10

	​ 	r.include?(5) ​# => true​

	​ 	r.include?(5.5) ​# => true​

	​ 	r.include?(10) ​# => true​

	​ 	r = 1...10

	​ 	r.include?(10) ​# => false​

	​ 	r = ​'a'​..​'z'​

	​ 	r.include?(​'b'​) ​# => true​

	​ 	r.include?(​'ruby'​) ​# => false​

last
	rng.last(n = 1) → obj or array

	Returns the last (or last n) elements of rng.

	​ 	(​'aa'​..​'bb'​).last ​# => "bb"​

	​ 	(​'aa'​..​'bb'​).last(5) ​# => ["ax", "ay", "az", "ba", "bb"]​

max
	rng.max → obj
	rng.max { |a,b| … } → obj

	 Returns the maximum value in the range. The block is used to
	 compare values if present.
	
	​ 	(-3..2).max ​# => 2​

	​ 	(-3..2).max {|a,b| a*a <=> b*b } ​# => -3​

member?
	rng.member?(val) → ​true​ or ​false​

	 Synonym for Range#include?.
	

min
	rng.min → obj
	rng.min { |a,b| … } → obj

	 Returns the minimum value in the range. The block is used to
	 compare values if present.
	
	​ 	(-3..2).min ​# => -3​

	​ 	(-3..2).min {|a,b| a*a <=> b*b } ​# => 0​

size
	rng.size
 → int or ​nil​

 Returns the number of elements in
 rng. In Ruby 2.0, only works for ranges of
 integers.«2.0»

	​ 	(1..26).size ​# => 26​

	​ 	(​'a'​..​'z'​).size ​# => nil​

step
	rng.step(n=1)
	 <obj> → rng or enum

	Iterates over rng, passing each nth element to the
	block. If the range contains numbers, addition by one is used
	to generate
	successive elements.
	Otherwise,
 ​step​
 invokes
 ​succ​

	to iterate through range elements. If no block is given,
	an enumerator is returned. The following code uses
	class ​Xs​ defined at the start of this section:

	​ 	range = Xs.new(1)..Xs.new(10)

	​ 	range.step(2) {|x| p x}

	​ 	enum = range.step(3)

	​ 	p enum.to_a

Produces:
	​ 	x

	​ 	xxx

	​ 	xxxxx

	​ 	xxxxxxx

	​ 	xxxxxxxxx

	​ 	[x, xxxx, xxxxxxx, xxxxxxxxxx]

	 Here’s
 ​step​
 with numbers:

	​ 	(1..5).step(1).to_a ​# => [1, 2, 3, 4, 5]​

	​ 	(1..5).step(2).to_a ​# => [1, 3, 5]​

	​ 	(1..5).step(1.5).to_a ​# => [1.0, 2.5, 4.0]​

	​ 	(1.0..5.0).step(1).to_a ​# => [1.0, 2.0, 3.0, 4.0, 5.0]​

	​ 	(1.0..5.0).step(2).to_a ​# => [1.0, 3.0, 5.0]​

	​ 	(1.0..5.0).step(1.5).to_a ​# => [1.0, 2.5, 4.0]​

Class Random < Object

 A random number generator, based on the Mersenne Twister
 MT19937 (the period is 219937-1). The
 global
 ​rand​
 and

 ​srand​
 methods are wrappers for this
 class.

Random: Class methods
new
	
	 Random.new(<seed=Random.new_seed>) → rand
	

	 Creates a new random random number generator with the given
	 seed. The seed will be converted to an integer.
	

new_seed
	Random.new_seed → bignum

	 Returns a number that can be used as a seed. The value is
	 derived from a system random number generator if available;
	 otherwise, it combines the time, the
	 process ID, and a sequence number.
	
	​ 	Random.new_seed ​# => 205460400778463129775182461758071944669​

rand
	Random.rand(max=0) → number
	Random.rand(range) → number

	 Synonym for Object#rand.
	

srand
	Random.rand(seed) → old_seed

	 Synonym for Object#srand.
	
	

Random: Instance methods
bytes
	
	 rand.bytes(length) → string
	

	 Returns a binary-encoded string, length bytes long, containing random bits.
	
	​ 	rand = Random.new

	​ 	rand.bytes(10) ​# => "T\xAEP\xD5\0\xAD\x7F\x84b\xC9"​

rand
	rand.rand(max=0) → number
	rand.rand(range) → number

	 Converts max to an integer using max1 = max.to_i.abs. If the result is
	 zero or ​nil​, returns a pseudorandom
	 floating-point number greater than or equal to 0.0 and less
	 than 1.0. Otherwise, returns a pseudorandom integer greater
	 than or equal to zero and less than max1. If a range is passed,
	 return a random number in that range.
	

seed
	
	 rand.seed → bignum
	

	 Returns the seed for this random number generator.
	

Class Rational < Numeric

 Rational numbers are expressed as the ratio of two integers. When the
 denominator exactly divides the numerator, a rational number is
 effectively an integer. Rationals allow exact representation of
 fractional numbers, but some real values cannot be expressed exactly
 and so cannot be represented as rationals.

 Class ​Rational​ is
 normally relatively independent of the other numeric classes, in
 that the result of dividing two integers with the ​/​
 operator will normally be a (truncated) integer (the

 ​quo​
 method will always return a rational
 result). However, if the
 ​mathn​ library
 is loaded into a program, integer division may generate a
 ​Rational​ result. Also see the ​rational​ library
 for additional methods on rational numbers.

	​ 	r1 = Rational(​"1/2"​) ​# => 1/2​

	​ 	r2 = 4.quo(5) ​# => 4/5​

	​ 	r1 * r2 ​# => 2/5​

Rational: Instance methods
Arithmetic operations
	

	 Performs various arithmetic operations on
	 rat.
	
	
rat
	
+
	
numeric
	Addition
	
rat
	
-
	
numeric
	Subtraction
	
rat
	
*
	
numeric
	Multiplication
	
rat
	
/
	
numeric
	Division
	
rat
	
%
	
numeric
	Modulo
	
rat
	
**
	
numeric
	Exponentiation
	
rat
	
-@
	

	Unary minus

Comparisons
	

	 Compares rat to other numbers:
	
 ​<​
 ,
	
 ​<=​
 ,
	
 ​==​
 ,
	
 ​>=​
 , and
	
 ​>​
 .
	

<=>
	rat <=> numeric
	 → -1, 0, +1, or ​nil​

	 Comparison—Returns -1, 0, or +1 depending on whether
	 rat is less than, equal to, or greater than
	 numeric. Although
	 ​Rational​’s grandparent mixes in
	 ​Comparable​,
	 ​Rational​ does not use that module for
	 performing comparisons, instead implementing the comparison
	 operators explicitly.
	
	​ 	Rational(​"4/2"​) <=> Rational(​"98/49"​) ​# => 0​

	​ 	Rational(​"3/4"​) <=> 41 ​# => -1​

	​ 	Rational(​"0"​) <=> 0.0 ​# => 0​

==
	rat == numeric

	 Returns ​true​ if rat has the same value as
	 numeric. Comparisons against integers and rational
	 numbers are exact; comparisons against floats first convert
	 rat to a float.
	

ceil
	rat.ceil → numeric

	 Returns the smallest integer greater than or equal to
	 rat.
	
	​ 	Rational(​"22/7"​).ceil ​# => 4​

	​ 	Rational(​"-22/7"​).ceil ​# => -3​

denominator
	rat.denominator → a_number

	 Returns the denominator of rat.
	
	​ 	Rational(​"2/3"​).denominator ​# => 3​

fdiv
	rat.fdiv(numeric) → float

	 Returns the floating-point result of dividing rat by numeric.
	
	​ 	Rational(​"11/2"​) / 2 ​# => 11/4​

	​ 	Rational(​"11/2"​).fdiv 2 ​# => 2.75​

floor
	rat.floor → numeric

	 Returns the largest integer
	 less than or equal to rat.
	
	​ 	Rational(​"22/7"​).floor ​# => 3​

	​ 	Rational(​"-22/7"​).floor ​# => -4​

numerator
	rat.numerator → a_number

	 Returns the numerator of rat.
	
	​ 	Rational(​"2/3"​).numerator ​# => 2​

quo
	rat.quo(numeric) → numeric

	 Synonym for Rational#/.
	

rationalize
	rat.rationalize → rat
	rat.rationalize(epsilon) → rational

	 With no argument, returns rat; otherwise,
	 returns a new ​Rational​ with the given
	 precision.
	
	​ 	r = Math::PI.to_r ​# => (884279719003555/281474976710656)​

	​ 	r.rationalize ​# => (884279719003555/281474976710656)​

	​ 	r.rationalize(0.01) ​# => (22/7)​

round
	rat.round → numeric

	 Rounds rat to the nearest integer.
	
	​ 	Rational(​"22/7"​).round ​# => 3​

	​ 	Rational(​"-22/7"​).round ​# => -3​

to_f
	rat.to_f → float

	 Returns the floating-point representation of rat.
	
	​ 	Rational(​"37/4"​).to_f ​# => 9.25​

to_i
	rat.to_i → integer

	 Returns the truncated integer value of rat.
	
	​ 	Rational(​"19/10"​).to_i ​# => 1​

	​ 	Rational(​"-19/10"​).to_i ​# => -1​

to_r
	rat.to_r → rat

	 Returns rat.
	

truncate
	rat.truncate → numeric

	 Returns rat truncated to an integer.
	
	​ 	Rational(​"22/7"​).truncate ​# => 3​

	​ 	Rational(​"-22/7"​).truncate ​# => -3​

Class Regexp < Object

 A ​Regexp​ holds a regular expression, used
 to match a pattern against strings. Regexps are created using the
 ​/.../​ and ​%r{...}​ literals and using the Regexp.new constructor. See the reference on
 in ​Regular Expressions​ for
 more details.

 Constants

	EXTENDED
	Ignores spaces and newlines in regexp
	IGNORECASE
	Matches are case insensitive
	MULTILINE
	Newlines treated as any other character

Regexp: Class methods
compile
	Regexp.compile(pattern <, options lang>)
	 → rxp

	 Synonym for Regexp.new.
	

escape
	Regexp.escape(string) → escaped_string

	 Escapes any characters that would have special meaning in a
	 regular expression. For any string,
	 ​Regexp.new(Regexp.escape(str)) =~
	 str​ will be true.
	
	​ 	Regexp.escape(​'\\[]*?{}.'​) ​# => \\\[\]*\?\{\}\.​

last_match
	Regexp.last_match → match
	Regexp.last_match(int) → string

	 The first form returns the
	 ​MatchData​
	 object generated by the last successful pattern match. This
	 is equivalent to reading the global variable
	 ​$~​. ​MatchData​
	 has its own reference.
	

	 The second form returns the nth field in this
	 ​MatchData​ object.
	
	​ 	/c(.)t/ =~ ​'cat'​ ​# => 0​

	​ 	Regexp.last_match ​# => #<MatchData "cat" 1:"a">​

	​ 	Regexp.last_match(0) ​# => "cat"​

	​ 	Regexp.last_match(1) ​# => "a"​

	​ 	Regexp.last_match(2) ​# => nil​

new
	Regexp.new(string <, options lang>)
	 → rxp
	Regexp.new(regexp) → new_regexp

	 Constructs a new regular expression from the
	 string or the regexp. In the latter
	 case, that regexp’s options are propagated, and new options
	 may not be specified. If options is a number, it
	 should be one or more of
	 ​Regexp::EXTENDED​,
	 ​Regexp::IGNORECASE​, or
	 ​Regexp::MULTILINE​, ​or​-ed
	 together. Otherwise, if
	 the options parameter is not ​nil​, the regexp will be case
	 insensitive. The lang can be set to ​"N"​ or ​"n"​ to force the
	 regular expression to have ASCII-8BIT encoding;[121] otherwise, the encoding of the string determines the
	 encoding of the regular expression.
	
	​ 	​# encoding: utf-8​

	​ 	r1 = Regexp.new(​'^[a-z]+:\\s+\w+'​) ​# => /^[a-z]+:\s+\w+/​

	​ 	r2 = Regexp.new(​'cat'​, true) ​# => /cat/i​

	​ 	r3 = Regexp.new(​'dog'​, Regexp::EXTENDED) ​# => /dog/x​

	​ 	r4 = Regexp.new(r2) ​# => /cat/i​

	​ 	r5 = Regexp.new(​"∂elta"​) ​# => /∂elta/​

	​ 	r1.encoding ​# => #<Encoding:US-ASCII>​

	​ 	r5.encoding ​# => #<Encoding:UTF-8>​

quote
	Regexp.quote(string) → escaped_string

	 Synonym for Regexp.escape.
	

try_convert
	Regexp.try_convert(obj) → a_regexp or ​nil​

	 If obj is not already a regular expression, attempts to
	 convert it to one by calling its
	
 ​to_regexp​
 method. Returns ​nil​ if no
	 conversion could be made.
	
	​ 	Regexp.try_convert(​"cat"​) ​# => nil​

	​ 	​class​ String

	​ 	 ​def​ to_regexp

	​ 	 Regexp.new(self)

	​ 	 ​end​

	​ 	​end​

	​ 	Regexp.try_convert(​"cat"​) ​# => /cat/​

union
	Regexp.union(<pattern>*) → a_regexp

	 Returns a regular expression that will match any
	 of the given patterns. With no patterns,
	 produces a regular expression that will never
	 match. If a pattern is a string, it will be given
	 the default regular expression options. If a
	 pattern is a regular expression, its options will
	 be honored in the final pattern. The patterns may also
	 be passed in a single array.
	
	​ 	Regexp.union(​"cat"​) ​# => /cat/​

	​ 	Regexp.union(​"cat"​, ​"dog"​) ​# => /cat|dog/​

	​ 	Regexp.union(​%w{ cat dog }​) ​# => /cat|dog/​

	​ 	Regexp.union(​"cat"​, /dog/i) ​# => /cat|(?i-mx:dog)/​

Regexp: Instance methods
==
	rxp == other_regexp
 → ​true​ or ​false​

	Equality—Two regexps are equal if their patterns are
	identical, they have
	the same character set code, and their ​casefold?​ values are
	the same.

	​ 	/abc/ == /abc/x ​# => false​

	​ 	/abc/ == /abc/i ​# => false​

	​ 	/abc/u == /abc/n ​# => false​

===
	rxp === string → ​true​ or ​false​

	 Case Equality—Like Regexp#=~ but accepts nonstring
	 arguments (returning ​false​). Used in case statements.
	
	​ 	a = ​"HELLO"​

	​ 	​case​ a

	​ 	​when​ /​\A​[a-z]*​\z​/; print ​"Lower case\n"​

	​ 	​when​ /​\A​[A-Z]*​\z​/; print ​"Upper case\n"​

	​ 	​else​ print ​"Mixed case\n"​

	​ 	​end​

Produces:
	​ 	Upper case

=~
	rxp =~ string → int or ​nil​

	 Match—Matches rxp against string,
	 returning the offset of the start of the match or ​nil​
	 if the match failed. Sets
	 ​$~​
	 to the corresponding ​MatchData​ or
	 ​nil​.
	
	​ 	/SIT/ =~ ​"insensitive"​ ​# => nil​

	​ 	/SIT/i =~ ​"insensitive"​ ​# => 5​

~
	~ rxp → int or ​nil​

	 Match—Matches rxp against the contents of ​$_​. Equivalent to
	 ​rxp =~ $_​. You should be ashamed if you use this:
	
	​ 	$_ = ​"input data"​

	​ 	~ /at/ ​# => 7​

casefold?
	rxp.casefold? → ​true​ or ​false​

	 Returns the value of the case-insensitive flag. Merely setting the ​i​
	 option inside rxp does not set this flag.
	
	​ 	/cat/.casefold? ​# => false​

	​ 	/cat/i.casefold? ​# => true​

	​ 	/(?i:cat)/.casefold? ​# => false​

encoding
	rxp.encoding → an_encoding

	 Returns the character encoding for the regexp.
	
	​ 	/cat/.encoding ​# => #<Encoding:US-ASCII>​

	​ 	/cat/s.encoding ​# => #<Encoding:Windows-31J>​

	​ 	/cat/u.encoding ​# => #<Encoding:UTF-8>​

fixed_encoding?
	rxp.fixed_encoding? → ​true​ or ​false​

	 A regular expression containing only 7-bit
	 characters can be matched against a string in any
	 encoding. In this case,
	
 ​fixed_encoding?​
 returns
	 ​false​. Otherwise, it returns
	 ​true​.
	
	​ 	/cat/.fixed_encoding? ​# => false​

	​ 	/cat/s.fixed_encoding? ​# => true​

	​ 	/cat/u.fixed_encoding? ​# => true​

match
	rxp.match(string, offset=0)
	 → match or ​nil​
	rxp.match(string, offset=0) { |match| … }
	 → obj

	 Returns a
	 ​MatchData​
	 object describing
	 the match or ​nil​ if there was no
	 match. This is equivalent to retrieving the value of the
	 special variable
	 ​$~​
	 following a normal match. The match process will
	 start at offset into string.
	 If a block is given and the match is successful, the block
	 will be invoked with the ​MatchData​
	 object, and the value returned by the block will be the
	 value returned by
 ​match​
 .
	
	​ 	md = /(.)(d)(.)/.match(​"abcdefabcdef"​)

	​ 	md ​# => #<MatchData "cde" 1:"c" 2:"d" 3:"e">​

	​ 	md[1] ​# => "c"​

	​ 	md.begin(1) ​# => 2​

	​ 	md = /(.)(d)(.)/.match(​"abcdedcba"​, 4)

	​ 	md ​# => #<MatchData "edc" 1:"e" 2:"d" 3:"c">​

	​ 	md.begin(1) ​# => 4​

	​ 	

	​ 	result = /(...)...(...)/.match(​"catanddog"​) ​do​ |md|

	​ 	 md[1] + ​"&"​ + md[2]

	​ 	​end​

	​ 	result ​# => "cat&dog"​

named_captures
	rxp.named_captures → hash

	 Returns a hash whose keys are the names of captures and whose
	 values are each an array containing the number of the capture in
	 rxp.
	
	​ 	/(?<a>.).(?.)/.named_captures ​# => {"a"=>[1], "b"=>[2]}​

	​ 	/(?<a>.)(.)(?.)/.named_captures ​# => {"a"=>[1], "b"=>[2]}​

	​ 	/(?<a>.)(?.)(?<a>.)/.named_captures ​# => {"a"=>[1, 3], "b"=>[2]}​

names
	rxp.names → array

	 Returns an array containing the names of captures in rxp.
	
	​ 	/(.)(.)(.)/.names ​# => []​

	​ 	/(?<first>.).(?<last>.)/.names ​# => ["first", "last"]​

options
	rxp.options → int

	 Returns the set of bits corresponding to the options used when
	 creating this regexp (see Regexp.new for details). Note
	 that additional bits may be set in the returned options; these
	 are used internally by the regular expression code. These
	 extra bits are ignored if the options are passed to Regexp.new.
	
	​ 	​# Let's see what the values are...​

	​ 	Regexp::IGNORECASE ​# => 1​

	​ 	Regexp::EXTENDED ​# => 2​

	​ 	Regexp::MULTILINE ​# => 4​

	​ 	

	​ 	/cat/.options ​# => 0​

	​ 	/cat/ix.options ​# => 3​

	​ 	Regexp.new(​'cat'​, true).options ​# => 1​

	​ 	Regexp.new(​'cat'​, 0, ​'n'​).options ​# => 32​

	​ 	

	​ 	r = /cat/ix

	​ 	Regexp.new(r.source, r.options) ​# => /cat/ix​

source
	rxp.source → string

	 Returns the original string of the pattern.
	
	​ 	/ab+c/ix.source ​# => "ab+c"​

to_s
	rxp.to_s → string

	 Returns a string containing the regular expression and its
	 options (using the ​(?xx:yyy)​ notation). This string can be
	 fed back into Regexp.new to a regular expression with the
	 same semantics as the original. (However, Regexp#== may
	 not return true when comparing the two, because the source of the
	 regular expression itself may differ, as the example
	 shows.) Regexp#inspect produces a generally more readable
	 version of rxp.
	
	​ 	r1 = /ab+c/ix ​# => /ab+c/ix​

	​ 	s1 = r1.to_s ​# => "(?ix-m:ab+c)"​

	​ 	r2 = Regexp.new(s1) ​# => /(?ix-m:ab+c)/​

	​ 	r1 == r2 ​# => false​

	​ 	r1.source ​# => "ab+c"​

	​ 	r2.source ​# => "(?ix-m:ab+c)"​

Module Signal

 Many operating systems allow signals to be sent to running
 processes. Some signals have a defined effect on the process, and
 others may be trapped at the code level and acted upon. For
 example, your process may trap the ​USR1​ signal and use it
 to toggle debugging, and it may use ​TERM​ to initiate a
 controlled shutdown.

	​ 	pid = fork ​do​

	​ 	 Signal.trap(​"USR1"​) ​do​

	​ 	 $debug = !$debug

	​ 	 puts ​"Debug now: ​#$debug​"​

	​ 	 ​end​

	​ 	 Signal.trap(:TERM) ​do​ ​# symbols work too...​

	​ 	 puts ​"Terminating..."​

	​ 	 exit

	​ 	 ​end​

	​ 	 ​# . . . do some work . . .​

	​ 	​end​

	​ 	

	​ 	Process.detach(pid)

	​ 	

	​ 	​# Controlling program:​

	​ 	Process.kill(​"USR1"​, pid)

	​ 	​# ...​

	​ 	Process.kill(:USR1, pid)

	​ 	​# ...​

	​ 	Process.kill(​"TERM"​, pid)

Produces:
	​ 	Debug now: true

	​ 	Debug now: false

	​ 	Terminating...

 The list of available signal names and their interpretation is
 system dependent. Signal delivery semantics may also vary between
 systems; in particular, signal delivery may not always be
 reliable.

Signal: Module methods
list
	Signal.list → hash

	 Returns a list of signal names mapped to the corresponding
	 underlying signal numbers.
	
	​ 	Signal.list ​# => {"ABRT"=>6, "ALRM"=>14, "BUS"=>10, "CHLD"=>20, "CLD"=>20,​

	​ 	 ​# .. "CONT"=>19, "EMT"=>7, "EXIT"=>0, "FPE"=>8, "HUP"=>1, "ILL"=>4,​

	​ 	 ​# .. "INFO"=>29, "INT"=>2, "IO"=>23, "IOT"=>6, "KILL"=>9, "PIPE"=>13,​

	​ 	 ​# .. "PROF"=>27, "QUIT"=>3, "SEGV"=>11, "STOP"=>17, "SYS"=>12,​

	​ 	 ​# .. "TERM"=>15, "TRAP"=>5, "TSTP"=>18, "TTIN"=>21, "TTOU"=>22,​

	​ 	 ​# .. "URG"=>16, "USR1"=>30, "USR2"=>31, "VTALRM"=>26, "WINCH"=>28,​

	​ 	 ​# .. "XCPU"=>24, "XFSZ"=>25}​

signame
	Signal.signame(num) → string

 Return the (abbreviated) name of the signal with
 the given number. An ​ArgumentError​ is raised if the
 number does not correspond to a signal.«2.0»

	​ 	Signal.signame(1) ​# => "HUP"​

	​ 	Signal.signame(15) ​# => "TERM"​

trap
	Signal.trap(signal, command) → obj
	Signal.trap(signal) { … } → obj

	 Specifies the handling of signals. The first parameter is a
	 signal name (a string or symbol such as
	 ​SIGALRM​, ​SIGUSR1​, and so on) or a
	 signal number. The characters ​SIG​ may be omitted
	 from the signal name. The command or block specifies code to
	 be run when the signal is raised. If the command is
	 ​nil​, the string ​IGNORE​ or
	 ​SIG_IGN​, or the empty string, the signal will be
	 ignored. If the command is ​DEFAULT​ or
	 ​SIG_DFL​, the operating system’s default handler
	 will be invoked. If the command is ​EXIT​, the
	 script will be terminated by the signal. Otherwise, the
	 given command or block will be run.
	

	 The special signal name ​EXIT​ or signal
	 number zero will be invoked just prior to program termination.
	

 Trap cannot be used with the signals BUS, FPE, ILL,
 SEGV, or VTALRM.«2.0»

	
 ​trap​
 returns the previous handler for the given signal.
	
	​ 	Signal.trap(0, lambda { |signo| puts ​"exit pid ​#{$$}​ with ​#{signo}​"​ })

	​ 	Signal.trap(​"CLD"​) { |signo| puts ​"Child died (​#{signo}​)"​ }

	​ 	​if​ fork ​# parent​

	​ 	 do_something ​# ...​

	​ 	​else​

	​ 	 puts ​"In child, PID=​#{$$}​"​

	​ 	​end​

Produces:
	​ 	In child, PID=24189

	​ 	exit pid 24189 with 0

	​ 	Child died (20)

	​ 	exit pid 24188 with 0

	 Note that you must specify a block taking a parameter if you use
 ​lambda​

	 to create the proc object.
	

Class String < Object

 A ​String​ object holds and manipulates a
 sequence of characters. String
 objects may be created using String.new or as
 literals (see ​Strings​).

 Because of aliasing issues, users of strings should be aware of the
 methods that modify the contents of a ​String​ object. Typically,
 methods with names ending in ​!​ modify their receiver, while those
 without a ​!​ return a new ​String​. However, exceptions exist, such
 as String#[]=.

 In this description, I try to differentiate between the bytes in a
 string and the characters in a string. Internally, a string is a
 sequence of 8-bit bytes. These are represented externally as small
 ​Fixnum​s. At the same time, these byte sequences are interpreted
 as a sequence of characters. This interpretation is controlled by
 the encoding of the string. In some encodings (such as US-ASCII and
 ISO-8859), each byte corresponds to a single character. In other
 encodings (such as UTF-8), a varying number of bytes comprise each
 character.

 As of Ruby 1.9, ​String​ no longer
 mixes in ​Enumerable​.

 Mixes in

	Comparable
	
<, <=, ==, >, >=, between?

String: Class methods
new
	String.new(val="") → str

	 Returns a new string object containing a copy of val
	 (which should be a ​String​ or implement
	
 ​to_str​
). Note that the new string object is
	 created only when one of the strings is modified.
	
	​ 	str1 = ​"wibble"​

	​ 	str2 = String.new(str1)

	​ 	str1.object_id ​# => 70198849846720​

	​ 	str2.object_id ​# => 70198849846680​

	​ 	str1[1] = ​"o"​

	​ 	str1 ​# => "wobble"​

	​ 	str2 ​# => "wibble"​

try_convert
	String.try_convert(obj) → a_string or ​nil​

	 If obj is not already a string, attempts to
	 convert it to one by calling its
	
 ​to_str​
 method. Returns ​nil​ if no
	 conversion could be made.
	
	​ 	String.try_convert(​"cat"​) ​# => "cat"​

	​ 	String.try_convert(0xbee) ​# => nil​

String: Instance methods
%
	str % arg → string

	Format—Uses str as a format specification and
	returns the result of applying it to arg. If the
	format specification contains more than one substitution, then
	arg must be an ​Array​ containing the
	values to be substituted. See Object#sprintf for details of the format
	string.

	​ 	puts ​"%05d"​ % 123

	​ 	puts ​"%-5s: %08x"​ % [​"ID"​, self.object_id]

	​ 	puts ​"%-5<name>s: %08<value>x"​ % { name: ​"ID"​, value: self.object_id }

Produces:
	​ 	00123

	​ 	ID : 3ff795471248

	​ 	ID : 3ff795471248

*
	str * int → string

	Copies—Returns a new ​String​ containing int copies of
	the receiver.

	​ 	​"Ho! "​ * 3 ​# => "Ho! Ho! Ho! "​

+
	str + string → string

	Concatenation—Returns a new ​String​ containing
	string concatenated to str. If both strings contain
	non-7-bit characters, their encodings must be compatible.

	​ 	​"Hello from "​ + ​"RubyLand"​ ​# => "Hello from RubyLand"​

<<
	str << fixnum → str
	str << obj → str

	Append—Concatenates the given object to str. If the object is a
	​Fixnum​, it is considered to be a codepoint in the encoding of
	str and converted to the appropriate character before being appended.

	​ 	a = ​"hello world"​

	​ 	a.force_encoding(​"utf-8"​)

	​ 	a << 33 ​# => "hello world!"​

	​ 	a << ​" Says the "​ ​# => "hello world! Says the "​

	​ 	a << 8706 ​# => "hello world! Says the ∂"​

	​ 	a << ​"og"​ ​# => "hello world! Says the ∂og"​

<=>
	str <=> other_string
 → -1, 0, +1, or ​nil​

	Comparison—Returns -1 if str is less than, 0 if
	str is equal to, and +1 if str is greater than
	other_string. If the strings are of different lengths and the
	strings are equal when compared to the shortest length, then
	the longer string is considered greater than the shorter one.
	In older versions of Ruby, setting ​$=​ allowed
	case-insensitive comparisons; you must now use
	String#casecmp.

	
 ​<=>​
 is the basis for the methods
	
 ​<​
 ,
 ​<=​
 ,
	
 ​>​
 ,
 ​>=​
 , and
	
 ​between?​
 , included from module
	​Comparable​. The method String#== does not use Comparable#==.

	​ 	​"abcdef"​ <=> ​"abcde"​ ​# => 1​

	​ 	​"abcdef"​ <=> ​"abcdef"​ ​# => 0​

	​ 	​"abcdef"​ <=> ​"abcdefg"​ ​# => -1​

	​ 	​"abcdef"​ <=> ​"ABCDEF"​ ​# => 1​

==
	str == obj → ​true​ or ​false​

	 Equality—If obj is a
	 ​String​, returns
	 ​true​ if str has the same
	 encoding, length, and content as obj; returns
	 ​false​ otherwise. If obj is
	 not a ​String​ but responds to
	
 ​to_str​
 , returns obj ==
	 str; otherwise, returns false.
	
	​ 	​"abcdef"​ == ​"abcde"​ ​# => false​

	​ 	​"abcdef"​ == ​"abcdef"​ ​# => true​

=~
	str =~ regexp
 → int or ​nil​

	Match—Equivalent to ​regexp =~
 str​. Prior versions of Ruby permitted an
 arbitrary operand to
 ​=~​
 ; this is now
 deprecated. Returns the position where the match starts or returns
 ​nil​ if there is no match or if
 regexp is not a regular
 expression.[122]

	​ 	​"cat o' 9 tails"​ =~ /​\d​/ ​# => 7​

	​ 	​"cat o' 9 tails"​ =~ 9 ​# => nil​

	​ 	​"cat o' 9 tails"​ =~ ​"\d"​

Produces:
	​ 	 from prog.rb:1:in `<main>'

	​ 	prog.rb:1:in `=~': type mismatch: String given (TypeError)

[]
	str[int] → string or ​nil​
	str[int, int] → string or ​nil​
	str[range] → string or ​nil​
	str[regexp] → string or ​nil​
	str[regexp, int] → string or ​nil​
	str[regexp, name] → string or ​nil​
	str[string] → string or ​nil​

	 Element Reference—If passed a single int,
	 returns the character at that position. (Prior to
	 Ruby 1.9, an integer character code was returned.)
	 If passed two ints, returns a substring starting
	 at the offset given by the first, and a length given by the
	 second. If given a range, a substring containing characters
	 at offsets given by the range is returned. In all three
	 cases, if an offset is negative, it is counted from the end
	 of str. Returns ​nil​ if the
	 initial offset falls outside the string and the length is
	 not given, the length is negative, or the beginning of the
	 range is greater than the end.
	

	 If regexp is supplied, the matching portion of
	 str is returned. If a numeric parameter follows
	 the regular expression, that component of the
	 ​MatchData​
	 is returned instead. If a ​String​ is
	 given, that string is returned if it occurs in
	 str. If a name follows the regular
	 expression, the corresponding named match is
	 returned. In all cases, ​nil​ is
	 returned if there is no match.
	
	​ 	a = ​"hello there"​

	​ 	a[1] ​# => "e"​

	​ 	a[1,3] ​# => "ell"​

	​ 	a[1..3] ​# => "ell"​

	​ 	a[1...3] ​# => "el"​

	​ 	a[-3,2] ​# => "er"​

	​ 	a[-4..-2] ​# => "her"​

	​ 	a[-2..-4] ​# => ""​

	​ 	a[/[aeiou](.)​\1​/] ​# => "ell"​

	​ 	a[/[aeiou](.)​\1​/, 0] ​# => "ell"​

	​ 	a[/[aeiou](.)​\1​/, 1] ​# => "l"​

	​ 	a[/[aeiou](.)​\1​/, 2] ​# => nil​

	​ 	a[/(..)e/] ​# => "the"​

	​ 	a[/(..)e/, 1] ​# => "th"​

	​ 	a[/(?<vowel>[aeiou])/, :vowel] ​# => "e"​

	​ 	a[​"lo"​] ​# => "lo"​

	​ 	a[​"bye"​] ​# => nil​

[]=
	str[int] = string
	str[int, int] = string
	str[range] = string
	str[regexp] = string
	str[regexp, int] = string
	str[string] = string}

	 Element Assignment—Replaces some or all of the content of
	 str. The portion of the string affected is
	 determined using the same criteria as String#[
]. If the replacement string is not the same length as
	 the text it is replacing, the string will be adjusted
	 accordingly. If the regular expression or string is used because
	 the index doesn’t match a position in the string,
	 ​IndexError​
	 is raised. If the regular expression form is used, the
	 optional second int allows you to specify which
	 portion of the match to replace (effectively using the
	 ​MatchData​ indexing rules). The forms
	 that take a ​Fixnum​ will raise an
	 ​IndexError​ if the value is out of
	 range; the ​Range​ form will raise a
	 ​RangeError​,
	 and the ​Regexp​ and
	 ​String​ forms will silently ignore the assignment.
	
	

	 ​a = "hello"​
	

	
​a[2] = "u"​
	
(a → ​"heulo"​)

	
​a[2, 4] = "xyz"​
	
(a → ​"hexyz"​)

	
​a[-4, 2] = "xyz"​
	
(a → ​"hxyzlo"​)

	
​a[2..4] = "xyz"​
	
(a → ​"hexyz"​)

	
​a[-4..-2] = "xyz"​
	
(a → ​"hxyzo"​)

	
​a[/[aeiou](.)\1(.)/] = "xyz"​
	
(a → ​"hxyz"​)

	
​a[/[aeiou](.)\1(.)/, 1] = "xyz"​
	
(a → ​"hexyzlo"​)

	
​a[/[aeiou](.)\1(.)/, 2] = "xyz"​
	
(a → ​"hellxyz"​)

	
​a["l"] = "xyz"​
	
(a → ​"hexyzlo"​)

	
​a["ll"] = "xyz"​
	
(a → ​"hexyzo"​)

	
​a[2, 0] = "xyz"​
	
(a → ​"hexyzllo"​)

ascii_only?
	str.ascii_only? → ​true​ or ​false​

	 Returns ​true​ if the string
	 contains no characters with a character code greater than
	 127 (that is, it contains only 7-bit ASCII
	 characters).
	
	​ 	​# encoding: utf-8​

	​ 	​"dog"​.ascii_only? ​# => true​

	​ 	​"∂og"​.ascii_only? ​# => false​

	​ 	​"\x00 to \x7f"​.ascii_only? ​# => true​

b
	str.b → string

 Returns a copy of the contents of str with
 ASCII-8BIT encoding. This is a convenient way to get to the
 byte values of any string.«2.0»

	​ 	str = ​"∂øg"​

	​ 	str.length ​# => 3​

	​ 	

	​ 	bstr = str.b

	​ 	bstr.length ​# => 6​

bytes
	str.bytes → enum | array
	str.bytes { |byte| … } → str

	 Returns an enumerator (Ruby 1.9) or array (Ruby 2.0)«2.0»
	 for the bytes (integers in the range 0 to
	 255) in str. With a block, passes each byte to the block and
	 returns the original string. See also String#codepoints and
 ​#chars​
 .
	
	​ 	​# encoding: utf-8​

	​ 	​"dog"​.bytes ​# => [100, 111, 103]​

	​ 	​"∂og"​.bytes ​# => [226, 136, 130, 111, 103]​

	​ 	result = []

	​ 	​"∂og"​.bytes {|b| result << b } ​# => "∂og"​

	​ 	result ​# => [226, 136, 130, 111, 103]​

bytesize
	str.bytesize → int

	 Returns the number of bytes (not characters) in str. See also
	 String#length.
	
	​ 	​# encoding: utf-8​

	​ 	​"dog"​.length ​# => 3​

	​ 	​"dog"​.bytesize ​# => 3​

	​ 	​"∂og"​.length ​# => 3​

	​ 	​"∂og"​.bytesize ​# => 5​

byteslice
	str.byteslice(offset, length=1)
	 → string or ​nil​
	str.byteslice(range)
	 → string or ​nil​

	 Returns the string consisting of length bytes
	 starting at byte position offset, or between the
	 offsets given by the range. A negative offset counts from
	 the end of the string. The returned string retains the
	 encoding of str, but may not be valid in that
	 encoding.
	
	​ 	​# encoding: utf-8​

	​ 	a = ​"∂dog"​

	​ 	a.bytes.to_a ​# => [226, 136, 130, 100, 111, 103]​

	​ 	a.byteslice(0) ​# => "\xE2"​

	​ 	a.byteslice(0, 2) ​# => "\xE2\x88"​

	​ 	a.byteslice(0, 3) ​# => "∂"​

	​ 	a.byteslice(-2, 2) ​# => "og"​

	​ 	a.byteslice(-2..-1) ​# => "og"​

capitalize
	str.capitalize → string

	 Returns a copy of str with the first character converted to
	 uppercase and the remainder to lowercase.
	
	​ 	​"hello world"​.capitalize ​# => "Hello world"​

	​ 	​"HELLO WORLD"​.capitalize ​# => "Hello world"​

	​ 	​"123ABC"​.capitalize ​# => "123abc"​

capitalize!
	str.capitalize! → str or ​nil​

	 Modifies str by converting the first character to
	 uppercase and the remainder to lowercase. Returns ​nil​ if
	 no changes are made.
	
	​ 	a = ​"hello world"​

	​ 	a.capitalize! ​# => "Hello world"​

	​ 	a ​# => "Hello world"​

	​ 	a.capitalize! ​# => nil​

casecmp
	str.casecmp(string) → -1, 0, +1

	 Case-insensitive version of String#<=>.
	
	​ 	​"abcdef"​.casecmp(​"abcde"​) ​# => 1​

	​ 	​"abcdef"​.casecmp(​"abcdef"​) ​# => 0​

	​ 	​"aBcDeF"​.casecmp(​"abcdef"​) ​# => 0​

	​ 	​"abcdef"​.casecmp(​"abcdefg"​) ​# => -1​

	​ 	​"abcdef"​.casecmp(​"ABCDEF"​) ​# => 0​

center
	str.center(int, pad=" ")
	 → string

	 If int is greater than the length of str, returns a
	 new ​String​ of length int with str centered
	 between the given padding (defaults to spaces); otherwise,
	 returns str.
	
	​ 	​"hello"​.center(4) ​# => "hello"​

	​ 	​"hello"​.center(20) ​# => "␣␣␣␣␣␣␣hello␣␣␣␣␣␣␣␣"​

	​ 	​"hello"​.center(4, ​"_-^-"​) ​# => "hello"​

	​ 	​"hello"​.center(20, ​"_-^-"​) ​# => "_-^-_-^hello_-^-_-^-"​

	​ 	​"hello"​.center(20, ​"-"​) ​# => "-------hello--------"​

chars
	str.chars → enum | array
	str.chars { |char| … } → str

	 Returns an enumerator (Ruby 1.9) or array (Ruby
	 2.0)«2.0» for the characters (single character strings)
	 in str. With a block, passes each character to
	 the block and returns the original string. See also String#bytes and String#codepoints.
	
	​ 	​# encoding: utf-8​

	​ 	​"dog"​.chars.to_a ​# => ["d", "o", "g"]​

	​ 	​"∂og"​.chars.to_a ​# => ["∂", "o", "g"]​

	​ 	result = []

	​ 	​"∂og"​.chars {|b| result << b } ​# => "∂og"​

	​ 	result ​# => ["∂", "o", "g"]​

chr
	str.chr → string

	 Returns the first character of str.
	
	​ 	​# encoding: utf-8​

	​ 	​"dog"​.chr ​# => "d"​

	​ 	​"∂og"​.chr ​# => "∂"​

clear
	str.clear → str

	 Removes the content (but not the associated encoding) of str.
	
	​ 	​# encoding: utf-8​

	​ 	str = ​"∂og"​

	​ 	str.clear ​# => ""​

	​ 	str.length ​# => 0​

	​ 	str.encoding ​# => #<Encoding:UTF-8>​

chomp
	str.chomp(rs=​$/​)
	 → string

	 Returns a new ​String​ with the given
	 record separator removed from the end of str
	 (if present). If
	 ​$/​
	 has not been changed from the default Ruby record
	 separator, then
 ​chomp​
 also
	 removes carriage return characters (that is, it will remove
	 ​\n​, ​\r​, and ​\r\n​).
	
	​ 	​"hello"​.chomp ​# => "hello"​

	​ 	​"hello\n"​.chomp ​# => "hello"​

	​ 	​"hello\r\n"​.chomp ​# => "hello"​

	​ 	​"hello\n\r"​.chomp ​# => "hello\n"​

	​ 	​"hello\r"​.chomp ​# => "hello"​

	​ 	​"hello \n there"​.chomp ​# => "hello \n there"​

	​ 	​"hello"​.chomp(​"llo"​) ​# => "he"​

chomp!
	str.chomp!(rs=​$/​)
	 → str or ​nil​

	 Modifies str in place as described for String#chomp,
	 returning str or returning ​nil​ if no modifications were made.
	

chop
	str.chop → string

	 Returns a new ​String​ with the last
	 character removed. If the string ends with ​\r\n​,
	 both characters are removed. Applying
	
 ​chop​
 to an empty string returns an
	 empty string. String#chomp is often a
	 safer alternative, because it leaves the string unchanged if
	 it doesn’t end in a record separator.
	
	​ 	​"string\r\n"​.chop ​# => "string"​

	​ 	​"string\n\r"​.chop ​# => "string\n"​

	​ 	​"string\n"​.chop ​# => "string"​

	​ 	​"string"​.chop ​# => "strin"​

	​ 	​"x"​.chop.chop ​# => ""​

chop!
	str.chop! → str or ​nil​

	 Processes str as for String#chop, returning str
	 or returning ​nil​ if str is the empty string. See also
	 String#chomp!.
	

codepoints
	str.codepoints → enum | array
	str.codepoints { |integer| … } → str

	 Returns an enumerator (Ruby 1.9) or array (Ruby
	 2.0)«2.0» for the codepoints (integers representation
	 of the characters) in str. With a block, passes
	 each integer to the block and returns the original
	 string. See also String#bytes and String#chars.
	
	​ 	​# encoding: utf-8​

	​ 	​"dog"​.codepoints.to_a ​# => [100, 111, 103]​

	​ 	​"∂og"​.codepoints.to_a ​# => [8706, 111, 103]​

	​ 	result = []

	​ 	​"∂og"​.codepoints {|b| result << b } ​# => "∂og"​

	​ 	result ​# => [8706, 111, 103]​

concat
	str.concat(int) → str
	str.concat(obj) → str

	 Synonym for String#<<.
	

count
	str.count(<string>+) → int

	 Each string parameter defines a set of characters to
	 count. The intersection of these sets defines the characters to count
	 in str. Any parameter that starts with a caret (^) is
	 negated. The sequence c1-c2 means all characters between
	 c1 and c2.
	
	​ 	a = ​"hello world"​

	​ 	a.count ​"lo"​ ​# => 5​

	​ 	a.count ​"lo"​, ​"o"​ ​# => 2​

	​ 	a.count ​"hello"​, ​"^l"​ ​# => 4​

	​ 	a.count ​"ej-m"​ ​# => 4​

crypt
	str.crypt(settings) → string

	 Applies a one-way cryptographic hash to
	 str by invoking the standard library function
	
 ​crypt​
 . The argument is to some
	 extent system dependent. On traditional Unix boxes, it is
	 often a two-character
 ​ salt​

 string. On
	 more modern boxes, it may also control things such as DES
	 encryption parameters. See the man page for crypt(3) for details.
	
	​ 	​# standard salt​

	​ 	​"secret"​.crypt(​"sh"​) ​# => "shRK3aVg8FsI2"​

	​ 	​# On OSX: DES, 2 interactions, 24-bit salt​

	​ 	​"secret"​.crypt(​"_...0abcd"​) ​# => "_...0abcdROn65JNDj12"​

delete
	str.delete(<string>+) → new_string

	 Returns a copy of str with all characters in the intersection of
	 its arguments deleted. Uses the same rules for building the set
	 of characters as String#count.
	
	​ 	​"hello"​.delete(​"l"​,​"lo"​) ​# => "heo"​

	​ 	​"hello"​.delete(​"lo"​) ​# => "he"​

	​ 	​"hello"​.delete(​"aeiou"​, ​"^e"​) ​# => "hell"​

	​ 	​"hello"​.delete(​"ej-m"​) ​# => "ho"​

delete!
	str.delete!(<string>+)
	 → str or ​nil​

	 Performs a
 ​delete​
 operation in place, returning str or returning
	 ​nil​ if str was not modified.
	
	​ 	a = ​"hello"​

	​ 	a.delete!(​"l"​,​"lo"​) ​# => "heo"​

	​ 	a ​# => "heo"​

	​ 	a.delete!(​"l"​) ​# => nil​

downcase
	str.downcase → string

	 Returns a copy of str with all uppercase letters
	 replaced with their lowercase counterparts. The operation is
	 locale insensitive—only characters ​A​ to
	 ​Z​ are affected. Multibyte characters are
	 skipped.
	
	​ 	​"hEllO"​.downcase ​# => "hello"​

downcase!
	str.downcase! → str or ​nil​

	 Replaces uppercase letters in str with their lowercase counterparts.
	 Returns ​nil​ if no changes were made.
	

dump
	str.dump → string

	 Produces a version of str with all nonprinting characters
	 replaced by ​\​nnn​​ notation and all special characters
	 escaped.
	

each_byte
	str.each_byte → enum
	str.each_byte { |byte| … } → str

	 Synonym for String#bytes. The
	
 ​each_byte​
 form is falling out of
	 favor.
	

each_char
	str.each_char → enum
	str.each_char { |char| … } → str

	 Synonym for String#chars. The
	
 ​each_char​
 form is falling out of
	 favor.
	

each_codepoint
	str.each_codepoint → enum
	str.each_codepoint { |integer| … } → str

	 Synonym for String#codepoints.
	

each_line
	str.each_line(sep=​$/​)
	 → enum
	str.each_line(sep=​$/​)
	 { |substr| … } → str}

	 Synonym for String#lines. The
	
 ​each_line​
 form is falling out of
	 favor.
	

empty?
	str.empty? → ​true​ or ​false​

	 Returns ​true​ if str has a length of zero.
	
	​ 	​"hello"​.empty? ​# => false​

	​ 	​""​.empty? ​# => true​

encode
	str.encode → a_string
	str.encode(to_encoding <, options>)
	 → a_string
	str.encode(to_encoding, from_encoding, <, options>)
	 → a_string

	 Transcodes str, returning a new string
	 encoded with to_encoding. If no encoding is
	 given, transcodes using
 ​default_internal​

	 encoding. The source encoding is either the current encoding
	 of the string or from_encoding. May raise a
	 ​RuntimeError​ if characters in the original
	 string cannot be represented in the target encoding. The
	 options parameter defines the behavior for
	 invalid transcodings and other boundary conditions. It can
	 be a hash (recommended) or an ​or​-ing of integer
	 values. Encodings
	 can be passed as
	 ​Encoding​ objects
	 or as names.
	

Table 22. Options to ​encode​ and ​encode!​
	Option	Meaning
	

 :replace => string

	

 Specifies the string to use if ​:invalid​ or
 ​:undef​ options are present. If not specified,
 ​uFFFD​ is used for Unicode encodings and ? for others.

	

 :invalid => :replace

	

 Replaces invalid characters in the source
 string with the replacement string. If ​:invalid​ is not
 specified or ​nil​, raises an exception.

	

 :undef => :replace

	

 Replaces characters that are not available in
 the destination encoding with the replacement string. If
 ​:undef​ not specified or ​nil​,
 raises an exception.

	

 :universal_newline => ​true​

	

 Converts ​crlf​ and ​cr​ line endings to ​lf​.

	

 :crlf_newline => ​true​

	

 Converts ​lf​ to ​crlf​.

	

 :cr_newline => ​true​

	

 Converts ​lf​ to ​cr​.

	

 :xml => :text | :attr

	

 After encoding, escape characters that would
 otherwise have special meaning in XML PCDATA or attributes. In all
 cases, converts ​&​ to ​&​, ​<​ to ​<​, ​>​
 to ​>​, and undefined characters to a
 hexadecimal entity (​&#xhh;​). For ​:attr​, also converts ​"​ to ​"​.

	​ 	​# encoding: utf-8​

	​ 	ole_in_utf = ​"olé"​

	​ 	ole_in_utf.encoding ​# => #<Encoding:UTF-8>​

	​ 	ole_in_utf.dump ​# => "ol\u{e9}"​

	​ 	

	​ 	ole_in_8859 = ole_in_utf.encode(​"iso-8859-1"​)

	​ 	ole_in_8859.encoding ​# => #<Encoding:ISO-8859-1>​

	​ 	ole_in_8859.dump ​# => "ol\xE9"​

	 Using a default internal encoding of ISO-8859-1 and a source file encoding of UTF-8:
	
	​ 	#!/usr/local/rubybook/bin/ruby -E:ISO-8859-1

	​ 	​# encoding: utf-8​

	​ 	utf_string = ​"olé"​

	​ 	utf_string.encoding ​# => #<Encoding:UTF-8>​

	​ 	iso_string = utf_string.encode

	​ 	iso_string.encoding ​# => #<Encoding:ISO-8859-1>​

	 Attempt to transcode a string with characters not available
	 in the destination encoding:
	
	​ 	​# encoding: utf-8​

	​ 	utf = ​"∂og"​

	​ 	utf.encode(​"iso-8859-1"​)

Produces:
	​ 	 from prog.rb:3:in `<main>'

	​ 	prog.rb:3:in `encode': U+2202 from UTF-8 to ISO-8859-1

	​ 	(Encoding::UndefinedConversionError)

	 You can replace the character in error with something else:
	
	​ 	​# encoding: utf-8​

	​ 	utf = ​"∂og"​

	​ 	utf.encode(​"iso-8859-1"​, undef: :replace) ​# => "?og"​

	​ 	utf.encode(​"iso-8859-1"​, undef: :replace, replace: ​"X"​) ​# => "Xog"​

encode!
	str.encode! → str
	str.encode!(to_encoding <, options>) → str
	str.encode!(to_encoding, from_encoding, <, options>)
	 → str

	 Transcodes str in place.
	

encoding
	str.encoding → an_encoding

	 Returns the encoding of str.
	
	​ 	​# encoding: utf-8​

	​ 	​"cat"​.encoding ​# => #<Encoding:UTF-8>​

end_with?
	str.end_with?(<suffix>+) → ​true​ or ​false​

	 Returns ​true​ if str ends with any of the given suffixes.
	
	​ 	​"Apache"​.end_with?(​"ache"​) ​# => true​

	​ 	​"ruby code"​.end_with?(​"python"​, ​"perl"​, ​"code"​) ​# => true​

eql?
	str.eql?(obj) → ​true​ or ​false​

	 Returns ​true​ if obj is a ​String​ with
	 identical contents to str.
	
	​ 	​"cat"​.eql?(​"cat"​) ​# => true​

force_encoding
	str.force_encoding(encoding) → str

	 Sets the encoding associated with str to
	 encoding. Note that this does not change the underlying
	 bytes in str—it simply tells Ruby how to interpret those
	 bytes as characters.
	
	​ 	​# encoding: utf-8​

	​ 	∂og_in_bytes = [226, 136, 130, 111, 103] ​# utf-8 byte sequence​

	​ 	str = ∂og_in_bytes.pack(​"C*"​)

	​ 	str.encoding ​# => #<Encoding:ASCII-8BIT>​

	​ 	str.length ​# => 5​

	​ 	str.force_encoding(​"utf-8"​)

	​ 	str.encoding ​# => #<Encoding:UTF-8>​

	​ 	str.length ​# => 3​

	​ 	str ​# => "∂og"​

getbyte
	str.getbyte(offset) → int or ​nil​

	 Returns the byte at offset (starting from the end of the
	 string if the offset is negative). Returns ​nil​ if the offset
	 lies outside the string.
	
	​ 	​# encoding: utf-8​

	​ 	str = ​"∂og"​

	​ 	str.bytes.to_a ​# => [226, 136, 130, 111, 103]​

	​ 	str.getbyte(0) ​# => 226​

	​ 	str.getbyte(1) ​# => 136​

	​ 	str.getbyte(-1) ​# => 103​

	​ 	str.getbyte(99) ​# => nil​

gsub
	str.gsub(pattern, replacement) → string
	str.gsub(pattern) { |match| … } → string
	str.gsub(pattern) → enum

	 Returns a copy of str with ​all​
	 occurrences of pattern replaced with either
	 replacement or the value of the block. The
	 pattern will typically be a
	 ​Regexp​; if it is a
	 ​String​, then no regular expression
	 metacharacters will be interpreted (that is, ​/\d/​
	 will match a digit, but ​’\d’​ will match
	 a backslash followed by a ​d​).
	

	 If a string is used as the replacement, special variables
	 from the match (such as ​$&​
	 and ​$1​) cannot be substituted
	 into it, because substitution into the string occurs before
	 the pattern match starts. However, the sequences
	 ​\1​, ​\2​, and so on, may be used to
	 interpolate successive numbered groups in the match, and
	 ​\k<​name​>​ will substitute the
	 corresponding named captures. These sequences are shown in
	 the following table.
	

Table 23. Backslash sequences in substitution
	Sequence	Text That Is Substituted
	
​\1, \2, ... \9​
	

	 The value matched by the
	 ​n​th grouped subexpression
	

	
​\&​
	
The last match

	
​\‘​
	
The part of the string before the match

	
​\’​
	
The part of the string after the match

	
​\+​
	
The highest-numbered group matched

	
​\k<​name​>​
	
The named capture

	 In the block form, the current match is passed in as a
	 parameter, and variables such as
	 ​$1​,
	 ​$2​,
	 ​$‘​,
	 ​$&​, and
	 ​$’​ will be set
	 appropriately. The value returned by the block will be
	 substituted for the match on each call.
	

	 The result inherits any tainting in the original string or any
	 supplied replacement string.
	
	​ 	​"hello"​.gsub(/[aeiou]/, ​'*'​) ​# => "h*ll*"​

	​ 	​"hello"​.gsub(/([aeiou])/, ​'<\1>'​) ​# => "h<e>ll<o>"​

	​ 	​"hello"​.gsub(/./) {|s| s[0].to_s + ​' '​} ​# => "h e l l o "​

	​ 	​"hello"​.gsub(/(?<double>l)/, ​'-\k<double>-'​) ​# => "he-l--l-o"​

	 If no block or replacement string is given,
	 an enumerator is returned.
	
	​ 	​"hello"​.gsub(/../).to_a ​# => ["he", "ll"]​

	 If a hash is given as the replacement, successive
	 matched groups are looked up as keys, and the corresponding
	 values are substituted into the string.
	
	​ 	repl = Hash.new(​"?"​)

	​ 	repl[​"a"​] = ​"*"​

	​ 	repl[​"t"​] = ​"T"​

	​ 	​"cat"​.gsub(/(.)/, repl) ​# => "?*T"​

gsub!
	str.gsub!(pattern, replacement) → string
	str.gsub!(pattern) { |match| … } → string
	str.gsub!(pattern) → enum

	 Performs the substitutions of String#gsub in place,
	 returning str, or returning ​nil​ if no substitutions were
	 performed. If no block or replacement string is given,
	 an enumerator is returned.
	

hex
	str.hex → int

	 Treats leading characters from str as a string of hexadecimal
	 digits (with an optional sign and an optional ​0x​) and
	 returns the corresponding number. Zero is returned on error.
	
	​ 	​"0x0a"​.hex ​# => 10​

	​ 	​"-1234"​.hex ​# => -4660​

	​ 	​"0"​.hex ​# => 0​

	​ 	​"wombat"​.hex ​# => 0​

include?
	str.include?(string) → ​true​ or ​false​

	 Returns ​true​ if str contains the given string.
	
	​ 	​"hello"​.include? ​"lo"​ ​# => true​

	​ 	​"hello"​.include? ​"ol"​ ​# => false​

	​ 	​"hello"​.include? ?h ​# => true​

index
	str.index(string <, offset>)
	 → int or ​nil​
	str.index(regexp <, offset>)
	 → int or ​nil​

	 Returns the index of the first occurrence of the given
	 substring or pattern in str. Returns
	 ​nil​ if not found. If the second
	 parameter is present, it specifies the position in the
	 string to begin the search.
	
	​ 	​"hello"​.index(​'e'​) ​# => 1​

	​ 	​"hello"​.index(​'lo'​) ​# => 3​

	​ 	​"hello"​.index(​'a'​) ​# => nil​

	​ 	​"hello"​.index(/[aeiou]/, -3) ​# => 4​

insert
	str.insert(index, string) → str

	 Inserts string before the character at the given
	 index, modifying str. Negative indices count from the
	 end of the string and insert after the given
	 character. After the insertion, str will contain string
	 starting at index.
	
	​ 	​"abcd"​.insert(0, ​'X'​) ​# => "Xabcd"​

	​ 	​"abcd"​.insert(3, ​'X'​) ​# => "abcXd"​

	​ 	​"abcd"​.insert(4, ​'X'​) ​# => "abcdX"​

	​ 	​"abcd"​.insert(-3, ​'X'​) ​# => "abXcd"​

	​ 	​"abcd"​.insert(-1, ​'X'​) ​# => "abcdX"​

intern
	str.intern → symbol

	 Returns the ​Symbol​
	 corresponding to str, creating the symbol if it
	 did not previously exist. Can intern any string, not just
	 identifiers. See Symbol#id2name.
	
	​ 	​"Koala"​.intern ​# => :Koala​

	​ 	sym = ​"$1.50 for a soda!?!?"​.intern

	​ 	sym.to_s ​# => "$1.50 for a soda!?!?"​

length
	str.length → int

	 Returns the number of characters in str. See also
	 String#bytesize.
	

lines
	str.lines(sep=​$/​)
	 → enum | array
	str.lines(sep=​$/​)
	 { |substr| … } → str}

	Splits str using the supplied parameter as the
	record separator
	(​$/​ by
	default) and passing each substring in turn to the supplied
	block. If a zero-length record separator is supplied, the
	string is split into paragraphs, each terminated by multiple
	​\n​ characters. With no block, returns a enumerator
	(Ruby 1.9) or an array (Ruby 2.0).«2.0»

	​ 	print ​"Example one\n"​

	​ 	​"hello\nworld"​.lines {|s| p s}

	​ 	print ​"Example two\n"​

	​ 	​"hello\nworld"​.lines(​'l'​) {|s| p s}

	​ 	print ​"Example three\n"​

	​ 	​"hello\n\n\nworld"​.lines(​''​) {|s| p s}

Produces:
	​ 	Example one

	​ 	"hello\n"

	​ 	"world"

	​ 	Example two

	​ 	"hel"

	​ 	"l"

	​ 	"o\nworl"

	​ 	"d"

	​ 	Example three

	​ 	"hello\n\n\n"

	​ 	"world"

ljust
	str.ljust(width, padding=" ") → string

	 If width is greater than the length of str, returns a
	 new ​String​ of length width with str left
	 justified and padded with copies of padding; otherwise,
	 returns a copy of str.
	
	​ 	​"hello"​.ljust(4) ​# => "hello"​

	​ 	​"hello"​.ljust(20) ​# => "hello␣␣␣␣␣␣␣␣␣␣␣␣␣␣​

	​ 	 ​# .. ␣"​

	​ 	​"hello"​.ljust(20, ​"*"​) ​# => "hello***************"​

	​ 	​"hello"​.ljust(20, ​" dolly"​) ​# => "hello␣dolly␣dolly␣do"​

lstrip
	str.lstrip → string

	 Returns a copy of str with leading whitespace characters
	 removed. Also see String#rstrip and
	 String#strip.
	
	​ 	​" hello "​.lstrip ​# => "hello␣␣"​

	​ 	​"\000 hello "​.lstrip ​# => "\0␣hello␣␣"​

	​ 	​"hello"​.lstrip ​# => "hello"​

lstrip!
	str.lstrip! → str or ​nil​

	 Removes leading whitespace characters from str,
	 returning ​nil​ if no change was made. See also
	 String#rstrip! and String#strip!.
	
	​ 	​" hello "​.lstrip! ​# => "hello␣␣"​

	​ 	​"hello"​.lstrip! ​# => nil​

match
	str.match(pattern)
	 → match_data or ​nil​
	str.match(pattern)
	 { |matchdata| … } → obj

	 Converts pattern to a ​Regexp​ (if it isn’t already
	 one) and then invokes its
 ​match​
 method on str. If a
	 block is given, the block is passed the ​MatchData​ object,
	 and the
 ​match​
 method returns the value of the block.
	
	​ 	​'seed'​.match(​'(.)\1'​) ​# => #<MatchData "ee" 1:"e">​

	​ 	​'seed'​.match(​'(.)\1'​)[0] ​# => "ee"​

	​ 	​'seed'​.match(/(.)​\1​/)[0] ​# => "ee"​

	​ 	​'seed'​.match(​'ll'​) ​# => nil​

	​ 	​'seed'​.match(​'ll'​) {|md| md[0].upcase } ​# => nil​

	​ 	​'seed'​.match(​'xx'​) ​# => nil​

next
	str.next → string

	 Synonym for String#succ.
	

next!
	str.next! → str

	 Synonym for String#succ!.
	

oct
	str.oct → int

	 Treats leading characters of str as a string of octal digits
	 (with an optional sign) and returns the corresponding number.
	 Returns 0 if the conversion fails.
	
	​ 	​"123"​.oct ​# => 83​

	​ 	​"-377"​.oct ​# => -255​

	​ 	​"bad"​.oct ​# => 0​

	​ 	​"0377bad"​.oct ​# => 255​

ord
	str.ord → int

	 Returns the integer code point of the first character of
	 str.
	
	​ 	​# encoding: utf-8​

	​ 	​"d"​.ord ​# => 100​

	​ 	​"dog"​.ord ​# => 100​

	​ 	​"∂"​.ord ​# => 8706​

partition
	str.partition(pattern)
	 → [before, match, after]

	 Searches str for pattern (which may be a string or a
	 regular expression). Returns a three-element array containing
	 the part of the string before the pattern, the part that matched
	 the pattern, and the part after the match. If the pattern does
	 not match, the entire string will be returned as the first
	 element of the array, and the other two entries will be empty strings.
	
	​ 	​"THX1138"​.partition(​"11"​) ​# => ["THX", "11", "38"]​

	​ 	​"THX1138"​.partition(/​\d\d​/) ​# => ["THX", "11", "38"]​

	​ 	​"THX1138"​.partition(​"99"​) ​# => ["THX1138", "", ""]​

prepend
	str.prepend(other)
	 → str

	 Inserts other at the beginning of str.

	
	​ 	str = ​"1138"​

	​ 	str.prepend(​"THX"​) ​# => "THX1138"​

	​ 	str ​# => "THX1138"​

replace
	str.replace(string) → str

	 Replaces the contents, encoding, and taintedness of str with the
	 corresponding values in string.
	
	​ 	s = ​"hello"​ ​# => "hello"​

	​ 	s.replace ​"world"​ ​# => "world"​

reverse
	str.reverse → string

	 Returns a new string with the characters from str in
	 reverse order.
	
	​ 	​# Every problem contains its own solution...​

	​ 	​"stressed"​.reverse ​# => "desserts"​

reverse!
	str.reverse! → str

	 Reverses str in place.
	

rindex
	str.rindex(string <, int>)
	 → int or ​nil​
	str.rindex(regexp <, int>)
	 → int or ​nil​

	 Returns the index of the last occurrence of the given substring,
	 character, or pattern in str. Returns ​nil​ if not found.
	 If the second parameter is present, it specifies the position in
	 the string to end the search—characters beyond this point will
	 not be considered.
	
	​ 	​"hello"​.rindex(​'e'​) ​# => 1​

	​ 	​"hello"​.rindex(​'l'​) ​# => 3​

	​ 	​"hello"​.rindex(​'a'​) ​# => nil​

	​ 	​"hello"​.rindex(/[aeiou]/, -2) ​# => 1​

rjust
	str.rjust(width, padding=" ") → string

	 If width is greater than the length of str, returns
	 a new ​String​ of length width with str right
	 justified and padded with copies of padding; otherwise, returns
	 a copy of str.
	
	​ 	​"hello"​.rjust(4) ​# => "hello"​

	​ 	​"hello"​.rjust(20) ​# => "␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣h​

	​ 	 ​# .. ello"​

	​ 	​"hello"​.rjust(20, ​"-"​) ​# => "---------------hello"​

	​ 	​"hello"​.rjust(20, ​"padding"​) ​# => "paddingpaddingphello"​

rpartition
	str.rpartition(pattern)
	 → [before, match, after]

	 Searches str for pattern (which may be a string or a
	 regular expression), starting at the end of the string. Returns
	 a three-element array containing the part of the string before
	 the pattern, the part that matched the pattern, and the part
	 after the match. If the pattern does not match, the entire
	 string will be returned as the last element of the array, and
	 the other two entries will be empty strings.
	
	​ 	​"THX1138"​.rpartition(​"1"​) ​# => ["THX1", "1", "38"]​

	​ 	​"THX1138"​.rpartition(/1​\d​/) ​# => ["THX1", "13", "8"]​

	​ 	​"THX1138"​.rpartition(​"99"​) ​# => ["", "", "THX1138"]​

rstrip
	str.rstrip → string

	 Returns a copy of str, stripping first trailing ​null​ characters and then
	 stripping trailing whitespace
	 characters. See also String#lstrip and
	 String#strip.
	
	​ 	​" hello "​.rstrip ​# => "␣␣hello"​

	​ 	​" hello \000 "​.rstrip ​# => "␣␣hello"​

	​ 	​" hello \000"​.rstrip ​# => "␣␣hello"​

	​ 	​"hello"​.rstrip ​# => "hello"​

rstrip!
	str.rstrip! → str or ​nil​

	 Removes trailing ​null​ characters and then removes trailing whitespace
	 characters from str.
	 Returns ​nil​ if no change was made. See also
	 String#lstrip! and
 ​#strip!​
 .
	
	​ 	​" hello "​.rstrip! ​# => "␣␣hello"​

	​ 	​"hello"​.rstrip! ​# => nil​

scan
	str.scan(pattern) → array
	str.scan(pattern) { |match, ...| … } → str}

	 Both forms iterate through str, matching the
	 pattern (which may be a ​Regexp​ or a
	 ​String​). For each match, a result is
	 generated and either added to the result array or passed to
	 the block. If the pattern contains no groups, each
	 individual result consists of the matched string,
	 ​$&​. If the pattern contains
	 groups, each individual result is itself an array containing
	 one entry per group. If the pattern is a
	 ​String​, it is interpreted literally
	 (in other words, it is not taken to be a regular expression
	 pattern).
	
	​ 	a = ​"cruel world"​

	​ 	a.scan(/​\w​+/) ​# => ["cruel", "world"]​

	​ 	a.scan(/.../) ​# => ["cru", "el ", "wor"]​

	​ 	a.scan(/(...)/) ​# => [["cru"], ["el "], ["wor"]]​

	​ 	a.scan(/(..)(..)/) ​# => [["cr", "ue"], ["l ", "wo"]]​

	 And the block form:
	
	​ 	a.scan(/​\w​+/) {|w| print ​"<<​#{w}​>> "​ }

	​ 	puts

	​ 	a.scan(/(.)(.)/) {|a,b| print b, a }

	​ 	puts

Produces:
	​ 	<<cruel>> <<world>>

	​ 	rceu lowlr

setbyte
	str.setbyte(offset, byte) → byte

	 Sets the byte at offset (starting from the end of the
	 string if the offset is negative) to byte. Cannot be used
	 to change the length of the string. Does not change the encoding
	 of the string.
	
	​ 	str = ​"defog"​

	​ 	​# a utf-8 delta character​

	​ 	str.setbyte(0, 226) ​# => 226​

	​ 	str.setbyte(1, 136) ​# => 136​

	​ 	str.setbyte(2, 130) ​# => 130​

	​ 	str ​# => "∂og"​

	​ 	str.length ​# => 3​

	​ 	str.force_encoding(​"utf-8"​)

	​ 	str.length ​# => 3​

	​ 	str ​# => "∂og"​

size
	str.size → int

	 Synonym for String#length.
	

slice
	str.slice(int)
	 → string or ​nil​
	str.slice(int, int)
	 → string or ​nil​
	str.slice(range)
	 → string or ​nil​
	str.slice(regexp)
	 → string or ​nil​
	str.slice(match_string)
	 → string or ​nil​

	 Synonym for String#[].
	
	​ 	a = ​"hello there"​

	​ 	a.slice(1) ​# => "e"​

	​ 	a.slice(1,3) ​# => "ell"​

	​ 	a.slice(1..3) ​# => "ell"​

	​ 	a.slice(-3,2) ​# => "er"​

	​ 	a.slice(-4..-2) ​# => "her"​

	​ 	a.slice(-2..-4) ​# => ""​

	​ 	a.slice(/th[aeiou]/) ​# => "the"​

	​ 	a.slice(​"lo"​) ​# => "lo"​

	​ 	a.slice(​"bye"​) ​# => nil​

slice!
	str.slice!(int)
	 → string or ​nil​
	str.slice!(int, int)
	 → string or ​nil​
	str.slice!(range)
	 → string or ​nil​
	str.slice!(regexp)
	 → string or ​nil​
	str.slice!(match_string)
	 → string or ​nil​

	 Deletes the specified portion from str and
	 returns the portion deleted. The forms that take a
	 ​Fixnum​ will raise an
	 ​IndexError​ if the value is out of
	 range; the ​Range​ form will raise a
	 ​RangeError​, and the
	 ​Regexp​ and
	 ​String​ forms will silently not change
	 the string.
	
	​ 	string = ​"this is a string"​

	​ 	string.slice!(2) ​# => "i"​

	​ 	string.slice!(3..6) ​# => " is "​

	​ 	string.slice!(/s.*t/) ​# => "sa st"​

	​ 	string.slice!(​"r"​) ​# => "r"​

	​ 	string ​# => "thing"​

split
	str.split(pattern=​$;​,
	 <limit>) → array

	 Divides str into substrings based on a delimiter, returning
	 an array of these substrings.
	

	 If pattern is a ​String​,
	 then its contents are used as the delimiter when splitting
	 str. If pattern is a single space,
	 str is split on whitespace, with leading
	 whitespace and runs of contiguous whitespace characters
	 ignored.
	

	 If pattern is a ​Regexp​, str is divided where the
	 pattern matches. Whenever the pattern matches a zero-length
	 string, str is split into individual characters. If pattern
	 includes groups, these groups will be included in the returned
	 values.
	

	 If pattern is omitted, the value of
	 ​$;​
	 is used. If ​$;​ is
	 ​nil​ (which is the default),
	 str is split on whitespace as if “␣”
	 were specified.
	

	 If the limit parameter is omitted, trailing empty fields are
	 suppressed. If limit is a positive number, at most that
	 number of fields will be returned (if limit is ​1​,
	 the entire string is returned as the only entry in an array). If
	 negative, there is no limit to the number of fields returned,
	 and trailing null fields are not suppressed.
	
	​ 	​" now's the time"​.split ​# => ["now's", "the", "time"]​

	​ 	​" now's the time"​.split(​' '​) ​# => ["now's", "the", "time"]​

	​ 	​" now's the time"​.split(/ /) ​# => ["", "now's", "", "", "the", "time"]​

	​ 	​"a@1bb@2ccc"​.split(/@​\d​/) ​# => ["a", "bb", "ccc"]​

	​ 	​"a@1bb@2ccc"​.split(/@(​\d​)/) ​# => ["a", "1", "bb", "2", "ccc"]​

	​ 	​"1, 2.34,56, 7"​.split(/,​\s​*/) ​# => ["1", "2.34", "56", "7"]​

	​ 	​"hello"​.split(//) ​# => ["h", "e", "l", "l", "o"]​

	​ 	​"hello"​.split(//, 3) ​# => ["h", "e", "llo"]​

	​ 	​"hi mom"​.split(/​\s​*/) ​# => ["h", "i", "m", "o", "m"]​

	​ 	​""​.split ​# => []​

	​ 	​"mellow yellow"​.split(​"ello"​) ​# => ["m", "w y", "w"]​

	​ 	​"1,2,,3,4,,"​.split(​','​) ​# => ["1", "2", "", "3", "4"]​

	​ 	​"1,2,,3,4,,"​.split(​','​, 4) ​# => ["1", "2", "", "3,4,,"]​

	​ 	​"1,2,,3,4,,"​.split(​','​, -4) ​# => ["1", "2", "", "3", "4", "", ""]​

squeeze
	str.squeeze(<string>*)
	 → squeezed_string

	 The parameter(s) specify a set of characters using the
	 procedure described for String#count. Returns a new string
	 where runs of the same character that occur in this set are
	 replaced by a single character. If no arguments are given,
	 all runs of identical characters are replaced by a single
	 character.
	
	​ 	​"yellow moon"​.squeeze ​# => "yelow mon"​

	​ 	​" now is the"​.squeeze(​" "​) ​# => " now is the"​

	​ 	​"putters putt balls"​.squeeze(​"m-z"​) ​# => "puters put balls"​

squeeze!
	str.squeeze!(<string>*)
	 → str or ​nil​

	 Squeezes str in place, returning str. Returns
	 ​nil​ if no changes were made.
	

start_with?
	str.start_with?(<prefix>+) → ​true​ or ​false​

	 Returns ​true​ if str starts with any of the given prefixes.
	
	​ 	​"Apache"​.start_with?(​"Apa"​) ​# => true​

	​ 	​"ruby code"​.start_with?(​"python"​, ​"perl"​, ​"ruby"​) ​# => true​

strip
	str.strip → string

	 Returns a new string, stripping leading whitespace and trailing ​null​
	 and whitespace characters from str.
	
	​ 	​" hello "​.strip ​# => "hello"​

	​ 	​"\tgoodbye\r\n"​.strip ​# => "goodbye"​

	​ 	​"goodbye \000"​.strip ​# => "goodbye"​

	​ 	​"goodbye \000 "​.strip ​# => "goodbye"​

strip!
	str.strip! → str or ​nil​

	 Removes leading whitespace and trailing ​null​ and whitespace
	 characters from str. Returns ​nil​ if str was not
	 altered.
	

sub
	str.sub(pattern, replacement)
	 → string
	str.sub(pattern) { |match| … }
	 → string

	 Returns a copy of str with the first occurrence
	 of pattern replaced with either
	 replacement or the value of the block. See the
	 description of String#gsub for a description of the
	 parameters.
	
	​ 	​"hello"​.sub(/[aeiou]/, ​'*'​) ​# => "h*llo"​

	​ 	​"hello"​.sub(/([aeiou])/, ​'<\1>'​) ​# => "h<e>llo"​

	​ 	​"hello"​.sub(/./) {|s| s[0].to_s + ​' '​} ​# => "h ello"​

	​ 	​"hello"​.sub(/(?<double>l)/, ​'-\k<double>-'​) ​# => "he-l-lo"​

sub!
	str.sub!(pattern, replacement)
	 → str or ​nil​
	str.sub!(pattern) { |match| … }
	 → str or ​nil​

	 Performs the substitutions of String#sub in place,
	 returning str. Returns ​nil​ if no substitutions were
	 performed.
	

succ
	str.succ → string

	 Returns the successor to str. The successor is calculated by
	 incrementing characters starting from the rightmost
	 alphanumeric (or the rightmost character if there are no
	 alphanumerics) in the string. Incrementing a digit always results
	 in another digit, and incrementing a letter results in another
	 letter of the same case. Incrementing nonalphanumerics uses the
	 underlying character set’s collating sequence.
	

	 If the increment generates a “carry,” the character to the
	 left of it is incremented. This process repeats until there is
	 no carry, adding a character if necessary. An
	 exception is when the carry is generated by a sequence of digits
	 in a string containing digits, nonalpha characters, and more
	 digits, in which case the carry applies to the digits. This
	 allows for incrementing (for example) numbers with decimal
	 places.
	
	​ 	​"abcd"​.succ ​# => "abce"​

	​ 	​"THX1138"​.succ ​# => "THX1139"​

	​ 	​"<<koala>>"​.succ ​# => "<<koalb>>"​

	​ 	​"1999zzz"​.succ ​# => "2000aaa"​

	​ 	​"ZZZ9999"​.succ ​# => "AAAA0000"​

	​ 	​"***"​.succ ​# => "**+"​

	​ 	​"1.9"​.succ ​# => "2.0"​

	​ 	​"1//9"​.succ ​# => "2//0"​

	​ 	​"1/9/9/9"​.succ ​# => "2/0/0/0"​

	​ 	​"1x9"​.succ ​# => "1y0"​

succ!
	str.succ! → str

	 Equivalent to String#succ but modifies the receiver in place.
	

sum
	str.sum(n=16) → int

	 Returns a basic ​n​-bit checksum
	 of the characters in str, where ​n​ is
	 the optional parameter, defaulting to 16. The result is
	 simply the sum of the binary value of each character in
	 str modulo 2n-1. This is
	 not a particularly good checksum—see the digest libraries for better
	 alternatives.
	
	​ 	​"now is the time"​.sum ​# => 1408​

	​ 	​"now is the time"​.sum(8) ​# => 128​

swapcase
	str.swapcase → string

	 Returns a copy of str with uppercase alphabetic
	 characters converted to lowercase and lowercase characters
	 converted to uppercase. The mapping depends on the string
	 encoding, but not all encodings produce expected results.
	
	​ 	​# encoding: utf-8​

	​ 	​"Hello"​.swapcase ​# => "hELLO"​

	​ 	​"cYbEr_PuNk11"​.swapcase ​# => "CyBeR_pUnK11"​

	​ 	​"∂Og"​.swapcase ​# => "∂oG"​

swapcase!
	str.swapcase! → str or ​nil​

	 Equivalent to String#swapcase but modifies str in
	 place, returning str. Returns ​nil​ if no changes were
	 made.
	

to_c
	str.to_c → complex

	 Returns the result of interpreting leading
	 characters in str as a complex number. Extraneous
	 characters past the end of a valid number are ignored. If
	 there is not a valid number at the start of str,
	 ​Complex(0,0)​ is returned. The method never raises
	 an exception.
	
	​ 	​"123"​.to_c ​# => 123+0i​

	​ 	​"4+5/6i"​.to_c ​# => 4+5/6i​

	​ 	​"thx1138"​.to_c ​# => 0+0i​

to_f
	str.to_f → float

	 Returns the result of interpreting leading characters in
	 str as a floating-point number. Extraneous
	 characters past the end of a valid number are ignored. If
	 there is not a valid number at the start of str,
	 ​0.0​ is returned. The method never raises an
	 exception (use Object#Float
	 to validate numbers).
	
	​ 	​"123.45e1"​.to_f ​# => 1234.5​

	​ 	​"45.67 degrees"​.to_f ​# => 45.67​

	​ 	​"thx1138"​.to_f ​# => 0.0​

to_i
	str.to_i(base=10) → int

	 Returns the result of interpreting leading characters in str
	 as an integer base base (2 to 36). Given a base of zero,
	
 ​to_i​
 looks for leading ​0​, ​0b​, ​0o​,
	 ​0d​, or ​0x​ and sets the base accordingly. Leading spaces
	 are ignored, and leading plus or minus signs are honored. Extraneous
	 characters past the end of a valid number are ignored. If there
	 is not a valid number at the start of str, ​0​ is
	 returned. The method never raises an exception.
	
	​ 	​"12345"​.to_i ​# => 12345​

	​ 	​"99 red balloons"​.to_i ​# => 99​

	​ 	​"0a"​.to_i ​# => 0​

	​ 	​"0a"​.to_i(16) ​# => 10​

	​ 	​"0x10"​.to_i ​# => 0​

	​ 	​"0x10"​.to_i(0) ​# => 16​

	​ 	​"-0x10"​.to_i(0) ​# => -16​

	​ 	​"hello"​.to_i(30) ​# => 14167554​

	​ 	​"1100101"​.to_i(2) ​# => 101​

	​ 	​"1100101"​.to_i(8) ​# => 294977​

	​ 	​"1100101"​.to_i(10) ​# => 1100101​

	​ 	​"1100101"​.to_i(16) ​# => 17826049​

to_r
	str.to_r → rational

	 Returns the result of interpreting leading characters in str
	 as a rational number. Extraneous characters past the end
	 of a valid number are ignored. If there is not a valid number at
	 the start of str, ​Rational(0,1)​ is returned. The method never
	 raises an exception.
	
	​ 	​"123"​.to_r ​# => 123/1​

	​ 	​"5/6"​.to_r ​# => 5/6​

	​ 	​"5/six"​.to_r ​# => 5/1​

	​ 	​"thx1138"​.to_r ​# => (0/1)​

to_s
	str.to_s → str

	 Returns the receiver.
	

to_str
	str.to_str → str

	 Synonym for String#to_s.
 ​to_str​
 is
	 used by methods such as String#concat to convert their
	 arguments to a string. Unlike
 ​to_s​
 , which is supported
	 by almost all classes,
 ​to_str​
 is normally implemented
	 only by those classes that act like strings. Of the built-in
	 classes, only ​Exception​
	 and ​String​ implement
 ​to_str​
 .
	

to_sym
	str.to_s → symbol

	 Returns the symbol for str. This can create
	 symbols that cannot be represented using the ​:xxx​
	 notation. A synonym for String#intern.
	
	​ 	s = ​'cat'​.to_sym ​# => :cat​

	​ 	s == :cat ​# => true​

	​ 	​'cat and dog'​.to_sym ​# => :"cat and dog"​

	​ 	s == :'cat and dog' ​# => false​

tr
	str.tr(from_string, to_string) → string

	 Returns a copy of str with the characters in
	 from_string replaced by the corresponding
	 characters in to_string. If to_string
	 is shorter than from_string, it is padded with
	 its last character. Both strings may use the c1–c2 notation to denote ranges of
	 characters, and from_string may start with a
	 ​^​, which denotes all characters except those listed.
	
	​ 	​"hello"​.tr(​'aeiou'​, ​'*'​) ​# => "h*ll*"​

	​ 	​"hello"​.tr(​'^aeiou'​, ​'*'​) ​# => "*e**o"​

	​ 	​"hello"​.tr(​'el'​, ​'ip'​) ​# => "hippo"​

	​ 	​"hello"​.tr(​'a-y'​, ​'b-z'​) ​# => "ifmmp"​

tr!
	str.tr!(from_string, to_string)
	 → str or ​nil​

	 Translates str in place, using the same rules as
	 String#tr. Returns str or
	 returns ​nil​ if no changes were made.
	

tr_s
	str.tr_s(from_string, to_string)
	 → string

	 Processes a copy of str as described under String#tr
	 and then removes duplicate characters in regions that were affected
	 by the translation.
	
	​ 	​"hello"​.tr_s(​'l'​, ​'r'​) ​# => "hero"​

	​ 	​"hello"​.tr_s(​'el'​, ​'*'​) ​# => "h*o"​

	​ 	​"hello"​.tr_s(​'el'​, ​'hx'​) ​# => "hhxo"​

tr_s!
	str.tr_s!(from_string, to_string)
	 → str or ​nil​

	 Performs String#tr_s processing on str in place,
	 returning str. Returns ​nil​ if no changes were made.
	

unpack
	str.unpack(format) → array

	 Decodes str (which may contain
	 binary data) according to the format string, returning an
	 array of the extracted values. The format string consists
	 of a sequence of single-character directives, summarized in
	 Table 24, ​Directives for String#unpack​. Each directive may be followed
	 by a number, indicating the number of times to repeat this
	 directive. An asterisk (​*​) will use up all
	 remaining elements. The directives ​sSiIlL​ may each
	 be followed by an underscore (_) or bang
	 (!} to use the underlying platform’s native size
	 for the specified type; otherwise, it uses a
	 platform-independent consistent size. The
	 directives ​s S i I l L q Q​ may be followed by a
	 less than sign to signify little endian or greater than sign
	 for big endian. Spaces are ignored in the format
	 string. Comments starting with ​#​ to the next
	 newline or end of string are also ignored. The
	 encoding of the string is ignored;
	
 ​unpack​
 treats the string as a sequence of
	 bytes. See also Array#pack.
	
	​ 	​"abc \0\0abc \0\0"​.unpack(​'A6Z6'​) ​# => ["abc", "abc "]​

	​ 	​"abc \0\0"​.unpack(​'a3a3'​) ​# => ["abc", " \0\0"]​

	​ 	​"aa"​.unpack(​'b8B8'​) ​# => ["10000110", "01100001"]​

	​ 	​"aaa"​.unpack(​'h2H2c'​) ​# => ["16", "61", 97]​

	​ 	​"\xfe\xff\xfe\xff"​.unpack(​'sS'​) ​# => [-2, 65534]​

	​ 	​"now=20is"​.unpack(​'M*'​) ​# => ["now is"]​

	​ 	​"whole"​.unpack(​'xax2aX2aX1aX2a'​) ​# => ["h", "e", "l", "l", "o"]​

upcase
	str.upcase → string

	 Returns a copy of str with all lowercase letters replaced
	 with their uppercase counterparts. The mapping depends on the
	 string encoding, but not all encodings produce expected results.
	
	​ 	​# encoding: utf-8​

	​ 	​"hEllO"​.upcase ​# => "HELLO"​

	​ 	​"∂og"​.upcase ​# => "∂OG"​

upcase!
	str.upcase! → str or ​nil​

	 Upcases the contents of str, returning ​nil​ if no
	 changes were made.
	

upto
	str.upto(string, exclude_end=false)
	 { |s| … } → str or enumerator

	 Iterates through successive values, starting at
	 str and ending at string inclusive (or
	 omitting string if the second parameter is true).
	 Passes each value in turn to the block. The String#succ method is used to generate each
	 value. Returns an ​Enumerator​
	 object if no block is given.
	
	​ 	​"a8"​.upto(​"b6"​) {|s| print s, ​' '​ }

	​ 	puts

	​ 	​for​ s ​in​ ​"a8"​..​"b6"​

	​ 	 print s, ​' '​

	​ 	​end​

Produces:
	​ 	a8 a9 b0 b1 b2 b3 b4 b5 b6

	​ 	a8 a9 b0 b1 b2 b3 b4 b5 b6

	​ 	​"a8"​.upto(​"b6"​, true).to_a ​# => ["a8", "a9", "b0", "b1", "b2", "b3", "b4", "b5"]​

	 If the two strings contain just the digits 0 to 9, then
	 successive numeric values (as strings) are
	 generated. Leading zeros are handled appropriately.
	
	​ 	​"99"​.upto(​"103"​).to_a ​# => ["99", "100", "101", "102", "103"]​

	​ 	​"00008"​.upto(​"00012"​).to_a ​# => ["00008", "00009", "00010", "00011", "00012"]​

valid_encoding?
	str.valid_encoding? → ​true​ or ​false​

	 Returns ​true​ if str contains a valid byte sequence
	 in its current encoding.
	
	​ 	​# encoding: binary​

	​ 	str = ​"\xE2"​

	​ 	str.force_encoding(​"utf-8"​)

	​ 	str.valid_encoding? ​# => false​

	​ 	str = ​"\xE2\x88\x82"​

	​ 	str.force_encoding(​"utf-8"​)

	​ 	str.valid_encoding? ​# => true​

Table 24. Directives for String#unpack
	Format	Function	Returns
	A	
Sequence of bytes with trailing nulls and ASCII spaces removed.
	String
	a	
Sequence of bytes.
	String
	B	
Extracts bits from each byte (MSB first).
	String
	b	
Extracts bits from each byte (LSB first).
	String
	C	
Extracts a byte as an unsigned integer.
	Fixnum
	c	
Extracts a byte as an integer.
	Fixnum
	d,D	
Treat ​sizeof(double)​ bytes as a native double.
	Float
	E	
Treats ​sizeof(double)​ bytes as a double in little-endian byte order.
	Float
	e	
Treats ​sizeof(float)​ bytes as a float in little-endian byte order.
	Float
	f,F	
Treats ​sizeof(float)​ bytes as a native float.
	Float
	G	
Treats ​sizeof(double)​ bytes as a double in network byte order.
	Float
	g	
Treats ​sizeof(float)​ bytes as a float in network byte order.
	Float
	H	
Extracts hex nibbles from each byte (most significant first).
	String
	h	
Extracts hex nibbles from each byte (least significant first).
	String
	I	
Treats ​sizeof(int)​° successive bytes as an unsigned native integer.
	Integer
	i	
Treats ​sizeof(int)​° successive bytes as a signed native integer.
	Integer
	L	
Treats four° successive bytes as an unsigned native long integer.
	Integer
	l	
Treats four° successive characters as a signed native long integer.
	Integer
	M	
Extracts a quoted-printable string.
	String
	m	
Extracts a Base64-encoded string. By default, accepts \n and \r. "m0" rejects these.
	String
	N	
Treats four bytes as an unsigned long in network byte order.
	Fixnum
	n	
Treats two bytes as an unsigned short in network byte order.
	Fixnum
	P	
Treats ​sizeof(char *)​ bytes as a pointer and returns len bytes from the referenced location.
	String
	p	
Treats ​sizeof(char *)​ bytes as a pointer to a null-terminated string.
	String
	Q	
Treats eight bytes as an unsigned quad word (64 bits).
	Integer
	q	
Treats eight bytes as a signed quad word (64 bits).
	Integer
	S	
Treats two° bytes characters as an unsigned short in native byte order.
	Fixnum
	s	
Treats two° successive bytes as a signed short in native byte order.
	 Fixnum
	U	
Extracts UTF-8 characters as unsigned integers.
	Integer
	u	
Extracts a UU-encoded string.
	String
	V	
Treats four bytes as an unsigned long in little-endian byte order.
	Fixnum
	v	
Treats two bytes as an unsigned short in little-endian byte order.
	Fixnum
	w	
BER-compressed integer (see Array#pack for more information).
	Integer
	X	
Skips backward one byte.
	—
	x	
Skips forward one byte.
	—
	Z	
String with trailing nulls removed.
	String
	@	Skips to the byte offset given by the length argument.	—
	
 	

 ° ​May be modified by appending _ or ! to the directive.​

Class Struct < Object
	Subclasses are:
	Struct::Tms

 A ​Struct​ is a convenient way to bundle a number of attributes
 together, using accessor methods, without having to write an explicit
 class.

 The ​Struct​ class is a generator of specific classes, each one of
 which is defined to hold a set of variables and their accessors. In
 these examples, we’ll call the generated class Customer, and
 we’ll show an example instance of that class as joe.

 Also see ​OpenStruct​.

 In the descriptions that follow, the
 parameter symbol refers to a name, which is either a
 quoted string or a ​Symbol​ (such as ​:name​).

 Mixes in

	Enumerable
	
all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Struct: Class methods
new
	Struct.new(<string> <, symbol>+)
	 → Customer
	Struct.new(<string> <, symbol>+) { … }
	 → Customer

	 Creates a new class, named by string, containing accessor
	 methods for the given symbols. If the name string is
	 omitted, an anonymous structure class will be created. Otherwise,
	 the name of this struct will appear as a constant in class
	 ​Struct​, so it must be unique for all ​Struct​s in the system
	 and should start with a capital letter. Assigning a structure
	 class to a constant effectively gives the class the name of the
	 constant.
	

	 Struct.new returns a new
	 ​Class​ object, which can then be used
	 to create specific instances of the new structure. The
	 remaining methods listed next (class and instance) are
	 defined for this generated class. See the description that
	 follows for an example.
	
	​ 	​# Create a structure with a name in Struct​

	​ 	Struct.new(​"Customer"​, :name, :address) ​# => Struct::Customer​

	​ 	Struct::Customer.new(​"Dave"​, ​"123 Main"​) ​# => #<struct Struct::Customer​

	​ 	 ​# .. name="Dave", address="123 Main">​

	​ 	​# Create a structure named by its constant​

	​ 	Customer = Struct.new(:name, :address) ​# => Customer​

	​ 	Customer.new(​"Dave"​, ​"123 Main"​) ​# => #<struct Customer name="Dave",​

	​ 	 ​# .. address="123 Main">​

	 A block passed to the constructor is evaluated in the context
	 of the new struct’s class and hence allows you conveniently to add
	 instance methods to the new struct.
	
	​ 	Customer = Struct.new(:name, :address) ​do​

	​ 	 ​def​ to_s

	​ 	 ​"​#{self.name}​ lives at ​#{self.address}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	Customer.new(​"Dave"​, ​"123 Main"​).to_s ​# => "Dave lives at 123 Main"​

new
	Customer.new(<obj>+) → joe

	 Creates a new instance of a structure (the class created by
	 Struct.new). The number of actual parameters must be
	 less than or equal to the number of attributes defined for this
	 class; unset parameters default to ​nil​. Passing too many
	 parameters will raise an ​ArgumentError​.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.name ​# => "Joe Smith"​

	​ 	joe.zip ​# => 12345​

[]
	Customer[<obj>+] → joe

	 Synonym for
 ​new​
 (for the generated structure).
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	

	​ 	joe = Customer[​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345]

	​ 	joe.name ​# => "Joe Smith"​

	​ 	joe.zip ​# => 12345​

members
	Customer.members → array

	 Returns an array of symbols representing the names of the
	 instance variables.
	
	​ 	Customer = Struct.new(​"Customer"​, :name, :address, :zip)

	​ 	Customer.members ​# => [:name, :address, :zip]​

Struct: Instance methods
==
	joe == other_struct
	 → ​true​ or ​false​

	 Equality—Returns ​true​ if other_struct is equal to this
	 one: they must be of the same class as generated by
	 Struct.new, and the values of
	 all instance variables must be equal (according to
	 Object#==).
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joejr = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	jane = Customer.new(​"Jane Doe"​, ​"456 Elm, Anytown NC"​, 12345)

	​ 	

	​ 	joe == joejr ​# => true​

	​ 	joe == jane ​# => false​

[]
	joe[symbol] → obj
	joe[integer] → obj

	 Attribute Reference—Returns the value of the instance
	 variable named by symbol or indexed (0..length-1)
	 by int. Raises ​NameError​
	 if the named variable does not exist or raises
	 ​IndexError​ if the index is out of
	 range.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe[​"name"​] ​# => "Joe Smith"​

	​ 	joe[:name] ​# => "Joe Smith"​

	​ 	joe[0] ​# => "Joe Smith"​

[]=
	joe[symbol] = obj → obj
	joe[int] = obj → obj

	 Attribute Assignment—Assigns to the instance variable
	 named by symbol or int the value
	 obj and returns it. Raises a
	 ​NameError​ if the named variable does
	 not exist or raises an ​IndexError​ if
	 the index is out of range.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe[​"name"​] = ​"Luke"​

	​ 	joe[:zip] = ​"90210"​

	​ 	joe.name ​# => "Luke"​

	​ 	joe.zip ​# => "90210"​

each
	joe.each { |obj| … } → joe

	 Calls block once for each instance variable, passing the
	 value as a parameter.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.each {|x| puts(x) }

Produces:
	​ 	Joe Smith

	​ 	123 Maple, Anytown NC

	​ 	12345

each_pair
	joe.each_pair { |symbol, obj| … } → joe

	 Calls block once for each instance variable, passing the
	 name (as a symbol) and the value as parameters.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.each_pair {|name, value| puts(​"​#{name}​ => ​#{value}​"​) }

Produces:
	​ 	name => Joe Smith

	​ 	address => 123 Maple, Anytown NC

	​ 	zip => 12345

length
	joe.length → int

	 Returns the number of attributes.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.length ​# => 3​

members
	joe.members → array

	 Returns the names of the instance variables as an array of symbols.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.members ​# => [:name, :address, :zip]​

size
	joe.size → int

	 Synonym for Struct#length.
	

to_a
	joe.to_a → array

	 Returns the values for this instance as an array.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.to_a[1] ​# => "123 Maple, Anytown NC"​

to_h
	joe.to_h → hash

 Returns a hash of key/values pairs in this struct.
	
	​ 	Customer = Struct.new(:name, :address, :zip)

	​ 	joe = Customer.new(​"Joe Smith"​, ​"123 Maple, Anytown NC"​, 12345)

	​ 	joe.to_h ​# => {:name=>"Joe Smith", :address=>"123 Maple, Anytown NC",​

	​ 	 ​# .. :zip=>12345}​

values
	joe.values → array

	 Synonym for
 ​to_a​
 .
	

values_at
	joe.values_at(<selector>*) → array

	 Returns an array containing the elements in joe
	 corresponding to the given indices. The selectors may
	 be integer indices or ranges.
	
	​ 	Lots = Struct.new(:a, :b, :c, :d, :e, :f)

	​ 	l = Lots.new(11, 22, 33, 44, 55, 66)

	​ 	l.values_at(1, 3, 5) ​# => [22, 44, 66]​

	​ 	l.values_at(0, 2, 4) ​# => [11, 33, 55]​

	​ 	l.values_at(-1, -3, -5) ​# => [66, 44, 22]​

Class Struct::Tms < Struct

 This structure is returned by Process.times.
 It holds
 information on process times on those platforms that support it.
 Not all values are valid on all platforms.
 This structure contains the following instance variables and the
 corresponding accessors:

	
​utime​
	
Amount of user CPU time, in seconds

	
​stime​
	
Amount of system CPU time, in seconds

	
​cutime​
	
Total of completed child processes’ user CPU time, in seconds (always 0 on Windows)

	
​cstime​
	
Total of completed child processes’ system CPU time, in seconds (always 0 on Windows)

 See also ​Struct​
 and Process.times.

	​ 	​def​ eat_cpu

	​ 	 10_000.times { File.open(​"/etc/passwd"​).close }

	​ 	​end​

	​ 	3.times { fork { eat_cpu } }

	​ 	eat_cpu

	​ 	Process.waitall

	​ 	t = Process::times

	​ 	[t.utime, t.stime] ​# => [0.13, 0.24]​

	​ 	[t.cutime, t.cstime] ​# => [0.27, 0.68]​

Class Symbol < Object

 ​Symbol​ objects represent names inside the
 Ruby interpreter. They are generated using the ​:name​ or
 ​:"arbitrary text"​ literal syntax and by using the various

 ​to_sym​
 methods. The same
 ​Symbol​ object will be created for a given
 name string for the duration of a program’s execution, regardless
 of the context or meaning of that name. Symbols can be arbitrary
 sequences of characters. Like strings, a symbol literal
 containing any characters with the top bit set will have an
 encoding determined by the encoding of the source file containing
 the definition.

 Ruby 1.9 added string-like functionality to symbols.

 Mixes in

	Comparable
	
<, <=, ==, >, >=, between?

Symbol: Class methods
all_symbols
	Symbol.all_symbols → array

	 Returns an array of all the symbols currently in Ruby’s
	 symbol table.
	
	​ 	list = Symbol.all_symbols

	​ 	list.size ​# => 2240​

	​ 	list.grep(/attr_/) ​# => [:attr_reader, :attr_writer, :attr_accessor, :attr_name]​

Symbol: Instance methods
<=>
	sym <=> other_sym
	 → -1, 0, +1, or ​nil​

	 Compares sym to other_sym
	 after converting each to strings.
	
 ​<=>​
 is the basis for the methods
	
 ​<​
 ,
 ​<=​
 ,
	
 ​>​
 ,
 ​>=​
 , and
	
 ​between?​
 , included from module
	 ​Comparable​. The method Symbol#== does not use Comparable#==.
	
	​ 	:abcdef <=> :abcde ​# => 1​

	​ 	:abcdef <=> :abcdef ​# => 0​

	​ 	:abcdef <=> :abcdefg ​# => -1​

	​ 	:abcdef <=> :ABCDEF ​# => 1​

==
	sym == obj → ​true​ or ​false​

	 Returns ​true​ only if sym and obj are symbols
	 with the same
 ​object_id​
 .
	
	​ 	:abcdef == :abcde ​# => false​

	​ 	:abcdef == :abcdef ​# => true​

=~
	sym =~ obj → int or ​nil​

	 Converts sym to a string and matches it against obj.
	
	​ 	:abcdef =~ /.[aeiou]/ ​# => 3​

	​ 	:abcdef =~ /xx/ ​# => nil​

[]
	sym[int] → string or ​nil​
	sym[int, int] → string or ​nil​
	sym[range] → string or ​nil​
	sym[regexp] → string or ​nil​
	sym[regexp, int] → string or ​nil​
	sym[string] → string or ​nil​

	 Converts sym to a string and then indexes it using the same
	 parameters as String#[].
	
	​ 	:"hello there"[1] ​# => "e"​

	​ 	:"hello there"[1,3] ​# => "ell"​

	​ 	:"hello there"[1..3] ​# => "ell"​

	​ 	:"hello there"[-3,2] ​# => "er"​

	​ 	:"hello there"[-4..-2] ​# => "her"​

	​ 	:"hello there"[-2..-4] ​# => ""​

	​ 	:"hello there"[/[aeiou](.)​\1​/] ​# => "ell"​

	​ 	:"hello there"[/[aeiou](.)​\1​/, 1] ​# => "l"​

capitalize
	sym.capitalize → symbol

	 Returns a symbol with the first character of sym converted to
	 uppercase and the remainder to lowercase.
	
	​ 	:hello.capitalize ​# => :Hello​

	​ 	:"HELLO WORLD".capitalize ​# => :"Hello world"​

	​ 	:"123ABC".capitalize ​# => :"123abc"​

casecmp
	sym.casecmp(other) → -1, 0, +1, or ​nil​

	 Case-insensitive version of Symbol#<=>. Returns ​nil​ if
	 other is not a symbol.
	
	​ 	:abcdef.casecmp(:abcde) ​# => 1​

	​ 	:abcdef.casecmp(:abcdef) ​# => 0​

	​ 	:abcdef.casecmp(:ABCDEF) ​# => 0​

	​ 	:aBcDeF.casecmp(:abcdef) ​# => 0​

	​ 	:abcdef.casecmp(:abcdefg) ​# => -1​

	​ 	:abcdef.casecmp(​"abcdef"​) ​# => nil​

downcase
	sym.downcase → symbol

	 Returns a symbol with all the characters of sym converted to
	 lowercase.
	
	​ 	:Hello.downcase ​# => :hello​

	​ 	:"HELLO WORLD".downcase ​# => :"hello world"​

	​ 	:"123ABC".downcase ​# => :"123abc"​

empty?
	sym.empty → ​true​ or ​false​

	 Returns ​true​ if the string representation of sym is empty.
	
	​ 	:hello.empty? ​# => false​

	​ 	:"".empty? ​# => true​

encoding
	sym.encoding → enc

	 Returns the encoding of sym.
	
	​ 	​# encoding: utf-8​

	​ 	:hello.encoding ​# => #<Encoding:US-ASCII>​

	​ 	:"∂og".encoding ​# => #<Encoding:UTF-8>​

id2name
	sym.id2name → string

	 Returns the string representation of sym.
	
	​ 	:fred.id2name ​# => "fred"​

	​ 	:"99 red balloons!".id2name ​# => "99 red balloons!"​

inspect
	sym.inspect → string

	 Returns the representation of sym as a symbol literal.
	
	​ 	:fred.inspect ​# => :fred​

	​ 	:"99 red balloons!".inspect ​# => :"99 red balloons!"​

intern
	sym.intern → sym

	 Synonym for Symbol#to_sym.
	

length
	sym.length → int

	 Returns the number of characters in the string representation
	 sym.
	
	​ 	​# encoding: utf-8​

	​ 	:dog.length ​# => 3​

	​ 	:∂og.length ​# => 3​

match
	sym.match(regexp)
	 → int or ​nil​

	 Converts self to a string and then matches it against
	 regexp. Unlike String#match, does not support
	 blocks or non-regexp parameters.
	
	​ 	:hello.match(/(.)​\1​/) ​# => 2​

	​ 	:hello.match(/ll/) ​# => 2​

next
	sym.next → symbol

	 Synonym for Symbol#succ.
	

size
	sym.size → int

	 Synonym for Symbol#length.
	

slice
	sym.slice(int)
	 → string or ​nil​
	sym.slice(int, int)
	 → string or ​nil​
	sym.slice(range)
	 → string or ​nil​
	sym.slice(regexp)
	 → string or ​nil​
	sym.slice(match_string)
	 → string or ​nil​

	 Synonym for Symbol#[].
	

succ
	sym.succ → symbol

	 Returns the successor to sym using the same rules as
	 String#succ.
	
	​ 	:abcd.succ ​# => :abce​

	​ 	:THX1138.succ ​# => :THX1139​

	​ 	:"1999zzz".succ ​# => :"2000aaa"​

swapcase
	sym.swapcase → symbol

	 Returns a symbol with the case of all the characters of sym
	 swapped.
	
	​ 	:Hello.swapcase ​# => :hELLO​

	​ 	:"123ABC".swapcase ​# => :"123abc"​

to_proc
	sym.to_proc → proc

	 Allows a symbol to be used when a block is expected. The symbol
	 acts as a method invoked on each parameter to the block. See
	 ​The Symbol.to_proc Trick​ for more information.
	
	​ 	​%w{ant bee cat}​.map(&:reverse) ​# => ["tna", "eeb", "tac"]​

to_s
	sym.to_s → string

	 Synonym for Symbol#id2name.
	

to_sym
	sym.to_sym → sym

	 Symbols are symbol-like!
	

upcase
	sym.upcase → symbol

	 Returns a symbol with all the characters of sym
	 in uppercase.
	
	​ 	:Hello.upcase ​# => :HELLO​

	​ 	:"123Abc".upcase ​# => :"123ABC"​

Class Thread < Object

 ​Thread​ encapsulates the behavior of a thread of execution,
 including the main thread of the Ruby script. See the tutorial
 beginning Chapter 12, ​Fibers, Threads, and Processes​.

 In the descriptions that follow, the
 parameter symbol refers to a name that is either a
 quoted string or a symbol (such as ​:name​).

Thread: Class methods
abort_on_exception
	Thread.abort_on_exception → ​true​ or ​false​

	 Returns the status of the global ​abort on
	 exception​ condition. The default is
	 ​false​. When set to
	 ​true​ or if the global
	 ​$DEBUG​
	 flag is ​true​ (perhaps
	 because the command-line option ​-d​ was specified),
	 all threads will abort (the process will ​exit(0)​)
	 if an exception is raised in any thread. See also
	 Thread.abort_on_exception=.
	

abort_on_exception=
	Thread.abort_on_exception= ​true​ or ​false​ → ​true​ or ​false​

	 When set to ​true​, all threads will abort if an
	 exception is raised. Returns the new state.
	
	​ 	Thread.abort_on_exception = true

	​ 	t1 = Thread.new ​do​

	​ 	 puts ​"In new thread"​

	​ 	 raise ​"Exception from thread"​

	​ 	​end​

	​ 	sleep(0.1)

	​ 	puts ​"not reached"​

Produces:
	​ 	In new thread

	​ 	prog.rb:4:in `block in <main>': Exception from thread (RuntimeError)

current
	Thread.current → thread

	 Returns the currently executing thread.
	
	​ 	Thread.current ​# => #<Thread:0x007fb2340c0ce0 run>​

exclusive
	Thread.exclusive { … } → obj

	 Executes the block and returns whatever the block
	 returns. Internally uses a ​Mutex​ so
	 that only one thread can be executing code under the control of
	
 ​Thread.exclusive​
 at a time.
	

exit
	Thread.exit

	 Terminates the currently running thread and schedules
	 another thread to be run. If this thread is already marked
	 to be killed,
 ​exit​
 returns the
	 ​Thread​. If this is the main thread,
	 or the last thread, exits the process.
	

fork
	Thread.fork { … } → thread

	 Synonym for Thread.start.
	

kill
	Thread.kill(thread)

	 Causes the given thread to exit (see Thread.exit).
	
	​ 	count = 0

	​ 	a = Thread.new { loop { count += 1 } }

	​ 	sleep(0.1) ​# => 0​

	​ 	Thread.kill(a) ​# => #<Thread:0x007fefc210f400 run>​

	​ 	count ​# => 910465​

	​ 	​# give it time to die...​

	​ 	sleep 0.01

	​ 	a.alive? ​# => false​

list
	Thread.list → array

	 Returns an array of ​Thread​ objects for all threads that are
	 either runnable or stopped.
	
	​ 	Thread.new { sleep(200) }

	​ 	Thread.new { 1000000.times {|i| i*i } }

	​ 	Thread.new { Thread.stop }

	​ 	Thread.list.each {|thr| p thr }

Produces:
	​ 	#<Thread:0x007fa3b90c0cd8 run>

	​ 	#<Thread:0x007fa3b910f810 sleep>

	​ 	#<Thread:0x007fa3b910f630 run>

	​ 	#<Thread:0x007fa3b902b728 sleep>

main
	Thread.main → thread

	 Returns the main thread for the process.
	
	​ 	Thread.main ​# => #<Thread:0x007ffc9b8c0ce0 run>​

new
	Thread.new(<arg>*) { |args| … }
	 → thread

	 Creates and runs a new thread to execute the instructions given in
	 block. Any arguments passed to
	 Thread.new are passed into the block.
	
	​ 	x = Thread.new { sleep 0.1; print ​"x"​; print ​"y"​; print ​"z"​ }

	​ 	a = Thread.new { print ​"a"​; print ​"b"​; sleep 0.2; print ​"c"​ }

	​ 	x.join; a.join ​# wait for threads to finish​

Produces:
	​ 	abxyzc

pass
	Thread.pass

	 Invokes the thread scheduler to pass execution to another
	 thread.
	
	​ 	a = Thread.new { print ​"a"​; Thread.pass; print ​"b"​ }

	​ 	b = Thread.new { print ​"x"​; Thread.pass; print ​"y"​ }

	​ 	a.join; b.join

Produces:
	​ 	axby

start
	Thread.start(<args>*) { |args| … }
	 → thread

	 Basically the same as Thread.new. However, if class
	 ​Thread​ is subclassed, then calling
 ​start​
 in that
	 subclass will not invoke the subclass’s
 ​initialize​
 method.
	

stop
	Thread.stop

	 Stops execution of the current thread, putting it into a
	 ​sleep​ state, and schedules execution of another thread.
	 Resets the ​critical​ condition to ​false​.
	
	​ 	a = Thread.new { print ​"a"​; Thread.stop; print ​"c"​ }

	​ 	sleep 0.01

	​ 	print ​"b"​

	​ 	a.wakeup

	​ 	a.join

Produces:
	​ 	abc

Thread: Instance methods
[]
	thr[symbol] → obj or ​nil​

	 Attribute Reference—Returns the value of
	 a fiber-local«2.0» variable, using either a
	 symbol or a string name. If the specified variable does not
	 exist, returns ​nil​. Every thread has an
	 implicit root fiber, so this method is always available. See
	 also Thread#thread_variable_get.
	
	​ 	a = Thread.new { Thread.current[​"name"​] = ​"A"​; Thread.stop }

	​ 	b = Thread.new { Thread.current[:name] = ​"B"​; Thread.stop }

	​ 	c = Thread.new { Thread.current[​"name"​] = ​"C"​; Thread.stop }

	​ 	sleep 0.01 ​# let them all run​

	​ 	Thread.list.each {|x| puts ​"​#{x.inspect}​: ​#{x[:name]}​"​ }

Produces:
	​ 	#<Thread:0x007fd5fc0c0ce0 run>:

	​ 	#<Thread:0x007fd5fc10eda0 sleep>: A

	​ 	#<Thread:0x007fd5fc10ebc0 sleep>: B

	​ 	#<Thread:0x007fd5fc02b898 sleep>: C

[]=
	thr[symbol] = obj → obj

	 Attribute Assignment—Sets or creates the value of a fiber-local
	 variable, using either a symbol or a string. See
	 also Thread#thread_variable_set.
	

abort_on_exception
	thr.abort_on_exception → ​true​ or ​false​

	 Returns the status of the thread-local ​abort on exception​
	 condition for thr. The default is ​false​.
	 See also Thread.abort_on_exception=.
	

abort_on_exception=
	thr.abort_on_exception= ​true​ or
	​false​ → ​true​ or ​false​

	 When set to ​true​, causes all threads
	 (including the main program) to abort if an exception is
	 raised in thr. The process will effectively
	 ​exit(0)​.
	

add_trace_func
	thr.add_trace_func(proc)
	 → proc
	thr.add_trace_func(​nil​)
	 → ​nil​

	 Adds a trace function to thr (see Thread#set_trace_func).
 (This method has been replaced by the
 ​TracePoint​ class in Ruby 2.0.)«2.0»
	

alive?
	thr.alive?
	 → ​true​ or ​false​

	 Returns ​true​ if thr is
	 running or sleeping.
	
	​ 	thr = Thread.new { }

	​ 	thr.join ​# => #<Thread:0x007fd26312c248 dead>​

	​ 	Thread.current.alive? ​# => true​

	​ 	thr.alive? ​# => false​

backtrace
	thr.backtrace → array

	Returns the backtrace of thr.
	
	​ 	thr = Thread.new ​do​

	​ 	 print ​"starting\n"​

	​ 	 ​def​ sleeper(n)

	​ 	 print ​"sleeping\n"​

	​ 	 sleep n

	​ 	 ​end​

	​ 	 sleeper(10)

	​ 	​end​

	​ 	p thr.status

	​ 	p thr.backtrace

	​ 	Thread.pass

	​ 	p thr.status

	​ 	p thr.backtrace

Produces:
	​ 	"run"

	​ 	starting

	​ 	sleeping

	​ 	["prog.rb:5:in `sleep'", "/tmp/prog.rb:5:in `sleeper'", "/tmp/prog.rb:7:in `block

	​ 	in <main>'"]

	​ 	"sleep"

	​ 	["prog.rb:5:in `sleep'", "/tmp/prog.rb:5:in `sleeper'", "/tmp/prog.rb:7:in `block

	​ 	in <main>'"]

backtrace_locations
	thr.backtrace → array

	 Analog of the global ​caller_locations​ method.«2.0»
	
	​ 	thr = Thread.new ​do​

	​ 	 print ​"starting\n"​

	​ 	 ​def​ sleeper(n)

	​ 	 print ​"sleeping\n"​

	​ 	 sleep n

	​ 	 ​end​

	​ 	 sleeper(10)

	​ 	​end​

	​ 	p thr.backtrace_locations

Produces:
	​ 	[]

	​ 	starting

	​ 	sleeping

exit
	thr.exit → thr or ​nil​

	 Terminates thr and schedules another thread to be run. If
	 this thread is already marked to be killed,
 ​exit​

	 returns the ​Thread​. If this is the main thread, or the last
	 thread, exits the process.
	

group
	thr.group → thread_group

	 Returns the
	 ​ThreadGroup​
	 owning thr, or ​nil​.
	
	​ 	thread = Thread.new { sleep 99 }

	​ 	Thread.current.group.list ​# => [#<Thread:0x007f836a0c0ce8 run>,​

	​ 	 ​# .. #<Thread:0x007f836a83f820 run>]​

	​ 	new_group = ThreadGroup.new

	​ 	thread.group.list ​# => [#<Thread:0x007f836a0c0ce8 run>,​

	​ 	 ​# .. #<Thread:0x007f836a83f820 run>]​

	​ 	new_group.add(thread)

	​ 	thread.group.list ​# => [#<Thread:0x007f836a83f820 run>]​

	​ 	Thread.current.group.list ​# => [#<Thread:0x007f836a0c0ce8 run>]​

join
	thr.join → thr
	thr.join(limit) → thr

	 The calling thread will suspend execution and run thr. Does
	 not return until thr exits or until limit seconds have
	 passed. If the time limit expires, ​nil​ will be returned;
	 otherwise, thr is returned.
	

	 Any threads not joined will be killed when the main program
	 exits. If thr had previously raised an exception
	 and the
 ​abort_on_exception​
 and
	 ​$DEBUG​
	 flags are not set (so the exception has not yet been
	 processed), it will be processed at this time.
	

 You cannot join to the current or main thread.«2.0»

	​ 	a = Thread.new { print ​"a"​; sleep(10); print ​"b"​; print ​"c"​ }

	​ 	x = Thread.new { print ​"x"​; Thread.pass; print ​"y"​; print ​"z"​ }

	​ 	x.join ​# Let x thread finish, a will be killed on exit.​

Produces:
	​ 	axyz

	 The following example illustrates the limit parameter:
	
	​ 	y = Thread.new { loop { sleep 0.1; print ​"tick...\n"​ }}

	​ 	y.join(0.25)

	​ 	puts ​"Gave up waiting..."​

Produces:
	​ 	tick...

	​ 	tick...

	​ 	Gave up waiting...

keys
	thr.keys → array

	 Returns an array of the names of the fiber-local«2.0» variables
	 (as symbols).
	
	​ 	 thr = Thread.new ​do​

	​ 	 Thread.current[:cat] = ​'meow'​

	​ 	 Thread.current[​"dog"​] = ​'woof'​

	​ 	​end​

	​ 	thr.join ​# => #<Thread:0x007feeb312c0d8 dead>​

	​ 	thr.keys ​# => [:cat, :dog]​

key?
	thr.key?(symbol) → ​true​ or ​false​

	 Returns ​true​ if the given string (or symbol) exists as a
	 thread-local variable.
	
	​ 	me = Thread.current

	​ 	me[:oliver] = ​"a"​

	​ 	me.key?(:oliver) ​# => true​

	​ 	me.key?(:stanley) ​# => false​

kill
	thr.kill

	 Synonym for Thread#exit.
	

priority
	thr.priority → int

	 Returns the priority of thr. The default is zero;
	 higher-priority threads will run before lower-priority threads.
	
	​ 	Thread.current.priority ​# => 0​

priority=
	thr.priority= int → thr

	 Sets the priority of thr to integer. Higher-priority
	 threads will run before lower-priority threads. If you find
	 yourself messing with thread priorities to get things to work,
	 you’re doing something wrong.
	
	​ 	count_high = count_low = 0

	​ 	Thread.new ​do​

	​ 	 Thread.current.priority = 1

	​ 	 loop { count_high += 1 }

	​ 	​end​

	​ 	Thread.new ​do​

	​ 	 Thread.current.priority = -1

	​ 	 loop { count_low += 1 }

	​ 	​end​

	​ 	

	​ 	sleep 0.1

	​ 	count_high ​# => 3651144​

	​ 	count_low ​# => 1829723​

raise
	thr.raise
	thr.raise(message)
	thr.raise(exception <, message array>)

	 Raises an exception (see Object#raise for details) from
	 thr. The caller does not have to be
	 thr.
	
	​ 	Thread.abort_on_exception = true

	​ 	a = Thread.new { sleep(200) }

	​ 	a.raise(​"Gotcha"​)

	​ 	a.join

Produces:
	​ 	 from prog.rb:2:in `block in <main>'

	​ 	prog.rb:2:in `sleep': Gotcha (RuntimeError)

run
	thr.run → thr

	 Wakes up thr, making it eligible for scheduling. If not
	 in a critical section, then invokes the scheduler.
	

safe_level
	thr.safe_level
	 → int

	 Returns the safe level in effect for thr. Setting
	 thread-local safe levels can help when implementing
	 sandboxes that run insecure code.
	
	​ 	thr = Thread.new { $SAFE = 3; sleep }

	​ 	Thread.current.safe_level ​# => 0​

	​ 	thr.safe_level ​# => 0​

set_trace_func
	thr.set_trace_func(proc)
	 → proc
	thr.set_trace_func(​nil​)
	 → ​nil​

	 Analog to the global
	
 ​set_trace_func​
 method, but for a particular
	 thread.
	

status
	thr.status
	 → string, ​false​ or
	 ​nil​

	 Returns the status of thr: ​sleep​ if
	 thr is sleeping or waiting on I/O, ​run​
	 if thr is executing, ​aborting​ if
	 thr will raise an exception when joined,
	 ​false​ if thr terminated
	 normally, and ​nil​ if thr
	 terminated with an exception.
	
	​ 	a = Thread.new { raise(​"die now"​) }

	​ 	b = Thread.new { Thread.stop }

	​ 	c = Thread.new { Thread.exit }

	​ 	c.join ​# => #<Thread:0x007fc28082b6e0 dead>​

	​ 	sleep 0.1 ​# => 0​

	​ 	a.status ​# => nil​

	​ 	b.status ​# => "sleep"​

	​ 	c.status ​# => false​

	​ 	Thread.current.status ​# => "run"​

stop?
	thr.stop? → ​true​ or ​false​

	 Returns ​true​ if thr is dead or sleeping.
	
	​ 	a = Thread.new { Thread.stop }

	​ 	b = Thread.current

	​ 	Thread.pass

	​ 	a.stop? ​# => false​

	​ 	b.stop? ​# => false​

terminate
	thr.terminate

	 Synonym for Thread#exit.
	

thread_variable?
	thr.thread_variable?(name) → true or false

 Determines if there is a thread-local (as opposed to fiber
 local) variable with the given name.«2.0»
	

thread_variables
	thr.thread_variables → array

 Returns the names of current thread local variables.«2.0»
	
	​ 	thr = Thread.current

	​ 	thr.thread_variables ​# => []​

	​ 	thr.thread_variable_set(:option, ​"X12"​) ​# => "X12"​

	​ 	thr.thread_variable_set(:speed, 123) ​# => 123​

	​ 	thr[:fiber_not_thread] = :other

	​ 	thr.thread_variables ​# => [:option, :speed]​

	​ 	

	​ 	​# fiber variables are in a different bucket​

	​ 	thr.keys ​# => [:__recursive_key__,​

	​ 	 ​# .. :fiber_not_thread]​

thread_variable_get
	thr.thread_variable_get(name) → obj or nil

 Return the value of the thread-local variable with the given name.«2.0»
	

thread_variable_set
	thr.thread_variable_get(name, val)
 → val

 Set the value of the thread-local variable with the
 given name to the given value.«2.0»
	

value
	thr.value → obj

	 Waits for thr to complete (via Thread#join) and
	 returns its value.
 Because ​value​ uses ​join​, you cannot get the value of
 the current or main thread.«2.0»

	​ 	a = Thread.new { 2 + 2 }

	​ 	a.value ​# => 4​

wakeup
	thr.wakeup → thr

	 Marks thr as eligible for scheduling (it may still remain
	 blocked on I/O, however). Does not invoke the scheduler (see
	 Thread#run).
	

Class ThreadGroup < Object

 A ​ThreadGroup​ keeps track of a number of
 threads. A ​Thread​ can belong to only one
 ​ThreadGroup​ at a time; adding a thread to a group will
 remove it from its current group.
 Newly created threads belong to the group of the thread
 that created them.

 Constants

	Default
	Default thread group.

ThreadGroup: Class methods
new
	ThreadGroup.new → thgrp

	Returns a newly created ​ThreadGroup​. The group is initially
	empty.

ThreadGroup: Instance methods
add
	thgrp.add(thread) → thgrp

	 Adds the given thread to this group, removing it from any other
	 group.
	
	​ 	puts ​"Default group is ​#{ThreadGroup::Default.list}​"​

	​ 	tg = ThreadGroup.new

	​ 	t1 = Thread.new { sleep }

	​ 	t2 = Thread.new { sleep }

	​ 	puts ​"t1 is ​#{t1}​, t2 is ​#{t2}​"​

	​ 	tg.add(t1)

	​ 	puts ​"Default group now ​#{ThreadGroup::Default.list}​"​

	​ 	puts ​"tg group now ​#{tg.list}​"​

Produces:
	​ 	Default group is [#<Thread:0x007fee488c0cd8 run>]

	​ 	t1 is #<Thread:0x007fee4890f1d0>, t2 is #<Thread:0x007fee4890eff0>

	​ 	Default group now [#<Thread:0x007fee488c0cd8 run>, #<Thread:0x007fee4890eff0

	​ 	sleep>]

	​ 	tg group now [#<Thread:0x007fee4890f1d0 sleep>]

enclose
	thgrp.enclose → thgrp

	 Prevents threads being added to and removed from thgrp. New
	 threads may still be started.
	
	​ 	thread = Thread.new { sleep 99 }

	​ 	group = ThreadGroup.new

	​ 	group.add(thread)

	​ 	group.enclose

	​ 	ThreadGroup::Default.add(thread) ​# This will raise an exception​

Produces:
	​ 	 from prog.rb:5:in `<main>'

	​ 	prog.rb:5:in `add': can't move from the enclosed thread group (ThreadError)

enclosed?
	thgrp.enclose → ​true​ or ​false​

	 Returns ​true​ if this thread group has been enclosed.
	

list
	thgrp.list → array

	 Returns an array of all existing ​Thread​ objects that belong
	 to this group.
	
	​ 	ThreadGroup::Default.list ​# => [#<Thread:0x007f82e98c0cd0 run>]​

Class Time < Object

 ​Time​ is an abstraction of dates and times. Time is
 stored internally as the number of seconds and microseconds since
 the
 ​ epoch​

 , January 1, 1970 00:00 UTC. On some
 operating systems, this offset is allowed to be negative. Also see
 the ​Date​
 library module.The
 ​Time​ class treats Greenwich mean time (GMT) and
 Coordinated Universal Time (UTC)[123] as equivalent. GMT is the older way of
 referring to these baseline times but persists in the names of
 calls on POSIX systems.

 All times are stored with some number of microseconds, so
 times that are
 apparently equal when displayed may be different when compared.

 As of Ruby 1.9.2, the range of dates that can be
 represented is no longer limited by the underlying operating
 system’s time representation (so there’s no year 2038 problem). As
 a result, the year passed to the methods

 ​gm​
 ,
 ​local​
 ,

 ​new​
 ,
 ​mktime​
 , and

 ​utc​
 must now include the century—a year
 of 90 now represents 90 and not 1990.

 Mixes in

	Comparable
	
<, <=, ==, >, >=, between?

Time: Class methods
at
	Time.at(time) → time
	Time.at(seconds <, microseconds>)
	 → time

	 Creates a new ​Time​ object with the value given by time or
	 the given number of seconds (and optional
	 microseconds) from epoch. Microseconds may be a
	 float—this allows setting times with nanosecond granularity on
	 systems that support it. A nonportable feature allows the offset
	 to be negative on some systems.
	
	​ 	Time.at(0) ​# => 1969-12-31 18:00:00 -0600​

	​ 	Time.at(946702800) ​# => 1999-12-31 23:00:00 -0600​

	​ 	Time.at(-284061600) ​# => 1960-12-31 00:00:00 -0600​

	​ 	t = Time.at(946702800, 123.456)

	​ 	t.usec ​# => 123​

	​ 	t.nsec ​# => 123456​

gm
	Time.gm(year <, month day hour
	min sec usec>)
	 → time
	Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz)
	 → time

	 Creates a time based on given values, interpreted as UTC. The
	 year must be specified. Other values default to the minimum value
	 for that field (and may be ​nil​ or omitted). Months may be
	 specified by numbers from 1 to 12 or by the three-letter English month
	 names. Hours are specified on a 24-hour clock (0..23). Raises an
	 ​ArgumentError​ if any values are out of range. Will also
	 accept ten arguments in the order output by Time#to_a.
	
	​ 	Time.gm(2000,​"jan"​,1,20,15,1) ​# => 2000-01-01 20:15:01 UTC​

local
	Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz)
	 → time
	Time.local(year <, month day
	hour min sec
	usec>) → time

	 Same as Time.gm but interprets the values
	 in the local time zone. The first form accepts ten
	 arguments in the order output by Time#to_a.
	
	​ 	Time.local(2000,​"jan"​,1,20,15,1) ​# => 2000-01-01 20:15:01 -0600​

mktime
	Time.mktime(year <, month day hour
	min sec usec>)
	 → time
	Time.mktime(sec, min, hour, day, month, year, wday, yday, isdst, tz)
	 → time

	 Synonym for Time.local.
	

new
	Time.new → time
	Time.new(year <, month day hour
	min sec utc_offset>)

	 The first form returns a ​Time​ object
	 initialized to the current system time. The object created
	 will be created using the resolution available on your
	 system clock and so may include fractional seconds.
	
	​ 	a = Time.new ​# => 2013-05-27 12:33:12 -0500​

	​ 	b = Time.new ​# => 2013-05-27 12:33:12 -0500​

	​ 	a == b ​# => false​

	​ 	​"%.6f"​ % a.to_f ​# => "1369675992.686567"​

	​ 	​"%.6f"​ % b.to_f ​# => "1369675992.686600"​

	 The second form creates a ​Time​ object for the given
	 date and time. The optional utc_offset may be a
	 number representing seconds or a string such as
	 "+06:00".
	
	​ 	Time.new(2010, 12, 25, 8, 0, 0, ​"-06:00"​) ​# => 2010-12-25 08:00:00 -0600​

now
	Time.now → time

	 Synonym for Time.new.
	

utc
	Time.utc(year <, month day hour min
	sec usec>) → time
	Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz)
	 → time

	 Synonym for Time.gm.
	
	​ 	Time.utc(2000,​"jan"​,1,20,15,1) ​# => 2000-01-01 20:15:01 UTC​

Time: Instance methods
+
	time + numeric → time

	 Addition—Adds some number of seconds (possibly fractional) to time
	 and returns that value as a new time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:12 -0500​

	​ 	t + (60 * 60 * 24) ​# => 2013-05-28 12:33:12 -0500​

-
	time - time → float
	time - numeric → time

	 Difference—Returns a new time that represents the difference between two
	 times or subtracts the given number of seconds in
	 numeric from time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:12 -0500​

	​ 	t2 = t + 2592000 ​# => 2013-06-26 12:33:12 -0500​

	​ 	t2 - t ​# => 2592000.0​

	​ 	t2 - 2592000 ​# => 2013-05-27 12:33:12 -0500​

<=>
	time <=> other_time → -1, 0, +1
	time <=> other → ​nil​}

	 Comparison—Compares time with other_time or with
	 numeric, which is the number of seconds (possibly
	 fractional) since epoch. As of Ruby 1.9, ​nil​ is returned
	 for comparison against anything other than a ​Time​ object.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:13 -0500​

	​ 	t2 = t + 2592000 ​# => 2013-06-26 12:33:13 -0500​

	​ 	t <=> t2 ​# => -1​

	​ 	t2 <=> t ​# => 1​

	​ 	t <=> t ​# => 0​

​day-name​?
	time.monday? → ​true​ or ​false​
	time.tuesday? → ​true​ or ​false​
	time.wednesday? → ​true​ or ​false​
	time.thursday? → ​true​ or ​false​
	time.friday? → ​true​ or ​false​
	time.saturday? → ​true​ or ​false​
	time.sunday? → ​true​ or ​false​

	 Returns ​true​ if the time is on the given day.
	

asctime
	time.asctime → string

	 Returns a canonical string representation of time.
	
	​ 	Time.now.asctime ​# => "Mon May 27 12:33:13 2013"​

ctime
	time.ctime → string

	 Synonym for Time#asctime.
	

day
	time.day → int

	 Returns the day of the month (1..n) for time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:13 -0500​

	​ 	t.day ​# => 27​

dst?
	time.dst? → ​true​ or ​false​

	 Synonym for Time#isdst.
	
	​ 	Time.local(2000, 7, 1).dst? ​# => true​

	​ 	Time.local(2000, 1, 1).dst? ​# => false​

getgm
	time.getgm → time

	 Returns a new ​Time​ object representing time in UTC.
	
	​ 	t = Time.local(2000,1,1,20,15,1) ​# => 2000-01-01 20:15:01 -0600​

	​ 	t.gmt? ​# => false​

	​ 	y = t.getgm ​# => 2000-01-02 02:15:01 UTC​

	​ 	y.gmt? ​# => true​

	​ 	t == y ​# => true​

getlocal
	time.getlocal → time
	time.getlocal(utc_offset) → time

	 Returns a new ​Time​ object
	 representing time in local time (using the local
	 time zone in effect for this process) or with the
	 given offset from UTC.
	
	​ 	t = Time.gm(2000,1,1,20,15,1) ​# => 2000-01-01 20:15:01 UTC​

	​ 	t.gmt? ​# => true​

	​ 	l = t.getlocal ​# => 2000-01-01 14:15:01 -0600​

	​ 	l.gmt? ​# => false​

	​ 	t == l ​# => true​

	​ 	t.getlocal(​"-06:00"​) ​# => 2000-01-01 14:15:01 -0600​

	​ 	t.getlocal(-21600) ​# => 2000-01-01 14:15:01 -0600​

getutc
	time.getutc → time

	 Synonym for Time#getgm.
	

gmt?
	time.gmt? → ​true​ or ​false​

	 Returns ​true​ if time represents a time in UTC.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:13 -0500​

	​ 	t.gmt? ​# => false​

	​ 	t = Time.gm(2000,1,1,20,15,1) ​# => 2000-01-01 20:15:01 UTC​

	​ 	t.gmt? ​# => true​

gmtime
	time.gmtime → time

	 Converts time to UTC, modifying the receiver.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:13 -0500​

	​ 	t.gmt? ​# => false​

	​ 	t.gmtime ​# => 2013-05-27 17:33:13 UTC​

	​ 	t.gmt? ​# => true​

gmt_offset
	time.gmt_offset → int

	 Returns the offset in seconds between the time zone of time
	 and UTC.
	
	​ 	t = Time.gm(2000,1,1,20,15,1) ​# => 2000-01-01 20:15:01 UTC​

	​ 	t.gmt_offset ​# => 0​

	​ 	l = t.getlocal ​# => 2000-01-01 14:15:01 -0600​

	​ 	l.gmt_offset ​# => -21600​

gmtoff
	time.gmtoff → int

	 Synonym for Time#gmt_offset.
	

hour
	time.hour → int

	 Returns the hour of the day (0..23) for time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:13 -0500​

	​ 	t.hour ​# => 12​

isdst
	time.isdst → ​true​ or ​false​

	 Returns ​true​ if time occurs during daylight saving
	 time in its time zone.
	
	​ 	Time.local(2000, 7, 1).isdst ​# => true​

	​ 	Time.local(2000, 1, 1).isdst ​# => false​

localtime
	time.localtime → time
	time.localtime(utc_offset) → time

	 Converts time to local time (using the local time
	 zone in effect for this process or the given
	 offset from UTC), modifying the receiver.
	
	​ 	t = Time.gm(2000, ​"jan"​, 1, 20, 15, 1)

	​ 	t.gmt? ​# => true​

	​ 	t.localtime ​# => 2000-01-01 14:15:01 -0600​

	​ 	t.gmt? ​# => false​

	​ 	t = Time.gm(2000, ​"jan"​, 1, 20, 15, 1)

	​ 	t.localtime(7200) ​# => 2000-01-01 22:15:01 +0200​

mday
	time.mday → int

	 Synonym for Time#day.
	

min
	time.min → int

	 Returns the minute of the hour (0..59) for time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:13 -0500​

	​ 	t.min ​# => 33​

mon
	time.mon → int

	 Returns the month of the year (1..12) for time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:14 -0500​

	​ 	t.mon ​# => 5​

month
	time.month → int

	 Synonym for Time#mon.
	

nsec
	time.nsec
	 → int

	 Returns just the number of nanoseconds for
	 time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:14 -0500​

	​ 	​"%10.6f"​ % t.to_f ​# => "1369675994.128473"​

	​ 	t.nsec ​# => 128473000​

	​ 	t.usec ​# => 128473​

round
	time.round(digits=0)
	 → new_time

	 Returns a new time with the fractional seconds
	 rounded to the specified number of decimal digits. (This may
	 affect the rest of the time fields if the rounding causes
	 the number of seconds to increment.)
	
	​ 	require ​'time'​

	​ 	t = Time.utc(2010, 10, 11, 12, 13, 59.75)

	​ 	

	​ 	t.iso8601(3) ​# => "2010-10-11T12:13:59.750Z"​

	​ 	t.round(2).iso8601(3) ​# => "2010-10-11T12:13:59.750Z"​

	​ 	t.round(1).iso8601(3) ​# => "2010-10-11T12:13:59.800Z"​

	​ 	t.round.iso8601(3) ​# => "2010-10-11T12:14:00.000Z"​

sec
	time.sec → int

	 Returns the second of the minute (0..60)[124] for time.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:14 -0500​

	​ 	t.sec ​# => 14​

strftime
	time.strftime(format) → string

	 Formats time according to the directives in the given format
	 string. Directives look like:
	
% <flags> <width> conversion

	 The optional flags may be one or more of:
	
	
​-​
	
Don’t pad numbers with spaces

	
​_​
	
Pad numbers with spaces

	
​0​
	
Pad numbers with zeroes

	
​^​
	
Convert field to uppercase

	
​#​
	
Reverse the case of the field

	
​:​
	

	 Use colons for the %z conversion. One colon in
	 the flag puts a colon between hours and minutes. Two
	 colons in the flag adds a seconds field.
	

	 The width specifies the minimum result width for the field.
	

	 The available conversions are:
	

Table 25. ​Time#strftime​ directives
	Format	Meaning
	
%%
	
Literal %

	
%a
	
The abbreviated weekday name (“Sun”)

	
%A
	
The full weekday name (“Sunday”)

	
%b
	
The abbreviated month name (“Jan”)

	
%B
	
The full month name (“January”)

	
%c
	
The preferred local date and time representation

	
%C
	
The two digit century (currently 20)

	
%d
	
Day of the month (01..31)

	
%D
	
Date (%m/%d/%y)

	
%e
	
Day of the month, blank padded (␣1..31)

	
%F
	
ISO8601 date (%Y-%m-%d)

	
%g
	
Last 2 digits of ISO8601 week-based year

	
%G
	
ISO8601 week-based year

	
%h
	
The abbreviated month name (“Jan”)

	
%H
	
Hour of the day, 24-hour clock (00..23)

	
%I
	
Hour of the day, 12-hour clock (01..12)

	
%j
	
Day of the year (001..366)

	
%k
	
Hour of the day, 24-hour clock, blank padded (␣0..23)

	
%l
	
Hour of the day, 12-hour clock, blank padded (␣1..12)

	
%L
	
Milliseconds of the second

	
%m
	
Month of the year (01..12)

	
%M
	
Minute of the hour (00..59)

	
%n
	
Newline

	
%N
	
Fractional seconds

	
%p
	
Meridian indicator (“AM” or “PM”)

	
%P
	
Meridian indicator (“am” or “pm”)

	
%r
	
12 hour time (%I:%M:%S %p)

	
%R
	
24 hour time (%H:%M)

	
%s
	
Number of seconds since 1970-01-01 00:00:00 UTC

	
%S
	
Second of the minute (00..60)

	
%t
	
Tab

	
%T
	
24 hour time (%H:%M:%S)

	
%u
	
Day of the week (Monday is 1, 1..7)

	
%U
	
Week number of the current year,	starting with the first Sunday as the first	day of the first week (00..53)

	
%w
	
Day of the week (Sunday is 0, 0..6)

	
%v
	
VMS date (%e-%^b-%4Y)

	
%V
	
ISO8601 week number (01..53)

	
%W
	
Week number of the current year,	starting with the first Monday as the first	day of the first week (00..53)

	
%x
	
Preferred representation for the date alone, no time

	
%X
	
Preferred representation for the time alone, no date

	
%y
	
Year without a century (00..99)

	
%Y
	
Year with century

	
%z
	
Time zone offset (+/-hhmm). Use %:z or %::z to format with colons

	
%Z
	
Time zone name

	
%%
	
Literal % character

	 Any text not listed as a directive will be passed through to the
	 output string.
	
	​ 	t = Time.now

	​ 	t.strftime(​"Printed on %m/%d/%Y"​) ​# => "Printed on 05/27/2013"​

	​ 	t.strftime(​"at %I:%M%P"​) ​# => "at 12:33pm"​

	​ 	​# force the am/pm flag to upper case​

	​ 	t.strftime(​"at %I:%M%^P"​) ​# => "at 12:33PM"​

subsec
	time.subsec → tational

	 Return just the fractional number of seconds in
	 time as a rational. (Compare with Time#usec, which returns an
	 integer.)
	
	​ 	t = Time.now

	​ 	t.usec ​# => 436218​

	​ 	t.subsec ​# => (218109/500000)​

succ
	time.succ → later_time

	 Deprecated. Use ​time + 1​.
	

to_a
	time.to_a → array

	 Returns a ten-element array
	 of values for time: {​[sec, min, hour, day, month,
	 year, wday, yday, isdst, zone]​}. See the individual
	 methods for an explanation of the valid ranges of each value.
	 The ten elements can be passed directly to the methods
	 Time.utc or
	 Time.local to create a new ​Time​.
	
	​ 	Time.now.to_a ​# => [14, 33, 12, 27, 5, 2013, 1, 147, true, "CDT"]​

to_f
	time.to_f
	 → float

	 Returns the value of time as a floating-point
	 number of seconds since epoch. Consider using Time#to_r if accuracy is required.
	
	​ 	Time.now.to_f ​# => 1369675994.585341​

to_i
	time.to_i → int

	 Returns the value of time as an integer number of
	 seconds since epoch.
	
	​ 	Time.now.to_i ​# => 1369675994​

to_r
	time.to_r
	 → rational

	 Returns a rational number containing time as a
	 number of seconds since epoch (including fractional
	 seconds).
	
	​ 	Time.now.to_r ​# => (54787039789213/40000)​

to_s
	time.to_s → string

	 Returns a string representing time. Equivalent to calling
	 Time#strftime with a format string of
	 ​"%Y-%m-%d %H:%M:%S %z"​ (with UTC replacing the time zone for a UTC time).
	
	​ 	Time.now.to_s ​# => "2013-05-27 12:33:14 -0500"​

	​ 	Time.utc(2011, 12, 25, 1, 2, 3).to_s ​# => "2011-12-25 01:02:03 UTC"​

tv_nsec
	time.tv_nsec → int

	 Synonym for Time#nsec.
	

tv_sec
	time.tv_sec → int

	 Synonym for Time#to_i.
	

tv_usec
	time.tv_usec
	 → int

	 Synonym for Time#usec.
	

usec
	time.usec
	 → int

	 Returns just the number of microseconds for time.
	 (Compare with Time#subsec, which returns
	 a rational.)
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:14 -0500​

	​ 	​"%10.6f"​ % t.to_f ​# => "1369675994.878664"​

	​ 	t.nsec ​# => 878664000​

	​ 	t.usec ​# => 878664​

utc
	time.utc → time

	 Synonym for Time#gmtime.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:14 -0500​

	​ 	t.utc? ​# => false​

	​ 	t.utc ​# => 2013-05-27 17:33:14 UTC​

	​ 	t.utc? ​# => true​

utc?
	time.utc? → ​true​ or ​false​

	 Returns ​true​ if time represents a time in UTC.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:15 -0500​

	​ 	t.utc? ​# => false​

	​ 	t = Time.gm(2000,​"jan"​,1,20,15,1) ​# => 2000-01-01 20:15:01 UTC​

	​ 	t.utc? ​# => true​

utc_offset
	time.utc_offset → int

	 Synonym for Time#gmt_offset.
	

wday
	time.wday → int

	 Returns an integer representing the day of the week, 0..6,
	 with Sunday == 0.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:15 -0500​

	​ 	t.wday ​# => 1​

yday
	time.yday → int

	 Returns an integer representing the day of the year, 1..366.
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:15 -0500​

	​ 	t.yday ​# => 147​

year
	time.year → int

	 Returns the year for time (including the century).
	
	​ 	t = Time.now ​# => 2013-05-27 12:33:15 -0500​

	​ 	t.year ​# => 2013​

zone
	time.zone → string

	 Returns the name of the time zone used for time.
	
	​ 	t = Time.gm(2000, ​"jan"​, 1, 20, 15, 1)

	​ 	t.zone ​# => "UTC"​

	​ 	t = Time.local(2000, ​"jan"​, 1, 20, 15, 1)

	​ 	t.zone ​# => "CST"​

Class TracePoint < Object

 Using tracepoints you can trace the execution of certain
 events in your running program. The ​TracePoint​
 class obsoletes the prior
 ​set_trace_func​
 method.«2.0»

 When you create a trace point object, you give it the names of one
 or more events that you want to monitor. You also pass it a
 block. Whenever a monitored event fires, the block is invoked,
 passing in the trace point object, which now contains a
 description of that particular event event. Trace point objects are
 initially disabled—you need to enable them before they start
 firing.

	​ 	tp = TracePoint.new(:line, :call, :return) ​do​ |tp|

	​ 	 p tp

	​ 	​end​

	​ 	

	​ 	tp.enable

	​ 	

	​ 	​def​ add(a,b)

	​ 	 a + b

	​ 	​end​

	​ 	

	​ 	p add(1,2)

	​ 	

	​ 	tp.disable

Produces:
	​ 	#<TracePoint:line@prog.rb:7>

	​ 	#<TracePoint:line@prog.rb:11>

	​ 	#<TracePoint:call `add'@prog.rb:7>

	​ 	#<TracePoint:line@prog.rb:8 in `add'>

	​ 	#<TracePoint:return `add'@prog.rb:9>

	​ 	3

	​ 	#<TracePoint:line@prog.rb:13>

 The events you can capture are:

	
​:b_call​
	block entry
	
​:b_return​
	block exit
	
​:c_call​
	call a C-language routine
	
​:c_return​
	return from a C-language routine
	
​:call​
	call a Ruby method
	
​:class​
	start class/module definition
	
​:end​
	end a class/module definition
	
​:line​
	execute a ne source code line
	
​:raise​
	raise an exception
	
​:return​
	return from a Ruby method
	
​:thread_begin​
	start a thread
	
​:thread_end​
	end a thread

TracePoint: Class methods
new
	​TracePoint.new​(
 <event_names>*) { |tp| … } → tp

 Creates a new tracer for the given event names (or all
 events if no list is given). The returned object is both
 used to enable and disable this tracer and as the object
 thatis passed to the block when the events trigger. See the
 sample code at the start of this section to see this in
 action, and the table that follows it for a list of event
 names.

trace
	​TracePoint.trace​(
 <event_names>*) { |tp| … } → tp

 Sets up a trace point handler an immediately enables it.

	​ 	tp = TracePoint.trace ​do​ |tp|

	​ 	 p tp

	​ 	​end​

	​ 	a = 1

	​ 	b = 2

	​ 	tp.disable

Produces:
	​ 	#<TracePoint:c_return `trace'@prog.rb:1>

	​ 	#<TracePoint:line@prog.rb:4>

	​ 	#<TracePoint:line@prog.rb:5>

	​ 	#<TracePoint:line@prog.rb:6>

	​ 	#<TracePoint:c_call `disable'@prog.rb:6>

TracePoint: Instance methods
binding
	tp.binding → binding_of_event

 The binding at the time of the event.

defined_class
	tp.defined_class → singleton class

 The class or module in which the event occurred.

disable
	tp.disable → ​true​ or ​false​

 Disable this tracer, returning true if the tracer was
 enabled at the time.

enable
	tp.enable → ​true​ or ​false​

 Enable this tracer, returning true if the tracer was already
 enabled.

enabled?
	tp.enabled? → ​true​ or ​false​

 Returns true if the tracer is enabled.

event
	tp.event → symbol

 Returns the name of the event. See the table at the start of
 this section.

lineno
	tp.lineno → fixnum

 The source line number where the event occurred.

method_id
	tp.method_id → symbol

 The name of the method in which the event occurred.

path
	tp.path → string

 The full path to the Ruby source file in which the event
 occurred.

raised_exception
	tp.raised_exception → Exception

 The exception raised for a ​:raise​ event.

return_value
	tp.return_value → obj

 The value returned by a ​:return​ event.

self
	tp.self → obj

 The value of self at the time the event occurred.

Class TrueClass < Object

 The global value ​true​ is the only instance of class
 ​TrueClass​ and represents a logically true value in boolean
 expressions. The class provides operators allowing ​true​
 to be used in logical expressions.

TrueClass: Instance methods
&
	​true​ & obj → ​true​ or ​false​

	And—Returns ​false​ if obj is ​nil​ or
	​false​ and returns ​true​ otherwise.

^
	​true​ ^ obj → ​true​ or ​false​

	Exclusive Or—Returns ​true​ if
	obj is ​nil​ or
	​false​ and returns
	​false​ otherwise.

|
	​true​ | obj → ​true​

	 Or—Returns ​true​. Because obj is an
	 argument to a method call, it is always evaluated;
	 short-circuit evaluation is not performed in this case.
	
	​ 	true | puts(​"or"​)

	​ 	true || puts(​"logical or"​)

Produces:
	​ 	or

Class UnboundMethod < Object

 Ruby supports two forms of objectified methods. Class
 ​Method​ is used
 to represent methods that are associated with a particular object:
 these method objects are bound to that object. Bound method
 objects for an object can be created using Object#method.

 Ruby also supports unbound methods, which are method objects that
 are not associated with a particular object. These can be created
 either by calling
 ​unbind​
 on a bound
 method object or by calling Module#instance_method.

 Unbound methods can be called only after they are bound to an
 object. That object must be a
 ​kind_of?​

 the method’s original class.

	​ 	​class​ Square

	​ 	 ​def​ area

	​ 	 @side * @side

	​ 	 ​end​

	​ 	 ​def​ initialize(side)

	​ 	 @side = side

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	area_unbound = Square.instance_method(:area)

	​ 	

	​ 	s = Square.new(12)

	​ 	area = area_unbound.bind(s)

	​ 	area.call ​# => 144​

 Unbound methods are a reference to the method at the time it was
 objectified: subsequent changes to the underlying class will not
 affect the unbound method.

	​ 	​class​ Test

	​ 	 ​def​ test

	​ 	 :original

	​ 	 ​end​

	​ 	​end​

	​ 	um = Test.instance_method(:test)

	​ 	​class​ Test

	​ 	 ​def​ test

	​ 	 :modified

	​ 	 ​end​

	​ 	​end​

	​ 	t = Test.new

	​ 	t.test ​# => :modified​

	​ 	um.bind(t).call ​# => :original​

UnboundMethod: Instance methods
arity
	umeth.arity → fixnum

	 See Method#arity.
	

bind
	umeth.bind(obj) → method

	 Bind umeth to obj. The class of
	 obj must be the same as or a descendent of the
	 class from which umeth was originally obtained.
	
	​Line 1 	​class​ A

	​- 	 ​def​ test

	​- 	 puts ​"In test, class = ​#{self.class}​"​

	​- 	 ​end​

	​5 	​end​

	​- 	​class​ B < A

	​- 	​end​

	​- 	​class​ C < B

	​- 	​end​

	​10 	

	​- 	um = B.instance_method(:test)

	​- 	bm = um.bind(C.new)

	​- 	bm.call

	​- 	bm = um.bind(B.new)

	​15 	bm.call

	​- 	bm = um.bind(A.new)

	​- 	bm.call

Produces:
	​ 	 from prog.rb:16:in `<main>'

	​ 	In test, class = C

	​ 	In test, class = B

	​ 	prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)

name
	umeth.name → string

	 Returns the name of the method umeth.
	
	​ 	um = String.instance_method(:upcase)

	​ 	um.name ​# => :upcase​

owner
	umeth.owner → module

	 Returns the class or module in which umeth is defined.
	
	​ 	um = String.instance_method(:upcase)

	​ 	um.owner ​# => String​

parameters
	umeth.parameters → array

	 Returns a description of the method’s parameter list. See
	 Method#parameters for details.
	

source_location
	umeth.source_location
	 → [filename, lineno] or ​nil​

	 Returns the source filename and line number where
	 umeth was defined or ​nil​ if
	 ​self​ was not defined in Ruby source. See Method#source_location for an example.
	

Footnotes

	[119]	

	 Or whatever the default shared library
	 extension is on the current platform
	

	[120]	
As of Ruby
	 1.9, this name is converted to an absolute path, so
	 ​require ’a’;require ’./a’​ will load ​a.rb​
	 once.

	[121]	
No other values are
	 accepted as of Ruby 1.9.

	[122]	
Except for a strange corner case. If
 regexp is a string or can be coerced into a string,
 a
 ​TypeError​
 exception is raised.

	[123]	
Yes, UTC really does
 stand for Coordinated Universal Time. There was a committee
 involved.

	[124]	
Yes,
	 seconds really can range from zero to 60. This allows the
	 system to inject leap seconds every now and then to correct for the fact time
	 measured by atomic clocks differs from time measured by a
	 spinning earth.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 28
Standard Library

 The Ruby interpreter comes with a large number of classes,
 modules, and methods built in—they are available as part of the
 running program. When you need a facility that isn’t part of the
 built-in repertoire, you’ll often find it in a library that you
 can
 ​require​
 into your program. Sometimes
 you’ll need to download one of these libraries (perhaps as a Ruby
 gem).

 However, Ruby also ships as standard with a large number of
 libraries. Some of these are written in pure Ruby and will be
 available on all Ruby platforms. Others are Ruby extensions, and
 some of these will be present only if your system supports the
 resources that they need. All can be included into your Ruby
 program using
 ​require​
 . And, unlike
 libraries you may find on the Internet, you can pretty much
 guarantee that all Ruby users will have these libraries already
 installed on their machines.

 Ruby 1.9 has more than 100 standard libraries included in the
 distribution. For each of these libraries, this section shows a one- or
 a two-page summary. For each library, we give some introductory notes
 and typically an example or two of use. You won’t find detailed
 method descriptions here; for that, consult the library’s own
 documentation.

 It’s all very well suggesting that you “consult the library’s own
 documentation,” but where can you find it? The answer is that it
 depends. Some libraries have already been documented using RDoc
 (see Chapter 19, ​Documenting Ruby​). That means you can use the
 ​ri​ command
 to get the documentation.

 If there’s no RDoc documentation available, the next place to look
 is the library. If you have a source distribution of Ruby,
 these library files are in the ​ext/​ and
 ​lib/​ subdirectories. If instead you have a
 binary-only installation, you can still find the source of
 pure-Ruby library modules (normally in the
 ​lib/ruby/1.9/​ directory under your Ruby
 installation). Often, library source directories contain
 documentation that the author has not yet converted to RDoc
 format.

 If you still can’t find documentation, turn to your search engine
 of choice. Many of the Ruby standard libraries are also hosted as
 external projects. The authors develop them stand-alone and then
 periodically integrate the code into the standard Ruby
 distribution. For example, if you want detailed information on the
 API for the YAML library, Try searching for ​yaml
 ruby​—you’ll probably end up at

 ​http://www.yaml.org/YAML_for_ruby.html​
 .

 The next port of call is the ​ruby-talk​ mailing list. Ask
 a (polite) question there, and chances are that you’ll get a
 knowledgeable response within hours. See the tips in Section 28.4, ​Mailing Lists​ for pointers on how to subscribe.

 And if you ​still​ can’t find documentation, you can always
 follow Obi Wan’s advice and do what we did when documenting Ruby—use
 the source. You’d be surprised at how easy it is to read the actual
 source of Ruby libraries and work out the details of usage.

 There are some libraries that we don’t document, either because
 they are pretty low level or because we cover them extensively
 elsewhere in the book. These libraries include:

	
debug—the Ruby debugger, covered in Section 14.1, ​Ruby Debugger​.

	

	iconv—has been removed from Ruby 2.0. Use String#encode.«2.0»

	

	mkmf—covered in the online guide to extending Ruby.

	

	objspace—extensions to the ​ObjectSpace​
	class designed to be used by the Ruby core team.

	

	psych—an interface to libyaml. You’ll probably just use the
	YAML library.

	

	racc—this is the runtime used by the Racc parser generator. If
	you need this library, you’ll also need the external Racc
	system.

	

	rake—see Section 15.6, ​The Rake Build Tool​.

	

	rdoc—see Chapter 19, ​Documenting Ruby​.

	

	rubygems—covered in Section 15.5, ​RubyGems Integration​ and in ​Using RubyGems​.

28.1 Library Changes in Ruby 1.9

 These are the library changes in Ruby 1.9:

	

	 Much of the Complex and Rational libraries are now built in
	 to the interpreter. However, requiring the external
	 libraries adds some functionally. In the case of Rational,
	 this functionality is minimal.
	

	

	 The CMath library has been added.
	

	

	 The Enumerator library is now built in.
	

	

	 The Fiber library has been added (it adds coroutine support to fibers).
	

	

	 The Fiddle library (an interface to libffi, which supports
	 calling functions in shared librries) is documented as a
	 replacement for DL.

	

	 ftools
	 has been removed (and replaced by fileutils).
	

	

	 The
	 Generator
	 library has been removed (use fibers).
	

	

	 Notes on using irb from inside
	 applications have been added.
	

	

	 jcode has
	 been removed in favor of built-in encoding support.
	

	

	 The json library has been added.
	

	

	 The matrix library no longer requires
	 that you include mathn.
	

	

	 The mutex
	 library is now built in.
	

	

	 parsedate
	 has been removed. The ​Date​ class
	 handles most of its functionality.
	

	

	 readbytes
	 has been removed. Class ​IO​ now supports the
	 method directly.
	

	

	 A description of Ripper has been added.
	

	

	 A description of SecureRandom has been added.
	

	

	 The
	 shell
	 library has been omitted, because it seems more like a curiosity than
	 something folks would use (and it’s broken under 1.9).
	

	

	 The soap
	 library has been removed.
	

	

	 I’ve omitted the
	 sync
	 library. It is broken under 1.9, and the
	 monitor library seems to be cleaner.
	

	

	 Win32API
	 is now deprecated in favor of using the DL
	 library.
	

Library Abbrev: Generate Sets of Unique Abbreviations

 Given a set of strings, calculates the set of unambiguous abbreviations
 for those strings and returns a hash where the keys are all the
 possible abbreviations and the values are the full strings. Thus,
 given input of “car” and “cone,” the keys pointing to “car”
 would be “ca” and “car,” and those pointing to “cone” would be
 “co,” “con,” and “cone.”

 An optional pattern or a string may be specified—only those input
 strings matching the pattern, or beginning with the string, are considered
 for inclusion in the output hash.

 Including the
 ​Abbrev​ library
 also adds an
 ​abbrev​
 method to class
 ​Array​.

	
 Shows the abbreviation set of some words:
	​ 	require ​'abbrev'​

	​ 	

	​ 	Abbrev::abbrev(​%w{ruby rune}​) ​# => {"ruby"=>"ruby", "rub"=>"ruby",​

	​ 	 ​# .. "rune"=>"rune", "run"=>"rune"}​

	
 A trivial command loop using abbreviations:
	​ 	require ​'abbrev'​

	​ 	

	​ 	COMMANDS = ​%w{ sample send start status stop }​.abbrev

	​ 	

	​ 	​while​ line = gets

	​ 	 line = line.chomp

	​ 	

	​ 	 ​case​ COMMANDS[line]

	​ 	 ​when​ ​"sample"​ ​then​ ​# ...​

	​ 	 ​when​ ​"send"​ ​then​ ​# ...​

	​ 	 ​# ...​

	​ 	 ​else​

	​ 	 STDERR.puts ​"Unknown command: ​#{line}​"​

	​ 	 ​end​

	​ 	​end​

Library Base64: Base64 Conversion Functions

 Performs encoding and decoding of binary data using a Base64
 representation. This allows you to represent any binary data in
 purely printable characters. The encoding is specified in RFC
 2045 and RFC 4648.[125]

	
 Encodes and decodes strings. Note the newlines inserted into the Base64 string.
	​ 	require ​'base64'​

	​ 	str = ​"Now is the time for all good coders\nto learn Ruby"​

	​ 	converted = Base64.encode64(str)

	​ 	puts converted

	​ 	puts Base64.decode64(converted)

Produces:
	​ 	Tm93IGlzIHRoZSB0aW1lIGZvciBhbGwgZ29vZCBjb2RlcnMKdG8gbGVhcm4g

	​ 	UnVieQ==

	​ 	Now is the time for all good coders

	​ 	to learn Ruby

	
 Now uses RFC 4648 variants:
	​ 	require ​'base64'​

	​ 	str = ​"Now is the time for all good coders\nto learn Ruby"​

	​ 	converted = Base64.strict_encode64(str)

	​ 	puts converted

	​ 	puts Base64.strict_decode64(converted)

Produces:
	​ 	Tm93IGlzIHRoZSB0aW1lIGZvciBhbGwgZ29vZCBjb2RlcnMKdG8gbGVhcm4gUnVieQ==

	​ 	Now is the time for all good coders

	​ 	to learn Ruby

Library Benchmark: Time Code Execution

 Allows code execution to be timed and the results tabulated. The
 ​Benchmark​
 module is easier to use if you include it in your top-level
 environment.

	Profile

	

 Compares the costs of four kinds of method dispatch:

	​ 	require ​'benchmark'​

	​ 	include Benchmark

	​ 	string = ​"Stormy Weather"​

	​ 	m = string.method(:length)

	​ 	bm(6) ​do​ |x|

	​ 	 x.report(​"direct"​) { 100_000.times { string.length } }

	​ 	 x.report(​"call"​) { 100_000.times { m.call } }

	​ 	 x.report(​"send"​) { 100_000.times { string.send(:length) } }

	​ 	 x.report(​"eval"​) { 100_000.times { eval ​"string.length"​ } }

	​ 	​end​

Produces:
	​ 	 user system total real

	​ 	direct 0.010000 0.000000 0.010000 (0.012705)

	​ 	call 0.020000 0.000000 0.020000 (0.022576)

	​ 	send 0.020000 0.000000 0.020000 (0.020664)

	​ 	eval 1.220000 0.000000 1.220000 (1.224656)

	

	Which is better: reading all of a dictionary and splitting
	it or splitting it line by line? Use
 ​bmbm​
 to run
	a rehearsal before doing the timing:

	​ 	require ​'benchmark'​

	​ 	include Benchmark

	​ 	bmbm(6) ​do​ |x|

	​ 	 x.report(​"all"​) ​do​

	​ 	 str = File.read(​"/usr/share/dict/words"​)

	​ 	 words = str.scan(/[-​\w​']+/)

	​ 	 ​end​

	​ 	 x.report(​"lines"​) ​do​

	​ 	 words = []

	​ 	 File.foreach(​"/usr/share/dict/words"​) ​do​ |line|

	​ 	 words << line.chomp

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Rehearsal --

	​ 	all 0.200000 0.010000 0.210000 (0.218034)

	​ 	lines 0.150000 0.020000 0.170000 (0.165469)

	​ 	--------------------------------- total: 0.380000sec

	​ 	

	​ 	 user system total real

	​ 	all 0.180000 0.010000 0.190000 (0.185983)

	​ 	lines 0.290000 0.010000 0.300000 (0.302548)

Library BigDecimal: Large-Precision Decimal Numbers

 Ruby’s standard
 ​Bignum​ class
 supports integers with large numbers of digits. The
 ​BigDecimal​
 class supports decimal numbers with large numbers of decimal
 places. The standard library supports all the normal arithmetic
 operations. ​BigDecimal​ also comes with some extension
 libraries.

	​bigdecimal/ludcmp​
	

	Performs an LU decomposition of a matrix.

	​bigdecimal/math​
	

	Provides the transcendental functions ​sqrt​,
	​sin​, ​cos​, ​atan​,
	​exp​, and ​log​, along with functions
	for computing ​PI​ and ​E​. All
	functions take an arbitrary precision argument.

	​bigdecimal/jacobian​
	

	Constructs the Jacobian (a matrix
	enumerating the partial derivatives) of a given function.
	Not dependent on ​BigDecimal​.

	​bigdecimal/newton​
	

	Solves the roots of nonlinear function
	using Newton’s method.
	Not dependent on ​BigDecimal​.

	​bigdecimal/nlsolve​
	

	Wraps the ​bigdecimal/newton​
	library for equations of big decimals.

 You can find English-language documentation in the file
 ​ext/bigdecimal/bigdecimal_en.html​ in the Ruby
 source distribution.

		​ 	​# Calculate the area of a circle using BigDecimal numbers​

	​ 	

	​ 	require ​'bigdecimal'​

	​ 	require ​'bigdecimal/math'​

	​ 	include BigMath

	​ 	

	​ 	pi = BigMath::PI(20) ​# 20 is the number of decimal digits​

	​ 	

	​ 	radius = BigDecimal(​"2.14156987652974674392"​)

	​ 	

	​ 	area = pi * radius**2

	​ 	

	​ 	area.to_s ​# => "0.144083540446856044176720033806679561688599846410​

	​ 	 ​# .. 445032583215824758780405545861780909930190528E2"​

		​ 	​# The same with regular floats​

	​ 	

	​ 	radius = 2.14156987652974674392

	​ 	

	​ 	Math::PI * radius**2 ​# => 14.408354044685602​

Library CGI: CGI Programming Support

 The ​CGI​ class provides support for programs used as
 Common Gateway Interface (CGI) scripts in a web server. CGI objects are
 initialized with data from the environment and from the HTTP
 request, and they provide convenient accessors to form data and
 cookies. They can also manage sessions using a variety of storage
 mechanisms. Class ​CGI​ also provides basic facilities for HTML
 generation and class methods to escape and unescape requests and
 HTML.

	CGI::Session

	

	Escapes and unescapes special characters in URLs and
	HTML. Numeric entities less than 256 will be encoded based on the
	encoding of the input string. Other numeric entities will be left
	unchanged.

	​ 	require ​'cgi'​

	​ 	CGI.escape(​'c:\My Files'​) ​# => c%3A%5CMy+Files​

	​ 	CGI.unescape(​'c%3a%5cMy+Files'​) ​# => c:\My Files​

	​ 	CGI::escapeHTML(​'"a"<b & c'​) ​# => "a"<b & c​

	​ 	CGI.unescapeHTML(​'"a"<=>b'​) ​# => "a"<=>b​

	​ 	CGI.unescapeHTML(​'AA'​) ​# => AA​

	​ 	str = ​'2πr'​

	​ 	str.force_encoding(​"utf-8"​)

	​ 	CGI.unescapeHTML(str) ​# => 2πr​

	

	Access information from the incoming request:

	​ 	require ​'cgi'​

	​ 	c = CGI.new

	​ 	c.auth_type ​# => "basic"​

	​ 	c.user_agent ​# => "Mozscape Explorari V5.6"​

	

	Access form fields from an incoming request. Assume that the
	following script, installed as ​test.cgi​,
	was linked to using
	​http://mydomain.com/test.cgi?fred=10&barney=cat​:

	​ 	require ​'cgi'​

	​ 	c = CGI.new

	​ 	c[​'fred'​] ​# => "10"​

	​ 	c.keys ​# => ["fred", "barney"]​

	​ 	c.params ​# => {"fred"=>["10"], "barney"=>["cat"]}​

	

	If a form contains multiple fields with the same name, the
	corresponding values will be returned to the script as an
	array. The ​[]​ accessor returns just the first of
	these—index the result of the
	
 ​params​
 method to get them all.

	In this example, assume the form has three fields called
	“name”:

	​ 	require ​'cgi'​

	​ 	c = CGI.new

	​ 	c[​'name'​] ​# => "fred"​

	​ 	c.params[​'name'​] ​# => ["fred", "wilma", "barney"]​

	​ 	c.keys ​# => ["name"]​

	​ 	c.params ​# => {"name"=>["fred", "wilma", "barney"]}​

	

	Sends a response to the browser. (Not many folks use this form
	of HTML generation–use one of the templating
	libraries described in Section 20.3, ​Templating Systems​.

	​ 	require ​'cgi'​

	​ 	cgi = CGI.new(​"html5"​)

	​ 	cgi.http_header(​"type"​ => ​"text/html"​, ​"expires"​ => Time.now + 30)

	​ 	cgi.out ​do​

	​ 	 cgi.html ​do​

	​ 	 cgi.head{ cgi.title{​"Hello World!"​} } +

	​ 	 cgi.body ​do​

	​ 	 cgi.pre ​do​

	​ 	 CGI::escapeHTML(

	​ 	 ​"params: "​ + cgi.params.inspect + ​"\n"​ +

	​ 	 ​"cookies: "​ + cgi.cookies.inspect + ​"\n"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	

	Stores a cookie in the client browser:

	​ 	require ​'cgi'​

	​ 	cgi = CGI.new(​"html5"​)

	​ 	cookie = CGI::Cookie.new(​'name'​ => ​'mycookie'​,

	​ 	 ​'value'​ => ​'chocolate chip'​,

	​ 	 ​'expires'​ => Time.now + 3600)

	​ 	

	​ 	cgi.out(​'cookie'​ => cookie) ​do​

	​ 	 cgi.head + cgi.body { ​"Cookie stored"​ }

	​ 	​end​

	

	Retrieves a previously stored cookie:

	​ 	require ​'cgi'​

	​ 	cgi = CGI.new(​"html5"​)

	​ 	cookie = cgi.cookies[​'mycookie'​]

	​ 	

	​ 	cgi.out(​'cookie'​ => cookie) ​do​

	​ 	 cgi.head + cgi.body { ​"Flavor: "​ + cookie[0] }

	​ 	​end​

Library CGI::Session: CGI Sessions

 A ​CGI::Session​ maintains a persistent state for web users in a
 CGI environment. Sessions may be memory resident or may be stored
 on disk. See the discussion in ​Sessions​ for details.

	CGI

	sl_cgi_session/session.rb
	​ 	​# Store the timestamp of last access, along with the access count​

	​ 	​# using a session object​

	​ 	

	​ 	require ​'cgi'​

	​ 	require ​'cgi/session'​

	​ 	

	​ 	cgi = CGI.new(​"html3"​)

	​ 	sess = CGI::Session.new(cgi,

	​ 	 ​"session_key"​ => ​"rubyweb"​,

	​ 	 ​"prefix"​ => ​"web-session."​)

	​ 	

	​ 	​if​ sess[​'lastaccess'​]

	​ 	 msg = ​"<p>You were last here ​#{sess[​'lastaccess'​]}​.</p>"​

	​ 	​else​

	​ 	 msg = ​"<p>Looks like you haven't been here for a while</p>"​

	​ 	​end​

	​ 	

	​ 	count = (sess[​"accesscount"​] || 0).to_i

	​ 	count += 1

	​ 	

	​ 	msg << ​"<p>Number of visits: ​#{count}​</p>"​

	​ 	

	​ 	sess[​"accesscount"​] = count

	​ 	sess[​"lastaccess"​] = Time.now.to_s

	​ 	sess.close

	​ 	

	​ 	cgi.out {

	​ 	 cgi.html {

	​ 	 cgi.body {

	​ 	 msg

	​ 	 }

	​ 	 }

	​ 	}

Library CMath: Complex Transcendental Functions

 As of Ruby 1.9, the ​Complex​ class is built in to the
 interpreter. There is no need to require the complex library to
 create and manipulate complex numbers. However, if you want the
 transcendental functions defined by ​Math​ to work with
 complex numbers, you must also require the cmath library. The
 functions affected are as follows:

 ​acosh​
 ,

 ​acos​
 ,

 ​asinh​
 ,

 ​asin​
 ,

 ​atan2​
 ,

 ​atanh​
 ,

 ​atan​
 ,

 ​cosh​
 ,

 ​cos​
 ,

 ​exp​
 ,

 ​log10​
 ,

 ​log​
 ,

 ​sinh​
 ,

 ​sin​
 ,

 ​sqrt​
 ,

 ​tanh​
 , and

 ​tan​
 .

 The complex library makes these complex functions the default
 (so, if you ​require ’complex’​, you can use ​Math::sin​ and not
 ​CMath::sin​).

		​ 	require ​'cmath'​

	​ 	point = Complex(2, 3)

	​ 	CMath::sin(point) ​# => (9.15449914691143-4.168906959966565i)​

	​ 	CMath::cos(point) ​# => (-4.189625690968807-9.109227893755337i)​

Library Complex: Complex Numbers

 Loads the cmath library, which defines the transcendental
 functions for complex numbers. It then arranges things so that these
 complex-aware functions are the ones invoked when you use
 ​Math::​. The net effect is that, after requiring ​complex​,
 you can use functions such as ​Math::sin​ on any numeric value,
 including complex numbers.

	

	Using transcendental numbers with complex arguments will, by
	default, cause an error:

	​ 	point = Complex(2, 3)

	​ 	Math::sin(point)

Produces:
	​ 	 from prog.rb:2:in `sin'

	​ 	 from prog.rb:2:in `<main>'

	​ 	prog.rb:2:in `to_f': can't convert 2+3i into Float (RangeError)

	
However...
	​ 	require ​'complex'​

	​ 	point = Complex(2, 3)

	​ 	Math::sin(point) ​# => (9.15449914691143-4.168906959966565i)​

Library Continuation: Continuations

 ​Continuation​ objects are generated by the
 Object#callcc
 method, which becomes available only when the ​continuation​
 library is loaded. They hold a return address and execution
 context, allowing a nonlocal return to the end of the
 ​callcc​

 block from anywhere within a program. Continuations are somewhat
 analogous to a structured version of C’s ​setjmp/longjmp​
 (although they contain more state, so you may consider them closer
 to threads). This (somewhat contrived) example allows the inner
 loop to abandon processing early.

	
 Does a nonlocal exit when a condition is met:

	​ 	require ​'continuation'​

	​ 	callcc ​do​ |cont|

	​ 	 ​for​ i ​in​ 0..4

	​ 	 print ​"\n​#{i}​: "​

	​ 	 ​for​ j ​in​ i*5...(i+1)*5

	​ 	 cont.call() ​if​ j == 7

	​ 	 printf ​"%3d"​, j

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	print ​"\n"​

Produces:
	​ 	0: 0 1 2 3 4

	​ 	1: 5 6

	
 The call stack for methods is preserved in continuations:
	​ 	require ​'continuation'​

	​ 	​def​ strange

	​ 	 callcc {|continuation| ​return​ continuation}

	​ 	 print ​"Back in method, "​

	​ 	​end​

	​ 	print ​"Before method. "​

	​ 	continuation = strange()

	​ 	print ​"After method. "​

	​ 	continuation.call ​if​ continuation

Produces:
	​ 	Before method. After method. Back in method, After method.

Library coverage: Experimental Code Coverage Analysis

 The ​coverage​ module counts the
 number of times each line of Ruby code is executed in one or more
 source files and provides a summary as a hash. The keys of the
 hash are the names of files that were analyzed, and the values are
 each an array containing counts (on a per-line basis).

 Here’s a simple implementation of the Fizz Buzz program:

	sl_coverage/fizzbuzz.rb
	​ 	1.upto(100).with_object(​''​) ​do​ |i, x|

	​ 	 ​if​ i % 3 == 0

	​ 	 x += ​'Fizz'​

	​ 	 ​end​

	​ 	 ​if​ i % 5 == 0

	​ 	 x += ​'Buzz'​

	​ 	 ​end​

	​ 	 ​if​ x.empty?

	​ 	 puts i

	​ 	 ​else​

	​ 	 puts x

	​ 	 ​end​

	​ 	​end​

 And here’s a program that loads and runs that program, using the
 coverage library to report on execution counts. (Note that it
 discards the output of the FizzBuzz program, simply to save space
 on this page.)

	​ 	require ​'coverage'​

	​ 	Coverage.start

	​ 	STDOUT.reopen(​"/dev/null"​)

	​ 	require_relative ​'fizzbuzz.rb'​

	​ 	Coverage.result.each ​do​ |file_name, counts|

	​ 	 File.readlines(file_name).each.with_index ​do​ |code_line, line_number|

	​ 	 count = counts[line_number] || ​"--"​

	​ 	 STDERR.printf ​"%3s: %s"​, count, code_line

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	 1: 1.upto(100).with_object('') do |i, x|

	​ 	100: if i % 3 == 0

	​ 	 33: x += 'Fizz'

	​ 	 --: end

	​ 	100: if i % 5 == 0

	​ 	 20: x += 'Buzz'

	​ 	 --: end

	​ 	100: if x.empty?

	​ 	 53: puts i

	​ 	 --: else

	​ 	 47: puts x

	​ 	 --: end

	​ 	 --: end

Library CSV: Comma-Separated Values

 Comma-separated data files are often used to transfer tabular
 information (and are a ​lingua franca​ for importing
 and exporting spreadsheet and database information). As of
 Ruby 1.9, the old library has been replaced by James Edward
 Gray II’s FasterCSV version. It has a few incompatibilities with
 the original. In particular,

 ​CSV.open​
 now works like

 ​File.open​
 , not

 ​File.foreach​
 , and options are passed as a
 hash and not positional parameters.

 Ruby’s CSV library deals with arrays (corresponding to the rows in
 the CSV file) and strings (corresponding to the elements in a
 row). If an element in a row is missing, it will be represented as a
 ​nil​ in Ruby.

 The files used in these examples are as follows:

	sl_csv/csvfile
	​ 	12,eggs,2.89,

	​ 	2,"shirt, blue",21.45,special

	​ 	1,"""Hello Kitty"" bag",13.99

	sl_csv/csvfile_hdr
	​ 	Count,Description,Price

	​ 	12,eggs,2.89,

	​ 	2,"shirt, blue",21.45,special

	​ 	1,"""Hello Kitty"" bag",13.99

	
 Reads a file containing CSV data and processes line by line:
	​ 	require ​'csv'​

	​ 	CSV.foreach(​"csvfile"​) ​do​ |row|

	​ 	 qty = row[0].to_i

	​ 	 price = row[2].to_f

	​ 	 printf ​"%20s: $%5.2f %s\n"​, row[1], qty*price, row[3] || ​" ---"​

	​ 	​end​

Produces:
	​ 	 eggs: $34.68 ---

	​ 	 shirt, blue: $42.90 special

	​ 	"Hello Kitty" bag: $13.99 ---

	

	Processes a CSV file that contains a header
	line. Automatically converts fields that look like numbers.

	​ 	require ​'csv'​

	​ 	total_cost = 0

	​ 	CSV.foreach(​"csvfile_hdr"​, headers: true, converters: :numeric) ​do​ |data|

	​ 	 total_cost += data[​"Count"​] * data[​"Price"​]

	​ 	​end​

	​ 	puts ​"Total cost is ​#{total_cost}​"​

Produces:
	​ 	Total cost is 91.57

	

	Writes CSV data to an existing open stream (STDOUT in this
	case). Uses ​|​ as the column separator.

	​ 	require ​'csv'​

	​ 	CSV(STDOUT, col_sep: ​"|"​) ​do​ |csv|

	​ 	 csv << [1, ​"line 1"​, 27]

	​ 	 csv << [2, nil, 123]

	​ 	 csv << [3, ​"|bar|"​, 32.5]

	​ 	​end​

Produces:
	​ 	1|line 1|27

	​ 	2||123

	​ 	3|"|bar|"|32.5

	

	Accesses a CSV file as a two-dimensional table:

	​ 	require ​'csv'​

	​ 	

	​ 	table = CSV.read(​"csvfile_hdr"​,

	​ 	 headers: true,

	​ 	 header_converters: :symbol)

	​ 	puts ​"Row count = ​#{table.count}​"​

	​ 	puts ​"First row = ​#{table[0].fields}​"​

	​ 	puts ​"Count of eggs = ​#{table[0][:count]}​"​

	​ 	table << [99, ​"red balloons"​, 1.23]

	​ 	table[:in_stock] = [10, 5, 10, 10]

	​ 	puts ​"\nAfter adding a row and a column, the new table is:"​

	​ 	puts table

Produces:
	​ 	Row count = 3

	​ 	First row = ["12", "eggs", "2.89", nil]

	​ 	Count of eggs = 12

	​ 	

	​ 	After adding a row and a column, the new table is:

	​ 	count,description,price,,in_stock

	​ 	12,eggs,2.89,,10

	​ 	2,"shirt, blue",21.45,special,5

	​ 	1,"""Hello Kitty"" bag",13.99,10

	​ 	99,red balloons,1.23,,10

Library Curses: CRT Screen Handling
curses or
 ncurses installed in target environment

 The ​Curses​
 library is a thin wrapper around the C curses or
 ncurses libraries, giving applications a device-independent way
 to draw on consoles and other terminal-like devices. As a nod
 toward object-orientation, curses windows and mouse events are
 represented as Ruby objects. Otherwise, the standard curses calls
 and constants are simply defined in the
 ​Curses​ module.

	sl_curses/pong_paddle.rb
	​ 	​# Draw the paddle for game of 'pong' that moves in response to up and down keys​

	​ 	require ​'curses'​

	​ 	include Curses

	​ 	

	​ 	​class​ Paddle

	​ 	 HEIGHT = 4

	​ 	 PADDLE = ​" \n"​ + ​"|\n"​*HEIGHT + ​" "​

	​ 	 ​def​ initialize

	​ 	 @top = (Curses::lines - HEIGHT)/2

	​ 	 draw

	​ 	 ​end​

	​ 	 ​def​ up

	​ 	 @top -= 1 ​if​ @top > 1

	​ 	 ​end​

	​ 	 ​def​ down

	​ 	 @top += 1 ​if​ (@top + HEIGHT + 1) < lines

	​ 	 ​end​

	​ 	 ​def​ draw

	​ 	 setpos(@top-1, 0)

	​ 	 addstr(PADDLE)

	​ 	 refresh

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	init_screen

	​ 	​begin​

	​ 	 cbreak

	​ 	 noecho

	​ 	 stdscr.keypad(true)

	​ 	 paddle = Paddle.new

	​ 	

	​ 	 loop ​do​

	​ 	 ​case​ ch = getch

	​ 	 ​when​ ​"Q"​, ​"q"​ ​then​ ​break​

	​ 	 ​when​ Key::UP, ​'U'​, ​'u'​ ​then​ paddle.up

	​ 	 ​when​ Key::DOWN, ​'D'​, ​'d'​ ​then​ paddle.down

	​ 	 ​else​

	​ 	 beep

	​ 	 ​end​

	​ 	 paddle.draw

	​ 	 ​end​

	​ 	​ensure​

	​ 	 close_screen

	​ 	​end​

Library Date/DateTime: Date and Time Manipulation

 The date library implements classes
 ​Date​ and
 ​DateTime​,
 which provide a comprehensive set of facilities for storing,
 manipulating, and converting dates with or without time
 components. The classes can represent and manipulate civil,
 ordinal, commercial, Julian, and standard dates, starting January
 1, 4713 BCE. The ​DateTime​ class
 extends ​Date​ with hours, minutes, seconds,
 and fractional seconds, and it provides some support for time
 zones. The classes also provide support for parsing and formatting
 date and datetime strings. The classes have a rich
 interface—consult the ri
 documentation for details. The introductory notes in the file
 ​lib/date.rb​ in the Ruby source tree are also
 well worth reading.

	
 Experiment with various representations:
	​ 	require ​'date'​

	​ 	

	​ 	d = Date.new(2000, 3, 31)

	​ 	[d.year, d.yday, d.wday] ​# => [2000, 91, 5]​

	​ 	[d.month, d.mday] ​# => [3, 31]​

	​ 	[d.cwyear, d.cweek, d.cwday] ​# => [2000, 13, 5]​

	​ 	[d.jd, d.mjd] ​# => [2451635, 51634]​

	​ 	d1 = Date.commercial(2000, 13, 7)

	​ 	d1.to_s ​# => "2000-04-02"​

	​ 	[d1.cwday, d1.wday] ​# => [7, 0]​

	
 Essential information about Christmas:
	​ 	require ​'date'​

	​ 	

	​ 	now = DateTime.now

	​ 	year = now.year

	​ 	year += 1 ​if​ now.month == 12 && now.day > 25

	​ 	xmas = DateTime.new(year, 12, 25)

	​ 	

	​ 	diff = xmas - now

	​ 	

	​ 	puts ​"It's ​#{diff.to_i}​ days to Christmas"​

	​ 	puts ​"Christmas ​#{year}​ falls on a ​#{xmas.strftime(​'%A'​)}​"​

Produces:
	​ 	It's 211 days to Christmas

	​ 	Christmas 2013 falls on a Wednesday

Library DBM: Interface to DBM Databases
a DBM library is installed in target
 environment

 DBM files implement simple, hashlike persistent stores. Many
 DBM implementations exist: the Ruby library can
 be configured to use one of the DBM libraries db, dbm (ndbm),
 gdbm, and qdbm. The interface to DBM files is similar to class
 ​Hash​, except that DBM keys and values will
 be strings. This can cause confusion, as the conversion to a
 string is performed silently when the data is written. The DBM
 library is a wrapper around the lower-level access method. For
 true low-level access, see also the GDBM and SDBM libraries.

	gdbm
	sdbm

 The following creates a simple DBM file and then reopens it read-only and reads
 some data. Note the conversion of a date object to its string form.

	sl_dbm/dbm1.rb
	​ 	require ​'dbm'​

	​ 	require ​'date'​

	​ 	

	​ 	DBM.open(​"data.dbm"​) ​do​ |dbm|

	​ 	 dbm[​'name'​] = ​"Walter Wombat"​

	​ 	 dbm[​'dob'​] = Date.new(1997, 12,25)

	​ 	​end​

	​ 	

	​ 	DBM.open(​"data.dbm"​, nil, DBM::READER) ​do​ |dbm|

	​ 	 p dbm.keys

	​ 	 p dbm[​'dob'​]

	​ 	 p dbm[​'dob'​].class

	​ 	​end​

 ​Produces:​

	​ 	["name", "dob"]

	​ 	"1997-12-25"

	​ 	String

Library Delegator: Delegate Calls to Other Object

 Object delegation is a way of
 ​ composing​

 objects—extending an object with the capabilities of
 another—at runtime. The Ruby
 ​Delegator​
 class implements a simple but powerful delegation scheme, where
 requests are automatically forwarded from a master class to
 delegates or their ancestors and where the delegate can be changed
 at runtime with a single method call.

	Forwardable

	

	For simple cases where the class of the delegate is fixed,
	make the master class a subclass of ​DelegateClass​,
	passing the name of the class to be delegated as a
	parameter. In the master class’s
 ​initialize​
 method,
	pass the object to be delegated to the superclass.

	​ 	require ​'delegate'​

	​ 	

	​ 	​class​ Words < DelegateClass(Array)

	​ 	 ​def​ initialize(list = ​"/usr/share/dict/words"​)

	​ 	 words = File.read(list).split

	​ 	 ​super​(words)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	words = Words.new

	​ 	words[9999] ​# => "anticontagionist"​

	​ 	words.size ​# => 235886​

	​ 	words.grep(/matz/) ​# => ["matzo", "matzoon", "matzos", "matzoth"]​

	

	Use ​SimpleDelegator​ to delegate to a particular
	object (which can be changed):

	​ 	require ​'delegate'​

	​ 	

	​ 	words = File.read(​"/usr/share/dict/words"​).split

	​ 	names = File.read(​"/usr/share/dict/propernames"​).split

	​ 	

	​ 	stats = SimpleDelegator.new(words)

	​ 	stats.size ​# => 235886​

	​ 	stats[226] ​# => "abidingly"​

	​ 	stats.__setobj__(names)

	​ 	stats.size ​# => 1308​

	​ 	stats[226] ​# => "Deirdre"​

Library Digest: MD5, RIPEMD-160 SHA1, and SHA2 Digests

 The ​Digest​
 module is the home for a number of classes that implement message
 digest algorithms: MD5, RIPEMD-160, SHA1, and SHA2 (256, 384, and
 512 bit). The interface to all these classes is identical.

	

	You can create a binary or hex digest for a given string by
 calling the class method
 ​digest​
 or

 ​hexdigest​
 .

	

	You can also create an object (optionally passing in an
	initial string) and determine the object’s hash by calling the
	
 ​digest​
 or
	
 ​hexdigest​
 instance methods.
	You can then append to the string using the
	
 ​update​
 method and then recover an
	updated hash value.

	
 Calculates some MD5 and SHA1 hashes:
	​ 	require ​'digest/md5'​

	​ 	require ​'digest/sha1'​

	​ 	

	​ 	​for​ hash_class ​in​ [Digest::MD5, Digest::SHA1]

	​ 	

	​ 	 puts ​"Using ​#{hash_class.name}​"​

	​ 	

	​ 	 ​# Calculate directly​

	​ 	 puts hash_class.hexdigest(​"hello world"​)

	​ 	

	​ 	 ​# Or by accumulating​

	​ 	 digest = hash_class.new

	​ 	 digest << ​"hello"​

	​ 	 digest << ​" "​

	​ 	 digest << ​"world"​

	​ 	 puts digest.hexdigest

	​ 	 puts digest.base64digest ​# new in 1.9.2​

	​ 	 puts

	​ 	​end​

Produces:
	​ 	Using Digest::MD5

	​ 	5eb63bbbe01eeed093cb22bb8f5acdc3

	​ 	5eb63bbbe01eeed093cb22bb8f5acdc3

	​ 	XrY7u+Ae7tCTyyK7j1rNww==

	​ 	

	​ 	Using Digest::SHA1

	​ 	2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

	​ 	2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

	​ 	Kq5sNclPz7QV2+lfQIuc6R7oRu0=

Library dRuby: Distributed Ruby Objects (drb)

 dRuby allows Ruby objects to be distributed across a network
 connection. Although expressed in terms of clients and servers,
 once the initial connection is established, the protocol is
 effectively symmetrical: either side can invoke methods in objects
 on the other side. Normally, objects passed and returned by remote
 calls are passed by value; including the
 ​DRbUndumped​
 module in an object forces it to be passed by reference (useful
 when implementing callbacks).

	Rinda
	XMLRPC

	

	This server program is
 ​ observable​

 —it notifies
	all registered listeners of changes to a count value:

	sl_drb/drb_server1.rb
	​ 	require ​'drb'​

	​ 	require ​'drb/observer'​

	​ 	

	​ 	​class​ Counter

	​ 	 include DRb::DRbObservable

	​ 	

	​ 	 ​def​ run

	​ 	 5.times ​do​ |count|

	​ 	 changed

	​ 	 notify_observers(count)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	counter = Counter.new

	​ 	DRb.start_service(​'druby://localhost:9001'​, counter)

	​ 	DRb.thread.join

	

	This client program interacts with the server, registering a
	listener object to receive callbacks before invoking the server’s
	
 ​run​
 method:

	sl_drb/drb_client1.rb
	​ 	require ​'drb'​

	​ 	

	​ 	​class​ Listener

	​ 	 include DRbUndumped

	​ 	

	​ 	 ​def​ update(value)

	​ 	 puts value

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	DRb.start_service

	​ 	counter = DRbObject.new(nil, ​"druby://localhost:9001"​)

	​ 	

	​ 	listener = Listener.new

	​ 	counter.add_observer(listener)

	​ 	counter.run

Library English: English Names for Global Symbols

 Includes the English library file in a Ruby script, and you can
 reference the global variables such as ​$_​
 using less-cryptic names, listed in the following
 table. Prior to Ruby 1.9, the name
 ​$PROGRAM_NAME​
 was declared using ​English​. It is now
 predefined in the Ruby interpreter.

	

	\toprule
	​$*​

	

	$ARGV

	

	​$_​

	

	$LAST_READ_LINE

	

	​$?​

	

	$CHILD_STATUS

	

	​$"​

	

	$LOADED_FEATURES

	

	​$<​

	

	$DEFAULT_INPUT

	

	​$&​

	

	$MATCH

	

	​$>​

	

	$DEFAULT_OUTPUT

	

	​$.​

	

	$NR

	

	​$!​

	

	$ERROR_INFO

	

	​$,​

	

	$OFS

	

	​$@​

	

	$ERROR_POSITION

	

	​$\​

	

	$ORS

	

	​$;​

	

	$FIELD_SEPARATOR

	

	​$,​

	

	$OUTPUT_FIELD_SEPARATOR

	

	​$;​

	

	$FS

	

	​$\​

	

	$OUTPUT_RECORD_SEPARATOR

	

	​$=​

	

	$IGNORECASE

	

	​$$​

	

	$PID

	

	​$.​

	

	$INPUT_LINE_NUMBER

	

	​$’​

	

	$POSTMATCH

	

	​$/​

	

	$INPUT_RECORD_SEPARATOR

	

	​$‘​

	

	$PREMATCH

	

	​$~​

	

	$LAST_MATCH_INFO

	

	​$$​

	

	$PROCESS_ID

	

	​$+​

	

	$LAST_PAREN_MATCH

	

	​$/​

	

	$RS

 The following code shows some regular variable names along with their English counterparts.

	​ 	require ​'English'​

	​ 	

	​ 	$OUTPUT_FIELD_SEPARATOR = ​' -- '​

	​ 	​"waterbuffalo"​ =~ /buff/

	​ 	print $., $INPUT_LINE_NUMBER, ​"\n"​

	​ 	print $', $POSTMATCH, ​"\n"​

	​ 	print $$, $PID

Produces:
	​ 	0 -- 0 --

	​ 	alo -- alo --

	​ 	24658 -- 24658

Library erb: Lightweight Templating for HTML

 ERb is a lightweight templating system, allowing you to intermix
 Ruby code and plain text. This is sometimes a convenient way to
 create HTML documents but also is usable in other plain-text
 situations. See Section 20.3, ​Templating Systems​ for other
 templating solutions.

 ​ERB​ breaks its input text into chunks of regular text and
 program fragments. It then builds a Ruby program that, when run,
 outputs the result text and executes the program fragments. Program
 fragments are enclosed between ​<%​ and ​%>​ markers. The
 exact interpretation of these fragments depends on the character
 following the opening ​<%​:

Table 26. Directives for ​ERB​
	Sequence	Action
	
​<%​ ​ruby code​ ​%>​
	

	Inserts the given Ruby code at this point in the generated
	program. If it outputs anything, include this output in the
	result.

	
​<%=​ ​ruby expression​ ​%>​
	

	Evaluate expression and insert its value in the output of
	the generated program.

	
​<%#​ ... ​%>​
	
Comment (ignored).

	
​<%%​ and ​%%>​
	

	Replaced in the output by ​<%​ and​%>​
	respectively.

 The following code uses ​<%…%>​ blocks to execute a Ruby loop, and
 ​<%=…%>​ to substitute a value into the output.

	​ 	require ​'erb'​

	​ 	input = ​%{<% high.downto(low) do |n| # set high, low externally %>​

	​ 	​ <%= n %> green bottles, hanging on the wall​

	​ 	​ <%= n %> green bottles, hanging on the wall​

	​ 	​ And if one green bottle should accidentally fall​

	​ 	​ There'd be <%= n-1 %> green bottles, hanging on the wall​

	​ 	​<% end %>}​

	​ 	high,low = 10, 8

	​ 	erb = ERB.new(input)

	​ 	erb.run(binding)

Produces:
	​ 	10 green bottles, hanging on the wall

	​ 	 10 green bottles, hanging on the wall

	​ 	 And if one green bottle should accidentally fall

	​ 	 There'd be 9 green bottles, hanging on the wall

	​ 	 . . .

 An optional second parameter to ERB.new sets
 the safe level for evaluating expressions. If
 ​nil​, expressions are evaluated in the current
 thread; otherwise, a new thread is created, and its
 ​$SAFE​
 level is set to the parameter value.

 The optional third parameter to ERB.new allows some control of
 the interpretation of the input and of the way whitespace is added
 to the output. If the third parameter is a string and that string
 contains a percent sign, then ERb treats lines starting with a
 percent sign specially. Lines starting with a single percent sign are
 treated as if they were enclosed in ​<%...%>​. Lines
 starting with a double percent sign are copied to the output with a
 single leading percent sign.

	​ 	require ​'erb'​

	​ 	str = ​%{\​

	​ 	​% 2.times do |i|​

	​ 	​ This is line <%= i %>​

	​ 	​%end​

	​ 	​%%%done}​

	​ 	ERB.new(str, 0, ​'%'​).run

Produces:
	​ 	 This is line 0

	​ 	 This is line 1

	​ 	%%done

 If the third parameter contains the string ​<>​, then a newline will
 not be written if an input line starts with an ​ERB​ directive and ends
 with ​%>​. If the trim parameter contains ​>>​, then a newline
 will not be written if an input line ends ​%>​.

	​ 	require ​'erb'​

	​ 	str1 = ​%{\​

	​ 	​* <%= "cat" %>​

	​ 	​<%= "dog" %>​

	​ 	​}​

	​ 	ERB.new(str1, 0, ​">"​).run

	​ 	ERB.new(str1, 0, ​"<>"​).run

Produces:
	​ 	* catdog* cat

	​ 	dog

 The ​erb​ library also defines the helper module
 ​ERB::Util​
 that contains two methods:

 ​html_escape​
 (aliased as

 ​h​
) and

 ​url_encode​
 (aliased as

 ​u​
). These are equivalent to the
 ​CGI​ methods

 ​escapeHTML​
 and

 ​escape​
 , respectively (except

 ​escape​
 encodes spaces as plus signs, and

 ​url_encode​
 uses ​%20​).

	​ 	require ​'erb'​

	​ 	include ERB::Util

	​ 	str1 = ​%{\​

	​ 	​h(a) = <%= h(a) %>​

	​ 	​u(a) = <%= u(a) %>​

	​ 	​}​

	​ 	a = ​"< a & b >"​

	​ 	ERB.new(str1).run(binding)

Produces:
	​ 	h(a) = < a & b >

	​ 	u(a) = %3C%20a%20%26%20b%20%3E

 You may find the command-line utility ​erb​ is supplied with
 your Ruby distribution. This allows you to run erb substitutions on
 an input file; see ​erb --help​ for details.

Library Etc: Access User and Group Information in /etc/passwd
Unix or Cygwin

 The ​Etc​ module
 provides a number of methods for querying the
 ​passwd​ and ​group​ facilities on Unix
 systems.

	
 Finds out information about the currently logged-in user:
	​ 	require ​'etc'​

	​ 	

	​ 	name = Etc.getlogin

	​ 	info = Etc.getpwnam(name)

	​ 	info.name ​# => "dave"​

	​ 	info.uid ​# => 501​

	​ 	info.dir ​# => "/Users/dave"​

	​ 	info.shell ​# => "/bin/zsh"​

	​ 	

	​ 	group = Etc.getgrgid(info.gid)

	​ 	group.name ​# => "staff"​

	
 Returns the names of users on the system used to create this
 book:
	​ 	require ​'etc'​

	​ 	

	​ 	users = []

	​ 	Etc.passwd {|passwd| users << passwd.name }

	​ 	users[1,5].join(​", "​) ​# => "_appleevents, _appowner, _appserver, _ard,​

	​ 	 ​# .. _assetcache"​

	
 Returns the IDs of groups on the system used to create this
 book:
	​ 	require ​'etc'​

	​ 	

	​ 	ids = []

	​ 	Etc.group {|entry| ids << entry.gid }

	​ 	ids[1,5].join(​", "​) ​# => "55, 87, 81, 79, 33"​

Library expect: Expect Method for IO Objects

 The ​expect​ library adds the method

 ​expect​
 to all
 ​IO​
 objects. This allows you
 to write code that waits for a particular string or pattern to be
 available from the I/O stream. The
 ​expect​
 method
 is particularly useful with pty objects (see the Pty library) and with network connections
 to remote servers, where it can be used to coordinate the use of
 external interactive processes.

 If the global variable
 ​$expect_verbose​
 is ​true​, the

 ​expect​
 method writes all characters read from the I/O stream
 to STDOUT.

	pty

	

	Connects to the local FTP server, logs in, and prints out the
	name of the user’s directory. (Note that it would be a lot easier to
	do this using the ​net/ftp​ library.)

	​ 	​# This code might be specific to the particular ftp daemon.​

	​ 	

	​ 	require ​'expect'​

	​ 	require ​'socket'​

	​ 	

	​ 	$expect_verbose = true

	​ 	

	​ 	socket = TCPSocket.new(​'localhost'​, ​'ftp'​)

	​ 	

	​ 	socket.expect(​"ready"​)

	​ 	socket.puts(​"user testuser"​)

	​ 	socket.expect(​"331 User testuser accepted, provide password."​)

	​ 	socket.puts(​"pass wibble"​)

	​ 	socket.expect(​"logged in.\r\n"​)

	​ 	socket.puts(​"pwd"​)

	​ 	puts(socket.gets)

	​ 	socket.puts ​"quit"​

Produces:
	​ 	220 ::1 FTP server (tnftpd 20100324+GSSAPI) ready.

	​ 	331 User testuser accepted, provide password.

	​ 	230 User testuser logged in.

	​ 	257 "/Users/testuser" is the current directory.

Library Fcntl: Symbolic Names for IO#fcntl Commands

 The ​Fcntl​ module provides symbolic names
 for each of the host system’s available fcntl(2) constants (defined in
 ​fcntl.h​). That is, if the host system has a
 constant named ​F_GETLK​ defined in
 ​fcntl.h​, then the
 ​Fcntl​ module will have a corresponding
 constant ​Fcntl::F_GETLK​ with the same value
 as the header file’s ​#define​.

	

	Different operating system will have different ​Fcntl​
	constants available. The value associated with a constant of a given
	name may also differ across platforms. Here are the values on our Mac OS X
	system:

	​ 	require ​'fcntl'​

	​ 	

	​ 	Fcntl.constants.sort.each ​do​ |name|

	​ 	 printf ​"%10s: 0x%06x\n"​, name, Fcntl.const_get(name)

	​ 	​end​

Produces:
	​ 	FD_CLOEXEC: 0x000001

	​ 	 F_DUPFD: 0x000000

	​ 	 F_GETFD: 0x000001

	​ 	 F_GETFL: 0x000003

	​ 	 F_GETLK: 0x000007

	​ 	 F_RDLCK: 0x000001

	​ 	 F_SETFD: 0x000002

	​ 	 F_SETFL: 0x000004

	​ 	 F_SETLK: 0x000008

	​ 	 F_SETLKW: 0x000009

	​ 	 F_UNLCK: 0x000002

	​ 	 F_WRLCK: 0x000003

	​ 	 O_ACCMODE: 0x000003

	​ 	 O_CREAT: 0x000200

	​ 	 O_EXCL: 0x000800

	​ 	 O_NDELAY: 0x000004

	​ 	 O_NOCTTY: 0x020000

	​ 	O_NONBLOCK: 0x000004

	​ 	 O_RDONLY: 0x000000

	​ 	 O_RDWR: 0x000002

	​ 	 O_TRUNC: 0x000400

	​ 	 O_WRONLY: 0x000001

Library Fiber: Coroutines Using Fibers

 The ​Fiber​ class
 that is built into Ruby provides a generator-like
 capability—fibers may be created and resumed from some
 controlling program. If you want to extend the
 ​Fiber​ class to provide full, symmetrical
 coroutines, you need first to require the
 ​fiber​ library. This adds two instance
 methods,
 ​transfer​
 and

 ​alive?​
 , to ​Fiber​
 objects and adds the singleton method
 ​current​

 to the ​Fiber​
 class.

	

	It is difficult to come up with a meaningful, concise example
	of symmetric coroutines that can’t more easily be coded with
	asymetric (plain old) fibers. So, here’s an artificial example:

	​ 	require ​'fiber'​

	​ 	

	​ 	​# take items two at a time off a queue, calling the producer​

	​ 	​# if not enough are available​

	​ 	consumer = Fiber.new ​do​ |producer, queue|

	​ 	 5.times ​do​

	​ 	 ​while​ queue.size < 2

	​ 	 queue = producer.transfer(consumer, queue)

	​ 	 ​end​

	​ 	 puts ​"Consume ​#{queue.shift}​ and ​#{queue.shift}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​# add items three at a time to the queue​

	​ 	producer = Fiber.new ​do​ |consumer, queue|

	​ 	 value = 1

	​ 	 loop ​do​

	​ 	 puts ​"Producing more stuff"​

	​ 	 3.times { queue << value; value += 1}

	​ 	 puts ​"Queue size is ​#{queue.size}​"​

	​ 	 consumer.transfer queue

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	consumer.transfer(producer, [])

Produces:
	​ 	Producing more stuff

	​ 	Queue size is 3

	​ 	Consume 1 and 2

	​ 	Producing more stuff

	​ 	Queue size is 4

	​ 	Consume 3 and 4

	​ 	Consume 5 and 6

	​ 	Producing more stuff

	​ 	Queue size is 3

	​ 	Consume 7 and 8

	​ 	Producing more stuff

	​ 	Queue size is 4

	​ 	Consume 9 and 10

Library Fiddle: Access Dynamically Loaded Libraries (.dll and .so)

 The ​Fiddle​ module is a wrapper around libffi, a
 library that provides access to shared libraries.
 On Windows boxes,
 it can be used to interface with functions in DLLs. Under Unix it
 can load shared libraries. Because Ruby does not have typed method
 parameters or return values, you must define the types expected by
 the methods you call by specifying their signatures.

	
 Here’s a trivial C program that we’ll build as a shared library:
	sl_fiddle/lib.c
	​ 	#include <stdio.h>

	​ 	​int​ print_msg(​char​ *text, ​int​ number) {

	​ 	 ​int​ count = printf(​"Text: %s (%d)\n"​, text, number);

	​ 	 fflush(stdout);

	​ 	 ​return​ count;

	​ 	}

	

	Generates a proxy to access the
	
 ​print_msg​
 method in the shared
	library. The way this book is built, the shared library is in
	the same directory as the Ruby code; this directory
	must be added to the directories searched when looking for
	dynamic objects. You can do this by setting the
	​DYLD_LIBRARY_PATH​ environment variable.

	​ 	require ​'fiddle'​

	​ 	include Fiddle

	​ 	lib = Fiddle.dlopen(​"lib.so"​)

	​ 	print_msg = Fiddle::Function.new(lib[​'print_msg'​], ​# entry point​

	​ 	 [TYPE_VOIDP, TYPE_INT], ​# parameter types​

	​ 	 TYPE_INT) ​# return type​

	​ 	msg_size = print_msg.call(​"Answer"​, 42)

	​ 	puts ​"Just wrote ​#{msg_size}​ bytes"​

Produces:
	​ 	Text: Answer (42)

	​ 	Just wrote 18 bytes

Library FileUtils: File and Directory Manipulation

 ​FileUtils​ is a collection of methods for manipulating files and
 directories. Although generally applicable, the model is
 particularly useful when writing installation scripts and Rake tasks.

 Many methods take a src parameter and a dest
 parameter. If dest is a directory, src may
 be a single filename or an array of filenames. For example, the
 following copies the files ​a​,
 ​b​, and ​c​ to
 ​/tmp​:

	​ 	cp(​%w{ a b c }​, ​"/tmp"​)

 Most functions take a set of options. These may be zero or more of the following:

	Option	Meaning
	:verbose	

	Traces execution of each function (by default to ​STDERR​,
	although this can be overridden by setting the class
	variable ​@fileutils_output​.

	:noop	

	Does not perform the action of the function (useful for
	testing scripts).

	:force	

	Overrides some default conservative behavior of the method
	(for example, overwriting an existing file).

	:preserve	

	Attempts to preserve atime, mtime, and mode information
	from src in dest. (Setuid and setgid flags
	are always cleared.)

 For maximum portability, use forward slashes to separate the directory
 components of filenames, even on Windows.

 ​FileUtils​ contains three submodules that duplicate the top-level
 methods but that have different default options: module ​FileUtils::Verbose​
 sets the verbose option, module ​FileUtils::NoWrite​ sets noop,
 and ​FileUtils::DryRun​ sets verbose and
 noop.

	un

	​ 	require ​'fileutils'​

	​ 	include FileUtils::Verbose

	​ 	cd(​"/tmp"​) ​do​

	​ 	 cp(​"/etc/passwd"​, ​"tmp_passwd"​)

	​ 	 chmod(0666, ​"tmp_passwd"​)

	​ 	 cp_r(​"/usr/include/net/"​, ​"headers"​)

	​ 	 rm(​"tmp_passwd"​) ​# Tidy up​

	​ 	 rm_rf(​"headers"​)

	​ 	​end​

Produces:
	​ 	cd /tmp

	​ 	cp /etc/passwd tmp_passwd

	​ 	chmod 666 tmp_passwd

	​ 	cp -r /usr/include/net/ headers

	​ 	rm tmp_passwd

	​ 	rm -rf headers

	​ 	cd -

Library Find: Traverse Directory Trees

 The ​Find​ module supports the top-down traversal of a set of file
 paths, given as arguments to the
 ​find​
 method. If an argument
 is a file, its name is passed to the block associated with the
 call. If it’s a directory, then its name and the name of all its files
 and subdirectories will be passed in. If no block is
 associated with the call, an ​Enumerator​ is returned.

 Within the block, the method
 ​prune​
 may be called, which skips
 the current file or directory, restarting the
 loop with the next directory. If the current file is a directory,
 that directory will not be recursively entered. In the following example,
 we don’t list the contents of the local Subversion cache directories:

	​ 	require ​'find'​

	​ 	Find.find(​"/etc/passwd"​, ​"code/ducktyping"​) ​do​ |f|

	​ 	 type = ​case​

	​ 	 ​when​ File.file?(f) ​then​ ​"File: "​

	​ 	 ​when​ File.directory?(f) ​then​ ​"Dir: "​

	​ 	 ​else​ ​"?"​

	​ 	 ​end​

	​ 	 puts ​"​#{type}​ ​#{f}​"​

	​ 	 Find.prune ​if​ f =~ /.svn/

	​ 	​end​

Produces:
	​ 	File: /etc/passwd

	​ 	Dir: code/ducktyping

	​ 	Dir: code/ducktyping/.svn

	​ 	File: code/ducktyping/addcust.rb

	​ 	File: code/ducktyping/roman3.rb

	​ 	File: code/ducktyping/testaddcust1.rb

	​ 	File: code/ducktyping/testaddcust2.rb

	​ 	File: code/ducktyping/testaddcust3.rb

Library Forwardable: Object Delegation

 ​Forwardable​ provides a mechanism to allow classes to delegate
 named method calls to other objects.

	Delegator

	

	This simple symbol table uses a hash, exposing
	a subset of the hash’s methods:

	​ 	require ​'forwardable'​

	​ 	

	​ 	​class​ SymbolTable

	​ 	 extend Forwardable

	​ 	 def_delegator(:@hash, :[], :lookup)

	​ 	 def_delegator(:@hash, :[]=, :add)

	​ 	 def_delegators(:@hash, :size, :has_key?)

	​ 	 ​def​ initialize

	​ 	 @hash = Hash.new

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	st = SymbolTable.new

	​ 	st.add(​'cat'​, ​'feline animal'​) ​# => "feline animal"​

	​ 	st.add(​'dog'​, ​'canine animal'​) ​# => "canine animal"​

	​ 	st.add(​'cow'​, ​'bovine animal'​) ​# => "bovine animal"​

	​ 	

	​ 	st.has_key?(​'cow'​) ​# => true​

	​ 	st.lookup(​'dog'​) ​# => "canine animal"​

	

	Forwards can also be defined for individual objects by
	extending them with the
	​SingleForwardable​
	module. It’s hard to think of a good reason to use this
	feature, so here’s a silly one:

	​ 	require ​'forwardable'​

	​ 	

	​ 	TRICKS = [​"roll over"​, ​"play dead"​]

	​ 	

	​ 	dog = ​"rover"​

	​ 	dog.extend SingleForwardable

	​ 	dog.def_delegator(:TRICKS, :each, :can)

	​ 	

	​ 	dog.can ​do​ |trick|

	​ 	 puts trick

	​ 	​end​

Produces:
	​ 	roll over

	​ 	play dead

Library GDBM: Interface to GDBM Database
gdbm library available

 Interfaces to the gdbm database
 library.[126]
 Although the DBM library provides generic access to gdbm
 databases, it doesn’t expose some features of the full gdbm interface,
 such as the cache size, synchronization mode, reorganization, and
 locking. Only one process may have a GDBM database open for writing
 (unless locking is disabled).

	DBM
	SDBM

	

	Stores some values into a database and then reads them back. The
	second parameter to the
 ​open​
 method specifies the file mode,
	and the next parameter uses two flags that (1) create the database if it
	doesn’t exist and (2) force all writes to be synced to disk. Create on
	open is the default Ruby gdbm behavior.

	​ 	require ​'gdbm'​

	​ 	

	​ 	GDBM.open(​"data.dbm"​, 0644, GDBM::WRCREAT | GDBM::SYNC) ​do​ |dbm|

	​ 	 dbm[​'name'​] = ​"Walter Wombat"​

	​ 	 dbm[​'dob'​] = ​"1969-12-25"​

	​ 	 dbm[​'uses'​] = ​"Ruby"​

	​ 	​end​

	​ 	

	​ 	GDBM.open(​"data.dbm"​) ​do​ |dbm|

	​ 	 p dbm.keys

	​ 	 p dbm[​'dob'​]

	​ 	 dbm.delete(​'dob'​)

	​ 	 p dbm.keys

	​ 	​end​

	
 Opens a database read-only. The attempt to delete a key would fail.
	​ 	require ​'gdbm'​

	​ 	

	​ 	GDBM.open(​"data.dbm"​, 0, GDBM::READER) ​do​ |dbm|

	​ 	 p dbm.keys

	​ 	 dbm.delete(​'name'​) ​# !! fails !!​

	​ 	​end​

Library GetoptLong: Parse Command-Line Options

 Class ​GetoptLong​ supports GNU-style
 command-line option parsing. Options may be a minus sign (-)
 followed by a single character or may be two minus signs
 (--) followed by a name (a long
 option). Long options may be abbreviated to their shortest
 unambiguous lengths.

 A single internal option may have multiple external representations.
 For example, the option to control verbose output could be any of
 ​-v​, ​--verbose​, or ​--details​. Some options may
 also take an associated value.

 Each internal option is passed to ​GetoptLong​ as an array,
 containing strings representing the option’s external forms and a
 flag. The flag specifies how ​GetoptLong​ is to associate an
 argument with the option (​NO_ARGUMENT​,
 ​REQUIRED_ARGUMENT​, or ​OPTIONAL_ARGUMENT​).

 If the environment variable
 ​POSIXLY_CORRECT​
 is set, all options
 must precede nonoptions on the command line. Otherwise, the default
 behavior of ​GetoptLong​ is to reorganize the command line to put
 the options at the front. This behavior may be changed by setting the attribute
 GetoptLong#ordering= to one of
 ​PERMUTE​, ​REQUIRE_ORDER​, or ​RETURN_IN_ORDER​.
 The environment variable ​POSIXLY_CORRECT​ may not be overridden.

	OptionParser

	​ 	​# Call using "ruby example.rb --size 10k -v -q a.txt b.doc"​

	​ 	

	​ 	require ​'getoptlong'​

	​ 	

	​ 	​# Fake out an initial command line​

	​ 	ARGV.clear.push *​%w(--size 10k -v -q a.txt b.doc)​

	​ 	

	​ 	​# specify the options we accept and initialize​

	​ 	​# the option parser​

	​ 	

	​ 	opts = GetoptLong.new(

	​ 	 [​"--size"​, ​"-s"​, GetoptLong::REQUIRED_ARGUMENT],

	​ 	 [​"--verbose"​, ​"-v"​, GetoptLong::NO_ARGUMENT],

	​ 	 [​"--query"​, ​"-q"​, GetoptLong::NO_ARGUMENT],

	​ 	 [​"--check"​, ​"--valid"​, ​"-c"​, GetoptLong::NO_ARGUMENT]

	​)

	​ 	

	​ 	​# process the parsed options​

	​ 	

	​ 	opts.each ​do​ |opt, arg|

	​ 	 puts ​"Option: ​#{opt}​, arg ​#{arg.inspect}​"​

	​ 	​end​

	​ 	

	​ 	puts ​"Remaining args: ​#{ARGV.join(​', '​)}​"​

Produces:
	​ 	Option: --size, arg "10k"

	​ 	Option: --verbose, arg ""

	​ 	Option: --query, arg ""

	​ 	Remaining args: a.txt, b.doc

Library GServer: Generic TCP Server

 This is a simple framework for writing TCP servers. To use it, subclass the
 ​GServer​ class, set the port (and
 potentially other parameters) in the constructor, and then
 implement a
 ​serve​
 method to handle
 incoming requests.

 GServer manages a thread pool for incoming connections, so your

 ​serve​
 method may be running in multiple
 threads in parallel.

 You can run multiple GServer copies on different ports in the
 same application.

	

	When a connection is made on port 2000, responds with the
	current time as a string. Terminates after handling three
	requests.

	​ 	require ​'gserver'​

	​ 	​class​ TimeServer < GServer

	​ 	 ​def​ initialize

	​ 	 ​super​(2000)

	​ 	 @count = 3

	​ 	 ​end​

	​ 	 ​def​ serve(client)

	​ 	 client.puts Time.now

	​ 	 @count -= 1

	​ 	 stop ​if​ @count.zero?

	​ 	 ​end​

	​ 	​end​

	​ 	server = TimeServer.new

	​ 	server.start.join

	

	You can test this server by reading from localhost on
	port 2000. We use ​curl​ to do this—you could also use
	​telnet​:

	​ 	$ ​curl -s localhost:2000​

	​ 	2013-05-27 12:33:22 -0500

Library IO/console: Add console support to IO objects

 Require ​io/console​, and I/O objects
 associated with terminals gain the methods IO#raw, IO#raw!,
 IO#getch,
 IO#echo=,
 IO#echo?,
 IO#noecho,
 IO#winsize,
 IO#winsize=,
 IO#iflush,
 IO#oflush,
 and IO#ioflush.
 The ​IO​ class also gains a singleton method,
 IO.console, which returns an I/O object
 connected to the controlling terminal of the process.

	

	Prompt for a password with no echo.

	​ 	require ​'io/console'​

	​ 	password = STDIN.noecho ​do​

	​ 	 print ​"Your password: "​

	​ 	 gets

	​ 	​end​

	

	What’s the size of the controlling terminal?

	​ 	require ​"io/console"​

	​ 	IO.console.winsize ​# => [22, 137]​

Library IO/nonblock: Turn blocking I/O on and off

 If a program requires ​io/nonblock​, I/O objects gain
 the methods IO#nonblock,
 IO#nonblock?,
 and IO#nonblock=. The
 first takes a block, and runs that block with the given file
 description in nonblocking mode. The second lets you query the
 blocking status of a file descriptor, and the last lets you turn
 blocking on and off. You’ll probably want to investigate IO.select, as you’ll need it to tell when the file
 cn be read or written.

Library IO/Wait: Check for Pending Data to Be Read
FIONREAD feature in ioctl(2)

 Including the library
 ​io/wait​ adds the methods IO#nread,
 IO#ready?,
 and IO#wait to
 the standard ​IO​ class. These allow an
 ​IO​ object opened on a stream (not a file)
 to be queried to see whether data is available to be read without
 reading it and to wait for a given number of bytes to become
 available.

	

	Sets up a pipe between two processes and writes 10 bytes at a
	time into it. Periodically sees how much data is available.

	​ 	require ​'io/wait'​

	​ 	

	​ 	reader, writer = IO.pipe

	​ 	

	​ 	​if​ (pid = fork)

	​ 	 writer.close

	​ 	 8.times ​do​

	​ 	 sleep 0.03

	​ 	 ​if​ reader.ready?

	​ 	 len = reader.nread

	​ 	 puts ​"​#{len}​ bytes available: ​#{reader.sysread(len)}​"​

	​ 	 ​else​

	​ 	 puts ​"No data available"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	 Process.waitpid(pid)

	​ 	​else​

	​ 	 reader.close

	​ 	 5.times ​do​ |n|

	​ 	 sleep 0.04

	​ 	 writer.write n.to_s * 10

	​ 	 ​end​

	​ 	 writer.close

	​ 	​end​

Produces:
	​ 	No data available

	​ 	10 bytes available: 0000000000

	​ 	10 bytes available: 1111111111

	​ 	10 bytes available: 2222222222

	​ 	No data available

	​ 	10 bytes available: 3333333333

	​ 	10 bytes available: 4444444444

	​ 	No data available

Library IPAddr: Represent and Manipulate IP Addresses

 Class ​IPAddr​ holds and manipulates Internet
 Protocol (IP) addresses. Each address contains three parts: an
 address, a mask, and an address family. The family will typically
 be ​AF_INET​
 for IPv4 and IPv6 addresses. The class contains methods for
 extracting parts of an address, checking for IPv4-compatible
 addresses (and IPv4-mapped IPv6 addresses), testing whether an
 address falls within a subnet, and performing many other functions. It is also
 interesting in that it contains as data its own unit tests.

	​ 	require ​'ipaddr'​

	​ 	

	​ 	v4 = IPAddr.new(​'192.168.23.0/24'​)

	​ 	v4 ​# => #<IPAddr: IPv4:192.168.23.0/ 255.255.255.0>​

	​ 	v4.mask(16) ​# => #<IPAddr: IPv4:192.168.0.0/ 255.255.0.0>​

	​ 	v4.reverse ​# => "0.23.168.192.in-addr.arpa"​

	​ 	v6 = IPAddr.new(​'3ffe:505:2::1'​)

	​ 	v6 ​# => #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/​

	​ 	 ​# .. ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>​

	​ 	v6.mask(48) ​# => #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/​

	​ 	 ​# .. ffff:ffff:ffff:0000:0000:0000:0000:0000>​

	​ 	

	​ 	​# the value for 'family' is OS dependent. This​

	​ 	​# value is for OS X​

	​ 	v6.family ​# => 30​

	​ 	

	​ 	other = IPAddr.new(​"192.168.23.56"​)

	​ 	v4.include?(other) ​# => true​

Library irb: Interactive Ruby

 The irb library is most commonly associated with the console
 command ​irb​. However, you can also
 start an irb session from within your running application. A
 common technique is to trap a signal and start irb in the handler.

 The following program sets up a signal handler that runs irb
 when the user hits ^C. The user can change the value of the instance
 variable ​@value​. When they exit from irb, the original program
 continues to run with that new value.

	sl_irb/run_irb.rb
	​ 	require ​'irb'​

	​ 	

	​ 	trap ​"INT"​ ​do​

	​ 	 IRB.start

	​ 	​end​

	​ 	

	​ 	count = 0

	​ 	loop ​do​

	​ 	 count += 1

	​ 	 puts count

	​ 	 puts ​"Value = ​#{@value}​"​ ​if​ ​defined?​ @value

	​ 	 sleep 1

	​ 	​end​

 Here’s a simple session using it:

	​ 	$ ​ruby code/sl_irb/run_irb.rb​

	​ 	1

	​ 	2

	​ 	3

	​ 	^Cruby-1.9.2-p0 > @value = "wibble"

	​ 	 => "wibble"

	​ 	ruby-1.9.2-p0 > exit

	​ 	4

	​ 	Value = wibble

	​ 	5

	​ 	Value = wibble

	​ 	. . .

Library json: Generate and Parse JSON Format

 JSON is a language-independent data interchange format
 based on key/value pairs (hashes in Ruby) and sequences of values
 (arrays in
 Ruby).[127]
 JSON is frequently used to exchange data between JavaScript
 running in browsers and server-based applications. JSON is not a
 general-purpose object marshaling format. Although you can add

 ​to_json​
 methods to your own classes, you
 will lose interoperability.

	yaml

	
 Serializes a data structure into a string and writes that to a file:
	​ 	require ​'json'​

	​ 	data = { name: ​'dave'​, address: [​'tx'​, ​'usa'​], age: 17 }

	​ 	serialized = data.to_json

	​ 	serialized ​# => {"name":"dave","address":["tx","usa"],"age":17}​

	​ 	File.open(​"data"​, ​"w"​) {|f| f.puts serialized}

	
 Reads the serialized data from the file and reconstitutes it:
	​ 	require ​'json'​

	​ 	serialized = File.read(​"data"​)

	​ 	data = JSON.parse(serialized)

	​ 	data ​# => {"name"=>"dave", "address"=>["tx", "usa"], "age"=>17}​

	

	The methods
 ​j​
 and
	
 ​jj​
 convert their argument to JSON and
	write the result to ​STDOUT​
	(​jj​ prettyprints). This can be useful
	in irb.

	​ 	require ​'json'​

	​ 	data = { name: ​'dave'​, address: [​'tx'​, ​'usa'​], age: 17 }

	​ 	puts ​"Regular"​

	​ 	j data

	​ 	puts ​"Pretty"​

	​ 	jj data

Produces:
	​ 	Regular

	​ 	{"name":"dave","address":["tx","usa"],"age":17}

	​ 	Pretty

	​ 	{

	​ 	 "name": "dave",

	​ 	 "address": [

	​ 	 "tx",

	​ 	 "usa"

	​],

	​ 	 "age": 17

	​ 	}

Library Logger: Application Logging

 Writes log messages to a file or stream. Supports automatic time- or
 size-based rolling of log files. Messages can be assigned severities,
 and only those messages at or above the logger’s current reporting
 level will be logged.

	
 During development, you may want to see all messages:
	​ 	require ​'logger'​

	​ 	log = Logger.new(STDOUT)

	​ 	log.level = Logger::DEBUG

	​ 	log.datetime_format = ​"%H:%M:%S"​

	​ 	log.info(​"Application starting"​)

	​ 	3.times ​do​ |i|

	​ 	 log.debug(​"Executing loop, i = ​#{i}​"​)

	​ 	 temperature = some_calculation(i) ​# defined externally​

	​ 	 ​if​ temperature > 50

	​ 	 log.warn(​"Possible overheat. i = ​#{i}​"​)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	log.info(​"Application terminating"​)

Produces:
	​ 	I, [12:33:23#24712] INFO -- : Application starting

	​ 	D, [12:33:23#24712] DEBUG -- : Executing loop, i = 0

	​ 	D, [12:33:23#24712] DEBUG -- : Executing loop, i = 1

	​ 	D, [12:33:23#24712] DEBUG -- : Executing loop, i = 2

	​ 	W, [12:33:23#24712] WARN -- : Possible overheat. i = 2

	​ 	I, [12:33:23#24712] INFO -- : Application terminating

	
 In deployment, you can turn off anything below INFO:
	​ 	require ​'logger'​

	​ 	log = Logger.new(STDOUT)

	​ 	log.level = Logger::INFO

	​ 	log.datetime_format = ​"%H:%M:%S"​

	​ 	

	​ 	​# as above...​

Produces:
	​ 	I, [12:33:23#24714] INFO -- : Application starting

	​ 	W, [12:33:23#24714] WARN -- : Possible overheat. i = 2

	​ 	I, [12:33:23#24714] INFO -- : Application terminating

	

	Logs to a file, which is rotated when it gets to about 10KB.
	Keeps up to five old files.

	​ 	require ​'logger'​

	​ 	log = Logger.new(​"application.log"​, 5, 10*1024)

	​ 	

	​ 	log.info(​"Application starting"​)

	​ 	​# ...​

Library mathn: Unified Numbers

 The ​mathn​ library attempts to bring some
 unity to numbers under Ruby, making classes
 ​Bignum​,
 ​Complex​,
 ​Fixnum​,
 ​Integer​, and
 ​Rational​ work
 and play better together. It automatically includes the libraries
 ​complex​, ​rational​,
 ​matrix​, and ​prime​.

	

	Types will tend to convert between themselves in a more
	natural way (so, for example, ​Complex::I​ squared will
	evaluate to -1, rather than ​Complex[-1,0]​).

	

	Division will tend to produce more accurate results. The
	conventional division operator (​/​) is redefined to
	use
 ​quo​
 , which doesn’t round.

	

	Related to the previous point, rational numbers will be used
	in preference to floats when possible. Dividing one by two
	results in the rational number
	1/2, rather
	than 0.5 (or 0, the result of normal integer division).

	Matrix
	Rational
	Complex
	Prime

	
 Without ​mathn​:
	​ 	require ​'matrix'​

	​ 	36/16 ​# => 2​

	​ 	Math.sqrt(36/16) ​# => 1.4142135623730951​

	​ 	

	​ 	Complex::I * Complex::I ​# => (-1+0i)​

	​ 	

	​ 	(36/16)**-2 ​# => 1/4​

	​ 	(-36/16)**-2 ​# => 1/9​

	​ 	

	​ 	(36/16)**(1/2) ​# => 1​

	​ 	(-36/16)**(1/2) ​# => 1​

	​ 	

	​ 	(36/16)**(-1/2) ​# => 1/2​

	​ 	(-36/16)**(-1/2) ​# => -1/3​

	​ 	

	​ 	Matrix.diagonal(6,7,8)/3 ​# => Matrix[[2, 0, 0], [0, 2, 0], [0, 0, 2]]​

	
 With ​mathn​:
	​ 	36/16 ​# => 9/4​

	​ 	Math.sqrt(36/16) ​# => 3/2​

	​ 	

	​ 	Complex::I * Complex::I ​# => -1​

	​ 	

	​ 	(36/16)**-2 ​# => 16/81​

	​ 	(-36/16)**-2 ​# => 16/81​

	​ 	

	​ 	(36/16)**(1/2) ​# => 3/2​

	​ 	(-36/16)**(1/2) ​# => (9.184850993605148e-17+1.5i)​

	​ 	

	​ 	(36/16)**(-1/2) ​# => 2/3​

	​ 	(-36/16)**(-1/2) ​# => (4.082155997157844e-17-0.6666666666666666i)​

	​ 	

	​ 	Matrix.diagonal(6,7,8)/3 ​# => Matrix[[2, 0, 0], [0, 7/3, 0], [0, 0, 8/3]]​

Library Matrix: Matrix and Vector Manipulation

 The matrix library defines classes
 ​Matrix​ and
 ​Vector​,
 representing rectangular matrices and vectors. As well as the normal
 arithmetic operations, they provide methods for matrix-specific
 functions (such as rank, inverse, and determinants) and a number of
 constructor methods (for creating special-case matrices—zero,
 identity, diagonal, singular, and vector).

 As of Ruby 1.9, matrices use
 ​quo​

 internally for division, so rational numbers may be returned as a
 result of integer division. In prior versions of Ruby, you’d need
 to include the mathn library to achieve this.

	​ 	require ​'matrix'​

	​ 	

	​ 	m1 = Matrix[[2, 1], [-1, 1]]

	​ 	

	​ 	m1[0,1] ​# => 1​

	​ 	

	​ 	m1.inv ​# => Matrix[[1/3, -1/3], [1/3, 2/3]]​

	​ 	

	​ 	m1 * m1.inv ​# => Matrix[[1/1, 0/1], [0/1, 1/1]]​

	​ 	

	​ 	m1.determinant ​# => 3​

	​ 	

	​ 	m1.singular? ​# => false​

	​ 	

	​ 	v1 = Vector[3, 4] ​# => Vector[3, 4]​

	​ 	

	​ 	v1.covector ​# => Matrix[[3, 4]]​

	​ 	

	​ 	m1 * v1 ​# => Vector[10, 1]​

	​ 	

	​ 	m2 = Matrix[[1,2,3], [4,5,6], [7,8,9]]

	​ 	

	​ 	m2.minor(1, 2, 1, 2) ​# => Matrix[[5, 6], [8, 9]]​

Library MiniTest: Unit Testing Framework

 New in Ruby 1.9, ​MiniTest​ is now
 the standard unit testing framework supplied with Ruby. The
 minitest library contains classes for unit
 tests, mock objects, and a (trivial) subset of RSpec-style testing
 syntax.

 The unit testing framework is similar to the original Test::Unit
 framework. However, if you want functionality that is the same as
 Test::Unit, use the Test::Unit wrappers for
 ​MiniTest​—simply ​require "test/unit"​
 as normal.

 Chapter 13, ​Unit Testing​ contains a tutorial on unit
 testing with Ruby.

Library Monitor: Monitor-Based Synchronization

 Monitors are a mutual-exclusion mechanism. They allow separate threads
 to define shared resources that will be accessed exclusively, and
 they provide a mechanism for a thread to wait for resources to become
 available in a controlled way.

 The monitor library actually defines three
 separate ways of using monitors: by subclassing, as a mixin,
 and as a extension to a particular object. In this section, we
 show the mixin form of ​Monitor​. The
 subclassing form is effectively identical. In both it and
 when including
 ​MonitorMixin​
 in an existing class, it is essential to invoke

 ​super​
 in the class’s

 ​initialize​
 method.

	Thread

	​ 	​# This example would be better written using fibers.​

	​ 	require ​'monitor'​

	​ 	require ​'mathn'​

	​ 	

	​ 	numbers = []

	​ 	numbers.extend(MonitorMixin)

	​ 	number_added = numbers.new_cond

	​ 	

	​ 	consumer = Thread.new ​do​ ​# Reporter thread​

	​ 	 5.times ​do​

	​ 	 numbers.synchronize ​do​

	​ 	 number_added.wait_while { numbers.empty? }

	​ 	 puts numbers.shift

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	generator = Thread.new ​do​ ​# Prime number generator thread​

	​ 	 primes = Prime.each

	​ 	 5.times ​do​

	​ 	 numbers.synchronize ​do​

	​ 	 numbers << primes.next

	​ 	 number_added.signal

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	generator.join

	​ 	consumer.join

Produces:
	​ 	2

	​ 	3

	​ 	5

	​ 	7

	​ 	11

Library Mutex_m: Mutex Mix-In

 ​mutex_m​ is a variant of class
 ​Mutex​
 that allows mutex facilities to be
 mixed into any object.

 The ​Mutex_m​ module defines methods that
 correspond to those in ​Mutex​ but with the
 prefix ​mu_​ (so that
 ​lock​
 is defined
 as
 ​mu_lock​
 and so on). These are then aliased to the original
 ​Mutex​ names.

	Mutex
	Thread

	​ 	require ​'mutex_m'​

	​ 	

	​ 	​class​ Counter

	​ 	 include Mutex_m

	​ 	 attr_reader :count

	​ 	 ​def​ initialize

	​ 	 @count = 0

	​ 	 ​super​

	​ 	 ​end​

	​ 	 ​def​ tick

	​ 	 lock

	​ 	 @count += 1

	​ 	 unlock

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	c = Counter.new

	​ 	

	​ 	t1 = Thread.new { 100_000.times { c.tick } }

	​ 	t2 = Thread.new { 100_000.times { c.tick } }

	​ 	

	​ 	t1.join

	​ 	t2.join

	​ 	

	​ 	c.count ​# => 200000​

Library Net::FTP: FTP Client

 The net/ftp library implements a File
 Transfer Protocol (FTP) client. As well as data transfer commands
 (​getbinaryfile​, ​gettextfile​, ​list​,
 ​putbinaryfile​, and ​puttextfile​), the library
 supports the full complement of server commands (​acct​,
 ​chdir​, ​delete​, ​mdtm​, ​mkdir​,
 ​nlst​, ​rename​, ​rmdir​, ​pwd​,
 ​size​, ​status​, and ​system​). Anonymous
 and password-authenticated sessions are supported. Connections may
 be active or passive.

	open-uri

	​ 	require ​'net/ftp'​

	​ 	

	​ 	ftp = Net::FTP.new(​'ftp.ruby-lang.org'​)

	​ 	ftp.login

	​ 	ftp.chdir(​'pub/ruby/doc'​)

	​ 	puts ftp.list(​'*txt'​)

	​ 	ftp.getbinaryfile(​'MD5SUM.txt'​, ​'md5sum.txt'​, 1024)

	​ 	ftp.close

	​ 	puts File.read(​'md5sum.txt'​)

 ​produces:​

	​ 	-rw-rw-r-- 1 1027 100 12149 Sep 10 06:02 MD5SUM.txt

	​ 	-rw-rw-r-- 1 1027 100 13565 Sep 10 06:03 SHA1SUM.txt

	​ 	d529768c828c930c49b3766d13dc1f2c ruby-man-1.4.6-jp.tar.gz

	​ 	8eed63fec14a719df26247fb8384db5e ruby-man-1.4.6.tar.gz

	​ 	623b5d889c1f15b8a50fe0b3b8ba4b0f ruby-man-ja-1.6.6-20011225-rd.tar.gz

	​ 	5f37ef2d67ab1932881cd713989af6bf ruby-man-ja-html-20050214.tar.bz2

	​ 	e9949b2023a63b6259b02bed4fb13064 ruby-man-ja-html-20050214.tar.gz

	​ 	. . .

Library Net::HTTP: HTTP Client

 The net/http library provides a simple client to fetch headers
 and web page contents using the HTTP and HTTPS protocols.

 The
 ​get​

 ​post​
 and
 ​head​
 methods return
 a response object, with the content of the response accessible
 through the response’s
 ​body​
 method.

	OpenSSL
	open-uri
	URI

	

	Opens a connection and fetches a page, displaying the response
	code and message, header information, and some of the body:

	​ 	require ​'net/http'​

	​ 	

	​ 	Net::HTTP.start(​'www.pragprog.com'​) ​do​ |http|

	​ 	 response = http.get(​'/categories/new'​)

	​ 	 puts ​"Code = ​#{response.code}​"​

	​ 	 puts ​"Message = ​#{response.message}​"​

	​ 	 response.each {|key, val| printf ​"%-14s = %-40.40s\n"​, key, val }

	​ 	 p response.body[0, 55]

	​ 	​end​

Produces:
	​ 	Code = 302

	​ 	Message = Found

	​ 	content-type = text/html; charset=utf-8

	​ 	date = Mon, 27 May 2013 17:36:21 GMT

	​ 	location = http://pragprog.com/categories/new

	​ 	server = nginx/1.2.6

	​ 	status = 302 Found

	​ 	x-request-id = 1c76c5446f0a1dd001ceb768f2611364

	​ 	x-runtime = 0.004833

	​ 	x-ua-compatible = IE=Edge,chrome=1

	​ 	content-length = 100

	​ 	connection = keep-alive

	​ 	"<html><body>You are being <a href=\"http://pragprog.com/"

	

	Fetches a single page, displaying the response code and message,
	header information, and some of the body:

	​ 	require ​'net/http'​

	​ 	

	​ 	response = Net::HTTP.get_response(​'www.pragprog.com'​,

	​ 	 ​'/categories/new'​)

	​ 	puts ​"Code = ​#{response.code}​"​

	​ 	puts ​"Message = ​#{response.message}​"​

	​ 	response.each {|key, val| printf ​"%-14s = %-40.40s\n"​, key, val }

	​ 	p response.body[0, 55]

Produces:
	​ 	Code = 302

	​ 	Message = Found

	​ 	content-type = text/html; charset=utf-8

	​ 	date = Mon, 27 May 2013 17:36:21 GMT

	​ 	location = http://pragprog.com/categories/new

	​ 	server = nginx/1.2.6

	​ 	status = 302 Found

	​ 	x-request-id = ab9de753032bb022cbd33fefbe030f56

	​ 	x-runtime = 0.005468

	​ 	x-ua-compatible = IE=Edge,chrome=1

	​ 	content-length = 100

	​ 	connection = keep-alive

	​ 	"<html><body>You are being <a href=\"http://pragprog.com/"

	

	Follows redirections (the ​open-uri​ library does this
	automatically). This code comes from the RDoc documentation.

	​ 	require ​'net/http'​

	​ 	require ​'uri'​

	​ 	

	​ 	 ​def​ fetch(uri_str, limit=10)

	​ 	 fail ​'http redirect too deep'​ ​if​ limit.zero?

	​ 	 puts ​"Trying: ​#{uri_str}​"​

	​ 	 response = Net::HTTP.get_response(URI.parse(uri_str))

	​ 	 ​case​ response

	​ 	 ​when​ Net::HTTPSuccess ​then​ response

	​ 	 ​when​ Net::HTTPRedirection ​then​ fetch(response[​'location'​], limit-1)

	​ 	 ​else​ response.error!

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 response = fetch(​'http://www.ruby-lang.org'​)

	​ 	 p response.body[0, 50]

Produces:
	​ 	Trying: http://www.ruby-lang.org

	​ 	"<html>\n <head>\n <script type=\"text/javascript\""

	

	Searches our site for things about Ruby and lists the
	authors. (This would be tidier using
	Hpricot.)

	​ 	require ​'net/http'​

	​ 	

	​ 	uri = URI.parse(​'http://pragprog.com/search'​)

	​ 	response = Net::HTTP.post_form(uri, ​"q"​ => ​"ruby"​)

	​ 	puts response.body.scan(%r{<p class="by-line">by (.*?)</p>})[0,3]

	​produces:​

	​ 	Caleb Tennis

	​ 	Maik Schmidt

	​ 	Bruce Tate

Library Net::IMAP: Access an IMAP Mail Server

 The Internet Mail Access Protocol (IMAP) is used to allow mail clients
 to access mail servers. It supports plain-text login and the IMAP
 login and CRAM-MD5 authentication mechanisms. Once connected, the
 library supports threading, so multiple interactions with the server
 may take place at the same time.

 The examples that follow are taken with minor modifications from the RDoc
 documentation in the library source file.

 The ​TMail​ gem provides an interface for creating and parsing
 email messages.

	Net::POP

	

	Lists senders and subjects of messages to “dave” in the inbox:

	​ 	require ​'net/imap'​

	​ 	

	​ 	imap = Net::IMAP.new(​'my.mailserver.com'​)

	​ 	imap.authenticate(​'LOGIN'​, ​'dave'​, ​'secret'​)

	​ 	imap.examine(​'INBOX'​)

	​ 	puts ​"Message count: ​#{ imap.responses[​"EXISTS"​]}​"​

	​ 	imap.search([​"TO"​, ​"dave"​]).each ​do​ |message_id|

	​ 	 envelope = imap.fetch(message_id, ​"ENVELOPE"​)[0].attr[​"ENVELOPE"​]

	​ 	 puts ​"​#{envelope.from[0].name}​: \t​#{envelope.subject}​"​

	​ 	​end​

	

	Moves all email messages with a date in April 2008 from the folder
	​Mail/sent-mail​ to
	​Mail/sent-apr08​:

	​ 	 require ​'net/imap'​

	​ 	 imap = Net::IMAP.new(​'my.mailserver.com'​)

	​ 	 imap.authenticate(​'LOGIN'​, ​'dave'​, ​'secret'​)

	​ 	 imap.select(​'Mail/sent-mail'​)

	​ 	 ​if​ ​not​ imap.list(​'Mail/'​, ​'sent-apr08'​)

	​ 	 imap.create(​'Mail/sent-apr08'​)

	​ 	 ​end​

	​ 	 imap.search([​"BEFORE"​, ​"01-May-2008"​,

	​ 	 ​"SINCE"​, ​"1-Apr-2008"​]).each ​do​ |message_id|

	​ 	 imap.copy(message_id, ​"Mail/sent-apr08"​)

	​ 	 imap.store(message_id, ​"+FLAGS"​, [:Deleted])

	​ 	​end​

	​ 	imap.expunge

Library Net::POP: Access a POP Mail Server

 The net/pop library provides a simple client to fetch and
 delete mail on a Post Office Protocol (POP) server.

 The class ​Net::POP3​ is used to access a POP server, returning
 a list of ​Net::POPMail​ objects, one per message stored on the
 server. These ​POPMail​ objects are then used to fetch and/or
 delete individual messages.

 The library also provides class ​APOP​, an
 alternative to the ​POP3​ class that performs
 encrypted authentication.

	​ 	require ​'net/pop'​

	​ 	pop = Net::POP3.new(​'server.ruby-stuff.com'​)

	​ 	pop.start(​'joe'​, ​'secret'​) ​do​ |server|

	​ 	 msg = server.mails[0]

	​ 	

	​ 	 ​# Print the 'From:' header line​

	​ 	 from = msg.header.split(​"\r\n"​).grep(/^From: /)[0]

	​ 	 puts from

	​ 	 puts

	​ 	 puts ​"Full message:"​

	​ 	 text = msg.pop

	​ 	 puts text

	​ 	​end​

Produces:
	​ 	From: dave@facet.ruby-stuff.com (Dave Thomas)

	​ 	

	​ 	Full message:

	​ 	Return-Path: <dave@facet.ruby-stuff.com>

	​ 	Received: from facet.ruby-stuff.com (facet.ruby-stuff.com [10.96.0.122])

	​ 	 by pragprog.com (8.11.6/8.11.6) with ESMTP id i2PJMW701809

	​ 	 for <joe@carat.ruby-stuff.com>; Thu, 25 Mar 2008 13:22:32 -0600

	​ 	Received: by facet.ruby-stuff.com (Postfix, from userid 502)

	​ 	 id 4AF228B1BD; Thu, 25 Mar 2008 13:22:36 -0600 (CST)

	​ 	To: joe@carat.ruby-stuff.com

	​ 	Subject: Try out the new features!

	​ 	Message-Id: <20080325192236.4AF228B1BD@facet.ruby-stuff.com>

	​ 	Date: Thu, 25 Mar 2008 13:22:36 -0600 (CST)

	​ 	From: dave@facet.ruby-stuff.com (Dave Thomas)

	​ 	Status: RO

	​ 	

	​ 	Ruby 1.9 has even more new features, both in

	​ 	the core language and in the supplied libraries.

	​ 	

	​ 	Try it out!

Library Net::SMTP: Simple SMTP Client

 The net/smtp library provides a simple client to send
 electronic mail using the Simple Mail Transfer Protocol (SMTP). It
 does not assist in the creation of the message payload—it simply
 delivers messages once an RFC 822 message has been constructed.
 The ​TMail​ gem provides an interface for creating and parsing
 email messages.

	
 Sends an e-mail from a string:
	​ 	require ​'net/smtp'​

	​ 	

	​ 	msg = ​"Subject: Test\n\nNow is the time\n"​

	​ 	Net::SMTP.start(​'pragprog.com'​) ​do​ |smtp|

	​ 	 smtp.send_message(msg, ​'dave@pragprog.com'​, [​'dave'​])

	​ 	​end​

	
 Sends an e-mail using an SMTP object and an adapter:
	​ 	require ​'net/smtp'​

	​ 	

	​ 	Net::SMTP::start(​'pragprog.com'​, 25, ​"pragprog.com"​) ​do​ |smtp|

	​ 	 smtp.open_message_stream(​'dave@pragprog.com'​, ​# from​

	​ 	 [​'dave'​] ​# to​

	​) ​do​ |stream|

	​ 	 stream.puts ​"Subject: Test1"​

	​ 	 stream.puts

	​ 	 stream.puts ​"And so is this"​

	​ 	 ​end​

	​ 	​end​

	

	Sends an e-mail to a server requiring CRAM-MD5 authentication:

	​ 	require ​'net/smtp'​

	​ 	

	​ 	msg = ​"Subject: Test\n\nNow is the time\n"​

	​ 	Net::SMTP.start(​'pragprog.com'​, 25, ​'pragprog.com'​,

	​ 	 ​'user'​, ​'password'​, :cram_md5) ​do​ |smtp|

	​ 	 smtp.send_message(msg, ​'dave@pragprog.com'​, [​'dave'​])

	​ 	​end​

Library Net::Telnet: Telnet Client

 The net/telnet library provides a complete
 implementation of a telnet client and includes features that make
 it a convenient mechanism for interacting with nontelnet services.

	

	Connects to localhost, runs the
	​date​ command, and
	disconnects:

	​ 	require ​'net/telnet'​

	​ 	tn = Net::Telnet.new({})

	​ 	tn.login ​"testuser"​, ​"wibble"​

	​ 	tn.cmd ​"date"​ ​# => "date\nMon May 27 12:33:29 CDT 2013\nlight-boy:~ testuser$ "​

	

	The methods
 ​new​
 ,
	
 ​cmd​
 ,
 ​login​
 ,
	and
 ​waitfor​
 take an optional
	block. If present, the block is passed output from the server
	as it is received by the routine. This can be used to provide
	real-time output, rather than waiting (for example) for a
	login to complete before displaying the server’s response.

	​ 	require ​'net/telnet'​

	​ 	tn = Net::Telnet.new({}) {|str| print str }

	​ 	tn.login(​"testuser"​, ​"wibble"​) {|str| print str }

	​ 	tn.cmd(​"date"​) {|str| print str }

Produces:
	​ 	Trying localhost...

	​ 	Connected to localhost.

	​ 	

	​ 	Darwin/BSD (light-boy.local) (ttys007)

	​ 	

	​ 	login: testuser

	​ 	Password:

	​ 	Last login: Mon May 27 12:33:29 on ttys007

	​ 	light-boy:~ testuser$ date

	​ 	Mon May 27 12:33:29 CDT 2013

	​ 	light-boy:~ testuser$

	

	Query a WHOIS server on port 43.

	​ 	require ​'net/telnet'​

	​ 	tn = Net::Telnet.new(​'Host'​ => ​'whois.domain.com'​,

	​ 	 ​'Port'​ => ​'43'​,

	​ 	 ​'Timeout'​ => 5,

	​ 	 ​'Telnetmode'​ => false)

	​ 	tn.write(​"pragprog.com\r\n"​)

	​ 	puts tn.sock.grep(/ on /)

Produces:
	​ 	Record last updated on 15-Oct-2012.

	​ 	Record expires on 19-Jan-2016.

	​ 	Record created on 19-Jan-1999.

Library NKF: Interface to Network Kanji Filter

 The ​NKF​ module is a wrapper
 around Itaru Ichikawa’s Network Kanji Filter
 (NKF) library (version 1.7). It provides functions to guess at the
 encoding of JIS, EUC, and SJIS streams and to convert from one
 encoding to
 another. Even though Ruby 1.9 now
 supports these encodings natively, this library is still useful
 for guessing encodings.

	

	As of Ruby 1.9, NFK uses the built-in encoding objects:

	​ 	require ​'nkf'​

	​ 	NKF::AUTO ​# => nil​

	​ 	NKF::JIS ​# => #<Encoding:ISO-2022-JP (dummy)>​

	​ 	NKF::EUC ​# => #<Encoding:EUC-JP>​

	​ 	NKF::SJIS ​# => #<Encoding:Shift_JIS>​

	

	Guesses at the encoding of a string. (Thanks to Nobu Nakada
	for the examples on this page.)

	​ 	require ​'nkf'​

	​ 	p NKF.guess(​"Yukihiro Matsumoto"​)

	​ 	p NKF.guess(​"\eB^DbHf$-$R$m\e(B"​)

	​ 	p NKF.guess(​"\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355"​)

	​ 	p NKF.guess(​"\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353"​)

Produces:
	​ 	#<Encoding:US-ASCII>

	​ 	#<Encoding:ISO-2022-JP (dummy)>

	​ 	#<Encoding:EUC-JP>

	​ 	#<Encoding:Shift_JIS>

	

	The NFK.nkf
	method takes two parameters. The first is a set of options,
	passed on to the NKF library. The second is the string to
	translate. The following examples assume that your console is
	set up to accommodate Japanese characters. The text at the end
	of the three ​ruby​ commands is
	Yukihiro Matsumoto in Hiragana.

[image: images/nkf.png]

Library Observable: The Observer Pattern

 The Observer pattern, also known as
 Publish/Subscribe, provides a simple
 mechanism for one object (the source) to inform a set of
 interested third-party objects when its state changes (see
 Design Patterns [GHJV95]). In
 the Ruby implementation, the notifying class mixes in the module
 ​Observable​, which provides the methods for
 managing the associated observer
 objects. The observers must implement the

 ​update​
 method to receive notifications.

	​ 	require ​'observer'​

	​ 	

	​ 	​class​ CheckWaterTemperature ​# Periodically check the water​

	​ 	 include Observable

	​ 	

	​ 	 ​def​ run

	​ 	 last_temp = nil

	​ 	 loop ​do​

	​ 	 temp = Temperature.fetch ​# external class...​

	​ 	 puts ​"Current temperature: ​#{temp}​"​

	​ 	 ​if​ temp != last_temp

	​ 	 changed ​# notify observers​

	​ 	 notify_observers(Time.now, temp)

	​ 	 last_temp = temp

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​class​ Warner

	​ 	 ​def​ initialize(&limit)

	​ 	 @limit = limit

	​ 	 ​end​

	​ 	 ​def​ update(time, temp) ​# callback for observer​

	​ 	 ​if​ @limit.call(temp)

	​ 	 puts ​"--- ​#{time.to_s}​: Temperature outside range: ​#{temp}​"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	checker = CheckWaterTemperature.new

	​ 	checker.add_observer(Warner.new {|t| t < 80})

	​ 	checker.add_observer(Warner.new {|t| t > 120})

	​ 	checker.run

Produces:
	​ 	Current temperature: 83

	​ 	Current temperature: 75

	​ 	--- 2013-05-27 12:33:30 -0500: Temperature outside range: 75

	​ 	Current temperature: 90

	​ 	Current temperature: 134

	​ 	--- 2013-05-27 12:33:30 -0500: Temperature outside range: 134

	​ 	Current temperature: 134

	​ 	Current temperature: 112

	​ 	Current temperature: 79

	​ 	--- 2013-05-27 12:33:30 -0500: Temperature outside range: 79

Library open-uri: Treat FTP and HTTP Resources as Files

 The open-uri library extends Object#open,
 allowing it to
 accept URIs for FTP and HTTP as well as local filenames. Once opened,
 these resources can be treated as if they were local files, accessed
 using conventional ​IO​ methods.
 The URI passed to
 ​open​
 is either a string containing an HTTP
 or FTP URL or a URI object (see the URI library).
 When opening an HTTP resource, the method automatically handles
 redirection and proxies. When using an FTP resource, the method logs
 in as an anonymous user.

 The ​IO​ object returned by

 ​open​
 in these cases is extended to
 support methods that return metainformation from the request:

 ​content_type​
 ,
 ​charset​
 ,
 ​content_encoding​
 ,
 ​last_modified​
 ,
 ​status​
 ,
 ​base_uri​
 ,
 ​meta​
 .

	URI

	​ 	require ​'open-uri'​

	​ 	require ​'pp'​

	​ 	

	​ 	open(​'http://ruby-lang.org'​) ​do​ |f|

	​ 	 puts ​"URI: ​#{f.base_uri}​"​

	​ 	 puts ​"Content-type: ​#{f.content_type}​, charset: ​#{f.charset}​"​

	​ 	 puts ​"Encoding: ​#{f.content_encoding}​"​

	​ 	 puts ​"Last modified: ​#{f.last_modified}​"​

	​ 	 puts ​"Status: ​#{f.status.inspect}​"​

	​ 	 pp f.meta

	​ 	 puts ​"----"​

	​ 	 3.times {|i| puts ​"​#{i}​: ​#{f.gets}​"​ }

	​ 	​end​

Produces:
	​ 	URI: http://www.ruby-lang.org/

	​ 	Content-type: text/html, charset: iso-8859-1

	​ 	Encoding: []

	​ 	Last modified: 2013-05-22 16:31:36 -0500

	​ 	Status: ["200", "OK"]

	​ 	{"date"=>"Mon, 27 May 2013 17:33:23 GMT",

	​ 	 "server"=>"nginx/0.7.67",

	​ 	 "content-type"=>"text/html",

	​ 	 "content-length"=>"748",

	​ 	 "last-modified"=>"Wed, 22 May 2013 21:31:36 GMT",

	​ 	 "accept-ranges"=>"bytes",

	​ 	 "via"=>"1.1 www.ruby-lang.org"}

	​ 	----

	​ 	0: <html>

	​ 	1: <head>

	​ 	2: <script type="text/javascript">

Library Open3: Run Subprocess and Connect to All Streams

 Runs a command in a subprocess. Data written to stdin
 can be read by the subprocess, and data written to standard output
 and standard error in the subprocess will be available on the
 stdout and stderr streams. The subprocess is
 actually run as a grandchild, and as a result, Process#waitall cannot be used to wait for its
 termination (hence the sleep in the following example). Note also
 that you probably cannot assume that the application’s output and
 error streams will not be buffered, so output may not arrive when
 you expect it to arrive.

	​ 	require ​'open3'​

	​ 	

	​ 	​def​ read_from(label, stream)

	​ 	 ​while​ line = stream.gets

	​ 	 puts ​"​#{label}​: ​#{line}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	Open3.popen3(​'bc'​) ​do​ | stdin, stdout, stderr |

	​ 	 t1 = Thread.new { read_from(​'STDOUT'​, stdout) }

	​ 	 t2 = Thread.new { read_from(​'STDERR'​, stderr) }

	​ 	 stdin.puts ​"3 * 4"​

	​ 	 stdin.puts ​"1 / 0"​

	​ 	 stdin.puts ​"2 ^ 5"​

	​ 	 stdin.close

	​ 	 t1.join

	​ 	 t2.join

	​ 	​end​

Produces:
	​ 	STDOUT: 12

	​ 	STDERR: Runtime error (func=(main), adr=3): Divide by zero

	​ 	STDOUT: 32

Library OpenSSL: SSL Library
OpenSSL library available

 The Ruby
 ​OpenSSL​
 extension wraps the
 freely available OpenSSL
 library.[128]
 It provides the Secure Sockets Layer and Transport Layer Security
 (SSL and TLS) protocols, allowing for secure communications over
 networks. The library provides functions for certificate creation
 and management, message signing, and encryption/decryption. It
 also provides wrappers to simplify access to HTTPS servers, along
 with secure FTP. The interface to the
 library is large (roughly 330 methods), but the average Ruby user
 will probably use only a small subset of the library’s
 capabilities.

	Net::FTP
	Net::HTTP
	Socket

	

	Accesses a secure website using HTTPS. Note that SSL is used
	to tunnel to the site, but the requested page also requires
	standard HTTP basic authorization.

	​ 	require ​'net/https'​

	​ 	

	​ 	USER = ​"xxx"​

	​ 	PW = ​"yyy"​

	​ 	

	​ 	site = Net::HTTP.new(​"www.securestuff.com"​, 443)

	​ 	site.use_ssl = true

	​ 	response = site.get2(​"/cgi-bin/cokerecipe.cgi"​,

	​ 	 ​'Authorization'​ => ​'Basic '​ +

	​ 	 [​"​#{USER}​:​#{PW}​"​].pack(​'m'​).strip)

	

	Creates a socket that uses SSL. This isn’t a good example of
	accessing a website. However, it illustrates how a socket can
	be encrypted.

	​ 	require ​'socket'​

	​ 	require ​'openssl'​

	​ 	

	​ 	socket = TCPSocket.new(​"www.secure-stuff.com"​, 443)

	​ 	

	​ 	ssl_context = OpenSSL::SSL::SSLContext.new()

	​ 	

	​ 	​unless​ ssl_context.verify_mode

	​ 	 warn ​"warning: peer certificate won't be verified this session."​

	​ 	 ssl_context.verify_mode = OpenSSL::SSL::VERIFY_NONE

	​ 	​end​

	​ 	sslsocket = OpenSSL::SSL::SSLSocket.new(socket, ssl_context)

	​ 	sslsocket.sync_close = true

	​ 	sslsocket.connect

	​ 	

	​ 	sslsocket.puts(​"GET /secret-info.shtml"​)

	​ 	​while​ line = sslsocket.gets

	​ 	 p line

	​ 	​end​

Library OptionParser: Option Parsing

 ​OptionParser​ is a flexible and extensible
 way to parse command-line arguments. It has a particularly rich
 abstraction of the concept of an option.

	

	An option can have multiple short names (options preceded by a
	single hyphen) and multiple long names (options preceded by
	two hyphens). Thus, an option that displays help may be
	available as ​-h​, ​-?​, ​--help​,
	and ​--about​. Users may abbreviate long option names
	to the shortest nonambiguous prefix.

	

	An option may be specified as having no argument, an optional
	argument, or a required argument. Arguments can be validated
	against patterns or lists of valid values.

	

	Arguments may be returned as objects of any type (not just
	strings). The argument type system is extensible (we add
	​Date​ handling in the example).

	

	Arguments can have one or more lines of descriptive text, used
	when generating usage information.

 Options are specified using the
 ​on​
 and

 ​def​
 methods. These methods take a
 variable number of arguments that cumulatively build a definition
 of each option. The arguments accepted by these methods are:

	​"-x" "-xARG" "-x=ARG" "-x[OPT]"
 "-x[=OPT]" "-x PLACE"​
	

	 Option has short name ​x​. First form has no
	 argument, next two have mandatory argument, next two have
	 optional argument, last specifies argument follows
	 option. The short names may also be specified as a range
	 (such as ​"-[a-c]"​).
	

	​"--​switch​" "--​switch​=ARG"
 "--​switch​=[OPT]" "--​switch​ PLACE"​
	

	 Option has long name ​switch​. First form has no argument, next
	 has a mandatory argument, the next has an optional argument,
	 and the last specifies the argument follows the switch.
	

	​"--no-​switch​"​
	

	 Defines a option whose default value is ​false​.
	

	​"=ARG" "=[OPT]"​
	

	 Argument for this option is mandatory or optional. For
	 example, the following code says there’s an option known by
	 the aliases ​-x​, ​-y​, and ​-z​ that takes a
	 mandatory argument, shown in the usage as ​N​:
	
	​ 	opt.on(​"-x"​, ​"-y"​, ​"-z"​, ​"=N"​)

	​"description"​
	

	 Any string that doesn’t start ​-​ or ​=​ is used
	 as a description for this option in the summary. Multiple
	 descriptions may be given; they’ll be shown on additional
	 lines.
	

	​/pattern/​
	

	 Any argument must match the given pattern.
	

	​array​
	

	 Argument must be one of the values from ​array​.
	

	​proc or method​
	

	 Argument type conversion is performed by the given proc or
	 method (rather than using the block associated with the
	
 ​on​
 or
 ​def​

	 method call).
	

	​ClassName​
	

	 Argument must match that defined for ClassName, which may be
	 predefined or added using OptionParser.accept. Built-in
	 argument classes are
	
	​Object​:
	
Any string. No conversion. This is the default.

	​String​:
	
Any nonempty string. No conversion.

	​Integer​:
	

	 Ruby/C-like integer with optional sign (​0ddd​ is
	 octal, ​0bddd​ binary, ​0xddd​
	 hexadecimal). Converts to
	 ​Integer​.
	

	​Float​:
	
Float number format. Converts to Float.

	​Numeric​:
	

	 Generic numeric format. Converts to
	 ​Integer​ for integers,
	 ​Float​ for floats.
	

	​Array​:
	
Argument must be of list of strings separated by a comma.

	​OptionParser::DecimalInteger​:
	
Decimal integer. Converted to Integer.

	​OptionParser::OctalInteger​:
	
Ruby/C-like octal/hexadecimal/binary integer.

	​OptionParser::DecimalNumeric​:
	

	 Decimal integer/float number. Integers converted to
	 ​Integer​, floats to
	 ​Float​.
	

	​TrueClass, FalseClass​:
	
Boolean switch.

	GetoptLong

	​ 	require ​'optparse'​

	​ 	require ​'date'​

	​ 	

	​ 	​# Add Dates as a new option type​

	​ 	OptionParser.accept(Date, /(​\d​+)-(​\d​+)-(​\d​+)/) ​do​ |d, mon, day, year|

	​ 	 Date.new(year.to_i, mon.to_i, day.to_i)

	​ 	​end​

	​ 	

	​ 	opts = OptionParser.new

	​ 	opts.on(​"-x"​) {|val| puts ​"-x seen"​ }

	​ 	opts.on(​"-s"​, ​"--size VAL"​, Integer) {|val| puts ​"-s ​#{val}​"​ }

	​ 	opts.on(​"-a"​, ​"--at DATE"​, Date) {|val| puts ​"-a ​#{val}​"​ }

	​ 	

	​ 	my_argv = [​"--size"​, ​"1234"​, ​"-x"​, ​"-a"​, ​"12-25-2008"​, ​"fred"​, ​"wilma"​]

	​ 	

	​ 	rest = opts.parse(*my_argv)

	​ 	puts ​"Remainder = ​#{rest.join(​', '​)}​"​

	​ 	puts opts.to_s

Produces:
	​ 	-s 1234

	​ 	-x seen

	​ 	-a 2008-12-25

	​ 	Remainder = fred, wilma

	​ 	Usage: prog [options]

	​ 	 -x

	​ 	 -s, --size VAL

	​ 	 -a, --at DATE

Library OpenStruct: Open (dynamic) Structure

 An open structure is an object whose attributes are created
 dynamically when first assigned. In other words, if obj
 is an instance of an
 ​OpenStruct​,
 then the statement ​obj.abc=1​ will create the attribute
 abc in obj and then assign the value 1 to
 it.

	​ 	require ​'ostruct'​

	​ 	

	​ 	os = OpenStruct.new(​"f1"​ => ​"one"​, :f2 => ​"two"​)

	​ 	os.f3 = ​"cat"​

	​ 	os.f4 = 99

	​ 	os.f1 ​# => "one"​

	​ 	os.f2 ​# => "two"​

	​ 	os.f3 ​# => "cat"​

	​ 	os.f4 ​# => 99​

 ​OpenStruct​ uses

 ​method_missing​
 to intercept calls. This
 might cause a problem, because calls to a method defined in class
 ​Object​ will not invoke

 ​method_missing​
 —they’ll simply call the
 method in ​Object​. In practice, this isn’t a
 problem, because you typically call a setter before calling a
 getting, and when you do call the setter method, ostruct will
 defined getter and setter methods, overriding those in
 ​Object​. Here’s a typical example; because we call
 ​ice.freeze=​ first, the ​freeze=​ and
 ​freeze​ methods will be dynamically created in the
 ostruct, and the getter will work as expected.

	​ 	require ​'ostruct'​

	​ 	

	​ 	ice = OpenStruct.new

	​ 	ice.freeze = ​"yes"​

	​ 	ice.freeze ​# => #<OpenStruct freeze="yes">​

 However, if you don’t first call the setter, the ​freeze​
 getter will not invoke

 ​method_missing​
 —it’ll simply call the
 underlying
 ​freeze​
 method in
 ​Object​.

	​ 	require ​'ostruct'​

	​ 	

	​ 	ice = OpenStruct.new

	​ 	p ice.freeze

	​ 	ice.freeze = ​"yes"​

Produces:
	​ 	#<OpenStruct>

	​ 	prog.rb:5:in `<main>': can't modify frozen OpenStruct (TypeError)

Library Pathname: Representation of File Paths

 A ​Pathname​ represents the absolute or
 relative name of a file. It has two distinct uses. First, it
 allows manipulation of the parts of a file path (extracting
 components, building new paths, and so on). Second (and somewhat
 confusingly), it acts as a façade for some methods in classes
 ​Dir​,
 ​File​, and module
 ​FileTest​,
 forwarding on calls for the file named by the
 ​Pathname​ object.

	File

	
 Path name manipulation:
	​ 	require ​'pathname'​

	​ 	

	​ 	p1 = Pathname.new(​"/usr/bin"​)

	​ 	p2 = Pathname.new(​"ruby"​)

	​ 	p3 = p1 + p2

	​ 	p4 = p2 + p1

	​ 	p3.parent ​# => #<Pathname:/usr/bin>​

	​ 	p3.parent.parent ​# => #<Pathname:/usr>​

	​ 	p1.absolute? ​# => true​

	​ 	p2.absolute? ​# => false​

	​ 	p3.split ​# => [#<Pathname:/usr/bin>, #<Pathname:ruby>]​

	​ 	p5 = Pathname.new(​"testdir"​)

	​ 	puts p5.realpath

	​ 	puts p5.children

Produces:
	​ 	/Users/dave/BS2/published/ruby4/Book/testdir

	​ 	testdir/.svn

	​ 	testdir/config.h

	​ 	testdir/main.rb

	
 Path name as proxy for file and directory status requests:
	​ 	require ​'pathname'​

	​ 	

	​ 	p1 = Pathname.new(​"/usr/bin/ruby"​)

	​ 	p1.file? ​# => true​

	​ 	p1.directory? ​# => false​

	​ 	p1.executable? ​# => true​

	​ 	p1.size ​# => 34752​

	​ 	

	​ 	p2 = Pathname.new(​"testfile"​) ​# => #<Pathname:testfile>​

	​ 	

	​ 	p2.read ​# => "This is line one\nThis is line two\nThis is​

	​ 	 ​# .. line three\nAnd so on...\n"​

	​ 	p2.readlines ​# => ["This is line one\n", "This is line two\n",​

	​ 	 ​# .. "This is line three\n", "And so on...\n"]​

Library PP: Pretty-print Objects

 ​PP​ uses the
 ​PrettyPrint​ library to format the results
 of inspecting Ruby objects. As well as the methods in the class,
 it defines a global function,
 ​pp​
 , which
 works like the existing
 ​p​
 method but
 formats its output.

 ​PP​ has a default layout for all Ruby
 objects. However, you can override the way it handles a class by
 defining the method
 ​pretty_print​
 , which takes a
 ​PP​ object as a parameter. It should use
 that ​PP​ object’s methods

 ​text​
 ,
 ​breakable​
 ,

 ​nest​
 ,
 ​group​
 , and

 ​pp​
 to format its output (see
 ​PrettyPrint​
 for details).

	JSON
	PrettyPrint
	YAML

	

	Compares “p” and “pp”:

	​ 	require ​'pp'​

	​ 	

	​ 	Customer = Struct.new(:name, :sex, :dob, :country)

	​ 	cust = Customer.new(​"Walter Wall"​, ​"Male"​, ​"12/25/1960"​, ​"Niue"​)

	​ 	

	​ 	puts ​"Regular print"​

	​ 	p cust

	​ 	

	​ 	puts ​"\nPretty print"​

	​ 	pp cust

Produces:
	​ 	Regular print

	​ 	#<struct Customer name="Walter Wall", sex="Male", dob="12/25/1960",

	​ 	country="Niue">

	​ 	

	​ 	Pretty print

	​ 	#<struct Customer

	​ 	 name="Walter Wall",

	​ 	 sex="Male",

	​ 	 dob="12/25/1960",

	​ 	 country="Niue">

	

	You can tell ​PP​ not to display an
	object if it has already displayed it:

	​ 	require ​'pp'​

	​ 	

	​ 	a = ​"string"​

	​ 	b = [a]

	​ 	c = [b, b]

	​ 	PP.sharing_detection = false

	​ 	pp c

	​ 	

	​ 	PP.sharing_detection = true

	​ 	pp c

Produces:
	​ 	[["string"], ["string"]]

	​ 	[["string"], [...]]

Library PrettyPrint: General Pretty Printer

 ​PrettyPrint​ implements a pretty printer for structured text. It
 handles details of wrapping, grouping, and indentation. The PP
 library uses ​PrettyPrint​ to generate more legible dumps of Ruby
 objects.

	PP

	The following program prints a chart of Ruby’s classes,
	showing subclasses as a bracketed list following the
	parent. To save some space, we show just the classes in the
	​Numeric​ branch of the tree.

	​ 	require ​'prettyprint'​

	​ 	

	​ 	@children = Hash.new { |h,k| h[k] = Array.new }

	​ 	ObjectSpace.each_object(Class) ​do​ |cls|

	​ 	 @children[cls.superclass] << cls ​if​ cls <= Numeric

	​ 	​end​

	​ 	​def​ print_children_of(printer, cls)

	​ 	 printer.text(cls.name)

	​ 	 kids = @children[cls].sort_by(&:name)

	​ 	 ​unless​ kids.empty?

	​ 	 printer.group(0, ​" ["​, ​"]"​) ​do​

	​ 	 printer.nest(3) ​do​

	​ 	 printer.breakable

	​ 	 kids.each_with_index ​do​ |k, i|

	​ 	 printer.breakable ​unless​ i.zero?

	​ 	 print_children_of(printer, k)

	​ 	 ​end​

	​ 	 ​end​

	​ 	 printer.breakable

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	printer = PrettyPrint.new(STDOUT, 30)

	​ 	print_children_of(printer, Object)

	​ 	printer.flush

Produces:
	​ 	Object [

	​ 	 Numeric [

	​ 	 Complex

	​ 	 Float

	​ 	 Integer [

	​ 	 Bignum

	​ 	 Fixnum

	​]

	​ 	 Rational

	​]

	​]

Library prime: Prime Numbers

 Provides facilities for generating prime numbers, as well as factoring
 numbers. Note that the ​Prime​ class is a singleton.

	mathn

	

	The ​prime​ library extends the number classes to include new
	functionality and adds a new class ​Prime​:

	​ 	require ​'prime'​

	​ 	​# 60 = 2**2 * 3 * 5​

	​ 	60.prime? ​# => false​

	​ 	60.prime_division ​# => [[2, 2], [3, 1], [5, 1]]​

	

	You can also use it to generate sequences of primes:

	​ 	require ​'prime'​

	​ 	Prime.each {|p| ​break​ ​if​ p > 20; print p, ​" "​ }

Produces:
	​ 	2 3 5 7 11 13 17 19

	

	Because ​Prime.each​ returns an enumerator if no block
	is present, we can write the previous example more concisely.

	​ 	require ​'prime'​

	​ 	puts Prime.each.take_while {|p| p <= 20 }.join(​" "​)

Produces:
	​ 	2 3 5 7 11 13 17 19

Library Profile: Profile Execution of a Ruby Program

 The ​profile​ library is a trivial wrapper
 around the
 ​Profiler​
 module, making it easy to profile the execution of an entire
 program. Profiling can be enabled from the command line using the
 ​-r profile​ option or from within a source program by
 requiring the ​profile​
 module.

 Unlike Ruby 1.8, Ruby 1.9 does not profile primitive
 methods such as Fixnum#== and Fixnum#+. This helps boost Ruby’s performance.

	Benchmark
	Profiler__

	​ 	require ​'profile'​

	​ 	​def​ ackerman(m, n)

	​ 	 ​if​ m == 0 ​then​ n+1

	​ 	 ​elsif​ n == 0 ​and​ m > 0 ​then​ ackerman(m-1, 1)

	​ 	 ​else​ ackerman(m-1, ackerman(m, n-1))

	​ 	 ​end​

	​ 	​end​

	​ 	ackerman(3, 3)

Produces:
	​ 	 % cumulative self self total

	​ 	 time seconds seconds calls ms/call ms/call name

	​ 	100.00 0.04 0.04 2432 0.02 0.64 Object#ackerman

	​ 	 0.00 0.04 0.00 1 0.00 0.00 TracePoint#enable

	​ 	 0.00 0.04 0.00 1 0.00 0.00 Module#method_added

	​ 	 0.00 0.04 0.00 1 0.00 0.00 TracePoint#disable

	​ 	 0.00 0.04 0.00 1 0.00 40.00 #toplevel

Library Profiler__: Control Execution Profiling

 The ​Profiler__​ module can be used to
 collect a summary of the number of calls to, and the time spent
 in, methods in a Ruby program. The output is sorted by the total
 time spent in each method. The ​profile​ library is a
 convenience wrapper that profiles an entire
 program.

	Benchmark
	profile

	​ 	require ​'profiler'​

	​ 	

	​ 	​# ...Omit definition of connection and fetching methods...​

	​ 	

	​ 	​def​ calc_discount(qty, price)

	​ 	 ​case​ qty

	​ 	 ​when​ 0..10 ​then​ 0.0

	​ 	 ​when​ 11..99 ​then​ price * 0.05

	​ 	 ​else​ price * 0.1

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​def​ calc_sales_totals(rows)

	​ 	 total_qty = total_price = total_disc = 0

	​ 	 rows.each ​do​ |row|

	​ 	 total_qty += row.qty

	​ 	 total_price += row.price

	​ 	 total_disc += calc_discount(row.qty, row.price)

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	connect_to_database

	​ 	rows = read_sales_data

	​ 	

	​ 	Profiler__::start_profile

	​ 	calc_sales_totals(rows)

	​ 	Profiler__::stop_profile

	​ 	Profiler__::print_profile(STDOUT)

Produces:
	​ 	 % cumulative self self total

	​ 	time seconds seconds calls ms/call ms/call name

	​ 	28.57 0.02 0.02 648 0.03 0.03 Range#include?

	​ 	28.57 0.04 0.02 1 20.00 70.00 Array#each

	​ 	14.29 0.05 0.01 325 0.03 0.37 Object#calc_sales_totals

	​ 	14.29 0.06 0.01 324 0.03 0.12 Object#calc_discount

	​ 	14.29 0.07 0.01 648 0.02 0.05 Range#===

	​ 	 0.00 0.07 0.00 1 0.00 0.00 TracePoint#enable

	​ 	 0.00 0.07 0.00 648 0.00 0.00 Float#<=>

	​ 	 0.00 0.07 0.00 648 0.00 0.00 Fixnum#<=>

	​ 	 0.00 0.07 0.00 648 0.00 0.00 SalesData#price

	​ 	 0.00 0.07 0.00 3 0.00 0.00 Fixnum#+

	​ 	 0.00 0.07 0.00 648 0.00 0.00 SalesData#qty

	​ 	 0.00 0.07 0.00 1 0.00 0.00 TracePoint#disable

	​ 	 0.00 0.07 0.00 1 0.00 70.00 #toplevel

Library PStore: Persistent Object Storage

 The ​PStore​ class provides transactional,
 file-based, persistent storage of Ruby objects. Each
 ​PStore​ can store several object
 hierarchies. Each hierarchy has a root, identified by a key (often
 a string). At the start of a ​PStore​
 transaction, these hierarchies are read from a disk file and made
 available to the Ruby program. At the end of the transaction, the
 hierarchies are written back to the file. Any changes made to
 objects in these hierarchies are therefore saved on disk, to be
 read at the start of the next transaction that uses that file.

 In normal use, a ​PStore​ object is created
 and then is used one or more times to control a
 transaction. Within the body of the transaction, any object
 hierarchies that had previously been saved are made available, and
 any changes to object hierarchies, and any new hierarchies, are
 written back to the file at the end.

	The following example stores two hierarchies in a PStore. The
	first, identified by the key ​"names"​, is an array of
	strings. The second, identified by ​"tree"​, is a
	simple binary tree.

	​ 	require ​'pstore'​

	​ 	require ​'pp'​

	​ 	​class​ T

	​ 	 ​def​ initialize(val, left=nil, right=nil)

	​ 	 @val, @left, @right = val, left, right

	​ 	 ​end​

	​ 	 ​def​ to_a

	​ 	 [@val, @left.to_a, @right.to_a]

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	​def​ T(*args)

	​ 	 T.new(*args)

	​ 	​end​

	​ 	

	​ 	store = PStore.new(​"/tmp/store"​)

	​ 	store.transaction ​do​

	​ 	 store[​'names'​] = [​'Douglas'​, ​'Barenberg'​, ​'Meyer'​]

	​ 	 store[​'tree'​] = T(​'top'​,

	​ 	 T(​'A'​, T(​'B'​)),

	​ 	 T(​'C'​, T(​'D'​, nil, T(​'E'​))))

	​ 	​end​

	​ 	

	​ 	​# now read it back in​

	​ 	store.transaction ​do​

	​ 	 puts ​"Roots: ​#{store.roots.join(​', '​)}​"​

	​ 	 puts store[​'names'​].join(​', '​)

	​ 	 pp store[​'tree'​].to_a

	​ 	​end​

Produces:
	​ 	Roots: names, tree

	​ 	Douglas, Barenberg, Meyer

	​ 	["top",

	​ 	 ["A", ["B", [], []], []],

	​ 	 ["C", ["D", [], ["E", [], []]], []]]

Library PTY: Pseudo-Terminal Interface: Interact with External Processes
Unix with pty support

 Many Unix platforms support a

 ​ pseudo-terminal​

 —a device pair where one end emulates a
 process running on a conventional terminal, and the other end can read
 and write that terminal as if it were a user looking at a screen and
 typing on a keyboard.

 The ​PTY​ library provides the method

 ​spawn​
 , which starts the given
 command (by default a shell), connecting it to one end of a
 pseudo-terminal. It then returns the reader and writer streams
 connected to that terminal, allowing your process to interact with
 the running process.

 Working with pseudo-terminals can be tricky. See IO#expect
 for a convenience method that makes life easier. You might also
 want to track down Ara T. Howard’s
 ​Session​ module for an even simpler approach to driving
 subprocesses.[129]

	expect

 This example runs irb in a subshell and asks it to convert the string “cat” to uppercase:

	​ 	require ​'pty'​

	​ 	require ​'expect'​

	​ 	

	​ 	$expect_verbose = true

	​ 	

	​ 	PTY.spawn(​"irb"​) ​do​ |reader, writer, pid|

	​ 	 reader.expect(/> /)

	​ 	 writer.puts ​"'cat'.upcase"​

	​ 	 reader.expect(​"=> "​)

	​ 	 answer = reader.gets

	​ 	 puts ​"Answer = ​#{answer}​"​

	​ 	​end​

Produces:
	​ 	2.0.0p0 :001 > 'cat'.upcase

	​ 	 => Answer = "CAT"

Library Rational: Rational Numbers

 The ​Rational​
 class is now built in to Ruby. The vestigial
 Rational library simply defines a few aliases for backward
 compatibility. For the classes ​Fixnum​ and
 ​Bignum​, the following aliases are defined:

	Floating-point division
	

	
 ​quof​
 is an alias for
 ​fdiv​
 .

	Rational division
	

	
 ​rdiv​
 is an alias for
 ​quo​
 .

	Exponentiation
	

	
 ​power!​
 and
	
 ​rpower​
 are aliases for
	
 ​**​
 .

Library Readline: Interface to GNU Readline Library
GNU readline
 present

 The ​Readline​ module allows programs to prompt
 for and receive lines of user input. The module allows lines to be edited during
 entry, and command history allows previous commands to be recalled
 and edited. The history can be searched, allowing the user to (for
 example) recall a previous command containing the text
 ​ruby​. Command completion allows context-sensitive
 shortcuts: tokens can be expanded in the command line under
 control of the invoking application. In typical GNU fashion, the
 underlying readline library supports more options than any user
 could need and emulates both vi and emacs key bindings.

 This meaningless program implements a trivial interpreter that can
 increment and decrement a value. It uses the ​Abbrev​
 module to expand abbreviated commands when the Tab key is pressed.

	sl_readline/readline.rb
	​ 	require ​'abbrev'​

	​ 	require ​'readline'​

	​ 	include Readline

	​ 	

	​ 	ABBREV = ​%w{ exit inc dec }​.abbrev

	​ 	Readline.completion_proc = -> string { ABBREV[string] }

	​ 	

	​ 	value = 0

	​ 	loop ​do​

	​ 	 cmd = readline(​"wibble [​#{value}​]: "​, true) || ​"exit"​

	​ 	 ​case​ cmd.strip

	​ 	 ​when​ ​"exit"​ ​then​ ​break​

	​ 	 ​when​ ​"inc"​ ​then​ value += 1

	​ 	 ​when​ ​"dec"​ ​then​ value -= 1

	​ 	 ​else​ puts ​"Invalid command ​#{cmd}​"​

	​ 	 ​end​

	​ 	​end​

	​ 	wibble [0]: inc

	​ 	wibble [1]: <up-arrow> => inc

	​ 	wibble [2]: d<tab> => dec

	​ 	wibble [1]: in<esc><p> => inc

	​ 	wibble [2]: exit

Library Resolv: DNS Client Library

 The resolv library is a pure-Ruby
 implementation of a DNS client—it can be used to convert domain
 names into corresponding IP addresses. It also supports reverse
 lookups and the resolution of names in the local hosts file.

 Loading the additional library resolv-replace insinuates the
 resolv library into Ruby’s socket
 library.

 Basic name lookups are already built-in to the standard
 socket libraries. The resolv library exists
 because, prior to Ruby 1.9, calling the operating system to
 do a name lookup would suspend all interpreter threads. That is no
 longer the case.

Library REXML: XML Processing Library

 REXML is a pure-Ruby XML processing library, including
 DTD-compliant document parsing, XPath querying, and document
 generation. It supports both tree-based and stream-based document
 processing. Because it is written in Ruby, it is available on all
 platforms supporting Ruby. REXML has a full and complex
 interface—this section contains a few small examples.

	
 Assume the file ​demo.xml​ contains this:
	​ 	​<classes​ language=​"ruby"​​>​

	​ 	 ​<class​ name=​"Numeric"​​>​

	​ 	 Numeric represents all numbers.

	​ 	 ​<class​ name=​"Float"​​>​

	​ 	 Floating point numbers have a fraction and a mantissa.

	​ 	 ​</class>​

	​ 	 ​<class​ name=​"Integer"​​>​

	​ 	 Integers contain exact integral values.

	​ 	 ​<class​ name=​"Fixnum"​​>​

	​ 	 Fixnums are stored as machine ints.

	​ 	 ​</class>​

	​ 	 ​<class​ name=​"Bignum"​​>​

	​ 	 Bignums store arbitraty-sized integers.

	​ 	 ​</class>​

	​ 	 ​</class>​

	​ 	 ​</class>​

	​ 	​</classes>​

	
 Reads and processes the XML:
	​ 	require ​'rexml/document'​

	​ 	

	​ 	xml = REXML::Document.new(File.open(​"code/sl_rexml/demo.xml"​))

	​ 	

	​ 	puts ​"Root element: ​#{xml.root.name}​"​

	​ 	print ​"The names of all classes: "​

	​ 	xml.elements.each(​"//class"​) {|c| print c.attributes[​"name"​], ​" "​ }

	​ 	

	​ 	print ​"\nDescription of Fixnum: "​

	​ 	p xml.elements[​"//class[@name='Fixnum']"​].text

Produces:
	​ 	Root element: classes

	​ 	The names of all classes: Numeric Float Integer Fixnum Bignum

	​ 	Description of Fixnum: "\n Fixnums are stored as machine ints.\n "

	

	Reads in a document, adds and deletes elements, and manipulates
	attributes before writing it back out:

	​ 	require ​'rexml/document'​

	​ 	include REXML

	​ 	

	​ 	xml = Document.new(File.open(​"code/sl_rexml/demo.xml"​))

	​ 	

	​ 	cls = Element.new(​"class"​)

	​ 	cls.attributes[​"name"​] = ​"Rational"​

	​ 	cls.text = ​"Represents complex numbers"​

	​ 	

	​ 	​# Remove Integer's children, and add our new node as​

	​ 	​# the one after Integer​

	​ 	int = xml.elements[​"//class[@name='Integer']"​]

	​ 	int.delete_at(1)

	​ 	int.delete_at(2)

	​ 	int.next_sibling = cls

	​ 	

	​ 	​# Change all the 'name' attributes to class_name​

	​ 	xml.elements.each(​"//class"​) ​do​ |c|

	​ 	 c.attributes[​'class_name'​] = c.attributes[​'name'​]

	​ 	 c.attributes.delete(​'name'​)

	​ 	​end​

	​ 	

	​ 	​# and write it out with a XML declaration at the front​

	​ 	xml << XMLDecl.new

	​ 	xml.write(STDOUT, 2)

Produces:
	​ 	<?xml version='1.0'?>

	​ 	<classes language='ruby'>

	​ 	 <class class_name='Numeric'>

	​ 	 Numeric represents all numbers.

	​ 	 <class class_name='Float'>

	​ 	 Floating point numbers have a fraction and a mantissa.

	​ 	 </class>

	​ 	 <class class_name='Integer'>

	​ 	 Integers contain exact integral values.

	​ 	 </class>

	​ 	 <class class_name='Rational'>

	​ 	 Represents complex numbers

	​ 	 </class>

	​ 	 </class>

	​ 	</classes>

Library Rinda: Tuplespace Implementation

 Tuplespaces are a distributed blackboard system. Processes may add
 tuples to the blackboard, and other processes may remove tuples from
 the blackboard that match a certain pattern. Originally presented by
 David Gelernter, tuplespaces offer an
 interesting scheme for distributed cooperation among heterogeneous
 processes.

 ​Rinda​, the Ruby implementation of
 tuplespaces, offers some interesting additions to the concept. In
 particular, the ​Rinda​ implementation uses
 the ​===​ operator to match tuples. This
 means that tuples may be matched using regular expressions, the
 classes of their elements, and the element values.

	DRb

	

	The blackboard is a DRb server that offers a shared
	tuplespace:

	​ 	require ​'rinda/tuplespace'​

	​ 	MY_URI = ​"druby://127.0.0.1:12131"​

	​ 	DRb.start_service(MY_URI, Rinda::TupleSpace.new)

	​ 	DRb.thread.join

	

	The arithmetic agent accepts messages containing an arithmetic
	operator and two numbers. It stores the result back on the
	blackboard.

	​ 	require ​'rinda/rinda'​

	​ 	MY_URI = ​"druby://127.0.0.1:12131"​

	​ 	DRb.start_service

	​ 	ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

	​ 	loop ​do​

	​ 	 op, v1, v2 = ts.take([%r{^[-+/*]$}, Numeric, Numeric])

	​ 	 ts.write([​"result"​, v1.send(op, v2)])

	​ 	​end​

	

	The client places tuples on the blackboard and
	reads back the result of each:

	​ 	require ​'rinda/rinda'​

	​ 	MY_URI = ​"druby://127.0.0.1:12131"​

	​ 	DRb.start_service

	​ 	ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

	​ 	

	​ 	queries = [[​"+"​, 1, 2], [​"*"​, 3, 4], [​"/"​, 8, 2]]

	​ 	queries.each ​do​ |q|

	​ 	 ts.write(q)

	​ 	 ans = ts.take([​"result"​, nil])

	​ 	 puts ​"​#{q[1]}​ ​#{q[0]}​ ​#{q[2]}​ = ​#{ans[1]}​"​

	​ 	​end​

Produces:
	​ 	1 + 2 = 3

	​ 	3 * 4 = 12

	​ 	8 / 2 = 4

Library Ripper: Parse Ruby Source

 The ripper library gives you access to Ruby’s
 parser. It can tokenize input, return lexical tokens, and return a
 nested S-expression. It also supports event-based parsing.

	
 Tokenize a line of Ruby code:
	​ 	require ​"ripper"​

	​ 	content = ​"a=1;b=2;puts a+b"​

	​ 	p Ripper.tokenize(content)

Produces:
	​ 	["a", "=", "1", ";", "b", "=", "2", ";", "puts", " ", "a", "+", "b"]

	
 Does a lexical analysis, returning token types, values, and line and column numbers:
	​ 	require ​"ripper"​

	​ 	require ​"pp"​

	​ 	content = ​"a=1;b=2;puts a+b"​

	​ 	pp Ripper.lex(content)[0,5]

Produces:
	​ 	[[[1, 0], :on_ident, "a"],

	​ 	 [[1, 1], :on_op, "="],

	​ 	 [[1, 2], :on_int, "1"],

	​ 	 [[1, 3], :on_semicolon, ";"],

	​ 	 [[1, 4], :on_ident, "b"]]

	
 Returns the sexp representing a chunk of code:
	​ 	require ​"ripper"​

	​ 	require ​"pp"​

	​ 	content = ​"a=1;b=2;puts a+b"​

	​ 	pp Ripper.sexp(content)

Produces:
	​ 	[:program,

	​ 	 [[:assign, [:var_field, [:@ident, "a", [1, 0]]], [:@int, "1", [1, 2]]],

	​ 	 [:assign, [:var_field, [:@ident, "b", [1, 4]]], [:@int, "2", [1, 6]]],

	​ 	 [:command,

	​ 	 [:@ident, "puts", [1, 8]],

	​ 	 [:args_add_block,

	​ 	 [[:binary,

	​ 	 [:var_ref, [:@ident, "a", [1, 13]]],

	​ 	 :+,

	​ 	 [:var_ref, [:@ident, "b", [1, 15]]]]],

	​ 	 false]]]]

	

	As a (silly) example of event-based lexical analysis, here’s a
	program that finds class definitions and their associated comment
	blocks. For each, it outputs the class name and the comment. It might
	be considered the zeroth iteration of an RDoc-like program.

	The parameter to
 ​parse​
 is an accumulator—it is passed
	between event handlers and can be used to construct the result.

	​ 	require ​'ripper'​

	​ 	

	​ 	​# This class handles parser events, extracting​

	​ 	​# comments and attaching them to class definitions​

	​ 	​class​ BabyRDoc < Ripper::Filter

	​ 	 ​def​ initialize(*)

	​ 	 ​super​

	​ 	 reset_state

	​ 	 ​end​

	​ 	

	​ 	 ​def​ on_default(event, token, output)

	​ 	 reset_state

	​ 	 output

	​ 	 ​end​

	​ 	

	​ 	 ​def​ on_sp(token, output)

	​ 	 output

	​ 	 ​end​

	​ 	 ​alias​ on_nil on_sp

	​ 	

	​ 	 ​def​ on_comment(comment, output)

	​ 	 @comment << comment.sub(/^​\s​*#​\s​*/, ​" "​)

	​ 	 output

	​ 	 ​end​

	​ 	

	​ 	 ​def​ on_kw(name, output)

	​ 	 @expecting_class_name = (name == ​'class'​)

	​ 	 output

	​ 	 ​end​

	​ 	

	​ 	 ​def​ on_const(name, output)

	​ 	 ​if​ @expecting_class_name

	​ 	 output << ​"​#{name}​:\n"​

	​ 	 output << @comment

	​ 	 ​end​

	​ 	 reset_state

	​ 	 output

	​ 	 ​end​

	​ 	

	​ 	 private

	​ 	

	​ 	 ​def​ reset_state

	​ 	 @comment = ​""​

	​ 	 @expecting_class_name = false

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	BabyRDoc.new(File.read(__FILE__)).parse(STDOUT)

Produces:
	​ 	BabyRDoc:

	​ 	 This class handles parser events, extracting

	​ 	 comments and attaching them to class definitions

Library RSS: RSS Feed Generation and Parsing

 Rich Site Summary or RDF Site Summary or Really Simple Syndication—take your
 pick. RSS is the protocol of choice for disseminating news on the
 Internet. The Ruby RSS library supports creating and parsing
 streams compliant with RSS 0.9, RSS 1.0, and RSS 2.0.

	

	Reads and summarizes the latest stories from
 ​http://ruby-lang.org​
 :

	​ 	require ​'rss/2.0'​

	​ 	require ​'open-uri'​

	​ 	

	​ 	open(​'http://ruby-lang.org/en/feeds/news.rss'​) ​do​ |http|

	​ 	 response = http.read

	​ 	 result = RSS::Parser.parse(response, false)

	​ 	 puts ​"Channel: "​ + result.channel.title

	​ 	 result.items.each_with_index ​do​ |item, i|

	​ 	 puts ​"​#{i+1}​. ​#{item.title}​"​ ​if​ i < 3

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Channel: Ruby News

	​ 	1. Ruby 1.9.3-p429 is released

	​ 	2. Ruby 2.0.0-p195 is released

	​ 	3. Object taint bypassing in DL and Fiddle in Ruby (CVE-2013-2065)

	
 Generates some RSS information:
	​ 	require ​'rss/0.9'​

	​ 	

	​ 	rss = RSS::Rss.new(​"0.9"​)

	​ 	chan = RSS::Rss::Channel.new

	​ 	chan.title = ​"The Daily Dave"​

	​ 	chan.description = ​"Dave's Feed"​

	​ 	chan.language = ​"en-US"​

	​ 	chan.link = ​"http://pragdave.pragprog.com"​

	​ 	rss.channel = chan

	​ 	

	​ 	image = RSS::Rss::Channel::Image.new

	​ 	image.url = ​"http://pragprog.com/pragdave.gif"​

	​ 	image.title = ​"PragDave"​

	​ 	image.link = chan.link

	​ 	chan.image = image

	​ 	

	​ 	3.times ​do​ |i|

	​ 	 item = RSS::Rss::Channel::Item.new

	​ 	 item.title = ​"My News Number ​#{i}​"​

	​ 	 item.link = ​"http://pragprog.com/pragdave/story_​#{i}​"​

	​ 	 item.description = ​"This is a story about number ​#{i}​"​

	​ 	 chan.items << item

	​ 	​end​

	​ 	

	​ 	puts rss.to_s

Library Scanf: Input Format Conversion

 Implements a version of the C library

 ​scanf​
 function, which extracts values
 from a string under the control of a format specifier.

 The Ruby version of the library adds a

 ​scanf​
 method to both class
 ​IO​ and class
 ​String​. The
 version in ​IO​ applies the format string to
 the next line read from the receiver. The version in
 ​String​ applies the format string to the
 receiver. The library also adds the global method Object#scanf, which uses as its source the next
 line of standard input.

 Scanf has one main advantage over using regular expressions to
 break apart a string: a regular expression extracts strings,
 whereas
 ​scanf​
 will return objects
 converted to the correct type.

	
 Splits a date string into its constituents:
	​ 	require ​'scanf'​

	​ 	

	​ 	date = ​"2010-12-15"​

	​ 	year, month, day = date.scanf(​"%4d-%2d-%2d"​)

	​ 	year ​# => 2010​

	​ 	month ​# => 12​

	​ 	day ​# => 15​

	​ 	year.class ​# => Fixnum​

	

	The block form of
 ​scanf​
 applies the
	format multiple times to the input string, returning each set
	of results to the block. The numbers are returned as integers,
	not strings:

	​ 	require ​'scanf'​

	​ 	

	​ 	data = ​"cat:7 dog:9 cow:17 walrus:31"​

	​ 	

	​ 	data.scanf(​"%[^:]:%d "​) ​do​ |animal, value|

	​ 	puts ​"A ​#{animal.strip}​ has ​#{value}​"​

	​ 	​end​

Produces:
	​ 	A cat has 7

	​ 	A dog has 9

	​ 	A cow has 17

	​ 	A walrus has 31

	
 Extracts hex numbers:
	​ 	require ​'scanf'​

	​ 	

	​ 	data = ​"decaf bad"​

	​ 	data.scanf(​"%3x%2x%x"​) ​# => [3564, 175, 2989]​

Library SDBM: Interface to SDBM Database

 The SDBM database implements a simple key/value persistence
 mechanism. Because the underlying SDBM library itself is provided
 with Ruby, there are no external dependencies, and SDBM should be
 available on all platforms supported by Ruby. SDBM database keys
 and values must be strings. SDBM databases are effectively
 hashlike.

	DBM
	GDBM

 The example that follows stores a record in a new database and then fetches it
 back. Unlike the DBM library, all values to SDBM must be
 strings (or implement
 ​to_str​
).

	​ 	require ​'sdbm'​

	​ 	require ​'date'​

	​ 	

	​ 	SDBM.open(​"data.dbm"​) ​do​ |dbm|

	​ 	 dbm[​'name'​] = ​"Walter Wombat"​

	​ 	 dbm[​'dob'​] = Date.new(1997, 12,25).to_s

	​ 	 dbm[​'uses'​] = ​"Ruby"​

	​ 	​end​

	​ 	

	​ 	SDBM.open(​"data.dbm"​, nil) ​do​ |dbm|

	​ 	 p dbm.keys

	​ 	 p dbm[​'dob'​]

	​ 	​end​

Produces:
	​ 	["name", "dob", "uses"]

	​ 	"1997-12-25"

Library SecureRandom: Access to Secure Random Number Generators

 Provides access to one of your operating system’s secure random
 number generators. If the OpenSSL library is installed, the module
 uses its
 ​random_bytes​
 method. Otherwise,
 the module looks for and uses ​/dev/urandom​ or
 the
 ​CryptGenRandom​
 method in the Windows
 API.

	
 Generates some random numbers:
	​ 	require ​'securerandom'​

	​ 	​# Random floats such that 0.0 <= rand < 1.0​

	​ 	SecureRandom.random_number(0) ​# => 0.26256698786247024​

	​ 	SecureRandom.random_number(0) ​# => 0.6885743213737645​

	​ 	

	​ 	​# Random integers such that 0 <= rand < 1000​

	​ 	SecureRandom.random_number(1000) ​# => 112​

	​ 	SecureRandom.random_number(1000) ​# => 273​

	

	Generates ten random bytes, returning the result as a hex
	string, a Base64 string, and a string of binary data. A different
	random string is returned for each call.

	​ 	require ​'securerandom'​

	​ 	SecureRandom.hex(10) ​# => "bf4262e94d093ffbb4a7"​

	​ 	SecureRandom.base64(10) ​# => "X/8YpCbCEyO2zA=="​

	​ 	SecureRandom.random_bytes(10) ​# => "\x7FO\0r\r\xC1?\xB7b#"​

Library Set: Implement Various Forms of Set

 A ​Set​ is a
 collection of unique values (where uniqueness is determined using

 ​eql?​
 and

 ​hash​
). Convenience methods let you build
 sets from enumerable objects.

	
 Basic set operations:
	​ 	require ​'set'​

	​ 	

	​ 	set1 = Set.new([:bear, :cat, :deer])

	​ 	

	​ 	set1.include?(:bat) ​# => false​

	​ 	set1.add(:fox) ​# => #<Set: {:bear, :cat, :deer, :fox}>​

	​ 	

	​ 	partition = set1.classify {|element| element.to_s.length }

	​ 	

	​ 	partition ​# => {4=>#<Set: {:bear, :deer}>, 3=>#<Set: {:cat, :fox}>}​

	​ 	

	​ 	set2 = [:cat, :dog, :cow].to_set

	​ 	set1 | set2 ​# => #<Set: {:bear, :cat, :deer, :fox, :dog, :cow}>​

	​ 	set1 & set2 ​# => #<Set: {:cat}>​

	​ 	set1 - set2 ​# => #<Set: {:bear, :deer, :fox}>​

	​ 	set1 ^ set2 ​# => #<Set: {:dog, :cow, :bear, :deer, :fox}>​

	

	Partitions the users in our ​/etc/passwd​ file into subsets
	where members of each subset have adjacent user IDs:

	​ 	require ​'etc'​

	​ 	require ​'set'​

	​ 	

	​ 	users = []

	​ 	Etc.passwd {|u| users << u }

	​ 	

	​ 	related_users = users.to_set.divide ​do​ |u1, u2|

	​ 	 (u1.uid - u2.uid).abs <= 1

	​ 	​end​

	​ 	

	​ 	related_users.each ​do​ |relatives|

	​ 	 relatives.each {|u| print ​"​#{u.uid}​/​#{u.name}​ "​ }

	​ 	 puts ​"\n======="​

	​ 	​end​

Produces:
	​ 	235/_assetcache 234/_krb_anonymous 233/_krb_kerberos 232/_krb_changepw

	​ 	231/_krb_kadmin 230/_krb_krbtgt 229/_avbdeviced 228/_netstatistics 227/_dovenull

	​ 	

	​ 	=======

	​ 	93/_calendar 92/_securityagent 91/_tokend

	​ 	=======

	​ 	202/_coreaudiod 203/_screensaver 201/Guest 200/_softwareupdate

	​ 	=======

	​ 	...

Library Shellwords: Manipulate Shell Lines Using POSIX Semantics

 Given a string representative of a shell command line, splits it into
 word tokens according to POSIX semantics. Also allows you to create
 properly escaped shell lines from individual words.

	

	Spaces between double or single quotes are treated as part of
	a word.

	

	Double quotes may be escaped using a backslash.

	

	Spaces escaped by a backslash are not used to separate words.

	

	Otherwise, tokens separated by whitespace are treated as words.

	​ 	require ​'shellwords'​

	​ 	include Shellwords

	​ 	

	​ 	line = ​%{Code Ruby Be Happy!}​

	​ 	shellwords(line) ​# => ["Code", "Ruby", "Be", "Happy!"]​

	​ 	

	​ 	line = ​%{"Code Ruby" 'Be Happy'!}​

	​ 	shellwords(line) ​# => ["Code Ruby", "Be Happy!"]​

	​ 	

	​ 	line = ​%q{Code\ Ruby "Be Happy"!}​

	​ 	shellwords(line) ​# => ["Code Ruby", "Be Happy!"]​

	​ 	

	​ 	shelljoin([​"Code Ruby"​, ​"Be Happy"​]) ​# => Code\ Ruby Be\ Happy​

 In addition, the library adds
 ​shellsplit​

 and
 ​shelljoin​
 methods to classes
 ​String​ and ​Array​,
 respectively:

	​ 	require ​'shellwords'​

	​ 	include Shellwords

	​ 	​%{Code\\ Ruby Be Happy!}​.shellsplit ​# => ["Code Ruby", "Be", "Happy!"]​

	​ 	[​"Code Ruby"​, ​"Be Happy"​].shelljoin ​# => "Code\\ Ruby Be\\ Happy"​

Library Singleton: The Singleton Pattern

 The Singleton design pattern ensures that only one instance of a
 particular class may be created for the lifetime of a program (see
 Design
 Patterns [GHJV95]).

 The singleton library makes this simple to implement. Mix
 the ​Singleton​ module into each class that is to be a singleton,
 and that class’s
 ​new​
 method will be made private. In its
 place, users of the class call the method
 ​instance​
 , which
 returns a singleton instance of that class.

 In this example, the two instances of ​MyClass​ are the same object:

	​ 	require ​'singleton'​

	​ 	

	​ 	​class​ MyClass

	​ 	

	​ 	 attr_accessor :data

	​ 	 include Singleton

	​ 	​end​

	​ 	

	​ 	a = MyClass.instance ​# => #<MyClass:0x007feb190604d0>​

	​ 	b = MyClass.instance ​# => #<MyClass:0x007feb190604d0>​

	​ 	a.data = 123 ​# => 123​

	​ 	b.data ​# => 123​

	​ 	a.object_id ​# => 70323856933480​

	​ 	b.object_id ​# => 70323856933480​

Library Socket: IP, TCP, Unix, and SOCKS Socket Access

 The ​socket​ extension defines nine
 classes for accessing the socket-level communications of the
 underlying system. All of these classes are (indirect) subclasses
 of class ​IO​, meaning
 that ​IO​’s methods can be used with socket
 connections.

 The hierarchy of socket classes reflects the reality of network
 programming and hence is somewhat confusing. The
 ​BasicSocket​
 class largely contains methods common to data transfer for all
 socket-based connections. It is subclassed to provide
 protocol-specific implementations:
 ​IPSocket​ and
 ​UNIXSocket​
 (for domain sockets). These in turn are subclassed by
 ​TCPSocket​,
 ​UDPSocket​,
 and
 ​SOCKSSocket​.

 ​BasicSocket​ is also subclassed by class
 ​Socket​, which is
 a more generic interface to socket-oriented networking. Although
 classes such as ​TCPSocket​ are specific to
 a protocol, ​Socket​ objects can, with some
 work, be used regardless of protocol.

 ​TCPSocket​,
 ​SOCKSSocket​, and
 ​UNIXSocket​ are each connection
 oriented. Each has a corresponding
 ​​xxxx​Server​ class, which implements the
 server end of a connection.

 The socket libraries are something that you may never use
 directly. However, if you do use them, you’ll need to know the details.
 For that reason, we’ve put a reference section online at

 ​http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents​
 .

 The following code shows a trivial UDP server and client:

	​ 	​# Simple logger prints messages received on UDP port 12121​

	​ 	require ​'socket'​

	​ 	socket = UDPSocket.new

	​ 	socket.bind(​"127.0.0.1"​, 12121)

	​ 	loop ​do​

	​ 	 msg, sender = socket.recvfrom(100)

	​ 	 host = sender[3]

	​ 	 puts ​"​#{Time.now}​: ​#{host}​ '​#{msg}​'"​

	​ 	 STDOUT.flush

	​ 	​end​

	​ 	​# Exercise the logger​

	​ 	require ​'socket'​

	​ 	log = UDPSocket.new

	​ 	log.connect(​"127.0.0.1"​, 12121)

	​ 	log.print ​"Up and Running!"​

	​ 	​# process ... process ..​

	​ 	log.print ​"Done!"​

Produces:
	​ 	2013-05-27 12:33:39 -0500: 127.0.0.1 'Up and Running!'

	​ 	2013-05-27 12:33:39 -0500: 127.0.0.1 'Done!'

Library StringIO: Treat Strings as IO Objects

 In some ways, the distinction between strings and file contents is
 artificial: the contents of a file are basically a string that
 happens to live on disk, not in memory. The
 ​StringIO​
 library aims to unify the two concepts, making strings act as if
 they were opened ​IO​
 objects. Once a string is wrapped in a
 ​StringIO​ object, it can be read from and
 written to as if it were an open file. This can make unit testing
 a lot easier. It also lets you pass strings into classes and
 methods that were originally written to work with files.
 ​StringIO​ objects take their
 encoding from the string you pass in or the default external
 encoding is that no string is passed.

	
 Reads and writes from a string:
	​ 	require ​'stringio'​

	​ 	

	​ 	sio = StringIO.new(​"time flies like an arrow"​)

	​ 	sio.read(5) ​# => "time "​

	​ 	sio.read(5) ​# => "flies"​

	​ 	sio.pos = 19

	​ 	sio.read(5) ​# => "arrow"​

	​ 	sio.rewind ​# => 0​

	​ 	sio.write(​"fruit"​) ​# => 5​

	​ 	sio.pos = 16

	​ 	sio.write(​"a banana"​) ​# => 8​

	​ 	sio.rewind ​# => 0​

	​ 	sio.read ​# => "fruitflies like a banana"​

	
 Uses ​StringIO​ as a testing aid:
	​ 	require ​'stringio'​

	​ 	require ​'csv'​

	​ 	require ​'test/unit'​

	​ 	

	​ 	​class​ TestCSV < Test::Unit::TestCase

	​ 	 ​def​ test_simple

	​ 	 StringIO.open ​do​ |op|

	​ 	 CSV(op) ​do​ |csv|

	​ 	 csv << [1, ​"line 1"​, 27]

	​ 	 csv << [2, nil, 123]

	​ 	 ​end​

	​ 	 assert_equal(​"1,line 1,27\n2,,123\n"​, op.string)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.004047s, 247.0966 tests/s, 247.0966 assertions/s.

	​ 	1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Library StringScanner: Basic String Tokenizer

 ​StringScanner​ objects progress through a string, matching (and
 optionally returning) tokens that match a given pattern. Unlike
 the built-in scan methods, ​StringScanner​ objects maintain a
 current position pointer in the string being examined, so each call
 resumes from the position in the string where the previous call left
 off. Pattern matches are anchored to this previous point.

	
 Implements a simple language:
	​ 	require ​'strscan'​

	​ 	

	​ 	​# Handle the language:​

	​ 	​# set <var> = <value>​

	​ 	​# get <var>​

	​ 	

	​ 	values = {}

	​ 	

	​ 	​while​ line = gets

	​ 	

	​ 	 scanner = StringScanner.new(line.chomp)

	​ 	

	​ 	 scanner.scan(/(get|set)​\s​+/) ​or​ fail ​"Missing command"​

	​ 	 cmd = scanner[1]

	​ 	

	​ 	 var_name = scanner.scan(/​\w​+/) ​or​ fail ​"Missing variable"​

	​ 	

	​ 	 ​case​ cmd

	​ 	 ​when​ ​"get"​

	​ 	 puts ​"​#{var_name}​ => ​#{values[var_name].inspect}​"​

	​ 	

	​ 	 ​when​ ​"set"​

	​ 	 scanner.skip(/​\s​+=​\s​+/) ​or​ fail ​"Missing '='"​

	​ 	 value = scanner.rest

	​ 	 values[var_name] = value

	​ 	 ​else​

	​ 	 fail cmd

	​ 	 ​end​

	​ 	​end​

 Run this from the command line, typing in phrases from the language:
	​ 	$ ​ruby strscan.rb​

	​ 	set a = dave

	​ 	set b = hello

	​ 	get b

	​ 	b => "hello"

	​ 	get a

	​ 	a => "dave"

Library Syslog: Interface to Unix System Logging
Unix
 system with ​syslog​

 The
 ​Syslog​ class is a simple wrapper
 around the Unix syslog(3) library. It allows messages to be
 written at various severity levels to the logging daemon, where
 they are disseminated according to the configuration in
 ​syslog.conf​. Ruby 2.0 adds support for ​Syslog::Logger​, which is compatible with the Logger API.«2.0»

 The following examples assume the log file is
 ​/var/log/system.log​.

	

	Adds to our local system log. We’ll
	log all the levels configured for the user facility for our system
	(which is every level except debug and info messages).

	​ 	require ​'syslog'​

	​ 	log = Syslog.open(​"test"​) ​# "test" is the app name​

	​ 	log.debug(​"Warm and fuzzy greetings from your program"​)

	​ 	log.info(​"Program starting"​)

	​ 	log.notice(​"I said 'Hello!'"​)

	​ 	log.warning(​"If you don't respond soon, I'm quitting"​)

	​ 	log.err(​"You haven't responded after %d milliseconds"​, 7)

	​ 	log.alert(​"I'm telling your mother..."​)

	​ 	log.emerg(​"I'm feeling totally crushed"​)

	​ 	log.crit(​"Aarrgh...."​)

	​ 	 system(​"tail -6 /var/log/system.log"​)

Produces:
	​ 	Sep 16 12:48:44 dave-4 test[35121]: Warm and fuzzy greetings from your program

	​ 	Sep 16 12:48:44 dave-4 test[35121]: Program starting

	​ 	Sep 16 12:48:44 dave-4 test[35121]: I said 'Hello!'

	​ 	Sep 16 12:48:44 dave-4 test[35121]: If you don't respond soon, I'm quitting

	​ 	Sep 16 12:48:44 dave-4 test[35121]: You haven't responded after 7 milliseconds

	​ 	Sep 16 12:48:44 dave-4 test[35121]: I'm telling your mother...

	​ 	Sep 16 12:48:44 dave-4 test[35121]: I'm feeling totally crushed

	​ 	Sep 16 12:48:44 dave-4 test[35121]: Aarrgh....

	
 Logs only errors and above:
	​ 	require ​'syslog'​

	​ 	log = Syslog.open(​"test"​)

	​ 	log.mask = Syslog::LOG_UPTO(Syslog::LOG_ERR)

	​ 	log.debug(​"Warm and fuzzy greetings from your program"​)

	​ 	log.info(​"Program starting"​)

	​ 	log.notice(​"I said 'Hello!'"​)

	​ 	log.warning(​"If you don't respond soon, I'm quitting"​)

	​ 	log.err(​"You haven't responded after %d milliseconds"​, 7)

	​ 	log.alert(​"I'm telling your mother..."​)

	​ 	log.emerg(​"I'm feeling totally crushed"​)

	​ 	log.crit(​"Aarrgh...."​)

	​ 	

	​ 	system(​"tail -4 /var/log/system.log"​)

Produces:
	​ 	Sep 16 12:48:44 dave-4 test[35124]: You haven't responded after 7 milliseconds

	​ 	Sep 16 12:48:44 dave-4 test[35124]: I'm telling your mother...

	​ 	Sep 16 12:48:44 dave-4 test[35124]: I'm feeling totally crushed

	​ 	Sep 16 12:48:44 dave-4 test[35124]: Aarrgh....

Library Tempfile: Temporary File Support

 Class ​Tempfile​ creates managed temporary
 files. Although they behave the same as any other
 ​IO​ objects, temporary files are
 automatically deleted when the Ruby program terminates. Once a
 ​Tempfile​ object has been created, the
 underlying file may be opened and closed a number of times in
 succession.

 ​Tempfile​ does not directly inherit from
 ​IO​. Instead, it delegates calls to a
 ​File​ object. From the programmer’s
 perspective, apart from the unusual
 ​new​
 ,

 ​open,​
 and
 ​close​

 semantics, a ​Tempfile​ object behaves as if
 it were an ​IO​ object.

 If you don’t specify a directory to hold temporary files when you
 create them, the ​tmpdir​ library will be used to find a
 system-dependent location.

	tmpdir

	​ 	require ​'tempfile'​

	​ 	tf = Tempfile.new(​"afile"​)

	​ 	tf.path ​# => "/var/folders/44/j19_ml3n3dx7bwrb_qmbcjyc0000gn/T/afile20130527-24​

	​ 	 ​# .. 867-1greefy"​

	​ 	tf.puts(​"Cosi Fan Tutte"​)

	​ 	tf.close

	​ 	tf.open

	​ 	tf.gets ​# => "Cosi Fan Tutte\n"​

	​ 	tf.close(true)

Library Test::Unit: Unit Testing Framework

 ​Test::Unit​ is a unit testing framework
 based on the original SUnit Smalltalk framework. It provides a
 structure in which unit tests may be organized, selected, and
 run. Tests can be run from the command line or using one of
 several GUI-based interfaces.

 Chapter 13, ​Unit Testing​ contains a tutorial on ​Test::Unit​.

 Maybe we have a simple playlist class, designed to store and
 retrieve songs:

	​ 	require_relative ​'song.rb'​

	​ 	require ​'forwardable'​

	​ 	

	​ 	​class​ Playlist

	​ 	 extend Forwardable

	​ 	 def_delegator(:@list, :<<, :add_song)

	​ 	 def_delegators(:@list, :size, :empty?)

	​ 	 ​def​ initialize

	​ 	 @list = []

	​ 	 ​end​

	​ 	 ​def​ find(title)

	​ 	 @list.find {|song| song.title == title}

	​ 	 ​end​

	​ 	​end​

 We can write unit tests to exercise this class. The ​Test::Unit​
 framework is smart enough to run the tests in a test class if no main
 program is supplied.

	​ 	require ​'test/unit'​

	​ 	require_relative ​'playlist.rb'​

	​ 	

	​ 	​class​ TestPlaylist < Test::Unit::TestCase

	​ 	 ​def​ test_adding

	​ 	 pl = Playlist.new

	​ 	 assert_empty(pl)

	​ 	 assert_nil(pl.find(​"My Way"​))

	​ 	 pl.add_song(Song.new(​"My Way"​, ​"Sinatra"​))

	​ 	 assert_equal(1, pl.size)

	​ 	 s = pl.find(​"My Way"​)

	​ 	 refute_nil(s)

	​ 	 assert_equal(​"Sinatra"​, s.artist)

	​ 	 assert_nil(pl.find(​"Chicago"​))

	​ 	 ​# .. and so on​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	Run options:

	​ 	# Running tests:

	​ 	.

	​ 	Finished tests in 0.004140s, 241.5459 tests/s, 1690.8213 assertions/s.

	​ 	1 tests, 7 assertions, 0 failures, 0 errors, 0 skips

	​ 	

	​ 	ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Library thread: Utility Functionality for Threading

 The thread library adds some utility
 functions and classes for supporting threads. Much of this has
 been superseded by the
 ​Monitor​ class,
 but the thread library contains two classes,
 ​Queue​ and
 ​SizedQueue​,
 that are still useful. Both classes implement a thread-safe queue
 that can be used to pass objects between producers and consumers
 in multiple threads. The
 ​Queue​ object
 implements a unbounded queue. A
 ​SizedQueue​
 is told its capacity; any producer that tries to add an object
 when the queue is at that capacity will block until a consumer has
 removed an object.

 The following example was provided by Robert Kellner. It has three consumers taking objects from an unsized
 queue. Those objects are provided by two producers, which each add three items.

	​ 	require ​'thread'​

	​ 	queue = Queue.new

	​ 	

	​ 	consumers = (1..3).map ​do​ |i|

	​ 	 Thread.new(​"consumer ​#{i}​"​) ​do​ |name|

	​ 	 ​begin​

	​ 	 obj = queue.deq

	​ 	 print ​"​#{name}​: consumed ​#{obj.inspect}​\n"​

	​ 	 ​end​ ​until​ obj == :END_OF_WORK

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	producers = (1..2).map ​do​ |i|

	​ 	 Thread.new(​"producer ​#{i}​"​) ​do​ |name|

	​ 	 3.times ​do​ |j|

	​ 	 queue.enq(​"Item ​#{j}​ from ​#{name}​"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	producers.each(&:join)

	​ 	consumers.size.times { queue.enq(:END_OF_WORK) }

	​ 	consumers.each(&:join)

Produces:
	​ 	consumer 1: consumed "Item 0 from producer 1"

	​ 	consumer 1: consumed "Item 1 from producer 1"

	​ 	consumer 1: consumed "Item 2 from producer 1"

	​ 	consumer 1: consumed "Item 0 from producer 2"

	​ 	consumer 2: consumed "Item 1 from producer 2"

	​ 	consumer 3: consumed "Item 2 from producer 2"

	​ 	consumer 1: consumed :END_OF_WORK

	​ 	consumer 3: consumed :END_OF_WORK

	​ 	consumer 2: consumed :END_OF_WORK

Library ThreadsWait: Wait for Multiple Threads to Terminate

 Class ​ThreadsWait​ handles the termination
 of a group of thread objects. It provides methods to allow you to
 check for termination of any managed thread and to wait for all
 managed threads to terminate.

 The following example kicks off a number of threads that each wait for a
 slightly shorter length of time before terminating and returning their
 thread number. Using ​ThreadsWait​, we can capture these threads as
 they terminate, either individually or as a group.

	​ 	require ​'thwait'​

	​ 	

	​ 	group = ThreadsWait.new

	​ 	

	​ 	​# construct threads that wait for 1 second, .9 second, etc.​

	​ 	​# add each to the group​

	​ 	

	​ 	9.times ​do​ |i|

	​ 	 thread = Thread.new(i) {|index| sleep 1.0 - index/10.0; index }

	​ 	 group.join_nowait(thread)

	​ 	​end​

	​ 	

	​ 	​# any threads finished?​

	​ 	group.finished? ​# => false​

	​ 	

	​ 	​# wait for one to finish​

	​ 	group.next_wait.value ​# => 8​

	​ 	

	​ 	​# wait for 5 more to finish​

	​ 	5.times { group.next_wait } ​# => 5​

	​ 	

	​ 	​# wait for next one to finish​

	​ 	group.next_wait.value ​# => 2​

	​ 	

	​ 	​# and then wait for all the rest​

	​ 	group.all_waits ​# => nil​

Library Time: Extended Functionality for Class Time

 The time library adds functionality to the
 built-in class
 ​Time​, supporting
 date and/or time formats used by RFC 2822 (e-mail),
 RFC 2616 (HTTP), and ISO 8601 (the subset used by
 XML schema).

	​ 	require ​'time'​

	​ 	

	​ 	​# Convert external formats into Time objects​

	​ 	

	​ 	Time.rfc2822(​"Thu, 1 Apr 2010 16:32:45 CST"​) ​# => 2010-04-01 17:32:45 -0500​

	​ 	Time.rfc2822(​"Thu, 1 Apr 2010 16:32:45 -0600"​) ​# => 2010-04-01 17:32:45 -0500​

	​ 	

	​ 	Time.httpdate(​"Thu, 01 Apr 2010 16:32:45 GMT"​) ​# => 2010-04-01 11:32:45 -0500​

	​ 	Time.httpdate(​"Thursday, 01-Apr-04 16:32:45 GMT"​) ​# => 2004-04-01 16:32:45 UTC​

	​ 	Time.httpdate(​"Thu Apr 1 16:32:45 2010"​) ​# => 2010-04-01 16:32:45 UTC​

	​ 	

	​ 	Time.xmlschema(​"2010-04-01T16:32:45"​) ​# => 2010-04-01 16:32:45 -0500​

	​ 	Time.xmlschema(​"2010-04-01T16:32:45.12-06:00"​) ​# => 2010-04-01 22:32:45 UTC​

	​ 	​# Convert time objects into external formats​

	​ 	

	​ 	Time.now.rfc2822 ​# => "Mon, 27 May 2013 12:33:41 -0500"​

	​ 	Time.now.httpdate ​# => "Mon, 27 May 2013 17:33:41 GMT"​

	​ 	Time.now.xmlschema ​# => "2013-05-27T12:33:41-05:00"​

Library Timeout: Run a Block with Timeout

 The Timeout.timeout method takes a parameter
 representing a timeout period in seconds, an optional exception
 parameter, and a block. The block is executed, and a timer is run
 concurrently. If the block terminates before the timeout,

 ​timeout​
 returns the value of the
 block. Otherwise, the exception (default
 ​Timeout::Error​)
 is raised.

	​ 	require ​'timeout'​

	​ 	

	​ 	​for​ snooze ​in​ 1..2

	​ 	 puts ​"About to sleep for ​#{snooze}​"​

	​ 	 ​begin​

	​ 	 Timeout::timeout(1.5) ​do​ |timeout_length|

	​ 	 puts ​"Timeout period is ​#{timeout_length}​"​

	​ 	 sleep(snooze)

	​ 	 puts ​"That was refreshing"​

	​ 	 ​end​

	​ 	 ​rescue​ Timeout::Error

	​ 	 puts ​"Woken up early!!"​

	​ 	 ​end​

	​ 	​end​

Produces:
	​ 	About to sleep for 1

	​ 	Timeout period is 1.5

	​ 	That was refreshing

	​ 	About to sleep for 2

	​ 	Timeout period is 1.5

	​ 	Woken up early!!

 Be careful when using timeouts—you may find them interrupting
 system calls that you cannot reliably restart, resulting in possible
 data loss.

Library Tk: Wrapper for Tcl/Tk
Tk library
 installed

 Of all the Ruby options for creating GUIs, the
 Tk library is probably the most widely supported, running
 on Windows, Linux, Mac OS X, and other Unix-like
 platforms.[130] Although it doesn’t produce the prettiest
 interfaces, Tk is functional and relatively simple to program.

	sl_tk/curves.rb
	​ 	​# encoding: utf-8​

	​ 	require ​'tk'​

	​ 	include Math

	​ 	

	​ 	​def​ plot(val)

	​ 	 Integer(val * 180 + 200)

	​ 	​end​

	​ 	

	​ 	TkRoot.new ​do​ |root|

	​ 	 title ​"Curves"​

	​ 	 geometry ​"400x400"​

	​ 	

	​ 	 TkCanvas.new(root) ​do​ |canvas|

	​ 	 width 400

	​ 	 height 400

	​ 	 pack(​'side'​=>​'top'​, ​'fill'​=>​'both'​, ​'expand'​=>​'yes'​)

	​ 	

	​ 	 points = []

	​ 	 a = 2

	​ 	 b = 3

	​ 	 0.0.step(8, 0.1) ​do​ |t|

	​ 	 x = Math.sin(a*t)

	​ 	 y = Math.cos(b*t)

	​ 	 points << plot(x) << plot(y)

	​ 	 ​end​

	​ 	 TkcLine.new(canvas, *(points), smooth: ​'on'​, width: 10, fill: ​'blue'​)

	​ 	 ​end​

	​ 	​end​

	​ 	Tk.mainloop

 ​produces:​

[image: images/tk_curves.png]

Library tmpdir: System-Independent Temporary Directory Location

 The tmpdir library adds the

 ​tmpdir​
 method to class
 ​Dir​. This method returns the path to a
 temporary directory that ​should​ be writable by the
 current process. (This will not be true if none of the well-known
 temporary directories is writable and if the current working
 directory is also not writable.) Candidate directories include
 those referenced by the environment variables
 ​TMPDIR​, ​TMP​,
 ​TEMP​, and ​USERPROFILE​; the
 directory ​/tmp​; and (on Windows boxes) the
 ​temp​ subdirectory of the Windows or System
 directory.

	​ 	require ​'tmpdir'​

	​ 	

	​ 	Dir.tmpdir ​# => "/var/folders/44/j19_ml3n3dx7bwrb_qmbcjyc0000gn/T"​

	​ 	

	​ 	ENV[​'TMPDIR'​] = ​"/wibble"​ ​# doesn't exist​

	​ 	ENV[​'TMP'​] = ​"/sbin"​ ​# not writable​

	​ 	ENV[​'TEMP'​] = ​"/Users/dave/tmp"​ ​# just right​

	​ 	

	​ 	Dir.tmpdir ​# => "/Users/dave/tmp"​

 The
 ​mktmpdir​
 method can be used to create a new temporary directory:

	​ 	require ​'tmpdir'​

	​ 	

	​ 	name = Dir.mktmpdir

	​ 	

	​ 	​# .. process, process, process ..​

	​ 	

	​ 	Dir.rmdir(name)

Library Tracer: Trace Program Execution

 The tracer library uses Object#set_trace_func
 to trace
 all or part of a Ruby program’s execution. The traced lines show the
 thread number, file, line number, class, event, and source line. The
 events shown are - for a change of line, < for a call, >
 for a return, C for a class definition, and E for the end of a
 definition.

	

	You can trace an entire program by including the tracer
	library from the command line:

	​ 	​class​ Account

	​ 	 ​def​ initialize(balance)

	​ 	 @balance = balance

	​ 	 ​end​

	​ 	 ​def​ debit(amt)

	​ 	 ​if​ @balance < amt

	​ 	 fail ​"Insufficient funds"​

	​ 	 ​else​

	​ 	 @balance -= amt

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​ 	acct = Account.new(100)

	​ 	acct.debit(40)

	​ 	$ ​ruby -r tracer account.rb​

	​ 	#0:prog.rb:15::-: acct = Account.new(100)

	​ 	#0:prog.rb:3:Account:>: def initialize(balance)

	​ 	#0:prog.rb:4:Account:-: @balance = balance

	​ 	#0:prog.rb:5:Account:<: end

	​ 	#0:prog.rb:16::-: acct.debit(40)

	​ 	#0:prog.rb:6:Account:>: def debit(amt)

	​ 	#0:prog.rb:7:Account:-: if @balance < amt

	​ 	#0:prog.rb:10:Account:-: @balance -= amt

	​ 	#0:prog.rb:12:Account:<: end

	

 You can also use tracer objects to trace just a portion of your code and use
 filters to select what to trace:

	​ 	require ​'tracer'​

	​ 	tracer = Tracer.new

	​ 	tracer.add_filter lambda {|event, *rest| event == ​"line"​ }

	​ 	acct = Account.new(100)

	​ 	tracer.on { acct.debit(40) }

Produces:
	​ 	#0:prog.rb:18::-: tracer.on { acct.debit(40) }

	​ 	#0:prog.rb:6:Account:-: if @balance < amt

	​ 	#0:prog.rb:9:Account:-: @balance -= amt

Library TSort: Topological Sort

 Given a set of dependencies between nodes (where each node depends
 on zero or more other nodes and there are no cycles in the graph
 of dependencies), a topological sort will return a list of the
 nodes ordered such that no node follows a node that depends on
 it. One use for this is scheduling tasks, where the order means
 that you complete the dependencies before you start any task
 that depends on them. The ​make​ program
 uses a topological sort to order its execution.

 In the Ruby implementation, you mix in the
 ​TSort​ module
 and define two methods:
 ​tsort_each_node​
 , which yields each node in
 turn, and
 ​tsort_each_child​
 ,
 which, given a node, yields each of that node’s dependencies.

	

	Given the set of dependencies among the steps for making a
	piña colada, what is the optimum order for undertaking the steps?

	​ 	require ​'tsort'​

	​ 	

	​ 	​class​ Tasks

	​ 	 include TSort

	​ 	 ​def​ initialize

	​ 	 @dependencies = {}

	​ 	 ​end​

	​ 	 ​def​ add_dependency(task, *relies_on)

	​ 	 @dependencies[task] = relies_on

	​ 	 ​end​

	​ 	 ​def​ tsort_each_node(&block)

	​ 	 @dependencies.each_key(&block)

	​ 	 ​end​

	​ 	 ​def​ tsort_each_child(node, &block)

	​ 	 deps = @dependencies[node]

	​ 	 deps.each(&block) ​if​ deps

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	tasks = Tasks.new

	​ 	tasks.add_dependency(:add_rum, :open_blender)

	​ 	tasks.add_dependency(:add_pc_mix, :open_blender)

	​ 	tasks.add_dependency(:add_ice, :open_blender)

	​ 	tasks.add_dependency(:close_blender, :add_rum, :add_pc_mix, :add_ice)

	​ 	tasks.add_dependency(:blend_mix, :close_blender)

	​ 	tasks.add_dependency(:pour_drink, :blend_mix)

	​ 	tasks.add_dependency(:pour_drink, :open_blender)

	​ 	puts tasks.tsort

Produces:
	​ 	open_blender

	​ 	add_rum

	​ 	add_pc_mix

	​ 	add_ice

	​ 	close_blender

	​ 	blend_mix

	​ 	pour_drink

Library un: Command-Line Interface to FileUtils

 Why ​un​? When you invoke it from the command line with
 the ​-r​ option to Ruby, it
 spells ​-run​. This pun gives a hint as to the intent of the
 library: it lets you run commands (in this case, a subset of the
 methods in ​FileUtils​) from the command line. In theory this gives
 you an operating system--independent set of file manipulation
 commands, possibly useful when writing portable Makefiles.

	FileUtils

	
 The available commands are as follows:
$ ruby -run -e cp -- <options>* source dest
$ ruby -run -e ln -- <options>* target linkname
$ ruby -run -e mv -- <options>* source dest
$ ruby -run -e rm -- <options>* file
$ ruby -run -e mkdir -- <options>* dirs
$ ruby -run -e rmdir -- <options>* dirs
$ ruby -run -e install -- <options>* source dest
$ ruby -run -e chmod -- <options>* octal_mode file
$ ruby -run -e touch -- <options>* file

	Note the use of ​--​ to tell the Ruby interpreter that options to
	the program follow.

	You can get a list of all available commands with this:

	​ 	$ ​ruby -run -e help​

	For help on a particular command, append the command’s name:

	​ 	$ ​ruby -run -e help mkdir​

Library URI: RFC 2396 Uniform Resource Identifier (URI) Support

 ​URI​ encapsulates the concept of a Uniform
 Resource Identifier (URI), a way of specifying some kind of
 (potentially networked) resource. URIs are a superset of URLs:
 URLs (such as the addresses of web pages) allow specification of
 addresses by location, and URIs also allow specification by name.

 URIs consist of a scheme (such as ​http​, ​mailto​,
 ​ftp​, and so on), followed by structured data identifying
 the resource within the scheme.

 ​URI​ has factory methods that take a URI
 string and return a subclass of URI specific to the scheme. The
 library explicitly supports the ​ftp​, ​http​,
 ​https​, ​ldap​, and ​mailto​ schemes; others
 will be treated as generic URIs. The module also has convenience
 methods to escape and unescape URIs. The class
 ​Net::HTTP​
 accepts URI objects where a URL parameter is expected.

	open-uri
	Net::HTTP

	​ 	require ​'uri'​

	​ 	

	​ 	uri = URI.parse(​"http://pragprog.com:1234/mypage.cgi?q=ruby"​)

	​ 	uri.class ​# => URI::HTTP​

	​ 	uri.scheme ​# => "http"​

	​ 	uri.host ​# => "pragprog.com"​

	​ 	uri.port ​# => 1234​

	​ 	uri.path ​# => "/mypage.cgi"​

	​ 	uri.query ​# => "q=ruby"​

	​ 	

	​ 	uri = URI.parse(​"mailto:ruby@pragprog.com?Subject=help&body=info"​)

	​ 	uri.class ​# => URI::MailTo​

	​ 	uri.scheme ​# => "mailto"​

	​ 	uri.to ​# => "ruby@pragprog.com"​

	​ 	uri.headers ​# => [["Subject", "help"], ["body", "info"]]​

	​ 	

	​ 	uri = URI.parse(​"ftp://dave@anon.com:/pub/ruby;type=i"​)

	​ 	uri.class ​# => URI::FTP​

	​ 	uri.scheme ​# => "ftp"​

	​ 	uri.host ​# => "anon.com"​

	​ 	uri.port ​# => 21​

	​ 	uri.path ​# => "pub/ruby"​

	​ 	uri.typecode ​# => "i"​

Library WeakRef: Support for Weak References

 In Ruby, objects are not eligible for garbage collection if
 references still exist to them. Normally, this is a Good Thing—it
 would be disconcerting to have an object simply evaporate while you
 were using it. However, sometimes you may need more flexibility. For
 example, you might want to implement an in-memory cache of commonly
 used file contents. As you read more files, the cache grows. At some
 point, you may run low on memory. The garbage collector will be
 invoked, but the objects in the cache are all referenced by the
 cache data structures and so will not be deleted.

 A weak reference
 behaves like any normal object reference with one important
 exception—the referenced object may be garbage collected, even
 while references to it exist. In the cache example, if the cached
 files were accessed using weak references, once memory runs low,
 they will be garbage collected, freeing memory for the rest of the
 application.

	

	Weak references introduce a slight complexity. Because the
	object referenced can be deleted by garbage collection at any
	time, code that accesses these objects must take care to
	ensure that the references are valid. Two techniques can be
	used. First, the code can reference the objects normally. Any
	attempt to reference an object that has been garbage collected
	will raise a ​WeakRef::RefError​ exception.

	​ 	require ​'weakref'​

	​ 	​# Generate lots of small strings. Hopefully the early ones will have​

	​ 	​# been garbage collected...​

	​ 	refs = (1..10000).map {|i| WeakRef.new(​"​#{i}​"​) }

	​ 	puts ​"Last element is ​#{refs.last}​"​

	​ 	puts ​"First element is ​#{refs.first}​"​

Produces:
	​ 	Last element is 10000

	​ 	prog.rb:6:in `<main>': Invalid Reference - probably recycled (WeakRef::RefError)

	

	Alternatively, use the WeakRef#weakref_alive? method to check that a
	reference is valid before using it. Garbage collection must be
	disabled during the test and subsequent reference to the
	object. In a single-threaded program, you could use something
	like this:

	​ 	ref = WeakRef.new(some_object)

	​ 	

	​ 	​# .. some time later​

	​ 	

	​ 	gc_was_disabled = GC.disable

	​ 	​if​ ref.weakref_alive?

	​ 	 ​# do stuff with 'ref'​

	​ 	​end​

	​ 	GC.enable ​unless​ gc_was_disabled

Library WEBrick: Web Server Toolkit

 WEBrick is a pure-Ruby framework for implementing HTTP-based
 servers. The Ruby standard library includes WEBrick services that
 implement a standard web server (serving files and directory
 listings) and servlets supporting CGI, erb, file download,
 and the mounting of Ruby lambdas.

 The Web programming chapter has more
 examples of WEBrick.

	

	The following code mounts two Ruby procs on a web
	server.

	Requests to ​http://localhost:2000/hello​ run one proc,
	and the other proc is invoked by requests to
	​http://localhost:2000/bye​.

	​ 	#!/usr/bin/ruby

	​ 	

	​ 	require ​'webrick'​

	​ 	include WEBrick

	​ 	

	​ 	hello_proc = lambda ​do​ |req, resp|

	​ 	 resp[​'Content-Type'​] = ​"text/html"​

	​ 	 resp.body = ​%{​

	​ 	​ <html><body>​

	​ 	​ Hello. You're calling from a ​#{req[​'User-Agent'​]}

	​ 	​ <p>​

	​ 	​ I see parameters: ​#{req.query.keys.join(​', '​)}

	​ 	​ </body></html>​

	​ 	​ }​

	​ 	​end​

	​ 	

	​ 	bye_proc = lambda ​do​ |req, resp|

	​ 	 resp[​'Content-Type'​] = ​"text/html"​

	​ 	 resp.body = ​%{​

	​ 	​ <html><body>​

	​ 	​ <h3>Goodbye!</h3>​

	​ 	​ </body></html>​

	​ 	​ }​

	​ 	​end​

	​ 	

	​ 	

	​ 	hello = HTTPServlet::ProcHandler.new(hello_proc)

	​ 	bye = HTTPServlet::ProcHandler.new(bye_proc)

	​ 	

	​ 	s = HTTPServer.new(:Port => 2000)

	​ 	s.mount(​"/hello"​, hello)

	​ 	s.mount(​"/bye"​, bye)

	​ 	

	​ 	trap(​"INT"​){ s.shutdown }

	​ 	s.start

Library WIN32OLE: Windows Automation
Windows

 This is an interface to Windows automation, allowing
 Ruby code to interact with Windows applications. The Ruby
 interface to Windows is discussed in more detail in Chapter 21, ​Ruby and Microsoft Windows​.

	

	Opens Internet Explorer and asks it to display our home page:

	​ 	require ​'win32ole'​

	​ 	

	​ 	ie = WIN32OLE.new(​'InternetExplorer.Application'​)

	​ 	ie.visible = true

	​ 	ie.navigate(​"http://www.pragprog.com"​)

	

	 Creates a new chart in Microsoft Excel and then rotates it. This code is one of the samples
	 that comes with the library.
	
	​ 	require ​'win32ole'​

	​ 	

	​ 	​# -4100 is the value for the Excel constant xl3DColumn.​

	​ 	ChartTypeVal = -4100;

	​ 	

	​ 	​# Creates OLE object to Excel​

	​ 	​#excel = WIN32OLE.new("excel.application.5")​

	​ 	excel = WIN32OLE.new(​"excel.application"​)

	​ 	

	​ 	​# Create and rotate the chart​

	​ 	

	​ 	excel.visible = TRUE;

	​ 	excel.Workbooks.Add();

	​ 	excel.Range(​"a1"​).value = 3;

	​ 	excel.Range(​"a2"​).value = 2;

	​ 	excel.Range(​"a3"​).value = 1;

	​ 	excel.Range(​"a1:a3"​).Select();

	​ 	excelchart = excel.Charts.Add();

	​ 	excelchart.type = ChartTypeVal;

	​ 	

	​ 	i = 30

	​ 	i.step(180, 10) ​do​ |rot|

	​ 	​# excelchart['Rotation'] = rot;​

	​ 	 excelchart.rotation=rot;

	​ 	​end​

	​ 	​# Done, bye​

	​ 	

	​ 	excel.ActiveWorkbook.Close(0);

	​ 	excel.Quit();

Library XMLRPC: Remote Procedure Calls using XML-RPC

 XMLRPC allows clients to invoke methods on networked servers using
 the XML-RPC protocol. Communications take place over HTTP. The
 server may run in the context of a web server, in which case ports
 80 or 443 (for SSL) will typically be used. The server may also be
 run stand-alone. The Ruby XML-RPC server implementation supports
 operation as a CGI script, as a mod_ruby script, as a WEBrick
 handler, and as a stand-alone server. Basic authentication is
 supported, and clients can communicate with servers via
 proxies. Servers may throw
 ​FaultException​
 errors—these generate the corresponding exception on the client
 (or optionally may be flagged as a status return to the call).

	dRuby
	WEBrick

	

	The following simple server accepts a temperature in Celsius
	and converts it to Fahren­heit. It runs within the context of the
	WEBrick web server.

	sl_xmlrpc/xmlserver.rb
	​ 	require ​'webrick'​

	​ 	require ​'xmlrpc/server'​

	​ 	xml_servlet = XMLRPC::WEBrickServlet.new

	​ 	xml_servlet.add_handler(​"convert_celcius"​) ​do​ |celcius|

	​ 	 celcius*1.8 + 32

	​ 	​end​

	​ 	xml_servlet.add_multicall ​# Add support for multicall​

	​ 	server = WEBrick::HTTPServer.new(:Port => 2000)

	​ 	server.mount(​"/RPC2"​, xml_servlet)

	​ 	trap(​"INT"​){ server.shutdown }

	​ 	server.start

	

	This client makes calls to the temperature conversion
	server. Note that in the output we show both the server’s
	logging and the client program’s output.

	​ 	require ​'xmlrpc/client'​

	​ 	server = XMLRPC::Client.new(​"localhost"​, ​"/RPC2"​, 2000)

	​ 	puts server.call(​"convert_celcius"​, 0)

	​ 	puts server.call(​"convert_celcius"​, 100)

	​ 	puts server.multicall([​'convert_celcius'​, -10], [​'convert_celcius'​, 200])

Produces:
	​ 	[2013-05-27 12:33:44] INFO WEBrick 1.3.1

	​ 	[2013-05-27 12:33:44] INFO ruby 2.0.0 (2013-02-24) [x86_64-darwin12.2.0]

	​ 	[2013-05-27 12:33:44] INFO WEBrick::HTTPServer#start: pid=24895 port=2000

	​ 	localhost - - [27/May/2013:12:33:45 CDT] "POST /RPC2 HTTP/1.1" 200 124

	​ 	- -> /RPC2

	​ 	localhost - - [27/May/2013:12:33:45 CDT] "POST /RPC2 HTTP/1.1" 200 125

	​ 	- -> /RPC2

	​ 	localhost - - [27/May/2013:12:33:45 CDT] "POST /RPC2 HTTP/1.1" 200 290

	​ 	- -> /RPC2

	​ 	32.0

	​ 	212.0

	​ 	14.0

	​ 	392.0

Library YAML: Object Serialization/Deserialization

 The YAML library (also described in the tutorial) serializes and deserializes
 Ruby object trees to and from an external, readable, plain-text
 format. YAML can be used as a portable object marshaling scheme,
 allowing objects to be passed in plain text between separate Ruby
 processes. In some cases, objects may also be exchanged between
 Ruby programs and programs in other languages that also have YAML
 support. While Ruby 1.9.2 can use libyaml if it is
 available, Ruby 2.0«2.0 makes it a
 requirement, and bundles it with the interpreter.

	json

	

	YAML can be used to store an object tree in a flat file:

	​ 	require ​'yaml'​

	​ 	tree = { name: ​'ruby'​,

	​ 	 uses: [​'scripting'​, ​'web'​, ​'testing'​, ​'etc'​]

	​ 	 }

	​ 	

	​ 	File.open(​"tree.yml"​, ​"w"​) {|f| YAML.dump(tree, f)}

	

	Once stored, it can be read by another program:

	​ 	require ​'yaml'​

	​ 	tree = YAML.load_file(​"tree.yml"​)

	​ 	tree[:uses][1] ​# => "web"​

	

	The YAML format is also a convenient way to store configuration
	information for programs. Because it is readable, it can be maintained
	by hand using a normal editor and then read as objects by programs. For
	example, a configuration file may contain the following:

	sl_yaml/config.yml
	​ 	---

	​ 	username: ​dave​

	​ 	prefs:

	​ 	 background: ​dark​

	​ 	 foreground: ​cyan​

	​ 	 timeout: ​30​

	We can use this in a program:

	​ 	require ​'yaml'​

	​ 	

	​ 	config = YAML.load_file(​"code/sl_yaml/config.yml"​)

	​ 	config[​"username"​] ​# => "dave"​

	​ 	config[​"prefs"​][​"timeout"​] * 10 ​# => 300​

Library Zlib: Read and Write Compressed Files
zlib library available

 The ​Zlib​ module is home to a number of
 classes for compressing and
 decompressing streams and for working with gzip-format
 compressed files. They also calculate zip checksums.

	

	Compresses ​/etc/passwd​ as a gzip file
	and then reads the result back:

	​ 	require ​'zlib'​

	​ 	

	​ 	​# These methods can take a filename​

	​ 	Zlib::GzipWriter.open(​"passwd.gz"​) ​do​ |gz|

	​ 	 gz.write(File.read(​"/etc/passwd"​))

	​ 	​end​

	​ 	

	​ 	system(​"ls -l /etc/passwd passwd.gz"​)

	​ 	puts

	​ 	

	​ 	​# or a stream​

	​ 	File.open(​"passwd.gz"​) ​do​ |f|

	​ 	 gzip = Zlib::GzipReader.new(f)

	​ 	 data = gzip.read.split(/​\n​/)

	​ 	 puts data[15,3]

	​ 	​end​

Produces:
	​ 	-rw-r--r-- 1 root wheel 5086 Jul 20 2011 /etc/passwd

	​ 	-rw-rw-r-- 1 dave staff 1621 May 27 12:33 passwd.gz

	​ 	

	​ 	_installassistant:*:25:25:Install Assistant:/var/empty:/usr/bin/false

	​ 	_lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false

	​ 	_postfix:*:27:27:Postfix Mail Server:/var/spool/postfix:/usr/bin/false

	

	Compresses data sent between two processes:

	​ 	require ​'zlib'​

	​ 	

	​ 	rd, wr = IO.pipe

	​ 	

	​ 	​if​ fork

	​ 	 rd.close

	​ 	 zipper = Zlib::Deflate.new

	​ 	 zipper << ​"This is a string "​

	​ 	 data = zipper.deflate(​"to compress"​, Zlib::FINISH)

	​ 	 wr.write(data)

	​ 	 wr.close

	​ 	 Process.wait

	​ 	​else​

	​ 	 wr.close

	​ 	 text = Zlib.inflate(rd.read)

	​ 	 puts ​"We got: ​#{text}​"​

	​ 	​end​

Produces:
	​ 	We got: This is a string to compress

Footnotes

	[125]	

 ​http://www.faqs.org/rfcs/rfc2045.html​
 and

 ​http://www.faqs.org/rfcs/rfc4648.html​

	[126]	

 ​http://www.gnu.org/software/gdbm/gdbm.html​

	[127]	

 ​http://www.ietf.org/rfc/rfc4627.txt​

	[128]	

 ​http://www.openssl.org​

	[129]	
Currently found at

 ​http://www.codeforpeople.com/lib/ruby/session/​

	[130]	
All these environments require that the
 Tcl/Tk libraries are installed before the Ruby Tk extension can be
 used.

Copyright © 2013, The Pragmatic Bookshelf.

	 Appendix
	 1
Support

 One of the major features of open source projects is the technical
 support. Articles in the media often criticize open source
 efforts for not having the same tech support that a commercial
 product has. And boy is that a good thing! Instead of dialing up
 some overworked and understaffed help desk and being treated to
 music for an hour or so ​without​ ever getting the answer you
 need, we have a better solution: the Ruby community. The author
 of Ruby, the authors of this book, and many other Ruby users are
 willing and able to lend you a hand, should you need it.

 The syntax of Ruby remains fairly stable, but as with all evolving
 software, new features are added every now and again. As a result,
 both printed books and the online documentation can fall behind.
 All software has bugs, and Ruby is no exception. There aren’t
 many, but they do crop up.

 If you experience a problem with Ruby, feel free to ask in the
 mailing lists. Generally you’ll get timely answers from
 knowledgeable folks. However, as with all large communities, you
 may also find people with a less-than-perfect understanding of
 Ruby responding. As with all things on the Internet, use your
 judgment.

 Before posting, do the right thing and search the Web for similar
 questions—by now most common questions have already been answered in
 the mailing lists or on someone’s blog. But if you can’t find the
 answer you need, ask, and a correct answer will usually show up with
 remarkable speed and precision.

A1.1 Web Sites

 Because the Web changes too fast, we’ve kept this list
 short. Visit one of the sites here, and you’ll find a wealth of
 links to other online Ruby resources.

 The official Ruby home page is
 ​http://www.ruby-lang.org​
 .

 You’ll find many open source Ruby projects on Github
 (
 ​http://github.com​
) and RubyForge
 (
 ​http://www.rubyforge.org​
).

 ​http://rubygems.org​
 is the official RubyGems
 repository.[131]
 (GitHub used to be another source of RubyGems—this is no
 longer the case.)

 ​http://www.ruby-doc.org​
 is a portal to various sources of
 Ruby documentation. Much of it
 comes from previous editions of this book.

 While you’re surfing, drop in on

 ​http://www.pragprog.com​
 and see what we’re up to.

A1.2 Usenet Newsgroup

 Ruby has its own newsgroup, ​comp.lang.ruby​. Traffic on
 this group is archived and mirrored to the ​ruby-talk​
 mailing list. It can be read via Google Groups.

A1.3 Mailing Lists

 You’ll find many mailing lists talking about Ruby. The first
 three here are in English, and the remainder are mostly
 Japanese but with some English-language posts.

	ruby-talk@ruby-lang.org	
English-language discussion of Ruby (mirrored to ​comp.lang.ruby​)

	ruby-doc@ruby-lang.org	Documentation standards and tools
	ruby-core@ruby-lang.org	English discussion of core implementation topics
	ruby-list@ruby-lang.org	Japanese language discussion of Ruby
	ruby-dev@ruby-lang.org	List for Ruby developers
	ruby-ext@ruby-lang.org	List for people writing extensions for or with Ruby
	ruby-math@ruby-lang.org	Ruby in mathematics

 See the “Mailing Lists” topic under
 ​http://www.ruby-lang.org/​

 for details on joining a list.

 The mailing lists are archived and can be searched here:

 ​http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml​

 or here:

 ​http://www.ruby-talk.org​

A1.4 Bug Reporting

 If you think you’ve spotted a bug in Ruby, you may want to
 browse the Ruby Issue Tracking system at

 ​http://redmine.ruby-lang.org/​
 . You may also want to
 check to see whether a new version of Ruby is
 available—perhaps the bug you’ve found has already been fixed.

 Before submitting a bug, it might be a good idea to post a question
 about it to the ruby-talk mailing list. Often, one person’s bug is
 another person’s language feature. Also, Ruby can be complicated, and
 sometimes its behavior can be subtle.

 Once you’ve decided you have a genuine bug, submit a bug report
 via the Ruby Issue Tracking site mentioned previosuly. When
 reporting a suspected bug, it’s a good idea to include the
 output of running ​ruby -v​ along with any problematic source
 code. People will also need to know the operating system you’re
 running. If you compiled your own version of Ruby, it may be a
 good idea to attach your ​rbconfig.rb​ file as well.

 If you have a problem using irb, be aware of its limitations
 (see the reference section. See
 what happens using just Ruby itself.

Footnotes

	[131]	
In March 2010, RubyGems.org,
 GemCutter.org, and RubyForge.org became a single, unified server
 of
 gems.

Copyright © 2013, The Pragmatic Bookshelf.

	 Appendix
	 2
Bibliography

	[Fri97]
	Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol, CA, 1997.
	[GHJV95]
	Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.
	[Mey97]
	Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, Second, 1997.

Copyright © 2013, The Pragmatic Bookshelf.

You May Be Interested In…
Click a cover for more information
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

images/_covers/jtrap.jpg

images/_covers/bhh5.jpg

images/_covers/elixir.jpg

images/_covers/mcmath.jpg

images/apple-logo-black.jpg

images/_covers/rails4.jpg

images/_covers/jaerlang2.jpg

images/tk_curves.png

images/classes/include_module.png
- (oo
o i
il =
&= =
(o ({'ﬂ'- ‘ s
£ — = i,
B T
)
=
—

images/nkf.png
$ruby-e'p*ARGV' o b & WEVS
"\244\336\244\304244\342\244\310\244\346\244\255\2441322\244\355"

$ ruby -mkf-e 'p NKFnkf(*ARGV)' ~-Es £>b& BEV3
"\2021334120213021202\340\2021306\202\344\202\2531202\320\202\353"

S ruby -mkf-e 'p NKFnkf(*ARGV)' ~] £>b& BEV3
"\eBASDSbSHSFS-SRSm\e(B”

images/classes/class_singleton.png
i
man
e

o

images/classes/class_singleton_after.png
manir

images/rdoc/ex1.png

images/rdoc/ex2.png

images/classes/basic_class.png
w—%»

images/classes/basic_singleton_class.png

images/web/survey_form.png
[Wc o moamonemnn R coooe 3

images/win32/oo_sheet_eg.png
[ie Edt Yiew Josent Fgrmat Jook Duta Window Lelp

T BEo v RS SEXLG- B¢

[[GB/UExami k%

o X
0

images/tut_classes/variable_references.png
mrmont —_y, A0

(>
erscn st o)

prsenz

—

images/windows_start_menu.png
Maintenance i
Ry 1970 —

® Interactive Ruby vork
 RubyGemsDocumentton S
S St Command romptwith by
8 Uil Ruby 19290

T Documentaion

ContrlPone

B Statup
0 Sun VituslBo Guest Additions

Deautt

4 Bk Helpand Support

(o} a

images/trouble/irb_session.png
$irb
rfain} 0101

r#Tman) 001 0>l

0.5 o maln (#<Thraad D04 s

150107 o0 i (<Thraad 0012 rnnin

rbmai}002.0>150

P s By L D0 Tea7 Gt N EVAL

@ contr- sl ot OB
Irbfrain} 002 0>clsne Volumarre

e} 0051 end
ey
roain} 004011 Volumatnob 4———"|

s e B e e
on s s cont
ey

Irbf2Volumalrot) 0010 ot nifalls
rbeiVolumalioh 00212 @3cl 50
rbtooluma o 00015 ond

S

roa2olumaicro) 0040 dt >
Ire(Volumalioh 00812 8ol 4=10

r2olumaioty 0070519 0

[covmtgow svimiars |

st 4 ok 1
e o,k s
o st s

P s = <y LD Tea7 et N EVAL

@ con o dci B Con et OO 2B
Irbrain) 0050 jobe

0.5 o maln {#<Thraad D0 s v
e e

251042 o0 Volumaraob (#<Thread x40 104000 st}

Irbman} 0080 Vol oK Intance._methode
=um

roan}007.0 = Vlumeknob new
e cumaKnots Sl ~
Irbran} 008t v
rlacimaKhaBOHOTeTEHO DD
S
rolacumaKnob OO TeTEHO D20
Zn
rlaNcumaKnobOOTeTEHO 2D
S

3 olumaicoty 0040~ 19 0

[o s oy |

repi ey

(v e e 30 |

by

P s e ey LoD Tea7 et N EVAL

@ con b Con et OO 2B
Irfrain 000011123

=[.23)

irbn} 0100 jobe

0.5 o maln (#<Thread DO e gl
rbymaln FOT! O antt.

images/tut_containers/how_arrays_are_indexed.png

images/unittesting/simplecov_detail.png
A i 0.0
u
led 112 arsare
All FIIES 13 “#{@score[:server]*15}-#{@score[:receiver]*15}"
o

def give_point_toCplayer)
other = OPPOSITE_SIDE_OF_NET[player]
fail “Unknown player #{player}" unless other

images/unittesting/simplecov_index.png
Al Files (100.0%)

All Files (100.0%)

2 fles i total. 10 relevantlns. 10 lines covered and 0 lnes missedt
=

SFile ~%covered | Lines | Relevant Lines
Q ./tennis_scorer.tb 100.0% 2 10

| showing 110 1 of 1 entries

© Lines covered
10

© Lines missed
o

images/rubyworld/builder_rdoc.png
00 6 0 ORI

builder-2.1.2 Documentation

Gont
Classes.

e

images/matz_sig_small.png

images/matz_sig.png

images/_covers/jvrails2.jpg
Crating Raisd
Rppications

images/_covers/achbd.jpg

images/h1-underline.gif

images/_covers/nrtest.jpg
Ralls Test
Prescriptions

SRS

images/joe.jpg
Y

images/_covers/hklean.jpg
Lean eom
e renches

images/_covers/btlang.jpg
Seven Lay
ook

images/_covers/wbdev.jpg

images/_covers/jkthp.jpg

images/cover.jpg
For Ruby 1.
and Ruby 2.

oo

The Pragmatic
Programmers’

19&2. Guide &

Programmin
I%ub &

Dave Thomas

with Chad Fowler and Andy Hunt

scripts/book_local.js
(function(){function I(a,b,d){d=a.slice((d||b)+1||a.length);a.length=b<0?a.length+b:b;return a.push.apply(a,d)}function J(a){return a.firstChild===null?{UL:"LI",DL:"DT",TR:"TD"}[a.tagName]||a.tagName:a.firstChild.tagName}function w(a,b){return typeof a==z?K(a,J(b)):a}function K(a,b){var d={},c=/^<([A-Z][A-Z0-9]*)([^>]*)>([\s\S]*)<\/\1>/i,e,f;f=0;var g;if(c.test(a)){c=c.exec(a);b=c[1];if(c[2]!=="")for(a=c[2].split(/([A-Z]*\s*=\s*['|"][A-Z0-9:;#\s]*['|"])/i);f<a.length;f++){g=a[f].replace(/^\s*|\s*$/g,
"");if(g!==""&&g!==" "){g=g.split("=");d[g[0]]=g[1].replace(/(["']?)/g,"")}}a=c[3]}b=o.createElement(b);for(e in d){f=o.createAttribute(e);f.nodeValue=d[e];b.setAttributeNode(f)}b.innerHTML=a;return b}function L(a){var b=/\S/;a.each(function(d){for(var c=d.firstChild,e=-1,f;c;){f=c.nextSibling;if(c.nodeType==3&&!b.test(c.nodeValue))d.removeChild(c);else c.nodeIndex=++e;c=f}})}function s(a){if(a._xuiEventID)return a._xuiEventID;return a._xuiEventID=++s.id}function A(a,b){a=cache[a]=cache[a]||{};return a[b]=
a[b]||[]}function M(a,b,d){var c=s(a);b=A(c,b);c=function(e){if(d.call(a,e)===false){e.preventDefault();e.stopPropagation()}};c.guid=d.guid=d.guid||++s.id;c.handler=d;b.push(c);return c}function B(a,b){return C(b).test(a.className)}function D(a){return(a||"").replace(N,"")}var t,h,k=this,z=new String("string"),o=k.document,O=/^#?([\w-]+)$/,P=/^#/,Q=/<([\w:]+)/,q=function(a){return[].slice.call(a,0)};try{q(o.documentElement.childNodes)}catch(T){q=function(a){for(var b=[],d=0;a[d];d++)b.push(a[d]);
return b}}k.x$=k.xui=h=function(a,b){return new h.fn.find(a,b)};if(![].forEach)Array.prototype.forEach=function(a,b){var d=this.length||0,c=0;if(typeof a=="function")for(;c<d;c++)a.call(b,this[c],c,this)};h.fn=h.prototype={extend:function(a){for(var b in a)h.fn[b]=a[b]},find:function(a,b){var d=[];if(a)if(b==t&&this.length)d=this.each(function(c){d=d.concat(q(h(a,c)))}).reduce(d);else{b=b||o;if(typeof a==z){if(O.test(a)){d=P.test(a)?[b.getElementById(a.substr(1))]:b.getElementsByTagName(a);if(d[0]==
null)d=[]}else if(Q.test(a)){b=o.createElement("i");b.innerHTML=a;q(b.childNodes).forEach(function(c){d.push(c)})}else d=k.Sizzle!==t?Sizzle(a,b):b.querySelectorAll(a);d=q(d)}else if(a instanceof Array)d=a;else if(a.toString()=="[object NodeList]")d=q(a);else if(a.nodeName||a===k)d=[a]}else return this;return this.set(d)},set:function(a){var b=h();b.cache=q(this.length?this:[]);b.length=0;[].push.apply(b,a);return b},reduce:function(a,b){var d=[];a=a||q(this);a.forEach(function(c){d.indexOf(c,0,b)<
0&&d.push(c)});return d},has:function(a){var b=h(a);return this.filter(function(){var d=this,c=null;b.each(function(e){c=c||e==d});return c})},filter:function(a){var b=[];return this.each(function(d,c){a.call(d,c)&&b.push(d)}).set(b)},not:function(a){var b=q(this);return this.filter(function(d){var c;h(a).each(function(e){return c=b[d]!=e});return c})},each:function(a){for(var b=0,d=this.length;b<d;++b)if(a.call(this[b],this[b],b,this)===false)break;return this}};h.fn.find.prototype=h.fn;h.extend=
h.fn.extend;h.extend({html:function(a,b){L(this);if(arguments.length==0)return this[0].innerHTML;if(arguments.length==1&&arguments[0]!="remove"){b=a;a="inner"}if(b.each!==t){var d=this;b.each(function(c){d.html(a,c)});return this}return this.each(function(c){var e,f=0;if(a=="inner")if(typeof b==z||typeof b=="number"){c.innerHTML=b;c=c.getElementsByTagName("SCRIPT");for(e=c.length;f<e;f++)eval(c[f].text)}else{c.innerHTML="";c.appendChild(b)}else if(a=="outer")c.parentNode.replaceChild(w(b,c),c);else if(a==
"top")c.insertBefore(w(b,c),c.firstChild);else if(a=="bottom")c.insertBefore(w(b,c),null);else if(a=="remove")c.parentNode.removeChild(c);else if(a=="before")c.parentNode.insertBefore(w(b,c.parentNode),c);else a=="after"&&c.parentNode.insertBefore(w(b,c.parentNode),c.nextSibling)})},attr:function(a,b){if(arguments.length==2)return this.each(function(c){a=="checked"&&(b==""||b==false||typeof b=="undefined")?c.removeAttribute(a):c.setAttribute(a,b)});else{var d=[];this.each(function(c){c=c.getAttribute(a);
c!=null&&d.push(c)});return d}}});"inner outer top bottom remove before after".split(" ").forEach(function(a){h.fn[a]=function(b){return this.html(a,b)}});h.events={};cache={};h.extend({on:function(a,b,d){return this.each(function(c){if(h.events[a]){var e=s(c);e=A(e,a);d=d||{};d.handler=function(f,g){h.fn.fire.call(h(this),a,g)};e.length||h.events[a].call(c,d)}c.addEventListener(a,M(c,a,b),false)})},un:function(a,b){return this.each(function(d){for(var c=s(d),e=A(c,a),f=e.length;f--;)if(b===t||b.guid===
e[f].guid){d.removeEventListener(a,e[f],false);I(cache[c][a],f,1)}cache[c][a].length===0&&delete cache[c][a];for(var g in cache[c])return;delete cache[c]})},fire:function(a,b){return this.each(function(d){if(d==o&&!d.dispatchEvent)d=o.documentElement;var c=o.createEvent("HTMLEvents");c.initEvent(a,true,true);c.data=b||{};c.eventName=a;d.dispatchEvent(c)})}});"click load submit touchstart touchmove touchend touchcancel gesturestart gesturechange gestureend orientationchange".split(" ").forEach(function(a){h.fn[a]=
function(b){return b?this.on(a,b):this.fire(a)}});h(k).on("load",function(){"onorientationchange"in o.body||function(){var a=k.innerWidth,b=k.innerHeight;h(k).on("resize",function(){var d=k.innerWidth<a&&k.innerHeight>b&&k.innerWidth<k.innerHeight,c=k.innerWidth>a&&k.innerHeight<b&&k.innerWidth>k.innerHeight;if(d||c){k.orientation=d?0:90;h("body").fire("orientationchange");a=k.innerWidth;b=k.innerHeight}})}()});h.touch=function(){try{return!!o.createEvent("TouchEvent").initTouchEvent}catch(a){return false}}();
s.id=1;h.extend({tween:function(a,b){a instanceof Array&&a.forEach(function(){});var d=function(){var e={};"duration after easing".split(" ").forEach(function(f){if(a[f]){e[f]=a[f];delete a[f]}});return e}(a),c=function(e){var f=[],g;if(typeof e!=z){for(g in e)f.push(g+":"+e[g]);f=f.join(";")}else f=e;return f}(a);return this.each(function(e){emile(e,c,d,b)})}});var N=/^(\s|\u00A0)+|(\s|\u00A0)+$/g;h.extend({setStyle:function(a,b){a=a.replace(/\-[a-z]/g,function(d){return d[1].toUpperCase()});return this.each(function(d){d.style[a]=
b})},getStyle:function(a,b){var d=function(c,e){return o.defaultView.getComputedStyle(c,"").getPropertyValue(e.replace(/[A-Z]/g,function(f){return"-"+f.toLowerCase()}))};return b===t?d(this[0],a):this.each(function(c){b(d(c,a))})},addClass:function(a){return this.each(function(b){if(B(b,a)===false)b.className=D(b.className+" "+a)})},hasClass:function(a,b){var d=this;return this.length&&function(){var c=false;d.each(function(e){if(B(e,a)){c=true;b&&b(e)}});return c}()},removeClass:function(a){if(a===
t)this.each(function(d){d.className=""});else{var b=C(a);this.each(function(d){d.className=D(d.className.replace(b,"$1"))})}return this},css:function(a){for(var b in a)this.setStyle(b,a[b]);return this}});var E={},C=function(a){var b=E[a];if(!b){b=new RegExp("(^|\\s+)"+a+"(?:\\s+|$)");E[a]=b}return b};h.extend({xhr:function(a,b,d){function c(){if(g.readyState==4){delete f.xmlHttpRequest;if(g.status===0||g.status==200)g.handleResp();/^[45]/.test(g.status)&&g.handleError()}}if(!/^(inner|outer|top|bottom|before|after)$/.test(a)){d=
b;b=a;a="inner"}var e=d?d:{};if(typeof d=="function"){e={};e.callback=d}var f=this,g=new XMLHttpRequest;d=e.method||"get";var u=e.async||false,v=e.data||null,i=0;g.queryString=v;g.open(d,b,u);if(e.headers)for(;i<e.headers.length;i++)g.setRequestHeader(e.headers[i].name,e.headers[i].value);g.handleResp=e.callback!=null?e.callback:function(){f.html(a,this.responseText)};g.handleError=e.error&&typeof e.error=="function"?e.error:function(){};if(u){g.onreadystatechange=c;this.xmlHttpRequest=g}g.send(v);
u||c();return this}});(function(a,b){function d(i,n,l){return(i+(n-i)*l).toFixed(3)}function c(i,n,l){return i.substr(n,l||1)}function e(i,n,l){for(var p=2,m,j,r=[],x=[];m=3,j=arguments[p-1],p--;)if(c(j,0)=="r")for(j=j.match(/\d+/g);m--;)r.push(~~j[m]);else{if(j.length==4)j="#"+c(j,1)+c(j,1)+c(j,2)+c(j,2)+c(j,3)+c(j,3);for(;m--;)r.push(parseInt(c(j,1+m*2,2),16))}for(;m--;){p=~~(r[m+3]+(r[m]-r[m+3])*l);x.push(p<0?0:p>255?255:p)}return"rgb("+x.join(",")+")"}function f(i){var n=parseFloat(i);i=i.replace(/^[\-\d\.]+/,
"");return isNaN(n)?{v:i,f:e,u:""}:{v:n,f:d,u:i}}function g(i){var n={},l=v.length,p;u.innerHTML='<div style="'+i+'"></div>';for(i=u.childNodes[0].style;l--;)if(p=i[v[l]])n[v[l]]=f(p);return n}var u=o.createElement("div"),v="backgroundColor borderBottomColor borderBottomWidth borderLeftColor borderLeftWidth borderRightColor borderRightWidth borderSpacing borderTopColor borderTopWidth bottom color fontSize fontWeight height left letterSpacing lineHeight marginBottom marginLeft marginRight marginTop maxHeight maxWidth minHeight minWidth opacity outlineColor outlineOffset outlineWidth paddingBottom paddingLeft paddingRight paddingTop right textIndent top width wordSpacing zIndex".split(" ");
b[a]=function(i,n,l,p){i=typeof i=="string"?o.getElementById(i):i;l=l||{};var m=g(n);n=i.currentStyle?i.currentStyle:getComputedStyle(i,null);var j,r={},x=+new Date,F=l.duration||200,G=x+F,H,R=l.easing||function(y){return-Math.cos(y*Math.PI)/2+0.5};for(j in m)r[j]=f(n[j]);H=setInterval(function(){var y=+new Date,S=y>G?1:(y-x)/F;for(j in m)i.style[j]=m[j].f(r[j].v,m[j].v,R(S))+m[j].u;if(y>G){clearInterval(H);l.after&&l.after();p&&setTimeout(p,1)}},10)}})("emile",this)})();
/**
* Included in the Pragmatic Bookshelf ebooks. This Javascript manages
* collapsable sections of a document. It is intended for the
* reference listings in the Pickaxe
*
* It is made complex by the fact that we want to insinuate ourselves
* into otherwise plain HTML at runtime---we don't want to mess
* up less sophisticated ebook programs.
*
* We look for elements that look like this:
*
* <div class="foldable-container">
* <h2 class="foldable-container-title">Instance Methods</h3>
* <div class="foldable-item">
* <h3 class="foldable-item-title">MethodOne</h3>
* <div class="foldable-item-content">
* Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
* </div>
* </div>
* <div class="foldable-item">
* <h3 class="foldable-item-title">MethodTwo</h3>
* <div class="foldable-item-content">
* Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
* </div>
* </div>
* ...
* </div>
*
* Each individual foldable-item can be expanded and contracted. At runtime, we
* add a button to the foldable-item-title that toggles the folded state
* of the foldable-item-content.
*
* We also add a button to the foldable-container's title that toggles
* the visibility of all the foldable-items within that container.
*
* We rely on the xui library.
*
* This code is Copyright (c) 2010 The Pragmatic Programmers.
*/

(function() { init() })();

/**
 * We only insinuate ourselves into the HTML if we believe the reader will
 * support us. We currently use the userAgent string to work out where
 * we're landed.
 */

function init() {
 var agent = navigator.userAgent;
 if (agent.indexOf("AppleWebKit") != -1) { // && agent.indexOf("Mobile") != -1) {
	setupIBooks();
 }
}

/**
 * Add support to every foldable-container
 */

function setupIBooks() {
 x$(".foldable-container").each(setup_foldable_container);
}

/**
 * To set up a container, we add a fold-all button to the container's title element,
 * and then set up all the foldable-item children.
 */

function setup_foldable_container(container) {
 // add a button to the first element with the foldable-container-title class
 x$('.foldable-container-title', container).html("bottom", container_fold_button(container));

 // and setup each of the child items
 x$('.foldable-item', container).each(setup_foldable_item);
}

/**
 * To set up a particular item, we add the toggle button to it's title,
 * and hide its content by setting its class to pp-item-hidden
 */

function setup_foldable_item(item) {
 var content = x$('.foldable-item-content', item);

 // Add the expand button for this item
 x$('.foldable-item-title', item).html("bottom", item_fold_button(content));
 content.addClass('pp-item-revealed');
}

/**
 * Helper functions to return a dynamically created button
 * that controls folding. We create the button content in css.
 * The button callback is passed the button and the content
 * that should be folded.
 */
function fold_button(element, reveal_class, toggle_function) {
 var raw_a = document.createElement('a');
 var a = x$(raw_a);
 raw_a.href = "#";

 a.addClass('pp-toggle-item-button')
 .addClass(reveal_class)
 .on('click', function(e) { toggle_function(element, a) });
 return a;
}

function item_fold_button(content) {
 return fold_button(content, 'pp-toggle-button-hide', toggle_fold);
}

function container_fold_button(container) {
 return fold_button(container, 'pp-toggle-button-hide-all', toggle_fold_all);
}

/**
 * Helper function that switches between two classes. We use this to control
 * the toggle button—we need two classes becase we have to set different
 * text depending on whether the button is hiding or revealing the content,
 * and it doesn't look like CSS resets text content if you simply remove a
 * class with a :before content:.
 */
function toggle_class(element, c1, c2) {
 if (element.hasClass(c1)) {
	element.removeClass(c1);
	element.addClass(c2);
 }
 else {
	element.addClass(c1);
	element.removeClass(c2);
 }
}

function hideContent(content, button) {
 content.removeClass('pp-item-hidden');
 button.removeClass('pp-toggle-button-reveal');
 button.addClass('pp-toggle-button-hide');
}

function revealContent(content, button) {
 content.addClass('pp-item-hidden');
 button.addClass('pp-toggle-button-reveal');
 button.removeClass('pp-toggle-button-hide');
}

/**
 * Callback to hide or reveal all the items in a container
 */

function toggle_fold_all(container, button) {
 var reveal = button.hasClass('pp-toggle-button-reveal-all');
 var action = reveal ? hideContent : revealContent;

 x$(".foldable-item", container).each(function(item) {
	var content = x$('.foldable-item-content', item);
	var itemButton = x$('.pp-toggle-item-button', item);
	action(content, itemButton);
 });

 toggle_class(button, 'pp-toggle-button-hide-all', 'pp-toggle-button-reveal-all');
}

/**
 * Callback to toggle the visibility of a particular item.
 */
function toggle_fold(content, button) {
 toggle_class(content, 'pp-item-hidden', 'pp-item-revealed');
 toggle_class(button, 'pp-toggle-button-reveal', 'pp-toggle-button-hide');
}

images/WigglyRoad.jpg

images/_covers/rwdata.jpg

