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Preface 


To 
 Ca, b. w. l.



T

conditions, more on evanescent waves, subsections on  Refraction 



of Light From a Point Source, Negative Refraction, Huygens’s 


he creation of this 5th edition was guided by three overarch-


Ray Construction, 
 and   The Goos-Hänchen Shift
 ; in Chapter 5 

ing imperatives: wherever possible, to improve the pedagogy; to 

( 
Geometrical Optics

 ), lots of new art illustrating the behavior of 

continue to modernize the treatment (e.g., with a bit more on pho-

lenses and mirrors, along with additional remarks on fiberoptics, 

tons, phasors, and Fourier); and to update the content to keep pace 

as well as subsections on  Virtual Objects
 ,  Focal-Plane Ray Trac-


with technological advances (e.g., the book now discusses atomic 


ing, 
 and  Holey/Microstructured Fibers
 ; in Chapter 6 ( 
More on 



interferometers, and metamaterials). Optics is a fast-evolving 



Geometrical Optics

 ), there is a fresh look at simple ray tracing 

field and this edition strives to provide an up-to-date approach to 

through a thick lens; in Chapter 7 ( 
The Superposition of Waves

 ), 

the discipline, all the while focusing mainly on pedagogy.

one can find a new subsection on  Negative Phase Velocity
 , a 

To that end there are several goals: (1) to sustain an apprecia-

much extended treatment of Fourier analysis with lots of dia-

tion of the central role played by atomic scattering in almost every 

grams showing—without calculus—how the process actually 

aspect of Optics; (2) to establish from the outset, the underlying 

works, and a discussion of the optical frequency comb (which 

quantum-mechanical nature of light (indeed, of all quantum par-

was recognized by a 2005 Nobel Prize); in Chapter 8 ( 
Polariza-



ticles), even as the book is grounded in traditional methodology. 



tion

 ), a powerful technique is developed using phasors to analyze 

Thus the reader will find electron and neutron diffraction patterns 

polarized light; there is also a new discussion of the transmittance 

pictured alongside the customary photon images; (3) to provide an 

of polarizers, and a subsection on  Wavefronts and Rays in Uni-


early introduction to the powerful perspective of Fourier theory, 


axial Crystals
 ; Chapter 9 ( 
Interference

 ), begins with a brief 

which has come to be so prevalent in modern-day analysis. Ac-

conceptual discussion of diffraction and coherence as it relates to 

cordingly, the concepts of spatial frequency and spatial period are 

Young’s Experiment. There are several new subsections, among 

introduced and graphically illustrated as early as Chapter 2, right 

which are  Near Field/Far Field, Electric Field Amplitude via 


along with temporal frequency and period.


Phasors, Manifestations of Diffraction, Particle Interference,  


At the request of student users, I have dispersed throughout 


Establishing The Wave Theory of Light,
  and  Measuring Coher-


the text over one-hundred completely worked-out EXAMPLES 


ence Length
 . Chapter 10 ( 
Diffraction

 ), contains a new subsec-

that make use of the principles explored in each Section.  More 

tion called  Phasors and the Electric-Field Amplitude. 
 Dozens of 

than two hundred problems, sans solutions, have been added to 

newly created diagrams and photographs extensively illustrate a 

the ends of the chapters to increase the available selection of 

variety of diffraction phenomena. Chapter 11 ( 
Fourier Optics

 ), 

fresh homework questions. A complete teacher’s solutions 

now has a subsection,  Two-Dimensional Images
 , which contains 

manual is available upon request. Inasmuch as “a picture is 

a remarkable series of illustrations depicting how spatial frequency 

worth a thousand words,” many new diagrams and photographs 

components combine to create images. Chapter 12 ( 
Basics of 



further enhance the text. The book’s pedagogical strength lies 



Coherence Theory

 ), contains several new introductory subsec-

in its emphasis on actually explaining what is being discussed. 

tions among which are  Fringes and Coherence
 , and  Diffraction 


This edition furthers that approach. 


and the Vanishing Fringes
 . There are also a number of additional 

Having taught Optics every year since the 4th edition was 

highly supportive illustrations.  Chapter 13 ( 
Modern Optics: Lasers 



published, I became aware of places in the book where things 



and Other Topics

 ), contains an enriched and updated treatment of 

could be further clarified for the benefit of today’s students. 

lasers accompanied by tables and illustrations as well as several 

Accordingly, this revision addresses dozens of little sticking 

new subsections, including  Optoelectronic Image Reconstruction
 .

points, and fills in lots of missing steps in derivations. Every piece 

This 5th edition offers a substantial amount of new material 

of art has been scrutinized for accuracy, and altered where appro-

that will be of special interest to teachers of Optics. For example: 

priate to improve readability and pedagogical effectiveness. 

in addition to plane, spherical, and cylindrical waves, we can 

Substantial additions of new materials can be found: in Chap-

now generate helical waves for which the surface of constant 

ter 2 ( 
Wave Motion

 ), namely, a subsection on  Twisted Light
 ; in 

phase spirals as it advances through space (Section 2.11, p. 31). 

Chapter 3 ( 
Electromagnetic Theory, Photons, and Light

 ), an 

Beyond the mathematics, students often have trouble under-

elementary treatment of divergence and curl, additional discus-

standing what the operations of  divergence
  and  curl
  correspond 

sion of photons, as well as subsections on  Squeezed Light
 , and 

to physically. Accordingly, the present revision contains a sec-


Negative Refraction
 ; in Chapter 4 ( 
The Propagation of Light

 ), a 

tion exploring what those operators actually do, in fairly simple 

short commentary on optical density, a piece on EM boundary 

terms (Section 3.1.5, p. 43). 


iii
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iv
    Preface

The phenomenon of  negative refraction
  is an active area of 

probability-amplitude approach to quantum mechanics. In any 

contemporary research and a brief introduction to the basic 

event, it provides students with a complementary means of  

physics involved can now be found in Chapter 4 (p. 106). 

apprehending diffraction that is essentially free of calculus. 

Huygens devised a method for constructing refracted rays 

The reader interested in Fourier optics can now find a wonder-

(p. 108), which is lovely in and of itself, but it also allows for a 

ful series of illustrations showing how sinusoidal spatial frequency 

convenient way to appreciate refraction in anisotropic crystals 

contributions can come together to generate a recognizable two-

(p. 350).

dimensional image; in this case of a young Einstein (p. 547). This 

When studying the interaction of electromagnetic waves 

extraordinary sequence of figures should be discussed, even in an 

with material media (e.g., in the derivation of the Fresnel Equa-

introductory class where the material in Chapter 11 might other-

tions), one utilizes the  boundary conditions
 . Since some student 

wise be beyond the level of the course—it’s fundamental to mod-

readers may have little familiarity with E&M, the 5th edition 

ern image theory, and conceptually beautiful.

contains a brief discussion of the physical origins of those  

To make the advanced treatment of coherence in Chapter 12 

conditions (Section 4.6.1, p. 114).

more accessible to a wider readership, this edition now contains 

The book now contains a brief discussion of the  Goos-Hänchen 


an essentially non-mathematical introduction (p. 582); it sets 


shift
  which occurs in total internal reflection, It’s a piece of inter-

the stage for the traditional presentation.

esting physics that is often overlooked in introductory treatments 

Finally, the material on lasers, though only introductory, has 

(Section 4.7.1, p. 129).

been extended (p. 611) and brought more into line with the con-


Focal-plane ray tracing
  is a straightforward way to track rays 

temporary state of affairs.

through complicated lens systems. This simple yet powerful 

Over the years since the 4th edition dozens of colleagues 

technique, which is new to this edition, works nicely in the class-

around the world have provided comments, advice, sugges-

room and is well worth a few minutes of lecture time (p. 169).

tions, articles, and photographs for this new edition; I sincerely 

Several fresh diagrams now make clear the nature of virtual 

thank them all. I am especially grateful to Professor Chris Mack 

images and, more subtly,  virtual objects
  arising via lens systems 

of the University of Texas at Austin, and Dr. Andreas Karpf of 

(p. 168–169).

Adelphi University. I’m also indebted to my many students 

The widespread use of fiberoptics has necessitated an up-to-

who have blind tested all the new expositive material, worked 

date exposition of certain aspects of the subject (p. 200–204). 

the new problems (often on exams), and helped take some of 

Among the new material the reader can now find a discussion 

the new photos. Regarding the latter I particularly thank Tanya 

of  microstructured fibers 
 and, more generally,  photonic crys-


Spellman, George Harrison, and Irina Ostrozhnyuk for the 


tals
 , both entailing significant physics (p. 204–206).

hours spent, cameras in hand.

In addition to the usual somewhat formulaic, and alas, “dry” 

I am most appreciative of the support provided by the team 

mathematical treatment of Fourier series, the book now con-

at Addison Wesley, especially by Program Manager Katie 

tains a fascinating graphical analysis that conceptually shows 

Conley who has ably and thoughtfully guided the creation of this 

what those several integrals are actually doing. This is great 

5th edition from start to finish. The manuscript was scrupulously 

stuff for undergraduates (Section 7.3.1, p. 301–305).

and gracefully copy edited by Joanne Boehme who did a remark-

Phasors are utilized extensively to help students visualize 

able job. Hundreds of complex diagrams were artfully drawn by 

the addition of harmonic waves. The technique is very useful in 

Jim Atherton of Atherton Customs; his work is extraordinary and 

treating the orthogonal field components that constitute the 

speaks for itself. This edition of Optics was developed under the 

various polarization states (p. 336–3). Moreover, the method 

ever-present guidance of John Orr of Orr Book Services. His 

provides a nice graphical means to analyze the behavior of 

abiding commitment to producing an accurate, beautiful book 

wave plates (p. 363).

deserves special praise. In an era when traditional publishing is 

Young’s Experiment and double-beam interference in gen-

undergoing radical change, he uncompromisingly maintained the 

eral, are central to both classical and quantum Optics. Yet the 

very highest standards, for which I am most grateful. It was truly 

usual introduction to this material is far too simplistic in that it 

a pleasure and a privilege working with such a consummate 

overlooks the limitations imposed by the phenomena of diffrac-

professional.

tion and coherence. The analysis now briefly explores those 

Lastly I thank my dear friend, proofreader extraordinaire, 

concerns early on (Section 9.1.1, p. 394).

my wife, Carolyn Eisen Hecht who patiently coped with the 

The traditional discussion of interference is extended using 

travails of one more edition of one more book. Her good hu-

phasors to graphically represent electric-field amplitudes, giv-

mor, forbearance, emotional generosity, and wise counsel were  

ing students an alternative way to visualize what’s happening 

essential.

(Section 9.3.1, p. 401).

Anyone wishing to offer comments or suggestions concern-

Diffraction can also be conveniently appreciated via electric-

ing this edition, or to provide contributions to a future edition, 

field phasors (p. 462–463). That methodology leads naturally to 

can reach me at Adelphi University, Physics Department, 





the classical  vibration
   curve
 , which brings to mind Feynman’s 


Garden City, NY, 11530 or better yet, at genehecht@aol.com.
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A Brief History



1


pointed out that a glass globe filled with water could be used 


1.1 Prolegomenon


for magnifying purposes. And it is certainly possible that some 

Roman artisans may have used magnifying glasses to facilitate 

In chapters to come we will evolve a formal treatment of much 

very fine detailed work.

of the science of Optics, with particular emphasis on aspects of 

After the fall of the Western Roman Empire (475 c.e.), which 

contemporary interest. The subject embraces a vast body of 

roughly marks the start of the Dark Ages, little or no scientific 

knowledge accumulated over roughly three thousand years of the 

progress was made in Europe for a great while. The dominance 

human scene. Before embarking on a study of the modern view 

of the Greco-Roman-Christian culture in the lands embracing the 

of things optical, let’s briefly trace the road that led us there, if 

Mediterranean soon gave way by conquest to the rule of Allah. 

for no other reason than to put it all in perspective.

The center of scholarship shifted to the Arab world. 

Refraction was studied by Abu Sàd al-Àla’ Ibn Sahl (940–

1000 c.e.), who worked at the Abbasid court in Baghdad, where 


1.2 In the Beginning


he wrote  On the Burning Instruments
  in 984. His accurate dia-

grammatical illustration of refraction, the first ever, appears in 

The origins of optical technology date back to remote antiqui-

that book. Ibn Sahl described both parabolic and ellipsoidal burn-

ty. Exodus 38:8 (ca. 1200 b.c.e.) recounts how Bezaleel, while 

ing mirrors and analyzed the hyperbolic plano-convex lens, as 

preparing the ark and tabernacle, recast “the looking-glasses of 

well as the hyperbolic biconvex lens. The scholar Abu Ali al-

the women” into a brass laver (a ceremonial basin). Early mir-

Hasan ibn al-Haytham (965–1039), known in the Western world 

rors were made of polished copper, bronze, and later on of 

as Alhazen, was a prolific writer on a variety of topics, including 

speculum, a copper alloy rich in tin. Specimens have survived 

14 books on Optics alone. He elaborated on the Law of Reflec-

from ancient Egypt—a mirror in perfect condition was un-

tion, putting the angles of incidence and reflection in the same 

earthed along with some tools from the workers’ quarters near 

plane normal to the interface (p. 99); he studied spherical and 

the pyramid of Sesostris II (ca. 1900 b.c.e.) in the Nile valley. 

parabolic mirrors and gave a detailed description of the human 

The Greek philosophers Pythagoras, Democritus, Empedocles, 

eye (p. 207). Anticipating Fermat, Alhazen suggested that light 

Plato, Aristotle, and others developed several theories of the 

travels the fastest path through a medium.

nature of light. The rectilinear propagation of light (p. 91) was 

By the latter part of the thirteenth century, Europe was only 

known, as was the  Law of Reflection
  (p. 97) enunciated by Eu-

beginning to rouse from its intellectual stupor. Alhazen’s work 

clid (300 b.c.e.) in his book  Catoptrics
 . Hero of Alexandria 

was translated into Latin, and it had a great effect on the writings 

attempted to explain both these phenomena by asserting that 

of Robert Grosseteste (1175–1253), Bishop of Lincoln, and on the 

light traverses the shortest allowed path between two points. 

Polish mathematician Vitello (or Witelo), both of whom were in-

The burning glass (a positive lens used to start fires) was  

fluential in rekindling the study of Optics. Their works were 

alluded to by Aristophanes in his comic play  The Clouds
  

known to the Franciscan Roger Bacon (1215–1294), who is con-

(424 b.c.e.). The apparent bending of objects partly immersed 

sidered by many to be the first scientist in the modern sense. He 

in water (p. 105) is mentioned in Plato’s  Republic
 . Refraction 

seems to have initiated the idea of using lenses for correcting 

was studied by Cleomedes (50 c.e.) and later by Claudius Ptol-

vision and even hinted at the possibility of combining lenses to 

emy (130 c.e.) of Alexandria, who tabulated fairly precise 

form a telescope. Bacon also had some understanding of the way 

measurements of the angles of incidence and refraction for 

in which rays traverse a lens. After his death, Optics again lan-

several media (p. 100). It is clear from the accounts of the his-

guished. Even so, by the mid-1300s, European paintings were de-

torian Pliny (23–79 c.e.) that the Romans also possessed burn-

picting monks wearing eyeglasses. And alchemists had come up 

ing glasses. Several glass and crystal spheres have been found 

with a liquid amalgam of tin and mercury that was rubbed onto the 

among Roman ruins, and a planar convex lens was recovered in 

back of glass plates to make mirrors. Leonardo da Vinci (1452–

Pompeii. The Roman philosopher Seneca (3 b.c.e.–65  c.e.) 

1519) described the  camera obscura
  (p. 220), later popularized by 


1
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2
  


Chapter 1
   A Brief History


1.3 From the Seventeenth Century


It is not clear who actually invented the refracting telescope, 

but records in the archives at The Hague show that on October 

2, 1608, Hans Lippershey (1587–1619), a Dutch spectacle 

maker, applied for a patent on the device. Galileo Galilei 

(1564–1642), in Padua, heard about the invention and within 

several months had built his own instrument (p. 227), grinding 

the lenses by hand. The compound microscope was invented 

at just about the same time, possibly by the Dutchman Zacha-

rias Janssen (1588–1632). The microscope’s concave eye-

piece was replaced with a convex lens by Francisco Fontana 

(1580–1656) of Naples, and a similar change in the telescope 

was introduced by Johannes Kepler (1571–1630). In 1611, 

Kepler published his  Dioptrice
 . He had discovered total inter-

nal reflection (p. 125) and arrived at the small angle approxi-

mation to the Law of Refraction, in which case the incident 

and transmission angles are proportional. He evolved a treat-

Giovanni Battista Della Porta (1535–1615). (US National Library of Medicine)

ment of first-order Optics for thin-lens systems and in his 

book describes the detailed operation of both the Keplerian 

(positive eyepiece) and Galilean (negative eyepiece) tele-

scopes. Willebrord Snel (1591–1626), whose name is usually 

the work of Giovanni Battista Della Porta (1535–1615), who dis-

inexplicably spelled Snell, professor at Leyden, empirically 

cussed multiple mirrors and combinations of positive and negative 

discovered the long-hidden  Law of Refraction
  (p. 100) in 

lenses in his  Magia naturalis
  (1589).

1621—this was one of the great moments in Optics. By learn-

This, for the most part, modest array of events constitutes 

ing precisely how rays of light are redirected on traversing a 

what might be called the first period of Optics. It was undoubt-

boundary between two media, Snell in one swoop swung open 

edly a beginning—but on the whole a humble one. The whirl-

the door to modern applied Optics. René Descartes (1596–1650) 

wind of accomplishment and excitement was to come later, in 

was the first to publish the now familiar formulation of the 

the seventeenth century.

Law of Refraction in terms of sines. Descartes deduced the 

A very early picture of an outdoor European 

village scene. The man on the left is selling 

eyeglasses. (INTERFOTO/Alamy)
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Johannes Kepler (1571–1630). (Nickolae/Fotolia)

Sir Isaac Newton (1642–1727). (Georgios Kollidas/Fotolia)

law using a model in which light was viewed as a pressure 

transmitted by an elastic medium; as he put it in his  La Diop-



trique
  (1637)

also observed diffraction effects. He was the first to study the 

colored interference patterns (p. 408) generated by thin films 

recall the nature that I have attributed to light, when I said that it 

( Micrographia
 , 1665). He proposed the idea that light was a 

is nothing other than a certain motion or an action conceived in a 

rapid vibratory motion of the medium propagating at a very 

very subtle matter, which fills the pores of all other bodies. . . .

great speed. Moreover, “every pulse or vibration of the lumi-

The universe was a plenum. Pierre de Fermat (1601–1665), tak-

nous body will generate a sphere”—this was the beginning of 

ing exception to Descartes’s assumptions, rederived the Law  

the wave theory. Within a year of Galileo’s death, Isaac New-

of Reflection (p. 109) from his own  Principle of Least Time
  

ton (1642–1727) was born. The thrust of Newton’s scientific 

(1657).

effort was to build on direct observation and avoid speculative 

The phenomenon of diffraction, that is, the deviation from 

hypotheses. Thus he remained ambivalent for a long while 

rectilinear propagation that occurs when light advances beyond 

about the actual nature of light. Was it corpuscular—a stream 

an obstruction (p. 449), was first noted by Professor Francesco 

of particles, as some maintained? Or was light a wave in an 

Maria Grimaldi (1618–1663) at the Jesuit College in Bologna. 

all-pervading medium, the aether? At the age of 23, he began 

He had observed bands of light within the shadow of a rod 

his now famous experiments on dispersion.

illuminated by a small source. Robert Hooke (1635–1703), 

I procured me a triangular glass prism to try therewith the cele-

curator of experiments for the Royal Society, London, later 

brated phenomena of colours.

Newton concluded that white light was composed of a mix-

ture of a whole range of independent colors (p. 193). He main-

tained that the corpuscles of light associated with the various 

colors excited the aether into characteristic vibrations. Even 

though his work simultaneously embraced both the wave and 

emission (corpuscular) theories, he did become more commit-

ted to the latter as he grew older. His main reason for rejecting 

the wave theory as it stood then was the daunting problem of 

explaining rectilinear propagation in terms of waves that spread 

out in all directions.

After some all-too-limited experiments, Newton gave up try-

ing to remove chromatic aberration from refracting telescope 

lenses. Erroneously concluding that it could not be done, he 

turned to the design of reflectors. Sir Isaac’s first reflecting 

telescope, completed in 1668, was only 6 inches long and 1 inch 

in diameter, but it magnified some 30 times.

At about the same time that Newton was emphasizing the 

René Descartes by Frans Hals (1596–1650). (Georgios Kollidas/Shutterstock)

emission theory in England, Christiaan Huygens (1629–1695), 
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The great weight of Newton’s opinion hung like a shroud 

over the wave theory during the eighteenth century, all but sti-

fling its advocates. Despite this, the prominent mathematician 

Leonhard Euler (1707–1783) was a devotee of the wave theory, 

even if an unheeded one. Euler proposed that the undesirable 

color effects seen in a lens were absent in the eye (which is an 

erroneous assumption) because the different media present ne-

gated dispersion. He suggested that achromatic lenses (p. 272) 

might be constructed in a similar way. Inspired by this work, 

Samuel Klingenstjerna (1698–1765), a professor at Uppsala, 

reperformed Newton’s experiments on achromatism and deter-

mined them to be in error. Klingenstjerna was in communica-

tion with a London optician, John Dollond (1706–1761), who 

was observing similar results. Dollond finally, in 1758, com-

bined two elements, one of crown and the other of flint glass, to 

form a single achromatic lens. Incidentally, Dollond’s invention 

was actually preceded by the unpublished work of the amateur 

scientist Chester Moor Hall (1703–1771) in Essex.

Christiaan Huygens (1629–1695). ( Portrait of Christiaan Huygens
  (ca. 1680), Abraham 

Bloteling. Engraving. Rijksmuseum [Object number RP-P-1896-A-19320].)

on the continent, was greatly extending the wave theory. Unlike 


1.4 The Nineteenth Century


Descartes, Hooke, and Newton, Huygens correctly concluded 

that light effectively slowed down on entering more dense me-

The wave theory of light was reborn at the hands of Dr. Thomas 

dia. He was able to derive the Laws of Reflection and Refrac-

Young (1773–1829), one of the truly great minds of the century. 

tion and even explained the double refraction of calcite (p. 344), 

In 1801, 1802, and 1803, he read papers before the Royal Society, 

using his wave theory. And it was while working with calcite 

extolling the wave theory and adding to it a new fundamental 

that he discovered the phenomenon of  polarization
  (p. 330).

concept, the so-called  Principle of Interference
  (p. 390):

As there are two different refractions, I conceived also that there 

When two undulations, from different origins, coincide either 

are two different emanations of the waves of light. . . .

perfectly or very nearly in direction, their joint effect is a com-

Thus light was either a stream of particles or a rapid undula-

bination of the motions belonging to each.

tion of aethereal matter. In any case, it was generally agreed 

that its speed was exceedingly large. Indeed, many believed 

that light propagated instantaneously, a notion that went back 

at least as far as Aristotle. The fact that it was finite was deter-

mined by the Dane Ole Christensen Römer (1644–1710). Jupi-

ter’s nearest moon, Io, has an orbit about that planet that is 

nearly in the plane of Jupiter’s own orbit around the Sun. 

Römer made a careful study of the eclipses of Io as it moved 

through the shadow behind Jupiter. In 1676 he predicted that 

on November 9 Io would emerge from the dark some 10 min-

utes later than would have been expected on the basis of its 

yearly averaged motion. Precisely on schedule, Io performed 

as predicted, a phenomenon Römer correctly ex plained as aris-

ing from the finite speed of light. He was able to determine that 

light took about 22 minutes to traverse the diameter of the Earth’s 

orbit around the Sun—a distance of about 186 million miles. 

Huygens and Newton, among others, were quite convinced of 

the validity of Römer’s work. Independently estimating the 

Earth’s orbital diameter, they assigned values to  c
  equivalent to 

2.3 * 108 m>s and 2.4 * 108 m>s, respectively.*

*A. Wróblewski,  Am. J. Phys.
  53,
  620 (1985).

Thomas Young (1773–1829). (Smithsonian Institution)
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Huygens was aware of the phenomenon of polarization aris-

ing in calcite crystals, as was Newton. Indeed, the latter in his 


Opticks
  stated,

Every Ray of Light has therefore two opposite Sides. . . .

It was not until 1808 that Étienne Louis Malus (1775–1812) 

discovered that this two-sidedness of light also arose upon 

reflection (p. 355); the phenomenon was not inherent to crys-

talline media. Fresnel and Dominique François Arago (1786–

1853) then conducted a series of experiments to determine 

the effect of polarization on interference, but the results were 

utterly inexplicable within the framework of their longitudi-

nal wave picture. This was a dark hour indeed. For several 

years Young, Arago, and Fresnel wrestled with the problem 

until finally Young suggested that the aethereal vibration 

might be  transverse
 , as is a wave on a string. The two-sidedness 

of light was then simply a manifestation of the two orthogo-

nal vibrations of the aether, transverse to the ray direc tion. 

Fresnel went on to evolve a mechanistic description of aether 

oscillations, which led to his now famous formulas for the 

Augustin Jean Fresnel (1788–1827). (US National Library of Medicine)

amplitudes of reflected and transmitted light (p. 115). By 

1825 the emission (or corpuscular) theory had only a few te-

He was able to explain the colored fringes of thin films and 

nacious advocates.

determined wavelengths of various colors using Newton’s 

The first terrestrial determination of the speed of light was per-

data. Even though Young, time and again, maintained that his 

formed by Armand Hippolyte Louis Fizeau (1819–1896) in 1849. 

conceptions had their very origins in the research of Newton, 

His apparatus, consisting of a rotating toothed wheel and a distant 

he was severely attacked. In a series of articles, probably writ-

mirror (8633 m), was set up in the suburbs of Paris from Suresnes 

ten by Lord Brougham, in the  Edinburgh Review
 , Young’s pa-

to Montmartre. A pulse of light leaving an opening in the wheel 

pers were said to be “destitute of every species of merit.”

struck the mirror and returned. By adjusting the known rotational 

Augustin Jean Fresnel (1788–1827), born in Broglie, Nor-

speed of the wheel, the returning pulse could be made either to 

mandy, began his brilliant revival of the wave theory in France, 

pass through an opening and be seen or to be obstructed by a 

unaware of the efforts of Young some 13 years earlier. Fresnel 

tooth. Fizeau arrived at a value of the speed of light equal to 

synthesized the concepts of Huygens’s wave description and 

315 300 km>s. His colleague Jean Bernard Léon Foucault (1819–

the interference principle. The mode of propagation of a pri-

1868) was also involved in research on the speed of light. In 1834 

mary wave was viewed as a succession of spherical secondary 

Charles Wheatstone (1802–1875) had designed a rotating-mirror 

wavelets, which overlapped and interfered to re-form the ad-

arrangement in order to measure the duration of an electric spark. 

vancing primary wave as it would appear an instant later. In 

Using this scheme, Arago had proposed to measure the speed of 

Fresnel’s words:

light in dense media but was never able to carry out the experi-

ment. Foucault took up the work, which was later to provide mate-

The vibrations of a luminous wave in any one of its points may 

rial for his doctoral thesis. On May 6, 1850, he reported to the 

be considered as the sum of the elementary movements con-

Academy of Sciences that the speed of light in water was  less
  than 

veyed to it at the same moment, from the separate action of all 

that in air. This result was in direct conflict with Newton’s formu-

the portions of the unobstructed wave considered in any one of 

lation of the emission theory and a hard blow to its few remaining 

its anterior positions.

devotees.

These waves were presumed to be longitudinal, in analogy with 

While all of this was happening in Optics, quite indepen-

sound waves in air. Fresnel was able to calculate the diffraction 

dently, the study of electricity and magnetism was also 

patterns arising from various obstacles and apertures and satis-

bearing fruit. In 1845 the master experimentalist Michael 

factorily accounted for rectilinear propagation in homogeneous 

Faraday (1791–1867) established an interrelationship be-

isotropic media, thus dispelling Newton’s main objection to the 

tween electromagnetism and light when he found that the 

undulatory theory. When finally apprised of Young’s priority to 

polarization direction of a beam could be altered by a strong 

the interference principle, a somewhat disappointed Fresnel 

magnetic field applied to the medium. James Clerk Maxwell 

nonetheless wrote to Young, telling him that he was consoled by 

(1831–1879) brilliantly summarized and extended all the 

finding himself in such good company—the two great men be-

empirical knowledge on the subject in a single set of math-

came allies.

ematical equations. Beginning with this remarkably succinct 
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research, evolving quietly on its own, that ultimately led to the 

next great turning point. In 1725 James Bradley (1693–1762), 

then Savilian Professor of Astronomy at Oxford, attempted to 

measure the distance to a star by observing its orientation at 

two different times of the year. The position of the Earth 

changed as it orbited around the Sun and thereby provided a 

large baseline for triangulation on the star. To his surprise, 

Bradley found that the “fixed” stars displayed an apparent sys-

tematic movement related to the direction of motion of the 

Earth in orbit and not dependent, as had been anticipated, on 

the Earth’s position in space. This so-called  stellar aberration
  

is analogous to the well-known falling-raindrop situation. A 

raindrop, although traveling vertically with respect to an ob-

server at rest on the Earth, will appear to change its incident 

angle when the observer is in motion. Thus a corpuscular 

James Clerk Maxwell (1831–1879). (E.H.)

and beautifully symmetrical synthesis, he was able to show, 

purely theoretically, that the electromagnetic field could 

propagate as a transverse wave in the luminiferous aether 

(p. 46).

Solving for the speed of the wave, Maxwell arrived at an ex-

pression in terms of electric and magnetic properties of the me-

dium  ( c 
 = 1> 1P0m0). Upon substituting known empirically 

determined values for these quantities, he obtained a numerical 

result equal to the measured speed of light! The conclusion was 

inescapable— light was “an electromagnetic disturbance in the 



form of waves” propagated through the aether
 . Maxwell died at 

the age of 48, eight years too soon to see the experimental con-

firmation of his insights and far too soon for physics. Heinrich 

Rudolf Hertz (1857–1894) verified the existence of long electro-

magnetic waves by generating and detecting them in an exten-

sive series of experiments published in 1888.

The acceptance of the wave theory of light seemed to 

necessitate an equal acceptance of the existence of an all-

pervading substratum, the luminiferous aether. If there were 

waves, it seemed obvious that there must be a supporting me-

dium. Quite naturally, a great deal of scientific effort went 

into determining the physical nature of the aether, yet it 

would have to possess some rather strange properties. It had 

to be so tenuous as to allow an apparently unimpeded motion 

of celestial bodies. At the same time, it could support the ex-

ceedingly high-frequency (∼1015 Hz) oscillations of light 

traveling at 186 000 miles per second. That implied remark-

ably strong restoring forces within the aethereal substance. 

The speed at which a wave advances through a medium is 

dependent on the characteristics of the disturbed substratum 

and not on any motion of the source. This is in contrast to the 

behavior of a stream of particles whose speed with respect to 

the source is the essential parameter.

Table of Opticks from Volume 2 of the  Cyclopedia: or, An Universal Dictionary 


Certain aspects of the nature of aether intrude when study-


of Arts and Sciences
 , edited by Ephraim Chambers, published in London by 

ing the optics of moving objects, and it was this area of  

James and John Knapton in 1728. (University of Wisconsin Digital Collections)
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model of light could explain stellar aberration rather handily. 


1.5 Twentieth-Century Optics


Alternatively, the wave theory also offers a satisfactory expla-

nation provided that  the aether remains totally undisturbed as 


Jules Henri Poincaré (1854–1912) was perhaps the first to grasp 


the Earth plows through it
 .

the significance of the experimental inability to observe any ef-

In response to speculation as to whether the Earth’s motion 

fects of motion relative to the aether. In 1899 he began to make 

through the aether might result in an observable difference be-

his views known, and in 1900 he said:

tween light from terrestrial and extraterrestrial sources, Arago 

set out to examine the problem experimentally. He found that 

Our aether, does it really exist? I do not believe that more pre-

there were no such observable differences. Light behaved just 

cise observations could ever reveal anything more than  relative
  

as if the Earth were at rest with respect to the aether. To ex-

displacements.

plain these results, Fresnel suggested in effect that light was 

In 1905 Albert Einstein (1879–1955) introduced his  Special 


partially dragged along as it traversed a transparent medium in 


Theory of Relativity
 , in which he too, quite independently, re-

motion. Experiments by Fizeau, in which light beams passed 

jected the aether hypothesis.

down moving columns of water, and by Sir George Biddell 

The introduction of a “luminiferous aether” will prove to be su-

Airy (1801–1892), who used a water-filled telescope in 1871 

perfluous inasmuch as the view here to be developed will not 

to examine stellar aberration, both seemed to confirm Fres-

require an “absolutely stationary space.”

nel’s drag hypothesis. Assuming an aether at  absolute rest
 , 

Hendrik Antoon Lorentz (1853–1928) derived a theory that 

He further postulated:

encompassed Fresnel’s ideas.

light is always propagated in empty space with a definite velocity 

In 1879 in a letter to D. P. Todd of the U.S. Nautical Almanac 


c
  which is independent of the state of motion of the emitting body.

Office, Maxwell suggested a scheme for measuring the speed 

at which the solar system moved with respect to the lumi-

The experiments of Fizeau, Airy, and Michelson–Morley 

niferous aether. The American physicist Albert Abraham 

were then explained quite naturally within the framework of 

Michelson (1852–1931), then a naval instructor, took up the 

Einstein’s relativistic kinematics.* Deprived of the aether, 

idea. Michelson, at the tender age of 26, had already estab-

physicists simply had to get used to the idea that electromag-

lished a favorable reputation by performing an extremely pre-

netic waves could propagate through free space—there was no 

cise determination of the speed of light. A few years later, he 

alternative. Light was now envisaged as a self-sustaining wave 

began an experiment to measure the effect of the Earth’s mo-

with the conceptual emphasis passing from aether to field. The 

tion through the aether. Since the speed of light in aether is 

electromagnetic wave became an entity in itself.

constant and the Earth, in turn, presumably moves in relation 

On October 19, 1900, Max Karl Ernst Ludwig Planck (1858–

to the aether (orbital speed of 67 000 mi>h), the speed of light 

1947) read a paper before the German Physical Society in which 

measured with respect to the Earth should be affected by the 

he introduced the hesitant beginnings of what was to become yet 

planet’s motion. In 1881 he published his findings. There was 

no detectable motion of the Earth with respect to the aether—

the aether was stationary. But the decisiveness of this surprising 

result was blunted somewhat when Lorentz pointed out an 

oversight in the calculation. Several years later Michelson, 

then professor of physics at Case School of Applied Science in 

Cleveland, Ohio, joined with Edward Williams Morley (1838–

1923), a well-known professor of chemistry at Western 





Reserve, to redo the experiment with considerably greater 

precision. Amazingly enough, their results, published in 

1887, once again were negative:

It appears from all that precedes reasonably certain that if there 

be any relative motion between the earth and the luminiferous 

aether, it must be small; quite small enough entirely to refute 

Fresnel’s explanation of aberration.

Thus, whereas an explanation of stellar aberration within the 

context of the wave theory required the existence of a relative 

motion between Earth and aether, the Michelson–Morley Ex-

Albert Einstein (1879–1955). (Orren Jack Turner/Library of Congress Prints and 

periment refuted that possibility. Moreover, the findings of 

Photographs Division [LC-USZ62-60242])

Fizeau and Airy necessitated the inclusion of a partial drag of 

light due to motion of the medium.

*See, for example,  Special Relativity
  by French, Chapter 5.
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(a)

(b)

(c)


Figure 1.1
     A rather convincing illustration 

of the particle nature of light. This sequence 

of photos was made using a position-sensing 

photomultiplier tube illuminated by an  

(8.5 * 103 count-per-second) image of a  

bar chart. The exposure times were  

( a
 ) 8 ms, ( b
 ) 125 ms, ( c
 ) 1 s, ( d
 ) 10 s, and 

( e
 ) 100 s. Each dot can be interpreted as 

the arrival of a single photon. (ITT Electro-Optical 

Products Division)

(d)

(e)

another great revolution in scientific thought— Quantum  


of momentum  p
  had an associated wavelength l, such that 


Mechanics
 , a theory embracing submicroscopic phenomena  


p 
 =  h
 >l. The easy images of submicroscopic specks of matter 

(p. 53). In 1905, boldly building on these ideas, Einstein pro-

became untenable, and the wave-particle dichotomy dissolved 

posed a new form of corpuscular theory in which he asserted that 

into a duality.

light consisted of globs or “particles” of energy. Each such quan-

Quantum Mechanics also treats the manner in which light is 

tum of radiant energy or  photon
 ,† as it came to be called, had an 

absorbed and emitted by atoms (p. 66). Suppose we cause a gas 

energy proportional to its frequency n, that is, ℰ =  h
 n, where  h
  

to glow by heating it or passing an electrical discharge through 

is known as Planck’s constant (Fig. 1.1). By the end of the 1920s, 

it. The light emitted is characteristic of the very structure of the 

through the efforts of Bohr, Born, Heisenberg, Schrödinger,  

atoms constituting the gas. Spectroscopy, which is the branch of 

De Broglie, Pauli, Dirac, and others, Quantum Mechanics had 

Optics dealing with spectrum analysis (p. 75), developed from 

become a well-verified theory. It gradually became evident that 

the research of Newton. William Hyde Wollaston (1766–1828) 

the concepts of particle and wave, which in the macroscopic 

made the earliest observations of the dark lines in the solar spec-

world seem so obviously mutually exclusive, must be merged in 

trum (1802). Because of the slit-shaped aperture generally used 

the submicroscopic domain. The mental image of an atomic par-

in spectroscopes, the output consisted of narrow colored bands 

ticle (e.g., electrons and neutrons) as a minute localized lump of 

of light, the so-called  spectral lines
 . Working independently, 

matter would no longer suffice. Indeed, it was found that these 

Joseph Fraunhofer (1787–1826) greatly extended the subject. 

“particles” could generate interference and diffraction patterns 

After accidentally discovering the double line of sodium (p. 136), 

in precisely the same way as would light (p. 404). Thus photons, 

he went on to study sunlight and made the first wavelength de-

protons, electrons, neutrons, and so forth—the whole lot—have 

terminations using diffraction gratings (p. 488). Gustav Robert 

both particle and wave manifestations. Still, the matter was by 

Kirchhoff (1824–1887) and Robert Wilhelm Bunsen (1811–1899), 

no means settled. “Every physicist thinks that he knows what a 

working together at Heidelberg, established that each kind of 

photon is,” wrote Einstein. “I spent my life to find out what a 

atom had its own signature in a characteristic array of spectral 

photon is and I still don’t know it.”

lines. And in 1913 Niels Henrik David Bohr (1885–1962) set 

Relativity liberated light from the aether and showed the kin-

forth a precursory quantum theory of the hydrogen atom, which 

ship between mass and energy (via ℰ0 =  mc
 2). What seemed to 

was able to predict the wavelengths of its emission spectrum. 

be two almost antithetical quantities now became interchange-

The light emitted by an atom is now understood to arise from its 

able. Quantum Mechanics went on to establish that a particle‡ 

outermost electrons (p. 66). The process is the domain of mod-

ern quantum theory, which describes the most minute details 

with incredible precision and beauty.

†The word  photon
  was coined by G. N. Lewis,  Nature
 , December 18, 1926.

The flourishing of applied Optics in the second half of the 

‡Perhaps it might help if we just called them all  wavicles
 .

twentieth century represents a renaissance in itself. In the 1950s 
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several workers began to inculcate Optics with the mathemati-

new devices. The technology needed to produce a practicable 

cal techniques and insights of communications theory. Just as 

optical communications system developed rapidly. The sophis-

the idea of momentum provides another dimension in which to 

ticated use of crystals in devices such as second-harmonic gen-

visualize aspects of mechanics, the concept of spatial frequency 

erators (p. 660), electro-optic and acousto-optic modulators, 

offers a rich new way of appreciating a broad range of optical 

and the like spurred a great deal of contemporary research in 

phenomena. Bound together by the mathematical formalism of 

crystal optics. The wavefront reconstruction technique known 

Fourier analysis (p. 300), the outgrowths of this contemporary 

as   holography
  (p. 644), which produces magnificent three- 

emphasis have been far-reaching. Of particular interest are the 

dimensional images, was found to have numerous additional 

theory of image formation and evaluation (p. 544), the  transfer 


applications (nondestructive testing, data storage, etc.).


functions
  (p. 570), and the idea of  spatial filtering
  (p. 320).

The military orientation of much of the developmental work 

The advent of the high-speed digital computer brought with 

in the 1960s continued into the 2000s with added vigor. Today 

it a vast improvement in the design of complex optical systems. 

that technological interest in Optics ranges across the spectrum 

Aspherical lens elements (p. 152) took on renewed practical 

from “smart bombs” and spy satellites to “death rays” and infra-

significance, and the  diffraction-limited
  system with an appre-

red gadgets that see in the dark. But economic considerations 

ciable field of view became a reality. The technique of ion bom-

coupled with the need to improve the quality of life have brought 

bardment polishing, in which one atom at a time is chipped 

products of the discipline into the consumer marketplace as 

away, was introduced to meet the need for extreme precision in 

never before. Lasers are in use everywhere: reading videodiscs 

the preparation of optical elements. The use of single and mul-

in living rooms, cutting steel in factories, scanning labels in  

tilayer thin-film coatings (reflecting, antireflecting, etc.) be-

supermarkets, and performing surgery in hospitals. Millions of 

came commonplace (p. 435). Fiberoptics evolved into a practi-

optical display systems on clocks and calculators and comput-

cal communications tool (p. 196), and thin-film light guides 

ers are blinking all around the world. The almost exclusive use, 

continued to be studied. A great deal of attention was paid to the 

for the last one hundred years, of electrical signals to handle 

infrared end of the spectrum (surveillance systems, missile 

and transmit data is now rapidly giving way to more efficient 

guidance, etc.), and this in turn stimulated the development of 

optical techniques. A far-reaching revolution in the methods of 

infrared materials. Plastics began to be used extensively in  

processing and communicating information is quietly taking 

Optics (lens elements, replica gratings, fibers, aspherics, etc.). 

place, a revolution that will continue to change our lives in the 

A new class of partially vitrified glass ceramics with exceed-

years ahead.

ingly low thermal expansion was developed. A resurgence in 

Profound insights are slow in coming. What few we have took 

the construction of astronomical observatories (both terrestrial 

over three thousand years to glean, even though the pace is ever 

and extraterrestrial) operating across the whole spectrum was 

quickening. It is marvelous indeed to watch the answer subtly 

well under way by the end of the 1960s and vigorously sus-

change while the question immutably remains— what is light?
 *

tained into the twenty-first century (p. 228).

The first laser was built in 1960, and within a decade laser-

beams spanned the range from infrared to ultraviolet. The 

availability of high-power coherent sources led to the discov-

*For more reading on the history of Optics, see F. Cajori,  A History of Physics
 ,  

and V. Ronchi,  The Nature of Light
 . Excerpts from a number of original papers  

ery of a number of new optical effects (harmonic generation, 

can conveniently be found in W. F. Magie,  A Source Book in Physics
 , and in  

frequency mixing, etc.) and thence to a panorama of marvelous 

M. H. Shamos,  Great Experiments in Physics
 .
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2Wave Motion


The issue of the actual nature of light is central to a complete 

domain, the classical concept of a physical wave is an illusion. 

treatment of Optics, and we will struggle with it throughout this 

Still, in the large-scale regime in which we ordinarily work, 

work. The straightforward question “Is light a wave phenome-

electromagnetic waves seem real enough and classical theory 

non or a particle phenomenon?” is far more complicated than it 

applies superbly well.

might at first seem. For example, the essential feature of a par-

Because both the classical and quantum-mechanical treat-

ticle is its localization; it exists in a well-defined, “small” region 

ments of light make use of the mathematical description of 

of space. Practically, we tend to take something familiar like a 

waves, this chapter lays out the basics of what both formal isms 

ball or a pebble and shrink it down in imagination until it be-

will need. The ideas we develop here will apply to all physical 

comes vanishingly small, and that’s a “particle,” or at least the 

waves, from a surface tension ripple in a cup of tea to a pulse of 

basis for the concept of “particle.” But a ball interacts with its 

light reaching us from some distant galaxy.

environment; it has a gravitational field that interacts with the 

Earth (and the Moon, and Sun, etc.). This field, which spreads 

out into space—whatever  it
  is—cannot be separated from the 

ball; it is an inextricable part of the ball just as it is an inextri-


2.1 One-Dimensional Waves


cable part of the definition of “particle.” Real particles interact 

via fields, and, in a sense, the field is the particle and the particle 

An essential aspect of a traveling wave is that it is a self-

is the field. That little conundrum is the domain of Quantum 

sustaining disturbance of the medium through which it propa-

Field Theory, a discipline we’ll talk more about later (p. 140). 

gates. The most familiar waves, and the easiest to visualize 

Suffice it to say now that if light is a stream of submicroscopic 

(Fig. 2.1), are the mechanical waves, among which are waves 

particles (photons), they are by no means “ordinary” miniball 

on strings, surface waves on liquids, sound waves in the air, 

classical particles.

and compression waves in both solids and fluids. Sound waves 

On the other hand, the essential feature of a wave is its non-

are longitudinal
 — the medium is displaced in the direction of 


localization.  A classical traveling wave is a self-sustaining dis-



motion of the wave
 . Waves on a string (and electromagnetic 


turbance of a medium, which moves through space transporting 


waves) are transverse
 — the medium is displaced in a direction 



energy and momentum.
  We tend to think of the ideal wave as a 


perpendicular to that of the motion of the wave
 . In all cases, 

continuous entity that exists over an extended region. But when 

although the energy-carrying disturbance advances through the 

we look closely at real waves (such as waves on strings), we see 

medium, the individual participating atoms remain in the vi-

composite phenomena comprising vast numbers of particles 

cinity of their equilibrium positions:  the disturbance advances
 ,  


moving in concert. The media supporting these waves are atomic 


not the material medium
 . That’s one of several crucial features 

(i.e., particulate), and so the waves are not continuous entities in 

of a wave that distinguishes it from a stream of particles. The 

and of themselves. The only possible exception might be the 

wind blowing across a field sets up “waves of grain” that sweep 

electromagnetic wave. Conceptually, the classical electromag-

by, even though each stalk only sways in place. Leonardo da 

netic wave (p. 46) is supposed to be a continuous entity, and  it
  

Vinci seems to have been the first person to recognize that a 

serves as the model for the very notion of wave as distinct from 

wave does not transport the medium through which it travels, 

particle. But in the past century we found that the energy of  

and it is precisely this property that allows waves to propagate 

an electromagnetic wave is  not
  distributed continuously. The 

at very great speeds.

classical formulation of the electromagnetic theory of light, 

What we want to do now is figure out the form the wave equa-

however wonderful it is on a macroscopic level, is profoundly 

tion must have. To that end, envision some such disturbance c 

wanting on a microscopic level. Einstein was the first to suggest 

moving in the positive  x
 -direction with a constant speed  v
 . The 

that the electromagnetic wave, which we perceive macroscopi-

specific nature of the disturbance is at the moment unimportant. 

cally, is the statistical manifestation of a fundamentally granular 

It might be the vertical displacement of the string in Fig. 2.2 or 

underlying microscopic phenomenon (p. 53). In the subatomic 

the magnitude of an electric or magnetic field associated with an 


10
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v


(a)


Figure 2.2
     A wave on a string.

For the moment we limit ourselves to a wave that  does not 



change its shape
  as it progresses through space. After a time  t 
 the 

pulse has moved along the  x
 -axis a distance  vt
 , but in all other 

respects it remains unaltered. We now introduce a coordinate sys-

tem  S
 ′, that travels along with the pulse (Fig. 2.3 b
 ) at the speed  v
 .  

In this system c is no longer a function of time, and as we move 

along with  S
 ′, we see a stationary constant profile described by 

Eq. (2.2). Here, the coordinate is  x
 ′ rather than  x
 , so that

(b)





c =  ƒ(x
 ′ )
  (2.3)


Figure 2.1  
  ( a
 ) A longitudinal wave in a spring. ( b
 ) A transverse wave in a 

spring.

(a)  S


c =  f (x,t)



v


electromagnetic wave (or even the quantum-mechanical proba-

bility amplitude of a matter wave).

Since the disturbance is moving, it must be a function of 

0


x


both position and time;

(b)


S
 ′





c (x, t) 
 =  ƒ(x, t)
  (2.1)

c =  f(x
 ′ )


where   ƒ(x, t)  
 corresponds to some specific function or wave 

shape.   
 This is represented in Fig. 2.3 a
 , which shows a pulse 

0′


x
 ′

traveling in the stationary coordinate system  S 
 at a speed  v
 . The 

shape of the disturbance at any instant, say,  t 
 = 0, can be found 

(c)  S



S
 ′

by holding time constant at that value. In this case,

c =  f(x 
 –  vt)






c (x, t) 
 0 t
 =0 =  ƒ(x, 0) 
 =  ƒ(x)
  (2.2)

represents the profile
  of the wave at that time. For example, if 

0

0′


x
 ′  x



ƒ(x) 
 =  e
 - ax
 2,  
 where  a
  is a constant, the profile has the shape of vt



x
 ′

a bell; that is, it is a Gaussian function
 . (Squaring the  x
  makes 


x


it symmetrical around the  x 
 = 0  
 axis.) Setting  t 
 = 0  
 is analo-

gous to taking a “photograph” of the pulse as it travels by. 


Figure 2.3
     Moving reference frame.
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Chapter 2
   Wave Motion

The disturbance looks the same at any value of  t
  in  S
 ′ as it did 

(a)

c (x, 0) 
 =  f (x)


at  t 
 = 0  
 in  S
  when  S
  and  S
 ′ had a common origin (Fig. 2.3 c
 ). 

3.0

We now want to rewrite Eq. (2.3) in terms of  x
  to get the 

wave as it would be described by someone at rest in  S
 . It follows 

2.5

from Fig. 2.3 c
  that

2.0






x
 ′ =  x 
 -  vt
  (2.4)

1.5

and substituting into Eq. (2.3)

1.0





c (x, t) 
 =  ƒ(x 
 -  vt)
  (2.5)

This then represents the most general form of the one-dimensional 

0.5


wavefunction
 . To be more specific, we have only to choose a 


x


shape, Eq. (2.2), and then substitute ( x 
 -  vt
 ) for  x
  in  ƒ(x)
 .  
The 



–6

–4

–2

0

2

4

6



resulting expression describes a wave having the desired pro-
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file, moving in the positive x

 -
 
direction with a speed

  v
 . Thus, 


t 
 = 0

c (x, t) 
 =  e
 - a
 ( x
 - vt
 )2 is a bell-shaped wave, a pulse.

(b)

c (x, t)


To see how this all works in a bit more detail, let’s unfold 

3.0

the analysis for a specific pulse, for example, c (x) 
 = 

2.5

3>[10 x
 2 + 1] =  ƒ(x)
 . That profile is plotted in Fig. 2.4 a
 , and if 

it was a wave on a rope, c would be the vertical displacement 

2.0


v
  = 1.0 ms

and we might even replace it by the symbol  y
 . Whether c rep-

resents displacement or pressure or electric field, we now have 

1.5

the profile of the disturbance. To turn  ƒ(x) 
 into c (x, t)
 , that is, 

1.0

to turn it into the description of a wave moving in the positive 


x
 -direction at a speed  v
 , we replace  x
  wherever it appears in 

0.5


ƒ(x)
  by ( x 
 -  vt
 ), thereby yielding c (x, t) 
 = 3>[10( x 
 -  vt
 )2 + 1]. 


x


If  v
  is arbitrarily set equal to, say, 1.0 m>s  and the function is 

–4

–2

0

2

4

6

plotted successively at  t 
 = 0,  t 
 = 1 s,  t 
 = 2 s, and  t 
 = 3 s, we get 

11

1

11
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11

1

11
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Fig. 2.4 b
 , which shows the pulse sailing off to the right at 1.0 m>s, 

7

5

6

7
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6

7
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6
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6


t 
 = 0  t 
 = 1 s  t 
 = 2 s  t 
 = 3 s

just the way it’s supposed to. Incidentally, had we substituted 

( x 
 +  vt
 ) for  x
  in the profile function, the resulting wave would 


Figure 2.4  
  ( a
 ) The profile of a pulse given by the function  ƒ(x) 
 =  

move off to the left.

3>(10 x
 2 + 1). ( b
 ) The profile shown in ( a
 ) is now moving as a wave,  

If we check the form of Eq. (2.5) by examining 

c (x
 ,  t) 
 = 3>[10( x 
 -  vt
 )2 + 1], to the right. We assign it a speed of c after an 

1 m>s and it advances in the positive  x
 -direction.

increase in time of ∆ t
  and a corresponding increase of  v
  ∆ t 
 in  x
 , 

we find


ƒ[(x 
 +  v 
 ∆ t) 
 -  v(t 
 + ∆ t)] 
 =  ƒ(x 
 -  vt)


space variable to specify them. Don’t be confused by the fact 

that in this particular case the rope happens to rise up into a 

and the profile is unaltered.

second dimension. In contrast, a two-dimensional wave propa-

Similarly, if the wave was traveling in the negative  x
 -direction, 

gates out across a surface, like the ripples on a pond, and can 

that is, to the left, Eq. (2.5) would become

be described by two space variables.





c =  ƒ(x 
 +  vt)
 , with  v 
 7 0 (2.6)

We may conclude therefore that, regardless of the shape of the 


2.1.1 The Differential Wave Equation


disturbance, the variables  x
  and  t
  must appear in the function as 

a unit, that is, as a single variable in the form ( x 
 ∓  vt
 ).  

In 1747 Jean Le Rond d’Alembert introduced partial differen-

Equation (2.5) is often expressed equivalently as some function 

tial equations into the mathematical treatment of physics. That 

of ( t 
 -  x
 > v
 ), since

same year, he wrote an article on the motion of vibrating strings 

in which the so-called  differential wave equation
  appears for 


x 
 -  vt


the first time. This linear, homogeneous, second-order, partial 






ƒ(x 
 -  vt) 
 =  F
   (
 - 


)
 = F(t
 - x
 > v)
  (2.7)


v


differential equation is usually taken as the defining expression 

for physical waves in a lossless medium. There are lots of dif-

The pulse shown in Fig. 2.2 and the disturbance described 

ferent kinds of waves, and each is described by its own wave-

by Eq. (2.5) are spoken of as  one-dimensional
  because the 

function  c (x)
 . Some are written in terms of pressure, or dis-

waves sweep over points lying on a line—it takes only one 

placement, while others deal with electromagnetic fields, but 
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remarkably all such wavefunctions are solutions of the same 

c (x, t0)


differential wave equation. The reason it’s a  partial
  differen-

tial equation is that the wave must be a function of several in-


t 
 =  t
 0 time held constant

dependent variables, namely, those of space and time. A  linear
  

c (x


differential equation is essentially one consisting of two or 


0, vt0)


more terms, each composed of a constant multiplying a func-

tion 


x


c (x)
  or its derivatives. The relevant point is that each such 


x
 0

term must appear only to the first power; nor can there be any 

cross products of c with its derivatives, or of its derivatives. 

Recall that the  order
  of a differential equation equals the order 

c (x0, t)


of the highest derivative in that equation. Furthermore, if a 

differential equation is of order  N
 , the solution will contain  N
  


x 
 =  x
 0 position held constant

arbitrary constants. 

We now derive the one-dimensional form of the wave 

c (x0, vt0)


equation guided by the foreknowledge (p. 14) that the most 

basic of waves traveling at a fixed speed requires two con-


vt



vt


stants (amplitude and frequency or wavelength) to specify it, 

0

and this suggests second derivatives. Because there are two 

independent variables (here,  x
  and  t
 ) we can take the deriva-


Figure 2.5
   Variation of c with  x
  and  t
 .

tive of c (x, t)
  with respect to  
 either  x 
 or  t. 
 This is done by just 

differentiating with respect to one variable and treating the 

other as if it were constant.  
 The usual rules for differentiation 

apply, but to make the distinction evident the partial derivative 

Since

is written as 0>0 x
 .

To relate the space and time dependencies of 

0c

0 ƒ


c (x, t)
 , take the 

=

partial derivative of c (x, t) 
 =  ƒ(x
 ′ )
  with respect to  x
 , holding  t
  

0 t


0 t


constant. Using  x
 ′ =  x 
 ∓  vt
 , and inasmuch as

02c

0





 a0cb

0c

0 ƒ


0 t
 2 = ∓ v
  0 x
 ′ 0 t


=

0 x


0 x


It follows, using Eq. (2.9), that

0c

0 ƒ 
 0 x
 ′

0 ƒ






=





=

 (2.8)

02c

02 ƒ


0 x


0 x
 ′ 0 x


0 x
 ′

0 t
 2 =  v
 2 0 x
 ′2

0 x
 ′

0( x 
 ∓  vt
 )

because 

=

= 1 

Combining this with Eq. (2.10), we obtain

0 x


0 x


Holding  x
  constant, the partial derivative with respect to time is

02c

1 02c









 (2.11)

0c

0 ƒ 
 0 x
 ′

0 ƒ


0 ƒ


0 x
 2 =  v
 2 0 t
 2





=





=

 (∓ v
 ) = ∓ v
    (2.9)

0 t


0 x
 ′ 0 t


0 x
 ′

0 x
 ′

which is the desired one-dimensional differential wave equation
 .

Combining Eqs. (2.8) and (2.9) yields

EXAMPLE 2.1 

0c

0c





= ∓ v
    

The wave shown in Fig. 2.4 is given by

0 t


0 x


3

This says that the rate of change of c with  t
  and with  x
  are 

c (x, t) 
 = [10( x


equal, to within a multiplicative constant, as shown in Fig. 2.5. 

-  vt
 )2 + 1]

The second partial derivatives of Eqs. (2.8) and (2.9) are

Show, using brute force, that this is a solution to the one- 

02

dimensional differential wave equation.

c

02 ƒ






 (2.10)

0 x
 2 = 0 x
 ′2

SOLUTION

02c

1 02c

02c

0

0 ƒ


0





and 

 a∓ v
   b = ∓ v
    a0 ƒ
 b 

0 x
 2 =  v
 2 0 t
 2

0 t
 2 = 0 t


0 x
 ′

0 x
 ′ 0 t



Continued
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Chapter 2
   Wave Motion

Differentiating with respect to  x
 :

and so take the form of partial differential equations. Max-

well’s formulation of electromagnetism, which is a field theory, 

0c

0

3





=

yields a variation of Eq. (2.11), and from that the concept of 

0

c

d


x


0 x 
 10( x 
 -  vt
 )2 + 1

the electromagnetic wave arises in a completely natural way 

0

(p. 46).

c





= (-1) 3[10( x 
 -  vt
 )2 + 1]-2 20( x 
 -  vt
 )

We began this discussion with the special case of waves that 

0 x


have a constant shape as they propagate, even though, as a rule, 

0c





= (-1) 60[10( x 
 -  vt
 )2 + 1]-2( x 
 -  vt
 )

waves don’t maintain a fixed profile. Still, that simple assump-

0 x


tion has led us to the general formulation, the differential wave 

02c

-60(-2) 20( x 
 -  vt
 )( x 
 -  vt
 )

equation. If a function that represents a wave is a solution of that 





equation, it will at the same time be a function of ( x 
 ∓  vt
 ) —

0 x
 2 =

[10( x 
 -  vt
 )2 + 1]3

specifically, one that is twice differentiable (in a nontrivial way) 

60

- 

with respect to both  x
  and  t
 . 

[10( x 
 -  vt
 )2 + 1]2

02

EXAMPLE 2.2

c

2400( x 
 -  vt
 )2

60

 0 x
 2 = [10( x 
 -  vt
 )2 + 1]3 - [10( x 
 -  vt
 )2 + 1]2

Does the function

Differentiating with respect to  t
 :

c (x, t) 
 =  exp [(-4 ax
 2 -  bt
 2 + 41 ab
   xt
 )]

0

where in  a
  and  b
  are constants, describe a wave? If so, what is 

c

0

3





=

its speed and direction of propagation?

0

c

d


t


0 t 
 10( x 
 -  vt
 )2 + 1

0

SOLUTION

c





= (-1) 3[10( x 
 -  vt
 )2 + 1]-2 20(- v
 )( x 
 -  vt
 )

Factor the bracketed term:

0 t 
 0c

c (x, t) 
 = exp [- a
 (4 x
 2 +  bt
 2> a 
 - 41 b
 > a
   xt
 )]





= 60 v
 ( x 
 -  vt
 ) [10( x 
 -  vt
 )2 + 1]-2

0 t


c (x, t) 
 = exp [-4 a
 ( x 
 - 1 b
 >4 a
   t
 )2]

02c

60 v
 ( x 
 -  vt
 )(-2) 20( x 
 -  vt
 )(- v
 )





That’s a twice differentiable function of ( x 
 -  vt
 ), so it is a solu-

0 t
 2 =

[10( x 
 -  vt
 )2 + 1]3

tion of Eq. (2.11) and therefore describes a wave. Here 

-60 v
 2


v 
 = 1

+

2 1 b
 > a
  and it travels in the positive  x
 -direction.

[10( x 
 -  vt
 )2 + 1]2

02c

2400 v
 2( x 
 -  vt
 )2

60 v
 2

 0 t
 2 = [10( x 
 -  vt
 )2 + 1]3 - [10( x 
 -  vt
 )2 + 1]2


2.2 Harmonic Waves


02c

1 02c

Hence 













Let’s now examine the simplest waveform, one for which the 

0 x
 2 =  v
 2 0 t
 2

profile is a sine or cosine curve. These are variously known as 

sinusoidal waves, simple harmonic waves, or more succinctly 

Note that Eq. (2.11) is a so-called  homogeneous 
 differential 

as harmonic waves
 . We shall see in Chapter 7 that any wave 

equation; it doesn’t contain a term (such as a “force” or a 

shape can be synthesized by a superposition of harmonic waves, 

“source”) involving only independent variables. In other 

and they therefore take on a special significance.

words, c is in each term of the equation, and that means that if 

Choose as the profile the simple function

c is a solution any multiple of c will also be a solution. Equa-





tion 2.11 is  
the wave equation for undamped systems

  that do 

c (x, t) 
 0 t
 =0 = c (x) 
 =  A
  sin  kx 
 =  ƒ(x)
  (2.12)

not contain sources in the region under consideration. The ef-

where   k
  is a positive constant known as the propagation 


fects of damping can be described by adding in a 0c>0 t
  term to 


number
 . It’s necessary to introduce the constant  k
  simply 

form a more general wave equation, but we’ll come back to 

because we cannot take the sine of a quantity that has physical 

that later (p. 73).

units. The sine is the ratio of two lengths and is therefore 

As a rule, partial differential equations arise when the sys-

unitless. Accordingly,  kx
  is properly in radians, which is not a 

tem being described is continuous. The fact that time is one of 

real physical unit. The sine varies from  +1 to -1 so that the 

the independent variables reflects the continuity of temporal 

maximum value of c (x)
  is  A
 . This maximum disturbance is 

change in the process under analysis. Field theories, in general, 

known as the amplitude
  of the wave (Fig. 2.6). To transform 

treat continuous distributions of quantities in space and time 

Eq. (2.12) into a  progressive wave
  traveling at speed  v
  in the 
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c (x) 
 =  A 
 sin  kx 
 =  A 
 sin2p x
 l =  A
 sinw 

c

+  A


–p

–p2

0

p2

p

3p2

2p

5p2

3p

7p2

4p

w

–l2

–l4

0

l4

l2

3l4

l

5l4 3l2

7l4

2l


x


–  A



Figure 2.6
     A harmonic function, which serves as the profile of a harmonic wave. 

One wavelength corresponds to a change in phase w of 2p rad.

positive  x
 -direction, we need merely replace  x
  by ( x 
 -  vt
 ), in 

Therefore,

which case

0  kv
 t 0 = 2p





c (x, t) 
 =  A
  sin  k
 ( x 
 -  vt
 ) =  ƒ(x 
 -  vt)
  (2.13)

This is clearly a solution of the differential wave equation (see 

But these are all positive quantities; hence

Problem 2.24). Holding either  x
  or  t
  fixed results in a sinusoidal 






kv
 t = 2p (2.17)

disturbance; the wave is periodic in both space and time. The 


spatial period
  is known as the wavelength
  and is denoted by l. 

2p

Wavelength is  the number of units of length per wave
 . The cus-

or 

  v
 t = 2p 

l

tomary measure of l is the nanometer, where 1 nm = 10-9 m, 

although the micron (1 mm = 10-6 m) is often used and the 

from which it follows that

older angstrom (1 A° = 10-10 m) can still be found in the litera-

ture. An increase or decrease in  x
  by the amount l should leave 





t = l> v
  (2.18)

c unaltered, that is,

The period is  the number of units of time per wave
  (Fig. 2.7), 





c (x, t) 
 = c (x 
 ± l , t)
  (2.14)

the inverse of which is the temporal frequency
  n, or  the num-


In the case of a harmonic wave, this is equivalent to altering the 


ber of waves per unit of time
  (i.e., per second). Thus,

argument of the sine function by ±2p. Therefore,

n K 1>t

sin  k
 ( x 
 -  vt
 ) = sin  k
 [( x 
 ± l) -  vt
 ] = sin [ k
 ( x 
 -  vt
 ) ± 2p]

in units of cycles per second or Hertz. Equation (2.18) then  

and so 

0  k
 l 0 = 2p 

becomes

or, since both  k
  and l are positive numbers,






v 
 = nl (2.19)






k 
 = 2p>l (2.15)

Imagine that you are at rest and a harmonic wave on a string is 

Figure 2.6 shows how to plot the profile given by Eq. (2.12) 

progressing past you. The number of waves that sweep by per 

in terms of l. Here w is the argument of the sine function, also 

second is n, and the length of each is l. In 1.0 s, the overall 

called the phase
 . In other words, c (x) 
 =  A
  sin w. Notice that 

length of the disturbance that passes you is the product nl. If, 

c (x) 
 = 0  whenever  sin w = 0, which happens when  for example, each wave is 2.0 m long and they come at a rate w = 0, p, 2p, 3p, and so on. That occurs at  x 
 = 0, l>2, l,  
 and 

of 5.0 per second, then in 1.0 s, 10 m of wave fly by. This is 

3l>2, respectively.

just what we mean by the speed of the wave ( v
 )—the rate, in 

In an analogous fashion to the above discussion of l, we 

m>s, at which it advances. Said slightly differently, because a 

now examine the temporal period
 ,  t. This is the amount of 

length of wave l passes by in a time t, its speed must equal 

time it takes for one complete wave to pass a stationary ob-

l>t = nl. Incidentally, Newton derived this relationship in 

server. In this case, it is the repetitive behavior of the wave in 

the  Principia
  (1687) in a section called “To find the velocity 

time that is of interest, so that

of waves.”

Two other quantities are often used in the literature of wave 





c (x, t) 
 = c (x, t 
 ± t )
  (2.16)

motion. One is the angular temporal frequency


and 

sin  k
 ( x 
 -  vt
 ) = sin  k
 [ x 
 -  v
 ( t 
 ± t)] 









sin  k
 ( x 
 -  vt
 ) = sin [ k
 ( x 
 -  vt
 ) ± 2

v K 2p>t = 2pn (2.20)

p] 
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given in units of radians per second. The other, which is impor-

apply equally well to waves that are not harmonic, as long as 

tant in spectroscopy, is the wave number
  or spatial frequency


each such wave is made up of a single regularly repeated 


profile-element
  (Fig. 2.8).





k K 1>l (2.21)

EXAMPLE 2.3

measured in inverse meters. In other words, k is  the number of 



waves per unit of length
  (i.e., per meter). All of these quantities 

A Nd:YAG laser puts out a beam of 1.06 mm electromagnetic 

radiation in vacuum. Determine (a) the beam’s temporal fre-

quency; (b) its temporal period; and (c) its spatial frequency.

SOLUTION


v



(a)
  Since  v 
 = nl

c


t
  = 0


x


0

l4 l2 3l4 l


v


2.99 * 108 m>s

n =

=

= 2.82 * 1014 Hz

(a)

l

1.06 * 10-6 m

or  n

c


t
  = t8

= 282 TH.  (b)
  The temporal period is t = 1>n =

1


x


>2.82 * 1014 Hz = 3.55 * 10-15s, or 3.55 fs. (c)
  The spatial 

frequency is k = 1>l = 1>1.06 * 10-6 m = 943 * 103m-1, 

(b)

that is, 943 thousand waves per meter.

c


t
  = t4


x


Using the above definitions we can write a number of equiv-

alent expressions for the traveling harmonic wave:

(c)





c

c


t
  = 3t8

=  A
  sin  k
 ( x 
 ∓  vt
 ) [2.13]


x



x



t






c =  A
  sin 2p a ∓ b (2.22)

l

t

(d)





c =  A
  sin 2p (k x 
 ∓ n t
 ) (2.23)

c


t
  = t2


x






c =  A
  sin ( kx 
 ∓ v t
 ) (2.24)

(e)


x






c =  A
  sin 2pn a ∓  t
 b (2.25)


v


c


t
  = 5t8


x


Of these, Eqs. (2.13) and (2.24) will be encountered most  

frequently. Note that all these idealized waves are of infinite 

(f)

extent. That is, for any fixed value of  t
 , there is no mathematical 

limitation on  x
 , which varies from - ∞ to + ∞. Each such wave 

c


t
  = 3t4

has a single constant frequency and is therefore monochromatic
  


x


(g)

(a)

c


t
  = 7t8


x


(h)

l

l

c


t
  = t

(b)

(c)


x


(i)


Figure 2.7
     A harmonic wave moving along the  x
 -axis during a time of 

l

one period. Note that if this is a picture of a rope any one point on it only 

moves vertically. We’ll discuss the significance of the rotating arrow in 


Figure 2.8
   ( a
 ) The waveform produced by a saxophone. Imagine any num-

Section 2.6. For the moment observe that the projection of that arrow  

ber of profile-elements ( b
 ) that, when repeated, create the waveform ( c
 ). The 

on the vertical axis equals the value of c at  x 
 = 0.

distance over which the wave repeats itself is called the wavelength, l.
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x
   c

SOLUTION

c  = A 
 sin p x


0 0


(a)
  Factor 1>6.0 * 10-7 from the term in parentheses and it be-

1


+A



t 
 = 0

/2  +A


comes clear that c (y, t)
  is a twice differentiable function of 

1 0

( y 
 ±  vt
 ), so it does represent a harmonic wave. (b)
  We could 

  

3/

0

2 – A


1

2

3


x  
 (m)

also simply use Eq. (2.22) 

2 0


– A



x



t



x
   c

c =  A
  sin 2p a + b

c  =
   A 
 sin p( x
  – 1)

0 0

l

t


t 
 = 1.0 s

1/


+A


2 – A


1 0

whereupon it follows that the period t = 2.0 * 10-15 s. 

3/

0

2  +A


1

2

3


x  
 (m)

Hence  n = 1>t = 5.0 * 1014 Hz.  (c)
  The wavelength is l =

2 0


– A


6.0 * 10-7m.  (d)
  The amplitude is  A 
 = 0.040.  (e)
  The wave 

travels in the negative  y
  direction. (f )
  The speed  v 
 = nl =


x
   c

c  = A 
 sin p( x
  – 2)

(5.0

0 0

* 1014 Hz)(6.0 * 10-7m) = 3.0 * 108 m>s. Alternatively 


t 
 = 2.0 s

1


+A


if we factor 1

/  +A


>6.0 * 10-7 from the parentheses the speed be-

2

1 0

comes 6.0 * 10-7>2.0 * 10-15 = 3.0 * 108 m>s.

3/

0

2 – A


1

2

3


x  
 (m)

2 0


– A



Figure 2.9
     A progressive wave of the form c (x
 ,  t) 
 =  A
  sin  k(x 
 -  vt)
 , moving to the right at a speed of 1.0 m>s.


Spatial Frequency


Periodic waves are structures that move through space and 

time displaying wavelengths, temporal periods, and temporal 

or, even better, monoenergetic
 . Real waves are never mono-

frequencies; they undulate in time. In modern Optics we are 

chromatic. Even a perfect sinusoidal generator cannot have 

also interested in stationary periodic distributions of informa-

been operating forever. Its output will unavoidably contain a 

tion that conceptually resemble snapshots of waves. Indeed, 

range of frequencies, albeit a small one, just because the wave 

later on in Chapters 7 and 11 we’ll see that ordinary images of 

does not extend back to  t 
 = - ∞. Thus all waves comprise a 

buildings and people and picket fences can all be synthesized 

band of frequencies, and when that band is narrow the wave is 

using periodic functions in space, utilizing a process called 

said to be quasimonochromatic
 .

Fourier analysis.

Before we move on, let’s put some numbers into Eq. (2.13) 

What we need to keep in mind here is that optical informa-

and see how to deal with each term. To that end, arbitrarily let 

tion can be spread out in space in a periodic way much like a 


v 
 = 1.0 m>s  
 and l = 2.0 m. Then the wavefunction

wave profile. To make the point we convert the sinusoid of  

2p

Fig. 2.6 into a diagram of smoothly varying brightness, namely, 

c =  A
  sin 

 ( x 
 -  vt
 )

l

Fig. 2.10. This sinusoidal brightness variation has a  spatial  



period
  of several millimeters (measured, e.g., from bright peak 

in SI units becomes

to bright peak). Here a pair of black and white bands corresponds 

c =  A
  sin p( x 
 -  t
 )

to one “wavelength,” that is, so many millimeters (or centimeters) 

per black and white pair. The inverse of that—one over the 

Figure 2.9 shows how the wave progresses to the right at 1.0 m>s as 

the time goes from  t 
 = 0 [whereupon c =  A
  sin p x
 ] to  t 
 = 1.0 s 

[whereupon  c =  A
  sin p( x 
 - 1.0)] to  t 
 = 2.0 s  [whereupon 

c =  A
  sin p( x 
 - 2.0)].

EXAMPLE 2.4

Consider the function


y



t


c  (y, t) 
 = (0.040) sin 2p a

b

6.0 * 10-7 + 2.0 * 10-15

where everything is in appropriate SI units. (a) Does this ex-

pression have the form of a wave? Explain. If so, determine its 

(b) frequency, (c) wavelength, (d) amplitude, (e) direction of 


Figure 2.10
     A sinusoidal brightness distribution of relatively low spatial 

propagation, and (f ) speed.

frequency.
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t 
 = 0


t 
 = t4


v



Figure 2.11
     A sinusoidal brightness distribution of relatively high spatial 


t 
 = t2

frequency.


v


spatial period—is the  spatial frequency
 , the number of black 

and white pairs per millimeter (or per centimeter). Figure 2.11 

depicts a similar pattern with a shorter spatial period and a high-


t 
 = 3t4

er spatial frequency.  These are single spatial frequency distri-

butions akin to monochromatic profiles in the time domain.  As 


v


we go on we’ll see how images can be built up out of the super-

position of individual spatial frequency contributions just like 

those of Figs. 2.10 and 2.11.


t 
 = t


v


e  
 = 0


2.3 Phase and Phase Velocity



Figure 2.12  
  With e = 0 note that at  x 
 = 0 and  t 
 = t>4 = p>2v,  


y 
 =  A
  sin (-p>2) = - A
 .

Examine any one of the harmonic wavefunctions, such as





c (x, t) 
 =  A
  sin ( kx 
 - v t
 ) (2.26)

The entire argument of the sine is the phase w  of the wave, 

which is equivalent to

where





c (x, t) 
 =  A
  sin (v t 
 -  kx
 ) (2.29)





w = ( kx 
 - v t
 ) (2.27)

At  t


p

=  x 
 = 0,

or 

c (x, t) 
 =  A
  cos av t 
 -  kx 
 - b

2

c (x, t) 
 0  x 
 = 0 = c (0, 0) 
 = 0









                                       t 
 =0 









The initial phase angle is just the constant contribution to the 

which is certainly a special case. More generally, we can write

phase arising at the generator and is independent of how far in 

space, or how long in time, the wave has traveled. 





c (x, t) 
 =  A
  sin ( kx 
 - v t 
 + e) (2.28)

The phase in Eq. (2.26) is ( kx 
 - v t
 ), whereas in Eq. (2.29) 

where  e is the initial phase
 . To get a sense of the physical 

it’s  (v t 
 -  kx
 ). Nonetheless, both of these equations describe 

meaning of e, imagine that we wish to produce a progressive 

waves moving in the positive  x
 -direction that are otherwise 

harmonic wave on a stretched string, as in Fig. 2.12. In order to 

identical except for a relative phase difference of p. As is often 

generate harmonic waves, the hand holding the string would 

the case, when the initial phase is of no particular significance 

have to move such that its vertical displacement  y
  was propor-

in a given situation, either Eq. (2.26) or (2.29) or, if you like, a 

tional to the negative of its acceleration, that is, in simple har-

cosine function can be used to represent the wave. Even so, in 

monic motion (see Problem 2.27). But at  t 
 = 0 and  x 
 = 0, the 

some situations one expression for the phase may be mathemat-

hand certainly need not be on the  x
 -axis about to move down-

ically more appealing than another; the literature abounds with 

ward, as in Fig. 2.12. It could, of course, begin its motion on an 

both, and so we will use both.

upward swing, in which case e = p, as in Fig. 2.13. In this lat-

The phase of a disturbance such as c (x, t)
  given by 





ter case,

Eq. (2.28) is

c (x, t) 
 =  y(x, t) 
 =  A
  sin ( kx 
 - v t 
 + p)

w  (x, t) 
 = ( kx 
 - v t 
 + e)
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The term on the left represents the  speed of propagation of the 



t 
 = 0


condition of constant phase
 . Imagine a harmonic wave and 

choose any point on the profile, for example, a crest of the 

wave. As the wave moves through space, the displacement  y
  of 

the crest remains fixed. Since the only variable in the harmonic 


v


wavefunction is the phase, it too must be constant for that mov-


t 
 = t4

ing point. That is, the phase is fixed at such a value as to yield 

the constant  y
  corresponding to the chosen point. The point 

moves along with the profile at the speed  v
 , and so too does the 

condition of constant phase.

Taking the appropriate partial derivatives of w as given, for ex-


v



t 
 = t2

ample, by Eq. (2.29) and substituting them into Eq. (2.32), we get





a0 x
 b = ± v = ± v
  (2.33)

0 t



k


w


v


The units of v are rad>s and the units of  k
  are rad>m. The units 


t 
 = 3t4

of  v> k
  are appropriately m>s. This is the  speed
  at which the 

profile moves and is known commonly as the phase velocity
  of 

the wave. The phase velocity is accompanied by a positive sign 

when the wave moves in the direction of increasing  x
  and a neg-


v


ative one in the direction of decreasing  x
 . This is consistent with 


t 
 = t

our development of  v
  as the magnitude of the wave velocity: 


v 
 7 0.

e  
 = p

Consider the idea of the propagation of constant phase 

and how it relates to any one of the harmonic wave equa-


Figure 2.13
   With e = p note that at  x 
 = 0 and  t 
 = t>4,  y 
 =  


A
  sin (p>2) =  A
 .

tions, say,

c =  A
  sin  k
 ( x 
 ∓  vt
 )

and is obviously a function of  x
  and  t
 . In fact, the partial deriva-

with 

w =  k
 ( x 
 -  vt
 ) = constant 

tive of w with respect to  t
 , holding  x
  constant, is the  rate-of-


As  t
  increases,  x
  must increase. Even if  x 
 6 0  
 so that w 6 0,  x
  


change of phase with time
 , or

must increase (i.e., become less negative). Here, then, the condi-

tion of constant phase moves in the direction of increasing  x
 . As 





à0wb ` = v (2.30)

long as the two terms in the phase subtract from each other, the 

0 t x


wave travels in the positive  x
 -direction. On the other hand, for

The rate-of-change of phase at any fixed location is the angular 

w

frequency of the wave, the rate at which a point on the rope in 

=  k
 ( x 
 +  vt
 ) = constant

Fig. 2.12 oscillates up and down. That point must go through 

as  t
  increases  x
  can be positive and decreasing or negative and 

the same number of cycles per second as the wave. For each 

becoming more negative. In either case, the constant-phase 

cycle,  
 w changes by 2p. The quantity v is the number of radians 

condition moves in the decreasing  x
 -direction.

the phase sweeps through per second. The quantity  k
  is the 

number of radians the phase sweeps through per meter.

Similarly, the  rate-of-change of phase with distance
 , holding 

EXAMPLE 2.5


t
  constant, is

A propagating wave at time  t 
 = 0 can be expressed in SI units 

as c (y, 0) 
 = (0.030 m) cos (p y
 >2.0). The disturbance moves in 





à0wb ` =  k
  (2.31)

the negative  y
 -direction with a phase velocity of 2.0 m>s. Write 

0 x t


an expression for the wave at a time of 6.0 s.

These two expressions should bring to mind an equation 

SOLUTION

from the theory of partial derivatives, one used frequently in 

Write the wave in the form

Thermodynamics, namely,


y



t


-(0w>0 t
 ) x


c (y, t) 
 =  A
  cos 2p a ± b





a0 x
 b =

 (2.32)

l

t

0 t


(

w

0w>0 x
 ) t



Continued
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Here  A 
 = 0.030 m and


y


c (y, 0) 
 = (0.030 m) cos 2p a

b

4.0

We need the period and since l = 4.0 m,   v 
 = nl = l>t;

t = l> v 
 = (4.0 m)>(2.0 m>s) = 2.0 s. Hence


y



t


c (y, t) 
 = (0.030 m) cos 2p a

+

b

4.0

2.0

The positive sign in the phase indicates motion in the negative 


y
 -direction. At  t 
 = 6.0 s


y


c (y, 6.0) 
 = (0.030 m) cos 2p a

+ 3.0b

4.0

Any point on a harmonic wave having a fixed magnitude 

moves such that w (x, t)
   is constant in time, in other words, 


d
 w (x, t)
 > dt 
 = 0  
 or, alternatively,  d
 c (x, t)
 > dt 
 = 0. This is true for Figure 2.14
   Circular waves. (E.H.)

all waves, periodic or not, and it leads (Problem 2.34) to the 

expression

-(0c>0 t
 )





± v 
 =


x
  (2.34)

(0c>0 x
 ) t



2.4 The Superposition Principle


which can be used to conveniently provide  v
  when we have 

The form of the differential wave equation [Eq. (2.11)] reveals 

c (x, t)
 . Note that because  v
  is always a positive number, when 

an intriguing property of waves, one that is quite unlike the be-

the ratio on the right turns out negative the motion is in the 

havior of a stream of classical particles. Suppose that the wave-

negative  x
 -direction.

functions  c1  and  c2 are each separate solutions of the wave 

Figure 2.14 depicts a source producing hypothetical two- 

equation; it follows that (c1 + c2) is also a solution. This is 

dimensional waves on the surface of a liquid. The essentially 

known as the Superposition Principle
 , and it can easily be 

sinusoidal nature of the disturbance, as the medium rises and 

proven, since it must be true that

falls, is evident in the diagram. But there is another useful way 

to envision what’s happening.  The curves connecting all the 


02c1

1 02c

02c

1 02c





1  and 

2





2


points with a given phase form a set of concentric circles
 . Fur-

0 x
 2 =  v
 2 0 t
 2

0 x
 2 =  v
 2 0 t
 2

thermore, given that  A
  is everywhere constant at any one dis-

tance from the source, if 

Adding these yields

w is constant over a circle, c too must 

be constant over that circle. In other words, all the correspond-

02c1

02c2

1 02c

1 02c

ing peaks and troughs fall on circles, and we speak of these as 





1





2


circular waves
 , each of which expands outward at the speed  v
 .

0 x
 2 + 0 x
 2 =  v
 2 0 t
 2 +  v
 2 0 t
 2

A solar flare on the Sun caused circular seismic ripples to flow across the surface. (NASA)
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the two coexisting waves in Fig. 2.15. At every point (i.e., every 

02

1 02

and so 

 (c1 + c2) =





 (c1 + c2) 

value of  kx
 ) we simply add  c1 and c2, either of which could be 

0 x
 2


v
 2 0 t
 2

positive or negative. As a quick check, keep in mind that wher-

which establishes that (c1 + c2) is indeed a solution. What 

ever either constituent wave is zero (e.g., c1 = 0), the resultant 

this means is that when two separate waves arrive at the same 

disturbance equals the value of the other nonzero constituent 

place in space wherein they overlap, they will simply add to (or 

wave (c = c2), and those two curves cross at that location (e.g., 

subtract from) one another without permanently destroying or 

at  kx 
 = 0  
 and  +3.14 rad). On the other hand, c = 0 wherever 

disrupting either wave.  
The resulting disturbance at each point 



the two constituent waves have equal magnitudes and opposite 



in the region of overlap is the algebraic sum of the individual 



signs (e.g., at  kx 
 = +2.67 rad). Incidentally, notice how a rela-



constituent waves at that location

  (Fig. 2.15). Once having 

tive  positive
  phase difference of 1.0 rad between the two curves 

passed through the region where the two waves coexist, each 

shifts c2 to the  left
  with respect to c1 by 1.0 rad.

will move out and away unaffected by the encounter.

Developing the illustration a bit further, Fig. 2.16 shows how 

Keep in mind that we are talking about a  linear
  superposi-

the resultant arising from the superposition of two nearly equal-

tion of waves, a process that’s widely valid and the most com-

amplitude waves depends on the  phase-angle difference
  between 

monly encountered. Nonetheless, it is also possible for the wave 

them. In Fig. 2.16 a
  the two constituent waves have the same 

amplitudes to be large enough to drive the medium in a nonlin-

phase; that is, their phase-angle difference is zero, and they are 

ear fashion (p. 659). For the time being we’ll concentrate on the 

said to be in-phase
 ; they rise and fall in-step, reinforcing each 

linear differential wave equation, which results in a linear Su-

other. The composite wave, which then has a substantial ampli-

perposition Principle.

tude, is sinusoidal with the same frequency and wavelength as the 

Much of Optics involves the superposition of waves in one 

component waves (p. 285). Following the sequence of the draw-

way or another. Even the basic processes of reflection and re-

ings, we see that the resultant amplitude diminishes as the phase-

fraction are manifestations of the scattering of light from count-

angle difference increases until, in Fig. 2.16 d
 , it almost vanishes 

less atoms (p. 88), a phenomenon that can only be treated satis-

when that difference equals p. The waves are then said to be 180° 

factorily in terms of the overlapping of waves. It therefore 


out-of-phase
 . The fact that waves which are out-of-phase tend to 

becomes crucial that we understand the process, at least quali-

diminish each other has given the name interference
  to the 

tatively, as soon as possible. Consequently, carefully examine 

whole phenomenon.

c

c

(a)

(b)

2

2

c

1

1

c

c (x, 0)


1

c1

c2

c

2


kx



kx
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c

7 2


t
  = 0

p
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–1 3

c

c

1 (x0)


1 = 1.0 sin  kx


1

–2 c1 = 1.0 sin  kx


–2

c

c

2 = 0.9 sin  kx


2 = 0.9 sin (  kx – 
 p  / 
 3)

c (x0)


c = c1 + c2

c2 (x0)


c

c

c

1 (x0)



kx  
 (rad)

(c)

(d)

2

2

–1

0  kx


1

2

3

0

c1

1

1

c2

c1

c1

c

–1

1 = 1.0 sin  kx


c

c

c


kx



kx


2 = 0.9 sin ( kx
  + 1.0 rad)

–1

0 1 2 3 4 5 6

c

7

–1

1 2 3 4 5 6 7

c = c1 + c2

c2

–1

c

2p

2

–1

3

p

–2

c

c

1 = 1.0 sin  kx


1 = 1.0 sin  kx


–2

c

c

2 = 0.9 sin (  kx – 
 2p  / 
 3)

–2

2 = 0.9 sin (  kx – 
 p)


Figure 2.15
     The superposition of two equal-wavelength sinusoids c1 and 

c2, having amplitudes  A
 1 and  A
 2, respectively. The resultant, c, is a sinu-


Figure 2.16
     The superposition of two sinusoids with amplitudes of 

soid with the same wavelength, which at every point equals the algebraic 


A
 1 = 1.0 and  A
 2 = 0.9. In ( a
 ) they are in-phase. In ( b
 ) c1 leads c2 by sum of the constituent sinusoids. Thus at  x 
 =  x
 0, c (x0) 
 = c1 (x0)
   + c2 (x0)
 ; p>3. In ( c
 ) c1 leads c2 by 2p>3. And ( d
 ) c1 and c2 are out-of-phase by 

the magnitudes add. The amplitude of c is  A
  and it can be determined in 

p and almost cancel each other. To see how the amplitudes can be deter-

several ways; see Fig. 2.19.

mined, go to Fig. 2.20.
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and 


z
 ˜ 
 =  x 
 +  iy 
 =  r
  (cos u +  i
  sin u) 

The  Euler formula
 *


ei
 u = cos u +  i
  sin u

leads to the expression  e
 - i
 u = cos u -  i
  sin u ,
  and adding and 

subtracting these two equations yields


ei
 u +  e
 - i
 u

cos u =

2


ei
 u -  e
 - i
 u

and 

sin u =





2 i


Water waves overlapping and interfering. (E.H.)

Moreover, the Euler formula allows us (Fig. 2.17 b
 ) to write


z
 ˜ 
 =  rei
 u =  r
  cos u +  ir
  sin u


2.5 The Complex Representation


where  r
  is the  magnitude
  of  z
 ˜
  
 and u is the  phase angle
  of  z
 ˜
 , in As we develop the analysis of wave phenomena, it will become 

radians. The magnitude is often denoted by 0  z
 ˜ 
 0 and referred to 

evident that the sine and cosine functions that describe harmon-

as the  modulus
  or  absolute value
  of the complex number. The 

ic waves can be somewhat awkward for our purposes. The ex-


complex conjugate
 , indicated by an asterisk (Fig. 2.17 c
 ), is 

pressions formulated will sometimes be rather involved and the 

found by replacing  i
  wherever it appears, with - i
 , so that

trigonometric manipulations required to cope with them will be 

even more unattractive. The complex-number representation of-


z
 ˜
 * = ( x 
 +  iy
 )* = ( x 
 -  iy
 )

fers an alternative description that is mathematically simpler to 


z
 ˜
 * =  r
  (cos u -  i
  sin u)

process. In fact, complex exponentials are used extensively in 

both Classical and Quantum Mechanics, as well as in Optics.

and 


z
 ˜
 * =  re
 - i
 u  


The complex number  z
 ˜
  
 has the form

The operations of addition and subtraction are quite straight-






z
 ˜ 
 =  x 
 +  iy
  (2.35)

forward:

where  i 
 = 1-1.  
 The real and imaginary parts of  z
 ˜
  
 are, respectively,  x
  and  y
 , where both  x
  and  y
  are themselves real numbers. 


z
 ˜
 1 ±  z
 ˜
 2 = ( x
 1 +  iy
 1) ± ( x
 2 +  iy
 2)

This is illustrated graphically in the Argand diagram in Fig. 2.17 a
 . 

and therefore

In terms of polar coordinates ( r
 , u),


z
 ˜



x 
 =  r
  cos u     y 
 =  r
  sin u

1 ±  z
 ˜
 2 = ( x
 1 ±  x
 2) +  i
 ( y
 1 ±  y
 2)

Notice that this process is very much like the component addi-

(a) Imaginary

(b) Im

tion of vectors.

( x 
 +  iy
 )


y


Multiplication and division are most simply expressed in 


~z



r



r
  sin u   

polar form

u

u


z
 ˜
 1 z
 ˜
 2 =  r
 1 r
 2 ei
 (u1+u2)

Real


x



r
  cos u

Re


z
 ˜



r


(c) Im

(d) Im

and 

1 = 1  ei
 (u1+u2) 


x



z
 ˜
 2


r
 2

u

Re

A number of facts that will be useful in future calculations 


~z*



A
  sin v t
  

are well worth mentioning at this point. It follows from the 


A


ordinary trigonometric addition formulas (Problem 2.44) that


– y


v t
  

( x 
 –  iy
 )


A
  cos v t
  

Re


e
 ˜
 z
 1 + ˜
 z
 2 =  e
 ˜
 z
 1 e
 ˜
 z
 2


Figure 2.17
     An Argand diagram is a representation of a complex num-

ber in terms of its real and imaginary components. This can be done 

*If you have any doubts about this identity, take the differential of 

using either ( a
 )  x
  and  y
  or ( b
 )  r
  and u. Moreover, when u is a constantly z
 ˜ 
 = cos u +  i
  sin u, where  r 
 = 1. This yields  dz
 ˜ 
 =  iz
 ˜
   d
 u, and integration changing function of time ( d
 ), the arrow rotates at a rate v.

gives  z
 ˜ 
 = exp( i
 u).
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and so, if  z
 ˜
 1 =  x 
 and  z
 ˜
 2 =  iy
 ,



expressing a wave as a complex function and then performing 





operations with/on that function, the real part can be recov-




e
 ˜
 z 
 =  ex
 + iy 
 =  exeiy




ered only if those operations are restricted to addition, sub-



The modulus of a complex quantity is given by



traction, multiplication and/or division by a real quantity, and 





differentiation and/or integration with respect to a real vari-




r 
 = 0  z
 ˜ 
 0 K ( z
 ˜
 z
 ˜
 *)1>2







able.

  Multiplicative operations (including vector dot and cross 

products) must be carried out exclusively with real quantities. 

and 

0  e
 ˜
 z 
 0 =  ex 


Wrong results can arise from multiplying complex quantities 

and then taking the real part (see Problem 2.47).

Inasmuch as cos 2p = 1 and sin 2p = 0,


ei
 2p = 1

Similarly,


2.6 Phasors and the Addition of Waves



ei
 p =  e
 - i
 p = -1 and  e
 ± i
 p>2 = ± i


The arrow in the Argand diagram (Fig. 2.17 d
 ) is set rotating at a 

The function  e
 ˜
 z 
 is periodic; that is, it repeats itself every  i
 2p:

frequency  v by letting the angle equal v t
 . This suggests a 

scheme for representing (and ultimately adding) waves that we 


e
 ˜
 z 
 + i
 2p =  e
 ˜
 zei
 2p =  e
 ˜
 z


will introduce here qualitatively and develop later (p. 286) quan-

Any complex number can be represented as the sum of a real 

titatively. Figure 2.18 depicts a harmonic wave of amplitude  A
  

part Re ( z
 ˜
 ) and an imaginary part Im ( z
 )

traveling to the left. The arrow in the diagram has a length  A
  and 

revolves at a constant rate such that the changing angle it makes 


z
 ˜ 
 = Re ( z
 ˜
 ) +  i
  Im ( z
 ˜
 )

with the reference  x
 -axis is v t
 . This rotating arrow and its asso-

















ciated phase angle together constitute a phasor
 , which tells us 

such that

1

1

Re ( z
 ˜
 ) =  ( z
 ˜ 
 +  z
 ˜
 *) and Im ( z
 ˜
 ) =  ( z
 ˜ 
 -  z
 ˜
 *) 2  









2 i 
  

(a)

c =  A
  sin  kx


Both of these expressions follow immediately from the Argand 


A
 0


A


diagram, Fig. 2.17 a
  and  c
 . For example,  z
 ˜ 
 +  z
 ˜
 * = 2 x
  because the imaginary parts cancel, and so Re ( z
 ˜
 ) =  x
 .


kx


– A


From the polar form where

(b)

Re ( z
 ˜
 ) =  r
  cos u and Im ( z
 ˜
 ) =  r
  sin u

c =  A
  sin ( kx
  + p3)


A
 p3

















p3

it is clear that either part could be chosen to describe a har-


kx


monic wave. It is customary, however, to choose the real part, in 

which case a harmonic wave is written as

p3

(c)





c (x, t) 
 = Re [ Aei
 (v t
 - kx
 +e)] (2.36)

c =  A
  sin ( kx
  + p2)


A
 p2

p2

which is, of course, equivalent to


kx


c (x, t) 
 =  A
  cos (v t 
 -  kx 
 + e)

p2

(d)

Henceforth, wherever it’s convenient, we shall write the wave-

c =  A
  sin ( kx
  + 2p3)


A
 2p3

function as


A


2p3





c (x, t) 
 =  Aei
 (v t
 - kx
 +e) =  Aei
 w (2.37)


kx


– A


2p3

and utilize this complex form in the required computations. 

(e)

This is done to take advantage of the ease with which complex 

c =  A
  sin ( kx
  + p)

p


A
 p

exponentials can be manipulated. Only after arriving at a final 


A


result, and then only if we want to represent the actual wave, 


kx


must we take the real part. It has, accordingly, become quite 

p

common to write c (x, t)
 , as in Eq. (2.37), where it is understood 

that the actual wave is the real part.


Figure 2.18
     A plot of the function c =  A
  sin ( kx 
 + v t
 ) and the corre-

Although the complex representation is commonplace in 

sponding phasor diagrams. In ( a
 ), ( b
 ), ( c
 ), ( d
 ), and ( e
 ), the values of v t
  are 0, p>3, p>2, 2p>3, and p, respectively. Again the projection of the rotat-contemporary physics, it must be applied with caution:  
after 



ing arrow on the vertical axis equals the value of c on the  kx 
 = 0 axis.
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everything we need to know about the corresponding harmonic 

(a)


Figure 2.20
     The addition of  

wave. It’s common to express a phasor in terms of its amplitude, 


A
 0

phasors representing two waves 


A
 , and phase, 

having amplitudes of  A


w, as  A
 ∠w.


A


1 = 1.0  

1 0


A
 20

and  A


To see how this works, let’s first examine each part of  

2 = 0.9 with four different 

(b)

relative phases, as shown in  

Fig. 2.18 separately. The phasor in Fig. 2.18 a
  has a zero phase 


A


Fig. 2.16.

2 p /3

angle; that is, it lies along the reference axis; the associated sine 


A
 w

function can also serve as a reference. In Fig. 2.18 b
  the phasor 

w

p /3

has a phase angle of +p>3 rad, and the sine curve is shifted to 


A
 10

the left by p>3 rad. That sine curve reaches its first peak at a 

(c)

smaller value of  kx
  than does the reference curve in part ( a
 ), and 


A
 22 p/3


A
 w

therefore it  leads
  the reference by p>3 rad. In parts ( c
 ), ( d
 ),  

and ( e
 ) of Fig. 2.18, the phase angles are +

2 p/3

p>2 rad, +2p>3 rad, 

w

and +p rad, respectively. The entire sequence of curves can be 


A
 10

seen as a wave, c =  A
  sin ( kx 
 + v t
 ), traveling to the left. It is 

(d)

equivalently represented by a phasor rotating counterclockwise 

such that its phase angle at any moment is v t
 . Much the same 

thing happens in Fig. 2.7, but there the wave advances to the 


A


p

2 p

right and the phasor rotates clockwise.


A
 0


A
 10

When wavefunctions are combined, we are usually interest-

ed in the resulting amplitude and phase. With that in mind, re-

triangle in Fig. 2.20 c
  (but for the fact that  A
 1 7  A
 2), and so  A
  

examine the way waves add together in Fig. 2.16. Apparently, 

now lies between  A
 1 and  A
 2. Finally, when the phase-angle dif-

for disturbances that are in-phase (Fig. 2.16 a
 ) the amplitude of 

ference for the two waves (and the two phasors) is p rad (i.e., 

the resultant wave,  A
 , is the sum of the constituent amplitudes: 

180°), they almost cancel and the resulting amplitude is a mini-


A 
 =  A
 1 +  A
 2 = 1.0 + 0.9 = 1.9. This is the same answer we 

mum. Notice (in Fig. 2.20 d
 ) that the resultant phasor points 

would get if we added two colinear vectors pointing in the same 

along the reference axis and so has the same phase (i.e., zero) as 

direction. Similarly (Fig. 2.16 d
 ), when the component waves 


A
 1∠w1.  
 Thus it is 180° out-of-phase with  A
 2∠w2; the same is 

are 180° out-of-phase,  A 
 =  A
 1 -  A
 2 = 1.0 - 0.9 = 0.1 as if  true of the corresponding waves in Fig. 2.16 d
 .

two colinear oppositely directed vectors were added. Although 

This was just the briefest introduction to phasors and phasor 

phasors are not vectors, they do add in a similar way. Later, 

addition. We will come back to the method in Section 7.1, 

we’ll prove that two arbitrary phasors,  A
 1∠w1   
 and   A
 2∠w2, 

where it will be applied extensively.

combine tip-to-tail, as vectors would (Fig. 2.19), to produce a 

resultant  A
 ∠w. Because both phasors rotate together at a rate v, 

we can simply freeze them at  t 
 = 0  
 and not worry about their 

time dependence, which makes them a lot easier to draw.


2.7 Plane Waves


The four phasor diagrams in Fig. 2.20 correspond to the four 

wave combinations taking place sequentially in Fig. 2.16. When 

A light wave can be described at a given time at a point in space 

the waves are in-phase (as in Fig. 2.16 a
 ), we take the phases of 

by its frequency, amplitude, direction of propagation, and so 

both wave-1 and wave-2 to be zero (Fig. 2.20 a
 ) and position the 

forth, but that doesn’t tell us much about the optical disturbance 

corresponding phasors tip-to-tail along the zero-w reference 

existing over an extended area of space. To find out about that 

axis. When the waves differ in phase by p>3 (as in Fig. 2.16 b
 ), 

we introduce the spatial concept of a wavefront
 . Light is vibra-

the phasors have a relative phase (Fig. 2.20 b
 ) of p>3. The resul-

tory, it corresponds to harmonic oscillations of some sort, and 

tant, which has an appropriately reduced amplitude, has a phase 

the one-dimensional sine wave is an important element in begin-

w that is between 0 and p>3, as can be seen in both Figs. 2.16 b
  

ning to envision the phenomenon. Figure 2.14 shows how radi-

and 2.20 b
 . When the two waves differ in phase by 2p>3 (as in 

ally traveling sinusoids, fanned out in two dimensions, can be 

Fig. 2.16 c
 ), the corresponding phasors almost form an equilateral 

understood to form a unified expanding disturbance, a  circular 



wave
 . Each crest, from every one-dimensional wavelet traveling 

outward, lies on a circle and that’s true of the troughs as well—


Figure 2.19
     The sum of two 

indeed, it’s true for any specific wave magnitude. For any par-

phasors  A
 1∠w1 and  A
 2∠w2 

ticular phase (say, 5p>2) the component sinusoids have a par-


A
 2

equals  A
 ∠w. Go back and look 

ticular magnitude (e.g., 1.0) and all points with that magnitude 


A


at Fig. 2.13, which depicts the 

lie on a circle (of magnitude 1.0). In other words, the loci of all 

w2

overlapping of two sinusoids 

the points where the phase of each one-dimensional wavelet is 

having amplitudes of  A



A


1 = 1.0 

1

and  A


the same form a series of concentric circles, each circle having a 

w

w1

2 = 0.9 and phases of  

w1 = 0 and w2 = 1.0 rad.

particular phase (for crests that would be p>2, 5p>2, 9p>2, etc.).
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Quite generally,  
at any instant a wavefront in three dimen-



we force the vector (r
 $ - r
 $0) to sweep out a plane perpendicular 



sions is a surface of constant phase

 , sometimes called a  phase 


to k
 $, as its endpoint ( x
 ,  y
 ,  z
 ) takes on all allowed values. With


front
 . In actuality wavefronts usually have extremely compli-

cated configurations. The light wave reflected from a tree or a 






k
 $ =  kx
 iˆ 
 +  ky
  jˆ 
 +  kz
 kˆ
  (2.39)

face is an extended, irregular, bent surface full of bumps and 

depressions moving out and away, changing as it does. In the 

Equation (2.38) can be expressed in the form

remainder of this chapter we’ll study the mathematical repre-






kx
 ( x 
 -  x
 0) +  ky
 ( y 
 -  y
 0) +  kz
 ( z 
 -  z
 0) = 0 (2.40) sentations of several highly useful idealized wavefronts, ones 

that are uncomplicated enough to write easy expressions for.

or as 


kxx 
 +  kyy 
 +  kzz 
 =  a
  (2.41)

The plane wave is perhaps the simplest example of a three-

dimensional wave. It exists at a given time, when all the sur-

where

faces on which a disturbance has constant phase form a set of 






a 
 =  kxx
 0 +  kyy
 0 +  kzz
 0 = constant (2.42)

planes, each generally perpendicular to the propagation direc-

tion. There are quite practical reasons for studying this sort of 

The most concise form of the equation of a plane perpendicular 

disturbance, one of which is that by using optical devices, we 

to k
 $ 
 is then just

can readily produce light resembling plane waves.






k
 $ ~ r
 $ = constant =  a
  (2.43)

The mathematical expression for a plane that is perpendicular 

to a given vector k
 $ 
 and that passes through some point ( x


The plane is the locus of all points whose position vectors each 

0,  y
 0,  z
 0) 

is rather easy to derive (Fig. 2.21). First we write the position 

have the same projection onto the k
 $-direction.

vector in Cartesian coordinates in terms of the unit basis vectors 

We can now construct a set of planes over which c ( 
 
r

 $ )
  varies 

  

(Fig. 2.21 a
 ),

in space sinusoidally, namely, 


r






c (
   
r



$ =  x
 iˆ 
 +  y
 jˆ 
 +  z
 kˆ


$ ) 
 =  A
  sin (k
 $ ~ r
 $) (2.44)

It begins at some arbitrary origin  O
  and ends at the point  





c (
   
r

 $ ) 
 =  A
  cos (k
 $ ~ r
 $) (2.45)

( x
 ,  y
 ,  z
 ), which can, for the moment, be anywhere in space.  

Similarly,

or 

c (
   
r

 $ ) 
 =  Aei
  $k·
 $r
  (2.46)

(r
 $ - r
 $0) = ( x 
 -  x
 0)iˆ 
 + ( y 
 -  y
 0)jˆ 
 + ( z 
 -  z
 0)kˆ


For each of these expressions c ( 
 
r

 $ )
  is constant over every plane 

  

defined by k
 $ ~ r
 $ = constant, which is a surface of constant 

By setting

phase (i.e., a wavefront). Since we are dealing with harmonic 





(r


functions, they should repeat themselves in space after a dis-

$ - r
 $0) ~ k
 $ = 0 (2.38)

placement of l in the direction of k
 $. Figure 2.22 is a rather 

humble representation of this kind of expression. We have 

drawn only a few of the infinite number of planes, each having 

(a)


z


a different c ( 
 
r

 $ )
 . The planes should also have been drawn with 

  

an infinite spatial extent, since no limits were put on r
 $. The 

disturbance clearly occupies all of space. 


^k



^


=0


j


= A


0

c 


^i


0

=

c 

– A


0

c 

=

=


A



y


c 

c 

=

c 


x



k


(b)


z


c  (
 
r

 )



k


+ A


( x
 ,  y
 ,  z
 )

l

0


r



r


 – r
 0

( x
 0,  y
 0,  z
 0)


Figure 2.21
   ( a
 ) The Cartesian 

0


r
 0

– A


unit basis vectors. ( b
 ) A plane 

Displacement in the


y


wave moving in the  

direction of 


Figure 2.22
   Wavefronts 


x



k



k


$-direction.

for a harmonic plane wave.
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Therefore,

l k 
 = 2p

and


k 
 = 2p>l

The vector k
 $, whose magnitude is the  propagation number k
  

(already introduced), is called the propagation vector
 .

At any fixed point in space where r
 $ is constant, the phase is 

constant as is c ( 
 
r

 $ )
 ; in short, the planes are motionless. To get 

  

things moving, c ( 
 
r

 $ )
  must be made to vary in time, something 

  

we can accomplish by introducing the time dependence in an 

analogous fashion to that of the one-dimensional wave. Here 

then





$

c (
   
r

 $ , t) 
 =  Aei
 (k·
 $r 
 ∓v t
 )





 (2.48)

with  A
 , v, and  k
  constant. As this disturbance travels along in 

the  k
 $-direction, we can assign a phase corresponding to it at 

each point in space and time. At any given time,  
the surfaces 




Figure 2.23
   A beam consisting of harmonic wavelets of the same fre-



joining all points of equal phase are the

  wavefronts
 . Note that 

quency and wavelength. The wavelets are all in step so that they have the 

the wavefunction will have a constant value over the wavefront 

same phase over the flat surfaces of the two transverse slices. The beam is 

only if the amplitude  A
  has a fixed value at every point on the 

therefore composed of plane waves.

wavefront. In general,  A
  is a function of r
 $ and may not be con-

stant over all space or even over a wavefront. In the latter case, 

the wave is said to be  
inhomogeneous

 . We will not be con-

Another approach to visualizing the harmonic plane wave is 

cerned with this sort of disturbance until later, when we con-

shown in Fig. 2.23, which depicts two slices across an ideal 

sider laserbeams and total internal reflection.

cylindrical beam. The light is imagined to be composed of an 

The phase velocity of a plane wave given by Eq. (2.48) is 

infinitude of sinusoidal wavelets all of the same frequency mov-

equivalent to the propagation velocity of the wavefront. In  

ing forward in lockstep along parallel paths. The two slices are 

Fig. 2.24, the scalar component of r
 $ in the direction of k
 $ is  rk
 . 

separated by exactly one wavelength and catch the sinusoids at 

The disturbance on a wavefront is constant, so that after a time 

the place in their cycles where they are all at a crest. The two 


dt
 , if the front moves along k
 $ a distance  drk
 , we must have

surfaces of constant phase are flat discs and the beam is said to 

consist of “plane waves.” Had either slice been shifted a bit 





c (
   r
 $ , t) 
 = c (rk 
 +  drk, t 
 +  dt) 
 = c (rk, t)
  (2.49) along the length of beam the magnitude of the wave on that new 

front would be different, but it still would be planar. In fact, if 

In exponential form, this is

the location of the slice is held at rest as the beam progresses 

through it, the magnitude of the wave there would rise and fall 


Aei
 ($k·
 $r 
 ∓v t
 )





=  Aei
 ( krk
 + kdrk
 ∓v t
 ∓v  dt
 ) =  Aei
 ( krk
 ∓v t
 )

sinusoidally. Notice that each wavelet in the diagram has the 

same amplitude (i.e., maximum magnitude). In other words, the 

composite plane wave has the same “strength” everywhere over 

its face. We say that it is therefore a  
homogeneous

  wave.


z


The spatially repetitive nature of these harmonic functions 


k


can be expressed by

lk



k


l 
k



$






( )


c (
   
r

 $ ) 
 = c  
r

 $ +

 (2.47)


k



r



r


where  k
  is the magnitude of k
 $ 
 and k
 $> k
  
 is a unit vector parallel k


to it (Fig. 2.24). In the exponential form, this is equivalent to


Aei
  $k·
 $r 
 =  Aei
  $k·
 ($r 
 +l$k
 > k
 ) =  Aei
  $k·
 $r
 ei
 l k
 l


x



y


For this to be true, we must have


ei
 l k 
 = 1 =  ei
 2p


Figure 2.24
   Plane waves.
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and so it must be that   k
   drk 
 = ±v  dt
  

and of course

The magnitude of the wave velocity,  dr






a2


k
 > dt
 , is then

+ b2 + g2 = 1 (2.54)


dr







k 
 = ±v = ± v
  (2.50)


dt



k


EXAMPLE 2.6

We could have anticipated this result by rotating the coordinate 

As we will see in the next chapter, the electric field (E


$) of  

system in Fig. 2.24 so that k
 $ was parallel to the  x
 -axis. For that 

a particular electromagnetic plane wave can be given by the 

orientation

expression

c ( 
 
r

 $ , t) 
 =  Aei
 ( kx
 ∓v t
 )

  


E


$ = (100 V>m) jˆ
   ei
 ( kz
 +v t
 )

since  k
 $

(a) What is the amplitude of this wave in the electric field?  

~ r
 $ =  krk 
 =  kx
 . The wave has thereby been effective ly 

reduced to the one-dimensional disturbance already discussed.

(b) In what direction does the wave travel? (c) What is the direc-

Now consider the two waves in Fig. 2.25; both have the same 

tion of E


$? (d) If the speed of the wave is 2.998 * 108m>s and 

wavelength l such that  k


its wavelength is 500 nm, find its frequency.

1 =  k
 2 =  k 
 = 2p>l. Wave-1 propagat-

ing along the  z
 -axis can be written as

SOLUTION  (a)
  The amplitude is simple: 100 V/m.  (b)
  Here 


k
 $ ~ r


2p

$ =  kz
 , so the planar wavefront is perpendicular to the  z
 -axis. 

c1 =  A
 1 cos a

  z 
 - v t
 b

In other words,  kx
  and  ky
  are zero and  k 
 =  kz
 . The phase 

l

( kz 
 + v t
 ) contains a + sign, which means the wave travels in 

the negative  z
 -direction. (c)
  The vector E


where, because k


$ lies along the direction 

$1 and r
 $ are parallel, k
 $1~ r
 $ =  kz 
 = (2p>l) z
 .

of jˆ
 , but since the wave is harmonic, the direction of E


Similarly for wave-2, k


$ is time 

$2 ~ r
 $ =  kzz 
 +  kyy 
 = ( k
  cos u) z
  +( k
  sin u) y
   dependent and oscillates, so we should better say ±jˆ
 . (d)
 and


v 
 = nl

2p

c2 =  A
 2 cos  c

 ( z
  cos u +  y
  sin u) - v t
 d


v


2.998 * 108 m>s

l

n =

=

l

500 * 10-9 m

We’ll return to these expressions and what happens in the re-

n = 6.00 * 1014 Hz

gion of overlap when we consider interference in more detail.

The plane harmonic wave is often written in Cartesian coor-

dinates as

We have examined plane waves with a particular emphasis 

on harmonic functions. The special significance of these waves 





c (x, y, z, t) 
 =  Aei
 ( kxx
 + kyy
 + kzz
 ∓v t
 ) (2.51)

is twofold: first, physically, sinusoidal waves can be generated 

relatively simply by using some form of harmonic oscillator; 

or 

c (x, y, z, t) 
 =  Aei
 [ k
 (a x
 +b y
 +g z
 )∓v t
 ] (2.52)

second,   
any three-dimensional wave can be expressed as a 



where a, b, and g are the direction cosines of k
 $ (see Problem 



combination of plane waves

 , each having a distinct amplitude 

2.48). In terms of its components, the magnitude of the propa-

and propagation direction.

gation vector is

We can certainly imagine a series of plane wavefronts like 

those in Fig. 2.22 where the disturbance varies in some fashion 





0 k
 $ 0 =  k 
 = ( k
 2 x 
 +  k
 2 y 
 +  k
 2 z
 )1>2 (2.53) other than harmonically (see photo). It will be seen in the next 


y



k
 2

u


z



k
 1

l

l

The image of a single collimated laser pulse caught as it swept along the 

surface of a ruler. This ultrashort burst of light corresponded to a portion 


Figure 2.25
   Two overlapping waves of the same wavelength traveling in 

of a plane wave. It extended in time for 300 * 10-5 s and was only a  

different directions.

fraction of a millimeter long. (J. Valdmanis and N. H. Abramson.)
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section that harmonic plane waves are, indeed, a special case of 

certainly appear symmetrically* in the three-dimensional equa-

a more general plane-wave solution.

tion, a fact to be kept in mind. The wavefunction c (x, y, z, t)
  

Mathematically the plane wave extends out to infinity in all 

given by Eq. (2.52) is a particular solution of the differential 

its directions, and, of course, physically that cannot be. A real 

equation we are looking for. In analogy with the derivation of 

“plane wave” is a finite thing that, no matter how big, only re-

Eq. (2.11), we compute the following partial derivatives from 

sembles a mathematical plane. Since lenses and mirrors and 

Eq. (2.52):

laserbeams are all finite, that “resemblance” is usually good 

enough. 

02c





0 x
 2 = -a2 k
 2c (2.55)

EXAMPLE 2.7

02c

An electromagnetic plane wave is described by its electric field 





0 y
 2 = -b2 k
 2c (2.56)


E
 . The wave has an amplitude  E
 0, an angular frequency v, a 

wavelength l, and travels at speed  c
  outward in the direction of 

02c

the unit propagation vector





0 z
 2 = -g2 k
 2c (2.57)


kˆ 
 = (4iˆ 
 + 2jˆ
 )> 220

02c

(not to be confused with the unit basis vector kˆ
 ). Write an ex-

and 

0 t
 2 = -v2c (2.58)

pression for the scalar value of the electric field  E
 . 

Adding the three spatial derivatives and utilizing the fact that 

SOLUTION

a2 + b2 + g2 = 1, we obtain

We want an equation of the form


E(x, y, z, t) 
 =  E


$r 
 -v t
 )

0 ei
  ˆk·
 ( 

02c

02c

02c





0 x
 2 + 0 y
 2 + 0 z
 2 = - k
 2c (2.59)

Here

Combining this with the time derivative, Eq. (2.58), and re-

2p


k
 $ ~ r
 $ =

 kˆ 
 ~ r
 $

membering that  v 
 = v> k
 , we arrive at

l

and





02c

02c

02c

1 02c





 (2.60)

2p

0 x
 2 + 0 y
 2 + 0 z
 2 =  v
 2 0 t
 2


k
 $ ~ r
 $ =

 (4iˆ 
 + 2jˆ
 ) ~ ( x
 iˆ 
 +  y
 jˆ 
 +  z
 kˆ
 )

l 220

p

the  three-dimensional differential wave equation
 . Note that  x
 ,  y
 , 


k
 $ ~ r
 $ =

 (4 x 
 + 2 y
 )

and  z
  do appear symmetrically, and the form is precisely what 

l 25

one might expect from the generalization of Eq. (2.11).

Hence

Equation (2.60) is usually written in a more concise form by 

introducing the  Laplacian
  operator

p


i 
 c

 (4 x
 +2 y
 )  - v t


  

d


E


l 25

02

02

02

=  E
 0 e






∇2 K

 (2.61)

0 x
 2 + 0 y
 2 + 0 z
 2

whereupon it becomes simply


2.8  The Three-Dimensional Differential 


1 02c





∇2c =  

 (2.62)


Wave Equation



v
 2 0 t
 2

Now that we have this most important equation, let’s briefly 

Of all the three-dimensional waves, only the plane wave (har-

return to the plane wave and see how it fits into the scheme of 

monic or not) can move through space with an unchanging pro-

things. A function of the form

file. Clearly, the idea of a wave as a disturbance whose profile 





c (x, y, z, t)


is  unaltered
  is somewhat lacking. Alternatively, we can define a 

=  Aeik
 (a x
 +b y
 +g z
 ∓ vt
 ) (2.63)

wave as any solution of the differential wave equation. What we 

need now is a three-dimensional wave equation. This should be 

rather easy to obtain, since we can guess at its form by gener-

*There is no distinguishing characteristic for any one of the axes in Cartesian  

coordinates. We should therefore be able to change the names of, say,  x
  to  z
 ,  

alizing from the one-dimensional expression, Eq. (2.11). In 


y
  to  x
 , and  z
  to  y
  (keeping the system right-handed) without altering the Cartesian coordinates, the position variables  x
 ,   y
 , and  z
  must 

differential wave equation.
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is equivalent to Eq. (2.52) and, as such, is a solution of  


z


Eq. (2.62). It can also be shown (Problem 2.49) that





c (x, y, z, t) 
 =  ƒ(
 a x 
 + b y 
 + g z 
 -  vt)
  (2.64)

and 

c (x, y, z, t) 
 =  g(
 a x 
 + b y 
 + g z 
 +  vt)
  (2.65)

are both plane-wave solutions of the differential wave equation. 

The functions  f
  and  g
 , which are twice differentiable, are other-

u

wise arbitrary and certainly need not be harmonic. A linear 


r
  cos 

combination of these solutions is also a solution, and we can 


P
 ( r
 , u, f)

u


r


write this in a slightly different manner as

f


r
  sin 


r
  sin u

f

 sin f





u cos 

c (
   
r

 $ , t) 
 =  C


u

1 ƒ(
   
r



$ · 
 
k

 $> k 
 -  vt) 
 +  C
 2 g(
   
r

 $ · 
 
k

 $> k 
 +  vt)
  (2.66) r
  sin 


y


where  C
 1 and  C
 2 are constants.

Cartesian coordinates are particularly suitable for describing 

plane waves. However, as various physical situations arise, we 


x


can often take better advantage of existing symmetries by mak-


Figure 2.26
     The geometry of spherical coordinates.

ing use of some other coordinate representations.


2.9 Spherical Waves


We can obtain this result without being familiar with Eq. (2.67). 

Toss a stone into a tank of water. The surface ripples that ema-

Start with the Cartesian form of the Laplacian, Eq. (2.61);  

nate from the point of impact spread out in two-dimensional 

operate on the spherically symmetrical wavefunction c (r)
 ; and 

circular waves. Extending this imagery to three dimensions, en-

convert each term to polar coordinates. Examining only the  

vision a small pulsating sphere surrounded by a fluid. As the 


x
 -dependence, we have

source expands and contracts, it generates pressure variations 

0c

0c

that propagate outward as spherical waves.

0 r


=





Consider now an idealized point source of light. The radiation 

0 x


0 r 
 0 x


emanating from it streams out radially, uniformly in all direc-

tions. The source is said to be  isotropic
 , and the resulting wave-

02c

02c

2

0c 02 r


and 

 a0 r
 b +









fronts are again concentric spheres that increase in diameter as 

0 x
 2 = 0 r
 2 0 x


0 r 
 0 x
 2

they expand out into the surrounding space. The obvious sym-

metry of the wavefronts suggests that it might be more conve-

since 

c (
   
r

 $ ) 
 = c (r)
  

nient to describe them in terms of spherical coordinates 





(Fig. 2.26). In this representation the Laplacian operator is

Using 


x
 2 +  y
 2 +  z
 2 =  r
 2  


1

1

∇2

0

0

0

0

=    a r
 2  b +

   asin u  b


r
 2 0 r


0 r



r
 2 sin u 0u

0u

0 r



x


we have 

=  

1

02

0 x



r






+





 (2.67)


r
 2 sin2 u 0f2

where  r
 , u, f  
 are defined by

02 r


1 0

0 1

1


x
 2

    x 
 +  x
    a b =  a1 - b

0 x
 2 =  r 
 0 x


0 x r



r



r
 2


x 
 =  r
  sin u cos f,  y 
 =  r
  sin u sin f,  z 
 =  r
  cos u

Remember that we are looking for a description of spherical 

02c


x
 2 02c

1


x
 2 0c

waves, waves that are spherically symmetrical (i.e., ones that do 

and so 





 a1 - b   

not depend on 

0 x
 2 =  r
 2 0 r
 2 +  r



r
 2 0 r


u and f) so that

c (
   
r

 $ ) 
 = c (r, 
 u , 
 f ) 
 = c (r)


Now having 02c>0 x
 2, we form 02c>0 y
 2 and 02c>0 z
 2, and on  

The Laplacian of 

adding get

c (r)
  is then simply





1 0

0c

02c

2 0c

∇2c (r) 
 =    a r
 2  b (2.68)

∇2c (r) 
 =






r
 2 0 r


0 r


0 r
 2 +  r 
 0 r
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which is equivalent to Eq. (2.68). This result can be expressed 

spheres filling all space. Each wavefront, or surface of constant 

in a slightly different form:

phase, is given by


kr 
 = constant.

1 02





∇2c =    ( r



r


c) (2.69)

Notice that the amplitude of any spherical wave is a function of  r
 , 

0 r
 2

where the term  r
 -1 serves as an attenuation factor. Unlike the plane 

The differential wave equation can then be written as

wave, a spherical wave decreases in amplitude, thereby changing its 

profile, as it expands and moves out from the origin.* Figure 2.27 

1

1 02c

illustrates this graphically by showing a “multiple exposure” of a 

02









 ( r






 (2.70)


r


c) =

spherical pulse at four different times. The pulse has the same extent 

0 r
 2


v
 2 0 t
 2

in space at any point along any radius  r
 ; that is, the width of the 

pulse along the  r
 -axis is a constant. Figure 2.28 is an attempt to 

Multiplying both sides by  r
  yields

02

1 02





 ( r


c( r, t
 )

c) =





 ( r
 c) (2.71)

0 r
 2


v
 2 0 t
 2

𝒜 r


Notice that this expression is now just the one-dimensional dif-

ferential wave equation, Eq. (2.11), where the space variable is 


r
  and the wavefunction is the product ( r
 c). The solution of 


t


Eq. (2.71) is then simply

1

𝒜


t
 2


r



v


c (r, t) 
 =  ƒ(r 
 -  vt)



t
 3


t
 4


ƒ(r 
 -  vt)


or 

c (r, t) 
 =

 (2.72)


r



r


0

1

This represents a spherical wave progressing radially outward 


Figure 2.27  
   A “quadruple exposure” of a spherical pulse.

from the origin, at a constant speed  v
 , and having an arbitrary 

functional form   ƒ
 . Another solution is given by


g(r 
 +  vt)


c

c (r, t) 
 =


r


and in this case the wave is converging toward the origin.* The 

fact that this expression blows up at  r 
 = 0  
 is of little practical 

concern.

A special case of the general solution


r



ƒ(r 
 -  vt)



g(r 
 +  vt)






c (r, t) 
 =  C
 1 

 (2.73)


r


+  C
 2  



r


is the  harmonic spherical wave






c (r, t) 
 = a𝒜b cos  k
 ( r 
 ∓  vt
 )

 (2.74)


r


or 

c (r, t) 
 = a𝒜b  eik
 ( r
 ∓ vt
 ) (2.75)


r



r


wherein the constant 𝒜 is called the  source strength
 . At any 

fixed value of time, this represents a cluster of concentric 


Figure 2.28
   Spherical wavefronts.

*The attenuation factor is a direct consequence of energy conservation. Chapter 

*Other more complicated solutions exist when the wave is not spherically  

3 contains a discussion of how these ideas apply specifically to electromagnetic 

symmetrical. See C. A. Coulson,  Waves
 , Chapter 1.

radiation.

M02_HECH7226_05_SE_C02_10-036.indd   30

09/11/15   6:49 PM






 



2.11
   Twisted Light 


31



Figure 2.29
     The flattening of spherical 

waves with distance.

where

relate the diagrammatic representation of c (r, t)
  in the previous fig-

ure to its actual form as a spherical wave. It depicts half the spherical 


x 
 =  r
  cos u,  y 
 =  r
  sin u,  and  z 
 =  z


pulse at two different times, as the wave expands outward. Remem-

ber that these results would obtain regardless of the direction of  r
 , 

The simple case of cylindrical symmetry requires that

because of the spherical symmetry. We could also have drawn a 

harmonic wave, rather than a pulse, in Figs. 2.27 and 2.28. In this 

c (
   
r

 $ ) 
 = c (r, 
 u , z) 
 = c (r)


case, the sinusoidal disturbance would have been bounded by the 

The  u-independence means that a plane perpendicular to the  

curves


z
 -axis will intersect the wavefront in a circle, which may vary in 

c = 𝒜> r
  and c = -𝒜> r



r
 , at different values of  z
 . In addition, the  z
 -independence fur-

ther restricts the wavefront to a right circular cylinder centered 

The outgoing spherical wave emanating from a point source 

on the  z
 -axis and having infinite length. The differential wave 

and the incoming wave converging to a point are idealizations. 

equation becomes

In actuality, light can only approximate spherical waves, as it 

can only approximate plane waves.

1

As a spherical wavefront propagates out, its radius increases. 

0

0c

1 02c





   a r


b





 (2.77)


r


-

=

Far enough away from the source, a small area of the wavefront 

0 r


0 r



v
 2 0 t
 2

will closely resemble a portion of a plane wave (Fig. 2.29).

After a bit of manipulation, in which the time dependence is 

separated out, Eq. (2.77) becomes something called Bessel’s 

equation. The solutions of Bessel’s equation for large values of 


2.10 Cylindrical Waves



r
  gradually approach simple trigonometric forms. When  r
  is 

sufficiently large,

We will now briefly examine another idealized waveform, the 

infinite circular cylinder. Unfortunately, a precise mathematical 

𝒜

c (r, t) 
 ≈

  eik
 ( r
 ∓ vt
 )

treatment is far too involved to do here. We shall, instead, just 

2 r


outline the procedure. The Laplacian of c in cylindrical coordi-

nates (Fig. 2.30) is

𝒜





c (r, t) 
 ≈

 cos  k
 ( r 
 ∓  vt
 ) (2.78)

1 0

0c

1 02c

02c

2 r






∇2c =    a r
   b









(2.76)


r


+

0 r


0 r



r
 2 0u2 + 0 z
 2

This represents a set of coaxial circular cylinders filling all 

space and traveling toward or away from an infinite line 


z


source. No solutions in terms of arbitrary functions can now 

be found as there were for both spherical [Eq. (2.73)] and 

plane [Eq. (2.66)] waves.

A plane wave impinging on the back of a flat opaque 

screen containing a long, thin slit will result in the emission, 

from that slit, of a disturbance resembling a cylindrical wave 

(see Fig. 2.31). Extensive use has been made of this tech-


P
 ( r
 , u,  z
 )

nique to generate cylindrical lightwaves (p. 398).


z


u


r
  sin u

u


r



r
  cos 


2.11 Twisted Light



y


Ever since the early 1990s it has been possible to create re-

markable spiral beams of light. The mathematical expressions 

for such waves are too complicated to work out here but when 


x


written in complex form, like Eq. (2.52), they possess a phase 


Figure 2.30
     The geometry of cylindrical coordinates.

term exp (- i
 /f). The quantity / is an integer, increasing values 
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Figure 2.31
     Cylindrical waves emerging from a long, narrow slit.

of which result in waves of increasing complexity. Again, think 

of a cylindrical beam as a stream of sinusoidal component 

wavelets like those in Fig. 2.23, where now, rather than forming 

a plane, the surface of constant phase twists around like a cork-


Figure 2.32  
   A group of harmonic wavelets all precisely arrayed so that 

screw. In its simplest manifestation (f = ±1) the wavefront 

their phases spiral around the central axis of the beam. The condition of 

follows a single continuous spiral, either right or left handed, 

constant phase lies on a family of helices, one of which is shown as a dot-

ted spiral.  

circulating around a central propagation axis. 

Such beams have what’s called an  azimuthal 
 (f)  phase de-



pendence
 . Looking down the central axis toward the source the 

Still the component sinusoids (all of wavelength l) are cor-

phase changes with angle, just as the time on a clock face chang-

related and all of their peaks lie along a spiral. Now rather than 

es with the angle f between the vertical 12–6 line and the min-

having the wavelets intersect the disc on a single circle, sup-

ute hand. If a component-wave peak occurs at 12, as in Fig. 2.32, 

pose them to be multiplied in number so that they fill the disc; 

a trough might occur directly beneath the axis at 6. Examine the 

the constant-phase spiral line will sweep out a twisted surface 

diagram carefully, noticing that as it goes from 12 to 1 to 2 to 3 

that looks like an elongated flat spring (e.g., an Archimedes’ 

and so on the wavelets advance. Their phases are all different on 

screw or a stretched Slinky). That surface of constant phase is 

the slice; they’re each shifted successively by p>6. The disc-

a wavefront. 

shaped slice cuts across the beam but it is not a surface of con-

Let’s extend Fig. 2.32 to form a beam, overlooking the fact 

stant phase, and the overall disturbance is not a plane wave. 

that a real beam would expand as it traveled forward. Figure 2.33 


Figure 2.33
     Twisted light. The empty region at the center of the helicoid is a shaft devoid of light. 

It corresponds to a phase singularity around which there is a rotational motion. The structure is 

known as an optical vortex.
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shows a number of wavelets displaced in space, all of which 

point, for every wavelet providing a positive contribution, there 

reach their peak values on the wavefront, which is an advancing 

will be a wavelet providing an equal negative one. In any event, 


helicoid
  that winds forward once per l (that’s the pitch of the 

the optical field along the axis must be zero, which means that 

helix) while traveling at the speed of light. This particular heli-

the central axis and its immediate surroundings correspond to a 

coidal wavefront happens to correspond to a maximum (i.e., 

region of zero intensity (i.e., no light). Running down the middle 

wavelet peaks); it could have had any value. Since the beam is 

of the helicoid is a black core, or  
optical vortex

 , around which 

monochromatic, there will be a nested progression of twisted 

the so-called “twisted light”
  spirals much like a tornado. When 

wavefronts immediately entwined behind it, each of a slightly 

shined on a screen the beam will produce a bright ring surround-

different phase and magnitude, changing from one to the next 

ing the dark circular vortex.

sinusoidally. 

In Chapter 8 we’ll study circularly polarized light and al-

Return to Fig. 2.32 and imagine that all of the wavelets are 

though it might seem similar to twisted light the two are en-

slid radially toward the center without otherwise changing them. 

tirely different. For one thing polarized light is associated with 

Along the central axis there would then be a tumult of overlap-

spin angular momentum and twisted light carries orbital angu-

ping waves of every phase, with the effect that the phase of the 

lar momentum. Moreover, twisted light need not even be polar-

composite disturbance would be indeterminate. Accordingly, the 

ized. But we’ll come back to all of that later on when we talk 

central axis corresponds to a  
phase singularity

 . At any axial 

about photon spin.


PROBLEMS




Complete solutions to all problems—except those with an asterisk— 




2.6
   How many “yellow” lightwaves (l = 580 nm) will fit into a dis-



can be found in the back of the book.



tance in space equal to the thickness of a piece of paper (0.003 in.)? 

How far will the same number of microwaves (n = 1010 Hz, i.e., 


2.1*
   Show that the function

10 GHz, and  v 
 = 3 * 108 m>s) extend?

c (z, t) 
 = ( z 
 +  vt
 )2


2.7*
  The speed of light in vacuum is approximately 3 * 108 m>s. 

Find the wavelength of red light having a frequency of 5 * 1014 Hz. 

is a nontrivial solution of the differential wave equation. In what direc-

Compare this with the wavelength of a 60-Hz electromagnetic wave.

tion does it travel?


2.2*
   Show that the function


2.8*
   It is possible to generate ultrasonic waves in crystals with wave-

lengths similar to those of light (5 * 10-5 cm) but with lower frequen-

c (y, t) 
 = ( y 
 - 4 t
 )2

cies (6 * 108 Hz). Compute the corresponding speed of such a wave.

is a solution of the differential wave equation. In what direction does it 


2.9*
   A youngster in a boat on a lake watches waves that seem to be an 

travel?

endless succession of identical crests passing with a half-second inter-

val between each. If every disturbance takes 1.5 s to sweep straight 


2.3*
   Consider the function

along the length of her 4.5-m-long boat, what are the frequency, peri-


A


od, and wavelength of the waves?

c (z, t) 
 = ( z 
 -  vt
 )2 + 1


2.10*
   A vibrating hammer strikes the end of a long metal rod in such 

where  A
  is a constant. Show that it is a solution of the differential wave 

a way that a periodic compression wave with a wavelength of 4.3 m 

equation. Determine the speed of the wave and the direction of propa-

travels down the rod’s length at a speed of 3.5 km>s. What was the 

gation.

frequency of the vibration?


2.4*
  Argon-ion lasers typically generate multi-watt beams in the 


2.11
   A violin is submerged in a swimming pool at the wedding of two 

green or blue regions of the visible spectrum. Determine the frequency 

scuba divers. Given that the speed of compression waves in pure water 

of such a 514.5-nm beam.

is 1498 m>s, what is the wavelength of an A-note of 440 Hz played on 

the instrument?


2.5*
   Establish that

c (y, t) 
 =  Ae
 - a
 ( by 
 -  ct
 )2










2.12*
   A wavepulse travels 10 m along the length of a string in 2.0 s. 

A harmonic disturbance of wavelength 0.50 m is then generated on the 

where  A
 ,  a
 ,  b
 , and  c
  are all constant, is a solution of the differential string. What is its frequency?

wave equation. This is a Gaussian or bell-shaped function. What is its 

speed and direction of travel?


2.13*
   Show that for a periodic wave v = (2p>l) v
 .
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2.14*
   Make up a table with columns headed by values of u running 


Figure P.2.19


c (z, 0
 s ) 
 (cm)

from  -p>2 to 2p in intervals of p>4. In each column place the cor-

20.0

responding value of sin u, beneath those the values of cos u, beneath 

those the values of sin (u - p>4), and similarly with the functions  

sin (u - p>2),  sin (u - 3p>4), and sin (u + p>2). Plot each of these 

10.0

functions, noting the effect of the phase shift. Does sin u lead or lag 

sin (u - p>2). In other words, does one of the functions reach a par-

ticular magnitude at a smaller value of u than the other and therefore 

–20.0

–10.0

0

10.0

20.0

30.0

40.0

lead the other (as cos u leads sin u)?

–10.0


2.15*
   Make up a table with columns headed by values of  kx
  running from 


x 
 = -l>2  
 to  x 
 = +l  
 in intervals of  x
  of l>4 — of  course,   k 
 =  
 2p>l. In each column place the corresponding values of cos ( kx 
 -


z 
 (cm)

p>4) and  

–20.0

beneath that the values of cos ( kx 
 + 3p>4). Next plot the functions  

15 cos ( kx 
 - p>4) and 25 cos ( kx 
 + 3p>4).


2.20*
   A transverse wave on a string travels in the negative  y
 -direction 

at a speed of 40.0 cm>s. Figure P.2.20 is a graph of c versus  t 
 showing 


2.16*
   Make up a table with columns headed by values of v t
  running 

how a point on the rope at  y 
 = 0  
 oscillates. (a) Determine the wave’s 

from   t 
 = -t>2   
 to   t 
 = +t   
 in intervals of  t
  of t>4— of  course,  v = 

period. (b) What is the frequency of the wave? (b) What is the wave-

2p>t. In each column place the corresponding values of sin (v t
  + 

length of the wave? (d) Sketch the profile of the wave (c versus  y
 ).

p>4) and sin (p>4 - v t
 ) and then plot these two functions.


2.17*
   The profile of a transverse harmonic wave, traveling at 1.2 m>s  


Figure P.2.20


c (0
 m , t) 
 (cm)

on a string, is given by

2.0


y 
 = (0.02 m) sin (157 m-1)  x


Determine its amplitude, wavelength, frequency, and period.

1.0


2.18*
   Figure P.2.18 represents the profile ( t 
 = 0) of a transverse wave 

on a string traveling in the positive  x
 -direction at a speed of 20.0 m>s. 

(a) Determine its wavelength. (b) What is the frequency of the wave? 

–0.10

0

0.10

0.20

0.30

(c) Write down the wavefunction for the disturbance. (d) Notice that as 

the wave passes any fixed point on the  x
 -axis the string at that location 

–1.0

oscillates in time. Draw a graph of the c versus  t 
 showing how a point 

on the rope at  x 
 = 0  
 oscillates.


t 
 (s)

–2.0


2.21
   Given the wavefunctions


Figure P.2.18


c (x, 0
 s ) 
 (m)

0.020

c1 = 4 sin 2p(0.2 x 
 - 3 t
 )

and

0.010

sin (7 x 
 + 3.5 t
 )

c2 =

2.5

0

2.0

4.0

6.0

determine in each case the values of (a) frequency, (b) wavelength, (c) 

period, (d) amplitude, (e) phase velocity, and (f ) direction of motion. 

–0.010

Time is in seconds and  x
  is in meters.


2.22*
   The wavefunction of a transverse wave on a string is

–0.020


x 
 (m)

c (x, t) 
 = (30.0 cm) cos [(6.28 rad>m) x 
 - (20.0 rad> s
 ) t
 ]

Compute the (a) frequency, (b) wavelength, (c) period, (d) amplitude,  


2.19*
   Figure P.2.19 represents the profile ( t 
 = 0) of a transverse wave 

(e) phase velocity, and (f) direction of motion. 

on a string traveling in the positive  z
 -direction at a speed of 





100 cm>s. (a) Determine its wavelength. (b) Notice that as the wave 


2.23* 
 A traveling wave is given in SI units by the expression

passes any fixed point on the  z
 -axis the string at that location oscillates 

in time. Draw a graph of 


y


c versus  t 
 showing how a point on the rope at 

c (y, t) 
 = 10 sin 2p(5.0 * 1014) a

+  t
 b


x 
 = 0  
 oscillates. (c) What is the frequency of the wave?

3.0 * 108
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Find its (a) amplitude, (b) frequency, (c) wavelength, (d) speed, (e) pe-

where the wave travels at 2.00 m>s and has a period of 1>4 s. Deter-

riod, and (f ) direction of propagation.

mine the displacement of the string 1.50 m from the origin at a time 


t 
 = 2.2 s.


2.24*
   Show that


2.34
   Begin with the following theorem: If  z 
 =  ƒ(x, y) 
 and  x 
 =  g(t)
 , c (x, t) 
 =  A
  sin  k
 ( x 
 -  vt
 ) [2.13]


y 
 =  h(t)
 , then

is a solution of the differential wave equation.


dz


0 z dx


0 z dy


=  

+  


2.25*
   Show that


dt


0 x dt


0 y dt


c (x, t) 
 =  A
  cos ( kx 
 - v t
 )

Derive Eq. (2.34).

is a solution of the differential wave equation.


2.35
   Using the results of the previous problem, show that for a har-

monic wave with a phase w (x, t) 
 =  k(x 
 -  vt)
   we can determine the 


2.26*
   Prove that  

speed by setting  d
 w> dt 
 = 0. Apply the technique to Problem 2.32 to 

find the speed of that wave.

c (x, t) 
 =  A
  cos ( kx 
 - v t 
 - p>2)

is equivalent to


2.36*
  A Gaussian wave has the form c (x, t) 
 =  Ae
 - a
 ( bx
 + ct
 )2. Use the fact that c (x, t) 
 =  ƒ(x 
 ∓  vt)
   to determine its speed and then verify 

c (x, t) 
 =  A
  sin ( kx 
 - v t
 )

your answer using Eq. (2.34).


2.27
   Show that if the displacement of the string in Fig. 2.12 is given by


2.37
   Create an expression for the  profile
  of a harmonic wave travel-


y(x, t) 
 =  A
  sin [ kx 
 - v t 
 + e]

ing in the  z
 -direction whose magnitude at  z 
 = -l>12  
 is 0.866, at  z
  = 

+l>6 is 1>2, and at  z 
 = l>4  
 is 0.

then the hand generating the wave must be moving vertically in simple 

harmonic motion.


2.38  
 Which of the following expressions correspond to traveling 

waves? For each of those, what is the speed of the wave? The quanti-


2.28
   Write the expression for the wavefunction of a harmonic wave 

ties  a
 ,  b
 , and  c
  are positive constants.

of amplitude 103 V>m, period 2.2 * 10-15 s, and speed 3 * 108 m>s.

The wave is propagating in the negative  x
 -direction and has a value of 

(a) c (z, t) 
 = ( az 
 -  bt
 )2

103 V>m at  t 
 = 0  
 and  x 
 = 0.

(b) c (x, t) 
 = ( ax 
 +  bt 
 +  c
 )2


2.29
  Consider the pulse described in terms of its displacement at  

(c) c (x, t) 
 = 1>( ax
 2 +  b
 )


t 
 = 0 by


2.39*



C


  Determine which of the following describe traveling waves:


y(x, t) 
 ∙  t
  = 0 = 2 +  x
 2

(a) c (y, t) 
 =  e
 -( a
 2 y
 2+ b
 2 t
 2-2 abty
 )

where  C
  is a constant. Draw the wave profile. Write  
 an expression for 

(b) c (z, t) 
 =  A
  sin ( az
 2 -  bt
 2)

the wave, having a speed  v
  in the negative  x
 -direction, as a function of 

2

time  t
 . If  v 
 = 1 m>s, sketch the profile at  t 
 = 2 s.


x



t


(c) c (x, t) 
 =  A
  sin 2p a + b


a



b



2.30*
   Determine the magnitude of the wavefunction c (z, t)  
 =  A
  cos

[ k
 ( z 
 +  vt
 ) + p]  
 at the point  z 
 = 0, when  t 
 = t>2  
 and when  t 
 = 3p>4.

(d) c (x, t) 
 =  A
  cos2 2p( t 
 -  x
 )


2.31
   Does the following function, in which  A
  is a constant,

Where appropriate, draw the profile and find the speed and direction of 

motion.

c (y, t) 
 = ( y 
 -  vt
 ) A



2.40
  Given the traveling wave c (x, t) 
 = 5.0 exp (- ax
 2 -  bt
 2 - 

represent a wave? Explain your reasoning.

21 ab
   xt
 ), determine its direction of propagation. Calculate a few val-

ues of 


2.32*


c and make a sketch of the wave at  t 
 = 0, taking  a 
 = 25 m-2 

  Use Eq. (2.33) to calculate the speed of the wave whose repre-

and  b 
 = 9.0 s-2.  
 What is the speed of the wave?

sentation in SI units is


2.41*
   Imagine a sound wave with a frequency of 1.10 kHz propagat-

c (y, t) 
 =  A
  cos p(3 * 106 y 
 + 9 * 1014 t
 )

ing with a speed of 330 m>s. Determine the phase difference in radians 

between any two points on the wave separated by 10.0 cm.


2.33*
   The displacement of a wave on a string is given by


2.42
   Consider a lightwave having a phase velocity of 3 * 108 m>s


z



t


and a frequency of 6

c (z, t) 
 = (0.020 m) sin 2p a + b

* 1014 Hz. What is the shortest distance along 

l

t

the wave between any two points that have a phase difference of 30°? 
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What phase shift occurs at a given point in 10-6 s, and how many 


2.50*
   The electric field of an electromagnetic plane wave is given in 

waves have passed by in that time?

SI units by


2.43
   Write an expression for the wave shown in Fig. P.2.43. Find its 


E


$ = E
 $0 ei
 (3 x
 -22  y
 -9.9*108 t
 )

wavelength, velocity, frequency, and period.

(a) What is the wave’s angular frequency? (b) Write an expression  

for k
 $. (c) What is the value of  k
 ? (d) Determine the speed of the wave.


Figure P.2.43
   A harmonic wave.


2.51*
   Consider the function


t 
 = 0

c (z, t) 
 =  A
  exp [-( a
 2 z
 2 +  b
 2 t
 2 + 2 abzt
 )]

60

40

where  A
 ,  a
 , and  b
  are all constants, and they have appropriate SI units. Does 

20


z  
 (nm)

this represent a wave? If so, what is its speed and direction of propagation?

0

–20

100

300

500


2.52
   De Broglie’s hypothesis states that every particle has associated 

–40

–60

with it a wavelength given by Planck’s constant ( h 
 = 6.6 * 10-34 J · 
 s)

divided by the particle’s momentum. Compare the wavelength of a 

6.0-kg stone moving at a speed of 1.0 m>s with that of light.


t 
 = 0.66 × 10–15 s


2.53
  Write an expression in Cartesian coordinates for a harmonic 

plane wave of amplitude  A
  and frequency v propagating in the direc-


z  
 (nm)

100

300

500

tion of the vector k


(arbitrary units)

$, which in turn lies on a line drawn from the origin 

to the point (4, 2, 1). [ Hint:
  First determine k
 $ and then dot it with r
 $.]


(z, t)   
 c


2.54*
  Write an expression in Cartesian coordinates for a harmonic 


t 
 = 1.33 × 10–15 s

plane wave of amplitude  A
  and frequency v propagating in the positive 


x
 -direction.


2.55
   Show that c (
 
k

 $ ~  
r




z  
 (nm)

$ ,
   t)
  may represent a plane wave where k
 $ is nor-

mal to the wavefront. [ Hint:
  Let r
 $1 
 and r
 $2 be position vectors drawn to 

any two points on the plane and show that c (
   
r

 $ 1, t) 
 = c (
   
r

 $ 2, t)
 .]


2.56*
   Show explicitly, that the function

c (
 
r

 $ , t) 
 =  A
  exp [ i
 (k
 $ ~ r
 $ + v t 
 + e)]

describes a wave provided that  v 
 = v> k
 .


2.44*
   Working with exponentials directly, show that the magnitude of 


2.57*
   Make up a table with columns headed by values of u running 

c =  Aei
 v t
  is  A
 . Then rederive the same result using Euler’s formula. 

from  -p>2 to 2p in intervals of p>4. In each column place the cor-

Prove that  ei
 a ei
 b =  ei
 (a+b).

responding value of sin u, and beneath those the values of 2 sin u. Next 


2.45*
   Show that the imaginary part of a complex number  z
 ˜
  is given by 

add these, column by column, to yield the corresponding values of the 

( z
 ˜ 
 -  z
 ˜
 *)>2 i
 .

function sin u + 2 sin u. Plot each of these three functions, noting their 

relative amplitudes and phases.


2.46*
   Take the complex quantities  z
 ˜
 1 = ( x
 1 +  iy
 1) and  z
 ˜
 2 =( x
 2 +  iy
 2) and show that


2.58*
   Make up a table with columns headed by values of u running 

from  -p>2 to 2p in intervals of p>4. In each column place the corre-

Re ( z
 ˜



z
 ˜



z
 ˜


sponding value of sin 





1 +  z
 ˜
 2) = Re (  1) + Re (  2)

u, and beneath those the values of sin (u - p>2).  


2.47*
   Take the complex quantities  z
 ˜


Next add these, column by column, to yield the corresponding values 

1 = ( x
 1 +  iy
 1) and  z
 ˜
 2  = ( x
 2 +  iy
 2) 

and show that

of the function sin u + sin (u - p>2). Plot each of these three func-

tions, noting their relative amplitudes and phases.

Re ( z
 ˜



z
 ˜



z
 ˜






1) * Re (  2) Z Re (  1 *  z
 ˜
 2) 


2.59*
   With the last two problems in mind, draw a plot of the three func-


2.48
   Beginning with Eq. (2.51), verify that

tions (a) sin u, (b) sin (u - 3p>4), and (c) sin u + sin (u - 3p>4). Com-

pare the amplitude of the combined function (c) in this case with that 

c (x, y, z, t) 
 =  Aei
 [ k
 (a x
 +b y
 +g z
 )∓v t
 ]

of the previous problem.

and that 

a2 + b2 + g2 = 1 


2.60*
   Make up a table with columns headed by values of  kx
  running 

from   x 
 = -

Draw a sketch showing all the pertinent quantities.

l>2  
 to   x 
 = +l  
 in intervals of  x
  of l>4. In each column 

place the corresponding values of cos  kx
  and beneath that the values of 


2.49*
  Show that Eqs. (2.64) and (2.65), which are plane waves of 

cos ( kx 
 + p). Next plot the three functions cos  kx
 , cos ( kx 
 + p), and 

arbitrary form, satisfy the three-dimensional differential wave equation.

cos  kx 
 + cos ( kx 
 + p).

M02_HECH7226_05_SE_C02_10-036.indd   36

09/11/15   6:50 PM






3Electromagnetic 



Theory, Photons,  



and Light


The work of J. Clerk Maxwell and subsequent developments 

For light we have a representation of the wave nature in the 

since the late 1800s have made it evident that light is most cer-

form of the classical electromagnetic field equations of 

tainly electromagnetic in nature. Classical electrodynamics, as 

Maxwell. With these as a starting point one can construct a 

we shall see, unalterably leads to the picture of a continuous 

quantum-mechanical theory of photons and their interaction 

transfer of energy by way of electromagnetic waves. In con-

with charges. The dual nature of light is evidenced by the 

trast, the more modern view of Quantum Electrodynamics  

fact that it propagates through space in a wavelike fashion 

(p. 83) describes electromagnetic interactions and the transport 

and yet displays particlelike behavior during the processes 

of energy in terms of massless elementary “particles” known as 

of emission and absorption. Electromagnetic radiant energy 


photons
 . The quantum nature of radiant energy is not always 

is created and destroyed in quanta or photons and not con-

apparent, nor is it always of practical concern in Optics. There 

tinuously as a classical wave. Nonetheless, its motion 

is a range of situations in which the detecting equipment is such 

through a lens, a hole, or a set of slits is governed by wave 

that it is impossible, and desirably so, to distinguish individual 

characteristics. If we’re unfamiliar with this kind of behav-

quanta.

ior in the macroscopic world, it’s because the wavelength 

If the wavelength of light is small in comparison to the size of 

of a material object varies inversely with its momentum 

the apparatus (lenses, mirrors, etc.), one may use, as a first ap-

(p. 60), and even a grain of sand (which is barely moving) 

proximation, the techniques of  Geometrical Optics
 . A somewhat 

has a wavelength so small as to be indiscernible in any con-

more precise treatment, which is applicable as well when the di-

ceivable experiment.

mensions of the apparatus are small, is that of  Physical Optics
 . In 

The photon has zero mass, and exceedingly large num-

Physical Optics the dominant property of light is its wave nature. 

bers of low-energy photons can be envisioned as present in 

It is even possible to develop most of the treatment without ever 

a beam of light. Within that model, dense streams of pho-

specifying the kind of wave one is dealing with. Certainly, as far 

tons act on the average to produce well-defined classical 

as the classical study of Physical Optics is concerned, it will suf-

fields (p. 55). We can draw a rough analogy with the flow 

fice admirably to treat light as an electromagnetic wave.

of commuters through a train station during rush hour. Each 

We can think of light as the most tenuous form of matter. 

commuter presumably behaves individually as a quantum 

Indeed, one of the basic tenets of Quantum Mechanics is that 

of humanity, but all have the same intent and follow fairly 

both light and material particles display similar wave-particle 

similar trajectories. To a distant, myopic observer there is a 

properties. As Erwin C. Schrödinger (1887–1961), one of the 

seemingly smooth and continuous flow. The behavior of 

founders of quantum theory, put it:

the stream  en masse
  is predictable from day to day, and so 

In the new setting of ideas the distinction [between particles 

the precise motion of each commuter is unimportant, at 

and waves] has vanished, because it was discovered that all par-

least to the observer. The energy transported by a large 

ticles have also wave properties, and  vice versa
 . Neither of the 

number of photons is,  on the average
 , equivalent to the 

two concepts must be discarded, they must be amalgamated. 

energy transferred by a classical electromagnetic wave.  

Which aspect obtrudes itself depends not on the physical  

For these reasons the classical field representation of elec-

object, but on the experimental device set up to examine it.*

tromagnetic phenomena has been, and will continue to be, 

The quantum-mechanical treatment associates a wave equa-

so useful. Nonetheless, it should be understood that the 

tion with a particle, be it a photon, electron, proton, or whatever. 

apparent continuous nature of electromagnetic waves is a 

In the case of material particles, the wave aspects are introduced 

fiction of the macroscopic world, just as the apparent con-

by way of the field equation known as Schrödinger’s Equation. 

tinuous nature of ordinary matter is a fiction—it just isn’t 

that simple.

Quite pragmatically, then, we can consider light to be a clas-

sical electromagnetic wave, keeping in mind that there are situ-

*SOURCE: Erwin C. Schrodinger (1887–1991).  Science Theory and Man
 , Dover 

Publications, New York, 1957.

ations for which this description is woefully inadequate.
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Chapter 3
   Electromagnetic Theory, Photons, and Light

to the problem of electromagnetic induction in 1831. His first 


3.1  Basic Laws of Electromagnetic 


apparatus made use of two coils mounted on a wooden spool 


Theory


(Fig. 3.1 a
 ). One, called the primary, was attached to a battery 

and a switch; the other, the secondary, was attached to a galva-

Our intent in this section is to review and develop some of the 

nometer. He found that the galvanometer deflected in one direc-

ideas needed to appreciate the concept of electromagnetic waves.

tion just for a moment whenever the switch was closed, returning 

We know from experiments that charges, even though sepa-

to zero almost immediately, despite the constant current still in 

rated in vacuum, experience a mutual interaction. Recall the fa-

the primary. Whenever the switch was opened, interrupting  

miliar electrostatics demonstration in which a pith ball somehow 

the primary current, the galvanometer in the secondary circuit 

senses the presence of a charged rod without actually touching 

momentarily swung in the opposite direction and then promptly 

it. As a possible explanation we might speculate that each charge 

returned to zero. 

emits (and absorbs) a stream of undetected particles ( virtual 


Using a ferromagnetic core to concentrate the “magnetic 


photons
 ). The exchange of these particles among the charges 

force,” Faraday wound two coils around opposing sections of a 

may be regarded as the mode of interaction. Alternatively, we 

soft iron ring (Fig. 3.1 b
 ). Now the effect was unmistakable—  
a 



can take the classical approach and imagine instead that every 



changing magnetic field generated a current

 . Indeed, as he 

charge is surrounded by something called an electric field. We 

would continue to discover,  change
  was the essential aspect of 

then need only suppose that each charge interacts directly with 

electromagnetic induction. 

the electric field in which it is immersed. Thus if a point charge  q
 .
  

By thrusting a magnet into a coil, Faraday showed that 

experiences a force F


$ E
 , the  electric field
  E
 $ at the position of the 

there is a voltage— otherwise known as the  induced
  
 electro-


charge is defined by F


$ E 
 =  q
 .E
 $. In addition, we observe that a   motive force
  
 or emf
 — across the coil’s terminals. (Electromo-moving charge may experience another force F


$ M
 , which is pro-

tive force is a dreadful, outmoded term—it’s not a force, but a 

portional to its velocity v
 $. We are thus led to define yet another 

voltage—so we’ll avoid it and just use emf.) Furthermore, the 

field, namely, the  magnetic induction
  or just the  magnetic field
  

amplitude of the emf depends on how rapidly the magnet is 

B

$, such that F
 $ M 
 =  q
 .v
 $ : B
 $. If forces F
 $ E
  and F
 $ M
  occur concur-moved.  The induced emf depends on the rate-of-change of B
  

rently, the charge is moving through a region pervaded by both 

through the coil and not on  B
  itself. A weak magnet moved 

electric and magnetic fields, whereupon F


$ =  q
 .E
 $ +  q
 .v
 $ : B
 $.  rapidly can induce a greater emf than a strong magnet moved The units of E


$ are volts per meter or newtons per coulomb. The 

slowly.

unit of B


$ is the tesla.

When the same changing  B
 -field passes through two differ-

As we’ll see, electric fields are generated by both electric 

ent wire loops, as in Fig. 3.2, the induced emf is larger across 

charges and  time-varying magnetic fields
 . Similarly, magnetic 

fields are generated by electric currents and by  time-varying 


the terminals of the larger loop. In other words, here where the 


electric fields
 . This interdependence of E



B
 -field is changing,  
the induced emf is proportional to the area 



$ and B
 $ is a key point in 

the description of light.



A of the loop penetrated perpendicularly by the field

 . If the 

loop is successively tilted over, as is shown in Fig. 3.3, the area 

presented perpendicularly to the field ( A
 #) varies as  A
  cos u, 

and, when u = 90°, the induced emf is zero because no amount 


3.1.1 Faraday’s Induction Law


of  B
 -field then penetrates the loop: when ∆ B
 >∆ t 
 Z 0, emf r  A
 #. 

The converse also holds:  
when the field is constant

 ,
 
 the in-



“Convert magnetism into electricity” was the brief remark  

Michael Faraday jotted in his notebook in 1822, a challenge he 



duced emf is proportional to the rate

 -
 
of

 -
 
change of the perpen-



set himself with an easy confidence that made it seem so attain-



dicular area penetrated

 . If a coil is twisted or rotated or even 

able. After several years doing other research, Faraday returned 

squashed while in a constant  B
 -field so that the perpendicular 

(a)

Wooden core

Galvanometer

(b)


i


Coil


B


Secondary

Primary

Secondary

Coil


B


Battery

Switch

Primary

Iron core


Figure 3.1
   ( a
 ) The start of a current in one coil produces a time-varying magnetic field that induces a current in the other coil. ( b
 ) An iron core couples the primary coil to the secondary.
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∆ B


∆ t



Figure 3.2
     A larger time-varying 


B


magnetic flux passes through the 

larger loop and induces a greater 


d 
 S


emf across its terminals.


d


area initially penetrated is altered, there will be an induced 


C



Figure 3.4
   B


$-field 

emf r ∆ A
 #>∆ t
  and it will be proportional to  B
 . In summary, 

through an open area  A
 , 

when  A
 # = constant, emf r  A
 #∆ B
 >∆ t 
 and, when  B 
 = constant,   

which is bounded by the 

emf r  B
 ∆ A


closed curve  C
 .

#>∆ t
 . 

All of this suggests that the emf depends on the rate-of-

change of both  A
 # and  B
 , that is, on the rate of change of their 

where   d
 S


 $ points outward perpendicular to the surface. The 

product. This should bring to mind the notion of the flux of the 

induced emf, developed around the loop, is then

field—the product of field and area where the penetration is per-

pendicular. Accordingly, the flux of the magnetic field
  through 


d
 Φ M


the wire loop is





emf = - 

 (3.2)


dt


Φ M 
 =  B
 #  A 
 =  BA
 # =  BA
  cos u

The minus sign tells us that the induced emf will drive an  

induced current, which will create an induced magnetic field 

More generally, if  B
  varies in space, as it’s likely to, the flux of 

that opposes the flux change that caused it in the first place. 

the magnetic field through any open area  A
  bounded by the con-

That’s Lenz’s Law and it’s very useful for figuring out the direc-

ducting loop (Fig. 3.4) is given by

tions of induced fields. If the induced magnetic field did not 

oppose the flux change, that change would increase endlessly. 





Φ M 
 = 6 B
 $ · 
 d
 S
  $ 


(3.1)

We should not, however, get too involved with the image of 


A


wires and current and emf. Our present concern is with the elec-

tric and magnetic fields themselves.

In very general terms, an emf is a potential difference, and 

(a)

that’s a potential-energy difference per unit charge. A potential-

∆ B


energy difference per unit charge corresponds to work done per 

∆ t


unit charge, which is force per unit charge times distance, and 

that’s electric field times distance. The emf exists only as a re-

sult of the presence of an electric field: 





emf = C E
 $ · 
 d
 O $ (3.3)

Zero emf


C



B


Small emf

taken around the closed curve  C
 , corresponding to the loop. 

Large emf

Equating Eqs. (3.2) and (3.3), and making use of Eq. (3.1), we get


d






C E
 $ · 
 d
 O $ = - 


B


$ · 
 d
 S
  $ (3.4)

(b)


C



dt 
 6 A


u


A



r



r
  cos 

Here the dot products give us the amount of E


$ parallel to the path 

u


C
  and the amount of B


$ perpendicular to the surface  A
 . Notice 

u


B


that  A
  is not a closed area [as it will be in Eqs. 3.7) and (3.9)].

We began this discussion by examining a conducting loop, 

and have arrived at Eq. (3.4); this expression, except for the 

path  C
 , contains no reference to the physical loop. In fact, the 


Figure 3.3
   ( a
 ) The induced emf is proportional to the perpendicular  

path can be chosen arbitrarily and need not be within, or any-

area intercepted by the magnetic field. ( b
 ) That perpendicular area  

where near, a conductor. The electric field in Eq. (3.4) arises 

varies as cos u.

not from the presence of electric charges but rather from the 
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B


$


E


$

Johann Karl 

Friedrich Gauss (Pearson 

Increasing

Education, Inc.)

Φ M


from fluid dynamics, where both the concepts of field and flux 


Figure 3.5
   A time-varying B


$-field. Surrounding each point where Φ M
  is 

were introduced. The flow of a fluid, as represented by its veloc-

changing, the E
 $-field forms closed loops. Imagine a current pushed along 

by E
 $. It would induce a B
 $-field downward that opposes the upward increas-

ity field, is depicted via streamlines, much as the electric field is 

ing B


$-field that gave rise to it.

pictured via field lines. Figure 3.6 shows a portion of a moving 

fluid within which there is a region isolated by an imaginary 

closed surface. The discharge rate, or  volume flux
   ( Av
 ), is the 

time-varying magnetic field. With no charges to act as sources 

volume of fluid flowing past a point in the tube per unit time. The 

or sinks, the field lines close on themselves, forming loops 

volume flux through both end surfaces is equal in magnitude—

(Fig. 3.5). We can confirm the direction of the induced  E
 -field 

what flows in per second flows out per second. The net fluid flux 

by imagining that there was a wire loop in space being pene-

(into and out of the closed area) summed over all the surfaces 

trated perpendicularly by the increasing flux. The  E
 -field in 

equals zero. If, however, a small pipe is inserted into the region 

the region of the loop must be such as to drive an induced cur-

either sucking out fluid (a sink) or delivering fluid (a source), the 

rent. That current (flowing clockwise looking downward) 

net flux will then be nonzero. 

would, by Lenz’s Law, create a downward induced magnetic 

To apply these ideas to the electric field, consider an imagi-

field that would oppose the increasing upward flux.

nary closed area  A
  placed in some arbitrary electric field, as de-

We are interested in electromagnetic waves traveling in 

picted in Fig. 3.7. The flux of electric field through  A 
 is  
 taken to be

space where there are no wire loops, and the magnetic flux 

changes because B


$ 
 changes. The  Induction Law
  (Eq. 3.4) can 





Φ E 
 =

then be rewritten as

TE
 $·
 d
 S
  $   



(
 3.6)


A


0B
  $

The circled double integral serves as a reminder that the sur-





C E
 $ · 
 d
 O $ = - 6


· 
 d
 S


 $ (3.5)

face is closed. The vector  d
 S






0 t


$  
 is in the direction of an  outward 



C



A



normal
 .   
When there are no sources or sinks of the electric 



A partial derivative with respect to  t
  is taken because B


$ is usu-



field within the region encompassed by the closed surface, 



ally also a function of the space variables. This expression in 



the net flux through the surface equals zero

 —that much is a 

itself is rather fascinating, since it indicates that  
a time-varying 



general rule for all such fields.



magnetic field will have an electric field associated with it

 .

In order to find out what would happen in the presence of 

The line integral around a closed path in any field is called 

internal sources and sinks, consider a spherical surface of  

the circulation
  of that field. Here it equals the work done on a 

unit charge in moving it once around the path  C
 .


A


2


v
 2


3.1.2 Gauss’s Law—Electric


Another fundamental law of electromagnetism is named after the 

German mathematician Karl Friedrich Gauss (1777–1855). 


A


1


v
 1


Figure 3.6    
 A tube of fluid flow. 

Gauss’s Law is about the relationship between the flux of the 

Notice how the area vectors on  

electric field and the sources of that flux, charge. The ideas derive 

the ends point outward.
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In order to apply the calculus, it’s useful to approximate the 

charge distribution as being continuous. Then if the volume en-


E


closed by  A
  is  V
  and the charge distribution has a density r, 

Gauss’s Law becomes


d
 S


1





T E
 $·
 d
 S
  $ =    dV


P 333  r  (3.7)

  


A


0


V


The field is produced by charge, and the net flux of the field through 

any closed surface is proportional to the total charge enclosed.


Electric Permittivity



Figure 3.7  
   E
 $-field 

through a closed area  A
 .

For the special case of vacuum, the electric permittivity  of free 



space
  is given by P0 = 8.854 2 * 10-12 C2>N · 
 m2. The value 

of 

radius  r
  centered on and surrounding a positive point-charge ( q


P0 is fixed by definition, and the weird numerical value it has 

~) 

is more a result of the units selected than it is an insight into the 

in vacuum. The  E
 -field is everywhere outwardly radial, and at 

nature of the vacuum. If the charge is embedded in some mate-

any distance  r
  it is entirely perpendicular to the surface: 

rial medium its permittivity (P) will appear in Eq. (3.7) instead 


E 
 =  E
 # and so

of P0. One function of the permittivity in Eq. (3.7) is, of course, 

to balance out the units, but the concept is basic to the descrip-

Φ E 
 = T E
 #  dS 
 = T E
   dS


tion of the parallel plate capacitor (see Section 3.1.4). There P is 


A



A


the medium-dependent proportionality constant between the 

Moreover, since  E
  is constant over the surface of the sphere, it 

device’s capacitance and its geometric characteristics. Indeed P 

can be taken out of the integral:

is often measured by a procedure in which the material under 

study is placed within a capacitor. Conceptually, the permittiv-

ity embodies the electrical behavior of the medium; in a sense, 

Φ E 
 =  E
   T  dS 
 =  E
 4p r
 2


A


it is a measure of the degree to which the material is permeated 

by the electric field in which it is immersed, or if you like, how 

But we know from Coulomb’s Law that the point-charge has an 

much field the medium will “permit.”

electric field given by

In the early days of the development of the subject, people in 

1


q


various areas worked in different systems of units, a state of af-


E 
 =

  ~

fairs leading to some obvious difficulties. This necessitated the 

4pP0  r
 2

tabulation of numerical values for P in each of the different sys-

and so 

tems, which was, at best, a waste of time. The same problem 

regarding densities was neatly avoided by using specific gravity 


q


Φ

~

(i.e., density ratios). Thus it was advantageous to tabulate val-


E 
 = P0

ues not of P but of a new related quantity that is independent of 

This is the electric flux associated with a single point-charge  q


the system of units being used. Accordingly, we define  KE 
 as 


.
  

within the closed surface. Since all charge distributions are 

P>P0. This is the dielectric constant
  (or  relative permittivity
 ), 

and it is appropriately unitless. The permittivity of a material 

made up of point-charges, it’s reasonable that the net flux due 


can then be expressed in terms of 


to a number of charges contained within any closed area is


P0 as





1

P =  KE
  P0 (3.8)

Φ

^


E 
 =


q


P

~

0

and, of course,  KE
  for vacuum is 1.0.

Our interest in  K


Combining the two equations for 


E
  anticipates the fact that the permittivity is 

Φ E
 , we get Gauss’s Law
 ,

related to the speed of light in dielectric materials, such as glass, 

1

air, and quartz.

T E
 $·
 d
 S
  $= ^ q
 .



A


P0

This tells us that if more flux passes out of some volume of 


3.1.3 Gauss’s Law—Magnetic


space than went into that volume it must contain a net positive 

charge, and if less flux emerges the region must contain a net 

There is no known magnetic counterpart to the electric charge; 

negative charge.

that is, no isolated magnetic poles have ever been found, despite 
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experiences a force when placed in a magnetic field  B
  equal  

to  qmB
  in the direction of  B
 , just as an electric charge  qe
  ex-

periences a force  qeE
 . Suppose we carry this north-seeking 

monopole around a closed circular path perpendicular to and 

centered on a current-carrying wire and determine the work 

done in the process. Since the direction of the force changes, 

because B


$ changes direction, we will have to divide the circular 

path into tiny segments (∆/) and sum up the work done over 


d 
 S


each. Work is the component of the force parallel to the dis-

placement times the displacement: ∆ W 
 =  qmB
 ‘ ∆/, and the total 

work done by the field is ^ qmB 
  ∆/. In this case, B
 $ is every-

‘

where tangent to the path, so that  B 
 =  B 
 = m

‘

0 i
 >2p r
 , which is 


B


constant around the circle. With both  qm
  and  B
  constant, the 


Figure 3.8  
   B


$-field 

summation becomes

through a closed area  A
 .


qm
 ^ B 
  ∆/ =  q


‘


mB
 ^∆/ =  qmB
 2p r


extensive searching, even in lunar soil samples. Unlike the 

where ^∆/ = 2p r 
 is the circumference of the circular path.

electric field, the magnetic field B


$ does not diverge from or 

If we substitute for  B
  the equivalent current expression, 

converge toward some kind of magnetic charge (a monopole 

namely, m0 i
 >2p r
 , which varies inversely with  r
 , the radius can-

source or sink). Magnetic fields can be described in terms of 

cels—the work is independent of the circular path taken. Since 

current distributions. Indeed, we might envision an elementary 

no work is done in traveling perpendicular to B


$, the work must 

magnet as a small current loop in which the lines of B


$ are con-

be the same if we move  qm
  (out away from the wire or in toward 

tinuous and closed. Any closed surface in a region of magnetic 

it) along a radius, carrying it from one circular segment to another 

field would accordingly have an equal number of lines of B


$ 

as we go around. Indeed,  W
  is independent of path altogether—

entering and emerging from it (Fig. 3.8). This situation arises 

the work will be the same for  any closed path
  encompassing the 

from the absence of any monopoles within the enclosed vol-

current. Putting in the current expression for  B 
 leads to 

ume. The flux of magnetic field Φ M
  through such a surface is 

zero, and we have the magnetic equivalent of Gauss’s Law:


qm
 ^ B 
  ∆/ = q


‘


m
  (m0 i
 >2p r
 )2p r


Canceling the “charge”  qm
 , we get the rather remarkable expression





Φ M 
 = T B
 $· 
 d
 S
  $ = 0 (3.9)


A


^ B
  ∆/ = m

‘

0 i




which is to be summed over any closed path surrounding the 




3.1.4 Ampère’s Circuital Law




current

 . The magnetic charge has disappeared, which is nice, 

Another equation that will be of great interest is associated  

since we no longer expect to be able to perform this little 

with André Marie Ampère (1775–1836). Known as the  Circuit-


thought experiment with a monopole. Still, the physics was 


al Law
 , its physical origins are a little obscure—it will take a bit 

consistent, and the equation should hold, monopoles or no. 

of doing to justify it, but it’s worth it. Accordingly, imagine a 

Moreover, if there are several current-carrying wires encom-

straight current-carrying wire in vacuum and the circular  B
 -

passed by the closed path, their fields will superimpose and add, 

field surrounding it (Fig. 3.9). We know from experiments that 

yielding a net field. The equation is true for the separate fields 

the magnetic field of a straight wire carrying a current  i
  is 

and must be true as well for the net field. Hence


B 
 = m0 i
 >2p r
 . Now, suppose we put ourselves back in time to 

the nineteenth century, when it was common to think of mag-

netic charge ( q


^ B
  ∆/ = m

‘

0^ i



m
 ). Let’s define this monopole charge so that it 

As ∆/ S 0, the sum becomes an integral  around a closed path
 :

C  B
 $ · 
 d
 O $ = m0^ i



C



r


Today this equation is known as Ampère’s Law
 , though at one 

∆ℓ

time it was commonly referred to as the “work rule.” It relates a 


B



i


line integral of B



Figure 3.9  
  The B


$ tangent to a closed curve  C
 , with the total cur-

$-field surrounding a  

current-carrying wire.

rent  i
  passing within the confines of  C
 .
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When the current has a nonuniform cross section, Ampère’s 

(a)

Law is written in terms of the  current density
  or current per unit 


i



C


area  J
 ,  
 integrated over the area:


A






1


A


C  B
 $ · 
 d
 O $ = m

2

0 6  J
 $ · 
 d
 S
  $ (3.10)


i



E



C



A


The open surface  A
  is bounded by  C
  (Fig. 3.10). The quantity 

(b)

m0 is called the permeability of free space 
 and it’s defined as 


B


4p * 10-7 N · 
 s2>C2. When the current is imbedded in a mate-

rial medium its permeability (m) will appear in Eq. (3.10). As in 


i


Eq. (3.8),


E






m =  KM
 m0 (3.11)


B



i


with  KM
  being the dimensionless  relative permeability
 .

Equation (3.10), though often adequate, is not the whole 


E
  increasing

truth. Ampère’s Law is not particular about the area used, pro-


B


vided it’s bounded by the curve  C
 , which makes for an obvious 

problem when charging a capacitor, as shown in Fig. 3.11 a
 . If 


Figure 3.11    
 ( a
 ) Ampère’s Law is indifferent to which area  A
 1 or  A
 2 is flat area  A


bounded by the path  C
 . Yet a current passes through  A
 1 and not through 

1 is used, a net current of  i
  flows through it and there 


A


is a B


$-field along curve  C
 . The right side of Eq. (3.10) is  

2, and that means something is very wrong. ( b
 ) B


$-field concomitant with 

a time-varying E
 $-field in the gap of a capacitor.

nonzero, so the left side is nonzero. But if area  A
 2  
 is used in-

stead to encompass  C
 , no net current passes through it and the 

As the charge varies, the electric field changes, and taking the 

field must now be zero, even though nothing physical has actu-

derivative of both sides yields

ally changed. Something is obviously wrong!

Moving charges are not the only source of a magnetic field. 

0 E



i


P 

=

While charging or discharging a capacitor, one can measure a  

0 t



A



B


$-field in the region between its plates (Fig. 3.11 b
 ), which is  and P(0 E
 >0 t
 ) is effectively a 
 current density. James Clerk Max-indistinguishable from the field surrounding the leads, even 

well hypothesized the existence of just such a mechanism, 

though no electric current actually traverses the capacitor.  

which he called the  displacement current density
 ,* defined by

Notice, however, that if  A
  is the area of each plate and  Q
  the 

charge on it,

0E
 $






J
 $ D 
 K P   (3.12)


Q


0 t



E 
 = P A


The restatement of Ampère’s Law as


Figure 3.10    
 Current density 

0E
 $

through an open area  A
 .





C B
 $ · 
 d
 O $ = m6 aJ
 $ + P  b · 
 d
 S
  $ (3.13)


C



A


0 t



J


was one of Maxwell’s greatest contributions. It points out that 

even when J
 $ = 0,  
a time-varying

  E
 $ 
-field will be accompanied 





by a

  B


$ 
-field

  (Fig. 3.12).


d 
 S



3.1.5 Maxwell’s Equations


The set of integral expressions given by Eqs. (3.5), (3.7), (3.9), 


C


and (3.13) have come to be known as Maxwell’s Equations. 

Remember that these are generalizations of experimental 






B


*Maxwell’s own words and ideas concerning this mechanism are examined in  

an article by A. M. Bork,  Am. J. Phys.
  31
 , 854 (1963). Incidentally, Clerk is  

pronounced  clark
 .
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in terms of derivatives at specific points in space and that will 


E


provide a whole new perspective. To do that, if only in outline 

form (for a more rigorous treatment see Appendix 1), con-

sider the differential vector operator known as “del,” symbol-


B


ized by an inverted capital delta ∇ and written in Cartesian 

coordinates as

𝛁$

0

0

0

= iˆ
   + jˆ
   + kˆ
  

0 x


0 y


0 z


Del can operate on a vector field via the dot product to produce 

a scalar, or via the cross product to produce a vector. Thus with 


E


$ =  Ex
 iˆ 
 +  Ey
 jˆ 
 +  Ez
 kˆ


𝛁$

0

0

0


· E


$ = aiˆ
   + jˆ
   + kˆ
   b · 
 ( E


Increasing

0 x


0 y


0 z



x
 iˆ 
 +  Ey
 jˆ 
 +  Ez
 k



ˆ 
 )

Φ E


This is referred to as the divergence
  of the vector field E


$,


Figure 3.12
   A time-varying E
 $-field. Surrounding each point where Φ E
  

0 E


0 Ey


0 E


is changing, the B


$-field forms closed loops. Considering Eq. (3.12), an 

div E


$ = 𝛁$ · E
 $ =  x 
 +

+


z


increasing upward electric field is equivalent to an upward displacement 

0 x


0 y


0 z


current. According to the right-hand rule the induced  B
 -field circulates 

counterclockwise looking down.

a name given to it by the great English electrical engineer and 

physicist Oliver Heaviside (1850–1925). The divergence of E


$ is 

the change in  Ex
  along the  x
 -axis plus the change in  Ey
  along the 


y
 -axis plus the change in  Ez
  along the  z
 -axis. And it can be pos-

results. The simplest statement of Maxwell’s Equations applies 

itive, negative, or zero.  The equation tells us how to calculate 

to the behavior of the electric and magnetic fields in free space, 

divergence, but it doesn’t help any in figuring out what it means 

where  P = P0 and m = m0. There are presumably no currents 

physically. 

and no charges floating around and so both r and J
 $ are zero. In 

It’s easier to visualize, and certainly easier to talk about, a 

that instance,

moving fluid than it is a static electric field and so the imagery 

tends to get confused.  The best way to think of all of this is to 

0B
 $





 E


$ · 
 d
 O $ = -






· 
 d
 S


 $ (3.14)


picture a streaming fluid field in its steady state and then in 


C

33


C



A 
 0 t



your mind’s eye take a photograph of it; the electric field due 



to some charge distribution is analogous to that static image
 . 

0E
 $





 B


$ · 
 d
 O $ = m






· 
 d
 S


 $ (3.15)

Loosely speaking, a positive divergence gives rise to a dis-

C

0P033


C



A 
 0 t


persing, a moving away of the field from a specific location. 

At any point in a field if the “flow” is greater away than to-

ward that point, there is a divergence there and it is positive. 





T B
 $·
 d
 S
  $=0 (3.16) As we saw with Gauss’s Law a source produces a net flux A



through
  a  closed surface
  surrounding it, and similarly a source 

(a positive charge) at a point in space produces a positive diver-





T E
 $·
 d
 S
  $=0 (3.17) gence  at that point
 . 


A


The divergence of a field can be less than obvious, since it 

Observe that except for a multiplicative scalar, the electric 

depends on both the strength of the field and its tendency to be 

and magnetic fields appear in the equations with a remarkable 

either converging toward or diverging from the point of interest. 

symmetry. However E


$ affects B
 $, B
 $ will in turn affect E
 $. The  For example, consider a positive charge at point  P
 1. The electric mathematical symmetry implies a good deal of physical sym-field “flows” outward—using the word “flow” very loosely—

metry.

and at  P
 1 there is a positive divergence. Yet beyond  P
 1 anywhere 

When a vector is associated with every point in a region of 

in the surrounding space at some point  P
 2, the field does indeed 

space, we have what’s called a  
vector field

 ; the electric and 

spread out as 1> r
 2 (contributing a positive divergence), but it 

magnetic fields are vector fields. Maxwell’s Equations as 

also weakens as 1> r
 2 (contributing a negative divergence). The 

written above describe these fields using integrals computed 

result is that everywhere beyond the point-charge the div E


$ is 

around curves and over surfaces in extended regions of space. 

zero. The field does not tend to diverge from any point that it 

By contrast, each of Maxwell’s Equations can be reformulated 

passes through in the surrounding space. That conclusion can 
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be generalized:  a nonzero divergence of the electric field occurs 


This multiplies out to


only at the locations where there are charges.


0 E


0 E


0 E


0 E


0 E


Again loosely speaking, flux is related to net “flow” through 

𝛁$


y



y


: E
 $  = a  z 
 -

b iˆ 
 + a0 Ex 
 -  z
 b jˆ 
 + a

-


x
 b kˆ


a surface and divergence is related to net “flow” from a point. 

0 y


0 z


0 z


0 x


0 x


0 y


The two can be tied together by another wonderful mathemati-

Each parenthetical term provides the tendency for the  E
 -field to 

cal definition of the divergence of a vector field, namely,

circulate around the associated unit vector. Thus the first term 

deals with circulation of the field in the  yz
 -plane about the iˆ
  unit 

1

lim  

  T E
 $ · 
 d
 S
  $ = div E
 $ = 𝛁$ · E
 $

vector passing through a specific point in space. The resulting 

∆ V 
 S 0 ∆ V



A


circulation is the vector sum of the individual contributions.

The mathematical relationship between the circulation of the 

In other words, take any point in the vector field and surround it 

electric field and its curl can be appreciated by going back to 

by a small closed surface of area  A
  and small volume ∆ V
 . Write 

Faraday’s Law. Accordingly, consider a point  P
  in an  E
 -field 

an expression for the net flux of the field through  A
 —that’s the 

lying on a small area ∆ A
  bounded by a closed curve  C
 . The cir-

above double integral. Now divide the net flux by the volume 

culation of the field is given by the left side of Eq. (3.14), where-

enclosed within  A
  to get the flux per unit volume. Then shrink 

as the right side is an area integral. Accordingly, divide the line 

that volume down to a point. What results is the divergence of 

integral by the area ∆ A
  to get the circulation per unit area. We 

the field at that point. You can stop the shrinking process when 

want the tendency for the field to circulate around the point so 

the surface is very very tiny and see if the net flux is positive, 

shrink  C
 , and hence ∆ A
 , down to  P
 . That is, make  C
  infinitesi-

negative, or zero; if the shrinking is then continued, in the limit 

mal, whereupon the circulation per unit area becomes the curl:

the divergence will turn out to be correspondingly positive, 

negative or zero. So flux and divergence are indeed intimately 

1

lim  

   E


$ · 
 d


related concepts.

O $ = curl E
 $ = 𝛁$ : E
 $

∆ A 
 S 0 ∆ A 
 C

  


C


It follows from Gauss’s Law in integral form, Eq. (3.7), that 

the net flux equals the net charge enclosed. Dividing by volume 

Although we haven’t actually proven it (that’s left for Appendix 1) 

yields the charge density r at the point. Thus the differential 


we can anticipate from Eq. (3.14) that the differential version 



version of Gauss’s Law for electric fields
  is


of Faraday’s Law
  is

r





 [A1.9]

0B
 $

𝛁$ · E
 $ =





𝛁$ : E
 $ = -   [A1.5]

P0

0 t


If we know how the  E
 -field differs from point to point in space 

In electrostatics  E
 -fields begin and end on charges, they do not 

we can determine the charge density at any point, and vice 

close on themselves, and they have no circulation. Therefore the 

versa.

curl of any electrostatic  E
 -field is zero. Only  E
 -fields created by 

In much the same way, the integral form of Gauss’s Law for 

time-varying  B
 -fields have curl.

magnetism, Eq. (3.9), and the fact there are no magnetic charges, 

Essentially the same arguments can be applied to Ampère’s 

lead to the differential version of Gauss’s Law for magnetic 


Law, which for simplicity we will look at only in vacuum  


fields
 :

[Eq. (3.15)]. It deals with the circulation of the magnetic field 

arising from a time-varying  E
 -field. By analogy with the above 





𝛁$ · B
 $ = 0 [A1.10]

discussion the differential version of Ampère’s Law
  is

The divergence of the magnetic field at any point in space is 

zero.

𝛁$

0E
 $

: B
 $ = m0P0  0 t


Now let’s revisit Faraday’s Law [Eq. (3.14)] with the intent 

These vector formulas are beautifully concise and easy to re-

of producing a differential form of it. Recall that the law advises 

member. In Cartesian coordinates they actually correspond to 

that a time-varying  B
 -field is always accompanied by an  E
 -field 

the following eight differential equations:

whose lines close on themselves. The left side of Eq. (3.14) is 

the  circulation
  of the electric field. To accomplish the reformu-


Faraday’s Law
 :

lation we need to use the differential operator Maxwell called 

the curl
  of the vector field because it reveals a tendency for the 

0 E


0 Ey


0 B







z 
 -

= -   x
   (i)

field to circulate around a point in space. The curl operator is sym-

0 y


0 z


0 t


bolized by the vector 𝛁

$ :, which is read “del cross.” In Carte-

0 E


0 E


0 By


sian coordinates it is






x 
 -  z 
 = -    (ii) 

(3.18)

0 z


0 x


0 t


0

0

0

0 Ey


0 E


0 B


𝛁$ : E
 $ = aiˆ
   + jˆ
   + kˆ
   b : ( Ex
 iˆ 
 +  Ey
  jˆ 
 +  Ez
 kˆ
 )





-


x 
 = -   z
   (iii)

0 x


0 y


0 z


0 x


0 y


0 t
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Ampères’s Law
 :

The time-varying electric field induces a magnetic field by 

means of Eq. (3.15) or (3.19). If the charge’s velocity is constant, 

0 B


0 By


0 E







z



x
   (i)

the rate-of-change of the E


-

= m

$-field is steady, and the resulting 

0 y


0 z


0P0  0 t



B


$-field is constant. But here the charge is accelerating. 0E
 $>0 t
  is 

0 B


0 Ey


itself not constant, so the induced B


0 Bx



z


$-field is time-dependent. The 





-

= m0P0 

  (ii) 

(3.19)

time-varying B


$-field generates an E
 $-field, Eq. (3.14) or (3.18), 

0 z


0 x


0 t


and the process continues, with E


$ 
 and B
 $ coupled in the form of 

0 By


0 Bx


0 Ez


a pulse. As one field changes, it generates a new field that extends 





-

= m

  (iii)

0 x


0 y


0P0  0 t


a bit farther, and the pulse moves out from one point to the next 

through space.


Gauss’s Law Magnetic
 :

We can draw an overly mechanistic but rather picturesque 

analogy, if we imagine the electric field lines as a dense radial 

0 B


0 By


0 B







x



z


distribution of strings (p. 62). When somehow plucked, each string 

+

+

= 0 (3.20)

0 x


0 y


0 z


is distorted, forming a kink that travels outward from the source. All 

these kinks combine at any instant to yield a three-dimensional 


Gauss’s Law Electric
 :

expanding pulse in the continuum of the electric field.

The E


$- and B
 $-fields can more appropriately be considered as 

0 E


0 Ey


0 E







x



z


two aspects of a single physical phenomenon, the  electromag-


+

+

= 0 (3.21)

0 x


0 y


0 z



netic field
 , whose source is a moving charge. The disturbance, 

once it has been generated in the electromagnetic field, is an 

We now have all that is needed to comprehend the magnificent 

untethered wave that moves beyond its source and independently 

process whereby electric and magnetic fields, inseparably coupled 

of it. Bound together as a single entity, the time-varying electric 

and mutually sustaining, propagate out into space as a single entity, 

and magnetic fields regenerate each other in an endless cycle. 

free of charges and currents, sans material matter, sans aether.

The electromagnetic waves reaching us from the relatively 

nearby Andromeda galaxy (which can be seen with the naked 

eye) have been on the wing for 2 200 000 years.


3.2 Electromagnetic Waves


We have not yet considered the direction of wave propaga-

tion with respect to the constituent fields. Notice, however, that 

We have relegated to Appendix 1 a complete and mathemati-

the high degree of symmetry in Maxwell’s Equations for free 

cally elegant derivation of the electromagnetic wave equation. 

space suggests that the disturbance will propagate in a direction 

Here the focus is on the equally important task of developing a 

that is symmetrical to both E


$ and B
 $. That implies that an elec-

more intuitive appreciation of the physical processes involved. 

tromagnetic wave cannot be purely longitudinal (i.e., as long as 

Three observations, from which we might build a qualitative 


E


$ and B
 $ are not parallel). Let’s now replace conjecture with a 

picture, are readily available to us: the general perpendicularity 

bit of calculation.

of the fields, the symmetry of Maxwell’s Equations, and the 

Appendix 1 shows that Maxwell’s Equations for free space 

interdependence of E


can be manipulated into the form of two extremely concise vec-

$ and B
 $ in those equations.

In studying electricity and magnetism, one soon becomes 

tor expressions:

aware that a number of relationships are described by vector 

cross-products or, if you like, right-hand rules. In other words, 

02E
 $





∇2E
 $ = P0m0 

 [A1.26]

an occurrence of one sort produces a related, perpendicularly 

0 t
 2

directed response. Of immediate interest is the fact that a time-

varying E


$-field generates a B
 $-field, which is everywhere per-

02B
 $

and 

∇2B
 $ = P0m0 

 [A1.27]

pendicular to the direction in which E


$ changes (Fig. 3.12). In 

0 t
 2

the same way, a time-varying B


$-field generates an E
 $-field, 

which is everywhere perpendicular to the direction in which B


The Laplacian,* ∇2, operates on each component of E


$ 

$ and B
 $, 

changes (Fig. 3.5). Consequently, we might anticipate the gen-

so that the two vector equations actually represent a total of six 

eral transverse nature of the E


scalar equations. In Cartesian coordinates,

$- and B
 $-fields in an electromag-

netic disturbance.

02 E


02 E


02 E


02 E


Consider a charge that is somehow caused to  accelerate
  from 






x



x



x



x
  

rest. When the charge is motionless, it has associated with it a 

0 x
 2 + 0 y
 2 + 0 z
 2 = P0m0  0 t
 2

constant radial E


$-field extending in all directions presumably to 

infinity (whatever that means). At the instant the charge begins 

to move, the E


$-field is altered in the vicinity of the charge, and 

*In Cartesian coordinates,

this alteration propagates out into space at some finite speed. 

∇2E
 $ = iˆ
 ∇2 Ex 
 + jˆ
 ∇2 Ey 
 + kˆ
 ∇2 Ez
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This brilliant analysis was one of the great intellectual tri-

02 Ey


02 Ey


02 Ey


02 Ey






 (3.22)

umphs of all time. It has become customary to designate the 

0 x
 2 + 0 y
 2 + 0 z
 2 = P0m0  0 t
 2

speed of light in vacuum by the symbol  c
 , which comes from 

the Latin word  celer
 , meaning fast. In 1983 the 17th Con-

02 E


02 E


02 E


02 E







z



z



z



z
  

férence Générale des Poids et Mesures in Paris adopted a new 

0 x
 2 + 0 y
 2 + 0 z
 2 = P0m0  0 t
 2

definition of the meter and thereby fixed the speed of light in 

vacuum as exactly

02 B


02 B


02 B


02 B







x



x



x



x
  

0 x
 2 + 0 y
 2 + 0 z
 2 = P0m0  0 t
 2


c 
 = 2.997 924 58 * 108 m>s

02 By


02 By


02 By


02 By


The speed of light as given by Eq. (3.24) is independent of both 





 (3.23)

the motion of the source and the observer. That’s an extraordi-

0 x
 2 + 0 y
 2 + 0 z
 2 = P0m0  0 t
 2

nary conclusion and it’s amazing that no one seems to have ap-

02 Bz


02 Bz


02 Bz


02 Bz


preciated its implications until Einstein formulated the Special 









Theory of Relativity in 1905.

0 x
 2 + 0 y
 2 + 0 z
 2 = P0m0  0 t
 2

Expressions of this sort, which relate the space and time varia-

tions of some physical quantity, had been studied long before 


3.2.1 Transverse Waves


Maxwell’s work and were known to describe wave phenomena 

(p. 12). Each and every component of the electromagnetic field 

The experimentally verified transverse character of light must 

( Ex
 ,  Ey
 ,  Ez
 ,  Bx
 ,  By
 ,  Bz
 ) obeys the scalar differential wave equation now be explained within the context of electromagnetic theory. 

To that end, consider the fairly simple case of a plane wave 

02c

02c

02c

1 02c

propagating in vacuum in the positive  x
 -direction. The electric 









 [2.60]

0 x
 2 + 0 y
 2 + 0 z
 2 =  v
 2 0 t
 2

field intensity is a solution of Eq. [A1.26], where E


$ is constant 

over each of an infinite set of planes perpendicular to the  x
 -axis. 

provided that

It is therefore a function only of  x
  and  t
 ; that is, E


$ = E
 $  (x, t)
 .  

We now refer back to Maxwell’s Equations, and in particular 






v 
 = 1> 2P

 (3.24)

0m0

to Eq. (3.21), which is generally read as  the divergence of 
 E


$ 


equals zero
 . Since E


$ is not a function of either  y
  or  z
 , the equa-

To evaluate  v,
  Maxwell made use of the results of electrical 

tion can be reduced to

experiments performed in 1856 in Leipzig by Wilhelm Weber 

(1804–1891) and Rudolph Kohlrausch (1809–1858). Equivalently, 

0 E







x


nowadays m

= 0 (3.25)

0 is assigned a value of 4p * 10-7 m·
 kg>C2 in SI 

0 x


units, and until recently one might determine P0 directly from 

simple capacitor measurements. In any event, in modern units

If  Ex
  is not zero—that is, if there is some component of the 

field in the direction of propagation—this expression tells us 

P0m0 ≈ (8.85 * 10-12 s2·
 C2>m3·
 kg)(4p * 10-7 m·
 kg>C2)

that it does not vary with  x
 . At any given time,  Ex
  is constant 

for all values of  x
 , but of course, this possibility cannot 

or 

P0m0 ≈ 11.12 * 11-18 s2>m2 

therefore correspond to a traveling wave advancing in the 

And now the moment of truth—in free space, the predicted 

positive  x
 -direction. Alternatively, it follows from Eq. (3.25) 

speed of all electromagnetic waves would then be

that for a wave,  Ex 
 = 0; the electromagnetic wave has no 

electric field component in the direction of propagation. The 

1


v 
 =

≈ 3 * 108 m>s


E


$-field associated with the plane wave is then exclusively 

2P0m0


transverse
 .

This theoretical value was in remarkable agreement with the 

The fact that the E


$-field is transverse means that in order 

previously measured speed of light (315 300 km>s) determined 

to completely specify the wave we will have to specify the 

by Fizeau. The results of Fizeau’s experiments, performed in 

moment-by-moment direction of E


$. Such a description cor-

1849 with a rotating toothed wheel, were available to Maxwell 

responds to the polarization
  of the light, and it will be treat-

and led him to comment:

ed in Chapter 8. Without any loss of generality, we deal here 

with  plane
  or  linearly polarized waves
 , for which the direc-

This velocity [i.e., his theoretical prediction] is so nearly that of 

tion of the vibrating E


light, that it seems we have strong reason to conclude that light itself 

$-vector is fixed. Thus we orient our 

coordinate axes so that the electric field is parallel to the  y
 -

(including radiant heat, and other radiations if any) is an electromag-

netic disturbance in the form of waves propagated through the elec-

axis, whereupon

tromagnetic field according to electromagnetic laws. (SOURCE: 






E


James Clark Maxwell, 1852)

$ = jˆ
 Ey(x, t)
  (3.26)
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Return to Eq. (3.18) and the curl of the electric field. Since 

(a)


y



Ex 
 =  Ez 
 = 0 and  Ey
  is a function only of  x
  and not of  y
  and  z
 , it follows that

0 Ey


0 B






= -   z
  (3.27)

0 x


0 t



E
 0 y


Therefore  Bx
  and  By
  are constant and of no interest at present. 

The time-dependent B


$-field can only have a component in the 


B
 0 z



z
 -direction. Clearly then,  
in free space, the plane electromag-




z



B
 $



netic wave is transverse

  (Fig. 3.13). Except in the case of normal 

incidence, such waves propagating in real material media are 

sometimes not transverse—a complication arising from the fact 


c


that the medium may be dissipative or contain free charge. For the 


x


time being we shall be working with only dielectric (i.e., noncon-


E


$

ducting) media that are homogeneous, isotropic, linear, and sta-

(b)

tionary, in which case plane electromagnetic waves are transverse.


E


l

0

We have not specified the form of the disturbance other than 


E


to say that it is a plane wave. Our conclusions are therefore 


B



E


quite general, applying equally well to both pulses and continu-


0


ous waves. We have already pointed out that harmonic func-


B


tions are of particular interest because any waveform can be 


v



B



v


expressed in terms of sinusoidal waves using Fourier techniques 

(p. 302). We therefore limit the discussion to harmonic waves 

and write  Ey(x, t) 
 as


Figure 3.14
   ( a
 ) Orthogonal harmonic E
 $- and B
 $-fields for a plane polar-

ized wave. ( b
 ) The wave propagates in the direction of E
 $ 3 B
 $.






Ey(x, t) 
 =  E
 0 y
  cos [v( t 
 -  x
 > c
 ) + e] (3.28)

the speed of propagation being  c
 . The associated magnetic flux 

The constant of integration, which represents a time-independent 

density can be found by directly integrating Eq. (3.27), that is,

field, has been disregarded. Comparison of this result with  

Eq. (3.28) makes it evident that in vacuum

0 Ey



Bz 
 = -  

  dt







Ey 
 =  cBz
  (3.30)

L 0 x 
  

Since  Ey
  and  Bz
  differ only by a scalar, and so have the same 

Using Eq. (3.28), we obtain

time dependence, E


$ and B
 $ are  in-phase
  at all points in space. 


E
 0 y
  v

Moreover, E


$ = jˆ
 Ey(x, t)
  and B
 $ = kˆ
 Bz(x, t)
  are  mutually perpen-



Bz 
 = - 

 sin [


dt



c


v( t 
 -  x
 > c
 ) + e] 


dicular
 , and their cross-product, E


$ : B
 $, points in the propaga-

L

tion direction, iˆ
  (Fig. 3.14).

1

In ordinary dielectric materials, which are essentially non-

or  



Bz(x, t) 
 =   E



c 
 0 y
  cos [v( t 
 -  x
 > c
 ) + e] (3.29)

conducting and nonmagnetic, Eq. (3.30) can be generalized:


E 
 =  vB



y


where  v
  is the speed of the wave in the medium and  v 
 = 1> 1Pm.

Plane waves, though important, are not the only solutions to 

Maxwell’s Equations. As we saw in the previous chapter, the 

differential wave equation allows many solutions, among which 


E


are cylindrical and spherical waves (Fig. 3.15). Still, the point 

must be made again that spherical EM waves, although a useful 


c


notion that we will occasionally embrace, do not actually exist. 


x



z


Indeed, Maxwell’s Equations forbid the existence of such waves. 


B


No arrangement of emitters can have their radiation fields com-

bine to produce a truly spherical wave. Moreover, we know from 

Quantum Mechanics that the emission of radiation is fundamen-


Figure 3.13    
 The field configuration in a plane harmonic electro- 

tally anisotropic. Like plane waves, spherical waves are an ap-

magnetic wave traveling in vacuum.

proximation to reality.
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z


itself can somehow store energy. This is a major logical step, 

since it imparts to the field the attribute of physical reality—if 

the field has energy it is a thing-in-itself. Moreover, inasmuch 


c


as the classical field is continuous, its energy is continuous. 


E


Let’s assume as much and see where it leads. 


r


When a parallel-plate capacitor (of capacitance  C
 ) is charged 

to a voltage  V
  we can imagination that the energy (1


B


2 CV 
 2) that is 

stored, via the interaction of the charges, resides in the field  E
  

occupying the gap. With a plate area  A
  and a separation  d
 , 


y



Figure 3.15    
 Portion of a 


C 
 = P0  A
 > d
 . The energy per unit volume in the gap is

spherical wavefront far from 


x


the source.

1

1

)( Ed
 )2


u


2  CV 
 2

2 (P0  A
 > d
   

  


E 
 =

=


Ad



Ad


And so we conclude that the energy density of the  E
 -field in 

EXAMPLE 3.1

empty space is

A sinusoidal electromagnetic plane wave with an amplitude 

P

of 1.0 V






u


0

>m and a wavelength of 2.0 m travels in the positive  


E 
 =

  E
 2 (3.31)

2


z
 -direction in vacuum. (a) Write an expression for E


$ (z, t)
  if the 


E
 -field is in the  x
 -direction and E


$ (0, 0) 
 = 0. (b) Write an ex-

Similarly, the energy density of the  B
 -field alone can be deter-

pression for B


$ (z, t)
 . (c) Verify that E
 $ : B
 $ is in the direction of 

mined by considering a hollow coil or inductor (of inductance  L
 ) 

propagation.

carrying a current  I
 . A simple air-core solenoid of cross-sectional 

area  A
  and length  l
  with  n
  turns per unit length has an induc-

SOLUTION

tance  L 
 = m0 n
 2 lA
 . The  B
 -field inside the coil is  B 
 = m0 nI
 , and (a)
   E


$ (z, t) 
 = iˆ
 (1.0 V>m) sin  k
 ( z 
 -  ct
 ), where  k 
 = 2p>2 = p and so the energy density in that region is

so

1

1


E


$ (z, t) 
 = iˆ
 (1.0 V>m) sin p( z 
 -  ct
 )


u


2  LI 
 2

2 (m0 n
 2 lA
 )( B
 >m0 n
 )2


B 
 =

=


Al



Al


Notice that the  E
 -field is in the  x
 -direction and E


$ (0, 0) 
 = 0. 

And taking the logic one step further, the energy density of any 


(b)
   From Eq. (3.30),  E 
 =  cB
 ,


B
 -field in empty space is

(1.0 V>m)

1


B


$ (z, t) 
 = jˆ
  

 sin p ( z 
 -  ct
 )






uB 
 =

  B
 2 (3.32)


c


2m0


(c)
   E


$ : B
 $ is in the direction of iˆ 
 : jˆ
 , which is in the basis 

The relationship  E 
 =  cB 
 was derived specifically for plane 

vector kˆ
  or  z
 -direction.

waves; nonetheless, it’s applicable to a variety of waves. Using 

it and the fact that  c 
 = 1> 1P0m0 ,  
 it follows that






uE 
 =  uB
  (3.33)



The energy streaming through space in the form of an elec-




3.3 Energy and Momentum




tromagnetic wave is shared equally between the constituent 





electric and magnetic fields.

  Inasmuch as

One of the most significant properties of the electromagnetic 

wave is that it transports energy and momentum. The light from 






u 
 =  uE 
 +  uB
  (3.34)

even the nearest star beyond the Sun travels 25 million million 

miles to reach the Earth, yet it still carries enough energy to do 






u 
 = P0 E
 2 (3.35)

work on the electrons within your eye.

or, equivalently,

1


3.3.1 The Poynting Vector







u 
 =

  B
 2 (3.36)

m0

Any electromagnetic wave exists within some region of space, 

and it is therefore natural to consider the  radiant energy per unit 


Keep in mind that the fields change and  u
  is a function of time. 


volume
 , or energy density
 ,  u
 . We suppose that the electric field 

To represent the flow of electromagnetic energy associated 
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Let’s now apply the above considerations to the case of a 

harmonic, linearly polarized (the directions of the E


$- and B
 $-fields 

are fixed) plane wave traveling through free space in the direc-

tion of k
 $:






E


$ = E
 $0 cos (k
 $ · r
 $ - v t
 ) (3.41)






B


$ = B
 $0 cos (k
 $ · r
 $ - v t
 ) (3.42)

Using Eq. (3.40), we find






S
 $ =  c
 2P0E
 $0 : B
 $0 cos2 (k
 $ · r
 $ - v t
 ) (3.43)


c
 ∆ t


This is the instantaneous flow of energy per unit area per unit time.


Averaging Harmonic Functions


It should be evident that E


$ : B
 $ cycles from maxima to minima. 

At optical frequencies (≈1015 Hz), S
 $ is an extremely rapidly 

varying function of time (indeed, twice as rapid as the fields, 

since cosine-squared has double the frequency of cosine). 


Figure 3.16
     The flow of electromagnetic energy.

Therefore its instantaneous value is a very difficult quantity to 

measure directly (see photo). This suggests that in everyday 

practice we employ an averaging procedure. That is, we absorb 

with a traveling wave, let  S
  symbolize the transport of energy 

the radiant energy during some finite interval of time using, for 

per unit time (the power) across a unit area. In the SI system it 

example, a photocell, a film plate, or the retina of a human eye.

has units of W>m2. Figure 3.16 depicts an electromagnetic 

The specific form of Eq. (3.43), and the central role played by 

wave traveling with a speed  c
  through an area  A
 . During a very 

harmonic functions, suggest that we take a moment to study the 

small interval of time ∆ t
 , only the energy contained in the cylin-

average values of such functions. The time-averaged value of some 

drical volume,  u
 ( c
  ∆ t
   A
 ), will cross  A
 . Thus

function  ƒ(t)
  over an interval  T
  is written as 8 ƒ(t)
 9T and given by


uc
  ∆ t
   A







S


1


t 
 +  T
 >2

= ∆

=  uc
  (3.37)


t
   A


8 ƒ(t)
 9T =  

  ƒ(t)
   dt



T 
 L t
 - T
 >2

or, using Eq. (3.35),

The resulting value of 8 ƒ(t)
 9T very much depends on  T
 . To find 

1

the average of a harmonic function, evaluate






S 
 =

  EB
  (3.38)

m0

1


t 
 +  T
 >2

1

8 ei
 v t
 9T =  

  ei
 v t
   dt 
 =

  ei
 v t
  0  t
 + T
 2

We now make the reasonable assumption (for isotropic media) 


T 
 L


t
 - T
 2


t 
 -  T
 >2


i
 v t


that the energy flows in the direction of the propagation of the 

1

wave. The corresponding  vector 
 S
 $ is then

8 ei
 v t
 9

( t 
 +  T
 >2)

( t 
 -  T
 >2)

T =

 ( ei
 v 

-  ei
 v 

)


i
 v T


1

1






S
 $ =

 E


$ : B
 $ (3.39)

m

and 

0

8 ei
 v t
 9T =

  ei
 v t
 ( ei
 v T
 >2 -  e
 - i
 v T
 >2) 


i
 v T


The parenthetical term should remind us (p. 22) of sin v T


or 


S


>2.

$ =  c
 2P0 E
 $ : B
 $ (3.40)

Hence

The magnitude of S
 $ is the power per unit area crossing a surface 

sin v T
 >2

8 ei
 v t
 9T = a

b  ei
 v t


whose normal is parallel to S
 $. Named after John Henry Poynting 

v T
 >2

(1852–1914), it has come to be known as the Poynting vector
 . 

Before we move on it should be pointed out that Quantum 

The ratio in brackets is so common and important in Optics that 

Mechanics maintains that the energy associated with an electro-

it’s given its own name; (sin  u
 )> u
  is called (sinc  u
 ). Taking the 

magnetic wave is actually quantized; it’s not continuous. Still, 

real and imaginary parts of the above expression yields

in ordinary circumstances classical theory works perfectly well 

8cos v t
 9T = (sinc  u
 ) cos v t


and so we’ll continue to talk about lightwaves as if they were 

some continuous “stuff” capable of filling regions of space.

and 

8sin v t
 9T = (sinc  u
 ) sin v t
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(a)

sin  u


1


u


0.8

0.6

0.4

0.2

0

5

10

15

20

25

30


u
  (radians)

–0.2

(b)


Figure 3.17
   sinc  u
 . Notice how the sinc function has a value of zero at 


u 
 = p, 2p, 3p, and so forth.

It’s left for Problem 3.16 to show that 8cos2 v t
 9T = 12[1 +

sinc v T
  cos 2v t
 ], which oscillates about a value of 1>2 at a  

frequency of 2v and rapidly approaches 1>2 as  T
  increases be-

yond a few dozen periods. In the case of light t ≈ 10-15 s and 

so averaging over even a microsecond corresponds to  T 
 ≈ 109t, 

far more than enough to drive the sinc function to some totally 

negligible value, whereupon 8cos2 v t
 9T = 1>2. Figure 3.18 

suggests the same result; we chop off the humps above the 1>2 

line and use them to fill in the missing areas beneath the line. 

After enough cycles, the area under the  ƒ(t)
  curve divided by  T
 , 

which is 8 ƒ(t)
 9T, approaches 1>2.

( a
 ) The output of an electron probe that reveals the oscillations of the electric 

field of an intense pulse of red light ( ≈750 nm) consisting of only a few 

cycles. The time scale is in femtoseconds. ( b
 ) This is the first more-or-less 


3.3.2 Irradiance


direct measurement of the oscillatory  E
 -field of a lightwave. (Max Planck Institute 

of Quantum Optics)

When we talk about the “amount” of light illuminating a surface, 

we are referring to something called the irradiance
 ,* denoted by 


I
 —the  
average energy per unit area per unit time

 . Any kind of 

The average of the cosine is itself a cosine, oscillating with the 

light-level detector has an entrance window that admits radiant en-

same frequency but having a sinc-function amplitude that drops 

ergy through some fixed area  A
 . The dependence on the size of that 

off from its initial value of 1.0 very rapidly (Fig. 3.17 and Table 

particular window is removed by dividing the total energy received 

1 in the Appendix). Since sinc  u


by  A
 . Furthermore, since the power arriving cannot be measured 

= 0 at  u 
 = v T
 >2 = p, which 

happens when  T


instantaneously, the detector must integrate the energy flux over 

= t, it follows that cos v t
  averaged over an in-

terval  T
  equal to one period equals zero. Similarly, cos v t
  aver-

some finite time,  T
 . If the quantity to be measured is the  net
  energy 

ages to zero over any whole number of periods, as does sin v t
 . 

per unit area received, it depends on  T
  and is therefore of limited 

That’s reasonable in that each of these functions encompasses as 

utility. Someone else making a similar measurement under the 

much positive area above the axis as negative area below the 

same conditions can get a different result using a different  T
 . If, 

axis, and that’s what the defining integral corresponds to. After 

an interval of several periods, the sinc term will be so small that 

*In the past physicists generally used the word  intensity
  to mean the flow of 

the fluctuations around zero will be negligible: 8cos v t
 9T and 


energy per unit area per unit time
 . By international, if not universal, agreement, 

8sin v t
 9T are then essentially zero.

that term is slowly being replaced in Optics by the word  irradiance
 .
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cos2 v t


refer to E


1

$ as the optical field
  and use Eqs. (3.46) and (3.47) 

almost exclusively.

0.8

EXAMPLE 3.2

Imagine a harmonic plane electromagnetic wave traveling in 

the   z
 -direction in a homogeneous isotropic dielectric. If the 

0.6

wave, whose amplitude is  E
 0, has a magnitude of zero at  t 
 = 0 

1/2

and  z 
 = 0, (a) show that its energy density is given by

0.4


u(t) 
 = P E
 20 sin2  k
 ( z 
 -  vt
 )

(b) Find an expression for the irradiance of the wave.

0.2

SOLUTION


(a)
  From Eq. (3.34) applied to a dielectric,

0

2

4

6

8

10

12

14 v t


(radians)

P

1


u 
 =   E
 2 +

  B
 2

2

2m


Figure 3.18
     Using the peaks above the 12 line to fill the troughs beneath 

it suggests that the average is 12.

where


E 
 =  E
 0 sin  k
 ( z 
 -  vt
 )

however, the  T
  is now divided out, a highly practical quantity re-

Using  E


sults, one that corresponds to the average energy per unit area per 

=  vB


unit time, namely,  I
 .

P

1  E
 2

The time-averaged value ( T 
 W t) of the magnitude of the 


u 
 =  E
 2 +





2

2m

Poynting vector, symbolized by 


v
 2 = P E
 2

8 S
 9T, is a measure of  I
 . In the 

specific case of harmonic fields and Eq. (3.43),


u 
 = P E
 20 sin 2 k
 ( z 
 -  vt
 )

8 S
 9T =  c
 2P00 E
 $0 : B
 $0 08cos2 (k
 $ · r
 $ - v t
 )9


(b) 
 The irradiance follows from Eq. (3.37) namely,  S 
 =  uv
 , and 

so

Because 8cos2(k
 $ · r
 $ - v t
 )9T = 12 for  T 
 W t (see Problem 3.15)


S 
 = P vE
 20 sin2  k
 ( z 
 -  vt
 )


c
 2P0

whereupon

8 S
 9T =

 0 E
 $

2

0 : B


$0 0

1


I 
 = 8 S
 9T =  P vE
 2


c
 P

2

0

or 


I 
 K 8 S
 9

0

 (3.44)

T =

  E
 2

2

0

The time rate of flow of radiant energy is the optical power
  



The irradiance is proportional to the square of the amplitude 




P
  or radiant flux
 , generally expressed in watts. If we divide the 



of the electric field

 . Two alternative ways of saying the same 

radiant flux incident on or exiting from a surface by the area of 

thing are simply

the surface, we have the radiant flux density
  (W>m2). In the 

former case, we speak of the  irradiance
 , in the latter the  exi-



c







I 
 =

 8 B
 29T (3.45)


tance
 , and in either instance the flux density
 . The irradiance is 

m0

a measure of the  concentration
  of power. The faintest stars that 

can be seen in the night sky by the unaided human eye have ir-

and 


I 
 = P0 c
 8 E
 29T

 (3.46)

radiances of only about 0.6 * 10-9 W>m2.

Within a linear, homogeneous, isotropic dielectric, the expres-

EXAMPLE 3.3

sion for the irradiance becomes

The electric field of an electromagnetic plane wave is expressed 






I 
 = P v
 8 E
 29T (3.47)

as

Since, as we have learned, E


$ is considerably more effective at 


E


$ = (-2.99 V>m) jˆ
   ei
 ( kz
 -v t
 )

exerting forces and doing work on charges than is B


$, we shall 


Continued
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Given that v = 2.99 * 1015 rad>s and  k 
 = 1.00 * 107 rad>m, 

find (a) the associated vector magnetic field and (b) the irradi-

ance of the wave.

SOLUTION


(a)
  The wave travels in the +  z
 -direction.  E
 $0 is in the -jˆ
  

or  - y
 -direction. Since E
 $ : B
 $ is in the kˆ
  or +  z
 -direction,  


B


$0 must be in the iˆ
  or +  x
 -direction.  E
 0 =  vB
 0 and  v 
 = v> k
  =

2.99 * 1015>1.00 * 107 = 2.99 * 108 m>s and so


r
 2


r


2.99 V>m

1


B


$ = a

b iˆ
   ei
 ( kz
 -v t
 )

2.99 * 108 m>s


B


$ = (10-8 T)iˆ
   ei
 ( kz
 -v t
 )


(b)
  Since the speed is 2.99 * 108 m>s we are dealing with  

vacuum, hence


c
 P


Figure 3.19    
 The geometry of the Inverse Square Law.


I 
 =

0 E
 2

2 0


3.3.3 Photons


(2.99 * 108 m>s)(8.854 * 10-12 C2>N · 
 m2)


I 
 =

 (2.99 V>m)2

Light is absorbed and emitted in tiny discrete bursts, in “particles” 

2

of electromagnetic “stuff,” known as photons. That much has 


I 
 = 0.011 8 W>m2

been confirmed and is well established.* Ordinarily, a light 

beam delivers so many minute energy quanta that its inherent 

granular nature is totally hidden and a continuous phenomenon 

is observed macroscopically. That sort of thing is commonplace 

in Nature; the forces exerted by the individual gas molecules in 


The Inverse Square Law


a wind blend into what seems a continuous pressure, but it obvi-

ously isn’t. Indeed, that analogy between a gas and a flow of 

We saw earlier that the spherical-wave solution of the dif-

photons is one we will come back to presently.

ferential wave equation has an amplitude that varies in-

As the great French physicist Louis de Broglie put it, “Light 

versely with  r
 . Let’s now examine this same feature within 

is, in short, the most refined form of matter,” and all matter, 

the context of energy conservation. Consider an isotropic 

including light, is quantized. At base it comes in minute ele-

point source in free space, emitting energy equally in all 

mentary units— quarks, leptons,  W
 s and  Z
 s, and photons. That 

directions (i.e., emitting spherical waves). Surround the 

overarching unity is among the most appealing reasons to em-

source with two concentric imaginary spherical surfaces of 

brace the photon as particle. Still, these are all quantum par-


radii  r
 1 and  r
 2, as shown in Fig. 3.19. Let  E
 0 (r
 1 ) 
 and  E
 0 (r
 2 )
 ticles
 , very different from the ordinary “particles” of everyday 

represent the amplitudes of the waves over the first and sec-

experience.

ond surfaces, respectively. If energy is to be conserved, the 

total amount of energy flowing through each surface per 

second must be equal, since there are no other sources or 

sinks present. Multiplying  I
  by the surface area and taking 


The Failure of Classical Theory


the square root, we get

In 1900 Max Planck produced a rather tentative, and somewhat 


r
 1 E
 0 (r
 1 ) 
 =  r
 2 E
 0 (r
 2 )


erroneous, analysis of a process known as  blackbody radiation
  

(p. 604). Nonetheless, the expression he came up with beauti-

Inasmuch as  r
 1 and  r
 2 are arbitrary, it follows that

fully fit all the existing experimental data, a feat no other for-

mulation had even come close to. Basically, he considered elec-


rE
 0 (r) 
 = constant,

tromagnetic (EM) waves in equilibrium within an isothermal 

chamber (or cavity). All the EM-radiation within the cavity is 

and the amplitude must drop off inversely with  r
 . The irradiance 

from a point source is proportional to 1> r
 2. This is the well-

known  Inverse Square Law
 , which is easily verified with a 

*See the summary article by R. Kidd, J. Ardini, and A. Anton, “Evolution of the 

point source and a photographic exposure meter.

modern photon,”  Am. J. Phys.
  57
  (1), 27 (1989).
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emitted and absorbed by the walls of the enclosure—none en-

Electromagnetic Theory. Einstein’s startling treatment estab-

ters from outside. This ensures that its spectral composition will 

lished that  
the electromagnetic field itself is quantized

 . Each 

match that emanating from an ideal black surface. The goal was 

constituent photon has an energy given by the product of 

to predict the spectrum of the radiation that would emerge from 

Planck’s Constant and the frequency of the radiation field:

a small opening in the cavity. Totally stymied by the problem, 





ℰ =  h
 n (3.48)

as a last resort, Planck turned to the classical statistical analysis 

of Maxwell and Boltzmann, which was developed as the basis 



Photons are stable, chargeless, massless elementary particles 



of the kinetic theory of gases. Philosophically, this is a com-



that exist only at the speed 

 c
 . To date, experiments have estab-

pletely deterministic treatment that assumes one can follow, at 

lished that if the photon has a charge it’s less than 5 * 10-30 

least in principle, every atom as it moves around in the system. 

times the charge of the electron, and if it has any mass at all it’s 

Consequently, each atom is taken to be recognizable, indepen-

less than 10-52 kg. If we try to imagine a photon as a tiny con-

dent, and enumerable. For purely computational reasons, 

centration of electromagnetic energy its size turns out to be less 

Planck hypothesized that each one of the oscillators lining the 

than 10-20 m. In other words, as with the electron, no experi-

walls of the chamber could absorb and emit only discrete 

ment to date has been able to establish any size at all for it. With 

amounts of energy proportional to its oscillatory frequency, n. 

zero size (whatever that means) the photon presumably has no 

These energy jolts were equal to whole number multiples of 

internal parts and must be taken to be a “fundamental” or “ele-


h
 n, where  h
 , now called Planck’s Constant
 , was found to be 

mentary” particle.

6.626 * 10-34 J·
 s. Being a rather traditional man, Planck other-

In 1924 Satyendra N. Bose formulated a new and rigorous 

wise held fast to the classical wave picture of light, insisting that 

proof of Planck’s blackbody equation using statistical methods 

only the oscillators were quantized.

applied to light quanta. The cavity was envisioned to be filled 

Prophetically, J. J. Thomson (1903)—the discoverer of 

with a “gas” of photons,  
which were taken to be totally indis-



the electron—extended the idea, suggesting that electro-



tinguishable, one from the other

 . That was a crucial feature of 

magnetic waves might actually be radically different from 

this quantum-mechanical treatment. It meant that the micropar-

other waves; perhaps local concentrations of radiant energy 

ticles were completely interchangeable, and this had a profound 

truly existed. Thomson had observed that when a beam of 

effect on the statistical formulation. In a mathematical sense, 

high-frequency EM-radiation (X-rays) was shone onto a 

each particle of this quantum “gas” is related to every other 

gas, only certain of the atoms, here and there, were ionized. 

particle, and no one of them can be taken as statistically inde-

It was as if the beam had “hot spots” rather than having its 

pendent of the system as a whole. That’s very different from the 

energy distributed continuously over the wavefront (see 

independent way classical microparticles behave in an ordinary 

photo below).

gas. The quantum-mechanical probability function that de-

The concept of the photon in its modern incarnation came into 

scribes the statistical behavior of thermal light is now known as 

being in 1905 by way of Einstein’s brilliant theoretical work on 

the Bose-Einstein distribution. The photon, whatever it is, be-

the Photoelectric Effect. When a metal is bathed in EM-radiation, 

came an indispensable tool of theoretical physics.

it emits electrons. The details of that process had been studied 

In 1932 two Soviet scientists, Evgenii M. Brumberg and  

experimentally for decades, but it defied analysis via classical 

Sergei I. Vavilov, performed a series of simple straightforward 

experiments that affirmed the basic quantum nature of light.  

Before the advent of electronic detectors (e.g., photomultipliers) 

they devised a photometric technique using the human eye to 

study the statistical character of light. The trick was to lower the 

irradiance down to a level where it was very close to the thresh-

old of vision. This they did in a dark room by shining an  

exceedingly weak (≈200 * 10-18 W) beam of green light  

(505 nm) onto a shutter that could be opened for short intervals 

(0.1 s). Every time the shutter opened and closed it could pass 

an average of about 50 photons. Though the eye could in theory 

ideally “see” a few photons, 50 was just about the threshold of 

reliable detection. And so Brumberg and Vavilov simply looked 

at the shutter and recorded their observations. If light were a 

classical wave with energy uniformly distributed over wave-

A beam of X-rays enters a cloud chamber on the left. The tracks are made by 

fronts, the researchers would have seen a faint flash every time 

electrons emitted via either the Photoelectric Effect (these tend to leave long 

the shutter opened. But if light was a stream of photons that 

tracks at large angles to the beam) or the Compton Effect (short tracks more 

came in random flurries, things would be very different. What 

in the forward direction). Although classically the X-ray beam has its energy 

they observed was unmistakable: half the times that the shutter 

uniformly distributed along transverse wavefronts, the scattering seems  

discrete and random. (From the Smithsonian Report, 1915.)

opened they saw a flash, the other half they saw nothing, and 
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the occurrences were completely random. Brumberg and  roughly of the order of the wavelength of the light. Thus repre-Vavilov rightly concluded that because the beam was inherently 

senting a photon as a short electromagnetic wavetrain (as in 

quantum mechanical and therefore fluctuating, when a pulse 

Fig. 3.20) can be useful, but it should not be taken literally.  

happened to contain enough photons to exceed the threshold of 

Insisting on a “particle” photon, a miniscule bullet, we might 

perception they saw it and when it didn’t they didn’t. As ex-

naively think of it as being somewhere within the region of the 

pected, raising the irradiance rapidly reduced the number of 

EM wavetrain, but that too is problematic. Still, we can say that 

null observations.

the photon moving through space at speed  c
 —and it exists only 



Unlike ordinary objects, photons cannot be seen directly; 



at  c
 —is a tiny, stable, chargeless, massless entity. It carries en-



what is known of them usually comes from observing the re-



ergy, linear momentum, and angular momentum; it manifests 



sults of their being either created or annihilated.

  Light is nev-

behavior that is electromagnetic, and oscillatory, and it can be 

er  seen
  just sailing along through space. A photon is observed 

somewhat unlocalized, more a “puff” than a traditional “parti-

by detecting the effect it has on its surroundings, and it has a 

cle.” It is a  quantum particle
 , just as the other fundamental par-

readily observable effect when it either comes into, or goes out 

ticles are quantum particles.  The primary difference is that they 

of, existence. Photons begin and end on charged particles; most 

have mass and can exist at rest, and the photon does not, and 

often they are emitted from and absorbed by electrons. And 

cannot.  In short, the thing called  photon
  is the sum of its prop-

these are usually the electrons circulating in the clouds around 

erties as revealed in countless experiments, and there really is, 

atoms. A number of experiments have directly confirmed the 

as yet, no satisfactory way to describe it in macroscopic terms 

quantal nature of the emission process. For example, imagine a 

beyond that.

very dim source surrounded, at equal distances, by identical 

photodetectors each capable of measuring a minute amount of 

light. If the emission,  no matter how faint
 , is a continuous wave, 


A Barrage of Photons


as is maintained classically, all the detectors should register 

each emitted pulse in coincidence. That does not happen; in-

When we analyze phenomena involving the activity of immense 

stead, counts are registered by detectors independently, one at a 

numbers of participants, the use of statistical techniques is often 

time, in clear agreement with the idea that atoms emit localized 

the only practical way to proceed. In addition to the classical 

light quanta in random directions.

Maxwell-Boltzmann statistics (for distinguishable particles), 

Furthermore, it has been confirmed that when an atom emits 

there are two kinds of quantum-mechanical statistics (for indis-

light (i.e., a photon), it recoils in the opposite direction, just as 

tinguishable particles): Bose-Einstein and Fermi-Dirac. The first 

a pistol recoils when it fires a bullet. In Fig. 3.20 atoms pumped 

treats particles that  are not
  subject to the Pauli Exclusion Prin-

up with excess energy (i.e., excited, p. 66) are formed into a 

ciple (i.e., particles that have zero or integer spins). Fermi-Dirac 

narrow beam. They soon spontaneously radiate photons in ran-

statistics treats particles that  are
  subject to the Pauli Exclusion 

dom directions and are themselves kicked backward, often lat-

Principle (i.e., those that have spins that are odd integer multi-

erally away from the beam. The resulting spread of the beam is 

ples of 12). Photons are called bosons
 , they are spin-1 particles, 

a quantum-mechanical effect inconsistent with the classical pic-

and the manner in which they group together obeys Bose-Einstein 

ture of the emission of a continuous symmetrical wave.

statistics. Similarly, electrons are fermions
 ; they are spin-12 par-

Where in a beam of light does a particular photon reside? 

ticles that obey Fermi-Dirac statistics.

That is not a question we can answer. We cannot track photons 

Microparticles have defining physical characteristics such as 

as you might track a flying cannonball.  Photons on the wing 

charge and spin—characteristics that do not change. When 

cannot be localized with any precision, although we can do bet-

these are given, we have completely specified the kind of par-

ter along the propagation direction than transverse to it. An ar-

ticle being considered. Alternatively, there are alterable proper-

gument can be made that the longitudinal indeterminacy is 

ties of any given microparticle that describe its momentary con-

dition, such as energy, momentum, and spin orientation. When 

all of these alterable quantities are given, we have specified the 

Emitted photons

particular state
  the particle happens to be in at the moment.

Fermions are committed loners;  only one fermion can occupy 



any given state
 . By comparison, bosons are gregarious;  any 



number of them can occupy the same state, and moreover, they 



actually tend to cluster close together
 .  
When a very large num-



Atoms



ber of photons occupy the same state, the inherent granularity 



Excitation

energy



of the light beam essentially vanishes and the electromagnetic 





field appears as the continuous medium of an electromagnetic 




Figure 3.20    
 When so-called excited atoms forming a narrow beam radi-



wave

 . Thus we can associate a monochromatic (monoenergetic) 

ate photons, they recoil laterally and the beam spreads out. Alternatively if 

plane wave with a stream of photons having a high population 

the beam is formed of atoms that are not excited (i.e., they are in their 

ground states), it remains narrow all the way to the screen.

density, all progressing in the same state (with the same energy, 
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same frequency, same momentum, same direction).  
Different 



woman’s face. The barrage of photons forming the image is a 



monochromatic plane waves represent different photon states

 .

statistical tumult; we cannot predict when a photon will arrive 

Unlike the photon, because electrons are fermions, large 

at any given location. But we can determine the likelihood of 

numbers of them cannot cluster tightly in the same state, and a 

one or more photons hitting any particular point during a sub-

monoenergetic beam of electrons does not manifest itself on a 

stantial time interval.  
At any location on the screen, the mea-



macroscopic scale as a continuous classical wave. In that re-



sured (or classically computed) value of the irradiance is 



gard, EM-radiation is quite distinctive.



proportional to the probability of detecting a photon at that 



For a uniform monochromatic light beam of frequency n, the 



location

  (p. 140).

quantity  I
 > h
 n is the average number of photons impinging on a 

Figure 1.1, which is a pictorial record of the arrival of indi-

unit area (normal to the beam) per unit time, namely, the photon 

vidual photons, was produced using a special kind of photo-

flux density. More realistically, if the beam is quasimonochro-

multiplier tube. To underscore the inherent photonic nature of 

matic (p. 17) with an average frequency n0, its mean photon flux 


radiant energy, let’s now use an entirely different and more 


density
  is  I
 > h
 n0. Given that an incident quasimonochromatic 

straightforward photographic approach to record the incidence 

beam has a cross-sectional area  A
 , its mean photon flux
  is

of light. A photographic emulsion contains a distribution of 

microscopic  (≈10-6 m) silver halide crystals, each compris-





Φ =  AI
 > h
 n0 =  P
 > h
 n0 (3.49)

ing approximately 1010 Ag atoms. A single photon can interact 

where  P
  is the optical power
  of the beam in watts. The mean 

with such a crystal, disrupting a silver–halogen bond and free-

photon flux is the average number of photons arriving per unit 

ing up an Ag atom. One or more silver atoms then serve as a 

of time (Table 3.1). For example, a small 1.0-mW He-Ne laser-

development center on the exposed crystal. The film is devel-

beam with a mean wavelength of 632.8 nm delivers a mean  

oped using a chemical reducing agent. It dissolves each ex-

photon flux of  P


posed crystal, depositing at that site all of its Ag atoms as a 

> h
 n0 = (1.0 * 10-3 W)>[(6.626 * 10-34 J · 
 s) 

(2.998

single clump of the metal.

* 108 m>s)>(632.8 * 10-9 m)] = 3.2 * 1015  
 photons per 

second.

Figure 3.21 shows a series of photographs taken with in-

Imagine a uniform beam of light having a constant irradi-

creasing amounts of illumination. Using extremely dim light, a 

ance (and therefore a constant mean photon flux) incident on a 

few thousand photons, the first picture is composed of roughly 

screen. The energy of the beam is deposited on the screen in a 

as many silver clumps, making a pattern that only begins to 

random flurry of minute bursts. And, of course, if we look 

suggest an overall image. As the number of participating pho-

carefully enough any light beam will be found to fluctuate in 

tons goes up (roughly by a factor of 10 for each successive 

intensity. Individually, the incoming photons register at loca-

picture), the image becomes increasingly smooth and recog-

tions on the plane that are totally unpredictable, and arrive at 

nizable. When there are tens of millions of photons forming the 

moments in time that are equally unpredictable. It looks as if 

image, the statistical nature of the process is lost and the picture 

the beam is composed of a random stream of photons, but that 

assumes a familiar continuous appearance.

conclusion, however tempting, goes beyond the observation. 

What  can
  be said is that the light delivers its energy in a stac-


Photon Counting


cato of impacts that are random in space and time across the 

beam.

What, if anything, can be said about the statistical nature of the 

Suppose that we project a light pattern onto the screen; 

barrage of photons delivered as a beam of light? To answer that 

it might be a set of interference fringes or the image of a 

question, researchers have conducted experiments in which 

they literally counted individual photons. What they found was 

that the pattern of arrival of photons was characteristic of the 


TABLE 3.1  The Mean Photon Flux Density for a 


type of source.* We cannot go into the theoretical details here, 


Sampling of Common Sources


but it is informative at least to look at the results for the two 

extreme cases of what is often called  coherent
  and  chaotic
  

Light  

Mean Photon Flux Density 

light.

Source 

Φ> A
  in units of (photons>s · 
 m2)

Consider an ideal continuous laserbeam of  constant irradi-


Laserbeam (10 mW, He-Ne, 


ance
 ; remember that irradiance is a time-averaged quantity 

  focused to 20 mm) 

1026

via Eq. (3.46). The beam has a constant optical power  P
 —

Laserbeam (1 mW, He-Ne) 

1021

which is also a time-averaged quantity—and, from Eq. (3.49), 

Bright sunlight 

1018

Indoor light level 

1016

Twilight 

1014

*See P. Koczyk, P. Wiewior, and C. Radzewicz, “Photon counting statistics—

Moonlight 

1012

Undergraduate experiment,’’  Am. J. Phys.
  64
 
 

 (3), 240 (1996) and A. C. Funk 

Starlight 

1010

and M. Beck, “Sub-Poissonian photocurrent statistics: Theory and undergraduate 

experiment,”  Am. J. Phys.
  65
 
 

 (6), 492 (1997). 
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Figure 3.21  
 These photographs 

(which were electronically enhanced) 

are a compelling illustration of the 

granularity displayed by light in its 

interaction with matter. Under 

exceedingly faint illumination, the 

pattern (each spot corresponding to 

one photon) seems almost random, 

but as the light level increases the 

quantal character of the process 

gradually becomes obscured. (See 


Advances in Biological and Medical 



Physics
  V, 1957, 211–242.) (Radio 

Corporation of America)

a corresponding mean photon flux Φ. Figure 3.22 depicts the 

pause repeat the procedure, and do it again and again, tens of 

random arrival of photons on a time scale that is short com-

thousands of times. The results are presented in a histogram 

pared to the interval over which the irradiance is averaged. 

(Fig. 3.23), where the number of trials in which  N
  photons 

Thus it is possible for the macroscopic quantity  P
  to be mea-

were counted is plotted against  N
 . Few trials register either 

sured to be constant, even though there is an underlying dis-

very few photons or very many photons. On average, the num-

continuous transfer of energy.

ber of photons per trial is  N
 av = Φ T 
 =  PT
 > h
 n0. The shape of 

Now pass the beam through a shutter that stays open for a 

the data plot, which can be derived using probability theory, 

short sampling time  T
  (which might be in the range from about 

closely approximates the well-known  
Poisson distribution

 . It 

10  ms to perhaps 10 ms), and count the number of photons 

represents a graph of the probability that the detector (during 

arriving at a photodetector during that interval. After a brief 

a trial interval lasting a time  T
 ) will record zero photons, one 

photon, two photons, and so forth.

The Poisson distribution is the same symmetrical curve one 

gets when counting either the number of particles randomly 


P
 ( t
 )

emitted by a long-lived radioactive sample, or the number of 

raindrops randomly descending on an area in a steady shower. 

It’s also the curve of the probability of getting a head, plotted 

against the number of heads occurring ( N
 ), for a coin tossed 

Optical power


t


Time

Photon counts

10 000

5000

 photons were counted  N



t


0

Time

2500

Number of sampling intervals


Figure 3.22    
 With a laser as the source one gets a 
 constant optical power 


N


in which 

0

50

100

and the corresponding random set of photon counts, each indicated by a 

white line. The arrival of each photon is an independent event and they tend 


Figure 3.23    
 A typical histogram showing the probability or photon-count 

not to cluster together in what would otherwise be called “bunching.”

distribution for a laserbeam of constant irradiance.
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more than about 20 times. Thus with  N
 max = 20   
 the highest 

probability occurs near the average value  N



T


av, namely, at 12  N
 max 

or 10 and the lowest at  N 
 = 0 and  N 
 = 20. The most probable 

 photons N


value will be 10 heads out of 20 tosses, and the likelihood of 

Poisson

getting either no heads or all heads is vanishingly small. It 

would seem that however an ideal laser produces light, it gener-

ates a stream of photons whose individual arrival is random and 

statistically independent. For reasons that will be explored later, 

an ideal monoenergetic beam—a monochromatic plane wave—

during a sampling interval 

Bose-Einstein

is the epitome of what is known as coherent light
 .

Probability of measuring 

Not surprisingly,  
the statistical distribution of the number 



0


N



N


ay



of photons arriving at a detector depends on the nature of the 




Figure 3.25    
 Poisson and Bose-Einstein photon-count distributions.



source

 ; it is fundamentally different for an ideal source of  co-



herent 
 light at one extreme, as compared to an equally idealized 


Squeezed Light


completely incoherent or  chaotic source
  at the other extreme. A 

stabilized laser resembles a source of coherent radiation, and an 

A light field can be characterized by its strength (i.e., amplitude 

ordinary thermal source such as a lightbulb or a star or a gas 

or energy) and phase. Accordingly, it’s helpful to think of it rep-

discharge lamp more closely resembles a chaotic source. In the 

resented by a phasor, since it, too, has an amplitude and phase. 

case of ordinary light, there are inherent fluctuations in the ir-

But according to quantum theory there is an inherent uncertainty 

radiance and therefore in the optical power (p. 51). These fluc-

associated with both of these quantities.  All else held constant, 

tuations are correlated, and the associated number of emitted 

successive measurements of each of these quantities will gener-

photons, though random in time, is correspondingly also cor-

ally result in slightly different values such that there will always 

related (Fig. 3.24). The greater the optical power, the greater the 

be indeterminacies. There’s always a little blurriness in both the 

number density of photons. Because the arrival of photons at 

length and direction of the phasor representing the optical field. 

the detector is not a succession of independent events,  
Bose-



Moreover, these two concepts are linked in a special way remi-



Einstein statistics

  apply (Fig. 3.25). Here the most likely num-

niscent of the Heisenberg Uncertainty Principle; the indeter-

ber of counts per interval is zero, whereas, ideally, for laser light 

minacy in energy, the spread of measured values, is inversely 

the most likely number of photons to be measured during a 

proportional to the indeterminacy in the phase. The product of 

sampling interval equals the average number recorded. Thus 

the two indeterminacies must be greater than, or at best equal to, 

even if a beam of laser light and a beam of ordinary light have 

a minimum attainable value ( h
 >4p) set by Planck’s Constant. 

the same average irradiance and the same frequency spectrum, 

The quantity ( h
 >4p) is best referred to as the  
quantum of action

  

they are still inherently distinguishable—a result that extends 

because it sets the lower limit on all change. Accordingly, this sort 

beyond classical theory.

of relationship should not be surprising for pairs of concepts that 

are closely associated. 

For the light from an incandescent lamp the product of the 

indeterminacies is much larger than  h
 >4p. In contrast, the inde-


P
 ( t
 )

terminacies associated with laser light tend to be small and com-

parable to each other. In fact, for a well-stabilized laserbeam the 

product of the indeterminacies can approach  h
 >4p. Any efforts to 

lessen the range of variation in measurements of the amplitude 

(i.e., to lessen its blurriness) will tend to increase the spread in the 

measurements of phase, and vice versa.

Optical power


t


Figure 3.22 depicts the photon arrivals associated with light 

Time

from a c-w laser.  If we average the incident energy over adequate-

Photon counts

ly long time intervals the irradiance turns out to be fairly constant. 

Still it’s clear that there are short-duration fluctuations— 

the random clatter of uncorrelated photons or quantum noise
 , 

also known as shot-noise
 . Indeed, there will always be fluctua-

0

Time

tions in a light beam, as there are in any kind of beam. Laser light 

is said to be in a coherent or Glauber state (after Roy Glauber, 


Figure 3.24    
 With a thermal source one gets a time-varying optical power 

who won the 2005 Nobel Prize in Physics). The photons don’t 

and the corresponding set of photon counts, each indicated by a white 

cluster very much and hence there isn’t a substantial amount of 

line. Now there are fluctuations that are correlated, and the photon arrivals 

are no longer independent. The fact that there is clustering is known as 

what is called photon bunching
 . That’s not the case in Fig. 3.24 

“photon bunching.”

for the thermal light from a chaotic (or thermal) source, where 
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the more pronounced variations in irradiance are a manifestation 

It’s possible to compute the resulting force via Electromag-

of the underlying bunching of the light quanta. 

netic Theory, whereupon Newton’s Second Law (which main-

One might expect that shot-noise would be the least amount of 

tains that force equals the time rate-of-change of momentum) 

noise a beam could display, and well-stabilized lasers do approach 

suggests that the  wave itself carries momentum
 . Indeed, when-

that level. Nonetheless, today it is possible to make the progres-

ever we have a flow of energy, it’s reasonable to expect that 

sion of photons in a laserbeam even more uniform than it would 

there will be an associated momentum—the two are the related 

be ordinarily.  Such highly organized light, known in the trade as 

time and space aspects of motion.


amplitude squeezed light
 , has a very narrow photon-distribution 

As Maxwell showed, the radiation pressure
 , 𝒫, equals the 

curve (Fig. 3.25), since almost all same-sized sampling intervals 

energy density of the electromagnetic wave. From Eqs. (3.31) 

pick up pretty much the same number of photons. That curve is a 

and (3.32), for a vacuum, we know that



Sub-Poissonian

  distribution. Photons arrive in time as if nearly 

P

1

equally spaced in a procession, one behind the other. That figura-


u


0


E 
 =

  E
 2 and  u


  B
 2

tion is said to display anti-bunching
 .   The observation of Sub-


2


B 
 = 2m0


Poissonian light is generally taken to be direct evidence of the 


Since 


existence of photons
 . 

𝒫 =  u 
 =  uE 
 +  uB
 ,

The result of amplitude squeezing is a beam of “non-classical 

P

1

light” with almost constant irradiance and much reduced photon 

𝒫 = 0  E
 2 +

  B
 2

2

2m

noise. In fact, the noise level is less than the shot-noise associated 

0

with the existence of independent photons. Thus a remarkable 

Alternatively, using Eq. (3.37), we can express the pressure in 

aspect of squeezed light is that its photons show quantum correla-

terms of the magnitude of the Poynting vector, namely,

tions; they are not entirely independent of each other. Of course, 

by squeezing the indeterminacy in the amplitude we broaden the 


S(t)






indeterminacy in the phase, but that’s not an issue in most present-

𝒫 (t) 
 =

 (3.50)


c


day applications. We could define  squeezed
  or  non-classical 
 light 

as light for which the two indeterminacies are markedly different. 

Notice that this equation has the units of power divided by 

The study of squeezed light only began in the 1980s and already 

area, divided by speed—or, equivalently, force times speed di-

research groups that require well-smoothed beams have managed 

vided by area and speed, or just force over area. This is the 


(2008) to reduce photon noise by up to 90%. 


instantaneous pressure that would be exerted on a perfectly 



absorbing surface by a normally incident beam
 .

Inasmuch as the E


$- and B
 $-fields are rapidly varying,  S(t)
  is 

rapidly varying, so it is eminently practical to deal with the  


3.3.4 Radiation Pressure and Momentum


average radiation pressure, namely,

As long ago as 1619, Johannes Kepler proposed that it was the 

pressure of sunlight that blew back a comet’s tail so that it al-

8 S(t)
 9


I






8𝒫 (t)
 9

T

T =

 (3.51)

ways pointed away from the Sun. That argument particularly 


c


=  c


appealed to the later proponents of the corpuscular theory of 

light. After all, they envisioned a beam of light as a stream of 

expressed in newtons per square meter. This same pressure is 

particles, and such a stream would obviously exert a force as it 

exerted on a source that itself is radiating energy.

bombarded matter. For a while it seemed as though this effect 

Referring back to Fig. 3.16, if  p
  is momentum, the force ex-

might at last establish the superiority of the corpuscular over the 

erted by the beam on an absorbing surface is

wave theory, but all the experimental efforts to that end failed to 

∆ p


detect the force of radiation, and interest slowly waned.






A
 𝒫 =

 (3.52)

Ironically, it was Maxwell in 1873 who revived the subject by 

∆ t


establishing theoretically that waves do indeed exert pressure. 

If  p
 V is the  momentum per unit volume of the radiation
 , then an 

“In a medium in which waves are propagated,” wrote Maxwell, 

amount of momentum ∆ p 
 =  p
 V( c
  ∆ t
   A
 ) is transported to  A
  dur-

“there is a pressure in the direction normal to the waves, and 

ing each time interval ∆ t
 , and

numerically equal to the energy in a unit of volume.”

When an electromagnetic wave impinges on some material 


p



S



A
 𝒫 =  V( c
  ∆ t
   A
 )

surface, it interacts with the charges that constitute bulk matter. 

∆

=  A
  


t



c


Regardless of whether the wave is partially absorbed or reflect-

ed, it exerts a force on those charges and hence on the surface 

Hence the volume density of electromagnetic momentum is

itself. For example, in the case of a good conductor, the wave’s 


S


electric field generates currents, and its magnetic field gener-






p


 (3.53)

 V =

ates forces on those currents.


c
 2
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When the surface under illumination is perfectly reflecting
 , 

the beam that entered with a velocity + c
  will emerge with a 

velocity  - c
 . This corresponds to twice the change in momen-

tum that occurs on absorption, and hence

8 S(t)
 9

8𝒫 (t)
 9

T

T = 2 


c


Notice, from Eqs. (3.50) and (3.52), that if some amount of 

energy ℰ is transported per square meter per second, then there 

will be a corresponding momentum ℰ> c
  transported per square 

meter per second.

In the photon picture, each quantum has an energy ℰ =  h
 n. 

We can then expect a photon to carry linear momentum in the 

amount

Two tiny pinwheels about 5 mm in diameter (that’s roughly only 1>15 the 

width of a human hair). These microscopic gears are so small they can be 

ℰ


h


spun around by the pressure of a light beam. (Galajda and Ormos/Hungarian Academy 






p 
 =

 (3.54)


c 
 = l

of Sciences)

Its vector momentum would be

EXAMPLE 3.4


p
 $ = Uk
 $

In a homogeneous, isotropic, linear dielectric the Poynting vec-

where k
 $ 
 is the propagation vector and U K  h
 >2p. This all fits in 

tor is in the direction of the linear momentum carried by a plane 

rather nicely with Special Relativity, which relates the mass  m
 , 

wave. Show that in general the volume density of momentum 

energy, and momentum of a particle by

can be written as the vector

ℰ = [( cp
 )2 + ( mc
 2)2]1>2


p
 $V = P E
 $ : B
 $

For a photon  m 
 = 0 and ℰ =  cp
 .

Then prove that for the plane wave in Example 3.1

These quantum-mechanical ideas have been confirmed ex-

P

perimentally utilizing the Compton Effect, which detects the 


p
 $V =   E
 2


v 
 0 sin2  k
 ( z 
 -  vt
 ) kˆ


energy and momentum transferred to an electron upon interac-

tion with an individual X-ray photon (see photo on page 54).

SOLUTION 

The average flux density of electromagnetic energy from the 

From Eq. (3.39)

Sun impinging normally on a surface just outside the Earth’s 

1

atmosphere is about 1400 W>m2. Assuming complete absorp-


S
 $ =  E
 $ : B
 $

m

tion, the resulting pressure would be 4.7 * 10-6 N>m2, or  

1.8 * 10-9 ounce>cm2, as compared with, say, atmospheric 

From Eq. (3.53) in a dielectric where the speed of the wave is  v


pressure of about 105 N>m2. The pressure of solar radiation at 

the Earth is tiny, but it is still responsible for a substantial plan-


S
 $


p


etwide force of roughly 10 tons. Even at the very surface of the 

$V =  v
 2

Sun, radiation pressure is relatively small (see Problem 3.40). 

As one might expect, it becomes appreciable within the blazing 

1

and since 


S
 $ =  E
 $ : B
 $ 

body of a large bright star, where it plays a significant part in 

m

supporting the star against gravity. Despite the Sun’s modest 

flux density, it nonetheless can produce appreciable effects over 

Pm


p
 $V =

 E


$ : B
 $ = P E
 $ : B
 $

long-acting times. For example, had the pressure of sunlight ex-

m

erted on the  Viking
  spacecraft during its journey been neglected, 

For a plane wave traveling in the  z
 -direction

it would have missed Mars by about 15 000 km. Calculations 

show that it is even feasible to use the pressure of sunlight to 


E 
 =  E
 0 sin  k
 ( z 
 -  vt
 )

propel a space vehicle among the inner planets.* Ships with im-

mense reflecting sails driven by solar radiation pressure may 

Using the results of Example 3.1

someday ply the dark sea of local space.


S
 $

P


p
 $V =

  E
 2


v
 2 =  v 
 0 sin  k
 ( z 
 -  vt
 ) kˆ


*The charged-particle flux called the “solar wind” is 1000 to 100 000 times less 

effective in providing a propulsive force than is sunlight.
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common source-mechanism for all EM-radiation. What we 

find is that the various types of radiant energy seem to have a 

common origin in that they are all associated with  nonuniform-



ly moving charges
 . We are, of course, dealing with waves in the 

electromagnetic field, and charge  is
  that which gives rise to 

field, so this is not altogether surprising.

A stationary charge has a constant E


$-field, no B
 $-field, and 

hence produces no radiation—where would the energy come 

from if it did? A uniformly moving charge has both an E


$- and a 


B


$-field, but it does not radiate. If you traveled along with the 

charge, the current would thereupon vanish, hence B


$ would 

vanish, and we would be back at the previous case, uniform mo-

tion being relative. That’s reasonable, since it would make no 

sense at all if the charge stopped radiating just because you 

started walking along next to it. That leaves  nonuniformly mov-



ing charges
 , which assuredly do radiate. In the photon picture 

this is underscored by the conviction that the fundamental inter-

actions between substantial matter and radiant energy are be-

tween photons and charges.

We know in general that free charges (those not bound with-

in an atom) emit electromagnetic radiation when accelerated. 

The tiny starlike speck is a minute (one-thousandth of an inch diameter) 

That much is true for charges changing speed along a straight 

transparent glass sphere suspended in midair on an upward 250-mW  

line within a linear accelerator, sailing around in circles inside  

laserbeam. (Bell Laboratories)

a cyclotron, or simply oscillating back and forth in a radio  

antenna— 
if a charge moves nonuniformly, it radiates

 . A free 

The pressure exerted by light was actually measured as long 

charged particle can spontaneously absorb or emit a photon, 

ago as 1901 by the Russian experimenter Pyotr Nikolaievich 

and an increasing number of important devices, ranging from 

Lebedev (1866–1912) and independently by the Americans 

the free-electron laser to the synchrotron radiation generator, 

Ernest Fox Nichols (1869–1924) and Gordon Ferrie Hull 

utilize this mechanism on a practical level.

(1870–1956). Their accomplishments were formidable, con-

sidering the light sources available at the time. Nowadays, with 

the advent of the laser, light can be focused down to a spot size 


3.4.1 Linearly Accelerating Charges


approaching the theoretical limit of about one wavelength in 

radius. The resulting irradiance, and therefore the pressure, is 

Consider a charge moving at a constant speed. It essentially has 

appreciable, even with a laser rated at just a few watts. It has 

attached to it an unchanging radial electric field and a surround-

thus become practical to consider radiation pressure for all 

ing circular magnetic field. Although at any point in space the  

sorts of applications, such as separating isotopes, accelerating 


E


$-field changes from moment to moment, at any instant its 

particles, cooling and trapping atoms (p. 67), and even opti-

value can be determined by supposing that the field lines move 

cally levitating small objects.

along, fixed to the charge. Thus the field does not disengage 

Light can also transport angular momentum, but that raises a 

from the charge, and there is no radiation.

number of issues that will be treated later (p. 336).

The electric field of a charge at rest can be represented, as in 

Fig. 3.26, by a uniform, radial distribution of straight field lines. 

For a charge moving at a constant velocity v
 $, the field lines are 

still radial and straight, but they are no longer uniformly distrib-


3.4 Radiation


uted. The nonuniformity becomes evident at high speeds and is 

usually negligible when  v
  6 6  c
 .

Electromagnetic radiation comes in a broad range of wave-

In contrast, Fig. 3.27 shows the field lines associated with an 

lengths and frequencies, although in vacuum it all travels at 

electron accelerating uniformly to the right. The points  O
 1,  O
 2, 

the same speed. Despite the fact that we distinguish different 


O
 3, and  O
 4 are the positions of the electron after equal time in-

regions of the spectrum with names like radiowaves, micro-

tervals. The field lines are now curved, and this is a significant 

waves, infrared, and so forth, there is only one entity, one es-

difference. As a further contrast, Fig. 3.28 depicts the field of an 

sence of electromagnetic wave. Maxwell’s Equations are 

electron at some arbitrary time  t
 2. Before  t 
 = 0 the particle was 

independent of wavelength and so suggest no fundamental dif-

always at rest at the point  O
 . The charge was then uniformly ac-

ferences in kind. Accordingly, it is reasonable to look for a 

celerated until time  t
 1, reaching a speed  v
 , which was maintained 
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v
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v



–



t
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(a)

(b)

)


Figure 3.26    
 ( a
 ) Electric field of a stationary electron. ( b
 ) Electric field of ct 
 2   t 
 1

a moving electron.

 −


c
 ( t 
 2


Figure 3.28
     A kink in the E
 $-field lines.

It is now apparent that during the interval when the particle 


v


accelerated, the field lines became distorted and a kink appeared. 


o
 1 o
 2 o
 3  o
 4


a


The exact shape of the lines within the region of the kink is of 

little interest here. What is significant is that there now exists a 

3


transverse component
  of the electric field E


$T, which propagates 

outward as a pulse. At some point in space the transverse electric 

2

field will be a function of time, and it will therefore be accompa-

nied by a magnetic field.

1

The radial component of the electric field drops off as 1> r
 2, 

while the transverse component goes as 1> r
 . At large distances 

from the charge, the only significant field will be the E


$T- 

component of the pulse, which is known as the  radiation field
 .* 

For a positive charge moving slowly ( v
  6 6  c
 ), the electric and 

magnetic radiation fields can be shown to be proportional to 


Figure 3.27
     Electric field of a uniformly accelerating electron.


r
 $ : (r
 $ : a
 $) 
 and (a
 $ : r
 $), respectively, where a
 $ is the accelera-





tion. For a negative charge the reverse occurs, as shown in  

Fig. 3.29. Observe that the irradiance is a function of u and that 


I(0) 
 =  I(180
 ° ) 
 = 0  
 while  I(90
 ° ) 
 =  I(270
 ° ) 
 is a maximum.  
Energy 



constant thereafter. We can anticipate that the surrounding field 



is most strongly radiated perpendicular to the acceleration 



lines will somehow carry the information that the electron has 



causing it

 .

accelerated. We have ample reason to assume that this “informa-

The energy that is radiated out into the surrounding space is 

tion” will propagate at the speed  c
 . If, for example,  t
 2 = 10-8 s,  


supplied to the charge by some external agent. That agent is 

no point beyond 3 m from  O
  would be aware of the fact that the 

charge had even moved. All the lines in that region would be 

uniform, straight, and centered on  O
 , as if the charge were still 

there. At time  t
 2 the electron is at point  O
 2 moving with a con-

stant speed  v
 . In the vicinity of  O


*The details of this calculation using J. J. Thomson’s method of analyzing the 

2 the field lines must then re-

semble those in Fig. 3.26 b
 . Gauss’s Law requires that the lines 

kink can be found in J. R. Tessman and J. T. Finnell, Jr., “Electric Field of an 

Accelerating Charge,”  Am. J. Phys.
  35
 , 523 (1967). As a general reference 

outside the sphere of radius  ct
 2 connect to those within the sphere 

for radiation, see, for example, Marion and Heald,  Classical Electromagnetic 


of radius  c
 ( t
 2 -  t
 1), since there are no charges between them. 


Radiation
 , Chapter 7.
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v



I(
 u )



r


u


a



B


( v 
 <<  c
 )


Figure 3.30    
 Radiation pattern for an orbiting charge.

in Fig. 3.29. Again the distribution of radiation is symmetri-

cal around a
 $, which is now the centripetal acceleration acting 


E
   B


inward along the radius drawn from the center of the circular 

orbit to the charge. And once more,  
energy is most strongly 




B



E




radiated perpendicular to the acceleration causing it

 . 
  

 The 

higher the speed, the more an observer at rest in the labora-

tory will “see” the backward lobe of the radiation pattern 


–


shrink while the forward lobe elongates in the direction of 

motion. At speeds approaching  c
 , the particle beam (usually 

with a diameter comparable to that of a straight pin) radiates 

essentially along a narrow cone pointing tangent to the orbit 


B


in the instantaneous direction of v
 $ (Fig. 3.30). Moreover, for 


E



v 
 ≈  c
  the radiation will be strongly polarized in the plane of 

the motion.


E
   B


This “searchlight,” often less than a few millimeters in di-


Figure 3.29    
 The toroidal radiation pattern of a linearly accelerating 

ameter, sweeps around as the particle clumps circle the ma-

charge (split to show cross section).

chine, much like the headlight on a train rounding a turn. 

With each revolution the beam momentarily (6 12 ns) flashes 

through one of many windows in the device. As we will learn 

(p. 316), when a signal has a short duration it must comprise 

responsible for the accelerating force, which in turn does work 

a broad range of frequencies. The result is a tremendously 

on the charge.

intense source of rapidly pulsating radiation, tunable over a 

wide range of frequencies, from infrared to light to X-rays. 

When magnets are used to make the circulating electrons 


3.4.2 Synchrotron Radiation


wiggle in and out of their circular orbits, bursts of high-fre-

A free charged particle traveling on any sort of curved path is ac-

quency X-rays of unparalleled intensity can be created. These 

celerating and will radiate. This provides a powerful mechanism 

beams are hundreds of thousands of times more powerful 

for producing radiant energy, both naturally and in the laboratory. 

than a dental X-ray (which is roughly a fraction of a watt) and 

The synchrotron radiation generator, a research tool developed in 

can easily burn a finger-sized hole through a 3-mm-thick lead 

the 1970s, does just that. Clumps of charged particles, usually 

plate.

electrons or positrons, interacting with an applied magnetic field 

Although this technique was first used to produce light in an 

are made to revolve around a large, essentially circular track at a 

electron synchrotron as long ago as 1947, it took several de-

precisely controlled speed. The frequency of the orbit determines 

cades to recognize that what was an energy-robbing nuisance to 

the fundamental frequency of the emission (which also contains 

the accelerator people might be a major research tool in itself 

higher harmonics), and that’s continuously variable, more or less, 

(see photo on next page).

as desired. Incidentally, it’s necessary to use clumps of charge;  a 


In the astronomical realm, we can expect that some re-


uniform loop of current does not radiate
 .

gions exist that are pervaded by magnetic fields. Charged 

A charged particle slowly revolving in a circular orbit ra-

particles trapped in these fields will move in circular or heli-

diates a doughnut-shaped pattern similar to the one depicted 

cal orbits, and if their speeds are high enough, they will emit 
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(b)


Figure 3.31
   ( a
 ) Synchrotron radiation  

arising from the Crab Nebula. In these photos 

only light whose E
 $-field direction is as indicated 

was recorded. (Mount Wilson Institute/Mount Wilson 

Observatory.) ( b
 ) The Crab Nebula in unpolarized 

light.

(a)

synchrotron radiation. Figure 3.31 shows five photographs of 

the extragalactic Crab Nebula.* Radiation emanating from 

the nebula extends over the range from radio frequencies to 

the extreme ultraviolet. Assuming the source to be trapped 

circulating charges, we can anticipate strong polarization ef-

fects. These are evident in the first four photographs, which 

were taken through a polarizing filter. The direction of the 

electric field vector is indicated in each picture. Since in syn-

chrotron radiation, the emitted E


$-field is polarized in the or-

bital plane, we can conclude that each photograph corre-

sponds to a particular uniform magnetic field orientation 

normal to the orbits and to E


$.

It is believed that a majority of the low-frequency radio-

waves reaching the Earth from outer space have their origin in 

synchrotron radiation. In 1960 radio astronomers used these 

long-wavelength emissions to identify a class of objects known 

as quasars. In 1955 bursts of polarized radiowaves were discov-

ered emanating from Jupiter. Their origin is now attributed to 

The first beam of “light” from the National Synchrotron Light Source (1982) 

emanating from its ultraviolet electron storage ring.

spiraling electrons trapped in radiation belts surrounding the 

 (The National Synchrotron Light 

Source, Brookhaven National Laboratory)

planet.


3.4.3 Electric Dipole Radiation


*The Crab Nebula is believed to be expanding debris left over after the cata-

Perhaps the simplest electromagnetic wave–producing mecha-

clysmic death of a star. From its rate of expansion, astronomers calculated 

nism to visualize is the oscillating dipole—two charges, one 

that the explosion took place in 1050 c.e. This was subsequently corroborated 

plus and one minus, vibrating to and fro along a straight line. 

when a study of old Chinese records (the chronicles of the Beijing Observatory) 

And yet this arrangement is surely the most important of all.

revealed the appearance of an extremely bright star, in the same region of the 

sky, in 1054 

Both light and ultraviolet radiation arise primarily from the 

c.e.

In the first year of the period Chihha, the fifth moon, the day Chichou 

rearrangement of the outermost, or weakly bound, electrons in 

[i.e., July 4, 1054], a great star appeared…. After more than a year, it gradu-

atoms and molecules. It follows from the quantum-mechanical 

ally became invisible.

analysis that the electric dipole moment of the atom is the ma-

There is little doubt that the Crab Nebula is the remnant of that supernova.

jor source of this radiation. The rate of energy emission from a 
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(a)


B


(e)


E


(b)

(c)

(d)

l


Figure 3.32  
  The E
 $-field of an oscillating electric dipole.

material system, although a quantum-mechanical process, can 

Very near the atom, the E


$-field has the form of a static electric 

be envisioned in terms of the classical oscillating electric di-

dipole. A bit farther out, in the region where the closed loops form, 

pole. This mechanism is therefore central to understanding the 

there is no specific wavelength. The detailed treatment shows that 

way atoms, molecules, and even nuclei emit and absorb elec-

the electric field is composed of five different terms, and things are 

tromagnetic waves. Figure 3.32 schematically depicts the elec-

fairly complicated. Far from the dipole, in what is called the  wave
  

tric field distribution in the region of an electric dipole. In this 

or  radiation zone
 , the field configuration is much simpler. In this 

configuration, a negative charge oscillates linearly in simple 

zone, a fixed wavelength has been established; E


$ and B
 $ are trans-

harmonic motion about an equal stationary positive charge. If 

verse, mutually perpendicular, and in phase. Specifically,

the angular frequency of the oscillation is v, the time-dependent 

dipole moment  p  (t)
  has the scalar form

p

cos ( kr 
 - v t
 )


 



E 
 = 0 k
 2 sin u 

 (3.56)

4p





P0


r


p = p 0 cos v t
  (3.55)

and  B 
 =  E
 > c
 , where the fields are oriented as in Fig. 3.33. The 

Note that  p  (t)
  could represent the collective moment of the 

Poynting vector S
 $ = E
 $ : B
 $>m0 always points radially outward 

oscillating charge distribution on the atomic scale or even an 

in the wave zone. There, the B


$-field lines are circles concentric 

oscillating current in a linear television antenna.

with, and in a plane perpendicular to, the dipole axis. This is 

At  t 
 = 0, p = p 0 =  qd
 , where  d
  is the initial maximum sep-

understandable, since B


$ can be considered to arise from the 

aration between the centers of the two charges (Fig. 3.32 a
 ). The 

time-varying oscillator current.

dipole moment is actually a vector in the direction from - q
  to 

The irradiance (radiated radially outward from the source) 

+ q
 . The figure shows a sequence of field line patterns as the 

follows from Eq. (3.44) and is given by

displacement, and therefore the dipole moment decreases, then 

goes to zero, and finally reverses direction. When the charges 

p 2

sin2 u

effectively overlap,  p = 0, and the field lines must close on 


 



I(


0v4

u ) 
 =





 (3.57)

32p2 c
 3

themselves.

P0  r
 2
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z


That at least saves some height, allowing the device to be built 

only 14l tall. Moreover, this use of the Earth also generates a so-

called  ground wave
  that hugs the planet’s surface, where most 


E



E 
  B


people with radios are likely to be located. A commercial sta-





tion usually has a range somewhere between 25 and 100 miles.


B


 r


u

p


y



3.4.4 The Emission of Light from Atoms



Figure 3.33    
 Field orientations 


x


for an oscillating electric dipole.

Surely the most significant mechanism responsible for the natu-

ral emission and absorption of radiant energy— especially of 

again an Inverse-Square-Law dependence on distance. The an-

light—is the  bound charge
 , electrons confined within atoms. 

gular flux density distribution is toroidal, as in Fig. 3.29. The 

These minute negative particles, which surround the massive 

axis along which the acceleration takes place is the symmetry 

positive nucleus of each atom, constitute a kind of distant, tenu-

axis of the radiation pattern. Notice the dependence of the irradi-

ous charged cloud. Much of the chemical and optical behavior 

ance on 

of ordinary matter is determined by its outer or valence elec-

v4— the higher the frequency, the stronger the radia-



tion
 . That feature will be important when we consider scattering.

trons. The remainder of the cloud is ordinarily formed into 

It’s not difficult to attach an  AC
  generator between two con-

“closed,” essentially unresponsive, shells around and tightly 

ducting rods and send currents of free electrons oscillating up 

bound to the nucleus. These closed or filled shells are made up 

and down that “transmitting antenna.” Figure 3.34 a
  shows the 

of specific numbers of electron pairs. Even though it is not com-

arrangement carried to its logical conclusion—a fairly standard 

pletely clear what occurs internally when an atom radiates, we 

AM radio tower. An antenna of this sort will function most  

do know with some certainty that light is emitted during read-

efficiently if its length corresponds to the wavelength being 

justments in the outer charge distribution of the electron cloud. 

transmitted or, more conveniently, to 1

This mechanism is ultimately the predominant source of light in 

2l. The radiated wave is 

then formed at the dipole in synchronization with the oscillating 

the world.

current producing it. AM radiowaves are unfortunately several 

Usually, an atom exists with its clutch of electrons arranged 

hundred meters long. Consequently, the antenna shown in the 

in some stable configuration that corresponds to their lowest 

figure has half the 1

energy distribution or  level
 . Every electron is in the lowest pos-

2l-dipole essentially buried in the Earth. 

sible energy state available to it, and the atom as a whole is in 

its so-called ground-state
  configuration. There it will likely 

(a)

remain indefinitely, if left undisturbed. Any mechanism that 

pumps energy into the atom will alter the ground state. For in-

stance, a collision with another atom, an electron, or a photon 

can affect the atom’s energy state profoundly. An atom can exist 


E


with its electron cloud in only certain specific configurations 

corresponding to only certain values of energy. In addition to 

the ground state, there are higher energy levels, the excited 



states
 , each associated with a specific cloud configuration and 

a specific well-defined energy. When one or more electrons oc-

cupies a level higher than its ground-state level, the atom is 

(b)

said to be excited
 —a condition that is inherently unstable and 

temporary.


E


At low temperatures, atoms tend to be in their ground 

state; at progressively higher temperatures, more and more of 

them will become excited through atomic collisions. This 





sort of mechanism is indicative of a class of relatively gentle 

excitations—glow discharge, flame, spark, and so forth—which 


B


energize only the outermost unpaired valence electrons. We will 

initially concentrate on these outer electron transitions, which 

give rise to the emission of light, and the nearby infrared and 


Figure 3.34  
 ( a
 ) Electromagnetic waves from a transmitting tower.  

ultraviolet.

( b
 ) Automobiles often have radio antennas that stick straight up about  

When enough energy is imparted to an atom (typically to the 

a meter. The vertically oscillating electric field of a passing radiowave 

induces a voltage along the length of the antenna, and that becomes  

valence electron), whatever the cause, the atom can react by 

the input signal to the receiver.

suddenly ascending from a lower to a higher energy level 
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ℰ =  h
 n


Figure 3.35
   The excitation 

photon

of an atom. ( a
 ) Energy in  

the amount  h
 n is delivered  

∆ℰ =  h


to the atom. ( b
 ) Since this 

n

matches the energy needed 

to reach an excited state,  

ℰ =  h
 n

the atom absorbs the energy 

and attains a higher energy 

level. ( c
 ) With the emission  

of a photon, it drops back  

(a)  The ground state about to

(b)  Excitation of

(c)  De-excitation with

(d)  Ground state ≈10–8

( d
 ) and returns to the ground 

       receive a blast of energy

       the ground state

      emission of a photon

       seconds later

state in about 10-8 s.

(Fig. 3.35). The electron will make a very rapid transition, a 

representation of the manifest wave nature of the photon. But 


quantum jump
 , from its ground-state orbital configuration to 

the two are  not
  equivalent in all respects: the electromagnetic 

one of the well-delineated excited states, one of the quantized 

wavetrain is a classical creation that describes the propagation 

rungs on its energy ladder. As a rule,  
the amount of energy 



and spatial distribution of light extremely well; yet its energy is 



taken up in the process equals the energy difference between 



not quantized, and that is an essential characteristic of the pho-



the initial and final states, and since that is specific and well 



ton. So when we consider photon wavetrains, keep in mind that 



defined, the amount of energy that can be absorbed by an 



there is more to the idea than just a classical oscillatory pulse 



atom is quantized

  (i.e., limited to specific amounts). This state 

of electromagnetic wave. Of course, the reason even to intro-

of atomic excitation is a short-lived resonance phenomenon. 

duce the notion of the emission of wavetrains is to have a basis 

Usually, after about 10-8 s or 10-9 s, the excited atom sponta-

for talking about the frequency of the light. This is perhaps the 

neously relaxes back to a lower state, most often the ground 

central problem in any naïve photon model: what agency man-

state, losing the excitation energy along the way. This energy 

ifests the frequency?

readjustment can occur by way of the emission of light or  

The emission spectra of single atoms or low-pressure gas-

(especially in dense materials) by conversion to thermal energy 

es, whose atoms do not interact appreciably, consist of sharp 

through interatomic collisions within the medium. (As we’ll 

“lines,” that is, fairly well-defined frequencies characteristic 

soon see, this latter mechanism results in the absorption of light 

of the atoms. There is always some frequency broadening of 

at the resonant frequency and the transmission or reflection of 

that radiation due to atomic motion, collisions, and so forth; 

the remaining frequencies—it’s responsible for most of the col-

hence it’s never precisely monochromatic. Generally, how-

oration in the world around us.)

ever, the atomic transition from one level to another is char-

If the atomic transition is accompanied by the emission of 

acterized by the emission of a well-defined, narrow range of 

light (as it is in a rarefied gas),  
the energy of the photon ex-



frequencies. On the other hand, the spectra of solids and liq-



actly matches the quantized energy decrease of the atom

 . That 

uids, in which the atoms are interacting with one another, are 

corresponds to a specific frequency, by way of ∆ℰ =  h
 n, a fre-

broadened into wide frequency bands. When two atoms are 

quency associated with both the photon and the atomic transi-

brought close together, the result is a slight shift in their re-

tion between the two particular states. This is said to be a reso-


spective energy levels because they act on each other. The 


nance frequency
 , one of several (each with its own likelihood 

many interacting atoms in a solid create a tremendous num-

of occurring) at which the atom very efficiently absorbs and 

ber of such shifted levels, in effect spreading out each of their 

emits energy. The atom radiates a quantum of energy that pre-

original levels, blurring them into essentially continuous 

sumably is created spontaneously, on the spot, by the shifting 

bands. Materials of this nature emit and absorb over broad 

electron.

ranges of frequencies.

Even though what occurs during the atom-transition inter-

val of 10-8 s is far from clear, it can be helpful to imagine the 


Optical Cooling


orbital electron somehow making its downward energy transi-

tion via a gradually damped oscillatory motion at the specific 

The linear momentum carried by photons can be transferred to 

resonance frequency. The radiated light can then be envisioned 

moving atoms or ions, thereby drastically changing their mo-

in a semiclassical way as emitted in a short oscillatory direc-

tion. After about ten thousand absorption and subsequent emis-

tional pulse, or wavetrain
 , lasting less than roughly 10-8 s—a 

sion cycles, an atom, which was originally moving at perhaps 

picture that is in agreement with certain experimental observa-

700 m>s, can be slowed to near zero speed. Since, in general, 

tions (see Section 7.4.2, and Fig. 7.45). It’s useful to think of 

temperature is proportional to the average kinetic energy (KE) of 

this electromagnetic pulse as associated in some inextricable 

the particles constituting a system, this process is called optical 


fashion with the photon. In a way, the pulse is a semiclassical 

or laser cooling
 . With it, KE temperatures in the microkelvin 
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Notice that the radiation pressure force is frequency depen-

dent and the atoms experience a speed-dependent force via the 

Doppler Effect. That means that n


v



k


0 and n L
  have to be kept in the 


L


Atoms

Photons

proper relationship as  v
  decreases. There are a number of very 

clever ways this is accomplished.


m



Figure 3.36    
 A stream of atoms colliding with a laserbeam in a process 


3.5 Light in Bulk Matter


called laser cooling.

The response of dielectric or nonconducting materials to elec-

tromagnetic fields is of special concern in Optics. We will, of 

course, be dealing with transparent dielectrics in the form of 

lenses, prisms, plates, films, and so forth, not to mention the 

range are attainable. Laser cooling has become the basis for a 

surrounding sea of air.

variety of applications including the atomic clock, the atom in-

The net effect of introducing a homogeneous, isotropic di-

terferometer, and the focusing of atomic beams. For us it brings 

electric into a region of free space is to change P0 to P and m0 to 

together the ideas of Sections 3.3.4 and 3.4.4 in a compelling, 

m in Maxwell’s Equations. The phase speed in the medium now 

practical way.

becomes

Figure 3.36 depicts a beam of atoms, each of mass  m
  travel-

ing with a velocity v
 $, colliding with a counterdirected beam of 






v 
 = 1> 1Pm (3.58)

laser photons having a propagation vector k
 $ L
 . The laser fre-

quency n L
  is selected to be just beneath the resonant frequency 

The ratio of the speed of an electromagnetic wave in vacuum to 

(n0) of the atoms. Because of its motion, any particular atom  

that in matter is known as the absolute index of refraction
   n
 :

“sees” an oncoming photon with a frequency that is Doppler-

shifted* upward by an amount 


c


0 k
 $

Pm


L 
 · v


$ 0 >2p = n Lv
 > c
 . When the 






n 
 K

= ±

 (3.59)

laser frequency is tuned so that n0 = n L
 (1 +  v
 > c
 ), collisions 


v


AP0m0

with the photons will resonate the atoms. In the process, each 

photon transfers its momentum of 

In terms of the relative permittivity and relative permeability of 

Uk
 $ L
  to the absorbing atom 

whose speed is thereupon reduced by an amount 

the medium,  n
  becomes

∆ v  
 where  



m
  ∆ v 
 = U kL
 . 






n 
 = ± 1 KEKM
  (3.60)

The cloud of atoms is not very dense, and each excited 

atom can drop back to its ground state with the spontaneous 

where  n
  is usually positive.

emission of a photon of energy  h
 n0. This emission is random-

There are magnetic substances that are transparent in the 

ly directed, and so although the atom recoils, the average 

infrared and microwave regions of the spectrum. But we are 

amount of momentum regained by it over thousands of cycles 

primarily interested in materials that are transparent in the vis-

tends to zero. The change in momentum of the atom per pho-

ible, and these are all essentially “nonmagnetic.” Indeed,  KM 


ton absorption-emission cycle is therefore effectively Uk
 $ L
 , and 

generally doesn’t deviate from 1.0 by any more than a few parts 

it slows down. In each cycle (as seen by someone at rest in the 

in  104 (e.g., for diamond  KM 
 = 1.0 - 2.2 * 10-5). Setting 

lab), the atom absorbs a photon of energy  h
 n L
 , emits a photon 


KM 
 = 1.0  
 in the formula for  n
  results in an expression known 

of energy  h
 n0, and in the process loses an amount of KE cor-

as  Maxwell’s Relation
 , namely,

responding to  h
 n Lv
 > c
 , which is proportional to the Doppler 

Shift. 






n 
 ≈ 1 KE
  (3.61)

By contrast, an atom moving in the opposite direction, away 

from the light source, sees photons to have a frequency 

wherein  KE
  is presumed to be the  static dielectric constant
 . As 

indicated in Table 3.2, this relationship seems to work well only 

n L
 (1 -  v
 > c
 ), far enough away from n0 that there can be little or 

no absorption, and therefore no momentum gain.

for some simple gases. The difficulty arises because  KE
  and 

therefore  n
  are actually  frequency dependent
 . The dependence 

of   n
  on the wavelength (or color) of light is a well-known 

effect called dispersion
 . It arises on a microscopic level, and 

so Maxwell’s Equations are quite oblivious to it. Sir Isaac Newton 

*Imagine an observer moving at  vo
 , toward a source that is sending out waves 

used prisms to disperse white light into its constituent colors 

having a speed  v
  at a frequency n s
 . As a result of the Doppler Effect, he will expe-

over three hundred years ago, and the phenomenon was well 

rience a frequency n o 
 = n s
 ( v 
 +  vo
 )> v
 . For more of the details, see almost any introductory physics text, for example, E. Hecht,  Physics: Calculus
 , Sect. 11.11.

known, if not well understood, even then.
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(e)
    n 
 = 1 KE



TABLE 3.2    Maxwell’s Relation


Gases at 0


n
 2

°C and 1 atm

=  KE



K


Substance 


E 
 = 2.453

1 KE n


P = P0 KE


Air 

1.000 294 

1.000 293

Helium 

1.000 034 

1.000 036

P = (8.854 2 * 10-12)2.453

Hydrogen 

1.000 131 

1.000 132

Carbon  dioxide 

1.000 49   

1.000 45

P = 2.172 * 10-11C2>N · 
 m2

Liquids at 20°C

P  v



(f )
    I 
 =

  E
 2

Substance 

1 KE n


2

0

Benzene  1.51 1.501

Water 

8.96 1.333

(2.172 * 10-11C2>N·
 m2)(1.909 * 108 m>s)(180 V>m)2


I


Ethyl alcohol (ethanol) 

5.08 

1.361

=

2

Carbon tetrachloride 

4.63 

1.461

Carbon disulfide 

5.04 

1.628


I 
 = 67.2 W>m2

Solids at room temperature

Substance 

1 KE n


Diamond  4.06 2.419


Scattering and Absorption


Amber 

1.6  

1.55

Fused silica 

1.94 

1.458

What is the physical basis for the frequency dependence of  n
 ? 

Sodium chloride 

2.37 

1.50

The answer to that question can be found by examining the in-

teraction of an incident electromagnetic wave with the array of 

Values of  KE
  correspond to the lowest possible frequencies, in some cases as low 

atoms constituting a dielectric material. An atom can react to 

as 60 Hz, whereas  n
  is measured at about 0.5 * 1015 Hz. Sodium D light was 

incoming light in two different ways, depending on the incident 

used (l = 589.29 nm).

frequency or equivalently on the incoming photon energy 

(ℰ =  h
 n). Generally, the atom will “scatter” the light, redirect-

EXAMPLE 3.5

ing it without otherwise altering it. On the other hand, if the 

An electromagnetic wave travels through a homogeneous 





photon’s energy matches that of one of the excited states, the 

dielectric medium with a frequency of v = 2.10 * 1015 rad>s 

atom will absorb the light, making a quantum jump to that high-

and  k 
 = 1.10 * 107 rad>m. The E
 $@field of the wave is

er energy level. In the dense atomic landscape of ordinary gases 

(at pressures of about 102 Pa and up), solids, and liquids, it’s 


E


$ = (180 V>m) jˆ
   ei
 ( kx
 -v t
 )

very likely that this excitation energy will rapidly be trans-

Determine (a) the direction of B


$, (b) the speed of the wave,  ferred, via collisions, to random atomic motion, thermal energy, 

(c) the associated B


$@field, (d) the index of refraction, (e) the per-

before a photon can be emitted. This commonplace process (the 

mittivity, and (f ) the irradiance of the wave.

taking up of a photon and its conversion into thermal energy) 

was at one time widely known as “absorption,” but nowadays 

SOLUTION

that word is more often used to refer just to the “taking up” as-


(a)
   B


$ is in the direction of kˆ
 , since the wave moves in the direc-

pect, regardless of what then happens to the energy. Conse-

tion of E


$ : B
 $ and that is in the iˆ
  or + x
 -direction.

quently, it’s now better referred to as dissipative absorption
 . 

All material media partake in dissipative absorption to some 


(b)
   The speed is  v 
 = v> k


extent, at one frequency or another.

2.10 * 1015 rad>s

In contrast to this excitation process,  ground-state
  or non-



v 
 =


resonant scattering
  occurs with incoming radiant energy of 

1.10 * 107 rad/m

other frequencies—that is, lower than the resonance frequen-


v 
 = 1.909 * 108 m>s or 1.91 * 108 m>s

cies. Imagine an atom in its lowest state and suppose that it in-


(c)
    E


teracts with a photon whose energy is too small to cause a tran-

0 =  vB
 0 = (1.909 * 108 m>s) B
 0

sition to any of the higher, excited states. Despite that, the 

180 V>m


B


= 9.43 * 10-7 T

electromagnetic field of the light can be supposed to drive the 

0 = 1.909 * 108 m>s

electron cloud into oscillation. There is no resulting atomic 

transition; the atom remains in its ground state while the cloud 


B


$ = (9.43 * 10-7 T ) kˆ
   ei
 ( kx
 -v t
 )

vibrates ever so slightly at the frequency of the incident light. 


(d)
    n 
 =  c
 > v 
 = (2.99 * 108 m>s)>(1.909 * 108 m>s) and 

Once the electron cloud starts to vibrate with respect to the pos-


n
  =1.566 3, or 1.57

itive nucleus, the system constitutes an oscillating dipole and so 
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presumably will  immediately
  begin to radiate at that same fre-

H. A. Lorentz, we can average the contributions of large num-

quency. The resulting scattered light consists of a photon that 

bers of atoms to represent the behavior of an isotropic 





sails off in some direction carrying the same amount of energy 

dielectric medium.

as did the incident photon— 
the scattering is elastic

 . In effect, 

When a dielectric is subjected to an applied electric field, the 

the atom resembles a little dipole oscillator, a model employed 

internal charge distribution is distorted. This corresponds to the 

by Hendrik Antoon Lorentz (1878) in order to extend Maxwell’s 

generation of electric dipole moments, which in turn contribute 

Theory, in a classical way, to the atomic domain. If the incident 

to the total internal field. More simply stated, the external field 

light is unpolarized, the atomic oscillators scatter in random  

separates positive and negative charges in the medium (each 

directions.

pair of which is a dipole), and these charges then contribute an 

When an atom is irradiated with light, the process of excita-

additional field component. The resultant dipole moment per 

tion and spontaneous emission is rapidly repeated. In fact, with 

unit volume is called the electric polarization
 ,  P


$. For most  

an emission lifetime of ≈10-8 s, an atom could emit upward of 

materials P


$ and E
 $ are proportional and can satisfactorily be re-

108 photons per second in a situation in which there was enough 

lated by

energy to keep reexciting it. Atoms have a very strong tendency 





(P - P0)E
 $ = P
 $ (3.62)

to interact with resonant light (they have a large  absorption 



cross section
 ). This means that the saturation condition, in 

Electric polarization is a measure of the difference between the 

which the atoms of a low-pressure gas are constantly emitting 

electric fields with and without the medium in place. When 

and being reexcited, occurs at a modest value of irradiance 

P = P0, P
 $ = 0. The units of P
 $ are C · 
 m>m3, which is C>m2.

(≈102 W>m2). So it’s not very difficult to get atoms firing out 

The redistribution of charge and the consequent polariza-

photons at a rate of 100 million per second.

tion can occur via the following mechanisms. There are mol-

Generally, we can imagine that in a medium illuminated by 

ecules that have a permanent dipole moment as a result of 

an ordinary beam of light, each atom behaves as though it was 

unequal sharing of valence electrons. These are known as  po-


a “source” of a tremendous number of photons (scattered either 


lar molecules
 ; the nonlinear water molecule is a fairly typical 

elastically or resonantly) that fly off in all directions. A stream 

example (Fig. 3.37). Each hydrogen–oxygen bond is polar co-

of energy like this resembles a classical spherical wave.  
Thus 



valent, with the H-end positive with respect to the O-end. 



we imagine an atom 

 (
 
even though it is simplistic to do so

 )
 
 as a 



Thermal agitation keeps the molecular dipoles randomly ori-



point source of spherical electromagnetic waves

 —provided 

ented. With the introduction of an electric field, the dipoles 

we keep in mind Einstein’s admonition that “outgoing radiation 

align themselves, and the dielectric takes on an orientational 


in the form of spherical waves does not exist.”


polarization
 . In the case of  nonpolar molecules
  and  atoms
 , 



When a material with no resonances in the visible is bathed 



the applied field distorts the electron cloud, shifting it relative 



in light, nonresonant scattering occurs, and it gives each par-



to the nucleus, thereby producing a dipole moment. In addi-



ticipating atom the appearance of being a tiny source of 



tion to this electronic polarization
 , there is another process 



spherical wavelets

 . As a rule, the closer the frequency of the 

that’s applicable specifically to molecules, for example, the 

incident beam is to an atomic resonance, the more strongly will 

ionic crystal NaCl. In the presence of an electric field, the 

the interaction occur and, in dense materials, the more energy 

positive and negative ions undergo a shift with respect to each 

will be dissipatively absorbed. It is precisely this mechanism of 

other. Dipole moments are therefore induced, resulting in 


selective absorption
  (see Section 4.9) that creates much of the 

what is called ionic
  or atomic polarization
 .

visual appearance of things. It is primarily responsible for the 

If the dielectric is subjected to an incident harmonic electro-

color of your hair, skin, and clothing, the color of leaves and 

magnetic wave, its internal charge structure will experience 

apples and paint.

time-varying forces and >or torques. These will be proportional 

to the electric field component of the wave.* For fluids that are 

polar dielectrics, the molecules actually undergo rapid rota-

tions, aligning themselves with the E


$ (t)
 -field. But these mole-


3.5.1 Dispersion


cules are relatively large and have appreciable moments of 


Dispersion corresponds to the phenomenon whereby the  


inertia. At high driving frequencies v, polar molecules will be 


index of refraction of a medium is frequency dependent
 . All 

unable to follow the field alternations. Their contributions to P


$ 

material media are dispersive; only vacuum is nondispersive. 

will decrease, and  KE
  will drop markedly. The relative permit-

Maxwell’s Theory treats substantial matter as continuous, 

tivity of water is fairly constant at approximately 80, up to 

representing its electric and magnetic responses to applied E


$- 

about 1010 Hz, after which it falls off quite rapidly.

and B


$-fields in terms of constants, P and m. Consequently,  K 
   E


and  K 
  are also constant, and  n
  is therefore unrealistically inde-


M


pendent of frequency. To deal theoretically with dispersion, it’s 

*Forces arising from the magnetic component of the field have the form 

necessary to incorporate the atomic nature of matter and to ex-


F
 $ M 
 =  q
 .v
 $ : B
 $  in comparison to F
 $ E 
 =  q
 .E
 $ for the electric component; but ploit some frequency-dependent aspect of that nature. Following 


v
  6 6  c
 , so it follows from Eq. (3.30) that F
 $ M
  is generally negligible.
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Once somehow momentarily disturbed, an electron bound in this 

p  = 0

way will oscillate about its equilibrium position with a natural
  or 


resonant frequency
  given by v0 = 1 kE
 > me
 , where  me
  is its 

O

CO2

mass. This is the oscillatory frequency of the  undriven
  system and 

C

−

O

so  F 
 = -v20  mex
 . Using v0, which is observable, we can get rid of 





+


k


−


E
  which was a figment of the spring model.

A material medium is envisioned as an assemblage, in vacu-

um, of a very great many polarizable atoms, each of which is 

p  = 6.2 × 10–30 C·m

small (by comparison to the wavelength of light) and close to its 

neighbors. When a lightwave impinges on such a medium, each 

Hydrogen

+

atom can be thought of as a classical forced oscillator
  being 

+

driven by the time-varying electric field  E(t) 
 of the wave, which 

Hydrogen

is assumed here to be applied in the  x
 -direction. Figure 3.38 b
  is 

−

Oxygen

a mechanical representation of just such an oscillator in an  iso-


H


tropic medium
  where the negatively charged shell is fastened to 

2O

a stationary positive nucleus by identical springs. Even under 

the illumination of bright sunlight, the amplitude of the oscilla-

tions will be no greater than about 10-17 m.  The  force  ( FE
 )  


HCl

exerted on an electron of charge  qe
  by the  E(t)
  field of a har-

monic wave of frequency v is of the form

H

Cl






FE 
 =  qeE(t) 
 =  qeE
 0 cos v t
  (3.63)

p  = 0.40 × 10–30 C·m

+

−

Notice that if the driving force is in one direction the restoring 

force is in the opposite direction, which is why it has a minus 

C

+

p  = 3.43 × 10–30 C·m

(a)

O

CO

−


Figure 3.37    
 Assorted molecules and their dipole moments ( p ). The 


E






dipole moment of an object is the charge on either end times the separa-

tion of those charges.

In contrast, electrons have little inertia and can continue to 

follow the field, contributing to  KE(
 v ) 
 even at optical frequencies 

(b)

(of about 5 * 1014 Hz). Thus the dependence of  n
  on v is gov-

erned by the interplay of the various electric polarization mecha-

nisms contributing at the particular frequency. With this in mind, 


E


it is possible to derive an analytical expression for  n(
 v )
  in terms 

c

of what’s happening within the medium on an atomic level.

l

Electron

oud

The electron cloud of the atom is bound to the positive nucleus 

by an attractive electric force that sustains it in some sort of equi-

librium configuration. Without knowing much more about the de-

E

tails of all the internal atomic interactions, we can anticipate that, 

lec

like other stable mechanical systems, which are not totally disrupt-

tron

cloud

ed by small perturbations, a net force,  F
 , must exist that returns the 

system to equilibrium. Moreover, we can reasonably expect that 

for very small displacements,  x
 , from equilibrium (where  F 
 = 0), 

the force will be linear in  x
 . In other words, a plot of  F(x)
  versus  x
  

will cross the  x
 -axis at the equilibrium point ( x 
 = 0) and will be a 

straight line very close on either side. Thus for small displacements 


Figure 3.38
   ( a
 ) Distortion of the electron cloud in response to an applied 


E
 $-field. ( b
 ) The mechanical oscillator model for an isotropic medium—all 

it can be supposed that the restoring force has the form  F 
 = - kEx
 ,  


the springs are the same, and the oscillator can vibrate equally in all  





where  kE 
 is a kind of elastic constant much like a spring constant. 

directions.
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sign:   F 
 = - kEx 
 = - me
 v20  x
 . Newton’s Second Law provides 

Using the fact that  n
 2 =  KE 
 = P>P0, we can arrive at an expres-

the equation of motion; that is, the sum of the forces equals the 

sion for  n
  as a function of v, which is known as a dispersion 


mass times the acceleration:


equation
 :


d
 2 x



Nq
 2

1






qeE
 0 cos v t 
 -  me
 v20  x 
 =  me
  

 (3.64)






n
 2 (



e


v ) 
 = 1 +






dt
 2

P

a

b (3.70)

0  me 
 v20 - v2

The first term on the left is the driving force, and the second is 

At frequencies increasingly above resonance, (v20 - v2) 6 0, 

the opposing restoring force. To satisfy this expression,  x
  will 

and the oscillator undergoes displacements that are approxi-

have to be a function whose second derivative isn’t very much 

mately 180° out-of-phase with the driving force. The resulting 

different from  x
  itself. Furthermore, we can anticipate that the 

electric polarization will therefore be similarly out-of-phase 

electron will oscillate at the same frequency as  E(t)
 , so we “guess” 

with the applied electric field. Hence the dielectric constant and 

at the solution

therefore the index of refraction will both be less than 1. At 

frequencies increasingly below resonance, (v2


x(t)


0 - v2) 7 0, the 

=  x
 0 cos v t


electric polarization will be nearly in-phase with the applied 

and substitute it in the equation to evaluate the amplitude  x


electric field. The dielectric constant and the corresponding in-

0. In 

this way we find that

dex of refraction will then both be greater than 1. This kind of 

behavior, which actually represents only part of what happens, 


qe
 > me


is nonetheless generally observed in all sorts of materials.






x(t) 
 =

  E


(

0 cos v t
  (3.65)

We can test the utility of the analysis using a dispersive 

v20 - v2)

prism (p. 191) made of the sample material under study, but first 

we rewrite Eq. (3.70), as is done in Problem 3.62:


q


or 


x(t) 
 =


e
 > me


  E(t)
  (3.66)

(v2

( n
 2

0 - v2)

- 1)-1 = - C
 l-2 +  C
 l-2

0

where, since v

This is the relative displacement between the negative cloud 

= 2p c
 >l, the multiplicative constant is given by 


C


and the positive nucleus. It’s traditional to leave  q


= 4p2 c
 2P0 me
 > Nq
 2 e.
  Figure 3.39 is a plot of ( n
 2 - 1)-1versus e
  positive 

l-2 using data from a student experiment. A crown-glass prism 

and speak about the displacement of the oscillator. Without a 

was illuminated with the various wavelengths from a He dis-

driving force (no incident wave), the oscillator will vibrate at 

charge tube, and the index of refraction was measured for each 

its  resonance frequency
  v0. In the presence of a field whose 

one (Table 3.3). The resulting curve is indeed a straight line; 

frequency is less than v0,   E(t)
  and  x(t)
  have the same sign, 

its slope (using  y


which means that the oscillator can follow the applied force 

=  mx 
 +  b
 ) equals - C
 , and its  y
 -intercept cor-

responds to  C
 l-2

(i.e., is in-phase with it). However, when v

0 . From this it follows that the resonant fre-

7 v0, the dis-

quency is 2.95

placement  x(t)
  is in a direction opposite to that of the instanta-

* 1015 Hz, which is properly in the ultraviolet.

As a rule, any given substance will actually undergo several 

neous force  qeE(t)
  and therefore 180° out-of-phase with it. 

transitions from  n


Remember that we are talking about oscillating dipoles where 

7 1 to  n 
 6 1 as the illuminating frequency is 

for v0 7 v, the relative motion of the  positive
  charge is a vi-

bration in the direction of the field. Above resonance the posi-

( n
 2 – 1)–1

tive charge is 180° out-of-phase with the field, and the dipole 

is said to lag by p rad (see Fig. 4.9).

0.7600

The dipole moment is equal to the charge  qe
  times its dis-

0.7500

placement, and if there are  N
  contributing electrons per unit vol-

ume, the electric polarization, or density of dipole moments, is

0.7400

2






P 
 =  q


1


exN
  (3.67)

3

4

0.7300





Hence from Eq. (3.66)

6

0.7200

5

8

7

10


q
 2 NE
 > m


0.7100

9


 



P 
 =  e



e 
  (3.68)

12

(

11

13

v20 - v2)

14

0.7000 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

and from Eq. (3.62)

l–2 (10 – 6nm –2)


P(t)



q
 2





P = P


eN
 > me



Figure 3.39
   Graph of ( n
 2

0 +

= P

 (3.69)

- 1)-1 versus l-2 for the data shown in  


E(t)


0 + (v20 - v2)

Table 3.3. See N. Gauthier,  Phys. Teach.
 , 25
 , 502 (1987).
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TABLE 3.3    Dispersion of Crown Glass*


the forced oscillators reradiate. In solids, liquids, and gases at 

high pressure (≈103 atm), the interatomic distances are roughly 

 Wavelength 

l (nm) 

Index of Refraction  n


10 times less than those of a gas at standard temperature and 

pressure. Atoms and molecules in this relatively close proximity 

  1. 

728.135 

1.534 6

experience strong interactions and a resulting “frictional” force. 

  2. 

706.519, 

1.535 2 

 706.570 

The effect is a damping of the oscillators and a dissipation of 

their energy within the substance in the form of “heat” (random 

  3. 

667.815 

1.536 29

molecular motion).

  4. 

587.562, 

1.539 54 

 587.587 

Had we included a damping force proportional to the speed 

(of the form  m


  5. 

504.774 

1.544 17


e
  g dx
 > dt
 ) in the equation of motion, the disper-

sion equation (3.71) would have been

  6. 

501.567 

1.544 73

  7. 

492.193 

1.545 28


Nq
 2


ƒ


  8. 

471.314 

1.546 24


 



n
 2 (



e



i


v ) 
 = 1 +

 ^

 (3.72)

P

2

0  me



j 
 v0 j 
 - v2 +  i
 g j
 v

  

  9. 

447.148 

1.549 43

10. 

438.793 

1.550 26

Although this expression is fine for rarefied media such as 

11. 

414.376 

1.553 74

gases, there is another complication that must be overcome if 

12. 

412.086 

1.554 02

the equation is to be applied to dense substances. Each atom 

13. 

402.619 

1.555 30

interacts with the local electric field in which it is immersed. 

14. 

388.865 

1.557 67

Yet unlike the isolated atoms considered above, those in a 

dense material will also experience the induced field set up by 

* The wavelengths are those of a He discharge tube. The corresponding  

their brethren. Consequently, an atom “sees” in addition to the 

indices were measured.

applied field  E(t) 
 another field,* namely,  P(t)
 >3P0. Without go-

ing into the details here, it can be shown that

made to increase. The implication is that instead of a single 

frequency v0 at which the system resonates, there apparently 


n
 2 - 1


Nq
 2


ƒj


are several such frequencies. It would seem reasonable to gen-





=


e 
  ^

 (3.73)

eralize matters by supposing that there are  N
  molecules per unit 


n
 2 + 2

3P0  me j 
 v20 j 
 - v2 +  i
 g j
 v

volume, each with   ƒj
  oscillators having natural frequencies v0 j
 ,  

Thus far we have been considering electron-oscillators almost 

where  j 
 = 1, 2, 3, . . . . In that case,

exclusively, but the same results would have been applicable to 


Nq
 2


fj


ions bound to fixed atomic sites as well. In that instance  me
  






n
 2 (



e


v ) 
 = 1 +

^a

b (3.71)

would be replaced by the considerably larger ion mass. Thus, 

P0  me j 
 v20 j 
 - v2

although electronic polarization is important over the entire op-

tical spectrum, the contributions from ionic polarization sig-

This is essentially the same result as that arising from the quantum-

nificantly affect  n
  only in regions of resonance (v

mechanical treatment, with the exception that some of the terms 

0 j 
 = v).

The implications of a complex index of refraction will be 

must be reinterpreted. Accordingly, the quantities v0 j
  would 

considered later, in Section 4.8. At the moment we limit the 

then be the characteristic frequencies at which an atom may 

discussion, for the most part, to situations in which absorption 

absorb or emit radiant energy. The  ƒj
  terms, which satisfy the 

is negligible (i.e., v2

requirement that g

0 j 
 - v2  7 7  g j
 v) and  n
  is real, so that


jƒj 
 = 1, are weighting factors known as  os-



cillator strengths
 . They reflect the emphasis that should be 


n
 2 - 1


Nq
 2


ƒj


placed on each one of the modes. Since they measure the likeli-





=


e 
 ^

 (3.74)

hood that a given atomic transition will occur, the  ƒ



n
 2


j
  terms are 

+ 2

3P0  me j 
 v20 j 
 - v2

also known as  transition probabilities
 .

Colorless, transparent materials have their characteristic fre-

A similar reinterpretation of the  ƒj
  terms is even required 

quencies outside the visible region of the spectrum (which is why 

classically, since agreement with the experimental data de-

they are, in fact, colorless and transparent). In particular, glasses 

mands that they be less than unity. This is obviously contrary to 

have effective natural frequencies above the visible in the ultra-

the definition of the  ƒj
  that led to Eq. (3.71). One then supposes 

violet, where they become opaque. In cases for which v2

that a molecule has many oscillatory modes but that each of these 

0 j
   7 7  v2, 

by comparison, v2 may be neglected in Eq. (3.74), yielding an 

has a distinct natural frequency and strength.

essentially constant index of refraction over that frequency region. 

Notice that when v equals any of the characteristic frequen-

cies,  n
  is discontinuous, contrary to actual observation. This is 

simply the result of having neglected the damping term, which 

should have appeared in the denominator of the sum. Inciden-

*This result, which applies to isotropic media, is derived in almost any text on 

tally, the damping, in part, is attributable to energy lost when 

Electromagnetic Theory.
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As we have seen, atoms within a molecule can also vibrate 

about their equilibrium positions. But the nuclei are massive, 

Dense flint glass

1.7

and so the natural oscillatory frequencies are low, in the infrared. 

Molecules such as H2O and CO2 have resonances in both the 


n


infrared and ultraviolet. When water is trapped within a piece of 

glass during its manufacture, these molecular oscillators are 

1.6

available, and an infrared absorption band exists. The presence 

Light flint glass

of oxides also results in infrared absorption. Figure 3.42 shows 

x of refraction 

the  n(
 v )
  curves (ranging from the ultraviolet to the infrared) for 

Inde

Crystal quartz

a number of important optical crystals. Note how they rise in 

1.5

the ultraviolet and fall in the infrared. At the even lower fre-

Borosilicate crown glass

Acrylic plastic

quencies of radiowaves, glass is again transparent. In compari-

son, a piece of stained glass evidently has a resonance in the 

Vitreous quartz

visible where it absorbs out a particular range of frequencies, 

1.4

transmitting the complementary color.
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As a final point, notice that if the driving frequency is great-

er than any of the v0 j
  terms, then  n
 2 6 1  
 and  n 
 6 1. Such a 


Figure 3.40    
 The wavelength dependence of the index of refraction for 

situation can occur, for example, if we beam X-rays onto a glass 

various materials. Note that while l goes up toward the right, n goes up 

plate. This is an intriguing result, since it leads to  v


toward the left.

7  c
 , in 

seeming contradiction to Special Relativity. We will consider 

this behavior again later on, when we discuss the group velocity 

For example, the important characteristic frequencies for glasses 

(Section 7.2.2).

occur at wavelengths of about 100 nm. The middle of the visible 

In partial summary then, over the visible region of the spec-

range is roughly five times that value, and there, v20 j
  7 7 v2. Notice 

trum, electronic polarization is the operative mechanism deter-

that as v increases toward v0 j
 , (v20 j 
 - v2) decreases and  n gradu-


mining   n(
 v )
 . Classically, one imagines electron-oscillators 






ally increases with frequency
 , as is clearly evident in Fig. 3.40. 

vibrating at the frequency of the incident wave. When the wave’s 

This is called normal dispersion
 . In the ultraviolet region, as v 

frequency is appreciably different from a characteristic or natural 

approaches a natural frequency, the oscillators will begin to reso-

frequency, the oscillations are small, and there is little dissipa-

nate. Their amplitudes will increase markedly, and this will be 

tive absorption. At resonance, however, the oscillator amplitudes 

accompanied by damping and a strong absorption of energy from 

are increased, and the field does an increased amount of work 

the incident wave. When v0 j 
 = v in Eq. (3.73), the damping term 

on the charges. Electromagnetic energy removed from the wave 

obviously becomes dominant. The regions immediately sur-

rounding the various v0 j
  in Fig. 3.41 are called absorption 



bands
 . There  dn
 > d
 v is negative, and the process is spoken of as 

Frequency n (Hz)


anomalous
  (i.e., abnormal) dispersion
 . When white light passes 

3 × 1015

3 × 1014

3 × 1013

5 × 1012

through a glass prism, the blue constituent has a higher index 

2.8

than the red and is therefore deviated through a larger angle (see 

Section 5.5.1). In contrast, when we use a liquid-cell prism con-

Thallium bromoiodide

2.4

taining a dye solution with an absorption band in the visible, the 

Thallium chlorobromide

AgCl

spectrum is altered markedly (see Problem 3.59). All substances 

KBr KI

possess absorption bands somewhere within the electromagnetic 

2.0 NaCl

CsI CsBr

AgCl

frequency spectrum, so that the term  anomalous dispersion
 , be-

KCl

CsI

ing a carryover from the late 1800s, is certainly a misnomer.
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Figure 3.42    
 Index of refraction versus wavelength and frequency  

for several important optical crystals. (SOURCE: Data published by The Harshaw 


Figure 3.41    
 Refractive index versus frequency.

Chemical Co.)
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and converted into mechanical energy is dissipated thermally 

within the substance, and one speaks of an absorption peak or 

band. The material, although essentially transparent at other 

frequencies, is fairly opaque to incident radiation at its charac-

teristic frequencies (see photo of lenses on p. 76).


Negative Refraction


Recall that the refractive index of a material is related to both 

the electrical permittivity and the magnetic permeability by 

way of Eq. (3.59):  n 
 = ± 1Pm>P0m0. Presumably the square 

root could be either positive or negative, but no one was ever 

concerned with the latter possibility. Then in 1968 the Russian 

physicist Victor G. Veselago showed that if both the permittivity 

and the permeability of a material were negative it would have 

a negative index and display a variety of bizarre characteristics. 

The smaller the scatterers in a metamaterial are, the shorter the operating 

At the time there were substances available which under appro-

wavelength. These tiny resonators are about the size of a lightwave and are 

priate circumstances and in limited frequency ranges displayed 

designed to function at about 200 THz. (Ames Laboratory, USDOE)

either P 6 0 or m 6 0, but no known transparent or even trans-

lucent material existed that did both at once. Not surprisingly, 

structure. These engineered composite media came to be called 

the theory generated little interest until decades later.


metamaterials
 , and just above their resonant frequencies they do 

A lightwave is roughly five thousand times the size of an atom 

indeed display negative indices of refraction. 

and when it propagates through a dielectric it doesn’t “see” the 

Negative-index materials have a number of remarkable prop-

individual atoms, the multitude of which scatter the wave. If any-

erties and we’ll examine some of them later on (p. 106). One of 

thing, the EM wave behaves as if it “sees” a more-or-less continu-

the strangest behaviors has to do with the Poynting vector. In an 

ous medium and hence preserves its overall characteristics as it 

ordinary homogeneous isotropic material like glass the phase 

travels along. The same would be true if a much longer wave, such 

velocity of an EM wave and its Poynting vector (the direction of 

as a several-centimeter-long microwave, propagated through a re-

energy flow) are the same. That’s not the case with a negative-


gion filled with little closely spaced antennas that would scatter it. 


index material
 . While E


At the turn out of the twentieth century researchers started fabri-

$ : B
 $ is again the all-important direction 

of energy flow, the phase velocity is in the opposite direction, its 

cating three-dimensional arrays of such scatterers. Some consist-

negative; the wave propagates forward as the ripples that consti-

ed of little open rings that when penetrated by an oscillating mag-

tute it travel backward. Because the phase velocity is in the op-

netic field would have a capacitance, an inductance, and hence a 

posite direction to the cross-product, determined by the right-

resonant frequency just like an atom in a dielectric. To scatter the 

hand rule, negative-index media are also widely known as 

electric field, lattices of tiny conducting wires were included in the 


left-handed materials
 . 

Today the field is quite robust and researchers have succeeded 

in producing negative-index media using a variety of structures, 

including ones fabricated out of dielectrics, known as  photonic 



crystals
 . Since it is theoretically possible to create metamaterials 

that will work in the visible region of the spectrum, the potential 

applications, which run from “superlenses” to cloaking devices, 

are quite amazing.


3.6  The Electromagnetic-Photon 



Spectrum


In 1867, when Maxwell published the first extensive account of 

his Electromagnetic Theory, the frequency band was only known 

to extend from the infrared, across the visible, to the ultraviolet. 

An array of small conducting scatterers (split-ring resonators) used to  

Although this region is of major concern in Optics, it is a small 

fabricate a metamaterial. Operating in the microwave region of the  

spectrum it has P 6 0, m 6 0, and  n 
 6 0. (Ames Laboratory, USDOE)

segment of the vast electromagnetic spectrum (see Fig. 3.43). 
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Figure 3.43    
 The electromagnetic-photon spectrum.

This section enumerates the main categories (there is actually 

Germany, succeeded in generating and detecting electromag-

some overlapping) into which the spectrum is usually divided.

netic waves.* His transmitter was essentially an oscillatory dis-

charge across a spark gap (a form of oscillating electric 





dipole). For a receiving antenna, he used an open loop of wire 


3.6.1 Radiofrequency Waves


with a brass knob on one end and a fine copper point on the 

In 1887, eight years after Maxwell’s death, Heinrich Hertz, then 

other. A small spark visible between the two ends marked the 

professor of physics at the Technische Hochschule in Karlsruhe, 

detection of an incident electromagnetic wave. Hertz focused 

the radiation, determined its polarization, reflected and refracted 

it, caused it to interfere setting up standing waves, and then even 

measured its wavelength (on the order of a meter). As he put it:

I have succeeded in producing distinct rays of electric force, 

and in carrying out with them the elementary experiments 

which are commonly performed with light and radiant heat. . . . 

We may perhaps further designate them as rays of light of very 

great wavelength. The experiments described appear to me, at 

any rate, eminently adapted to remove any doubt as to the iden-

tity of light, radiant heat, and electromagnetic wave motion. 

(Heinrich Hertz,  Journal of Science
 , 1889)

The waves used by Hertz are now classified in the  radiofre-



quency
  range, which extends from a few hertz to about 109 Hz 

(l, from many kilometers to 0.3 m or so). These are generally 

emitted by an assortment of electric circuits. For example, the 

60-Hz alternating current circulating in power lines radiates 

A group of semiconductor lenses made from ZnSe, CdTe, GaAs, and Ge. 

These materials are particularly useful in the infrared (2 mm to 30 mm), 

*David Hughes may well have been the first person who actually performed this 

where they are highly transparent despite the fact that they are quite opaque 

feat, but his experiments in 1879 went unpublished and unnoticed for many 

in the visible region of the spectrum. (Two-Six Incorporated/II-IV Inc.)

years.
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A picture of a candy bar made using T-rays. The nuts, which were  

hidden beneath the chocolate, are visible as a result of refraction.  

(V. Rudd, Picometrix, Inc.)

Microwave antennae on the top of the Eiffel Tower in Paris. (E.H.)

Fig. 3.37), and if exposed to an electromagnetic wave, they will 

swing around, trying to stay lined up with the alternating E


$-field. 

This will occur with particular vigor at any one of its rotational 

with a wavelength of 5 * 106 m, or about 3 * 103 miles. There 

resonances. Consequently, water molecules efficiently and dis-

is no upper limit to the theoretical wavelength; one could lei-

sipatively absorb microwave radiation at or near such a frequen-

surely swing the proverbial charged pith ball and, in so doing, 

cy. The microwave oven (12.2 cm, 2.45 GHz) is an obvious 

produce a rather long, if not very strong, wave. Indeed, waves 

application. On the other hand, nonpolar molecules, such as car-

more than 18 million miles long have been detected streaming 

bon dioxide, hydrogen, nitrogen, oxygen, and methane, cannot 

down toward Earth from outer space. The higher frequency end 

make rotational transitions by way of the absorption of photons.

of the band is used for television and radio broadcasting.

Nowadays microwaves are used for everything from trans-

At 1 MHz (106 Hz), a radiofrequency photon has an energy 

mitting telephone conversations and interstation television to 

of 6.62 * 10-28 J or 4 * 10-9 eV, a very small quantity by any 

cooking hamburgers, from guiding planes and catching speed-

measure. The granular nature of the radiation is generally ob-

ers (by radar) to studying the origins of the Universe, opening 

scured, and only a smooth transfer of radiofrequency energy is 

garage doors, and viewing the surface of the planet (see photo 

apparent.

on p. 78). They are also quite useful for studying Physical  

Optics with experimental arrangements that are scaled up to 

convenient dimensions.


3.6.2 Microwaves


Photons in the low-frequency end of the microwave spec-

trum have little energy, and one might expect their sources to be 

The microwave region extends from about 109 Hz up to about 

electric circuits exclusively. Emissions of this sort can, howev-

3 * 1011 Hz. The corresponding wavelengths go from roughly 

er, arise from atomic transitions, if the energy levels involved 

30 cm to 1.0 mm. Radiation capable of penetrating the Earth’s 

are quite near each other. The apparent ground state of the cesi-

atmosphere ranges from less than 1 cm to about 30 m. Micro-

um atom is a good example. It is actually a pair of closely spaced 

waves are therefore of interest in space-vehicle communications, 

energy levels, and transitions between them involve an energy of 

as well as radio astronomy. In particular, neutral hydrogen atoms, 

only 4.14 * 10-5 eV. The resulting microwave emission has a 

distributed over vast regions of space, emit 21-cm (1420-MHz) 

frequency of 9.192 631 77 * 109 Hz. This is the basis for the 

microwaves. A good deal of information about the structure of 

well-known cesium clock, the standard of frequency and time.

our own and other galaxies has been gleaned from this particular 

The range of radiation that straddles both microwaves and 

emission.

infrared (roughly 50 GHz to 10 THz) is often called terahertz 

Molecules can absorb and emit energy by altering the state of 

radiation or T-rays. They’re not absorbed by most dry, non- 

motion of their constituent atoms—they can be made to vibrate 

polar materials such as plastic, paper, or fat. Water will absorb 

and rotate. Again, the energy associated with either motion is 

T-rays, and they’re reflected by metals because of the free elec-

quantized, and molecules possess rotational and vibrational en-

trons. As a result, they can be used to image internal structure 

ergy levels in addition to those due to their electrons. Only polar 

that would otherwise be hidden from view (see above photo).

molecules will experience forces via the E


$-field of an incident 

electromagnetic wave that will cause them to rotate into align-

ment, and only they can absorb a photon and make a rotational 


3.6.3 Infrared


transition to an excited state. Since massive molecules are not 

able to swing around easily, we can anticipate that they will 

The infrared region, which extends roughly from 3 * 1011 Hz 

have low-frequency rotational resonances (far IR, 0.1 mm, to 

to about 4 * 1014 Hz, was first detected by the renowned as-

microwave, 1 cm). For instance, water molecules are polar (see 

tronomer Sir William Herschel (1738–1822) in 1800. As the 
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A photograph of an 18- by 75-mile area northeast of Alaska. It was taken by the  Seasat
  satellite 800  

kilometers (500 miles) above the Earth. The overall appearance is somewhat strange because this is  

actually a radar or microwave picture. The wrinkled gray region on the right is Canada. The small, bright shell shape is Banks Island, embedded in a black band of shore-fast, first-year sea ice. Adjacent to that is open water, which appears smooth and gray. The dark gray blotchy area at the far left is the main polar  

ice pack. There are no clouds because the radar “sees” right through them. (NASA)

name implies, this band of EM-radiation lies just beneath red 

body radiates IR quite weakly, starting at around 3000 nm, 

light. The infrared, or IR, is often subdivided into four regions: 

peaking in the vicinity of 10 000 nm, and trailing off from there 

the  near IR
 , that is, near the visible (780–3000 nm); the  inter-


into the extreme IR and, negligibly, beyond. This emission is 


mediate IR
  (3000–6000 nm); the  far IR
  (6000–15000 nm); and 

exploited by see-in-the-dark sniperscopes, as well as by some 

the  extreme IR
  (15000 nm–1.0 mm). This is again a rather loose 

rather nasty “heat”-sensitive snakes (Crotalidae, pit vipers, and 

division, and there is no universality in the nomenclature. Radi-

Boidae, constrictors) that tend to be active at night.

ant energy at the long-wavelength extreme can be generated by 

Besides rotating, a molecule can vibrate in several different 

either microwave oscillators or incandescent sources (i.e., mo-

ways, with its atoms moving in various directions with respect 

lecular oscillators). Indeed, any material will radiate and absorb 

to one another. The molecule need not be polar, and even a lin-

IR via thermal agitation of its constituent molecules.

ear system such as CO2 has three basic vibrational modes and a 

The molecules of any object at a temperature above absolute 

number of energy levels, each of which can be excited by pho-

zero (-273°C) will radiate IR, even if only weakly (see Section 

tons. The associated vibrational emission and absorption spec-

13.1.1). On the other hand, infrared is copiously emitted in a 

tra are, as a rule, in the IR (1000 nm– 0.1 mm). Many molecules 

continuous spectrum from hot bodies, such as electric heaters, 

have both vibrational and rotational resonances in the IR and 

glowing coals, and ordinary house radiators. Roughly half the 

are good absorbers, which is one reason IR is often mislead-

electromagnetic energy from the Sun is IR, and the common 

ingly called “heat waves”—just put your face in the sunshine 

lightbulb actually radiates far more IR than light. Like all warm-

and feel the resulting buildup of thermal energy.

blooded creatures, we too are infrared emitters. The human 

Infrared radiant energy is generally measured with a device 

that responds to the heat generated on absorption of IR by a 

blackened surface. There are, for example, thermocouple, pneu-

matic (e.g., Golay cells), pyroelectric, and bolometer detectors. 

These in turn depend on temperature-dependent variations in 

induced voltage, gas volume, permanent electric polarization, 

and resistance, respectively. The detector can be coupled by 

way of a scanning system to a cathode ray tube to produce an 

instantaneous televisionlike IR picture (see photo) known as a 

thermograph (which is quite useful for diagnosing all sorts of 

problems, from faulty transformers to faulty people). Photo-

graphic films sensitive to near IR (61300 nm) are also avail-

able. There are IR spy satellites that look out for rocket launch-

ings, IR resource satellites that look out for crop diseases, and 

IR astronomical satellites that look out into space. There are 

“heat-seeking” missiles guided by IR, and IR lasers and tele-

scopes peering into the heavens.

Small differences in the temperatures of objects and their 

surroundings result in characteristic IR emission that can be 

An IR photo. In the visible, the shirt was dark brown and the undershirt, like 

the ball, was black. (E.H.)

used in many ways, from detecting brain tumors and breast  
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Thermograph of the author. This 

photo looks much better in color. 

Note the cool beard and how far the 

hairline has receded since the first 

edition of this book. (E.H.)

cancers to spotting a lurking burglar. The CO2 laser, because it 

is a convenient source of continuous power at appreciable levels 

of 100 W and more, is widely used in industry, especially in 

precision cutting and heat treating. Its extreme-IR emissions 

(18.3  mm–23.0  mm) are readily absorbed by human tissue, 

An arm viewed in a broad band  

making the laserbeam an effective bloodless scalpel that cauter-

of radiant energy extending from 

izes as it cuts.

468.5 nm (which is light) to  

827.3 nm (which is near-infrared). 

The technique has many biomedical 


3.6.4 Light


applications, among which is the 

early detection of skin cancer.

Light corresponds to the electromagnetic radiation in the  

narrow band of frequencies from about 3.84 * 1014 Hz to 

roughly 7.69 * 1014 Hz (see Table 3.4). It is generally pro-

does not create color by altering white light to different degrees, 

duced by a rearrangement of the outer electrons in atoms and 

as had been thought for centuries, but simply fans out the light, 

molecules. (Don’t forget synchrotron radiation, which is a dif-

separating it into its constituent colors. Not surprisingly, the 

ferent mechanism.)*

very concept of  whiteness
  seems dependent on our perception 

In an incandescent material, a hot, glowing metal filament, 

of the Earth’s daylight spectrum—a broad frequency distribu-

or the solar fireball, electrons are randomly accelerated and un-

tion that generally falls off more rapidly in the violet than in the 

dergo frequent collisions. The resulting broad emission spec-

red (Fig. 3.44). The human eye-brain detector perceives as 

trum is called thermal radiation
 , and it is a major source of 

white a wide mix of frequencies, usually with about the same 

light. In contrast, if we fill a tube with some gas and pass an 

amount of energy in each portion. That is what we mean when 

electric discharge through it, the atoms therein will become ex-

we speak about “white light”—much of the color of the spec-

cited and radiate. The emitted light is characteristic of the par-

trum, with no region predominating. Nonetheless, many differ-

ticular energy levels of those atoms, and it is made up of a series 

ent distributions will appear more or less white. We recognize a 

of well-defined frequency bands or lines. Such a device is 

known as a gas discharge tube. When the gas is the krypton 86 

isotope, the lines are particularly narrow (zero nuclear spin, 

therefore no hyperfine structure). The orange-red line of Kr 86, 

whose vacuum wavelength is 605.780 210 5 nm, has a width (at 


TABLE 3.4    Approximate Frequency and Vacuum 



Wavelength Ranges for the Various Colors


half height) of only 0.000 47 nm, or about 400 MHz. Accord-

ingly, until 1983 it was the international standard of length 

Color 

l0 (nm) 

n (THz)*

(with 1 650 763.73 wavelengths equaling a meter).

Newton was the first to recognize that white light
  is actually 

Red 

780–622 384–482

a mixture of all the colors of the visible spectrum, that the prism 

Orange 622–597  482–503

Yellow 597–577 503–520

Green  577–492 520–610

*There is no need here to define light in terms of human physiology. On the 

Blue  492–455 610–659

contrary, there is plenty of evidence to indicate that this would not be a very 

Violet  455–390 659–769

good idea. For example, see T. J. Wang, “Visual Response of the Human Eye to X 

Radiation,”  Am. J. Phys
 . 35
 , 779 (1967).

*1 terahertz (THz) = 1012 Hz, 1 nanometer (nm) = 10-9 m.
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Figure 3.44
     Various spectral distributions of light. (Dr. Gottipaty N. Rao, Adelphi University) piece of paper to be white whether it’s seen indoors under in-graphics, and most other applications are designed to operate at a 

candescent light or outside under skylight, even though those 

color temperature of 6500 K.

whites are quite different. In fact, there are many pairs of col-

Colors are the subjective human physiological and psycho-

ored light beams (e.g., 656-nm red and 492-nm cyan) that will 

logical responses, primarily, to the various frequency regions 

produce the sensation of whiteness, and the eye cannot always 

extending from about 384 THz for red, through orange, yel-

distinguish one white from another; it cannot frequency analyze 

low, green, and blue, to violet at about 769 THz (Table 3.4). 

light into its harmonic components the way the ear can analyze 

Color is not a property of the light itself but a manifestation of 

sound (see Section 7.3).

the electrochemical sensing system—eye, nerves, brain. To be 

The thermal radiation from an ideal emitter, a so-called black-


more precise, we should not say “yellow light” but rather 


body
 , depends on its temperature (Fig. 13.2). Most hot glowing 

“light that is seen as yellow.” Remarkably, a variety of differ-

objects more or less resemble a blackbody and emit a broad range 

ent frequency mixtures can evoke the same color response 

of frequencies where the cooler the object is, the more energy is 

from the eye-brain sensor. A beam of red light (peaking at, 

given off at the low-frequency end of its spectrum. Moreover, the 

say, 430 THz) overlapping a beam of green light (peaking at, 

hotter it is, the brighter it is. Although anything above absolute 

say, 540 THz) will result, believe it or not, in the perception of 

zero emits EM-radiation, things have to be fairly hot before they 


yellow
  light, even though no frequencies are actually present 

begin to radiate copiously in the visible; witness the fact that you 

in the so-called yellow band. Apparently, the eye-brain aver-

emit mostly infrared with no detectable light at all. By compari-

ages the input and “sees” yellow (Section 4.9). That’s why a 

son a match flame at a comparatively low 1700 K glows red-

color television screen can manage with only three phosphors: 

orange; a slightly hotter candle flame, at about 1850 K, appears 

red, green, and blue.

more yellow; while an incandescent bulb at about 2800 K 





In a flood of bright sunlight where the photon flux density 

to 3300 K puts out a spectrum that contains a little more blue and 

might be 1021 photons>m2 · 
 s, we can generally expect the 

appears yellow-white. At a still higher 6500 K we reach a spec-

quantum nature of the energy transport to be thoroughly 

trum usually referred to as daylight. Digital cameras, DVDs, web 

masked. However, in very weak beams, since photons in the 
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visible range ( h
 n ≈ 1.6 eV to 3.2 eV) are energetic enough to 

produce effects on a distinctly individual basis, the granularity 

will become evident. Research on human vision indicates that 

as few as 10 light photons, and possibly even 1, may be detect-

able by the eye.


3.6.5 Ultraviolet


Adjacent to and just beyond light in the spectrum is the ultravio-

let region (approximately 8 * 1014 Hz to about 3.4 * 1016 Hz), 

discovered by Johann Wilhelm Ritter (1776–1810). Photon en-

ergies therein range from roughly 3.2 eV to 100 eV. Ultraviolet, 

or UV, rays from the Sun will thus have more than enough en-

ergy to ionize atoms in the upper atmosphere and in so doing 

create the ionosphere. These photon energies are also of the or-

der of the magnitude of many chemical reactions, and ultraviolet 

An ultraviolet photograph of Venus taken by  Mariner 10
 . (DVIDS/NASA)

rays become important in triggering those reactions. Fortunately, 

ozone (O3) in the atmosphere absorbs what would otherwise be 

a lethal stream of solar UV. At wavelengths less than around 290 


3.6.6 X-rays


nm, UV is germicidal (i.e., it kills microorganisms). The parti-

clelike aspects of radiant energy become increasingly evident as 

X-rays were rather fortuitously discovered in 1895 by Wilhelm 

the frequency rises.

Conrad Röntgen (1845–1923). Extending in frequency from 

Humans cannot see UV very well because the cornea absorbs 

roughly  2.4 * 1016 Hz to 5 * 1019 Hz, they have extremely 

it, particularly at the shorter wavelengths, while the eye lens ab-

short wavelengths; most are smaller than an atom. Their photon 

sorbs most strongly beyond 300 nm. A person who has had a 

energies (100 eV to 0.2 MeV) are large enough so that X-ray 

lens removed because of cataracts can see UV (l

quanta can interact with matter one at a time in a clearly granular 

7 300 nm). 

In addition to insects, such as honeybees, a fair number of other 

fashion, almost like bullets of energy. One of the most practical 

creatures can visually respond to UV. Pigeons, for example, are 

mechanisms for producing X-rays is the rapid deceleration of 

capable of recognizing patterns illuminated by UV and probably 

high-speed charged particles. The resulting broad-frequency 

employ that ability to navigate by the Sun even on overcast days.


bremsstrahlung
  (German for “braking radiation”) arises when a 

An atom emits a UV photon when an electron makes a long 

beam of energetic electrons is fired at a material target, such as a 

jump down from a highly excited state. For example, the outer-

copper plate. Collisions with the Cu nuclei produce deflections 

most electron of a sodium atom can be raised to higher and 

of the beam electrons, which in turn radiate X-ray photons.

higher energy levels until it is ultimately torn loose altogether at 

In addition, the atoms of the target may become ionized dur-

5.1 eV, and the atom is ionized. If the ion subsequently recom-

ing the bombardment. Should that occur through removal of an 

bines with a free electron, the latter will rapidly descend to the 

ground state, most likely in a series of jumps, each resulting in 

the emission of a photon. It is possible, however, for the elec-

tron to make one long plunge to the ground state, radiating a 

single 5.1-eV UV photon. Even more energetic UV can be gen-

erated when the inner, tightly bound electrons of an atom are 

excited.

The unpaired valence electrons of isolated atoms can be an 

important source of colored light. But when these same atoms 

combine to form molecules or solids, the valence electrons are 

ordinarily paired in the process of creating the chemical bonds 

that hold the thing together. Consequently, the electrons are of-

ten more tightly bound, and their molecular-excited states are 

higher up in the UV. Molecules in the atmosphere, such as N2, 

O2, CO2, and H2O, have just this sort of electronic resonance in 

the UV.

Nowadays there are ultraviolet photographic films and mi-

croscopes, UV orbiting celestial telescopes, synchrotron sourc-

An early 
 X-ray photograph of the Sun taken March 1970. The limb of the 

es, and ultraviolet lasers.

Moon is visible in the southeast corner. (Dr. G. Vaiana and NASA)
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The Crab Nebula (which is 6000 

At the center of the Crab Nebula 

An optical image of the Crab 

This amazingly detailed X-ray 

light years from Earth) is what 

(which is located in the constella-

Nebula. The light forming this  

image of the Crab Nebula  

remains of an exploded star, a 

tion Taurus) is a rapidly spinning 

picture comes from particles of 

(see p. 64) was taken by the orbit-

supernova that was seen on Earth 

neutron star, or pulsar, that emits 

intermediate energy. The filaments 

ing Chandra X-Ray Observatory. 

in 1054 a.d. The nebula is a bright 

flashes of radiation 30 times a sec-

are due to hot gases at tempera-

The picture reveals the locations  

source of long wavelength radio 

ond. This image of the nebula was 

tures of tens of thousands of 

of the most energetic particles in 

waves. Here the individual photon 

taken using near-infrared radiant 

degrees. (DVIDS/NASA)

the pulsar. (DVIDS/NASA)

energies are relatively low. Notice 

energy. Regions that are relatively 

that the background of distant 

hot show up as bright areas in the 

stars is absent from the image. 

photo. Some stars in the back-

(DVIDS/NASA)

ground appear brighter in visible 

light than in near-IR radiation, and 

A single gamma-ray photon carries so much energy that it can 

vice versa. (DVIDS/NASA)

be detected with little difficulty. At the same time, its wave-

length is so small that it is now extremely difficult to observe 

any wavelike properties.

We have gone full cycle from the radiofrequency wavelike re-

inner electron strongly bound to the nucleus, the atom will emit 

sponse to gamma-ray particlelike behavior. Somewhere, not far 

X-rays as the electron cloud returns to the ground state. The 

from the (logarithmic) center of the spectrum, there is light. As 

resulting quantized emissions are specific to the target atom, 

with all electromagnetic radiation, its energy is quantized, but 

revealing its energy-level structure, and accordingly are called 

here in particular what we “see” will depend on how we “look.”


characteristic
  radiation.

Traditional medical film radiography generally produces 

little more than simple shadow castings, rather than photo-

graphic images in the usual sense; it has not been possible to 


3.7 Quantum Field Theory


fabricate useful X-ray lenses. But modern focusing methods  

using mirrors (see Section 5.4) have begun an era of X-ray  

A charged particle exerts forces on other charged particles. It 

imagery, creating detailed pictures of all sorts of things, from 

creates a web of electromagnetic interaction around itself that 

imploding fusion pellets to celestial sources, such as the Sun 

extends out into space. That imagery leads to the concept of the 

(see photo on p. 81), distant pulsars, and black holes—objects 

electric field, which is a representation of the way the electro-

at  temperatures of millions of degrees that emit predominantly 

magnetic interaction reveals itself on a macroscopic level. The 

in the X-ray region. Orbiting X-ray telescopes have given us an 

static electric field is, in effect, a spatial conception summariz-

exciting new eye on the Universe (see photo above). There are 

ing the interaction among charges. Through Faraday’s vision, 

X-ray microscopes, picosecond X-ray streak cameras, X-ray 

the idea of the field was extended, and it became appropriate to 

diffraction gratings, and interferometers, and work continues on 

imagine that one charge sets up an E


$-field in space and another 

X-ray holography. In 1984 a group at the Lawrence Livermore 

charge, immersed in that field, interacts directly with it, and 

 National Laboratory succeeded in producing laser radiation at a 

vice versa. What began as a mapping of the force distribution 

wavelength of 20.6 nm. Although this is more accurately in the 

(whatever its cause) became a thing, a field, capable itself of 

extreme ultraviolet (XUV), it’s close enough to the X-ray  region 

exerting force. Still the picture seems straightforward, even if 

to qualify as the first soft X-ray laser.

many questions come to mind. Does the static E


$-field have a 

physical reality in-and-of itself? If it does, does it fill space with 

energy and how exactly does that happen? Is anything actually 

flowing? How does the field produce a force on a charge? Does 


3.6.7 Gamma Rays


it take time to exert its influence?

Gamma rays are the highest energy (104 eV to about 1019 eV), 

Once the electromagnetic field became a reality, physicists 

shortest wavelength electromagnetic radiations. They are emitted 

could imagine disturbances of that tenuous medium that so con-

by particles undergoing transitions within the atomic nucleus.  

veniently spans the void of space;  
light was an electromagnetic 
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wave in the electromagnetic field

 . Although it’s easy enough to 

is the most fundamental and arguably the most successful of all 

envision a wave sweeping through an existing field (p. 62), it’s 

physical theories. Light quanta come out of the theory in a com-

not so obvious how a localized pulse launched into space, like 

pletely natural way by quantizing the electromagnetic field. The 

the one shown in Fig. 3.45, might be conceptualized. There is 

apparent implication of this is that all microparticles originate in 

no static field filling space, extending out in front of the pulse; 

the same way from their own individual fields: the field’s the 


if the pulse advances through the medium of the electromag-


thing
 , as it were. Thus the electron is the quantum of the elec-

netic field, it must first create that medium itself as it progress-

tron field, the proton is the quantum of the proton field, and so 

es. That’s not impossible to imagine on some level, but it’s 

forth. Filling in the details has been the business of field theorists 

hardly what one would call a classical wave. For any traditional 

since the mid-twentieth century.

wave, a medium in equilibrium is the fundamental starting 

There are two distinct philosophical currents in contemporary 

point; it exists at any location before and after the wave passes. 

QFT: the field-centered and the particle-centered. In the field-

So this idea of an electromagnetic wave, which is so beautiful 

centered view,  
fields are the fundamental entities, and particles 



mathematically, is not quite so transparent conceptually.



are just the quanta of the fields

 . In the particle-centered view, 

As early as 1905, Einstein already considered the classical 



particles are the fundamental entities, and fields are just the 



equations of Electromagnetic Theory to be descriptions of the 



macroscopic coherent states of particles

 . The field tradition 

average values of the quantities being considered. “To me it 

goes back to L. de Broglie (1923), E. Schrödinger, P. Jordan, 

seems absurd,” he wrote to Planck, “to have energy continuously 

and W. Pauli, whose research laid the foundations of the quan-

distributed in space without assuming an aether. . . . While Fara-

tum-mechanical variant sometimes called Wave Mechanics. 

day’s representation was useful in the development of electrody-

The particle tradition began with the early work of W. Heisenberg 

namics, it does not follow in my opinion that this view must be 

(1925), although its spiritual mentor was P. A. M. Dirac, who set 

maintained in all its detail.” Classical theory wonderfully ac-

the particle agenda with his theory of the electron-positron pair. 

counted for everything being measured, but it was oblivious to 

The particular offshoot of QFT that strives to provide a relativis-

the exceedingly fine granular structure of the phenomenon. Us-

tic quantum-mechanical treatment of the electromagnetic inter-

ing thermodynamic arguments, Einstein proposed that electric 

action is called Quantum Electrodynamics (QED), and it too has 

and magnetic fields were quantized, that they are particulate 

its particle-centered and field-centered proponents. Some of the 

rather than continuous. After all, classical theory evolved decades 

basic ideas of QED have been made accessible on this level by 

before the electron was even discovered. If charge (the funda-

R. P. Feynman, and insofar as they illuminate Optics we’ll ex-

mental source of electromagnetism) is quantized, shouldn’t the 

plore them later in this text (p. 141).

theory reflect that in some basic way?

Contemporary physics by way of QFT holds that all fields 

Today, we are guided by Quantum Mechanics, a highly math-

are quantized; that each of the fundamental Four Forces (Gravi-

ematical theory that provides tremendous computational and 

tational, Electromagnetic, Strong, and Weak) is mediated by  

predictive power but is nonetheless disconcertingly abstract. In 

a special kind of field particle. These  messenger bosons
  are 

particular, the subdiscipline that treats microparticles and their 

continuously absorbed and emitted by the interacting material 

interactions, Quantum Field Theory (QFT), in its various forms, 

particles (electrons, protons, etc.). This ongoing exchange  is
  the 

interaction. The mediating particle of the electric field is the 


virtual photon
 . This massless messenger travels at the speed of 


Figure 3.45    
 An ultrashort pulse 

of green light from a neodymium-

light and transports momentum and energy. When two electrons 

doped glass laser. The pulse passed, 

repel one another, or an electron and proton attract, it is by emit-

from right to left, through a water 

ting and absorbing virtual photons and thereby transferring mo-

cell whose wall is marked in milli-

mentum from one to the other, that transfer being a measure of 

meters. During the 10-picosecond 

the action of force. The messenger particles of the electromag-

exposure, the pulse moved about 

2.2 mm. (Bell Laboratories)

netic force are called  virtual
  photons because they are bound to 

the interaction. Virtual photons can never escape to be detected 

directly by some instrument, however unsettling that is philo-

sophically and however hard that makes it to establish their ex-

istence. Indeed, virtual photons (as distinct from real photons) 

exist only as the means of interaction. They are creatures of 

theory whose metaphysical status is yet to be determined.*

On a macroscopic level, messenger particles can manifest 

themselves as a continuous field provided they can group in very 

large numbers. Fundamental particles have an intrinsic angular 

*For a discussion of the issues being struggled with, see H. R. Brown and  

R. Harré,  Philosophical Foundations of Quantum Field Theory
 .
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momentum, or  spin
 , that determines their grouping characteris-

important class of interactions that have spin-1 messengers are 

tics. Quantum Theory tells us that the desired field behavior can 

known as gauge forces
 , and the electromagnetic force is the 

occur only if forces are mediated by messenger particles having 

model for all the gauge forces. Today, the magic of action-at-a-

angular momenta equal to integer multiples of  h
 >2p (i.e.,  distance is understood via the no less mysterious exchange of 0, 1 h
 >2p, 2 h
 >2p, 3 h
 >2p, . . .). The angular momentum of the 

virtual particles, but at least now a highly predictive mathemati-

virtual photon is 1( h
 >2p); it’s a spin-1 particle. The exceedingly 

cal theory is in place that describes the phenomenon.


PROBLEMS




Complete solutions to all problems—except those with an asterisk— 




3.6
   The electric field of an electromagnetic wave traveling in the pos-



can be found in the back of the book.



itive  x
 -direction is given by

p z



3.1
   Consider the plane electromagnetic wave in vacuum (in SI units) 


E


$ =  E
 0 jˆ
  sin   cos ( kx 
 - v t
 )


z


given by the expressions  E


0


x 
 = 0,  Ey 
 = 2 cos [2p * 1014( t 
 -  x
 > c
 )  +

p>2], and  Ez 
 = 0.

(a) Describe the field verbally. (b) Determine an expression for  k
 .  

(a)   What are the frequency, wavelength, direction of motion, ampli-

(c) Find the phase speed of the wave.

tude, initial phase angle, and polarization of the wave?


3.7*
   If the electric field E
 $ (z, t)
  of an EM wave in vacuum is, at a cer-

(b)  Write an expression for the magnetic flux density.

tain location and time, given by E


$ = (10 V>m)(cos 0.5p) iˆ
  write an 


3.2
   Write an expression for the E
 $- and B
 $-fields that constitute a plane 

expression for the associated B


$@field.

harmonic wave traveling in the  + z
 -direction. The wave is linearly po-


3.8*
   A 550-nm harmonic EM wave whose electric field is in the  z
 -

larized with its plane of vibration at 45° to the  yz
 -plane.

direction is traveling in the  y
 -direction in vacuum. (a) What is the 


3.3*
   Considering Eq. (3.30), show that the expression

frequency of the wave? (b) Determine both v and  k
  for this wave. (c) 


k


If the electric field amplitude is 600 V

$ : E
 $ = vB
 $

>m, what is the amplitude of 

the magnetic field?  (d) Write an expression for both  E(t) 
 and   B(t)
  

is correct as it applies to a plane wave for which the direction of the 

given that each is zero at  x 
 = 0 and  t 
 = 0. Put in all the appropriate 

electric field is constant. 

units.


3.4*
  Imagine an electromagnetic wave with its E
 $-field in the  y
 - 


3.9*
  The  E
 -field of an electromagnetic wave is described by

direction. Show that Eq. (3.27)


E


$ = (iˆ 
 + jˆ
 ) E
 0 sin ( kz 
 - v t 
 + p>6)

0 E


0 B


= - 

Write an expression for the  B
 -field. Determine B


$ (0, 0)
 .

0 x


0 t



3.10*
  Using the wave given in the previous problem, determine 

applied to the harmonic wave B


$ 


E


$ (
 -l> 2, 0)
  and draw a sketch of the vector representing it at that moment.


E


$ = E
 $0 cos ( kx 
 - v t
 )  B
 $ = B
 $0 cos ( kx 
 - v t
 )


3.11*
  A plane electromagnetic wave traveling in the  y
 -direction 

through vacuum is given by

yields the fact that


E



E


$ (x, y, z, t) 
 =  E
 0iˆ
   ei
 ( ky
 -v t
 )





0 =  cB
 0

in agreement with Eq. (3.30).

Determine an expression for the corresponding magnetic field of the 

electromagnetic wave. Draw a diagram showing E


$0, B
 $0, and k
 $, the 


3.5*
   An electromagnetic wave is specified (in SI units) by the follow-

propagation vector.

ing function:


3.12*
   Given that the B
 $@field of an electromagnetic wave in vacuum is


E


$ = (-6iˆ 
 + 315 jˆ
 )(104 V>m)  ei
 31(315 x
 +2 y
 )p*107-9.42*1015 t
 4


B


$ (x, y, z, t) 
 =  B
 0 jˆ
   ei
 ( kz
 +v t
 )

Remember that E


$0 and k
 $ are perpendicular to each other.

write an expression for the associated E


$@field. What is the direction of 

Find (a) the direction along which the electric field oscillates, (b) the 

propagation?

scalar value of amplitude of the electric field, (c) the direction of prop-

agation of the wave, (d) the propagation number and wavelength, (e) 


3.13*
   Calculate the energy input necessary to charge a parallel-plate 

the frequency and angular frequency, and (f ) the speed.

capacitor by carrying charge from one plate to the other. Assume the 
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energy is stored in the field between the plates and compute the energy 


3.21*
   The following is the expression for the E
 $@field of an electro-

per unit volume,  uE
 , of that region, that is, Eq. (3.31).  Hint:
  Since the 

magnetic wave traveling in a homogeneous dielectric:

electric field increases throughout the process, either integrate or use 


E


its average value  E


$ = (-100 V>m)iˆ
   ei
 ( kz
 -v t
 )

>2.


3.14*
   Starting with Eq. (3.32), prove that the energy densities of the 

Here v = 1.80 * 1015 rad>s and  k 
 = 1.20 * 107 rad>m.

electric and magnet fields are equal ( uE 
 =  uB
 ) for an electromagnetic 

(a)  Determine the associated B


$-field. (b) Find the index of refraction. 

wave.

(c)  Compute the permittivity. (d) Find the irradiance. (e) Draw a dia-


3.15
   The time average of some function  ƒ(t)
  taken over an interval  T
  

gram showing E


$0, B
 $0, and k
 $, the propagation vector.

is given by


3.22*
   A tungsten lightbulb puts out 20 W of radiant energy (most of 


t 
 +  T


it IR). Assume it to be a point source and calculate the irradiance 1.00 

1

8 ƒ(t)
 9T =  


ƒ(t
 ′ )
   dt
 ′

m away. 


T 
 L t



3.23*
   Consider a linearly polarized plane electromagnetic wave trav-

where  t
 ′ is just a dummy variable. If t = 2p>v is the period of a har-

eling in the  + x
 -direction in free space having as its plane of vibration 

monic function, show that r
 $

the  xy
 -plane. Given that its frequency is 10 MHz and its amplitude is 


E
 0 = 0.08 V>m,

8sin2 (k
 $ · r
 $ - v t
 )9 = 12

(a)  Find the period and wavelength of the wave.

8cos2 (k
 $ · r
 $ - v t
 )9 = 12

(b)  Write an expression for  E(t) 
 and  B(t)
 .

(c)  Find the flux density, 8 S
 9, of the wave.

and


3.24*
   On average, the net electromagnetic power radiated by the Sun, 

8sin (k
 $ · r
 $ - v t
 ) cos (k
 $ · r
 $ - v t
 )9 = 0

its so-called  luminosity
  ( L
 ), is 3.9 * 1026 W. Determine the mean am-

plitude of the electric field due to all the radiant energy arriving at the 

when  T 
 = t  
 and when  T
  7 7 t.

top of Earth’s atmosphere (1.5 * 1011 m from the Sun).


3.16*
   Show that a more general formulation of the previous problem 


3.25
  A linearly polarized harmonic plane wave with a scalar  

yields

amplitude of 10 V>m is propagating along a line in the  xy
 -plane at 

45° to the  x
 -axis with the  xy
 -plane as its plane of vibration. Please 

8cos2v t
 9T = 12 [1 +  sinc v T
  cos 2v t
 ]

write a vector expression describing the wave assuming both  kx
  

and  k


for any interval  T
 .


y
  are positive. Calculate the f lux density, taking the wave to 

be in vacuum.


3.17*
   With the previous problem in mind, prove that


3.26
   Pulses of UV lasting 2.00 ns each are emitted from a laser that 

8sin2v t
 9T = 12[1 -  sinc v T
  cos 2v t
 ]

has a beam of diameter 2.5 mm. Given that each burst carries an energy 

of 6.0 J, (a) determine the length in space of each wavetrain, and  

for any interval  T
 .

(b) find the average energy per unit volume for such a pulse.


3.18*
   Prove that the irradiance of a harmonic EM wave in vacuum is 


3.27*
  A laser provides pulses of EM-radiation in vacuum lasting 

given by

10-12 s. If the radiant flux density is 1020 W>m2, determine the ampli-

1

tude of the electric field of the beam.


I 
 =

  E
 2

2 c


0

m0


3.28
  A 1.0-mW laser has a beam diameter of 2 mm. Assuming the 

divergence of the beam to be negligible, compute its energy density in 

and then determine the average rate at which energy is transported per 

the vicinity of the laser.

unit area by a plane wave having an amplitude of 15.0 V>m.


3.19*
  A 1.0-mW laser produces a nearly parallel beam 1.0 cm2 in 


3.29*
  A cloud of locusts having a density of 100 insects per cubic 

cross-sectional area at a wavelength of 650 nm. Determine the amplitude 

meter is flying north at a rate of 6 m>min. What is the flux density of 

of the electric field in the beam, assuming the wavefronts are homoge-

locusts? That is, how many cross an area of 1 m2 perpendicular to their 

neous and the light travels in vacuum.

flight path per second?


3.20*
  A nearly cylindrical laserbeam impinges normally on a 


3.30
   Imagine that you are standing in the path of an antenna that is 

perfectly absorbing surface. The irradiance of the beam (assuming 

radiating plane waves of frequency 100 MHz and flux density 

it to be uniform over its cross section) is 40 W>cm2. If the diame-

19.88 * 10-2 W>m-2. Compute the photon flux density, that is, the 

ter of the beam is 2.0> 1p cm how much energy is absorbed per 

number of photons per unit time per unit area. How many photons, on 

minute?

the average, will be found in a cubic meter of this region?
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   Electromagnetic Theory, Photons, and Light


3.31*
  How many photons per second are emitted from a 100-W  


3.41*
   A surface is placed perpendicular to a beam of light of constant 

yellow lightbulb if we assume negligible thermal losses and a qua-

irradiance ( I
 ). Suppose that the fraction of the irradiance absorbed by 

simonochromatic wavelength of 550 nm? In actuality only about 2.5% 

the surface is a. Show that the pressure on the surface is given by

of the total dissipated power emerges as visible radiation in an ordinary 

𝒫 = (2 - a) I
 > c


100-W incandescent lamp.


3.42*
   A light beam with an irradiance of 2.00 * 106 W>m2 impinges 


3.32
  A 3.0-V incandescent flashlight bulb draws 0.25 A, converting 

normally on a surface that reflects 70.0% and absorbs 30.0%. Com-

about 1.0% of the dissipated power into light (l ≈ 550 nm). If the beam 

pute the resulting radiation pressure on the surface.

has a cross-sectional area of 10 cm2 and is approximately cylindrical,


3.43
   What force on the average will be exerted on the (40 m

(a)  How many photons are emitted per second?

* 50 m) 

flat, highly reflecting side of a space station wall if it’s facing the Sun 

(b)  How many photons occupy each meter of the beam?

while orbiting Earth?

(c)  What is the flux density of the beam as it leaves the flashlight?


3.44
   A parabolic radar antenna with a 2-m diameter transmits 200-kW 


3.33*
  An isotropic quasimonochromatic point source radiates at a 

pulses of energy. If its repetition rate is 500 pulses per second, each 

rate of 100 W. What is the flux density at a distance of 1 m? What are 

lasting 2 ms, determine the average reaction force on the antenna.

the amplitudes of the E


$- and B
 $-fields at that point?


3.45
   Consider the plight of an astronaut floating in free space with 

only a 10-W lantern (inexhaustibly supplied with power). How long 


3.34
   Using energy arguments, show that the amplitude of a cylindri-

will it take to reach a speed of 10 m

cal wave must vary inversely with 

>s using the radiation as propul-

1 r
 . Draw a diagram indicating 

sion? The astronaut’s total mass is 100 kg.

what’s happening.


3.46
   Consider the uniformly moving charge depicted in Fig. 3.26 b
 . 


3.35*
   What is the momentum of a 1019-Hz X-ray photon?

Draw a sphere surrounding it and show via the Poynting vector that the 

charge does not radiate.


3.36
  Consider an electromagnetic wave impinging on an electron.  

It is easy to show kinematically that the average value of the time  


3.47*
   A plane, harmonic, linearly polarized lightwave has an electric 

rate-of-change of the electron’s momentum p
 $ is proportional to the 

field intensity given by

average value of the time rate-of-change of the work,  W
 , done on it by 

the wave. In particular,


x



Ez 
 =  E
 0 cosp 1015 a t 
 -

b

0.65 c



d
  p


1  dW


h $ i =  h

i iˆ


while traveling in a piece of glass. Find


dt



c



dt


(a)  The frequency of the light.

Accordingly, if this momentum change is imparted to some completely 

(b)  Its wavelength.

absorbing material, show that the pressure is given by Eq. (3.51).

(c)  The index of refraction of the glass.


3.37*
  A harmonic electromagnetic plane wave with a wavelength of 


3.48*
   What is the speed of light in diamond if the index of refraction 

0.12 m travels in vacuum in the positive  z
 -direction. It oscillates along 

is 2.42?

the   x
 -axis such that at  t 
 = 0 and  z 
 = 0, the  E
 -field has a maximum 

value of  E(0, 0) 
 = +6.0 V>m. (a) Write an expression for E
 $ (z, t)
 . 


3.49*
   Given that the wavelength of a lightwave in vacuum is 540 nm, 

(b) Write an expression for the magnetic field. (c) Write an expression 

what will it be in water, where  n 
 = 1.33?

for the vector momentum density of the wave.


3.50*
   Determine the index of refraction of a medium if it is to reduce 


3.38*
   Derive an expression for the radiation pressure when the nor-

the speed of light by 10% as compared to its speed in vacuum.

mally incident beam of light is totally reflected. Generalize this result 


3.51
   If the speed of light (the phase speed) in Fabulite (SrTiO3) is 

to the case of oblique incidence at an angle u with the normal.

1.245 * 108 m>s, what is its index of refraction?


3.39
   A completely absorbing screen receives 300 W of light for 100 s. 


3.52*
   What is the distance that yellow light travels in water (where  

Compute the total linear momentum transferred to the screen.


n 
 = 1.33) in 1.00 s?


3.40
   The average magnitude of the Poynting vector for sunlight arriv-


3.53*
  A 500-nm lightwave in vacuum enters a glass plate of index 

ing at the top of Earth’s atmosphere (1.5 * 1011 m from the Sun) is 

1.60 and propagates perpendicularly across it. How many waves span 

about 1.4 kW>m2.

the glass if it’s 1.00 cm thick?

(a)   Compute the average radiation pressure exerted on a metal reflec-


3.54*
   Yellow light from a sodium lamp (l0 = 589 nm) traverses a tank 

tor facing the Sun.

of glycerin (of index 1.47), which is 20.0 m long, in a time  t
 1. If it takes 

(b)  Approximate the average radiation pressure at the surface of the 

a time  t
 2 for the light to pass through the same tank when filled with 

Sun whose diameter is 1.4 * 109 m.

carbon disulfide (of index 1.63), determine the value of  t
 2 -  t
 1.
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3.55*
   A lightwave travels from point  A
  to point  B
  in vacuum. Suppose 


3.62*
   Show that Eq. (3.70) can be rewritten as

we introduce into its path a flat glass plate ( ng 
 = 1.50) of thickness 

( n
 2 - 1)-1 = - C
 l-2 +  C
 l-2

0


L 
 = 1.00 mm. If the vacuum wavelength is 500 nm, how many waves 

span the space from  A
  to  B
  with and without the glass in place? What 

where  C 
 = 4p2 c
 2P0 me
 > Nq
 2 e
 .

  

phase shift is introduced with the insertion of the plate?


3.63
  Augustin Louis Cauchy (1789–1857) determined an empirical 


3.56
  The low-frequency relative permittivity of water varies from 

equation for  n
 (l) for substances that are transparent in the visible. His 

88.00 at 0°C to 55.33 at 100°C. Explain this behavior. Over the same 

expression corresponded to the power series relation

range in temperature, the index of refraction (l = 589.3 nm) goes 


n


from roughly 1.33 to 1.32. Why is the change in  n
  so much smaller 

=  C
 1 +  C
 2>l2 +  C
 3>l4 + g

than the corresponding change in  KE
 ?

where the  C
 s are all constants. In light of Fig. 3.41, what is the physical 


3.57
   Show that for substances of low density, such as gases, which 

significance of  C
 1?

have a single resonant frequency v0, the index of refraction is given by


3.64
   Referring to the previous problem, realize that there is a region 


Nq
 2

between each pair of absorption bands for which the Cauchy Equation 


n 
 ≈ 1 +


e


(with a new set of constants) works fairly well. Examine Fig. 3.41: 

2P0 me
 (v20 - v2)

  

what can you say about the various values of  C
 1 as v decreases across 


3.58*
   In the next chapter, Eq. (4.47), we’ll see that a substance re-

the spectrum? Dropping all but the first two terms, use Fig. 3.40 to 

flects radiant energy appreciably when its index differs most from the 

determine approximate values for  C
 1 and  C
 2 for borosilicate crown 

medium in which it is embedded.

glass in the visible.

(a)   The dielectric constant of ice measured at microwave frequencies is 


3.65*
  Crystal quartz has refractive indexes of 1.557 and 1.547 at 

roughly 1, whereas that for water is about 80 times greater—why?

wavelengths of 410.0 nm and 550.0 nm, respectively. Using only the 

(b)   How is it that a radar beam easily passes through ice but is consid-

first two terms in Cauchy’s Equation, calculate  C
 1 and  C
 2 and deter-

erably reflected when encountering a dense rain?

mine the index of refraction of quartz at 610.0 nm.


3.59
   Fuchsin is a strong (aniline) dye, which in solution with alcohol 


3.66*
   In 1871 Sellmeier derived the equation

has a deep red color. It appears red because it absorbs the green com-


Aj
 l2

ponent of the spectrum. (As you might expect, the surfaces of crystals 


n
 2 = 1 + ^ j
 l2

of fuchsin reflect green light rather strongly.) Imagine that you have a 

- l20 j


thin-walled hollow prism filled with this solution. What will the spec-

where the  Aj
  terms are constants and each l0 j
  is the vacuum wave-

trum look like for incident white light? By the way, anomalous disper-

length associated with a natural frequency n0 j
 , such that l0 j
 n0 j 
 =  c
 . 

sion was first observed in about 1840 by Fox Talbot, and the effect was 

This formulation is a considerable practical improvement over the 

christened in 1862 by Le Roux. His work was promptly forgotten, only 

Cauchy Equation. Show that where l 7 7 l0 j
 , Cauchy’s Equation is 

to be rediscovered eight years later by C. Christiansen.

an approximation of Sellmeier’s.  Hint:
  Write the above expression 


3.60*
   Take Eq. (3.71) and check out the units to make sure that they 

with only the first term in the sum; expand it by the binomial theorem; 

agree on both sides.

take the square root of  n
 2 and expand again.


3.61
   The resonant frequency of lead glass is in the UV fairly near the 


3.67*
  If an ultraviolet photon is to dissociate the oxygen and  

visible, whereas that for fused silica is far into the UV. Use the disper-

carbon atoms in the carbon monoxide molecule, it must provide 

sion equation to make a rough sketch of  n
  versus v for the visible re-

11 eV of energy. What is the minimum frequency of the appropriate 

gion of the spectrum.

radiation?
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The Propagation  



4of Light


beam cannot be seen from the side. Nor does the light tire or 


4.1 Introduction


diminish in any way. When a star in a nearby galaxy 1.7 * 105 

light-years away was seen to explode in 1987, the flash of light 

Our present concern is with the basic phenomena of  transmission
  

that reached Earth had been sailing through space for 170 000 

(p. 93),  reflection
  (p. 96), and  refraction
  (p. 100). These will be 

years before it got here.  
Photons are timeless

 .

described classically in two ways: first, via the general notions of 

Now, suppose we mix a wisp of air into the void—some 

waves and rays (p. 108) and then from the more specific perspec-

molecules of nitrogen, oxygen, and so forth. These molecules 

tive of Electromagnetic Theory (p. 113). After that, we’ll turn to 

have no resonances in the visible, no one of them can be raised 

a highly simplified treatment of Quantum Electrodynamics 

into an excited state by absorbing a quantum of light, and the 

(QED) for a modern interpretation of what’s happening (p. 141).

gas is therefore transparent. Instead, each molecule behaves as 

Most students have already studied these fundamental propa-

a little oscillator whose electron cloud can be driven into a 

gation phenomena in some introductory way and found ideas 

ground-state vibration by an incoming photon. Immediately 

like the Laws of Reflection and Refraction to be straightforward 

upon being set vibrating, the molecule initiates the re-emission 

and simple. But that’s only because such treatments are from a 

of light. A photon is absorbed, and without delay another pho-

macroscopic perspective that tends to be misleadingly superfi-

ton of the same frequency (and wavelength) is emitted; the light 

cial. For instance, reflection, which looks as obvious as light 

is  elastically scattered
 . The molecules are randomly oriented, 

“bouncing off a surface,” is a wonderfully subtle affair usually 

and photons scatter out every which way (Fig. 4.1). Even when 

involving the coordinated behavior of countless atoms. The 

more deeply we explore these processes, the more challenging 

they become. Beyond that, many fascinating questions need to 

(a)

Blue light

be addressed: How does light move through a material medium? 

laterally scattered

What happens to it as it does? Why does light appear to travel at 

a speed other than  c
  when photons can exist only at  c
 ?

Each encounter of light with bulk matter can be viewed as a 

White

Red-orange-yellow light

cooperative event arising when a stream of photons sails through, 

light

and interacts with, an array of atoms suspended (via electromag-

netic fields) in the void. The details of that journey determine why 

Molecules of air

Blue light

the sky is blue and blood is red, why your  cornea is  transparent 

laterally scattered

and your hand opaque, why snow is white and rain is not. At its 

(b)

core, this chapter is about scattering
 , in  particular, the absorption 

and prompt re-emission of EM- radiation by electrons associated 

with atoms and molecules.  
The processes of transmission, reflec-





tion, and refraction are macroscopic  manifestations of scatter-





ing occurring on a  submicroscopic level

 .

To begin the analysis, let’s first consider the propagation of 

radiant energy through various homogeneous media.


4.2 Rayleigh Scattering



Figure 4.1
   ( a
 ) Sunlight traversing a region of widely spaced air mole-

Imagine a narrow beam of sunlight having a broad range of 

cules. The light laterally scattered is mostly blue, and that’s why the sky is 

frequencies advancing through empty space. As it progresses, 

blue. The unscattered light, which is rich in red, is viewed only when the 

Sun is low in the sky at sunrise and sunset. ( b
 ) Solar rays reach about 18° 

the beam spreads out very slightly, but apart from that, all the 

beyond the daytime terminator because of atmospheric scattering. Over 

energy continues forward at  c
 . There is no scattering, and the 

this twilight band the skylight fades to the complete darkness of night. 


88
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Rayleigh Scattering the precise shape of the scatterers is usu-

ally of little consequence. The amount of scattering is propor-

tional to the diameter of the scatterer divided by the wave-

length of the incident radiation. Accordingly, the blue end of 

the spectrum is scattered most. A human’s blue eyes, a blue-

jay’s feathers, the blue-tailed skink’s blue tail, and the ba-

boon’s blue buttocks are all colored via Rayleigh Scattering. 

Indeed, in the animal kingdom scattering is the cause of al-

most all the blue, much of the green, and even some of the 

purple coloration. Scattering from the tiny  alveolar cells in the 

barbs of the jay’s feathers make it blue, whereas a parrot’s 

green is a blend of yellow arising from  preferential absorption 


Figure 4.2  
   A plane wave, incident from the left, sweeps across an atom 

(p. 136) and blue via scattering. The blue appearance of veins 

and spherical wavelets are scattered. The process is continuous, and hun-

is in part due to scattering.

dreds of millions of photons per second stream out of the scattering atom 

As we will see in a moment, a dense uniform substance will 

in all directions.

not appreciably scatter laterally, and that applies to much of the 

lower atmosphere. After all, if blue light were strongly scattered 

the light is fairly dim, the number of photons is immense, and it 

out at sea level, a far-off mountain would appear reddish and 

looks as if the molecules are scattering little classical spherical 

that’s not the case even over distances of tens of kilometers. In 

wavelets (Fig. 4.2)—energy streams out in every direction. 

the middle regions of the atmosphere, the density is still great 

Still, the scattering process is quite weak and the gas tenuous, 

enough to suppress Rayleigh Scattering; something else must 

so the beam is very little attenuated unless it passes through a 

be contributing to the blue of the sky. What happens in the mid-

tremendous volume of air.

atmosphere is that thermal motion of the air results in  rapidly 

The amplitudes of these ground-state vibrations, and there-

changing  density fluctuations
  on a local scale. These momen-

fore the amplitudes of the scattered light, increase with frequency 

tary, fairly random microscopic fluctuations cause more mole-

because all the molecules have electronic resonances in the UV. 

cules to be in one place than another and to radiate more in one 

The closer the driving frequency is to a resonance, the more 

direction than another. M. Smoluchowski (1908) and A. Ein-

vigorously the oscillator responds. So, violet light is strongly 

stein (1910) independently provided the basic ideas for the 

scattered laterally out of the beam, as is blue to a slightly lesser 

theory of scattering from these fluctuations, which gives  similar 

degree, as is green to a considerably lesser degree, as is yellow 

results to those of Rayleigh. Scattering from inhomogeneities 

to a still lesser degree, and so on. The beam that traverses the 

in density is of interest whenever light travels great distances in 

gas will thus be strong in the red end of the spectrum, while the 

a medium, such as the glass fiber of a communications link 

light scattered out (sunlight not having very much violet in it, in 

(p. 200).

comparison to blue, in the first place) will abound in blue. The 

Sunlight streaming into the atmosphere from one direction is 

human eye also tends to average the broad cacophony of scat-

scattered in all directions—Rayleigh Scattering is the same in 

tered frequencies—rich in violet, blue, and green—into a back-

the forward and backward directions. Without an atmosphere, 

ground of white plus a vivid 476-nm blue, resulting in our fa-

the daytime sky would be as black as the void of space, as black 

miliar pale-blue sky.*

as the Moon sky. When the Sun is low over the horizon, its light 

Long before Quantum Mechanics, Lord Rayleigh (1871) 

passes through a great thickness of air (far more so than it does 

analyzed scattered sunlight in terms of molecular oscillators. 

at noon). With the blue-end appreciably attenuated, the reds and 

Using a simple argument based on dimensional analysis (see 

yellows propagate along the line-of-sight from the Sun to 

Problem 4.1), he correctly concluded that the intensity of the 

 produce Earth’s familiar fiery sunsets.

scattered light was proportional to 1>l4 and therefore increases 

with n4. Before this work, it was widely believed that the sky 

was blue because of scattering from minute dust particles. 

Since that time, scattering involving particles smaller than a 

wavelength (i.e., less than about l>10) has been referred to as 


Rayleigh Scattering
 . Atoms and ordinary molecules fit the 

bill since they are a few tenths of a nanometer in diameter, 

whereas light has a wavelength of around 500 nm. Addition-

ally, non-uniformities, as long as they are small, will scatter 

Without an  

light. Tiny fibers, bubbles, particles, and droplets all scatter. In 

atmosphere to 

scatter sunlight, 

the Moon’s sky is 

*G. S. Smith, “Human color vision and the unsaturated blue color of the  

an eerie black. 

daytime sky,”  Am
 .  J. Phys.
  73
 , 590 (2005).

(DVIDS/NASA)
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Chapter 4
   The Propagation of Light


4.2.1 Scattering and Interference


(a)

In dense media, a tremendous number of close-together atoms 

or molecules contribute an equally tremendous number of 

 scattered electromagnetic wavelets. These wavelets overlap and 

interfere in a way that does not occur in a tenuous medium. As 

a rule,  
the denser the substance through which light advances, 





the less the lateral scattering

 , and to understand why that’s so, 

we must examine the interference taking place.

Interference has already been discussed (p. 20) and will be 

treated in further detail in Chapters 7 and 9; here, the basics 

 suffice. Recall that interference is  the superposition of two or 



P



more waves producing a resultant disturbance that is the sum of 



the overlapping wave contributions
 . Figure 2.16 shows two 

(b)

 harmonic waves of the same frequency traveling in the same 

direction. When such waves are precisely in-phase (Fig. 2.16 a
 ), 

the resultant at every point is the sum of the two wave-height 

values. This extreme case is called  
total constructive 





 interference

 . When the phase difference reaches 180°, the 

waves tend to cancel, and we have the other extreme, called 



total destructive interference

  (Fig. 2.16 d
 ).

The theory of Rayleigh Scattering has independent 

 molecules randomly arrayed in space so that the phases of the 

secondary wavelets scattered off to the side have no particu-

lar relationship to one another and there is no sustained pat-


P


tern of interference. That situation occurs when the separa-

tion between the molecular scatterers is roughly a wavelength 

(c)

2

or more, as it is in a tenuous gas. In Fig. 4.3 a
  a parallel beam 

2

1

of light is incident from the left. This so-called  primary light 


3


field
  (in this instance composed of plane waves) illuminates a 


P


1

group of widely spaced molecules. A continuing progression 

4

of primary wavefronts sweep over and successively energize 

3

4

and reenergize each molecule, which, in turn, scatters light in 

all directions, and in particular out to some lateral point  P
 . 


Figure 4.3
     Consider a plane wave entering from the left. ( a
 ) The  

Because the lengths of their individual paths to  P
  differ greatly 

scattering of light from a widely spaced distribution of molecules. ( b
 ) The 

in comparison to l, some of the wavelets arriving at  P
  are 

wavelets arriving at a lateral point  P
  have a jumble of different phases 

ahead of others while some are behind, and that by substan-

and tend not to interfere in a sustained constructive fashion. ( c
 ) That  

tial fractions of a wavelength (Fig. 4.3 b
 ). In other words, the 

can probably be appreciated most easily using phasors. As they arrive  

phases of the wavelets at  P
  differ greatly. (Remember that the 

at  P
  the phasors have large phase-angle differences with respect to each 

other. When added tip-to-tail they therefore tend to spiral around keeping 

molecules are also moving around, and that changes the phases 

the resultant phasor quite small. Remember that we are really dealing 

as well.) At any moment some wavelets interfere construc-

with millions of tiny phasors rather than four substantial ones.

tively, some destructively, and the shifting random hodge-

podge of overlapping wavelets effectively averages away the 

interference.  
Random, widely spaced scatterers driven by an 



into vibration by the incident field. Being far apart, they are 



incident primary wave emit wavelets that are essentially in-



 assumed to be independent of one another and each radiates in 



dependent of one another in all directions except forward. 



accord with Eq. (3.56). The scattered electric fields are essen-



Laterally scattered light, unimpeded by interference,  

 tially independent, and there is no interference laterally. 



streams out of the beam

 . This is approximately the situation 

 Accordingly, the net irradiance at  P
  is the algebraic sum of the 

existing about 100 miles up in the Earth’s tenuous high- 

scattered irradiances from each molecule (p. 65). For an 

altitude atmosphere, where a good deal of blue-light  scattering 

 individual scatterer the irradiance is given by Eq. (3.57), and it 

takes place.

varies with v4.

That the scattered irradiance should depend on 1>l4 is easily 

The advent of the laser has made it relatively easy to observe 

seen by returning to the concept of dipole radiation (Sec- 

Rayleigh Scattering directly in low-pressure gases, and the 

tion 3.4.3). Each molecule is taken as an electron oscillator driven 

 results confirm the theory.
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corresponds to a trough (a negative maximum). In ( a
 ), the 

 primary wavefront impinges on molecule  A
 , which begins to 

scatter a spherical wavelet. For the moment, suppose the  wavelet 

is 180° out-of-phase with the incident wave. (A driven oscillator 


P


is usually out-of-phase with the driver: p. 94.) Thus  A
  begins to 

radiate a trough (a negative  E
 -field) in response to being driven 

by a peak (a positive  E
 -field). Part ( b
 ) shows the spherical wave-

let and the plane wave overlapping, marching out-of-step but 


Figure 4.4
     Consider a plane wave entering from the left. Light is scat-

marching  together. The incident wavefront impinges on  B
 , and 

tered more or less in the forward direction.

it, in turn, begins to reradiate a wavelet, which must also be out-

of-phase by 180°. In ( c
 ) and ( d
 ), we see the point of all of this, 

namely, that both wavelets are moving forward—they are in-

phase with each other. That condition would be true for all such 


Forward Propagation


wavelets regardless of both how many molecules there were 

To see why the forward direction is special, why the wave 

and how they were distributed. Because of the asymmetry intro-

 advances in any medium, consider Fig. 4.4. Notice that for a 

duced by the beam itself,  
all the scattered wavelets add con-



forward point  P
  the light scattered first (by the atom on the far 



structively with each other in the forward direction

 .

left) travels the longest path, whereas the light scattered last 

(from the atom on the right) travels the shortest path. A more 


4.2.2   The Transmission of Light Through Dense 


 detailed description is provided by Fig. 4.5. It depicts a  sequence 


Media


in time showing two molecules  A
  and  B
 , interacting with an 

Now, suppose the amount of air in the region under consider-

incoming primary plane wave—a solid arc represents a  ation is increased. In fact, imagine that each little cube of air, secondary wavelet peak (a positive maximum); a dashed arc 

one wavelength on a side, contains a great many molecules, 

whereupon it is said to have an appreciable  optical density
 . 

(This usage probably derives from the fact that early experi-

Primary wavefronts


Figure 4.5
     In the forward 

ments on gases indicated that an increase in density is accompa-

(a)

direction the scattered wavelets 

nied by a proportionate increase in the index of refraction.) At 

A

arrive in-phase on planar wave-

the wavelengths of light, the Earth’s atmosphere at STP has 

fronts—trough with trough, peak 

with peak.

about 3 million molecules in such a l3-cube. The scattered 

B

wavelets  (l ≈ 500 nm) radiated by sources so close together 

(≈3 nm) cannot properly be assumed to arrive at some point  P
  

l

with random phases—interference will be important. This is 

(b)

equally true in liquids and solids where the atoms are 10 times 

A

closer and arrayed in a far more orderly fashion. In such cases, 

the light beam effectively encounters a uniform medium with 

no discontinuities to destroy the symmetry. Again, the scattered 

B

wavelets interfere constructively in the forward direction (that 

much is independent of the arrangement of the molecules), but 

Wavelet

now destructive interference predominates in all other direc-

(c)

tions.   
Little or no light ends up scattered laterally or back-



A



wards in a dense homogeneous medium

 .

To illustrate the phenomenon, Fig. 4.6 shows a beam moving 

through an ordered array of close-together scatterers. All along 

B

wavefronts throughout the beam, sheets of molecules are ener-

gized in-phase, radiate, and are reenergized, over and over again 

Secondary

wavefront

as the light sweeps past. Thus some molecule  A
  radiates spheri-

(d)

cally out of the beam, but because of the ordered close arrange-

A

ment, there will be a molecule  B
 , a distance ≈l>2 away, such 

that both wavelets cancel in the transverse direction. Here, 

where l is thousands of times larger than the scatterers and their 

B

spacing, there will likely always be pairs of molecules that tend 

to negate each other’s wavelets in any given lateral direction. 

Even if the medium is not perfectly ordered, the net electric 
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(a)

(b)

Atoms


Figure 4.7  
  ( a
 ) When a great many tiny slightly shifted waves arrive at a 

Light

point in space, there is generally as much positive  E
 -field as negative, and 

beam

the resultant disturbance is nearly zero. ( b
 ) The tiny phasors representing 

those waves form a very small circular figure, and the resultant (which 

 oscillates in a way that depends on the number of waves) is never large.


A


field at a point in any transverse direction will be the sum of a 


B


great many  tiny
  scattered fields, each somewhat out-of-phase 

with the next, so that the sum (which will be different from 

point to point) will always be small (Fig. 4.7). This makes sense 

from the perspective of conservation of energy—we can’t have 

l

constructive interference in every direction.  
Interference pro-




A
  and  B
  are separated by l/2



duces a redistribution of energy, out of the regions where it’s 




Figure 4.6  
   A plane wave impinging from the left. The medium is  



 destructive into the regions where it’s constructive

 .

composed of many closely spaced atoms. Among countless others,  

The more dense, uniform, and ordered the medium is (the more 

a wavefront stimulates two atoms,  A
  and  B
 , that are very nearly one-half 

nearly homogeneous), the more complete will be the  lateral de-

wavelength apart. The wavelets they emit interfere destructively. Trough 

structive interference and the smaller the amount of nonforward 

overlaps crest, and they completely cancel each other in the direction 

scattering. Thus most of the energy will go into the forward direc-

perpendicular to the beam. That process happens over and over again, 

and little or no light is scattered laterally.

tion, and the beam will advance essentially  undiminished (Fig. 4.8).

Atom

Wavefront


Figure 4.8
     A downward plane wave incident on an ordered array of atoms. Wavelets scatter in all directions and overlap to form an ongoing secondary plane wave traveling downward. (E.H.)
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Scattering on a per-molecule basis is extremely weak. In 

On an overcast day, the sky looks hazy gray because of 

order to have half its energy scattered, a beam of green light 

 water droplets comparable in size to lightwaves. In the same 

will have to traverse  ≈150 km of atmosphere. Since about 

way, some inexpensive plastic food containers and white 

1000 times more molecules are in a given volume of liquid 

 garbage-bag plastic look pale blue-white in scattered light and 

than in the same volume of vapor (at atmospheric pressure), 

are distinctly orange in transmitted light. The garbage bags, in 

we can expect to see an increase in scattering. Still, the liquid 

 order to be made opaque, contain (2–2.5%) clear TiO2 spheres 

is a far more ordered state with much less pronounced den-

( n 
 = 2.76) about 200 nm in diameter, and these Mie scatter 

sity fluctuations, and that should suppress the nonforward 

bluish white.*

scattering appreciably. Accordingly, an increased scattering 

When the transparent particle diameters exceed around 





per unit volume is observed in liquids, but it’s more like 5 to 

10 wavelengths the ordinary laws of geometrical optics work 

50 times as much rather than 1000 times. Molecule for mol-

nicely and we might well refer to the process as geometrical 


ecule,  liquids scatter substantially less than gases. Put a few 


scattering
 .

drops of milk in a tank of water and illuminate it with a bright 

 flashlight beam. A faint but unmistakable blue haze will scat-

ter out  laterally, and the direct beam will emerge decidedly 


4.2.3  Transmission and the Index of Refraction


reddened.

The transmission of light through a homogeneous medium is 

Transparent amorphous solids, such as glass and plastic, 

an ongoing repetitive process of scattering and rescattering. 

will also scatter light laterally, but very weakly. Good crys-

Each such event introduces a phase shift into the light field, 

tals, like quartz and mica, with their almost perfectly ordered 

which ultimately shows up as a shift in the apparent phase 

structures, scatter even more faintly. Of course, imperfec-

 velocity of the transmitted beam from its nominal value of  c
 . 

tions of all sorts (dust and bubbles in liquids, flaws and 

That corresponds to an index of refraction for the medium 

 impurities in solids) will serve as scatterers, and when these 

( n 
 =  c
 > v
 ) that is other than one, even though photons exist 


are small, as in the gem moonstone, the emerging light will 


only at a speed
   
c

 .

be bluish.

To see how this comes about, return to Fig. 4.5. Recall that 

In 1869 John Tyndall experimentally studied the scattering 

the scattered wavelets all combine in-phase in the forward 

produced by small particles. He found that as the size of the 

 direction to form what might best be called the  secondary 


particles increased (from a fraction of a wavelength), the 


wave
 . For empirical reasons alone we can anticipate that the 

amount of scattering of the longer wavelengths increased 

 secondary wave will combine with what is left of the primary 

 proportionately. Ordinary clouds in the sky testify to the fact 

wave to yield the only observed disturbance within the 

that relatively large droplets of water scatter white light with no 

 medium,   namely,  the  transmitted wave
 .  Both the primary and 


appreciable coloration. The same is true of the microscopic 


secondary  



electromagnetic waves propagate through the 


globules of fat and protein in milk.


 inter atomic void with the speed c
 . Yet the medium can  certainly 

When the number of molecules in a particle is small, they 

possess an index of refraction other than 1. The refracted wave 

are all close to one another and act in unison; their wavelets 

may appear to have a phase velocity less than, equal to, or 

interfere constructively, and the scattering is strong. As the 

even greater than  c
 . The key to this apparent contradiction 

size of the particle approaches a wavelength, the atoms at its 

 resides in  the phase  relationship between the secondary and 

extremities no longer radiate wavelets that are necessarily 

primary waves.

 in-phase and the scattering begins to diminish. This happens 

The classical model predicts that the electron-oscillators will 

first at the short wavelengths (blue), and so as the particle 

be able to vibrate almost completely in-phase with the driving 

size increases, it  scatters proportionately more of the red end 

force (i.e., the primary disturbance) only at relatively low 

of the spectrum (and it does so increasingly in the forward 

 frequencies. As the frequency of the electromagnetic field 

 direction). 

 increases, the oscillators will fall behind, lagging in phase by a 

The theoretical analysis of scattering from spherical parti-

proportionately larger amount. A detailed analysis reveals that 

cles about the size of a wavelength or so was first published by 

at resonance the phase lag will reach 90°, increasing thereafter 

Gustav Mie in 1908. Mie Scattering
  depends only weakly on 

to almost 180°, or half a wavelength, at frequencies well above 

wavelength and becomes independent of it (white light in, white 

the particular characteristic value. Problem 4.4 explores this 

light out) when the particle size exceeds l. In Mie Scattering  

phase lag for a damped driven oscillator, and Fig. 4.9 summa-

the theory requires that the scatterers be nearly spherical. The 

rizes the results.

amount of scattering increases with the diameter of the trans-

parent bubbles, crystals, fibers, and so on, doing the scattering. 

Unlike Rayleigh Scattering, Mie Scattering is stronger in the 

forward direction than in the backward direction. Reasonably 

*It has only recently been observed (and that was by chance) that inhomogeneous 

opaque materials, such as milk and white paint, can reduce the effective speed of  

enough, Rayleigh Scattering is the small-size limiting case of 

light to as little as one-tenth the value anticipated for the medium. See S. John, 

Mie Scattering.

“Localization of light,”  Phys. Today
  44
 , 32 (1991).
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(a)
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Figure 4.10
     A primary wave ( a
 ) and two possible secondary waves.  

In ( b
 ) the secondary lags the primary—it takes longer to reach any given 

value. In ( c
 ) the secondary wave reaches any given value before (at an ear-


Figure 4.9
     A schematic representation of ( a
 ) amplitude and ( b
 ) phase 

lier time than) the primary; that is, it leads.

lag versus driving frequency for a damped oscillator. The dashed curves 

correspond to decreased damping. The corresponding index of refraction 

the resultant transmitted wave is phase shifted, and this phase 

is shown in ( c
 ).

difference is crucial.

When the secondary wave lags (or leads) the primary, the 

In addition to these lags there is another effect that must be 

 resultant transmitted wave must also lag (or lead) it by some 

considered. When the scattered wavelets recombine, the resul-

amount (Fig. 4.11). This qualitative relationship will serve our pur-

tant secondary wave* itself lags the oscillators by 90°.

poses for the moment, although it should be noted that the phase of 

The combined effect of both these mechanisms is that at fre-

the resultant also depends on the amplitudes of the  interacting 

quencies below resonance, the secondary wave lags the primary 

waves [see Eq. (7.10)]. At frequencies below v0 the transmitted 

(Fig. 4.10) by some amount between approximately 90° and 

wave lags the free-space wave, whereas at frequencies above v0 it 

180°, and at frequencies above resonance, the lag ranges from 

leads the free-space wave. For the special case in which v = v0 

about 180° to 270°. But a phase lag of d Ú 180° is equivalent to 

the secondary and primary waves are out-of-phase by 180°. The 

a phase lead of 360° - d, [e.g., cos (u - 270°) = cos (u + 90°)]. 

former works against the latter, so that the refracted wave is appre-

This much can be seen on the right side of Fig. 4.9 b
 .

ciably reduced in amplitude although unaffected in phase.

Within the transparent medium, the primary and secondary 

As the transmitted wave advances through the medium, 

waves overlap and, depending on their amplitudes and relative 

 scattering occurs over and over again. Light traversing the 

phase, generate the net transmitted disturbance. Except for the 

 substance is progressively retarded (or advanced) in phase. 

fact that it is weakened by scattering, the primary wave travels 

 Evidently, since the speed of the wave is the rate of advance of 

into the material just as if it were traversing free space. By 

the condition of constant phase, a change in the phase should 

 comparison to this free-space wave, which initiated the process, 

correspond to a change in the speed.

We now wish to show that a phase shift is indeed tantamount 

to a difference in phase velocity. In free space, the resultant  

*This point will be made more plausible when we consider the predictions of the 

Huygens–Fresnel Theory in the diffraction chapter. Most texts on E & M treat the 

disturbance at some point  P
  may be written as

problem of radiation from a sheet of oscillating charges, in which case the 90° 

phase lag is a natural result (see Problem 4.5).






ER(t) 
 =  E
 0 cos v t 


(4.1)
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E
 R


and the phase angles are approximately 90°. Consequently, the 


E
 S


refracted wave lags only slightly, and  n
  is only slightly greater 


E
 P


than 1. As v increases, the secondary waves have greater ampli-

Secondary

tudes and lag by greater amounts. The result is a gradually de-

creasing wave speed and an increasing value of  n 
 7 1. Although 


t


Primary

the amplitudes of the secondary waves continue to increase, 

their relative phases approach 180° as v approaches v0. Conse-

quently, their ability to cause a further increase in the resultant 

phase lag diminishes. A turning point (v = v′) is reached 

Resultant

Lead

where the refracted wave begins to experience a decreasing 

phase lag and an increasing speed ( dn
 > d
 v 6 0). That continues 


E
 P


until  v = v0, whereupon the transmitted wave is appreciably 


E
 S


reduced in amplitude but unaltered in phase and speed. At that 


E
 R


Secondary


t


Primary


TABLE 4.1    Approximate Indices of Refraction of 



Various Substances*


Air 1.000 29

Resultant

Ice 1.31

Lag

Water 1.333


Figure 4.11
     If the secondary leads the primary, the resultant will 

Ethyl alcohol (C2H5OH) 1.36

also lead it. That point is underscored by the phasor diagrams.

Kerosene 1.448

Fused quartz (SiO2) 1.4584

Karo (sugar) syrup 

1.46

If   P
  is surrounded by a dielectric, there will be a cumulative 

Carbon tetrachloride (CCl4) 1.46

phase shift e P
 , which was built up as the wave moved through 

Olive oil 

1.47

the medium to  P
 . At ordinary levels of irradiance the medium 

Turpentine 1.472

will behave linearly, and the frequency in the dielectric will be 

Old formula Pyrex 

1.48

the same as that in vacuum, even though the wavelength and 

41% Benzene + 59% carbon tetrachloride 

1.48

speed may differ. Once again, but this time in the medium, the 

Methyl methacrylate 

1.492

disturbance at  P
  is

Benzene (C6H6) 1.501






ER
   (t) 
 =  E
 0 cos (v t 
 - e P
 ) (4.2)

Plexiglas 1.51

Oil of cedarwood 

1.51

where the subtraction of e P
  corresponds to a phase lag. An ob-

Crown glass 

1.52

server at  P
  will have to wait a longer time for a given crest to 

Sodium chloride (NaCl) 

1.544

arrive when she is in the medium than she would have had to 

wait in vacuum. That is, if you imagine two parallel waves of 

Light flint glass 

1.58

the same frequency, one in vacuum and one in the material, the 

Polycarbonate 1.586

vacuum wave will pass  P
  a time e

Polystyrene 1.591


P
 >v  
 before the other wave. 

Clearly then,  a phase lag of
  e

Carbon disulfide (CS


P
   corresponds to a reduction in 


2) 1.628


speed
 ,  v 
 6  c 
 and  n 
 7 1. Similarly,  a phase lead yields an in-


Dense flint glass 

1.66


crease in speed
 ,  v 
 7  c 
 and  n 
 6 1. Again, the scattering process 

Sapphire 1.77

is a continuous one, and the cumulative phase shift builds as the 

Lanthanum flint glass 

1.80

light penetrates the medium. That is to say, e is a function of the 

Heavy flint glass 

1.89

length of dielectric traversed, as it must be if  v
  is to be constant 

Zircon (ZrO2 · 
 SiO2) 1.923

(see Problem 4.5). In the vast majority of situations encoun-

Fabulite (SrTiO3) 2.409

tered in Optics  v 
 6  c 
 and  n 
 7 1; see Table 4.1. The important 

Diamond (C) 

2.417

exception is the case of X-ray propagation, where v 7 v0, 

Rutile (TiO


v 
 7  c,
  and  n 
 6 1.

2) 2.907

The overall form of  n(


Gallium phosphide 

3.50

v )
 , as depicted in Fig. 4.9 c
 , can now be 

understood as well. At frequencies far below v0 the  amplitudes of 

*Values vary with physical conditions—purity, pressure, etc.  

the oscillators and therefore of the secondary waves are very small, 

These correspond to a wavelength of 589 nm.
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point,  n 
 = 1,  v 
 =  c
 , and we are more or less at the center of the 


4.3 Reflection


absorption band.

At frequencies just beyond v0 the relatively large-amplitude 

When a beam of light impinges on the surface of a transparent 

secondary waves lead; the transmitted wave is advanced in phase, 

material, such as a sheet of glass, the wave “sees” a vast array 

and its speed exceeds  c
  ( n 
 6 1). As v increases, the whole sce-

of closely spaced atoms that will somehow scatter it. Remem-

nario is played out again in reverse (with some asymmetry due to 

ber that the wave may be ≈500 nm long, whereas the atoms 

frequency-dependent asymmetry in oscillator amplitudes and 

and their separations (≈0.2 nm) are thousands of times small-

scattering). At even higher frequencies the secondary waves, 

er. In the case of transmission through a dense medium, the 

which now have very small amplitudes, lead by nearly 90°. The 

scattered wavelets cancel each other in all but the forward direc-

resulting transmitted wave is advanced very slightly in phase, and 

tion, and just the ongoing beam is sustained. But that can only 


n
  gradually approaches 1.

happen if there are no discontinuities. This is not the case at an 

The precise shape of a particular  n(
 v )  
 curve depends on 

interface between two different transparent media (such as air 

the  specific oscillator damping, as well as on the amount of 

and glass), which is a jolting discontinuity. When a beam of 

 absorption, which in turn depends on the number of oscillators 

light strikes such an interface, some light is always scattered 

 participating.

backward, and we call this phenomenon reflection
 .

A rigorous solution to the propagation problem is known as 

If the transition between two media is gradual—that is, if the 

the  Ewald–Oseen Extinction Theorem
 . Although the mathemat-

dielectric constant (or the index of refraction) changes from that 

ical formalism, involving integro-differential equations, is far 

of one medium to that of the other over a distance of a wave-

too complicated to treat here, the results are certainly of  interest. 

length or more—there will be very little reflection; the interface 

It is found that the electron-oscillators generate an electromag-

 effectively vanishes. On the other hand, a transition from one 

netic wave having essentially two terms. One of these precisely 

 medium to the other over a distance of 1>4 wavelength or less 

cancels the primary wave within the medium. The other, and 

behaves very much like a totally discontinuous change.

only remaining disturbance, moves through the dielectric at a 

speed  v 
 =  c
 > n 
 as the transmitted wave.*  
Henceforth we shall 





simply assume that a lightwave propagating through any 




Internal and External Reflection




 substantive medium travels at a speed

  v 
 Z  c
 . It should also be 

Imagine that light is traveling across a large homogeneous block 

noted that the index of refraction varies with temperature (see 

of glass (Fig. 4.12). Now, suppose that the block is sheared in 

Table 4.2), but the process is not well understood.

half perpendicular to the beam. The two segments are then sepa-

Apparently, any quantum-mechanical model we construct 

rated, exposing the smooth, flat surfaces depicted in Fig. 4.12 b
 . 

will somehow have to associate a wavelength with the photon. 

Just before the cut was made, there was no lightwave traveling 

That’s easily done mathematically via the expression  p 
 =  h
 >l, 

to the left inside the glass—we know the beam only advances. 

even if it’s not clear at this point what is doing the waving. Still 

Now there must be a wave (beam-I) moving to the left, reflected 

the wave nature of light seems inescapable; it will have to be 

from the surface of the right-hand block. The implication is that 

infused into the theory one way or another. And once we have 

a region of scatterers on and beneath the exposed surface of the 

the idea of a photon wavelength, it’s natural to bring in the 

right-hand block is now “unpaired,” and the backward radiation 

concept of relative phase. Thus  
the index of refraction arises 



they emit can no longer be canceled. The region of oscillators 



when the absorption and emission process advances or 



that was adjacent to these, prior to the cut, is now on the section 



 retards the phases of the scattered photons, even as they 



of the glass that is to the left. When the two sections were to-



 travel at speed

   c
 .

gether, these scatterers presumably also emitted wavelets in the 

backward direction that were 180° out-of-phase with, and can-

celed, beam-I. Now they produce reflected beam-II. Each mol-


TABLE 4.2    Temperature Dependence of the Index of 


ecule scatters light in the backward direction, and, in principle, 


Refraction of Water




each and every molecule contributes to the reflected wave

 . 

 0 °C 1.3338

20 °C 1.3330

Beam-II Beam-I

40 °C 1.3307

(a)

(b)

60 °C 1.3272

Lightbeam

80 °C 1.3230


Figure 4.12
    ( a
 ) A lightbeam propagating through a dense homogeneous 

medium such as glass. ( b
 ) when the block of glass is cut and parted, the 

*For a discussion of the Ewald–Oseen Theorem, see  Principles of Optics
  by Born 

light is reflected backward at the two new interfaces. Beam-I is externally 

and Wolf, Section 2.4.2; this is heavy reading. Also look at Reali, “Reflection 

reflected, and beam-II is internally reflected. Ideally, when the two pieces 

from dielectric materials,”  Am. J. Phys
 . 50
 , 1133 (1982).

are pressed back together, the two reflected beams cancel one another.
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Nonetheless, in practice, it is a thin layer (≈l>2 deep) of un-

(a) Incident

Vacuum

paired atomic oscillators near the surface that is effectively re-

beam

sponsible for the reflection. For an air–glass interface, about 4% 

of the energy of an incident beam falling perpendicularly  in
  air 


on
  glass will be reflected straight back out by this layer of 

Reflected

beam

unpaired scatterers (p. 118). And that’s true whether the glass is 

1.0 mm thick or 1.00 m thick.

Beam-I reflects off the right-hand block, and because light 

was initially traveling from a less to a more optically dense 

 medium, this is called external reflection
 . In other words, the 

Transmitted or

refracted beam

index of the incident medium ( ni
 ) is less than the index of 

the transmitting medium ( nt
 ). Since the same thing happens to 

(b)

Incident

the unpaired layer on the section that was moved to the left, it, 

too, reflects backwards. With the beam incident  perpendicularly 

Reflected


in
  glass  on
  air, 4% must again be reflected, this time as beam-II. 

This process is referred to as internal reflection
    because  


ni 
 7  nt
 . If the two glass regions are made to approach one 

 another increasingly closely (so that we can imagine the gap to 

be a thin film of, say, air—p. 408), the reflected light will 

 diminish until it ultimately vanishes as the two faces merge and 

disappear and the block becomes continuous again. In other 

words, beam-I cancels beam-II; they must have been 180° out-

of-phase. Remember this  
180

 °   
relative phase shift between 





 internally and externally reflected light

  (see Section 4.10 for a 

Refracted

more rigorous treatment)—we will come back to it later on.

Experience with the common mirror makes it obvious that 

white light is reflected as white—it certainly isn’t blue. To see 

why, first remember that the layer of scatterers responsible for 


Figure 4.13
     A beam of plane waves incident on a distribution of mole-

cules constituting a piece of clear glass or plastic. Part of the incident light 

the reflection is effectively about l>2 thick (per Fig. 4.6). Thus 

is reflected and part refracted.

the larger the wavelength, the deeper the region contributing 

(typically upward of a thousand atom layers), and the more 

scatterers there are acting together. This tends to balance out the 

would not be true if the incident radiation was short-wavelength 

fact that each scatterer is less efficient as 

X-rays, in which circumstance there would be several reflected 

l increases (remember 

1>

beams. And it would not be true if the scatterers were far apart 

l4). The combined result is that  
the surface of a transparent 





medium reflects all wavelengths about equally and doesn’t 





appear colored in any way

 . That, as we will see, is why this 

page looks white under white-light illumination.


4.3.1 The Law of Reflection


Figure 4.13 shows a beam composed of plane wavefronts 

 impinging at some angle on the smooth, flat surface of an 





optically dense medium (let it be glass). Assume that the 

 surrounding environment is vacuum. Follow one wavefront as it 

sweeps in and across the molecules on the surface (Fig. 4.14). 

For the sake of simplicity, in Fig. 4.15 we have omitted  everything 

but a few molecular layers at the interface. As the wavefront 

descends, it energizes and reenergizes one scatterer after anoth-

er, each of which radiates a stream of photons that can be re-

garded as a hemispherical wavelet in the incident  medium. Be-

cause the wavelength is so much greater than the separation 

between the molecules, the wavelets emitted back into the inci-


Figure 4.14
     A plane wave sweeps in stimulating atoms across the 

 interface. These radiate and reradiate, thereby giving rise to both the 

dent medium advance together and add  constructively in only 

reflected and transmitted waves. In reality the wavelength of light is  

one direction, and there is one well- defined  reflected
  beam. That 

several thousand times the atomic size and spacing.
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(a)

Vacuum


B



C


(b)

u i


u r



A


Medium


D


(c)


Figure 4.16    
 Plane waves enter from the left and are reflected off to  

the right. The reflected wavefront  CD
  is formed of waves scattered by  

the atoms on the surface from  A
  to  D
 . Just as the first wavelet arrives at  


C
  from  A
 , the atom at  D
  emits, and the wavefront along  CD
  is completed.

(d)

the wavefront to reach point  D
  on the surface, the wavelet emitted 

from  A
  reaches point  C
 . In other words,  BD 
 =  vi
 ∆ t 
 =  AC
 ,  
 and so from the above equation, sin u i 
 = sin u r
 , which means that

(e)





u i 
 = u r


 (4.3)



The angle-of-incidence equals the angle-of-reflection

 . This 

equation is the first part of the Law of Reflection
 . It initially 

appeared in the book  Catoptrics
 , which was purported to have 

been written by Euclid. We say that a beam is  normally incident
  

(f)


C


when u i 
 = 0°, in which case u r 
 = 0°  
 and for a mirror the beam 


A



D



Figure 4.15
     The reflection of a wave as the result of scattering.

compared to l, as they are for a diffraction grating (p. 488), in 

which case there would also be several reflected beams. The 

direction of the reflected beam is determined by the constant 

phase difference between the atomic scatterers. That, in turn, is 

determined by the angle made by the incident wave and the sur-

face, the so-called angle-of-incidence
 .

In Fig. 4.16, the line  AB
  lies along an incoming wavefront, 

while  CD 
 lies on an outgoing wavefront—in effect,  AB
  transforms 

on reflection into  CD
 . With Fig. 4.15 in mind, we see that the 

wavelet emitted from  A
  will arrive at  C
  in-phase with the wavelet 

just being emitted from  D
  (as it is stimulated by  B
 ), as long as the 

distances  AC
  and  BD 
 are equal. In other words, if all the wavelets 

emitted from all the surface scatterers are to overlap in-phase and 

form a single reflected plane wave, it must be that  AC 
 =  BD
 . 

Then, since the two triangles have a common hypotenuse

sin u i


sin u

=


r


A modern phased-array radar system. The field of individual small antennas 


BD



AC


behaves very much like the atoms on a smooth surface. By introducing a 

proper phase shift between adjacent rows the antenna can “look” in any 

All the waves travel in the incident medium with the same 

direction. A reflecting surface has a similar phase shift determined by u i
  as 

speed  vi
 . It follows that in the time (∆ t
 ) it takes for point  B
  on 

the incident wave sweeps over the array of atoms. (Raytheon Corp.)
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reflects back on itself. Similarly,  glancing incidence
  corre-

sponds to u i 
 ≈ 90°  
 and perforce u r 
 = 90°.


Rays


Drawing wavefronts can get things a bit cluttered, so we intro-

duce another convenient scheme for visualizing the progression 

of light. The imagery of antiquity was in terms of straight-line 

streams of light, a notion that got into Latin as “radii” and 

reached English as “rays.”  
A ray is a line drawn in space 





 corresponding to the direction of flow of radiant energy

 . It is 

a mathematical construct and not a physical entity. In a medi-

The cruiser  Aurora
 , which played a key role in the Communist Revolution 

(1917), docked in St. Petersburg. Where the water is still, the reflection is 

um that is uniform (homogeneous), rays are straight. If the 

specular. The image blurs where the water is rough and the reflection more 

medium behaves in the same manner in every direction (iso-

diffuse. (E.H.)

tropic),   
the rays are perpendicular to the wavefronts

 . Thus 

for a point source emitting spherical waves, the rays, which 

are perpendicular to them, point radially outward from the 

The ancient Greeks knew the Law of Reflection. It can be 

source.  Similarly, the rays associated with plane waves are all 

deduced by observing the behavior of a flat mirror, and nowa-

parallel. Rather than sketching bundles of rays, we can simply 

days that observation can be done most simply with a flash-

draw one incident ray and one reflected ray (Fig. 4.17 a
 ).  All 


light or, even better, a low-power laser. The second part of the 


the angles are now measured from the perpendicular (or nor-


Law of Reflection maintains that  
the incident ray, the perpen-




mal) to the surface
 , and 



dicular to the surface, and the reflected ray all lie in a plane

  

u i
  and u r
  have the same numerical 

values as before (Fig. 4.16).

called the plane-of-incidence
  (Fig. 4.17 b
 )—this is a three- 

dimensional business. Try to hit some target in a room with a 

flashlight beam by reflecting it off a stationary mirror, and the 

importance of this second part of the law becomes obvious!

(a)

Figure 4.18 a
  shows a beam of light incident upon a reflecting 

l

surface that is smooth (one for which any irregularities are small 

compared to a wavelength). In that case, the light  reemitted by 

millions upon millions of atoms will combine to form a single 

well-defined beam in a process called specular reflection
  (from 

the word for a common mirror alloy in ancient times, speculum). 

u i 
 u r


Provided the ridges and valleys are small compared to l, the 

scattered wavelets will still arrive more or less in-phase when 

u i 
 = u r
 . This is the situation assumed in Figs. 4.13, 4.15, 4.16, 

and 4.17. On the other hand, when the surface is rough in com-

parison to l, although the angle-of- incidence will equal the angle-

Plane-of-incidence

(b)

of-reflection for each ray, the whole lot of rays will emerge 

u i 
 u r


Interface


Figure 4.17    
 ( a
 ) Select one ray to represent the beam of plane waves. 

The F-117A Stealth fighter has an extremely small radar profile, that  

Both the angle-of-incidence u i
  and the angle-of-reflection u r
  are measured 

is, it returns very little of the incoming microwaves back to the station that 

from a perpendicular drawn to the reflecting surface. ( b
 ) The incident ray 

sent them. That’s accomplished mostly by constructing the aircraft with flat 

and the reflected ray define the  plane-of-incidence,
  perpendicular to the 

tilted-planes that use the Law of Reflection to scatter the radar waves away 

reflecting surface.

from their source. One wants to avoid u i 
 = u r 
 ≈ 0. (US Dept of Defense)
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(a)

(b)

Specular

Diffuse

By placing a pair of pins in front of a flat mirror and aligning their  

images with another pair of pins, you can easily verify that u i 
 = u r
 .  

(E.H.)

(c)

However we visualize it, immediately on entering the trans-

mitting medium, there is a single net field, a single net wave. As 

we have seen, this transmitted wave usually propagates with an 

effective speed  vt 
 6  c
 . It’s essentially as if the atoms at the 

 interface scattered “slow wavelets” into the glass that combine to 

form the “slow transmitted wave.” We’ll come back to this imag-

ery when we talk about Huygens’s Principle. In any event, 

(c)

 because the cooperative phenomenon known as the transmitted 


Figure 4.18    
 ( a
 ) Specular reflection. 

( b
 ) Diffuse reflection. (Donald Dunitz)  

electromagnetic wave  is 
 slower than the incident electromagnetic 

( c
 ) Specular and diffuse are the 

wave, the transmitted wavefronts are refracted, displaced (turned 

extremes of reflection. This schemat-

with respect to the incident wavefronts), and the beam bends.

ic drawing represents a range of 

reflections between the two that are 

likely to be encountered.


4.4.1  The Law of Refraction


every which way, constituting what is called diffuse reflection
  

Figure 4.19 picks up where we left off with Figs. 4.13 and 4.16. 

(see photo). Both of these  conditions are extremes; the reflecting 

The diagram depicts several wavefronts, all shown at a single 

behavior of most  surfaces lies somewhere between them. Thus, 

instant in time. Remember that each wavefront is a surface of 

although the  paper of this page was deliberately manufactured to 

be a fairly diffuse scatterer, the cover of the book reflects in a 

manner that is somewhere between diffuse and specular.

Incident medium


4.4 Refraction



ni



B


Figure 4.13 shows a beam of light impinging on an interface at 


vi
   t


some angle (u i 
 Z 0). The interface corresponds to a major inho-

mogeneity, and the atoms that compose it scatter light both 

u i



A



D


backward, as the reflected beam, and forward, as the transmit-

u t


ted beam. The fact that the incident rays are bent or “turned out 


v


of their way,” as Newton put it, is called  refraction
 .


t
   t E


Examine the transmitted or refracted beam. Speaking clas-


nt


sically, each energized molecule on the interface radiates 

Transmitting medium

wavelets into the glass that expand out at speed  c
 . These can be 

imagined as combining into a secondary wave that then recom-


Figure 4.19    
 The refraction of waves. The atoms in the region of  

bines with the unscattered remainder of the primary wave, to 

the surface of the transmitting medium reradiate wavelets that combine 

form the net transmitted wave. The process continues over and 

constructively to form a refracted beam. For simplicity the reflected wave 

over again as the wave advances in the transmitting  medium.

has not been drawn.
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constant phase, and, to the degree that the phase of the net field 

is retarded by the transmitting medium, each wavefront is held 

back, as it were. The wavefronts “bend” as they cross the bound-

ary because of the speed change. Alternatively, we can envision 

Fig. 4.19 as a multiple-exposure picture of a single wavefront, 

showing it after successive equal intervals of time. Notice that 

in the time ∆ t
 , which it takes for point  B
  on a wavefront (travel-

ing at speed  vi
 ) to reach point  D
 , the transmitted portion of that 

same wavefront (traveling at speed  vt
 ) has reached point  E
 . If 

the glass ( nt 
 = 1.5) is immersed in an incident medium that is 

vacuum  ( ni 
 = 1) or air ( ni 
 = 1.000 3) or anything else where 


nt 
 7  ni
 ,  vt 
 6  vi
 , and  AE 
 6  BD
 , the wavefront bends. The refracted wavefront extends from  E
  to  D
 , making an angle with 

When light passes from one medium into another some portion is usually 

the interface of u

reflected back at the interface. At normal incidence that portion is given by 


t
 . As before, the two triangles  ABD
  and  AED
  

in Fig. 4.19 share a common hypotenuse ( AD
 ), and so

Eq. (4.47). In this case the clear plastic film and the adhesive coating both 

have the same index of refraction and so, as far as light is concerned, each 

sin 

one of the hundreds of interfaces simply vanishes. No light is reflected at 

u i


sin u

=


t


any of the plastic-adhesive interfaces, and the entire multilayered roll is 


BD



AE


transparent. (E.H.)

where  BD 
 =  vi
  ∆ t
  and  AE 
 =  vt
  ∆ t
 . Hence

and in air since  xi


sin 

sin 

= sin u i
  and  xt 
 = sin u t
  that’s equivalent to 

u i


u

=


t


Eq. (4.4). We now know that the Englishman Thomas Harriot 


vi



vt


had come to the same conclusion before 1601, but he kept it to 

Multiply both sides by  c
 , and since  n


 himself.


i 
 =  c
 > vi 
 and  nt 
 =  c
 > vt


At first, the indices of refraction were simply experimentally 






n


determined constants of the physical media. Later,  Newton was 


i
  sin u i 
 =  nt
  sin u t


 (4.4)

actually able to derive Snell’s Law using his own corpuscular 

Keep in mind that because of dispersion (Section 3.5.1)  n


theory. By then, the significance of  n
  as a measure of the speed of 


i
 ,  nt
 , u i
 , 

and u

light was evident. Still later, Snell’s Law was shown to be a natu-


t
  are generally frequency dependent. This equation works 

for every frequency, but each will “bend” differently.

ral consequence of Maxwell’s Electromagnetic Theory (p. 113).

This expression is the first portion of the Law of Refraction
 , 

It is again convenient to transform the diagram into a ray 

also known as Snell’s Law
  after the man who proposed it 

representation (Fig. 4.21) wherein all the angles are  measured 

(1621), Willebrord Snel van Royen (1591–1626). Snel’s analy-

from the perpendicular. Along with Eq. (4.4), there goes the 

sis has been lost, but contemporary accounts follow the treat-

ment shown in Fig. 4.20. What was found through observation 

was that the bending of the rays could be quantified via the ratio 

Plane-of-incidence


Figure 4.21    
 The incident, 

of  xi
  to  xt
  which was constant for all u i
 . That constant was natu-

reflected, and transmitted 

rally enough called the  index of refraction
 . In other words,

beams each lie in the plane-of-

incidence.


xi



x 
 K  nt



t


u


ni



i


u r



Figure 4.20    
 Descartes’s 

Interface


x


arrangement for deriving 


i


u

the Law of Refraction. 


t


The circle is drawn with a 

1.0

u i


radius of 1.0.


n



n



i



t


Air

Glass


nt


u t



xt
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The image of a pen seen through a thick block of clear plastic. The displace-

ment of the image arises from the refraction of light toward the normal at the 

air–plastic interface. If this arrangement is set up with a narrow object (e.g., an 

illuminated slit) and the angles are carefully measured, one can confirm 

Snell’s Law directly. (E.H.)



than going straight through, will bend away from the normal

  

(see photo above). Notice that this implies that the rays will tra-


Figure 4.22    
 Refraction at various angles of incidence. Notice that the 

verse the same path going either way, into or out of either medium. 

bottom surface is cut circular so that the transmitted beam within the glass 

The arrows can be reversed and the resulting picture is still true.

always lies along a radius and is normal to the lower surface in every case. 

It’s fairly common to talk about the  optical density
  of a trans-

(PSSC College Physics, D. C. Heath & Co., 1968.)

parent medium. The concept no doubt came from the widely 

held, although somewhat erroneous, notion that the indices of 

understanding that  
the incident, reflected, and  refracted rays 



refraction of various media are always proportional to their mass 



all lie in the plane-of-incidence

 . In other words, the  respective 

densities. As can be seen in Fig. 4.25, which shows the data for a 

unit propagation vectors kˆ
 i
 , kˆ
 r
 , and kˆ
 t
  are coplanar (Fig. 4.22).

random selection of dense transparent materials, the correlation 

is there but it’s inconsistent. For example, acrylic has a specific 

gravity of 1.19 and an index of 1.491, whereas styrene has a lower 

EXAMPLE 4.1

specific gravity (1.06) and a higher index of refraction (1.590). 

A ray of light in air having a specific frequency is incident on 

Still, the term optical density—referring to index of refraction, 

a sheet of glass. The glass has an index of refraction at that fre-

and not mass density—is useful when comparing media. 

quency of 1.52. If the transmitted ray makes an angle of 19.2° 

with the normal, find the angle at which the light impinges on 

the interface.

(a)


Figure 4.23    
 The bending of rays 


n


at an interface. ( a
 ) When a beam  


i


SOLUTION

of light enters a more optically 

dense medium, one with a greater 

From Snell’s Law

Air

index of refraction ( ni 
 6  nt
 ) ,
  it 

Glass


nt


bends toward the perpendicular. 

sin u i 
 =  sin 


n


u t



i



n


( b
 ) When a beam goes from a 


t


more dense to a less dense  

1.52

medium ( ni 
 7  nt
 ), it bends away 

sin u i 
 =

 sin 19.2° = 0.499 9

from the perpendicular.

1.00

and 

u i 
 = 30°

(b)


nt


When  ni 
 6  nt
  (that is, when the light is initially traveling with-

Air

in the lower-index medium), it follows from Snell’s Law that 

Glass

sin u i 
 7 sin u t
 , and since the same function is everywhere positive 


n


between 0° and 90°, then u


i



i 
 7 u t
 . Rather than going straight 

through,  
the ray entering a higher-index medium bends toward 





the normal

  (Fig. 4.23 a
 ). The reverse is also true (Fig. 4.23 b
 ); that 

is,  
on entering a medium having a lower index, the ray, rather 
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Snell’s Law can be rewritten in the form

sin u






i 
 =  n


sin 


ti
  (4.5)

u t


where  nti 
 K  nt
 > ni 
 is the relative index of refraction
  of the two 

media. Note that  nti 
 =  vi
 > vt
 ; moreover,  nti 
 = 1> nit
 . For air-to-water   nwa 
 ≈ 4>3, and for air-to-glass  nga 
 ≈ 3>2. As a 

 mnemonic think of  nga 
 =  ng
 > na
  as dividing “air into glass,” just 

as light goes from “air into glass.”

EXAMPLE 4.2

A narrow laserbeam traveling in water having an index of 1.33 

impinges at 40.0° with respect to the normal on a water–glass 

interface. If the glass has an index of 1.65 (a) determine the 

relative index of refraction. (b) What is the beam’s transmission 

angle in the glass?

SOLUTION


(a)
   From the defining equation


n


   n



t



ti 
 =  ni



n


1.65


n



G



GW 
 =  n 
 =

= 1.24


W


1.33


(b)
   Using Snell’s Law

sin u t 
 = (sin u i
 )> nti


sin u t 
 = (sin 40.0°)>1.24 = 0.518 4





and 

u t 
 = 31.2°

Let uˆ
 n
  
 be a unit vector normal to the interface pointing in  

the direction from the incident to the transmitting medium  

(Fig. 4.26). As you will have the opportunity to prove in Prob-

lem 4.33, the complete statement of the Law of Refraction can 

1.9

1.8

1.7

x of Refraction

Inde 1.6


Figure 4.24    
 A beam of light enters from the bottom moving upward.  

( a
 ) Here there are two Plexiglas blocks widely separated in air. ( b
 ) By  

making the air gap thin, two of the reflected beams overlap to form the 

1.5

bright middle beam traveling to the right. ( c
 ) By replacing the air film with 

2

3

4

5

6

castor oil the interface between the blocks essentially vanishes, as does 

Specific gravity (r/rw)

that reflected beam. ( d
 ) And it behaves just like a single solid block.  

(G. Calzà, T. López-Arias, L.M. Gratton, and S. Oss, reprinted with permission from  The Physics 



Figure 4.25    
 Index of refraction versus specific gravity for a random 


Teacher
  48
 , 270 (2010). Copyright 2010, American Association of Physics Teachers)

selection of dense transparent materials.
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Figure 4.26     


converging a bit more toward the axis, and in 4.27 b
  diverging 

The ray geometry.

somewhat from it. The rays making different angles will bend 

differently and although they all came from the same axial point  S
  

they will generally not project back to the same point on the 

axis in either diagram. However, if we limit the light to a narrow 

cone the rays will refract only a little, being nearly normal to the 


k
 t


interface, and then will indeed appear to come from a single 

point  P
 , as shown in both Fig. 4.27 a
  and  b
  (where the cone an-


u
 n


u t


gles are exaggeratedly large to allow for the nomenclature to be 


k
 r


drawn in). Thus, if  S
  in Fig 4.27 b
  is a spot on a fish reflecting 

u r


skylight back out of the water (here to the right), the cone of 

u i


rays entering the tiny pupil of the eye of an observer will be so 

narrow that a fairly sharp image of  S
  will be formed on the ret-


k


ina. And since the eye-brain system has learned to process light 


i


by perceiving it as if it flowed in straight lines, the spot, and 


n



n



i



t


hence that part of the fish, will appear at  P
 . 

The locations  S
  and  P
  are said to be conjugate points
 . The 

be written vectorially as

object at  S
  is at an “object distance” from the interface, symbol-

ized as  s







n



o
 , and the image at  P
  is a distance  si
 , the “image dis-


i
 (k



ˆ
 i 
 : uˆ
 n
 ) =  nt
 (kˆ
 t 
 : uˆ
 n
 ) (4.6)

tance” from  O
 . Using triangles  SAO
  and  PAO
  in Fig. 4.27 b


or alternatively,


so
  tan u i 
 =  si
  tan u t







nt
 kˆ
 t 
 -  ni
 kˆ
 i 
 = ( nt
  cos u t 
 -  ni
  cos u i
 ) uˆ
 n
 (4.7)

Because the ray cone is narrow, u i
  and u t
  are small and we can 

replace the tangents with sines, whereupon Snell’s Law yields


Refraction of Light from a Point Source



si
 > so 
 =  nt
 > ni


All the usual sources of light are actually multiple-point sources, 

Look straight down (i.e., to the left in Fig. 4.27 b
 ) on a fish 

and so it’s appropriate now to study the refraction of a diverging 

(where  n


bundle of rays from a single point. Think of two homogeneous 


t 
 = 1,  ni 
 = 4>3, and  nt
 > ni 
 = 3>4), which is 4.0 m be-

neath the surface and it will  appear to be only 3.0 m below. On 

dielectric media separated by a flat interface, as depicted in  

the other hand, if you are 3.0 m above the surface the fish, 

Fig. 4.27. A luminous point  S
  on the left sends out light, some of 

looking straight up, will see you 4.0 m above it.

which arrives at the interface where it is refracted; in 4.27 a
  

When the cone of rays from the point  S
  is broad, things get 

more complicated, as pictured in the slice perpendicular to the 

(a)

surface shown in Fig 4.28. When viewed at appreciable angles 


P



S



O


Air


ni
    nt



nt


(b)


P


u t



A


u


S



t



P


Water


O



n



n



n



i
    nt



t



i
    nt



si



s



S



o



Figure 4.27    
 The bending of light as it enters and leaves two different 


Figure 4.28    
 A point source embedded in an optically dense material—a 

transparent materials across a planar interface. Now imagine that  S
  in  

fish in a pool. The observer will see  S
  located somewhere along the curve 

( b
 ) is underwater—rotate the diagram 90° counterclockwise. An observer 

depending on which ray s
  they view. As shown, the ray entering the 

in the air would see  S
  imaged at  P.


 observer’s eye appears to come from  P
 .
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Thus since u6 + u7 = 90°, u7 = 90° - u6 = 21.7°. And so Snell’s 

Law at the far-right interface yields

Air

1.55 sin 21.719° = 1.00 sin u8

0.573 6 = sin u8

and u8 = 35.0°; the ray emerges at the same angle it entered.


P


Water

Fig. 4.19 illustrates the three important changes that occur in 


S


the beam traversing the interface. (1) It changes direction. Be-

cause the leading portion of the wavefront in the glass slows 

down, the part still in the air advances more rapidly, sweeping 


Figure 4.29    
 Seeing an object beneath the surface of a quantity of water.

past and bending the wave toward the normal. (2) The beam in 

the glass has a broader cross section than the beam in the air; 

off the normal the transmitted rays will again appear to come 

hence, the transmitted energy is spread thinner. (3) The wave-

from many different points. Each of these rays when extended 

length decreases because the frequency is unchanged while the 

back will be tangent to a curve called the caustic
 . In other 

speed decreases; l =  v
 >n =  c
 > n
 n and

words, different rays will seem to pass through different points 

( P
 ), all of which lie on the caustic; the greater the initial angle 





l0

 (4.8)

of the ray from  S
 , the greater the angle of refraction, and the 

l =  n


higher up the caustic will be  P
 . 

A cone of rays from  S
 , narrow enough to enter the eye, will 

This latter notion suggests that the color aspect of light is better 

be seen to come from  P
  (Fig. 4.29). That point is both higher and 

thought of as associated with its frequency (or energy, ℰ =  h
 n) 

displaced horizontally toward the observer (i.e., shifted along 

than its wavelength, since the wavelength changes with the me-

the caustic). All of that has the effect of bending the  image of the 

dium through which the light moves. Color is so much a physio-

pencil (see photo on page 106), and making spear fishing rather 

psychological phenomenon (p. 134) that it must be treated 

tricky. Figure 4.29 suggests a little demonstration: put a coin in 

rather gingerly. Still, even though it’s a bit simplistic, it’s useful 

an opaque mug and, looking down into it, move away horizon-

to remember that blue photons are more energetic than red pho-

tally until the lip of the mug just blocks the direct view of the 

tons. When we talk about wavelengths and colors, we should 

coin. Now without moving your eye, slowly fill the mug with 

always be referring to vacuum wavelengths
  (henceforth to be 

water and the coin will come into view as its image rises.

represented as l0).

In all the situations treated thus far, it was assumed that the 

EXAMPLE 4.3

reflected and refracted beams always had the same frequency 

as the incident beam, and that’s ordinarily a reasonable 

A ray impinges on a block of glass of index 1.55, as shown in 

 assumption. Light of frequency n impinges on a medium and 

the accompanying illustration.

presumably drives the molecules into simple harmonic  motion. 

That’s certainly the case when the amplitude of the vibration is 

fairly small, as it is when the electric field driving the molecules 

u3 u4

is small. The  E
 -field for bright sunlight is only about 1000 V>m 

u1

u2

u8

(while the  B
 -field is less than a tenth of the Earth’s surface 

35.0ů7

Glass

u

u

field). This isn’t very large compared to the fields keeping a 

5

6

crystal together, which are of the order of 1011 V>m—just 

Air

about the same magnitude as the cohesive field holding the 

Determine the angles u1, u2, u3, u4, u5, u6, u7, and u8.

electron in an atom. We can usually expect the oscillators to 

vibrate in simple harmonic motion, and so the frequency will 

SOLUTION

remain constant—the medium will ordinarly respond linearly. 

From the Law of Reflection u1 = 35.0°. From Snell’s Law

That will not be true, however, if the incident beam has an  

1 sin 35.0° = 1.55 sin u2

exceedingly large-amplitude  E
 -field, as can be the case with a 

sin 35.0°

high-power laser. So driven, at some frequency n the medium 

sin u2 =

= 0.370 0

can behave in a nonlinear fashion, resulting in reflection and 

1.55

refraction of harmonics (2n, 3n, etc.) in addition to n. Nowa-

and u2 = 21.719°, or 21.7°. Since u2 + u3 = 90°, u3 = 68.281°, 

days, second-harmonic generators (p. 660) are available com-

or 68.3°. From the Law of Reflection u3 = u4 = 68.3° = u5 =u6. 

mercially. You shine red light (694.3 nm) into an appropriately 
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Rays from the submerged 

portion of the pencil bend 

on leaving the water as 

they rise toward the viewer. 

(E.H.)

A refractive turtle. (Anya Levinson and Tom Woosnam)

oriented transparent nonlinear crystal (of, for example, potas-

directions are the same. That’s not the case for a left-handed 

sium dihydrogen phosphate, KDP, or ammonium dihydrogen 

material.

phosphate, ADP) and out will come a beam of UV (347.15 nm).

In the simulation presented in Fig. 4.30 we see a horizontal 

One feature of the above treatment merits some further 

plate of material having a negative index of refraction surrounded 

 discussion. It was reasonably assumed that each point on the 

by air or glass or water, some commonplace medium. A beam 

interface in Fig. 4.13a coincides with a particular point on each 

with fairly flat wavefronts approaches the upper interface from 

of the incident, reflected, and transmitted waves. In other words, 

the top left, traveling in an ordinary positive-index material and 

there is a fixed phase relationship between each of the waves at 

therefore spreading out slightly as it advances. The beam enters 

all points along the interface. As the incident front sweeps 

the negative-index plate and instead of bending toward the nor-

across the interface, every point on it in contact with the inter-

mal in the fourth quadrant, it propagates into the third quadrant at 

face is also a point on both a corresponding reflected front and 

an angle nonetheless in accord with Snell’s Law. Notice that the 

a corresponding transmitted front. This situation is known as 

wavefronts now converge instead of diverging; in the steady state 


wavefront continuity
 , and it will be justified in a more mathe-

the wavelets are actually traveling backward, up and to the right, 

matically rigorous treatment in Section 4.6.1.  Interestingly, 

back to the first interface. They have a negative phase velocity. 

Sommerfeld* has shown that the Laws of  Reflection and Re-

fraction (independent of the kind of wave involved) can be de-

rived directly from the requirement of wavefront continuity and 

the solution to Problem 4.30 demonstrates as much.


Negative Refraction


Though still in its infancy the blossoming technology of 

 metamaterials raises several interesting issues, one of the more 

fascinating being the notion of negative refraction. One cannot 

yet go to a catalogue and order a sheet of left-handed material, 

so we are not concerned with practicalities here.  Instead we’ll 

focus on the physics, which is quite extraordinary. In general, 

energy flows in the direction of the Poynting vector, which is 

the direction of the rays. A wave travels in the direction of the 

propagation vector, which is perpendicular to the wavefronts. 

In a homogeneous isotropic dielectric like glass all of these 


Figure 4.30    
 A beam of light incident from above on a plate of negative-

*A. Sommerfeld,  Optics
 , p. 151. See also J. J. Sein,  Am. J. Phys.
  50
 , 180 (1982).

index material immersed in air top and bottom.
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In the negative material the propagation vector points up and to 

Principle can be used to arrive at Snell’s Law in a way that’s 

the right, while the rays point down and to the left. The phase ve-

similar to the treatment that led to Eq. (4.4). As we’ll  see later, 

locity of the wavelets is up to the right even though the Poynting 

Huygens’s Principle is closely related to the more mathemati-

vector (the ray direction) is down to the left. Energy flows as usu-

cally sophisticated technique known as Fourier analysis.

al in the direction of the advancing beam, albeit down to the left.

It’s probably best not to fuss over the physical details (such 

At the lower interface the wave, entering back into the ordinary 

as how to rationalize propagation in vacuum) and just use the 

material, flips around the normal into the fourth quadrant, propagat-

principle as a tool—a highly useful fiction that works. After all, 

ing parallel to the original incoming beam much as if it had tra-

if Einstein is right, there are only scattered photons; the wave-

versed a sheet of glass. Everything is back to normal and the trans-

lets themselves are a theoretical construct.

mitted beam diverges as usual as it propagates down to the right.

If the medium is homogeneous, the wavelets may be con-

structed with finite radii, whereas if it is inhomogeneous, the 

wavelets must have infinitesimal radii. Figure 4.32 should make 


4.4.2  Huygens’s Principle


this fairly clear; it shows a view of a wavefront Σ, as well as a 

Suppose that light passes through a nonuniform sheet of glass, 

number of spherical secondary wavelets, which, after a time  t
 , 

as in Fig. 4.31, so that the wavefront Σ is distorted. How can we 

have propagated out to a radius of  vt
 . The envelope of all these 

determine its new form Σ′? Or for that matter, what will Σ′ look 

wavelets is then asserted to correspond to the advanced wave  

like at some later time, if it is allowed to continue unobstructed?

Σ′. It is easy to visualize the process in terms of mechanical 

A preliminary step toward the solution of this problem ap-

vibrations of an elastic medium. Indeed, this is the way that 

peared in print in 1690 in the work titled  Traité de la Lumière
 , 

Huygens envisioned it within the context of an all-pervading 

which had been written 12 years earlier by the Dutch physicist 

aether, as is evident from his comment:

Christiaan Huygens. It was there that he enunciated what has 

We have still to consider, in studying the spreading out of 

since become known as Huygens’s Principle: 
 
every point on a 



these waves, that each particle of matter in which a wave pro-



propagating wavefront serves as the source of spherical sec-



ceeds not only communicates its motion to the next particle to 



ondary wavelets, such that the wavefront at some later time is 



it, which is on the straight line drawn from the luminous point, 



the envelope of these wavelets

 .

but that it also necessarily gives a motion to all the others 

A further crucial point is that  
if the propagating wave has a 



which touch it and which oppose its motion. The result is that 



frequency

  


around each particle there arises a wave of which this particle 

n 
, and is transmitted through the medium at a speed 




v


is a center. (Christiaan Huygens, 1690,  Traite de la Lumiere
  


t
 
 , then the secondary wavelets have that same frequency and 



[ Treatise on Light
 ])



speed

 .* Huygens was a brilliant scientist, and this is the basis of 

a remarkably insightful, though quite naive, scattering theory. 

Fresnel, in the 1800s, successfully modified Huygens’s 

It’s a very early treatment and naturally has several shortcomings, 

 Principle, mathematically adding in the concept of interference. A 

one of which is that it doesn’t overtly incorporate the concept of 

little later on, Kirchhoff showed that the  Huygens–Fresnel 


interference and perforce cannot deal with lateral scattering. 


 Principle
  was a direct consequence of the differential wave 

Moreover, the idea that the secondary wavelets propagate at a 

 equation [Eq. (2.60)], thereby putting it on a firm mathematical 

speed determined by the medium (a speed that may even be aniso-

base. That there was a need for a reformulation of the principle 

tropic, e.g., p. 346) is a happy guess. Nonetheless, Huygens’s 

is evident from Fig. 4.32, where we deceptively only drew 


S


Σ

Glass

Σ′

Σ′

Σ


vt


Σ

Σ′


Figure 4.31    
 Distortion of a portion of a wavefront on passing through a 

material of nonuniform thickness.


Figure 4.32    
 According to Huygens’s Principle, a wave propagates as if 

the wavefront were composed of an array of point sources, each emitting  

*SOURCE: Christiaan Huygens, 1690,  Traite de la Lumiere
  ( Treatise on Light
 ).

a spherical wave.
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hemispherical wavelets.* Had we drawn them as spheres, there 


a ray is parallel to the propagation vector
  k
 $. As you might sus-

would have been a  backwave
  moving toward the source—

pect, this is not true in  anisotropic
  substances, which we will 

something that is not  observed. Since this difficulty was taken 

consider later (see Section 8.4.1).  Within homogeneous isotropic 


care of theoretically by Fresnel and Kirchhoff, we need not be 


materials, rays will be straight lines
 , since by symmetry they 

disturbed by it.

cannot bend in any preferred direction, there being none. 

 Moreover, because the speed of propagation is identical in all 

directions within a given medium, the spatial separation between 


Huygens’s Ray Construction


two wavefronts, measured along rays, must be the same every-

Huygens was one of the great scientific figures of his era, and in 

where.* Points where a single ray intersects a set of wavefronts 

addition to promoting the wave theory of light he devised a 

are called  corresponding points
 , for example,  A
 ,  A
 ′, and  A
 ″ in 

technique for graphing refracted rays. Along with his wavelet 

Fig. 4.34.  Evidently, the separation in time between any two 


construction this ray scheme is extremely useful for determin-


 



corresponding points on any two sequential wavefronts is 


ing how light propagates in anisotropic crystal media like those 


 identical.
  If wavefront Σ is transformed into Σ″ after a time  t
 ″, 

we will encounter in Chapter 8. With that in mind consider Fig. 

the distance between corresponding points on any and all rays 

4.33, which illustrates a ray striking an interface between two 

will be traversed in that same time  t
 ″. This will be true even if the 

transparent, homogeneous, isotropic, dielectric materials of in-

wavefronts pass from one homogeneous isotropic medium into 

dices  n


another. This just means that each point on Σ can be imagined as 


i
  and  nt
  at point  O
 . With  O
  as the center, draw two circles 

of radii 1> n


following the path of a ray to arrive at Σ″ in the time  t
 ″.


i
  for the incident circle and 1> nt
  for the refracted 

circle; those radii correspond to the speeds divided by  c
  in the 

If a group of rays is such that we can find a surface that is 

two media. Now extend the line of the incident ray until it inter-

orthogonal to each and every one of them, they are said to form 

sects the larger incident circle. Construct a tangent to the inci-

a normal congruence
 . For example, the rays emanating from a 

dent circle at that point and extend it back until it intersects the 

point source are perpendicular to a sphere centered at the source 

interface at point  Q
 . That line corresponds to a planar incident 

and consequently form a normal congruence.

wavefront. Now draw a line from  Q
  tangent to the refracted (or 

We can now briefly consider a scheme that will also allow us 

transmitted) circle. From this tangent point draw a line back to 

to follow the progress of light through various isotropic media. 


O
  and that will be the refracted ray. At this juncture Huygens’s 

The basis for this approach is the  
Theorem of Malus and Dupin

  

method is mostly of pedagogical value, so we leave the proof 

(introduced in 1808 by E. Malus and modified in 1816 by C. 

that it corresponds to Snell’s Law for Problem 4.10.

Dupin), according to which  
a group of rays will preserve its 





normal congruence after any number of reflections and  





refractions

  (as in Fig. 4.34). From our present vantage point  


4.4.3 Light Rays and Normal Congruence


of the wave theory, this is equivalent to the statement that rays 

remain orthogonal to wavefronts throughout all propagation 

In practice, one can produce very narrow  beams
  or  pencils
  of 

processes in isotropic media. As shown in Problem 4.32, the 

light (e.g., a laserbeam), and we might imagine a ray to be the 

theorem can be used to derive the Law of Reflection as well as 

unattainable limit on the narrowness of such a beam. Bear in 

Snell’s Law. It is often most convenient to carry out a ray trace 

mind that in an  isotropic medium
  (i.e., one whose properties are 

through an optical system and then reconstruct the wavefronts 

the same in all directions)  
rays are orthogonal trajectories of 



using the idea of equal transit times between corresponding 



the wavefronts

 . That is to say,  they are lines normal to the wave-


points and the orthogonality of the rays and wavefronts.


fronts at every point of intersection.
  Evidently,  in such a medium 



B


Incident


B


u i



B



n


Transmitted


i



O



Q



S


1 nt



A



A


Glass

1 n



A



i



n



t
    ni


u t



Figure 4.34    
 Wavefronts and rays.


Figure 4.33    
 Huygens’s method for constructing the refracted ray.

*When the material is inhomogeneous or when there is more than one medium 

involved, it will be the  optical path length
  (see Section 4.5) between the two wave-

*See E. Hecht,  Phys. Teach.
  18
 , 149 (1980).

fronts that is the same.
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4.5 Fermat’s Principle



S


The laws of reflection and refraction, and indeed the manner in 

which light propagates in general, can be viewed from an 


h


 entirely different and intriguing perspective afforded us by 

u i



ni


 Fermat’s Principle
 . The ideas that will unfold presently have 

0

had a tremendous influence on the development of physical 


x



nt


thought in and beyond the study of Classical Optics.

u t


Hero of Alexandria, who lived sometime between 150 b.c.e. 


b


and 250 c.e., was the first to propose what has since become 

known as a  variational principle
 . In his treatment of reflection, 

he asserted that  the path taken by light in going from some point 



S to a point P via a reflecting surface was the shortest possible 



P



a
    x



one
 . This can be seen rather easily in Fig. 4.35, which depicts a 


a


point source  S
  emitting a number of rays that are then “reflected” 

toward  P
 . Presumably, only one of these paths will have any 


Figure 4.36    
 Fermat’s Principle applied to refraction.

physical reality. If we draw the rays as if they emanated from  S
 ′ 

(the image of  S
 ), none of the distances to  P
  will have been altered 

(i.e.,  SAP 
 =  S
 ′ AP
 ,  SBP 
 =  S
 ′ BP
 , etc.). But obviously the straight-form of the statement is incomplete and a bit erroneous at that. 

line path  S
 ′ BP
 , which corresponds to u

For the  moment then, let us embrace it but not passionately.


i 
 = u r
 , is the shortest 

possible one. The same kind of reasoning (Problem 4.35) makes 

As an example of the application of the principle to the case 

it evident that points  S
 ,  B
 , and  P
  must lie in what has previously 

of refraction, refer to Fig. 4.36, where we minimize  t
 , the transit 

been defined as the plane-of-incidence. 

time from  S
  to  P
 , with respect to the variable  x
 . In other words, 

For over fifteen hundred years Hero’s curious observation 

changing  x
  shifts point  O
 , changing the ray from  S
  to  P
 . The 

stood alone, until in 1657 Fermat propounded his celebrated 

smallest transit time will then presumably coincide with the 


Principle of Least Time
 , which encompassed both reflection 

 actual path. Hence

and refraction. A beam of light traversing an interface does not 

take a straight line or  minimum spatial path
  between a point  


SO



OP



t 
 =

+

in the incident medium and one in the transmitting medium.  


vi



vt


Fermat consequently reformulated Hero’s statement to read:  the 


( h
 2 +  x
 2)1>2

[ b
 2 + ( a 
 -  x
 )2]1>2


actual path between two points taken by a beam of light is the 


or 


t 
 =

+


v



v



one that is traversed in the least time
 . As we shall see, even this 


i



t


To minimize  t(x)
  with respect to variations in  x
 , we set 


dt
 > dx 
 = 0, that is,


dt



x


-( a 
 -  x
 )


S


=

+

= 0


dx



P



vi
 ( h
 2 +  x
 2)1>2


v







t
 [ b
 2 + ( a 
 -  x
 )2]1>2

Using the diagram, we can rewrite the expression as

sin u i


sin u

=


t



vi



vt


u i 
 u r


Reflecting surface

which is no less than Snell’s Law (Eq. 4.4). If a beam of light is 


A



B



C


to advance from  S
  to  P
  in the least possible time, it must comply 

with the Law of Refraction.

Suppose that we have a stratified material composed of  m
  lay-

ers, each having a different index of refraction, as in Fig. 4.37. 

The transit time from  S
  to  P
  will then be


s



s



s



t 
 = 1 + 2 +


m



v


g +

1


v
 2


vm



S



m


or 


t 
 = ^ si
 > vi



Figure 4.35    
 Minimum path from the source  S
  to the observer’s eye at  P
 .


i 
 = 1
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n

Apparent positio


S



s
 1


n
 1

Ray from Sun

Straight path to Su


s
 2


n
 2

Earth

n


s
 3


n
 3


Figure 4.38    
 The bending of rays through inhomogeneous media.  

Because the rays bend as they pass through the atmosphere the Sun 

appears higher in the sky. 


si



ni


In the same way, a road viewed at a glancing angle, as in 

Fig. 4.39, appears to reflect the environs as if it were covered 

with a sheet of water. The air near the roadway is warmer and 

less dense than that farther above it. It was established experi-


sm



nm


mentally by Gladstone and Dale that for a gas of density r

( n 
 - 1) ∝ r


P


It follows from the Ideal Gas Law that at a fixed pressure, since 

r ∝  P
 > T
 , ( n 
 - 1) ∝ 1> T
 ; the hotter the road, the lower the in-


Figure 4.37    
 A ray propagating through a layered material.

dex of refraction of the air immediately above it. 

According to Fermat’s Principle, a ray leaving a branch in 

Fig. 4.39 a
  heading somewhat downward would take a route that 

where   si
  and  vi
  are the path length and speed, respectively, 

minimized the  OPL
 . Such a ray would bend upward, passing 

 associated with the  i
 th contribution. Thus

through more of the less dense air than if it had traveled straight. 

To appreciate how that works, imagine the air divided into an 

1  m







t 
 = ^ n


infinite number of infinitesimally thin constant- n
  horizontal 






c



isi
  (4.9)


i 
 = 1

layers. A ray passing from layer to layer would bend (via Snell’s 

Law) slightly upward at each interface (much as in Fig. 4.36 held 

in which the summation is known as the optical path length
  

upside down with the ray run backwards). Of course, if the ray 

( OPL
 ) traversed by the ray, in contrast to the spatial path length 

comes down nearly vertically it makes a small angle-of-incidence 

^ mi
 =1  si
 . Clearly, for an inhomogeneous medium where  n
  is a 

function of position, the summation must be changed to an 

 integral:

Cool air

(a)


P







OPL 
 = 3  n
 ( s
 )  ds
  (4.10)

Hot air


S


Apparent reflecting


The optical path length corresponds to the distance in 


surface


 vacuum equivalent to the distance traversed (
 
s

 ) in the medium 



of index 
 
n

 . That is, the two will correspond to the same number 

of wavelengths, ( OPL
 )>l0 =  s
 >l, and the same phase change 

(b)

as the light advances.

Inasmuch as  t 
 = ( OPL
 )> c
 , we can restate Fermat’s Principle: 


light, in going from point S to P, traverses the route having the 



smallest optical path length
 . 


Fermat and Mirages


When light rays from the Sun pass through the inhomogeneous 

atmosphere of the Earth, as shown in Fig. 4.38, they bend so as 

to traverse the lower, denser regions as abruptly as possible, 


Figure 4.39    
 ( a
 ) At very low angles the rays appear to be coming from 

minimizing the  OPL
 . Ergo, one can still see the Sun after it has 

beneath the road as if reflected in a puddle. ( b
 ) A photo of this puddle 

actually passed below the horizon. 

effect. (Matt Malloy and Dan MacIsaac, Northern Arizona University, Physics & Astronomy) 
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at each interface between layers, only bends slightly, and soon 

seem strangely quiet. The opposite occurs in the evening when 

strikes the ground where no one will “see” it. 

the ground cools before the upper air and distant sounds can 

On the other hand, it is possible that a light ray that comes in 

clearly be heard. 

at a shallow enough angle to begin with could ultimately ap-

proach an interface at glancing incidence (p. 119). It would then 

be completely reflected (p. 123), thereby starting its climb back 


The Modern Formulation of Fermat’s Principle


up into the more dense air (much as in Fig. 4.36 held upside 

down with the ray run forwards).

The original statement of Fermat’s  Principle of Least Time
  has 

Any viewer, off on the left in Fig. 4.39, who receives these 

some serious failings and is in need of alteration. To that end, 

bent rays naturally projects them straight backward as if they 

recall that if we have a function, say ƒ (x)
 , we can determine the 

were reflected from a mirrored surface. Depending on where 

specific value of the variable  x
  that causes  
 ƒ (x)
  to have a  station-


you stand, you’ll see a different mirage puddle, but it will al-


ary
  value by setting  d
 ƒ> dx 
 = 0   
 and solving for  x
 . By a  

ways be far from you and so will always disappear as you ap-

stationary value, we mean one for which the slope of ƒ (x)
  versus 

proach it. The effect is particularly easy to view on long modern 


x
  is zero or equivalently where the function has a maximum 

highways. The only requirement is that you look at the road at 

, minimum 

, or a point of inflection with a horizontal 

near glancing incidence, because the rays bend very gradually.* 

tangent 

.

The same effect is well known as it applies to sound. Fig-

Fermat’s Principle in its modern form reads:  
a light ray in 



ure 4.40 depicts the alternative understanding in terms of waves. 



going from point S to point P must traverse an optical path 



The wavefronts bend because of temperature-induced changes 



length that is stationary with respect to variations of that path

 . 

in speed and therefore in wavelength. (The speed of sound is 

In essence what that means is that the curve of the  OPL
  versus 

proportional to the square root of the temperature.) The noises 


x
  will have a somewhat flattened region in the vicinity of where 

of people on a hot beach climb up and away, and the place can 

the slope goes to zero. The zero-slope point corresponds to the 

actual path taken. In other words, the  OPL
  for the true trajec-

tory will equal, to a first approximation, the  OPL
  of paths 

 immediately adjacent to it.† For example, in a situation where 

(a)

the  OPL
  is a minimum, as with the refraction illustrated in Fig. 

Warm

4.36, the  OPL
  curve will look something like Fig. 4.41. A small 

change in  x
  in the vicinity of  O
  has little effect on the  OPL
 , but 

a similar change in  x
  anywhere well away from  O
  results in a 

substantial change in  OPL
 . Thus there will be many paths 

neighboring the actual one that would take nearly the same time 

Cold

for the light to traverse. This latter insight makes it possible to 

begin to understand how light manages to be so clever in its 

meanderings.

Suppose that a beam of light advances through a homoge-

neous isotropic medium (Fig. 4.42) so that a ray passes from 

(b)

points  S
  to  P
 . Atoms within the material are driven by the inci-

Cold

dent disturbance, and they reradiate in all directions. Wavelets 

progressing along paths in the immediate vicinity of a stationary 

straight-line path will reach  P
  by routes that differ only slightly 

in  OPL 
 (as with group-I in Fig. 4.42 b
 ). They will therefore arrive 

nearly in-phase and reinforce each other. Think of each wavelet 

Warm


Figure 4.41    
 In the situation 


OPL


shown in Fig. 4.36 the actual 

location of point  O
  corresponds 

to a path of minimum  OPL
 .


Figure 4.40    
 The puddle mirage can be understood via waves; the speed, 

and therefore the wavelength, increase in the less dense medium. That bends 

the wavefronts and the rays. The same effect is common with sound waves, 

( a
 ) when the surface air is cold, sounds can be heard much farther than  

normal. ( b
 ) And when it’s warm, sounds seem to vanish into the air.


O



x


*See, for example, T. Kosa and P. Palffy-Muhoray, “Mirage mirror on the wall,”  

†The first derivative of the  OPL
  vanishes in its Taylor series expansion, since the 


Am. J. Phys.
  68
  (12), 1120 (2000).

path is stationary.
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represented by a tiny phasor that rotates once around as the wave 

(a)


S



P


advances one wavelength (p. 23) along any ray path. Because 

the  OPL
 s are all about the same, the phasors at  P
  all point in 

Group-I

more or less the same direction, and even though they’re all 

small they combine to make the dominant contribution. 

Group-II

Wavelets taking other paths far from the stationary one (as 

with group-II in Fig. 4.42 b
 ) will arrive at  P
  appreciably out-of-

123

1 2 3

phase with each other and will therefore tend to cancel. In other 

words, there will be large angles between the little phasors; 

placed tip-to-tail they’ll spiral around, producing only a tiny net 

contribution. Keep in mind that we’ve just drawn three ray 

(b)

paths—the argument would be better made with millions of 

3 1

Group-I

3

2

them in each group.


P


2

We can conclude that energy will effectively propagate along 

1

the ray from  S
  to  P
  that satisfies Fermat’s Principle. And this is 

2

1

true whether we’re talking about interfering electromagnetic 

Group-II

2

3


P


waves or photon probability amplitudes (p. 140).

3

1

We can expect that this same logic holds for all propagation 

processes,* such as, for example, reflection from a plane mirror 


Figure 4.43    
 Rays reflecting off a plane mirror. Only those in group-I for 

(Fig. 4.35). There, spherical waves leaving  S
  sweep across the 

which the  OPL
  is stationary will correspond to waves that arrive at point  P
  

entire mirror, and yet an observer at  P
  sees a well-defined point 

more or less in-phase. There phasors will add along an almost straight line, 

producing a substantial resultant wave amplitude (going from the tail of 1 

source and not a great blotch of light covering the whole sur-

to the tip of 3). The phasors for group-II have large phase-angle differences 

face. Only rays for which u i 
 ≈ u r
  (as with group-I in Fig. 4.43) 

and so when added they essentially spiral around, producing a very small 

have a stationary  OPL
 ; the associated wavelets will arrive at  P 


resultant wave amplitude (going from the tail of 1 to the tip of 3). Of 

nearly in-phase and reinforce each other. All other rays (e.g., 

course, we should really be drawing millions of very tiny phasors in each 

group and not just three relatively large ones.

group-II in Fig. 4.43) will make negligible contributions to the 

(a)

energy reaching  P
 . 


Stationary Paths


To see that the  OPL
  for a ray need not always be a minimum, 


P


examine Fig. 4.44, which depicts a segment of a hollow three-


S


dimensional ellipsoidal mirror. If the source  S
  and the observer 


P
  are at the foci of the ellipsoid, then by definition the length 


SQP
  will be constant, regardless of where on the perimeter  Q
  

happens to be. It is also a geometrical property of the ellipse 

that u i 
 ≈ u r
  for any location of  Q
 . All optical paths from  S
  to  P
  

via a reflection are therefore precisely equal. None is a mini-

Group-II

(b)

mum, and the  OPL
  is clearly stationary with respect to varia-

tions. Rays leaving  S
  and striking the mirror will arrive at the 

focus  P
 . From another viewpoint we can say that radiant energy 

emitted by  S
  will be scattered by electrons in the mirrored sur-


S



P


Group-I

face such that the wavelets will substantially reinforce each 

other only at  P
 , where they have traveled the same distance and 


Figure 4.42    
 ( a
 ) Light can presumably take any number of paths from  S
  

have the same phase. In any case, if a plane mirror was tangent 

to  P
 , but it apparently takes only the one that corresponds to a stationary 


OPL
 . All other routes effectively cancel out. ( b
 ) For example, if some light 

to the ellipse at  Q
 , the exact same path  SQP
  traversed by a ray 

takes each of the three upper paths in the diagram, it arrives at  P
  with 

would then be a relative minimum. That was shown in relation 

three very different phases and interferes more or less destructively.

to Fig. 4.35.

At the other extreme, if the mirrored surface conformed 

to a curve lying within the ellipse, like the dashed one shown 

in Fig. 4.44c, that same ray along  SQP
  would now negotiate a 

*We’ll come back to these ideas when we consider QED in this chapter and the 

Fresnel zone plate in Chapter 10.

relative maximum  OPL
 . To see that, examine Fig. 4.44 c
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and that’s true wherever  C
  is, other than at  Q
 . Hence  SQ 
 +  PQ
  

is a maximum for the curve within the ellipse. This is the case 

even though other unused paths (where u i
   Z u r
 ) would actually 

be shorter (i.e., apart from inadmissible curved paths). Thus in 


S


all cases the rays travel a stationary  OPL
  in accord with the re-

formulated Fermat’s Principle. Note that since the principle 


P


speaks only about the path and not the  direction along it, a ray 

going from  P
  to  S
  will trace the same route as one from  S
  to  P
 . 

(a)

This is the very useful  Principle of Reversibility
 .

Fermat’s achievement stimulated a great deal of effort to 


Q


 supersede Newton’s laws of mechanics with a similar  variational 

formulation. The work of many men, notably Pierre de 

u u r



i


 Maupertuis (1698–1759) and Leonhard Euler, finally led to the 


S


mechanics of Joseph Louis Lagrange (1736–1813) and hence to 


P


the   Principle of Least Action
 , formulated by William Rowan 

Hamilton (1805–1865). The striking similarity between the 

(b)

principles of Fermat and Hamilton played an important part in 

Schrödinger’s development of Quantum Mechanics. In 1942 

Richard Phillips Feynman (1918–1988) showed that Quantum 


Q



B


Mechanics can be fashioned in an alternative way using a varia-


C


tional approach. The continuing evolution of variational prin-

ciples brings us back to Optics via the modern formalism of 


S



O



P


Quantum Optics.

Fermat’s Principle is not so much a computational device as 

it is a concise way of thinking about the propagation of light. It 

(c)

is a statement about the grand scheme of things without any 

concern for the contributing mechanisms, and as such it will 

yield insights under a myriad of circumstances.


4.6 The Electromagnetic Approach


Thus far, we have studied reflection and refraction from the 

perspectives of Scattering Theory, the Theorem of Malus and 

Dupin, and Fermat’s Principle. Yet another and even more  

powerful approach is provided by Electromagnetic Theory. 

 Unlike the previous techniques, which say nothing about the 

incident, reflected, and transmitted radiant flux densities (i.e., 


Figure 4.44    
 Reflection off an ellipsoidal surface. Observe the  


Ii
 ,  Ir
 ,  It
 , respectively), Electromagnetic Theory treats these within 

reflection of waves using a frying pan filled with water. Even though  

the framework of a far more complete description.

these are usually circular, it is well worth playing with. (PSSC College Physics,  

D. C. Heath & Co., 1968.)


4.6.1 Waves at an Interface


wherein for every point  B
  there is a corresponding point  C
 . We 

Suppose that the incident monochromatic lightwave is planar, 

know that

so that it has the form


SQ 
 +  PQ 
 =  SB 
 +  PB



 



E


$ i 
 = E
 $0 i
  exp [ i
 (k
 $ i 
 · r
 $ - v it
 )] (4.11)

since both  Q
  and  B
  are on the ellipse. But  SB 
 7  SC
  and 


PB 
 7  PC
  and so

or, more simply,


SQ 
 +  PQ 
 7  SC 
 +  PC







E


$ i 
 = E
 $0 i
  cos (k
 $ i 
 · r
 $ - v it
 ) (4.12)
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where the surfaces of constant phase are those for which 


Figure 4.46    
 Boundary  


k
 $ · r
 $ = constant. Assume that E
 $


ni


conditions at the interface 

0 i
  is constant in time; that is, the 


E



i



B



i


wave is linearly or plane polarized. We’ll find in Chapter 8 that 

between two dielectrics


d
 ℓ

any form of light can be represented by two orthogonal linearly 

polarized waves, so that this doesn’t actually represent a restric-


C


tion. Note that just as the origin in time,  t 
 = 0, is arbitrary, so 


E



t


too is the origin  O
  in space, where r
 $ = 0. Thus, making no as-


B



t n


sumptions about their directions, frequencies, wavelengths, 


t


phases, or amplitudes, we can write the reflected and transmit-

ted waves as

of the loop must cancel the contribution along the bottom (mov-






E


$ r 
 = E
 $0 r
  cos (k
 $ r 
 · r
 $ - v rt 
 + e r
 ) (4.13) ing left). That way the net voltage drop around  C
  will be zero. If 

and 


E


$

the tangential components of E


$


t 
 = E


$0 t
  cos (k
 $ t 
 · r
 $ - v tt 
 + e t
 ) (4.14)


i
  and E


$ t
  in the immediate vicinity 

of the interface are equal (e.g., both pointing to the right), be-

Here  e r  
 and  e t
  are  phase constants
  relative to E
 $ i
  and are  cause the paths reverse direction above and below the interface, introduced because the position of the origin is not unique. 

the integral around  C
  will indeed go to zero. In other words, the 

 Figure 4.45 depicts the waves in the vicinity of the planar 

total tangential component of  E


$ on one side of the surface must 

 interface between two homogeneous lossless dielectric media 

equal that on the other.

of indices  ni
  and  nt
 .

Since uˆ
 n
  is the unit vector normal to the interface, regardless 

The laws of Electromagnetic Theory (Section 3.1) lead to cer-

of the direction of the electric field within the wavefront, the 

tain requirements that must be met by the fields, and they are re-

cross-product of it with uˆ
 n
  will be perpendicular to uˆ
 n
  and 

ferred to as the  boundary conditions
 . Specifically, one of these is 

therefore tangent to the interface. Hence

that the component of the electric field E


$ that is tangent to the 

interface must be continuous across it. To see how this comes 






uˆ
 n 
 : E
 $ i 
 + uˆ
 n 
 : E
 $ r 
 = uˆ
 n 
 : E
 $ t
  (4.15) about consider Fig. 4.46, which  depicts the interface between two 

or

different dielectrics. An  electromagnetic wave impinges from 


uˆ


above on the interface, and the arrows represent either the inci-


n 
 : E


$0 i
  cos (k
 $ i 
 · r
 $ - v it
 )

dent and transmitted E


$-fields or the corresponding B
 $-fields. For 

+ uˆ
 n 
 : E
 $0 r
  cos (k
 $ r 
 · r
 $ - v rt 
 + e r
 ) the moment we’ll  focus on the E


$-fields. We draw a narrow closed 

(dashed) path  C
  that runs parallel to the interface inside both me-





= uˆ
 n 
 : E
 $0 t
  cos (k
 $ t 
 · r
 $ - v tt 
 + e t
 )  (4.16) dia. Faraday’s Induction Law [Eq. (3.5)] tells us that if we add 

up (via a line integral) the components of E


$ parallel to the path 

This relationship must obtain at any instant in time and at any 

S

S

elements  d
 O, each one times  d
 O, over the whole path  C
 , the result 

point on the interface ( y 
 =  b
 ). Consequently, E
 $ i
 ,  E
 $ r
 , and E
 $ t
 (a voltage difference) will equal the time rate-of-change of the 

must have precisely the same functional dependence on the 

magnetic flux through the area bounded by  C
 . But if we make 

variables  t
  and  r
 , which means that

the dashed loop very narrow there will be no flux through  C
 , and 

the contribution to the line integral (moving right) along the top 





(k
 $ i 
 · r
 $ - v it
 ) 0 y
  =  b 
 = (k
 $ r 
 · r
 $ - v rt 
 + e r
 ) 0 y
  =  b



 


= (k
 $ t 
 · r
 $ - v tt 
 + e t
 ) 0 y
  =  b
  (4.17)

With this as the case, the cosines in Eq. (4.16) cancel, leaving 

an expression independent of  t
  and  r
 , as indeed it must be. Inas-


k


much as this has to be true for all values of time, the coefficients 


r



k
 i


of  t
  must be equal, to wit


y


u i 
 u r






v i 
 = v r 
 = v t
  (4.18)


ni



nt


u

Recall that the electrons within the media are undergoing (linear) 


t



uˆ


Interface

forced vibrations at the frequency of the incident wave. Whatever 


b



r



n


light is scattered has that same frequency. Furthermore,

0


k



z


Plane of incidenc


t






(k



x


$ i 
 · r
 $) 0 y
  =  b 
 = (k
 $ r 
 · r
 $ + e r
 ) 0 y
  =  b 
 = (k
 $ t 
 · r
 $ + e t
 ) 0 y
  =  b
  (4.19) e

wherein  r
 $ terminates on the interface. The values of e r
  and e t
  


Figure 4.45   


correspond to a given position of  O
 , and thus they allow the 

Plane waves incident on the boundary between two homo-

geneous, isotropic, lossless dielectric media.

relation to be valid regardless of that location. (For example, the 
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origin might be chosen such that r
 $ was perpendicular to k
 $ i
  but 

parallel to it (Fig. 4.47). Recall that  E 
 =  vB
 , so that

not to k
 $ r
  
 or k
 $ t
 .) From the first two terms we obtain


 



kˆ 
 : E
 $ =  v
 B
 $ (4.23)





[(k
 $ i 
 - k
 $ r
 ) · r
 $] y
  =  b 
 = e r 


(4.20)

and 


kˆ · E


$ = 0 (4.24)

Recalling Eq. (2.43), this expression simply says that the end-

point of r
 $ sweeps out a plane (which is of course the interface)  (i.e., E
 $, B
 $, and the unit propagation vector kˆ
  form a right-handed perpendicular to the vector (k
 $

system). Again, making use of the continuity of the tangential 


i 
 - k


$ r
 ). To phrase it slightly differ-

ently, (k
 $

components of the E


$-field, we have at the boundary at any time 


i 
 - k


$ r
 ) is parallel to uˆ
 n
 . Notice, however, that since the 

incident and reflected waves are in the same medium,  k


and any point


i 
 =  kr
 . 

From the fact that (k
 $ i 
 - k
 $ r
 ) has no component in the plane of the 






E


$

interface, that is, uˆ


0 i 
 + E


$0 r 
 = E
 $0 t
  (4.25)


n 
 : (k


$ i 
 - k
 $ r
 ) = 0, we conclude that


k


where the cosines cancel. Realize that the field vectors as shown 


i
  sin u i 
 =  kr
  sin u r


really ought to be envisioned at  y 
 = 0 (i.e., at the surface), from 

Hence we have the Law of Reflection; that is,

which they have been displaced for the sake of clarity. Note too 

u i 
 = u r



y


Furthermore, since (k
 $ i 
 - k
 $ r
 ) is parallel to uˆ
 n
  all three vectors, k
 $ i
 , k
 $ r
 , and uˆ
 n
 , are in the same plane, the plane-of-incidence. Again, 

from Eq. (4.19) 


E
 i



k






[(k
 $

u


B



i



r



i 
 - k


$ t
 ) · r
 $] y
  =  b 
 = e t
  (4.21)

u


i 
 k



r



i



B



r


and therefore (k
 $


z



i 
 - k


$ t
 ) is also normal to the interface. Thus k
 $ i, 



E



x



r



k
 $ r
 , k
 $ t
 , and uˆ
 n
  are all coplanar. As before, the tangential compou t


Interface

nents of k
 $ i
  and k
 $ t 
 must be equal, and consequently


B



t



k
 t







ki
  sin u i 
 =  kt
  sin u t
  (4.22)


E



t


But because v i 
 = v t
 , we can multiply both sides by  c
 >v i
  to get


ni
  sin u i 
 =  nt
  sin u t


(a)

which is Snell’s Law. Finally, if we had chosen the origin  O
  to 

be in the interface, it is evident from Eqs. (4.20) and (4.21) that 


E



E



i



r



k
 r


e


k



r
  and e t
  would both have been zero. That arrangement, though 


i



B


u

u

not as instructive, is certainly simpler, and we’ll use it from 


i



r



i



B



r


Interface


n



x



i


here on.


nt



uˆ
 n 
 u t 
 E
 t



B



t



4.6.2 The Fresnel Equations



k
 t


We have just found the relationship that exists among the  phases 

(b)

of E


$ i(
 
r

 $,  t)
 , E
 $






r(
   
r



$,  t)
 , and E
 $ t(
 
r

 $,  t)
  at the boundary. There is still an 

interdependence shared by the amplitudes E


$0 i
 ,  E
 $0 r
 , and E
 $0 t
 , 

which can now be evaluated. To that end, suppose that a plane 

u


k



i



B



i


monochromatic wave is incident on the planar surface separat-


i


ing two isotropic media. Whatever the polarization of the wave, 

u i


u i


we shall resolve its E


$- and B
 $-fields into components parallel 


Bi 
 cosu i


and perpendicular to the plane-of-incidence and treat these con-

stituents separately.

(c)


Figure 4.47    
 An incoming wave whose E
 $-field is normal to the plane-of-


Case 1: 
  E


$ perpendicular to the plane-of-incidence.  
 Assume 

incidence. The fields shown are those at the interface; they have been dis-

that  E


$ is perpendicular to the plane-of-incidence and that B
 $ is  placed so the vectors could be drawn without confusion.
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that although E


$ r
  and E
 $ t
  must be normal to the plane-of- 

Since  vi 
 =  vr
  and u i 
 = u r
 , Eq. (4.26) can be written as

incidence by symmetry,  we are guessing that they point outward
  

at the interface when E


$

1

1


i
  does. The directions of the B


$-fields 





 ( Ei 
 -  Er
 ) cos u i 
 =

  Et
  cos u t
  (4.30)

then follow from Eq. (4.23).

m ivi


m tvt


We will need to invoke another of the boundary conditions 

Making use of Eqs. (4.12), (4.13), and (4.14) and remembering 

in order to get one more equation. The presence of material 

that the cosines therein equal one another at  y


 substances that become electrically polarized by the wave has 

= 0, we obtain

a definite effect on the field configuration. Thus, although the 


n



n







i 
  ( E



t 
   E


tangential component of E


$ (i.e., tangent to the interface) is 

m

0 i 
 -  E
 0 r
 ) cos u i 
 =

0 t
  cos u t
  (4.31)


i


m t


 continuous across the boundary, its normal component is not. 

Instead, the normal component of the product PE
 $ is the same 

Combined with Eq. (4.25), this yields

on either side of the interface. Similarly, the normal compo-


ni



nt


nent of B


$ is continuous, as is the tangential component of 

 cos 

 cos 


E


u i 
 -

u t


0 r


m i


m t


m-1B


$. To  illustrate that, return to Fig. 4.46 and Ampère’s Law 





a b =

 (4.32)

[Eq. (3.13)], where this time the arrows stand for the B


$-fields. 


E
 0 i 
 #


ni



n


 cos 


t


u i 
 +

 cos u t


Because the permeability may be different in the two media, 

m i


m t


divide both sides of the equation by m. Letting the dashed loop 


ni


become  vanishingly narrow, the area  A
  bounded by  C
  disap-

2   cos 


E


u

m


i



i


pears and the right side of Eq. (3.13) vanishes. That means that 

and 

a 0 t
 b =

 (4.33)


E



n



n


if we add up (via a line integral) the components of B


$>m paral-

0 i 
 #


i



t


S

S

 cos u i 
 +  cos u t


lel to the path elements  d
 O—each one times  d
 O—over the 

m i


m t


whole path  C
 , the result must be zero. Hence the net value of 

The # subscript serves as a reminder that we are dealing with the 


B


$>m immediately above the  interface must equal the net value 

case in which E


$ is perpendicular to the plane-of-incidence. These 

 immediately  beneath the  interface. Here the magnetic effect of 

two expressions,  which are completely general statements apply-


the two media appears via their permeabilities m i
  and m t
 . This 


ing to any linear, isotropic, homogeneous media
 , are two of the 

boundary  condition will be the simplest to use, particularly 


Fresnel Equations
 . Most often one deals with dielectrics for 

as  applied to reflection from the surface of a conductor.* 

which m

Thus  the continuity of the tangential component of B


$>


i 
 ≈ m t 
 ≈ m0; consequently, the common form of these 

m 

equations is simply

 requires  that


B



B



B



E
 0 r



ni
  cos u i 
 -  nt
  cos u t






-   i
  cos 


r



t






 (4.34)

u

 cos u

 cos u


r
 # K a

b =

m


i 
 +


r 
 = -  


t
  (4.26)


E



n



i


m i


m t


0 i 
 #


i
  cos u i 
 +  nt
  cos u t


When the tangential component of the  B
 -field points in the 

and

negative  x
 -direction, as it does for the incident wave, it is en-

tered with a minus sign. The left and right sides of the equa-


E


2 n



 



t


0 t
 b =


i
  cos u i


 (4.35)

tion are the total magnitudes of B


$>

# K a

m parallel to the interface 


E
 0 i 
 #  ni
  cos u i 
 +  nt
  cos u t


in the incident and transmitting media, respectively. The 

 positive direction is that of increasing  x
 , so that the scalar 

Here  r
 # denotes the amplitude reflection coefficient
 , and  t
 # is 

components of B


$ i
  and B
 $ t
  appear with minus signs. From   the amplitude transmission coefficient
 .

Eq. (4.23) we have






Bi 
 =  Ei
 > vi
  (4.27)


Case 2:
  E


$ parallel to the plane-of-incidence.  
 A similar pair 






B


of equations can be derived when the incoming E


$-field lies in 


r 
 =  Er
 > vr
  (4.28)

the plane-of-incidence, as shown in Fig. 4.48. Continuity of 

and 


Bt 
 =  Et
 > vt
  (4.29)

the tangential components of E


$ on either side of the boundary 

leads to






E
 0 i
  cos u i 
 -  E
 0 r
  cos u r 
 =  E
 0 t
  cos u t
 (4.36)

In much the same way as before, continuity of the tangential 

*In keeping with our intent to use only the E
 $- and B
 $-fields, at least in the early 

components of B


$>m yields

part of this exposition, we have avoided the usual statements in terms of H


$, 

where

1

1

1





  E


  E


  E







H


$ =

0 i 
 +

0 r 
 =

0 t
  (4.37)

m-1B


$ [A1.14]

m ivi


m rvr


m tvt
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y


One further notational simplification can be made using Snell’s 

Law, whereupon the Fresnel Equations for dielectric media  


E



i


become (Problem 4.43)


E



r


sin (u


B


u


i



k



i



r



 



r



i 
 - u t
 )

u

# = -  

 (4.42)


k



r


sin (u


i



i 
 + u t
 )


z


tan (u


B



r



x



 



r



i 
 - u t
 ) (4.43)

i = +  tan (u i 
 + u t
 )

Interface


E



t


2 sin u


k
 t



 



t



t
  cos u i


# = +  

 (4.44)


B


sin (u


t



i 
 + u t
 )

2 sin u


 



t



t
  cos u i


 (4.45)

i = +  sin (u i 
 + u t
 ) cos (u i 
 - u t
 )


E



E


A note of caution must be introduced here. Bear in mind 


i



r



k
 r


that the directions (or more precisely, the phases) of the fields 


B



i


in Figs. 4.47 and 4.48 were selected rather arbitrarily. For ex-

u i


u r



B



k



r



i



n


Interface


i x


ample, in Fig. 4.47 we could have assumed that E


$ r
  pointed in-


nt


ward, whereupon B


$ r
  would have had to be reversed as well. 


uˆ
 n 
 u

Had we done that, the sign of  r



t


# would have turned out to be 


E


positive, leaving the other amplitude coefficients unchanged. 


t



B



t


The signs appearing in Eqs. (4.42) through (4.45), which are 


k
 t


positive except for the first, correspond to the particular set of 

field directions selected. The minus sign in Eq. (4.42), as we 


Figure 4.48    
 An incoming wave whose E
 $-field is in the plane-of- 

will see, just means that we didn’t guess correctly concerning 

incidence.


E


$ r
  in Fig. 4.47. Nonetheless, be aware that the literature is not 

standardized, and all possible sign variations have been labeled 

the  Fresnel Equations
 . To avoid confusion  they must be related 


Using the fact that m i 
 = m r 
 and u i 
 = u r
 , we can combine these 


to the specific field directions from which they were derived.


formulas to obtain two more of the  Fresnel Equations
 :


nt



n


 cos 


i 
  cos 


E


u

u

m


i 
 - m


t


EXAMPLE 4.4


 



r


0 r



t



i


 (4.38)

i K a

b =


E
 0 i



n



n


i


i 
  cos 


t


An electromagnetic wave having an amplitude of 1.0 V>m 

u

 cos u

m


t 
 +


i



i


m t


arrives at an angle of 30.0° to the normal in air on a glass plate 

of index 1.60. The wave’s electric field is entirely perpendicular 

and

to the plane-of-incidence. Determine the amplitude of the re-


n


flected wave.

2   i 
  cos 


E


u

m


i


SOLUTION






t


0 t



i


 (4.39)

i = a

b =


E


Since ( E


0 i



n



n


0 r
 )

i


i


# =  r
 #( E
 0 i
 )# =  r
 #(1 V>m) we have to find

 cos 


t


u

 cos u

m


t 
 +


i



i


m t


sin (u






r



i 
 - u t
 ) [4.42]

When both media forming the interface are dielectrics that are 

# = -  sin (u i 
 + u t
 )

essentially “nonmagnetic” (p. 68), the amplitude coefficients 

become

But first we’ll need u t
 , and so from Snell’s Law


n



ni
  sin u i 
 =  nt
  sin u t



 



r



t
  cos u i 
 -  ni
  cos u t


 (4.40)

i =  n



n



i
  cos u t 
 +  nt
  cos u i


sin 


i


u t 
 =

 sin 


n


u i



t


  

1

2 n


sin u t 
 =

 sin 30.0° = 0.312 5

and  



t



i
  cos u i


 (4.41)

1.60

i =  ni
  cos u t 
 +  nt
  cos u i


u t 
 = 18.21°     
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Hence

We will come back to the physical significance of the minus 

sign presently. After expanding the sines and using Snell’s Law, 

sin (30.0° - 18.2°)

sin 11.8°


r


this expression becomes

# = -  

= - 

sin (30.0° + 18.2°)

sin 48.2°

0.204 5


nt
  cos u i 
 -  ni
  cos u t



r






[ r 
 ]

 (4.46)

# = -  

= -0.274

i

d

0.745 5

u i 
 = 0 = [ -  r
 #]u i 
 = 0 = c nt
  cos u i 
 +  ni
  cos u t 
 u i
 =0

and so 

( E
 0 r
 )# =  r
 #( E
 0 i
 )# =  r
 #(1.0 V>m)

which follows as well from Eqs. (4.34) and (4.40). In the 

limit, as 

( E


u i
  goes to 0, cos u i
  and cos u t
  both approach 1, and 

0 r
 )# = - 0.27 V>m

consequently


nt 
 -  ni






[ r 
 ]

i u

 (4.47)


4.6.3  Interpretation of the Fresnel Equations



i 
 = 0 = [ -  r
 #]u i 
 = 0 =  nt 
 +  ni
  

This section examines the physical implications of the Fresnel 

This equality of the reflection coefficients arises because the 

Equations. In particular, we are interested in determining the 

plane-of-incidence is no longer specified when u t 
 = 0. Thus, for 

fractional amplitudes and flux densities that are reflected and 

example, at an air ( ni 
 = 1)–glass ( nt 
 = 1.5) interface at nearly 

refracted. In addition we shall be concerned with any possible 

normal incidence, the amplitude reflection coefficients equal 

phase shifts that might be incurred in the process.

±0.2. (See Problem 4.58.)

When  nt 
 7  ni
  it follows from Snell’s Law that u i 
 7 u t
 , and  r
 # 

is negative for all values of u


Amplitude Coefficients



i
  (Fig. 4.49). In contrast, Eq. (4.43) 

tells us that  r 
  starts out positive at 

i

u i 
 = 0 and decreases gradu-

Let’s briefly examine the form of the amplitude coefficients 

ally until it equals zero when (u i 
 + u t
 ) = 90°, since there tan p>2 

over the entire range of u

is infinite. The particular value of the incident angle for which 


i
  values. At nearly normal incidence 

(u

this occurs is denoted by u


i 
 ≈ 0) the tangents in Eq. (4.43) are essentially equal to sines, 


p
  and referred to as the polarization 


in which case


angle
  (see Section 8.6.1). Notice that  r 
 S 0 at 

i

u p
 , just when the 

phase shifts 180°. That means we won’t see the E


$-field do any 

 sin (u

flipping when u

[ r 
 ]


i 
 - u t
 )


i
  approaches u p
  from either side. As u i
  increases 

i u

d


i 
 = 0 = [ -  r
 #]u i 
 = 0 = c sin (u

beyond  u

 becomes progressively more negative, reaching 


i 
 + u t
 )


p
 ,   r
 i

u i 
 = 0

-1.0 at 90°.

If you place a single sheet of glass, a microscope slide, on this 

page and look straight down into it (u i 
 = 0), the region beneath 

the glass will seem decidedly grayer than the rest of the paper, 

because the slide will reflect at both its interfaces, and the  

light reaching and returning from the paper will be diminished 

Undyed paper is a mat of thin transparent fibers that have an index of 

refraction (of about 1.56) substantially different from that of the sur-

rounding air. Hence paper scatters appreciable amounts of white light 

A glass rod and a wooden rod 

and appears bright opaque white—see Eq. (4.46). If we now “wet” the 

immersed in benzene. Since the 

paper, coating each fiber with something (e.g., mineral oil, aka baby oil) 

index of refraction of benzene is 

whose index (1.46) is between that of air and the fibers, it will cut the 

very nearly that of glass, the rod 

amount of back-scattered light and the treated area will become essen-

on the left seems to vanish in 

tially transparent. (E.H.)

the liquid. (E.H.)
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appreciably. Now hold the slide near your eye and again view the 

page through it as you tilt it, increasing u i
 . The amount of light 

reflected will increase, and it will become more difficult to see 

the page through the glass. When u i 
 ≈ 90° the slide will look 

like a perfect mirror as the reflection coefficients (Fig. 4.49) go 

to  -1.0. Even a poor surface (see photo), such as the cover of 

this book, will be mirrorlike at glancing incidence. Hold the 

book horizontally at the level of the middle of your eye and face 

a bright light; you will see the source reflected nicely in the cover. 

This suggests that X-rays could be mirror-reflected at glancing 

incidence (p. 246), and modern X-ray telescopes are based on 

that very fact.

At normal incidence Eqs. (4.35) and (4.41) lead straightfor-

At near-glancing incidence the 

wardly to

walls and floor are mirrorlike—

this despite the fact that the 

2 n


surfaces are rather poor reflec-





[ t 
 ]


i 
  (4.48)

i u

tors at 


i 
 = 0 = [ t
 #]u i 
 = 0 =  n


u i 
 = 0°. (E.H.)


i 
 +  nt


It will be shown in Problem 4.63 that the expression


 



t


more dense ( ni 
 7  nt
 ), is of interest as well. In that instance 

# + ( -  r
 #) = 1 (4.49)

u t 
 7 u i
 , and  r
 #, as described by Eq. (4.42), will always be posi-

holds for all u i
 , whereas

tive. Figure 4.50 shows that  r
 # increases from its initial value 






t


[Eq. (4.47)] at u i 
 = 0, reaching +1 at what is called the critical 


i +  r
 i = 1 (4.50)


angle
 , u c
 . Specifically, u c
  is the special value of the incident an-

is true only at normal incidence.

gle (p. 125) for which u t 
 = p>2. Likewise,  r 
  starts off nega-

i

The foregoing discussion, for the most part, was restricted to 

tively [Eq. (4.47)] at u i 
 = 0 and thereafter increases, reaching 

the case of external reflection
  (i.e.,  nt 
 7  ni
 ). The opposite situ-

+1 at u i 
 = u c
 , as is evident from the Fresnel Equation (4.40). 

ation of internal reflection
 , in which the incident medium is the 

Again,  r 
  passes through zero at the  polarization angle
  

i

u′ p
 . It is 

1.0

1.0


t



t
 ⊥

0.5

0.5


r
 ⊥


r


0

0

u

u


p



c


u p



r



r
 ⊥

Amplitude coefficients

Amplitude coefficients

–0.5

–0.5

33.7° 41.8°

56.3°

–1.0

–1.0

0

30

60
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0
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u i
  (degrees)

u i
  (degrees)


Figure 4.49    
 The amplitude coefficients of reflection and transmission as 


Figure 4.50    
 The amplitude coefficients of reflection as a function of  

a function of incident angle. These correspond to external reflection  nt 
 7  ni
  

incident angle. These correspond to internal reflection  nt 
 6  ni
  at an  

at an air–glass interface ( nti 
 = 1.5).

air-glass interface ( nti 
 = 1>1.5).
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left for Problem 4.68 to show that the polarization angles u′ p
  and 

(a)


y


(b)


y


u p
  for internal and external reflection at the interface between 


B



i


the same media are simply the complements of each other. We 


B



k



i



k
 r


will return to internal reflection in Section 4.7, where it will be 


E



r



i



E



r



E



i



B



r


shown that  r
 # and  r 
  are complex quantities for 

i

u i 
 7 u c
 .


k
 i



B



k



r



i



E



x



r x



Phase Shifts



E



B



t 
 t



B



t


It should be evident from Eq. (4.42) that  r



E


# is negative regard-


t


less of u


k



k



i
  when  nt 
 7  ni
 . Yet we saw earlier that had we chosen 


t



t


[E


$ r
 ]# 
 in Fig. 4.47 to be in the opposite direction, the first Fres-

nel Equation (4.42) would have changed signs, causing  r



Figure 4.51    
 Field orientations and phase shifts.

# to 

become a positive quantity. The sign of  r
 # is associated with the 

relative directions of [E


$

which is positive (∆w

0 i
 ]# and [E


$0 r
 ]#. Bear in mind that a 

i = 0) as long as





reversal of [E


$0 r
 ]# is tantamount to introducing a phase shift, 


n


∆


t
  cos u i 
 -  ni
  cos u t 
 7 0

w#, of p radians into [E


$ r
 ]#. Hence at the boundary [E
 $ i
 ]# and 

[E


$

that is, if


r
 ]# will be antiparallel and therefore p out-of-phase with 

each other, as indicated by the negative value of  r
 #. When we 

sin u i
  cos u i 
 - cos u t
  sin u t 
 7 0

consider components normal to the plane-of-incidence, there is 

no confusion as to whether two fields are in-phase or p radians 

or equivalently

out-of-phase: if parallel, they’re in-phase; if antiparallel, they’re 





 sin (u i 
 - u t
 ) cos (u i 
 + u t
 ) 7 0 (4.51)

p out-of-phase. In summary, then,  
the component of the elec-





tric field normal to the plane-of-incidence undergoes a phase 



This will be the case for  ni 
 6  nt
  if



shift of 

 P 
 
radians upon reflection when the incident medium 







(u i 
 + u t
 ) 6 p>2 (4.52)



has a lower index than the transmitting medium

 . Similarly,  t
 # 

and   t 
  are always positive and ∆

and for  ni 
 6  nt
  when

i

w = 0.   Furthermore, when 



ni 
 7  nt
   no phase shift in the normal component results on re-






(u i 
 + u t
 ) 7 p>2 (4.53)


flection, that is, 
 ∆w# = 0  so long as
  u i 
 6 u c
 .

Things are a bit less obvious when we deal with [E


$

Thus when  n


 and [E


$  will be in-phase (∆w


i
 ] ,  


i 
 6  nt
 , [E


$0 r
 ]i

0 i
 ]i

i = 0) 

i

[E


$

until u


r
 ] , and [E


$ . It now becomes necessary to define more ex-


i 
 = u p
  and out-of-phase by p radians thereafter. The tran-

i


t
 ]i

plicitly what is meant by  in-phase
 , since the field vectors are 

sition is not actually discontinuous, since [E


$0 r
 ]  goes to zero at 

i

coplanar but generally not colinear. The field directions were 

u p
 . In contrast, for internal reflection  r   
 is negative until 

i

u′ p
 , 

chosen in Figs. 4.47 and 4.48 such that if you looked down any 

which means that ∆w

 is positive and 

i = p. From u′ p
  to u c
 ,  r
  i

one of the propagation vectors toward the direction from which 

∆w

 becomes complex, and ∆  gradually 

i = 0. Beyond u c
 ,  r


w

  i

i

the light was coming, E


$, B
 $, and k
 $ would appear to have the same 

increases to p at u i 
 = 90°.

relative orientation whether the ray was incident, reflected, or 

Figure 4.52, which summarizes these conclusions, will be of 

transmitted. We can use this as the required condition for two 

continued use to us. The actual functional form of ∆w  and ∆

i

w# 


E


$-fields to be in-phase. Equivalently, but more simply,  
two fields 



for internal reflection in the region where u i 
 7 u c
  can be found 



in the incident plane are in-phase if their y-components are 



in the literature,* but the curves depicted here will suffice for 



parallel and are out-of-phase if the components are antiparal-



our purposes. Figure 4.52 e 
 is a plot of the relative phase shift 



lel

 . Notice that when two E


$-fields are out-of-phase so too are  between the parallel and perpendicular components, that is, 

their associated B


$-fields and vice versa. With this definition we 

∆wi - ∆w#. It is included here because it will be useful later on 

need only look at the vectors normal to the plane-of-incidence, 

(e.g., when we consider polarization effects). Finally, the es-

whether they be E


$ or B
 $, to determine the relative phase of the  sential features of this discussion are illustrated in Figs. 4.53 

accompanying fields in the incident plane. Thus in Fig. 4.51 a
  E


$

and 4.54. The amplitudes of the reflected vectors are in accord 


i
  

and E


$

with those of Figs. 4.49 and 4.50 (for an air–glass interface), 


t
  are in-phase, as are B


$ i
  and B
 $ t
 , whereas E
 $ i
  and E
 $ r
  are out-

of-phase, along with B


$

and the phase shifts agree with those of Fig. 4.52.


i
  and B


$ r
 . Similarly, in Fig. 4.51 b
  E
 $ i
 , E
 $ r
 , 

and E


$

Many of these conclusions can be verified with the sim-


t
  are in-phase, as are B


$ i
 , B
 $ r
 , and B
 $ t
 .

Now, the amplitude reflection coefficient for the parallel 

plest experimental equipment, namely, two linear polarizers, 

component is given by

a piece of glass, and a small source, such as a flashlight or 


n



r



t
  cos u i 
 -  ni
  cos u t


i =  nt
  cos u i 
 +  ni
  cos u t


*Born and Wolf,  Principles of Optics
 , p. 49.
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(a)

p


Reflectance and Transmittance


f⊥

Consider a circular beam of light incident on a surface, as 

]⊥


nt 
  ni  


shown in Fig. 4.55, such that there is an illuminated spot of 

0 rE



nt
 ni  =  
 1.5

area  A
 . Recall that the power per unit area crossing a surface in 

[ Phase shift

vacuum whose normal is parallel to S
 $, the Poynting vector, is 

given by

0

30

60

90






S


u

$ =  c
 2P0E
 $ : B
 $ [3.40]


i
   (degrees)

(b)

p

Furthermore, the radiant flux density (W>m2) or irradiance is


c
 P






I


f

= 8 S
 9

0

T =

  E
 2

]


n


2

0 [3.44]


t 
  ni  


0 rE
 [


nt
 ni  =  
 1.5

This is the average energy per unit time crossing a unit area nor-

Phase shift

mal to S
 $ (in isotropic media S
 $ is parallel to k
 $). In the case at hand 

(Fig. 4.55), let  Ii
 ,  Ir
 , and  It
  be the incident, reflected, and trans-

0

30

u

90


p


mitted flux densities, respectively. The cross-sectional areas of 

u i
   (degrees)

the incident, reflected, and transmitted beams are, respectively, 

(c)

p


A
  cos u i
 ,  A
  cos u r
 , and  A
  cos u t
 . Accordingly, the incident power is IiA
  cos u i
 ; this is the energy per unit time flowing in the incident 

]

beam, and it’s therefore the power arriving on the surface over  A
 . 


n


f


i 
  nt  


0 rE



n


Similarly,   I


[


t
 ni  =  
 11.5


rA
  cos u r
  is the power in the reflected beam, and 

Phase shift


ItA
  cos u t
  is the power being transmitted through  A
 . We define the 


reflectance
   R
  to be the ratio of the reflected power (or flux) to 

0

u

60

90


p  
 u c


the incident power:

u i
   (degrees)


I



I


p






R


(d)

K  r
   A
  cos u r 
 =  r
  (4.54)


Ii
   A
  cos u i



Ii


In the same way, the transmittance
   T
  is defined as the ratio of 

f

]⊥

⊥


ni 
  nt  


0 r



n


the transmitted to the incident flux and is given by


E



t
 ni  =  
 11.5

[ Phase shift


I







T 
 K  t
  cos u t
  (4.55)


Ii
  cos u i


0

30 u c


60

90

u i
   (degrees)

The quotient  Ir
 > Ii
  equals ( vr
 P rE
 20 r
 >2)>( vi
 P iE
 20 i
 >2), and since the p

(e)

incident and reflected waves are in the same medium,  vr
  =


vi
 , P r 
 = P i
 , and

ve


ni 
  nt  



E


2


n







R 
 =


t
 ni  =  
 11.5

a 0 r
 b =  r
 2 (4.56)

Relati

f  – f⊥


E
 0 i


phase shift

45

In like fashion (assuming m i 
 = m t 
 = m0),

0

u p 
 u c


60

90


n



E


2


n


u i
   (degrees)






T 
 =  t
  cos u t
  a 0 t
 b = a  t
  cos u t
 b  t
 2 (4.57)


ni
  cos u i E
 0 i



ni
  cos u i



Figure 4.52    
 Phase shifts for the parallel and perpendicular components 

of the E
 $-field corresponding to internal and external reflection.

where use was made of the fact that m0P t 
 = 1> v
 2 t
  and m0 vt
 P t
  =


nt
 > c
 . Notice that at normal incidence, which is a situation of 

high-intensity lamp. By placing one polarizer in front of the 

great practical interest, u t 
 = u i 
 = 0, and the transmittance [Eq. 

source (at 45° to the plane-of-incidence), you can easily du-

(4.55)], like the reflectance [Eq. (4.54)], is then simply the ratio 

plicate the conditions of Fig. 4.53. For example, when u

of the appropriate irradiances. Since  R



i 
 = u p
  

=  r
 2, we need not worry 

(Fig. 4.53 b
 ) no light will pass through the second polarizer if 

about the sign of  r
  in any particular formulation, and that makes 

its transmission axis is parallel to the plane-of-incidence. In 

reflectance a convenient notion. Observe that in Eq. (4.57)  T
  is 

comparison, at near-glancing incidence the reflected beam 

not simply equal to  t
 2, for two reasons. First, the ratio of the 

will vanish when the axes of the two polarizers are almost 

indices of refraction must be there, since the speeds at which 

normal to each other.

energy is transported into and out of the interface are different, 
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(a)

(b)

(c)
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E
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E
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k
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r



r
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r



r



t



E



r
 ⊥


Figure 4.53    
 The reflected  


k



E



r



E
 $-field at various angles  


E


  r



r


concomitant with external 

reflection. The fields all occur 

at the interface. They have 

been displaced a bit so the 


ni 
  nt



ni 
  nt



ni 
  nt


vectors could be drawn without 

u i 
  
 u p


u i 
 =  
 u p


u i 
  
 u p


confusion.

in other words,  I 
 ∝  v
 , from Eq. (3.47). Second, the cross- 

But this is simply

sectional areas of the incident and refracted beams are differ-






R 
 +  T 
 = 1 (4.60)

ent. The energy flow per unit area is affected accordingly, 

and that manifests itself in the presence of the ratio of the 

where there was no absorption.

cosine terms.

The electric field is a vector field and, as in the Fresnel 

Let’s now write an expression representing the conservation 

analysis, we can again think of light as being composed of two 

of energy for the configuration depicted in Fig. 4.55. In other 

orthogonal components whose  E
 -fields are either parallel or 

words, the total energy flowing into area  A
  per unit time must 

perpendicular to the plane-of-incidence. In fact, for ordinary 

equal the energy flowing outward from it per unit time:

“unpolarized” light, half oscillates parallel to that plane and 

half oscillates perpendicular to it. Thus if the incoming net 






Ii
   A
  cos u i 
 =  Ir
   A
  cos u r 
 +  It
   A
  cos u t
  (4.58) irradiance is, say, 500 W>m2 the amount of light oscillating 

When both sides are multiplied by  c,
  this expression becomes


A 
 cos  
 u i



A 
 cos  
 u r



niE
 20 i
  cos u i 
 =  niE
 20 r
  cos u i 
 +  niE
 20 t
  cos u t
 u i 
 u r



E


2


n



E


2

or 

1 = a 0 r
 b + a  t
  cos u t
 b a 0 t
 b  (4.59)


E
 0 i



ni
  cos u i E
 0 i



ni


(a)

(b)


nt



E



E


 E
 i



k



i



i



E



r



i



A 
 cos  



E


u t



i
 ⊥


E



i
 ⊥

(a)


E



k



n



r
 ⊥


r



i



k



ni



i 
 u


E



k
 i



E



i



E



r



E



r 
 r


u  r


u


r



i 
 u


n



r 
 E


u


t



nt



r
 ⊥


i 
 u r



ni



A



nt
    ni



ni 
  nt



ni 
  nt


u i 
  
 u p


u p 
  
 u i 
  
 u c


(b)


Figure 4.54    
 The reflected E
 $-field at various angles concomitant with 

internal reflection.


Figure 4.55    
 Reflection and transmission of an incident beam.
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(a)

1.0

Notice that  R
 # is the fraction of  Ii
 # that is reflected, and 


T


not the fraction of  I






⊥


i
  reflected. Accordingly, both  R
 # and  R
 i

can equal 1, and so the total reflectance for natural light is 

0.5


nti
  = 1.5

given by


R


Reflectance and transmittance

⊥






R 
 = 1

0

30

60

90

2 ( R
 i +  R
 #) (4.66)

u i 
 (degrees)

For a rigorous proof of this equation see Section 8.6.1.

(b)

1.0


T


EXAMPLE 4.5

0.5


nti
  = 1.5

Light impinges on a slab of glass in air at the polarization angle 


R


Reflectance and transmittance

u p


u p
 . Assume that the net transmittance is known to be 0.86, and 

0

30

60

90

the incoming light is unpolarized. (a) Determine the percent of 

u i 
 (degrees)

the incident power that is reflected. (b) If 1000 W comes in, 

how much power is transmitted with its  E
 -field perpendicular to 


Figure 4.56    
 Reflectance and transmittance versus incident angle.

the plane-of-incidence?

SOLUTION

perpendicular to the incident plane is 250 W>m2. It follows 

from Eqs. (4.56) and (4.57) that


(a)
   We are given that  T 
 = 0.86 and that since the beam is unpo-

larized half the light is perpendicular to the plane of incidence 






R


and half is parallel to it. Hence since both  T 
  and  T


# =  r
 2# (4.61)

i

#  can be 1.0, 

for unpolarized light






R


 (4.62)

i =  r
 2i


T 
 = 12 ( T
 i +  T
 #)


n







T



t
  cos u t


Here u

# = a

b  t
 2


i 
 = u p
  and so from Fig. 4.56  T
 i = 1.0; all the light whose 


n


# (4.63)


i
  cos u i


electric field is parallel to the plane of incidence is transmitted. 

Hence


n


and 


T



t
  cos u t


 (4.64)

i = a

b  t
 2


n


i


T 
 = 1


i
  cos u i


2 (1 +  T
 #) = 0.86

which are illustrated in Fig. 4.56. Furthermore, it can be shown 

and for the perpendicular light

(Problem 4.73) that


T
 # = 1.72 - 1 = 0.72






R
 i +  T
 i = 1 (4.65a)

Since 


R
 # +  T
 # = 1

and 


R
 # +  T
 # = 1 (4.65b)






R
 # = 1 -  T
 # = 0.28

and the net reflected fraction is


R 
 = 12 ( R
 i +  R
 #) = 12  R
 #


R 
 = 0.14 = 14%


(b)
   Given 1000 W incoming, half of that, or 500 W, is perpen-

dicular to the incident plane. Of this 72% is transmitted, since 


T
 # = 0.72. Hence the power transmitted with its  E
 -field per-

pendicular to the plane-of-incidence is

0.72 * 500 W = 360 W

Looking down into a puddle (that’s melting snow on the right) we see a 

reflection of the surrounding trees. At normal incidence water reflects about 

2% of the light. As the viewing angle increases—here it’s about  

When u i 
 = 0, the incident plane becomes undefined, and any 

40°—that percentage increases. (E.H.)

distinction between the parallel and perpendicular components 
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50

40

30

20

Reflectance (%)

10

0

At near-normal incidence about 4% of the light is reflected back off each air–glass 

1

2

3

4

interface. Here because it’s a lot brighter outside than inside the building, you 

Refractive index ( nt
 )

have no trouble seeing the photographer who is outside looking in. (E.H.)


Figure 4.57    
 Reflectance at normal incidence in air ( ni 
 = 1.0) at a single 

interface.

of   R
  and  T
  vanishes. In this case Eqs. (4.61) through (4.64), 

sheet of clear plastic into a multiturned cylinder and it too will 

along with (4.47) and (4.48), lead to

look like shiny metal. The many interfaces produce a large num-

ber of closely spaced  specular
  reflections that send much of the 


n


2

light back into the incident medium, more or less, as if it had 


 



R 
 =  R



t 
 -  ni


 (4.67)

i =  R
 # = a

b


nt 
 +  ni


undergone a single frequency-independent reflection. A smooth 

gray-metal surface does pretty much the same thing—it has a 

4 n


and 


T 
 =  T



t
   ni


 (4.68)

large, frequency-independent specular reflectance—and looks 

i =  T
 # = ( n


shiny (that’s what “shiny” is). If the reflection is diffuse, the 


t 
 +  ni
 )2

surface will appear gray or even white if the reflectance is large 

Thus 4% of the light incident normally on an air–glass ( ng 
 = 1.5) 

enough.

interface will be reflected back, whether internally,  ni 
 7  nt
 , or 

Figure 4.57 is a plot of the reflectance at a single interface, 

externally,   ni 
 6  nt
  (Problem 4.70). This will be of concern to 

assuming normal incidence for various transmitting media in 

anyone who is working with a complicated lens system, which 

air. Figure 4.58 depicts the corresponding dependence of the 

might have 10 or 20 such air–glass boundaries. Indeed, if you 

transmittance at normal incidence on the number of interfaces 

look perpendicularly into a stack of about 50 microscope slides 

and the index of the medium. Of course, this is why you can’t 

(cover-glass sliders are much thinner and easier to handle in 

see through a roll of “clear” smooth-surfaced plastic tape, and 

large quantities), most of the light will be reflected. The stack 

it’s also why the many elements in a periscope must be coated 

will look very much like a mirror (see photo). Roll up a thin 

with antireflection films (Section 9.9.2).

100

80


nt
  = 1.5

60


nt
  = 2.0

40


nt
  = 2.5

ransmittance (%)T

20


nt
  = 3.0

00

2

4

6

8

10

Number of reflecting surfaces

Near-normal reflection off a stack of microscope slides.  


Figure 4.58    
 Transmittance through a number of surfaces in air ( ni 
 = 1.0) 

You can see the image of the camera that took the picture. (E.H.)

at normal incidence.
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EXAMPLE 4.6

Suppose that we have a source embedded in an optically dense 

medium, and we allow u

Consider a beam of unpolarized light in air arriving at the flat 


i
  to increase gradually, as indicated in 

Fig. 4.59. We know from the preceding section (Fig. 4.50) that  r 
  

surface of a glass sheet ( n 
 = 1.50) at the polarization angle 

i

u p
 . 

and  r


 and  t


Considering Fig. 4.49 and the  E
 -field oscillating parallel to the 

# increase with increasing u i
 , and therefore  t
 i

# both 

decrease. Moreover u

incident plane, determine  R 
  and then show by direct computa-


t 
 7 u i
 , since

i

tion that  T



nt


i = 1.0. Since  r
 i = 0, why is  t
 i Z 1?

sin u i 
 =  sin 


n


u t



i


SOLUTION

From Eq. (4.62)

and  ni 
 7  nt
 , in which case  nti 
 6 1. Thus as u i
  becomes larger, the 

transmitted ray gradually approaches tangency with the bound-


R


2  and   r


i =  r 
 i

i = 0

ary, and as it does more and more of the available energy appears 

in the reflected beam. Finally, when 

hence 


R


u t 
 = 90°, sin u t 
 = 1 and

i = 0

and no light is reflected. On the other hand, from Eq. (4.64)





sin u c 
 =  nti 
  (4.69)


n



T



t
  cos u t


2

As noted earlier,  the critical angle is that special value of
  u i
  

i = a

b  t



n


i


i
  cos u i



for which
  u t 
 = 90°. The larger  ni
  is, the smaller  nti
  is, and the 

Using Fig. 4.49 and Eq. 4.41  t


smaller u c
  is. For incident angles greater than or equal to u c
 , 

i = 0.667 at u i 
 = u p 
 = 56.3°, and 

since 

all the incoming energy is reflected back into the incident 

u i 
 + u t 
 = 90.0°, u t 
 = 33.7°, consequently

medium in the process known as total internal reflection
  

1.5 cos 33.7°

(see photo at top of next page).


T


 (0.667)2

i = 1.0 cos 56.3°

It should be stressed that the transition from the conditions 

depicted in Fig. 4.59 a
  to those of 4.59 d
   takes place without any 


T
 i = 1.00

discontinuities. As u i
  becomes larger, the reflected beam grows 

All the light is transmitted. Conservation of energy in a lossless 

stronger and stronger while the transmitted beam grows weaker, 

medium tells us that  R


until the latter vanishes and the former carries off all the energy 

i +  T
 i = 1; it does not say that  r
 i +  t
 i = 1.

at u r 
 = u c
 . It’s an easy matter to observe the diminution of the 

transmitted beam as u i
  is made larger. Just place a glass micro-

scope slide on a printed page, this time blocking out any specu-

larly reflected light. At u i 
 ≈ 0, u t
  is roughly zero, and the page 

as seen through the glass is fairly bright and clear. But if you 


4.7  Total Internal Reflection


move your head, allowing u t
  (the angle at which you view the 

interface) to increase, the region of the printed page covered by 

In the previous section it was evident that something rather inter-

the glass will appear darker and darker, indicating that  T
  has 

esting was happening in the case of internal reflection 





indeed been markedly reduced.

( ni 
 7  nt
 ) when u i
  was equal to or greater than u c
 , the so-called 

The critical angle for our air–glass interface is roughly 42° 


critical angle
 . Let’s now return to that situation for a closer look. 

(see Table 4.3). Consequently, a ray incident normally on the 

left face of either of the prisms in Fig. 4.60 will have a u i 
 7 42° 

and therefore be internally reflected. This is a convenient way 

to reflect nearly 100% of the incident light without having to 


n


u


i
    nt



t


u u


i



r


25%

4%

6%

(a)

(b)

(c)

90°


nt



ni


42° 42°

100%

100%

38%

u i 
 u c 
 u r = 
 u i


u i = 
 u c 
 u r = 
 u c



Figure 4.59    
 Internal reflection and the critical  

(d)

(e)

(f)

angle. (Educational Services, Inc.)
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Notice that you can’t see the 

(a)

(b)

two front flames through the 

45°

water along a bright horizontal 

45°

band. That’s due to total inter-

45°

nal reflection. Look at the bot-

tom of a drinking glass through 

its side. Now add a few inches 

45°

45°

45°

of water. What happens? (E.H.)


Figure 4.60  
 Total internal reflection.

the superposition of these wavelets propagating at the appro-

priate speeds. In Fig. 4.61 a
  an incident wave results in the 

emission of wavelets successively from scattering centers  A
  

Σ t


worry about the deterioration that can occur with metallic sur-

Σ t


faces (see photo).


E


Another useful way to view the situation is via Fig. 4.61, 


nt


which shows a simplified representation of scattering off atom-

u t


ic oscillators. We know that the net effect of the presence of the 


A


u i



D



B


homogeneous isotropic media is to alter the speed of the light 


vit


from  c
  to  vi
  and  vt
 , respectively (p. 93). The resultant wave is 


ni
    nt



C



v


Σ


i
    vt



i


(a)


TABLE 4.3    Critical Angles



nit
  

u c
  

u c
  


nit
  

u c
  

u c



 


(degrees) (radians) 





(degrees) (radians)

1.30  50.284 9 0.877 6  1.50  41.810 3  0.729 7

1.31  49.761 2 0.868 5  1.51  41.471 8  0.723 8


vtt



B


1.32  49.250 9 0.859 6  1.52  41.139 5  0.718 0


A



D


1.33  48.753 5 0.850 9  1.53  40.813 2  0.712 3

1.34  48.268 2 0.842 4  1.54  40.492 7  0.706 7


C


1.35  47.794 6 0.834 2  1.55  40.177 8  0.701 2

(b)

1.36  47.332 1 0.826 1  1.56  39.868 3  0.695 8

1.37  46.880 3 0.818 2  1.57  39.564 2  0.690 5

1.38  46.438 7 0.810 5  1.58  39.265 2  0.685 3

1.39  46.007 0 0.803 0  1.59  38.971 3  0.680 2

1.40  45.584 7 0.795 6  1.60  38.682 2  0.675 1

Air

1.41  45.171 5 0.788 4  1.61  38.397 8  0.670 2


A



vtt



D B


1.42  44.767 0 0.781 3  1.62  38.118 1  0.665 3

u i
  = u c


1.43  44.370 9 0.774 4  1.63  37.842 8  0.660 5


v


Glass


i t


1.44  43.983 0 0.767 6  1.64  37.571 9  0.655 8


C


1.45  43.602 8 0.761 0  1.65  37.305 2  0.651 1

1.46  43.230 2 0.754 5  1.66  37.042 7  0.646 5

(c)

1.47  42.864 9 0.748 1  1.67  36.784 2  0.642 0


Figure 4.61    
 An examination of the transmitted wave in the process of 

1.48  42.506 6 0.741 9  1.68  36.529 6  0.637 6

total internal reflection from a scattering perspective. Here we keep u i
  and 

1.49  42.155 2 0.735 7  1.69  36.278 9  0.633 2


ni
  constant and in successive parts of the diagram decrease  nt
 , thereby 

increasing  vt
 . The reflected wave (u r 
 = u i
 ) is not drawn.
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glass is physically more dense than air), the process is actually 

still  internal
  reflection. In any event, because  nt
  is less than, but 

very nearly equal to, 1 the index ratio  nti 
 ≈ 1 and u c 
 ≈ 90°.

In 1923 A. H. Compton reasoned that even though X-rays 

incident on a sample at ordinary angles are not specularly re-

flected, they should be totally “externally” reflected at glancing 

incidence. He shined 0.128-nm X-rays on a glass plate and got 

a critical angle of about 10 minutes of arc (0.167°) measured 

The prism behaves like a mirror 

with respect to the surface. That yielded an index of refraction 

and reflects a portion of the pencil 

(reversing the lettering on it). The 

for glass that differed from 1 by -4.2 * 10-6.

operating process is total internal 

We’ll come back to some important practical applications 

reflection. (E.H.)

of both total internal and total “external” reflection later on 

(p. 193).

and   B
 . These overlap to form the transmitted wave. The re-

If we assume in the case of total internal reflection that there 

flected wave, which comes back down into the incident medi-

is no transmitted wave, it becomes impossible to satisfy the 

um as usual (

boundary conditions using only the incident and reflected 

u i 
 = u r
 ), is not shown. In a time  t
  the incident 

front travels a distance  v


waves—things are not at all as simple as they might seem. Fur-


it 
 =  CB
 , while the transmitted front 

moves a distance  v


thermore, we can reformulate Eqs. (4.34) and (4.40) (Problem 


it 
 =  AD 
 7  CB
 . Since one wave moves from 


A
  to  E
  in the same time that the other moves from  C
  to  B
 , and 

4.77) such that

since they have the same frequency and period, they must 

change phase by the same amount in the process. Thus the dis-

cos u


 



r



i 
 - ( n
 2 ti 
 - sin2 u i
 )1>2

# =

 (4.70)

turbance at point  E
  must be in-phase with that at point  B
 ; both 

cos u i 
 + ( n
 2 ti 
 - sin2 u i
 )1>2

of these points must be on the same transmitted wavefront (re-

member Section 4.4.2).


n
 2 ti
  cos u i 
 - ( n
 2 ti 
 - sin2 u i
 )1>2

It can be seen that the greater  v


and 


r






(4.71)


t
  is in comparison to  vi
 , the 

i =  n
 2

more tilted the transmitted front will be (i.e., the larger 


ti
  cos u i 
 + ( n
 2 ti 
 - sin2 u i
 )1>2

u t
  will be). 

That much is depicted in Fig. 4.61 b
 , where  nti
  has been taken to 

Since sin u c 
 =  nti
  when u i 
 7 u c
 , sin u i 
 7  nti
 , and both  r
 # and  r 
  i be smaller by assuming  nt
  to be smaller. The result is a higher 

become complex quantities. Despite this (Problem 4.78), 

speed  vt
 , increasing  AD
  and causing a greater transmission an-


r
 # r
 *# =  r r
 *

i i = 1  
 and  R 
 = 1, which means that  Ir 
 =  Ii
  and  It 
 = 0.  

gle. In Fig. 4.61 c
  a special case is reached:  AD
  =  AB 
 =  vtt
 , and 

Thus, although there must be a transmitted wave, it cannot, on 

the wavelets will overlap in-phase  only along the line of the in-


the average, carry energy across the boundary. We shall not 


terface
 ,  u t 
 = 90°. From triangle  ABC
 ,  sin u i 
 =  vit
 > vtt 
 =  nt
 > ni
 , perform the complete and rather lengthy computation needed 

which is Eq. (4.69). For the two given media (i.e., for the par-

to derive expressions for all the reflected and transmitted 

ticular value of  nti
 ), the direction in which the scattered wavelets 

fields, but we can get an appreciation of what’s happening in 

will add constructively in the transmitting medium is along the 

the following way. The wavefunction for the transmitted elec-

interface. The resulting disturbance (u t 
 = 90°) is known as a 

tric field is


surface wave
 .


E


$ t 
 = E
 $0 t
   exp  i
 (k
 $

  


t 
 · r


$ - v t
 )

where 


k
 $ t 
 · r
 $ =  ktxx 
 +  ktyy



4.7.1  The Evanescent Wave


there being no  z
 -component of k
 $. But

Because the frequency of X-rays is higher than the resonance 


k


frequencies of the atoms of the medium, Eq. (3.70) suggests, 


tx 
 =  kt
  sin u t


and experiments confirm, that the index of refraction of X-rays 

and 


kty 
 =  kt
  cos u t


is less than 1.0. Thus the wave velocity of X-rays (i.e., the phase 

speed) in matter exceeds its value ( c
 ) in vacuum, although it usu-

as seen in Fig. 4.62. Once again using Snell’s Law,

ally does so by less than 1 part in 10 000, even in the densest sol-

1>2

ids. When X-rays traveling in air enter a dense material like glass, 

sin2 u






k



i
 b  (4.72)

the beam bends ever so slightly  away
  from the normal rather than 


t
  cos u t 
 = ±  kt
  a1 -


n
 2 ti


toward it. With the above discussion of total internal reflection in 

mind, we should expect that X-rays will be totally “externally” 


or, since we are concerned with the case where sin u i 
 7  nti
 ,


reflected
  when, for example,  ni 
 =  nair
  and  nt 
 =  nglass
 . This is the sin2 

1>2

way it’s often spoken of in the literature, but that’s a misnomer; 

u


k



i



ty 
 = ±  ikt
  a

- 1b

K ± i
 b

since for X-rays  n



n
 2


air 
 7  nglass
  and therefore  ni 
 7  nt
  (even though 


ti
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y
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u  t
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nt



x
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 u t



k
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i 
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Interface
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n



i



i
    nt



Ei



k
 i



k
 r


Plane-of-incidence


Figure 4.62
     Propagation vectors for internal reflection.

(a)

(b)


Figure 4.63
     Total internal reflection (a) depicts the incoming and outgoing 

waves. (b) The standing  E
 -field in both media.


k


and 


k



t



tx 
 =

 sin 


n


u i



ti


which is called a standing wave (even though it isn’t formally 

a wave). The black circles in the drawing correspond to maxi-

Hence

ma and the open circles to minima, all of which stay fixed in 






E


$ t 
 = E
 $0 te
  ∓b y
   ei
 ( ktx
  sin u i
 > nti
 -v t
 ) (4.73) space as the waves rush by. The locations of these antinodes 

and nodes are repeated in the cosinusoidally oscillating graph 

Neglecting the positive exponential, which is physically unten-

of the standing  E
 -field in the incident medium ( E


able, we have a wave whose amplitude drops off exponentially 


i
 ) depicted in 

Fig. 4.63 b
 . The situation should remind us of the standing 

as it penetrates the less dense medium. The disturbance advanc-

sound wave pattern set up in an organ pipe open at one end. 

es in the  x
 -direction as a surface or evanescent wave
 . Notice that 

Notice that the first row of black circles, or maxima, occurs 

the wavefronts or surfaces of constant phase (parallel to the  yz
 -

somewhat beneath the interface and that’s where the cosine in 

plane) are perpendicular to the surfaces of constant amplitude 

Fig. 4.63 b
  peaks. This happens because there is a phase shift 

(parallel to the  xz
 -plane), and as such the wave is  inhomoge-


between the incident and reflected waves (Fig. 4.52 e
 ).   The 



neous
  (p. 26). Its amplitude decays rapidly in the  y
 -direction, 


magnitude of the standing wave at the boundary (y 
 =  0) 


becoming negligible at a distance into the second medium of 


matches the magnitude of the evanescent wave
 , which drops 

only a few wavelengths.

off from there exponentially.

The quantity b in Eq. (4.73) is the  attenuation coefficient
  

Increasing the incident angle beyond u

given by


c
  decreases the angle 

between the overlapping planar wavefronts, increases the distance 

2p n


2

1>2

between successive nodes in the standing wave pattern, decreases 


t



ni


b =

ca b  sin2 u i 
 - 1d

the magnitude of the standing wave at the boundary, decreases the 

l0


nt


magnitude of the  E
 -field in the less dense medium, and decreases 

The strength of the evanescent  E
 -field drops exponentially from 

the penetration depth.

its maximum value at the interface ( y 
 = 0) to 1> e
  of that value at 

If you are still concerned about the conservation of energy,  

a distance into the optically less dense medium of  y 
 = 1>b = d, 

a more extensive treatment would have shown that energy  

which is called the  
penetration depth

 . Figure 4.63 a
  shows the 

actually circulates back and forth across the interface, resulting 

incoming and reflected waves and it’s easy to see that although 

on the average in a zero net flow through the boundary into the 

both are moving to the right at the same speed ( which is the 


second medium. In other words, energy flows from the incident 


speed of the evanescent wave
 ), there is an upward component 

wave to the evanescent wave and back to the reflected wave. Yet 

of the incident wave and an equal downward component of the 

one puzzling point remains, inasmuch as there is still a bit of 

totally reflected wave. Where these overlap there is a so-called 

energy to be accounted for, namely, that associated with the 


standing wave
  (p. 288) set up in the optically more dense inci-

evanescent wave that moves along the boundary in the plane-of-

dent medium. We’ll see in Section 7.1, where the mathemati-

incidence. Since this energy could not have penetrated into the 

cal analysis will be done, that whenever two waves of the 

less dense medium under the present circumstances (so long as 

same frequency traveling in opposite directions exist in the 

u i 
 Ú u c
 ), we must look elsewhere for its source. Under actual 

same region a stationary energy distribution is established, 

experimental conditions the incident beam would have a finite 
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cross section and therefore would obviously differ from a true 


Frustrated Total Internal Reflection


plane wave. This deviation gives rise (via diffraction) to a slight 

transmission of energy across the interface, which is manifested 

Imagine that a beam of light traveling within a block of glass is 

in the evanescent wave.

internally reflected at a boundary. Presumably, if you pressed 

Incidentally, it is clear from ( c
 ) and ( d
 ) in Fig. 4.52 that the 

another piece of glass against the first, the air–glass interface 

incident and reflected waves (except at 

could be made to vanish, and the beam would then propagate 

u i 
 = 90°) do not differ 

in phase by 

onward undisturbed. Furthermore, you might expect this transi-

p and cannot therefore cancel each other. It follows 

from the continuity of the tangential component of E


$ that there 

tion from total to no reflection to occur gradually as the air film 

must be an oscillatory field in the less dense medium, with a 

thinned out. In much the same way, if you hold a drinking glass 

component parallel to the interface having a frequency 

or a prism, you can see the ridges of your fingerprints in a region 

v (i.e., 

the evanescent wave).

that, because of total internal reflection, is otherwise mirrorlike. 

The exponential decay of the surface wave, or  boundary 


In more general terms, when the evanescent wave extends with 


wave
 , as it is also called, was confirmed experimentally at opti-

appreciable amplitude across the rare medium into a nearby re-

cal frequencies some time ago.*

gion occupied by a higher-index material, energy may flow 

through the gap in what is known as frustrated total internal 



reflection (FTIR)
 . The evanescent wave, having traversed the 


The Goos–Hänchen Shift


gap, is still strong enough to drive electrons in the “frustrating” 

medium; they in turn will generate a wave that significantly al-

In 1947 Fritz Goos and Hilda Lindberg-Hänchen showed ex-

ters the field configuration, thereby permitting energy to flow.  

perimentally that  
a light beam, which is totally internally re-



Figure 4.65 is a schematic representation of FTIR: the width of 



flected, undergoes a minute lateral shift from the position 



the lines depicting the wavefronts decreases across the gap as a 



where the beam strikes the interface.

  Even though we usually 

reminder that the amplitude of the field behaves in the same way. 

draw rays reflecting from the surface, we know that in general 

the reflection of light does not take place precisely at the inter-

face. The process is not the same as a ball bouncing off the 

surface. Instead many layers of atoms (p. 96) contribute to the 

reflected wave. In the case of total internal reflection the in-

coming beam behaves as if it enters the less dense medium re-

flecting off a virtual plane set in at a distance d, the penetration 

depth, from the interface (Fig. 4.64). The resulting lateral dis-

placement  ∆ x
 , in the propagation direction of the evanescent 

wave, is called the Goos–Hänchen shift
  and it’s slightly differ-

ent depending on the polarization of the light, via the Fresnel 

Equations. From the diagram the offset is approximately 

∆ x 
 ≈ 2d tan u i
  and it turns out to be of the order of the wave-

length of the incident light. Thus, though the shift is of little 

concern when we draw ray diagrams it has become a subject of 

Total internal reflection on one face of a glass prism.  

considerable interest to many researchers.

(E.H.)


y



nt


d


x



n


u i


u r



i
    nt



x


u i
   u c



Figure 4.64    
 Under conditions of total internal reflection a beam of light 

experiences what appears to be a lateral shift ∆ x
 .

*Take a look at the fascinating article by K. H. Drexhage, “Monomolecular layers 

Frustrated total internal reflection on one face of a 

and light,”  Sci. Am. 
 222
 , 108 (1970).

prism. (E.H.)
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The process as a whole is remarkably similar to the quantum-


k
   t


mechanical phenomenon of  barrier penetration
  or  tunneling
 , 

which has numerous applications in contemporary physics.


y


One can demonstrate FTIR with the prism arrangement of 

Glass

Fig. 4.66 in a manner that is fairly self-evident. Moreover, if the 

hypotenuse faces of both prisms are made planar and parallel, 

they can be positioned so as to transmit and reflect any desired 

Air


k
 e


fraction of the incident flux density. Devices that perform this 

function are known as  
beamsplitters

 . A  beamsplitter cube
  can 


x


Glass

be made rather conveniently by using a thin, low-index trans-

parent film as a precision spacer. Low-loss reflectors whose 


k
   i


transmittance can be controlled by frustrating internal reflec-


k
 r


tion are of considerable practical interest. FTIR can also be ob-

served in other regions of the electromagnetic spectrum. Three-

centimeter microwaves are particularly easy to work with, 

inasmuch as the evanescent wave will extend roughly 105 times 

farther than it would at optical frequencies. One can duplicate 


Figure 4.65    
 Frustrated total internal reflection.

the above optical experiments with solid prisms made of paraf-

fin or hollow ones of acrylic plastic filled with kerosene or mo-

tor oil. Any one of these would have an index of about 1.5 for 

3-cm waves. It then becomes an easy matter to measure the 

dependence of the field amplitude on  y
 .

(a)

To film

64%

To light

meter

16%

To eyepiece

20%

100%

(c)


Figure 4.66    
 ( a
 ) A beamsplitter utilizing FTIR. ( b
 ) A typical modern  

From object

application of FTIR: a conventional beamsplitter arrangement used  

to take photographs through a microscope. ( c
 ) Beamsplitter cubes.  

(b)

(Melles Griot)

M04_HECH7226_05_SE_C04_088-150.indd   130

17/09/15   5:24 PM



 



4.8
   Optical Properties of Metals  131


The disturbance advances in the  y
 -direction with a speed  c



4.8 Optical Properties of Metals


> nR
 , 

precisely as if  nR
  were the more usual index of refraction. As 

the wave progresses into the conductor, its amplitude, 

The characteristic feature of conducting media is the presence of a 


E


number of free electric charges (free in the sense of being unbound, 

$0 exp (-v nIy
 > c
 ), is exponentially attenuated. Inasmuch as irra-

diance is proportional to the square of the amplitude, we have

i.e., able to circulate within the material). For metals these charges are 

of course electrons, and their motion constitutes a current. The current 






I(y) 
 =  I
 0 e
 -a y
  (4.78)

  

per unit area resulting from the application of a field E


$ is related by  where  I


means of Eq. (A1.15) to the conductivity of the medium s. For a di-

0 =  I(
 0 )
 ; that is,  I
 0 is the irradiance at  y 
 = 0 (the inter-

face), and a

electric there are no free or conduction electrons and s

K 2v nI


= 0, whereas 

> c
  is called the  absorption coefficient
  or 

(even better) the attenuation coefficient
 . The flux density will 

for metals s is nonzero and finite. In contrast, an idealized “perfect” 

drop by a factor of  e
 -1

conductor would have an infinite conductivity. This is equivalent to 

= 1>2.7 ≈ 13  
 after the wave has propa-

gated a distance  y


saying that the electrons, driven into oscillation by a harmonic wave, 

= 1>a, known as the skin
  or penetration 



depth
 . For a material to be transparent, the penetration depth 

would simply follow the field’s alternations. There would be no restor-

must be large in comparison to its thickness. The penetration 

ing force, no natural frequencies, and no absorption, only reemission. 

depth for metals, however, is exceedingly small. For example, 

In real metals the conduction electrons undergo collisions with the 

copper at ultraviolet wavelengths (l

thermally agitated lattice or with imperfections and in so doing irre-

0 ≈ 100 nm) has a minis-

cule penetration depth, about 0.6 nm, while it is still only about 

versibly convert electromagnetic energy into joule heat. The absorp-

6 nm in the infrared (l

tion of radiant energy by a material is a function of its conductivity.

0 ≈ 10 000 nm). This accounts for the 

generally observed opacity of metals, which nonetheless can 

become partly transparent when formed into extremely thin 


Waves in a Metal


films (e.g., in the case of partially silvered two-way mirrors). 

The familiar metallic sheen of conductors corresponds to a high 

If we visualize the medium as continuous, Maxwell’s Equa-

reflectance, which exists because the incident wave cannot ef-

tions lead to

fectively penetrate the material. Relatively few electrons in the 

02E
 $

02E
 $

02E
 $

02E
 $

0E
 $

metal “see” the transmitted wave, and therefore, although each 





 (4.74)

0 x
 2 + 0 y
 2 + 0 z
 2 = mP 0 t
 2 + ms  0 t


absorbs strongly, little total energy is dissipated by them. In-

stead, most of the incoming energy reappears as the reflected 

which is Eq. (A1.21) in Cartesian coordinates. The last term, 

wave. The majority of metals, including the less common ones 

ms 0E


$>0 t
 , is a first-order time derivative, like the damping  (e.g., sodium, potassium, cesium, vanadium, niobium, gadolin-force in the oscillator model (p. 73). The time rate-of-change of 

ium, holmium, yttrium, scandium, and osmium) have a silvery 


E


$ generates a voltage, currents circulate, and since the material 

gray appearance like that of aluminum, tin, or steel. They re-

is resistive, light is converted to thermal energy—ergo absorption. 

flect almost all the incident light (roughly 85–95%) regardless 

This expression can be reduced to the unattenuated wave equa-

of wavelengths and are therefore essentially colorless.

tion, if the permittivity is reformulated as a complex quantity. 

Equation (4.77) is certainly reminiscent of Eq. (4.73) and 

This in turn leads to a complex index of refraction, which, as we 

FTIR. In both cases there is an exponential decay of the ampli-

saw earlier (p. 73), is tantamount to absorption. We then need 

tude. Moreover, a complete analysis would show that the trans-

only substitute the complex index

mitted waves are not strictly transverse, there being a component 






n
 ˜ 
 =  nR 
 -  inI
  (4.75)

of the field in the direction of propagation in both instances.

The representation of metal as a continuous medium works 

(where the real and imaginary indices  nR
  and  nI
  are both real 

fairly well in the low-frequency, long-wavelength domain of the 

numbers) into the corresponding solution for a nonconducting 

infrared. Yet we certainly might expect that as the wavelength 

medium. Alternatively, we can utilize the wave equation and 

of the incident beam decreased the actual granular nature of 

appropriate boundary conditions to yield a specific solution. In 

matter would have to be reckoned with. Indeed, the continuum 

either event, it is possible to find a simple sinusoidal plane-

model shows large discrepancies from experimental results  

wave solution applicable within the conductor. Such a wave 

at optical frequencies. And so we again turn to the classical  

propagating in the  y
 -direction is ordinarily written as

atomistic picture initially formulated by Hendrik Lorentz, 






E


$ = E
 $0 cos (v t 
 -  ky
 )

Paul Karl Ludwig Drude (1863–1906), and others. This simple 

or as a function of  n
 ,

approach will provide qualitative agreement with the experi-

mental data, but the ultimate treatment requires quantum theory.


E


$ = E
 $0 cos v( t 
 -  n
 ˜
 y
 > c
 )

but here the refractive index must be taken as complex. Writing 

the wave as an exponential and using Eq. (4.75) yields


The Dispersion Equation


Envision the conductor as an assemblage of driven, damped os-



 




E


$ = E
 $0  e
 (-v nIy
 > c
 ) ei
 v( t
 - nRy
 > c
 ) (4.76) cillators. Some correspond to free electrons and will therefore 

or 


E


$ = E
 $0  e
 -v nIy
 > c
  cos v( t 
 -  nRy
 > c
 ) (4.77) have zero restoring force, whereas others are bound to the atom, 
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much like those in the dielectric media of Section 3.5.1. The 

particular color, it indicates that the atoms are partaking of selec-

conduction electrons are, however, the predominant contribu-

tive absorption by way of the bound electrons, in addition to the 

tors to the optical properties of metals. Recall that the displace-

general absorption characteristic of the free electrons. Recall that 

ment of a vibrating electron was given by

a medium that is very strongly absorbing at a given frequency 

doesn’t actually absorb much of the incident light at that frequen-


q



 



x(t)



e
 > me


  E(t) 


[3.66]

cy but rather  selectively reflects
  it. Gold and copper are reddish 

= (v20 - v2)

yellow because  nI
  increases with wavelength, and the larger val-

ues of l are reflected more strongly. Thus, for example, gold 

With no restoring force, v0 = 0, the displacement is opposite in 

should be fairly opaque to the longer visible wavelengths. Conse-

sign to the driving force  qeE(t)
  and therefore 180° out-of-phase 

quently, under white light, a gold foil less than roughly 10-6 m 

with it. This is unlike the situation for transparent dielectrics, where 

thick will indeed transmit predominantly greenish blue light.

the resonance frequencies are above the visible and the electrons 

We can get a rough idea of the response of metals to light by 

oscillate in-phase with the driving force (Fig. 4.67). Free electrons 

making a few simplifying assumptions. Accordingly, neglect 

oscillating out-of-phase with the incident light will reradiate wave-

the bound electron contribution and assume that g e
  is also neg-

lets that tend to cancel the incoming disturbance. The effect, as we 

ligible for very large v, whereupon

have already seen, is a rapidly decaying refracted wave.

Assuming that the average field experienced by an elec-


Nq
 2

tron moving about within a conductor is just the applied field 






n
 2 (


  e


v ) 
 = 1 -

 (4.80)


E


P0 me
 v2

$ (t)
 , we can extend the dispersion equation of a rare medium 

[Eq. (3.72)] to read

The latter assumption is based on the fact that at high frequen-

2


ƒ


cies the electrons will undergo a great many oscillations be-


Nq



ƒ



j



n
 2 (



e



e


v ) 
 = 1 +

c

+ ^

d

tween each collision. Free electrons and positive ions within a 

P0  me 
 -v2 +  i
 g e
 v


j 
 v20 j 
 - v2 +  i
 g j
 v

metal may be thought of as a plasma whose density oscillates at 

 (4.79)

a natural frequency v p
 , the plasma frequency
 . This in turn can 

be shown to equal ( Nq
 2 e


The first bracketed term is the contribution from the free elec-

>P0 me
 )1>2, and so

trons, wherein  N
  is the number of atoms per unit volume. Each of 


 



n
 2 (
 v ) 
 = 1 - (v p
 >v)2 (4.81)

these has ƒ e
  conduction electrons, which have no natural frequen-

cies. The second term arises from the bound electrons and is 

The plasma frequency serves as a critical value below which the 

identical to Eq. (3.72). It should be noted that if a metal has a 

index is complex and the penetrating wave drops off exponen-

tially [Eq. (4.77)] from the boundary; at frequencies above v p
 ,  n
  

is real, absorption is small, and the conductor is transparent. In 


F(t)


the latter circumstance  n
  is less than 1, as it was for dielectrics at 

very high frequencies ( v
  can be greater than  c
 —see p. 74). 


t


Hence we can expect metals in general to be fairly transparent to 

X-rays. Table 4.4 lists the plasma fre quencies for some of the 


F(t)
  5  q


alkali metals that are transparent even to ultraviolet.


eE(t)


The index of refraction for a metal will usually be complex, 


t


and the impinging wave will suffer absorption in an amount that 

in phase

is frequency dependent. For example, the outer visors on the 

v << v0


x


Apollo space suits were overlaid with a very thin film of gold 

90° out t



TABLE 4.4    Critical Wavelengths and Frequen cies  


Bound electron


for Some Alkali Metals


v ≈ v0


x






l p
  

l p
  

n p 
 =  c
 >l p


180° out t






(observed) (calculated) (observed)

Metal  nm nm Hz

v >> v


x


0

Lithium (Li) 

155 

155 

1.94 * 1015

180° out t


Sodium (Na) 

210 

209 

1.43 * 1015

Free electron

all 

Potassium (K) 

315 

287 

0.95

v

* 1015

Rubidium (Rb) 

340 

322 

0.88 * 1015


Figure 4.67    
 Oscillations of bound and free electrons.
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Let’s now compute the reflectance,  R 
 =  Ir
 > Ii
 , for the sim-

plest case of normal incidence on a metal. Taking  ni 
 = 1 and 


nt 
 =  n
 ˜
  (i.e., the complex index), we have from Eq. (4.47) that


n
 ˜ 
 - 1


n
 ˜ 
 - 1 *


 



R 
 = a

b a

b  (4.82)


n
 ˜ 
 + 1


n
 ˜ 
 + 1

and therefore, since  n
 ˜ 
 =  nR 
 -  inI
 ,

( n







R 
 =  R 
 - 1)2 +  n
 2 I
  (4.83)

( nR 
 + 1)2 +  n
 2 I


Edwin Aldrin Jr. at Tranquility 

If the conductivity of the material goes to zero, we have the 

Base on the Moon. The  

case of a dielectric, whereupon in principle the index is real 

photographer, Neil Armstrong, 

( nI 
 = 0), and the attenuation coefficient, a, is zero. Under those 

is reflected in the gold-coated 

circumstances, the index of the transmitting medium  nt
  is  nR
 , 

visor. (NASA)

and the reflectance [Eq. (4.83)] becomes identical with that of 

Eq. (4.67). If instead  nI
  is large while  nR
  is comparatively small, 


R
  in turn becomes large (Problem 4.95). In the unattainable 

(see photo). The coating reflected about 70% of the incident 

limit where  n
 ˜
  is purely imaginary, 100% of the incident flux 

light and was used under bright conditions, such as low and 

density would be reflected ( R 
 = 1). Notice that it is possible for 

forward Sun angles. It was designed to decrease the thermal 

the reflectance of one metal to be greater than that of another 

load on the cooling system by strongly reflecting radiant energy 

even though its  nI
  is smaller. For example, at l0 = 589.3 nm the 

in the infrared while still transmitting adequately in the visible. 

parameters associated with solid sodium are roughly  nR 
 = 0.04, 

Inexpensive metal-coated sunglasses, which are quite similar in 


nI 
 = 2.4, and  R 
 = 0.9; and those for bulk tin are  nR 
 = 1.5, 

principle, are also available commercially, and they’re well 


nI 
 = 5.3, and  R 
 = 0.8; whereas for a gallium single crystal 

worth having just to experiment with.


nR 
 = 3.7,  nI 
 = 5.4, and  R 
 = 0.7.

The ionized upper atmosphere of the Earth contains a distri-

The curves of  R 
  and  R


i

# for oblique incidence shown in  

bution of free electrons that behave very much like those con-

Fig. 4.68 are somewhat typical of absorbing media. Thus, al-

fined within a metal. The index of refraction of such a medium 

though  R
  at u i 
 = 0 is about 0.5 for gold, as opposed to nearly 

will be real and less than 1 for frequencies above v p
 . In July of 

0.9 for silver in white light, the two metals have reflectances 

1965 the  Mariner IV
  spacecraft made use of this effect to exam-

that are quite similar in shape, approaching 1.0 at u i 
 = 90°. Just 

ine the ionosphere of the planet Mars, 216 million kilometers 

as with dielectrics (Fig. 4.56),  R 
  drops to a minimum at what is 

i

from Earth.*

now called the  principal angle-of-incidence
 , but here that mini-

If we wish to communicate between two distant terrestrial 

mum is nonzero. Figure 4.69 illustrates the spectral reflectance 

points, we might bounce low-frequency waves off the Earth’s 

at normal incidence for a number of evaporated metal films un-

ionosphere. To speak to someone on the Moon, however, we 

der ideal conditions. Observe that although gold transmits fairly 

should use high-frequency signals, to which the ionosphere 

well in and below the green region of the spectrum, silver, 

would be transparent.

which is highly reflective across the visible, becomes transpar-

ent in the ultraviolet at about 316 nm.


Reflection from a Metal


Imagine that a plane wave initially in air impinges on a conduct-

1.0


Figure 4.68    
 Typical reflec-

ing surface. The transmitted wave advancing at some angle to 

tance for a linearly polarized 

the normal will be inhomogeneous. But if the conductivity of 

beam of white light incident 

the medium is increased, the wavefronts will become aligned 

on an absorbing medium.

with the surfaces of constant amplitude, whereupon k
 $ t
  and uˆ
 n
  


R
 ⊥

will approach parallelism. In other words, in a good conductor 

the transmitted wave propagates in a direction normal to the 

interface regardless of 


R


u

Reflectance


i
 .

*R. Von Eshelman,  Sci. Am.
  220
 , 78 (1969).

0

90ů i


M04_HECH7226_05_SE_C04_088-150.indd   133

17/09/15   5:24 PM



134
   Chapter 4
   The Propagation of Light

d Frequency n (Hz)

filled with small air bubbles (e.g., shaving cream or beaten egg 

1.0

white). Even though we usually think of paper, talcum powder, 

0.9

Al

and sugar as each consisting of some sort of opaque white  

0.8

Cu

substance, it’s an easy matter to dispel that misconception. Cover 

0.7


R


a printed page with a few of these materials (a sheet of white 

0.6

paper, some grains of sugar, or talcum) and illuminate it from 

0.5

behind. You’ll have little difficulty seeing through them. In the 

0.4

case of white paint, one simply suspends colorless transparent 

Reflectance 

Au

0.3

particles, such as the oxides of zinc, titanium, or lead, in an 

0.2

Ag

equally transparent vehicle, for example, linseed oil or acrylics. 

0.1

Obviously, if the particles and vehicle have the same index of 

0

300

500

700

900

1100

refraction, there will not be any reflections at the grain bound-

Wavelength l (nm) S

aries. The particles will simply disappear into the conglomera-

tion, which itself remains clear. In contrast, if the indices are 


Figure 4.69    
 Reflectance versus wavelength for silver, gold, copper, and 

markedly different, there will be a good deal of reflection at all 

aluminum.

wavelengths (Problem 4.72), and the paint will appear white 

and opaque [take another look at Eq. (4.67)]. To color paint one 

Phase shifts arising from reflection off a metal occur in both 

need only dye the particles so that they absorb all frequencies 

components of the field (i.e., parallel and perpendicular to the 

except the desired range.

plane-of-incidence). These are generally neither 0 nor p, with a 

Carrying the logic in the reverse direction, if we reduce the 

notable exception at u i 
 = 90°, where, just as with a dielectric, 

relative index,  nti
 , at the grain or fiber boundaries, the particles 

both components shift phase by 180° on reflection.

of material will reflect less, thereby decreasing the overall 

whiteness of the object. Consequently, a wet white tissue will 

have a grayish, more transparent look. Wet talcum powder los-

es its sparkling whiteness, becoming a dull gray, as does wet 

white cloth. In the same way, a piece of dyed fabric soaked in 


4.9  Familiar Aspects of the Inter action of  
 a clear liquid (e.g., water, gin, or benzene) will lose its whitish Light and Matter


haze and become much darker, the colors then being deep and 

rich like those of a still-wet watercolor painting.

Let’s now examine some of the phenomena that paint the every-

A diffusely reflecting surface that absorbs somewhat— 

day world in a marvel of myriad colors.

uniformly across the spectrum—will reflect a bit less than a white 

As we saw earlier (p. 79), light that contains a roughly equal 

surface and so appear mat gray. The less it reflects, the darker 

amount of every frequency in the visible region of the spectrum 

the gray, until it absorbs almost all the light and appears black. 

is perceived as white. A broad source of white light (whether 

A surface that reflects perhaps 70% or 80% or more, but does 

natural or artificial) is one for which every point on its surface 

so specularly, will appear the familiar shiny gray of a typical 

can be imagined as sending out a stream of light of every visible 

metal. Metals possess tremendous numbers of free electrons  

frequency. Given that we evolved on this planet, it’s not surpris-

(p. 131) that scatter light very effectively, independent of frequen-

ing that a source appears white when its emission spectrum re-

cy: they are not bound to the atoms and have no associated reso-

sembles that of the Sun. Similarly, a reflecting surface that ac-

nances. Moreover, the amplitudes of the vibrations are an order 

complishes essentially the same thing will also appear white: a 

of magnitude larger than they were for the bound electrons. The 

highly reflecting, frequency-independent,  diffusely
  scattering 

incident light cannot penetrate into the metal any more than a 

object will be perceived as white under white light illumination.

fraction of a wavelength or so before it’s canceled completely. 

Although water is essentially transparent, water vapor ap-

There is little or no refracted light; most of the energy is re-

pears white, as does ground glass. The reason is simple enough—

flected out, and only the small remainder is absorbed. Note that 

if the grain size is small but larger than the wavelengths involved, 

the primary difference between a gray surface and a mirrored 

light will enter each transparent particle, be reflected and re-

surface is one of diffuse versus specular reflection. An artist 

fracted, and emerge. There will be no distinction among any of 

paints a picture of a polished “white” metal, such as silver or 

the frequency components, so the reflected light reaching the 

aluminum, by “reflecting” images of things in the room on top 

observer will be white (p. 79). This is the mechanism account-

of a gray surface.

able for the whiteness of things like sugar, salt, paper, cloth, 

clouds, talcum powder, snow, and paint, each grain or fiber of 


Additive Coloration


which is actually transparent.

Similarly, a wadded-up piece of crumpled clear plastic wrap 

When the distribution of energy in a beam of light is not effec-

will appear whitish, as will an ordinarily transparent material 

tively uniform across the spectrum, the light appears colored. 
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1.0

Blue


TABLE 4.5    Often-Used Wavelengths of Light,  



UV, and IR


  l (nm) 

Spectral Line

0.5

  334.147 8 

ultraviolet mercury line

Reflectance

  365.014 6 

ultraviolet mercury line

  404.656 1 

violet mercury line

  435.834 3 

blue mercury line

0.0

380

460

540

620

700

  479.991 4 

blue cadmium line

Wavelength (nm)

  486.132 7 

blue hydrogen line

1.0

  546.074 0 

green mercury line

Green

  587.561 8 

yellow helium line

  589.293 8 

yellow sodium line 









(cener of the double line)

0.5

  632.8 

helium neon laser

  643.846 9 

red cadmium line

Reflectance

  656.272 5 

red hydrogen line

  676.4 

krypton ion laser

0.0

  694.3 

ruby laser

380

460

540

620

700

Wavelength (nm)

  706.518 8 

red helium line

  768.2 

red potassium line

1.0

Red

  852.11 

infrared cesium line

 1013.98 

infrared mercury line

 1054 

Nd: glass laser

 1064 

Nd: YAG laser

0.5

Reflectance

Red light plus blue light is seen as  magenta
  (M), a reddish 

purple; blue light plus green light is seen as  cyan
  (C), a bluish 

0.0

green or turquoise; and perhaps most surprising, red light plus 

380

460

540

620

700

Wavelength (nm)

green light is seen as  yellow
  (Y). The sum of all three primaries 

is white:


Figure 4.70    
 Reflection curves for blue, green, and red pigments. These 

are typical, but there is a great deal of possible variation among the colors.

R + B + G = W

M + G = W, since R + B = M

Figure 4.70 depicts typical frequency distributions for what 

would be perceived as red, green, and blue light. These curves 

C + R = W, since B + G = C

show the predominant frequency regions, but there can be a 

great deal of variation in the distributions, and they will still 

Y + B = W, since R + G = Y

provoke the responses of red, green, and blue. In the early 1800s 

Thomas Young showed that a broad range of colors could be 

generated by mixing three beams of light, provided their fre-

quencies were widely separated. When three such beams com-

bine to produce white light, they are called primary colors
 . 

Red

Green

There is no single unique set of these primaries, nor do they 

Yellow

have to be quasimonochromatic. Since a wide range of colors 

can be created by mixing red (R), green (G), and blue (B), these 

White

tend to be used most frequently. They are the three components 

(emitted by three phosphors) that generate the whole gamut of 

Magenta

Cyan


Figure 4.71    
 Three overlapping 

hues seen on a color television set.

beams of colored light. A color 

television set uses these same 

Figure 4.71 summarizes the results when beams of these three 

Blue

three primary light sources—

primaries are overlapped in a number of different combinations: 

red, green, and blue.
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16000

1.0

14000

12000

10000

 irradiance 8000

0.5

ve 6000

Reflectance

Relati 4000

2000

0.0

0.0

588

588.5

589

589.5

590

380

460

540

620

700

Wavelength (nm)

Wavelength (nm)


Figure 4.72
     A portion of the sodium spectrum. For obvious reasons it’s 


Figure 4.73    
 Spectral reflection of a pink pigment.

called the sodium doublet.

Any two colored light beams that together produce white are 


Subtractive Coloration


said to be complementary
 , and the last three symbolic state-

The mechanism responsible for the yellowish red hue of gold 

ments exemplify that situation. Thus

and copper is, in some respects, similar to the process that 





R

causes the sky to appear blue. Putting it rather succinctly, the 

+ B + G = W

molecules of air have resonances in the ultraviolet and will be 





R

driven into larger-amplitude oscillations as the frequency of the 

+ B

= W - G = M

incident light increases toward the ultraviolet. They effectively 





B

take energy from and re-emit the blue component of sunlight in 

+ G = W - R = C

all directions, transmitting the complementary red end of the 





R

spectrum with little alteration. This is analogous to the selective 

+

G = W - B = Y

reflection or scattering of yellow-red light that takes place at the 

which means, for example, that a filter that absorbs blue out of 

surface of a gold film and the concomitant transmission of blue-

white light passes yellow.

green light.

Because most people have little experience mixing light 

The characteristic colors of most substances have their origin 

beams it usually comes as a surprise that red and green beams 

in the phenomenon of selective
  or preferential absorption
 . For 

are seen as yellow, and that’s true for lots of different reds and 

example, water has a very faint green-blue tint because of its ab-

greens. The color-sensing cones on the retina essentially aver-

sorption of red light. That is, the H2O molecules have a broad 

age the photon frequencies, and the brain “sees” yellow even 

resonance in the infrared, which extends somewhat into the visi-

though there might not be any yellow light present. For exam-

ble. The absorption isn’t very strong, so there is no accentuated 

ple, an amount of green at 540 nm plus about three times as 

reflection of red light at the surface. Instead it is transmitted and 

much red at 640 nm is seen to be identical to yellow at 580 nm. 

gradually absorbed out until at a depth of about 30 m of seawater, 

And we can’t tell the difference between the pure stuff and the 

red is almost completely removed from the sunlight. This same 

blend; a bright yellow rose reflects strongly from above 700 nm 

process of selective absorption is responsible for the colors of 

down to about 540 nm. It gives us red, yellow, and green to 

brown eyes and butterflies, of birds and bees and cabbages and 

ponder. Alas, without a spectrometer there is no way to know if 

kings. Indeed, the great majority of objects in nature appear to 

that yellow shirt you are looking at is reflecting only wave-

have characteristic colors as the result of preferential absorption 

lengths in the range from roughly 577 nm to 597 nm or not. 

by pigment molecules. In contrast with most atoms and mole-

Still, if you’d like to see some “yellow” photons, those bright 

cules, which have resonances in the ultraviolet and infrared, the 

yellow sodium vapor street lights that are so common nowadays 

pigment molecules must obviously have resonances in the visi-

are rich in light at 589 nm (see Fig. 4.72).

ble. Yet visible photons have energies of roughly 1.6 eV to 3.2 eV, 

Suppose we overlap beams of magenta and yellow light:

which, as you might expect, are on the low side for ordinary elec-

tron excitation and on the high side for excitation via molecular 

M + Y = (R + B) + (R + G) = W + R

vibration. Despite this,  there are atoms where the bound elec-


The result is a combination of red and white, or pink. That rais-


trons form incomplete shells
  (gold, for example) and variations in 

es another point: we say a color is saturated
 , that it is deep and 

the configuration of these shells provide a mode for low-energy 

intense, when it does not contain any white light. As Fig. 4.73 

excitation. In addition, there is the large group of organic dye 

shows, pink is unsaturated red—red superimposed on a back-

molecules, which evidently also have resonances in the visible. 

ground of white.

All such substances, whether natural or synthetic, consist of  
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Predominantly yellow

B

White

G

R

Blue

Red

Green

Carbon

R

G

Hydrogen

Yellow

Carotene molecule


Figure 4.75    
 Yellow stained glass.


Figure 4.74    
 The carotene molecule.

long-chain molecules made up of regularly alternating single and 

blue, the object will appear black. Here the filter colors the light 

double bonds in what is called a conjugated system. This struc-

yellow by removing blue, and we speak of the process as sub-


ture is typified by the carotene molecule C40H56 (Fig. 4.74). The 


tractive coloration
 , as opposed to additive coloration
 , which 

carotenoids range in color from yellow to red and are found in 

results from overlapping beams of light.

carrots, tomatoes, daffodils, dandelions, autumn leaves, and peo-

In the same way, fibers of a sample of white cloth or paper are 

ple. The chlorophylls are another group of familiar natural pig-

essentially transparent, but when dyed each fiber behaves as if it 

ments, but here a portion of the long chain is turned around on 

were a chip of colored glass. The incident light penetrates the 

itself to form a ring. In any event, conjugated systems of this sort 

paper, emerging for the most part as a reflected beam only after 

contain a number of particularly mobile electrons known as  pi 


undergoing numerous reflections and refractions within the 


electrons
 . They are not bound to specific atomic sites but instead 

dyed fibers. The exiting light will be colored to the extent that it 

can range over the relatively large dimensions of the molecular 

lacks the frequency component absorbed by the dye. This is pre-

chain or ring. In the phraseology of Quantum Mechanics, we say 

cisely why a leaf appears green, or a banana yellow.

that these are long-wavelength, low-frequency, and therefore 

A bottle of ordinary blue ink looks blue in either reflected or 

low-energy, electron states. The energy required to raise a pi elec-

transmitted light. But if the ink is painted on a glass slide and 

tron to an excited state is comparatively low, corresponding to 

the solvent evaporates, something rather interesting happens. 

that of visible photons. In effect, the molecule can be imagined as 

The concentrated pigment absorbs so effectively that it prefer-

an oscillator having a resonance frequency in the visible.

entially reflects at the resonant frequency, and we are back to 

The energy levels of an individual atom are precisely de-

the idea that a strong absorber (larger  nI
 ) is a strong reflector. 

fined; that is, the resonances are very sharp. With solids and 

Thus, concentrated blue-green ink reflects red, whereas red-

liquids, however, the proximity of the atoms results in a broad-

blue ink reflects green. Try it with a felt marker (overhead pro-

ening of the energy levels into wide bands. The resonances 

jector pens are best), but you must use reflected light, being 

spread over a broad range of frequencies. Consequently, we can 

careful not to inundate the sample with unwanted light from 

expect that a dye will not absorb just a narrow portion of the 

below. The most convenient way to accomplish that is to put 

spectrum; indeed if it did, it would reflect most frequencies and 

colored ink onto a black surface that isn’t very absorbant. For 

appear nearly white.

example, smear red ink over a black area on a glossy printed 

Imagine a piece of stained glass with a resonance in the blue 

page (or better yet, on a black piece of plastic) and it will glow 

where it strongly absorbs. If you look through it at a white-light 

green in reflected light. Gentian violet, which you can buy in 

source composed of red, green, and blue, the glass will absorb 

any drugstore, works beautifully. Put some on a glass slide and 

blue, passing red and green, which is yellow (Fig. 4.75). The 

let it dry in a thick coat. Examine both the reflected and trans-

glass looks yellow: yellow cloth, paper, dye, paint, and ink all 

mitted light—they will be complementary.

selectively absorb blue. If you peer at something that is a pure 

The whole range of colors (including red, green, and blue) can 

blue through a yellow filter, one that passes yellow and absorbs 

be produced by passing white light through various combinations 
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Figure 4.77
     Overlapping magenta, cyan, and yellow filters illuminated 

from the rear with white light.

0.5

ransmittanceT

reflects also, only diffusely. If you still have those red and blue 

inks, mix them, add some green, and you’ll get black.

Color filters work like inks and dyes; they absorb certain fre-

0.0

380

460

540

620

700

quencies and pass what remains. All filters leak the frequencies 

Wavelength (nm)

they are supposed to remove and so the stronger the absorption 

(call it the “thicker” the filter), the purer the color it passes. Figure 

1.0

Cyan

4.77 illustrates overlapping magenta, cyan, and yellow filters and 

the resulting colors that would be transmitted under white light 

illumination. The colors are the same as those reflected from a 

photo printed with overlapping magenta, cyan, and yellow inks. 

0.5

Suppose white light impinges on a cyan filter followed by a 

ansmittance

yellow filter, what would be passed? White light can be thought 

Tr

of as a combination of red, blue, and green. The cyan filter ab-

sorbs red and passes blue and green. The yellow filter absorbs 

0.0

the blue, and together they pass green. Varying the density of 

380

460

540

620

700

Wavelength (nm)

the filters (the thicknesses) changes the shade of green that re-

sults, just like adding more yellow to blue paint “lightens” the 


Figure 4.76    
 Transmission curves for colored filters.

green. Again under white light, a thick yellow filter (that re-

moves most of the blue) and a thin magenta filter (that passes 

lots of red and blue and some yellow) will together pass light 

of magenta, cyan, and yellow filters (Fig. 4.76). These are the 

that contains lots of red and a bit of yellow, and looks orange.

primary colors of subtractive mixing, the primaries of the paint 

In addition to the above processes specifically related to reflec-

box, although they are often mistakenly spoken of as red, blue, 

tion, refraction, and absorption, there are other color-generating 

and yellow. They are the basic colors of the dyes used to make 

mechanisms, which we shall explore later on. For example, scara-

photographs and the inks used to print them. A picture in a maga-

baeid beetles mantle themselves in the brilliant colors produced 

zine is not a source of colored light the way a T.V. screen is. 

by diffraction gratings on their wing cases, and wavelength- 

White light from a lamp or the sky illuminates the page, different 

dependent interference effects contribute to the color patterns 

wavelengths are absorbed here and there, and what isn’t removed 

seen on oil slicks, mother-of-pearl, soap bubbles, peacocks, and 

is reflected to produce the “colored” optical field corresponding 

hummingbirds.

to the picture. Ideally, if you mix all the subtractive primaries to-

gether (either by combining paints or by stacking filters), you get 

no color, no light—black. Each removes a region of the spectrum, 

EXAMPLE 4.7

and together they absorb it all.

Each of five faces of a cube is painted with a single bright col-

If the range of frequencies being absorbed spreads across the 

or: red, blue, magenta, cyan, and yellow; the last face is white. 

visible, the object will appear black. That is not to say that there 

What color, if any, will each face appear when viewed through a 

is no reflection at all—you obviously can see a reflected image 

magenta piece of stained glass? Explain your answers.

in a piece of black patent leather, and a rough black surface  


Continued
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SOLUTION

of amplitude  E
 0 irr
  and  E
 0 irt
 . If the configuration in Fig. 4.78 c
  is A magenta filter passes red and blue and eats green. Red will 

to be identical with that in Fig. 4.78 b
 , then obviously

stay red. Blue will stay blue. Magenta will stay magenta. Cyan 






E
 0 itt
 ′ +  E
 0 irr 
 =  E
 0 i
  (4.84)

will appear blue. Yellow will appear red. And white will appear 

magenta.

and  



E
 0 irt 
 +  E
 0 itr
 ′ = 0  


(4.85)

Hence 


tt
 ′ = 1 -  r
 2 (4.86)


4.10  The Stokes Treatment of Reflection 


and 


r
 ′


and Refraction


= - r
  (4.87)

the latter two equations being known as the Stokes Relations. 

A rather elegant and novel way of looking at reflection and 

This discussion calls for a bit more caution than is usually 

transmission at a boundary was developed by the British physi-

granted it. It must be pointed out that  the amplitude coefficients 


cist Sir George Gabriel Stokes (1819–1903). Suppose that we 


are functions of the incident angles
 , and therefore the Stokes 

have an incident wave of amplitude  E
 0 i
  impinging on the planar 

Relations might better be written as

interface separating two dielectric media, as in Fig. 4.78 a
 . As we 






t(
 u

saw earlier in this chapter, because  r
  and  t
  are the fractional am-


1)t
 ′ (
 u 2) 
 = 1 -  r
 2 (
 u 1)
  (4.88)

plitudes reflected and transmitted, respectively (where  ni 
 =  n
 1 

and 


r
 ′ (
 u 2) 
 = - r(
 u 1)
  (4.89)

and  nt 
 =  n
 2), then  E
 0 r 
 =  rE
 0 i
  and  E
 0 t 
 =  tE
 0 i
 . Again we are reminded that Fermat’s Principle led to the Principle of Revers-

where  n
 1 sin u1 =  n
 2 sin u2. The second equation indicates, by vir-

ibility, which implies that the situation depicted in Fig. 4.78 b
 , 

tue of the minus sign, that  there is a 180
 °  phase difference  


where all the ray directions are reversed, must also be physically 


between the waves internally and externally reflected
 . It is most 

possible. With the one proviso that there be no energy dissipa-

important to keep in mind that here u1 and u2 are pairs of angles 

tion (no absorption), a wave’s meanderings must be reversible. 

that are related by way of Snell’s Law. Note as well that we never 

Equivalently, in the idiom of modern physics one speaks of  time-


did say whether  n
 1 was greater or less than  n
 2, so Eqs. (4.88) and 


reversal invariance
 , that is, if a process occurs, the reverse pro-

(4.89) apply in either case. Let’s return for a moment to one of 

cess can also occur. Thus if we take a hypothetical motion pic-

the Fresnel Equations:

ture of the wave incident on, reflecting from, and transmitting 

sin (u

through the interface, the behavior depicted when the film is run 


 



r



i 
 - u t
 )

# = -  

 [4.42]

sin (u i 
 + u t
 )

backward must also be physically realizable. Accordingly, ex-

amine Fig. 4.78 c
 , where there are now two incident waves of 

If a ray enters from above, as in Fig. 4.78 a
 , and we assume 

amplitudes  E
 0 ir
  and  E
 0 it
 . A portion of the wave whose amplitude 


n
 2 7  n
 1,  r
 #  
 is computed by setting u i 
 = u1 and u t 
 = u2 (external is  E
 0 it
  is both reflected and transmitted at the interface. Without 

reflection), the latter being derived from Snell’s Law. If, on the 

making any assumptions, let  r
 ′ and  t
 ′ be the amplitude reflection 

other hand, the wave is incident at that same angle from below 

and transmission coefficients, respectively, for a wave incident 

(in this instance internal reflection), u i 
 = u1 and we again substi-

from below (i.e.,  ni 
 =  n
 2,  nt 
 =  n
 1). Consequently, the reflected 

tute in Eq. (4.42), but here u t
  is not u2, as before. The values of 

portion is  E
 0 itr
 ′, and the transmitted portion is  E
 0 itt
 ′. Similarly, 


r
 #  
 for internal and external reflection  at the same incident angle
  

the incoming wave whose amplitude is  E
 0 ir
  splits into segments 

are obviously different. Now suppose, in this case of internal 


E



E


( E
 0 it
 ) t
 9

0 i


0 i r



E



E


0 i


0 i r


( E



E


0 i r
 ) r


0 i r


u

u

1

1

u

u

1

1

u2

u2


E
 0 it



E
 0 it



E
 0 it


( E
 0 it
 ) r
 9

( E
 0 ir
 ) t


(a)

(b)

(c)


Figure 4.78    
 Reflection and refraction via the Stokes treatment.

M04_HECH7226_05_SE_C04_088-150.indd   139

17/09/15   5:24 PM



140
   Chapter 4
   The Propagation of Light

reflection, that u i 
 = u2. Then u t 
 = u1, the ray directions are the 

(which are never actually measured) propagate out laterally, 

reverse of those in the first situation, and Eq. (4.42) yields

only to interfere destructively everywhere beyond the beam? If 

so, these wavelets cancel and the energy they transport outward 

sin (u2 - u1)

is inexplicably returned to the beam, since, in the end, there is 


r
 ′# (
 u 2) 
 = sin (u

no net lateral scattering. That’s true no matter how far away  P
  

2 + u1)

is. Moreover, this applies to  all
  interference effects (Chapter 9). 

Although it may be unnecessary we once again point out that 

If two or more electromagnetic waves arrive at point  P
  out-of-

this is just the negative of what was determined for u i 
 = u1 and 

phase and cancel, “What does that mean as far as their energy is 

external reflection, that is,

concerned?” Energy can be redistributed, but  it
  doesn’t cancel 


 



r
 ′

out. We’ve learned from Quantum Mechanics that at base inter-

# (
 u 2) 
 = -  r
 # (
 u 1)
  (4.90)

ference is one of the most fundamental mysteries in physics.

The use of primed and unprimed symbols to denote the ampli-

Remembering Einstein’s admonition that there are no 

tude coefficients should serve as a reminder that we are once 

spherical wavelets emitted by atoms, perhaps we’re being too 

more dealing with angles related by Snell’s Law. In the same 

literal in our interpretation of the classical wave field. After all, 

way, interchanging u i
  and u t
  in Eq. (4.43) leads to

strictly speaking, the classical electromagnetic wave with its 






r (



(


continuous distribution of energy does not actually exist. Per-

′i u 2) 
 = - r
 i u 1)
  (4.91)

haps we should think of the wavelets and the overall pattern 

The 180° phase difference between each pair of components is 

they produce (rather than being a  real
  wave field) as a theo-

evident in Fig. 4.52, but keep in mind that when u i 
 = u p
 ,  

retical device that, wonderfully enough, tells us where the light 

u t 
 = u′ p
  and vice versa (Problem 4.100). Beyond u i 
 = u c
  there is 

will end up. In any event, Maxwell’s Equations provide a 

no transmitted wave, Eq. (4.89) is not applicable, and as we 

means of calculating the macroscopic distribution of electro-

have seen, the phase difference is no longer 180°.

magnetic energy in space.

It is common to conclude that both the parallel and perpen-

Moving ahead in a semiclassical way, imagine a distribution 

dicular components of the externally reflected beam change 

of light given by some function of the off-axis angle u. For ex-

phase by p radians, while the internally reflected beam under-

ample, consider the irradiance on a screen placed far beyond a 

goes no phase shift at all. This is quite incorrect (compare Figs. 

slit-shaped aperture (p. 458) such that  I(
 u ) 
 =  I(0)
  sinc2 b (
 u )
 . 

4.53 a
  and 4.54 a
 ).

Suppose that instead of observing the pattern by eye a detector 

composed of a diaphragm followed by a photomultiplier tube is 

used. Such a device could be moved around from one point to 

another, and over a constant time interval, it could measure the 


4.11  Photons, Waves, and Probability


number of photons arriving at each location,  N(
 u )
 . Taking a 

great many such measurements, a spatial distribution of the 

Much of the theoretical grounding of Optics is predicated on 

number of photon counts would emerge that would be of the 

wave theory. We take for granted both that we understand the 

very same form as that for the irradiance, namely,  N(
 u )
  = 

phenomenon and that it’s “real.” As one example out of the 


N(0)
  sinc2 b (
 u )
 : the number of photons detected is proportional 

many that will be encountered, the process of scattering seems 

to the irradiance. A countable quantity like this lends itself to 

to be understandable only in terms of interference; classical 

statistical analysis, and we can talk about the probability of de-

particles simply do not interfere. When a beam propagates 

tecting a photon at any point on the screen. That is, a probabil-

through a dense medium, interference in the forward direction 

ity distribution can be constructed, reminiscent of Fig. 3.23. 

is constructive, whereas in all other directions it’s almost com-

Because the space variables (u,  x
 ,  y
 , or  z
 ) are continuous, it’s 

pletely destructive. Thus nearly all the light energy advances in 

necessary to introduce a probability density
 ; let it be ℘ (
 u )
 . 

the forward direction. But this raises interesting questions about 

Then ℘ (
 u )
   d
 u is the probability that a photon will be found in 

the basic nature of interference and the usual interpretation of 

the infinitesimal range from u to u +  d
 u. In this case ℘ (
 u )
  = 

what’s happening.  
Interference is a nonlocalized phenomenon; 



℘ (0)
  sinc2b (
 u )
 .



it cannot happen at only one single point in space

 , even though 

The square of the net electric field amplitude at every point 

we often talk about the interference at a point  P
 . The principle of 

in space corresponds to the irradiance (which can be measured 

Conservation of Energy makes it clear that if there is construc-

directly), and that’s equivalent to the likelihood of finding pho-

tive interference at one point, the “extra” energy at that location 

tons at any point. Accordingly, let’s tentatively define the 

must have come from elsewhere. There must therefore be de-


probability amplitude
  as that quantity whose absolute value 

structive interference somewhere else.  
Interference takes place 



squared equals the probability density. Thus the net  E
 0 at  P
  can 



over an extended region of space in a coordinated fashion that 



be interpreted as being proportional to a semiclassical
  proba-



leaves the total amount of radiant energy unchanged

 .

bility amplitude inasmuch as  
the probability of detecting a 



Now imagine a light beam traversing a dense medium, as in 



photon at some point in space depends on the irradiance at 



Fig. 4.6. Do real energy-carrying electromagnetic wavelets 



that location and

    I 
 ∝  E
 20. This is in accord with Einstein’s  
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conception of the light field, which Max Born (who initiated the 

Feynman’s analysis proceeds from a few general computa-

statistical interpretation of Quantum Mechanics) described as a 

tional rules, with the ultimate justification being that it works; 


Gespensterfeld
 , or phantom field. In that view the waves of that 

the scheme makes accurate predictions. (1)  
The probability  



field reveal how the photons distribute in space in the sense that 



amplitude associated with the occurrence of an event is the 



the square of the absolute value of the wave amplitude some-



“sum” of the constituent probability amplitudes corresponding 



how relates to the probability density of arriving photons. In  



to each and every possible way the event can occur

 . (2)  
Each 



the formal treatment of Quantum Mechanics,  the probability 




such constituent probability amplitude is generally expressible 




amplitude is generally a complex quantity
  whose absolute value 



as a complex quantity

 . Rather than analytically combining these 

squared corresponds to the probability density (e.g., the  constituent probability amplitudes, we can use the phasor repre-Schrödinger wavefunction is a probability amplitude). Thus, 

sentation (p. 23) to approximate the summation and thereby ar-

however reasonable it was to consider  E
 0 as equivalent to a 

rive at a resultant probability amplitude. (3)  
The probability of 



semiclassical probability amplitude, that usage cannot be car-



occurrence of the event as a whole is proportional to the abso-



ried over, as is, into quantum theory.



lute square of the resultant probability amplitude

 .

Still, all of this suggests that we might take the scattering 

We can appreciate how all of this comes together by treating 

process, considered in terms of probabilities, as the basis for a 

the reflection pictured in Fig. 4.79; a point source  S
  illuminates 

computational scheme. Each scattered wavelet is then a mea-

a mirror, and light is subsequently scattered upward in every 

sure of the probability amplitude for light taking a particular 

direction from every point on the mirror. We wish to determine 

route from one point to another, and the net electric field at  P
  is 

the probability of a detector at  P
 , recording the arrival of a pho-

the sum of all the scattered fields arriving via all possible routes. 

ton. Here the classical perspective, with its familiar wavelet 

A quantum-mechanical methodology analogous to this was de-

model, can be used as an analogue to provide guidance (and 

vised by Feynman, Schwinger, Tomonaga, and Dyson in the 

perhaps a little intellectual comfort, if you still believe in classi-

course of their development of Quantum Electrodynamics. In 

cal EM waves).

brief, the final observable outcome of an event is determined by 

For simplicity, take the mirror to be a narrow strip (which  

the superposition of all the various probability amplitudes as-

is essentially one-dimensional); that doesn’t change things  

sociated with each and every possible way that the event can 

conceptually. Divide it into a number of equal-sized lengths 

occur. In other words, each “route” along which an event can 

take place, each way it can happen, is given an abstract mathe-

matical representation, a complex probability amplitude. All of 

these then combine—and interfere, as complex quantities are 

wont to do—to produce a net probability amplitude for the 


S



P


event to take place.

What follows is a greatly simplified version of that analysis.


4.11.1 QED


Feynman was rather unequivocal in his stance regarding the na-

ture of light:

I want to emphasize that light comes in this form—particles. 

It is very important to know that light behaves like particles, 

especially for those of you who have gone to school, where you 

were probably told something about light behaving like waves. 

I’m telling you the way it  does
  behave—like particles. (SOURCE: 

R. P. Feynman, QED, Princeton University Press, Princeton, NJ, 1985)

For him “light is made of particles (as Newton originally 

thought)”; it’s a stream of photons whose behavior  en masse
  

can be determined statistically. For example, if 100 photons are 

incident perpendicularly on a piece of glass in air, on average 4 

will be reflected backward from the first surface they encoun-

ter. Which 4 cannot be known, and in fact how those particular 


Figure 4.79    
 A schematic representation of reflection. A wave from  S
  

4 photons are selected is a mystery. What can be deduced and 

sweeps down and spreads across the surface of the mirror. Every atom on 

the interface subsequently scatters light back in all upward directions. And 

confirmed experimentally is that 4% of the incident light will be 

some of it ultimately arrives at  P
 , having come from every scatterer on the 

reflected (p. 118).

surface.
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(a)

on to  I
 , the optical path lengths decrease less and less rapidly, 


S



P


and each phasor leads the previous one by a smaller angle (set 

by the slope of the curve). In effect, the phasors to the left of  I
  

rotate counterclockwise from  A
  to  I
 . Since the  OPL
  is a mini-

mum at  I
 , the phasors from that region are large and differ very 

little in phase angle. Going from  I
  to  J
  to  K
  and so on to  Q
 , the 

optical path lengths increase more and more rapidly, and each 

phasor lags the previous one by a larger angle. In effect, the 

phasors to the right of  I
  rotate clockwise from  I
  to  Q
 .

In Fig. 4.80 c
  the resultant amplitude is drawn from the start-


A B C D E F G H I J K L M N O P Q


ing tail to the ending tip, and classically it corresponds to the net 

electric field amplitude at  P
 . The irradiance,  I
 , is proportional to 

(b)

the square of the net field amplitude, and that, in turn, should be 

a measure of the likelihood of finding a photon when a detector 

is placed at  P
 .

Let’s move beyond the classical ideas of scattered wavelets 

and electric fields (nonetheless being guided by them) and con-

struct a quantum-mechanical treatment. Photons can go from  S
  


OPL


to the mirror to  P
  along each of an innumerable number of dis-

tinct paths. It’s reasonable to assume that each such path makes 

a specific contribution to the end result; an exceedingly long 

route out to the very edge of the mirror and back to  P
  should 

contribute differently than a more direct route. Following Feyn-

man, we associate some (as yet unspecified) complex quantity, 


A B C D E F G H I J K L M N O P Q


a constituent quantum-mechanical (QM) probability ampli-


(c)


K



J



L



tude
 , with each possible path. Each such constituent QM prob-


C



M



D



B



Q


ability amplitude can be represented as a phasor whose angle is 


A



I



N


determined by the total time of flight from  S
  to the mirror to  P
 , 


E



P



O


and whose size is determined by the path length traversed. (Of 


F



H



G


course, this is just what obtained with each phasor in Fig. 4.80 c
 . 

Still there are convincing reasons why the classical  E
 -field can-


Figure 4.80    
 ( a
 ) Feynman’s analysis of the problem of reflection via 

not be the QM probability amplitude.) The total QM probability 

QED. A number of paths from  S
  to the mirror to  P
 . ( b
 ) The  OPL
  for  

light going from  S
  to  P
  along the paths depicted in ( a
 ). Each path  

amplitude is the sum of all such phasors corresponding to all 

has a probability amplitude associated with it. These add to produce  

possible paths, and that is analogous to the resultant phasor in 

a net amplitude.

Fig. 4.80 c
 .

Now relabel Fig. 4.80 c
  so that it represents the quantum-

mechanical formulation. Clearly,  
most of the length of the re-



(Fig. 4.80 a
 ), each of which establishes a possible path to  P
 . (Of 



sultant QM probability amplitude arises from contributions in 



course, every atom on the surface is a scatterer, and so there are 



the immediate vicinity of path S-I-P, where the constituent 



a multitude of paths, but the several we have drawn will do.) 



phasors are large and nearly in-phase

 . Most of the accumu-

Classically, we know that every route from  S
  to the mirror to  P
  

lated probability for light to go from  S
  to  P
  via reflection arises 

corresponds to the path of a scattered wavelet, and that the am-

along, and immediately adjacent to, path  S-I-P
 . The regions at 

plitude ( E
 0 j
 ) and phase of each such wavelet at  P
  will determine 

the ends of the mirror contribute very little because the phasors 

the net resultant amplitude,  E
 0. As we saw with Fermat’s Prin-

from those areas form tight spirals at both extremes (Fig. 4.80 c
 ). 

ciple (p. 109), the optical path length from  S
  to the mirror to  P
  

Covering the ends of the mirror will have little effect on the 

establishes the phase of each wavelet arriving at  P
 . Moreover, 

length of the resultant amplitude and therefore little effect on 

the greater the  path length 
 is, the more the light spreads out (via 

the amount of light reaching  P
 . Keep in mind that this diagram 

the Inverse Square Law) and the smaller is the amplitude of the 

is rather crude; instead of 17 routes from  S
  to  P
 , there are  

wavelet arriving at  P
 .

billions of possible paths, and the phasors on both ends of the 

Figure 4.80 b
  is a plot of the  OPL
  with its minimum at the 

spiral wind around countless times.

observed path ( S-I-P
 ), for which u i 
 = u r
 . A large change in 

QED predicts that light emitted by a point source  S
  reflects 


OPL
 , as between ( S-A-P
 ) and ( S-B-P
 ), is accompanied by a 

out to  P
  from all across the mirror, but that the most likely route 

large phase difference and a correspondingly large rotation of 

is  S-I-P
 , in which case u i 
 = u r
 . With your eye at  P
  looking into 

the phasors drawn in Fig. 4.80 c
 . Going from  A
  to  B
  to  C
  and so 

the mirror, you see one sharp image of  S
 .
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4.11.2 Photons and the Laws of Reflection  


We are at an important juncture here; classically the momen-


 



and Refraction


tum of a material particle depends on its speed. When  nt 
 7  ni
  it 

follows (from Snell’s Law and the above equation) that  pt 
 7  pi
 , 

Suppose that light consists of a stream of photons and consider 

and the particles of light must presumably speed up. Indeed, the 

one such quantum that strikes the interface between two dielec-

first derivation of the Law of Refraction, published by René 

tric media (e.g., air and glass) at an angle u i. 
 That photon is ab-

Descartes (1637), wrongly treated light as a stream of particles 

sorbed by an atom (e.g., in the glass), and an identical photon is 

that sped up as it entered the optically more dense medium (see 

subsequently transmitted at an angle u t. 
 We know that if this 

Problem 4.12). By contrast, the first person to measure the 

were just one out of billions of such quanta in a narrow laser-

shortening of the wavelength of light as it entered a more dense 

beam, it would conform to Snell’s Law. To explore this behav-

medium was probably Thomas Young (≈1802).* He rightly 

ior, let’s examine the dynamics associated with the odyssey of 

inferred that the speed of a light beam was thereby actually re-

our single photon. Recall Eq. (3.54), namely,  p 
 =  h
 >l and so its 

duced:  v 
 6  c
 . 

vector momentum would be

We now know from Quantum Mechanics that the speed of a 


p


photon is always  c
  and that its momentum depends on its wave-

$ = Uk
 $

length and not its speed. Thus

where k
 $ is the propagation vector and U K  h
 >2p. Consequently, 


h



h


the incident and transmitted momenta are p
 $ i 
 = Uk
 $ i
  and p
 $ t 
 = Uk
 $ t
 sin u i 
 =  sin u t


respectively. We assume (without much justification) that while 

l i


l t


the material in the vicinity of the interface affects the compo-

Multiplying both sides by  c
 >n, we get Snell’s Law.

nent of momentum perpendicular to the interface it leaves the 

Do keep in mind that the above analysis is a bit simplistic, 

parallel component unchanged. Indeed, we know experimen-

but it is appealing pedagogically.

tally that linear momentum perpendicular to the interface can 

be transferred to a medium from a light beam (Section 3.3.4). 

The statement of conservation of the component of momentum 

parallel to the interface for a single photon takes the form


pi
  sin u i 
 =  pt
  sin u t


*Foucault’s definitive experiments proving the point were done in 1850.


PROBLEMS




Complete solutions to all problems—except those with an  




Figure P.4.3
   A segment of a spherical wave.



asterisk—can be found in the back of the book.




4.1
   Work your way through an argument using dimensional analysis 

to establish the l-4 dependence of the percentage of light scattered in 

Rayleigh Scattering. Let  E
 0 i 
 and  E
 0 s
  be the incident and scattered am-S

plitudes, the latter at a distance  r
  from the scatterer. Assume  E
 0 s 
 ∝  E
 0 i
 and  E
 0 s 
 ∝ 1> r
 . Furthermore, plausibly assume that the scattered amplitude is proportional to the volume,  V
 , of the scatterer; within limits 

this is reasonable. Determine the units of the constant of proportionality.


4.2*
  A white floodlight beam crosses a large volume containing a 

tenuous molecular gas mixture of mostly oxygen and nitrogen. Compare 


r


the relative amount of scattering occurring for the yellow (580 nm) 

component with that of the violet (400 nm) component.

Σ


4.3*
   Figure P.4.3 depicts light emerging from a point source. It shows 

three different representations of radiant energy streaming outward. 

Identify each one and discuss its relationship to the others.
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4.4
   The equation for a driven damped oscillator is


Figure P.4.9


30°


m


Mirror-1


e
   x
 $ +  me
 g x
 # +  me
 v20  x 
 =  qeE(t)


(a)  Explain the significance of each term.

u r
 1

(b)   Let   E 
 =  E
 0  ei
 v t 
 and  x 
 =  x
 0  ei
 (v t
  - a), where  E
 0  
 and  x
 0  
 are real quantities. Substitute into the above expression and show that


q


Mirror-2

1


x



eE
 0

0 =






me 
 [(v20 - v2)2 + g2v2]1>2

u r
 2

45°

(c)   Derive an expression for the phase lag, a, and discuss how a varies 

as v goes from v 6 6 v0 to v = v0 to v 7 7 v0.


4.10*
   Return to Fig. 4.33 and Huygens’s refraction method and prove 


4.5
   Imagine that we have a nonabsorbing glass plate of index  n
  and 

that it leads to Snell’s Law.

thickness ∆ y
 , which stands between a source  S
  and an observer  P
 .

(a)  If the unobstructed wave (without the plate present) is  Eu 
 =   



4.11
   Calculate the transmission angle for a ray incident in air at 30° 


E
 0  
 exp  i
 v ( t 
 -  y
 > c
 ), show that with the plate in place the observer on a block of crown glass ( ng 
 = 1.52).

sees a wave


4.12*
   The construction in Fig. P.4.12 corresponds to Descartes’s errone-


Ep 
 =  E
 0 exp  i
 v [ t 
 - ( n 
 - 1) ∆ y
 > c 
 -  y
 > c
 ]

ous derivation of the Law of Refraction. Light moves from  S
  to  O
  in the 

same time it travels from  O
  to  P
 . Moreover, its transverse momentum is 

(b)   Show that if either  n 
 ≈ 1 or ∆ y
  is very small, then

unchanged on traversing the interface. Use all of this to “derive” Snell’s 

v( n 
 - 1) ∆ y


Law.


Ep 
 =  Eu 
 +

  E



c



ue
 - i
 p>2


Figure P.4.12






 The second term on the right may be envisioned as the field arising 

from the oscillators in the plate.


4.6*
   A very narrow laserbeam is incident at an angle of 58° on a hori-


S



A


zontal mirror. The reflected beam strikes a wall at a spot 5.0 m away 

u i



vi


from the point of incidence where the beam hit the mirror. How far 


O


horizontally is the wall from that point of incidence?


vt


u


4.7*
   On entering the tomb of FRED the Hero of Nod, you find yourself 


t


in a dark closed chamber with a small hole in a wall 3.0 m up from the 


B



P


floor. Once a year, on FRED’s birthday, a beam of sunlight enters via 

the hole, strikes a small polished gold disk on the floor 4.0 m from the 


4.13*
  A laserbeam in air strikes the flat surface of a sheet of glass 

wall and reflects off it, lighting up a great diamond embedded in the 

( n


forehead of a glorious statue of FRED, 20 m from the wall. Roughly 


g 
 = 1.50) at an angle of incidence of 30.0°. Rather than continuing 

straight into the glass the beam bends toward the normal through an 

how tall is the statue?

angle u d
 , called the deviation angle. Determine that angle.


4.8*
   Figure P.4.8 shows what’s called a corner mirror. Determine the 


4.14*
   Figure P.4.14 is a plot of the sine of the angle-of-incidence ver-

direction of the exiting ray with respect to the incident ray.

sus the sine of the transmission angle measured as light passed from air 

into a more optically dense medium. Discuss the curve. What is the 


Figure P.4.8


significance of the slope of the line? Guess at what the dense medium 

might be.


Figure P.4.14


1.00


t
 u 0.75

sin  0.50

0.25


4.9*
   A beam of light strikes mirror-1 and then mirror-2 in Fig. P.4.9. 

0

0.25 0.50 0.75 1.00

Determine angles u r
 1 and u r
 2.

sin u i
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4.15*
   A ray of yellow light from a sodium discharge lamp falls on the 

far beneath the topmost surface does the coin appear? Draw a ray 

surface of a diamond in air at 45°. If at that frequency  n


diagram.


d 
 = 2.42,  
 com-

pute the angular deviation suffered upon transmission. 


4.30
   In Fig. P.4.30 the wavefronts in the incident medium match the 


4.16*
   Given an interface between water ( n


fronts in the transmitting medium everywhere on the interface—a con-


w 
 = 43) and glass ( ng 
 = 32), 

compute the transmission angle for a beam incident in the water at 45°. 

cept known as  wavefront continuity
 . Write expressions for the number 

If the transmitted beam is reversed so that it impinges on the interface, 

of waves per unit length along the interface in terms of u i
  and l i
  in one 

show that u

case and u


t 
 = 45°.


t
  and l t
  in the other. Use these to derive Snell’s Law. Do you 

think Snell’s Law applies to sound waves? Explain.


4.17
   A beam of 12-cm planar microwaves strikes the surface of a di-

electric at 45°. If  nti 
 = 43 compute (a) the wavelength in the transmitting 

medium, and (b) the angle u t
 .


Figure P.4.30



B



4.18*
   Light of wavelength 600 nm in vacuum enters a block of glass 

where   ng 
 = 1.5. Compute its wavelength in the glass. What color 

would it appear to someone embedded in the glass (see Table 3.4)?


ni



4.19*
   A laserbeam impinges on an air–liquid interface at an angle of 

55°. The refracted ray is observed to be transmitted at 40°. What is the 

refractive index of the liquid?


A


u i


u


C



t



4.20*
  An underwater swimmer shines a beam of light up toward the 

surface. It strikes the air–water interface at 35°. At what angle will it 

emerge into the air?


nt



4.21
  Make a plot of u i
  versus u t
  for an air–glass boundary where  


D



nga 
 = 1.5. Discuss the shape of the curve.


4.22*
   A laserbeam having a diameter  D
  in air strikes a piece of glass 

( ng
 ) at an angle u i
 . What is the diameter of the beam in the glass?


4.31*
  With the previous problem in mind, return to Eq. (4.19) and 


4.23*
    An exceedingly narrow beam of white light is incident at 60.0°

take the origin of the coordinate system in the plane-of-incidence and 

on a sheet of glass 10.0 cm thick in air. The index of refraction for red 

on the interface (Fig. 4.47). Show that that equation is then equivalent 

light is 1.505 and for violet light it’s 1.545. Determine the approximate 

to equating the  x
 -components of the various propagation vectors. Show 

diameter of the emerging beam. 

that it is also equivalent to the notion of wavefront continuity.


4.24*
   A bowl 10.0 cm deep is filled with olive oil. A coin on the bot-


4.32
   Making use of the ideas of equal transit times between corre-

tom of the bowl is viewed directly from above. How far beneath the 

sponding points and the orthogonality of rays and wavefronts, derive 

surface will the coin appear?

the Law of Reflection and Snell’s Law. The ray diagram of Fig. P.4.32 

should be helpful.


4.25*
   A block of glass of index 3>2 has a small flaw 3.0 cm below its 

flat horizontal top surface. A camera lens is 8.0 cm above the surface 

in air, looking straight down. How far will the flaw appear to be from 


Figure P.4.32


the lens?


4.26*
  A laserbeam impinges on the top surface of a 2.00-cm-thick 

parallel glass ( n 
 = 1.50) plate at an angle of 35°. How long is the ac-


b



a


1

2

tual path through the glass?


4.27*
   Light is incident in the air on an air–glass interface. If the index 


b



a


2

1

of refraction of the glass is 1.70, find the incident angle such that the 


a


transmission angle is to equal 1

3

2 u i
 .


4.28*
   Suppose that you focus a camera with a close-up bellows at-

tachment directly down on a letter printed on this page. The letter is 

then covered with a 1.00-mm-thick microscope slide ( n 
 = 1.55). How 

high must the camera be raised in order to keep the letter in focus?


4.33



4.29*


  Starting with Snell’s Law, prove that the vector refraction equa-

  A coin is resting on the bottom of a tank of water ( n
 W = 1.33) 

tion has the form

1.00 m deep. On top of the water floats a layer of benzene ( nb 
 = 1.50), 

which is 20.0 cm thick. Looking down nearly perpendicularly, how 


 



nt
  kˆ
 t 
 -  ni
  kˆ 
 = ( nt
  cos u t 
 -  ni
  cos u i
 ) uˆ
 n
  [4.7]

M04_HECH7226_05_SE_C04_088-150.indd   145

17/09/15   5:24 PM














146
   Chapter 4
   The Propagation of Light


4.34
   Derive a vector expression equivalent to the Law of Reflection. 


4.40
  Discuss the results of Problem 4.38 in the light of Fermat’s 

As before, let the normal go from the incident to the transmitting me-

Principle; that is, how does the relative index  n
 21 affect things? To see 

dium, even though it obviously doesn’t really matter.

the lateral displacement, look at a broad source through a thick piece 

of glass ( ≈ 14 inch) or a stack (four will do) of microscope slides  held 



4.35
  In the case of reflection from a planar surface, use Fermat’s 


at an angle
 . There will be an obvious shift between the region of the 

Principle to prove that the incident and reflected rays share a common 

source seen directly and the region viewed through the glass.

plane with the normal uˆ
 n
 , namely, the plane-of-incidence.


4.41*
   Examine the three photos in Fig. P. 4.41. Part (a) shows a single 


4.36*
   Derive the Law of Reflection, u i 
 = u r
 , by using the calculus to 

wide block of Plexiglas; (b) shows two narrow blocks of Plexiglas, 

minimize the transit time, as required by Fermat’s Principle.

each half as wide as the first, pressed lightly against one another; and 


4.37*
  According to the mathematician Hermann Schwarz, there is 

(c) shows the same two blocks, this time separated by a thin layer of 

one triangle that can be inscribed within an acute triangle such that it 

castor oil. Describe what you see looking into the Plexiglas, in each 

has a minimal perimeter. Using two planar mirrors, a laserbeam, and 

photo, in detail. Compare (a) and (c). What can you say about castor oil 

Fermat’s Principle, explain how you can show that this inscribed tri-

and Plexiglas?

angle has its vertices at the points where the altitudes of the acute tri-

angle intersect its corresponding sides.


Figure P.4.41 
 (G. Calzà, T. López-Arias, L.M. Gratton, and S. Oss, reprinted with permission from 4.38
   Show analytically that a beam (in a medium of index  n
 1) entering 


The Physics Teacher
  48
 , 270 (2010). Copyright 2010, American Association of Physics Teachers.) a planar transparent plate (of index  n
 2 and thickness  d 
 ), as in Fig. P.4.38, 

emerges parallel to its initial direction. Derive an expression for the 

lateral displacement ( a
 ) of the beam. Incidentally, the incoming and 

outgoing rays would be parallel even for a stack of plates of different 

material.


Figure P.4.38    
 (E.H.)


4.39*
   Show that the two rays that enter the system in Fig. P.4.39 par-

allel to each other emerge from it being parallel.


Figure P.4.39



na



n
 1


na



n
 2


4.42
   Suppose a lightwave that is linearly polarized in the plane-of-

incidence impinges at 30° on a crown-glass ( n



n



g 
 = 1.52) plate in air. 


a


Compute the appropriate amplitude reflection and transmission coef-

ficients at the interface. Compare your results with Fig. 4.47.
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4.43
   Derive Eqs. (4.42) through (4.45) for  r
 #,  r 
 ,  t


.

‘

#, and  t
  ‘


4.55*
  A beam of unpolarized light carries 2000 W/m2 down onto  

an air–plastic interface. It is found that of the light reflected at the  


4.44*
   A beam of light in air strikes the surface of a smooth piece of 

interface 300 W/m2 is polarized with its  E
 -field perpendicular to the 

plastic having an index of refraction of 1.55 at an angle with the nor-

plane of incidence and 200 W/m2 parallel to the plane of incidence. 

mal of 22.0°. The incident light has component  E
 -field amplitudes par-

Determine the net transmittance across the interface.

allel and perpendicular to the plane-of-incidence of 10.0 V>m and

20.0 V>m, respectively. Determine the corresponding reflected field 


4.56*
   Show that energy is conserved in the previous problem.

amplitudes.


4.57*
   Quasimonochromatic light having an irradiance of 400 W/m2 is 


4.45*
   A laserbeam is incident on the interface between air and some 

incident normally on the cornea ( nc 
 = 1.376) of the human eye. If the 

dielectric of index  n
 . For small values of u i
  show that u t 
 = u i
 > n
 . 

person is swimming under the  water ( n
 w = 1.33), determine the trans-

Use this and Eq. (4.42) to establish that at near-normal incidence  

mitted irradiance into the cornea. 

[- r
 #]u i
 ≈0 = ( n 
 - 1)>( n 
 + 1).


4.58*
   Compare the amplitude reflection coefficients for an air–water 


4.46*
   Prove that at normal incidence on the boundary between two 

( n
 w = 4>3) interface with that of an air–crown glass ( ng 
 = 3>2) inter-

dielectrics

face, both at near-normal incidence. What are the corresponding ratios 

of the reflected to the incident irradiances?

2 n


[  t 
  ]


i


i u i
   =  0 = [ t 
 # ]u i
   =  0 =  ni 
 +  nt



4.59*
  Use Eq. (4.42) and the power series expansion of the 





sine function to establish that at near-normal incidence we can 






4.47*
   A nearly monochromatic laserbeam polarized with its electric 

obtain a better approximation than the one in Problem 4.45, which is  

field perpendicular to the plane of incidence impinges normally in air 

[- r
 #]u i
 ≈0 = ( n 
 - 1)>( n 
 + 1), namely,

on glass ( nt 
 = 1.50). Determine the amplitude coefficient of transmis-

sion. Redo the calculation with the beam going perpendicularly from 


n 
 - 1

u2

[

glass to air. See the previous problem. 

- r



i


#]u

b a1 + b


i 
 ≈ 0 = a n 
 + 1


n



4.48*
   Considering the previous problem, compute the corresponding 


4.60*
   Establish that at near-normal incidence the equation

values of the amplitude coefficients of reflection for both the normal 

transits of light from air-to-glass and glass-to-air. Show that Eq. (4.49), 


n 
 - 1

u2

[ r 
 ]


i



t


i u

b a1 - b


i 
 ≈ 0 = a

# + ( -  r
 # ) = 1, applies to both.


n 
 + 1


n



4.49*
  Light is incident in air perpendicularly on a sheet of crown 

is a good approximation. [ Hint:
  Use the results of the previous prob-

glass having an index of refraction of 1.522. Determine both the reflec-

lem, Eq. (4.43), and the power series expansions of the sine and cosine 

tance and the transmittance. 

functions.]


4.50*
  A beam of quasimonochromatic light having an irradiance of 


4.61*
   Prove that for a vacuum-dielectric interface at glancing inci-

500 W>m2 is incident in air perpendicularly on the surface of a tank of 

dence  r
 # S -1, as in Fig. 4.49.

water ( n
 w = 1.333). Determine the transmitted irradiance. 


4.62*
   In Fig. 4.49 the curve of  r
 # approaches -1.0 as the angle-of-


4.51*
   Using the Fresnel Equations show that

incidence approaches 90°. Prove that if a# is the angle the curve makes 

 cos u

with the vertical at u


i 
 - 2 n
 2 ti 
 - sin2 u i







i 
 = 90°, then


r
 # =  cos u i 
 + 2 n
 2 ti 
 - sin2 u i






2 n
 2 - 1

tan a# =

and 

2


n
 2 ti
  cos u i 
 - 2 n
 2 ti 
 - sin2 u i










[ Hint:
  First show that  d
 u t
 > d
 u i 
 = 0.]


r
 i =  n
 2 ti
  cos u i 
 + 2 n
 2 ti 
 - sin2 u i











4.63
   Prove that


4.52*
   Unpolarized light is incident in air on the flat surface of a sheet 






t
 # + (- r
 #) = 1 [4.49]

of glass of index 1.60 at an angle of 30.0° to the normal. Determine 

both amplitude coefficients of reflection. What is the significance of 

for all u i
 , first from the boundary conditions and then from the Fresnel 

the signs? Check out the previous problem.

Equations.


4.53*
   Considering the previous problem calculate  R


,  T


, and 


4.64*
   Verify that

#,  R
 i

#,  T
 i

the net transmittance  T
  and reflectance  R
 .


 



t
 # + (- r
 #) = 1  

[4.49]


4.54*
   We know that 1000 W/m2 of unpolarized light is incident in air 

for u i 
 = 30° at a crown glass–air interface ( nti 
 = 1.52).

on an air–glass interface where  nti 
 = 3/2. If the transmittance for light 





with its  E
 -field perpendicular to the plane of incidence is 0.80, how 


4.65*
   Use the Fresnel Equations to prove that light incident at u p 
 =  

1

much of that light is reflected?

2p - u t
  results in a reflected beam that is indeed polarized.
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4.66
   Show that tan u p 
 =  nt
 > ni
  and calculate the polarization angle for and

external incidence on a plate of crown glass ( ng 
 = 1.52) in air.

sin 2u i
  sin 2u t



4.67*
   Beginning with Eq. (4.38), show that for two dielectric media, 


 



T
 # =

 (4.99)

sin2(u

in general tan 


i 
 + u t
 )

u p 
 = [P t
 (P t
  m i 
 - P i
  m t
 )>P i
 (P t
  m t 
 - P i
  m i
 )]1>2.


4.73*



4.68


 Using the results of Problem 4.72, that is, Eqs. (4.98) and 

  Show that the polarization angles for internal and external re-

(4.99), show that

flection at a given interface are complementary, that is, u p 
 + u′ p 
 = 90° 

(see Problem 4.66).






R
 i +  T
 i = 1 [4.65]


4.69
   It is often useful to work with the  azimuthal angle
  g, which is 

and 


R
 # +  T
 # = 1 [4.66]

defined as the angle between the plane-of-vibration and the plane-of-

incidence. Thus for linearly polarized light,


4.74
  Suppose that we look at a source perpendicularly through a 

stack of  N
  microscope slides. The source seen through even a dozen 





tan g i 
 = [ E
 0 i
 ]#>[ E
 0 i
 ]  (4.92)

i

slides will be noticeably darker. Assuming negligible absorption, show 





tan g

that the total transmittance of the stack is given by


t 
 = [ E
 0 t
 ]#>[ E
 0 t
 ]  (4.93)

i

and 

tan g r 
 = [ E
 0 r
 ]#>[ E
 0 r
 ]  (4.94)

i


Tt 
 = (1 -  R
 )2 N


Figure P.4.69 is a plot of g

and evaluate  T



r
  versus u i
  for internal and external reflec-


t
  for three slides in air.

tion at an air–glass interface ( nga 
 = 1.51), where g i 
 = 45°. Verify a few 


4.75
   Making use of the expression

of the points on the curves and in addition show that






I(y) 
 =  I
 0 e
 -a y
  [4.78]

cos (u

  tan 


i 
 - u t
 )

g r 
 = - 

 tan g

cos (


i
  (4.95)

u

for an absorbing medium, we define a quantity called the  unit transmit-



i 
 + u t
 )


tance  T
 1. At normal incidence, Eq. (4.55),  T 
 =  It
 > Ii
 ,   
 and thus when y 
 = 1,  T
 1 K  I(1)
 > I
 0.  
 If the total thickness of the slides in the previous Figure P.4.69


problem is  d
  and if they now have a transmittance per unit length  T
 1, 

show that

135°


Tt 
 = (1 -  R
 )2 N
 ( T
 1) d


Internal reflection


r
 g


4.76
  Show that at normal incidence on the boundary between two 

dielectrics, as  nti 
 S 1,  R 
 S 0,   
 and   T 
 S 1. Moreover, prove that as 90°


nti 
 S 1,  R 
 S 0,  R


S 1, and  T


i

# S 0,  T
 i

# S 1 for all u t
 . Thus as the 

u

u


p


u c



p


two media take on more similar indices of refraction, less and less en-

ergy is carried off in the reflected wave. It should be obvious that when 

Azimuthal angle 

External reflection


nti 
 = 1 there will be no interface and no reflection.

+45°


4.77*
   Derive the expressions for  r


0

10

20

30

40

50

60

70

80

90

#  
 and  r 
  given by Eqs. (4.70) and 

i

u

(4.71).


i
   (degrees)


4.78
   Show that when u i 
 7 u c
  at a dielectric interface,  r 
  and  r


i

# are 

complex and  r
 # r
 *# =  r r
 *

i i = 1.


4.70*
   Making use of the definitions of the azimuthal angles in Prob-


4.79*
   Calculate the critical angle beyond which there is total internal 

lem 4.69, show that

reflection at an air–glass ( ng 
 = 1.5) interface.






R 
 =  R 
  cos2 

i

g i 
 +  R
 #sin2 g i
  (4.96)


4.80*
   Referring back to Problem 4.21, note that as u i
  increases u t
   in-

creases. Prove that the maximum value u t
  may have is u c
 .

and


4.81*
  What is the critical angle for total internal reflection for dia-


 



T 
 =  T 
  cos2 

i

g i 
 +  T
 #sin2 g i 


(4.97)

mond in air? What, if anything, does the critical angle have to do with 

the luster of a well-cut diamond?


4.71
   Make a sketch of  R
 #  
 and  R 
  for  n


i


i 
 = 1.5 and  nt 
 = 1 (i.e., internal 

reflection) versus the incident angle.


4.82*
   Using a block of a transparent, unknown material, it is found that 

a beam of light inside the material is totally internally reflected at the 


4.72
   Show that

air–block interface at an angle of 48.0°. What is its index of refraction?

sin 2u i
  sin 2u t



4.83*
  A prism,  ABC
 , is configured such that angle  BCA







T


 (4.98)

i =

= 90°  
 and 

sin2(u i 
 + u t
 ) cos2(u i 
 - u t
 )

angle  CBA 
 = 45°. What is the minimum value of its index of refraction 
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Figure P.4.91
   (S. Reich, The 

Weizmann Institute of Science, Israel)


nt



ni


Laserbeam

u c



R


Air

Glass

Air


d


if, while immersed in air, a beam traversing face  AC
  is to be totally 


4.91
   Figure P.4.91 shows a laserbeam incident on a wet piece of 

internally reflected from face  BC
 ?

filter paper atop a sheet of glass whose index of refraction is to be 

measured—the photograph shows the resulting light pattern. Ex-


4.84*
   A fish looking straight up toward the smooth surface of a pond 

plain what is happening and derive an expression for  ni
  in terms of 

receives a cone of rays and sees a circle of light filled with the images 


R
  and  d
 .

of sky and birds and whatever else is up there. This bright circular field 

is surrounded by darkness. Explain what is happening and compute the 


4.92
  Consider the common mirage associated with an inhomoge-

cone angle.

neous distribution of air situated above a warm roadway. Envision the 

bending of the rays as if it were instead a problem in total internal re-


4.85*
   A glass block having an index of 1.55 is covered with a layer of 

flection. If an observer, at whose head  na 
 = 1.000 29,  
 sees an apparent 

water of index 1.33. For light traveling in the glass, what is the critical 

wet spot at u i 
 Ú 88.7° down the road, find the index of the air immedi-

angle at the interface?

ately above the road.


4.86
   Derive an expression for the speed of the evanescent wave in the 


4.93
  Figure P.4.93 depicts a glass cube surrounded by four glass 

case of internal reflection. Write it in terms of  c
 ,  ni
 ,  
 and u i
 .

prisms in very close proximity to its sides. Sketch in the paths that will 


4.87
  Light having a vacuum wavelength of 600 nm, traveling in a 

be taken by the two rays shown and discuss a possible application for 

glass ( n


the device.


g 
 = 1.50) block, is incident at 45° on a glass–air interface. It is 

then totally internally reflected. Determine the distance into the air at 

which the amplitude of the evanescent wave has dropped to a value of 

1> e
  of its maximum value at the interface.


Figure P.4.93



4.88*
   A beam of light from an argon laser (l0 = 500 nm) traveling in 

a glass block ( ng 
 = 3/2) is totally internally reflected at the flat air–

glass interface. If the beam strikes the interface at 60.0° to the normal, 

how deep will the light penetrate into the air before its amplitude drops 

to about 36.8% of its value at the interface?


4.89*
   A large block of diamond is covered, on top, by a layer of water. 

A narrow beam of light travels upward in the solid and strikes the  

solid–liquid interface. Determine the minimum incident angle that 

would result in the complete reflection of the light back into the  

diamond.


4.90*
   A large crystal of Fabulite is covered by a layer of carbon tetra-

chloride. A beam of light comes up through the crystal and impinges 

on the solid–liquid interface. At what incident angle (at minimum) will 

the light be completely reflected back into the crystal?
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4.94
   Figure P.4.94 shows a prism-coupler arrangement developed 


4.98*
  The graphs in Fig. P.4.98 are the reflection spectra for several 

at the Bell Telephone Laboratories. Its function is to feed a laser-

roses seen in white light. The flowers were white, yellow, light pink, dark 

beam into a thin (0.000 01-inch) transparent film, which then serves 

pink, blue, orange, and red. Associate each graph with a specific color.

as a sort of waveguide. One application is that of thin-film laser-


Figure P.4.98  
 (Dr. Gottipaty N. Rao and Brain Capozzi, Adelphi University.)

beam circuitry—a kind of integrated optics. How do you think it 

works?

100

90

1


Figure P.4.94


80

2
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4

70

Laserbeam

5

60

6

7

50

40
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Adjustable coupling

20

gap ∼ l2

10

Thin film

0400 450 500 550 600 650 700 750

Wavelength (nm)

Glass substrate


4.99
   Figure P.4.99 depicts a ray being multiply reflected by a trans-

parent dielectric plate (the amplitudes of the resulting fragments are 

indicated). As in Section 4.10, we use the primed coefficient notation 

because the angles are related by Snell’s Law.


4.95
   Figure P.4.95 is a plot of  nI 
 and  nR 
 versus l for a common metal. 

(a)  Finish labeling the amplitudes of the last four rays.

Identify the metal by comparing its characteristics with those consid-

ered in the chapter and discuss its optical properties.

(b)  Show, using the Fresnel Equations, that






t t
 ′

 (4.100)

i i =  T
 i


Figure P.4.95







t
 # t
 ′# =  T
 # (4.101)

20.0






r
 2

 (4.102)

i =  r
 ′2

i

=  R
 i

and 


r
 2# =  r
 ′2

# =  R
 # (4.103)

10.0


Figure P.4.99
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4.96*
   Someone views a flag through a yellow filter. The flag has five 

colored horizontal bands, which are, starting from the top, blue, cyan, 


4.100*
   A wave, linearly polarized in the plane-of-incidence, imping-

magenta, yellow, and white. What colors, if any, will she see through 

es on the interface between two dielectric media. If  ni 
 7  nt
  and u i 
 = u′ p
 , the filter?

there is no reflected wave, that is,  r
 ′  (


i u′ p) 
 = 0. Using Stokes’s tech-

nique, start from scratch to show that  t (



(



(



4.97*
   A wall is painted with stripes of red, cyan, white, yellow, green, 

i u p)t
 ′i u′ p) 
 = 1,  r
 i u p) 
 = 0, and 

and magenta. A person wearing yellow sunglasses views the wall 

u t 
 = u p
  (Problem 4.68). How does this compare with Eq. (4.100)?

through a piece of cyan-colored stained glass. What colors, if any, will 


4.101
   Making use of the Fresnel Equations, show that  t (



(


i u p)t
 ′i u′ p) 
 = 1, 

the stripes appear?

as in the previous problem.

M04_HECH7226_05_SE_C04_088-150.indd   150

09/11/15   7:59 PM






35Geometrical  



Optics



5.1 Introductory Remarks


always be an apparent deviation from rectilinear propagation 

even in homogeneous media—the waves will be  diffracted
 . 

The surface of an object that is either self-luminous or exter-

The attainable degree of perfection of a real imaging optical 

nally illuminated behaves as if it consisted of a very large num-

system will be diffraction-limited
  (there will always be a blur 

ber of radiating point sources. Each of these emits spherical 

spot, p. 480). As the wavelength of the radiant energy decreas-

waves; rays emanate radially in the direction of energy flow, 

es in comparison to the physical dimensions of the optical sys-

that is, in the direction of the Poynting vector. In this case, the 

tem, the effects of diffraction become less significant. In the 

rays  diverge
  from a given point source  S
 , whereas if the spheri-

conceptual limit as l0 S 0,  
 rectilinear propagation obtains in 

cal wave were collapsing to a point, the rays would of course be 

homogeneous media, and we have the idealized domain of 


converging
 . Generally, one deals only with a small portion of a 


Geometrical Optics
 .* Behavior that is specifically attribut-

wavefront.  
A point from which a portion of a spherical wave 



able to the wave nature of light (e.g., interference and diffrac-



diverges, or one toward which the wave segment converges, is 



tion) would no longer be observable. In many situations, the 



known as a focus of the bundle of rays

 .

great simplicity arising from the approximation of Geometri-

Figure 5.1 depicts a point source in the vicinity of some ar-

cal Optics more than compensates for its inaccuracies. In 

rangement of reflecting and refracting surfaces representing an 

short,  the subject treats the controlled manipulation of wave-



optical system
 . Of the infinity of rays emanating from point- S
 , 


fronts
  ( or rays
 )  by means of the interpositioning of reflecting 


generally speaking, only one will pass through an arbitrary 


and
 > or refracting bodies, neglecting any diffraction effects.


point in space. Even so, it is possible to arrange for an infinite 

number of rays to arrive at a certain point- P
 , as in Fig. 5.1. If for 

a cone of rays coming from  S
  there is a corresponding cone of 

rays passing through  P
 , the system is said to be stigmatic
  for 


5.2 Lenses


these two points. The energy in the cone (apart from some inad-

vertent losses due to reflection, scattering, and absorption) 

The lens is no doubt the most widely used optical device, and 

reaches  P
 , which is then referred to as a perfect image
  of  S
 . The 

that’s not even considering the fact that we see the world through 

wave could conceivably arrive to form a finite patch of light, or 

a pair of them. Human-made lenses date back at least to the 


blur spot
 , about  P
 ; it would still be an image of  S
  but no longer 

burning-glasses of antiquity, which, as the name implies, were 

a perfect one. To say it slightly differently, when you can trace 

used to start fires long before the advent of matches. In the most 

a number of rays from  S
  to  P
 , that is, when an appreciable 

general terms, a lens is a refracting device (i.e., a discontinuity 


amount of radiant energy flows directly from  S
  to  P
 , the energy 


in the prevailing medium) that reconfigures a transmitted 


arriving at  P
  corresponds to an image of  S
 .


energy distribution
 . That much is true whether we are dealing 

It follows from the Principle of Reversibility (p. 113) that a 

with UV, lightwaves, IR, microwaves, radiowaves, or even 

point source placed at  P
  would be equally well imaged at  S
 , and 

sound waves.

accordingly the two are spoken of as conjugate points
 . In an 

The configuration of a lens is determined by the required 


ideal optical system,
  every point of a three-dimensional region 

reshaping of the wavefront it is designed to perform. Point 

will be perfectly (or stigmatically) imaged in another region, 

sources are basic, and so it is often desirable to convert diverging 

the former being the object space
 , the latter the image space
 .

spherical waves into a beam of plane waves. Flashlights, projec-

Most commonly, the function of an optical device is to col-

tors, and searchlights all do this in order to keep the beam from 

lect and reshape a portion of the incident wavefront, often with 

the ultimate purpose of forming an image of an object. Notice 

that inherent in realizable systems is the limitation of being 

* Physical Optics
  deals with situations in which the nonzero wavelength  

of light must be reckoned with. Analogously, when the de Broglie wavelength  

unable to collect all the emitted light; a system generally ac-

of a material object is negligible, we have  Classical Mechanics
 ; when it is not,  

cepts only a segment of the wavefront. As a result, there will 

we have the domain of  Quantum Mechanics
 .


151
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(a)


S


Optical system


P


(b)


Figure 5.1
     Conjugate foci. ( a
 ) A point source  


S
  sends out spherical waves. A cone of rays enters 


S



P


an optical system that inverts the wavefronts, 

Optical system

causing them to converge on point- P
 . ( b
 ) In cross 

section rays diverge from  S
 , and a portion of them 

converge to  P
 . If nothing stops the light at  P
 , it 

continues on.

spreading out and weakening as it progresses. In just the reverse, 

the wave slows upon entering the new substance. The central 

it’s frequently necessary to collect incoming parallel rays and 

area of the wavefront travels more slowly than its outer extrem-

bring them together at a point, thereby focusing the energy, as is 

ities, which are still moving quickly through the incident me-

done with a burning-glass or a telescope lens. Moreover, since 

dium. These extremities overtake the midregion, continuously 

the light reflected from someone’s face scatters out from billions 

of point sources, a lens that causes each diverging wavelet to 

(a)

converge could form an image of that face (Fig. 5.2).


S



5.2.1 Aspherical Surfaces


To see how a lens works, imagine that we interpose in the path 

of a wave a transparent substance in which the wave’s speed  

(b)

is different than it was initially. Figure 5.3 a
  presents a cross-

sectional view of a diverging spherical wave traveling in an in-

cident medium of index  ni
  impinging on the curved interface of 

a transmitting medium of index  nt
 . When  nt
  is greater than  ni
 , 

(c)


A



D



F



S 
 1


F
 2


n



n



t



D



i
  = 1


Figure 5.2
     A person’s face, like 


Figure 5.3
     A hyperbolic interface between air and glass. ( a
 ) The wave-

everything else we ordinarily see in 

fronts bend and straighten out. ( b
 ) The rays become parallel. ( c
 ) The hyper-

reflected light, is covered with countless 

bola is such that the optical path from  S
  to  A
  to  D
  is the same no matter 

atomic scatterers.

where  A
  is.
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flattening the wavefront. If the interface is properly configured, 

(a)


n
 1

(b)


n



n


2

1

the spherical wavefront bends into a plane wave. The alternative 


n
 2

ray representation is shown in Fig. 5.3 b
 ; the rays simply bend 

toward the local normal upon entering the more dense medium, 


F


and if the surface configuration is just right, the rays emerge 

parallel.

To find the required shape of the interface, refer to Fig. 5.3 c
 , 

(c)


n


(d)


n


1


n


1

2


n


wherein point- A
  can lie anywhere on the boundary. One wave-

2


F


front is transformed into another, provided the paths along which 

the energy propagates are all “equal,” thereby maintaining the 

phase of the wavefront (p. 24). A little spherical surface of con-

stant phase emitted from  S
  must evolve into a flat surface of 


Figure 5.4
   ( a
 ) and ( b
 ) Hyperboloidal and ( c
 ) and ( d 
 ) ellipsoidal refracting surfaces ( n


constant phase at  DD
 ′. Whatever path the light takes from  S
  to 

2 7  n
 1) in cross section.


DD
 ′, it must always be the same number of wavelengths long, 

so that the disturbance begins and ends in-phase. Radiant energy 

One of the first people to suggest using conic sections as 

leaving  S
  as a single wavefront must arrive at the plane   DD
 ′, 

surfaces for lenses and mirrors was Johann Kepler (1611), but 

having traveled for the same amount of time to get there, no 

he wasn’t able to go very far with the idea without Snell’s Law. 

matter what the actual route taken by any particular ray. In other 

Once that relationship was discovered, Descartes (1637), using 

words,  F


his invention of Analytic Geometry, could develop the theoreti-

1 A
 >l i
  (the number of wavelengths along the arbitrary 

ray from  F


cal foundations of the optics of aspherical surfaces. The analy-

1 to  A
 ) plus  AD
 >l t
  (the number of wavelengths along 

the ray from  A
  to  D
 ) must be constant regardless of where on the 

sis presented here is in essence a gift from Descartes.

interface  A
  happens to be. Now, adding these and multiplying 

It’s an easy matter now to construct lenses such that both the 

by l

object and image points (or the incident and emerging light) will 

0, yields

be outside the medium of the lens. In Fig. 5.5 a
  diverging inci-






ni
  ( F
 1 A
 ) +  nt
  ( AD
 ) = constant (5.1)

dent spherical waves are made into plane waves at the first inter-

face via the mechanism of Fig. 5.4 a
 . These plane waves within 

Each term on the left is the length traveled in a medium mul-

the lens strike the back face perpendicularly and emerge unal-

tiplied by the index of that medium, and, of course, each repre-

tered: u i 
 = 0 and u t 
 = 0. Because the rays are reversible, plane 

sents the optical path length,  OPL,
  traversed. The optical path 

waves incoming from the right will converge to point- F
 1, which 

lengths from  S
  to  DD
 ′ are all equal. If Eq. (5.1) is divided by  c
 , 

is known as the focal point of the lens. Exposed on its flat face 

the first term becomes the time it takes light to travel from  S
  to  A
  

to the parallel rays from the Sun, our rather sophisticated lens 

and the second term, the time from  A
  to  D
 ; the right side remains 

would serve nicely as a burning-glass.

constant (not the same constant, but constant). Equation (5.1) is 

In Fig. 5.5 b
 , the plane waves within the lens are made to 

equivalent to saying that all paths from  S
  to  DD
 ′ must take the 

converge toward the axis by bending at the second interface. 

same amount of time to traverse.

Both of these lenses are thicker at their midpoints than at their 

Let’s return to finding the shape of the interface. Divide  

edges and are therefore said to be convex
  (from the Latin  con-


Eq. (5.1) by  ni
 , and it becomes


vexus
 , meaning arched). Each lens causes the incoming beam to 

converge somewhat, to bend a bit more toward the central axis; 


n







F



t


1 A 
 + a b  AD 
 = constant (5.2)

therefore, they are referred to as converging lenses
 .


ni


In contrast, a concave
  lens (from the Latin  concavus
 , 

This is the equation of a hyperbola in which the eccentricity 

meaning hollow—and most easily remembered because it 

( e
 ), which measures the bending of the curve, is given by 

contains the word cave) is thinner in the middle than at the 

( n


edges, as is evident in Fig. 5.5 c
 . It causes the rays that enter as 


t
 > ni
 ) 7 1; that is,  e 
 =  nti 
 7 1. The greater the eccentricity, 

the flatter the hyperbola (the larger the difference in the indi-

a parallel bundle to diverge. All such devices that turn rays 

ces, the less the surface need be curved). When a point source 

outward away from the central axis (and in so doing add diver-

is located at the focus  F


gence to the beam) are called diverging lenses
 . In Fig. 5.5 c
 , 

1 and the interface between the two 

media is hyperbolic, plane waves are transmitted into the high-

parallel rays enter from the left and, on emerging, seem to di-

er index material. It’s left for Problem 5.3 to establish that 

verge from  F
 2; still, that point is taken as a focal point.  
When 



when  ( n




a parallel bundle of rays passes through a converging lens, 




t
 > ni
 ) 6 1, the interface must be ellipsoidal. In each 

case pictured in Fig. 5.4, the rays either diverge from or con-



the point to which it converges (or when passing through a 



verge toward a focal point,  F
 . Furthermore, the rays can be re-



diverging lens, the point from which it diverges) is a focal 



versed so that they travel either way; if a plane wave is incident 



point of the lens

 .

(from the right) on the interface in Fig. 5.4 c
 , it will converge 

If a point source is positioned on the central or optical axis at 

(off to the left) at the farthest focus of the ellipsoid.

the point- F
 1  
 in front of the lens in Fig. 5.5 b
 , rays will  converge
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(a)

spherical ones. As such, they’re well suited for strong prescrip-

tions. Furthermore, they minimize the magnification of the 

wearer’s eyes as seen by other people.


F
 1

A new generation of computer-controlled machines, aspher-

ic generators, is producing elements with tolerances (i.e., de-

partures from the desired surface) of better than 0.5 mm 

(b)

(0.000 020 inch). This is still about a factor of 10 away from the 

generally required tolerance of l


F


>4   
 for quality optics. After 


F


2

1

grinding, aspheres can be polished magnetorheologically. This 

technique, used to figure and finish the surface, magnetically 

controls the direction and pressure applied to the workpiece by 

(c)

the abrasive particles during polishing. 

Nowadays aspherics made in plastic and glass can be found in 

all kinds of instruments across the whole range of quality, includ-


F
 2

ing telescopes, projectors, cameras, and reconnaissance devices.

EXAMPLE 5.1

(d)

The accompanying diagram depicts, in cross section, a glass 

lens in air. Explain how it works.


F
 1


F
 2


Figure 5.5
   ( a
 ), ( b
 ), and ( c
 ) Several hyperbolic lenses seen in cross  

section. ( d
 ) A selection of aspherical lenses. (Melles Griot)

the conjugate point- F
 2. A luminous image of the source would 

appear on a screen placed at  F
 2, an image that is therefore said 

to be real
 . On the other hand, in Fig. 5.5 c
  the point source is at 

SOLUTION 

infinity, and the rays emerging from the system this time are 

The first surface encountered by the rays is a portion of an el-


diverging
 . They appear to come from a point- F
 2, but no actual 

lipse (actually an ellipsoid). Its two foci are located by small 

luminous image would appear on a screen at that location. The 

vertical lines. As in Fig. 5.4c (read right to left), the rays refract 

image here is spoken of as virtual
 , as is the familiar image gen-

directly toward the far focus  F
 2 on entering the glass. The sec-

erated by a plane mirror.

ond surface must be spherical with its center at  F
 2. The rays are 

Optical elements (lenses and mirrors) of the sort we have 

then all perpendicular to the second surface and pass through it 

talked about, with one or both surfaces neither planar nor spher-

without bending.

ical, are referred to as  aspherics
 . Aspheres come in a variety of 

shapes: conic sections; polynomials; part converging, part di-

verging. Although their operation is easy to understand and they 


5.2.2 Refraction at Spherical Surfaces


perform certain tasks exceedingly well, they are still difficult to 

manufacture with great accuracy. Nonetheless, where the costs 

Consider two pieces of material, one with a concave and the 

are justifiable or the required precision is not restrictive or the 

other a convex spherical surface, both having the same radius. It 

volume produced is large enough, aspherics are being used and 

is a unique property of the sphere that such pieces will fit  

will surely have an increasingly important role. The first quality 

together in intimate contact regardless of their mutual orientation. 

glass aspheric to be manufactured in great quantities (tens of 

If we take two roughly spherical objects of suitable curvature, 

millions) was a lens for the Kodak disk camera (1982). Today 

one a grinding tool and the other a disk of glass, separate them 

aspherical lenses are frequently used as an elegant means of 

with some abrasive, and then randomly move them with respect 

correcting imaging errors in complicated optical systems. 

to each other, we can anticipate that any high spots on either 

Aspherical eyeglass lenses are flatter and lighter than regular 

object will wear away. As they wear, both pieces will gradually 
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S



P



Figure 5.7
     Rays incident at the same angle.

Polishing a spherical lens. (Optical Society of America)

Using the law of cosines in triangles  SAC
  and  ACP
  along with 

the fact that cos w = -cos(180° - w), we get

become more spherical (see photo). Such surfaces are com-

monly generated in batches by automatic grinding and polish-

/ o 
 = [ R
 2 + ( so 
 +  R
 )2 - 2 R
 ( so 
 +  R
 ) cos w]1>2

ing machines.

Not surprisingly, the vast majority of quality lenses in use 

and 

/ i 
 = [ R
 2 + ( si 
 -  R
 )2 + 2 R
 ( si 
 -  R
 ) cos w]1>2 

today have surfaces that are segments of spheres. Our intent 

The  OPL
  can be rewritten as

here is to establish techniques for using such surfaces to simul-

taneously image a great many object points in light composed 


OPL 
 =  n
 1[ R
 2 + ( so 
 +  R
 )2 - 2 R
 ( so 
 +  R
 ) cos w]1>2

of a broad range of frequencies. Image errors, known as aber-



rations
 , will occur, but it is possible with the present technology 





+  n
 2[ R
 2 + ( si 
 -  R
 )2 + 2 R
 ( si 
 -  R
 ) cos w]1>2

to construct high-quality spherical lens systems whose aberra-

tions are so well controlled that image fidelity is limited only by 

All the quantities in the diagram ( si
 ,  so
 ,  R
 ,   
 etc.) are positive 

diffraction.

numbers, and these form the basis of a  sign convention
  that is 

Figure 5.6 depicts a wave from the point source  S
  imping-

gradually unfolding and to which we shall return time and again 

ing on a spherical interface of radius  R
  centered at  C
 . The 

(see Table 5.1). Inasmuch as the point- A
  moves at the end of a 

point- V
  is called the vertex 
 of the surface. The length  so 
 =  SV 


fixed radius (i.e.,  R
  5 constant), w is the position variable, and 

is known as the object distance
 . The ray  SA
  will be refracted 

thus setting  d
 ( OPL
 )> d
 w = 0,  
 via Fermat’s Principle we have

at the interface toward the local normal ( n
 2 7  n
 1) and there-

fore toward the central or optical axis
 . Assume that at some 


n



n






1 R
 ( so 
 +  R
 ) sin w - 2 R
 ( si 
 -  R
 ) sin w = 0 (5.4)

point- P
  the ray will cross the axis, as will all other rays inci-

2/ o


2/ i


dent at the same angle u i
  (Fig. 5.7). The length  si 
 =  VP
  is the 

from which it follows that


image distance
 . Fermat’s Principle maintains that the optical 

path length  OPL
  will be stationary; that is, its derivative with 


n



n


1  n



n


respect to the position variable will be zero. For the ray in 





1 + 2 =  a 2 si 
 - 1 so
 b (5.5)

/ o


/ i



R


/ i


/ o


question,






OPL 
 =  n
 1/ o 
 +  n
 2/ i
  (5.3)


TABLE 5.1  Sign Convention for Spherical Refracting 



Surfaces and Thin Lenses* (Light Entering from the Left)


u r



so
 ,  ƒo
  

1 left of  V



A


u i



xo
  

1 left of  Fo



s



o



i
 ,  ƒi
  

1 right of  V



h



R


u


i



t



V


w


xi
  

1 right of  Fi



C



P



S



R
  

1 if  C
  is right of  V



Figure 5.6
   


yo
 ,  yi
  

1 above optical axis


s



s



o



i


Refraction at a 


n
 1


n
 2

spherical interface. 

*This table anticipates the imminent introduction of a few quantities not yet  

Conjugate foci.

spoken of.
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This is the relationship that must hold among the parameters 

for a ray going from  S
  to  P
  by way of refraction at the spheri-

cal interface. Although this expression is exact, it is rather 

complicated. If  A
  is moved to a new location by changing w, 


Fo


the new ray will not intercept the optical axis at  P
 . (See Prob-

lem 5.1 concerning the Cartesian oval, which is the interface 

configuration that would bring any ray, regardless of w, to  P
 .) 


f


The approximations that are used to represent /


o



o
  and / i
 , and 

thereby simplify Eq. (5.5), are crucial in all that is to follow. 


Figure 5.8
     Plane waves propagating beyond a spherical interface—the 

Recall that

object focus.

w2

w4

w6





cos w = 1 -

+

-

+ g  (5.6)

2!

4!

6!

That special object distance is defined as the first focal length
  

or the object focal length
 ,  so 
 K ƒ o
 ,  
 so that

w3

w5

w7

and 

sin w = w -

+

-

+ g  (5.7)

3!

5!

7!


n






ƒ

1


o 
 =

  R
  (5.9)


n
 2 -  n
 1

If we assume small values of w (i.e.,  A
  close to  V 
 ), cos w ≈ 1.

Consequently, the expressions for / o
  and / i
  yield / o 
 ≈  so
 , 

Point- Fo
  is known as the first
  or object focus
 . Similarly, the 

/ i 
 ≈  si
 , and to that approximation


second
  or image focus
  is the axial point- Fi
 , where the image is 


n



n



n


formed when  s


1

2

2 -  n
 1


o 
 = ∞ ; that is,





 (5.8)


s 
 +

=


o



si



R



n
 1


n
 2


n
 2 -  n
 1

We could have begun this derivation with Snell’s Law rather 

∞ +  s 
 =


i



R


than Fermat’s Principle (Problem 5.5), in which case small 

Defining the second
  or image focal length
  ƒ i 
 as equal to  si 
 in 

values of w would have led to sin w ≈ w and Eq. (5.8) once 

this special case (Fig. 5.9), we have

again. This approximation delineates the domain of what is 

called   first-order theory
 ; we’ll examine  third-order theory
  


n






ƒ

2

(sin w ≈ w


i


- w3>3!) in the next chapter. Rays that arrive at 

=

  R
  (5.10)


n
 2 -  n
 1

shallow angles with respect to the optical axis (such that w 

and  h
  are appropriately small) are known as paraxial rays
 . 

Recall that an image is virtual when the rays diverge from it 

The   emerging wavefront segment corresponding to these 


(Fig. 5.10). Analogously,  
an object is virtual when the rays 




paraxial rays is essentially spherical and will form a “per-




converge toward it

  (Fig. 5.11). Observe that the virtual object is 


fect” image at its center P located at si.
  Notice that Eq. (5.8) 

now on the right-hand side of the vertex, and therefore  so
  will be 

is independent of the location of  A
  over a small area about 

a negative quantity. Moreover, the surface is concave, and its 

the symmetry axis, namely, the  paraxial region
 . Gauss, in 

radius will also be negative, as required by Eq. (5.9), since ƒ o


1841, was the first to give a systematic exposition of the 

would be negative. In the same way, the virtual image distance 

formation of images under the above approximation, and 

appearing to the left of  V
  is negative.

the result is variously known as  first-order
 ,   paraxial
 , or 


Gaussian Optics
 . It soon became the basic theoretical tool 

by which lenses would be designed for several decades to 

come. If the optical system is well corrected, an incident 

spherical wave will emerge in a form very closely resem-

bling a spherical wave. Consequently, as the perfection of 

the system increases, it more closely approaches first-order 

theory. Deviations from that of paraxial analysis will pro-

vide a convenient measure of the quality of an actual optical 


C



Fi


device.

If point- Fo  
 in Fig. 5.8 is imaged at infinity ( si 
 = ∞), we  

have


fi



n
 1


n
 2


n
 2 -  n
 1


Figure 5.9
     The reshaping of plane into spherical waves at a spherical 


s 
 +


o


∞ =


R


interface—the image focus.
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Fo



F



V



i



C



C



V



Figure 5.10
     A virtual image point.


so


EXAMPLE 5.2


Figure 5.11
     A virtual object point.

A long horizontal flint-glass ( ng 
 = 1.800) cylinder is 20.0 cm in 

are far more subtle in appearance (see photo). Most often a lens 

diameter and has a convex hemispherical left end ground and pol-

has two or more refracting interfaces, and at least one of these 

ished onto it. The device is immersed in ethyl alcohol ( na 
 = 1.361) 

is curved. Generally, the nonplanar surfaces are centered on a 

and a tiny LED is located on the central axis in the liquid 80.0 cm 

common axis. These surfaces are most frequently spherical seg-

to the left of the vertex of the hemisphere. Locate the image of 

ments and are often coated with thin dielectric films to control 

the LED. What would happen if the alcohol was replaced by air?

their transmission properties (see Section 9.9).

A lens that consists of one element (i.e., it has only two re-

SOLUTION 

fracting surfaces) is a  simple lens
 . The presence of more than 

Return to Eq. (5.8),

one element makes it a  compound lens
 . A lens is also classified 


n
 1


n
 2


n
 2 -  n
 1

as to whether it is  thin
  or  thick
 —that is, whether or not its thick-


s 
 +  s 
 =


R


ness is effectively negligible. We will limit ourselves, for the 


o



i


most part, to  centered systems
  (for which all surfaces are rota-

Here   n
 1 = 1.361,   n
 2 = 1.800,   so 
 = +80.0 cm, and  R
  =

tionally symmetric about a common axis) of spherical surfaces. 

+10.0 cm. We can work the problem in centimeters, where-

Under these restrictions, the simple lens can take the forms 

upon the equation becomes 

shown in Fig. 5.12.

Lenses that are variously known as  
convex

 , 
 converging

 , or 

1.361

1.800

1.800 - 1.361





+

=



positive

  are thicker at the center and so tend to decrease the 

80.0


si


10.0

radius of curvature of the wavefronts. In other words, the inci-

1.800

0.439

1.361

dent wave converges more as it traverses the lens, assuming, 

   s 
 =

-


i


10

80

of course, that the index of the lens is greater than that of the 

 1.800 = (0.043 9 - 0.017 01) si



si 
 = 66.9 cm

With the alcohol in place the image is within the glass, 66.9 cm 

to the right of the vertex ( si 
 7 0). Removing the liquid,

1

1.800

0.800

+

=

80.0


si


10.0

and


si 
 = 26.7 cm

The refraction at the interface depends on the ratio ( n
 2> n
 1) of 

the two indices. The bigger is ( n
 2 -  n
 1), the smaller will be  si
 .


5.2.3 Thin Lenses


Lenses are made in a wide range of forms; for example, there 

are acoustic and microwave lenses. Some of the latter are made 

A lens for short-wavelength radiowaves. The disks serve to refract  

of glass or wax in easily recognizable shapes, whereas others 

these waves much as rows of atoms refract light. (Optical Society of America)
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CONVEX

CONCAVE


R
 1  0


R
 1  0


R
 2  0


R
 2  0

Biconvex

Biconcave


R
 1  ∞


R
 1  ∞


R
 2  0


R
 2  0

Planar convex

Planar concave


R
 1  0


R
 1  0


R
 2  0


R
 2  0

Meniscus

Meniscus

convex

concave


Figure 5.12
     Cross sections of various centered spherical simple lenses. 

The surface on the left is Þ1, since it is encountered first. Its radius is  R
 1. 

(Melles Griot)

A lens focusing a beam of light. (L-3 Communications Tinsley Labs Inc.)

media in which it is immersed.  
Concave

 , 
 diverging

 , or  
negative

  

at  so
 1 will appear to meet at  P
 ′, a distance, which we now call 

lenses, on the other hand, are thinner at the center and tend 


si
 1, from  V
 1, given by

to advance that portion of the incident wavefront, causing it to 


n



n



n


diverge more than it did prior to entry.






m



l



l 
 -  nm
  (5.11)


s 
 +

=


o
 1


si
 1


R
 1


Thin-Lens Equations


Return to the discussion of refraction at a single spherical in-

terface, where the location of the conjugate points- S
  and - P
  is  

given by


S



P



n



n



n






1

2

2 -  n
 1 [5.8]


s 
 +

=


o



si



R


(a)

When  so
  is large for a fixed ( n
 2 -  n
 1)> R
 ,  si
  is relatively small. 

The cone of rays from  S
  has a small central angle, the rays do not 

diverge very much, and the refraction at the interface can cause 

them all to converge at  P
 . As  so 
 decreases, the ray-cone angle 

increases, the divergence of the rays increases, and  si  
 moves 


S


away from the vertex; that is, both u i 
 and u t
  increase until finally 


so 
 = ƒ o 
 and  si 
 = ∞. At that point,  n
 1> so 
 = ( n
 2 -  n
 1)> R
 ,  
 so that if so
  gets any smaller,  si
  will have to be negative, if Eq. (5.8) is to 

(b)

hold. In other words, the image becomes virtual (Fig. 5.13).

Let’s now locate the conjugate points for a lens of index  nl


surrounded by a medium of index  nm
 , as in Fig. 5.14, where 

another end has simply been ground onto the piece in Fig. 5.13 c
 . 

This certainly isn’t the most general set of circumstances, but it is 


P



S


the most common, and even more cogently, it is the simplest.* 

We know from Eq. (5.8) that the paraxial rays issuing from  S
  

(c)

*See Jenkins and White,  Fundamentals of Optics
 , p. 57, for a derivation containing 


Figure 5.13
     Refraction at a spherical interface between two transparent 

three different indices.

media shown in cross section.
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Thus, as far as the second surface is concerned, it “sees” rays 

(a)

coming toward it from  P
 ′, which serves as its object point a 

distance  so
 2 away. Furthermore, the rays arriving at that second 

surface are in the medium of index  nl
 . The object space for the 

second interface that contains  P
 ′ therefore has an index  nl
 . Note 

that the rays from  P
 ′ to that surface are indeed straight lines. 


P


Considering the fact that

0  so
 2 0 = 0  si
 1 0 +  d



S


since  so
 2  
 is on the left and therefore positive,  so
 2 = 0  so
 2 0, and  si
 1 

is also on the left and therefore negative, - si
 1 = 0  si
 1 0, we  

have






so
 2 = - si
 1 +  d
  (5.12)

At the second surface Eq. (5.8) yields

(b)


n



n



n



 



l


+  m 
 =  m 
 -  nl
  (5.13)

(- si
 1 +  d
 )


si
 2


R






2


na



n



n



l



a


Here  nl 
 7  nm 
 and  R
 2 6 0,  
 so that the right-hand side is positive. 


C
 2


C
 1

Adding Eqs. (5.11) and (5.13), we have

(c)


n



n


1

1


n







m



m


b


l
   d


 (5.14)


s 
 +

= ( nl 
 -  nm
 ) a

-

+


o
 1


si
 2


R
 1


R
 2

( si
 1 -  d
 ) si
 1


P



V



V



P


If the lens is thin enough ( d 
 S 0), the last term on the right is 

1

2


S C



C


effectively zero. As a further simplification, assume the sur-


2



1



nl


rounding medium to be air (i.e.,  n



R



R



m 
 ≈ 1). Accordingly, we have 

2

1

the very useful Thin-Lens Equation
 , often referred to as the 


n



n



m



m



Lensmaker’s Formula
 :


d



so
 1


si
 1


si2



s


1

1

1

1


o
 2





b (5.15)


s 
 +

= ( nl 
 - 1) a

-


o



si



R
 1


R
 2


Figure 5.14
     A spherical lens. ( a
 ) Rays in a vertical plane passing through 

a lens. Conjugate foci. ( b
 ) Refraction at the interfaces where the lens is 

where we let  s


immersed in air and  nm 
 =  na
 . The radius drawn from  C
 1 is normal to the 


o
 1 =  so 
 and  si
 2 =  si
 . The points- V
 1 and - V
 2 tend to first surface, and as the ray enters the lens it bends down  toward
  that  

coalesce as  d 
 S 0, so that  so
  and  si
  can be measured from either 

normal. The radius from  C
 2 is normal to the second surface; and as the  

the vertices or the lens center.

ray emerges, since  nl 
 7  na
 , the ray bends down  away
  from that normal.  

Just as in the case of the single spherical surface, if  so
  is 

( c
 ) The geometry.

moved out to infinity, the image distance becomes the focal 

length ƒ i
 , or symbolically,

1

1

1

lim   s


and 

+

=  (5.17)


s



i 
 = ƒ i



o 
 S ∞


so



si


ƒ

Similarly 

lim   s


which is the famous Gaussian Lens Formula
  (see photo).


s



o 
 = ƒ o



i 
 S ∞

As an example of how these expressions might be used, let’s 

It is evident from Eq. (5.15) that for a thin lens ƒ

compute the focal length in air of a thin planar-convex lens hav-


i 
 = ƒ o
 , and 

consequently we drop the subscripts altogether. Thus

ing a radius of curvature of 50 mm and an index of 1.5. With 

light entering on the planar surface ( R
 1 = ∞,  R
 2 = -50),

1

1

1





= ( n


-

b (5.16)

1

1

1

ƒ


l 
 - 1) a R


= (1.5 - 1) a

b

1


R
 2

ƒ

∞ - -50
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Focal Points and Planes


Figure 5.16 summarizes some of the situations described ana-

lytically by Eq. 5.16. Observe that if a lens of index  nl
  is im-

mersed in a medium of index  nm
 ,

1

1

1





= ( n


-

b (5.18)

ƒ


lm 
 - 1) a R
 1  R
 2

The focal lengths in ( a
 ) and ( b
 ) of Fig. 5.16 are equal, because 

the same medium exists on either side of the lens. Since  nl 
 7  nm
 ,  


it follows that  nlm 
 7 1. In both cases  R
 1 7 0 and  R
 2 6 0, so that 

each focal length is positive. We have a real object in ( a
 ) and a 

The actual wavefronts of a diverging lightwave partially focused by a  

real image in ( b
 ). In ( c
 ),  nl 
 6  nm
 , and consequently  f
  is negative. 

lens. The photo shows five exposures, each separated by about 100 ps 

In ( d
 ) and ( e
 ),   nlm 
 7 1 but  R
 1 6 0, whereas  R
 2 7 0, so ƒ   
 is (i.e., 100 * 10-12 s), of a spherical pulse 10 ps long as it swept by and 

again negative, and the object in one case and the image in the 

through a converging lens. The picture was made using a holographic  

other are virtual. In ( ƒ
 ),  nlm 
 6 1, yielding an ƒ 7 0.

technique. (N.H. Abramson)

Notice that in each instance it is particularly convenient to 

draw a ray through the center of the lens, which, because it is 

perpendicular to both surfaces, is undeviated. Suppose, instead, 

that an off-axis paraxial ray emerges from the lens parallel to its 

whereas if instead it arrives at the curved surface ( R
 1 = +50, 

incident direction, as in Fig. 5.17. We maintain that all such rays 


R
 2 = ∞),

1

1

1

= (1.5 - 1) a

- b

ƒ

+50

∞

2 F



F



F


2 F


and in either case ƒ = 100 mm. If an object is alternately placed 

at distances 600 mm, 200 mm, 150 mm, 100 mm, and 50 mm 

from the lens on either side, we can find the image points from 


F


Eq. (5.17). First, with  s


2 F



F


2 F



o 
 = 600 mm


s


(600)(100)


s



o
 ƒ


i 
 =

=


so 
 - ƒ

600 - 100


F



F


2 F


2 F


and   si 
 = 120 mm. Similarly, the other image distances are  

200 mm, 300 mm, ∞, and -100 mm, respectively.

Interestingly enough, when  so 
 = ∞,  si 
 = ƒ; as  so
  decreases, 


si
  increases positively until  so 
 = ƒ  
 and  si
  is negative thereafter. 

2 F


Figure 5.15 shows this behavior pictorially. The lens is capa-

2 F



F



F


ble of adding a certain amount of convergence to the rays. As 

the divergence of the incident light increases, the lens is less 

able to pull the rays together and point- P 
 moves farther to the 

right.

2 F



F



F


2 F


You can qualitatively check this out with a simple convex 

lens and a small electric light—the high-intensity variety is 

probably the most convenient. Standing as far as you can 


F


2 F


from the source, project a clear image of it onto a white 


F


2 F


sheet of paper. You should be able to see the lamp quite 

clearly and not just as a blur. That image distance approxi-

mates ƒ. Now move the lens in toward  S
 , adjusting  si
  to pro-

duce a clear image. It will surely increase. As  so 
 S ƒ, a clear 

2 F



F



F


2 F


image of the lamp can be projected, but only on an increas-

ingly distant screen. For  so 
 6 ƒ, there will just be a blur 

where the farthest wall intersects the diverging cone of rays—

the image is virtual.


Figure 5.15
     Conjugate object and image points for a thin convex lens.
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(e)

(f)



F




Figure 5.16
     Focal lengths for converging and 

(g)

(h)

diverging lenses.

will pass through the point defined as the optical center
   O 
 of 

the lens. To see this, draw two parallel planes, one on each 

side tangent to the lens at any pair of points- A
  and - B
 . This can 

easily be done by selecting  A
  and  B
  such that the radii  AC
 1 and 


R
 1


BC



A


2 are themselves parallel. It is to be shown that the paraxial 


O



C



B



C


ray traversing  AB
  enters and leaves the lens in the same direc-

2


R
 2

1

tion. It’s evident from the diagram that triangles  AOC
 1   
 and 


BOC
 2  
 are similar, in the geometric sense, and therefore their 

sides are proportional. Hence,  0  R
 1 0( OC
 2) = 0  R
 2 0( OC
 1), and 

since the radii are constant, the location of  O
  is constant, inde-

pendent of  A
  and  B
 . As we saw earlier (Problem 4.38 and Fig. 

P.4.38), a ray traversing a medium bounded by parallel planes 

will be displaced laterally but will suffer no angular deviation. 

This displacement is proportional to the thickness, which for a 

thin lens is negligible.  
Rays passing through O may, accord-





ingly, be drawn as straight lines

 . It is customary when deal-

ing with thin lenses simply to place  O
  midway between the 

vertices.

Recall that a bundle of parallel paraxial rays incident on a 

spherical refracting surface comes to a focus at a point on the 

optical axis (Fig. 5.10). As shown in Fig. 5.18, this implies that 

several such bundles entering in a narrow cone will be focused on 

a spherical segment s, also centered on  C
 . The undeviated rays 

normal to the surface, and therefore passing through  C
 , locate the 

foci on s. Since the ray cone must indeed be narrow, s  
 can satis-

factorily be represented as a plane normal to the symmetry axis 

and passing through the image focus. It is known as a focal plane
 . 


Figure 5.17
     The optical center of a lens. (E.H.)

In the same way, limiting ourselves to paraxial theory, a lens will 
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C


s


Figure 5.18
     Focusing of several ray bundles.


f


focus all incident parallel bundles of rays* onto a surface called 

the second
  or back focal plane
 , as in Fig. 5.19. Here each point 


Figure 5.20
     The greater the curvature (1> R
 ), the shorter the focal length.

on s is located by the undeviated ray through  O
 . Similarly, the 


first
  or front focal plane
  contains the object focus  Fo
 .


Finite Imagery


There is another practical observation about lenses that’s 

Thus far we’ve treated the mathematical abstraction of a single-

worth introducing before we move on, and that concerns the re-

point source. Now let’s deal with the fact that a great many such 

lationship between shape and focal length. Return to Eq. (5.16), 

points combine to form a continuous finite object (Fig. 5.2). For 

which deals with the physical characteristics of a lens and, for 

the moment, imagine the object to be a segment of a sphere, s

simplicity, consider an equiconvex lens for which  R



o
 , 

1 = -  R
 2 =  R
 . 

centered on  C
 , as in Fig. 5.21. If s

The equation then becomes ƒ


o
  is close to the spherical in-

=  R
 >2( nl 
 - 1) and we see imme-

terface, point- S
  will have a virtual image  P
  ( s


diately that the smaller the radius of the lens, that is, the squatter 


i 
 6 0 and there-

fore on the left of  V
 ). With  S
  farther away, its image will be real  

it is, the shorter will be its focal length.  
A nearly flat lens will 



( s




have a long focal length

 , whereas a small sphere (hardly a “thin 


i 
 7 0   
 and therefore on the right-hand side). In either case, 

each point on s

lens”) will have a tiny focal length. Of course, the greater the 


o
  has a conjugate point on s i 
 lying on a straight 

line through  C
 . Within the restrictions of paraxial theory, these 

curvature (1> R
 ) of each interface, the greater the bending of the 

surfaces can be considered planar. Thus a small planar object 

rays, as shown in Fig. 5.20. Also keep in mind that ƒ is inversely 

normal to the optical axis will be imaged into a small planar 

proportional to  nl
 , a fact we’ll come back to later on when deal-

region also normal to that axis. Note that if s

ing with aberrations. If having a flatter lens is desirable, one 


o
  is moved out to 

infinity, the cone of rays from each source point will become 

need only increase its index of refraction while increasing  R
 , 


collimated
  (i.e., parallel), and the image points will lie on the 

thereby leaving the focal length unchanged.

focal plane (Fig. 5.19).

By cutting and polishing the right side of the piece depicted 

in Fig. 5.21, we can construct a thin lens. Once again, the image 

(s i
  in Fig. 5.21) formed by the first surface of the lens will serve 

as the object for the second surface, which in turn will generate 

a final image. Suppose then that s i
  in Fig. 5.21 a
  is the object for 


Fo



O



Fi



f


s

Focal

plane


Figure 5.19
     The focal plane of a lens.

*Perhaps the earliest literary reference to the focal properties of a lens appears in 

Aristophanes’ play,  The Clouds
 , which dates back to 423 b.c.e. In it Strepsiades 

plots to use a burning-glass to focus the Sun’s rays onto a wax tablet and thereby 

melt out the record of a gambling debt.

Beams of light brought to a focus by a positive lens. (E.H.)
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(a)


i


3


P



Fo



V



S



C
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1

s o


(b)


Figure 5.21
   Finite imagery.

2

the second surface, which is assumed to have a negative radius. 

We already know what will happen—the situation is identical to 


Fi


that in Fig. 5.21 b
  with the ray directions reversed. The  final im-



age formed by a lens of a small planar object normal to the 



optical axis will itself be a small plane normal to that axis.


3

The location, size, and orientation of an image produced by 

a lens can be determined, particularly simply, with ray dia-


Fo


grams. To find the image of the object in Fig. 5.22, we must 

locate the image point corresponding to each object point. Since 


Figure 5.22
     Tracing a few key rays through a positive and negative lens.

all rays issuing from a source point in a paraxial cone will arrive 

at the image point, any two such rays will suffice to fix that 

point. Because we know the positions of the focal points, there 

(As we’ll see later, this is tantamount to saying that the two 

are three rays that are especially easy to apply. The first (ray-1) 

principal planes of a thin lens coincide.)

is the undeviated ray through the center of the lens  O
 . The other 

In accord with convention, transverse distances above the 

two (ray-2 and ray-3) make use of the fact that a ray passing 

optical axis are taken as positive quantities, and those below the 

through the focal point will emerge from the lens parallel to the 

axis are given negative numerical values. Therefore in Fig. 5.24 

central axis and vice versa. As a rule-of-thumb when sketching 


yo 
 7 0   
 and   yi 
 6 0. Here the image is said to be inverted
 , 

ray diagrams, draw the lens diameter (the vertical extent) 

whereas if  yi 
 7 0 when  yo 
 7 0, it is right-side-up
  or erect
 .  

roughly the size of the focal length. Then put in points on the 

Observe that triangles  AOFi 
 and  P
 2 P
 1 Fi 
 are similar. Ergo

central optical axis at one and two focal lengths, both in front of 


y


ƒ

and behind the lens. You can usually locate the image by just 






o


 (5.19)

tracing ray-1 and ray-2 from either the upper or lowermost 

0  yi 
 0 = ( si 
 - ƒ)

points on the object.

In the same way, triangles  S


Figure 5.23 shows how any  two
  of these three rays locate the 

2 S
 1 O 
 and  P
 2 P
 1 O 
 are similar, and

image of a point on the object. Incidentally, this technique dates 


yo



so


back to the work of Robert Smith as long ago as 1738. This 





 (5.20)

0  yi 
 0 =  si


graphical procedure can be made even simpler by replacing the 

thin lens with a vertical plane perpendicular to the central axis 

where all quantities other than  yi 
 are positive. Hence

passing through its center (Fig. 5.24). Presumably, if we were to 

extend every incoming ray forward a little and every outgoing 


s


ƒ






o 
 =

 (5.21)

ray backward a bit, each pair would meet on this plane. The 


si


( si 
 - ƒ)

total deviation of any ray can be envisaged as occurring all at 

once on that plane. This is equivalent to the actual process 

1

1

1

and 

=

+  

consisting of two separate angular shifts, one at each interface. 


ƒ



so



si
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(a)

(b)

2

2

3


Fo



O



Fi



Fi



O



Fo


1

1

3

(c)

(d)


Figure 5.23
   ( a
 ) A real object and a posi-

tive lens. ( b
 ) A real object and a negative 

lens. ( c
 ) A real image projected on the 

viewing screen of a 35-mm camera, much 

as the eye projects its image on the reti-

na. Here a prism has been removed so 

you can see the image directly. (E.H.)  

( d
 ) The minified, right-side-up, virtual 

image formed by a negative lens. (E.H.)

which is, of course, the Gaussian Lens Equation [Eq. (5.17)]. 


xi
  have like signs, which means that  
the object and image must 



Furthermore, triangles  S
 2 S
 1 Fo 
 and  BOFo 
 are similar and



be on opposite sides of their respective focal points

 . This is a 

good thing for the neophyte to remember when making those hasty 

ƒ

0  yi 
 0

freehand ray diagrams for which he or she is already infamous.





=

 (5.22)

( s



y


The ratio of the transverse dimensions of the final image 


o 
 - ƒ)


o


formed by any optical system to the corresponding dimension 

Using the distances measured from the focal points and com-

of the object is defined as the  lateral
  or transverse magnifica-


bining this information with Eq. (5.19) leads to


tion
 ,  MT
 , that is,






x



y



o
   xi 
 = ƒ2 (5.23)






M



i



T 
 K

 (5.24)


yo


This is the Newtonian form
  of the lens equation, the first state-

ment of which appeared in Newton’s  Opticks
  in 1704. The signs 

Or from Eq. (5.20)

of  xo 
 and  xi 
 are reckoned with respect to their concomitant foci. 

By convention,  xo
  is taken to be positive left of  Fo
 , whereas  xi
  is 


s


positive on the right of  Fi
 . It is evident from Eq. (5.23) that  xo
  and 






M



i



T 
 = -    (5.25)


so




A positive

  
 
MT

   
connotes an erect image, while a negative value 




S2


2


A




means the image is inverted

  (see Table 5.2). Bear in mind 


yo


that   si
  and  so
  are both positive for real objects and images. 

1


F



O



o



F



P
 1

Clearly, then,  
all real images formed by a single thin lens will 




i



S
 1



be inverted

 . The Newtonian expression for the magnification 


y
 i

3

follows from Eqs. (5.19) and (5.22) and Fig. 5.24:


B



P2



x


ƒ






M



i



T 
 = -  

= -   (5.26)


xo



f



f



x


ƒ


xo



i


The term  magnification
  is a bit of a misnomer, since the magni-


so



si


tude of  MT 
 can certainly be less than 1, in which case the image 


Figure 5.24
     Object and image location for a thin lens.

is smaller than the object. We have  MT 
 = -1  
 when the object 
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1

1

1


TABLE 5.2  Meanings Associated with the Signs of 


  s 
 +

=


i


70.0

30.86


Various Thin Lens and Spherical Interface Parameters


Quantity Sign

1

1

1

  s 
 =

-

= 0.018 12


i


30.86

70.0





1 

2


so
  

Real object 

Virtual object

and 


si 
 = 55.19 = 55.2 cm 


si
  

Real image 

Virtual image

The image is between ƒ and 2ƒ on the right of the lens. Note 

ƒ 

Converging lens 

Diverging lens

that  si 
 7 0, which means the image is real. 


yo
  

Erect object 

Inverted object

(b
 ) The magnification follows from


yi
  

Erect image 

Inverted image


M



s


55.19


T
  

Erect image 

Inverted image


M



i



T 
 = -   s 
 = - 

= -0.788


o


70.0

and image distances are positive and equal, and that happens 

and the image is inverted ( MT 
 6 0) and minified ( MT 
 6 1). 

[Eq. (5.17)] only when  so 
 =  si 
 = 2ƒ. This turns out to be the 

(c
 ) Draw the lens and mark out two focal lengths

configuration in which the object and image are as close togeth-

er as they can possibly get (i.e., a distance 4ƒ apart; see Problem 

5.15). Table 5.3 summarizes a number of image configurations 

resulting from the juxtaposition of a thin lens and a real object.

2 f



f


EXAMPLE 5.3

30.9

2 f


A biconvex (also called a double convex) thin spherical lens 

70.0

has radii of 100 cm and 20.0 cm. The lens is made of glass 

with an index of 1.54 and is immersed in air. (a) If an object 

on each side. Place the object to the left of the lens beyond 2ƒ.

is placed 70.0 cm in front of the 100-cm surface, locate the 

The image falls between ƒ and 2ƒ.

resulting image and describe it in detail. (b) Determine the 

transverse magnification of the image. (c) Draw a ray diagram.

We are now in a position to understand the entire range of 

SOLUTION 

behavior of a single convex or concave lens. To that end, sup-

(a
 ) We don’t have the focal length, but we do know all the 

pose that a distant point source sends out a cone of light that is 

physical parameters, so Eq. (5.16) comes to mind:

intercepted by a positive lens (Fig. 5.25). If the source is at 

infinity (i.e., so far away that it might just as well be infinity), 

1

1

1

= ( n


-

b

ƒ


l 
 - 1) a R
 1  R
 2

Leaving everything in centimeters 


TABLE 5.3    Images of Real Objects Formed by  



Thin Lenses


1

1

1

Convex

  = (1.54 - 1) a

-

b

ƒ

100

-20.0

Object Image

Location 

Type 

Location 

Orientation 

Relative Size

1

1

1

  = (0.54) a

+

b

ƒ

100

20.0

∞ 7  so 
 7 2ƒ Real  ƒ 6  si 
 6 2ƒ Inverted  Minified


s


1

6


o 
 = 2ƒ Real 


si 
 = 2 f 
  

Inverted 

Same size

  = (0.54) 

ƒ 6  so 
 6 2ƒ Real  ∞ 7  si 
 7 2ƒ Inverted  Magnified

ƒ

100


so 
 = ƒ  

± ∞


ƒ 
 = 30.86 cm = 30.9 cm


so 
 6 ƒ Virtual 

0  si 
 0 7  so
  Erect  Magnified

Now we can find the image. Since  s


Concave


o 
 = 70.0 cm, that’s greater 

than 2ƒ—hence, even before we calculate  si
 , we know that the 

Object Image

image will be real, inverted, located between ƒ and 2ƒ, and 

minified. To find  s


Location 

Type 

Location 

Orientation 

Relative Size


i
 , having ƒ we use Gauss’s Equation:

Anywhere Virtual 

0  si 
 0 6 0 ƒ 0, Erect  Minified

1

1

1





  


so 
 7 0  si 
 0


s 
 +

=


i



so


ƒ
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Figure 5.25
   ( a
 ) The waves from a distant object flatten out as they expand, and the radii get larger and larger. Viewed from far away the rays from any point are essentially parallel, and the  

lens causes them to converge at  Fi
 . ( b
 ) As a point source moves closer, the rays diverge more and the image point moves out away from the lens. The emerging rays no longer converge once  

the object reaches the focal point; nearer in still, they diverge.

rays coming from it entering the lens are essentially parallel 

corresponds to the film projector where the crucial feature is 

(Fig. 5.25 a
 ) and will be brought together at the focal point  Fi
 . 

that the image is real and enlarged. To compensate for the 

If the source point- S
 1 is closer (Fig. 5.25 b
 ), but still fairly far 

image being inverted, the film is simply put in upside-down.

away, the cone of rays entering the lens is narrow, and the rays 

When the object arrives at a distance from the lens of pre-

come in at shallow angles to the surface of the lens. Because 

cisely one focal length, the image has, in effect, moved off to 

the rays do not diverge greatly, the lens bends each one into 

infinity. (There is no image; the emerging rays are parallel.) 

convergence, and they arrive at point- P
 1. As the source moves 

With the object closer in than one focal length, the image 

closer, the entering rays diverge more, and the resulting image 

(virtual, right-side-up, and enlarged  MT 
 7 1) reappears. This is 

point moves farther to the right. Finally, when the source point 

the configuration of the magnifying glass. It’s useful to remem-

is at  Fo
 , the rays are diverging so strongly that the lens can no 

ber that  the ray entering the lens parallel to the central axis 


longer bring them into convergence, and they emerge parallel 


fixes the height of the real image
  (Fig. 5.27). Because that ray 

to the central axis. Moving the source point closer results in 

diverges from the central axis, the size of the image increases 

rays that diverge so much on entering the lens that they still 

rapidly as the object approaches  F
 .

diverge on leaving. The image point is now virtual— there are 



no real images of objects that are at or closer in than 
 ƒ .
  

EXAMPLE 5.4

Figure 5.26 illustrates the behavior pictorially. As the object 


Both surfaces of an equiconvex thin spherical lens have the 


approaches the lens, the real image moves away from it
 . 

same curvature. A 2.0-cm-tall bug is on the central axis 100 cm 

When the object is very far away, the image (real, inverted, and 

from the front face of the lens. The image of the bug formed on 

minified  MT 
 6 1) is just to the right of the focal plane. As the 

a wall is 4.0 cm tall. Given that the glass of the lens has an index 

object approaches the lens, the image (still real, inverted, and 

of 1.50, find the radii of curvature of the surfaces.

minified  MT 
 6 1) moves away from the focal plane, to the right, 

getting larger and larger. With the object between infinity and 

SOLUTION 

2ƒ we have the arrangement for cameras and eyeballs, both of 

We have  yo 
 = 2.0 cm,  so 
 = 100 cm,  R
 1 =  R
 2, 0  yi 
 0 = 4.0 cm, and which require a minified, real image. By the way, it’s the brain 


nl 
 = 1.50. We also know that the image is real, so it must be in-

that flips the image so that you see things right-side-up.

verted and therefore  yi 
 = -4.0 cm—that’s crucial! To find the 

When the object is at two focal lengths, the image (real and 

radii we’ll need Eq. (5.16) and the focal length. We can compute 

inverted) is now life size, that is,  MT 
 = 1. This is the usual con-

ƒ if we first determine  si
 . Hence, knowing  MT
 ,

figuration of the photocopy machine. 


y



s


As the object comes closer to the lens (between 2ƒ and ƒ), 

-4.0


M



i



i



T 
 =  y 
 = -  =

= -2.0

the image (real, inverted, and enlarged  M



o



so


2.0


T 
 7 1) rapidly moves 

to the right and continues to increase in size. This configuration 

  si 
 = 2.0 so 
 = 200 cm


Continued
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Using the Gaussian Lens Formula

(a)

1

1

1

1

1

  =

+

=

+

ƒ


so



si


100

200

200

 ƒ =

= 66.67 cm

3

The Lensmaker’s Formula will give us  R
 :

1

1

1

1 2

(b)

= (1.50 - 1) a -

b =  

ƒ


R


- R


2  R


and 

ƒ =  R 
 = 67 cm 

Note that the transformation from object to image space is 

not linear; all of the object space from 2ƒ out to infinity, on the 

left of the lens, is compressed in the image space between ƒ and 

(c)

2ƒ, on the right of the lens. Figure 5.27 suggests that the image 

space is distorted, in the sense that advancing the object uni-

formly toward the lens has the effect of changing the image 

differently along and transverse to the central axis. The axial 

image intervals increase much more rapidly than the corre-

sponding successive changes in the height of the image. This 

relative “flattening” of distant-object space is easily observable 

using a telescope (i.e., a long focal-length lens). You’ve proba-

(d)

bly seen the effect in a motion picture shot through a telephoto 

lens. Always staying far away, the hero vigorously runs a great 

distance toward the camera, but psychologically he seems to 

make no progress because his perceived size increases very lit-

tle despite all his effort.

When an object is closer to a convex lens than one focal 

length (Fig. 5.26 d
 ) the resulting image is virtual, upright, and 

magnified. As listed in Table 5.3 the image is farther to the left 

of the lens than is the object. We can see what’s happening with 

that virtual image in Fig. 5.28, where several objects, all of the 

same size, are located between the focal point- F



Figure 5.26
     The image-forming behavior of a thin positive lens.


o
  and the vertex 


V
 . A number-2 ray parallel to the central axis marks the tops  

of all of the objects; it refracts through point- Fi
  and that ray, 


F



F



Figure 5.27
   The number-2 

ray entering the lens parallel 


f



f



f



f


to the central axis limits the 

image height.
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F



V



o



Fi



f



O



Figure 5.28
     The formation of virual images by a positive lens. The closer 

the object comes to the lens, the closer the image approaches the lens.

projected backward, fixes the heights of each image. Notice that 

as the objects approach the lens the images shrink, although the 


Figure 5.30
     Image orientation for a thin lens.

magnification is still greater than 1. When the object is smack 

up against the lens the image is life-sized.


Virtual Objects


We’ll soon be studying combinations of lenses, but before we 


Longitudinal Magnification


do we should consider a situation that often arises when there 

Presumably, the image of a three-dimensional object will itself 

are several lenses in sequence. It is then possible for the rays to 

occupy a three-dimensional region of space. The optical system 

converge down upon a lens, as in Fig. 5.31 a
 . Here the rays are 

can apparently affect both the transverse and longitudinal di-

symmetrically distributed about the central axis and all of them 

mensions of the image. The longitudinal magnification
 ,   M


are heading toward the object focus  F



L
 ,


o
 . As a result the rays exit 

which relates to the axial direction, is defined as

the lens parallel to the central axis and the image is at infinity, 

which just means there isn’t one. Because the rays converge 


dxi


toward the point- Fo
  it is customary to say that it corresponds to 






ML 
 K

 (5.27)


dxo


a virtual point object. The same is true of point- Fo
  in Fig. 5.31 b,
  

where ray-1 passing through the center of the lens makes a 

This is the ratio of an infinitesimal axial length in the region of 

small angle with the axis. The rays all converge toward  Fo
  on 

the image to the corresponding length in the region of the ob-

the focal plane and we again have a virtual point object. All of 

ject. Differentiating Eq. (5.23) leads to

the rays leave the lens parallel to ray-1. That’s an important fact 

to remember and we’ll make use of it later.


ƒ
 2






ML 
 = - 

= -  M
 2


x
 2


T
  (5.28)


o


for a thin lens in a single medium (Fig. 5.29). Evidently, 


ML 
 6 0,  
 which implies that a positive  dxo
  corresponds to a neg-

ative  dxi
  and vice versa. In other words, a finger pointing toward 

Ray-1


F


the lens is imaged pointing away from it (Fig. 5.30).


o


Form the image of a window on a sheet of paper, using a 

simple convex lens. Assuming a lovely arboreal scene, image 

the distant trees on the screen. Now move the paper  away
  from 

(a)

the lens, so that it intersects a different region of the image 

space. The trees will fade while the nearby window itself comes 

into view.

Ray-1


Fo


(b)


Figure 5.31
     Virtual point objects for a negative lens ( a
 ) on and ( b
 ) off 


Figure 5.29
     The transverse magnification is different from the longitudinal 

axis. When rays converge to the object, the object is virtual. That often 

magnification.

happens in multi-lens systems.
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Ray-3

Ray-2

Ray-2

Ray-3


F



O



F



F



O



F


Ray-1


si
   0


so
   0


s


Ray-1


o
   0


si
   0


Figure 5.32
     A virtual object (far right) and its real, upright image (just to 

the right of the lens). This can happen in a multi-lens system.


Figure 5.34
     A virtual object (just to the right of the lens) and its real 

enlarged, upright image (far right). This can happen in a multi-lens system 

that causes the rays to initially converge.

Things get a little more complicated for an extended object 

as in Fig. 5.32. Three converging rays enter the positive lens 

to the lens (Fig. 5.34). All of the rays don’t actually make it to 

heading for the top of what will be the “object”—of course, 

the object and it is again ( so 
 6 0) virtual. Now when the rays 

nothing other than ray-1 exists at that location; the actual bug is 

are refracted by the lens they arrive at the image; the rays con-

presumably somewhere off to the left. The rays, which, before 

verge on the image, which is to the right of the lens ( si 
 7 0) 

entering the lens, are directed toward the head of the object bug 

and therefore real.  
The object is virtual (so 

 *  
0) and the image 



(far right,  so 
 6 0), are refracted by the lens and actually con-



is real (si 

 +  
0)

 .

verge at the head of an upright, minified, real image of the bug. 

Notice that the object is located beyond one focal length from 

the lens. The lens adds convergence to the rays, which then 


Focal-Plane Ray Tracing


converge to the image, which is closer to the lens but still on 

its right side. 
 The object is virtual (s



Until now we’ve done well by simply tracing our three favorite 



o 

 *  
0) and the image is 





real (s



rays, but there is another ray-tracing scheme that’s well worth 



i 

 +  
0)

 . One could place a screen at  si
  and an image 

would appear on it. Incidentally,  when both object and image 


knowing. It’s predicated on the fact that points on the focal 


appear on the same side of a lens, one of them must be real and 


plane of a lens are always associated with parallel columns 


the other virtual
 .

of rays. Consequently, imagine an arbitrary ray incident on a 

A somewhat similar situation exists in Fig. 5.33, where three 

positive lens (Fig. 5.35 a
 ). The ray crosses the  first focal plane
  

rays again head toward the top of the “object” before entering 

(reexamine Fig. 5.19) at point- A
 , but so far we haven’t tried to 

what is this time a negative lens. That object bug being to the 

pictorially determine where it goes after it refracts at point- B
 . 

right of the lens ( s


Still, we do know that all rays from point- A
  must emerge from 


o 
 6 0) is virtual. The rays pass through the 

lens, diverge, and seem to come from the inverted, minified, 

the lens parallel to one another. Moreover, we know that a ray 

virtual image on the left of the lens. That is, an observer on the 

right looking left into the lens would pick up the three rays and 

projecting them back to the left would see the inverted bug  


B



A


image. 
 The object is virtual (so 

 *  
0) and the image is virtual  





(si 

 *  
0)

 .

Notice that the virtual object in Fig. 5.33 appears beyond  


C



F



O



F


one focal length from the lens. If the three rays approach at 

greater angles they could converge toward an object that is closer 

(a)

Ray-2


B



F



O



F



A



F



O



F


Ray-1


s



s



o
   0

Ray-3


i
   0

(b)


Figure 5.33
     A virtual object (on the right) and its virtual, inverted image 

(on the left). This kind of situation can arise in a multi-lens system.


Figure 5.35
     Focal-plane ray tracing. Reexamine Fig. 5.31 b
 .
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from  A
  to the center of the lens,  O
 , goes straight through. So the 

goes on to the prodigious and more exact ray-tracing techniques. 

refracted ray starting at  B
  must be parallel to the ray from  A
  to 

Nowadays these computations are carried out by computers. 


O
  and hence crosses the axis at  C
 . 

Even so, the simple thin-lens concept provides a highly useful 

Let’s try the method for the negative lens in Fig. 5.35 b
 . An 

basis for preliminary calculations in a broad range of situations.

arbitrary downward ray strikes the lens at point- B
 . That ray is 

No lens is actually a thin lens in the strict sense of having a 

heading toward point- A
  on the  second focal plane
  of the nega-

thickness that approaches zero. Yet many simple lenses, for all 

tive lens a little above point- F
 . Now draw a line from  O
  to  A
  and 

practical purposes, function in a fashion equivalent to that of a 

extend it somewhat. A ray along that line would pass through  A
  

thin lens (i.e., one that is thin in comparison to its diameter). 

and keep on going. Moreover, all rays initially heading toward  A
  

Almost all spectacle lenses (which, by the way, have been used 

(reexamine Fig. 5.31) must refract at the lens and emerge paral-

at least since the thirteenth century) are in this category. When 

lel to one another and to the line from  O
  to  A
 . This means that the 

the radii of curvature are large and the lens diameter is small, 

ray we are concerned with refracts at  B
  and gaining divergence 

the thickness will usually be small as well. A lens of this sort 

heads up and away such that it is parallel to the line from  O
  to  A
 .

would generally have a large focal length, compared with which 

As we’ll see presently this technique will allow us to quickly 

the thickness would be quite small; many early telescope objec-

trace an arbitrary ray through a series of lenses.

tives fit that description perfectly.

We’ll now derive expressions for parameters associated with 

thin-lens combinations. The approach will be fairly simple, 


Thin-Lens Combinations


leaving the more elaborate traditional treatment for those tena-

cious enough to pursue the matter into the next chapter.

Our purpose here is not to become proficient in the intricacies 

Consider two thin positive lenses  L
 1  
 and  L
 2 separated by a 

of modern lens design, but rather to gain the familiarity neces-

distance   d
 , which is smaller than either focal length, as in  

sary to utilize, and adapt, those lens systems already available 

Fig. 5.36. The resulting image can be located graphically as fol-

commercially.

lows. Overlooking  L
 2 for a moment, construct the image formed 

In constructing a new optical system, one generally begins by 

exclusively by  L
 1 using rays-2 and -3. As usual, these pass 

sketching out a rough arrangement using the quickest approxi-

through the lens object and image foci,  Fo
 1  
 and  Fi
 1, respectively. 

mate calculations. Refinements are then added as the designer 

The object is in a normal plane, so that two rays determine the 

(a)


L
 1


L
 2

2


S
 1

1

4


F



F



O



F



o
 1


o
 2


F


1


O
 2


i
 1


i
 2

3


f
 2


P
 1


f



s


1


d



o
 2


so
 1


si
 1

(b)


L
 1


L
 2


S
 1

4


Fo
 1


Fo
 2


O



F


1


O
 2


i
 1


Fi
 2

3


P
 1


Figure 5.36
     Two thin lenses  

separated by a distance smaller than 


si
 2

either focal length.
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top of the image, and a perpendicular to the optical axis finds its 

(a)


L
 1

bottom. Ray-4 is then constructed running backward from  P
 ′1

through  O
 2. Insertion of  L
 2 has no effect on ray-4, whereas ray-3 

is refracted through the image focus  F
 i2 of  L
 2. The intersection 

of rays-4 and -3 fixes the image, which in this particular case is 

real, minified, and inverted. When the two lenses are close to-

gether, as they are here, the presence of  L



f


2 essentially adds con-

1

vergence (ƒ2 7 0) or divergence (ƒ2 6 0) to the bundle of rays 

(b)


L
 1


L
 2

emerging from  L
 1; see Fig. 5.37.

A similar pair of lenses is illustrated in Fig. 5.38, in which 

the separation has been increased. Once again rays-2 and -3 

+

through  Fi
 1 and  Fo
 1 fix the position of the intermediate image 

generated by  L
 1 alone. As before, ray-4 is drawn backward 

from  O
 2 to  P
 ′1 to  S
 1. The intersection of rays-3 and -4, as the 

former is refracted through  Fi
 2, locates the final image. This 

(c)


L
 1


L
 2

time it is real and erect. Notice that if the focal length of  L
 2 is 

increased with all else constant, the size of the image increases 

as well.

+

Analytically, looking only at  L
 1 in Fig. 5.36,

1

1

1





 (5.29)


s 
 =

-


i
 1

ƒ1


so
 1


Figure 5.37
   ( a
 ) The effect of placing a second lens,  L
 2, within the focal 

length of a positive lens,  L
 1. ( b
 ) When  L
 2 is positive, its presence adds con-s

vergence to the ray bundle. ( c
 ) When  L


or 


s



o
 1ƒ1

2 is negative, it adds divergence to 


i
 1 =

 (5.30)


s


the ray bundle.


o
 1 - ƒ1

This is positive, and the intermediate image (at  P
 ′1) is to the 

right of  L


and if  d 
 7  s


1, when  so
 1 7 ƒ1   
 and  ƒ1 7 0. Now considering the 


i
 1,  
 the object for  L
 2 is real (as in Fig. 5.38), whereas 

second lens  L


if  d 
 6  s


2 with its object at  P
 ′1


i
 1, it is virtual ( so
 2 6 0,  
 as in Fig. 5.36). In the former 

instance the rays approaching  L
 2 are diverging from  P
 ′1, where-






so
 2 =  d 
 -  si
 1 (5.31)

as in the latter they are converging toward it. As drawn in  


L
 2


L



P


1

1


S
 1

2

3


O
 1


O
 2


Fo
 1


Fi
 1


Fo
 2


Fi
 2

4


P
 1


si
 1


so
 2


f
 1


f
 2


si
 2


so
 1


d



Figure 5.38
     Two thin lenses separated by a distance greater than the sum of their focal lengths. Because the intermediate image is real, you could start with point- P
 1′ and treat it as if it were a real object point for  L
 2.  

Thus a ray from  P
 1′ through  Fo
 2 would arrive at  P
 1.

M05_HECH7226_05_SE_C05_151-246.indd   171

22/09/15   9:20 AM


172
   Chapter 5
   Geometrical Optics

Fig. 5.36 a
 , the intermediate image formed by  L
 1 is the virtual 

of its image by calculating the effect of each lens. (b) Compute 

object for  L
 2. Furthermore, for  L
 2

the magnification. (c) Describe the image.

1

1

1

SOLUTION 










s 
 =

-


i
 2

ƒ2


so
 2

(a
 ) The first lens forms an intermediate image at  si
 1, where

1

1

1


so
 2ƒ2





or 


s






=

+


i
 2 =

ƒ


s


1


so
 1


si
 1


o
 2 - ƒ2

1

1

1

Using Eq. (5.31), we obtain





=

+

40.0

120


si
 1

( d 
 -  si
 1)ƒ2

1

1

1

2






si
 2 =

 (5.32)





( d 
 -  si
 1 - ƒ2)


s 
 =

-

=


i
 1

40.0

120

120

In this same way we could compute the response of any number 

  si
 1 = 60.0 cm

of thin lenses. It will often be convenient to have a single expres-

That’s 30.0 cm to the right of the negative lens. Hence 

sion, at least when dealing with only two lenses, so substituting 


so
 2 = -30.0 cm and

for  si
 1  
 from Eq. (5.29),

1

1

1

ƒ2 d 
 - ƒ2 so
 1ƒ1>( so
 1 - ƒ1)





=

+


 



si
 2 =

 (5.33)

ƒ2


so
 2


si
 2


d 
 - ƒ2 -  so
 1ƒ1>( so
 1 - ƒ1)

1

1

1





Here  s


=

+


o
 1 and  si
 2 are the object and image distances, respectively, 

- 40.0

-30.0


si
 2

of the compound lens. As an example, let’s compute the image 

  si
 2 = +120 cm

distance associated with an object placed 50.0 cm from the first 

of two positive lenses. These in turn are separated by 20.0 cm 

The image is formed 120 cm to the right of the negative lens. 

and have focal lengths of 30.0 cm and 50.0 cm, respectively. By 

(b
 ) The magnification is

direct substitution


s



s


50(20)


M



i
 1


i
 2

- 50(50)(30)>(50 - 30)


T 
 =  MT
 1 M


b a-  b






T
  2 = a -   s



s



o
 1


so
 2


i
 2 =

= 26.2 cm

20 - 50 - 50(30)>(50 - 30)

60.0

120


MT 
 = a- 

b a- 

b = -2.0

and the image is real. Inasmuch as  L
 2 “magnifies” the interme-

120

-30

diate image formed by  L
 1, the total transverse magnification of 

the compound lens is the product of the individual magnifica-

(c
 ) The image is real, because  si
 2 7 0; inverted, because  MT 
 6 0; 

tions, that is,

and magnified. We could check  MT
  using Eq. (5.34) 


MT 
 =  MT
 1 MT
 2  

40(120)

40(120)

  MT 
 =

=

30(120 - 40) - 120(40)

-40(60)

It is left as Problem 5.45 to show that

  MT 
 = -2.0

ƒ


 



M


1 si
 2


T 
 =

 (5.34)

and  si
 2 using Eq. (5.33)


d
 ( so
 1 - ƒ1) -  so
 1ƒ1

(-40.0)(30.0) - (-40.0)(120)(40.0)/(120 - 40.0)

In the above example

  si
 2 =

30.0 - (-40.0) - 120(40.0)>(120 - 40.0)

30(26.2)

-1200 + 40.0(60.0)

1200


MT 
 =

= -0.72

  si
 2 =

=

= 120 cm

20(50 - 30) - 50(30)

70.0 - 60.0

10

and just as we should have guessed from Fig. 5.36, the image is 

The two positive lenses,  L


minified and inverted.

1 and  L
 2, in Fig. 5.39 have a long 

and a short focal length and are separated by a distance greater 

than the sum of both. The real, inverted, minified intermediate 

EXAMPLE 5.5

image is located by the intersection of rays-1, -2, and -3, 

A thin biconvex lens having a focal length of +40.0 cm is 

which go on to intersect the first focal plane of the second lens 

located 30.0 cm in front (i.e., to the left) of a thin biconcave 

at points- A
 1, - A
 2, and - A
 3   
 and then intersect  L
 2 at  B
 1,   B
 2, lens of focal length -40.0 cm. If a small object is situated 120 

and  B
 3. The question at hand is, how are those rays refracted 

cm to the left of the positive lens (a) determine the location  

by  L
 2? In other words, how do we locate point- P
 ? Since the 
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L
 2


L
 1

Ray-2


P


Ray-1


F
 1


F
 2


O



F
 1


F
 2

Ray-3


A
 3


A



B


1

3


A
 2


B
 1


B
 2


Figure 5.39
     Using the focal-plane ray tracing technique.

intermediate image is real we could just introduce two new 


Back and Front Focal Lengths


convenient rays, but instead let’s use the focal-plane ray trac-

ing method.

The distance from the last surface of an optical system to the 

Draw a line from  A


second focal point of that system as a whole is known as the 

2 to  O
 . The refracted ray starting at  B
 2 

must be parallel to this line—draw it. Now draw a line from  A



back focal length
 , or b.f.l. Similarly, the distance from the ver-

1 

to  O
 . The refracted ray starting at  B


tex of the first surface to the first or object focus is the front 


1 must be parallel to this 

line—draw it. Where these two lines cross locates point- P
  and 


local length
 , or f.f.l. Consequently, if we let  si
 2 S ∞,  so
 2 

the final image, which is real and upright.

approaches  ƒ2, which combined with Eq. (5.31) tells us that  

As another example of the method, consider the ray parallel 


si
 1 S  d 
 - ƒ2.  
 Hence from Eq. (5.29)

to the central axis impinging on the positive lens  L
 1 in Fig. 5.40 

1

1

1


d 
 - (ƒ

and trace it through the system. The ray intersects the first focal 

`

=

-

=

1 + ƒ2)

plane of  L



so
 1  s


ƒ1

( d 
 - ƒ2)

ƒ1( d 
 - ƒ2)

1 at  A
 1. It refracts and heads toward focal point- F
 1,but 


i
 2 = ∞

it’s also parallel to the line from  A
 1 to  O
 1. Thus the ray bends 

and goes from  B


But this special value of  so
 1  
 is the f.f.l.:

1 to  B
 2 and we extend it as a dashed line until it 

intersects the second focal plane of the negative lens  L
 2 at  A
 2. 

ƒ

Draw the dashed line back from  A


1( d 
 - ƒ2)

2 to  O
 2 such that the ray from 





f.f.l. =

 (5.35)


B



d 
 - (ƒ1 + ƒ2)

2 to  B
 3 is parallel to that line. This ray intersects the first focal 

plane of  L
 3  
 at   A
 3  
 and impinges on  L
 3 at  B
 3. To determine the In the same way, letting  s


final bend as the ray leaves  L



o
 1 S ∞  in Eq. (5.33), ( so
 1 - ƒ1) S  so
 1,

3 draw a line from  O
 3  
 back to  A
 3.  


and since  s


The last ray emerges parallel to the  O



i
 2 is then the b.f.l., we have

3 -
 to- A
 3 line.

ƒ2( d 
 - ƒ1)

1st 





b.f.l.

 (5.36)


L


=

1


L



L


2nd  L


1

2

2


L
 3


d 
 - (ƒ1 + ƒ2)


A


1st  L


1


B


3

1

To see how this works numerically, let’s find both the b.f.l. and 


B
 2

f.f.l. for the thin-lens system in Fig. 5.41 a
 , where ƒ1 = -30 cm 


A
 3

and ƒ2 = +20 cm. Then


F



B


2

3


F



O
 1


O
 2


F
 1


F


1


A


3


O


2

3

20[10 - (-30)]

b.f.l. =

= 40 cm

10 - (-30 + 20)

and similarly f.f.l. = 15 cm. Incidentally, notice that if  d 
 =  

ƒ1 + ƒ2, plane waves entering the compound lens from either 


Figure 5.40
     Tracing a ray through a system of three lenses using the 

side will emerge as plane waves (Problem 5.49), as in telescopic 

focal-plane technique.

systems.
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10 cm

b.f.l.


L
 1


L
 2

(b)

(a)


Figure 5.41
   ( a
 ) A positive and negative thin-lens combination, ( b
 ) photo (E.H.) Observe that if  d 
 S 0, that is, the lenses are brought into 

Feynman treatment of Quantum Electrodynamics. Keep in 

contact, as in the case of some achromatic doublets,

mind that many physicists consider their theories to be noth-

ing more than the conceptual machinery for calculating the 

ƒ





b.f.l. = f.f.l =

2ƒ1  (5.37)

results of observations. And no matter how sophisticated a 

ƒ2 + ƒ1

theory is, it must be in agreement with even the most “ordi-

nary” observation. Thus to see how the operation of a lens fits 

For  two thin lenses in contact 
 the resultant thin lens has an  

into the QED worldview, return to Fig. 4.80 and the mirror for 


effective focal length
 , ƒ, such that

a brief review.

Light goes from point  S
  to the mirror to point  P
  along a 

1

1

1





=

+  (5.38)

tremendous number of possible routes. Classically, we note 

ƒ

ƒ1

ƒ2

that the  OPL
 s are different as, therefore, are the traversal times. 

In QED, each path has an associated probability amplitude 

This implies that if there are  N
  such lenses in contact,

(which has a phase angle proportional to the traversal time). 

When these are all summed, the most effective contribution to 

1

1

1

1

the overall probability of light arriving at  P
  is seen to come 





=

+

+ g+     (5.39)

ƒ

ƒ1

ƒ2

ƒ N


from the paths immediately adjacent to the one that has the 

minimum  OPL
 .

Many of these conclusions can be verified, at least qualita-

For a lens (Fig. 5.42) the situation is very different. We can 

tively, with a few simple lenses. Figure 5.36 is easy to duplicate, 

again approximate things by dividing the device into a man-

and the procedure should be self-evident, whereas Fig. 5.38  

ageable number of segments with a possible light path, and 

requires a bit more care. First, determine the focal lengths of the 

therefore a tiny probability amplitude, corresponding to each 

two lenses by imaging a distant source. Then hold one of the 

one. Of course, there should be a lot more than 17 paths, so 

lenses  ( L
 2) at a fixed distance  slightly greater than its focal 


think of each of these as representing a cluster of billions of 


length
  from the plane of observation (i.e., a piece of white pa-

neighboring trajectories—the logic doesn’t change. Each path 

per). Now comes the maneuver that requires some effort if you 

has a little probability-amplitude phasor associated with it. Be-

don’t have an optical bench. Move the second lens ( L
 1) toward 

cause the lens was designed specifically to make all the  OPL
 s 

the source, keeping it reasonably centered. Without any at-

equal, a plot of  OPL
  (or equivalently the transit times) against 

tempts to block out light entering  L
 2 directly, you will probably 

distance across the breadth of the lens is a straight line. Conse-

see a blurred image of your hand holding  L
 1. Position the lenses 

quently, a photon takes the same time to traverse any one path; 

so that the region on the screen corresponding to  L
 1 is as bright 

all the phasors (each assumed to be the same size) have the 

as possible. The scene spread across  L
 1 (i.e., its image within 

same phase angle. Thus, they all contribute equally to the like-

the image) will become clear and erect, as in Fig. 5.38.

lihood of a photon arriving at  P
 . Putting the phasors tip-to-tail 

results in a very large net amplitude, which when squared 

yields a very high probability of light reaching  P
  via the lens. 

In the language of QED,  
a lens focuses light, by causing all 




QED and the Lens




the constituent probability amplitudes to have the same phase 



One excellent reason for deriving the basic equations of this 



angle

 .

chapter from Fermat’s Principle is that it keeps us thinking in 

For other points in the plane containing  P
  that are close to 

terms of optical path lengths, and that naturally leads to the 

the optical axis, the phase angles will differ proportionately. 
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(a)


A



B



C



D



E



F



G



S



H



P



IJKLMNOPQ


(b)

A.S.

F.S.


Figure 5.43
     Aperture stop and field stop.


OPL


limits the breadth of the beam of light coming from an axial 

object point as it passes through the system. The adjustable 

leaf diaphragm that is usually located behind the first few 


A B C D E F G H I J K L M N O P Q


elements of a compound camera lens is just such an aperture 

stop. Evidently, it determines the light-gathering capability of 

(c)


A B C D E F G H I J K L M N O P Q


the lens as a whole. As shown in Fig. 5.43, highly oblique 

rays can still enter a system of this sort. Usually, however, they 


Figure 5.42
     Feynman’s analysis of the thin lens via QED. ( a
 ) A number 

are deliberately restricted in order to control the quality of the 

of possible paths from  S
  to  P
 . ( b
 ) The  OPL
  for light along each path.  

image. 

( c
 ) The corresponding probability-amplitude phasors all adding in-phase.

The element limiting the size or angular breadth of the object 

that can be imaged by the system is called the field stop
 , or 

F.S.—it determines the field of view of the instrument. In a 

The phasors placed tip-to-tail will gradually spiral, and the net 

camera, the edge of the film or CCD sensor bounds the image 

probability amplitude will initially diminish quickly, but not 

plane and serves as the field stop. Thus, while the aperture stop 

discontinuously so. Notice that the probability distribution is 

controls the number of rays from an object point reaching the 

not a single infinitesimally narrow spike; the light cannot be 

conjugate image point (Fig. 5.43), it is the field stop that will or 

focused to a point. The phasors for off-axis points cannot all at 

will not obstruct those rays  in toto
 . Neither the region above the 

once add to zero; what happens, happens gradually and contin-

top nor the region below the bottom of the object in Fig. 5.43 

uously. The resulting circularly symmetric probability distribu-

passes the field stop. Opening the circular aperture stop would 

tion,  I(r)
 , is known as the Airy pattern (p. 482).

cause the system to accept a larger energy cone and in so doing 

increase the irradiance at each image point. In contrast, opening 

the field stop would allow the regions beyond the extremities of 

the object, which were previously blocked, to be imaged.


5.3 Stops



5.3.2 Entrance and Exit Pupils



5.3.1 Aperture and Field Stops


Another concept, useful in determining whether or not a given 

The intrinsically finite nature of all lenses demands that they 

ray will traverse the entire optical system, is the  pupil
 . This is 

collect only a fraction of the energy emitted by a point source. 

simply an  image of the aperture stop
 . The entrance pupil
  of a 

The physical limitation presented by the periphery of a simple 

system is the  
image of the aperture stop as seen from an axial 



lens therefore determines which rays shall enter the system to 



point on the object looking through those elements preceding 



form an image. In that respect, the unobstructed or  clear diam-




the stop

 . If there are no lenses between the object and the A.S., 


eter
  of the lens functions as an aperture into which energy 

the latter itself serves as the entrance pupil. To illustrate the point, 

flows. Any element, be it the rim of a lens or a separate dia-

examine Fig. 5.44, which is a lens with a  rear aperture stop
 . 

phragm, that determines the amount of light reaching the image 

Imagine your eye on the axis to the left of the lens in the object 

is known as the aperture stop
  (abbreviated A.S.). The aperture 

space looking to the right through the lens at the aperture stop. 

stop of an optical system is the particular physical entity that 

The image you see, whether real or virtual, is the entrance  
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Entrance

through the aperture stop and emerge as a converging cone 

pupil

that passes through the exit pupil. Keep in mind that  different 


Exit


objects located along the axis may correspond to different 


pupil


aperture stops and pupils
 ; one has to be careful about this.

To use a telescope or a monocular as a camera lens, you 

might attach an external  front aperture stop
  to control the 

amount of incoming light for exposure purposes. Figure 5.45 

represents a similar arrangement in which the entrance and exit 

pupil locations should be self-evident. If the lens was shorter 

Chief ray


Exp



Enp


and the object moved closer, rays could pass under the top edge 

of the stop diaphragm. The top of the lens would then limit the 

cone of rays and the lens itself would become the aperture stop. 

On the other hand, moving the object to the left would leave the 


L


Σ i


aperture stop and pupils unchanged. 

A.S.

The last two diagrams include a ray labeled the chief ray
 . It 

is defined to be  any ray from an off-axis object point that passes 



through the center of the aperture stop. The chief ray enters the 



Figure 5.44
     Entrance pupil and exit pupil.


optical system along a line directed toward the midpoint of the 



entrance pupil, Enp
 ,  and leaves the system along a line passing 


pupil. Because it is closer to the lens than one focal length, the 


through the center of the exit pupil, Exp
 . The chief ray, associ-

image of the aperture stop in  L 
 is virtual (see Table 5.3) and 

ated with a conical bundle of rays from a point on the object, 

magnified. It can be located by sending a few rays out from the 

effectively behaves as the central ray of the bundle and is repre-

edges of the A.S. in the usual way. In contrast, the exit pupil
  

sentative of it. Chief rays are of particular importance when the 

is the  
image of the A.S. as seen from an axial point on the im-



aberrations of a lens design are being corrected.



age looking through the interposed lenses, if there are any

 . In 

Figure 5.46 depicts a somewhat more involved arrangement. 

Fig. 5.44 there are no such lenses, so the aperture stop itself 

The two rays shown are those that are usually traced through an 

serves as the exit pupil. Considering Fig. 5.45, imagine your 

optical system. One is the chief ray from a point on the periphery 

eye in the image space on the axis looking left through the lens 

of the object that is to be accommodated by the system. The oth-

at the aperture stop. The image you see is the exit pupil.

er is called a marginal ray
 , since it goes from the axial object 

Notice that all of this just means that the cone of light actu-

point to the rim or margin of the entrance pupil (or aperture stop).

ally entering the optical system is determined by the entrance 

In a situation where it is not clear which element is the ac-

pupil, whereas the cone leaving it is controlled by the exit pupil. 

tual aperture stop, each component of the system must be im-

No rays from the source point proceeding outside of either cone 

aged by the elements to its left.  The image that subtends the 


will make it to the image plane. The pupils and the aperture 


smallest angle at the axial object point is the entrance pupil.
  

stop are conjugates; when there is no vignetting (see below) 

The element whose image is the entrance pupil is then the aper-

any diverging cone of rays entering the entrance pupil will pass 

ture stop of the system for that object point. Problem 5.46 deals 

with just this kind of calculation.

Exit

pupil

EXAMPLE 5.6

Entrance

pupil

A positive lens having a diameter of 140 mm and a focal length 

of 0.10 m is 8.0 cm in front of an opaque screen containing a 

central hole 40 mm in diameter. An axial object point- S
  
 is 20 cm 

in front of the lens. Image each element through the elements 

to its left and determine which element subtends the smallest 

angle at  S
 . That will be the  entrance pupil
 —determine its loca-


Exp



Enp


tion and size. The object conjugate to the entrance pupil is the 

Chief ray


aperture stop
 —identify it.

SOLUTION 

There are no elements to the left of the lens  L
 ,  
 so it is essentially 

Σ i


the image of itself. To find the image of the 40-mm hole as seen 

A.S.

looking into  L
  from the image space, we have to imagine a point 


Figure 5.45
     A front aperture stop.


Continued
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Exit

pupil

Entrance

pupil

Marginal ray

Chief ray


Exp



Enp


A.S.

Figure 5.46    Pupils and stops for  

a three-lens system.

source on the axis at the center of the hole sending light to the left 

where  5 * 40 mm  = 200 mm. Now locate the image of  S
 ; 

toward the lens.  That means modifying all of the appropriate signs 


call it  P
 .


in the equation


1

1

1

=

+

1

1

1

10

20


si


=

+


f



so



si



si 
 = + 20 cm

Here ƒ = +10 cm and with  so 
 = +8.0 cm 


P
  is 20 cm to the right of  L
 . The element that limits the cone of 

rays arriving at  P
  is the hole in the screen, not the lens. Angle 

1

1

1

b

=

+

6 a—hence the hole is the aperture stop and its image is the 

10

8.0


si


entrance pupil.


si 
 = - 40 cm. This tells us that the image is on the same side of 


L
  as the object, that is, on the right. The image of the aperture 

is virtual, since  so 
 6  f
 .

Notice how the cone of rays, in Fig. 5.47, that can reach 

the image plane becomes narrower as the object point moves 

off-axis. The effective aperture stop, which for the axial 

Aperture

bundle of rays was the rim of  L



L


stop

1 ,  has been markedly re-

duced for the off-axis bundle. The result is a gradual fading 

out of the image at points near its periphery, a process 

a

S

b


P


known as vignetting
 .

200 mm


F



F


The locations and sizes of the pupils of an optical system are 

of considerable practical importance. In visual instruments,  

Entrance

20 cm

8.0

pupil

the observer’s eye is positioned at the center of the exit pupil. 

40.0 cm

The pupil of the eye itself will vary from 2 mm to about 8 mm, 

depending on the general illumination level. Thus a telescope or 

binocular designed primarily for evening use might have an exit 

The size of the image of the hole is obtained from

pupil of at least 8 mm. (You may have heard the term  night 



glasses
 —they were quite popular on roofs during the Second 


si


-40

World War.) In contrast, a daylight version will suffice with an 


MT 
 = -  s 
 = - 

= 5


o


8.0

exit pupil of 3 or 4 mm. The larger the exit pupil, the easier it is 
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Figure 5.47
   Vignetting.


L



L


1

2

Effective

aperture

stop

to align your eye properly with the instrument. In most optical 


L
 1


L
 2

devices which the eye looks into, the exit pupil is real and lo-

Entrance

cated roughly 12 mm behind the last surface. Obviously, a tele-

pupil

scopic sight for a high-powered rifle should have a large exit 

pupil located far enough behind the scope so as to avoid injury 


F



F



F



F


2

1

2

1

from recoil.


EXAMPLE 5.7


Consider the thin-lens system shown in the accompanying figure 

The entrance pupil is to the right and virtual. The exit pupil 

where the object is at focal point- F
 1 and there is an internal 

is the image of the aperture stop seen by an observer in the 

diaphragm. Locate the aperture stop and the entrance and exit 

image space. The exit pupil falls to the left of the aperture 

pupils. Identify the maginal ray.

stop and is also virtual.


L
 1


L
 1


L
 2


L
 2


F



F



F



F


2

1

2

1


F



F



F



F


2

1

2

1

Exit pupil

SOLUTION 

Draw a cone of rays originating at  F
 1 and passing through the 

system.


5.3.3 Relative Aperture and 
 
ƒ

 -Number


Suppose we collect the light from an extended source and form 


L
 1


L


an image of it using a lens (or mirror). The amount of energy 

2

Marginal ray

gathered by the lens (or mirror) from some small region of a 

distant source will be directly proportional to the area of the 

lens or, more generally, to the area of the entrance pupil. A large 


F
 2


F



F


1


F
 2

1


clear aperture
  will intersect a large cone of rays. Obviously, if 

Marginal ray

the source was a laser with a very narrow beam, this would not 

Aperture stop

necessarily be true. If we neglect losses due to reflection, ab-

sorption, and so forth, the incoming energy will be spread 

The diaphragm is the aperture stop, since it limits the beam. 

across a corresponding region of the image (Fig. 5.48). The en-

Now, to locate the entrance pupil find the image of the aperture 

ergy per unit area per unit time (i.e., the flux density or irradi-

stop seen by an observer at the object looking to the right.

ance) will be inversely proportional to the image area.
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(a)

Shutter

Lens


f
 2


f
 4

Film or CCD

Diaphragm

(b)


Figure 5.48
     A large-format camera usually consists of a lens, followed 

by an adjustable diaphragm, a shutter that can rapidly open and close, and 


f
 -number scale

1.4

2

2.8

4

5.6

8

11 16

a sheet of film on which the image is formed.

Distance scale

oo

2

3

5

10

m

The entrance pupil area, if circular, varies as the square of its 

radius and is therefore proportional to the square of its diameter 


D
 . Furthermore, the image area will vary as the square of its 

lateral dimension, which in turn [Eqs. (5.24) and (5.26)] is pro-

portional to ƒ2. (Keep in mind that we are talking about an ex-

tended object rather than a point source. In the latter case, the 


f
 -number 2.8

   

4

5.6

8

11

16

image would be confined to a very small area independent of ƒ.) 

Thus the flux density at the image plane varies as ( D
 >ƒ)2. The 

ratio  D
 >ƒ is known as the  relative aperture
 , and its inverse is the 


focal ratio
 , or  
ƒ

 -number
 , often written ƒ>#, that is,


Figure 5.49
   ( a
 ) Stopping down a lens to change the  ƒ-number
 . ( b
 ) A 

ƒ





ƒ># K  (5.40)

camera lens showing possible settings of the variable diaphragm usually 


D


located within the lens.

where  ƒ># should be understood as a single symbol. For  

example, a lens with a 25-mm aperture and a 50-mm focal 

of 18.9. The entrance pupil and focal length of a mirror will, in 

length has an  ƒ-number
  of 2, which is usually designated ƒ>2. 

exactly the same way, determine its  f-number
 . Accordingly, the 

Figure 5.49 illustrates the point by showing a thin lens behind a 

200-inch diameter mirror of the Mount Palomar telescope, with a 

variable iris diaphragm operating at either ƒ>2 or ƒ>4. A smaller 

prime focal length of 666 inches, has an  f-number
  of 3.33.


ƒ-number
  clearly permits more light to reach the image plane.

Camera lenses are usually specified by their focal lengths 

EXAMPLE 5.8

and largest possible apertures; for example, you might see “50 

mm, ƒ>1.4” on the barrel of a lens. Since the photographic ex-

A 5.0-cm-diameter positive thin lens has a focal length of 50.0 

posure time is proportional to the square of the  f-number
 , the 

mm. At a distance of 5.0 mm to the right of the lens, centered 

latter is sometimes spoken of as the speed
  of the lens. An ƒ>1.4 

on the axis, is an opaque screen having a 4.0-mm-diameter hole 

lens is said to be twice as fast as an ƒ>2 lens. Usually, lens dia-

that acts as the aperture stop. Determine the  ƒ
 -number of the 

phragms have  f-number
  markings of 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 

set-up.

16, 22, and so on. The largest relative aperture in this case cor-

SOLUTION 

responds to ƒ>1, and that’s a fast lens—ƒ>2 is more typical. 

Each consecutive diaphragm setting increases the  f-number
  by 

First, we need the diameter  D
  of the entrance pupil. That’s the 

a multiplicative factor of 22 (numerically rounded off). This 

size of the image of the aperture stop. Hence with light entering 

corresponds to a decrease in relative aperture by a multiplica-

the lens from the right

tive factor of 1> 22 and therefore a decrease in flux density by 

1

1

1

one half. Thus, the same amount of light will reach the film 

=

+


f



so



si


whether the camera is set for ƒ>1.4 at 1>500th of a second, ƒ>2 

at 1>250th of a second, or ƒ>2.8 at 1>125th of a second.

where   f 
 = + 50.0 mm,  so 
 = + 5.0 mm, and  so 
 6  f
 :

The largest refracting telescope in the world, located at the Yer-

kes Observatory of the University of Chicago, has a 40-inch diam-

1

1

1

-

=

eter lens with a focal length of 63 feet and therefore an  f-number
  

50.0

5.0


si



Continued
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and  si 
 = - 5.56 mm. Therefore

A new generation of lightweight precision mirrors continues 

to be developed for use in large-scale orbiting telescopes; the 

- 5.56


MT 
 = - 

= 1.11

technology is by no means static.

5.0

and


D 
 =  MT
  (4.0 mm) = 4.44 mm


5.4.1 Planar Mirrors


Hence

As with all mirror configurations, those that are planar can be 

ƒ

50.0

ƒ

either front- or back-surfaced. The latter type are most com-

># =

=

= 11.3


D


4.44

monly found in everyday use because they allow the metallic 

reflecting layer to be completely protected behind glass. In con-

trast, the majority of mirrors designed for more critical techni-

cal usage are front-surfaced (Fig. 5.50).

From Section 4.3.1, it’s an easy matter to determine the 


5.4 Mirrors


image characteristics of a planar mirror. Examining the point 

source and mirror arrangement of Fig. 5.50, we can quickly 

Mirror systems are increasingly being used, particularly in the  

show that  0  so 
 0 = 0  si 
 0; that is, the image  P
  and object  S
  are 

X-ray, ultraviolet, and infrared regions of the spectrum. Although 

it is relatively simple to construct a reflecting device that will 

perform satisfactorily across a broad-frequency band, the same 

cannot be said of refracting systems. For example, a silicon or 

germanium lens designed for the infrared will be completely 

(a)

opaque in the visible (see photo on p. 76). As we will see later 

(p. 261), mirrors have other attributes that also contribute to 

their usefulness.

A mirror might simply be a piece of black glass or a finely 

polished metal surface. In the past, mirrors were usually made 

by coating glass with silver, which was chosen because of its high 

efficiency in the UV and IR (see Fig. 4.69). Vacuum-evaporated 

coatings of aluminum on highly polished substrates have be-

come the accepted standard for quality mirrors. Protective coat-

ings of silicon monoxide or magnesium fluoride are often lay-

ered over the aluminum as well. In special applications (e.g., in 

lasers), where even the small losses due to metal surfaces can-

not be tolerated, mirrors formed of multi-layered dielectric 

films (see Section 9.9) are indispensable.

(b)


S



P



V


u i



A


u r



so



si


A selection of various kinds of mirrors. (Perkins Precision Developments of Longmont, 

Colorado)


Figure 5.50
     A planar mirror. ( a
 ) Reflection of waves. ( b
 ) Reflection of rays.
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(a)

(b)


Figure 5.51
   ( a
 ) The image of an extended object in a planar mirror. ( b
 ) Images in a planar mirror.

equidistant from the surface. To wit, u i 
 = u r
 , from the Law 

of the left hand, determined by dropping perpendiculars from 

of Reflection; u i 
 + u r
  is the exterior angle of triangle  SPA
  

each point, is a right hand (Fig. 5.52). Such an image is some-

and is therefore equal to the sum of the alternate interior 

times said to be  perverted
 . In deference to the more usual lay 

angles,  ∡ VSA 
 + ∡ VPA
 . But ∡ VSA 
 = u i
 , and therefore  connotation of the word, its use in optics is happily waning. The 

∡ VSA 
 = ∡ VPA
 . This makes triangles  VAS
  and  VPA
  congru-

process that converts a right-handed coordinate system in the 

ent, in which case  0  so 
 0 = 0  si 
 0.

object space into a left-handed one in the image space is known 

We are now faced with the problem of determining a sign 

as  inversion
 . Systems with more than one planar mirror can be 

convention for mirrors. Whatever we choose, and you should 

used to produce either an odd or even number of inversions. 

certainly realize that there is a choice, we need only be faithful 

In the latter case a right-handed (r-h) object will generate a right-

unto it for all to be well. One obvious dilemma with respect to 

handed image (Fig. 5.53), whereas in the former instance, the 

the convention for lenses is that now the virtual image is to the 

image will be left-handed (l-h).

right of the interface. The observer sees  P
  to be positioned 

behind the mirror because the eye (or camera) cannot perceive 

the actual reflection; it merely interpolates the rays backward 

along straight lines. The rays from  P
  in Fig. 5.51 are diverging, 

and no light can be cast on a screen located at  P
 —the image is 

certainly virtual. Clearly, it is a matter of taste whether  si
  should 

be defined as positive or negative in this instance. Since we 

rather like the idea of virtual object and image distances being 

negative, we define  so
   and si
   as negative when they lie to the 



right of the vertex V
 . This will have the added benefit of yield-

ing a mirror formula identical to the Gaussian Lens Equation 

[Eq. (5.17)]. Evidently, the same definition of the transverse 

magnification [Eq. (5.24)] holds, where now, as before, 


MT 
 = +1  
 indicates a  life-size
 , erect image.

Each point of the extended object in Fig. 5.51, a perpendicu-

lar distance  si
  from the mirror, is imaged that same distance be-

hind the mirror. In this way, the entire image is built up point by 

point. This is considerably different from the way a lens 





locates an image. The object in Fig. 5.30 was a left hand, and the 

image formed by the lens was also a left hand. To be sure, it 

might have been distorted ( ML 
 Z  MT
 ), but it was still a left hand. 

The only evident change was a 1808 rotation about the optical 

axis—an effect known as  reversion
 . Contrarily, the mirror image 


Figure 5.52
   Mirror images—inversion.
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Figure 5.53
     Inversions via reflection.

Image

l-h

r-h

Object

l-h

(a)

r-h

r-h

l-h

Image

r-h

Object

l-h

(b)

EXAMPLE 5.9 

SOLUTION 

Distance   DB
  equals  GB


As shown in the accompanying figure, an eye chart 40 cm tall 

=  BF
  and so  GF 
 = 2 GB
 . Trangles 


GBA
  and  GFE
  are similar—hence 40 cm

by 20 cm wide is positioned above a patient’s head. What is the 

= 2 AB
 . The mirror 

should be at least 20 cm tall by 10 cm wide.

smallest mirror that will allow the entire chart to be seen?

Chart

Mirror

Image


C



E



Moving Mirrors


40 cm


A


A number of practical devices utilize rotating planar mirror 

systems—for example, choppers, beam deflectors, image ro-


D



F


tators, and scanners. Mirrors are frequently used to amplify 


B


and measure the slight rotations of certain laboratory appara-


G


tus (galvanometers, torsion pendulums, current balances, etc.). 
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2u i


u i


2u i
  + 2a

A classic single-lens reflex film camera. Light from the lens hits the mirror 

u i


and goes up to the prism and out to the eye. When the shutter is released 

a

the mirror pops up, the light goes directly to the film, and then the mirror 

pops back down. (E.H.)

It’s often proclaimed that flat mirrors can form only virtual 

a

images, but that isn’t quite true. Imagine such a mirror and 

remove a tiny plug from it so it now has a pinhole through it. 

That hole, as if in a pinhole camera, will produce “real” im-

ages on a distant screen behind the aperture. Now consider the 

tiny mirrored plug; it must produce “real” images in front of 


Figure 5.54
     Rotation of a mirror and the concomitant angular displace-

its reflecting surface. Because u i 
 = u r
 , this tiny mirror creates 

ment of a beam.

the same ray configuration in front of it as the hole does be-

hind it. It produces “real” images in the sense that they can be 

projected, but they’re not really “real” in the sense that the 

narrow bundles of rays are not converging, so it’s a matter of 

As Fig. 5.54 shows, if the mirror rotates through an angle 

semantics.

a, the reflected beam or image will move through an angle 

of 2a. 

The ability to rapidly redirect a beam of light is an inher-

ent virtue of planar mirrors that has been utilized for centu-

ries; the traditional single-lens reflex camera (see photo) is 

just one application that comes to mind. Today micromirrors 

(see photo), small enough to pass through the eye of a needle, 

have become part of the flourishing MOEMS
  (Micro-Opto-

ElectroMechanical Systems) or Optical
  MEMS
  technology. 

The telecommunications network that delivers worldwide 

telephone, fax, and Internet services is undergoing a quiet 

microphotonic revolution as it sheds its electronic elements 

and moves toward becoming entirely optical. Electronic 

switches are expensive, bulky, and, by optic standards, unac-

ceptably slow. Accordingly, the crucial component needed 

for that transition is the optical switch. Micromirrors that 

can tilt side-to-side and top-to-bottom in a matter of milli-

This tiny tiltable mirror (which is so small it can fit through the eye  

seconds are presently one of the most promising approaches 

of a needle) is used to steer light beams in one of today’s most important 

(see p. 206). 

telecommunications devices. (Used with permission of Alcatel-Lucent USA Inc.)

M05_HECH7226_05_SE_C05_151-246.indd   183

09/11/15   7:46 PM






184
   Chapter 5
   Geometrical Optics


W
 1


A



D


1

1


F



n
  = 1


W
 2


A
 2


D
 2

Σ


Figure 5.55
    

(a)

(b)

(c)

A paraboloidal mirror.


5.4.2 Aspherical Mirrors


Equation (5.41) will therefore be satisfied for a surface for 

which  A
 1 F 
 =  A
 1 D
 1 and  A
 2 F 
 =  A
 2 D
 2 or, more generally, one for Curved mirrors that form images very much like those of 

which   AF 
 =  AD
  for any point- A
  on the mirror. In general, 

lenses or curved refracting surfaces have been known since 


AF 
 =  e
 ( AD
 ), where  e
  is the eccentricity of a conic section
 .  

the time of the ancient Greeks. Euclid, who is presumed to 

Earlier (Section 5.2.1) the figure studied was a hyperbola for 

have authored the book titled  Catoptrics
 , discusses in it both 

which  e 
 =  nti 
 7 1.  
 In Problem 5.3 the figure is an ellipse and  

concave and convex mirrors.* Fortunately, the conceptual ba-


e 
 =  nti 
 6 1. Here the second medium is identical to the first,  

sis for designing such mirrors was developed earlier when we 


nt 
 =  ni
 , and  e 
 =  nti 
 = 1;  
 in other words, the surface is a parabo-studied Fermat’s Principle as applied to imagery in refracting 

loid with  F
  as its focus and Σ as its directrix. The rays could 

systems. Accordingly, let’s determine the configuration a 

equally well be reversed (i.e., a point source at the focus of a 

mirror must have if an incident plane wave is to be re-formed 

paraboloid would result in the emission of plane waves from the 

upon reflection into a converging spherical wave (Fig. 5.55). 

system). 

Because the plane wave is ultimately to converge on point- F
 , 

Paraboloidals are used in a great variety of applications 

the optical path lengths for all rays must be equal; accord-

from flashlight and automobile headlight reflectors to giant 

ingly, for arbitrary points- A
 1  
 and - A
 2

radiotelescope antennas (see photo), from microwave horns 






OPL


and acoustical dishes to optical telescope mirrors and Moon-

=  W
 1 A
 1 +  A
 1 F 
 =  W
 2 A
 2 +  A
 2 F
  (5.41)

based communications antennas. The convex paraboloidal 

Since the plane Σ is parallel to the incident wavefronts,

mirror is also possible but is far less widely in use. Applying 

what we already know, it should be evident from Fig. 5.56 






W
 1 A
 1 +  A
 1 D
 1 =  W
 2 A
 2 +  A
 2 D
 2 (5.42) that an incident parallel bundle of rays will form a virtual image at  F
  when the mirror is convex and a real image when it’s 

concave.

There are other aspherical mirrors of interest, namely, 

the ellipsoid ( e 
 6 1) and hyperboloid ( e 
 7 1). Both produce 

perfect imagery between a pair of conjugate axial points 


F


A large paraboloidal radio antenna at the Goldstone Deep Space 

Communications Complex. (NASA)

* Dioptrics
  denotes the optics of refracting elements, whereas  catoptrics
  denotes 

the optics of reflecting surfaces.


Figure 5.56
     Real and virtual images for a paraboloidal mirror.
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(a) Convex hyperbolic

(b) Convex elliptical


Figure 5.58
     Off-axis mirror elements.

(c) Concave hyperbolic

(d) Concave elliptical

A variety of aspherical mirrors are readily available commer-


Figure 5.57
     Hyperbolic and elliptical mirrors.

cially. In fact, one can purchase  off-axis elements
 , in addition 

to the more common centered systems. Thus in Fig. 5.58 the 

focused beam can be further processed without obstructing the 

corresponding to their two foci (Fig. 5.57). As we’ll see 

mirror. Incidentally, this geometry also obtains in large micro-

presently, the Cassegrain and Gregorian telescope configura-

wave horn antennas.

tions utilize convex secondary mirrors that are hyperboloidal 

and ellipsoidal, respectively. Like many new instruments, 

the primary mirror of the Hubble Space Telescope is hyper-

boloidal (see photo).


5.4.3 Spherical Mirrors


Precise aspheric surfaces are considerably more difficult to 

fabricate than are spherical ones, and, not surprisingly, they’re 

considerably more expensive. Accordingly, we again turn to 

the spherical configuration to determine the circumstances un-

der which it might perform adequately.


The Paraxial Region


The well-known equation for the circular cross section of a 

sphere (Fig. 5.59 a
 ) is






y
 2 + ( x 
 -  R
 )2 =  R
 2 (5.43)

where the center  C
  is shifted from the origin  O
  by one radius  R
 . 

After writing this as


y
 2 - 2 Rx 
 +  x
 2 = 0

we can solve for  x
 :






x 
 =  R 
 ± ( R
 2 -  y
 2)1>2 (5.44)

The 2.4-m-diameter hyperboloidal primary mirror of the Hubble Space 

Let’s just concern ourselves with values of  x
  less than  R
 ; that 

Telescope. (NASA)

is, we’ll study a hemisphere, open on the right, corresponding 
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y



y



y



Figure 5.59
   Comparison of 

spherical and paraboloidal  

Paraboloid

mirrors.


R



y



F



O



x



O



x



O



x



C



F



C



f



f



f


Sphere

(a)

(b)

(c)

to the minus sign in Eq. (5.44). After expansion in a binomial 

will appear. Moreover, aspherical surfaces produce perfect 

series,  x
  takes the form

images only for pairs of axial points—they too will suffer 

aberrations.


y
 2

1 y
 4

1 · 
 3 y
 6


 



x 
 =

+

2 R


222! R
 3 + 233! R
 5 + g  (5.45)


The Mirror Formula


This expression becomes quite meaningful as soon as we real-

The paraxial equation that relates conjugate object and image 

ize that the standard equation for a parabola with its vertex at 

points to the physical parameters of a spherical mirror can be 

the origin and its focus a distance ƒ to the right (Fig. 5.59 b
 ) is 

derived with the help of Fig. 5.60. To that end, observe that 

simply

since u i 
 = u r
 , the ∡ SAP
  is bisected by  CA
 , which therefore di-






y
 2 = 4ƒ x
  (5.46)

vides the side  SP
  of triangle  SAP 
 into segments proportional to 

the remaining two sides; that is,

By comparing these two formulas, we see that if 4ƒ = 2 R
  (i.e., 

if ƒ =  R
 >2), the first contribution in the series can be thought of 


SC



CP






=

 (5.47)

as parabolic, and the remaining terms represent the deviation. If 


SA



PA


that deviation is ∆ x
 , then

Furthermore,


y
 4


y
 6

∆ x 
 =


SC 
 =  so 
 - 0  R 
 0   
 and   CP 
 = 0  R 
 0 -  si


  

8 R
 3 + 16 R
 5 + g

where  s


Evidently, this difference will be appreciable only when  y
  


o
  and  si
  are on the left and therefore positive. Using 

the same sign convention as we did with refraction,  R 
 will be 

is relatively large (Fig. 5.59 c
 ) in comparison to  R
 .   In the 


negative because  C
  is to the left of  V
  (i.e., the surface is con-


paraxial region, that is, in the immediate vicinity of the 


cave). Thus  0  R 
 0 = - R
  and


central axis, these two configurations will be essentially 



indistinguishable.
  


SC 
 =  so 
 +  R
   and   CP 
 = -( si 
 +  R
 )

We can get a feel for ∆ x
  by considering an amateur telescope 

mirror, for something like the Newtonian reflector in Fig. 5.122 b
 . 

In the paraxial region  SA 
 ≈  so
 ,  PA 
 ≈  si
 , and Eq. (5.47) becomes

A convenient tube length would result when the focal length 


s



s


was around 56 inches or so. A nice-sized scope would have an 


o 
 +  R 
 = -   i 
 +  R


8-inch-diameter mirror, in which case the  ƒ
 -number would be 


so



si


ƒ> D 
 = 7.  
 At the edge of such a mirror ( y 
 = 4 in.), the horizon-

tal difference (∆ x
 ) between the paraboloid and the sphere (Fig. 

1

1

2





or 

+

= -   (5.48)

5.59) would be a mere 23 millionths of an inch, the former be-


so



si



R


ing flatter than the latter. Closer in toward the center ( y 
 = 2 in.) 

∆ x
  drops to just a few millionths of an inch. 

which is the Mirror Formula
 . It’s equally applicable to con-





If we stay within the paraxial theory of spherical mirrors as 

cave ( R 
 6 0) and convex ( R 
 7 0) mirrors. The  primary
  or  object 


a first approximation, the conclusions drawn from our study 


focus
  is again defined by

of the stigmatic imagery of paraboloids are again applicable. 

lim   s


In actual use, however,  y
  will not be so limited, and aberrations 


s



o 
 = ƒ o



i 
 S ∞
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and the  secondary
  or  image focus
  corresponds to

lim   s



s



i 
 = ƒ i



o 
 S ∞

Consequently, from Eq. (5.48)


S



P


1

1

1

1

2

+

= - 


ƒo


∞ = ∞ +  ƒi



R


to wit,


R







ƒo 
 =  ƒi 
 = -   (5.49)

2


A


as can be seen in Fig. 5.59 c
 . Dropping the subscripts on the 

focal lengths yields

u i


u r



S



C



P



F



V


1

1

1





 (5.50)


s 
 +

=


o



si


ƒ

Observe that   ƒ
  will be positive for concave mirrors ( R 
 6 0) 

and negative for convex mirrors ( R 
 7 0). In the latter in-

stance, the image is formed behind the mirror and is virtual 


f


(Fig. 5.61).


si



R



so



Figure 5.60
     A concave spherical mirror. Conjugate foci.


Finite Imagery


The remaining mirror properties are so similar to those of 

lenses and spherical refracting surfaces that we need only 

mention them briefly, without repeating the entire logical de-

velopment of each item. Within the restrictions of paraxial 

theory, any parallel off-axis bundle of rays will be focused to 

a point on the  focal plane
  passing through  F
  normal to the 

optical axis. Likewise, a finite planar object perpendicular to 

the optical axis will be imaged (to a first approximation) in a 

plane similarly oriented; each object point will have a corre-

sponding image point in that plane. This is certainly true for a 

plane mirror, but it only approximates the case for other con-

figurations.

If a spherical mirror is used in a restricted fashion, the re-

flected waves arising from each object point will closely ap-

proximate spherical waves. Under such circumstances, good 

finite images of extended objects can be formed.

Just as each image point produced by a thin lens lies along a 

straight line through the optical center  O
 , each image point for 

a spherical mirror will lie on a ray passing through both the 

center of curvature  C
  and the object point (Fig. 5.62). As with 

the thin lens (Fig. 5.23), the process for graphically locating the 

image is straightforward (Fig. 5.63). The top of the image is 

A convex spherical mirror forming a virtual, right-side-up, minified image. 

See if you can locate the image of the author holding the camera that took 

fixed at the intersection of two rays, one initially parallel to the 

this picture. (E.H.)

axis and passing through  F
  after reflection, and the other going 
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F



C



C



F



Figure 5.61
     Focusing of rays via a spherical mirror. (E.H.)

Ray-2

Ray-1

Ray-4

straight through  C
  (Fig. 5.64). The ray from any off-axis object 

point to the vertex forms equal angles with the central axis on 


C



F



V


Ray-3

reflection and is therefore particularly convenient to construct. 

So too is the ray that first passes through the focus and after 

reflection emerges parallel to the axis.

Notice that triangles  S
 1 S
 2 V
  and  P
 1 P
 2 V
  in Fig. 5.63 a
  are similar, and hence their sides are proportional. Taking  yi 
 to be neg-

ative, as we did before, since it’s below the axis,  yi
 > yo 
 = - si
 > so
 , which is equal to  MT
 . This is the  
transverse magnification

 , just 

Ray-2

as it was for the lens [Eq. (5.25)].

Ray-4

The only equation that contains information about the 

structure of the optical element ( n
 ,  R
 , etc.) is that for ƒ, and so, 


V



F



C


understandably, it differs for the thin lens [Eq. (5.16)] and 

spherical mirror [Eq. (5.49)]. The other functional expressions 

Ray-3

that relate  so
 ,  si
 ,  
 and ƒ or  yo
 ,   yi
 , and  MT 
 are, however, precisely the same. The only alteration in the previous sign con-

vention appears in Table 5.4, where  si
  on the left of  V
  is now 

Ray-1

taken as positive. The striking similarity between the proper-

ties of a concave mirror and a convex lens on one hand and a 


Figure 5.62
     Four easy rays to draw. Ray-1 heads toward  C
  and reflects back 

convex mirror and a concave lens on the other is quite evident 

along itself. Ray-2 comes in parallel to the central axis and reflects toward  

from a comparison of Tables 5.3 and 5.5, which are identical 

(or away from)  F
 . Ray-3 passes through (or heads toward)  F
  and reflects off 

in all respects.

parallel to the axis. Ray-4 strikes point  V
  and reflects such that u i 
 = u r
 .
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TABLE 5.4  Sign Convention for Spherical Mirrors


Quantity Sign


S
 2

2





+  

−


yo



s



F



V



o
  

Left of  V
 , real object 

Right of  V
 , virtual object


S



yi



si
  

Left of  V
 , real image 

Right of  V
 , virtual image

1


C



P
 1


P


3

ƒ 

Concave mirror 

Convex mirror

2


R
  


C
  right of  V
 , convex 


C
  left of  V
 , concave

1


yo
  

Above axis, erect object 

Below axis, inverted object


yi
  

Above axis, erect image 

Below axis, inverted image

The properties summarized in Table 5.5 and depicted in  

2

Fig. 5.65 can easily be verified empirically. If you don’t have a 

spherical mirror at hand, a fairly crude but functional one can be 

1

made by carefully shaping aluminum foil over a spherical form, 

3

such as the end of a lightbulb (in that particular case  R
  and 


V



F



C


therefore   ƒ
  will be small). A rather nice qualitative experiment 

involves examining the image of some small object formed by 

a short-focal-length concave mirror. As you move it toward the 

mirror from beyond a distance of 2ƒ =  R
 , the image will gradu-

ally increase, until at  so 
 = 2ƒ  
 it will appear inverted and life-

size. Bringing it closer will cause the image to increase even 


Figure 5.63
     Finite imagery with spherical mirrors.

more, until it fills the entire mirror with an unrecognizable blur. 

As   so
  becomes smaller, the now erect, magnified image will 

continue to decrease until the object finally rests on the mirror, 

where the image is again life-size. If you are not moved by  

all of this to jump up and make a mirror, you might try examin-

ing the image formed by a shiny spoon—either side will be  

interesting.

(a)


TABLE 5.5  Images of Real Objects Formed by  



F



Spherical Mirrors



C


Concave

Object Image

Location 

Type 

Location 

Orientation 

Relative Size

∞ 7  so 
 7 2ƒ Real 

ƒ 6  si 
 6 2ƒ Inverted  Minified

(b)


so 
 = 2ƒ Real   si 
 = 2 f 
  Inverted Same 

size

ƒ 6  so 
 6 2ƒ Real  ∞ 7  si 
 7 2ƒ Inverted  Magnified


so 
 = ƒ  

± ∞


so 
 6 ƒ Virtual 

0  si 
 0 7  so
  Erect  Magnified

Convex


F



C


Object Image

Location 

Type 

Location 

Orientation 

Relative Size

Anywhere Virtual 0 si 
 0 6 0 ƒ 0, Erect 

Minified


Figure 5.64
   ( a
 ) Reflection from a concave mirror. ( b
 ) Reflection from a 

  


so 
 7 0  si 
 0

convex mirror.
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(a)


Figure 5.65
     The image-forming behavior of a concave 

spherical mirror.


f


(b)

2  f


(c)

(d)

EXAMPLE 5.10

1

1

1

  =

-

= 0.021 43

A small frog is sitting on the central axis 35.0 cm in front of 


si


20.0

35.0

a concave spherical mirror having a focal length of 20.0 cm. 

  s


Locate the image and describe it completely. What is the trans-


i 
 = 46.67 cm or 46.7 cm

verse magnification of the image?

The image is real, inverted, and magnified. Notice that  si
  is 

SOLUTION 

positive, which means the image is real.

From Eq. (5.50)


s


46.67 cm


M



i



T 
 = -   s 
 = - 

= - 1.3


o


35.0 cm

1

1

1

  s 
 + =


o



si



ƒ


The minus sign means the image is inverted. Alternatively,

1

1

1


ƒ


20

4





+

=


MT 
 = -  = - 

= -  = -1.3

35.0


s



x


15

3


i


20.0


o
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A


a

(u

d


i
 1 – u t
 1)

u t
 2

u i
 1

(

u

u


i
 2


t
 2 – u i
 2)

u


D



t
 1


B


a

a


C



n



Figure 5.66
     Geometry of a dispersing prism.

The giant virtual image of the photographer, who is standing closer than 

one focal length from a multi-element telescope mirror in Tucson, Arizona. 


deviation
 . At the first refraction the ray is deviated through an 

He’s wearing a hat and has his right hand raised. (Joseph Shaw)

angle (u i
 1 - u t
 1), and at the second refraction it is further de-

flected through (u t
 2 - u i
 2). The total deviation is then

d = (u i
 1 - u t
 1) + (u t
 2 - u i
 2)


5.5 Prisms


Since the polygon  ABCD
  contains two right angles, ∡ BCD
  

must be the supplement of the apex angle
   a. As the exterior 

angle to triangle  BCD
 , a  
 is also the sum of the alternate interior 

Prisms play many different roles in Optics; there are prism 

angles, that is,

combinations that serve as beamsplitters (p. 130), polarizing 

devices (see Section 8.4.3), and interferometers. Despite this 





a = u t
 1 + u i
 2 (5.51)

diversity, the vast majority of applications make use of only 

Thus

one of two main prism functions. First, a prism can serve as a 

dispersive device, as it does in a variety of spectrum analyzers 





d = u i
 1 + u t
 2 - a (5.52)

(Fig. 5.66). As such it is capable of separating, to some extent, 

the constituent frequency components in a polychromatic light 

We would like to write d as a function of both the angle-of-

beam. Recall that the term  dispersion
  was introduced earlier 

incidence for the ray (i.e., u i
 1) and the prism angle a; these pre-

(p. 70) in connection with the frequency dependence of the 

sumably would be known. If the prism index is  n
  and it’s  

index of refraction,  n(
 v )
 , for dielectrics. In fact, the prism pro-

vides a highly useful means of measuring  n(
 v )
  over a wide 

range of frequencies and for a variety of materials (including 

gases and liquids).

Its second and more common function is to effect a change 

in the orientation of an image or in the direction of propagation 

of a beam. Prisms are incorporated into many optical instru-

ments, often simply to fold the system into a confined space. 

There are inversion prisms, reversion prisms, and prisms that 

deviate a beam without inversion or reversion—and all of this 

without dispersion.


5.5.1 Dispersing Prisms


Prisms come in many sizes and shapes and perform a variety  

of functions (see photo). Let’s first consider the group known  

as  dispersing prisms
 . Typically, a ray entering a dispersing 

prism, as in Fig. 5.66, will emerge having been deflected  

from its original direction by an angle d  
 known as the angular 


A selection of various prisms. (Perkins Precision Developments)
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immersed in air ( na 
 ≈ 1), it follows from Snell’s Law that

setting  d
 d> d
 u i
 1 = 0, but a more indirect route will certainly be 

simpler. Differentiating Eq. (5.52) and setting it equal to zero 

u t
 2 = sin-1 ( n
  sin u i
 2) = sin-1 [ n
  sin (a - u t
 1)]

yields

Upon expanding this expression, replacing cos u


d
 d


d
 u


t
 1 by 





= 1 +


t
 2 = 0

(1 - sin2u t
 1)1>2, and using Snell’s Law we have


d
 u i
 1


d
 u i
 1

u t
 2 = sin-1 [(sin a) ( n
 2 - sin2 u i
 1)1>2 - sin u i
 1 cos a]

or  d
 u t
 2> d
 u i
 1 = -1. Taking the derivative of Snell’s Law at each interface, we get

The deviation is then

cos u i
 1  d
 u i
 1 =  n
  cos u t
 1  d
 u t
 1

d = u i
 1 + sin-1 [(sin a) ( n
 2 - sin2 u i
 1)1>2


 


- sin u i
 1 cos a] - a (5.53)

and  

cos u t
 2  d
 u t
 2 =  n
  cos u i
 2  d
 u i
 2 

Apparently, d increases with  n
 , which is itself a function of fre-

Note as well, on differentiating Eq. (5.51), that  d
 u t
 1 = - d
 u i
 2, 

quency, so we might designate the deviation as d (
 n ) 
 or d (
 l )
 . For 

since  d
 a = 0. Dividing the last two equations and substituting 

most transparent dielectrics of practical concern,  n(
 l )
  decreases 

for the derivatives leads to

as the wavelength increases across the visible [refer back to  

cos u i
 1

cos u

Fig. 3.41 for a plot of  n(
 l )
  versus l for various glasses]. Clearly, 

=


t
 1

then, 

cos u

d (
 l )
  will be less for red light than it is for blue.


t
 2

cos u i
 2

Missionary reports from Asia in the early 1600s indicated 

Making use of Snell’s Law once again, we can rewrite this as

that prisms were well known and highly valued in China because 

of their ability to generate color. A number of scientists of the 

1 - sin2 u i
 1


n
 2 - sin2 u

era, particularly Marci, Grimaldi, and Boyle, had made some 

=


i
 1

1 - sin2 u t
 2


n
 2 - sin2 u t
 2

observations using prisms, but it remained for the great Sir Isaac 

Newton to perform the first definitive studies of dispersion. On 

The value of u i
 1 for which this is true is the one for which  

February 6, 1672, Newton presented a classic paper to the Royal 


d
 d> d
 u i
 1 = 0. Inasmuch as  n 
 Z 1, it follows that

Society titled “A New Theory about Light and Colours.’’ He had 

concluded that white light consisted of a mixture of various col-

u i
 1 = u t
 2

ors and that the process of refraction was color-dependent.

and therefore

Returning to Eq. (5.53), it’s evident that the deviation suf-

fered by a monochromatic beam on traversing a given prism 

u t
 1 = u i
 2

(i.e.,  n
  and a are fixed) is a function only of the incident angle 

at the first face, 

This means that  the ray for which the deviation is a minimum 


u i
 1. A plot of the results of Eq. (5.53) as applied 

to a typical glass prism is shown in Fig. 5.67. The smallest value 


traverses the prism symmetrically, that is, parallel to its base
 . 

of 

Incidentally, there is a lovely argument for why u

d is known as the minimum deviation
 , d


i
 1 must equal 


m
 , and it is of par-

ticular interest for practical reasons. The value of 

u

d


t
 2, which is neither as mathematical nor as tedious as the one 


m
  can be 

determined analytically by differentiating Eq. (5.53) and then 

we have evolved. In brief, suppose a ray undergoes a minimum 

deviation and u i
 1 Z u t
 2. Then if we reverse the ray, it will retrace 

the same path, so d must be unchanged (i.e., d = d m
 ). But this 

50

implies that there are two different incident angles for which the 

deviation is a minimum, and this we know is not true—ergo  

u i
 1 = u t
 2.

In the case when d = d m
 , it follows from Eqs. (5.51) and 

45

(5.52) that u i
 1 = (d m 
 + a)>2 and u t
 1 = a>2, whereupon Snell’s 

Law at the first interface leads to

grees)

 (ded

sin [(d

40






n 
 =


m 
 + a)>2] (5.54)


n
  = 1.5

sin a>2

d

a = 60°


m


This equation forms the basis of one of the most accurate tech-

35

niques for determining the refractive index of a transparent sub-

30

40

50

60

70

80

90

stance. Effectively, one fashions a prism out of the material in 

u i
 1 (degrees)

question, and then, measuring a and d m(
 l )
 ,  n(
 l ) 
 is computed 


Figure 5.67
     Deviation versus incident angle.

employing Eq. (5.54) at each wavelength of interest. Hollow 
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A


will now undergo a minimum deviation, which is again 90°— 

30° 45°

hence the name  constant deviation
 . With a prism of this sort, 

one can conveniently set up the light source and viewing sys-

tem at a fixed angle (here 90°), and then simply rotate the 

60°

prism to look at a particular wavelength. The device can be 


D


30°

calibrated so that the prism-rotating dial reads directly in 

wavelength.

45°


B


d = 90°


5.5.2 Reflecting Prisms


We now examine reflecting prisms
 , in which dispersion is not 

desirable. In this case, the beam is introduced in such a way 

60°

that at least one internal reflection takes place, for the specific 


C


purpose of changing either the direction of propagation or the 

orientation of the image, or both.

Let’s first establish that it is actually possible to have such an 


Figure 5.68
     The Pellin–Broca prism.

internal reflection without dispersion. Is d independent of l? 

The prism in Fig. 5.70 is assumed to have as its profile an isos-

prisms whose sides are fabricated of plane-parallel glass can be 

celes triangle—this happens to be a rather common configura-

filled with liquids or gases under high pressure; the glass plates 

tion in any event. The ray refracted at the first interface is later 

will not result in any deviation of their own.

reflected from face  FG
 . As we saw earlier (Section 4.7), this 

Figures 5.68 and 5.69 show two examples of constant-


will occur when the internal incident angle is greater than the 


deviation dispersing prisms
 , which are important primarily 

critical angle u c
 , defined by

in spectroscopy. The Pellin–Broca
  prism
  is probably the most 





sin u

common of the group. Albeit a single block of glass, it can be 


c 
 =  nti
  [4.69]

envisaged as consisting of two 30°–60°–90° prisms and one 

For a glass–air interface, this requires that u i
  be greater than 

45°–45°–90° prism. Suppose that in the position shown a sin-

roughly  42°. To avoid any difficulties at smaller angles, let’s 

gle monochromatic ray of wavelength l traverses the compo-

further suppose that the base of our hypothetical prism is sil-

nent prism  DAE
  symmetrically, thereafter to be reflected at 

vered as well—certain prisms do in fact require silvered faces. 

45° from face  AB
 . The ray will then traverse prism  CDB
  sym-

The angle of deviation between the incoming and outgoing 

metrically, having experienced a total deviation of 90°. The 

rays is

ray can be thought of as having passed through an ordinary 

60° prism ( DAE
  combined with  CDB
 ) at minimum deviation. 





d = 180° - ∡ BED
  (5.55)

All other wavelengths present in the beam will emerge at 

From the polygon  ABED 
 it follows that

other angles. If the prism is now rotated slightly about an 

axis normal to the paper, the incoming beam will have a new 

a + ∡  ADE 
 + ∡ BED 
 + ∡ ABE 
 = 360°

incident angle. A different wavelength component, say l2, 

Moreover, at the two refracting surfaces

∡ ABE 
 = 90° + u i
 1

30° 60°

and 

∡ ADE 
 = 90° + u t
 2  


60°

60°

Substituting for ∡ BED
  in Eq. (5.55) leads to

60°

120°

30°





d = u i
 1 + u t
 2 + a (5.56)

d = 60

30°

Since the ray at point- C
  has equal angles-of-incidence and  

reflection, ∡ BCF 
 = ∡ DCG
 . Thus, because the prism is isos-

celes, ∡ BFC 
 = ∡ DGC
 , and triangles  FBC 
 and  DGC 
 are simi-

lar. It follows that ∡ FBC 
 = ∡ CDG
 , and therefore u t
 1 = u i
 2. 

From Snell’s Law we know that this is equivalent to u i
 1 = u t
 2, 

whereupon the deviation becomes





d


Figure 5.69
     The Abbe prism.

= 2u i
 1 + a (5.57)
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A


a

a

u i
 1

u t
 2


B



D


u t
 1

u i
 2


F



C



G


d


E


(a)

(b)


Figure 5.70
     Geometry of a reflecting prism.

which is certainly independent of both l  
 and  n
 . The reflection 

The Porro prism
  (Fig. 5.72) is physically the same as the 

will occur without any color preferences, and the prism is said 

right-angle prism but is used in a different orientation. After two 

to be achromatic
 . Unfolding the prism, that is, drawing its im-

reflections, the beam is deviated by 180°. Thus, if it enters 

age in the reflecting surface  FG
 , as in Fig. 5.70 b
 , we see that it 

right-handed, it leaves right-handed.

is equivalent in a sense to a parallelepiped or thick planar plate. 

The Dove prism
  (Fig. 5.73) is a truncated version (to reduce 

The image of the incident ray emerges parallel to itself, regard-

size and weight) of the right-angle prism, used almost exclu-

less of wavelength.

sively in collimated light. It has the interesting property 





A few of the many widely used reflecting prisms are shown 

(Problem 5.92) of rotating the image twice as fast as it is itself 

in the next several figures. These are often made from BSC-2 or 

rotated about the longitudinal axis.

C-1 glass (see Table 6.2). For the most part, the illustrations are 

The Amici prism
  (Fig. 5.74) is essentially a truncated right-

self-explanatory, so the descriptive commentary will be brief.

angle prism with a roof section added on to the hypotenuse 

The right-angle prism
  (Fig. 5.71) deviates rays normal to 

face. In its most common use, it has the effect of splitting the 

the incident face by 90°. Notice that the top and bottom of the 

image down the middle and interchanging the right and left 

image have been interchanged; that is, the arrow has been 

portions.* These prisms are expensive, because the 90° roof 

flipped over, but the right and left sides have not. It is therefore 

an inversion system with the top face acting like a plane mirror. 

(To see this, imagine that the arrow and lollypop are vectors and 

take their cross-product. The resultant, arrow 3 lollypop, was 

initially in the propagation direction but is reversed by the prism.)

r-h


Figure 5.71
   The right-angle 

prism.

r-h


Figure 5.72
   The Porro 

prism.

r-h

*You can see how it actually works by placing two plane mirrors at right angles 

and looking directly into the combination. If you wink your  right
  eye, the image 

will wink its  right
  eye. Incidentally, if your eyes are equally strong, you will see two 

seams (images of the line where the mirrors meet), one running down the middle 

l-h

of each eye, with your nose presumably between them. If one eye is stronger, 

there will be only one seam, down the middle of that eye. If you close it, the seam 

will jump over to the other eye. This must be tried to be appreciated.
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angle must be held to roughly 3 or 4 seconds of arc, or a trou-

blesome double image will result. They are often used in simple 

telescope systems to correct for the reversion introduced by the 

lenses.

The rhomboid prism
  (Fig. 5.75) displaces the line-of-sight 

without producing any angular deviation or changes in the ori-

entation of the image.

The penta prism
  (Fig. 5.76) will deviate the beam by 90° 

r-h

without affecting the orientation of the image. Note that two of 

its surfaces must be silvered. These prisms are often used as end 

l-h

reflectors in small range finders.

The Leman–Springer prism
  (Fig. 5.77) also has a 90° roof. 

Here the line-of-sight is displaced without being deviated, but 


Figure 5.73
     The Dove prism.

the emerging image is right-handed and rotated through 180°. 

The prism can therefore serve to erect images in telescope sys-

tems, such as gun sights and the like.

r-h

r-h

r-h

r-h

(a)

(b)


Figure 5.74
     The Amici prism.


Figure 5.75
     The rhomboid prism and its mirror equivalent.

45°

(a)

(b)


Figure 5.76
     The penta prism and its mirror equivalent.
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reduce weight and size. Since there are four reflections, the 

30°

exiting image will be right-handed. A small slot is often cut 

in the hypotenuse face to obstruct rays that are internally 

r-h

reflected at glancing angles. Finding these slots after dis-

mantling the family’s binoculars is often an inexplicable 

surprise.


5.6 Fiberoptics


The concept of channeling light within a long, narrow dielec-

tric (via total internal reflection) has been around for quite a 

60°

while. John Tyndall (1870) showed that light could be contained 

within and guided along a thin stream of water. Soon after that, 

r-h

glass “light pipes” and, later, threads of fused quartz were used 

to further demonstrate the effect. But it wasn’t until the early 


Figure 5.77
     The Leman–Springer prism.

1950s that serious work was done to transport images along 

bundles of short glass fibers.

After the advent of the laser (1960), there was an immediate 

Many more reflecting prisms perform specific functions. For 

appreciation of the potential benefits of sending information 

example, if one cuts a cube so that the piece removed has three 

from one place to another using light, as opposed to electric 

mutually perpendicular faces, it is called a corner-cube prism
 . 

currents or even microwaves. At those high optical frequencies 

It has the property of being retrodirective; that is, it will reflect 

(of the order of 1015 Hz), one hundred thousand times more 

all incoming rays back along their original directions. One hun-

information can be carried than with microwaves. Theoretically, 

dred of these prisms are sitting in an 18-inch square array  

that’s the equivalent of sending tens of millions of television 

240 000 miles from here, having been placed on the Moon  

programs all at once on a beam of light. It wasn’t long (1966) 

during the Apollo 11 flight.*

before the possibility of coupling lasers with fiberoptics for 

The most common erecting system consists of two Porro 

long-distance communications was pointed out. Thus began a 

prisms, as illustrated in Fig. 5.78. These are relatively easy 

tremendous technological transformation that’s still roaring 

to manufacture and are shown here with rounded corners to 

along today.

In 1970 researchers at the Corning Glass Works produced  

a silica fiber with a signal-power transmission of better than 1% 

over a distance of 1 km (i.e., an attenuation of 20 dB>km), 

which was comparable to existing copper electrical systems. 

During the next two decades, the transmission rose to about 

96% over 1 km (i.e., an attenuation of only 0.16 dB>km).

Because of its low-loss transmission, high-information- 

r-h

carrying capacity, small size and weight, immunity to electro-

magnetic interference, unparalleled signal security, and the 

abundant availability of the required raw materials (i.e., ordinary 

sand), ultrapure glass fibers have become the premier communi-

cations medium.

As long as the diameter of these fibers is large compared 

with the wavelength of the radiant energy, the inherent wave 

nature of the propagation is of little importance, and the pro-

cess obeys the familiar laws of Geometrical Optics. On the 

other hand, if the diameter is of the order of l, the transmis-

r-h

sion closely resembles the manner in which microwaves  


Figure 5.78
     The double Porro prism.

advance along waveguides. Some of the propagation modes 

are evident in the photomicrographic end views of fibers 

shown in Fig. 5.79. Here the wave nature of light must be 

reckoned with, and this behavior resides in the domain of 

*J. E. Foller and E. J. Wampler, “The Lunar Laser Reflector,”  Sci. Am
 ., March 1970, 

p. 38.

Physical Optics. Although optical waveguides, particularly of 
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The number of reflections  Nr
  is then given by

/


Nr 
 =

± 1


D
 >sin u t



L
  sin u

or 


N



i



r 
 =

± 1 (5.58)


D
 ( n
 2ƒ - sin2 u i
 )1>2

rounded off to the nearest whole number. The ±1, which de-

pends on where the ray strikes the end face, is of no signifi-

cance when  Nr
  is large, as it is in practice. Thus, if  D
  is 50 mm 

(i.e., 50 microns where 1 mm = 10-6 m = 39.37 * 10-6 in.), 

which is about 2 * 10-3 in. (a hair from the head of a human is 

roughly  50 mm in diameter), and if  n
 ƒ = 1.6 and u i 
 = 30°,  N
  

turns out to be approximately 2000 reflections per foot. Fibers 

are available in diameters as small as 2 mm or so but are sel-


Figure 5.79
     Optical waveguide mode patterns seen in the end faces of 

small-diameter fibers. (Narinder S. Kapany, AMP Fellow)

dom used in sizes much less than about 10 mm. Extremely thin 

glass (or plastic) filaments are quite flexible and can even be 

woven into fabric.

The smooth surface of a single fiber must be kept clean (of 

the thin-film variety, are of increasing interest, this discus-

moisture, dust, oil, etc.), if there is to be no leakage of light (via 

sion will be limited to the case of relatively large-diameter 

frustrated total internal reflection). Similarly, if large numbers 

fibers, those about the thickness of a human hair.

of fibers are packed in close proximity, light may leak from one 

Consider the straight glass cylinder of Fig. 5.80 surrounded 

fiber to another in what is known as  cross-talk
 . For these rea-

by an incident medium of index  ni
 —let it be air,  ni 
 =  na
 . Light 

sons, it is customary to enshroud each fiber in a transparent 

striking its walls from within will be totally internally reflected, 

sheath of lower index called a cladding
 . This layer need only be 

provided that the incident angle at each reflection is greater 

thick enough to provide the desired isolation, but for other rea-

than u c 
 = sin-1  na
 > n
 ƒ, where  n
 ƒ is the index of the cylinder or 

sons it generally occupies about one tenth of the cross-sectional 

fiber. As we will show, a  meridional ray
  (i.e., one that is copla-

area. Although references in the literature to simple light pipes 

nar with the central or optical axis) might undergo several thou-

go back 100 years, the modern era of fiberoptics began with the 

sand reflections per foot as it bounces back and forth along a 

introduction of clad fibers in 1953.

fiber, until it emerges at the far end (see photo). If the fiber has 

Typically, a fiber core might have an index ( n
 ƒ) of 1.62, and 

a diameter  D
  and a length  L
 , the path length / traversed by the 

the cladding an index ( nc
 ) of 1.52, although a range of values is 

ray will be

available. A clad fiber is shown in Fig. 5.81. Notice that there is 

a maximum value umax of u i
 , for which the internal ray will 

/ =  L
 >cos u t


impinge at the critical angle, u c
 . Rays incident on the face at 

or from Snell’s Law

/ =  n
 ƒ L
 ( n
 2ƒ - sin2 u i
 )-1>2


n


u


i 
 =  n



t



a


u i



nf


±u i



L



Figure 5.80
     Rays reflected within a dielectric cylinder.

Light emerging from the ends of a loose bundle of glass fibers. (E.H.)
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EXAMPLE 5.11

A fiber has a core index of 1.499 and a cladding index of 1.479. 

When surrounded by air what will be its (a) acceptance angle, 

(b) numerical aperture, and (c) the critical angle at the core–

cladding interface?

u c 
 u t



n


SOLUTION 



f



nc


u i 
 =  
 umax

(b
 ) 
 From Eq. (5.61)


ni


 NA = ( n
 2 f 
 -  n
 2 c
 )1>2 = (1.4992 - 1.4792)1>2


Figure 5.81
     Rays in a clad optical fiber.

NA = 0.244

which is a typical value.

1

angles greater than u

(c
 ) Since  

sin u

max will strike the interior wall at angles 

max  =

 NA


n


= NA 


i


less than u c
 . They will be only partially reflected at each such 

encounter with the core–cladding interface and will quickly 

umax = sin-1(0.244) = 14.1°

leak out of the fiber. Accordingly, umax, which is known as the 

acceptance angle, defines the half-angle of the acceptance cone 

Hence 

2umax = 28.2° 

of the fiber. To determine it, start with

(a
 ) The critical angle follows from

sin u c 
 =  nc
 > n
 ƒ = sin (90° - u t
 )


n



n


1.479

sin 


t



c


u c 
 =

Thus 


nc
 > nƒ 
 = cos u t
  


n 
 =

=


i



nf


1.499

Notice that sin u c
  must be equal to or less than 1.

or 


nc
 > n
 ƒ = (1 - sin2 u t
 )1>2 

u c 
 = sin-1 0.986 6

Making use of Snell’s Law and rearranging terms, we have

u c 
 = 80.6°

1





sin umax =  ( n
 2


n


ƒ -  n
 2 c
 )1>2 (5.59)


i


Bundles of free fibers whose ends are bound together (e.g., 

with epoxy), ground, and polished form flexible lightguides. If 

The quantity  ni
  sin umax is defined as the numerical aperture
 , 

no attempt is made to align the fibers in an ordered array, they 

or NA. Its square is a measure of the light-gathering power of 

form an  incoherent bundle
 . This unfortunate use of the term 

the system. The term originates in microscopy, where the equiv-


incoherent
  (which should not be confused with coherence theory) 

alent expression describes the corresponding capabilities of the 

just means, for example, that the first fiber in the top row at the 

objective lens. The acceptance angle
   (2umax) corresponds to 

entrance face may have its terminus anywhere in the bundle at 

the vertex angle of the largest cone of rays that can enter the 

the exit face. These  flexible light carriers
  are, for that reason, 

core of the fiber. It should clearly relate to the  speed
  of the 

relatively easy to make and inexpensive. Their primary function 

system, and, in fact,

is simply to conduct light from one region to another. Conversely, 

when the fibers are carefully arranged so that their terminations 

1


 


ƒ># =

 (5.60)

occupy the same relative positions in both of the bound ends of 

2(NA)

the bundle, it is said to be  coherent
 . Such an arrangement is 

capable of transmitting images and is consequently known as a 

Thus for a fiber


flexible image carrier
 .





NA = ( n
 2

Coherent bundles are frequently fashioned by winding fibers 

ƒ -  n
 2 c
 )1>2 (5.61)

on a drum to make ribbons, which are then carefully layered. 

The left-hand side of Eq. (5.59) cannot exceed 1, and in air  

When one end of such a device is placed face down flat on an il-

( n


luminated surface, a point-by-point image of whatever is beneath 


a 
 = 1.000 28 ≈ 1) that means that the largest value of NA is 

1. In this case, the half-angle u

it will appear at the other end (see photo). These bundles can be 

max equals 90°, and the fiber to-

tally internally reflects all light entering its face (Problem 5.93).  

tipped off with a small lens, so that they need not be in contact 

Fibers with a wide variety of numerical apertures, from about 

with the object under examination. Nowadays it is common to 

0.2 up to and including 1.0, are commercially obtainable. 

use fiberoptic instruments to poke into all sorts of unlikely places, 
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A stack of cover-glass slides held together by a rubber band serves as a 

coherent lightguide. (E.H.)

other to match the detector. Incidentally, a naturally occurring 

fibrous crystal known as ulexite, when polished, responds sur-

A coherent bundle of 10-mm glass fibers transmitting an image even 

prisingly like a fiberoptic mosaic. (Hobby shops often sell it for 

though knotted and sharply bent. (American ACMI Div., American Hospital Supply Corp.)

use in making jewelry.)

If you have never seen the kind of light conduction we’ve 

been talking about, try looking down the edges of a stack of 

microscope slides. Even better are the much thinner (0.18-mm) 

from nuclear reactor cores and jet engines to stomachs and repro-

cover-glass slides (see photo).

ductive organs. When a device is used to examine internal body 

Today fiberoptics has three very different applications: it is 

cavities, it’s called an  endoscope
 . This category includes bron-

used for the direct (short-distance) transmission of images and 

choscopes, colonoscopes, gastroscopes, and so forth, all of which 

illumination, it provides a variety of remarkable waveguides 

are generally less than about 200 cm in length. Similar industrial 

used in telecommunications, and it serves as the core of a new 

instruments are usually two or three times as long and often con-

family of sensors. Transmitting images over distances of a few 

tain from 5000 to 50 000 fibers, depending on the required image 

meters with coherent bundles, however beautiful and however 

resolution and the overall diameter that can be accommodated. 

useful, is a rather unsophisticated business that doesn’t start to 

An additional incoherent bundle incorporated into the device 

utilize the full potential inherent in fiberoptics. The application 

usually supplies the illumination.

Not all fiberoptic arrays are made flexible; for example, 

fused, rigid, coherent fiber faceplates, or mosaics, are used to 

replace homogeneous low-resolution sheet glass on cathode-ray 

tubes, vidicons, image intensifiers, and other devices. Mosaics 

consisting of literally millions of fibers with their claddings 

fused together have mechanical properties almost identical to 

those of homogeneous glass. Similarly, a sheet of fused tapered 

fibers can either magnify or minify an image, depending on 

whether the light enters the smaller or larger end of the fiber. 

The compound eye of an insect such as the housefly is effec-

tively a bundle of tapered fiberoptical filaments. The rods and 

cones that make up the human retina may also channel light 

through total internal reflection. Another common application 

of mosaics involving imaging is the field flattener. If the image 

formed by a lens system resides on a curved surface, it is often 

desirable to reshape it into a plane, for example, to match a film 

plate. A mosaic can be ground and polished on one of its end 

An X-ray showing a colonoscope being used to examine a patient for  

surfaces to correspond to the contour of the image and on the 

cancer of the colon. (Pearson Education, Inc.)
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fibers—see Fig. 5.82 c
 ). It has regenerators or repeaters (to 

boost the signal strength) every 50 km (30 mi) or more. This 

feature is tremendously important in long-distance communi-

cations. Ordinary wire systems require repeaters roughly every 

kilometer; electrical coaxial networks extend that range to about 

2 to 6 km; even radio transmissions through the atmosphere 

need regeneration every 30 to 50 km. The repeaters used until the 

mid-1990s were electro-optical hybrids that converted the 

weakened optical signal into an electrical one, amplified it, and 

then, using semiconductor lasers, reintroduced it into the fiber.

A major determining factor in the spacing of repeaters is the 

A remarkably detailed view as seen through a fiberoptic colonoscope. (E.H.)

power loss due to attenuation of the signal as it propagates down 

the line. The decibel (dB) is the customary unit used to designate 

of lightguides to telecommunications is rapidly replacing cop-

the ratio of two power levels, and as such it can provide a con-

per wires and electricity as the primary information pathway. 

venient indication of the power-out ( Po
 ) with respect to the 

Worldwide, in the first few decades after 1970 well over  

power-in ( Pi
 ). The number of dB = -10 log10( Po
 > Pi
 ), and hence 

100 million kilometers of fibers were installed. It’s been 

a ratio of 1:10 is 10 dB, 1:100 is 20 dB, 1:1000 is 30 dB, and so 

estimated that today, every day, enough fiberoptic cable is in-

on. The attenuation (a) is usually specified in decibels per kilo-

stalled to circle the Earth several times. In a different vein, fi-

meter (dB>km) of fiber length ( L
 ). Thus -a L
 >10 = log10( Po
 > Pi
 ), beroptic sensors—devices that measure pressure, sound, tem-and if we raise 10 to the power of both sides,

perature, voltage, current, liquid levels, electric and magnetic 






Po
 > Pi 
 = 10-a L
 >10 (5.62)

fields, rotations, and so forth—have become the latest manifes-

tation of the versatility of fibers.

As a rule, reamplification of the signal is necessary when the 

power has dropped by a factor of about 10-5. Commercial opti-

cal glass, the kind of material available for fibers in the mid-

1960s, has an attenuation of about  1000 dB


5.6.1 Fiberoptic Communications Technology


>km. Light, after 

being transmitted 1 km through the stuff, would drop in power 

The high frequencies of light allow for an incredible data-handling 

by a factor of 10-100, and regenerators would be needed every 

capacity. For example, with sophisticated transmitting techniques, 

50 m (which is little better than communicating with a string 

a pair of copper telephone wires can be made to carry about two 

and two tin cans). By 1970 a   
 was down to about 20 dB>km  

dozen simultaneous conversations. That should be compared 

for fused silica (quartz, SiO2), and it was reduced to as little as 

with a single, ongoing, simple television transmission, which is 

0.16 dB>km in 1982. This tremendous decrease in attenuation 

equivalent to about 1300 simultaneous telephone conversations, 

was achieved mostly by removing impurities (especially the 

and that, in turn, is roughly the equal of sending some 2500 type-

ions of iron, nickel, and copper) and reducing contamination by 

written pages each second. Clearly, at present it’s quite impracti-

OH groups, largely accomplished by scrupulously eliminating 

cal to attempt to send television over copper telephone lines. Yet 

any traces of water in the glass (p. 74). Today the purest fibers 

by the mid-1980s it was already possible to transmit in excess of 

can carry signals up to 80 km before needing reamplification.

12 000 simultaneous conversations over a  single pair
  of fibers—

By the beginning of the twenty-first century, two major ad-

that’s more than nine television channels. Each such fiber has a 

vances had already begun to dramatically increase the data 

line rate of about 400 million bits of information per second (400 

handling capacity of long-distance fiberoptic cables. The first 

Mb>s), or 6000 voice circuits. Fibers of this sort (with repeaters 

innovation was the introduction of erbium-doped fiber ampli-


spaced every 40 km or so) formed the world’s intercity long-haul 


fiers 
 (EDFAs). These are single-mode fibers that have ions of 

telecommunications grids. In the early 1990s researchers used 

the rare-earth element erbium infused into their cores at levels 


solitons
 —carefully shaped pulses that travel without chang-

of 100 to 1000 ppm. Having a good conversion efficiency, 

ing—to attain transmission rates of around 4 Gb>s. This is the 

they’re typically pumped at 980 nm (for the highest level of 

equivalent of 70 simultaneous color TV channels sent more than 

inversion) or 1480 nm (for the highest quantum efficiency) by 

a million kilometers.

diode lasers putting out around 200 mW. The resulting excited 

The first fiberoptic transatlantic cable TAT-8 was designed, 

erbium atoms reradiate, via stimulated emission induced by 

using some clever data-handling techniques, to carry 40 000 

photons from the faded signal, and thereby reenergize the flow 

conversations at once over just two pairs of glass fibers. TAT-1, 

of data. This happens along the entire length of the amplifier, 

a copper cable installed in 1956, could carry a mere 51 conver-

and it can boost the power (usually held to milliwatt levels) of 

sations, and the last of the bulky copper versions, TAT-7 (1983), 

a wide range of frequencies simultaneously. Fiberoptic ampli-

can handle only about 8000. The TAT-8, which began operations 

fiers eliminated the bottleneck caused by the previous genera-

in 1988, functions at 296 Mb>s (using single-mode 1300-nm 

tion of electronic hybrid repeaters. 
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The second innovation was the application of a new data- 

handling technique called dense wavelength division multi-



plexing
  (DWDM). The word “multiplexing” means the use of 

a single pathway to simultaneously transmit several signals 

mode

that nonetheless retain their individuality. At the present it’s 

Lo

Axial

w order

mode

not hard to send upwards of 160 optical channels carrying dif-

High

Core

ferent signals, all transmitted at the same time over the same 

order

Cladding

fiber at different frequencies. And it won’t be long before 

1000 channels per fiber is commonplace. Typically, each 

channel has a data rate of 10 Gb>s or more, and these are each 

Intermodal

spaced by 50 to 100 GHz. Every major telecommunications 

dispersion

carrier is already using DWDM. The latest transatlantic cables 

(nm/km)

contain four fiber pairs, each capable of carrying 48 DWDM 

channels and each of these flows data at a rate of 10 Gb>s. 


Figure 5.83
     Intermodal dispersion in a stepped-index multimode fiber.

That’s a net capacity of 4 * 48 * 10 Gb>s or 1.9 Tb>s. Com-

mercial links operating at 40 Gb>s per channel are already in 

which energy can propagate down the core (Fig. 5.83). This 

service.

then is a multimode fiber
 , wherein each mode corresponds to 

Figure 5.82 depicts the three major fiber configurations 

a slightly different transit time. A fiber is an optical waveguide, 

used in communications today. In ( a
 ) the core is relatively 

and the precise manner in which “light” propagates along that 

wide, and the indices of core and cladding are both constant 

sort of channel can be quite complicated (Fig. 5.79). The various 

throughout. This is the so-called stepped-index fiber
 , with a 

patterns of propagation or  modes
  can be studied theoretically 

homogeneous core of roughly 50 to 200 mm and cladding typi-

using Maxwell’s Equations. A highly useful parameter that 

cally 20 mm thick. The oldest of the three types, the stepped-

comes out of such an analysis is the V-number
 :

index fiber was widely used in first-generation systems (1975–

p D
  NA

1980). The comparatively large central core makes it rugged 





V@number =


 


(5.63)

l0

and easily infused with light, as well as easily terminated and 

coupled. It’s the least expensive but also the least effective of 

where  D
  is the diameter of the core and l0 is the vacuum wave-

the lot, and for long-range applications, it has some serious 

length of the transmitted radiant energy. For a stepped-index 

drawbacks.

fiber the detailed theoretical analysis shows that as the V-number 

Depending on the launch angle into the fiber, there can be 

increases beyond a value of 2.405 the number of modes
  ( Nm
 ) 

hundreds, even thousands, of different ray paths or modes by 

increases rapidly, and once there are several present


 



Nm 
 ≈ 12 (V@number)2 (5.64)


n


Increasing the fiber’s core diameter, or its index of refraction, 

increases the number of modes. By contrast, increasing the 

cladding index or the wavelength decreases the number of 

modes the fiber will support. In a stepped-index fiber most of 

the energy will be confined to the core but there will be penetra-

(a)


n


tion into the cladding where evanescent waves will travel.

Another parameter that comes up frequently is the fractional 



refractive index difference
 ,  ( n
 ƒ -  nc
 )> n
 ƒ. This quantity, the 

square root of which is proportional to the numerical aperture, 

is  V 1 when the core (or fiber) index ( n
 ƒ) is close to the clad-

ding index ( nc
 ). That condition is known as the weakly guiding 


(b)


approximation
  whereupon the waveguide analysis simplifies 


n


considerably. Under that approximation a set of linearly polar-

ized (LP) modes that are symmetric about the central axis can 

exist in the fiber. The simplest mode is LP01, where the sub-

scripts relate to the number of nodes (regions of zero irradiance) 

in the beam. Here the 0 subscript means that there are no azi-

(c)

muthal or angular nodes in the beam’s cross section. The 1 sub-

script tells us that there is a single radial node marking the outer 


Figure 5.82
     The three major fiberoptic configurations and their index 

profiles. ( a
 ) Multimode stepped-index fiber. ( b
 ) Multimode graded-index 

boundary of the beam. The simplest irradiance distribution is 

fiber. ( c
 ) Single-mode stepped-index fiber.

bell-shaped with the peak on the central axis. 
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When the V-number exceeds 2.405, which is the first zero of 

the zeroth-order Bessel function solution for a cylindrical wave-

guide, the next mode, LP11, can exist in the fiber along with the 

LP01 mode. When the V-number exceeds 3.832, which is the 

first zero of the first-order Bessel function solution, two more 

modes, LP02 and LP21, can be sustained, and so on. A short-haul 

multimode telecom fiber might have  D 
 = 100 mm  
 and NA 5 

0.30, whereupon operating at 633 nm, its V-number is 148 and 

the number of modes it supports is  Nm 
 = 11 * 103. 

The quantity of energy transported in each mode depends 


Figure 5.84
     Rectangular pulses of light smeared out by increasing 

on the launch conditions. The angular spread (or NA) of the 

amounts of dispersion. Note how the closely spaced pulses degrade more 

input beam can be greater than the spread that can be accepted 

quickly.

by the fiber (i.e., greater than the NA of the fiber). Moreover, 

the diameter of the input beam can be greater than the diameter 

time of travel is just the axial length  L 
 divided by the speed of 

of the core. In that case some of the signal light cannot enter 

light in the fiber:

the fiber, which is then said to be overfilled
 . When the oppo-

site condition applies and the fiber can accept more light than 


L



L



Ln
 ƒ






t
 min =

=

=

 (5.65)

it is receiving, it is said to be underfilled
 . That usually means 


v
 ƒ


c
 > n
 ƒ


c


a narrow cone of rays enters the fiber and only low-order 

modes are sustained. On the other hand, overfilling results in 

The nonaxial route (/), given by / =  L
 >cos u t
 , is longest when 

higher attenuation because rays entering more steeply reflect 

the ray is incident at the critical angle, whereupon  nc
 > n
 ƒ = cos u t
 . 

off the core–cladding interface more frequently and undergo 

Combining these two, we get / =  Ln
 ƒ> nc
 , and so

increased losses via evanescent waves spreading out into the 

cladding.

/


Ln
 ƒ> nc



Ln
 2ƒ


 



t


In a multimode fiber higher-angle rays travel longer paths; 

=

=


 


(5.66)

 max =  v
 ƒ


c
 > n
 ƒ


cnc


reflecting from side to side, they take longer to get to the end of 

the fiber than do rays moving along the axis. This is loosely 

Thus it follows that, subtracting Eq. (5.65) from Eq. (5.66), 

spoken of as intermodal dispersion
  (or often just  modal  



Ln



dispersion
 ), even though it has nothing to do with a frequency-

ƒ  n
 ƒ





∆ t 
 =

 a

dependent index of refraction. Information to be transmitted is 


c



n 
 - 1b (5.67)


c


usually digitized in some coded fashion and then sent along the 

fibers as a flood of millions of pulses or bits per second. The 

As an example, suppose  n
 ƒ = 1.500  
 and  nc 
 = 1.489. The delay, 

different transit times have the undesirable effect of changing 

∆ t
 > L
 , then turns out to be 37 ns>km. In other words, a sharp 

the shape of the pulses of light that represent the signal. What 

pulse of light entering the system will be spread out in time 

started as a sharp rectangular pulse can smear out, after travel-

some 37 ns for each kilometer of fiber traversed. Moreover, 

ing a few kilometers within the fiber, into an unrecognizable 

traveling at a speed  v
 ƒ =  c
 > n
 ƒ = 2.0 * 108 m>s, it will spread 

blur (Fig. 5.84).

in space over a length of 7.4 m>km. To make sure that the trans-

The total time delay between the arrival of the axial ray and 

mitted signal will still be easily readable, we might require that 

the slowest ray, the one traveling the longest distance, is ∆ t
  =

the spatial (or temporal) separation be at least twice the spread-


t
  

out width (Fig. 5.85). Now imagine the line to be 1.0 km long. 

max -  t
  min. Here, referring back to Fig. 5.81, the minimum 

7.4 m

7.4 m

14.8 m

(37 ns)

1.0 km

14.8 m


Figure 5.85
     The spreading of an input signal due to intermodal dispersion.
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In that case, the output pulses are 7.4 m wide on emerging from 

dispersion of only around 2 ns>km. They are intermediate in 

the fiber and so must be separated by 14.8 m. This means that 

price and have been widely used in medium-distance intercity 

the input pulses must be at least 14.8 m apart; they must be 

applications.

separated in time by 74 ns and so cannot come any faster than 

Multimode fibers with core diameters of 50 mm or more are 

one every 74 ns, which is a rate of 13.5 million pulses per 

often fed by  light-emitting diodes
  (LEDs). These are compara-

second. In this way the intermodal dispersion (which is typi-

tively inexpensive and are commonly used over relatively short 

cally 15 to 30 ns>km) limits the frequency of the input signal, 

spans at low transmission rates. The problem with them is that 

thereby dictating the rate at which information can be fed 

they emit a fairly broad range of frequencies. As a result, ordi-

through the system. Stepped-index multimode fibers are used 

nary  material
  or  spectral dispersion
 , the fact that the fiber index 

for low-speed, short-distance lines.

is a function of frequency, becomes a limiting factor. That dif-

These large-core fibers are used mainly in image transmis-

ficulty is essentially avoided by using spectrally pure laser-

sion and illumination bundles. They’re also useful for carrying 

beams. Alternatively, the fibers can be operated at wavelengths 

high-power laserbeams where the energy is distributed over a 

near  1.3 mm, where silica glass (see Figs. 3.40 and 3.41) has 

larger volume, thereby avoiding damage to the fiber.

little dispersion.

The last, and best, solution to the problem of intermodal 

dispersion is to make the core so narrow (less than 10 mm) 


EXAMPLE 5.12


that it will provide only one mode wherein the rays travel par-

A stepped-index multimode fiber has a core radius of 40 mm 

allel to the central axis (Fig. 5.82 c
 ). Such single-mode fibers
  

and a numerical aperture of 0.19. Given that it operates at a vac-

of ultrapure glass (both stepped-index and the newer graded-

uum wavelength of 1300 nm, determine the number of modes 

index) provide the best performance. 

it supports.

A single-mode fiber is designed to allow only the funda-

mental mode at a particular wavelength to propagate along its 

SOLUTION 

core. This can be achieved in the case of a stepped-index fiber 

From the definition

by adjusting the V-number to be less than 2.405 (the corre-

sponding V-number for a parabolic graded-index fiber is 3.40 

p D
  NA

V@number =

and for one with a nearly triangular index profile it’s 4.17). 

l 0

That’s accomplished by making the fiber’s diameter quite 

small (typically 9 mm) while reducing the difference between 

and the number of modes is

the indices of the core and cladding, thereby causing the nu-

merical aperture to be small as well. There will then be a 


Nm 
 = 12 (V@number)2

wavelength that is the smallest possible one in which only the 

Thus

fundamental mode will be sustained; using any shorter wave-

length will increase the V-number and result in multimode 

p 2(40 * 10-6 m) 0.19

propagation. This is the so-called cut-off wavelength
  l c
 , which 

V@number =

1300 * 10-9 m

follows from Eq. (5.63) for a stepped-index fiber:

V@number = 36.73

p D
  NA


 


l c 
 =

 (5.68)

2.405

and so

As we have seen, the irradiance distribution across a single-


Nm 
 ≈ 12 36.732 ≈ 674.6

mode fiber has a bell shape, peaking at the central axis and 

There will be approximately 674 modes.

actually extending beyond the core well into the cladding. In 

other words, the diameter of the mode field
  (twice the distance 

from the central axis to where the irradiance has dropped by a 

The problem of delay differences can be reduced as much as 

factor of 1> e
 2 = 0.135) is somewhere between 10% and 15% 

a hundredfold by gradually varying the refractive index of the 

larger than the core diameter. The emerging spot of light is 

core, decreasing it radially outward to the cladding (Fig. 5.82 b
 ). 

therefore larger than the core. Because the cladding carries a 

Instead of following sharp zigzag paths, the rays then smoothly 

portion of the radiant energy, any light extending beyond the 

spiral around the central axis. Because the index is higher along 

limits of the cladding itself is lost. Accordingly, the cladding on 

the center, rays taking shorter paths are slowed down by propor-

a stepped-index single-mode fiber is usually 10 times thicker 

tionately greater amounts, and rays spiraling around near the 

than the core diameter. Such a fiber might have an 8.2@mm 


cladding move more swiftly over longer paths. The result is that 

core, and a mode-field diameter of 9.2 mm at a wavelength of 

all the rays tend to stay more or less together in these multi-

1310 nm; that would increase to perhaps 10.4 mm at 1550 nm. 

mode graded-index fibers
 . Typically, a graded-index fiber has 

Single-mode fibers, typically having core diameters of only 

a core diameter of about 20 mm to 90 mm and an intermodal 

2 mm to 9 mm (around 10 wavelengths), essentially eliminate 
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intermodal dispersion. Although they are relatively expensive 

been lowered by the addition of fluorine. That index-depressed 

and require laser sources, these fibers operated at 1.55 mm (where 

region is itself surrounded by a sheath of pure silica creating a 

the attenuation is about 0.2 dB>km, not far from the ideal silica 

second interface. 

value of 0.1 dB>km) are today’s premier long-haul lightguides. A 

pair of such fibers may someday connect your home to a vast 


Holey / Microstructured Fibers


network of communications and computer facilities, making the 

era of the copper wire seem charmingly primitive.

In the 1990s a very promising fiber type came into existence, 

and it was soon known (jokingly at first) as holey 
 or, more in-

EXAMPLE 5.13

clusively, as microstructured fiber
 . Today these devices come 

in two distinct configurations that differ in operation and appli-

A stepped-index single-mode fiber has indices of 1.446 and 1.467. 

cation: the photonic-crystal hollow-core bandgap fiber and the 

It is to be used at a wavelength of 1.300 mm. Determine the max-

photonic-crystal solid-core fiber. These two categories are basi-

imum core diameter. Compare the diameter to the wavelength.

cally distinguished by whether the light-carrying fiber core is 

SOLUTION 

hollow or solid.

The condition for single-mode propagation is 

A crystal is an ordered array of atoms that because of its 

periodicity can scatter waves—whether they are quantum me-

p D


V

 ( n
 2

chanical electron waves or traditional electromagnetic waves—

@number =


f 
 -  n
 2 c
 )1>2 … 2.405

l0

producing interesting, highly useful effects. Guided by that un-

p D


derstanding we should be able to scale things up and construct 

 (1.4672 - 1.4462)1>2 … 2.405

1300 nm

macroscopic periodic arrays of different dielectrics that will 

similarly scatter long-wavelength EM waves in a controllable 

p D
  (0.06117)1>2 … 3.126 5 * 10-6 





fashion. That much has already been accomplished and re-

p D 
 … 1.264

searchers are now working to produce man-made structures, 

“crystals” (which look nothing like natural crystals), that will 

and 


D 
 … 4.02 mm 

operate in the visible region of the spectrum. All such inhomo-

The diameter is 4.0 mm, while the wavelength is 1.3 mm—quite 

geneous more-or-less periodic dielectric constructions are 

comparable.

known as photonic crystals
 . 

In an 1887 paper titled “The Propagation of Waves Through 

a Medium Endowed with a Periodic Structure,” Lord Rayleigh 

Pure fused silica (silica dioxide, SiO2) is the mainstay of 

showed that in a laminated medium, waves of the right wave-

high-quality ultra-low-loss telecom fibers. Nowadays dopants 

length would be completely reflected backward toward whence 

are added to the silica to alter its characteristics as needed.  

they came. It would be as if they encountered a kind of forbid-

Germanium dioxide (GeO2) in tiny amounts raises the index of 

den band across which they could not pass. We now know that 

refraction, as does phosphorus pentoxide (P2O5). On the other 

when electron waves move through the periodic structure of a 

hand, fluorine (F) lowers the index, as does boron trioxide 

semiconductor crystal they partially scatter off each encountered 

(B2O3). Today the single-mode stepped-index fiber shown in 

atomic layer. If the de Broglie electron wavelength happens to 

Fig. 5.82 c
 , sometimes called a  matched cladding fiber
 , would 

match the regular atomic-layer spacing, wavelets reflected 

likely be fabricated using a pure silica cladding surrounding a 

backward combine constructively, resulting in complete reflec-

silica core that was infused with germanium dioxide to increase 

tion of the electron waves and the extinction of the transmitted 

its refractive index a fraction of a percent (usually  60.5%).  

beam. This sort of conceptual obstruction is known as an energy 

Figure 5.86 shows a similar design known as a  depressed clad-



bandgap
 . In other words, electron waves in a crystal can be 


ding fiber
 . It has a fused silica core lightly doped with germa-

imagined separated into energy bands by gaps wherein propa-

nium dioxide, surrounded by a silica cladding whose index has 

gation is forbidden. In a solid at low temperature, electrons have 

low energies and occupy the so-called  valence band
 . In semi-

8–10 mm


n


conductors and insulators a bandgap separates the valence band 

from the  conduction band
 , which is above it in energy. Only 

electrons that gain enough energy to traverse the bandgap can 


n
 1

enter the conduction band and move about freely.

6°

Analogous bandgaps can exist for electromagnetic waves 


n
 2

propagating in macroscopic periodic dielectric composites (i.e., 


n
 3

photonic crystals). We can fabricate dielectric structures that 

will suppress the transmission of EM waves within a certain 

∼70 mm

frequency range known as a photonic bandgap
 . In this chapter 


Figure 5.86
     A depressed-cladding fiber. 

we are primarily concerned with fibers and the propagation of 
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light along their lengths. Therefore consider a silica fiber (see 

photo) containing a regular array of tiny-diameter cylindrical 

holes running parallel to its central axis along its entire length, 

forming an elongated two-dimensional bandgap structure. 

These tiny holes are clustered about a central hole that is usu-

ally somewhat larger than the others. This is a hollow-core 

photonic-bandgap fiber. 

Looking down the fiber’s axis the surrounding cladding, 

which is an alternating glass–air–glass–air periodic dielectric 

array, scatters radiant energy, producing a bandgap that obstructs 

the forward propagation of a specific range of frequencies. The 

idea is to engineer the cladding to have a bandgap in the fre-

quency range of interest and thereby trap that “light” within the 

fiber. The cladding blocks all wavelengths other than a narrow 

band, essentially restraining the beam to propagate down the 

A hollow-core photonic bandgap fiber. (Tim Birks, University of Bath)

hollow air-filled core, which might be around only 15 mm in 

diameter. The core is a kind of “defect” in the photonic crystal 

lattice, and as much as 99.5% of the “light” could be funneled 

wavelength, l c
  [Eq. (5.68)]. That is, there is no minimum wave-

into it. Put another way, if a photonic bandgap is created in the 

length such that shorter waves can establish the transmission of 

visible region of the spectrum the crystal would clearly be use-

a second, or higher, mode. This occurs because the average in-

less for conveying light. Introducing a “defect,” the core (be it 

dex of the cladding increases as the frequency of the “light” 

filled or hollow) breaks the symmetry. The core then functions 

increases. Endless single-mode operation happens because the 

as a waveguide for those frequencies expelled from the clad-

refractive index step between the core and cladding decreases 

ding. All other wavelengths that might enter the hollow core 

with a decrease in wavelength. That decreases the numerical 

quickly leak out because the cladding, albeit full of holes, none-

aperture and hence it proportionately decreases the cut-off 

theless has a higher average index than air. Such a fiber could be 

wavelength.

constructed to channel a beam with a bandwidth of perhaps 200 nm 

Although the periodic microstructural variation of the di-

at around 1550 nm along the open core.

electric constant of a solid-core photonic crystal fiber scatters 

Because it has a hollow air-filled central channel, a photonic-

light internally in a complex fashion, its overall operation can 

crystal fiber can carry more energy than a conventional solid 

be considered more simply as a process of modified total inter-

glass telecom fiber. And that means a potentially far greater  

nal reflection. Here the cladding has an average refractive in-

information-carrying capacity, perhaps as much as 100 times 

dex, which is effectively lowered from that of the silica medium, 

greater. An ordinary stepped-index high-purity glass fiber ab-

and therefore the core, by the presence of the lattice of holes. 

sorbs and scatters light to some extent, attenuating signals trans-

One of the most important features of solid-core holey fibers 

mitted over great distances. Moreover, because of dispersion in 

arises from our ability to engineer useful dispersion characteristics 

the glass the signal pulses spread out, broadening as they propa-

that are very different from those of the constituent transparent 

gate, blurring into one another, and thereby limiting the range 

over which high-density data can be successfully transmitted. 

By contrast, in an air-core photonic crystal fiber both absorp-

tion and dispersion are essentially negligible. Another problem-

atic effect arises when “light” travels very far through a medium 

like glass that is slightly nonlinear. No such issue arises when 

“light” propagates in the air of the hollow core.

Now imagine a photonic-crystal fiber with a small solid 

core—that is, one again composed of a narrow glass cylinder 

penetrated by a regular array of closely spaced tiny-diameter 

holes parallel to the axis, running the entire length of the fiber. 

However, this time the central core is glass (see photo). The first 

successful fiber of this sort appeared in early 1996, and it had 

the remarkable property of supporting only the single funda-

mental mode for all wavelengths. The beehive-like cladding 

allowed all of the higher-order modes to leak out. In other 

words, solid-core photonic-crystal fibers can be fabricated that 

A solid-core endless single-mode photonic crystal fiber. 

are “endlessly” single modal inasmuch as they lack a cut-off 

(Tim Birks, University of Bath)
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solid from which they are made. Today complex structures of dif-

Single-mode

ferently sized and shaped holes in various patterns (both symmet-

optical fiber

ric and asymmetric) are being utilized in special photonic-crystal 

Reflector

fiber designs. Given their endless single-mode capability, large 

mode-field diameter, low bending loss, and ease of dispersion tun-

ing, solid-core holey fibers have tremendous promise for broad-

band transmission.

Lens

Holey fibers are usually constructed by first assembling a 

stack of several hundred silica rods and thin-walled hollow 

tubes, forming a bundle perhaps a meter long and 2 to 4 cm in 

diameter, called a  preform
 . The preform is heated to  ≈180° C 

and drawn down to a diameter of 2 to 4 mm. The resulting glass 

shaft is then placed into a sleeve, which is a silica tube, and the 

entire assembly is again heated and drawn down to a diameter 

Micromirror

of about 125 mm. Final lengths of a few kilometers are typical.

(a)


The Optical Switch


Wandering through the Internet requires rapidly channeling 

vast amounts of data from one fiberoptic route to another. At the 

end of the twentieth century, this was accomplished at network 

hubs where pulses of light were converted into electrical signals 

that could subsequently be switched around electronically. 

Only then were the packets of data converted back into pulses 

of light to continue the journey. Unfortunately, electronic 

switches are bulky, expensive, and relatively slow—not up to 

the task of meeting future demands. Until very recently, there 

was little hope that this so-called electronic bottleneck would 

soon be alleviated. But things changed dramatically at the turn 

of the new millennium with the introduction of several photonic 

(b)

switching systems. 

Figure 5.87 depicts an all-optical switch utilizing MOEMS
  


Figure 5.87    
 ( a
 ) An optical switch that uses tiny steerable mirrors to redi-

(Micro-OptoElectroMechanical Systems) technology (p. 183).  

rect pulses of light. (Used with permission of Alcatel-Lucent USA Inc.) ( b
 ) The array of 

tiltable mirrors. 

The end faces of hundreds of incoming and outgoing fibers 

(Used with permission of Alcatel-Lucent USA Inc.)

are capped with tiny lenses at the top of the assembly. A down-

ward pulse of photons enters, hits a micromirror (only 0.5 mm 

in diameter) whose orientation is electronically controlled, 

can also be totally internally reflected (p. 125) off an air–glass 

“bounces off” a large reflector, strikes another controllable mi-

interface (rather than a glass–air interface). The critical angle, 

cromirror, and emerges into a designated output fiber, all read-


measured up from the surface
 , is typically only about 0.2° for 

justable in a matter of milliseconds. MOEMS  
 switches have 

10 keV (≈0.12 nm) X-rays. Figure 5.88 shows how a beam 

already been deployed into the network to control data traffic. 

follows the curve of a hollow capillary tube via multiple grazing-

Eventually, optical switches will support the petabit-per-second, 

incidence reflection at the internal air–glass interface. Bending 

Pb/s (that’s American quadrillion, 1015) telecommunications 

the path of X-rays is otherwise a daunting business.

system that’s not far off in the future. Beyond that is the all-

A single glass thread with a diameter of 300 to 600 mm can 

optical worldwide Telephone-TV-Internet purring along at rates 

be fabricated so that it contains thousands of fine capillary chan-

as yet unimagined.

nels each from 3 to 50 mm in diameter (see photo). Thousands of 


Capillary Optics


Fiberoptics works by having radiant energy (of a relatively low 

frequency, namely, light or IR) totally internally reflect off a 

high-index>low-index interface within a narrow solid waveguide. 


Figure 5.88  
   Multiple grazing-incidence reflections of X-rays within a  

Similarly, high-frequency EM-radiation (especially X-rays) 

hollow glass fiber.
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5.7.1 Eyes


For our purposes, three main groupings of eyes can readily be 

distinguished: those that gather radiant energy and form images 

via a single-centered lens system, those that utilize a multifac-

eted arrangement of tiny lenses (feeding into channels resem-

bling optical fibers), and the most rudimentary, those that sim-

ply function with a small lensless hole (p. 220). In addition to 

light-sensing eyes, the rattlesnake has infrared pinhole “eyes” 

called pits, which might be included in this last group.

Visual lens systems of the first type have evolved indepen-

dently and remarkably similarly in at least three distinct kinds 

of organisms. Some of the more advanced mollusks (e.g., the oc-

topus), certain spiders (e.g., the avicularia), and the vertebrates, 

ourselves included, possess eyes that each form a single con-

tinuous real image on a light-sensitive screen or retina. By com-

A scanning electron micrograph of a single multichannel thread containing 

hundreds of hollow capillaries. 

parison, the multifaceted compound eye (Fig. 5.90) developed 

(X-Ray Optical Systems, Inc. Albany, New York)

independently among arthropods, the creatures with articulated 

bodies and limbs (e.g., insects and crayfish). It produces a mo-

(a)

saic sensory image composed of many small-field-of-view spot 

contributions, one from each tiny segment of the eye (as if one 

were looking at the world through a tightly packed bundle of 

exceedingly fine tubes). Like a television picture made up of 

different-intensity dots, the compound eye divides and digitizes 

the scene being viewed. There is no real image formed on a 

retinal screen; the synthesis takes place electrically in the ner-

(b)

vous system. The horsefly has about 7000 such segments, and 

the predatory dragonfly, an especially fast flyer, gets a better 

view with 30 000, as compared with some ants that manage 

with only about 50. The more facets, the more image dots, and 

the better the resolution, the sharper the composite picture. This 

may well be the oldest of eye types: trilobites, the little sea crea-

tures of 500 million years ago had well-developed compound 

eyes. Remarkably, however different the optics, the chemistry 


Figure 5.89  
   A bundle of multicapillary threads used to ( a
 ) focus or  

( b
 ) collimate the X-rays from a point source.

of the image-sensing mechanisms in all Earth animals is quite 

similar.

such multichannel threads (Fig. 5.89) are then used together 

to conveniently focus or collimate X-ray beams in a way never 

before possible.


Structure of the Human Eye


The human eye can be thought of as a positive double-lens ar-

rangement that casts a real image on a light-sensitive surface. 

That notion, in a rudimentary form, was apparently proposed by 


5.7 Optical Systems


Kepler (1604), who wrote, “Vision, I say, occurs when the im-

age of the . . . external world . . . is projected onto the . . . con-

We have developed paraxial theory to a point where it is pos-

cave retina.” This insight gained wide acceptance only after a 

sible to appreciate the principles underlying the majority of 

lovely experiment was performed in 1625 by the German Jesuit 

practical optical systems. To be sure, the subtleties involved in 

Christopher Scheiner (and independently, about five years later, 

controlling aberrations are extremely important and still be-

by Descartes). Scheiner removed the coating on the back of an 

yond this discussion. Even so, one could build, for example, a 

animal’s eyeball and, peering through the nearly transparent 

telescope (admittedly not a very good one, but a telescope 

retina from behind, was able to see a minified, inverted image 

nonetheless) using the conclusions already drawn from first-

of the scene beyond the eye. Although it resembles a simple 

order theory.

camera (p. 179), the seeing system (eye, optic nerve, and visual 

What better starting point for a discussion of optical instru-

cortex) functions much more like a closed-circuit computerized 

ments than the most common of all—the eye?

television unit.

M05_HECH7226_05_SE_C05_151-246.indd   207

22/09/15   9:21 AM



208
   Chapter 5
   Geometrical Optics

As seen through

a compound eye

Corneal lens

Crystalline cone

Iris pigment cells

Rhabdom

Lens

Retinal cells

Retina

Pigment cells

As seen by a

Nerve fibers

Nerve fibers

human eye

to brain

(a)

(b)


Figure 5.90
   ( a
 ) The compound eye made up of many ommatidia. ( b
 ) An ommatidium, the little individual eye that each “sees” a small region in a particular direction. The corneal lens and crystalline cone channel the light into the sensing structure, the clear, rod-shaped rhabdom. Each of these is  

surrounded by retinal cells that lead via nerve fibers to the brain. A flower seen through both a human eye and a compound eye. (Source: Ackerman & Ellis,  Biophysical Science
 , 2nd Ed., © 1979, p. 31, Person Education.) The eye (Fig. 5.91) is an almost spherical (24 mm long by 

Cairo, who described the eye as partitioned into three regions that 

about 22 mm across) jellylike mass contained within a tough 

were watery, crystalline, and glassy, respectively. The lens, which 

flexible shell, the sclera
 . Except for the front portion, or cornea
 , 

has both the size and shape of a small bean (9 mm in diameter and 

which is transparent, the sclera is white and opaque. Bulging 

4 mm thick), is a complex layered fibrous mass surrounded by an 

out from the body of the sphere, the cornea’s curved surface 

elastic membrane. In structure it is somewhat like a transparent 

(which is slightly flattened, thereby cutting down on spherical 

onion, formed of roughly 22 000 very fine layers. It has some re-

aberration) serves as the first and strongest convex element of the 

markable characteristics that distinguish it from man-made lenses, 

lens system. Indeed, most of the bending imparted to a bundle of 

in addition to the fact that it continues to grow in size. Because of 

rays takes place at the air–cornea interface. Incidentally, one of 

its laminar structure, rays traversing it will follow paths made up of 

the reasons you can’t see very well under water ( nW 
 ≈ 1.33) is 

minute, discontinuous segments. The lens as a whole is quite pli-

that its index is too close to that of the cornea ( nC 
 ≈ 1.376) to 

able, albeit less so with age. Moreover, its index of refraction rang-

allow for adequate refraction.

es from about 1.406 at the inner core to approximately 1.386 at the 

Light emerging from the cornea passes through a chamber 

less dense cortex, and as such it represents a gradient-index or 

filled with a clear watery fluid called the aqueous humor
  

GRIN system (p. 276). The crystalline lens provides the needed 

( n


fine-focusing mechanism through changes in its shape; that is, it 


ah 
 ≈ 1.336). It nourishes the anterior portion of the eye. A ray 

that is strongly refracted toward the optical axis at the air–cornea 

has a variable focal length—a feature we’ll come back to presently.

interface will be only slightly redirected at the cornea–aqueous 

The refracting components of the eye, the cornea and crystal-

humor interface because of the similarity of their indices. Im-

line lens, can be treated as forming an effective double-element 

mersed in the aqueous is a diaphragm known as the iris
 , which 

lens with an object focus of about 15.6 mm in front of the ante-

serves as the aperture stop controlling the amount of light entering 

rior surface of the cornea and an image focus of about 24.3 mm 

the eye through the hole, or pupil
 . It is the iris (from the Greek 

behind it on the retina. To simplify things a little, we can take 

word for rainbow) that gives the eye its characteristic blue, brown, 

the combined lens to have an optical center 17.1 mm in front of 

gray, green, or hazel color. Made up of circular and radial muscles, 

the retina, which falls just at the rear edge of the crystalline lens.

the iris can expand or contract the pupil over a range from about 2 

Behind the lens is another chamber filled with a transparent 

mm in bright light to roughly 8 mm in darkness. In addition to this 

gelatinous substance made of collagen (a protein polymer) and 

function, it is also linked to the focusing response and will con-

hyaluronic acid (a protein concentrate). Known as the vitreous 


tract to increase image sharpness when doing close work.


humor
  ( nvh 
 ≈ 1.337), this thick gel gives support to the eyeball. 

Immediately behind the iris is the crystalline lens
 . The name, 

As an aside, it should be noted that the vitreous humor contains 

which is somewhat misleading, dates back to about 1000 c.e. and 

microscopic particles of cellular debris floating freely about. 

the work of Abu Ali al-Hasan ibn al-Haytham, alias Alhazen of 

You can easily see their shadows, outlined with diffraction 
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Cornea

Aqueous humor

Pupil

Iris

Conjunctiva

Crystalline

lens

Sclera

Vitreous

humor

Blind

Retina

spot

Macula

An electron micrograph of the retina of a salamander ( Necturus maculosus
 ). 

Choroid

Two visual cones appear in the foreground and several rods behind them.  

(E. R. Lewis, Y. Y. Zeevi, and F. S. Werblin,  Brain Research
  15
 , 559 [1969].)

Optic

Visual

nerve

axis

light, as is the coat of black paint on the inside of a camera. A 

Optic

thin layer (about 0.5 mm to 0.1 mm thick) of light receptor cells 

axis

covers much of the inner surface of the choroid—this is the 


retina
  (from the Latin  rete
 , meaning net). The focused beam of 

light is absorbed via electrochemical reactions in this pinkish 

multilayered structure.

The human eye contains two kinds of photoreceptor cells: 


rods
  and cones
  (see photo). Roughly 125 million of them are 

intermingled nonuniformly over most of the retina. The ensem-

ble of rods (each about 0.002 mm in diameter) in some respects 

has the characteristics of a high-speed, black-and-white film 

Choroid

(such as Tri-X). It is exceedingly sensitive, performing in light 

Lens

too dim for the cones to respond to; yet it is unable to distinguish 

Ciliary muscle

color, and the images it relays are not well defined. In contrast, 

the ensemble of 6 or 7 million cones (each about 0.006 mm in 

Sclera

Iris

diameter) can be imagined as a separate, but overlapping, low-

Cornea

speed color film. It performs in bright light, giving detailed col-

ored views, but it is fairly insensitive at low light levels.


Figure 5.91  
   The human eye.

fringes, within your own eye by squinting at a light source or 

looking at the sky through a pinhole—strange little amoebalike 

objects ( muscae volitantes
 ) will float across the field of view. 

Incidentally, a marked increase in one’s perception of these 

floaters may be indicative of retinal detachment. While you’re 

at it, squint at the source again (a broad diffuse fluorescent light 

works well). Closing your lids almost completely, you’ll actu-

ally be able to see the near circular periphery of your own pupil, 

beyond which the glare of light will disappear into blackness. If 

you don’t believe it, block and then unblock some of the light; 

the glare circle will visibly expand and contract, respectively. 

You are seeing the shadow cast by the iris from the inside! See-

ing internal objects like this is known as entoptic perception.

Within the tough sclerotic wall is an inner shell, the choroid. 

A high-resolution image of a living human retina. Each bright spot is a single 

It is a dark layer, well supplied with blood vessels and richly 

cone photoreceptor about 4.9 mm in diameter. (Austin Roorda and David R. Williams, 

pigmented with melanin. The choroid is the absorber of stray 

University of Rochester, NY)
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in position behind the iris by ligaments that are connected to 

×


1



2


a circular yoke composed of the ciliary muscles
 . Ordinarily, 


Figure 5.92    
 To verify the existence of the blind spot, close one eye and, 

these muscles are relaxed, and in that state they pull outward 

at a distance of about 10 inches, look directly at the X—the 2 will disap-

radially on the network of fine fibers holding the rim of the 

pear. Moving closer will cause the 2 to reappear while the 1 vanishes.

lens. This draws the pliable lens into a fairly flat configura-

tion, increasing its radii, which in turn increases its focal 

The normal wavelength range of human vision is roughly 

length [Eq. (5.16)]. With the muscles completely relaxed, the 

390 nm to 780 nm (Table 3.4). However, studies have extended 

light from an object at infinity will be focused on the retina 

these limits down to about 310 nm in the ultraviolet and up to 

(Fig. 5.93). As the object moves closer to the eye, the ciliary 

roughly 1050 nm in the infrared. Indeed, people have reported 

muscles contract, relieving the external tension on the periph-

“seeing” X-radiation. The limitation on ultraviolet transmission 

ery of the lens, which then bulges slightly under its own elas-

in the eye is set by the crystalline lens, which absorbs in the UV. 

tic forces. In so doing, the focal length decreases such that  si
  

People who have had a lens removed surgically have greatly 

is kept constant. As the object comes still closer, the yoke of 

improved UV sensitivity.

ciliary muscles becomes more tensely contracted, the circular 

The area of exit of the optic nerve from the eye contains no 

region they encompass gets still smaller, and the lens surfaces 

receptors and is insensitive to light; accordingly, it is known as 

take on even smaller radii. The closest point on which the eye 

the blind spot
  (see Fig. 5.92). The optic nerve spreads out over 

can focus is known as the near point
 . In a normal eye it 

the back of the interior of the eye in the form of the retina.

might be about 7 cm for a teenager, 12 cm or so for a young 

Just about at the center of the retina is a small depression 

adult, roughly 28 to 40 cm in the middle-aged, and about 100 

from 2.5 to 3 mm in diameter known as the yellow spot, or mac-


cm by 60 years of age. Visual instruments are designed with 


ula
 . It is composed of more than twice as many cones as rods. 

this in mind, so that the eye need not strain unnecessarily. 

There is a tiny rod-free region about 0.3 mm in diameter at the 

Clearly, the eye cannot focus on two different objects at once. 

center of the macula called the fovea centralis
 . (In comparison, 

This will be made obvious if, while looking through a piece 

the image of the full Moon on the retina is about 0.2 mm in di-

of glass, you try to focus on it and the scene beyond at the 

ameter—Problem 5.101.) Here the cones are thinner (with diam-

same time.

eters of 0.003 0 mm to 0.001 5 mm) and more densely packed 

Mammals generally accommodate by varying the lens cur-

than anywhere else in the retina. Since the fovea provides the 

vature, but there are other means. Fish move only the lens itself 

sharpest and most detailed information, the eyeball is continu-

toward or away from the retina, just as the camera lens is 

ously moving, so that light coming from the area on the object of 

moved to focus. Some mollusks accomplish the same thing by 

primary interest falls on this region. An image is constantly shift-

contracting or expanding the whole eye, thus altering the rela-

ed across different receptor cells by these normal eye move-

tive distance between lens and retina. For birds of prey, which 

ments. If such movements did not occur and the image was kept 

stationary on a given set of photoreceptors, it would actually 

tend to fade out. Without the fovea the eye would lose 90 to 95% 

of its capability, retaining only peripheral vision.

Another fact that indicates the complexity of the sensing sys-

tem is that the rods are multiply connected to nerve fibers, and 

a single such fiber can be activated by any one of about a hun-

dred rods. By contrast, cones in the fovea are individually con-

nected to nerve fibers. The actual perception of a scene is con-

structed by the eye–brain system in a continuous analysis of the 

time-varying retinal image. Just think how little trouble the 

Relaxed

blind spot causes, even with one eye closed.

(a)

muscle

Between the nerve-fiber layer of the retina and the humor is 

a network of large retinal blood vessels, which can be observed 

entoptically. One way is to close your eye and place a bright 

small source against the lid. You’ll “see” a pattern of shadows 

( Purkinje figures
 ) cast by the blood vessels on the sensitive 

retinal layer.

Accomodation


Accommodation


Contracted

(b)

muscle

The fine focusing, or accommodation
 , of the human eye is a 

function performed by the crystalline lens. The lens is suspended 


Figure 5.93
     Accommodation—changes in the lens configuration.
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must keep a rapidly moving object in constant focus over a wide 

moon, i.e., crescent) lenses, which allow the turning eyeball to 

range of distances as a matter of survival, the accommodation 

see through them from center to margin without significant 

mechanism is quite different. They accommodate by greatly 

distortion.

changing the curvature of the cornea.

It is customary and quite convenient in physiological optics 

to speak about the dioptric power
 , 𝒟, of a lens, which is sim-

ply the reciprocal of the focal length. When  f
  is in meters, the 


5.7.2 Eyeglasses


unit of power is the inverse meter, or  diopter
 , symbolized by  

Spectacles were probably invented some time in the late thir-

D: 1 m-1 = 1 D. For example, if a converging lens has a focal 

teenth century, possibly in Italy. A Florentine manuscript of the 

length of +1 m, its power is +1 D; with a focal length of -2 m 

period (1299), which no longer exists, spoke of “spectacles re-

(a diverging lens), 𝒟 = -12 D; for ƒ = +10 cm,  𝒟 = 10 D. 

cently invented for the convenience of old men whose sight has 

Since a thin lens of index  nl
  in air has a focal length given by

begun to fail.” These were biconvex lenses, little more than 

1

1

1

variations on the handheld magnifying or reading glasses, and 





= ( nl 
 - 1) a

-

b [5.16]

polished gemstones were no doubt employed as lorgnettes long 

ƒ


R
 1


R
 2

before that. Roger Bacon (ca. 1267) wrote about negative 

its power is

lenses rather early on, but it was almost another two hundred 

years before Nicholas Cusa first discussed their use in eye-

1

1





𝒟 = ( n


-

b (5.69)

glasses and a hundred years more before such glasses ceased to 


l 
 - 1) a R
 1  R
 2

be a novelty, in the late 1500s. Amusingly, it was considered 

improper to wear spectacles in public even as late as the eigh-

You can get a sense of the direction in which we are moving by 

teenth century, and we see few users in the paintings up until 

considering, in rather loose terms, that each surface of a lens 

that time. In 1804 Wollaston, recognizing that traditional 

bends the incoming rays—the more bending, the stronger the 

(fairly flat, biconvex, and concave) eyeglasses provided good 

surface. A convex lens that strongly bends the rays at both sur-

vision only while one looked through their centers, patented a 

faces has a short focal length and a large dioptric power. We 

new, deeply curved lens. This was the forerunner of modern-

already know that the focal length for two thin lenses in contact 

day meniscus (from the Greek  meniskos
 , the diminutive for 

is given by

1

1

1





=

+  [5.38]

ƒ

ƒ1

ƒ2

This means that the combined power is the sum of the individ-

ual powers, that is,

𝒟 = 𝒟1 + 𝒟2

Thus a convex lens with 𝒟1 = +10 D in contact with a negative 

lens of 𝒟2 = -10 D results in 𝒟 = 0; the combination behaves 

like a parallel sheet of glass. Furthermore, we can imagine a 

lens, for example, a double convex lens, as being composed of 

two planar-convex lenses in intimate contact, back to back. The 

power of each of these follows from Eq. (5.69); thus for the first 

planar-convex lens ( R
 2 = ∞),

( n






𝒟


l 
 - 1)

1 =

 (5.70)


R
 1

and for the second,

( n






𝒟


l 
 - 1)

2 =

 (5.71)

- R
 2

These expressions may be equally well defined as giving the 


powers of the respective surfaces
  of the initial double convex 

lens. In other words,  the power of any thin lens is equal to the sum 


The earliest known picture (ca. 1352) of someone wearing eyeglasses. This is 


of the powers of its surfaces
 . Because  R
 2 for a convex lens is a 

a portrait of Cardinal Ugo di Provenza, who died in 1262, painted by Tomasso 

negative number, both 

da Modena. (Cardinal Ugo of Provenza (1351), Tomaso da Modena. Fresco in the Capitol Room 

𝒟1 and 𝒟2 will be positive in that case. 

in the Church of San Nicolò, Treviso. Photo from collection of author.)

The power of a surface, defined in this way, is not generally the 
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When the normally clear lens in the eye 

Nearsighted Eye

becomes cloudy, the condition is referred to 

(a)

as a cataract
 . The resulting haziness can  

Object at ∞

have a devastating effect on vision. In 

extreme cases the crystalline lens is usually 

surgically removed. A small convex plastic 

lens (an intraocular lens implant
 ) is then 

inserted in the eye to enhance its conver-

(b)

gence. (The photo shows an enlarged image 

of this type of converging spherical lens; it’s 

Distant object

actually only about 6 mm in diameter.) Its  

use has all but eliminated the need for the 

thick “cataract eyeglasses” that were once 

required after surgery. (E.H.)

(c)

No accommodation

Far point

reciprocal of its focal length, although it is when immersed in 

air. Relating this terminology to the commonly used model for 

the human eye, we note that the power of the crystalline lens 

(d)


surrounded by air
  is about +19 D. The cornea provides roughly 

Object at ∞

+43 of the total +58.6 D of the intact unaccommodated eye.

A normal eye, despite the connotation of the word, is not as 

common as one might expect. By the term  normal
 , or its syn-

onym  emmetropic
 , we mean an eye that is capable of focusing 

parallel rays on the retina while in a relaxed condition—that is, 

(e)

one whose second focal point lies on the retina. For the unac-

Nearby object

commodated eye, we define the object point whose image lies 

Accommodation

on the retina to be the far point
 . Thus for the normal eye the 

most distant point that can be brought to a focus on the retina, 

the far point, is located at infinity (which for all practical pur-

poses is anywhere beyond about 5 m). In contrast, when the 


Figure 5.94
     Correction of the nearsighted eye.

focal point does not lie on the retina, the eye is  ametropic
  (e.g., 

it suffers hyperopia, myopia, or astigmatism). This can arise 

will diverge the rays a bit. Resist the temptation to suppose that 

either because of abnormal changes in the refracting mecha-

we are merely reducing the power of the system. In point of 

nism (cornea, lens, etc.) or because of alterations in the length 

fact, the power of the lens–eye combination is most often made 

of the eyeball that change the distance between the lens and the 

to equal that of the unaided eye. If you are wearing glasses to 

retina. The latter is by far the more common cause. Just to put 

correct myopia, take them off; the world gets blurry, but it 

things in proper perspective, note that about 25% of young 

doesn’t change size. Try casting a real image on a piece of paper 

adults require ±0.5 D or less of eyeglass correction, and per-

using your glasses—it can’t be done.

haps as many as 65% need only ±1.0 D or less.

Example 5.14


Nearsightedness—Negative Lenses


Suppose an eye has a far point of 2 m. All would be well if a 

spectacle lens appeared to bring more distant objects in closer 


Myopia
  is the condition in which parallel rays are brought to 

than 2 m. If the virtual image of an object at infinity is formed 

focus in front of the retina; the power of the lens system as con-

by a concave lens at 2 m, the eye will see the object clearly with 

figured is too large for the anterior-posterior axial length of the 

an unaccommodated lens. Find the needed focal length. 

eye. Images of distant objects fall in front of the retina, the far 

point is closer in than infinity, and all points beyond it will ap-

SOLUTION

pear blurred. This is why myopia is often called nearsighted-


Using the thin-lens approximation (eyeglasses are generally 


ness
 ; an eye with this defect sees nearby objects clearly  

thin to reduce weight and bulk), we have

(Fig. 5.94). To correct the condition, or at least its symptoms, 

1

1

1

1

1

we place an additional lens in front of the eye such that the 





=

+

=

 [5.17]

combined spectacle–eye lens system has its focal point on the 

ƒ


so



si


∞ + -2

retina. Since the myopic eye can clearly see objects closer than 

and ƒ

the far point, the spectacle lens must cast relatively nearby im-

= -2  
 m while 𝒟 = -12 D.

ages of distant objects. Hence we introduce a negative lens that 
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where  ƒ 
 = b.f.l. Inverting Eq. (5.72), setting it equal to Eq. (5.73), 

and simplifying, we obtain the result 1>ƒ c 
 = 1>(ƒ l 
 -  d
 ), inde-

pendent of the eye itself. In terms of power,

The far point

𝒟





𝒟


l



c 
 =

 (5.74)


fl


1 - 𝒟 l
   d



A spectacle lens of power 
 𝒟


Figure 5.95
     The far-point distance equals the focal length of the  



l

  a distance 
 
d

  from the eye-lens 


correction lens.


has an effective power the same as that of a contact lens of 



power 
 𝒟 
c

 . 
 Notice that since  d
  is measured in meters and thus is 

quite small, unless 𝒟 l
  is large, as it often is, 𝒟 c 
 ≈ 𝒟 l
 . Usually, 

Notice in the above example that the far-point distance, mea-

the point on your nose where you choose to rest your eyeglasses 

sured from the correction lens, equals its focal length (Fig. 5.95). 

has little effect, but that’s certainly not always the case; an 

The eye views the right-side-up virtual images of all objects 

improper value of  d
  has resulted in many a headache.

formed by the correction lens, and those images are located be-

It is common, though not universal, to say that a person 

tween its far and near points. Incidentally, the near point also 

whose vision is corrected by a contact lens of power -6 D is a 

moves away a little, which is why myopes often prefer to re-

6 D myope.

move their spectacles when threading needles or reading small 

print; they can then bring the material closer to the eye, thereby 


EXAMPLE 5.15


increasing the magnification.

Describe the spectacle lenses that would correct the vision of a 

The calculation we have just performed overlooks the sepa-

6 D myope. The person wants to wear the lenses 12 mm from 

ration between the correction lens and the eye—in effect, it 

each eye.

applies to contact lenses more than to spectacles. The separation 

is usually made equal to the distance of the first focal point of 


SOLUTION 


the eye (≈16 mm) from the cornea, so that no magnification of 

A 6 D myope has too much convergence and needs 

the image over that of the unaided eye occurs. Many people 

-6 D 

contact lenses. Using Eq. (5.74) the power of the spectacle lenses 

have unequal eyes, yet both yield the same magnification. A 

can be calculated from

change in  MT
  for one and not the other would be a disaster. 

Placing the correcting lens at the eye’s first focal point avoids 

𝒟

the problem completely, regardless of the power of that lens 

𝒟


l



c 
 = 1 - 𝒟 ld


[take a look at Eq. (6.8)]. To see this, just draw a ray from the 

top of some object through that focal point. The ray will enter 

where 

𝒟 c 
 - 𝒟 c
 𝒟 ld 
 = 𝒟 l


the eye and traverse it parallel to the optic axis, thus establish-





𝒟 c 
 = 𝒟 l
 (1 + 𝒟 cd
 )

ing the height of the image. Yet, since this ray is unaffected by 

the presence of the spectacle lens, whose center is at the focal 

𝒟

𝒟


c


-6


l 
 =

=

point, the image’s location may change on insertion of such a 

1 + 𝒟 cd


1 + (-6)(0.012)

lens, but its height and therefore  MT
  will not [see Eq. (5.24)].

and 

𝒟 l


The question now becomes: What is the equivalent power of 

= -6.47 D 

a spectacle lens at some distance  d
  from the eye (i.e., equivalent 

to that of a contact lens with a focal length ƒ c
  that equals the 

far-point distance)? It will do for our purposes to approximate 


Farsightedness—Positive Lenses


the eye by a single lens and take  d
  from that eye-lens to the 


Hyperopia
  (or  hypermetropia
 ) is the defect that causes the sec-

spectacle as roughly equal to the cornea–eyeglass distance, 

ond focal point of the unaccommodated eye to lie behind the 

around 16 mm. Given that the focal length of the correction lens 

retina (Fig. 5.96). Farsightedness
 , as you might have guessed 

is ƒ l
  and the focal length of the eye is ƒ e
 , the combination has a 

it would be called, is often due to a shortening of the anteropos-

focal length provided by Eq. (5.36), that is,

terior axis of the eye—the lens is too close to the retina. To in-


fe
 ( d 
 -  fl
 )

crease the bending of the rays, a positive spectacle lens is placed 





b.f.l. =

 (5.72)


d 
 - ( ƒl 
 +  ƒe
 )

in front of the eye. The hyperopic eye can and must accommo-

date to see distant objects distinctly, but it will be at its limit to 

This is the distance from the eye-lens to the retina. Similarly, 

do so for a near point, which is much farther away than it would 

the equivalent contact lens combined with the eye-lens has a 

be normally (this we take as 254 mm, or just 25 cm). It will 

focal length given by Eq. (5.38):

consequently be unable to see nearby objects clearly. A con-

1

1

verging corrective lens with positive power will effectively 





1 = +  (5.73)


ƒ



ƒc



ƒe


move a close object out beyond the near point where the eye has 
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Farsighted Eye

(a)

The far point

Object at ∞


F



F



fl


(b)

Near-point


Figure 5.97
     Again the far-point distance equals the focal length of the 

correction lens.

retina) is once again the  far point
 , and it’s a distance ƒ l
   behind
  

the lens. The hyperope can comfortably “see” the far point, and 

(c)

any lens located anywhere in front of the eye that has an appro-

25 cm

priate focal length will serve that purpose.

Very gentle finger pressure on the lids above and below the 

cornea will temporarily distort it, changing your vision from 

blurred to clear and vice versa.

(d)

Distant object


Astigmatism—Anamorphic Lenses


Perhaps the most common eye defect is astigmatism
 . It arises 

from an uneven curvature of the cornea. In other words, the 

cornea is asymmetric. Suppose we pass two meridional planes 

(e)

(one containing the optical axis) through the eye such that the 

Nearby object

(curvature or) power is maximal on one and minimal on the 

other. If these planes are perpendicular, the  astigmatism
  is 


regular
  and correctable; if not, it is  irregular
  and not easily 

corrected. Regular astigmatism can take different forms; the 

eye can be emmetropic, myopic, or hyperopic in various combi-


Figure 5.96
     Correction of the farsighted eye.

nations and degrees on the two perpendicular meridional planes. 

Thus, as a simple example, the columns of a checkerboard 

adequate acuity; that is, it will form a distant virtual image, 

might be well focused, while the rows are blurred due to myo-

which the eye can then see clearly. 

pia or hyperopia. Obviously, these meridional planes need not 

be horizontal and vertical (Fig. 5.98).

Example 5.16

The great astronomer Sir George B. Airy used a concave 

sphero-cylindrical lens to ameliorate his own myopic astigma-

Suppose that a hyperopic eye has a near point of 125 cm. Find 

tism in 1825. This was probably the first time astigmatism had 

the needed corrective lens. 

been corrected. But it was not until the publication in 1862 of a 

SOLUTION

treatise on cylindrical lenses and astigmatism by the Dutchman 

For an object at +25 cm to have its image at  si 
 = -125 cm  
 so 

Franciscus Cornelius Donders (1818–1889) that ophthalmolo-

that it can be seen as if through a normal eye, the focal length 

gists were moved to adopt the method on a large scale.

must be

Any optical system that has a different value of  MT
  or 𝒟 in 

two principal meridians is said to be  anamorphic
 . Thus, for 

1

1

1

1

=

+

=

example, if we rebuilt the system depicted in Fig. 5.41, this time 

ƒ

(-1.25)

0.25

0.31


Figure 5.98
     A test for astigmatism of 

or ƒ = 0.31 m  
 and 𝒟 = +3.2 D. This is in accord with Table 

the eye. View this figure through one 

5.3, where  so 
 6 ƒ. These spectacles will cast real images—try it 

unaided eye. If one set of lines appears 

if you’re hyperopic.

bolder than the others, you have astig-

matism. Hold the figure close to your 

eye; move it away slowly and note 

As shown in Fig. 5.97, the correcting lens allows the relaxed 

which set of lines comes into focus 

first. If two sets seem to be equally 

eye to view objects at infinity. In effect, it creates an image on 

clear, rotate the figure until only one  

its focal “plane” (passing through  F
 ), which then serves as a 

set is in focus. If all sets are clear you 

virtual object for the eye. The point (whose image lies on the 

don’t have astigmatism.
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Figure 5.100    
 Toric surfaces.

is compacted onto the regular film format. When shown 

through a special lens, the distorted picture spreads out again. 

On occasion a television station will show short excerpts 

(a)

without the special lens—you may have seen the weirdly 

elongated result.


5.7.3 The Magnifying Glass


An observer can cause an object to appear larger, for the purpose 

of examining it in detail, by simply bringing it closer to her eye. 

As the object is brought nearer and nearer, its retinal image in-

creases, remaining in focus until the crystalline lens can no lon-

ger provide adequate accommodation. Should the object come 

closer than this  near point
 , the image will blur (Fig. 5.101). A 

single positive lens can be used, in effect to add refractive power 

to the eye, so that the object can be brought still closer and yet be 

in focus. The lens so used is referred to variously as a magnify-



ing glass
 , a  simple magnifier
 , or a  simple microscope
 . In any 

event, its function is  to provide an image of a nearby object that 



is larger than the image seen by the unaided eye
  (Fig. 5.102). 

Devices of this sort have been around for a long time. In fact, a 

quartz convex lens (ƒ ≈ 10 cm), which may have served as a 

(b)


Figure 5.99
   ( a
 ) An anamorphic system. ( b
 ) Cylindrical lenses  

(Melles Griot)

using cylindrical lenses (Fig. 5.99), the image would be dis-

torted, having been magnified in only one plane. This is just the 

sort of distortion needed to correct for astigmatism when a 

defect exists in only one meridian. An appropriate planar cylin-

Near point

drical spectacle lens, either positive or negative, would restore 

essentially normal vision. When both perpendicular meridians 

require correction, the lens may be  sphero-cylindrical
  or even 


toric
  as in Fig. 5.100.

Just as an aside, we note that anamorphic lenses are used 

in other areas, as, for example, in the making of wide-screen 

motion pictures, where an extra-large horizontal field of view 


Figure 5.101
     Images in relation to the near point.
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(a)

(c)


y


a


o



u



do


Near

point

(b) Entrance

pupil

A.S.

Exit pupil


yi


a a F yo



so



f



Figure 5.102  
  ( a
 ) An unaided view of an object. ( b
 ) The aided view 


si


through a magnifying glass. ( c
 ) A positive lens used as a magnifying 


L


glass. The object is less than one focal length from the lens.

magnifier, was unearthed in 1885 among the ruins of the palace 

Inasmuch as the image distance is negative,  si 
 = -( L 
 - /), and

of King Sennacherib (705–681 b.c.e.) of Assyria.

Evidently, it would be desirable for the lens to form a magni-


d






MP =  o
  [1 + 𝒟( L 
 - /)] (5.76)

fied, erect image. Furthermore, the rays entering the normal eye 


L


should not be converging. Table 5.3 (p. 165) immediately sug-

𝒟 of course being the power of the magnifier (1>ƒ). There are 

gests placing the object within the focal length (i.e.,  so 
 6 ƒ). The 

three situations of particular interest: (1) When / = ƒ the mag-

result is shown in Fig. 5.102. Because of the relatively tiny size 

nifying power equals  do
 𝒟. (2) When / is effectively zero,

of the eye’s pupil, it will almost certainly always be the aperture 

stop, and as in Fig. 5.44 (p. 176), it will also be the exit pupil.

1

The magnifying power
 ,  MP
 , or equivalently, the angular 


[MP]/ = 0 =  do
  a + 𝒟b


L



magnification
 ,  MA
 , of a visual instrument is defined as  the ratio 



of the size of the retinal image as seen through the instrument 


In that case the largest value of MP corresponds to the smallest 


over the size of the retinal image as seen by the unaided eye at 


value of  L
 , which, if vision is to be clear, must equal  do
 . Thus


normal viewing distance
 . The latter is generally taken as the 

distance to the near point
 ,  do
 . The ratio of angles a a
  and a u
  





[MP]/ = 0 =  do
 𝒟 + 1 (5.77)






L
  

(which are made by chief rays from the top of the object in the 

=   do


instance of the aided and unaided eye, respectively) is equiva-

lent to MP, that is,

a





MP =  a
  (5.75)

a u


Keeping in mind that we are restricted to the paraxial region, 

tan a a 
 =  yi
 > L 
 ≈ a a
  and tan a u 
 =  yo
 > do 
 ≈ a u
 , so y


MP =  i
   do



yoL


wherein  yi
  and  yo
  are above the axis and positive. If we make  do
  

and  L
  positive quantities, MP will be positive, which is quite 

reasonable. When we use Eqs. (5.24) and (5.25) for  MT
  along 

with the Gaussian Lens Formula, the expression becomes


s



s d


MP = -   i
   do 
 = a1 -  i
 b   o



soL



ƒ L


A positive lens used as a magnifying glass. (E.H.)
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Taking  do 
 = 0.25 m for the standard observer, we have

marble (any small sphere of glass qualifies) will also greatly mag-

nify—but not without a good deal of distortion.





[MP]/ = 0 = 0.25𝒟 + 1 (5.78)





The relative refractive index of a lens and the medium in 


L
   =   do


which it is immersed,  nlm
 , is wavelength dependent. But since 

As  L
  increases, MP decreases, and similarly as / increases, MP 

the focal length of a simple lens varies with  nlm(
 l )
 , this means 

decreases. If the eye is very far from the lens, the retinal image 

that ƒ is a function of wavelength, and the constituent colors of 

will indeed be small. (3) This last is perhaps the most common 

white light will focus at different points in space. The resultant 

situation. Here we position the object at the focal point ( so 
 =  ƒ
 ), 

defect is known as  chromatic aberration
 . In order that the im-

in which case the virtual image is at infinity ( L 
 = ∞). Thus 

age be free of this coloration, positive and negative lenses made 

from Eq. (5.76)

of different glasses are combined to form  achromates
  (see Section 

6.3.2). Achromatic, cemented, doublet, and triplet lenses are 





[MP] L
  = ∞ =  do
 𝒟 (5.79)

comparatively expensive and are usually found in small, highly 

for all practical values of 

corrected, high-power magnifiers.

/. Because the rays are parallel, the eye 

views the scene in a relaxed, unaccommodated configuration, a 

highly desirable feature. Notice that  MT 
 = - si
 > so 
 approaches 

infinity as  s



5.7.4 Eyepieces



o 
 S ƒ, whereas in marked contrast,  MA
  merely 





decreases by 1 under the same circumstances.

The eyepiece
 , or ocular
 , is a visual optical instrument. Funda-

A magnifier with a power of 10 D has a focal length (1>𝒟) of 

mentally a magnifier, it views not an actual object but the inter-

0.1 m and a MP equal to 2.5 when  L 
 = ∞. This is conventionally 

mediate image of that object as formed by a preceding lens sys-

denoted as 2.5*, which means that the retinal image is 2.5 times 

tem. In effect, the eye looks into the ocular, and the ocular looks 

larger with the object at the focal length of the lens than it would be 

into the optical system—be it a spotting scope, compound mi-

were the object at the near point of the unaided eye (where the larg-

croscope, telescope, or binocular. A single lens could serve the 

est clear image is possible). The simplest single-lens magnifiers are 

purpose, but poorly. If the retinal image is to be more satisfac-

limited by aberrations to roughly 2* or 3*. A large field of view 

tory, the ocular cannot have extensive aberrations. The eyepiece 

generally implies a large lens; for practical reasons, this usually dic-

of a special instrument, however, might be designed as part of 

tates a fairly small curvature of the surfaces. The radii are large, as 

the complete system, so that its lenses can be utilized in the 

is ƒ, and therefore MP is small. The reading glass, the kind Sherlock 

overall scheme to balance out aberrations. Even so, standard 

Holmes made famous, is a typical example. The watchmaker’s eye 

eyepieces are used interchangeably on most telescopes and 

loupe is frequently a single-element lens, also of about 2* or 3*. 

compound microscopes. Moreover, eyepieces are quite difficult 

Figure 5.103 shows a few more complicated magnifiers designed to 

to design, and the usual, and perhaps most fruitful, approach is 

operate in the range from roughly 10* to 20*. The double lens is 

to incorporate or slightly modify one of the existing designs.

quite common in a number of configurations. Although not particu-

The ocular must provide a virtual image (of the intermediate 

larly good, they perform satisfactorily, for example, in high-pow-

image), most often located at or near infinity, so that it can be 

ered loupes. The Coddington is essentially a sphere with a slot cut 

comfortably viewed by a normal, relaxed eye. Furthermore, it 

in it to allow an aperture smaller than the pupil of the eye. A clear 

must position the center of the exit pupil or  eye point
  at which 

the observer’s eye is placed at some convenient location, prefer-

ably at least 10 mm or so from the last surface. As before, ocular 

magnification is the product  do
 𝒟, or as it is often written, 

MP = (250 mm)>ƒ.

The  Huygens
  ocular, which dates back over 250 years, is 

still in wide use today (Fig. 5.104), particularly in micro scopy. 

Eye relief

Doublet

Coddington

Field-lens

Eye-lens

Virtual

object

Doublet

Triplet

Triplet

Field

Exit

Hastings

stop

pupil


Figure 5.103
   Magnifiers.


Figure 5.104  
   The Huygens eyepiece.
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Field-lens

Eye-lens

Field

Exit

F.S.

Exit pupil

stop

pupil


Figure 5.107
     The orthoscopic eyepiece.


Figure 5.105
     The Ramsden eyepiece.

The lens adjacent to the eye is known as the eye-lens
 , and the 

first lens in the ocular is the field-lens
 . The distance from the 

eye-lens to the eye point is known as the eye relief
 , and for the 

Huygens ocular, it’s only an uncomfortable 3 mm or so. Notice 

that this ocular requires the incoming rays to be converging so 

as to form a virtual object for the eye-lens. Clearly, then, the 

Huygens eyepiece cannot be used as an ordinary magnifier.  

Its contemporary appeal rests in its low purchase price (see 

F.S.

Exit pupil

Section 6.3.2). Another old standby is the Ramsden
  eyepiece  


Figure 5.108
     The symmetric (Plössl) eyepiece.

(Fig. 5.105). This time the principal focus is in front of the 

field-lens, so the intermediate image will appear there in easy 

access. This is where you would place a  reticle
  (or  reticule
 ), 

which might contain a set of cross hairs, precision scales, or 

angularly divided circular grids. (When these are formed on a 

transparent plate, they are often called  graticules
 .) Since the 

reticle and intermediate image are in the same plane, both will 

be in focus at the same time. The roughly 12-mm eye relief is an 

advantage over the previous ocular. The Ramsden is relatively 

popular and fairly inexpensive (see Problem 6.2). The Kellner
  

eyepiece represents a definite increase in image quality, although 

F.S.

Exit pupil

eye relief is between that of the previous two devices. The Kell-


Figure 5.109
     The Erfle eyepiece.

ner is essentially an achromatized Ramsden (Fig. 5.106). It is 

most commonly used in moderately wide-field telescopic in-

common wide-field (roughly ±30°) eyepiece. It is well cor-

struments. The orthoscopic
  eyepiece (Fig. 5.107) has a wide 

rected for all aberrations and comparatively expensive.*

field, high magnification, and long eye relief (≈20 mm). The 

Although there are many other eyepieces, including variable-


symmetric (Plössl)
  eyepiece (Fig. 5.108) has characteristics 

power  zoom
 
 

 devices and ones with aspherical surfaces, those 

similar to those of the orthoscopic ocular but is generally some-

discussed here are representative. They are the devices you will 

what superior to it. The Erfle
  (Fig. 5.109) is probably the most 

ordinarily find on telescopes and microscopes and on long lists 

in the commercial catalogs.


5.7.5 The Compound Microscope


The compound microscope goes a step beyond the simple mag-

nifier by providing higher angular magnification (greater than 

about 30*) of  nearby
  objects. Its invention, which may have 

occurred as early as 1590, is generally attributed to a Dutch 

Field

Exit

stop

pupil

*Detailed designs of these and other oculars can be found in the  Military 



Figure 5.106  
   The Kellner eyepiece.


Standardization Handbook—Optical Design
 , MIL-HDBK-141.
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spectacle maker, Zacharias Janssen of Middleburg. Galileo runs 

barrel of the device. Rays diverging from each point of this im-

a close second, having announced his invention of a compound 

age will emerge from the eye-lens (which in this simple case is 

microscope in 1610. A simple version, which is closer to these 

the eyepiece itself) parallel to each other, as noted in the previous 

earliest devices than it is to a modern laboratory microscope, is 

section. The ocular magnifies the intermediate image still further. 

depicted in Fig. 5.110. 

Thus the magnifying power of the entire system is the product of 

The lens system, here a singlet, closest to the object is referred 

the transverse linear magnification of the objective,  MTo
 , and the 

to as the objective
 . It forms a real, inverted, magnified image of 

angular magnification of the eyepiece,  MAe
 , that is,

the object. This image resides in space on the plane of the field 





MP =  MToMAe
  (5.80)

stop of the eyepiece and has to be small enough to fit inside the 

The objective magnifies the object and brings it up in the form 

of a real image, where it can be examined as if through a mag-

nifying glass.

Recall that  MT 
 = - xi
 >ƒ, Eq. (5.26). With this in mind most, 

but not all, manufacturers design their microscopes such that 

the distance (corresponding to  xi
 ) from the second focus of the 

objective to the first focus of the eyepiece is standardized at 

160 mm. This distance, known as the tube length
 , is denoted 

by   L
  in the figure. (Some authors define tube length as the  

image distance of the objective.) Hence, with the final image 

Exit pupil

at infinity [Eq. (5.79)] and the standard near point taken as 

254 mm (10 inches),

160

254





MP = a- 

b a

b (5.81)


ƒo



ƒe



f


Chief ray


e


Here the focal lengths are in millimeters, and the image is 

inverted  (MP 6 0). Accordingly, the barrel of an objective 

with a focal length  ƒ


Eyepiece


o
  of, say, 32 mm will be engraved with the 

marking 5 * (or *5), indicating a power of 5. Combined with 

a 10 * eyepiece (ƒ e 
 = 1 inch), the microscope MP would then 


fe


be 50 *.

To maintain the distance relationships among the objective, 

field stop, and ocular, while a focused intermediate image of the 

Field stop

object is positioned in the first focal plane of the eyepiece, all 

three elements are moved as a single unit.

The objective itself functions as the aperture stop and en-

trance pupil. Its image, formed by the eyepiece, is the exit pupil 


L


into which the eye is positioned. The field stop, which limits the 

extent of the largest object that can be viewed, is fabricated as 

part of the ocular. The image of the field stop formed by the 

optical elements following it is called the  exit window
 , and the 

image formed by the optical elements preceding it is the  en-



trance window
 . The cone angle subtended at the center of the 


fo


exit pupil by the periphery of the exit window is said to be the 

A.S.

Objective

Entrance pupil


angular field of view in image space
 .

A modern microscope objective can be roughly classified as 

one of three different kinds. It might be designed to work best 

with the object positioned below a cover glass, with no cover 

Object

Image at ∞

glass (metallurgical instruments), or with the object immersed 

in a liquid that is in contact with the objective. In some cases, 


Figure 5.110  
   A rudimentary compound microscope. The objective forms 

the distinction is not critical, and the objective may be used with 

a real image of a nearby object. The eyepiece, functioning like a magnifying 

or without a cover glass. Four representative objectives are 

glass, enlarges this intermediate image. The final virtual image can be big-

shown in Fig. 5.111 (see Section 6.3.1). In addition, the ordi-

ger than the barrel of the device, since it needn’t fit inside. With parallel 

rays entering the eye it can remain comfortably relaxed.

nary low-power (about 5*) cemented doublet achromate is 
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much of the emitted light as possible using a short-focal-length 

objective (so the magnification will be large) that is held close 

to the object. This produces a real image, which is further mag-

nified by an eyepiece functioning as a magnifying glass.


5.7.6 The Camera


u

The prototype of the modern photographic camera* was a de-

max

vice known as the  camera obscura
 , the earliest form of which 

was simply a dark room with a small hole in one wall. Light 

entering the hole cast an inverted image of the sunlit outside 

scene on an inside screen. The principle was known to Aristotle, 

and his observations were preserved by Arab scholars through-

(a)

(b)

(c)

(d)

out Europe’s long Dark Ages. Alhazen utilized it to examine 

solar eclipses indirectly over eight hundred years ago. The note-


Figure 5.111  
   Microscope objectives: ( a
 ) Lister objective, 10 *,  

books of Leonardo da Vinci contain several descriptions of the 

NA = 0.25, ƒ = 16 mm (two cemented achromates). ( b
 ) Amici objective, 

obscura, but the first detailed treatment appears in  Magia natu-


from 20 *, NA = 0.5, ƒ = 8 mm to 40*, NA = 0.8, ƒ = 4 mm.  


ralis
  ( Natural Magic
 ) by Giovanni della Porta. He recommend-

( c
 ) Oil-immersion objective, 100 *, NA = 1.3, ƒ = 1.6 mm (see  

Figure 6.18). ( d
 ) Apochromatic objective, 55 *, NA = 0.95, ƒ = 3.2  

ed it as a drawing aid, a function to which it was soon quite 

(contains two fluorite lenses).

popularly put. Johannes Kepler, the renowned astronomer, had 

a portable tent version, which he used while surveying in Austria. 

quite common. Relatively inexpensive medium-power (10

By the latter part of the 1600s, the small hand-held camera  

* or 

20

obscura was commonplace. Note that the eye of the nautilus, a 

*) achromatic objectives, because of their short focal lengths, 

can conveniently be used when expanding and spatially filter-

little cuttlefish, is literally an open pinhole obscura that simply 

ing laserbeams.

fills with seawater on immersion.

There is one other characteristic quantity of importance that 

By replacing the viewing screen with a photosensitive sur-

must be mentioned here, even if only briefly. The brightness of 

face, such as a film plate, the obscura becomes a camera in the 

the image is, in part, dependent on the amount of light gath-

modern sense of the word. The first permanent photograph was 

ered in by the objective. The  ƒ-number
  is a useful parameter 

made in 1826 by Joseph Nicéphore Niépce (1765–1833), who 

for describing this quantity, particularly when the object is a 

used a box camera with a small convex lens, a sensitized pewter 

distant one (see Section 5.3.3). However, for an instrument 

plate, and roughly an eight-hour exposure.

working at  finite conjugates
  ( s


The lensless pinhole camera (Fig. 5.112) is by far the least 


i
  and  so
  both finite), the numeri-

cal aperture, NA, is more appropriate (see Section 5.6). In the 

complicated device for the purpose, yet it has several endearing 

present instance

and, indeed, remarkable virtues. It can form a well-defined, 

practically undistorted image of objects across an extremely 





NA =  ni
  sin umax (5.82)

wide angular field (due to great depth of focus) and over a large 

range of distances (great depth of field). If initially the entrance 

where  ni
  is the refractive index of the immersing medium (air, 

pupil is very large, no image results. As it is decreased in diam-

oil, water, etc.) adjacent to the objective lens, and umax is the 

eter, the image forms and grows sharper. After a point, further 

half-angle of the maximum cone of light picked up by that lens 

reduction in the hole size causes the image to blur again, and 

(Fig. 5.111 b
 ). In other words, umax is the angle made by a mar-

one quickly finds that the aperture size for maximum sharpness 

ginal ray with the axis. The numerical aperture is usually the 

is proportional to its distance from the image plane. (A hole 

second number etched in the barrel of the objective. It ranges 

with a 0.5-mm diameter at 0.25 m from the film plate is conve-

from about 0.07 for low-power objectives to 1.4 or so for high-

nient and works well.) There is no focusing of the rays at all, so 

power (100*) ones. Of course, if the object is in the air, the 

no defects in that mechanism are responsible for the drop-off in 

numerical aperture cannot be greater than 1.0. Incidentally, 

clarity. The problem is actually one of diffraction, as we shall 

Ernst Abbe (1840–1905), while working in the Carl Zeiss mi-

see later on (Section 10.2.5). In most practical situations, the 

croscope workshop, introduced the concept of the numerical 

pinhole camera’s one overriding drawback is that it is insuffer-

aperture. It was he who recognized that the minimum transverse 

ably slow (roughly ƒ>500). This means that exposure times will 

distance between two object points that can be resolved in the 

generally be far too long, even with the most sensitive films. 

image, that is, the  resolving power
 , varied directly as l and in-

versely as the NA.

In summary, then, the microscope is a device for enlarging 

the image of a tiny nearby object. It does this by capturing as 

*See W. H. Price, “The Photographic Lens,”  Sci. Am
 . 72 
 (August 1976).
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Photograph taken with a pinhole camera (Science Building, Adelphi 

University). Hole diameter 0.5 mm, film plane distance 24 cm, A.S.A. 

3000, shutter speed 0.25 s. Note depth of field. (E.H.)

the shutter release is pressed, the diaphragm closes down to a 

preset value, the mirror swings up out of the way, and the focal-

2 mm

1 mm

plane shutter opens, exposing the film. The shutter then closes, 

the diaphragm opens fully, and the mirror drops back in place. 

Nowadays SLR systems have any one of a number of built-in 

light-meter arrangements, which are automatically coupled to 

the diaphragm and shutter, but those components are excluded 

from the diagram for the sake of simplicity.

Shutter

0.6 mm

0.35 mm

speed

Shutter release

dial Film advance lever

Penta

prism

Finder

0.15 mm

0.07 mm

eyepiece


Figure 5.112  
   The pinhole camera. Note the variation in image clarity as 

Focusing

screen

the hole diameter decreases. (Dr. N. Joel, UNESCO)

Movable

mirror

The obvious exception is a stationary subject, such as a building 

Shutter

(see photo), for which the pinhole camera excels.

Figure 5.113 depicts the essential components of a popular 

and representative modern camera—the single-lens reflex, or 

SLR. Light traversing the first few elements of the lens then 

passes through an iris diaphragm, used in part to control the 

exposure time or, equivalently, the ƒ -number
 ; it is in effect a 

variable-aperture stop. On emerging from the lens, light strikes 

Iris diaphragm

Film plane

a movable mirror tilted at 45°, then goes up through the focus-

ing screen to the penta prism and out the finder eyepiece. When 


Figure 5.113
     A traditional single-lens reflex film camera.
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Many contemporary photographic objectives are variations 

of well-known successful forms. Figure 5.115 illustrates the 

general configuration of several important lenses, roughly pro-

gressing from wide angle to telephoto. Particular specifications 

are not given, because variations are numerous. The  Aviogon
  and 


Zeiss Orthometer
  are wide-angle lenses, whereas the  Tessar
  and 


Biotar
  are often standard lenses. The  Cooke triplet
 , described in 

w

1893 by H. Dennis Taylor of Cooke and Sons, is still being made 

(note the similarity with the Tessar). It contains the smallest 

number of elements by which all seven third-order aberrations 

can essentially be made to vanish. Even earlier (ca. 1840), Josef 

Film

Max Petzval designed what was then a rapid (portrait) lens for 

Voightländer and Son. Its modern offshoots are myriad.


f



5.7.7 The Telescope



Figure 5.114
     Angular field of view when focused at infinity.

It is not at all clear who actually invented the telescope. In 

point of fact, it was probably invented and reinvented many 

times. Recall that by the seventeenth century spectacle lenses 

To focus the camera, the entire lens is moved toward or 

had been in use in Europe for about three hundred years. Dur-

away from the film plane or electronic sensor. Since its focal 

ing that long span of time, the fortuitous juxtapositioning of 

length is fixed, as  so
  varies, so too must  si
 . The  angular field of 


two appropriate lenses to form a telescope seems almost inevi-


view
  can loosely be thought of as relating to the fraction of the 

table. In any event, it is most likely that a Dutch optician, pos-

scene included in the photograph. It is furthermore required 

sibly even the ubiquitous Zacharias Janssen of microscope 

that the entire photograph surface correspond to a region of 

fame, first constructed a telescope and in addition had inklings 

satisfactory image quality. More precisely, the angle subtended 

of the value of what he was peering into. The earliest indisput-

at the lens, by a circle encompassing the film or CCD sensor 

able evidence of the discovery, however, dates to October 2, 

area, is the angular field of view w (Fig. 5.114). As a rough but 

1608, when Hans Lippershey petitioned the States-General of 

reasonable approximation of a common arrangement, take the 

Holland for a patent on a device for seeing at a distance (which 

diagonal distance across the film to equal the focal length. 

is what  teleskopos
  means in Greek). As you might have 

Thus w>2 ≈ tan-1 12; that is, w ≈ 53°. If the object comes in 

guessed, its military possibilities were immediately recog-

from infinity,  si
  must increase. The lens is then backed away 

nized. His patent was therefore not granted; instead the gov-

from the film plate or CCD to keep the image in focus, and the 

ernment purchased the rights to the instrument, and he received 

field of view, as recorded on the film whose periphery is the 

a commission to continue research. Galileo heard of this work, 

field stop, decreases. A standard
  SLR lens has a focal length 

and by 1609 he had fashioned a telescope of his own, using two 

in the range of about 50 to 58 mm and a field of view of 40° to 

lenses and an organ pipe as a tube. It was not long before he 

50°. With the film size kept constant, a reduction of ƒ results in 

had constructed a number of greatly improved instruments and 

a wider field angle. Accordingly, wide-angle
  SLR lenses range 

was astounding the world with the astronomical discoveries for 

from ƒ ≈ 40 mm down to about 6 mm, and w goes from about 

which he is famous.

50° to a remarkable 220° (the latter being a special-purpose 

lens wherein distortion is unavoidable). The  telephoto
  has a 

long focal length, roughly 80 mm or more. Consequently, its 


Refracting Telescopes


field of view drops off rapidly, until it is only a few degrees at 

ƒ ≈ 1000 mm.

A simple astronomical telescope
  is shown in Fig. 5.116. Unlike 

The standard photographic objective must have a large rela-

the compound microscope, which it closely resembles, its 

tive aperture, 1>(ƒ>#), to keep exposure times short. Moreover, 

primary function is to enlarge the retinal image of a  distant
  

the image is required to be flat and undistorted, and the lens 

object. In the illustration, the object is at a finite far distance 

should have a wide angular field of view as well. The evolution 

from the objective, so that the real intermediate image is 

of a modern lens still begins with a creative insight that leads to 

formed just beyond its second focal point. This image will be 

a promising new form. In the past, these were laboriously per-

the object for the next lens system, that is, the ocular. It follows 

fected relying on intuition, experience, and, of course, trial and 

from Table 5.3 (p. 165) that if the eyepiece is to form a virtual 

error with a succession of developmental lenses. Today, for the 

magnified final image (within the range of normal accommoda-

most part, the computer serves this function without the need of 

tion), the object distance must be less than or equal to the focal 

numerous prototypes.

length, ƒ e
 . In practice,  the position of the intermediate image is 
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Wild Aviogon

(a)

Double Gauss (Biotar)

(d)

Cooke (Taylor) triplet

(e)

Zeiss Orthometer

(b)

Petzval

(f)

Tessar

(c)

Magnar Telephoto

(g)


Figure 5.115
   Camera lenses.


fixed, and only the eyepiece is moved to focus the instrument
 . 

astigmatic, you’ll have to keep your glasses on when using 

Notice that  the final image is inverted
 , but as long as the scope 

ordinary visual instruments.) We saw earlier (Section 5.2.3) that 

is used for astronomical observations, this is of little conse-

both the back and front focal lengths of a thin-lens combination 

quence, especially since most work is photographic.

go to infinity when the two lenses are separated by a distance  d
  

At great object distances the incident rays are effectively 

equal to the sum of their focal lengths (Fig. 5.117). The astro-

parallel—the intermediate image resides at the second focus of 

nomical telescope in this configuration of  infinite conjugates
  is 

the objective. Usually, the eyepiece is located so that its first 

said to be  afocal
 , that is, without a focal length. As a side note, 

focus overlaps the second focus of the objective, in which case 

if you shine a collimated (parallel rays, i.e., plane waves) nar-

rays diverging from a point on the intermediate image will leave 

row laserbeam into the back end of a scope focused at infinity, 

the ocular parallel to each other. A normal viewing eye can then 

it will emerge still collimated but with an increased cross sec-

focus the rays in a relaxed configuration. If the eye is near-

tion. It is often desirable to have a broad, quasimonochromatic, 

sighted or farsighted, the ocular can be moved in or out so that 

plane-wave beam, and specific devices of this sort are now 

the rays diverge or converge a bit to compensate. (If you are 

available commercially.
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fo



fe


Intermediate

Objective

image

Eyepiece

Object


Figure 5.116
     Keplerian astronomical telescope (accommodating eye). The final 

image is virtual, enlarged, and inverted.

Final image

The periphery of the objective is the aperture stop, and it 

center of the telescope’s exit pupil. In that case, the primary 

encompasses the entrance pupil as well, there being no lenses to 

line-of-sight will always correspond to a chief ray through the 

the left of it. If the telescope is trained directly on some distant 

center of the exit pupil, however the eye moves.

galaxy, the visual axis of the eye will presumably be colinear 

Suppose that the margin of the visible object subtends a half-

with the central axis of the scope. The entrance pupil of the eye 

angle of a at the objective (Fig. 5.118). This is essentially the 

should then coincide in space with the exit pupil of the scope. 

same as the angle a u
 , which would be subtended at the unaided 

However, the eye is not immobile. It will move about scanning 

eye. As in previous sections, the angular magnification is

the entire field of view, which quite often contains many points 

a

of interest. In effect, the eye examines different regions of the 





MP =  a
  [5.75]

a u


field by rotating so that rays from a particular area fall on the 

fovea centralis. The direction established by the chief ray 

Here a u
  and a a
  are measures of the field of view in object and 

through the center of the entrance pupil to the fovea centralis is 

image space, respectively. The first is the half-angle of the 

the  primary line-of-sight
 . The axial point, fixed in reference to 

actual cone of rays collected, and the second relates to the 

the head, through which the primary line-of-sight always pass-

apparent cone of rays. If a ray arrives at the objective with a 

es, regardless of the orientation of the eyeball, is called the 

negative slope, it will enter the eye with a positive slope and 


sighting intersect
 . When it is desirable to have the eye survey-

vice versa. To make  the sign of MP positive for erect images,
  

ing the field, the sighting intersect should be positioned at the 

and therefore consistent with previous usage (Fig. 5.102), 

Exit pupil

plane


A



D


Chief ray


B



C



E



Figure 5.117
   Astronomical telescope—


f



f



o



e


infinite conjugates. The viewer’s eye is 


d


relaxed.
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Exit pupil

Field stop

plane


F


a


B



D



e
 2


Fo
 1

a a



C



E



f



f



f



o



o



e



fe



Figure 5.118  
   Ray angles for a telescope.

either  a u
  or a a
  must be taken to be negative—we choose 

well-corrected telescopic instruments generally have multi-element 

the former because the ray has a negative slope. Observe 

objectives, usually doublets or triplets.

that the ray passing through the first focus of the objective 

passes through the second focus of the eyepiece; that is,  Fo
 1  



EXAMPLE 5.17


and   Fe
 2 are conjugate points. In the paraxial approximation 

a ≈ a u 
 ≈ tan a u
  and a a 
 ≈  tan a a
 . The image fills the region 

A small Keplerian telescope, operating at infinite conjugates, is 

of the field stop, and half its extent equals the distance 

composed of two thin positive lenses separated by 105 cm. In 


BC 
 =  DE
 . Thus, from triangles  Fo
 1 BC
  and  Fe
 2 DE
 , the ratio of that configuration it provides an angular magnification of 20. 

the tangents yields

The viewer then pulls the eyepiece out 5.0 cm in order to clearly 

see a nearby object with a relaxed eye. How far away is this 

ƒ





MP = -   o
  (5.83)

object?

ƒ e



SOLUTION 


It’s not surprising, then, that early refracting telescopes had 

(a
 ) With infinite conjugates

fairly flat objectives (long focal lengths), and therefore very long 

tubes. The famous telescope of Johannes Hevelius (1611–1687) 


d 
 = ƒ o 
 + ƒ e 
 = 1.05 m

was 50 m long. There’s an additional benefit to having a long-

and since the image is inverted

focal-length objective: the flatter the lens, the less spherical and 

chromatic aberration it will suffer.


ƒ


Another convenient expression for the MP comes from con-

-20 = -   o



ƒe


sidering the transverse magnification of the ocular. Inasmuch as 

therefore

the exit pupil is the image of the objective (Fig. 5.118), we have

20ƒ

ƒ

ƒ


e 
 + ƒ e 
 = 1.05


M



e



e



Te 
 = -   x 
 = - 


o


ƒ o


ƒ e 
 = 0.05 m and  fo 
 = 1.00 m

Furthermore, if  Do
  is the  diameter of the objective
  and  Dep
  is the 

Since the eye is relaxed,  si 
 = ∞ and the intermediate image is 


diameter of its image, the exit pupil
 , then  MTe 
 =  Dep
 > Do
 . These 

formed at the focal point of the eyepiece. That point is now 

two expressions for  MTe
  compared with Eq. (5.83) yield

105 cm behind the objective. For the objective  si 
 = 1.05 m, 

ƒ o 
 = 1.00 m and


D






MP =  o 
  (5.84)


D


1

1

1


ep



s 
 +

=


o



si



f



The diameter of the cylinder of light entering the telescope 


1

1

1


is compressed down to the diameter of the cylinder leaving 



s 
 +

=


o


1.05

1.00


the eyepiece by a factor equal to the magnification of the 



instrument
 —that much is evident from the geometry of the 

The object is located at  so 
 = 21 m in front of the objective.

region between the lenses in Fig. 5.117.

Here  Dep
  is actually a negative quantity, since the image is 

inverted. It is an easy matter to build a simple refracting scope 

To be useful when the orientation of the object is of impor-

by holding a lens with a long focal length in front of one with a 

tance, a scope must contain an additional erecting system
 ; such 

short focal length and making sure that  d 
 = ƒ o 
 + ƒ e
 . But again, 

an arrangement is known as a terrestrial telescope
 . A single 
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Exit

pupil


Figure 5.119  
   A terrestrial telescope. 

Objective

Erecting

Ocular

The image is upright and the viewer’s 

system

eye is able to be relaxed.

erecting lens or lens system is usually located between the ocu-

observe the emerging sharp disk of light, using a piece of paper 

lar and objective, with the result that the image is right-side-up. 

as a screen. Determine the eye relief while you’re at it.

Figure 5.119 shows one with a cemented doublet objective and 

By the way, as long as  d 
 = ƒ o 
 + ƒ e
 , the scope will be afocal, 

a Kellner eyepiece. It will obviously have to have a long draw 

even if the eyepiece is negative (i.e., ƒ e 
 6 0). The telescope 

tube, the picturesque kind that comes to mind when you think 

built by Galileo (Fig. 5.121) had just such a negative lens as an 

of wooden ships and cannonballs.

eyepiece and therefore formed an erect image [ ƒe 
 6 0 and 

For that reason, binoculars
  (binocular telescopes) generally 

MP 7 0 in Eq. (5.83)]. A parallel bundle of rays from a distant 

utilize erecting prisms, which accomplish the same thing in less 

object enters the objective lens ( L
 1), and on leaving converges 

space and also increase the separation of the objectives, thereby 

toward a point on its focal plane, a distance   fo
  away. That point 

enhancing the stereoscopic effect. Most often these are double 

( P
 ) is located by ray-1 drawn through the center of  L
 1, parallel 

Porro prisms, as in Fig. 5.120. (Notice the involved modified 

to the rest of the bundle. Because the two lenses share a focal 

Erfle eyepiece, the wide field stop, and the achromatic doublet 

point at the far right,  P
  also lies on the focal plane of  L
 2. Now 

objective.) Binoculars customarily bear several numerical mark-

construct ray-2 passing through the center of  L
 2 going on to  P
 . 

ings, for example, 6 * 30, 7 * 50, or 20 * 50. The initial num-

Ray-1, ray-2, ray-3, and ray-4 all converge on  L
 2 heading to-

ber is the magnification, here 6 *, 7 *, or 20 *. The second 

ward  P
 , which is a virtual object point for that lens. As we have 

number is the entrance-pupil diameter or, equivalently, the clear 

already seen in Fig. 5.31b, ray-2 passing through the center of 

aperture of the objective, expressed in millimeters. It follows 


L
 2 determines the direction the rest of the rays will take on leav-

from Eq. (5.84) that the exit-pupil diameter will be the second 

ing  L
 2; they all emerge parallel to one another. The rays enter-

number divided by the first, or in this case 5, 7.1, and 2.5, all in 

ing the telescope are coming downward, as are the emerging 

millimeters. You can hold the instrument away from your eye 

rays. A person viewing the exiting light would see a magnified 

and see the bright circular exit pupil surrounded by blackness. 

upright virtual image located essentially at infinity. With the 

To measure it, focus the device at infinity, point it at the sky, and 

same size focal lengths the Galilean scope has the same magni-

fying power (MP = -ƒ o
 >ƒ e
 ) as the astronomical telescope, al-

though since ƒ e
  is negative, MP is now positive (the image is 

upright).

The lens arrangement depicted in Fig. 5.121 a
  can also pro-

duce virtual images that are erect, and real images that are  

inverted. To see that, examine ray-5, which passes through the 

front focal point of  L
 1 and leaves that lens parallel to the central 

axis. It emerges from  L
 2 parallel to the rest of the exiting rays, 

although it appears to have come from the front focal point of  L
 2. 

Note that the inverted intermediate image created by  L
 1 will not 

change if we reposition  L
 2 along the axis. Consequently, when 

the negative lens is slid slightly to the left (Fig. 5.121 c
 ), ray-2 

and ray-5 extended backward intersect to form a magnified up-

right virtual image to the left of  L
 2; the final image of the in-

verted intermediate image is again inverted and so ends up 

erect. With the eyepiece on a Galilean telescope positioned like 

this, the viewer’s eye would have to accommodate. Alternatively, 

if  L
 2 is shifted a little to the right, closer to the stationary inter-

mediate image, ray-5 will not change its direction as it leaves 


Figure 5.120  
   A binocular.


L
 2, but ray-2, which passes through  P,
  will come out steeper 
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L
 1


L
 2

expander (Fig. 9.13) because it has no internal focal points where 

Ray-3 Ray-2

a high-power beam would otherwise ionize the surrounding air.

Ray-1


O



O



F


1

2

1


F



Reflecting Telescopes



F


2

Ray-5

2


P


Put rather simply, a telescope should allow us to see things 

Ray-4


clearly
  that are far away, and often extremely  faint
 . We need to 


fe



f


be able to resolve fine details, that is, to distinguish separate 


o


(a)

features that are small and close together, such as the two stars 

in a binary system. A spy satellite that can spot people walking 

around is highly desirable, but one that will identify their mili-

tary service from the markings on their uniforms is even better. 

The measure of that ability is the resolution
 , and it increases 

with the diameter ( D
 ) of the aperture admitting light into the 

system. All other things being equal (under ideal seeing condi-

tions), a large-diameter telescope will have better resolution 


d



fe



f


than a small-diameter telescope. There’s another even more 


o


(b)

compelling reason to increase the size of the aperture: to im-

prove the light-gathering power
 . A telescope with a large ap-

Final image


L
 1


L
 2

erture will be able to collect more light and see fainter, more 

Objective

Eyepiece

distant objects than an otherwise identical but smaller one.

The difficulties inherent in making large lenses are under-

Ray-2

scored by the fact that the largest refracting instrument is the 


F F


2

1

40-inch Yerkes telescope in Williams Bay, Wisconsin, whereas 


F
 2

Intermediate


F
 1

Ray-5

image

the reflector on Mount Palomar in southwestern California is 


P


200 inches in diameter. The problems are evident; a lens must 


f



f


be transparent and free of internal flaws such as bubbles. A 


e



e



f


(c)


o


front-surfaced mirror obviously need not be; indeed, it need not 

even be transparent. A lens can be supported only by its rim and 

may sag under its own weight; a mirror can be supported by its 

rim and back as well. Furthermore, since there is no refraction 

and therefore no effect on the focal length due to the wave-

length dependence of the index, mirrors suffer no chromatic 

aberration. For these and other reasons (e.g., their frequency 

response), reflectors predominate in large telescopes.

Invented by the Scotsman James Gregory (1638–1675) in 

1661, the reflecting telescope was first successfully constructed 

by Newton in 1668 and only became an important research tool 

in the hands of William Herschel a century later. Figure 5.122 

depicts a number of reflector arrangements, each having a 

concave paraboloidal primary mirror. The venerable 200-inch 

(d)

Hale telescope is so large that a little enclosure, where an  

observer can sit, is positioned at the prime focus (Fig. 5.122 a
 ). 


Figure 5.121
     The Galilean telescope. Galileo’s first scope had a planar-

In the Newtonian version (Fig. 5.122 b
 ) a plane mirror or prism 

convex objective (5.6 cm in diameter, ƒ = 1.7 m,  R
  5 93.5 cm) and a  

brings the beam out at right angles to the axis of the scope, 

planar-concave eyepiece, both of which he ground himself. It was 3*,  

where it can be photographed, viewed, spectrally analyzed, or 

in contrast to his last scope, which was 32*. (E.H.)

photoelectrically processed. In the classical Gregorian arrange-

ment (Fig. 5.122 c
 ), which is not particularly popular, a concave 

and the two will converge to form a real inverted image to the 

ellipsoidal secondary mirror reinverts the image, returning the 

right of  L
 2.

beam through a hole in the primary. The classical Cassegrain 

As a telescope, the system has a narrow field of view and is 

system (Fig. 5.122 d
 ) utilizes a convex hyperboloidal second-

now mainly of historical and pedagogical interest, although one 

ary mirror to increase the effective focal length (refer back to 

can still purchase two such scopes mounted side by side to form 

Fig. 5.57, p. 185). It functions as if the primary mirror had the 

a Galilean field glass. It is useful, however, as a laserbeam  

same aperture but a larger focal length or radius of curvature.
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The rotating 3-meter-diameter Liquid Mirror 

Prime focus   (a)

Telescope in New Mexico is used by NASA 

to detect chunks of low-Earth-orbit space 

debris as small as 5 cm. (NASA)

Incidentally, if we put a liquid such as mercury in a shallow 

horizontal basin and continuously rotate it about a vertical axis 

at a constant rate v, the equilibrium configuration of the surface 

will be parabolic. The elevation ( z
 ) above the lowest point in the 

liquid at any location on the surface is given by 

Newtonian   (b)

v2 r
 2


 



z 
 =


 


(5.85)

2 g


Large (upwards of 3 meters in diameter), robust, diffraction 

limited, liquid mirrors have been produced. The main advantage 

of a liquid telescope mirror over a glass one is that it’s very 

much less expensive. The main disadvantage is that it can only 

look straight up (see photo).

Gregorian   (c)


Aplanatic Reflectors


An optical system that has negligible amounts of both spherical 

aberration (p. 259) and coma is called an aplanat
 , and there are 

aplanatic versions of both the Cassegrain and the Gregorian 

scopes. The Ritchey-Chrétien telescope is an aplanatic Casseg-

rain having a hyperboloidal primary and secondary. In recent 

Cassegrain   (d)

times, this configuration has become the leading choice for 

devices with apertures of 2 m or more. Perhaps the best known 


Figure 5.122
   Reflecting telescopes.

example of its kind is the 2.4-m Hubble Space Telescope 

(HST), pictured in Fig. 5.123. Only telescopes in space (i.e., 

above the absorbing atmosphere) can work efficiently in the 

The simple single-mirror paraboloidal telescope (Fig. 5.122 a
 ) 

ultraviolet—which, for example, is where one would like to ex-

was designed to function with rays entering along its optical 

amine hot young stars. With its updated charge-coupled-device 

axis. But there will always be objects of interest elsewhere in 

(CCD) arrays, the HST could “see” from about 1 mm in the IR 

the field of view other than at its direct center. When a parallel 

to 121.6 nm in the UV. This complements ground-based tele-

bundle of off-axis rays are reflected by a paraboloid, they do not 

scopes that can provide diffraction-limited imaging in the 

all meet at the same point. The image of a distant off-axis point 

wavelength range greater than 10 mm. (Incidentally, CCDs 

(e.g., a star) is an off-axis asymmetric blur caused by the com-

have a sensitivity about 50 times greater than otherwise compa-

bined aberrations of  coma
  (p. 263) and  astigmatism
  (p. 266). 

rable photographic film; the era of dropping film packs out of 

This blurring becomes unacceptable rather quickly as the object 

spy satellites is long over.)

moves off-axis; that’s especially true for the contribution due 

With little or no coma, the field of view of the Ritchey- 

to coma, and it ends up limiting the acceptable field of view to 

Chrétien is limited by astigmatism. Thus an  ƒ
 >10 instrument will 

something quite narrow. Even for a slow  ƒ
 >10 system, the 

have an acceptable angular field radius of about 18 arcminutes, 

angular radius of the acceptable field of view is only about  

twice that of an equivalent paraboloidal telescope. In comparison 

9 arcminutes off-axis, and it drops to a mere 1.4 arcminutes at 

to the aplanatic Gregorian, the Ritchey-Chrétien has a smaller 


ƒ
 >4. The classical two-mirror telescopes (Figs. 5.122 b
 ,  c
 , and  d
 ) 

secondary and therefore blocks less light, and is substantially 

are similarly severely limited in their fields of view by coma.

shorter in length; both features make it much more desirable.
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Figure 5.123  
   The Hubble Space Telescope. The spacecraft 

is 13 m (43 ft) long (about 16 ft from the primary to the  

Solar

secondary) and has a mass of 11 600 kg. It’s in a 599-km  

panels

by 591-km orbit with a period of 96 minutes. The primary 

mirror of the HST is pictured on p. 185.

Because an instrument can collect only a portion of the inci-

the light actually spreads out into a tiny circular spot (called an 

dent wavefront to be re-formed into an image, there will  

Airy disk, containing about 84% of the energy) surrounded by 

always be diffraction: the light will deviate from straight-line 

very faint rings. The radius of the Airy disk determines the over-

propagation and spread out somewhat in the image plane. When 

lapping of neighboring images and therefore the resolution. 

an optical system with a circular aperture receives plane waves, 

That’s why an imaging system that is as perfect as possible is 

rather than there being an image “point” (whatever that means), 

referred to as diffraction limited
 .
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For a perfect instrument, the ideal theoretical angular resolu-

tion is given by Eq. (10.59), namely, the radius of the Airy disk, 

1.22l> D
  radians. Here  D
  is the diameter of the instrument in 

the same units as l. Another way to present the angular resolu-

tion is in arcseconds, in which case it equals 2.52 * 105 l> D
 . 

Because of atmospheric distortions, ground-based telescopes, 

regardless of their size, seldom have angular resolutions better 

than about 1 arcsecond. That is, the images of two stars sepa-

rated by an angle of less than 1 arcsecond blend into an undeci-

pherable blur. By comparison, the HST, high above the atmo-

sphere, for which  D 
 = 2.4 m, has a diffraction-limited angular 

resolution at l = 500 * 10-9 m, of about 0.05 arcsecond.

Among the world’s largest telescopes are the twin Keck apla-

natic Cassegrains. Separated by 85 m, these two great telescopes 

are perched atop the extinct volcano Mauna Kea in Hawaii, at an 

altitude of 13 600 feet. Each has a 10-m hyperboloidal primary 

composed of 36 hexagonal elements. These are deeply curved so 

that the  ƒ
 >1.75 system has a focal length of only 17.5 m.  

This is indicative of the new generation of large telescopes that 


Figure 5.124  
   A drawing of the Giant Magellan Telescope. Notice the size 

tend to have fast mirrors (less than  ƒ
 >2) with relatively small fo-

of the person on the left of the base. (National Academy of the Sciences)

cal lengths. Short telescopes are more economical to build and 

house, and are more stable and accurately steered.

based optical telescope arrays are destined to contribute signifi-

One of the largest single optical telescopes in the world is the 

cantly to the way we see the Universe.

Gran Telescopio Canarias (GTC) located in the Canary Islands. 

Similar to, but slightly larger than, either Keck scope, its hyper-


Catadioptric Telescopes


boloidal primary is composed of 36 independently movable hex-

agonal segments. With a total area of 75.7 m2 it’s equivalent to a 

A combination of reflecting ( catoptric
 ) and refracting ( dioptric
 ) 

circular mirror 10.4 m in diameter. The GTC achieved first light 

elements is called a  catadioptric
  system. The best known of 

in 2007 but it’s not likely to hold the “largest” title for long. A 

these, although not the first, is the classic  Schmidt optical sys-


new generation of terrestrial megascopes, truly gigantic tele-


tem
 . We must treat it here, even if only briefly, because it repre-

scopes, is in the works. Among the biggest of them are the 25-m 

sents an important approach to the design of large-aperture, ex-

Giant Magellan Telescope (GMT), the Thirty Meter Telescope, 

tended-field reflecting systems. As seen in Fig. 5.125, bundles 

and the 42-m European Extremely Large Telescope. To these 

of parallel rays reflecting off a spherical mirror will form im-

behemoths must be added the James Webb Space Telescope, a 

ages, let’s say of a field of stars, on a spherical image surface, 

6.5-m device (working primarily in the IR) that NASA will orbit 

the latter being a curved film plate in practice. The only prob-

in space (2018) about a million miles from Earth.

lem with such a scheme is that although it is free of other aber-

As a representative of these powerful new eyes on the Universe, 

rations (astigmatism and coma, see Section 6.3.1), we know 

let’s consider the GMT. The Giant Magellan Telescope, which is 

that rays reflected from the outer regions of the mirror will not 

scheduled for completion around 2017, consists of seven 8.4-m 

arrive at the same focus as those from the paraxial region. In 

(28-ft) honeycomb monolithic borosilicate mirrors (Fig. 5.124). 

other words, the mirror is a sphere, not a paraboloid, and it suf-

All seven mirrors (one central and six off-axis) are ground to 

fers   spherical aberration
  (Fig. 5.125 b
 ). If this could be cor-

form one continuous slightly ellipsoidal optical surface. It has a 

rected, the system (in theory at least) would be capable of per-

collecting area equivalent to that of a 21.9-m-diameter aperture. 

fect imagery over a wide field of view. Since there is no one 

Because its primary mirrors form one smooth surface its resolv-

central axis, there are, in effect, no off-axis points. Recall that 

ing power is that of a 24.5-m (80-ft) aperture capable of produc-

the paraboloid forms perfect images only at axial points, the 

ing images 10 times sharper than the Hubble Space Telescope. 

image deteriorating rapidly off axis.

With a focal length of 18 m the primary’s focal ratio is ƒ>0.7. The 

One evening in 1929, while sailing on the Indian Ocean  

aplanatic Gregorian design calls for a secondary mirror system 

(returning from an eclipse expedition to the Philippines), 





consisting of seven individual thin adaptive concave segments. 

Bernhard Voldemar Schmidt (1879–1935) showed a colleague 

The combined primary-secondary effective focal length is 203 m 

a sketch of a system he had designed to cope with the spherical 

at ƒ>8.0.

aberration of a spherical mirror. He would use a thin glass 

The technology now exists for interferometrically combin-

corrector plate on whose surface would be ground a very shal-

ing the images from several separate optical telescopes, thereby 

low toroidal curve (Fig. 5.125 c
 ). Light rays traversing the outer 

tremendously increasing the overall effective aperture. Ground-

regions would be deviated by just the amount needed to be 
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Major advances in the design of catadioptric instrumentation 

have occurred since the introduction of the original Schmidt 

system. There are now catadioptric satellite and missile tracking 

instruments, meteor cameras, compact commercial telescopes, 

telephoto objectives, and missile-homing guidance systems.  

Innumerable variations on the theme exist; some replace the 


C



F


correcting plate with concentric meniscus lens arrangements 

(Bouwers–Maksutov), and others use solid thick mirrors. One 

highly successful approach utilizes a triplet aspheric lens array 

(Baker).

(a)


5.8 Wavefront Shaping


This chapter has been about reshaping wavefronts in one way or 

another, but the changes introduced by traditional lenses and 

mirrors are global, affecting the whole processed portion of the 

wavefront in more-or-less the same way. By contrast, for the 


C


first time it is now possible to take an incoming wavefront and 

reconfigure every portion of it differently to fit specific needs.

Consider a plane wave passing either through some inho-

mogeneous medium of index  n(
 
r

 )
  or through a medium of 

(b)

nonuniform thickness—a piece of shower-door glass will do 

(Fig. 5.126 a
 ). The wavefronts are essentially held back in 

proportion to the  OPL
  and distort accordingly. When, for ex-

ample, such a wrinkled wave reflects from an ordinary planar 

mirror, it goes off reversed in direction but otherwise unchanged 

(Fig. 5.126 b
 ). The leading and trailing wavefront regions remain 

leading and trailing, with only the direction of propagation 

reversed; the wavefront remains distorted. The scene beyond a 

crinkled-glass shower door is equally blurred whether you look 

Film plate

at it directly or in a mirror.


C


(a)


n(
 
r

 ) 
 >  na


(c)


na


Correction plate

Incoming

Distorted

Ordinary

wave

wave

planar

mirror


Figure 5.125
     The Schmidt optical system.

(b)

sharply focused on the image sphere. The corrector must over-

Distorting

come one defect without introducing appreciable amounts of 

medium Distorted

other aberrations. This first system was built in 1930, and in 

wave reflected

1949 the famous 48-inch Schmidt telescope of the Palomar 

Observatory was completed. It is a fast (ƒ>2.5), wide-field  


Figure 5.126  
  ( a
 ) A plane wave becomes distorted on passing through an 

device, ideal for surveying the night sky. A single photograph 

inhomogeneous medium.  (b
 ) When such a wrinkled wave reflects off a tra-

could encompass a region the size of the bowl of the Big  

ditional mirror, it changes direction. Regions that were originally leading or 

trailing remain that way as the wave, still wrinkled, moves off in a new 

Dipper—this compared with roughly 400 photographs by the 

direction. Passing through the inhomogeneous medium a second time 

200-inch reflector to cover the same area.

increases the distortion.
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If a more sophisticated mirror could be devised that could 

information to reconfigure the lightwave, bringing it back to a 

reshape the reflected wavefronts, we might be able to get rid 

pristine condition as if it had never traversed the swirling tumult 

of undesirable distortions that are unavoidably introduced in a 

of the atmosphere (Fig. 5.127).

variety of situations. This section explores two different state-

Driven by thermal energy from the Sun, the Earth’s atmo-

of-the-art techniques for accomplishing just that.

sphere is a shifting sea of turbulent air. Variations in density are 

accompanied by variations in the index of refraction and there-

fore in optical path length. Wavefronts streaming down from a 


5.8.1  Adaptive Optics


point on a distant star arrive at the atmosphere almost precisely as 

One of the most significant breakthroughs in telescope technol-

plane waves (with a wavelength in the mid-visible of about 0.5 mm). 

ogy to occur in recent times is called adaptive optics
 , and it has 

As they sweep through the 100 miles or so of shifting air, path 

provided a way to deal with the daunting problem of atmo-

length differences of a few micrometers are introduced, and the 

spheric distortion. As Newton put it, “If the Theory of making 

wavefronts distort into a bumpy undulated surface. What reaches 

Telescopes could at length be fully brought into Practice, yet 

ground level is a succession of broadly wrinkled wavefronts 

there would be certain Bounds beyond which telescopes could 

shaped much like what you would get if you spread 10-cm tiles 

not perform. For the Air through which we look upon the Stars, 

down on a floor that had first been randomly strewn with tiny 

is in perpetual Tremor; as may be seen by the tremulous Motion 

tough beetles, that is, contiguous tiles, slightly tilted every which 

of Shadows cast from high Towers, and by the twinkling of the 

way. The turbulence changes unpredictably on a time scale of 

fix’d Stars.” Adaptive optics is a methodology used to control 

milliseconds, and the progression of wavefronts traversing it is 

that “perpetual Tremor”—first by measuring the turbulence-

continuously bent and buckled anew (as if the beetles were aim-

induced distortions of the incident light, and then by using that 

lessly walking around under the tiles, lifting and shifting them).
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Figure 5.127
     An adaptive-optics system. The dis-
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torted wavefront Σ1 is analyzed and reconfigured. 

data

processor

Wavefront

The corrected planar wavefront is sent on to the 

sensor

scientific instruments.
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When looking through the atmosphere with a telescope the probability of experiencing a moment  

of clear viewing decreases exponentially with aperture diameter. Using a moderate-size objective  

( ≈12-inch) in ordinary seeing conditions the odds are 1 in 100. This sequence of photos of a star  

taken at 1>60-second intervals shows how the image “twinkles.” The rightmost picture was taken at  

an instant of very good seeing. With a diffraction-limited instrument the image should resemble the  

Airy disk pattern (p. 482) of a central bright spot surrounded by faint concentric rings.  

(Ron Dantowitz, Museum of Science, Boston)

The tile imagery, however weird, is useful because in 1966 


parameter
 , and it’s almost universally represented by  r
 0; this 

David L. Fried showed that the optical results of atmospheric 

is an unfortunate choice of symbol, since this is not a radius. 

turbulence could be modeled in a fairly simple way. In effect 

Pronounced “r naught
 ,” it corresponds to the size of the region 

(because the speed of light is so great), one can assume that at any 

over which the incoming wavefront can be taken to be essen-

moment the atmosphere behaved as if it were compressed into a 

tially planar. On those rare occasions when  r
 0 exceeds 30 cm, 

horizontal array of small, contiguous, wedge-shaped refracting 

a very distant star will be “perfectly” imaged as an Airy disk. 

regions or stable cells. At any given ground site, the local portion 

As the turbulence increases,  r
 0 decreases; moreover, as the 

of a stellar wavefront is composed of many randomly tilted, 

wavelength increases,  r
 0 increases:  r
 0 ∝ l1.2. It follows that the 

small, fairly flat areas (each analogous to a single tile). In some-

angular resolution of a large ground-based telescope is actually 

one’s backyard, these areas are typically about 10 cm across, al-

1.22l> r
 0 and since  r
 0 is rarely better than 20 cm, the most pow-

though under the very best conditions (e.g., on a astronomical 

erful Earth-bound instrument has little more resolution than a 

mountaintop) they might reach as much as 20 or occasionally 

humble 6-inch telescope!

30 cm “when the seeing is good.” Over each such isoplanatic 


When there’s a wind above a telescope, it, in effect, blows 


region
 , the wavefront is fairly smooth and has little curvature: the 

the isoplanatic regions past the aperture. A 5-m>s breeze will 

difference between leading bumps and trailing depressions is 

carry an  r
 0 = 10-cm isoplanatic region past in 20 ms. To moni-

about l>17, and it’s a rule-of-thumb that if wave distortions are 

tor and ultimately respond to such atmospheric changes, an 

less than l>10 the image quality will be very good. The more 

electro-optical-mechanical control system should operate 10 

turbulence there is, the smaller the stable cells are, and the small-

or 20 times faster, sampling the data at upwards of 1000 times 

er are the corresponding isoplanatic regions of the wavefront.

per second.

The effect of turbulence on the image formed by a telescope, 

Figure 5.127 is a schematic drawing of a typical astronomi-

one trained on a star, depends strongly on the size of its aperture. 

cal adaptive optics system. In this simple arrangement, the tele-

If the instrument has an aperture of only a few centimeters, the 

scope is pointed at a star that will serve both as the object of 

small admitted portion of a wavefront (having traversed only a 

attention and as a beacon for correcting distortions. Before any-

part of a stable cell) will likely be quite flat. Turbulence will 

thing clever is done, the large beam from the primary mirror is 

primarily alter the tilt of that otherwise planar incoming wave-

reduced to several centimeters in diameter so that it can be 

front section. This means that a sharp Airy image can momen-

handled more conveniently. In the process, each isoplanatic 

tarily be formed via that section, but the Airy-image spot will 

region at the primary becomes focused down to a correspond-

wander around as the atmosphere changes and each successive 

ingly small region in the reduced beam.

planar wavefront section arrives at a different angle (our myth-

The first step is to analyze the distorted wavefront, Σ1, trans-

ical beetles keep moving). By contrast, for a large-diameter 

mitted by the telescope and now present in miniature in the re-

telescope, several meters across, the large admitted wavefront 

duced beam. This is done with a wavefront sensor
 , of which 

section is a mosaic of many flat, tilted regions. The image is 

there are several types. The one considered here is a Hartmann 

then a simultaneous superposition of numerous shifting Airy 

sensor (Fig. 5.128), which consists of a compact array of thou-

spots, and the result is a shimmering blur. Clearly, increasing the 

sands of independent detectors tightly grouped side-by-side. 

aperture will collect more light, but it will not proportionately 

Light incident on the sensor first encounters a sheet of closely 

improve the resolution.

packed tiny identical lenslets, at whose focal plane there is a CCD 

The critical aperture size at which blurring becomes appre-

array (Fig. 5.128 a
 ). The device is located in the beam in such a 

ciable is a measure of the turbulence. It’s called the Fried  


way that a lenslet is about the size of an isoplanatic region. Each 
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(a) Distorted

(b)

(c)


Figure 5.128
     The Hartmann wavefront  

wavefronts

Lenslets

sensor. ( a
 ) Lenslets focus light down to a 

CCD array. Each square cluster of four  

CCD elements forms a detector. ( b
 ) When the 

incident wave is planar, Airy-image spots 

form at null points at the centers of each 

four-element detector. ( c
 ) When the wave-

front is distorted, Airy-image spots are  

shifted from the null positions. 

CCD array

CCD array

CCD array

lenslet then forms a minute image of the star on a cluster of four 

Because many objects of interest to astronomers—planets, 

CCD pixel elements grouped around its optical axis. If the overall 

galaxies, nebulae, and so on—are imaged as extended bodies, 

wavefront were perfectly flat, that is, if every isoplanatic region 

using these as an adaptive-optics beacon is precluded. Still, if you 

had zero tilt and all were parallel, each lenslet would produce an 

wish to examine a galaxy, you could use a nearby star as a bea-

Airy-image spot at a null position between its own four pixel ele-

con. Unfortunately, however, there will frequently not be any 

ments (Fig. 5.128 b
 ). But when any isoplanatic region is tilted, the 

stars in the vicinity that are bright enough for the purpose. One 

corresponding image spot shifts and the four CCD elements re-

way to get around this limitation is to use a laserbeam to create an 

cord an unbalanced signal that indicates the exact displacement 

artificial guide star (see photo). This has successfully been done 

(Fig. 5.128 c
 ). The output from all of these minute detectors is 

in two different ways. In one, a laser pulse, focused at altitudes in 

computer analyzed, Σ1 is theoretically reconstructed, and the 

the range from around 10 to 40 km, is projected up through the 

corrections necessary to flatten the wavefront are calculated.

telescope. A portion of that light is backscattered downward from 

If an overall tilt of the wavefront is detected, a signal is sent 

air molecules via Rayleigh Scattering. Alternatively, there is a 

to the fast-steering flat mirror, which initially receives the light 

layer of sodium atoms (probably deposited by meteors) at an al-

from the primary, and that tilt is counteracted. The now untilt-

titude of 92 km, well above most of the atmospheric turbulence. 

ed, but still wrinkled, wavefront heads toward a “rubber mir-

A laser tuned to 589 nm can excite the sodium, thereby producing 

ror,” a flexible reflector that can rapidly and precisely be de-

a small bright yellow beacon anywhere in the sky.

formed. It might, for example, be composed of a thin faceplate 

The results (see photo) have been so encouraging* that 

reflector mounted on hundreds of actuators that rapidly push 

most of the world’s existing major telescopes are using adap-

and pull it into the desired shape. Driven by signals from the 

tive optics and all new terrestrial observatories certainly will 

computer, the mirror is bent into an inverse configuration to 

in the future.

that of the wavefront. In effect, wavefront bumps impinge on 

matching mirror depressions, and vice versa. The result is to 

reflect a beam of distortion-free wavefronts, Σ2, that corre-

spond to the condition of the starlight before it entered the at-

mosphere. A small fraction of the radiant energy goes back 

into the sensor-computer-mirror control loop to continuously 

maintain the correction process, while the remainder travels on 

to the scientific instruments.

A 1-second exposure of 53j Ursa Major using a 1.5-m telescope at the 

Phillips Laboratory. ( a
 ) The ordinary uncompensated image is undecipher-

able. ( b
 ) Using adaptive optics, the image is improved dramatically. (Phillips 

Laboratory, Department of the US Air Force)

*See L. A. Thompson, “Adaptive Optics in Astronomy,”  Phys. Today
  47
 , 24 (1994); 

J. W. Hardy, “Adaptive Optics,”  Sci. Am.
  60
  (June 1994); R. Q. Fugate and W. J. 

Wild, “Untwinkling the Stars—Part I,”  Sky & Telescope
  24
  (May 1994); W. J. Wild 

The creation of a laser guide star at the Phillips Laboratory, Kirtland  

and R. Q. Fugate, “Untwinkling the Stars—Part II,”  Sky & Telescope
  20
  (June 

Air Force Base, New Mexico. (Phillips Laboratory, Department of the US Air Force)

1994).
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5.8.2 Phase Conjugation


That’s a rather impractical approach, especially if you can’t 

anticipate the shape of the wavefront or if it changes from 

Another important new technology for reshaping wavefronts is 

moment to moment.

known as phase conjugation
 ; here the wave is turned inside-

Fortunately, in 1972 a team of Russian scientists discovered 

out during a special kind of reflection.

a method for producing phase conjugation for  any
  incident 

Imagine a stream of plane waves traveling to the right in the 

wavefront using Brillouin Scattering. They directed an intense 

positive  z
 -direction impinging perpendicularly on an ordinary flat 

beam of laser light into a tube containing high-pressure methane 

mirror. The incident wave is expressible as  Ei 
 =  E
 0  cos ( kz 
 - v t
 ), 

gas. At power levels of about a million watts, pressure-density 

or in complex form as   E
  ˜
 i 
 =  E
 0  ei
 ( kz
 -v t
 ) =  E
 0  eikze
 - i
 v t 
 =  E
  ˜
 (z)e
 - i
 v t
 variations occur, and the medium becomes a remarkable kind  

, where the space and time parts have been separated. For this sim-

of mirror, reflecting back almost all the incoming light. What 

ple geometry, the reflected waves ride right back over the incident 

surprised the investigators was that the beam scattered back out 

waves;  
they are identical except for

  
 
the direction of propagation

 . 

of the gas was phase conjugated. The medium, in this case the 

The reflected wave is given by  Er 
 =  E
 0 cos (- kz 
 - v t
 ), or  methane, adjusts itself to the presence of the electromagnetic E
  ˜
 r 
 =  E
 0  e
 - ikze
 - i
 v t 
 =  E
 * (z)e
 - i
 v t
 . Changing the sign of the space field in just such a way as to turn the backscattered wave inside-part of the phase changes the direction of the wave, and the same 

out, so that regions that were originally leading were now trail-

thing is accomplished by taking the complex conjugate in the 

ing. Today there are several means to the same end, all using 

exponential formulation. For this reason, the reflected wave is 

media that produce nonlinear optical effects. There are myriad 

also called a phase-conjugated wave
  or just a conjugate wave
 . 

potential applications, from tracking satellites to improving las-

A situation of this sort is characterized by the fact that we could, 

erbeam quality.*

in principle, take a motion picture of it, which when shown for-

As an example of the kinds of things that can be done, 

wards or backwards, would be indistinguishable. Consequently, 

consider the following: If a beam that has been distorted by 

a phase-conjugated wave is said to be time reversed
 . For 

passing through an inhomogeneous medium (Fig. 5.126) is 

monochromatic waves, changing the sign of the time part (i.e., 

reflected from an ordinary mirror and made to retraverse that 

time reversal) is equivalent to reversing the direction of propaga-

medium, the beam will become even more distorted. By con-

tion:  cos [ kz 
 - v(- t
 )] = cos ( kz 
 + v t
 ) =  cos (- kz 
 - v t
 ).

trast, if the same thing is done using a phase-conjugating 

A very simple, phase-conjugated reflection occurs when 

mirror, on passing back through the distorting medium for a 

there is a point source at the center of curvature of a concave 

second time the beam will be restored to its pristine condi-

spherical mirror. The waves flow, expanding out to the mirror, 

tion. Figure 5.130 illustrates the technique, and Fig. 5.131 

and on reflection, contract back on themselves to the source 

shows the results of an actual experiment. The image of a 

point. Presumably, a conventional reflecting surface could be 

cat was impressed on a collimated argon-ion laserbeam 

made to exactly match any particular wavefront and thereby 

(l = 514.5 nm) by simply passing the beam through a photo-

reflect a conjugate for that specific incoming wave (Fig. 5.129). 

graphic transparency of the cat. As a reference standard, the 

image-carrying wave was sent, via a beamsplitter, to an ordinary 

(a)

Phase-conjugating

ordinary mirror

Incident wavefronts

Distorting medium

(b)

Corrected wave

Phase-conjugated

Phase-conjugating

reflected wave

mirror


Figure 5.130
     When the distorted wave in Fig. 5.126 is reflected by  

a phase-conjugating mirror, it’s turned inside-out, or conjugated. Compare it 

to the conventionally reflected wave in Fig. 5.126 b
 . On traversing the inho-

mogeneous medium a second time, regions of the wavefront that are now 

leading will be held back, and vice versa. The wave that emerges after a 

round-trip will be identical to the one that originally entered (Fig. 5.126 a
 ).

Reflected wavefronts

*See D. M. Pepper, “Applications of Optical Phase Conjugation,”  Sci. Am.
  


Figure 5.129  
   The operation of a rather limited phase-conjugating mirror. 


74
  (January 1986) and V. V. Shkunov and B. Ya. Zel’dovich, “Optical Phase 

It only works for the incoming wavefronts shown in ( a
 ).

Conjugation,”  Sci. Am.
  54
  (December 1985).
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(a)

from the mirror was unrecognizable (Fig. 5.131 b
 ). Finally, 

the conventional mirror was removed and replaced by a phase 

conjugator. Even though the wave again passed twice through 

the distorter, the image was restored to its original clarity 

(Fig. 5.131 c
 ).


5.9 Gravitational Lensing


Among the most remarkable discoveries of the twentieth 





century—one that sprang directly from Einstein’s General 

Theory of Relativity (1915)—was that matter gives rise to, or 

better yet corresponds to, a curvature of space-time. From  

(b)

either perspective, where there is a large concentration of mass 

there will be an appreciable curvature of the local space-time. 

Relativity theory conceptually conjoins space and time, and 

gravity affects both. This means that a lightbeam traversing 

such a warped region will follow a curved path, bending inward 

toward the mass concentration. In other words, gravity alters 

the velocity of light—direction and speed. That shouldn’t be 

altogether surprising, since it slows time itself.

Up until now we’ve assumed that light in space propagates 

in straight lines at the fixed speed  c
 . That understanding is in 

accord with Special Relativity, and it’s true enough for any 

Earthbound experiment we might perform. But it’s not true on 

the vast scale of stars and galaxies and black holes. Under the 

influence of a tremendous amount of mass, the gravitational 

(c)

potential (Φ G
 ) in the immediate surroundings can be immense. 

Light propagating through this kind of region behaves as if it 

were traversing an inhomogeneous medium having a position-

dependent index of refraction,  nG(
 
r

 $ )
 , greater than 1. For that 

reason, and because the resulting effects are similar to those 

that can easily be produced by aspherical lenses, the phenome-

non is called gravitational lensing
 . More fundamentally, the 

deviation of light from rectilinear propagation is the purview of 

diffraction, and the effect might better be called  gravitational 



diffraction
 .

The geometry of the situation is straightforward: we need an 

observer (e.g., someone with a telescope on Earth), a distant 

source of electromagnetic radiation (e.g., a quasar or a galaxy) 

that serves as the object being viewed, and a lensing mass (e.g., 


Figure 5.131
     Using phase conjugation to remove distortion. ( a
 ) Image of 

a quasar, galaxy, group of galaxies, or black hole) somewhere 

a cat reflected from a mirror—no introduced distortion. ( b
 ) The same cat 

between the two, located on the source-observer axis. 

wave after twice traversing an inhomogeneous medium. ( c
 ) After passing 

A region of curved space-time functions much like a crude 

through the inhomogeneous medium, the wave was phase conjugated and 

returned through the medium a second time. Most of the image distortion 

GRIN lens (Fig. 6.42) where the index of refraction drops off 

vanished. (Jack Feinberg, University of Southern California School of Medicine)

with distance from the central axis, just as Φ G 
 drops off. An 





even more rudimentary modeling approach would be to just 

match the index profile with a corresponding aspherical thick-

ness profile. The lens in Fig. 5.132 might then correspond to a 

mirror, where it was reflected back through the beamsplitter 

nice symmetric galaxy, whereas a much more centrally pointed 

and onto a ground-glass screen so it could be photographed 

version would represent a black hole. When an off-axis galaxy 

(Fig. 5.131 a
 ). Next, a phase distorter (e.g., a piece of shower-

lenses an object far behind it, the image can be distorted into 

door glass) was introduced between the beamsplitter and the 

several arcs (Fig. 5.133). More accurately, the phenomenon can 

mirror so that the wave traversed it twice. The image returned 

be represented via waves passing through a distorting medium 
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Galaxy


Figure 5.132  
   An aspherical lens 

used to simulate the effects of  

gravitational lensing by a large  

Normal path of light

massive object like a galaxy.

Cluster

 of

Line of sight

   galaxies

Light bent

by gra

Earth

vity

y Way

Milk

(a)

(b)

(c)

(d)


Figure 5.134  
   Gravitational lensing by a cluster of galaxies.


Figure 5.133  
   An asphere, like that in Fig. 5.132, used to simulate  

gravitational lensing by a galaxy.

Einstein, who began thinking about gravitational lensing as 

early as 1912, suggested that in the unlikely event the alignment 

was near perfect, with all three participants precisely on axis 

A photo of the first complete 

(Fig. 5.133 c
 ), the image would be smeared out into a ring. In 

Einstein Ring ever observed, 

taken by the Hubble Space 

1998 the Hubble Space Telescope photographed a complete 

Telescope in 1998. It resulted 

Einstein Ring for the first time (see photo).

from the near perfect align-

ment of the Earth and two 

galaxies, one behind the 

other (see Fig. 5.133 c
 ). 

(NASA)

(like those in Fig. 5.126 a
 ) using Huygens’s Principle (p. 107). 

As we’ll see later when we study diffraction (Fig. 10.7 d 
 ), that 

approach establishes that there will always be an odd number of 

miraged images, including a central undiffracted one. Figure 5.134 

The galaxy cluster Abell 2218 is so massive and compact that light passing 

shows how a cluster of lensing galaxies images a single distant 

through it is deflected by the enormous gravitation field. The process magni-

fies, brightens, and distorts the images of galaxies that lie far behind it. The 

galaxy as a shower of arcs more or less concentric with the clus-

numerous arcs in the picture are the contorted images of galaxies 5 to 10 

ter’s center-of-mass.

times farther away than the lensing cluster. (NASA)
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PROBLEMS




Complete solutions to all problems—except those with an  




Figure P.5.5




asterisk—can be found in the back of the book.



u1


5.1



R


 The shape of the interface pictured in Fig. P.5.1 is known as a 


h


u2

Cartesian oval after René Descartes, who studied it in the 1600s. It’s 

a

w

b

the perfect configuration to carry any ray from  S
  to the interface to  P
 . 


C



so



si


Prove that the defining equation is


n



n


1

2

/ o
   n
 1 + / i
   n
 2 = constant

Show that this is equivalent to


n



5.6*


1( x
 2 +  y
 2)1>2 +  n
 2[ y
 2 + ( so 
 +  si 
 -  x
 2)]1>2 = constant Show that, in the paraxial domain, the magnification produced 

by a single spherical interface between two continuous media, as 

where  x
  and  y
  are the coordinates of point  A
 .

shown in Fig. P.5.6, is given by


n
 1 si



Figure P.5.1



y



MT 
 = -  n
 2 so



A


Use the small-angle approximation for Snell’s Law and approximate 


o


the angles by their tangents.


i



S



V



P



x



n
 1


n
 2


s



s



o



i



Figure P.5.6



n
 1


n
 2


yo


u i



C


u


5.2
   Construct a Cartesian oval such that the conjugate points will be 


t



yi


separated by 11 cm when the object is 5 cm from the vertex. If  n
 1 = 1 

and  n
 2 = 32, draw several points on the required surface.


5.3*
   Use Fig. P.5.3 to show that if a point source is placed at the 

focus  F
 1 of the ellipsoid, plane waves will emerge from the far side. 

Remember that the defining requirement for an ellipse is that the net 


so



si


distance from one focus to the curve and back to the other focus is 

constant.


5.7*
   Imagine a hemispherical interface, with a radius of curvature of 

radius 5.00 cm, separating two media: air on the left, water on the 


Figure P.5.3


right. A 3.00-cm-tall toad is on the central axis, in air, facing the con-


A


vex interface and 30.0 cm from its vertex. Where in the water will it be 


D


imaged? How big will it appear to a fish in the water? Use the results 

of the previous problem, even though our frog is pushing the paraxial 


F
 1


F
 2

approximation.


n
 2


5.8
   Locate the image of an object placed 1.2 m from the vertex of a 


n
 1

gypsy’s crystal ball, which has a 20-cm diameter ( n 
 = 1.5). Make a 

sketch of the rays.

Σ


5.9*
   Return to Problem 5.7 and suppose we cut off the medium on the 


5.4
  Diagrammatically construct an ellipto-spheric negative lens, 

right, forming a thick water biconvex lens, with each surface having a 

showing rays and wavefronts as they pass through the lens. Do the 

radius of curvature of 5.00 cm. If the lens is 10.0 cm thick, determine 

same for an oval-spheric positive lens.

the total magnification and everything you can about the toad’s image.


5.5*
   Making use of Fig. P.5.5, Snell’s Law, and the fact that in the 


5.10*
  A biconvex glass ( n
 1 = 1.5) thin lens is to have a +10.0-cm 

paraxial region a =  h
 > so
 , w ≈  h
 > R
 , and b ≈  h
 > si
 ,  
 derive Eq. (5.8).

focal length. If the radius of curvature of each surface is measured to 

M05_HECH7226_05_SE_C05_151-246.indd   238

22/09/15   9:21 AM


 


Problems  239


be the same, what must it be? Show that a spider standing 1.0 cm from 


5.23
   Determine the focal length of a planar-concave lens ( nl 
 = 1.5) 

the lens will be imaged at -1.1 cm. Describe that image and draw a 

having a radius of curvature of 10 cm. What is its power in diopters?

ray diagram.


5.24*  
 The focal length of a planar-convex thin lens in air is 250.0 cm. 


5.11*
   Going back to Section 5.2.3, prove that for a thin lens immersed 

The glass it is made of has an index of 1.530. Determine the radii of 

in a medium of index  nm
  

curvature of its surfaces. What would happen to the radii if  n
  was 

reduced to 1.500?

1

( n


1

1

=  l 
 -  nm
 ) a

-

b


5.25*  
 An object essentially at infinity is moved to a distance of 90 cm 


f



nm



R
 1


R
 2

in front of a thin positive lens. In the process its image distance triples. 

That done, imagine a double-concave air lens surrounded by water; 

Determine the focal length of the lens.

determine if it’s converging or diverging.


5.26*
   Determine the focal length in air of a thin spherical planar-


5.12*
  A meniscus concave glass ( nl 
 = 1.5) thin lens (see Fig. 5.12) 

convex lens having a radius of curvature of 50.0 mm and an index of 

has radii of curvature of  +20.0 cm and +10.0 cm. If an object is placed 

1.50. What, if anything, would happen to the focal length if the lens 

20.0 cm in front of the lens, show that the image distance will be -13.3 cm. 

were placed in a tank of water?

Describe that image and draw a ray diagram.


5.27*  
 A point source  S
  of light is on the central axis of a thin positive 


5.13
   A biconcave lens ( nl 
 = 1.5) has radii of 20 cm and 10 cm and an 

lens. It is at a distance  l
 1  
 in front of the lens, and a real image of  S
  

axial thickness of 5 cm. Describe the image of an object 1-inch tall 

appears at  P
 , a distance  l
 2  
 from the lens. Is it possible to move the lens 

placed 8 cm from the first vertex. Use the thin-lens equation to see how 

along the axis to a new location and not finally change the positions 

far off it is in determining the final-image location.

of  S
  and  P
 ? If so, to where must the lens be relocated? Draw a diagram.


5.14*
  A classic 35-mm film camera has a single thin lens having a 


5.28*  
 An object on the central axis is 40 cm in front of a thin positive 

50.0-mm focal length. A woman 1.7 m tall stands 10.0 m in front of the 

lens. Its image appears on a screen 80 cm beyond the lens. Now move 

camera. (a) Show that the lens-film distance must be 50.3 mm. (b) How 

the lens to a new location on the axis such that the image is again on the 

tall is her image on the film? 

screen. Describe what happens, if anything, to the size and orientation 

of the image as a result of the displacement of the lens.


5.15
   Prove that the minimum separation between conjugate  real
  ob-

ject and image points for a thin positive lens is 4ƒ.


5.29*  
 With the previous two problems in mind, imagine a self- 

luminous object on the central axis of a thin positive lens. The object is 


5.16
   An object 2 cm high is positioned 5 cm to the right of a positive 

a distance  d
  from the screen on which the image appears. Now suppose 

thin lens with a focal length of 10 cm. Describe the resulting image 

the lens is moved toward the object to a new location, whereupon the 

completely, using  both
  the Gaussian and Newtonian equations.

image on the screen is  N
  times larger than it was originally. Show that 


5.17
   Make a rough graph of the Gaussian Lens Equation; that is, plot 

the lens has a focal length given by


si
  versus  so
 , using unit intervals of ƒ along each axis. (Get both seg-

ments of the curve.)

2 Nd



f 
 =


5.18*
  A parallel bundle of rays from a very distant point source is 

11 + 2 N
 22

incident on a thin negative lens having a focal length of -50.0 cm. The 


5.30*
   We would like to place an object 45 cm in front of a lens and 

rays make an angle of 6.0° with the optical axis of the lens. Locate the 

have its image appear on a screen 90 cm behind the lens. What must be 

image of the source.

the focal length of the appropriate positive lens?


5.19*  
 An LED is on the central axis 30.0 cm in front of a thin lens. The 


5.31
   The horse in Fig. 5.29 is 2.25 m tall, and it stands with its face 

resulting image, which is virtual, is 10.0 cm from the lens. Determine 

15.0 m from the plane of the thin lens whose focal length is 3.00 m.

the focal length of the lens. Using Table 5.3, explain why the lens must 

be negative even though a positive lens could also form a virtual image.

(a)  Determine the location of the image of the equine nose.

(b)   Describe the image in detail—type, orientation, and magnification.


5.20
   What must the focal length of a thin negative lens be for it to form 

a virtual image 50 cm away (measured from the lens) of an ant located 

(c)  How tall is the image?

100 cm away (measured from the lens)? Given (just as a change of 

(d)   If the horse’s tail is 17.5 m from the lens, how long, nose-to-tail, is 

pace) that the ant is to the right of the lens, locate and describe its image.

the image of the beast?


5.21*  
 A candle flame is 18.0 cm in front of a thin positive lens. Its im-


5.32*
   A candle that is 6.00 cm tall is standing 10 cm from a thin con-

age appears three times farther away from the lens than if the same can-

cave lens whose focal length is -30 cm. Determine the location of the 

dle were on a very distant mountain. Determine the lens’s focal length.

image and describe it in detail. Draw an appropriate ray diagram.


5.22*
   Compute the focal length in air of a thin biconvex lens ( nl 
 = 1.5) 


5.33*
   The image projected on a viewing screen by an equiconvex lens 

having radii of 20 and 40 cm. Locate and describe the image of an 

( n 
 = 1.50) of a frog 5.0 cm tall, who is located 0.60 m from the screen, 

object 40 cm from the lens.

is to be 25 cm high. Please compute the necessary radii of the lens.
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5.34*  
 A biconvex thin lens located 127 cm from a screen projects 


5.42*
   A convenient way to measure the focal length of a positive lens 

onto it an image 5.80 times the size of the luminous object. Determine 

makes use of the following fact. If a pair of conjugate object and (real) 

the focal length of the lens.

image points ( S
  and  P
 ) are separated by a distance  L 
 7 4ƒ, there will 

be two locations of the lens, a distance  d
  apart, for which the same pair 


5.35*  
 We wish to project an image of a frog on a screen. The image 

of conjugates obtain. Show that

is to be twice life-size. If a thin convex-planar lens has a radius of cur-

vature of 100 cm and is made of glass ( ng 
 = 1.50), and if it is used to 


L
 2 -  d
 2

ƒ

create the image, how far from the screen must we position the frog? 

=

4 L


Draw a ray diagram.

Note that this avoids measurements made specifically from the vertex, 


5.36*  
 Consider a thin equiconvex lens made of glass ( n 
 = 1.50), in 

which are generally not easy to do.

air. A very distant luminous object is relocated to 180.0 cm in front of 


5.43*
   Two positive lenses with focal lengths of 0.30 m and 0.50 m are 

the lens. The resulting image distance increases to just about three 

separated by a distance of 0.20 m. A small butterfly rests on the central 

times its original value. Determine the radii of curvature of the lens.

axis 0.50 m in front of the first lens. Locate the resulting image with 


5.37*
   A thin, straight piece of wire 4.00 mm long is located in a plane 

respect to the second lens.

perpendicular to the optical axis and 60.0 cm in front of a thin lens. The 


5.44
  In the process of constructing a doublet, an equiconvex thin 

sharp image of the wire formed on a screen is 2.00 mm long. What is 

lens  L


the focal length of the lens? When the screen is moved farther from the 

1  
 is positioned in intimate contact with a thin negative lens,  L
 2, 

such that the combination has a focal length of 50 cm in air. If their 

lens by 10.0 mm, the image blurs to a width of 0.80 mm. What is the 

indices are 1.50 and 1.55, respectively, and if the focal length of  L


diameter of the lens? [ Hint:
  Image a source point on the axis.]

2 is 

-50 cm, determine all the radii of curvature.


5.38
  A thin double-convex glass lens (with an index of 1.56) while 


5.45
   Verify Eq. (5.34), which gives  M


surrounded by air has a 10-cm focal length. If it is placed under water 


T 
 for a combination of two thin 

lenses.

(having an index of 1.33) 100 cm beyond a small fish, where will the 

guppy’s image be formed?


5.46*
   A blade of grass standing 10.0 mm tall is 150 mm in front of a 

thin positive lens having a 100 mm focal length; 250 mm behind that first 


5.39
   Consider a homemade television projection system that uses a 

lens is a thin negative lens with a focal length of 

large positive lens to cast the image of the TV screen onto a wall. The 

-75.0 mm. (a) Show 

that the first lens forms an image 300 mm behind it. (b) Describe that 

projected picture is enlarged three times, and although dim, it’s nice 

image. (c) What’s its magnification? (d) Prove that the final image 

and clear. If the lens has a focal length of 60 cm, what should be the 

formed by both lenses is located 150 mm behind the negative lens. 

distance between the screen and the wall? Why use a large lens? How 

(e) What is the total magnification of the combination?

should we mount the set with respect to the lens?


5.47
  Compute the image location and magnification of an object  


5.40
  Write an expression for the focal length (ƒ w
 ) of a thin lens  

30 cm from the front doublet of the thin-lens combination in 





immersed in water ( nw 
 = 43) in terms of its focal length when it’s in  

Fig. P.5.47. Do the calculation by finding the effect of each lens sepa-

air (ƒ a
 ).

rately. Make a sketch of appropriate rays.


5.41*
   Observe the three vectors A


$,  B
 $,  
 and C
 $ in Fig. P.5.41, each of 

which has a length of 0.10ƒ where ƒ is the focal length of the thin 

positive lens. The plane formed by A


$ 
 and B
 $ is at a distance of 1.10ƒ 


Figure P.5.47


10 cm

from the lens. Describe the image of each vector.


Figure P.5.41



B



A



C



f
 1 = +30 cm


f
 2 = –20 cm


z



5.48*
   Two thin lenses having focal lengths of +15.0 cm and -15.0 cm 

are positioned 60.0 cm apart. A page of print is held 25.0 cm in front 

of the positive lens. Describe, in detail, the image of the print (i.e.,  


y



x


insofar as it’s paraxial).
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Figure P.5.53a
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Figure P.5.53b
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5.49*
   Draw a ray diagram for the combination of two positive lenses 


5.56*  
 A thin convex lens  L
  is positioned midway between two dia-

wherein their separation equals the sum of their respective focal lengths. 

phragms:  D
 1, 4.0 cm to its left, and  D
 2, 4.0 cm to its right. The lens has 

Do the same thing for the case in which one of the lenses is negative.

a diameter of 12 cm and a focal length of 12 cm. The holes in  D
 1 and 


D
 2 have diameters of 12 cm and 8.0 cm, respectively. An axial object 


5.50*
   Two positive lenses are to be used as a laserbeam expander. An 

point is 20 cm to the left of  D
 1. (a) What is the image of  D
 1 in the 

axial 1.0-mm-diameter beam enters a short focal length positive lens, 

object space (i.e., as imaged by any lens to its left with light traveling 

which is followed by a somewhat longer focal length positive lens 

left)? (b) What is the image of  L
  in the object space? (c) What is the 

from which it emerges with a diameter of 8.0 mm. Given that the first 

image of  D
 2 in the object space? Give the size and location of that 

lens has a 50.0 mm focal length, determine the focal length of the 

aperture’s image. (d) Locate the entrance pupil and the aperture stop.

second lens and the separation between the lenses. Draw a diagram.


5.57
   Make a sketch roughly locating the aperture stop and entrance 


5.51
   Redraw the ray diagram for a compound microscope (Fig. 5.110), 

and exit pupils for the lens in Fig. P.5.57.

but this time treat the intermediate image as if it were a real object. 

This approach should be a bit simpler.


Figure P.5.57



5.52*
   Consider a thin positive lens  L
 1, and using a ray diagram, show 

that if a second lens  L
 2 is placed at the focal point of  L
 1, the magnifica-

tion does not change. That’s a good reason to wear eyeglasses, whose 

lenses are different, at the correct distance from the eye.


Fo
 1


Fo
 2


Fi
 1


Fi
 2


5.53*
  Figures P.5.53 a
  and P.5.53 b
  are taken from an introductory 

physics book. What’s wrong with them?


5.54*  
 Galileo’s best telescope had an eyepiece of -40 mm focal 


5.58
   Make a sketch roughly locating the aperture stop and entrance 

length, along with a biconvex objective about 30 mm in diameter. That 

and exit pupils for the lens in Fig. P.5.58, assuming the object point to 

objective formed real intermediate images of stars roughly 120 cm 

be beyond (to the left of)  Fo
 1.

down the tube. Determine the magnification of that instrument and the 

focal ratio ( ƒ
 ># ) of its objective.


Figure P.5.58



5.55
   Consider the case of two positive thin lenses,  L
 1 and  L
 2, sepa-

rated by 5 cm. Their diameters are 6 and 4 cm, respectively, and their 

focal lengths are ƒ1 = 9  
 cm and ƒ2 = 3 cm. If a diaphragm with a hole 


F


1 cm in diameter is located between them, 2 cm from  L



o
 1


Fi
 2

2, find (a) the 

aperture stop and (b) the locations and sizes of the pupils for an axial 

point,  S
 , 12 cm in front of (to the left of)  L
 1.

M05_HECH7226_05_SE_C05_151-246.indd   241

22/09/15   9:21 AM








242
   Chapter 5
   Geometrical Optics


Figure P.5.60
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5.59*
   A refracting astronomical telescope has an objective lens 50 mm 


5.63
  Manet’s painting  A Bar at the Folies Bergères
  (Fig. P.5.63) 

in diameter. Given that the instrument has a magnification of 10*, 

shows a girl standing in front of a large planar mirror. Reflected in it is 

determine the diameter of the  eye-beam
  (the cylinder of light imping-

her back and a man in evening dress with whom she appears to be 

ing on the eye). Under conditions of darkness the acclimated human 

talking. It would seem that Manet’s intent was to give the uncanny 

eye has a pupil diameter of about 8 mm.

feeling that the viewer is standing where that gentleman must be. From 

the laws of Geometrical Optics, what’s wrong?


5.60
   Figure P.5.60 shows a lens system, an object, and the appropri-

ate pupils. Diagrammatically locate the image.


Figure P.5.63
    A Bar at the Folies Bergeres
  by Édouard Manet.  


5.61
  Draw a ray diagram locating the images of a point source as 

( Bar at the Folies-Bergere
  (1882), Edouard Manet. Oil on canvas. Courtauld Institute Galleries/Lutz formed by a pair of mirrors at 90° (Fig. P.5.61 a
 ). Now create a ray dia-Braun/Art Resource, New York.)

gram locating the images of the arrow shown in Fig. P.5.61 b
 .


Figure P.5.61 
 (a)

(b)


S



5.62
   Examine Velásquez’s painting of  Venus and Cupid
  (Fig. P.5.62). 

Is Venus looking at herself in the mirror? Explain.


Figure P.5.62    
 The Toilet of Venus
  by Diego Rodriguez de Silva y 

Velásquez. (Courtesy of the Trustees, The National Gallery, London.)


5.64
   Show that Eq. (5.48) for a spherical surface is equally applicable 

to a plane mirror.


5.65*  
 A woman is standing 600 cm in front of a large flat vertical 

mirror. She sees the image of a tree 1200 cm from her face. Where is 

the actual tree located? Describe the image in detail.


5.66*  
 Figure P.5.66 was taken from an optics textbook by S. Parkinson 

published in 1884. It depicts two “parallel plane mirrors” between 

which, at  Q
 , is a “luminous point.” Explain what’s happening in detail. 

What is the relationship of  Q
 1 and  Q
 2? Of  Q
 2 and  Q
 3?
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Figure P.5.66



5.71
   Locate the image of a paperclip 100 cm away from a convex 

spherical mirror having a radius of curvature of 80 cm.


5.72*
   Imagine that you are standing 5 feet from, and looking directly 

toward, a brass ball 1 foot in diameter hanging in front of a pawn shop. 

Describe the image you would see in the ball.


5.73*
  A thin lens having a focal length of +50.0 cm is positioned 

250 cm in front of (i.e., to the left of) a plane mirror. An ant sits on the 

central axis 250 cm in front of (i.e., to the left of) the lens. Locate the 

three images of the ant. 


5.74
   The image of a red rose is formed by a concave spherical mirror 


5.67*  
 Considering the two mirrors ( A
  and  B
 ) in the previous problem, 

on a screen 100 cm away. If the rose is 25 cm from the mirror, deter-

suppose they are 20.0 cm apart and a small candle is placed at  Q
  8.0 cm 

mine its radius of curvature.

from  A
 . Locate the images at  Q
 1,  Q
 2, and  Q
 3 with respect to  A
 .


5.75
   From the image configuration determine the shape of the mirror 


5.68*  
 A coin of diameter  DC
  is 300 cm in front of a parallel wall on 

hanging on the back wall in van Eyck’s painting of  John Arnolfini and 


which is hung a circular flat mirror of diameter  DM
 . A person stands 


His Wife
  (Fig. P.5.75).

900 cm from the wall. Show that  DM 
 = 34  DC
  is the smallest-diameter 


5.76*  
 A 1.00-cm-tall tack is 35.0 cm in front of a concave spherical 

mirror in which the observer can just see the reflected edge of the coin 

mirror whose focal length is 30.0 cm. (a) Locate the image. (b) Is it 

(i.e., the image of the coin just fills the mirror).

real or virtual? (c) Determine the magnification. (d) Is the image 


5.69*  
 Consider Example 5.9, on p. 238, where the person’s eye is 

erect? (e) How big is the image? (f) Find  R
 , the radius of curvature of 

2.0 m from the mirror. Suppose the bottom of the mirror is 1.45 m 

the mirror.

above the floor and the axis of the eye is 1.25 m above the floor. Locate 


5.77*
   There are several varieties of retro-reflector that are commer-

the height of the bottom edge of the eye chart.

cially available; one type is composed of transparent spheres, the 


5.70*  
 A small planar mirror is attached to a thin vertical wire so that 

backs of which are silvered. Light is refracted at the front surface, 

the mirror is parallel to a wall 1.0 m away. A horizontal scale is mounted 

focused onto the rear surface, and there reflected back out in the 

flat on the wall opposite the mirror, whose center is directly opposite 

direction it came. Determine the necessary index of refraction of the 

the zero mark on the scale. A horizontal laserbeam reflects off the 

spheres. Assume the incident light is collimated.

mirror and hits the scale at 5.0 cm left of zero. The mirror is then  

rotated through an angle a and the beam-scale spot of light moves left 

an additional 15.0 cm. Find a.


Figure P.5.75
   Detail of  John Arnolfini and His Wife
  (1434) by Jan van Eyck. ( Portrait of Giovanni Arnolfini
   and his Wife
  (Detail) (1434), Jan van Eyck. Oil on oak, 82.2 x 60 cm. The National Gallery, London/Art Resource, New York.)

M05_HECH7226_05_SE_C05_151-246.indd   243

22/09/15   9:21 AM


244
   Chapter 5
   Geometrical Optics


5.78*
   Design an eye for a robot using a concave spherical mirror such 


Figure P.5.86


that the image of an object 1.0 m tall and 10 m away fills its 1.0-cm-

square photosensitive detector (which is movable for focusing purposes). 

Where should this detector be located with respect to the mirror? What 

should be the focal length of the mirror? Draw a ray diagram.


5.79*  
 An LED 0.60 cm tall is on the central axis 30.0 cm in front of 

a convex spherical mirror. If the radius of curvature of the mirror is 

12.0 cm determine the location of the image, describe it, and draw a 

ray diagram. How big is the image?

3  m



5.80
   Design a little dentist’s mirror to be fixed at the end of a shaft for 

4

use in the mouth of some happy soul. The requirements are (1) that the 

image be erect as seen by the dentist and (2) that when held 1.5 cm 

from a tooth the mirror produces an image twice life-size.


5.88*
  Suppose you have a concave spherical mirror with a focal 

length of 10 cm. At what distance must an object be placed if its image 


5.81
   An object is located at a distance  so
  from a spherical mirror of 

is to be erect and one and a half times as large? What is the radius of 

radius  R
 . Show that the resulting image will be magnified by an amount

curvature of the mirror? Check with Table 5.5.


R



MT 
 =


5.89
   Describe the image that would result for an object 3 inches tall 

2 so 
 +  R


placed 20 cm from a spherical concave shaving mirror having a radius 

of curvature of 


5.82*
   A device used to measure the radius of curvature of the cornea 

-60 cm.

of the eye is called a keratometer. This is useful information when fit-


5.90*  
 A thin positive lens of focal length ƒ L 
 is positioned very close 

ting contact lenses. In effect, an illuminated object is placed a known 

to and in front of a front-silvered concave spherical mirror of radius 

distance from the eye, and the image reflected off the cornea is  


RM
 . Write an expression approximating the effective focal length of the 

observed. The instrument allows the operator to measure the size of 

combination in terms of ƒ L
  and  RM
 .

that virtual image. If the magnification is found to be 0.037* when the 

object distance is set at 100 mm, what is the radius of curvature?


5.91*
   Parallel rays along the central axis enter a biconcave lens, both 

of whose radii of curvature are equal. Some of the light is reflected 


5.83*
   Considering the operation of a spherical mirror, prove that the 

from the first surface, and the remainder passes through the lens. Show 

locations of the object and image are given by

that, if the index of refraction of the lens (which is surrounded by air) 

is 2.00, the reflected image will fall at the same point as the image 


so 
 = ƒ( MT 
 - 1)> MT
   and  si 
 = -ƒ( MT 
 - 1)

formed by the lens.


5.84
   A man whose face is 25 cm away looks into the bowl of a soup-


5.92
   Referring to the Dove prism in Fig. 5.73, rotate it through 90° 

spoon and sees his image reflected with a magnification of -0.064. 

about an axis along the ray direction. Sketch the new configuration and 

Determine the radius of curvature of the spoon.

determine the angle through which the image is rotated.


5.85*
   In an amusement park a large upright convex spherical mirror 


5.93
   Determine the numerical aperture of a single clad optical fiber, 

is facing a plane mirror 10.0 m away. A girl 1.0 m tall standing midway 

given that the core has an index of 1.62 and the clad 1.52. When im-

between the two sees herself twice as tall in the plane mirror as in the 

mersed in air, what is its maximum acceptance angle? What would 

spherical one. In other words, the angle subtended at the observer by 

happen to a ray incident at, say, 45°?

the image in the plane mirror is twice the angle subtended by the image 

in the spherical mirror. What is the focal length of the latter?


5.94* 
 A stepped-index multimode glass fiber has indices of 1.481 and 

1.461. Its core diameter is 100 mm. Determine the fiber’s acceptance 


5.86*
  A homemade telephoto “lens” (Fig. P.5.86) consists of two 

angle when immersed in air.

spherical mirrors. The radius of curvature is 2.0 m for the primary (the 

big mirror) and 60 cm for the secondary (the small mirror). How far 


5.95
   Given a fused silica fiber with an attenuation of 0.2 dB>km, how 

from the smaller mirror should the film plane be located if the object is 

far can a signal travel along it before the power level drops by half?

a star? What is the effective focal length of the system?


5.96*  
 A stepped-index fiber has indices of 1.451 and 1.457. If the 


5.87*
  A point source  S
  sitting on the central axis of a positive thin 

core radius is 3.5 mm, determine the cut-off wavelength above which 

lens is located (to the left) between one and two focal lengths from the 

the fiber will sustain only the fundamental mode.

lens. A concave spherical mirror is to be positioned to the right of the 


5.97*  
 A stepped-index single-mode fiber has a diameter of 8.0 mm 

lens so that the final real image also lies at point  S
 . Where should  

and a numerical aperture of 0.13. Find its cut-off frequency below 

the mirror be placed? Where should a convex spherical mirror be  

which the fiber operates in single mode.

located to accomplish the same feat?
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5.98
   Given a fiber with a core diameter of 50 mm  
 and  nc 
 = 1.482  
 and 


Figure P.5.105



n
 ƒ = 1.500, determine the number of modes it sustains when the fiber 

is illuminated by an LED emitting at a central wavelength of 0.85 mm.


5.99*  
 A multimode stepped-index glass fiber has a core index of 1.50 

and a cladding index of 1.48. Given that the core has a radius of 50.0 mm 

and operates at a vacuum wavelength of 1300 nm, find the number of 

Pinhole

modes it sustains.


5.100*
   Determine the intermodal delay (in ns>km) for a stepped-index 

fiber with a cladding of index 1.485 and a core of index 1.500.


5.101
   Using the information on the eye in Section 5.7.1, compute the 

approximate size (in millimeters) of the image of the Moon as cast on 

Pinhole

the retina. The Moon has a diameter of 2160 miles and is roughly 230 

000 miles from here, although this, of course, varies.


5.102*
   Figure P.5.102 shows an arrangement in which the beam is 


5.107
   The field of view of a simple two-element astronomical tele-

deviated through a constant angle s, equal to twice the angle b be-

scope is restricted by the size of the eye-lens. Make a ray sketch show-

tween the plane mirrors, regardless of the angle-of-incidence. Prove 

ing the vignetting that arises.

that this is indeed the case.


5.108
  A  field-lens
 , as a rule, is a positive lens placed at (or near) the 

intermediate image plane in order to collect the rays that would other-


Figure P.5.102


wise miss the next lens in the system. In effect, it increases the field of 

b

view without changing the power of the system. Redraw the ray dia-

gram of the previous problem to include a field-lens. Show that as a 

consequence the eye relief is reduced somewhat.


5.109*
   Describe completely the image that results when a bug sits at 

the vertex of a thin positive lens. How does this relate directly to the 

manner in which a field-lens works? (See Problem 5.108.)

s


5.110*
   It is determined that a patient has a near point at 50 cm. If the 

eye is approximately 2.0 cm long,

(a)   How much power does the refracting system have when focused 


5.103
   An object 20 m from the objective ( ƒo 
 = 4 m) of an astronom-

on an object at infinity? when focused at 50 cm?

ical telescope is imaged 30 cm from the eyepiece ( ƒo 
 = 60 cm). Find 

(b)   How much accommodation is required to see an object at a dis-

the total linear magnification of the scope.

tance of 50 cm?


5.104*
   Figure P.5.104, which purports to show an erecting lens sys-

(c)   What power must the eye have to see clearly an object at the stan-

tem, is taken from an old, out-of-print optics text. What’s wrong with 

dard near-point distance of 25 cm?

it?

(d)   How much power should be added to the patient’s vision system 


5.105*
  Figure P.5.105 shows a pinhole in an opaque screen being 

by a correcting lens?

used for something practical. Explain what’s happening and why it 


5.111*
   An optometrist finds that a farsighted person has a near point 

works. Try it.

at 125 cm. What power will be required for contact lenses if they are 


5.106*
  If a photograph of a moving merry-go-round is perfectly  

effectively to move that point inward to a more workable distance of 

exposed, but blurred, at  1

25 cm so that a book can be read comfortably? Use the fact that if the 

30 s and ƒ>11, what must the diaphragm setting 

be if the shutter speed is raised to  1

object is imaged at the near point, it can be seen clearly.

120 s in order to “stop” the motion?


Figure P.5.104
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5.112*  
 A nearsighted person with the same vision in both eyes has a 


Figure P.5.120    
 (E.H.)

far point at 100 cm and a near point at 18 cm, each measured from her 

(a)

cornea. (a) Determine the focal length of the needed corrective contact 

lenses. (b) Find her new near point. Here you want to find the location 

of an object in front of the lens that will now be imaged at 18 cm in 

Hyperboloid

front of the lens. 


F
 2


F
 1


5.113*  
 We wish to correct the vision of a 7 D myope, whose both 

Paraboloid

eyes are the same, with spectacles worn 15 mm from the eye. Deter-

mine the appropriate power.

(b)


5.114*  
 The vision of a hyperope is corrected with a +9 D  spectacle 

lens worn 12 mm from the cornea. Determine the appropriate power of 

a replacement contact lens.


5.115*  
 A 6 D myope has a far point 16.67 cm from the eye. Prescribe a 

spectacle lens to be worn 12 mm from the eye that will correct his vision.


5.116*  
 A person who is farsighted has her near point at 100 cm and 

her far point is where it should normally be. Determine the prescription 

for a contact lens that will fix the problem. Locate her new far point.


5.121*
   The two glancing-incidence aspherical mirror systems depicted 


5.117
  A farsighted person can see very distant mountains with re-

in Fig. P.5.121 are designed to focus X-rays. Explain how each works: 

laxed eyes while wearing  +3.0–D contact lenses. Prescribe spectacle 

identify the shapes of the mirrors, discuss the locations of their various 

lenses that will serve just as well when worn 17 mm in front of the 

foci, and so on.

cornea. Locate and compare the far point in both cases.


5.118*
   A jeweler is examining a diamond 5.0 mm in diameter with a 


Figure P.5.121 
 (a)

loupe having a focal length of 25.4 mm.

(a)  Determine the maximum angular magnification of the loupe.

(b)  How big does the stone appear through the magnifier?


F
 1


F
 2

(c)  What is the angle subtended by the diamond at the unaided eye 

when held at the near point?

(d)  What angle does it subtend at the aided eye?


5.119


(b)

  Suppose we wish to make a microscope (that can be used with 

a relaxed eye) out of two positive lenses, both with a focal length of 

25 mm. Assuming the object is positioned 27 mm from the objective, 


F


(a) how far apart should the lenses be, and (b) what magnification can 

1


F
 2

we expect?


5.120*
  Figure P.5.120 shows a glancing-incidence X-ray focusing 

system designed in 1952 by Hans Wolter. Fill in the missing portion of 

each ray. How many reflections does each ray undergo? How does the 


5.122*
  The orbiting Hubble Space Telescope has a 2.4-m primary, 

device work? Microscopes with this type of system have been used to 

which we will assume to be diffraction-limited. Suppose we wanted to 

photograph, in X-rays, the implosion of fuel pellet targets in laser fu-

use it to read the print on the side of a distant Russian satellite. Assum-

sion research. Similar X-ray optical arrangements have been used in 

ing that a resolution of 1.0 cm at the satellite will do, how far away 

astronomical telescopes (see photos on p. 81).

could it be from the HST?
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6More on  



Geometrical Optics


The preceding chapter, for the most part, dealt with paraxial 

Primary

theory as applied to spherical lens systems. The two predomi-

principal

nant approximations were that we had  thin
  lenses and that first-

plane

order theory was sufficient for their analysis. Neither of these 

assumptions can be maintained throughout the design of a pre-

cision optical system, but, taken together, they provide the basis 

for a first rough solution. This chapter carries things a bit fur-

First focal

ther by examining thick lenses and aberrations; even at that, it 

point

is only a beginning. The advent of computerized lens design 


Fo



V
 1  H



V


1


H
 2

2

requires a certain shift in emphasis—there is little need to do 

what a computer can do better. 

f.f.l.


6.1 Thick Lenses and Lens Systems


Figure 6.1 depicts a thick lens (i.e., one whose thickness is by 

no means negligible). As we shall see, it could equally well be 

envisioned more generally as an optical system, allowing for 

the possibility that it consists of a number of simple lenses, not 

Second focal

merely one. The first and second focal points, or if you like, the 

point

object and image foci,  Fo 
 and  Fi
 , can conveniently be measured 


V



H



V



F


1


H


1

2

2


i


from the two (outermost) vertices. In that case we have the fa-

miliar front and back focal lengths denoted by f.f.l. and b.f.l. 

b.f.l.

When extended, the incident and emerged rays will meet at 

points, the locus of which forms a curved surface that may or 

may not reside within the lens. The surface, approximating a 

Secondary

plane in the paraxial region, is termed the principal plane
  (see 

principal

Section 6.3.1). Points where the primary and secondary princi-

plane

pal planes (as shown in Fig. 6.1) intersect the optical axis are 

known as the first
  and second principal points
 ,   H



Figure 6.1
     A thick lens.

1 and  H
 2, 

respectively. They provide a set of very useful references from 

which to measure several of the system parameters. We saw 

earlier (Fig. 5.17, p. 161) that a ray traversing the lens through 


Figure 6.2
   Nodal points.

its optical center emerges parallel to the incident direction. Ex-

tending both the incoming and outgoing rays until they cross 

the optical axis locates what are called the nodal points
 ,  N
 1 and 


N
 2 in Fig. 6.2.  
When the lens is surrounded on both sides by 




N
 1



the same medium, generally air, the nodal and principal 




O N
 2



points will be coincident.

  The six points, two focal, two princi-

pal, and two nodal, constitute the cardinal points
  of the system.

If the object location is known along with the six cardinal 

points, the final image can be determined for any system of 
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Ray-1


H
 2


F



H


1

1


F
 2

Ray-3

Ray-2

Ray-1


Figure 6.3
   Lens bending.

Ray-2


H


coaxial refracting spherical surfaces regardless of the actual 

2


F



H
 1


F
 2

curvatures, spacings, and indices the rays encounter. Consequently, 

1

it’s common practice to calculate the positions of the cardinal 

points early in any analysis.

As shown in Fig. 6.3, the principal planes can lie completely 

outside the lens system. Here, though differently configured, 

Ray-3

each lens in either group has the same power. Observe that in 


Figure 6.4
     Tracing rays through a thick lens.

the symmetrical lens the principal planes are, quite reasonably, 

symmetrically located. In the case of either the planar-concave 

or planar-convex lens, one principal plane is tangent to the 

Depicted in Fig. 6.4 is ray-1 heading toward point- H
 1, just as 

curved surface—as should be expected from the definition 

a ray might head toward the center of a thin lens in Fig. 5.22. 

 (applied to the paraxial region). In contrast, the principal points 

After striking  H
 1 it moves on to  H
 2, traveling parallel to the 

can be external for meniscus lenses. One often speaks of this 

central axis. At  H
 2 it refracts and emerges parallel to the incom-

succession of shapes with the same power as exemplifying  lens 


ing ray, much as it would with a thin lens. Now consider ray-2 


bending
 . A rule-of-thumb for ordinary glass lenses in air is that 

in Fig. 6.4, traveling parallel to the central axis. It strikes the 

the separation  H


first principal plane and passes on, undeflected, to the second 

1 H
 2 roughly equals one-third the lens thick-

ness  V




 

 .


principal plane, where it refracts. If the lens is positive, ray-2 

1 V
 2

A quick way to trace rays through a thin lens is to draw a 

converges to back focal point- F
 2. If the lens is negative, ray-2 

plane down the middle of the lens (perpendicular to the optical 

diverges as if from front focal point- F
 1, much as with the thin 

axis) and refract all the incoming rays at that plane, its principal 

positive lens in Fig. 5.22. For a positive lens, ray-3 is the one 

plane, rather than at its two interfaces, where the bending actu-

that passes through front focal point- F
 1, strikes the first princi-

ally takes place. In effect, for a thin lens the two principal planes 

pal plane, refracts parallel to the central axis, and, undeflected, 

in Fig. 6.1 coalesce into a single plane. A similar scheme can be 

continues on. For a negative lens, ray-3, heading toward back 

devised to quickly ray trace through a thick lens provided we 

focal point- F
 2, strikes the first principal plane, refracts parallel 

first set out a few rules. Keep in mind that the technique we are 

to the central axis, and, undeflected, continues on. 

about to explore will take the actual entering ray and allow us to 

Any parallel bundle of rays entering a positive thick lens must 

construct the actual emerging ray. However, the paths constructed 

emerge as a converging cone heading toward a point on its focal 

inside the lens will generally not match the actual internal paths 

plane. And any parallel bundle of rays entering a negative thick lens 

taken by the rays, but they didn’t for the thin lens either. 

must emerge as a cone diverging from a point on its focal plane.

Any ray impinging on the first lens face must be extended 

The thick lens can be treated as consisting of two spherical 

until it intersects the first principal plane, the one at  H


refracting surfaces separated by a distance  d


1. This 


l
  between their ver-

“ghost” ray traverses the gap between  H


tices, as in Section 5.2.3, where the thin-lens equation was  

1 and  H
 2 parallel to the 

optical axis. It strikes the second principal plane, the one at  H


derived. After a great deal of algebraic manipulation,* wherein 

2, 

refracts, and passes straight out of the lens in a direction yet to 

be determined. Just as with the thin lens, there are three special 

*For the complete derivation, see Morgan,  Introduction to Geometrical and 


rays whose passage into, across, and out of the thick lens we 


Physical Optics
 , p. 57. We will be deriving much of this material using matrices  

can anticipate without the need for calculations.

in Section 6.2.1.
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dl
  is not negligible, one arrives at a very interesting result for the 

EXAMPLE 6.1

thick lens immersed in air. The expression for the conjugate 

Find the image distance for an object positioned 30 cm from the 

points once again can be put in Gaussian form,

vertex of a double convex lens having radii of 20 cm and 40 cm, 

1

1

1

a thickness of 1.0 cm, and an index of 1.5. 





 (6.1)


s 
 +

=


o



si



ƒ


SOLUTION 

provided that both these object and image distances are mea-

From Eq. (6.2) the focal length (in centimeters) is

sured from the first and second principal planes, respectively. 

1

1

1

(1.5

Moreover, the  effective focal length
 , or simply the  focal length
 , 

- 1)1.0

= (1.5 - 1)  c -

+

d


ƒ
 , is also reckoned with respect to the principal planes and is 


ƒ


20

-40

1.5(20)(-40)

given by

and  ƒ 
 = 26.8 cm. Furthermore,

1

1

( nl 
 - 1) dl


26.8(0.50)1.0





1 = ( nl 
 - 1)  - +


h


c

d  (6.2)

1 = -  

  = +0.22 cm

ƒ


R
 1


R
 2


nlR
 1 R
 2

-40(1.5)

and

The principal planes are located at distances of  V




 



1 H
 1 =  h
 1 and 

26.8(0.5)1.0


V



h


2 H
 2 =  h
 2,  which are positive when the planes lie to the right of 


2 = -  

  = -0.44 cm

20(1.5)


their respective vertices
 . Figure 6.5 illustrates the arrangement 

of the various quantities. The values of  h
 1 and  h
 2 are (Problem 6.22) 

which means that  H
 1 is to the right of  V
 1, and  H
 2 is to the left of 

given by


V
 2. Finally,  so 
 = 30 + 0.22, whereupon

1

1

1


ƒ
 ( nl 
 - 1) dl


+

=






h
 1 = - 

 (6.3)

30.2


si


26.8


R
 2 nl


and  si 
 = 238 cm, measured from  H
 2.


ƒ
 ( n


and 


h



l 
 - 1) dl


2 = -  


 


(6.4)


R


The principal points are conjugate to each other. In other 

1 nl


words, since  ƒ 
 =  sosi
 >( so 
 +  si
 ), when  so 
 = 0,  si  
 must be zero, because  ƒ
  is finite and thus a point at  H
 1 is imaged at  H
 2. Fur-In the same way the Newtonian form of the lens equation holds, 

thermore, an object in the first principal plane ( xo 
 = -ƒ ) is im-

as is evident from the similar triangles in Fig. 6.4. Thus

aged in the second principal plane ( xi 
 = - ƒ
  ) with unit magnifi-






xo
   xi 
 =  ƒ
 2 (6.5)

cation  ( MT 
 = 1). It is for this reason that they are sometimes 

spoken of as  unit planes
 . Any ray directed toward a point on the 

so long as  ƒ
  is given the present interpretation. And from the 

first principal plane will emerge from the lens as if it originated 

same triangles

at the corresponding point (the same distance above or below 


yi



xi



ƒ


the axis) on the second principal plane.






MT 
 =


 


(6.6)


y 
 = -  = -  x


Suppose we now have a compound lens consisting of two 


o



ƒ



o


thick lenses,  L
 1  
 and  L
 2 (Fig. 6.6). Let  so
 1,  si
 1,  
 and  ƒ
 1 and  so
 2,  si
 2, Obviously, if  dl 
 S 0, Eqs. (6.1), (6.2), and (6.5) are transformed 

and  ƒ
 2 be the object and image distances and focal lengths for 

into the thin-lens expressions Eqs. (5.17), (5.16), and (5.23). 

the two lenses, all measured with respect to their own principal 


yo



V
 1  H
 1  H V


2 2


Fi



Fo



yi



h
 1


h
 2

f.f.l.

b.f.l.


dl



x



f



o



f



xi



s



s



o



i



Figure 6.5
   Thick-lens geometry.
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L
 1


L
 2

which will not be derived here (see Section 6.2.1). We have 

in effect found an equivalent thick-lens representation of 

the compound lens. Note that if the component lenses are 


H
 1


F



H



o Fo
 1

11


H



F F



F



F



H


12


H



i
 1  o
 2

21


H
 22


i
 2


i


2

thin, the pairs of points  H
 11,   H
 12, and  H
 21,   H
 22 coalesce, 

whereupon  d
  becomes the center-to-center lens separation, 

as in Section 5.2.3. 


f



f
 1


f
 1


f



f



f


2

2


d


(a)

EXAMPLE 6.2

Return to the thin lenses of Fig. 5.41 and locate the system’s prin-


f


cipal planes when  ƒ
 1 = -30 cm,  ƒ
 2 = 20 cm, and  d 
 = 10 cm.


L
 1


L
 2

SOLUTION 

As shown in Fig. 6.7, using Eq. (6.8), determine the focal length 


H
 11


H
 12


H
 2


H
 21  H
 22

of the system:


Fi


1

1

1

10

=

+

-


ƒ



s



d



s


-30

20

(-30)(20)


o
 1


i
 2  so
 2


s


so  ƒ



i
 1 =   f
 1

= 30 cm. We found earlier (p. 173) that b.f.l. = 40 cm and 

f.f.l. = 15 cm. Moreover, since these are thin lenses, Eqs. (6.9) 

(b)

and (6.10) can be written as


Figure 6.6
     Two different compound thick-lens systems.

30(10)


O
 1 H
 1 =

= +15 cm

20

planes. We know that the transverse magnification is the prod-

uct of the magnifications of the individual lenses, that is,

30(10)

and 


O
 2 H
 2 = - 

= +10 cm  



s



s



s


-30






M



i
 1


i
 2


i



T 
 = a -  

b a

b


 


(6.7)


s


- 

= - 


o
 1


so
 2


so


Both are positive, and therefore the planes lie to the right of 


O


where  s


1 and  O
 2, respectively. Both computed values agree with 


o 
 and  si
  are the object and image distances for the com-

the results depicted in the diagram. If light enters from the 

bination as a whole. When  so
  is equal to infinity  so 
 =  so
 1,  si
 1 = ƒ1, right, the system resembles a telephoto lens that must be 


so
 2 = -( si
 1 -  d
  ), and  si 
 =  ƒ
 . Since

placed 15 cm from the film or CCD plane, yet has an effec-

1

1

1

tive focal length of 30 cm.


s 
 +

=


o
 2


si
 2


ƒ
 2

it follows (Problem 6.1), upon substituting into Eq. (6.7), that

The same procedures can be extended to three, four, or more 


ƒ
 1 si
 2

lenses. Thus

-   s 
 =  ƒ



o
 2


s



s







ƒ 
 =  ƒ



i
 2


i
 3

1a -  

b a

b  . . . .  (6.11)


ƒ



s



ƒ



s


- 

1


o
 2 ƒ
 2

1 ƒ
 2


o
 2


so
 3

or 


ƒ 
 = -   a

b


 



s


=


o
 2  so
 2 -  ƒ
 2


si
 1 -  d 
 +  ƒ
 2

Equivalently, the first two lenses can be envisioned as combined 

to form a single thick lens whose principal points and focal 

1

1

1


d


length are calculated. It, in turn, is combined with the third lens, 

Hence 

=

+

-

 (6.8)


ƒ



ƒ
 1


ƒ
 2


ƒ
 1 ƒ
 2

and so on with each successive element.

This is the effective focal length of the combination of two thick 

lenses where all distances are measured from principal planes. 


f
  = 30 cm

The principal planes for the system as a whole are located using 

15 cm

the expressions


ƒd



Fo



O



F


1


O
 2


H
 1


H
 2


i







H
 11 H
 1 =  ƒ


 (6.9)

2


d
 =10 cm 10 cm


f
  = 30 cm

and 


ƒd



H


 (6.10)

f.f.l. = 15 cm

b.f.l. = 40 cm

22 H
 2 =  ƒ
 1


Figure 6.7
     A compound lens.
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In what follows (1) horizontal distances are measured from 


6.2 Analytical Ray Tracing


the vertices  V
 1 and  V
 2, to the right being positive, to the left 

negative. (2) Ray angles are positive when they are measured to 

Ray tracing is unquestionably one of the designer’s chief tools. 

upwardly traveling rays (above the central axis). Such angles 

Having formulated an optical system on paper, one can mathe-

increases counterclockwise.

matically shine virtual rays through it to evaluate its perfor-

The simplest case that will serve to illustrate the ray-tracing 

mance. Any ray, paraxial or otherwise, can be traced through 

process is that of a paraxial, meridional ray traversing a thick 

the system exactly. Conceptually, it’s a simple matter of apply-

spherical lens. Applying Snell’s Law in Fig. 6.8 at point- P


ing the refraction equation

1 yields


n







n



i
 1u i
 1 =  nt
 1u t
 1


i
  (k



ˆ
    i 
 : uˆ
 n
 ) =  nt
  (kˆ
    t 
 : uˆ
 n
 ) [4.6]

at the first surface, locating where the transmitted ray then 

or 


ni
 1(a i
 1 + a1) =  nt
 1(a t
 1 + a1)  


strikes the second surface, applying the equation once again, 



Keep in mind that all of these angles are in radians.

  Inasmuch 

and so on all the way through. At one time  
meridional rays

  

as a

(those in the plane of the optical axis) were traced almost exclu-

1 =  y
 1> R
 1, this becomes

sively because nonmeridional or  
skew rays

  (which do not inter-


ni
 1(a i
 1 +  y
 1> R
 1) =  nt
 1(a t
 1 +  y
 1> R
 1) sect the axis) are considerably more complicated to deal with 

Rearranging terms yields

mathematically. The distinction is of less importance to a com-

puter, which simply takes a trifle longer to make the trace. 


n


Whereas it would probably take 10 or 15 minutes for a skilled 


n



t
 1 -  ni
 1


t
 1a t
 1 =  ni
 1a i
 1 - a

b  y



R


1

1

person with a calculator to evaluate the trajectory of a single 

skew ray through a single surface, a computer would require 

but as we saw in Section 5.7.2, the power of a single refracting 

less than a thousandth of a second for the same job, and equally 

surface is

important, it would be ready for the next calculation with undi-

( n


minished enthusiasm.

𝒟


t
 1 -  ni
 1)

1 =


R
 1

Hence 


nt
 1a t
 1 =  ni
 1a i
 1 - 𝒟1 y
 1 (6.12)

This is often called the refraction equation
  pertaining to the 

first interface. Having undergone refraction at point- P
 1, the ray ad-

vances through the homogeneous medium of the lens to point- P
 2 

on the second interface. The height of  P
 2 can be expressed as






y
 2 =  y
 1 +  d
 21a t
 1 (6.13)

on the basis that tan a t
 1 ≈ a t
 1. This is known as the transfer 



equation
  because it allows us to follow the ray from  P
 1 to  P
 2. 

Recall that the angles are positive if the ray has a positive slope. 

Since we are dealing with the paraxial region,  d
 21 ≈  V
 2 V
 1 and 


y
 2 is easily computed. Equations (6.12) and (6.13) are then used 

successively to trace a ray through the entire system. Of course, 

Computer ray tracing. (Optical Research Associates, Pasadena CA)

these are meridional rays and because of the lenses’ symmetry 


d



Figure 6.8
   Ray geometry.

21


d
 32


P
 2

a t
 2

a


P



i
 2

3

a


P


1

1

a t
 1


y


a

u

1

2


y
 3


t
 1

u i
 1

a i
 1


y
 1


R



V


1

1

a


C



V


1

2


V
 3


ni
 1


nt
 1 =  ni
 2


nt
 2 =  ni
 3


nt
 3
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about the optical axis, such a ray remains in the same meridional 

The 2 * 2 matrix is the refraction matrix
 , denoted as

plane throughout its sojourn. The process is two-dimensional; 

there are two equations and two unknowns, 

-( n


a t
 1 and  y
 2. In contrast, 

1

-𝒟

1


t
 1 -  ni
 1)

a skew ray would have to be treated in three dimensions.





ℛ

1d = £


R


§  (6.19)





1 K c0

1

1

0

1


6.2.1 Matrix Methods


and Eq. (6.16) can be stated concisely as

In the beginning of the 1930s, T. Smith formulated an interest-






r
 t
 1 = ℛ





1 r
 i
 1 (6.20)

ing way of handling the ray-tracing equations. The simple linear 

which just says that ℛ





1 transforms the rays r
 i
 1 into the ray r
 t
 1 

form of the expressions and the repetitive manner in which they 

during refraction at the first interface. Notice that the way we 

are applied suggested the use of matrices. The processes of re-

arranged the terms in Eqs. (6.14) and (6.15) determined the 

fraction and transfer might then be performed mathematically 

form of the refraction matrix. Accordingly, several equivalent 

by matrix operators. These initial insights were not widely ap-

variations of the matrix can be found in the literature.

preciated for almost 30 years. However, the early 1960s saw a 

From Fig. 6.8 we have  ni
 2a i
 2 =  nt
 1a t
 1, that is,

rebirth of interest in this approach.* We shall only outline some 

of the salient features of the method, leaving a more detailed 






ni
 2a i
 2 =  nt
 1a t
 1 + 0 (6.21)

study to the references.

and 


yi
 2 =  d
 21a t
 1 +  yt
 1 (6.22)

where   ni
 2 =  nt
 1,  a i
 2 = a t
 1, and use was made of Eq. (6.13), 


Matrix Analysis of Lenses


with  y
 2  
 rewritten as  yi
 2 to make things pretty. Thus

Let’s begin by writing the formulas


n


1

0  n







nt
 1a t
 1 =  ni
 1a i
 1 - 𝒟1 yi
 1 (6.14)





c  i
 2 a i
 2d = c

d c  t
 1 a t
 1d  (6.23)


yi
 2


d
 21> nt
 1 1


yt
 1

and 


yt
 1 = 0 +  yi
 1 (6.15)

As shown in Fig. 6.8, the quantity  d
 21 is the horizontal distance 

which are not very insightful, since we merely replaced  y
 1 in 

traversed by the ray in going from  P
 1 to  P
 2. For rays coming in 

Eq. (6.12) by the symbol  yi
 1 and then let  yt
 1 =  yi
 1. This last bit 

at small angles,  d
 12 approaches the distance  V
 1 V
 2 between ver-

of business is for purely cosmetic purposes, as you will see in a 

tices, which is the axial thickness of the lens—call it  dl
 .

moment. In effect, it simply says that the height of reference 

The transfer matrix 
 is then

point- P
 1 above the axis in the incident medium ( yi
 1) equals its 

height in the transmitting medium ( y


1

0


t
 1) —which is obvious. But 





𝒯

d  (6.24)





21 K c

now the pair of equations can be recast in matrix form as


d
 21> nt
 1 1


n


1


n


Here for the lens  d


-𝒟

21


t
 1a t
 1

1


i
 1a i
 1

=  dl
 ,  nt
 1 =  nl
  and





c

d = c

d c

d  (6.16)


yt
 1

0

1


yi
 1

1

0

𝒯

d





21 = c dl
 > nl 
 1

This could equally well be written as

That matrix takes the transmitted ray at  P
 1 (i.e., r
 t
 1) and trans-


ni
 1> nt
 1 -𝒟1> nt
 1

forms it into the incident ray at  P






2:

ca t
 1d = c

d ca i
 1d  (6.17)


yt
 1

0

1


yi
 1

so that the precise form of the 2


r



ni
 2 a i
 2


t
 2 K

* 1 column matrices is actu-

c

d


yi
 2

ally a matter of preference. In any case, these column matrices 

can be envisioned as rays on either side of  P
 1, one before and 

Hence Eqs. (6.21) and (6.22) become simply

the other after refraction. Accordingly, using r
 t
 1 and r
 i
 1 for the 





two rays in Eq. (6.16), we can write


r
 i
 2 = 𝒯





21 r
 t
 1 (6.25)


n



n







r



t
 1a t
 1


i
 1a i
 1


t
 1 K c

d   and  r


d  (6.18)


y



i
 1 K c


t
 1


yi
 1

EXAMPLE 6.3

Consider a concave-planar lens immersed in air and having an 

index of refraction of 1.50. The lens has a thickness along 

*For further reading, see K. Halbach, “Matrix Representation of Gaussian Optics,” 

its central axis of 1.00 cm. (a) Determine its transfer matrix. 


Am. J. Phys
 . 32
 , 90 (1964); W. Brouwer,  Matrix Methods in Optical Instrument 



Design
 ; E. L. O’Neill,  Introduction to Statistical Optics
 ; or A. Nussbaum, 

(b) Does it matter what the surrounding media are?


Geometric Optics
 .


Continued
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SOLUTION 

For the flat surface  R
 2 = ∞ and from Eq. (5.71)

(a
 )  The transfer matrix in general is given by Eq. (6.24)


n


𝒟


l 
 - 1

2 =

= 0

1

0

- R
 2

𝒯

d





21 = c d
 21> nt
 1 1

Hence,

Here  nt
 1 is the index of the lens,  d
 21 its axial thickness. Hence 

1

1

0

ℛ

-𝒟2

2 = c

d = c

d

1

0

1

0

0

1

0

1

𝒯

d = c

d





21 = c1>1.50 1

0.667

1

(b
 ) The transfer matrix depends only on the medium traversed 

by the ray.

From Eq. (6.26)






r


ℛ 𝒯 ℛ






t
 2 = ℛ





2 𝒯





21  

1 r
 i
 1 (6.28)

If use is made of Eq. (6.20), Eq. (6.25) becomes

The system matrix
  𝒜 is then defined as










r
 i
 2 = 𝒯 ℛ





21  

1 r
 i
 1 (6.26)





𝒜 K ℛ 𝒯 ℛ









2 𝒯





21  

1 (6.29)

The 2 * 2 matrix formed by the product of the transfer and re-

It carries the ray incident at  P
 1 into the ray transmitted out of the 

fraction matrices 𝒯 ℛ





21 

1 will carry the ray incident at  P
 1 into 

second interface at  P
 2. The system matrix has the form

the ray incident at  P
 2. Notice that the determinant of 𝒯





21, de-

noted by 


a


0𝒯





21 0 , equals 1; that is, (1)(1) - (0)( d
 21> nt
 1) = 1. 





𝒜 = c 11  a
 12d  (6.30)





Similarly  0ℛ





1 0 = 1, and since the determinant of a matrix prod-


a
 21  a
 22

uct equals the product of the individual determinants,  Inasmuch as

0 𝒯 ℛ





21 

1 0 = 1. This provides a quick check on the computa-

tions. Carrying the procedure through the second interface  

1

1

0 1

𝒜

-𝒟

-𝒟

=

(Fig. 6.8) of the lens, which has a refraction matrix ℛ





c

2d c

d c

1d





2, it 





0

1


d
 21> nt
 1 1 0

1

follows that






r
 t
 2 = ℛ





2 r
 i
 2 (6.27)

1

1

-𝒟

-𝒟1





or 

𝒜

where

= c

2d £  d


𝒟

§





0

1

21

1

1 d
 21


n


-


t
 1


nt
 1

1

ℛ

-𝒟2d





2 K c0

1

it follows that

and the power of the second surface is

𝒟

𝒟

( n


1


t
 2 -  ni
 2)

- 2 d
 21

2𝒟1 d
 21

𝒟


n


-𝒟1 - 𝒟2 +


n


2 =


R


𝒜

2

= ≥


t
 1


t
 1

¥






d
 21

𝒟

1

1 d
 21


n


-


t
 1


nt
 1

EXAMPLE 6.4

A concave-planar lens has a first surface with a radius of 20.0 cm. 

and once more  0 𝒜 0 = 1 (see Problem 6.21). Because we are 





The lens is in air and has an index of refraction of 1.50. Determine 

working with only one lens, let’s simplify the notation a little 

the refraction matrix for each of its surfaces.

again, letting  d
 21 =  dl 
 and  nt
 1 =  nl
 , the index of the lens. Con-

sequently,

SOLUTION 

For the concave surface, the first one, the radius is negative, and 

𝒟

𝒟

using Eq. (5.70),

1 - 2 dl


-𝒟

1𝒟2 dl



a



n


1 - 𝒟2 +


n







n


1.5

c 11  a
 12d = ≥


l



l


¥  


l 
 - 1

- 1


a
 21  a
 22


dl


𝒟

𝒟1 =

=

1

1 dl



R
 1

-20.0


n


-


l



nl


Consequently 





 (6.31)

𝒟1 = -0.025 cm-1. The power is properly neg-

ative. The refraction matrix for the curved surface is then

The value of each element in 𝒜 is expressed in terms of the 





physical lens parameters, such as thickness, index, and radii (via 𝒟). 

1

1

0.025

ℛ

- 𝒟1d = c

d





Thus the cardinal points, which are properties of the lens deter-

1 = c0

1

0

1

mined solely by its makeup, should be deducible from 𝒜. The 
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system matrix in this case, Eq. (6.31), transforms an incident 

It follows from the two previous examples that

ray at the first surface to an emerging ray at the second surface; 

as a reminder, we will write it as 𝒜





1

0

1

0 1

0.025

21.

𝒜 = c

d c

d c

d





0

1 0.667

1 0

1

EXAMPLE 6.5

1

0

1

0.025

𝒜 =

A concave-planar lens immersed in air has an index of 1.50, 

c

d c

d





0

1 0.667

1.016 7

an axial thickness of 1.00 cm, and a front-surface radius of 

curvature of 20.0 cm. A ray coming up toward the lens at an 

1

0.025

𝒜 =

angle of 5.73° above the central axis contacts the front surface 

c

d





0.667

1.016 7

at a height of 2.00 cm above that axis. Determine the height 

and angle at which the ray emerges from the lens. Show that 

and this agrees with the previous examples.

the system matrix agrees with the two previous examples.

SOLUTION 

The concept of image formation enters directly (Fig. 6.9) 

after introduction of appropriate object and image planes. Con-

Recall Eq. (6.28), where what we need is r
 t
 2, the exiting ray 

sequently, the first operator 

matrix. Equivalently,

𝒯





1 O
  transfers the reference point 

from the object to the lens (i.e.,  PO
  to  P
 1). The next operator 


r
 t
 2 = 𝒜 r











i
 1

𝒜





21 then carries the ray through the lens, and a final transfer 

Since the lens is in air, the ray transmitted at the second inter-

𝒯






I
  2 brings it to the image plane (i.e.,  PI 
 ). Thus the ray at the 

face is given by

image point (r
 I
 ) is given by






r
 I 
 = 𝒯 𝒜 𝒯






I
 2 𝒜





21 

1 O
  r
 O 


(6.32)


a


ca t
 2d = c 11  a
 12d ca i
 1d


y



a



y


where r
 O
  is the ray from  PO
 . In component form this is


t
 2

21


a
 22


i
 1


n


1

0  a


1

0  n


Here where 𝒟2 = 0 it follows from Eq. (6.31) that





c  I
  a I
 d = c

d c 11  a
 12d c

d c  O
  a O
 d  


yI



dI
 > nI 
 1  a
 21  a
 22 - dO
 > nO 
 1


yO


1

𝒜

- 𝒟

=

1





𝒟

(6.33)

£

§


d


1 dl



l
 > nl


1 -  nl


There is a minus sign associated with the distance from the  

vertex  V


Since the first radius  R


1 to the object because that distance  dO
  is taken here to 

1 is negative

be a negative quantity.

( nl 
 - 1)

0.50

Notice that 𝒯

𝒜





1 O
   r
 O 
 = r
 i
 1 and that  

21 r
 i
 1 = r
 t
 2, hence 

𝒟





1 =

=

= -0.025 cm-1


R
 1

-20.0

𝒯






I
 2  r
 t
 2  = r
 I
 . The subscripts  O
 , 1, 2, . . . ,  I
  correspond to reference points  Po
 ,  P
 1,  P
 2, and so on, and subscripts  i
  and  t
  denote the Accordingly,

side of the reference point (i.e., whether incident or transmitted). 

Operation by a refraction matrix will change  i
  to  t
  but not the 

1

0.025

1

0.025

𝒜 = c

d = c

d





reference point designation. On the other hand, operation by a 

0.667

1 - (-0.025)0.667

0.667

1.016 7

transfer matrix obviously does change the latter.

Then, since 11.46° = 0.100 rad

1

0.025

0.100


P
 1


P


ca t
 2d = c

d c

d

a

2


P



i
 1


y



O


a


t
 2

0.667

1.016 7

2.00


O


a


y



t 
 2


y


1  y
 2


O


and


V



n



V


1

2


l


0.100

ca t
 2d

+ 0.025(2)

= c

d


yI



n



n



n



y



O = ni
 1


t
 1  = ni
 2


t
 2  = nI


a I



t
 2

0.667(0.100) + 1.016 7(2)


PI


Thus the ray emerges at an angle a


d



t
 2 = 0.150 rad and at a height 


O



dI



d


above the central axis of  y


21  = dl



t
 2 = 2.10 cm. Because


Figure 6.9
     Image geometry. Note that  d


𝒜 = ℛ 𝒯 ℛ


O
  is negative here, whereas  dI
   









2 𝒯





21 ℛ





1

is positive.
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Let’s simplify Eq. (6.33) by taking the lens to be immersed 

It is left for Problem 6.26 to show that this can be written in 

in air, whereupon  nI 
 =  nO 
 = 1. It is left for Problem 6.18 to 

terms of the vertex object distance as 

show that 

1






MT 
 =

 (6.38)


yI 
 = a O
 [ a
 21 -  a
 22 dO 
 + ( a
 11 -  a
 12 dO
 ) dI
 ]


a
 11 -  a
 12 dO






 (6.34)

       +  yO
 ( a
 22 +  a
 12 dI
 )

EXAMPLE 6.7

But this must be independent of the angle a O
  at which any ray 

emanates from an object point. Paraxial rays leaving a point at 

The Tessar lens in the previous example imaged an object lo-


y


cated 20.0 cm in front of it, at a distance of 6.00 cm behind it. 


O
  must arrive at a point at  yI
  regardless of a O
 . Hence

Use Eqs. (6.37) and (6.38) to determine, and then check, the 






a
 21 -  a
 22 dO 
 + ( a
 11 -  a
 12 dO
 ) dI 
 = 0 (6.35)

magnification.

And so the image distance measured from the last vertex on the 

SOLUTION 

right,  dI
 , is related to the object distance measured from the first 

Using Eq. (6.37), 

vertex on the left,  dO
 , by


MT 
 =  a
 22 +  a
 12 dI


- a







d


21 +  a
 22 dO



I 
 =

 (6.36)


a



MT


11 -  a
 12 dO


= 0.867 + (-0.198) 6.00

and   MT 
 = -0.321, the image is inverted and minified. As a 

EXAMPLE 6.6

check use 

An object is located 20.0 cm in front of the first vertex of a 

1

compound Tessar lens immersed in air, whose system ma-


MT 
 =  a
 11 -  a
 12 dO


trix is

and remembering that here  dO
  is to the left and negative, 

0.848

c

-0.198d

1.338

0.867


MT 
 = [0.848 - (-0.198)(-20.0)]-1

Hence  MT


Determine the location of the image with respect to the back 

= -0.321 and all’s well.

face of the lens.

SOLUTION 

Let’s return to Eq. (6.31) and examine several of the terms. 

From Eq. (6.35)

For example,

- a
 21 +  a
 22 dO


- a
 12 = 𝒟1 + 𝒟2 - 𝒟1𝒟2 dl
 > nl



dI 
 =  a
 11 -  a
 12 dO


If we suppose, for the sake of simplicity, that the lens is in air, 

then

and


n



n


-1.338 + 0.867(-20.0)

𝒟


l 
 - 1


l 
 - 1

1 =

 and 𝒟


dI 
 =


R


2 =

1

- R
 2

0.848 - (-0.198)(-20.0)

Here  d


as in Eqs. (5.70) and (5.71). Hence


O
  is a negative number with any units. Hence

-18.678

1

1

( n



dI 
 =

= +6.00 cm

- a



l 
 - 1) dl


12 = ( nl 
 - 1) c

-

+

d

-3.112


R
 1


R
 2


R
 1 R
 2 nl


and the image is 6.00 cm to the right of the rightmost vertex.

This is the expression for the effective
  focal length 
 of a thick 

lens in air [Eq. (6.2)]; in other words,





- a
 12 = -1> ƒo 
 = +1> ƒi 


(6.39)

We can get an expression for the magnification ( MT
 ) from 

Eq. (6.34), since the first term is zero, leaving

where  ƒo
  measured from  H
 1 to the left of the first vertex is neg-

ative, and  ƒi
  measured from  H
 2 to the right of the last vertex is 


yI 
 =  yO
 ( a
 22 +  a
 12 dI
 )

positive. Thus the power of the lens as a whole is given by

Consequently,

𝒟

- a


1𝒟2 dl


12 = 𝒟 l 
 = 𝒟1 + 𝒟2 -






MT 
 =  a
 22 +  a
 12 dI
  (6.37)


nl
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(b
 ) The principal planes are located by 

1 -  a



a



V


11

22 - 1

1 H
 1 =

 and  V



Fo



V
 1  H
 1  H
 2 V
 2


Fi


- a


2 H
 2 =

12

- a
 12


nt
 1  


so it would be a good idea now to compute  a
 11,  a
 12, and  a
 22 


ni
 1


n



n



t
 2

from Eq. (6.31). Accordingly,


l 


f.f.l .


b.f.l .


𝒟

0.50(0.50)


f



f



a


2 dl



o



i


11 = 1 -


n


= 1 -


l


1.50


Figure 6.10
     Principal planes and focal lengths.


a
 11 = 0.833

𝒟

If the embedding media were different on each side of the lens 

and  


a


1 𝒟2  dl


12 = - 𝒟1 - 𝒟2 +






nl


(Fig. 6.10), as in the human eye, this would become


n



n


(0.25)(0.50)(0.50)






i
 1


t
 2 (6.40)


a


- a
 12 = - 

= + 

12 = - 0.25 - 0.50 +


ƒ



ƒ


1.50


o



i


Similarly, it is left as a problem to verify that in general


a
 12 = -0.708


n






  V



i
 1 (1 -  a
 11)

1 H
 1 =

 (6.41a)

𝒟

0.25(0.50)

- a
 12

and 


a


1  dl


22 = 1 -






n


= 1 -


l


1.50

or with the lens immersed in air


a
 22 = 0.917

(1 -  a






  V


11)

1 H
 1 =

 (6.41b)

The principal planes are then located by 

- a
 12

where in general

1 - 0.833


V
 1 H
 1


n


=

= + 0.236 cm 


t
 2( a
 22 - 1)

+ 0.708






V
 2 H
 2 =

 (6.42a)

- a
 12

(i.e.,  H
 1 is to the right of  V
 1) and 

or with the lens in air

0.917

( a


- 1

22 - 1)


V







V


 (6.42b)

2 H
 2 =

= - 0.117 cm 

2 H
 2 =

+ 0.708

- a
 12

which locate the principal points. Likewise the front and back 

(i.e.,  H
 2 is to the left of  V
 2).

focal planes are located at distances of  V
 1 Fo
  and  V
 2 Fi
 , where

(c
 ) The focal length ( fi
 ) of the lens is given by Eq. (6.39),






V
 1 Fo 
 = f.f.l. =  a
 11  ƒo
  (6.43a) 

1

and 

-  a
 12 = +  = + 0.708


fi







V
 2 Fi 
 = b.f.l. =  a
 22  ƒi
  (6.43b)

Consequently,   fi 
 = +1.41 cm and   fo 
 = -1.41 cm, both mea-

referring back to Eq. (6.31).

sured from the principal points (to the right positive, to the left 

negative).

EXAMPLE 6.8

(d
 ) The front and back focal lengths are then 

A small biconvex spherical lens has a center-line thickness of 

f.f.l. =  a
 11  fo 
 = 0.833(-1.412) = -1.18 cm

0.500 cm and an index of 1.50, and it is surrounded by air. Given 

measured to the left of  V


that its first face has a radius of 2.00 cm and its second face a 

1, and 

radius of 1.00 cm (a) determine the power of each face; (b) lo-

b.f.l. =  a
 22 fi 
 = 0.917(+1.412) = +1.29 cm

cate the principal planes; (c) compute the focal length of the lens; 

measured to the right of  V
 2.

(d) find the front and back focal lengths.

SOLUTION 

To further illustrate how the technique can be used, let’s apply 

(a
 ) The front and back surface powers are given by

it, at least in principle, to the Tessar lens* shown in Fig. 6.11. 


n



n


The system matrix has the form

𝒟


l 
 - 1


l 
 - 1

1 =

  and  𝒟


R


2 =

1

- R
 2

𝒜

ℛ 𝒯 ℛ 𝒯 ℛ 𝒯 ℛ 𝒯 ℛ 𝒯 ℛ 𝒯 ℛ





71 = ℛ





7 𝒯





76 ℛ





6 𝒯





65 ℛ





5 𝒯





54 ℛ





4 𝒯





43 ℛ





3 𝒯





32 ℛ





2 𝒯





21  

1

and so 𝒟1 = (1.50 - 1)/2.00 = 0.250 cm-1, whereas 𝒟2 =

*This particular example was chosen primarily because Nussbaum’s book 

(1.50 - 1)>1.00 = 0.500 cm-1. Both are positive, as they   Geometric Optics
  contains a simple Fortran computer program written specifically should be. 

for this lens. It would be almost silly to evaluate the system matrix by hand.
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nt
 2 = 1


nt
 4 = 1


dl 
 S 0, it corresponds to a thin lens. This is equivalent to mak-


nt
 1 = 1.611 6


nt
 3 = 1.605 3  nt
 5 = 1.512 3

ing 𝒯





21 a unit matrix; 


nt
 6 = 1.611 6

1

𝒜

-(𝒟

= ℛ ℛ

1 + 𝒟2)d









2 ℛ





1 = c0

1

But as we saw in Section 5.7.2, the power of a thin lens 𝒟 is the 

sum of the powers of its surfaces. Hence


V
 1


V
 2  V
 3


V
 4


V
 5


V
 6


V
 7

1

1

𝒜

-𝒟

-1> ƒ


= c

d = c

d





0

1

0

1

In addition, for two thin lenses (Fig. 5.36) separated by a dis-


d


tance  d
 , in air, the system matrix is

43


d
 65


d
 21

0.081  d
 54

0.217


d
 76

0.357


d
 32

0.325

0.396

1

1

0 1

0.189

𝒜

-1> ƒ


-1> ƒ


= c

2d c

d c

1d





0

1


d


1 0

1


R
 1 = 1.628


R
 5 = ∞


R
 2 = –27.57


R
 6 = 1.920

1 -  d
 > ƒ



R



R


or 

3 = –3.457

7 = –2.400

𝒜 = c

2

-1> ƒ
 1 +  d
 > ƒ
 1 ƒ
 2 - 1> ƒ
 2d 






d



R


- d
 > ƒ
 1 + 1

4 = 1.582


Figure 6.11  
   A Tessar.

Clearly then,

1

1

1


d


- a
 12 = =

+

-


ƒ



ƒ
 1


ƒ
 2


ƒ
 1 ƒ
 2

where

and from Eqs. (6.41) and (6.42)

1

0

1

0


O
 1 H
 1 =  ƒ
   d
 > ƒ
 2  O
 2 H
 2 = - ƒ
   d
 > ƒ
 1

𝒯

0.357

§   𝒯

0.189

§





 21 = £

1





32 = £

1

1.611 6

1

all of which should be quite familiar by now. Note how easy it would 

be with this approach to find the focal length and principal points for 

1

0

a compound lens composed of three, four, or more thin lenses.

𝒯

0.081

§





43 = £

1

1.605 3


Matrix Analysis of Mirrors


and so forth. Furthermore,

To derive the appropriate matrix for reflection, consult Fig. 6.12, 

which depicts a concave spherical mirror, and write down two 

1.611 6 - 1

1 - 1.611 6

equations that describe the incident and reflected rays. Again, 

1

- 

1

- 

1.628

ℛ

-27.57 §





the final form of the matrix depends on how we arrange these 

ℛ

§   ℛ





1 = £

2 = £

two equations and the signs we assign to the various quantities. 

0

1

0

1

1.605 3 - 1

1

- 

ℛ

-3.457 §





3 = £

0

1

a i 


and so on. Multiplying out the matrices, in what is obviously a 

a r 


horrendous, though conceptually simple, calculation, one pre-

a i 


u

sumably will get


r 


u i 



yi


0.848

𝒜

-0.198d





71 = c1.338

0.867

a i - 
 u i 


a i



R



C


and from that,  ƒi 
 = 5.06,  V
 1 H
 1 = 0.77, and  V
 7 H
 2 = -0.67.


n



Thin Lenses


It is often convenient to consider a system of thin lenses using 


Figure 6.12
     The geometry for reflection 

the matrix representation. To that end, return to Eq. (6.31). It 

from a mirror. The ray angles a i
  and a r
  

are measured from the direction of  

describes the system matrix for a single lens, and if we let 

the optical axis.
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What’s needed is an expression relating the ray angles and another 

relating their heights at the point of interaction with the mirror.

𝒯12

ℳ1

First let’s consider the ray angles. The Law of Reflection is 

u i 
 = u r
 ; therefore from the geometry tan (a i 
 - u i
 ) =  yi
 > R
 , and O


ℳ

𝒯





(

2

a

21


i 
 - u i
 ) ≈  yi
 > R
  (6.44)

Taking these angles to be positive,  y
  is positive, but  R
  isn’t, and 


M
 2


M
 1

this equation will be in error as soon as we enter a negative 


Figure 6.13  
   A schematic representation of a planar cavity formed by 

value for the radius. Therefore rewrite it as (a i 
 - u i
 ) = - yi
 > R
 . 

mirrors- M
 1 and - M
 2.

Now to get a r
  into the analysis, note that a i 
 = a r 
 + 2u i
  and 

u i 
 = (a i 
 - a r
 )>2. Substituting this into Eq. (6.44) yields a r
  = 

This is a special kind of mathematical relationship known as an 

-a i 
 - 2 yi
 > R
 , and multiplying by  n
 , the index of the surround-



eigenvalue equation

  where, a bit more generally,

ing medium (where usually  n 
 = 1), leads to

𝒜 r







i 
 =  a
  r
 i



n
 a r 
 = - n
 a i 
 - 2 nyi
 > R


and  a
  is a constant. In other words,

The second necessary equation is simply  yr 
 =  yi 
 and so

1

0


n
 a r



n
 a i


c

d ca i
 d =  a
  ca i
 d

c d = c-1 -2 n
 > R
 d c d

2 d


1  yi



yi



yr


0

1


yi


If  a i 
 = 0 and the initial ray is launched axially, then  yi 
 =  ayi
  

Thus the mirror matrix ℳ for a spherical configuration is given 





and it follows that  a 
 = 1. The system matrix functions like a 

by

unit matrix that carries r
 i
  into r
 i
  after two reflections. Axial rays 





ℳ

d  (6.45)





of light travel back and forth across the so-called  
resonant cavity

  

o = c-1

-2 n
 > R


0

1

without escaping.

Cavities can be constructed in a number of different ways 

remembering from Eq. (5.49) that  ƒ 
 = - R
 >2.

using a variety of mirrors (Fig. 13.16, p. 617). If after traversing 

a cavity some number of times the light ray returns to its origi-

nal location and orientation, the beam will be trapped and the 


Flat Mirrors and the Planar Optical Cavity


cavity is said to be  stable
 ; that’s why the eigenvalue discussion 

For a flat mirror ( R 
 S ∞) in air ( n 
 = 1), the matrix is 

is important. To analyze the  confocal cavity
  composed of two 

concave spherical mirrors facing each other, see Problem 6.28.

ℳ

d





 0 = c-1

0

0

1


6.3 Aberrations


where the minus sign in the first position reverses the ray upon 

reflection. Figure 6.13 shows two planar mirrors facing each other, 

To be sure, we already know that first-order theory is no more 

forming an optical cavity
  (p. 613). Light leaves point- O
 , traverses 

than a good approximation—an exact ray trace or even mea-

the gap in the positive direction, is reflected by mirror-1, retraces 

surements performed on a prototype system would certainly 

the gap in the negative direction, and is reflected by mirror-2. The 

reveal inconsistencies with the corresponding paraxial de-

system matrix is

scription. Such departures from the idealized conditions of 

𝒜 =  ℳ 𝒯 ℳ 𝒯









Gaussian Optics are known as aberrations
 . There are two main 

 02 𝒯





21 ℳ





 01 𝒯





12

types: chromatic aberrations
  (which arise from the fact that  n
  is 

1

0

1

0

actually a function of frequency or color) and monochromatic 


𝒜 = c-1 0d c

d c-1 0d c

d





0

1 - d 
 1

0

1  d


1


aberrations
 . The latter occur even with light that is quasimono-

chromatic, and they in turn fall into two subgroupings. There 

are monochromatic aberrations such as  spherical aberration, 


1

0

and 

𝒜 = c

d  






coma
 , and  astigmatism
  that deteriorate the image, making it un-

2 d


1

clear. In addition, there are aberrations that deform the image, 

for example,  Petzval field curvature
  and  distortion
 .

where again the determinant of the system matrix is 1: 0 𝒜 0 = 1. 





We have known all along that spherical surfaces in general 

Presumably, if the initial ray was axial (a = 0), the system ma-

would yield perfect imagery only in the paraxial region. Now we 

trix should bring it back to its starting point so that the final ray 

must determine the kind and extent of deviations that result sim-


r
 ƒ
  is identical to the initial ray r
 i
 . That is,

ply from using those surfaces with finite apertures. By the judi-

𝒜 r







i 
 = r
 ƒ 
 = r
 i


cious manipulation of a system’s physical parameters (e.g., the 
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powers, shapes, thicknesses, glass types, and separations of the 

lenses, as well as the locations of stops), these aberrations can 

indeed be minimized. In effect, one cancels out the most unde-


h


sirable faults by a slight change in the shape of a lens here, or a 

shift in the position of a stop there (very much like trimming up 

a circuit with small variable capacitors, coils, and pots). When 


V



Fi


it’s all finished, the unwanted deformations of the wavefront in-


C


Paraxial

curred as it passes through one surface will, it is hoped, be ne-

focus

gated as it traverses some other surfaces farther down the line.


n


As early as 1950, ray-tracing programs were being developed 


n


2

1

for the new digital computers, and by 1954 efforts were already 

under way to create lens-designing software. In the early 1960s, 

computerized lens design was a tool of the trade used by manu-


Figure 6.14
     Spherical aberration resulting from refraction at a single 

facturers worldwide. Today there are elaborate computer pro-

interface.

grams for “automatically” designing and analyzing the perfor-

If the approximations for 

mance of all sorts of complicated optical systems.

/ o
  and / i
  are improved a bit (Prob-

lem 6.31), we get the third-order expression:


n


2

2

1


n
 2


n
 2 -  n
 1


n
 1 1

1


n


1

1


6.3.1 Monochromatic Aberrations


 a

b

2  a

b


s 
 +

=

+  h
 2 c

+

+

-

d  


o



si



R


2 so so



R


2 si R



si


The paraxial treatment was based on the assumption that 

 (6.46)

sin w, as in Fig. 5.6, could be represented satisfactorily by w 

The additional term, which varies approximately as  h
 2, is clear-

alone; that is, the system was restricted to operating in an ex-

ly a measure of the deviation from first-order theory. As shown 

tremely narrow region about the optical axis. Obviously, if rays 

in Fig. 6.14, rays striking the surface at greater distances above 

from the periphery of a lens are to be included in the formation 

the axis ( h
 ) are focused nearer the vertex. In brief, spherical 

of an image, the statement sin w ≈ w is somewhat unsatisfac-

aberration, or SA, corresponds to a dependence of focal length 

tory. Recall that we also occasionally wrote Snell’s Law simply 

on aperture for nonparaxial rays. Similarly, for a converging 

as  ni
 u i 
 =  nt
 u t
 , which again would be inappropriate. In any event, 

lens, as in Fig. 6.15, the marginal rays will, in effect, be bent too 

if the first two terms in the expansion

w3

w5

w7





sin w = w -

+

-

+ g  [5.7]

3!

5!

7!

Σ LC


are retained as an improved approximation, we have the so-

called   third-order theory
 . Departures from first-order theory 


Fi


that then result are embodied in the five  primary aberrations
  

Caustic

(spherical aberration, coma, astigmatism, field curvature, and 

distortion). These were first studied in detail by Ludwig von 

T·SA

Seidel (1821–1896) in the 1850s. Accordingly, they are fre-

quently spoken of as the  
Seidel aberrations

 . In addition to the 

L·SA

first two contributions, the series contains many other terms, 

(a)

smaller to be sure, but still to be reckoned with. Thus there are 

most certainly  higher-order aberrations
 . The difference be-


h


tween the results of exact ray tracing and the computed primary 

aberrations can therefore be thought of as the sum of all contrib-

uting higher-order aberrations. We shall restrict this discussion 

exclusively to the primary aberrations.


Spherical Aberration


L·SA

Let’s return for a moment to Section 5.2.2 (p. 156), where we 

(b)

computed the conjugate points for a single refracting spherical 

interface. We found that for the paraxial region,


Figure 6.15  
   Spherical aberration for a lens. The envelope of the refracted 


n



n



n






1

2

2 -  n
 1  


[5.8]

rays is called a caustic. The intersection of the marginal rays and the caustic 


s 
 +

=


o



si



R


locates Σ LC
 .
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much, being focused in front of the paraxial rays. Keep in mind 

Spherical aberration essentially shifts light out of the central 

that spherical aberration pertains only to object points that are 

disk into the surrounding rings, which become far more promi-

on the optical axis. The distance between the axial intersection 

nent. For example, Rayleigh established that one quarter-wave 

of a marginal ray entering parallel to the central axis and the 

of spherical aberration diminishes the irradiance of the image 

paraxial focus,  Fi
 , is known as the longitudinal spherical aber-


disk by about 20%. You can see how that happens in general in 


ration
 , or L · 
 SA. In this case, the SA is  positive
 . In contrast, the 

Fig. 6.16 where rays (perpendicular to the distorted wavefront) 

marginal rays for a diverging lens will generally intersect the 

head out away from the central spot toward the rings. Notice 

axis behind the paraxial focus, and its spherical aberration is 

that even if the overall wavefront deviation is l>4, when the 

therefore  negative
 .

wavefront has tight wiggles in it, lots of light will go out to the 

To better appreciate aberrations in terms of their effects on 

rings, creating a hazy image. That’s what you can expect if the 

the wavefronts, consider the light from a point source traversing 

surfaces are not smooth. 

an optical system. Ideally, if the transmitted wavefront at the 

Returning to Fig. 6.15, if a screen is placed at  Fi
  the image of 

exit pupil is a sphere centered on the Gaussian image point ( P
 ), 

a star will appear as a bright central spot on the axis surrounded 

then the image is perfect; if not, it’s aberrated (Fig. 6.16).  
Wave

  


by a symmetrical halo delineated by the cone of marginal rays. 


(or  
 
wavefront

 )  
 
aberrations

  are the deviations in optical path 

For an extended image, SA would reduce the contrast and de-

length between the actual and ideal wavefronts, often specified 

grade the details.

by the maximum values given in microns, nanometers, or wave-

The height above the axis where a given ray strikes this screen 

lengths. Thus, the peak-to-peak deviation of the wavefront in 

is called the transverse
  (or lateral
 ) spherical aberration
 , or  

Fig. 6.16 from the ideal spherical surface converging to  P
  is 

T · 
 SA for short. Evidently, SA can be reduced by stopping 

some fraction of a wavelength, l> N
 . With this in mind J. W. 

down the aperture—but that reduces the amount of light enter-

Strutt, better known as Lord Rayleigh, suggested a practical cri-

ing the system as well. Notice that if the screen is moved to the 

terion of optical quality: an optical instrument will produce a 

position labeled Σ LC
 , the image blur will have its smallest di-

noticeably degraded image when the wavefront aberration at 

ameter. This is known as the  
circle of least confusion

 , and Σ LC
  

550 nm (yellow-green) exceeds l>4.

is generally the best place to observe the image. If a lens exhib-

The idea of an optical system forming a point image is, of 

its appreciable SA, it will have to be refocused after it is stopped 

course, physically unrealistic (if for no other reason than the 

down because the position of Σ LC
  will approach  Fi
  as the aper-

irradiance would be infinite and Nature abhors infinities). Un-

ture decreases.

der the very best conditions, a lens will form an image of a point 

The amount of spherical aberration, when the aperture and 

source (e.g., a star) which is a tiny bright circular disk surround-

focal length are fixed, varies with both the object distance and 

ed by rings that are so faint they’re hardly noticeable (see the 

the lens shape. For a converging lens, the nonparaxial rays are 

photo on p. 483 and Fig. 10.36); that’s the Airy pattern. In  

too strongly bent. Yet if we imagine the lens as roughly resem-

Fig. 6.16 it’s represented at  P
  by a tall central irradiance peak 

bling two prisms joined at their bases, it is evident that  the inci-


surrounded by tiny maxima corresponding to a cross section of 


dent ray will undergo a minimum deviation when it makes, more 


the rings. 


or less, the same angle as does the emerging ray
  (Section 5.5.1). 

A striking example is illustrated in Fig. 6.17, where simply 

turning the lens around markedly reduces the SA. When the 

object is at “infinity,” a simple concave or convex lens that has 

l

an almost, but not quite, flat rear side will suffer a minimum 

amount of spherical aberration. In the same way, if the object 

and image distances are to be equal ( so 
 =  si 
 = 2 ƒ
 ), the lens 

should be equiconvex to minimize SA. A combination of a con-

verging and a diverging lens (as in an achromatic doublet) can 

also be utilized to diminish spherical aberration.

Recall that the aspherical lenses of Section 5.2.1 were com-

pletely free of spherical aberration for a specific pair of conjugate 

points. Moreover, Huygens seems to have been the first to discover 

that two such axial points exist for spherical surfaces as well. These 

are shown in Fig. 6.18 a
 , which depicts rays issuing from  P
  and 


P


l N


leaving the surface as if they came from  P
 ′. It is left as a problem 

to show that the appropriate locations of  P
  and  P
 ′ are those indi-

cated in the figure. Just as with the aspherical lenses, spherical 


Figure 6.16  
   Since this wavefront deviates from a portion of a sphere 

lenses can be formed that have this same zero SA for the pair of 

(converging to the Gaussian image point), it is said to be aberrated. The 

points- P
  and - P
 ′. One simply grinds another surface of radius  PA
  

extent of that deviation measured peak-to-peak is an indication of how far 

centered on  P
  to form either a positive- or negative-meniscus lens. 

from perfection the image will be.
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Figure 6.17  
   SA for a planar-convex lens.

The oil-immersion microscope objective uses this principle to 

Soon after the Hubble Space Telescope (HST) was placed in 

great advantage. The object under study is positioned at  P
  and 

orbit in April 1990, it became obvious that there was something 

surrounded by oil of index  n
 2, as in Fig. 6.19.  P
  and  P
 ′ are the 

terribly wrong. The pictures it was returning remained blurred, 

proper conjugate points for zero SA for the first element, and  P
 ′ 

despite all attempts to adjust the orientation and location of the 

and  P
 ″ are those for the meniscus lens.

secondary mirror (p. 229). For a distant star, which was essen-

tially a point source, the size of the image disk was close to the 

expected diffraction-limited value (about 0.1 arcsecond in di-

ameter), but only about 12% of the radiant energy was there, 


A


instead of the expected 70% (roughly 84% is the ideal limit). 

The disk was surrounded by a halo extending out in diameter to 

about 1.5 arcseconds containing some 70% of the light. The 

remaining radiant energy was unavoidably distributed beyond 

the halo in a radial tendril pattern as a result of a combination of 


P



P



C


mirror micro-roughness and diffraction from the struts holding 


n



n


the secondary (Fig. 6.20 b
 ). The situation was a classic example 

2

1

of spherical aberration.

As scientists later determined, the primary mirror (p. 185) 

had been polished incorrectly; it was too flat at its periphery by 


n
 1

about half a wavelength. Rays from its central region were fo-


R n



R


2

cusing on the optical axis in front of those from the edges. The 


n



R 
 2

(a)


n


people at Perkin-Elmer, the company that fashioned the 2.4-m 

1

hyperboloid, had polished it superbly well, but to the wrong 


A


figure, or curvature. A series of blunders, starting with a 1.3-

mm error in the position of a component in the shape-testing 

device, ultimately led to the flaw. The $1.6 billion telescope 


P



P



C



R


(b)


A



n
 1


C



n
 2

Oil  n
 2

Slide


P



P



P



C



R



P


(c)


P



Figure 6.18
     Corresponding axial points for which SA is zero.


Figure 6.19
     An oil-immersion microscope objective.
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(b)

(a)

38 mm


Figure 6.20
   ( a
 ) Because the primary mirror is too flat, rays from the outer edges met at a point 38 mm beyond the point where inner rays converge. ( b
 ) The image of a distant star 

formed by the HST. (NASA)

ended up with a debilitating longitudinal spherical aberration of 

the forward direction, to a small axial image spot. But the 

38 mm (Fig. 6.20 a
 ).

1000-ft dish had to be immobile, and so its designers opted for 

In 1993 astronauts from the  Endeavor
  Space Shuttle suc-

a compromise. The primary mirror was made spherical and 

cessfully executed a dramatic repair mission. They installed a 

therefore could collect radiation from a wide range of direc-

new Wide-Field Planetary Camera (with its own corrective 

tions, in each case focusing it at a “point” along the axis con-

optics that added about half a wavelength to the edges) and 

necting the dish and the source. High above the mirror, they 

the Corrective Optics Space Telescope Axial Replacement 

suspended a movable radio receiver whose position deter-

(COSTAR) module. The job of COSTAR was to reshape the 

mined which part of the sky the telescope was looking at. 

aberrated wavefronts entering the three remaining scientific in-

Nonetheless, although a spherical mirror is omnidirectional, 

struments. It inserted a pair of small mirrors (10 mm and 30 mm) 

it’s also equally imperfect in all directions. It suffers from 

into the beam heading toward each instrument aperture. One of 

spherical aberration just like the convex lens (Fig. 6.15). In-

these mirrors simply redirected the light to the other, which 

stead of a single focal point there is an axial focal line. This 

was a complex asymmetrical aspheric. That off-axis correcting 

was dealt with as best as possible by detecting the signals at 

mirror was configured with the inverse of the spherical aberra-

several axial points and combining them via so-called line 

tion of the primary, so that upon reflection the wavefront was 

feeds, but the scheme was inefficient and the instrument rarely 

reshaped into a perfect wave directed toward the intended ap-

operated at its full potential.

erture. Thereafter better than 70% of the light energy resided in 

In 1997 the Arecibo telescope underwent a major upgrade 

the central image disk, and celestial objects were about 6.5 

with the installation of a set of off-axis aspherical mirrors  

times brighter than before. People at NASA liked to point out 

that with its vision clearer than ever (see photo), and its light-

gathering ability improved, the HST could then spot a firefly 

over a distance equivalent to roughly halfway around the 

world. (Of course, the bug would have to stay stuck at maxi-

mum emission for about 90 minutes.) Moreover, the HST 

could distinguish two such persistent fireflies provided they 

were at least 3 m apart.

The Arecibo Observatory in Puerto Rico is home to the 

largest single radiotelescope in the world. Its objective is a 

1000-ft-diameter stationary spherical dish antenna operating 

at wavelengths from 3 cm to 6 m. By comparison, steerable 

radiotelescopes (p. 184) are usually parabolic because that 

HST images of the M-100 galaxy with (before repair) and without (after 

configuration can focus the radiation from a source, located in 

repair) spherical aberration. (NASA)
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(a)

(c)

Secondary

mirror

Receiver

Tertiary

mirror

72-foot-

(b)

diameter

secondary

reflector

86-foot-

diameter

Primary mirror

aluminum

dome


Figure 6.21
   ( a
 ) The upgraded (1997) Arecibo radio-

Receiver

(d)

telescope. (Arecibo Observatory/NSF) ( b
 ) The Gregorian dome 

housing the two new correcting mirrors and the receiv-

Focal point 26-foot-diameter

er. ( c
 ) This ray diagram shows how all the optical paths 

tertiary reflector

Aperture

from the 1000-ft-diameter spherical mirror to the 

receiver are made to be equal. ( d
 ) The receiver and 

tertiary mirror. (U.S. General Services Administration Office of 

Citizen Services and Innovative Technologies) See the paper 

“Synthesis of Multireflector Antennas by Kinematic and 

Dynamic Ray Tracing,”  IEEE Trans. Antennas Propagat
 . 


38 
 (10), 1587–1599 (Oct. 1990), by Per-Simon Kildal.

(Fig. 6.21) that compensate for spherical aberration in much the 

the principal “planes” can actually be treated as planes only in 

same way as do the corrective mirrors added to the Hubble 

the paraxial region. They are, in fact, principal curved surfaces 

Space Telescope. Named after James Gregory, the man who in-

(Fig. 6.1). In the absence of SA, a parallel bundle of rays will 

troduced a reflecting telescope with a concave secondary in 

focus at the axial point- Fi
 , a distance b.f.l. from the rear vertex. 

1661 (p. 228), the 90-ton Gregorian receiver dome is suspended 

Yet the effective focal lengths, and therefore the transverse 

450 ft above the main reflector. Within an aluminum housing it 

magnifications, will differ for rays traversing off-axis regions of 

contains a 72-ft-diameter secondary mirror that receives the up-

the lens. When the image point is on the optical axis, this situa-

wardly reflected EM-radiation from the primary. It, in turn, re-

tion is of little consequence, but when the ray bundle is oblique 

flects this radiation down onto a 26-ft-diameter tertiary mirror 

and the image point is off-axis, coma will be evident.

that focuses the beam upward to a spot at the receiver. The sur-

The dependence of  MT
  on  h
 , the ray height at the lens, is 

faces are so configured that the optical path length traversed by 

shown in Fig. 6.22 a
 . Here meridional rays traversing the ex-

each ray is identical and all arrive (within a one-eight-inch circle) 

tremities of the lens arrive at the image plane closer to the axis 

at the focus in-phase. 

than do the rays in the vicinity of the  principal ray
  (i.e., the ray 

The device can also operate in reverse as a 1-megawatt radar 

that passes through the principal points). In this instance, the 

transmitter, which is used for planetary studies. By sending out 

least magnification is associated with the marginal rays that 

and receiving back reflected radar signals, the telescope can re-

would form the smallest image—the coma is negative. By com-

solve features about a half mile across on the surface of Venus. It 

parison, the coma in Figs. 6.22 b 
 and  c
  is positive because the 

could detect a conductor the size of a golf ball on the Moon.

marginal rays focus farther from the axis.

Several non-meridional or skew rays are drawn from an extra- 

axial object point- S
  in Fig. 6.23 to illustrate the formation of the 

geometrical comatic image of a point. Observe that each circu-


Coma


lar cone of rays whose endpoints (1-2-3-4-1-2-3-4) form a ring 


Coma
 , or  comatic aberration
 , is an image-degrading, mono-

on the lens is imaged in what H. Dennis Taylor called a  comatic 


chromatic, primary aberration associated with an object point 


circle
  on Σ i
 . This case corresponds to positive coma, so the 

even a short distance from the axis. Its origins lie in the fact that 

larger the ring on the lens, the more distant its comatic circle 
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Figure 6.23  
   The geometrical coma image of a monochromatic point 

source. The central region of the lens forms a point image at the vertex of 

the cone.


Figure 6.22  
  ( a
 ) Negative coma. ( b
 ) and (c) Positive coma. (E.H.)

there is, the more the cone departs from the Airy pattern into an 

elongated structure of blotches and arcs that only vaguely sug-

from the axis. When the outer ring is the intersection of mar-

gests the disk-ring structure from which it evolved (Fig. 6.24).

ginal rays, the distance from 0 to 1 in the image is the  
tangential 



Like SA, coma is dependent on the shape of the lens. Thus a 



coma

 , and the length from 0 to 3 on Σ

strongly concave positive-meniscus lens   with the object at in-


i
  is termed the  
sagittal 





coma

 . A little more than half of the energy in the image appears 

finity will have a large negative coma. Bending the lens so that it 

in the roughly triangular region between 0 and 3. The coma 

becomes planar-convex  , then equiconvex  , convex-planar  , 

flare, which owes its name to its cometlike tail, is often thought 

and finally convex-meniscus   will change the coma from nega-

to be the worst of all aberrations, primarily because of its asym-

tive, to zero, to positive. The fact that it can be made exactly zero 

metric configuration.

for a single lens with a given object distance is quite significant. 

It’s not the purview of Geometrical Optics to be concerned 

The particular shape it then has ( so 
 = ∞) is almost convex-planar 

with interference, but when light reaches the screen in Fig. 6.23, 

and nearly the configuration for minimum SA.

it’s certainly to be expected. The coma cone, just like the Gauss-

It is important to realize that  a lens that is well corrected for 


ian image point, is an oversimplification. The image point is 


the case in which one conjugate point is at infinity 
 ( so 
 = ∞)  may 


really an image disk-ring system, and the coma cone is actually 


not perform satisfactorily when the object is nearby
 . One would 

a complicated asymmetrical diffraction pattern. The more coma 

therefore do well, when using off-the-shelf lenses in a system 
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Figure 6.24
     Third-order coma. ( a
 ) A computer-generated diagram of the image of a 

point source formed by a heavily astigmatic optical system. (OPAL Group, St. Petersburg, Russia.) 

( b
 ) A plot of the corresponding irradiance distribution. (OPAL Group, St. Petersburg, Russia.)

operating at finite conjugates, to combine two infinite conjugate 

It was discovered independently in 1873 by Abbe and Helmholtz, 

corrected lenses, as in Fig. 6.25. In other words, since it is un-

although a different form of it was given 10 years earlier by R. 

likely that a lens with the desired focal length, which is also cor-

Clausius (of thermodynamics fame). In any event, it states that

rected for the particular set of finite conjugates, can be obtained 






noyo
  sin a o 
 =  niyi
  sin a i 


(6.47)

ready-made, this back-to-back lens approach is an appealing  

alternative.

where  no
 ,  yo
 , a o
  and  ni
 ,  yi
 , a i
  are the index, height, and slope Coma can also be negated by using a stop at the proper loca-angle of a ray in object and image space, respectively, at any 

tion, as William Hyde Wollaston (1766–1828) discovered in 

aperture size* (Fig. 6.9). If coma is to be zero,

1812. The order of the list of primary aberrations (SA, coma, 


y







M



i


astigmatism, Petzval field curvature, and distortion) is signifi-


T 
 =

 [5.24]


yo


cant, because any one of them, except SA and Petzval curva-

must be constant for all rays. Suppose, then, that we send a 

ture, will be affected by the position of a stop, but only if one of 

marginal and a paraxial ray through the system. The former will 

the preceding aberrations is also present in the system. Thus, 

comply with Eq. (6.47), the latter with its paraxial version (in 

while SA is independent of the location along the axis of a stop, 

which  sin a o 
 = a op
 , sin a i 
 = a ip
 ). Since  MT
  is to be constant 

coma will not be, as long as SA is present. This can be appreci-

over the entire lens, we equate the magnification for both mar-

ated by examining the representation in Fig. 6.26. With the stop 

ginal and paraxial rays to get

at Σ1, ray-3 is the chief ray and there is SA but no coma; that is, 

the ray pairs meet on 3. If the stop is moved to Σ

sin a

a op


2, the symme-






o 
 =

= constant (6.48)

try is upset, ray-4 becomes the chief ray, and the rays on either 

sin a i


a ip


side of it, such as 3 and 5, meet above, not on it—there is posi-

tive coma. With the stop at Σ


P


3, rays-1 and -3 intersect below the 

chief ray, 2, and there is negative coma. In this way, controlled 


P


amounts of the aberration can be introduced into a compound 

lens in order to cancel coma in the system as a whole.

The  optical sine theorem
  is an important relationship that 

must be introduced here even if space precludes its formal proof. 


L



L


1

2

12345 Σ3 Σ1 Σ2


Figure 6.26
     The effect of stop location on coma.


f



f


1

2


Figure 6.25  
   A combination of two infinite conjugate lenses yielding a 

*To be precise, the sine theorem is valid for all values of a o
  only in the sagittal plane 

system operating at finite conjugates.

(from the Latin  sagitta
 , meaning arrow), which is discussed in the next section.
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which is known as the Sine Condition
 . A necessary criterion 

we should say that there are actually several sagittal planes, one 

for the absence of coma is that the system meet the Sine Condi-

attendant with each region within the system. Nevertheless, all 

tion. If there is no SA, compliancy with the Sine Condition will 

skew rays from the object point lying in a sagittal plane are 

be both necessary and sufficient for zero coma.

termed  
sagittal rays

 .

It’s an easy matter to observe coma. In fact, anyone who has 

In the case of an axial object point, the cone of rays is sym-

focused sunlight with a simple positive lens has no doubt seen 

metrical with respect to the spherical surfaces of a lens. There is 

the effects of this aberration. A slight tilt of the lens, so that the 

no need to make a distinction between meridional and sagittal 

nearly collimated rays from the Sun make an angle with the 

planes. The ray configurations in all planes containing the opti-

optical axis, will cause the focused spot to flare out into the 

cal axis are identical. In the absence of spherical aberration, all 

characteristic comet shape.

the focal lengths are the same, and consequently all rays arrive 

at a single focus. In contrast, the configuration of an oblique, 

parallel ray bundle will be different in the meridional and sagit-


Astigmatism


tal planes. As a result, the focal lengths in these planes will be 

different as well. In effect, here the meridional rays are tilted 

When an object point lies an appreciable distance from the opti-

more with respect to the lens than are the sagittal rays, and they 

cal axis, the incident cone of rays will strike the lens asymmetri-

have a shorter focal length. It can be shown,* using Fermat’s 

cally, giving rise to a third primary aberration known as astigma-


Principle, that the  focal length difference
  depends effectively on 


tism
 . The word derives from the Greek  a
 -, meaning not, and 

the power of the lens (as opposed to the shape or index) and the 


stigma
 , meaning spot or point. To facilitate its description, envi-

angle at which the rays are inclined. This  astigmatic difference
 , 

sion the meridional plane (also called the  tangential plane
 ) con-

as it is often called, increases rapidly as the rays become more 

taining both the chief ray (i.e., the one passing through the center 

oblique, that is, as the object point moves farther off the axis, 

of the aperture) and the optical axis. The  sagittal plane
  is then 

and is, of course, zero on axis.

defined as the plane containing the chief ray, which, in addition, 

Having two distinct focal lengths, the incident conical bun-

is perpendicular to the meridional plane (Fig. 6.27). Unlike the 

dle of rays takes on a considerably altered form after refraction 

latter, which is unbroken from one end of a complicated lens sys-

(Fig. 6.28). The cross section of the beam as it leaves the lens is 

tem to the other, the sagittal plane generally changes slope as the 

initially circular, but it gradually becomes elliptical with the 

chief ray is deviated at the various elements. Hence to be accurate 

major axis in the sagittal plane, until at the  tangential
  or  me-



ridional focus
   FT
 , the ellipse degenerates into a “line
 ” (at least 

in third-order theory). Actually, it’s a complicated elongated 

diffraction pattern that looks more linelike the more astigma-

tism is present. All rays from the object point traverse this 

Sagittal plane

“line,” which is known as the  primary image
 . Beyond this point, 

the beam’s cross section rapidly opens out until it is again cir-

cular. At that location, the image is a circular blur known as the 

Optical

axis


circle of least confusion
 . Moving farther from the lens, the 

beam’s cross section again deforms into a “line,” called the  sec-



ondary image
 . This time it’s in the meridional plane at the  sagit-



tal focus
 ,  FS
 .

The image of a point source formed by a slightly astigmatic 

Chief ray

Lens

optical system (⪝ 0.2l), in the vicinity of the circle of least confu-

Meridional ray

Sagittal ray

Meridional plane

sion, looks very much like the Airy disk-ring pattern, but it’s 

somewhat asymmetrical. As the amount of astigmatism increases 

Object

point

(upwards of roughly 0.5l), the biaxial asymmetry becomes more 

apparent. The image transforms into a complex distribution of 

bright and dark regions (resembling the Fresnel diffraction pat-

terns for rectangular openings, p. 515) and only very subtly retains 

a curved structure arising from the circular aperture. Remember 

that in all of this we are assuming the absence of SA and coma.

Since the circle of least confusion increases in diameter as the 

astigmatic difference increases (i.e., as the object moves farther 

Rays in

Rays in

off-axis), the image will deteriorate, losing definition around its 

meridional plane

sagittal plane


Figure 6.27
     The sagittal and meridional planes.

*See A. W. Barton,  A Text Book on Light
 , p. 124.
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(a)

Circle of least

confusion


FS


Meridional


FT


plane

Chief

ray

Primary

Secondary

image

image

Object

point

Sagittal

Optical

plane

system

(b)


Figure 6.28
   Astigmatism. ( a
 ) The light from a monochromatic point source  

is elongated by an astigmatic lens. ( b
 ) A computer-generated diagram showing  

the distribution of light, that is, the diffraction pattern, near the circle of least  

confusion, corresponding to 0.8l of astigmatism. (OPAL Group, St. Petersburg, Russia.)

edges. Observe that the secondary “line” image will change in 

(with the  x
 -,  y
 -, and  z
 -axes fixed in the lens), astigmatism should 

orientation with changes in the object position, but it will always 

be observable. The meridional is the  xz
 -plane ( z
  being the lens 

point toward the optical axis; that is, it will be radial. Similarly, 

axis, now at about 45° to the laser axis), and the sagittal plane 

the primary “line” image will vary in orientation, but it will re-

corresponds to the plane of  y
  and the laser axis. As the wire 

main normal to the secondary image. This arrangement causes 

the interesting effect shown in Fig. 6.29 when the object is made 

up of radial and tangential elements. The primary and secondary 

images are, in effect, formed of transverse and radial dashes, 

which increase in size with distance from the axis. In the latter 

case, the dashes point like arrows toward the center of the 

 image—ergo, the name  sagitta
 .

The existence of the sagittal and tangential foci can be veri-

Object

fied directly with a fairly simple arrangement. Place a positive 

lens with a short focal length (about 10 or 20 mm) in the beam 

Lens

of a He-Ne laser. Position another positive test lens with a 

somewhat longer focal length far enough away so that the now 

diverging beam fills that lens. A convenient object, to be located 

Tangent

Sagittal

focal

between the two lenses, is a piece of ordinary wire screening (or 

focal

plane

plane

a transparency). Align it so the wires are horizontal ( x
 ) and ver-

tical ( y
 ). If the test lens is rotated roughly 45° about the vertical 


Figure 6.29
     Images in the tangent and sagittal focal planes.
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mesh is moved toward the test lens, a point will be reached 

where the horizontal wires are in focus on a screen beyond the 

Σ p


lens, whereas the vertical wires are not. This is the location of 

s0

the sagittal focus. Each point on the object is imaged as a short 

line in the meridional (horizontal) plane, which accounts for the 

fact that only the horizontal wires are in focus. Moving the 

mesh slightly closer to the lens will bring the vertical lines into 


Fi



O


clarity while the horizontal ones are blurred. This is the tangen-

tial focus. Try rotating the mesh about the central laser axis 

s


y


0


i


while at either focus.

∆ x


Note that unlike visual astigmatism (p. 214), which arose 

from an actual asymmetry in the surfaces of the optical system, 

s i


the third-order aberration by that same name applies to spheri-

(a)

Paraxial

image

cally symmetrical lenses.

plane

Mirrors, with the singular exception of the plane mirror, suf-

fer many  of the same monochromatic aberrations as do lenses. 

(b)

(c)

Thus, although a paraboloidal mirror is free of SA for an infi-

nitely distant axial object point, its off-axis imagery is quite poor 

due to astigmatism and coma. This strongly restricts its use to 

narrow field devices, such as searchlights and astronomical tele-

scopes. A concave spherical mirror shows SA, coma, and astig-

matism. Indeed, one could draw a diagram just like Fig. 6.28 

with the lens replaced by an obliquely illuminated spherical mir-

ror. Incidentally, such a mirror displays appreciably less SA than 


Figure 6.30
     Field curvature. ( a
 ) When the object corresponds to s

would a simple convex lens of the same focal length.


o
 ′, the 

image will correspond to surface Σ P
 . ( b
 ) The image formed on a flat 

screen near the paraxial image plane will be in focus only at its center. (E.H.) 

( c
 ) Moving the screen closer to the lens will bring the edges into focus. (E.H.)


Field Curvature


will be unaltered by changes in the positions or shapes of the 

Suppose we had an optical system that was free of all the aberra-

lenses or in the location of the stop, as long as the values of  n


tions thus far considered. There would then be a one-to-one cor-


j
  

and   ƒ


respondence between points on the object and image surfaces 


j
  are fixed. Notice that for the simple case of two thin 

lenses ( m


(i.e., stigmatic imagery). We mentioned earlier (Section 5.2.3) 

= 2) having any spacing, ∆ x
   can be made zero
  pro-

vided that

that a planar object normal to the axis will be imaged approxi-

mately as a plane only in the paraxial region. At finite apertures 

1

1

the resulting curved stigmatic image surface is a manifestation of 

+

= 0


n
 1 ƒ
 1


n
 2 ƒ
 2

the primary aberration known as Petzval field curvature
 , after 

the Hungarian mathematician Josef Max Petzval (1807–1891). 

or, equivalently,

The effect can readily be appreciated by examining Figs. 5.21 






n
 1 ƒ
 1 +  n
 2 ƒ
 2 = 0 (6.50)

(p. 163) and 6.30. A spherical object segment s o
  is imaged by the 

lens as a spherical segment s

This is the so-called Petzval condition
 . As an example of its 


i
 , both centered at  O
 . Flattening out 

s

use, suppose we combine two thin lenses, one positive, the other 


o
  into the plane s′ o
  will cause each image point to move toward 

the lens along the concomitant chief ray, thus forming a parabo-

negative, such that  ƒ
 1 = - ƒ
 2  
 and  n
 1 =  n
 2. Since

loidal  Petzval surface
  Σ P
 . Whereas the Petzval surface for a pos-

1

1

1


d


itive lens curves  inward
  toward the object plane, for a negative 





=

+

-

 [6.8]


ƒ



ƒ
 1


ƒ
 2


ƒ
 1 ƒ
 2

lens it curves  outward
  away from that plane. Evidently, a suitable 

combination of positive and negative lenses will negate field cur-


ƒ
 2






ƒ


vature. Indeed, the displacement ∆ x
  of an image point at height  y


= 1


i
  


d


on the Petzval surface from the paraxial image plane is given by

the system can satisfy the Petzval condition, have a flat field, 


y
 2  m


1

and still have a finite positive focal length.





∆ x 
 =  i 
  ^    


(6.49)

In visual instruments a certain amount of curvature can be 

2  j 
 =1  njƒj


tolerated, because the eye can accommodate for it. Clearly, in 

where  nj
  and  ƒj
  are the indices and focal lengths of the  m
  thin 

photographic lenses field curvature is most undesirable, since it 

lenses forming the system. This implies that the Petzval surface 

has the effect of rapidly blurring the off-axis image when the 
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ing the lenses or by moving the stop. The configuration of  

Fig. 6.32 b
  is known as an  artificially flattened
  field. A stop in 

front of an inexpensive meniscus box camera lens is usually ar-

ranged to produce just this effect. The surface of least confusion, 

Σ LC
 , is planar, and the image there is tolerable, losing definition 

at the margins because of the astigmatism. That is to say, although 

their loci form Σ LC
 , the circles of least confusion increase in 

(a) Petzval lens with field flattener

diameter with distance off the axis. Modern good-quality photo-

graphic objectives are generally  
anastigmats

 ; that is, they are 

designed so that Σ S
  and Σ T
  cross each other, yielding an addi-

tional off-axis angle of zero astigmatism. The Cooke Triplet, 

Tessar, Orthometer, and Biotar (Fig. 5.115) are all anastigmats, 

as is the relatively fast Zeiss Sonnar, whose residual astigmatism 

is illustrated graphically in Fig. 6.33. Note the relatively flat 

field and small amount of astigmatism over most of the film 

plane.

Let’s return briefly to the Schmidt camera shown in 





(b) 16 mm projection lens

Fig. 5.125 (p. 231), since we are now in a better position to ap-


Figure 6.31
     The field flattener.

preciate how it functions. With a stop at the center of curvature 

of the spherical mirror, all chief rays, which by definition pass 

through  C
 , are incident normally on the mirror. Moreover, each 

film plane is at  F


pencil of rays from a distant object point is symmetrical about 


i
 . An effective means of nullifying the inward 

curvature of a positive lens is to place a negative  field flattener
  

its chief ray. In effect, each chief ray serves as an optical axis, 

lens near the focal plane. This is often done in projection and 

so there are no off-axis points and, in principle, no coma or 

photographic objectives when it is not otherwise practicable to 

astigmatism. Instead of attempting to flatten the image surface, 

meet the Petzval condition (Fig. 6.31). In this position the flat-

the designer has coped with curvature by simply shaping the 

tener will have little effect on other aberrations.

film plate to conform with it.

Astigmatism is intimately related to field curvature. In the 

presence of the former aberration, there will be  two
  paraboloidal 


Distortion


image surfaces, the tangential, Σ T
 , and the sagittal, Σ S
  (as in 

Fig. 6.32). These are the loci of all the primary and secondary 

The last of the five primary, monochromatic aberrations is 

images, respectively, as the object point roams over the object 


distortion
 . Its origin lies in the fact that the transverse magnifi-

plane. At a given height ( y


cation,  M



i
 ), a point on Σ T
  always lies three 


T
 , may be a function of the off-axis image distance,  yi
 . 

times as far from Σ

Thus, that distance may differ from the one predicted by paraxi-


P
  as does the corresponding point on Σ S
 , and 

both are on the same side of the Petzval surface (Fig. 6.32). 

al theory in which  MT
  is constant. In other words, distortion 

When there is no astigmatism, Σ

arises because different areas of the lens have different focal 


S
  and Σ T
  coalesce on Σ P
 . It is 

possible to alter the shapes of Σ

lengths and different magnifications. In the absence of any of the 


S
  and Σ T
  by bending or relocat-

Paraxial

Σ T


Σ LC


Σ S


focal

25

plane

Σ P 
 Σ S


Σ T



C



S


20

grees)

15


E



S



yi


20


Fi



Fi


5

Σ LC


Slope of chief ray (de

(b) 

–0.6 –0.2 0 0.2

0.6

(mm)

Focal plane

Σ T 
 Σ S 
 Σ P 
 (a) 


Figure 6.33
     A typical Sonnar. The markings  C
 ,  S
 , and  E
  denote the limits of the 35-mm film format (field stop), that is, corners, sides, and edges. 


Figure 6.32
     The tangential, sagittal, and Petzval image surfaces.

The Sonnar family lies between the double Gauss and the triplet.
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which  MT 
 decreases with the axial distance, and in effect, each 

point on the image moves radially inward toward the center 

(Fig. 6.34 c
 ). 

Distortion can easily be seen by just looking through an ab-

errant lens at a piece of lined or graph paper. Fairly thin lenses 

will show essentially no distortion, whereas ordinary positive or 

negative, thick, simple lenses will generally suffer positive or 

(a)

(b)

(c)

negative distortion, respectively. The introduction of a stop into 

a system of thin lenses is invariably accompanied by distortion, 

as indicated in Fig. 6.35. One exception is the case in which the 

aperture stop is at the lens, so that the chief ray is, in effect, the 

principal ray (i.e., it passes through the principal points, here 

coalesced at  O
 ). If the stop is in front of a positive lens, as in 

Fig. 6.35 b
 , the object distance measured along the chief ray will 

be greater than it was with the stop at the lens ( S
 2 A 
 7  S
 2 O
 ). 

Thus  xo
  will be greater and [Eq. (5.26)]  MT
  will be smaller—

ergo, barrel distortion. In other words,  MT
  for an off-axis point 

will be less with a front stop in position than it would be with-

(d)

(e)

out it. The difference is a measure of the aberration, which, by 

the way, exists regardless of the size of the aperture. In the same 


Figure 6.34
   ( a
 ) Undistorted object. ( b
 ) When the magnification on the 

way, a rear stop (Fig. 6.35 c
 ) decreases  xo
  along the chief ray 

optical axis is less than the off-axis magnification, pincushion distortion 

(i.e.,  S
 2 O 
 7  S
 2 B
 ), thereby increasing  MT
  and introducing pin-results. ( c
 ) When it is greater on axis than off, barrel distortion results.  

( d
 ) Pincushion distortion in a single thin lens. ( e
 ) Barrel distortion in a  

cushion distortion.  Interchanging the object and image thus has 


single thin lens. (E.H.)


the effect of changing the sign of the distortion
  for a given lens 

and stop. The aforementioned stop positions will produce the 

opposite effect when the lens is negative.

other aberrations, distortion is manifest in a misshaping of the 

All of this suggests the use of a stop midway between identical 

image as a whole, even though each point is sharply focused. 

lens elements. The distortion from the first lens will precisely can-

Consequently, when processed by an optical system suffering 

cel the contribution from the second. This approach has been used 



positive

  or  
pincushion distortion

 , a square array deforms, as in 

to advantage in the design of a number of photographic lenses 

Fig. 6.34 b
 . In that instance, each image point is displaced radi-

(Fig. 5.115). To be sure, if the lens is perfectly symmetrical and 

ally outward from the center, with the most distant points mov-

operating as in Fig. 6.35 d
 , the object and image distances will be 

ing the greatest amount (i.e.,  MT
  increases with  yi
 ). Similarly, 

equal, hence  MT 
 = 1. (Incidentally, coma and lateral color will 



negative

  or  
barrel distortion

  corresponds to the situation in 

then be identically zero as well.) This applies to (finite conjugate) 


S
 2


S


(a)

2

(b)

Chief ray


S



S


Chief ray

1


O



y


1


O



i



A


Orthoscopic

Barrel

(c)

(d)


S
 2

Chief ray


S



B


2

Chief ray


S
 1


O



S
 1


O


Pin-cushion


Figure 6.35
     The effect of stop location on distortion.
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A·CA

Blue

Chief ray

Red


FB



FR


Red

Blue

Aperture stop

Σ LC



Figure 6.36
     Distortion in a compound lens.


Figure 6.37
     Axial chromatic aberration.

copy lenses used, for example, to record data. Nonetheless, even 

when  MT
  is not 1, making the system approximately symmetrical 

Since the thin-lens equation

about a stop is a very common practice, since it markedly reduces 

1

1

1

these several aberrations.





= ( n


-

b [5.16]

Distortion can arise in compound lens systems, as for 


ƒ



l 
 - 1) a R
 1  R
 2

 example in the telephoto arrangement shown in Fig. 6.36. For a 

is wavelength-dependent via  nl
   (
 l )
 , the focal length must also 

distant object point, the margin of the positive achromat serves 

vary with l. In general (Fig. 3.40, p. 74),  nl
   (
 l )
  decreases with 

as the aperture stop. In effect, the arrangement is like a negative 

wavelength over the visible region, and thus  ƒ(
 l )
  increases with 

lens with a front stop, so it displays positive or pincushion 

l. The result is illustrated in Fig. 6.37, where the constituent col-

 distortion.

ors in a collimated beam of white light are focused at different 

Suppose a chief ray enters and emerges from an optical sys-

points on the axis. The axial distance between two such focal 

tem in the same direction as, for example, in Fig. 6.35 d
 . The 

points spanning a given frequency range (e.g., blue to red) is 

point at which the ray crosses the axis is the optical center of 

termed the  
axial

  (or  longitudinal
 )  
chromatic aberration

 , A · 
 CA the system, but since this is a chief ray, it is also the center of 

for short.

the aperture stop. This is the situation approached in Fig. 6.35 a
 , 

It’s an easy matter to observe chromatic aberrations, or CA, 

with the stop up against the thin lens. In both instances the in-

with a thick, simple converging lens. When illuminated by a 

coming and outgoing segments of the chief ray are parallel, 

polychromatic point source (a candle flame will do), the lens 

and there is zero distortion; that is, the system is  orthoscopic
 . 

will cast a real image surrounded by a halo. If the plane of ob-

This also implies that the entrance and exit pupils will corre-

servation is then moved nearer the lens, the periphery of the 

spond to the principal planes (if the system is immersed in a 

blurred image will become tinged in orange-red. Moving it 

single medium—see Fig. 6.2). Bear in mind that the chief ray 

back away from the lens, beyond the best image, will cause the 

is now a principal ray.  A thin-lens system will have zero distor-


outlines to become tinted in blue-violet. The location of the 


tion if its optical center is coincident with the center of the 


circle of least confusion (i.e., the plane Σ LC
 ) corresponds to  


aperture stop.
  By the way, in a pinhole camera, the rays con-

the position where the best image will appear. Try looking di-

necting conjugate object and image points are straight and pass 

rectly through the lens at a source—the coloration will be far 

through the center of the aperture stop. The entering and 

more striking.

emerging rays are obviously parallel (being one and the same), 

The image of an off-axis point will be formed of the constitu-

and there is no distortion.

ent frequency components, each arriving at a different height 

above the axis (Fig. 6.38). In essence, the frequency dependence 

of  ƒ
  causes a frequency dependence of the transverse magnifica-

tion as well. The vertical distance between two such image points 


6.3.2 Chromatic Aberrations


(most often taken to be blue and red) is a measure of the  
lateral 



The five primary or Seidel aberrations have been considered in 



chromatic aberration

 , L · 
 CA, or  
lateral color

 . Consequently, a 

terms of monochromatic light. To be sure, if the source has a 

broad spectral bandwidth, these aberrations are influenced ac-

cordingly; but the effects are inconsequential, unless the system 

is quite well corrected. There are, however, chromatic aberra-



tions
  that arise specifically in polychromatic light, which are far 


FB FR


more significant. The ray-tracing equation [Eq. (6.12)] is a 

function of the indices of refraction, which in turn vary with 

L·CA

Blue

Red

wavelength. Different “colored” rays will traverse a system 

along different paths, and this is the quintessential feature of 

chromatic aberration.


Figure 6.38
     Lateral chromatic aberration.
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chromatically aberrant lens illuminated by white light will fill a 

use 1> ƒ
 1 = ( n
 1 - 1)r1 and 1> ƒ
 2 = ( n
 2 - 1)r2 for the two ele-volume of space with a continuum of more or less overlapping 

ments. Then

images, varying in size and color. Because the eye is most sensi-

1

tive to the yellow-green portion of the spectrum, the tendency is 

= ( n



ƒ


1 - 1)r1 + ( n
 2 - 1)r2 -  d
 ( n
 1 - 1)r1( n
 2 - 1)r2 (6.51)

to focus the lens for that region. With such a configuration one 

would see all the other colored images superimposed and slightly 

This expression will yield the focal length of the doublet for red 

out of focus, producing a whitish blur or hazed overlay.

( ƒR
 ) and blue ( ƒB
 ) light when the appropriate indices are intro-

When the blue focus,  FB
 , is to the left of the red focus,  FR
 , the 

duced, namely,  n
 1 R
 ,  n
 2 R
 ,  n
 1 B
 , and  n
 2 B
 . But if   ƒR 
 is to equal  ƒB
 , A · 
 CA is said to be positive, as it is in Fig. 6.37. Conversely, a 

then

negative lens would generate negative A · 
 CA, with the more 

1

1

strongly deviated blue rays appearing to originate at the right of 

=


ƒR



ƒB


the red focus. Physically, what is happening is that the lens, 

whether convex or concave, is prismatic in shape; that is, it be-

and, using Eq. (6.51),

comes either thinner or thicker as the radial distance from the 

( n
 1 R 
 - 1)r1 + ( n
 2 R 
 - 1)r2 -  d
 ( n
 1 R 
 - 1)r1( n
 2 R 
 - 1)r2 =  

axis increases. As you well know, rays are therefore deviated 

either toward or away from the axis, respectively. In both cases 

  ( n
 1 B 
 - 1)r1 + ( n
 2 B 
 - 1)r2 -  d
 ( n
 1 B 
 - 1)r1( n
 2 B 
 - 1)r2 

the rays are bent toward the thicker “base” of the prismatic cross 

 (6.52)

section. But the angular deviation is an increasing function of  n
 , 

One case of particular importance corresponds to  d 
 = 0; that is, 

and therefore it decreases with l. Hence blue light is deviated 

the two lenses are in contact. Expanding out Eq. (6.52) with  

the most and is focused nearest the lens. In other words, for a 


d 
 = 0  
 then leads to

convex lens the red focus is farthest and to the right; for a con-

cave lens it is farthest and to the left.

r


n






1

The human eye has a substantial amount of chromatic aberra-

= -  2 B 
 -  n
 2 R 


(6.53)

r2


n
 1 B 
 -  n
 1 R


tion which is compensated for by several psychophysical mecha-

nisms. Still, it’s possible to see the effect with a small purple dot: 

The focal length of the compound lens ( ƒY
 ) can conveniently be 

held close to the eye, it will appear blue at the center surrounded 

specified as that associated with yellow light, roughly midway 

by red; farther away it will appear red surrounded by blue.

between the blue and red extremes. For the component lenses in 

yellow light, 1> ƒ
 1 Y 
 = ( n
 1 Y 
 - 1)r1 and 1> ƒ
 2 Y 
 = ( n
 2 Y 
 - 1)r2. 

Hence


Thin Achromatic Doublets


r

( n



ƒ






1 = 2 Y 
 - 1)  2 Y 


(6.54)

All of this suggests that a combination of two thin lenses, one 

r2

( n
 1 Y 
 - 1)  ƒ
 1 Y


positive and one negative, could conceivably result in the pre-

Equating Eqs. (6.53) and (6.54) leads to

cise overlapping of  FR
  and  FB
  (Fig. 6.39). Such an arrangement 

is said to be  achromatized
  for those two specific wavelengths. 


ƒ


( n


Notice that what we would like to do is effectively eliminate the 





2 Y 
 = -  2 B 
 -  n
 2 R
 )>( n
 2 Y 
 - 1) (6.55)


ƒ
 1 Y


( n
 1 B 
 -  n
 1 R
 )>( n
 1 Y 
 - 1)

total dispersion (i.e., the fact that each color is deviated by a 

different amount) and not the total deviation itself. With the two 

The quantities

lenses separated by a distance  d
 ,


n
 2 B 
 -  n
 2 R



n


 and  1 B 
 -  n
 1 R



n
 2 Y 
 - 1


n
 1 Y 
 - 1

1

1

1


d






=

+

-

 [6.8]


ƒ



ƒ
 1


ƒ
 2


ƒ
 1 ƒ
 2

are known as the dispersive powers
  of the two materials form-

ing the lenses. Their reciprocals,  V
 2 and  V
 1, are variously 

Rather than writing out the second term in the Thin-Lens  

known as the  dispersive indices, V-numbers
 , or Abbe num-


Equation [Eq. (5.15), p. 159] let’s abbreviate the notation and 


bers
 . The lower the Abbe numbers, the greater the dispersive 

power. Thus


ƒ
 2 Y



V


Red

= -  1


ƒ


Blue

1 Y



V
 2

Yellow


H



H


or 


ƒ


1

2

1 YV
 1 +  ƒ
 2 YV
 2 = 0 (6.56)

Since the dispersive powers are positive, so too are the  V
 -numbers. 

This implies, as we anticipated, that one of the two component 

lenses must be negative, and the other positive, if Eq. (6.56) is to 


Figure 6.39
     An achromatic doublet. The paths of the rays are much 

obtain; that is, if  ƒ


exaggerated.


R
  is to equal  ƒB
 .
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At this point we could presumably design an  achromatic 



TABLE 6.1  Several Strong Fraunhofer Lines



doublet
 , and indeed we presently shall, but a few additional 

points must be made first. The designation of wavelengths as 

Designation Wavelength (
 Å)* 


Source

red, yellow, and blue is far too imprecise for practical applica-


C
  

6562.816 Red 

H

tion. Instead it is customary to refer to specific spectral lines 


D
 1 

5895.923 Yellow 

Na

whose wavelengths are known with great precision. The 


D
  

Center of doublet 5892.9 

Na


Fraunhofer lines
 , as they are called, serve as the needed ref-


D


erence markers across the spectrum. Several of these for the 

2 

5889.953 Yellow 

Na

visible region are listed in Table 6.1. The lines  F
 ,  C
 , and  d
  (i.e., 


D
 3 or  d
  

5875.618 Yellow 

He


D



b


3) are most often used (for blue, red, and yellow, respectively), 

1 

5183.618 Green 

Mg

and one generally traces paraxial rays in  d
 -light. Glass manu-


b
 2 

5172.699 Green 

Mg

facturers will usually list their wares in terms of the Abbe 


c
  

4957.609 Green 

Fe

number, as in Fig. 6.40, which is a plot of the refractive index 


F
  

4861.327 Blue 

H

versus


f
  

4340.465 Violet 

H


g
  

4226.728 Violet 

Ca


n







V



d 
 - 1


d 
 =


 


(6.57)


K
  

3933.666 Violet 

Ca


nF 
 -  nC


*1 Å = 0.1 nm.


Figure 6.40
     Refractive index versus Abbe number for various glasses. The specimens in the upper shaded area are the rare-earth glasses, which have high indices of refraction and low dispersions. 

(Source: Diagram of Optical Glasses as per catalog No. 3050e and 3060e, August 1969, Schott Optical Glass Inc. Duryea, PA 18542.) M06_HECH7226_05_SE_C06_247-281.indd   273
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(a)


TABLE 6.2    Optical Glass


Type 


Number  

Name 


nD
  


VD


Flint

Fraunhofer

Edge contact

Center contact

511:635 

Borosilicate  crown—BSC-1 

1.511  0 

63.5

cemented

Crown

517:645 

Borosilicate  crown—BSC-2 

1.517  0 

64.5

513:605 

Crown—C 

1.512  5 

60.5

518:596 

Crown 

1.518  0 

59.6

523:586 

Crown—C-1 

1.523  0 

58.6

529:516 

Crown  flint—CF-1 

1.528  6 

51.6

Gaussian

Edge contact

Center contact

541:599 

Light barium crown—LBC-1 

1.541 1 

59.9

573:574 

Barium  crown—LBC-2 

1.572  5 

57.4

574:577 

Barium  crown 

1.574  4 

57.7

611:588 

Dense  barium  crown—DBC-1 

1.611  0 

58.8

617:550 

Dense  barium  crown—DBC-2 

1.617  0 

55.0

611:572 

Dense  barium  crown—DBC-3 

1.610  9 

57.2

562:510 

Light  barium  flint—LBF-2 

1.561  6 

51.0

588:534 

Light  barium  flint—LBF-1 

1.588  0 

53.4

584:460 

Barium  flint—BF-1 

1.583 8 

46.0

605:436 

Barium  flint—BF-2 

1.605  3 

43.6

559:452 

Extra  light  flint—ELF-1 

1.558  5 

45.2

573:425 

Light  flint—LF-1 

1.572  5 

42.5

580:410 

Light  flint—LF-2 

1.579  5 

41.0

605:380 

Dense  flint—DF-1 

1.605  0 

38.0

617:366 

Dense  flint—DF-2 

1.617  0 

36.6

621:362 

Dense  flint—DF-3 

1.621  0 

36.2

649:338 

Extra  dense  flint—EDF-1 

1.649  0 

33.8

666:324 

Extra  dense  flint—EDF-5 

1.666  0 

32.4

673:322 

Extra  dense  flint—EDF-2 

1.672  5 

32.2

689:309 

Extra  dense  flint—EDF 

1.689  0 

30.9

720:293 

Extra  dense  flint—EDF-3 

1.720  0 

29.3

Source: From T. Calvert, “Optical Components,”  Electromechanical Design
 , May 

1971. For more data, Smith, W. J.,  Modern Optical Engineering
 , McGraw-Hill,  

New York (2nd ed), 1990. Type number is given by ( nD 
 - 1):(10 VD
 ).

(Take a look at Table 6.2 as well.) Thus Eq. (6.56) might better 


Figure 6.41  
  ( a
 ) Achromatic doublets. ( b
 ) Doublets and triplets. 

(Melles Griot)

be written as






ƒ
 1 dV
 1 d 
 +  ƒ
 2 dV
 2 d 
 = 0 (6.58)

Several forms of the achromatic doublet are shown in 





where the numerical subscripts pertain to the two glasses used 

Fig. 6.41. Their configurations depend on the glass types selected, 

in the doublet, and the letter relates to the  d
 -line.

as well as on the choice of the other aberrations to be controlled. 

Incidentally, Newton erroneously concluded, on the basis of ex-

By the way, when purchasing off-the-shelf doublets of unknown 

periments with the very limited range of materials available at the 

origin, be careful not to buy a lens that has been deliberately 

time, that the dispersive power was constant for all glasses. This is 

designed to include certain aberrations in order to compensate 

tantamount to saying [Eq. (6.58)] that  ƒ
 1 d 
 = - ƒ
 2 d
 , in which case 

for errors in the original system from which it came. Perhaps the 

the doublet would have zero power. Newton, accordingly, shifted 

most commonly encountered doublet is the cemented Fraunhofer 

his efforts from the refracting to the reflecting telescope, and this 

achromat. It’s formed of a crown* double-convex lens in contact 

fortunately turned out to be a good move in the long run. The ach-

romat was invented around 1733 by Chester Moor Hall, Esq., but 

*Traditionally, the glasses roughly in the range  n


it lay in limbo until it was seemingly reinvented and patented in 


d 
 7 1.60,  Vd 
 7 50, as well as 


nd 
 6 1.60,  Vd 
 7 50 are known as  crowns
 , and the others are  flints
 . Note the 1758 by the London optician John Dollond.

letter designations in Fig. 6.40.
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with a concave-planar (or nearly planar) flint lens. The use 

1

1

-2.685

or 

-

=

of a crown front element is quite popular because of its re-

-0.217 7


R
 22

0.620 04

sistance to wear. Since the overall shape is roughly convex-

planar, by selecting the proper glasses, both spherical aber-

and  R
 22 = -3.819 m. In summary, the radii of the crown ele-

ration and coma can be corrected as well. Suppose that we 

ment are  R
 11 = 21.8 cm and  R
 12 = -21.8 cm, while the flint 

wish to design a Fraunhofer achromat of focal length 50 

has radii of  R
 21 = -21.8 cm and  R
 22 = -381.9 cm.

cm. We can get some idea of how to select glasses by solv-

Note that for a thin-lens combination the principal planes co-

ing Eq. (6.58) simultaneously with the compound-lens 

alesce, so that achromatizing the focal length corrects both  

equation

A · 
 CA and L · 
 CA. In a thick doublet, however, even though the 

focal lengths for red and blue are made identical, the different 

1

1

1

wavelengths may have different principal planes. Consequently, 

+

=


ƒ
 1 d



ƒ
 2 d



ƒd


although the magnification is the same for all wavelengths, the 

focal points may not coincide; in other words, correction is made 

1


V


to get 

=

1 d


 (6.59)

for L · 
 CA but not for A · 
 CA.


ƒ
 1 d



ƒd
  ( V
 1 d 
 -  V
 2 d
 )

In the above analysis, only the  C
 - and  F
 -rays were brought 

to a common focus, and the  d
 -line was introduced to establish 

1


V


and 

=

2 d


 (6.60)

a focal length for the doublet as a whole. It is not possible for 


ƒ
 2 d



ƒd
  ( V
 2 d 
 -  V
 1 d
 )


all
  wavelengths traversing a doublet achromat to meet at a 

common focus. The resulting residual chromatism is known 

Thus, in order to avoid small values of  ƒ
 1 d
  and ƒ
 2 d
 , which would 

as   secondary spectrum
 . The elimination of secondary spec-

necessitate strongly curved surfaces on the component lenses, 

trum is particularly troublesome when the design is limited to 

the difference  V
 1 d 
 -  V
 2 d 
 should be made large (roughly 20 or more 

the glasses currently available. Nevertheless, a fluorite (CaF

is convenient). From Fig. 6.40 (or its equivalent) we select, say, 

2) 

element combined with an appropriate glass element can form 

BK1 and F2. These have catalogued indices of  nC 
 = 1.507 63, 

a doublet achromatized at three wavelengths and having very 


nd 
 = 1.510 09,  nF 
 = 1.515 66 and  nC 
 = 1.615 03,  nd 
 = 1.620 04, 

little secondary spectrum. More often triplets are used for 


nF 
 = 1.632 08, respectively. Likewise, their  V
 -numbers are gen-

color correction at three or even four wavelengths. The sec-

erally given rather accurately, and we needn’t compute them. In 

ondary spectrum of a binocular can easily be observed by 

this instance they are  V
 1 d 
 = 63.46 and  V
 2 d 
 = 36.37, respectively. 

looking at a distant white object. Its borders will be slightly 

The focal lengths, or if you will, the powers of the two lenses, 

haloed in magenta and green—try shifting the focus forward 

are given by Eqs. (6.59) and (6.60):

and backward.

1

63.46

𝒟1 d 
 =

=


ƒ
 1 d


0.50 (27.09)


Separated Achromatic Doublets


1

36.37

and 

𝒟

=

It is also possible to achromatize the focal length of a doublet 

2 d 
 =  ƒ
 2 d 
 0.50 (-27.09)

composed of two widely separated elements of the same glass. 

Return to Eq. (6.52) and set  n
 1 R 
 =  n
 2 R 
 =  nR 
 and  n
 1 B 
 =  n
 2 B 
 =  nB
 . 

Hence 𝒟1 d 
 = 4.685 D and 𝒟2 d 
 = -2.685 D, the sum being 2 

After a bit of straightforward algebraic manipulation, it 





D, which is 1>0.5, as it should be. For ease of fabrication let the 

becomes

first or positive lens be equiconvex. Consequently, its radii  R
 11 

and  R
 12 are equal in magnitude. Hence

( nR 
 -  nB
 )[(r1 + r2) - r1r2 d
 ( nB 
 +  nR 
 - 2)] = 0

1

1

2

r1 =

-

=

1

1

1


R
 11


R
 12


R
 11

or 


d 
 =

 a

+

b

( nB 
 +  nR 
 - 2) r1

r2

or, equivalently,

Again introducing the yellow reference frequency, as we did 

2

𝒟1 d


4.685

before, namely, 1

=

=

= 9.185

> ƒ
 1 Y 
 = ( n
 1 Y 
 - 1)r1 and 1> ƒ
 2 Y 
 = ( n
 2 Y 
 - 1)r2, R
 11


n
 1 d 
 - 1

0.510 09

we can replace r1 and r2. Hence

Thus  R
 11 = -  R
 12 = 0.217 7 m. Furthermore, having specified 

( ƒ


that the lenses be in intimate contact, we have  R



d


12 =  R
 21; that is, the 

= 1 Y 
 +  ƒ
 2 Y
 )( nY 
 - 1)


nB 
 +  nR 
 - 2

second surface of the first lens matches the first surface of the 

second lens. For the second lens

where  n
 1 Y 
 =  n
 2 Y 
 =  nY
 . Assuming  nY 
 = ( nB 
 +  nR
 )>2, we have 1

1

𝒟2 d



ƒ


r2 =

-

=


d 
 = 1 Y 
 +  ƒ
 2 Y



R
 21


R
 22


n
 2 d 
 - 1

2
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(a)

(a)

(b)

Blue

Red


Figure 6.42
   Achromatized lenses.

(b)


A B


or in  d
 -light


r



ƒ



F







d 
 = 1 d 
 +  ƒ
 2 d
  (6.61)

2


n
 max


n


This is precisely the form taken by the Huygens ocular (Section 


(r)


5.7.4). Since the red and blue focal lengths are the same, but the 

corresponding principal planes for the doublet need not be, the 


d



f


two rays will generally not meet at the same focal point. Thus 

the ocular’s lateral chromatic aberration is well corrected, but 

axial chromatic aberration is not.


Figure 6.43
     A disk of transparent glass whose index of refraction 

In order for a system to be free of both chromatic aberrations, 

decreases radially out from the central axis. ( b
 ) The geometry corresponding 

to the focusing of parallel rays by a GRIN lens.

the red and blue rays must emerge parallel to each other (no L · 
 CA) 

and must intersect the axis at the same point (no A · 
 CA),  

which means they must overlap. Since this is effectively the 

To get a rough sense of how a GRIN lens might work, con-

case with a thin achromat, it implies that multi-element sys-

sider the device pictured in Fig. 6.43 where, for simplicity, we 

tems, as a rule, should consist of achromatic components in 

assume  ƒ 
 7  r
 . This is a flat disk of glass that has been treated 

order to keep the red and blue rays from separating (Fig. 6.42). 

so that it has an index  n(r) 
 that drops off radially in some as yet 

As with all such invocations there are exceptions. The Taylor 

undetermined fashion from a maximum value of  n
 max  
 on the 

triplet (Section 5.7.7) is one. The two colored rays for which it 

optical axis. Accordingly, it’s called a radial-GRIN
  device.  

is achromatized separate within the lens but are recombined 

A ray that traverses the disk on the optical axis passes along an 

and emerge together.

optical path length of ( OPL
 ) o 
 =  n
 max d
 , whereas for a ray tra-

versing at a height  r
 ,  
 overlooking the slight bending of its path, 

( OPL
 ) r 
 ≈  n(r)d
 . Since a planar wavefront must bend into a 

spherical wavefront, the  OPL
 s from one to the other, along any 


6.4 GRIN Systems


route must be equal (p. 155):

An ordinary homogeneous lens has two physical features that 

( OPL
 ) r 
 +  AB 
 = ( OPL
 ) o


contribute to the manner in which it reconfigures a wavefront: the 

and 


n(r)d 
 +  AB 
 =  n
 max d 


difference between its index of refraction and that of the surround-

ing medium, and the curvature of its interfaces. But as we have 

But  AF 
 ≈

already seen, when light propagates through an inhomogeneous 

2 r
 2 +  ƒ
 2; moreover,  AB 
 =  AF 
 -  ƒ
  and so

medium, wavefronts essentially slow down in optically dense re-

2 r
 2 +  ƒ
 2 -  ƒ


gions and speed up in less dense regions, and bending again oc-


n(r) 
 =  n
 max -

curs. In principle, then, it should be possible to make a lens from 


d


some inhomogeneous material, one where there is a GRadient in 

Rewriting the square root via the Binomial Theorem,  n(r) 


the INdex of refraction; such a device is known as a GRIN lens
 . 

becomes

A powerful incentive for developing such systems is that they pro-


r
 2

vide the optical designer with an additional set of new parameters 


n(r) 
 =  n
 max -

with which to control aberrations.

2 ƒd
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This tells us that if the index of refraction drops off parabolically 

(a)

from its high along the central axis, the GRIN plate will focus a 

collimated beam at  F 
 and serve as a positive lens. Although this 

is a rather simplistic treatment, it does make the point: a para-

bolic refractive index profile will focus parallel light.

Today a variety of radial-GRIN lenses are commercially 

available, and tens of millions of them are already in service in 

laser printers, photocopiers, and fax machines. The most com-


s


mon device is a GRIN cylinder a few millimeters in diameter, 


o



si



L


similar in kind to the optical fiber shown in Fig. 5.82 b
 . Mono-

2p√ a


chromatically, they provide nearly diffraction-limited perfor-

mance on axis. Polychromatically, they offer substantial bene-

(b)

fits over aspherics.

These small-diameter GRIN rods are usually fabricated via 

ionic diffusion. A homogeneous base glass is immersed in a 

molten salt bath for many hours during which ion diffusion>

exchange slowly occurs. One type of ion migrates out of the 

glass, and another from the bath takes its place, changing the 

(c)

index of refraction. The process works its way inward radially 

toward the optical axis, and the time it takes is roughly propor-

tional to the rod’s diameter squared. For a parabolic profile, that 

sets the practical limit on the aperture size. The focal length is 

determined by the index change, ∆ n
 , and the faster the lens the 

larger must be ∆ n
 . Even so, ∆ n
  is usually constrained to be less 

than about 0.10 for production reasons. Most GRIN cylinders 


Figure 6.44
   ( a
 ) A radial-GRIN rod producing a real, magnified, erect 

image. ( b
 ) Here the image is formed on the face of the rod. ( c
 ) This is a 

have a parabolic index profile typically expressed as

convenient setup for use in a copy machine.


n(r) 
 =  n
 max(1 -  ar
 2>2)

Figure 6.44 shows one such radial-GRIN rod of length  L
 , under 

monochromatic illumination. Meridional rays travel sinusoidal 

paths within the plane-of-incidence, which is perpendicular to 

the circumference. These sinusoids have a period in space of 

2p> 1 a
 , where the gradient constant
 ,  1 a
 , is a function of l 

and depends on the specific GRIN material. The cross-sectional 

view in Fig. 6.44 a
  shows how a radial-GRIN lens can form an 

erect, real, magnified image. By changing the object distance or 

the length of the lens  L
 , a wide range of images can be pro-

0.125 pitch

duced. It’s even possible to have the object and image planes on 

the face of the rod (Figs. 6.44 b
  and  c
 ).

Radial-GRIN lenses are often specified in terms of their 

length or, equivalently, their pitch
  (Fig. 6.45). A radial-GRIN 

rod with a pitch of 1.0 is one sine-wave long:  L 
 = 2p> 1 a
 .  
 A 

rod with a pitch of 0.25 has a length of a quarter of a sine-wave 

(p>21 a
 ).

0.25 pitch

An alternative approach to the flat-faced radial-GRIN rod 

is the axial-GRIN lens, which is generally polished with 

spherical surfaces. As such, it’s similar to a bi-aspheric, but 

without the difficulty of creating the complex surfaces. Usually, 

a stack of glass plates with appropriate indices are fused together. 

At high temperatures the glasses meld, diffusing into each other, 

creating a block of glass with a continuous index profile that can 

be made linear, quadratic, or even cubic (Fig. 6.46 a
 ). When such 

0.50 pitch

a block is ground into a lens, the process cuts back on the glass 


Figure 6.45
     Radial GRIN lenses with several pitches used in a few  

and exposes a range of indices. Every annulus (concentric 

typical ways.
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(a)


x


arises because the edges of the spherical lens refract too 

strongly. Gradually lowering the index of refraction out to-

ward the edges allows the axial-GRIN lens to correct for 

spherical aberration.

Generally, introducing a GRIN element into the design of a 

compound lens greatly simplifies the system, reducing the num-

ber of elements by as much as a third while maintaining overall 

performance.


y



z



6.5 Concluding Remarks


For the practical reason of manufacturing ease, the vast majority 

of optical systems are limited to lenses having spherical surfaces. 

(b)

(c)

There are, to be sure, toric and cylindrical lenses as well as many 

other aspherics. Indeed, very fine, and as a rule very expensive 

devices, such as high-altitude reconnaisance cameras and track-


z


ing systems, may have several aspherical elements. Even so, 

spherical lenses are here to stay and with them are their inherent 

aberrations, which must satisfactorily be dealt with. As we have 

(d)

seen, the designer (and his faithful electronic companion) must 


n(z)


manipulate the system variables (indices, shapes, spacings, 

stops, etc.) in order to balance out offensive aberrations. This is 

done to whatever degree and in whatever order is appropriate for 

the specific optical system. Thus one might tolerate far more 


z


distortion and curvature in an ordinary telescope than in a good 

photographic objective. Similarly, there is little need to worry 

about chromatic aberration if you want to work exclusively with 


Figure 6.46
   ( a
 ) A slab of axial-GRIN material for which the index  

of refraction is  n(z)
 . ( b
 ) An axial-GRIN lens for which there is no spherical 

laser light of almost a single frequency. 

aberration. ( c
 ) An ordinary lens having SA. ( d
 ) The index profile.

In any event, this chapter has only touched on the problems 

(more to appreciate than solve them). That they are most cer-

with the optical axis) on the lens’s face has a gradually chang-

tainly amenable to solution is evidenced, for example, by the 

ing index. Rays impinging at different heights above the opti-

accompanying aerial photographs, which speak rather eloquently 

cal axis encounter glass with different indices and bend ap-

for themselves, especially when you consider that a good spy 

propriately. The spherical aberration evident in Fig. 6.46 c
  

satellite will do upwards of ten times better than this.


PROBLEMS




Complete solutions to all problems—except those with an  



of 1.50, and it is immersed in air. Find the focal length of the lens and 



asterisk—can be found in the back of the book.



explain the significance of its sign.


6.5
   Suppose we have a positive meniscus lens of radii 6 and 10 and a 


6.1*
   Work out the details leading to Eq. (6.8).

thickness of 3 (any units, as long as you’re consistent), with an index 


6.2
   According to the military handbook MIL-HDBK-141 (23.3.5.3), 

of 1.5. Determine its focal length and the locations of its principal 

the Ramsden eyepiece (Fig. 5.105) is made up of two planar-convex 

points (compare with Fig. 6.3).

lenses of equal focal length  ƒ
 ′ separated by a distance 2 ƒ
 ′>3. Deter-


6.6*
   Prove that if the principal points of a biconvex lens of thickness 

mine the overall focal length  f
  of the thin-lens combination and locate 


dl
  overlap midway between the vertices, the lens is a sphere. Assume 

the principal planes and position of the field stop.

the lens is in air.


6.3
   Write an expression for the thickness  dl
  of a double-convex lens 


6.7
  Using Eq. (6.2), derive an expression for the focal length of a 

such that its focal length is infinite.

homogeneous transparent sphere of radius  R
 . Locate its principal 


6.4*
   The radii of curvature of a thick lens are +10.0 cm and +9.0 cm. 

points.

The thickness of the lens along its optical axis is 1.0 cm, it has an index 
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(a)

(b)

(c)

( a
 ) New Orleans and the Mississippi River photographed from 12,500 m (41,000 ft) with Itek’s Metritek-21 camera (  ƒ 
 = 21 cm).  

Ground resolution, 1 m; scale, 1:59,492. ( b
 ) Photo scale, 1:10,000. ( c
 ) Photo scale, 1:2500. (Litton/Itek Optical Systems) M06_HECH7226_05_SE_C06_247-281.indd   279
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6.8*
  A spherical glass bottle 20 cm in diameter with walls that are 


6.20*
   A positive meniscus lens with an index of refraction of 2.4 is 

negligibly thin is filled with water. The bottle is sitting on the back seat 

immersed in a medium of index 1.9. The lens has an axial thickness of 

of a car on a nice sunny day. What’s its focal length?

9.6 mm and radii of curvature of 50.0 mm and 100 mm. Compute the 

system matrix when light is incident on the convex face and show that 


6.9*
   With the previous two problems in mind, compute the magnifica-

its determinant is equal to 1.

tion that results when the image of a flower 4.0 m from the center of a 

solid, clear-plastic sphere with a 0.20-m diameter (and a refractive in-


6.21*
   Prove that the determinant of the system matrix in Eq. (6.31) is 

dex of 1.4) is cast on a nearby wall. Describe the image in detail.

equal to 1.


6.10*
  A thick glass lens of index 1.50 has radii of +23 cm and 


6.22
   Establish that Eqs. (6.41) and (6.42) are equivalent to Eqs. (6.3) 

+20 cm, so that both vertices are to the left of the corresponding cen-

and (6.4), respectively.

ters of curvature. Given that the thickness is 9.0 cm, find the focal 


6.23
  Show that the planar surface of a concave-planar or convex-

length of the lens. Show that in general  R
 1 -  R
 2 =  d
 >3  
 for such afocal planar lens doesn’t contribute to the system matrix.

zero-power lenses. Draw a diagram showing what happens to an axial 

incident parallel bundle of rays as it passes through the system.


6.24
   Compute the system matrix for a thick biconvex lens of index 

1.5 having radii of 0.5 and 0.25 and a thickness of 0.3 (in any units you 


6.11
   It is found that sunlight is focused to a spot 29.6 cm from the 

like). Check that 0 𝒜 0 = 1.

back face of a thick lens, which has its principal points  H






1  
 at  + 2.0 cm 

and  H
 2  
 at  -4.0 cm. Determine the location of the image of a candle 


6.25*
   The system matrix for a thick biconvex lens in air is given by

that is placed 49.8 cm in front of the lens.

0.6

c

-2.6d


6.12*
  Please establish that the separation between principal planes 

0.2

0.8

for a thick glass lens is roughly one-third its thickness. The simplest 

Knowing that the first radius is 0.5 cm, that the thickness is 0.3 cm, and 

geometry occurs with a planar-convex lens tracing a ray from the ob-

that the index of the lens is 1.5, find the other radius.

ject focus. What can you say about the relationship between the focal 


6.26*
   Starting with Eq. (6.35) and Eq. (6.37), show that the 2 * 2 

length and the thickness for this lens type?

matrix resulting from the product of the three 2 * 2 matrices in Eq. 


6.13
   A crown glass double-convex lens, 4.0 cm thick and operating at 

(6.33) has the form

a wavelength of 900 nm, has an index of refraction of 3>2. Given that 

( a
 11 -  a
 12  dO
 )  a
 12

its radii are 4.0 cm and 15 cm, locate its principal points and compute 

c

d

0


MT


its focal length. If a television screen is placed 1.0 m from the front of 

the lens, where will the real image of the picture appear?

Since this matrix is the product of matrices each of which has a unit 

determinant, it has a unit determinant. Accordingly, show that


6.14*
   Imagine two identical double-convex thick lenses separated by 

1

a distance of 20 cm between their adjacent vertices. Given that all the 






MT 
 =

 [6.38]

radii of curvature are 50, the refractive indices are 1.5, and the thick-


a
 11 -  a
 12  dO


ness of each lens is 5.0 cm, calculate the combined focal length.


6.27*
  A concave-planar glass ( n 
 = 1.50) lens in air has a radius of 


6.15*
   A compound lens is composed of two thin lenses separated by 

10.0 cm and a thickness of 1.00 cm. Determine the system matrix and 

10 cm. The first of these has a focal length of  +20 cm, and the second 

check that its determinant is 1. At what positive angle (in radians mea-

a focal length of -20 cm. Determine the focal length of the combina-

sured above the axis) should a ray strike the lens at a height of 2.0 cm, 

tion and locate the corresponding principal points. Draw a diagram of 

if it is to emerge from the lens at the same height but parallel to the 

the system.

optical axis?


6.16*



6.28*


 A convex-planar lens of index 3>2 has a thickness of 1.2 cm 

 Considering the lens in Problem 6.29, determine its focal 

and a radius of curvature of 2.5 cm. Determine the system matrix when 

length and the location of the focal points with respect to its vertices  

light is incident on the curved surface.


V
 1  
 and  V
 2.


6.17*



6.29*


  A thick biconvex lens in air has an index of 1.810 and a thick-

 Figure P.6.29 shows two identical concave spherical mirrors 

ness of 3.00 cm. Its first radius of curvature is 11.0 cm and its second 

forming a so-called confocal cavity. Show, without first specifying the 

is 120 cm. Determine its system matrix 𝒜.

value of  d
 , that after traversing the cavity two times the system matrix is






6.18*
   Starting with Eq. (6.33) derive Eq. (6.34) when both the object 

2 d


2

2 d


4  d


a - 1b -

 a - 1b

and image are in air.


r



r



r r


≥

¥


d



d



6.19*
   Show that Eq. (6.36), relating the object and image distances 

2 d
  a1 - b

1 - 2 


r



r


measured from the vertices of a lens, reduces to Gauss’s Formula  

[Eq. (5.17)] for thin lenses. Remember that when  so 
 7 0,  d
 1 O 
 6 0 and 

Then for the specific case of  d 
 =  r 
 show that after four reflections the 

when  si 
 7 0,  dI
 2 7 0.

system is back where it started and the light will retrace its original path.

  

M06_HECH7226_05_SE_C06_247-281.indd   280

09/11/15   8:39 PM

















 Problems
   281



Figure P.6.29



Figure P.6.33b  
 (E.H.)


d


1

2

4

3


M



M


1

2


R
 1= R
 2= r



6.30
   Referring back to Fig. 6.18 a
 , show that when  P
 ′ C 
 =  Rn
 2> n
 1 and PC 
 =  Rn
 1> n
 2  
 all rays originating at  P
  appear to come from  P
 ′.


6.31
   Starting with the exact expression given by Eq. (5.5), show that 


Figure P.6.33c  
 (E.H.)

Eq. (6.46) results, rather than Eq. (5.8), when the approximations for 

/ o
  and / i
  are improved a bit.


6.32
   Supposing that Fig. P.6.32 is to be imaged by a lens system suf-

fering spherical aberration only, make a sketch of the image.


Figure P.6.32



6.34*
   Figure P.6.34 shows the distribution of light corresponding to 

the image arising when a monochromatic point source illuminates two 

different optical systems each having only one type of aberration. 


6.33*
   Figure P.6.33 shows the image irradiance distributions arising 

Identify the aberration in each case and justify your answer.

when a monochromatic point source illuminates three different optical 


Figure P.6.34


systems, each having only one type of aberration. From the graphs 

(a)

(b)

identify that aberration in each case and justify your answer.


Figure P.6.33a  
 (E.H.)
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7The Superposition  



of Waves


In succeeding chapters we shall study the phenomena of po-

In many instances we need not be concerned with the 

larization, interference, and diffraction. These all share a 

vector nature of light, and for the present we will restrict 

common conceptual basis in that they deal, for the most 

ourselves to such cases. For example, if the lightwaves all 

part, with various aspects of the same process. Stating this 

propagate along the same line and share a common constant 

in the simplest terms, we are really concerned with what 

plane of vibration, they can each be described in terms of 

happens when two or more lightwaves overlap in some re-

one electric-field component. These would all be either par-

gion of space. The precise circumstances governing this su-

allel or antiparallel at any instant and could thus be treated 

perposition determine the final optical disturbance. Among 

as scalars. A good deal more will be said about this point as 

other things, we are interested in learning how the specific 

we progress; for now, let’s represent the optical disturbance 

properties of each constituent wave (amplitude, phase, fre-

as a scalar function  E(
   
r

 $ ,
   t)
 , which is a solution of the dif-

quency, etc.) influence the ultimate form of the composite 

ferential wave equation. This approach leads to a simple 

disturbance.

scalar theory that is highly useful as long as we are careful 

Recall that each field component of an electromagnetic wave 

about applying it.

( Ex
 ,  Ey
 ,  Ez
 ,  Bx
 ,  By
 , and  Bz
 ) satisfies the scalar three-dimensional differential wave equation,

02c

02c

02c

1 02c









 [2.60]

0 x
 2 + 0 y
 2 + 0 z
 2 =  v
 2 0 t
 2

A significant feature of this expression is that it is  linear
 ; c (
   
r

 $ ,
   t)
 and its derivatives appear only to the first power. Consequently, 

if  c1 (
 
r

 $ ,
   t)
 , c2 (
 
r

 $ ,
   t)
 , c, c n(
 
r

 $ ,
   t)
  are individual solutions of Eq. (2.60),  any linear combination
  of them will, in turn, be a 

solution. Thus





c (
   
r

 $ ,
   t) 
 = ^


n



Ci
 c i(
   
r

 $ ,
   t)
  (7.1)


i 
 = 1

satisfies the wave equation, where the coefficients  Ci
  are 

simply arbitrary constants. Known as the  
Principle of Su-





perposition

 , this property suggests that the resultant distur-

bance at any point in a medium is the algebraic sum of the 

separate constituent waves (Fig. 7.1). At this time we are 

interested only in linear systems where the superposition 

principle is applicable. Do keep in mind, however, that large-

amplitude waves, whether sound waves or waves on a string, 

can generate a nonlinear response. The focused beam of a 

high-intensty laser (where the electric field might be as high 

as 1010 V>cm) is easily capable of eliciting nonlinear effects 

(see Chapter 13). By comparison, the electric field associated 

with sunlight here on Earth has an amplitude of only about 

10 V>cm.


Figure 7.1
     The superposition of two disturbances.


282
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and 

  E



7.1  The Addition of Waves of the 


0 sin a =  E
 01 sin a1 +  E
 02 sin a2 (7.8)


Same Frequency


This is not an obvious substitution, but it will be legitimate as 

long as we can solve for  E
 0 and a. To that end, and remember-

There are several equivalent ways of mathematically adding two 

ing that cos2a + sin2a = 1, square and add Eqs. (7.7) and (7.8) 

or more overlapping waves that have the same frequency and 

to get

wavelength. Let’s explore these different approaches so that, in 

any particular situation, we can use the one most suitable.


 



E
 20 =  E
 201 +  E
 202 + 2 E
 01 E
 02 cos (a2 - a1) (7.9)

That’s the sought-after expression for the amplitude ( E
 0) of the 


7.1.1 The Algebraic Method


resultant wave. Now to get the phase, divide Eq. (7.8) by (7.7):

We now examine the superposition of two harmonic waves of the 

save frequency (v) traveling in the same direction ( x
 ). A solution 


E


of the differential wave equation can be written in the form





tan 

01 sin a1 +  E
 02 sin a2

a =

 (7.10)


E
 01 cos a1 +  E
 02 cos a2






E(x, t) 
 =  E
 0 sin [v t 
 - ( kx 
 + e)] (7.2)

Provided these last two expressions are satisfied for  E
 0 and a, 

in which  E
 0 is the amplitude of the harmonic disturbance prop-

the situation of Eqs. (7.7) and (7.8) is valid. The total distur-

agating along the positive  x
 -axis. To separate the space and time 

bance [Eq. (7.6)] then becomes

parts of the phase, let


E 
 =  E
 0 cos a sin v t 
 +  E
 0 sin a cos v t






a (x, 
 e ) 
 = -( kx 
 + e) (7.3)

so that

or 


E 
 =  E
 0 sin (v t 
 + a) (7.11)






E(x, t) 
 =  E
 0 sin [v t 
 + a (x, 
 e )
 ] (7.4)

Suppose then that there are two such waves

where you can use Eq. (7.9) to determine  E
 0 and Eq. (7.10) to 

compute a. A single disturbance results from the superposition 


 



E
 1 =  E
 01 sin (v t 
 + a1) (7.5a)

of the sinusoidal waves  E
 1 and  E
 2.  The composite wave [Eq. (7.11)] 



is harmonic and of the same frequency as the constituents,  


and 


E
 2 =  E
 02 sin (v t 
 + a2) (7.5b)


although its amplitude and phase are different.


each with the same frequency and speed, coexisting in space. The 

Note that when   E
 01 7 7  E
 02  in Eq. (7.10), a ≈ a1 and 

resultant disturbance is the linear superposition of these waves: 

when   E
 02 7 7  E
 01, a ≈ a2; the resultant is in-phase with the 

dominant component wave (take another look at Fig. 4.11).  


E 
 =  E
 1 +  E
 2

The flux density of a lightwave is proportional to its amplitude 

squared, by way of Eq. (3.44). It follows from Eq. (7.9) that  

Here it helps to know beforehand what we’re looking for. The 

the resultant flux density is not simply the sum of the compo-

sum should resemble Eq. (7.4); you can’t add two signals of the 

nent flux densities; there is an additional contribution 2 E


same frequency and get a resultant with a different frequency. 

01 E
 02

cos (a

That makes a lot of sense when you remember that the frequency 

2 - a1), known as the interference term
 . The crucial 

factor is the difference in phase between the two  interfering
  waves 

of a photon corresponds to its energy and that doesn’t change. 


E


In any event, we can anticipate the sum to be a sinusoidal func-

1 and  E
 2,  d K (a2 - a1). When d = 0,  ± 2p,  ± 4p, cthe 

resultant amplitude is a maximum, whereas d

tion of frequency v with an amplitude ( E


= ±p, ±3p, c 

0) and phase (a) that 

yields a minimum at any point in space (Problem 7.3). In the 

have to be determined.

former case, the waves are said to be in-phase; crest overlaps 

Forming the sum and expanding Eqs. (7.5a) and (7.5b) leads 

crest. In the latter instance, the waves are 180° out-of-phase and 

to

trough overlaps crest, as shown in Fig. 7.2. Realize that the 


E 
 =  E
 01 (sin v t
  cos a1 + cos v t
  sin a1)


phase difference
  may arise from a difference in path length tra-

versed by the two waves, as well as a difference in the initial 

+  E
 02 (sin v t
  cos a2 + cos v t
  sin a2)

phase angle; that is,

When we separate out the time-dependent terms, this becomes





d = ( kx
 1 + e1) - ( kx
 2 + e2) (7.12)


E 
 = ( E
 01 cos a1 +  E
 02 cos a2) sin v t


2p

+ ( E
 01 sin a1 +  E
 02 sin a2) cos v t
  (7.6)

or 

d =

 ( x
 1 -  x
 2) + (e1 - e2) (7.13)

l

Since the parenthetical quantities are constant in time, let

Here   x
 1 and  x
 2 are the distances from the sources of the two 






E
 0 cos a =  E
 01 cos a1 +  E
 02 cos a2 (7.7)

waves to the point of observation, and l is the wavelength in the 
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The quantity  n
 ( x
 1 -  x
 2) is known as the  optical path differ-



ence
  and will be represented by the abbreviation  OPD
  or by the 

symbol  Λ. It’s the difference in the two optical path lengths  

[Eq. (4.9)]. It is possible, in more complicated situations, for each 

wave to travel through a number of different thicknesses of dif-

ferent media (Problem 7.6). Notice too that Λ>l0 = ( x
 1 -  x
 2)>l 


x


is the number of waves in the medium corresponding to the path 

difference; one route is that many wavelengths longer than the 


E
 1

other. Since each wavelength is associated with a 2p radian 

phase change, d = 2p( x
 1 -  x
 2)>l, or


E
 2





d =  k
 0Λ (7.16)


E



k
 0 being the propagation number in vacuum; that is, 2p>l0. 


E 
 =  E
 1  
 +   E
 2

One route is essentially d radians longer than the other.

Waves for which e


E


1 - e2 is  constant
 , regardless of its value, 

2

are said to be coherent
 , a situation we shall assume obtains 

throughout most of this discussion.

One special case of some interest is the superposition of two 


E


waves that travel slightly different distances (∆ x
 ) in the same 


x


direction:


E
 1


E
 1 =  E
 01 sin [v t 
 -  k
 ( x 
 + ∆ x
 )]

and 


E
 2 =  E
 02 sin (v t 
 -  kx
 ) 

where in particular  E
 01 =  E
 02 and a2 - a1 =  k
 ∆ x
 . It is left to 


Figure 7.2
     The superposition of two harmonic waves in-phase and  

Problem 7.7 to show that in this case Eqs. (7.9), (7.10), and 

out-of-phase.

(7.11) lead to a resultant wave of


k
  ∆ x


∆ x


pervading medium. If the waves are initially in-phase at their 


 



E 
 = 2 E
 01 cos a

b sin cv t 
 -  k
  a x 
 + bd  (7.17)

respective emitters, then e

2

2

1 = e2, and

2p

This brings out rather clearly the dominant role played by the 





d =

 ( x
 1 -  x
 2) (7.14)

l

path length difference, ∆ x
 , especially when the waves are emit-

ted in-phase (e1 = e2). There are many practical instances in 

This would also apply to the case in which two disturbances 

which one arranges just these conditions, as will be seen later. 

from the same source traveled different routes before arriving at 

If ∆ x
  6 6 l, the resultant has an amplitude that is nearly 2 E
 01, 

the point of observation. Since  n 
 =  c
 > v 
 = l0>l,

whereas if ∆ x 
 = l>2, since  k 
 = 2p>l, the cosine term is zero 

and  E 
 = 0. Recall that the former situation (p. 21) is referred to 

2p





d =

  n
 ( x


as  constructive interference
 , and the latter as destructive 


1 -  x
 2) (7.15)

l0


interference
  (see Fig. 7.3).

∆ x



E
 2  E E
 1


x



E 
 =  E
 1  
 +   E
 2


E
 2 leads  E
 1 by  k
 ∆ x


∆ x



E



E


1

2


E



x



Figure 7.3
     Waves out-of-phase by  k
 ∆ x
  

radians.
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the same results would prevail if cosine functions were used. In 

Reflected 

wave

general, then, the sum of  N
  such waves,


n



E 
 = ^  E
 0 i
  cos (a i 
 ± v t
 )


i 
 = 1

is given by  



E 
 =  E
 0 cos (a ± v t
 ) (7.18)

Emitted wave

where


N



N



N







E
 20 = ^  E
 20 i 
 + 2 ^ ^  E
 0 iE
 0 j
  cos (a i 
 - a j
 ) (7.19) i 
 = 1


j 
 7  i i 
 = 1


Figure 7.4
     The French fighter Rafale uses active cancellation to con-


N


found radar detection. It sends out a signal that’s one-half a wavelength 

out-of-phase with the radar wave it reflects. The reflected and emitted 

^ E
 0 i
  sin a i


waves cancel in the direction of the enemy receiver.

and 

tan 


i 
 = 1

a =

 (7.20)


N


^ E
 0 i
  cos a i



i 
 = 1

To underscore the potential for practical application of these 

Pause for a moment and satisfy yourself that these relations are 

ideas, consider Fig. 7.4. It shows a jet fighter that has been 

indeed true.

 illuminated by microwaves from a hostile ground-based radar 

Consider a number ( N
 ) of atomic emitters constituting an 

transmitter. To the considerable consternation of the pilot (and 

ordinary source (an incandescent bulb, candle flame, or dis-

unlike the F-117 Stealth fighter, p. 99) the plan reflects a sub-

charge lamp). A flood of light is emitted that presumably cor-

stantial amount of radiant energy down toward the radar antenna. 

responds to a torrent of photons, which manifest themselves  

But all is not lost; having detected the beam, the plan matches 


en masse
  as an electromagnetic wave. To keep things in a wave 

its frequency and amplitude, and transmits a l>2 phase-shifted 

perspective, it’s useful to imagine the photon as somehow as-

radar wave of its own. Propagating back to the source in nearly 

sociated with a short-duration oscillatory wave pulse. Each 

the same direction, the two waves (reflected and emitted) inter-

atom is effectively an independent source of photon wavetrains 

fere destructively [via Eq. (7.17)], thereby eliminating the radar 

(Section 3.4.4), and these, in turn, extend in time for roughly 1 

echo in the specific direction of the enemy detector. Of course, 

to 10 ns. In other words, the atoms can be thought of as emitting 

if there happened to be several ground receivers, the pilot could 

wavetrains that have a sustained phase for only up to about 10 

be in big trouble. 

ns. After that a new wavetrain may be emitted with a totally 

random phase, and it too will be sustained for less than approx-

imately 10 ns, and so forth. On the whole each atom emits a 


The Superposition of Many Waves


disturbance (composed of a stream of photons) that varies in its 

By repeated applications of the procedure used to arrive at  

phase rapidly and randomly.

Eq. (7.11), we can show that the  
superposition of any number 



In any event, the phase of the light from one atom, a i
   (t)
 , will 



of coherent harmonic waves having a given frequency and 



remain constant with respect to the phase from another atom 



traveling in the same direction leads to a harmonic wave of 



a j
   (t)
 , for only a time of at most 10 ns before it changes ran-



that same frequency

  (Fig. 7.5). We happen to have chosen to 

domly: the atoms are coherent for up to about 10-8 s. Since 

represent the two waves above in terms of sine functions, but 

flux density is proportional to the time average of  E
 20 , generally 


Figure 7.5
     The superposition of three harmonic 

waves yields a harmonic wave of the same  

frequency.
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taken over a comparatively long interval of time, it follows that 

or 


E
 1 =  E
 01 cos (a1 ∓ v t
 ) 

the second summation in Eq. (7.19) will contribute terms pro-

can be written as

portional to 8cos[a  i(t) 
 - a j
   (t)
 ]9, each of which will average out 

to zero because of the random rapid nature of the phase changes. 






E
  ˜
 1 =  E
 01 ei
 (a1∓v t
 ) (7.24)

Only the first summation in Eq. (7.19) remains in the time aver-

age, and its terms are constants. If each atom is emitting wave-

if we remember that we are interested only in the real part (see 

trains of the same amplitude  E
 01, then

Section 2.5). Suppose that there are  N
  such overlapping waves 

having the same frequency and traveling in the  positive x-direction
 . 


 



E
 20 =  NE
 201 (7.21)

The resultant wave is given by


The resultant flux density arising from N sources having ran-



E
  ˜ 
 =  E
 0 ei
 (a+v t
 )


dom, rapidly varying phases is given by N times the flux density 



of any one source. 
 In other words , it is determined by the sum of 


which is equivalent to Eq. (7.18) or, upon summation of the 


the individual flux densities.


component waves,

A flashlight bulb, whose atoms are all emitting a random tu-


N


mult, puts out light that (as the superposition of these essentially 






E
  ˜ 
 = c

“incoherent” wavetrains) is itself rapidly and randomly varying 

^  E
 0 jei
 a j
 d e
 + i
 v t
  (7.25)


j 
 = 1

in phase. Thus two or more such bulbs will emit light that is es-

sentially incoherent (i.e., for durations longer than about 10 ns), 

The quantity

light whose total combined irradiance will simply equal the sum 


N


of the irradiances contributed by each individual bulb. This is 


 



E
 0 ei
 a =

also true for candle flames, flashbulbs, and all thermal (as dis-

^  E
 0 jei
 a j
  (7.26)


j 
 = 1

tinct from laser) sources.  
We cannot expect to see interference 





when the lightwaves from two reading lamps overlap.



is known as the  complex amplitude
  of the composite wave and is 

At the other extreme, if the sources are coherent and in-phase 

simply the sum of the complex amplitudes of the constituents. 

at the point of observation (i.e., a

Since


i 
 = a j
 ), Eq. (7.19) will become


N



N



N







E
 20 = ( E
 0 ei
 a)( E
 0 ei
 a)* (7.27)


E
 20 = ^  E
 20 i 
 + 2 ^^  E
 0 iE
 0 j



i 
 = 1


j 
 7  i i 
 = 1

we can always compute the resultant irradiance from Eqs. 

(7.26) and (7.27). For example, if  N 
 = 2,

or, equivalently,


E
 20 = ( E
 01 ei
 a1 +  E
 02 ei
 a2)( E
 01 e
 - i
 a1 +  E
 02 e
 - i
 a2) N


2






E
 20 = a^  E
 0 i
 b  (7.22)


E
 20 =  E
 201 +  E
 202 +  E
 01 E
 02[ ei
 (a1-a2) +  e
 - i
 (a1-a2)]


i 
 = 1

Again, supposing that each amplitude is  E
 01, we get

or 


E
 20 =  E
 201 +  E
 202 + 2 E
 01 E
 02 cos (a1 - a2) 


 



E
 20 = ( NE
 01)2 =  N
 2 E
 201 (7.23)

which is identical to Eq. (7.9).


In this case of in-phase coherent sources, we have a situation in 



which the amplitudes are added first and then squared to deter-



mine the resulting flux density.
  The superposition of coherent 


7.1.3 Phasor Addition


waves generally has the effect of altering the spatial distribution 

The summation described in Eq. (7.26) can be represented 

of the energy but not the total amount present. If there are regions 

graphically as an addition of vectors in the complex plane (recall 

where the flux density is greater than the sum of the individual 

the discussion on p. 22). In the parlance of electrical engineer-

flux densities, there will be regions where it is less than that sum.

ing, the complex amplitude is known as a phasor
 , and it’s spec-

ified by its magnitude and phase, often written simply as  E
 0∠a. 

Imagine, then, that we have a disturbance described by


7.1.2 The Complex Method



E
 1 =  E
 01 sin (v t 
 + a1)

It’s often mathematically convenient to make use of the complex 

In Fig. 7.6 a
  the wave is represented by a vector of length  E
 01 

representation when dealing with the superposition of harmonic 

rotating counterclockwise at a rate v such that its projection on 

disturbances. Accordingly, let’s redo the calculation of Section 7.1.1, 

the vertical axis is  E
 01 sin (v t


adding two harmonic waves. The wavefunction

+ a1). If we were concerned with 

cosine waves, we would take the projection on the horizontal 


E
 1 =  E
 01 cos ( kx 
 ± v t 
 + e1)

axis. Incidentally, the rotating vector is, of course, a phasor 
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I



I



I



E
 02


E
 0


E



E


02

2

a2 – a1


E



E


01


E


Reference

01

axis


E
 2

a


E



E


2

01

1

a1


E
 1

a1


E
 1

a

v t


v t


v t



R



R



R


(a)

(b)

(c)


Figure 7.6
   Phasor addition.


E



Figure 7.7
   The phasor 

05

180°

sum of  E
 1,  E
 2,  E
 3,  E
 4, and 


E
 5.


E
 01∠a1, and the  R
  and  I
  designations signify the real and imag-

inary axes. Similarly, a second wave


E
 04


E
 2 =  E
 02 sin (v t 
 + a2)


E
 0

is depicted along with  E
 1 in Fig. 7.6 b
 . Their algebraic sum,  

120°


E 
 =  E


15°

1 +  E
 2, is the projection on the  I
 -axis of the resultant pha-


E
 03

sor determined by the vector addition of the component pha-

sors, as in Fig. 7.6 c
 . The law of cosines applied to the triangle 


E
 02

of sides  E
 01,  E
 02, and  E
 0 yields

w


E
 2

45°

0 =  E
 201 +  E
 202 + 2 E
 01 E
 02 cos (a2 - a1)


E
 01

where use was made of the fact that cos [p - (a2 - a1)]  5

-cos (a2 - a1). This is identical to Eq. (7.9), as it must be. Us-

In Fig. 7.7 when the phase angle was, say, (v t 
 + 45°), the 

ing the same diagram, observe that tan a is given by Eq. (7.10) 

phasor was drawn up 45° from the horizontal axis. That’s just a 

as well. We are usually concerned with finding  E
 0 rather than 

convention and we could have taken +45° to be downward as 


E(t)
 , and since  E
 0 is unaffected by the constant revolving of all 

long as we were consistent. Similarly, we used sine functions but 

the phasors, it will often be convenient to set  t 
 = 0 and elimi-

the same procedure works for cosines (see Problem 7.10).

nate that rotation.

To exemplify the method, Fig. 7.8 depicts the superposition 

Some rather elegant schemes, such as the  vibration curve
  

of two different-amplitude waves of the same frequency that are 

and the  Cornu spiral
  (Chapter 10), will be predicated on the 

technique of phasor addition. As a further example, let’s briefly 


E


examine the wave resulting from the addition of


E
 0


E
 1 = 5 sin v t



E



E


1

2 = 10 sin (v t 
 + 45°)


E
 01


E



E
 02

3 = sin (v t 
 - 15°)


kx



E
 4 = 10 sin (v t 
 + 120°)

w


E
 2

a

and 


E
 5 = 8 sin (v t 
 + 180°) 


E



E


where for simplicity 

2

v t
  is in degrees. The appropriate phasors 

5∠0°, 10∠45°, 1∠-15°, 10∠120°, and 8∠180° are plotted in 

w

a


E


Fig. 7.7. Notice that each phase angle, whether positive or neg-

1

ative, is referenced to the horizontal. One need only read off 


Figure 7.8
     The summation of two sinusoidal functions of the same  


E
 0∠w with a scale and protractor to get  E 
 =  E
 0 sin (v t 
 + a). It 

frequency using phasor addition. Here E
 1 
 is taken as the reference phasor, 

is evident that this technique offers a tremendous advantage in 

and since  E
 2 leads  E
 1 (i.e., its peak occurs at an earlier location) the angle 

speed and simplicity, if not in accuracy.

a is positive. Thus w is positive and the resultant  E
  also leads  E
 1.
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satisfies the differential wave equation. In particular let’s exam-

ine  two harmonic waves of the same frequency propagating in 



opposite directions
 . A situation of practical concern arises when 

the incident wave is reflected backward off some sort of mirror; 

a rigid wall will do for sound waves or a conducting sheet for 

electromagnetic waves. Imagine that an incoming wave travel-


E


ing to the left,


E
 01  E
 03


E
 4






E


w


I 
 =  E
 0 I
  sin ( kx 
 + v t 
 + e I
 ) (7.28)


E
 3

a


E
 2

strikes a mirror at  x



E


= 0 and is reflected to the right in the form

1


E



E



kx


02

04


 



ER 
 =  E
 0 R
  sin ( kx 
 - v t 
 + e R
 ) (7.29)

The composite wave in the region to the right of the mirror is 


E 
 =  EI 
 +  ER
 . In other words, the two waves (one traveling to 


E


a

0

the right, the other to the left) exist simultaneously in the region 

w


E
 1

between the source and the mirror.

a E
 2

We could perform the indicated summation and arrive at a 

general solution* much like that of Section 7.1. However, some 


E 
 =  E
 0w

a

valuable physical insights can be gained by taking a slightly 


E
 3

more restricted approach.

The initial phase e I
  may be set to zero by merely starting 

a

our clock at a time when  EI 
 =  E
 0 I
  sin  kx
 . Certain qualifica-


E
 4

tions determined by the physical setup must be met by the 

mathematical solution, and these are known formally as 


Figure 7.9
     The summation of four sinusoidal waves of the same  



boundary conditions

 . For example, if we were talking about 

frequency. To further explore the phasor method, this time we’ll take  

the origin as the zero of phase and reference everything with respect  

a rope with one end tied to a wall at  x 
 = 0, that point must 

to it. The wave  E
 1 lags the origin by a; that is, the magnitude of the wave 

always have a zero displacement. The two overlapping waves, 

is zero at a larger value of  kx
  than 0. Moreover, each wave lags the previ-

one incident and the other reflected, would have to add in 

ous one by that same angle a. Accordingly, we draw the phasor E
 1 below 

such a way as to yield a zero resultant wave at  x 
 = 0. Simi-

the horizontal reference level and so lagging by a. All the other phasors 

larly, at the boundary of a perfectly conducting sheet, the re-

successively lag one another by that same amount. Note that the length of 

the resultant phasor equals the amplitude of the resultant wave.

sultant electromagnetic wave must have a zero electric-field 

component parallel to the surface. Assuming  E
 0 I 
 =  E
 0 R 
 =  E
 0, 

the boundary conditions require that at  x 
 = 0,  E 
 = 0, for all 

out-of-phase by an amount a. Notice that the amplitude of each 

values of  t
  and since e I 
 = 0, it follows from Eqs. (7.28) and 

wave ( E
 01 or  E
 02) is the amplitude of the corresponding phasor. 

(7.29) that e R 
 = 0. In other words, at  x 
 = 0,  EI 
 =  E
 0 sin (+v t
 ) The length of the resultant phasor ( E
 0) equals the amplitude of 

and   ER 
 =  E
 0 sin (-v t
 ); the two are 180° out-of-phase, 

the resultant wave, and its phase angle is a bit less than a. In a 


EI 
 = - ER
 , and they cancel at any time  t
 . The composite dis-

similar situation to that of Fig. 7.5, picture four equal-amplitude 

turbance is then

waves of the same frequency (Fig. 7.9), each shifted from the 

previous one by the same small amount 


E


a. The resultant phasor 

=  E
 0 [sin ( kx 
 + v t
 ) + sin ( kx 
 - v t
 )]

is E 
 =  E
 0∠w, and it has the amplitude and phase of the resultant 

wave. That amplitude is substantial, but interestingly, if there 

Applying the identity

were more constituent waves their phasors, tipped-to-tailed, 

sin a + sin b = 2 sin 12 (a + b) cos 12 (a - b)

would spiral around and  E
 0 would start to decrease. That’s obvi-

ous in the phasor diagram, though it’s not nearly so apparent in 

yields

the wave representation.






E(x, t) 
 = 2 E
 0 sin  kx
  cos v t
  (7.30)


7.1.4 Standing Waves


We saw earlier (p. 20) that the sum of solutions to the differential 

wave equation is itself a solution. Thus, in general,

c (x, t) 
 =  C
 1 ƒ(x 
 -  vt) 
 +  C
 2 g(x 
 +  vt)


*See, for example, J. M. Pearson,  A Theory of Waves
 .
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Figure 7.10
     The creation of standing waves. Two waves of  

the same amplitude and wavelength traveling in opposite  

directions form a stationary disturbance that oscillates  

in place.

(c)  E


2 E
 0

This is the equation for a standing
  or stationary wave
 , as op-

posed to a traveling wave (Fig. 7.10). Its profile does not move 


x


through space; it is clearly not of the form  ƒ(x 
 ±  vt)
 . At any 

l

l

3l

2l

5l

2

2

2

point   x 
 =  x
 ′, the amplitude is a constant equal to 2 E
 0 sin  kx
 ′, 

–2 E
 0

and   E(x
 ′,  t)
  varies harmonically as cos v t
 . At certain points, 

namely,  x 
 = 0, l>2, l, 3l>2, . . . , the disturbance will be zero 

at all times. These are known as nodes
  or  nodal points
  


Figure 7.11
     A standing wave at various times.

(Fig. 7.11). Halfway between each adjacent node, that is, at 


x 
 = l>4, 3l>4, 5l>4, . . . , the amplitude has a maximum value 

of ±2 E
 0, and these points are known as antinodes
 . The distur-

bance  E(x, t)
  will be zero at all values of  x
  whenever cos v t 
 = 0, 

that is, when  t 
 = (2 m 
 + 1)t>4, where  m 
 = 0, 1, 2, 3, . . . and t 

is the period of the component waves.
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EXAMPLE 7.1 

Write an equation for a standing wave that has an antinode at 


x 
 = 0. Start with the two waves of equal amplitude  E
 0,


EI 
 =  E
 0 sin (v t 
 -  kx
 )

and 

Standing waves on a vibrating string. 


E


(PASCO)


R 
 =  E
 0 sin (v t 
 +  kx
 )

Here we have interchanged the space and time parts of the 

phases in Eqs. (7.28) and (7.29) and that will interchange them 

traveling to the right (increasing  x
 ). Let the phasors E
 1 represent 

in Eq. (7.30).

a wave traveling to the left, and E
 2 a wave to the right. The re-

sultant phasor is E
 1 + E
 2 = E 
 =  E
 0∠w, where  E
 0 is the ampli-

SOLUTION 

tude of the curve (i.e., the resultant disturbance) at any chosen 

Using the identity

moment. It’s gotten by tip-to-tailing E
 1 and E
 2. If we wish to 

reproduce Fig. 7.11, let the two waves have the same amplitude, 

 sin a + sin b = 2 sin 12 (a + b) cos 12 (a - b)


E
 01 =  E
 02. Keeping the two phasors tip-to-tail and having E
 1 

rotate counterclockwise as E
 2 rotates (at the same rate) clock-


EI 
 +  ER 
 = 2 E
 0 sin 12 (2v t
 ) cos 12 (-2 kx
 )

wise generates E  
 as a function of  t
 . Notice that the triangles 

Since cos (

formed by the three phasors are always isosceles, with E
  being 

- kx
 ) = cos ( kx
 )

vertical. It doesn’t rotate at all, and the resultant wave it repre-


EI 
 +  ER 
 = 2 E
 0 sin v t
  cos  kx


sents doesn’t progress through space—it’s a standing wave. 

or

Going back to Fig. 7.10, if the reflection is not perfect, as is 


E(x, t) 
 = 2 E
 0 cos  kx
  sin v t


often the case, the composite disturbance will not have zero 

At   x


amplitude at the nodes (Fig. 7.13). That’s most easily seen with 

= 0,   E(0, t) 
 = 2 E
 0 sin v t
 , which oscillates from +2 E
 0

to 

the phasors E


-2 E
 0 as time goes on.

1 and E
 2 where this time   E
 01 7  E
 02 .  
 Now  E  


rotates in the same direction (counterclockwise) as the larger 

of the two component phasors, namely, E
 1. The composite 

Figure 7.12 illustrates how the standing-wave pattern is gen-

wave contains a traveling component along with the stationary 

erated from a phasor perspective. There are two harmonic 

wave (see Fig. 7.13 c
  and Problem 7.17). Under such condi-

waves, so begin with two phasors E
 1 and E
 2. The waves are 

tions there will be a net transfer of energy, whereas for the pure 

180° out-of-phase at the boundary  x 
 = 0, and hence the two 

standing wave there is none. It’s also possible to write an ex-

phasors must have initial values of  E
 01∠0 and  E
 02∠p. Earlier 

pression for the resultant partial standing wave in the form 

(Section 2.6) we saw that a phasor rotating counterclockwise at 


E 
 =  E
 0 (x)
  cos [v t 
 - w (x)
 ] where the amplitude varies from point a rate v is equivalent to a wave traveling to the left (decreasing 

to point, while at each value of  x
  the wave oscillates in time cosi-


x
 ), and similarly, one rotating clockwise corresponds to a wave 

nusoidally. You can see from the phasor diagram (Fig. 7.13 b
 ), 


E
 2


E
 1


E



E


2

2


E



E



E
 1


E
 1


E
 1


E
 01 +  E
 02


E
 2


x


0

l

l

l

4

2


E
 01 +  E
 02


E
 2


E
 1


E
 1


E



E


1


Figure 7.12
     The generation of a standing wave from  

1


E



E



E


2

the perspective of phasor addition. The two phasors  


E



E


2

1


E
 2

rotate at the same rate but in opposite directions. Here  


E


both waves have the same amplitudes, and that produces 

2

complete cancellation at the nodes.
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Figure 7.13
   ( a
 ) The generation of a partial standing wave from the  


x


perspective of phasor addition. This time the two waves have different 

l

l

3l

2l

amplitudes, and that produces nonzero nodes. Accordingly, the distur-

2

2

bance has a traveling wave component that propagates in the direction  

of the larger constituent wave. ( b
 ) The wave can be written in the form 


E



E 
 =  E
 0 (x)
  cos [v t 
 - w (x)
 ]. Applying the Law of Cosines, the amplitude is E
 01 +  E
 02

given by  E


2

2

0 (x) 
 = ( E
 01 +  E
 02 + 2 E
 01 E
 02 cos 2 kx
 )1>2. ( c
 ) The traveling wave component in the alternative case where E



E
 01 –  E
 02

1 rotates counterclockwise and 


x



E
 2 clockwise. Since E
 1 7 E
 2, E
  then rotates clockwise and the disturbance 

moves to the right. (Curves in [ c
 ] courtesy Justin Dove.) The tip of the phasor 

sweeps out an ellipse.

applying the Law of Cosines, that the position-dependent ampli-

tude is  E


2

2

0 (x) 
 = ( E
 01 -  E
 02 + 2 E
 01 E
 02 cos 2 kx
 )1>2.

Although the analysis carried out above is essentially one-di-

mensional, standing waves exist in two and three dimensions as 

well. The phenomenon is extremely commonplace: standing 

waves occur in one dimension on guitar strings and diving boards, 

in two dimensions on the surface of a drum or in a jiggled pail of 

water (see photo), and in three dimensions when you sing in a 

shower stall. In fact, standing waves are created within the cavities 

inside your head whenever you sing, no matter where you are.

If a standing-wave system is driven by an oscillating source, 

it will efficiently absorb energy provided that the vibrations 

A pail used to wash a floor contained a suspension of fine dirt particles in 

match one of its standing-wave modes. That process is known 

water. When placed in a curved sink, the pail gently rocked along a fixed 

as resonance, and it happens every time your house buzzes 

axis, setting up standing waves and distributing the particles in ridges as 

when an airplane flies low overhead or when a heavy truck 

they settled. (E.H.)
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(a)

(b)

Antinodal planes

Film

A standing-wave pattern on the side of a car due to vibrations caused by 

l2

plate

its running engine. The scale is in microns, where 1 mm = 10-6 m. The 

l2

photo was made using a holographic technique. (HOLO3/FTPO)

l4

passes by. If the source continues to supply energy, the wave 

will continue to build until the system’s inherent losses equal 

the energy input and equilibrium is reached. This ability to sus-

Mirror

tain and simplify an input is an extremely important feature of 

standing-wave systems. The ear’s auditory canal is just such a 


Figure 7.14
     Wiener’s experiment. ( a
 ) The incoming wave has a down-

resonant cavity. It amplifies (by about 100%) sounds in the 

ward component and the reflected wave has an upward component. These 

range from ≈3 kHz to ≈4 kHz. Similarly, the laser builds its 

overlap to produce a standing wave in two dimensions. The little black dots 

mark maxima; the little circles locate minima. ( b
 ) Here the incident beam 

powerful emission within a standing-wave cavity (p. 612). 

comes straight down onto a mirror and it forms a standing-wave pattern 

It was by measuring the distances between the nodes of stand-

with the upward reflected wave.

ing waves that Hertz was able to determine the wavelength of the 

radiation in his historic experiments (see Section 3.6.1). 





A few years later, in 1890, Otto Wiener first demonstrated the 

existence of standing lightwaves. The arrangement he used is de-

picted in Fig. 7.14b. It shows a normally incident parallel beam of 

quasimonochromatic light reflecting off a front-silvered mirror. 

Using a mirror ensured that the two overlapping waves would 

have nearly the same amplitudes, yielding a pattern more like 

Fig. 7.12 than 7.13. Maxima occur where trough overlays trough 

and peak overlays peak. Minima occur where trough overlays 

peak and vice versa. A transparent photographic film, less than 

l>20 thick, deposited on a glass plate, was inclined to the mirror 

at an angle of about 10-3 radians. In that way the film plate cut 

across the pattern of standing plane waves. After developing the 

emulsion, it was found to be blackened along a series of equidis-

tant parallel bands. These corresponded to the regions where the 

photographic layer had intersected the antinodal planes. Signifi-

cantly, there was no blackening of the emulsion at the mirror’s 

surface. It can be shown that the nodes and antinodes of the mag-

netic field component of an electromagnetic standing wave alter-

nate with those of the electric field (Problem 7.13). We might 

suspect as much from the fact that at  t 
 = (2 m 
 + 1)t>4,  E 
 = 0 for 

all values of  x
 , so to conserve energy it follows that  B 
 Z 0. In 

A two-dimensional standing-wave pattern formed between a source and a 

agreement with theory, Hertz had previously (1888) determined 

reflector. EM waves from a 3.9-GHz antenna enter from the right. They 

reflect off a metal rod and travel back to the antenna. The pattern is made 

the existence of a nodal point of the electric field at the surface of 

visible by absorbing the microwave radiation and recording the resulting 

his reflector. Accordingly, Wiener could conclude that the black-

temperature distribution with an IR camera. (H.H. Pohle, Phillips Laboratory, Kirtland 

ened regions were associated with antinodes of the E


$-field.  
It is 



Air Force Base)



the electric field that triggers the photochemical process

 .
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Ultrasonic levitation. Ultrasonic waves, one traveling up and the other 

down, form a standing-wave pattern. Here a droplet of water is suspend-

ed in a nodal region. (NASA)

In a similar way Drude and Nernst showed that the E


$-field is 

responsible for fluorescence. These observations are all quite 

understandable, since the force exerted on an electron by the 


B


$-field component of an electromagnetic wave is generally neg-

ligible in comparison to that of the E


$-field. For these reasons, the 

electric field is referred to as the  optic disturbance 
 or  light field
 .

Standing waves generated by two oppositely propagating 

disturbances represent a special case of the broader subject of 

double-beam interference (p. 390). Consider the two point 

sources sending out waves in Fig. 7.15. When point- P
 , the 


P


f

Slices of the three-dimensional electromagnetic standing-wave pattern  

at different heights inside a microwave oven. (Alistair Steyn-Ross, University of 

Waikato)

S

S

1

2

point of observation somewhere near the middle, is far from 

the sources, angle f is small, the two waves superimpose, and 

there results a complicated interference pattern (that will be 

treated in detail in Chapter 9). Suffice it to say here that the 


Figure 7.15
     Two monochromatic point sources. At any point- P
  the resul-

space surrounding the sources will be filled with a system of 

tant wave is maximum where peak (—) overlaps peak (—) or trough (– –) 

overlaps trough (– –). It’s minimum where peak overlaps trough. The maxi-

bright and dark bands where the interference is alternately con-

ma that form along the  S
 1 S
 2 line correspond to standing waves.

structive and destructive. As  P
  comes closer and f gets larger, 
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the fringes become finer, that is, narrower, until  P
  is on the line 

and 


k 
 K 12 ( k
 1 +  k
 2)   km 
 K 12 ( k
 1 -  k
 2) (7.32)

joining the sources and f = 180°. Then standing waves are set 

up, and the “fringes” are the finest they’ll get, namely, half a 

thus

wavelength peak-to-peak.






E 
 = 2 E
 01 cos ( kmx 
 - v mt
 ) cos ( kx 
 - v t
 ) (7.33)

The total disturbance may be regarded as a traveling wave of 

frequency v, known as the carrier
 , having a time-varying or 


7.2  The Addition of Waves of  


modulated amplitude  E
 0 (x, t)
  such that


Different Frequency



 



E(x, t) 
 =  E
 0 (x, t)
  cos ( kx 
 - v t
 ) (7.34)

Thus far the analysis has been restricted to the superposition of 

where

waves all having the same frequency. Yet one never actually has 


 



E


disturbances, of any kind, that are strictly monochromatic. It 

0 (x, t) 
 = 2 E
 01 cos ( kmx 
 - v mt
 ) (7.35)

will be far more realistic, as we shall see, to speak of qua-

Accordingly,   k
  and v are often referred to as the spatial and 

simonochromatic light, which is composed of a narrow range of 

temporial carrier frequencies
 . In applications of interest here, 

frequencies. The study of such light will lead us to the impor-

v1 and v2 will always be rather large. In addition, if they are 

tant concepts of bandwidth and coherence time.

comparable to each other, v1 ≈ v2, then v 7 7 v m
  and 

The ability to modulate light effectively (Section 8.11.3) makes 


E
 0 (x, t) 
 will change slowly, whereas  E(x, t)
  will vary quite rap-

it possible to couple electronic and optical systems in a way that 

idly (Fig. 7.16). The irradiance is proportional to

has had and will certainly continue to have far-reaching effects on 

the entire technology. Moreover, with the advent of electro-optical 


E
 2

2

0 (x, t) 
 = 4 E
 01 cos2 ( km
   x 
 - v mt
 )

techniques, light has taken on a significant role as a carrier of in-

or 


E
 2

2

formation. This section is devoted to developing some of the 

0 (x, t) 
 = 2 E
 01[1 + cos (2 km
   x 
 - 2v mt
 )] 

mathematical ideas needed to appreciate this new emphasis.

Notice that  E
 2

2

0 (x, t)
  oscillates about a value of 2 E
 01 with an angu-

lar frequency of 2v m
  or simply (v1 - v2), which is known as the 


beat frequency
 . That is,  E
 0 varies at the modulation frequency, 


7.2.1 Beats


whereas  E
 20 varies at twice that, namely, the beat frequency.

We’ll start with the especially simple case of two waves of dif-

When the two overlapping harmonic waves have different 

ferent frequency traveling in the same direction. Consider the 

amplitudes, they still produce beats, but the cancellation is  

composite disturbance arising from a combination of the waves

incomplete—there’s less contrast. Figure 7.17 depicts such a 

pattern and indicates how the two phasors E
 1 and E
 2 give rise to 


E
 1 =  E
 01 cos ( k
 1 x 
 - v1 t
 )

it. Remember that the resultant phasor E 
 =  E
 0 (x, t)
 ∠w 
 provides 

the amplitude
  and relative
  phase
  of the composite disturbance. 

and 


E
 2 =  E
 01 cos ( k
 2 x 
 - v2 t
 ) 

The slowly oscillating envelope is a plot of  E
 0 (x, t)
  as it changes 

in time. The resultant phasor does not give us the instantaneous 

where   k
 1 7  k
 2 and v1 7 v2. These waves have equal ampli-

magnitude of the oscillating carrier. 

tudes and zero initial phase angles. The net composite wave

The two waves travel in the same direction, and consequent-

ly their phasors rotate the same way—one at v


E


1 and the other 

=  E
 01[cos ( k
 1 x 
 - v1 t
 ) + cos ( k
 2 x 
 - v2 t
 )]

at v2. Rather than letting both phasors revolve around at their 

can be reformulated as

different frequencies, we can simplify things a little. Suppose 

that v1 7 v2 and place the higher-frequency phasor E
 1 at the 


E 
 = 2 E
 01 cos 12[( k
 1 +  k
 2) x 
 - (v1 + v2) t
 ]

tip of the lower-frequency one E
 2 (Fig. 7.17 b
 ). Redraw E
 2 

fixed along the horizontal zero-phase reference line. The angle 

* cos 12[( k
 1 -  k
 2) x 
 - (v1 - v2) t
 ]

a that E
 1 makes (Fig. 7.17 c
 ) with the horizontal (i.e., with E
 2) 

using the identity

at any instant is its phase with respect to E
 2, and so E
 1 rotates 

at a rate (v1 - v2) and a = (v1 - v2) t
 . The amplitude  E
 0 (x, t) 


cos a + cos b = 2 cos 12(a + b) cos 12(a - b)

of the resultant (the envelope of the carrier) oscillates between 

values of  E


Now define the quantities v and  k
 , which are the  
average angular 



02 +  E
 01 and  E
 02 -  E
 01. The angle that E  
 makes 

with the horizontal (w) is the phase of the resultant wave with 



frequency

  and  
average propagation number

 , respectively. Simi-

respect to E


larly, the quantities v

2, and it gradually oscillates as E
 1 rotates around in 


m
  and  km
  are designated the  
modulation fre-



a circle. 



quency

  and  
modulation propagation number

 , respectively. Let

Note that in the case of Fig. 7.16, where  E
 01 =  E
 02,   E
 0 





v K 12 (v1 + v2)  v m 
 K 12 (v1 - v2) (7.31)

oscillates between 0 and 2 E
 01. Moreover, 2w = a, and the  
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E
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l m
  = 
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E
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4 E 
 2

01

l1l2(l2 – l1)
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2 E 
 2
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E 
 20( x
 )


x


(d)


Figure 7.16
     The superposition of two equal-amplitude harmonic waves of different frequency  

producing a beat pattern.

resultant phasor E
  —which corresponds to the amplitude of the 

To obtain two waves of slightly different frequency they used 

disturbance—rotates at a rate v m 
 = 1

- v2), all of which 

the Zeeman Effect. When the atoms of a discharge lamp, in 

2 (v1

agrees with Eq. (7.33).

this case mercury, are subjected to a magnetic field, their en-

Beats are commonplace in sound: piano tuners have al-

ergy levels split. As a result, the emitted light contains two 

ways done their work beating the notes of vibrating strings 

frequency components, n1 and n2, which differ in proportion 

against tuning forks. But the effect was only first observed 

to the magnitude of the applied field. When these components 

with light in 1955 by Forrester, Gudmundsen, and Johnson.* 

are recombined at the surface of a photoelectric mixing tube, 

(a)

(b)


E
 2 E
 1


E


a


E


w


E



E
 1

2

(c)

(v1– v2) t



E
 1 v1 t



E
 2


E


v2 t



E



E
 2

1


E



E
 1

2


E



E



E



Figure 7.17
   ( a
 ) The superposition of two unequal-amplitude harmonic 

1


E



E


2

2

1

waves of different frequency producing a beat pattern. ( b
 ) Here the  


E



E


higher-frequency phasor E
 1 is placed at the end of E
 2. ( c
 ) It rotates with 

the difference frequency.

*A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photo-electric mixing of 

incoherent light,”  Phys. Rev
 . 99
 , 1691 (1955).
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the beat frequency, n1 - n2, is generated. Specifically, the 

Each small peak in the carrier would travel to the right with the 

field was adjusted so that n1 - n2 = 1010 Hz, which conve-

usual phase velocity. In other words,

niently corresponds to a 3-cm microwave signal. The recorded 

2

(

photoelectric current had the same form as the  E (x)
  curve in 

0w>0 t
 )

0






v 
 = - 


x 
  [2.32]

Fig. 7.16 d
 .

(0w>0 x
 ) t


The advent of the laser has since made the observation of 

beats using light considerably easier. Even a beat frequency of a 

From Eq. (7.34) the phase is given by w = ( kx 
 - v t
 ), hence

few Hz out of 1014 Hz can be seen as a variation in phototube 






v 
 = v> k
  (7.36)

current. The observation of beats now represents a particularly 

sensitive and fairly simple means of detecting small frequency 

This is the phase velocity of the carrier, whether it’s modulated 

differences. The ring laser (Section 9.8.3), functioning as a gyro-

or not. In the former case, the peaks simply change amplitude 

scope, utilizes beats to measure frequency differences induced 

periodically as they stream along.

as a result of the rotation of the system. The Doppler Effect, 

Evidently, there is another motion to be concerned with, and 

which accounts for the frequency shift when light is reflected off 

that’s the propagation of the modulation envelope. Return to 

a moving surface, provides another series of applications of 

Fig. 7.16 a
  and suppose that the constituent waves,  E
 1 (x, t) 
 and 

beats. By scattering light off a target, whether solid, liquid, or 


E
 2 (x, t)
 , advance with the same speed,  v
 1 =  v
 2. Imagine, if you 

even gaseous, and then beating the original and reflected waves, 

will, the two harmonic functions having different wavelengths 

we get a precise measure of the target speed. In much the same 

and frequencies drawn on separate sheets of clear plastic. When 

way on an atomic scale, laser light will shift in phase upon inter-

these are overlaid in some way (as in Fig. 7.16 a
 ), the resultant 

acting with sound waves moving in a material. (This phenome-

is a stationary beat pattern. If the sheets  are both moved to the 

non is called Brillouin Scattering.) Thus 2v m
  becomes a measure 

right at the same speed so as to resemble traveling waves, the 

of the speed of sound in the medium.

beats will obviously move with that same speed.  The rate at 



which the modulation envelope advances
  is known as the group 



velocity
 , or  vg
 . In this instance, the group velocity equals the 


7.2.2 Group Velocity


phase velocity of the carrier (the average speed, v> k
 ). In other 

words,   vg 
 =  v 
 =  v
 1 =  v
 2. This applies specifically to nondis-

The specific relationship between v and  k 
 determines  v
 , the 

persive media in which the phase velocity is independent of 

phase velocity of a wave. In a nondispersive medium, and 

wavelength so that the two waves could have the same speed.

vacuum is the only truly nondispersive environment,  v 
 = v> k
  

For a more generally applicable solution, examine the ex-

[Eq. (2.33)], and a plot of v versus  k
  is a straight line. The 

pression for the modulation envelope:

frequency and wavelength change so as to keep  v
  constant. All 

waves of a particular type (e.g., all EM waves) travel with the 






E
 0 (x, t) 
 = 2 E
 01 cos ( kmx 
 - v mt
 ) [7.35]

same phase speed in a nondispersive medium. By contrast, in 

The speed with which that wave moves is again given by  

a dispersive medium (anything other than vacuum) every elec-

Eq. (2.32), but now we can forget the carrier wave. The modula-

tromagnetic wave propagates at a speed that depends on its 

tion advances at a rate dependent on the phase of the envelope

frequency. 

( kmx


When a number of different-frequency harmonic waves su-

- v mt
 ), and

  

v

perimpose to form a composite disturbance, the resulting 


v



m



g 
 =  k


modulation envelope will travel at a speed different from that 


m


of the constituent waves. This raises the important notion of 

v

the  
group velocity

  and its relationship to the phase velocity. 

∆v

or 


v


1 - v2


g 
 =

=





The concept was first put forward (1839) by the great Irish 


k
 1 -  k
 2

∆ k


physicist and mathematician Sir William Rowan Hamilton, 

Recall that in ordinary media v is dependent on l, or equiva-

though it got little attention until Stokes reintroduced it in 

lently on  k
 . The particular function v

1876 in the context of hydrodynamics. Assuming we can rec-

= v (k)
  is called a  disper-



sion relation
 . When the frequency range 

ognize some constant feature in the shape of a pulse, like its 

∆v, centered about v, 

is small, 

leading edge, we’ll take the rate at which that feature moves to 

∆v>∆ k
  is approximately equal to the derivative of the 

dispersion relation evaluated at v; that is,

be the velocity of the group of waves as a whole. 

The disturbance examined in the previous section,


d
 v






E(x, t) 
 =  E
 0 (x, t)
  cos ( k
 x - vt) [7.34]






vg 
 = a b  (7.37)


dk 
  v

consists of a high-frequency (v)   
carrier wave

 ,   amplitude-



modulated
  by a cosine function. Suppose, for a moment, that the 

(to see how this works in practice study Problem 7.37).  The 


wave in Fig. 7.16 b
  was not modulated; that is,  E
 0 = constant. 


modulation or signal propagates at a speed vg
    that may be 
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greater than, equal to, or less than v, the phase velocity of 


+


the carrier. 
 The group velocity for deep-water surface waves 

+

(Problem 7.29) is one-half the phase velocity, whereas for waves 

on a string  v 
 =  vg.



+


+

EXAMPLE 7.2

In quantum mechanics v = U k
 2>2 m
  for a wave packet (like that 

of Fig. 7.18) representing a free particle of mass  m
 . Here U is 


+


+

Planck’s Constant divided by 2p. Show that for the wavefunc-

tion of a free particle the group velocity (which corresponds to 

the classical particle velocity) equals twice the phase velocity.

+  +



vg(
 v ¯ )



SOLUTION
  

Given that v = U k
 2>2 m
 , the phase velocity (really phase speed) is

+

v

U k
 2

U k



v 
 =

=

=


k



k
 2 m


2 m


By contrast the group velocity of the wave packet is


+ 
 +


d
 v

2 k
 U

U k



v


  


g 
 =

=

=


dk


2 m



m



+


+


v(
 v ¯ )


and so


vg 
 = 2 v


Incidentally,   k 
 = 2p>l,  p 
 =  h
 >l, and  k 
 = 2p p
 > h 
 =  p
 >U. But 


+


+


E 
 =  p
 2>2 m
  so the phase velocity of the packet,  v
 , is 

U k



E



v 
 =

=

2 m


A2 m



Figure 7.18
     A wave pulse in a dispersive medium. Here  v 
 7  vg
  and new 

wavelets enter the moving pulse at its near (on the left). If  v
  had been less 

whereas the classical velocity,  v


than  vg
  new wavelets would have entered the front of the pulse (on the right).


c
 , follows from the fact that the 

particle’s energy is all kinetic;  E 
 = 12  mv
 2 c
  and

2 E


Here again it’s natural to think about the group velocity. Equa-


vc 
 = A  m 
 = 2 v


tion (7.37) will be true, more or less, for any collection of over-

lapping sinusoidal waves, as long as ∆ k, 
 their range of values of 

Hence


k,
  is narrow. As we’ll learn, a narrow range of  k
  (or equivalently 


vc 
 =  vg


of l) means that we have a wide packet in space. By contrast, if 

the pulse is narrow in space, there will be a large number of si-

nusoidal components present that have a correspondingly wide 

Strictly speaking, any real wave is finite in spatial extent: it’s 

range of  k
  values. Since each wavelength component travels at a 

turned on (or received) at some specific time and, presumably, 

different phase velocity in a dispersive medium, such a pulse 

shut off at some later time. A real wave is therefore actually a 

would change shape as it moved along, making  vg 
 a less than 

pulse, though it could be a rather long one. As we’re about to 

precise concept to deal with experimentally.

learn (p. 300), any such pulse is identical to a superposition of 

Recall that a typical medium in the vicinity of a resonance

numerous different-frequency sine waves (i.e., Fourier compo-

(n0) has an  n(
 n )
 -versus-n curve resembling Fig. 7.19. Radiant 

nents), each with a specific amplitude and phase. Accordingly, 

energy corresponding in frequency to the central region, 

envision not just two constituent waves as in Fig (7.16), but up-

where the slope of the curve is negative, is very strongly ab-

wards of a thousand, all with different frequencies. If, as is cer-

sorbed, and so this is called the  absorption band
 . On either 

tainly possible, the sinusoids cancel each other everywhere ex-

side of it,   n(
 n )
  increases with increasing n, and this is the do-

cept over a region where they are in-phase, or nearly so, the 

main of  normal dispersion
 . Inside the absorption band,  n(
 n )
  

resulting disturbance will resemble a localized pulse, often 

decreases with increasing n, and this is the domain of  anomalous 


called a  
wave packet

  (Fig. 7.18) to remind us that it’s just that. 


dispersion
 . 
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(a)

v

(b)

v


vg(
 v ¯ )


v


¯ 



(



(
 v ¯ ,k¯)


v


¯ ,k¯)


v


¯ 



vg(
 v ¯ )


Absorption


v(
 v ¯ )


     band


v(
 v ¯ )
  = v ¯ 
 k¯



n(
 n )


0


k¯



k


0


k¯



k



Figure 7.20
     A plot of the dispersion relation. ( a
 ) In normal dispersion 

n


v
 (v) 7  v 
 v), whereas in ( b
 ) anomalous dispersion  v 
 v) 7  v
 (v). The g
 (   






g
 (   

phase velocity  v
 , of a wave of any frequency v, is the slope of the line 

n0

drawn from the origin to that point. The group velocity is the slope of the 

tangent to the curve at (v,   k
 ) where v is the mean frequency of the 

waves composing the group.


Figure 7.19
     A typical representation of the frequency dependence of 

the index of refraction in the vicinity of an atomic resonance. Also shown 

travel slower than low-frequency waves (e.g., red). Moreover, 

is the absorption curve centered on the resonant frequency.

the slope of the dispersion curve ( vg
 ) is always less than the 

slope of the line ( v
 ); that is,  vg 
 6  v
 , whereas in anomalous dis-

persion  vg 
 7  v
 .

A plot of the dispersion relation (Fig. 7.20) produces a curve 

Since v =  kv
 , Eq. (7.37) yields

passing through the origin that is convex upward for normal 


dv


dispersion and concave downward for anomalous dispersion  






vg 
 =  v 
 +  k
    (7.38)


dk


(p. 74). In either case, the slope of a line drawn from the origin 

to any point (v,  k
 ) on the curve is the phase velocity at that 

As a consequence, in an idealized nondispersive medium in 

frequency. Similarly, the slope of the curve at the point (v,  k
 ),  

which   v
  is independent of l,   dv
 > dk 
 = 0  
 and  vg 
 =  v
 . Specifi-


 
 is ( d
 v> dk
 ) v, and that’s the group velocity for the set of compo-

cally, in vacuum v =  kc
 ,  v 
 =  c
 , and  vg 
 =  c
 . 

nent waves centered at v. In normal dispersion, sinusoidal 

Real substantial media are all more or less dispersive ( v
 1 Z  v
 2, 

waves of high frequency (e.g., blue) have larger indices and 

as is the case in Fig. 7.21). Given that  n(k)
  is known, v =  kc
 > n
 , 

and it’s then useful to reformulate  vg
  as


c



kc dn



vg 
 =






n 
 -  n
 2  dk



k dn


or 


vg 
 =  v
  a1 -   b (7.39)


n dk




For optical media, in regions of normal dispersion, the refrac-





tive index increases with frequency (dn

 , 
dk 

 +  
0), and as a 





result 

 Y 
g 

 * Y 
.

  Clearly, one should also define a  
group index of 





refraction








ng 
 K  c
 > vg
  (7.40)

which must be carefully distinguished from  n
 . In 1885 A. A. 

Michelson measured  ng
  in carbon disulfide using pulses of 

white light and obtained 1.758 in comparison to  n 
 = 1.635.

EXAMPLE 7.3

Consider Michelson’s 1885 experiment in which the two stan-

A sequence of ripple tank photos of a wave packet traveling in the upward 

dard wavelengths used are l F 
 = 486.1 nm and l D 
 = 589.2 nm. 

direction starting at the left. The arrows mark the crest, which travels faster 

than the packet, and eventually vanishes at its leading edge (top right). 

The corresponding indices of refraction are  nF 
 = 1.652 and 

This sort of normal dispersion corresponds to  v 
 7  vg
 . (B. Ströbel, “Demonstration 


nD 
 = 1.628. Using the results of Problem 7.36, determine the 

and study of the dispersion of water waves with a computer-controlled ripple tank,”  Am. J. Phys
 . 


79
 (6), 581–590 [June, 2011], American Association of Physics Teachers)


Continued
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group velocity in the medium (CS2) and compare it to the aver-

Be very careful here!

age value of the phase velocity.

We are dealing with a situation of normal dispersion where 

SOLUTION 

(∆ n
 >∆l) 6 0, that is, the index decreases as l increases. 

Hence

From Problem 7.36


c


l c dn



vg 
 = 1.828 0 * 108[1 + (3.278 4 * 10-7)(-2.327 8 * 105)


vg 
 =






n 
 +  n
 2  d
 l


vg 
 = 1.828 0 * 108(0.923 69)

and, more conveniently,

  vg 
 = 1.688 * 108 m>s


c


l  dn



vg 
 =  a1





b


n


+  n d
 l

The average phase velocity is

The definition of  vg
  calls for it to be evaluated at v so let’s  


c


2.998

rewrite this expression as

* 108


v 
 = =


n


1.640


c


l ∆ n



vg 
 =  a1 +   b

and


n



n 
 ∆l

where the average values are


v 
 = 1.828 * 108 m>s


n


l


n 
 =  F 
 +  nD
   and  


F 
 + l D


l =

As is appropriate  v 
 7  vg
 .

2

2

then

Return to Fig. 7.18, where the medium is normally disper-

2.998 * 108

537.65 * 10-9 ∆ n



vg 
 =

 a1 +





b

sive and the phase velocity will be taken as the velocity of the 

1.640

1.640

∆l

(a)

(b)


t = t
 1


v
 1  (t
 2  – t
 1 )



v
 2  (t
 2  – t
 1 )


(c)


vg (t
 2  – t
 1 )



Figure 7.21
     Group and phase velocities. In 

( a
 ) the two waves coincide at the point indicat-

ed by an ⊗. And in ( b
 ) the peak of the modu-

(d)

lated wave occurs at that point. But the waves 

travel at different speeds in ( c
 ) and the two 

original peaks (marked by  x
  and ~ ) separate.  

A different pair now coincide in ( d
 ) to form the 

high point of the modulated wave, which 


t = t


therefore travels at yet a different speed. Here 

2


v
 1 7  v
 2 7  vg
 , and since l1 7 l2 this is a 

case of normal dispersion.
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carrier, that is, of the roughly sinusoidal wave of frequency v. 

Alternatively:

Because the peaks of the carrier travel faster than does the 


k
 Υ 1>2 v

  v


pulse as a whole, they appear to enter it at the left, sweep 

= a b =

r


k


through it, and vanish off at the right. Although each peak of 

the carrier changes height as it progresses across the pulse, 


k
 Υ 1>2

1>2

 v =  k
  a b =  k
 3>2 aΥb


v(
 v )
  is the speed of any such peak and it’s therefore properly 

r

r

the speed of the condition of constant phase. By contrast, the 

modulation envelope travels at a speed  v


, 


d
 v

3

1>2

3


g(
 v ) 
 =  (d
 v> dk)
  v

  vg 
 =

=   k
 1>2 aΥb

=   v


which in this particular instance equals one quarter of  v(
 v )
 . 


dk


2

r

2

Any point on the envelope (e.g., the maximum at the center of 

the pulse) moves at a speed  vg(
 v )
 , which is the speed of the 

As established in Problem 7.33,

condition of constant magnitude.


dn



ng 
 =  n 
 - l

EXAMPLE 7.4


d
 l

The speed at which short-wavelength ripples travel over water 

In a dispersive medium  n
  is a function of l, and so  ng
  is a func-

is given by

tion of l as well. Moreover, as shown in Fig. 3.42, in regions of 

normal dispersion  dn


1

> d
 l 6 1 and we can expect  ng 
 7  n
  for or-

2pΥ >2

dinary optical media. For example, Fig. 7.22 displays the wave-


v 
 = a

b

lr

length dependence of both the phase and group indices for 

fused silica glass (pure SiO

where Υ is the surface tension and r is the density of water. Deter-

2) over the range from mid-light, 

500 nm, to 1900 nm in the IR. The fact that  n


mine the corresponding group velocity (actually the group “speed”).


g
  is nearly horizon-

tal in the region around 1300 nm is very important in modern 

SOLUTION 

communications applications. It means there will be little dis-

persion to disturb signals if we use 1300 nm IR as the carrier to 

By definition

send data pulses down long glass fiberoptic cables.


d
 v


d
 (2pn)


d
 n


vg 
 =

=

=


dk



d
 (2p/l)


d
 (1/l)

Here  v 
 =

1.49

nl = (2pΥ/lr)1>2 and

1.48

2pΥ 1>2 1

2pΥ 1>2 1 3>2

n = a

b a b = a

b a b

lr

l

r

l

1.47


ng



d
 n

2pΥ 1>2 3

1 1>2

= a

b a b a b

x of refraction 1.46


d
 (1/l)

r

2

l

Inde 1.45

3 2pΥ 1>2

3


n



vg 
 =  a

b =   v


2

1.44

lr

2

500 700 900 1100 1300 1500 1700 1900

Light Infrared

Alternatively, from Eq. (7.38),

Wavelength (nm)


dv



d k
 Υ 1>2


Figure 7.22
     A plot of both the phase index of refraction ( n
 ) and the 

  vg 
 =  v 
 +  k
  

=  v 
 +  k
    a b


dk



dk


r

group index of refraction ( ng
 ) for fused silica glass (SiO2). The point of 

inflection of  n 
 is at 1312 nm and  ng
  is minimum there.


k
 Υ 1>2

1>2  d


  vg 
 = a b +  k
  aΥb

  k
 1>2

r

r


dk



k
 Υ 1>2

1>2 1


7.3 Anharmonic Periodic Waves


  vg 
 = a b +  k
  aΥb     k
 -1>2

r

r

2

It has already been asserted—without proof—that any real 


k
 Υ 1>2 1  k
 Υ 1>2

  v


wave in space can be constructed out of appropriately selected 


g 
 = a

b +  a b

r

2

r

harmonic waves having the right spatial frequencies, ampli-

tudes, and relative phases. The technique that accomplishes this 

3  k
 Υ 1>2

  v


feat is called Fourier analysis
 , and it’s one of the most impor-


g 
 =

 a b

2

r

tant methodologies in all of theoretical physics. This section 
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Figure 7.23
     The superposition of two 

l

harmonic waves of different frequency. 


E
 2

The resultant wave is periodic but  

anharmonic.


E



E
 1

l1

l2


E 
 =  E
 1  
 +   E
 2

shows how that synthesis is actually carried out, although we 

(a) 10

will be a little untraditional and develop the procedure using 

two complementary approaches. Because the usual analytic 

5

method is a little obscure mathematically, we start with a more 

c1

intuitive graphical approach that will make obvious what the 

0

formal math really does. The methods developed apply equally 

to spatial events (i.e., ones that exist at many locations in space 

c2 c3

all at one time, like waves on a rope) and to temporal events 

–5

(i.e., ones that exist at one location in space at many moments 

in time, like an  AC
  voltage). In all that follows it will be as-

–10–10

–5

0

5

10

sumed that we are dealing with real phenomena that are there-


x


fore describable by mathematically well-behaved functions.

(b) 10


7.3.1 Fourier series


5

The shape of a wave in space (i.e., its profile), or a signal in 

time, is often referred to as a waveform
 . Earlier in this chapter 

0

(Fig. 7.9) it was shown how several harmonic waveforms of the 

same frequency add to produce a resultant harmonic waveform 

–5

of the same frequency. That observation can be generalized:  re-



gardless of their amplitudes and relative phases, the superposi-


–10


tion of any number of harmonic waveforms of the same fre-


–10

–5

0

5

10


x



quency results in a harmonic waveform of that same frequency
 . 

By contrast, adding waveforms of different frequencies, as in 

(c) 10

Fig. 7.23, results in a composite that is anharmonic
  (i.e., not 

sinusoidal).

5

Figure 7.23 begins to suggest that by using a number of sinu-

soidal functions judiciously selected, it would be possible to 

synthesize some interesting wave profiles. The wavelengths of 

0


f(x)


the sinusoids in that illustration, l1 and l2, are different, and 

after one cycle they’re out-of-phase. But after  N


–5

1 cycles of one 

and   N
 2 cycles of the other (where  N
 1 and   N
 2 are whole num-

bers), such that l1 N
 1 = l2 N
 2, they’ll be back in-phase and the 

–10–10

–5

0

5

10

resultant will repeat itself over and over again; the synthesized 


x


function is periodic 
 with a spatial period l. 

When several harmonic waveforms are added without much 


Figure 7.24
     The sum of three equal-amplitude sinusoids: c1 (x) 
 = 3 sin p x
 , 

concern for wavelength (Fig. 7.24), the periodicity of the resul-

c2 (x) 
 = 3 sin (p x
 >4), and c3 (x) 
 = 3 sin (p x
 >3). Here l1 = 2, l2 = 8, and tant can require a great many cycles of its constituents before it 

l3 = 6.

becomes established. By contrast, starting with the longest 

waveform, of wavelength l, and adding to it waveforms with 

That’s what is happening in Fig. 7.25 a
  in the time domain. 

wavelengths of l>2, l>3, l>4, and so forth, produces a resul-

Notice that here, just for the sake of illustration, the waveforms 

tant that also has a wavelength or  spatial period
  of l. This is 

start (at the origin at the left) at varying points in their cycles; 

because all of the contributing shorter waveforms fit exactly a 

in other words, they have different phases. The amplitude of 

whole number of times into the  fundamental
  l-wavelength.

each constituent waveform is indicated by a vertical bar, and 
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(a)

(a)


f (x)


l

Harmonics

n1


x


l

n2

(b)

l

2


A
 02 = 1

n3

0


x


–1

l2

l

3l2

2l

n

–2

4

n5

n


Figure 7.26


6

    The decomposition of a periodic function  ƒ(x)
  into its  

harmonic Fourier components. Here  ƒ(x) 
 = 1 + sin  kx 
 - 13 cos 2  kx
  

(b)

l

- 1





4 sin 2  kx 
 - 15 sin 3  kx
 .

the  DC term
 ; we’ll examine its physical significance in Optics 

later on. 

An excep tionally beautiful mathematical technique for ana-

(c)

lyzing periodic functions was devised by the French physicist 

Jean Baptiste Joseph, Baron de Fourier (1768–1830). That the-

ory is predicated on what has come to be known as  
Fourier’s 



Amplitude



Theorem

 , which states that  a function ƒ(x)
 ,  having a spatial 


n1

n2

n3

n4

n5

n6


period 
 l,  can be synthesized by a sum of harmonic functions 


Frequency


whose wavelengths are integral submultiples of 
 l ( that is
 ,  l, 

l>2, l>3,  etc
 .) This Fourier-series representation has the math-


Figure 7.25
   ( a
 ) The superposition of six harmonic temporal waves with 

ematical form

different amplitudes and frequencies. ( b
 ) The resultant periodic function. 

( c
 ) The frequency spectrum.

2p


ƒ(x) 
 =  C
 0 +  C
 1 cos a   x 
 + e1b

l

those bars are all displayed at their corresponding frequencies 

2p

in Fig. 7.25 c
 . For the moment these amplitude bars are all arranged 

+  C
 2 cos a

  x 
 + e2b + c  (7.41)

l>2

above the axis; we’ll soon introduce a more informative way of 

displaying them. In any event, such a graph, which is called a 

where the  C
 -values are constants, and of course the profile  ƒ(x)



frequency spectrum
 , tells us how much of each sinusoid of a 

may correspond to a traveling wave  ƒ(x 
 -  vt)
 . Notice that the 

given frequency must be added in to generate the resultant wave 

argument of each cosine is unitless, as it must be. To get some 

shown in Fig. 7.25 b
 . 

sense of how this scheme works, observe that although  C
 0  
 by 

Suppose that we want to synthesize some periodic waveform 

itself is obviously a poor substitute for the original function, it 


ƒ(x)
 , of spatial period l, using harmonic contributions. The 

will be appropriate at those few points where it crosses the  ƒ(x)
  

above discussion suggests that we would do well to start with a 

curve. In the same way, adding on the next term improves things 

sinusoid or cosinusoid that also has a wavelength of l and add 

a bit, since the function

to it harmonic terms whose arguments contain whole-number 

fractions of 

[ C


l.

0 +  C
 1 cos (2p x
 >l + e1)]

The waveform depicted in Fig. 7.24, which is exclusively a 

will be chosen so as to cross the  ƒ(x)
  curve even more frequently. 

sum of sines and  cosines, wiggles about the central  x
 -axis seem-

If the synthesized function [the right-hand side of Eq. (7.41)] 

ingly as much above as below it. Of course, the whole resultant 

comprises an infinite number of terms, selected to intersect the 

could be raised or lowered by simply adding in a positive or 

anharmonic function at an infinite number of points, the series 

negative constant, as is done in Fig. 7.26. There the straight line 

will presumably be identical to  ƒ(x)
 .

at a height  A
 0>2 above the  x
 -axis corresponds to such a constant, 

It is usually more convenient to reformulate Eq. (7.41) by 

and in that particular instance it equals 1.0. Why this constant is 

making use of the trigonometric identity

written as  A
 0 on 2 will be explained presently. Because it is not 

associated with any frequency, this contribution is often called 


Cm
  cos ( mkx 
 + e m
 ) =  Am
  cos  mkx 
 +  Bm
  sin  mkx
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where   k 
 = 2p>l,  l being the wavelength of  ƒ(x)
 ,   Am
  =  



f (x)



Cm
  cos e m
 , and  Bm 
 = - Cm
  sin e m
 . Thus


A


∞

∞


       ƒ(x) 
 = 0 + ^  A



x 
 + ^  B



x
  (7.42)

2


m
  cos  mk
   


m
  sin  mk
   


m 
 = 1


m 
 = 1


x


The first  
 term is written as  A


l

0>2 because of the mathematical 

simplification it will lead to later on. This equation says that a 

periodic waveform  ƒ(x)
  can be synthesized out of an infinite 


A


number of terms such that

02

0


x



A



ƒ(x) 
 = 0 +  A


2

1 cos 1 kx 
 +  A
 2 cos 2 kx 
 +  A
 3 cos 3 kx 
 + c


A



A


1 cos  kx


1

+  B


0


x


1 sin 1 kx 
 +  B
 2 sin 2 kx 
 +  B
 3 sin 3 kx 
 + c

All we have to do now is figure out how to determine each of 


B



B


1 sin  kx


the  A


1


m
  and  Bm
  coefficients. To that end, note that the right side 

0


x


of the above equation in its totality is identical in all regards to 

the left side. This means that the area under a plot of the func-


A



A


2 cos 2 kx


tion  ƒ(x)
  taken over a distance of, say, 

2

l must equal the sum of 

0


x


all of the areas under separate plots of each of the terms on the 

right taken over that same distance l. As soon as we settle a few 


B
 2 sin 2 kx


details this observation will provide a means of determining the 


B
 2

0


x


value of  A
 0.

When we talk about “the area under a curve” what is meant is 

the area enclosed between the curve and the horizontal zero-axis, 


A



A


3 cos 3 kx


3

computed over some specified range, in this case, of  x
 . Area seg-

0


x


ments above the  x
 -axis are positive, those below are negative, 


B


and the total area is the difference (of their absolute values). 


B


3 sin 3 kx


3

For the moment let’s skip the  DC 
 term and find the area un-

0


x


der each harmonic term on the right in the above expression for 


ƒ(x)
 . Over a distance l each of these contributions oscillates 

through a whole number of cycles and is therefore symmetrical 


Figure 7.27
     The Fourier decomposition of the periodic anharmonic func-

tion  ƒ(x)
 . The spatial period or wavelength of  ƒ(x)
  is l.

in area above and below the  x
 -axis. The net area contribution 

under   A
 1 cos 1 kx  
 and   A
 2 cos 2 kx  
 and   
 all of the other   
 cosine  


terms is therefore zero. And that’s true as well for the area under  



B


1

1 sin 1 kx 
 and  B
 2 sin 2 kx 
 and all of the other sine terms; they’re 

2  A
 0 and cos  kx
  is 12  A
 0  cos  kx  
 and the area under that curve is 

all zero. Thus the only quantity on the right contributing to the 

zero, so it contributes nothing. The second term,  A
 1 cos 1 kx
 , is 

area over an interval of l is  A
 0>2. In other words, the area under 

of special interest and we’ll come back to it after we review the 


ƒ(x)
  equals one-half the area under the constant  A
 0. That rectan-

technique of multiplying functions.

gular area of height  A
 0 and length l equals  A
 0 * l. Thus 12 A
 0l 

To numerically multiply cos  kx
  and, say, sin 2 kx
 , partition the 

equals the area under  ƒ(x)
  and so

graphs of each function into the same number of equally spaced 

intervals with a series of vertical lines, as in Fig. 7.28. Then 

2


A
 0 =

* the area under  ƒ(x)


multiply the corresponding pairs of values where these lines 

l

intersect the two curves: 1.00 * 0, 0.966 * 0.500, 0.866 *

Later on we will write a more formal integral expression for 

0.866, 0.707 * 1.00, and so on. A plot of the resulting numbers  

“the area under  ƒ(x)
 ” but this will do for the moment.

(Fig. 7.28 c
 ) reveals the purpose of the exercise. Imagine the 

We can apply a similar approach to determining the other  Am


whole diagram divided into four 14 l-regions (here bounded by 

and  Bm
  coefficients. Accordingly, imagine some periodic func-

dashed lines). The product curve has two positive peaks and two 

tion   ƒ(x)
  and its various Fourier components as shown sche-

identical negative peaks such that  the area beneath that entire 


matically in Fig. 7.27. To find  A
 1 we will utilize an approach 


curve is zero
 . The symmetry is such that for every 14 l-segment 

that involves forming the product of cos  kx
  with each term on 

of cos  kx
  multiplying a corresponding segment of sin 2 kx
  produc-

the right, and then finding the area under that product computed 

ing a positive area, there will be a matching segment producing 

over a single cycle of  ƒ(x)
 , namely, l. Clearly, the product of 

an equal negative area. And this is true regardless of the spatial 
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height   A
 1 and length 12l is simply 12  A
 1l. Thus the area under 

0.966

1

0.8660.707

cos  kx



ƒ(x)
  cos  kx


0.5

= 12  A
 1l and so

0


x


2

–0.5


A
 1 =

* the area under  ƒ(x)
  cos  kx


–0.866

(a)

l

0.866

0.866

computed over one spatial period of  ƒ(x)
 . 

1

sin 2 kx


Given some periodic waveform  ƒ(x) 
 that we wish to synthe-

0.50

0


x


size, the Fourier coefficient  A
 1 is found by computing the area 

under the  ƒ(x)
  cos  kx 
 curve over one spatial period l and then 

0.866

0.866

(b)

dividing that by 12 l. In precisely the same way,

0.75

0.43

2

(cos  kx
 )(sin 2 kx
 )


A
 2  =   * the area under  ƒ(x)
  cos 2 kx


0

0.48


x


l

l

computed over one spatial period of  ƒ(x)
 . In general, for  m 
 = 0 ,
  

(c)

1, 2, 3, . . .


Figure 7.28
     The product of two harmonic functions cos  kx
  and sin 2 kx
 .

2


Am 
 =

* the area under  ƒ(x)
  cos  mkx


l

frequency of either function  as long as they are not the same
 . Thus 

This expression applies to  A
 0 as well, which was the reason 

the area under (cos  kx
 )( A
 2 cos 2 kx
 ) is zero, just as the areas under 

for starting the series [Eq. 7.42)] with  A
 0>2. Thus  A
 0 is the 

(cos  kx
 )( A
 3 cos 3 kx
 ),  (cos  kx
 )( B
 1 sin 1 kx
 ),  (cos  kx
 )( B
 2 sin 2 kx
 ), zeroth amplitude coefficient and  A
 0>2 is the  DC
  term in the 

(cos  kx
 )( B
 3 sin 3 kx
 ), and so on, are all zero. 

series.

Now back to the  A
 1 cos  kx
  term, which is different from the 

If we go through this entire process all over again in order to 

others, since on multiplying by (cos  kx
 )   
 we get (cos  kx
 )

compute   B
 1, this time multiplying by sin 1 kx
 ,   
 we would get 

( A
 1 cos  kx
 ) =  A
 1 cos2  kx
 , which is everywhere positive. Figure 

much the same results: 

7.29 a
  is a plot of  A
 1 cos2  kx
  extending for a distance l. To deter-

mine the area under that curve, examine Fig. 7.29 b
 , where the 

2


B
 1 =

* the area under  ƒ(x)
  sin  kx


second half is cut in two, flipped over, and neatly slid into the 

l

valley in the first half. The area of the resulting rectangle of 

computed over one spatial period of  ƒ(x)
 . In general, for  m 
 = 0, 

1, 2, 3, . . .

(a)

2


A
 1 cos2  kx



Bm 
 =

* the area under  ƒ(x)
  sin  mkx



A


l

1

Quite often we will have  
 “ƒ(x)
 ”  
 not as an actual function but 

as a collection of data points (see Section 7.4.4). The process 

of numerically determining the  Am
  and  Bm
  coefficients using 

0


x


the above scheme is called  
 
discrete Fourier analysis

  
 and it’s 

l

usually performed by a computer. If, on the other hand, we 

have an expression for   ƒ(x)
 ,  
 the easiest way to calculate the 

needed areas is via integration. 

(b)

What follows is the equivalent of what we have already stud-


A
 1

ied more or less graphically, now carried out with well-behaved 


1



2


functions using integrals. The agenda is the same, namely, to 

determine the  Am
  and  Bm
  coefficients. To that end, integrate 


1



2


both sides of Eq. (7.42) over any spatial interval equal to l, for 

example, from 0 to l or from 

0


x


-l>2 to +l>2 or, more generally, 

from  x
 ′  
 to  x
 ′

l2

+ l. Since over any such interval

l

l


Figure 7.29
     The area under the curve  A
 1 cos2  kx
  over an interval l 

3 sin  mkx
   dx 
 = cos  mkx
   dx 
 = 0

  

3

  

equals  A


0

0

1 l>2.
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there is only one nonzero term to be evaluated, namely, 

2 l

and 


B



ƒ(x)
  sin  mkx
   dx
   [7.48]

l

l  A



m 
 =

  

0

l

l30

3  ƒ(x)
   dx 
 = 3     dx 
 =  A
 0 

0

0 2

2

Be aware that there are some mathematical subtleties related to 

and thus 

the convergence of the series and the number of singularities in 

2 l


ƒ(x)
 , but we need not be concerned with these matters here.






A
 0 =


ƒ(x)
   dx
   (7.43)

Certain symmetry conditions are well worth recognizing, 

l30

because they lead to some computational shortcuts. Thus if a 

To find  Am
  and  Bm
  we will make use of the  orthogonality of  


function  ƒ(x)
  is  even
 , that is, if  ƒ(
 - x) 
 =  ƒ(x)
 , or equivalently, if sinusoidal functions
  (Problem 7.43), that is, the fact that

it is symmetrical about  x 
 = 0, its Fourier series will contain 

only cosine terms ( Bm 
 = 0  
 for all  m
 ) that are themselves even 

l

functions. Likewise,  odd
  functions that are antisymmetrical 





3 sin  akx
  cos  bkx
   dx 
 = 0 (7.44)

  

about   x


0

= 0, that is,  ƒ(
 - x) 
 = - ƒ(x)
 , will have series expan-

sions containing only sine functions ( A


l


m 
 = 0 for all  m
 ). In ei-

l





ther case, one need not bother to calculate both sets of coeffi-

3 cos  akx
  cos  bkx
   dx 
 =  d

  


ab
  (7.45)

0

2

cients. This is particularly helpful when the location of the 

origin ( x 
 = 0) is arbitrary, and we can choose it so as to make 

l

l





3 sin  akx
  sin  bkx
   dx 
 =  d

life as simple as possible. Nonetheless, keep in mind that many 

  


ab
  (7.46)

0

2

common functions are neither odd nor even (e.g.,  ex
 ).





The serrated “saw tooth” of wavelength l  
 drawn in Fig. 7.30 

where  a
  and  b
  are nonzero positive integers and d ab
 , known as 

is an odd function; whatever its value is a certain distance to the 

the  Kronecker delta
 , is a shorthand notation equal to zero when 

right of the origin, its value is the negative of that, at the same 


a 
 Z  b 
 and equal to 1 when  a 
 =  b
 . To find  Am
  we now multiply 

distance to the left of the origin. Thus it can be synthesized out of 

both sides of Eq. (7.42) by cos / kx
 , / being a positive integer, 

sinusoids alone. Moreover, the component harmonic functions 

and then integrate over a spatial period. Only one term is non-

vanishing, and that is the single contribution in the first sum, 

which corresponds to / =  m
 , in which case

(a)

l

l

l

3  ƒ(x)
  cos  mkx
   dx 
 =  A



x
   dx 
 =   A


  

3  m
  cos2  mk
   


m


0

0

2

2 l

Thus 


Am 
 =


ƒ(x)
  cos  mkx
   dx
  (7.47)

  

l3

(b)

0

This expression can be used to evaluate  Am
    for all values of m
 ,  


Harmonics


including m 
 = 0, as is evident from a comparison of Eqs. (7.43) 

1st

and (7.47). Similarly, multiplying Eq. (7.42) by sin / kx
  and in-





tegrating, leads to

2nd

2 l






Bm 
 =


ƒ(x)
  sin  mkx
   dx
  (7.48)

  

l30

3rd

4th

In summary, a periodic function  ƒ(x)
  can be represented as a 

5th

Fourier series

6th

(c)


A


∞

∞






ƒ(x) 
 = 0 + ^  A



x 
 + ^  B



x
  [7.42]

2


m
  cos  mk
   


m
  sin  mk
   


m
   = 1


m
   = 1

Amplitude

Frequency

where, knowing  ƒ(x)
 , the coefficients are computed using


Figure 7.30
   ( a
 ) An approximation of a saw-tooth wave. Ordinarily, such a 

wave would be composed of thousands of sine components and have 

2 l






A


straight edges that meet at sharp points. ( b
 ) The six harmonic waves, with 


m 
 =


ƒ(x)
   cos  mkx
   dx
   [7.47]

  

l3

different amplitudes and frequencies, that constitute this wiggly saw tooth. 

0

( c
 ) The frequency spectrum. 
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Remembering that  k 
 = 2p>l, we obtain

2


Bm 
 =

 (1


m


- cos  m
 p)

p

The Fourier coefficients are therefore

4

4


B
 1 = ,   B


,

p

2 = 0 ,   B
 3 = 3p

4


B
 4 = 0,   B
 5 =

 ,  . . .  ,

5p


Figure 7.31
     Here we see how the component wavelets go in- and  

and the required series is simply

out-of-phase.

4

          ƒ(x) 
 =  (sin  kx 
 + 1


x 
 + g) (7.49)

p

3 sin 3 kx 
 + 15 sin 5 k
   

are all in-phase and zero at the origin. The necessity for that is 

clearer in Fig. 7.31, where you can see how the sinusoidal wave-

lets, which are all zero to start, add constructively just beyond the 

origin, then fall out-of-phase, begin to cancel one another, and all 

reach zero again at  
 l>2 (i.e., at the first dashed line in Fig. 7.30). 

Beyond that point the wavelets, being sinusoids, appear as if 

reflected twice (horizontally and then vertically), as does the re-

(a)

sultant curve, which is now negative. Notice that the smallest 

component wavelet fits six times into  
 l, and there are six small 

bumps on the edge of this six-term wiggly saw tooth.

This suggests that adding in terms with higher and higher 

frequency, and with finer and finer wavelengths and smaller 

amplitudes, would smooth out the synthesized function. That’s 

nicely illustrated in Fig. 7.32, where we go from 3 terms, to 7, 

to 11, to 100. The spike or ringing at each jump discontinuity 

(b)

in the last part of the figure is an artifact of the process called 

the  
Gibbs phenomenon

 .

EXAMPLE 7.5

Compute the Fourier series for the square waveform shown in 

Fig. 7.33.

SOLUTION

(c)

+1 when 0 6  x 
 6 l>2


ƒ(x) 
 = e -1 when l>2 6  x 
 6 l

The area under one cycle of  ƒ(x)
  is zero—hence  A
 0 = 0.

Since  ƒ(x)
  is odd,  Am 
 = 0, and

2 l>2

2 l

(d)


Bm 
 =  

 (+1) sin  mkx
   dx 
 +  

 (-1) sin  mkx
   dx


  

  

l 3

3

0

l l>2

thus

1

1


B


l>2

l


Figure 7.32
     Fourier series for a saw-tooth curve. ( a
 ) Three terms.  


m 
 =

 [


x
 ]

 [cos  mkx
 ]


m


-cos  mk


+

p

  

0


m
 p

l>2

( b
 ) Seven terms. ( c
 ) Eleven terms. ( d
 ) One hundred terms.
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ff (x)



(x)



f (x)



f (x)


11

1

+1
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––ll22

00

l

l22


x


–l

–l2

0

l2

l


x


–l2

0

l2

4

–1

4 sin  kx


sin  kx


–1

–1

p

p

4

(a)

(a)

sin  kx


–1

p

(a)


Figure 7.33
     The profile of a periodic square wave.

Figure 7.34 is a plot of a few partial sums of the above series 

4

as the number of terms increases. We could pass over to the 

4 sin 3

sin 3 kx



kx


p3

p3

time domain to find  ƒ(t)
  by just changing  kx
  to 


x


v t
 . Suppose 

4


x


sin 3 kx


that we have three ordinary electronic oscillators whose out-

p3


x


put voltages vary sinusoidally and are controllable in both fre-

quency and amplitude. If these are connected in series with 

their frequencies set at v, 3v, and 5v and the total signal is 

examined on an oscilloscope, we can synthesize any of these 

(b)

(b)

44

11

curves. Similarly, we might simultaneously strike three keys 

(b)

(sin  kx


(sin   +     


kx


sin 

 +     

3

sin   kx


3 )


kx
 )

p

p

33

on an appropriately tuned piano with just the correct force on 

4

1

(sin  kx
  +     sin 3 kx
 )

p

3

each to create a chord, or composite sound wave, having the 

curve in Fig. 7.34 c
  as its profile. Curiously enough, the human 

ear–brain audio system is capable of Fourier analysis of a 

simple composite wave into its harmonic constituents. Pre-

4

sumably there are people who could even name each note in 

4 sin 5

sin 5 kx



kx


p5

p5

the chord.

4 sin 5 kxxx


Earlier we postponed any detailed consideration of anhar-

p5


x


monic periodic functions and restricted the analysis to purely 

sinusoidal waves. We now have a cogent rationale for having 

done so. From here on we can envision this kind of disturbance 

as a superposition of harmonic constituents of different fre-

(c)

(c)

44

11

(sin  kx


(sin  kx
  +     sin 

 +     

3

sin   kx


3 )


kx
 )

quencies whose individual behavior can be studied separately. 

p

33

(c)

p

4

11

1

Accordingly, we can write

(sin 

+    

+     kx
  +     

sin 5

sin   kx


5 kx
 sin 3 kx
 )

p

55

3

1

+     sin 5 kx


5


A


∞


ƒ(x 
 ±  vt) 
 = 0 + ^  A


2


m
  cos  mk
 ( x 
 ±  vt
 )


m 
 = 1

∞





+ ^  Bm
  sin  mk
  ( x 
 ±  vt
 ) (7.50)


m 
 = 1

or, equivalently,

∞






ƒ(x 
 ±  vt) 
 = ^   Cm
  cos [ mk
  ( x 
 ±  vt
 ) + e m
 ] (7.51) m 
 = 0


Figure 7.34
     Synthesis of the profile of a periodic square wave. Notice 

for any such  anharmonic periodic wave
 .

that all of the constituent waves are in-phase and zero wherever the square 

As a last example, let’s analyze the square waveform of  

wave is zero. Since all the sine waves are in-phase at  x 
 = 0, all the  Bm
  

coefficients are positive. The photograph is of the face of an oscilloscope 

Fig. 7.35 into its Fourier components. Notice that with the ori-

displaying a time-varying voltage created by two signal generators repro-

gin chosen as shown, the function is even, and all the  Bm
  terms 

ducing the curve in part ( b
 ). (E.H.)
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(a)


f (x)


where it is in Fig. 7.33 to where it is in Fig. 7.35 will change 

sines into cosines in the analysis, but otherwise leave the con-

stituent harmonic functions in Fig. 7.34 unaltered. The sinusoids 

1

that make up the square pulse in Fig. 7.34 will be the cosinu-

soids that make it up in Fig. 7.35 b
 . With the vertical axis in the 

middle of the square peak, it’s clear from Fig. 7.35 b
  that alter-


x


nate cosines will have to be negative at  x 
 = 0.

–l a 
 0 l a


l

The width of the square peak, 2(l> a
 ), can be any fraction of 


f (x)


One cosine term

the total wavelength, depending on  a
 . The Fourier series is then

Two cosine terms

Three cosine terms

2

∞ 4

1






ƒ(x) 
 =

   (sinc  m
 2


x
  (7.53)


a 
 + ^

p> a
 ) cos  mk
   


m 
 = 1  a



DC
  term

If we were synthesizing the corresponding function of time, 

2


ƒ(t)
 , having a square peak of width 2(t> a
 ), the same expres-


a


sion, Eq. (7.53), would apply where  kx
  was simply replaced 

  

by v t
 . Here v is the  angular temporal frequency
  of the peri-

odic function  ƒ(t)
  and is known as the fundamental
 . It is the 

lowest frequency of the cosine term and arises when  m 
 = 1. 


x


–l a


0

l a


Frequencies of 2v, 3v, 4v, . . . are known as  
harmonics

  of 

(b)

the fundamental and are associated with  m 
 = 2, 3, 4, . . . . In 

much the same way, since l is the  spatial period
 , k


Figure 7.35
     An even periodic anharmonic function. In part ( b
 ) the area 

K 1>l is 

under the pulse is (2l

the  spatial frequency
 , and  k


> a
 ) * 1 and  A
 0 = (2>l)(2l> a
 ) = 4> a
 . The  DC
  term 

= 2pk  is called the angular 


in the Fourier series is  A
 0>2 = 2> a
 .


spatial frequency
 . Again one speaks of the harmonics, of 

frequency  2 k
 ,  3 k
 ,  4 k
 , . . . , where these are spatial alterna-

tions. Evidently, the dimensions of k are cycles per unit 

are zero. The appropriate Fourier coefficients (Problem 7.44) 

length (e.g., cycles per mm or possibly just cm-1), and those 

are then

of  k
  are radians per unit length.

Let’s clarify a few points so as to avoid future confusion 

4

4 sin  m
 2p> a


concerning the use of the terms  spatial frequency
  and  spatial 







A
 0 =  and  A


 a

b (7.52)


a



m 
 =  a



m
 2p> a



period
  (or wavelength). Consider a disturbance oscillating in 

time and moving through space. Figure 7.35 a
  shows such a 

Incidentally, had the pulse been a rectangle of height  h
 , rather 

one-dimensional periodic waveform spread out in space along 

than a square of height 1.0, each coefficient in Eg. (7.52) would 

the  x
 -axis. This might be the profile of a rather extraordinary 

have been multiplied by  h
 . Unlike the previous function [Eq. (7.49)], 

disturbance moving along a taut rope. It repeats itself in space 

this one has a nonzero value of  A
 0, since the curve lies com-

over a distance known as the wavelength, and one over that is 

pletely above the axis.

the spatial frequency.

The expression (sin  u
 )> u
 , which we studied earlier (p. 51), 

Now suppose instead that the pattern corresponds to a 

was given the name sinc 
 
u

 , and its values are listed in Table 1 in 

stationary irradiance distribution, a series of bright and dark 

the appendix. Since the limit of sinc  u
  as  u
  goes to zero is 1,  Am
  

stripes—for instance, the kind of thing you might see looking 

can represent all the coefficients, if we let  m 
 = 0, 1, 2, . . . . 

through a narrow horizontal slit against a picket fence or, even 

Notice, too, that because the sinc function has negative values, 

better, while scanning on a line across a group of fixed alter-

some of the  Am
  coefficients will now be negative. This means 

nately clear and opaque bands (Fig. 13.30) illuminated by 

that some of the higher order cosines will be 180° out-of-phase 

monochromatic light. Again the pattern will have some spatial 

with the  m 
 = 1 cosine term. That is to say,  
a negative Am in the 



period and frequency determined by the rate at which the bands 



frequency spectrum tells us that the corresponding cosine 



repeat in space. As ever, the light field will also have a spatial 



term when added in must be flipped over about the x-axis

 . 

frequency (k) and period (l), as well as a temporal frequency 

We’ll come back to this notion presently.

and period, quite apart from the variations of the pattern. The 

Three things distinguish the functions in Figs. 7.33 and 7.35, 

stationary pattern might have a wavelength of 20 cm, and the 

which otherwise have the same shape: the location of the  x 
 = 0 

light generating it a wavelength of 500 nm. Wherever there 

axis, the location of the  ƒ(x) 
 = 0 axis, and the height of the 

might be confusion,  
 we will reserve the symbol k

   
for the light-



steps. Consequently, beyond the constant  A
 0, the constituent 



wave itself and use

   k to describe stationary spatial optical 


harmonic terms must have the same relation to either  ƒ(x)
  when 


patterns
 .
  This distinction will become more important in later 

they are plotted. In other words, moving the  x 
 = 0 axis from 

chapters.
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Return to the square function of Fig. 7.35 where now  a 
 = 4, 

general resemblance to  ƒ(x)
  will increase. This can be appreci-

or in other words the peak has a width of l>2. In that instance

ated by examining the ratio

1

2

1

1


Am


sin  m
 2p> a



ƒ(x) 
 = +  acos  kx 
 +  cos 3 kx 
 +  cos 5 kx 
 - gb (7.54)





=

 (7.55)

2

p

3

5


A
 1


m
  sin 2p> a


As a matter of fact,  
if the graph of the function ƒ(x) is such 



Observe that for  a 
 = 4, the ninth term (i.e.,  m 
 = 9) is fairly 



that a horizontal line could divide it into equally shaped seg-



small,  A
 9 ≈ 10%  A
 1. In comparison, for a peak 100 times nar-



ments, above and below that line, the Fourier series will con-



rower (that is,  a 
 = 400),  A
 9 ≈ 99%  A
 1.  
 Making the peak nar-




sist of only odd harmonics

 .


rower has the effect of introducing higher-order harmonics, 


You can appreciate why that might be the case from Fig. 7.34. 


which in turn have smaller wavelengths
 . We might guess, 

There every half cycle of the square waveform contains an odd 

then, that it is not the total number of terms in the series that is 

number of half wavelengths of each contributing odd harmonic. 

of prime importance but rather the relative dimensions of the 

This means that the area under the product curve [there,  ƒ(x) 


smallest features being reproduced and the corresponding 

sin  mkx
 ] will be nonzero and all odd harmonics will have non-

wavelengths available.* If there are fine details in the profile, 

zero coefficients. By contrast, if the argument of a given com-

the series must contain comparatively short-wavelength (or in 

ponent is an even multiple of  kx
 , then there will be an even 

the time domain, short-period) contributions.

number of wavelengths of that harmonic within the distance 

The negative values of  A


l. 


m
  in Eq. (7.53) should simply be 

Consequently, an even number of those harmonic waveforms 

thought of as the amplitudes of those harmonic contributions 

will fit within each half cycle of  ƒ(x)
 . Provided the function be-

that are to be added into the synthesis with their phases shifted 

ing synthesized can be shifted (by a  DC
  term) so that it is sym-

by 180°, as compared with the positive terms. The equivalence 

metrical above and below the horizontal  
 axis, the product area  

between a negative amplitude and a p-rad phase shift is clear 

[ ƒ(x)
  sin  mkx 
 or  ƒ(x)
  cos  mkx
 ] will be zero over a distance 

from the fact that  A


l for  


m 
 = cos ( kx 
 + p) = -  Am
  cos  kx.



m 
 = 2, 4, 6, . . . and the corresponding coefficients ( A


To see how all of this comes together examine the function 


m
  or  Bm
 ) will 

be zero (see, for instance, the triangle function in Problem 7.45).

in Fig. 7.37 where now  a 
 = 8, but the size of the peak is un-

Figure 7.36 is a plot of the square pulse with  a 
 = 4  
 as repre-

changed because the spatial period is doubled from 1 cm to 2 cm. 

sented by the series in Eq. (7.54) where  A


The function is still even and therefore, as before, there are only 

0 = 1  
 and the  DC
  term 

is   A



Am
  terms in the series. Nonetheless, the frequency spectrum has 

0>2. Appropriately, all of the even  Am
  terms are absent. 

Equation (7.53) for the Fourier coefficients contains the quan-

changed in several ways. Unlike Fig. 7.36 (where  A
 2,   A
 4,   A
 6, 

tity sinc  m
 2

etc., were zero) the waveform cannot now be raised or lowered 

p> a
 , and so the dashed curve that forms the enve-

lope of the  A


so as to make it symmetrical with the axis; hence the synthesis 


m
  coefficients is a sinc function. We saw in Chapter 

3 that sinc

contains both odd and even values of  m
  and therefore of the ar-

  u
  equals zero when  u 
 = p, 2p, 3p, and so on. For  


a 
 = 4 the quantity  m
 2

gument of cos  mkx
 .  
The space between successive A



p> a
  becomes  m
 p>2, and when  m 
 = 2,  



m terms is

  

4, 6, . . . the sinc is zero, the dashed curve crosses the axis, and the 


k
 , which equals  
 2p>l, and because l has doubled, that space 

corresponding  A


has been halved; there are more cosine contributions squeezed 


m
  coefficients are again absent from the series.

Were we to plot the curve representing the partial sum of the 

tighter together.

terms through  m 
 = 9 in Eq. (7.54), it would closely resemble 

the  square wave. In contrast, if the width of the peak is reduced, 


f (x)



a
  = 8

the number of terms in the series needed to produce the same 

l = 2 cm

1


f (x)


2


x


p

–l8 0 l8

l

l


a
  = 4

1

1  A
 0

–14 0 14

2 (cm)

l = 1 cm

2


A
 2

l


x


Fourier coefficients 14


A



A



k
  = p

–l4 0 l4

l

4  A
 6

8

0


mk



A


–14 0 14

1 (cm)


k


3 k


1

0

8 k



A


0

2 k 
 4 k 
 6 k


1

1

l

0 2p 4p 6p

8p

12p

16p
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Fourier coefficients 2


A



k
  = 2p

2  A
 3

0
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Figure 7.37
     A periodic square waveform and its spatial frequency  

0


k 
 2 k 
 3 k 
 4 k 
 5 k


8 k


10 k


spectrum. Here l = 2.0 cm and each pulse is one-quarter wavelength 

0 2p 4p 6p 8p 10p

16p

20p

wide. Only two of the infinite number of peaks are shown.


Figure 7.36
     A periodic square waveform and its spatial frequency  

spectrum. Here l, the spatial period, equals 1.0 cm and each pulse is half a 

*Evidently, one is not going to be able to build a castle of blocks unless the blocks 

wavelength wide. Note that only two of the infinite number of peaks are shown.

are a good deal smaller than the castle.
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The way to physically generate a frequency comb is to pro-


7.4 Nonperiodic Waves


duce a series of equally spaced, identical, very short oscillatory 

bursts. The ideal instrument to do just that is a mode-locked 

All real waves are pulses (i.e., finite wavetrains), albeit sometimes 

laser, which has a very regular  repetition rate
 , typically around 

rather long ones, and so it’s important to learn how to analyze 

109 Hz. The temporal period (t) of the pulses (not the period of 

nonperiodic functions. Such functions are of great practical interest 

the carrier) is the time between emission of successive bursts 

in physics, particularly in Optics and Quantum Mechanics.

(i.e., one over the repetition rate) and it’s constant. As was the 

We saw earlier (Fig. 7.16) how adding two sinusoids pro-

case spatially in Fig. 7.37 the separation between successive 

duces beats; the sines fall out-of-phase, creating a minimum in 

temporal frequency spikes in Fig. 7.39 b
  goes as 1

the envelope, and then come back in-phase to produce a maxi-

>t, which is 

the inverse of the time between pulses. If the laser puts out a 

mum. We might guess that packing in more frequency compo-

pulse every  N
  nanoseconds the spikes in the comb will each be 

nents would necessitate a greater distance in space before they 

separated by 1

all could come back in-phase to form the next maximum in the 

> N
  gigahertz. The shorter the burst in compari-

son to t, the more spikes will be present in the comb. With a 

envelope (Fig. 7.38). In other words, the presence of more fre-

repetition rate of one GHz, a comb spanning the visible region 

quency components might well have the effect of separating 

of the spectrum (see Table 3.4), which is roughly 380

the pulses. Remember too that the carrier in the beat pattern 

* 1012 Hz 

wide, will have about 380 000 frequency spikes. A stable laser 

was at the average frequency (call it k p
  because it’s going to 

will produce a comb with very narrow-frequency teeth. Today 

turn out to be the peak frequency present). If we add in sinu-

the best laser for the job is the titanium-doped sapphire or 

soids symmetrically around k p
  the carrier oscillation shouldn’t 

Ti:sapphire laser, known in the trade as a Ti:sapph. 

change frequency; we can see as much in Fig. 7.38 b 
 and via 

Most materials have an index of refraction that is very slightly 

Problem 7.21. The agenda that lies before us if we are to gener-

dependent on irradiance (Section 13.4) and that gives rise to 

ate a single solitary pulse out of harmonic components (Fig. 7.38 e
 ) 

something called  self-phase modulation
 . When the output of a 

is to determine exactly which frequencies need to be added in 

Ti:sapph laser is passed through an adequate length of some 

and how much of each should be included.

transparent material like fused silica, self-phase modulation 

Until now we have been developing an elegant mathematical 

broadens the frequency envelope without affecting the comb 

way of appreciating waveforms in terms of frequency without 

structure. The goal is to spread the envelope so that it spans the 

any concern for practical applications. In that regard this is a 

visible region. Whatever effect the medium has on a single 

perfect place for a brief detour into modern optical technology. 

pulse it will have the same effect on every identical pulse, and 

One of the most important new methodologies—one having a 

so an input of a periodic train of pulses will result in the output 

wide range of applications, from ultrasensitive chemical detec-

of a frequency comb. All of this can be done quite efficiently by 

tors, fiberoptic communications, and lidar ( l
 ight  d
 etection  a
 nd 

passing the near-IR beam of the laser through a long  micro-



r
 anging) systems, to a new generation of high-precision optical 


structure
  (also known as a  photonic crystal
 ) fiber, which can 

atomic clocks—is known as the optical frequency comb
 . It 

maintain the required high irradiance over a long distance and 

consists of tens or even hundreds of thousands of equally 

therefore more effectively broaden the spectrum.* 

spaced, narrow, temporal frequency spikes spanning the visible 

In 2005 the Nobel Prize in Physics went to John Hall and 

region of the spectrum (that should bring to mind the spatial 

Theodor Hänsch “for their contributions to the development of 

frequency comb shown in Fig. 7.38 d 
 ). These frequency spikes, 

laser-based precision spectroscopy, including the optical fre-

the colored teeth on the comb, can be used much like a ruler. 

quency comb technique.”

With this kind of tool the frequencies of light, which are much 

higher than can be accessed by any other method, can be mea-

sured with extraordinary precision.

Figure 7.39 is the temporal equivalent of Fig. 7.38; the wave-


7.4.1 Fourier Integrals


form in 7.38 d
  exists in space and the spectrum is a display of 

Return to Fig. 7.35 and suppose that we keep the width of the 

spatial frequencies. The waveform in 7.39 a
  exists in time, and 

square peak constant while l is made to increase without limit. 

the spectrum  (Fig. 7.39 b
 ) is a display of temporal frequencies 

As l approaches infinity, the resulting function will no longer 

(each having a specific “color”). A short pulse, one, say, 10 

appear periodic. We then have one single square pulse, the  

femtoseconds  (10 * 10-15 s) in duration, in vacuum, will be 

adjacent peaks having moved off to infinity. This suggests a 

only about 3 * 10-6 m long. With a carrier wavelength toward 

possible way of generalizing the method of Fourier series to 

the end of the visible each pulse will contain only a few oscilla-

include nonperiodic functions. 

tions of the carrier wave (as shown in Fig. 7.39 a
 ). Notice that, 

To essentially stretch out the function in Fig. 7.35, let’s ini-

as in Fig. 7.38, the central peak in the comb corresponds to the 

tially set  a 
 = 4 and choose some value of l; anything will do, 

average or carrier frequency. The width of the envelope of the 

comb is inversely proportional to the duration of each wave 

packet emitted by the laser.

*S. Cundiff, J. Ye, and J. Hall, “Rulers of light,”  Sci. Am
 . 298
 , 74 (2008).
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Figure 7.38
     Here we start with a single infinitely long sinusoid at a spatial frequency (k p
 ) that’s called the carrier (or peak) frequency. Adding in two more frequency components symmetrical about 

k p
  leaves the carrier (or average) frequency unchanged but creates beats. Adding in still more pairs of sinusoids further separates the pulses without changing their shapes or the carrier frequency. This 

is consistent with the fact that as l increases the pulse can be thought of as becoming a finer detail 

of the entire waveform. As we’ll see in Fig. 7.44, if the amplitudes of the constituents form an enve-

lope that is Gaussian (i.e., of the form  e
 - ax
 2), the envelopes of the pulses will also be Gaussian.
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(a)


E(t)
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t



a
  = 4

1

t
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l
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A
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Figure 7.39
   ( a
 ) A stream of femtosecond wave packets each having a 

Gaussian envelope corresponds to a frequency spectrum ( b
 ) in the shape of 


f (x)


a comb having a Gaussian envelope.


a
  = 8

l = 2 cm

say, 

1

l = 1 cm so it matches Fig. 7.36. The peak then has a width 

of 12 cm, that is, 2(l> a
 ), centered at  x 
 = 0, as illustrated in Fig. 


x


7.40 a
 . The importance of each particular frequency,  m
 k, can be 

–l8 0 l8

l

appreciated by examining the value of the corresponding Fou-

1


A


–14 0 14

2 (cm)

1

2

rier coefficient, in this case  Am
 . The coefficients may be thought 


A


of as weighting factors that appropriately emphasize the various 

3

Fourier coefficients 14


k
  = p

harmonics. Figure 7.40 a
  contains a plot of a number of values 

0


mk


of  A


0  k 
 2 k 
 4 k


10 k



m
  (where  m 
 = 0, 1, 2, . . .) versus  m
 k for the foregoing peri-

0 2p 4p

8p

12p

16p

20p

odic square waveform. Recall that such a curve is known as the 



spatial frequency spectrum

 .

(b)

We can regard  Am
  as a function,  A(m
 k ), 
 of  m
 k, which may be 

nonzero only at values of  m 
 = 0, 1, 2, . . . . If the quantity  a 
 is 


f (x)



a
  = 16

now made equal to 8 while l is increased to 2 cm, the peak 

l = 4 cm

width will be completely unaffected. The only alteration is a 

1

doubling of the space between peaks. Yet a very interesting 

change in the spatial frequency spectrum is evident in Fig. 7.40 b
 . 

–l16 0 l16


x


Note that the density of components along the  m
 k-axis has in-

1

–14 0 14

4 (cm)

creased markedly. Nonetheless,  A(m
 k )
  is still zero when 

2

l


m
 k = 4

Fourier coefficients 1


k
  = 

p, 8p, 12p, . . . , but since k is now p rather than 2p, 

4

p2

there will be more terms between these zero points. Finally, let 

0


mk



k 
 3 k



a 
 = 16 and increase l to 4 cm. Again the individual square 

0

4 k 
 8 k


peaks are unaltered in shape, but the terms in the frequency 

0 2p 4p

8p

12p

16p

20p

spectrum are now even more densely packed. In effect, the 

(c)

pulse, as compared with l, is getting smaller and smaller, there-


Figure 7.40
     The square pulse as a limiting case. A periodic waveform 

by requiring higher frequencies to synthesize it.

with only two of its peaks depicted. The negative coefficients correspond to 

In Fig. 7.40 a
   A
 2 is zero, and in Fig. 7.40 b
  the sinc function 

a phase shift of p radians. As more and more frequency terms are added 

is zero at the same location but it’s  A
 4 that is zero, just as  A
 8 is 

to the synthesis, the peaks on either side of the one at the origin move out 

zero in Fig. 7.40 c
 . A nice way to appreciate that there must be 

toward  ±infinity, respectively. Ultimately, when there is a continuous 

these zero-amplitude terms is to reconsider the statement

range of component frequencies present, they will combine to produce a 

single square pulse at the origin.

2


Am 
 =

* the area under  ƒ(x)
  cos  m
 k x


Figure 7.41 successively depicts the overlap of the square peak 

l

and several cosines: cos 1k x
 ,  cos 3k x
 , and cos 8k x
 . The shaded 

Here  ƒ(x)
  is either 1 or 0, so each 
 
A



areas of the cosines under the square peak, that is, under  ƒ(x)
  



m

  corresponds to the area 



of the segment of cos
   
mkx

  under the square peak
 . The  DC
  

cos  m
 k x
 , get smaller and so  A
 1,  A
 2,  A
 3, . . . get smaller as well. The term in the series is 1

component cos 4k x
  has a wavelength of 1 cm (i.e., 1

2  A
 0 where  A
 0 = (2>l)[area under  ƒ(x)
 ] and 

4l) and one-

it will be different for each waveform in Fig. 7.40  
 getting small-

half cycle of it fits exactly within the square peak. Higher  m
  terms 

er as the peak gets smaller in comparison to l. For example, in  

will produce increasing negative-area contributions. When  m 
 = 8  


Fig. 7.40 c
 ,  
 where the area is (1 cm)(1

an entire cos 8k x
  profile will fit precisely within the peak (half 

2 cm), with l = 4 cm  A
 0 

becomes 1

above and half below the axis) such that the overlap area will be 

4.
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f (x)


provided that

∞

1


A(
 k ) 
 =


m
  = 1

3  ƒ(x)
  cos k x
   dx


cos  kx


- ∞

(a)


x


0

1 cm

2

∞

l = 4 cm

and 


B(
 k ) 
 = 3  ƒ(x)
  sin k x
   dx
  (7.57)

- ∞


m
  = 3

cos 3 kx


(b)


x


0

The similarity with the series representation should be obvi-

ous. The quantities  A(
 k )
  and  B(
 k )
  are interpreted as the ampli-

tudes of the sine and cosine contributions in the range of an-

gular spatial frequency between k and k


m
  = 8

+  d
 k. They are the 

cos 8 kx



Fourier cosine
  and sine transforms
 , respectively. In the 

(c)


x


foregoing example of a square pulse, it is the cosine trans-

0

form,   A(
 k )
 , that will be found to correspond to the envelope 

in Fig. 7.40.


Figure 7.41
     The shaded region is the area under the product 

Recall that the first term in the series is 12  A
 0, which suggests 


ƒ(x)
   * cos  mkx
 . If we multiply that area by 2>l we get the values of  Am
 . 

another way to represent the frequency spectrum. Inasmuch as 

Notice that when  m 
 = 8 the product area (half positive and half negative) 

cos ( m
 k x
 ) = cos (- m
 k x
 ), we can divide the amplitude of every 

is zero and  A
 8 = 0.

contribution beyond  m 
 = 0  
 in half and plot it twice, once with a 

zero; that’s why the  A


positive value of k and again with a negative one (Fig. 7.42). 

8 term is absent in Fig. 7.40 c
 . Whenever the 

sinc function is zero for some value of  m
 , there will be a whole 

This mathematical contrivance provides a nice symmetrical 

number of cos  m
 k x 
 waveforms  
 spanning the peak.

curve; it’s introduced here because it is common practice to rep-

Observe that the sinc-function envelope of the coefficients, 

resent frequency spectra in that fashion.

which was barely discernible in Fig. 7.40 a
 , is quite evident in Fig. 

As we will see in Chapter 11, the most powerful Fourier 

7.40 c
 . In fact, the envelope is identical in each case, except for a 

transform methods involve a complex representation that auto-

scale factor. That curve is determined only by the shape of the 

matically gives rise to a symmetrical distribution of positive and 

original signal and will be different for other waveforms. As we 

negative spatial frequency terms. Certain optical phenomena 

have already seen, as l increases and the function takes on the ap-

(such as diffraction) also occur symmetrically in space, and a 

pearance of a single square pulse, the space between each of the 

marvelous relationship can be constructed with the spatial fre-


A(m
 k )
  contributions in the spectrum decreases. The discrete spec-

quency spectrum, provided that it encompasses positive and 

tral lines, while decreasing in amplitude, will gradually merge, 

negative frequencies. Thus the negative frequency is a useful 

becoming individually unresolvable. In the limit as l approaches 

mathematical device that allows us to describe physical systems 

∞, the spectral lines will become infinitely close to each other. As 

that are symmetrical (going off in opposite directions from a 

k becomes extremely small,  m
  must consequently become ex-

central point).

ceedingly large, if  m
 k  
 is to be at all appreciable. Changing nota-

tion, replace  m
 k, the angular frequency of the harmonics, by k m
 . 

Although it comprises discrete terms, in the limit k m
  will be trans-

formed into k (i.e., a continuous frequency distribution). The 


Am


function   A(
 k m)
  in the limit will become the envelope shown in 

Fig. 7.40. It is obviously no longer meaningful to talk about the 

fundamental frequency and its harmonics. The pulse being syn-

0.50

thesized,  ƒ(x)
 , has no apparent fundamental frequency.

An integral is actually the limit of a sum as the number of 

elements goes to infinity and their size approaches zero. Thus it 

0.25

should not be surprising that the  Fourier series
  must be replaced 

by the so-called Fourier integral
  as l goes to infinity. That 

–7 k


–3 k


3 k


7 k


integral, which is stated here without proof, is

–6 k 
 –5 k 
 –4 k


–2 k 
 – k


0


k 
 2 k


4 k 
 5 k 
 6 k



mk


1

∞

∞


  ƒ(x) 
 = c  A(
 k )
  cos k x
   d
 k +


B(
 k )
  sin k x
   d
 kd  (7.56)


Figure 7.42
     A symmetrical frequency spectrum for the waveform in 

p 3

3

Figure 7.40 a
 . Note that the zeroth term is actually  A


0

0

0>2, which is indeed 

the amplitude of the  m 
 = 0 contribution to the series.
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7.4.2 Pulses and Wave Packets


It is a simple matter to write out the integral representation 

of  ƒ(x)
  using Eq. (7.56):

Let’s now determine the Fourier-integral representation of the 

square pulse in Fig. 7.43, which is described by the function

1

∞






ƒ(x) 
 =  


E


p 3

0  L
  sinc (k L
 >2) cos k x
   dx
  (7.59)

0


E



ƒ(x) 
 = e 0 when 0  x 
 0 6  L
 >2

0

when 0  x 
 0 7  L
 >2

An evaluation of this integral is left for Problem 7.50.

For the moment we’ll limit the analysis to positive values of k. 

Since  ƒ(x)
  is an even function, the sine transform,  B(
 k )
 , will be 


The Cosine Wavetrain


found to be zero. Pressing on,

Earlier, when we talked about monochromatic waves, we point-

∞

+ L
 >2

ed out that they were in fact fictitious, at least physically. There 


A(
 k ) 
 =


ƒ(x)
  cos k x
   dx 
 =


E


will always have been some point in time when the generator, 

3

3

0 cos k x
   dx


- ∞

- L
 >2

however perfect, was turned on. Figure 7.44 depicts a some-

what idealized harmonic pulse with a carrier frequency k p
  cor-

Hence

responding to the function


E


+ L
 2

2 E



A(
 k ) 
 = 0 sin k x
   `

=

0 sin k L
 >2


E



x


when 

k

k

- L 
 …  x 
 …  L


- L
 2


E(x) 
 = e 0 cos k p
   

0

when 0  x 
 0 7  L


Multiplying numerator and denominator by  L 
 and rearranging 

We chose to work in the space domain but could certainly 

terms, we have

have envisioned the disturbance as a function of time. We are 

sin k L
 >2

effectively examining the spatial profile of the wave  E(x 
 -  vt) 



A(
 k ) 
 =  E
 0  L
   k

at  t



L
 >2

= 0  
 rather than the temporal profile at  x 
 = 0. The spatial 

frequency k p
  is that of the harmonic region of the pulse itself 

or equivalently

(i.e., the many cosinusoidal undulations depicted in Fig. 7.44 a
 ). 

Note that  E(x)
  is an even function; consequently,  B(
 k ) 
 = 0 and


 



A(
 k ) 
 =  E
 0  L
  sinc (k L
 >2) (7.58)

+ L


The Fourier transform of the square pulse is plotted in Fig. 7.43 b
  


A(
 k ) 
 = 3  E
 0 cos k p
   x
  cos k x
   dx


and should be compared with the envelope in Fig. 7.40. As  

- L



L
  increases, the spacing between successive zeros of  A(
 k )
  

This is identical to

decreases and vice versa. Moreover, when k = 0, it follows 

from Eq. (7.58) that  A(0) 
 =  E


+ L


0  L
 .


A(
 k ) 
 = 3  E 
 10 2 [cos (k p
   + k) x
   + cos (k p 
 - k) x
 ]  dx


- L



f (x)


which integrates to


E
 0

sin (k p 
 + k) L


sin (k p 
 - k) L



A(
 k ) 
 =  E
 0  L 
 c

+

d

(k p 
 + k) L


(k p 
 - k) L



x


or, if you like,

– L
 2

0


L
 2

(a)


 



A(
 k ) 
 =  E
 0  L
 [sinc (k p 
 + k) L 
 + sinc (k p 
 - k) L
 ] (7.60) E
 0 L


2)

When there are many waves in the train (l p
  6 6  L
 ), k p
   L
  7 7   



kL


2p. Thus (k p 
 + k) L
   7 7 2p, and therefore sinc (k p 
 + k) L
  is 

down to fairly small values. In contrast, when k

 sinc (


p 
 = k, the sec-


L


ond sinc function in the brackets has a maximum value of 1. In 


E 
 0

other words, the function given by Eq. (7.60) can be thought of 


k)
  = 

as having a peak at k


A(


= -k p 
 as shown in part ( b
 ) of the drawing. 

If we limit the treatment to only positive values of k, only the 


k


0


L



L 
 2

p

p

2p

3p

4p

5p

tail of that left-side peak that crosses into the positive k region 

2

–0.2 E


will contribute. As we have just seen, such contributions will be 

0 L


negligible far from k = -k p
 , especially when  L
  7 7 l p  
 and 

(b)

the peaks are both narrow and widely spaced. The positive tail 


Figure 7.43
     The square pulse and its transform.

of the left-side peak then falls off rapidly beyond k = -k p
 . 
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E(x)



E
 0


x



A(k)


– L


0


+L


(a)


A(k)



k



E


–

0 L



kp


0


kp


(b)


k



kp


p


Figure 7.44
     The profile of a finite cosine wavetrain 


kp
  –

p


kp
  +

(c)


L



L


and its transform.

Consequently, we can neglect the first sinc in this particular 

where v and k are related by the phase velocity. The frequency 

case and write the transform as

spectrum, except for the notational change from k  
 to v and  L 
 to 


T
 , is identical to that of Fig. 7.44 c
 .






A(
 k ) 
 =  E
 0  L
  sinc (k p 
 - k) L
  (7.61)

To summarize, the waveform (Fig. 7.44 a
 ) whose transform 

(Fig. 7.44 c
 ). Even though the wavetrain is very long, since it is 

we computed is a cosinusoidal pulse oscillating at a constant 

not infinitely long it must be synthesized from a continuous 

angular spatial frequency k p
 . That single-frequency oscillation 

range of spatial frequencies. Thus it can be thought of as the 

can be thought of as being modulated by a rectangular pulse 

composite of an infinite ensemble of harmonic waves. One 

extending from - L
  to + L
  such that the resultant is zero every-

speaks of such pulses as  
wave packets

  or  
wave groups

 . As we 

where but in that range. The desired transform is the transform 

might have expected, the dominant contribution is associated 

of the envelope function (i.e., the rectangle), which is a sinc 

with k = k p
 . Had the analysis been carried out in the time do-

function. The fact that we are not just dealing with a rectangular 

main, the same results would have obtained where the trans-

function results in the sinc being shifted along the positive  

form was centered about the temporal angular frequency v p
 . 

k-axis by an amount equal to k p
 . Reasonably enough, the domi-

Clearly, as the wavetrain becomes infinitely long (i.e.,  L 
 S ∞), 

nant frequency in the transform is the frequency of oscillation 

its frequency spectrum shrinks, and the curve of Fig. 7.44 c
  closes 

of the cosine portion of the waveform. Notice that the width of 

down to a single tall spike at k p
  (or v p
 ). This is the limiting case 

the transform, taken arbitrarily between the first zeros on either 

of the idealized monochromatic wave.

side of k p
 , equals 2p> L
 ; the longer the oscillatory wavetrain 

Since we can think of  A(
 k )
  as the amplitude of the contribu-

(2 L
 ), the narrower its transform (2p> L
 ).

tions to  E(x)
  in the range k to k +  d
 k,  A
 2 (
 k ) 
 must be related to Thus just looking at the transform (Fig. 7.44 c
 ), we see from 

the energy of the wave in that range (Problem 7.54). We’ll 

its shape that the original waveform was rectangular; from its 

come back to this point in Chapter 11 when we consider the 

location on the k-axis we know that the original pulse was oscil-


power spectrum
 . For the moment, merely observe (Fig. 7.44 c
 ) 

latory at a frequency k p
 ; from its width we can get an idea of the 

that most of the energy is carried in the spatial frequency range 

length of the wavetrain; from its peak amplitude, we can deter-

from k p 
 - p> L
  to k p 
 + p> L
 , extending between the minima on 

mine the amplitude of the wavetrain; from the fact that it’s a 

either side of the central peak. An increase in the length of the 

cosine transform we know the phase of the oscillation at  x 
 = 0.

wavetrain causes the energy of the wave to become concen-

Had the pulse been a cosinusoidal oscillation at frequency k p
  

trated in an ever narrowing range of k about k p
 .

modulated by some other envelope, the transform would have 

The wave packet in the time domain, that is,

been the transform of that envelope function centered on k p
  

(see, for example, Fig. 7.46).


E



t


when - T 
 …  t 
 …  T



E(t) 
 = e 0 cos v p
   

0

when 0  t 
 0 7  T



Frequency Bandwidth


has the transform

For the particular wave packet being studied, the range of 


 



A(
 v ) 
 =  E
 0 T
  sinc (v p 
 - v) T
  (7.62)

angular frequencies (v or k) that the transform comprises is 
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certainly not finite. Yet if we were to speak of the  width
  of 


I


the transform (∆v or ∆k), Fig. 7.44 c
  suggests that we use 


I


∆k = 2

max

p> L
  or ∆v = 2p> T
 . In contrast, the spatial or tempo-

ral extent of the pulse is unambiguous at ∆ x 
 = 2 L
  or ∆ t 
 = 2 T
 , 

respectively. The product of the width of the packet in what 

might be called k -space
  and its width in  x-space
  is 

∆k ∆ x 
 = 4p or, analogously, ∆v ∆ t 
 = 4p. The quantities ∆k  


and ∆v are the frequency bandwidths
 . Had we used a dif-


I
 max

ferently shaped pulse, the product of the bandwidth and the 

2

pulse length might certainly have been somewhat different. 

The ambiguity arises because we have not yet chosen one of 

the alternative possibilities for specifying ∆v and ∆k. For 

example, rather than using the first minima of  A(
 k )
  (there are 

transforms that have no such minima, such as the Gaussian 

l (nm)

function of Section 11.2), we could have let ∆k be the width 

–0.002 –0.001

+0.001 +0.002

of   A
 2 (
 k )
  at a point where the curve had dropped to 12 or pos-

643.847

±0.000 65 nm at  I


sibly 1> e
  of its maximum value. In any event, it will suffice 

max2

for the time being to observe that since ∆v = 2p∆n,


Figure 7.45
     The cadmium red (l = 643.847 nm) spectral line from a 





∆n ≈ 1>∆ t
  (7.63)

low-pressure lamp.

that is, the frequency bandwidth is the same order of magnitude 

wavetrains and again tend to broaden the frequency distribution. 

as the reciprocal of the temporal extent of the pulse (Problem 7.55). 

The total effect of all these mechanisms is that each spectral line 

If the wave packet has a narrow bandwidth, it will extend over 

has a bandwidth ∆n rather than one single frequency. The time 

a large region of space and time. Accordingly, a radio tuned to 

that satisfies Eq. (7.63) is referred to as the coherence time
  

receive a bandwidth of ∆n will be capable of detecting pulses of 

(henceforth to be written ∆ tc
 ), and the length ∆ lc
  given by

duration no shorter than ∆ t 
 ≈ 1>∆n.

These considerations are of profound importance in Quan-





∆ lc 
 =  c
  ∆ tc
  (7.64)

tum Mechanics, where wave packets describe particles, and  

Eq. (7.63) is akin to the Heisenberg Uncertainty Principle.

is the coherence length
 . As will become evident presently, the 

coherence length is the extent in space over which the wave is 

nicely sinusoidal so that its phase can be predicted reliably. The 


7.4.3 Coherence Length


corresponding temporal duration is the coherence time. These 

concepts are extremely important in considering the interaction 

Let’s now consider the light emitted by what is loosely termed 

of waves, and we will come back to them later in the discussion 

a monochromatic source, for example, a sodium discharge 

of interference.

lamp. When the beam is passed through some sort of spectrum 

Although the concept of the photon wavetrain is already fa-

analyzer, all its various frequency components are observed. 

miliar, we are now in a position, armed with a little Fourier 

Typically, we find that a number of fairly narrow frequency 

analysis, to deduce something about its configuration. This can 

ranges contain most of the energy and that these are separated 

be done by essentially working backward from the experimen-

by much larger regions of darkness. Each such brightly col-

tal observation that the frequency distribution of a spectral line 

ored band is known as a spectral line
 . There are devices in 

from a quasimonochromatic (nonlaser) source can be represent-

which the light enters by way of a slit, and each line is actu-

ed by a bell-shaped Gaussian function (Section 2.1). That is, the 

ally a colored image of that slit. Other analyzers represent the 

irradiance versus frequency is found to be Gaussian. But irradi-

frequency distribution on the screen of an oscilloscope. In any 

ance is proportional to the electric-field amplitude squared, and 

event, the individual spectral lines are never infinitely sharp. 

since the square of a Gaussian function is a Gaussian function, 

They always consist of a band of frequencies, however small 

it follows that the net amplitude of the light field is also bell-

(Fig. 7.45).

shaped.

The electron transitions responsible for the generation of 

Now suppose a single photon wavetrain, one of  N
  identical 

light have a duration on the order of 10-8 s to 10-9 s. Because 

such packets making up the beam, resembles Fig. 7.46 a
  in that it 

the emitted wavetrains are finite, there will be a spread in the 

is a harmonic function modulated by a Gaussian envelope. Its 

frequencies present, known as the natural linewidth
  (see Sec-

Fourier transform,  A(
 v )
 , is also Gaussian. Imagine that we look at 

tion 11.3.4). Moreover, since the atoms are in random thermal 

only one and the same harmonic frequency component that goes 

motion, the frequency spectrum will be altered by the Doppler 

into making up each photon wavetrain, for example, the one cor-

Effect. In addition, the atoms suffer collisions that interrupt the 

responding to v′. Remember that this component is an infinitely 
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(a)


E(t)


wave packets, even though the amplitude of each frequency 

component present in the resultant is simply  N
 12 times its 

amplitude in any one packet. The observed spectral line cor-

responds to the power spectrum of the resultant beam, to be 

sure, but it also corresponds to the power spectrum of an indi-


t


vidual packet. Ordinarily there will be a tremendous number 

of arbitrarily overlapping wave groups, so that the envelope of 

the resultant will rarely, if ever, be zero. If the source is qua-

simonochromatic (i.e., if the bandwidth is small compared 

∆ tc


with the mean frequency n), we can envision the resultant as 

(b)  A(
 v )


being “almost” sinusoidal.

In summary, the composite lightwave can be pictured as in 

Fig. 7.47. We might imagine the frequency and amplitude to be 

randomly varying, the former over a range ∆n centered at n. 

Accordingly, the frequency stability
 , defined as ∆n> n, is a 

v

useful measure of spectral purity. Even a coherence time as 

0

v

v


¯ 


∆v

short as 10-9 s corresponds to roughly a few million wave-

lengths of the rapidly oscillating carrier (n), so that any ampli-


Figure 7.46
     A cosinusoidal wave packet modulated by a Gaussian envelope 

tude or frequency variations will occur quite slowly in com-

along with its transform, which is also Gaussian.

parison. Equivalently, we can introduce a time-varying phase 

factor such that the disturbance can be written as

long, constant-amplitude sinusoid. If every packet is indeed iden-


 



E(t) 
 =  E
 0 (t)
  cos [e (t) 
 - 2pn t
 ] (7.65)

tical, the amplitude of the Fourier component associated with v′ 

will be the same in each. At any point in a stream of photons these 


where the separation between wave crests changes in time
 .

v′-component monochromatic waves, one from each wavetrain, 

The average duration of a wave packet is ∆ tc
 , so two points 

will have a random relative phase distribution that rapidly changes 

on the wave in Fig. 7.47 separated by more than ∆ tc
  must lie on 

in time with the arrival of each photon. Thus all such contributions 

different contributing wavetrains. These points would thus be 

taken together [Eq. (7.21)] will correspond on average to a har-

completely uncorrelated in phase. In other words, if we deter-

monic wave of frequency v′ having an amplitude proportional to 

mined the electric field of the composite wave as it passed by an 


N
 1>2, and this is the v′ part of the net observed field. The same 

idealized detector, we could predict its phase fairly accurately 

will be true for every other frequency constituting the packets. 

for times much less than ∆ tc
  later, but not at all for times greater 

This means that the same amount of energy is present at each 

than ∆ tc
 . In Chapter 12 we will consider the  degree of coher-


frequency in the net light field of the beam as there is in the total-


ence
  that applies over the region between these extremes as 

ity of the separate constituent wavetrains. Moreover, we know all 

well.

about this energy-frequency distribution; it’s Gaussian, so the 

White light has a frequency range from 0.4 * 1015 Hz to 

transform of the photon wavetrain must be Gaussian, too. In other 

about 0.7 * 1015 Hz, that is, a bandwidth of about 0.3 * 1015 Hz. 

words, the observed spectral line corresponds to the power spec-

The coherence time is then roughly 3 * 10-15 s, which corre-

trum of the beam, but it also corresponds to the power spectrum of 

sponds [Eq. (7.64)] to wavetrains having a spatial extent only a 

an individual photon packet. If the irradiance is Gaussian, the pho-

few wavelengths long (Table 7.1). Accordingly,  white light 


ton wavetrain is Gaussian.


may be envisaged as a random succession of very short pulses
 . 

As a result of the randomness of the wavetrains, the indi-

Were we to synthesize white light, we would have to superim-

vidual harmonic components of the resultant wave will not 

pose a broad, continuous range of harmonic constituents in order 

have the same relative phases as they did in each packet. Thus 

to produce the very short wave packets. Inversely, we can pass 

the profile of the resultant will differ from that of the separate 

white light through a Fourier analyzer, such as a diffraction 


E(t)



Figure 7.47
     A fairly crude representa-

tion of a quasimonochromatic lightwave.


t
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EXAMPLE 7.6


TABLE 7.1  Approximate Coherence Lengths  



of Several Sources


A red light–emitting diode (LED) radiates in vacuum at a mean 

wavelength of 607 nm. If the emission has a linewidth of 18 nm, 

Source  Mean Wavelength  Linewidth*  Coherence Length

what is its frequency bandwidth?





l0(nm) 

∆l0(nm) 

∆ lc


SOLUTION

Thermal IR 

10000 

≈4000 

≈25000 nm = 2.5l0 

We need to relate 

(8000–12000 nm)

∆l0, the vacuum linewidth, to ∆n, the fre-

quency bandwidth. Accordingly, differentiate n

Mid-IR 4000 

≈2000 

≈8000 nm

=  c
 >l0 with 

= 2l0 

(3000–5000 nm)

respect to l0 to get ∆n>∆l0 =  c
 l-2

0 . We dropped the minus 

sign, since it just tells us that an increase 

White light 

550 

≈300 

≈900 nm

∆n is accompanied by 

= 1.6l0

a decrease ∆l

Mercury arc 

546.1 

0. Thus at l0, the mean vacuum wavelength, the 

≈1.0 

⪝ 0.03 cm

frequency bandwidth is 

Kr86 discharge lamp 

605.6 

1.2 * 10-3 

0.3 m

Stabilized He–Ne laser  632.8 

≈10-6 

⪝ 400 m


c
 ∆l

(3.0 * 108m>s)(18 * 10-9m)

Special He–Ne laser 

1153 

8.9 * 10-11 

15 * 106 m

∆

0

n =

=

l20

(607 * 10-9m)2

*To find the corresponding frequency bandwidth use, ∆ v
 >∆l0 = n >l0.

and

∆n = 1.47 * 1013 Hz = 15 THz

grating or a prism, and in so doing actually generate those 

components.

The available bandwidth in the visible spectrum ( ≈300 

THz) is so broad that it represents something of a wonderland 


7.4.4 The Discrete Fourier Transform


for the communications engineer. For example, a typical tele-

vision channel occupies a range of about 4 MHz in the electro-

A function that describes some physical process can be Fourier 

magnetic spectrum (∆n is determined by the duration of the 

analyzed, and its transform can be determined analytically. 

pulses needed to control the scanning electron beam). Thus the 

We’ve already been introduced to the basics of how that’s done, 

visible region could carry roughly 75 million television chan-

and we’ll return to elaborate the effort in Chapter 11. But before 

nels. Needless to say, this is an area of active research (see 

leaving the subject, it’s important to extend the ideas of Fourier 

Section 8.11).

analysis to situations where there are no functional representa-

Ordinary discharge lamps have relatively large bandwidths 

tions of the data. Often one has a collection of data points or 

leading to coherence lengths only on the order of several milli-

perhaps a curve created on a plotter or computer screen. In any 

meters. In contrast, the spectral lines emitted by low-pressure 

event, the information can be digitized; that is, numbers can be 

isotope lamps such as Hg198 (lair = 546.078 nm) or the inter-

associated with points on the curve at convenient intervals. To 

national standard Kr86 (lair = 605.616 nm) have bandwidths of 

determine the frequency content of such a limited collection of 

roughly 1000 MHz. The corresponding coherence lengths are 

data, a numerical technique known as the discrete Fourier 


approximately 0.3 m, and the coherence times are about 1 ns. 


transform
  is used. Since the treatment is computer based, it 

The frequency stability is about one part per million—these 

will suffice for our purposes just to understand the general 

sources are certainly quasimonochromatic.

scheme and be able to appreciate the results.

The most spectacular of all present-day sources is the laser. 

Until now we dealt with functions such as  ƒ(x)
 —representing 

Under optimum conditions, with temperature variations and 

something interesting like an electric field—that provided 

vibrations meticulously suppressed, a laser was actually operat-

values for all  x
 . Instead, suppose we have a finite number of 

ed at quite close to its theoretical limit of frequency constancy. 

points,  N
 , located at 0,  x
 1,  x
 2, . . . ,  xN
 -1 and the corresponding 

A short-term frequency stability of about 8 parts per 1014 was 

specific values of whatever quantity is being studied: ƒ0,  ƒ x 
 , 

1

attained* with a He–Ne continuous gas laser at l0 = 1153 nm. 

ƒ x 
 , and so on. When the sample points are equally spaced by 

2

That corresponds to a remarkably narrow bandwidth of about 

an interval  x
 0, they can be represented by the sequence ƒ0, ƒ x 
 , 

0

20 Hz. More common and not very difficult to obtain are 

ƒ2 x 
 , and so forth. In essence, each Fourier integral transform 

0

frequency stabilities of several parts per 109. There are com-

[Eq. (7.57)] is approximated by a summation that is carried out 

mercially available CO2 lasers that provide a short-term  successively, point by point, over the range of the available data: (≈10-1 s) ∆n>n ratio of 10-9 and a long-term (≈103 s) value 

ƒ0, ƒ x 
 , ƒ , . . . . Figure 7.48 depicts a hand-drawn pulse and 

0

2 x
 0

of 10-8.

the corresponding computer-calculated discrete Fourier trans-

form (displayed with positive and negative frequency values, 

as in Fig. 7.42).

It’s a straightforward business (Section 11.2.2) to extend 

*T. S. Jaseja, A. Javan, and C. H. Townes, “Frequency stability of helium–neon 

lasers and measurements of length,”  Phys. Rev. Lett.
  10
 , 165 (1963).

Fourier analysis to two-dimensional functions,  ƒ(x, y)
 . For 

M07_HECH7226_05_SE_C07_282-329.indd   318

29/09/15   12:00 PM









 



7.4
   Nonperiodic Waves  319


(a)

input signal, the square of the transform provides a measure 

of the distribution of energy, or power, at each and every 

Input

component frequency. Consequently, the square of the trans-

form is a function of spatial frequency called the power 



x



spectrum
 . Since the transform will most often be written as 

0

a complex quantity, the power spectrum can be defined as  the 


(b)


product of the transform and its complex conjugate
 , given in 

units of W>m-2 or W·
 m2.

Figure 7.49 e
  is a plot (in k-space) of the power spectrum for 

Transform

the two-dimensional square pulse. Notice that it is everywhere 

positive, which is not the case with the transform. It’s clear from 


k


the power spectrum that most of the energy in the signal is associ-

0

ated with relatively low frequencies—the frequency increases 

radially out from the center of the pattern. Because the power 


Figure 7.48
     An input signal and its discrete Fourier transform.

spectrum is always positive, it’s useful to plot it as a kind of spot 

diagram in a two-dimensional format; each point then corre-

example, whereas Fig. 7.49 b
  is the transform of the one-di-

sponds to the contribution at a particular frequency. Later (p. 559) 

mensional unit-square pulse in terms of the angular spatial 

we’ll write the transform in terms of the coordinates ( Y
 ,  Z
 ) on a 

frequency k, Fig. 7.49 d
  is the transform of the two-dimensional 

distant observing screen and establish that the transform squared 

unit-square pulse in terms of the angular spatial frequencies k

is identical to the irradiance distribution in the diffraction pattern 


x
  

and k

on that screen. Expressed in this way, the transform squared (in 


y
 .

It’s natural for physicists to think about processes in rela-

units of W>m2) can be called the  irradiance spectrum
 . Although 

tion to energy, especially if any measurements are to be made. 

there is a mathematical distinction between the power and irradi-

The energy associated with a harmonic wave is proportional 

ance spectra, if you were shown an unlabeled representation of 

to the amplitude squared, and since the transform tells us the 

each (the former plotted in k-space and the latter in ordinary co-

amplitudes of all the constituent sinusoids that make up the 

ordinate space), you’d be hard pressed to tell the difference.

(d)


Figure 7.49
   ( a
 ) A one-

(a)

dimensional square pulse and 

( b
 ) its transform. ( c
 ) A two-

dimensional square pulse and 

( d
 ) its transform. ( e
 ) The 

power spectrum of the trans-


x


form in (R.G. Wilson, Illinois 

Wesleyan University) ( d
 ) plotted in 

two-dimensional  k
 -space. (R.G. 

Wilson, Illinois Wesleyan University)

(b)


k


(e)

(c)
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(a)

(a)

(b)

(b)

(c)

(d)


Figure 7.50
   ( a
 ) The Mona Lisa and ( b
 ) the central portion of its power 

spectrum. ( c
 ) Mona, with her high spatial frequencies removed. ( d
 ) Mona 

with her low spatial frequencies removed. (Synoptics Image Processing Systems, 

Cambridge, UK)

When analytic functions are not available, similar results 

can be accomplished with the discrete Fourier transform. A 

two-dimensional field of data (e.g., the picture of the Mona 


Figure 7.51
     Two computer-processed images. The small inserts on  

Lisa in Fig. 7.50 a
 ) can be scanned, digitized, and the discrete 

the left were created by filtering out the sinusoidal modulation. The  

transform computed. The graph of the transform of so compli-

white insert represents the filter, and the black one is the filtered power 

spectrum in each case. (MountainGate, Reno NV)

cated a signal is itself rather complicated, and so the power 

spectrum (Fig. 7.50 b
 ) is pictured instead. Because of the way 

negative frequencies were introduced, the pattern is symmetri-

single fixed spatial frequency (k0). Its presence shows up in 

cal along any diagonal. The bright narrow central cross arises 

the computed power spectrum of any portion of the picture, 

from the sharp boundary edges of the picture. (As we’ll see 

essentially as two bright spots on the horizontal axis at  ±k0. 

later, the horizontal edge produces the vertical line and the 



Ideally, the power spectrum of a signal in the form of a sinu-



vertical edge produces the horizontal line—take a look at  



soidal grating is remarkably simple. It consists of just two 



Fig. 13.34.) If the higher spatial frequency terms that carry the 



spikes, one at plus and the other at minus the grating fre-



fine details (the ones far from center) are filtered out and the 



quency

 .


picture is reconstructed from what remains, a soft blur results 

The filter (represented by the white square with two black 

(Fig. 7.50 c
 ). On the other hand, if the low spatial frequency 

spots) was used to create the inserted small images within each 

terms are removed by blocking out the center of the transform, 

photo. It removed frequencies +k0 and -k0 from each power 

the high frequencies that remain will result in a sharp-edged 

spectrum (the filtered versions of which are shown in the upper 

reconstruction (Fig. 7.50 d
 ).

right). The subregion images were then reconstructed using the 

The form of the elements within a given image determine 

filtered power spectra. Each of the “cleaned up” images, sans 

its transform and therefore its power spectrum. The pictures in 

sinusoid, was then returned to its place in the original. Notice 

Fig. 7.51 were computer-created, with a vertical sinusoidal 

how different those two spectra are—the facets on the cut-glass 

pattern superimposed in order to illustrate the point. The idea 

cup dominate the spectrum in Fig. 7.51 b
 . Clearly, the frequency 

was to successively isolate several subregions of the picture, 

content of a picture, as spread out before us in the form of either 

to study their transforms, and to filter them. The vertical peri-

the Fourier transform or the power spectrum, provides a won-

odic modulation forms a sinusoidal grid or grating
  that has a 

derful new way to think about the image.
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Fourier Analysis and Diffraction


Fourier spatial frequency component. A directory of all of 

these component plane waves constitutes the transform of the 

A discussion of computer image analysis, which is a kind of 

transmitted optical field at the transparency.  
The Fourier 



virtual Optics, can be fascinating in its own right, but it also 



transform of the electric field at the slide is a weighting func-



presages a far more fundamental aspect of diffraction, which 



tion that gives the relative strength of each spatial frequency 



can only be touched on in this chapter. The photographic trans-



component composing that field, and therefore each plane-



parency (let it be a slide of the Mona Lisa) shown in Fig. 7.52 a
  



wave stream leaving the aperture

 .
  The sum total of all the 

is a two-dimensional record of the distribution of light that 

plane waves  is
  all the transmitted light and must be equivalent 

once was an image of the painting. The information so stored 

to the complicated Mona Lisa wavefront leaving the slide, 

can be read out as a signal by illuminating the slide, and that’s 

which is also all the transmitted light.

done here with monochromatic plane waves. Every point on 

Another nice way to envision what’s happening is to suppose 

the surface of the slide is a scatterer, and rays emerge from it in 

that every picture element with a spatial frequency along any 

a wide range of directions (Fig. 7.52 b
 ). For every plane wave 

direction in the photo plane acts like a sinusoidal grating. And 

going off at some angle above the axis, there is one streaming 

every such grating essentially diffracts light into two symmetri-

away at the same angle below the axis. Each plane wave (or 

cal streams of plane waves traveling at angles proportional to 

parallel ray bundle) traveling in a particular k i
 -direction is a 

the grating frequency (p. 488).

The region to the right of the slide is filled with waves that 

(a)

increasingly overlap as the distance from the slide increases. 

Nearby, the light arriving on a viewing screen would show the 

Mona Lisa fairly clearly, but as the screen was moved away the 

image would blur and change until it soon became totally unrec-

ognizable. The region beyond the slide contains an intricate dis-

tribution of light, the diffraction pattern of the transparency. 

Mathematically, there are two regimes:  Fresnel diffraction
 , 

which appears close to the aperture (i.e., the slide) and extends 

out to the region of  Fraunhoffer diffraction
 , which comes into 

+ k
 2

being very far from the aperture and goes on from there (p. 452). 

If a lens is placed one focal length from the slide, as in  

(b)

Fig. 7.52 c
 , it will cause the parallel ray bundles (which produce 

+ k
 1

Fraunhoffer diffraction beyond a distance so great that it’s ef-

fectively infinite) to conveniently focus on a nearby screen. 

There, each point of light in the resulting diagonally symmetri-

+ k
 0

cal, two-dimensional irradiance distribution corresponds to a 

specific value of spatial frequency.  
The amplitude of the elec-





tric field everywhere in the Fraunhoffer diffraction pattern 





corresponds to the Fourier transform of the input signal, that 



– k
 1



is, the electric-field distribution over the aperture

 , although 

neither is measurable directly.


The observable phenomenon is the two-dimensional ir-


– k
 2


radiance distribution, which is identical to the square of the 



Fourier transform of the input field
  (p. 452). It’s also a map 

(c)

of the spatial frequency content of the Mona Lisa, and it 

“matches” the power spectrum pictured in Fig. 7.50 b
 . As we’ll 

+ k
 1

see (p. 634), it’s possible to spatially filter the optical transform, 

thereby altering the reconstructed image, just as was done via 


k
 0

computer to produce Figs. 7.50 c
  and  d
 .

– k
 1


Superluminal Light


The title of this section announces that it will treat “faster than 

light” light, which certainly seems strange, but the phrase makes 


Figure 7.52
     An illuminated transparency. ( a
 ) Incident monochromatic 

for great headlines in the news media and in recent years it’s 

plane waves. ( b
 ) Scattered parallel bundles of rays (plane waves). ( c
 ) The 

projection of the power spectrum onto an observing screen.

become part of the popular scientific discourse. 
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The Special Theory of Relativity maintains that there are no 

difficulty could be addressed using a medium that had  gain
 , 

circumstances under which a signal (i.e., a communicative in-

one that amplified light. This was recently accomplished in a 

strumentality, which perforce carries energy) can propagate at a 

small cell containing cesium gas. The desired index profile was 

speed greater than  c
 . Yet we have already seen that under certain 

produced by pumping the cesium atoms using two different-

circumstances (Section 3.5.1) the phase velocity can do just that. 

frequency laserbeams. A region of lossless anomalous disper-

Indeed, as early as 1904 R. W. Wood showed experimentally that 

sion was thereby created between the two resulting gain lines 

white light passing through a chamber containing sodium vapor 

(Fig. 7.53). 

could have phase velocities exceeding  c
 . He studied the region 

A diode laser then fired a very long 3.7-ms— nearly Gaussian— 

of anomalous dispersion in the vicinity of the two closely spaced 

pulse toward the cell. Amazingly, an essentially identical pulse 

yellow sodium D resonances (having  wavelengths of 589.0 nm 

appeared at the far side of the cell even before the peak of the 

and 589.6 nm). 

incoming pulse reached the entrance. The measured lead time 

At frequencies far from the resonant frequencies of the  

was 62 ns, the equivalent of the exiting pulse getting about 20 m 

vapor, the index of refraction was slightly greater than 1, as 

ahead of the entering pulse. That’s ≈310 times farther than if 

expected. Moreover, little or no light was transmitted in the fre-

the pulse had traveled the 6-cm length of the cell in vacuum 

quency range of the absorption band. But for light with a fre-

(which would take a mere 0.2 ns).

quency close to the D lines, the index  n
 (n) began to show signs 

When  dn(
 n )
 > d
 n  
 is very large and negative, even though it’s 

of anomalous dispersion. As the frequency approached the reso-

counterintuitive, it is possible for  ng 
 to be negative. Indeed, in 

nances from the high-frequency low-wavelength side,  n
  rapidly 

this experiment  ng 
 = -310 .
  To appreciate what that means, 

decreased, becoming much less than 1 ( v 
 7  c
 ). So superluminal 

consider that it takes a pulse a time  L
 > vg 
 =  ngL
 > c
  to traverse a phase velocities have been well known for some time. 

medium of length  L
 , as compared to the time it would take  


The contradiction of Relativity is only an apparent one, aris-

( L
 > c
 ) to cover the same distance in vacuum. The difference be-

ing from the fact that although a monochromatic wave can have 

tween these two intervals, ∆ t 
 =  L
 > vg 
 -  L
 > c 
 = ( ng 
 - 1) L
 > c
 , is a speed in excess of  c
 , it cannot convey information. In contrast, 

the delay the pulse experiences in crossing the medium as op-

a signal in the form of any modulated wave will propagate at the 

posed to vacuum . 
 However, when  ng 
 6 1, ∆ t 
 6 0  
 and there is 

group velocity, which is always less than  c
  in normally disper-

no such “delay,” the pulse arrives early; it appears on the far 

sive media.*

side sooner than if it had traveled the distance  L
  in vacuum.

Starting in the 1980s and continuing to the present, a number 

To begin to understand how that could happen, imagine a 

of experimenters† have worked to establish that the group ve-

Gaussian wave packet whose amplitude falls toward zero ahead 

locity could also exceed  c
 . A light pulse of frequency n will 

and behind the central region. Physically, it’s entirely equiva-

have a group index of refraction given by

lent to a large group of overlapping sine waves that are all in-

phase at the one point where the peak of the pulse happens to be 


dn(
 n )



ng 
 =  n(
 n ) 
 + n 

at any time. Because their wavelengths are different, moving 


d
 n

out from the center of the peak these Fourier component waves 

(It’s left for Problem 7.32 to prove that that’s the case.) This 

individually fall in- and out-of-phase with distance. The jumble 

suggests that the place to go to create superluminal pulses is a 

of sine waves on either side of the peak increasingly cancel 

region of anomalous dispersion where  n(
 n )  
 changes rapidly 

each other, forming the long tapered “wings” of the pulse. 

with  n. We want  ng 
 6 1, so we need a negative value of 

The central insight is that regardless of the amplitude of a 


dn(
 n )
 > d
 n;  
 that’s just what obtains inside an absorption band—

wing at any location, it still contains exactly the same sine-wave 

the slope of the  n(
 n )
 -versus-n curve is negative.

The problem with that approach is that it’s also a place of 

considerable absorption and the pulses would either be severe-

ly distorted or attenuated, making the results ambiguous. That 

Gain

x

 indeve

*In regions of anomalous dispersion (Section 3.5.1) where  dn
 > dk 
 6 0,  vg
  may be greater than  c
 . Here, however, the signal propagates at yet a different speed, 

known as the signal velocity,  v


Gain coefficient


s
 . Thus  vs 
 =  vg
  except in a resonance absorption 

Refracti

Refractive index

band. In all cases  vs
  corresponds to the velocity of energy transfer and never 

exceeds  c
 .

–4 –3 –2 –1

0

1

2

3

4

†S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,”  Phys. 


Probe detuning (MHz)


Rev. Lett
 . 48
 , 738 (1982); L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted 

superluminal light propagation,”  Nature
  406
 , 277 (2000); D. Mognai, A. Ranfagni, 


Figure 7.53
     Gain-assisted linear anomalous dispersion used to demon-

and R. Ruggeri, “Observation of superluminal behavior in wave propagation,” 

strate superluminal group velocity. The index of refraction and gain coeffi-


Phys. Rev
 .  Lett
 . 84
 , 4830 (2000).

cient for a cesium gas with two closely spaced gain lines.
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distribution as does the main peak. It’s just that in the outskirts of 

(a)

3

(b)

the pulse, the component waves overlap in such a way as to pro-

1.004

duce a highly diminished net result. When the leading wing of the 

1.000

n p


wave packet traverses the cell, the cesium atoms take up and re-

n c


n

0.996

emit the constituent sine waves, shifting their relative phases (in 

0

Refractive index

a frequency-dependent way). That has the effect of reconstituting 

2

n0

a clone of the original wave packet. This composite pulse appears 

Probe detuning (MHz)

at the far end of the cell as if it had traveled at a rate far in excess 

1

of  c
 , while the incident pulse vanishes within the gas.


Figure 7.54
   ( a
 ) The energy-level configuration involved in producing 

electromagnetically induced transparency. ( b
 ) The index of refraction  

versus frequency curve for sodium showing the region of high-slope  


Subluminal Light


normal dispersion around the resonant frequency.

At the same time that researchers were producing superluminal 

wave packets, others were making equally dramatic break-

probe light (n p
 ) falls within the transmission band around n0, it 





throughs in slowing down and even stopping light pulses.* 

“sees” an essentially transparent medium. There is the usual 

In one experiment sodium atoms were chilled to nano-kelvin 

dispersion, but no absorption and no subsequent dissipation of 

temperatures via laser cooling (p. 67), followed by evaporative 

energy out of the pulse. Furthermore, to avoid distortion of the 

cooling. When the gas fell below 435 nK, it transitioned into  

signal pulse, it was made adequately long in time so that its 

a Bose-Einstein condensate (BEC)—a dense cloud of atoms 

frequency spectrum would be narrow enough to fit within the 

all in the same quantum state. Increasing the density (here at 

transparency band. 

maximum about 5

The frequency dependence of the index of refraction is sketched 

* 1012 atoms>cm3) is desirable because it 

increases the steepness of the  n(
 n )
 -versus-n curve. 

in Fig. 7.54 b
 . At n0 the index is 1, and so the second term in

Ordinarily, a dense gas would manifest a great deal of dissi-


dn(
 n )


pative absorption in the vicinity of any one of its resonances 


ng 
 =  n(
 n ) 
 + n   d
 n

(i.e., spectral lines), and that’s just where we want to send our 

dominates. The steep portion of the curve, where  dn(
 n )
 > d
 n is 

laser pulses (each centered at n p
 ). In other words (Fig. 7.54 a
 ), 

positive and large, corresponds to a region of normal dispersion 

in a dense gas the transition from the ground state 0 19 to the first 

with a tremendous group index  ng
 . Pulses centered at n p 
 = n0 

excited state 0 39 will result in dissipative absorption of the light 

propagate through the gas with group velocities as low as 17 m>s. 

at that frequency (n0). An atom absorbs a photon and gets ex-

Not long after these results were obtained, by coupling the so-

cited, but before it can reradiate, it collides with a neighboring 

dium D2 line to the sodium D1 probe line, researchers were able 

atom and loses that energy. As a consequence, the medium is 

to take the group velocity down to 0.44 m>s (a mere 1 mph).

opaque to pulses centered on n0. 

In 2001 two independent teams at Harvard (one using cold 

This difficulty can be surmounted with a technique called 

sodium and the other warm rubidium) brought pulses of light to 


electromagnetically induced transparency
  (EIT). Using  a crawl, and then, by shutting off the coupling laser—turning magnetic filtering, all of the atoms are first put into the  0 19 state. 

the medium opaque again—they stopped the light altogether. 

The gas is then illuminated by a second so-called coupling las-

Of course, every time you blink you stop light in its tracks, but 

erbeam ( vc
 ). It’s tuned to the transition between a close-by un-

this was very different. Here the light was first coupled to a 

populated hyperfine ground-state level 0 29 and the same excited 

system of atoms, and the information characterizing the compo-

state  0 39. What results is a coupling of the two ground states (a 

nent sinusoids of the signal pulse (frequency, amplitude, and 

quantum interference effect) that does not allow light in a nar-

angular momentum) was imprinted on the gas as a coherent or-

row band around n0 to be absorbed; it closes out the 0 19 S 0 39 

dering of its atomic spins. This information was later trans-

transition. In other words, with the coupling laser turned on and 

ferred back to the light field and the signal pulse reappeared. 

all the atoms in 0 19, the system is in a “dark state” wherein its 

The following briefly describes the way this was accomplished.

atoms cannot absorb light of frequency n0 . When the incident 





As the signal pulse (which had a free-space length of 3.4 km) 

entered the dense dark-state gas, it was thereupon compressed by 

*Lene Vestergaard Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed 

a factor of  c
 > vg
 . (You can imagine this happening as the leading 

reduction to 17 metres per second in an ultracold atomic gas,”  Nature
  397
 , 

edge of the pulse enters the medium and slows; the fast-moving 

594 (1999); Chien Liu, Z. Dutton, C. H. Behroozi, and Lene Vestergaard Hau, 

“Observation of coherent optical information storage in an atomic medium using 

remainder of the pulse compacts in on itself. The situation can be 

halted light pulses,”  Nature
  409
 , 490 (2001); D. F. Phillips, A Fleischhauer, A. 

simulated by a line of runners several strides apart, one behind 

Mair, R. L. Walsworth,  and M. D. Lukin, “Storage of light in atomic vapor,”  Phys. 


the other, on a dry road. Suppose the leader suddenly enters a 


Rev. Lett
 . 86
 , 783 (2001). Also take a look at Kirk T. McDonald, “Slow light,”  Am. 


large puddle of knee-deep water with everyone following behind. 


J. Phys
 . 68
 , 293 (2000). For a short review, see Barbara Gross Levi, “Researchers 

stop, store, and retrieve photons—or at least the information they carry,”  Phys. 


By the time the last guy reaches the water, the “pulse” of runners 


Today
  54
 , 17 (2001).

will be far more compact and traveling much slower.) 
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Everything was prearranged so that the compressed signal 


Negative Phase Velocity


pulse, of about 27 * 103 photons, just fit inside the ultracold 

As we saw in Chapter 3 it is possible to create exotic structures 

sodium cloud (339 mm). And it was traveling very slowly; at 

called metamaterials wherein the index of refraction is nega-

that moment, much of the probe-pulse energy had been trans-

tive. It follows that an EM wave propagating in such a medium 

ferred to the coupling light field (via stimulated emission, p. 608) 

has a negative phase velocity. The Poynting vector still corre-

and had left the cell. The atoms within the active region of the 

sponds to the direction of flow of energy and that’s still the di-

pulse were in a superposition state determined by the ampli-

rection of the light beam. 

tudes and phases of the two laser fields. 

Any beam of EM-radiation is, in the final analysis, a pulse. 

Just as the signal pulse disappeared into the cloud, and be-

Consequently, envision a wave packet of finite extension; imag-

fore it could emerge, the coupling beam was abruptly shut off. 

ine it as an amplitude-modulated harmonic carrier like that de-

The very small amount of energy still associated with the pulse 

picted in Fig. 7.38 (p. 311). When traveling in a negative index 

went into a collective spin excitation of the gas cloud. The im-

medium the wave has a negative phase velocity, and this can 

printed atoms retained the information about the physical char-

only mean that the carrier must be propagating backward. The 

acteristics of the constituent sine-wave components for up to 

pulse moves forward, the energy associated with the distur-

about 1 ms. When the coupling beam was promptly turned back 

bance moves forward, but the carrier moves backward. With 

on, a duplicate of the original pulse re-emerged from the gas. In 

that in mind, suppose we have a laser immersed in some, as yet 

other words, operating as a coherent quantum-mechanical sys-

hypothetical, negative-index fluid. The beam shines onto and 

tem, the activated atoms of the gas stored a template of the 

illuminates a distant wall; as usual, energy propagates forward 

pulse. When the dark state was switched back on, and electro-

to the wall with the group velocity. But instead of diverging, the 

magnetic energy was thereby made available (via the coupling 

beam would tend to converge. If we could see the carrier we’d 

beam), the atoms reconstituted the signal pulse.

see the harmonic wavelets streaming backward from the wall 

Everything we’ve talked about in this section relates to pulses 

toward the laser. In other words, although the wave packet travels 

of light and their group velocities, whether they’re greater than or 

(at  vg
 ) away from the laser, carrying energy with it, the Fourier-

less than  c
 . In either case, photons exist only at  c
  and they either 

constituent plane waves flow (at  v
 ) back toward the source (see 

exist or they don’t. Photons never speed up and never slow down, 

Fig. 4.30 on p. 106).

and they certainly never stop and wait around, motionless.


PROBLEMS




Complete solutions to all problems—except those with an asterisk— 




7.5
   Answer the following:



can be found in the back of the book. 



(a)   How many wavelengths of l0 = 500 nm light will span a 1-m gap 

in vacuum?


7.1
   Determine the resultant of the superposition of the parallel waves 

(b)  How many waves span the gap when a glass plate 5 cm thick  


E
 1 =  E
 01 sin (v t 
 + e1)   
 and   E
 2 =  E
 02 sin (v t 
 + e2) when v = 120p, ( n



E


= 1.5) is inserted in the path?

01 = 6,  E
 02 = 8, e1 = 0,   
 and  e2 = p>2. Plot each function and the 

resultant.

(c)   Determine  Λ the  OPD
  between the two situations.

(d)   Verify  that  Λ


7.2*
   Considering Section 7.1, suppose we began the analysis to find  

>l0 corresponds to the difference between the solu-

tions to (a) and (b) above.


E 
 =  E
 1 +  E
 2   
 with two cosine functions  E
 1 =  E
 01 cos (v t 
 + a1) and E
 2 =  E
 02 cos (v t 
 + a2). To make things a little less complicated, let 


7.6*
   Determine the optical path difference for the two waves  A
  and  B
 , 


E
 01 =  E
 02  
 and a1 = 0. Add the two waves algebraically and make use 

both having vacuum wavelengths of 500 nm, depicted in Fig. P.7.6; the 

of the familiar trigonometric identity cos u + cos Φ = 2 cos 12 (u + Φ) 

glass ( n 
 = 1.52) tank is filled with water ( n 
 = 1.33). If the waves start 

cos 12 (u - Φ) in order to show that  E 
 =  E
 0 cos (v t 
 + a), where  E
 0 =

out in-phase and all the above numbers are exact, find their relative 

2 E
 01 cos a2>2  
 and a = a2>2. Now show that these same results follow 

phase difference at the finishing line.

from Eqs. (7.9) and (7.10).


7.7*
   Using Eqs. (7.9), (7.10), and (7.11), show that the resultant of the 


7.3*
   Show that when the two waves of Eq. (7.5) are in-phase, the re-

two waves

sulting amplitude squared is a maximum equal to ( E
 01 +  E
 02)2, and 


E


when they are out-of-phase it is a minimum equal to ( E


1 =  E
 01 sin [v t 
 -  k
 ( x 
 + ∆ x
 )]

01 -  E
 02)2.

and 


E



7.4*
   Show that the  optical path length
 , defined as the sum of the prod-

2 =  E
 01 sin (v t 
 -  kx
 ) 

ucts of the various indices times the thicknesses of media traversed by 


k
  ∆ x


∆ x


a beam, that is, ^ i
   ni
   xi
 , is equivalent to the length of the path in vacuum 

is  



E 
 = 2 E
 01 cos a

b sin cv t 
 -  k
  a x 
 + bd   


[7.17]

2

2

that would take the same time for that beam to negotiate.
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Figure P.7.6


0.5 cm 10 cm


7.12*
   Using phasors, determine the amplitude and phase of the wave-

form given by

0.5 cm

Start

c (t) 
 = 16 cos v t 
 + 8 cos (v t 
 + p>2)

+ 4 cos (v t 
 + p) + 2 cos (v t 
 + 3p>2)


A


In other words, knowing that c (t) 
 =  A
  cos (v t 
 + a) find  A
  and a using 

a ruler and protractor.


B


100 cm


7.13
   The electric field of a standing electromagnetic plane wave is 

Finish

given by






E(x, t) 
 = 2 E
 0 sin  kx
  cos v t
  [7.30]

Derive an expression for  B(x, t)
 . (You might want to take another look 


7.8
   Add the two waves of Problem 7.7 directly to find Eq. (7.17).

at Section 3.2.) Make a sketch of the standing wave.


7.9
   Use the complex representation to find the resultant  E 
 =  E
 1 +  E
 2, 7.14*
   Considering Wiener’s experiment (Fig. 7.14) in monochromat-where

ic light of wavelength 550 nm, if the film plane is angled at 1.0° to the 


E


reflecting surface, determine the number of bright bands per centime-

1 =  E
 0 cos ( kx 
 + v t
 ) and  E



x 
 - v t
 )

  

2 = -  E
 0 cos ( k
   

ter that will appear on it.

Describe the composite wave.


7.15*
   Microwaves of frequency 1010 Hz are beamed directly at a met-


7.10*


al reflector. Neglecting the refractive index of air, determine the spacing 

  Consider the functions  E
 1 = 3 cos v t 
 and   E
 2 = 4 sin v t. 
 First 

between successive nodes in the resulting standing-wave pattern.

prove that  E
 2 = 4 cos (v t 
 - p>2). Then, using phasors and referring to  


Fig. P.7.10, show that  E



7.16*
   A standing wave is given by

3 =  E
 1 +  E
 2 = 5 cos (v t 
 - w); determine w. 

Discuss the values of  E
 3  
 wherever either  E
 1 = 0 or  E
 2 = 0. Does  E
 3 


E 
 = 100 sin 2

lead or lag  E


3 p x
  cos 5p t


1? Explain.

Determine two waves that can be superimposed to generate it.


7.17*
   Show that a standing wave created by two unequal-amplitude 


Figure P.7.10


waves

3

30


EI 
 =  E
 0 sin ( kx 
 ∓ v t
 )

1

–1

p

2p

3p

v t


and 


ER 
 = r E
 0 sin ( kx 
 ± v t
 ) 

–3

has the form

4

4–p2


E 
 = 2r E
 0 sin  kx
  cos v t 
 + (1 - r) E
 0 sin ( kx 
 ∓ v t
 ).

2

Here 

0

r is the ratio of the amplitude reflected to the amplitude incident. 

p

2

v t


Discuss the meaning of the two terms. What happens when r = 1?

–2

p

p

2

–4


7.18*
   Imagine that we strike two tuning forks, one with a frequency 

of 340 Hz, the other 342 Hz. What will we hear? 

5

 5–w

3


7.19*
   Use the phasor method, described in conjunction with Fig. 7.17, 

to explain how two equal-amplitude waves of sightly different frequen-

0

cies generate the beat pattern shown in Fig. 7.19 or Fig. P.7.19 a
 . The 

w

p

2p

3p

v t


curve in Fig. P.7.19 b
  is a sketch of the phase of the resultant measured 

–3

with respect to one of the constituent waves. Explain its main features. 

–5

When is it zero and why? When does the phase change abruptly and why?


7.20*
   As we’ve seen, Eq. (7.33) describes the beat pattern. Let’s now 

derive a different version of that expression assuming that the two 


7.11*  
 Using phasors, determine the amplitude and phase of the wave-

overlapping equal-amplitude cosine waves have angular spatial fre-

form given by

quencies of  kc 
 + ∆ k
  and  kc 
 - ∆ k, 
 and angular temporal frequencies of 

c (t) 
 = 6 cos v t 
 + 4 cos (v t 
 + p>2) + 3 cos (v t 
 + p)

v c 
 + ∆v and v c 
 - ∆v, respectively. Here  kc 
 and v c 
 correspond to the 

central frequencies. Show that the resultant wave is then

Draw an appropriate diagram. In other words, knowing that c (t)
  =


A
  cos (v t



E


+ a) find  A
  and a with a ruler and protractor.

= 2 E
 01 cos (∆ kx 
 - ∆v t
 ) cos ( k x 
 - v

   

  


c



c
   t
 )
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Figure P.7.19 
 (a)  E



7.24*
   Show that


E
 0


c



c d
 (1/ n
 )


vg 
 = +  


n


l  d
 (1/l)

0

[ Hint:
  first prove that  v



x



g 
 =  d
 n/ d
 (1>l).]


7.25*
   With the previous problem in mind show that


–E
 0


c



dn



v






d

(b)


g 
 =  v 
 c1 -

w 

l n
 2  d
 (1>l)

p

2

And then since

0


x



d



d
 n


d


=






d
 (1>l)


d
 (1>l)  d
 n

p

– 2

prove that


v



vg 
 = 1 + (n/ n
 )( dn
 / d
 n)

Explain how each term relates back to 






E 
 = 2 E


Check this expression by confirming that the units are correct.

01 cos ( kmx 
 - v


x 
 - v t
 ) [7.33]

  


mt
 ) cos ( k
  

Prove that the speed of the envelope, which is the wavelength of the 


7.26*
  At a wavelength of 1100 nm pure silica glass has an index of 

envelope divided by the period of the envelope, equals the group veloc-

refraction of 1.449. Use Fig. 7.22 to ( a
 ) determine its group index at that 

ity, namely, ∆

wavelength. Then ( b
 ) find its group velocity and ( c
 ) compare that to its 

v>∆ k.


phase velocity.


7.21
   Figure P.7.21 shows a carrier of frequency v c
  being amplitude-

modulated by a sine wave of frequency 


7.27*
   Using the relation 1> v


v


g 
 =  d
 k> d
 n, prove that


m
 , that is,


E 
 =  E
 0(1 +  a
  cos v mt
 ) cos v ct


1

1

n  dv


= -  


vg



v



v
 2  d
 n

Show that this is equivalent to the superposition of three waves of fre-

quencies v c
 , v c 
 + v m
 , and v c 
 - v m
 . When a number of modulating 


7.28*
   In the case of lightwaves, show that

frequencies are present, we write  E
  as a Fourier series and sum over all 

1


n



dn


values of 

n

v m
 . The terms v c 
 + v m
  constitute what is called the  upper 


= +  


v



c



c d



sideband
 , and all the 

n

v


g



c 
 - v m
  terms form the  lower sideband
 . What 

bandwidth would you need in order to transmit the complete audible 


7.29  
 The speed of propagation of a surface wave in a liquid of depth 

range?

much greater than l is given by


g
 l

2pΥ


v 
 =

+


Figure P.7.21


A2p

rl


E


where   g 
 = acceleration of gravity, l = wavelength,  r = density,  Υ 

5 surface tension. Compute the group velocity of a pulse in the long 

wavelength limit (these are called  gravity waves
 ).


7.30*
   Show that the group velocity can be written as


dv



vg 
 =  v 
 - l  d
 l


7.31
   Show that the group velocity can be written as


c



7.22  
 Given the dispersion relation v =  ak
 2, compute both the phase 


vg 
 =  n 
 + v( dn
 > d
 v)

and group velocities.


7.23*
   Beginning with 


7.32*
   With the previous problem in mind prove that


vg 
 =  d
 v/ dk
  prove that


d
 n


dn(
 n )



vg 
 = -l2 


ng 
 =  n(
 n ) 
 + n 


d
 l


d
 n
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7.33*
   With the previous problem in mind show that


Figure P.7.42



dn



n


(a)


g 
 =  n 
 - l d


1.2

l


E(t)


0.8


7.34*
   A well-known Optics book gives the equation

0.4

0

Time

1 2 3 4 5 6 7 8 9 10

15


d
 v


c



c dn


1  dn


–0.4


v


Electric field


g 
 =

= -  

=  v
  a1 -   b


dk



n



n
 2  dk



n dk


–0.8

Could this possibly be correct? Explain. [ Hint:
  Check the units.]

(b) 1.2


7.35*
   Determine the group velocity of waves when the phase velocity 

0.8

varies inversely with wavelength.

0.4

0

Time


7.36*
   Show that the group velocity can be written as

Electric field –0.4

5

10

15

–0.8


c


l c dn



vg 
 = +






n



n
 2  d
 l

(a) Explain why the series contains both sine and cosine terms.  


7.37*
   For light at a wavelength of l1 = 656.3 nm water (at 20 °C) has 

(b) Why does the series contain harmonic terms having arguments 

an index of  n
 1 = 1.3311. At a wavelength of l2 = 589.3 nm water has 

with odd and even multiples of v t
 ? (c) What is the value of the  DC
  

an index of  n
 2 = 1.333 0. Determine the approximate value of the 

term? (d) What is the value of  A
 0? (e) What is the value of the period 

group velocity of light in water. Is  v 
 7  vg
 ? [ Hint:
  Reread Problem 

of  E(t)
 ? (f) Make a sketch of the frequency spectrum, including the 

7.36, approximate the differentials by finite differences, and remember 

v = 0 term.

the little v in the definition of  vg
 . Be careful of the slope of  n
  versus l.]


7.43
   Show that


7.38*
  For a wave propagating in a periodic structure for which  

l

v (k) 
 = 2v0 sin ( k
 />2), determine both the phase and group velocities. 





3 sin  a
 k x
  cos  b
 k x
   dx 
 = 0 [7.44]

Write the former as a sinc function.

0

l

l


7.39*  
 An ionized gas or plasma is a dispersive medium for EM waves. 





3 cos  a
 k x
  cos  b
 k x
   dx 
 =  d ab
  [7.45]

Given that the dispersion equation is

0

2

l

l

v2 = v2 p 
 +  c
 2 k
 2





3 sin  a
 k x
  sin  b
 k x
   dx 
 =  d ab
  [7.46]

0

2

where v p
  is the constant plasma frequency, determine expressions for 

where  a 
 Z 0,  b 
 Z 0, and  a
  and  b
  are positive integers.

both the phase and group velocities and show that  vvg 
 =  c
 2.


7.44
   Compute the Fourier series components for the periodic func-


7.40
   Using the dispersion equation,

tion shown in Fig. 7.35.

2


7.45*
   Determine the Fourier series for the periodic function depicted 


Nq



ƒj



 



n
 2 (



e


v ) 
 = 1 +





 a

b [3.71]

in Fig. P.7.45.

^

P

2

0 me



j


v0 j 
 - v2

show that the group velocity is given by


Figure P.7.45



c



f(x)



vg 
 = 1 +  Nq
 2 e
 >P0 me
 v22

  

2

for high-frequency electromagnetic waves (e.g., X-rays). Keep in mind 

that since ƒ j
  are the weighting factors, ^ jƒj 
 = 1. What is the phase 


x


velocity? Show that  vv


–4

–2

0

2

4


g 
 ≈  c
 2.


7.41*
  Analytically determine the resultant when the two functions  


E
 1 = 2 E
 0 cos v t 
 and  E
 2 = 12 E
  0 sin 2v t
  are superimposed. Draw  E
 1,  E
 2, 7.46*
   Given the function  ƒ(x) 
 =  A
  cos (

and  E 
 =  E


p x
 > L
 ), determine its Fourier 

1 +  E
 2. Is the resultant periodic; if so, what is its period in 

series.

terms of v?


7.47*
   Consider the periodic function defined over one wavelength by


7.42*
   Figure P.7.42 depicts an electric field in time and the Fourier 

components that compose it. The units are arbitrary. Given that


ƒ(x) 
 = ( kx
 )2 where -p 6  kx 
 6 p 

1

1

1

1


E(t) 
 = +  sin 

which repeats over and over again with a period of 2p. Draw a diagram 

v t 
 +  cos 2v t 
 +  sin 2v t 
 +  sin 3v t


3

6

8

6

of  ƒ(x)
  and determine the corresponding Fourier series representation.
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7.48*
  Take the function   ƒ(
 u ) 
 = u2   
 in the interval 0 6 u 6 2p and 


7.53*
   Examine Fig. P. 7.53, which shows three periodic functions and 

assume it repeats itself with a period of 2p. Now show that the Fourier 

their corresponding Fourier frequency spectra. Discuss the graphs ex-

expansion of that function is

plaining what’s happening in successive parts. What happens to the 

envelopes of the frequency spectra as the wavelength increases? Why 

4

∞

p2

4

4p


ƒ(x) 
 =

+ ^ a  cos  m
 u -  sin  m
 ub

are the same number of frequency terms present in each spectrum be-

3


m 
 = 1  m
 2


m


tween 0 and, say, 4k? Why is there a  DC
  term in each spectrum and 


7.49*
  Show that the Fourier series representation of the function  

why does it have the same value in all of them? Why are there no terms 


ƒ(


corresponding to  A


u ) 
 = 0 sin u 0   
 is

2,  A
 4,  A
 6, and so forth?


7.54
  Write an expression for the transform  A(


2

4 ∞ cos 2 m


v )  
 of the harmonic 

u


ƒ(
 u ) 
 =

-

^

pulse of Fig. P.7.54. Check that sinc  u
  is 50% or greater for values of  u 


p

p m 
 = 1 4 m
 2 - 1


roughly
  less than p>2. With that in mind, show that ∆ v
  ∆ t 
 ≈ 1, where 


7.50


∆ v
  is the bandwidth of the transform at half its maximum amplitude. 


  
 Change the upper limit of Eq. (7.59) from  ∞ to  a
  and evaluate 

Verify that ∆ v
  ∆ t 
 ≈ 1 at half the maximum value of the power spec-

the integral. Leave the answer in terms of the so-called  sine integral
 :

trum as well. The purpose here is to get some sense of the kind of ap-


z


Si (z) 
 =

proximations used in the discussion.

3 sinc  w
   dw


0

which is a function whose values are commonly tabulated.


Figure P.7.54



E(t)



7.51*
   Consider the periodic function


E
 0


E(t)
  =  E
 0 cos v p t



E(t) 
 =  E
 0 cos v t



t


and suppose all of the negative half-cycles are removed. Determine the 

Fourier series representation of the resulting modified (“rectified”) 

function.

∆ t



7.52*
   Consider the periodic function defined over one wavelength by


7.55
  Derive an expression for the coherence length (in vacuum)  

 sin  kx


0 6  kx 
 6

of a wavetrain that has a frequency bandwidth ∆ v
 ; express your answer 

p

ƒ (x) 
 = e

in terms of the  linewidth
  ∆

0

l

p 6  kx 
 6 2p

0 and the mean wavelength l0 of the train.


7.56*
   A blue-light LED with a mean vacuum wavelength of 446 nm 

Determine the Fourier series representation of ƒ (x)
 . Draw a diagram of 

has a linewidth of 21 nm. Determine its coherence time and coherence 

ƒ (x)
 .

length.


Figure P.7.53



f (x)
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A
 0


A
 1

(a)


x



mk
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0


k


2 k
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A
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Am



A
 0


A
 1

(b)


A
 5


x



mk


l = 1.0

0
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A
 3
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Am



A
 0
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A
 1


A
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 9
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7.57
   Consider a photon in the visible region of the spectrum emitted 


7.60  
 Imagine that we chop a continuous laserbeam (assumed to be 

during an atomic transition of about 10-8 s. How long is the wave pack-

monochromatic at l0 = 632.8 nm) into 0.1-ns pulses, using some sort 

et? Keeping in mind the results of the previous problem (if you’ve done 

of shutter. Compute the resultant linewidth ∆l, bandwidth, and coher-

it), estimate the linewidth of the packet (l0 = 500 nm). What can you 

ence length. Find the bandwidth and linewidth that would result if we 

say about its monochromaticity, as indicated by the frequency stability?

could chop at 1015 Hz.


7.58
   The first* experiment directly measuring the bandwidth of a la-


7.61*
   Suppose that we have a filter with a pass band of 1.0 Å centered 

ser (in this case a continuous-wave Pb0.88Sn0.12 Te diode laser) was 

at 600 nm, and we illuminate it with sunlight. Compute the coherence 

carried out in 1969. The laser, operating at l0 = 10 600 nm, was het-

length of the emerging wave.

erodyned with a CO2 laser, and bandwidths as narrow as 54 kHz were 


7.62*  
 A filter passes light with a mean wavelength of l

observed. Compute the corresponding frequency stability and coher-

0 = 500 nm. If 

the emerging wavetrains are roughly 20l

ence length for the lead-tin-telluride laser.

0 long, what is the frequency 

bandwidth of the exiting light?


7.59*
   A magnetic-field technique for stabilizing a He–Ne laser to 2 


7.63*
   Suppose we spread white light out into a fan of wavelengths by 

parts in 1010 has been patented. At 632.8 nm, what would be the coher-

means of a diffraction grating and then pass a small select region of 

ence length of a laser with such a frequency stability?

that spectrum out through a slit. Because of the width of the slit, a band 

of wavelengths 1.2 nm wide centered on 500 nm emerges. Determine 

*D. Hinkley and C. Freed,  Phys
 .  Rev. Lett.
  23
 , 277 (1969).

the frequency bandwidth and the coherence length of this light.
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8Polarization



8.1 The Nature of Polarized Light


resultant optical disturbance is the vector sum of these two 

 perpendicular  waves:

It has already been established that light may be treated as a 






E


$ (z, t) 
 = E
 $ x(z, t) 
 + E
 $ y(z, t)
  (8.3)

transverse electromagnetic wave. Thus far we have considered 

only linearly polarized
  or plane-polarized
  light, that is, light 

If e  is zero or an integral multiple of ±2p, the waves are said 

for which the orientation of the electric field is constant, al-

to be in-phase. In that case Eq. (8.3) becomes

though its magnitude and sign vary in time (Fig. 3.14). In that 


 



E


$ = (iˆ
 E
 0 x 
 + jˆ
 E
 0 y
 ) cos ( kz 
 - v t
 ) (8.4) case, the electric field or optical disturbance resides in what is 

known as the plane-of-vibration
 . That fixed plane contains 

The resultant wave has a fixed amplitude equal to (iˆ
 E
 0 x 
 + jˆ
 E
 0 y
 ); both E


$ and k
 $, the electric field vector and the propagation vec-

in other words, it too is linearly polarized (Fig. 8.1). The waves 

tor in the direction of motion. 

advance toward a plane of observation where the fields are to be 

Imagine two harmonic, linearly polarized lightwaves of the 

measured. There one sees a single resultant E


$ oscillating, along 

same frequency, moving through the same region of space, in 

a tilted line, cosinusoidally in time (Fig. 8.1 b
 ). The tilt angle u 

the same direction. If their electric field vectors are colinear, the 

is determined by the amplitudes of the original orthogonal 

superimposing disturbances will simply combine to form a re-

waves. From Eq. (8.4) 

sultant linearly polarized wave. Its amplitude and phase will be 


E
 0 y


examined in detail, under a diversity of conditions, in the next 

tan u =  E


chapter, when we consider the phenomenon of interference. On 

0 x


the other hand, if the two lightwaves are such that their respec-

and when  E
 0 x 
 =  E
 0 y
 , as in Fig. 8.1, the electric field oscillates at 

tive electric-field directions are mutually perpendicular, the re-

u = 45°.

sultant wave may or may not be linearly polarized. The exact 

form the light takes (i.e., its  state of polarization
 ) and how we 

can observe it, produce it, change it, and make use of it is the 

concern of this chapter.


8.1.1 Linear Polarization


The two orthogonal optical disturbances that were considered 

above can be represented as






E


$ x(z, t) 
 = iˆ
   E






0 x
  cos ( kz 
 - v t
 ) (8.1) 

and 


E


$ y(z, t) 
 = jˆ
   E
 0 y
  cos ( kz 
 - v t 
 + e) (8.2)

where  e is the relative phase difference between the waves, 

both of which are traveling in the  z
 -direction. Keep in mind 

from the start that because the phase is in the form ( kz 
 - v t
 ), 

the addition of a  positive
  e means that the cosine function in 

Many animals can see variations in polarization just as we see variations  

Eq. (8.2) will not attain the same value as the cosine in Eq. (8.1) 

in color. The pygmy octopus is one such creature. The varying pattern  

of polarized light reflected from its surface suggests it might be  

until a later time (e>v). Accordingly,  Ey 
 lags  Ex
  by e 7 0. Of 

“communicating” with other pygmy octopuses, the way birds display  

course, if e is a negative quantity,  Ey
  leads  Ex
  by e 6 0. The 

color. (Thomas W. Coronin and Nadav Shashar, University of Maryland)


330
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(a)


y


(b)

(c)


y



E
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$
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E


$
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E
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$
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$
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E


$
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E
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E


$


E
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Figure 8.1
     Linear light. ( a
 ) The  E
 -field linearly polarized in the first and third quadrants. ( b
 ) That same oscillating field seen head on. ( c
 ) Light linearly polarized in the second and fourth quadrants.

The  E


$-field progresses through one complete oscillatory 

cycle as the wave advances along the  z
 -axis through one 

 wavelength. This process can be carried out equally well in 

 reverse; that is, we can resolve any plane-polarized wave into 

two orthogonal components.

EXAMPLE 8.1

Show explicitly that when E


$ y
   (z, t)
  lags E
 $ x
   (z, t)
  by 2p the  

resulting wave is given by Eq. (8.4).

SOLUTION 

When E


$ y
   (z, t)
  lags by 2p 

The cosmic microwave background radiation emitted by hot plasma at the 


E


$ = iˆ
   E


dawn of the Universe. The lines are a fairly crude indication of its polarization. 

0 x
  cos ( kz 
 - v t
 ) + jˆ
   E
 0 y
  cos ( kz 
 - v t 
 + 2p) (ESA/NASA)

Using the identity

cos ( x 
 ±  y
 ) = cos  x
  cos  y 
 ∓ sin  x
  sin  y


This wave is again linearly polarized, but the plane-of-vibration 

has been rotated (and not necessarily by 90°) from that of the 

the resultant wave becomes

previous condition, as indicated in Fig. 8.2.


E


$ = iˆ
   E
 0 x
  cos ( kz 
 - v t
 ) + jˆ
   E
 0 y
 [cos ( kz 
 - v t
 ) cos 2p

- sin ( kz 
 -

EXAMPLE 8.2

v t
 ) sin 2p]

and so

Show explicitly that when E


$ y
   (z, t)
  lags E
 $ x
   (z, t)
  by p the result-


E


$ = (iˆ
 E


ing wave is given by Eq. (8.5). 

0 x 
 + jˆ
   E
 0 y
 ) cos ( kz 
 - v t
 )

which was to be proven.

SOLUTION

When E


$ y
   (z, t)
  lags E
 $ x
   (z, t)
  by p

Suppose now that e is an odd integer multiple of ±p. The 


E


$ = iˆ
   E
 0 x
  cos ( kz 
 - v t
 ) + jˆ
   E
 0 y
  cos ( kz 
 - v t 
 + p) two waves are 180° out-of-phase, and

Using the identity






E


$ = (iˆ
 E
 0 x 
 - jˆ
 E
 0 y
 ) cos ( kz 
 - v t
 ) (8.5) cos ( x 
 ±  y
 ) =  cos  x
  cos  y 
 ∓  sin  x
  sin  y
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the resultant wave becomes


E



E


$ =


y



iˆ
   E
 0 x
  cos ( kz 
 - v t
 ) + jˆ
   E
 0 y
 [cos ( kz 
 - v t
 ) cos p

- sin ( kz 
 - v t
 ) sin p]

0, 0

0

8, 8

and so

1, 1

7


E
 0 y


1

7, 7


E


$ = (iˆ
   E
 0 x 
 - jˆ
   E
 0 y
 ) cos ( kz 
 - v t
 )

2, 2

which was to be proven.

u

6

2

6, 6

3, 3

5, 5

5

3

(a)


y


4, 4

4

6

5

7


x



z


4

0


E
 0 x



Ex


3

1

2


Figure 8.3
     Phasor addition of two orthogonal electromagnetic waves  


E


in-phase and of amplitudes  E
 0 x
  and  E
 0 y
 . Both rotate clockwise at a rate v.


Ey



Ex


Phasor addition provides a highly useful technique for deal-

ing with the superposition of orthogonal waves like those of 


E


Eqs. (8.1) and (8.2). The utility of the method will become obvi-

ous later in this chapter as we start shifting the phases of the two 

(b)


E


waves by passing them through anisotropic media. Figure 8.3 

illustrates the basic procedure for the simple case of two or-

thogonal waves that are in-phase, e = 0. The radii of the two 

circles correspond to the two electric field amplitudes, and here 


E



E



E



y


0 y 
 7  E
 0 x
 . The E
 y
  phasor begins at its unshifted position-0 

pointing upward vertically, and it rotates clockwise. At any  


E



x


instant the wave oscillating in the  y
 -direction [Eq. (8.2)] corre-

sponds to the projection of the rotating E
 y
  phasor onto the  y
 -

axis. As we’ll soon see, an initial shift in phase simply rotates 

the reference axis from the vertical, that is, moves position-0.  

Similarly, the E
 x
  phasor begins at its unshifted position-0 point-

ing right horizontally. It too rotates clockwise, at the same rate 

v, as does E
 y
 . At any instant the wave oscillating in the  x
 -direction 

[Eq. (8.1)] corresponds to the projection of the rotating E
 x
  phasor 

onto the  x
 -axis.

Each phasor uniformly revolves to its respective position-1, 

-2, -3, and so forth. The resultant wave is formed by the intersec-

tion of the horizontal and vertical projections of the two phasors. 


E


The points (0, 0), (1, 1), (2, 2), and so forth, which here lie along 

a straight line, locate the successive sums of the two orthogonal 


Figure 8.2
   ( a
 ) Linear light oscillating in the second and fourth quadrants.

electric field vectors [viz., Eq. (8.3)]. Thus the resultant wave in 

( b
 ) The  x
 -component leads the  y
 -component by half a cycle, or p radians. 

this instance is linearly polarized in the first and third quadrants, 

When E
 $ y
  is just starting upward, E
 $ x
  has already reached a positive maximum, decreased back to zero, and is about to start in the negative  x
 -direction.

tilted up at an angle u 7 45° because  E
 0 y 
 7  E
 0 x
 .
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8.1.2 Circular Polarization



y


Another case of particular interest arises when both constituent 

waves have equal amplitudes (i.e.,  E
 0 x 
 =  E
 0 y 
 =  E
 0), and in addition, their relative phase difference e = -p>2 + 2 m
 p, where 


x



m 
 = 0, ±1, ±2, . . . . In other words, e = -p>2 or any value 


z


increased or decreased from -p>2 by  whole-number multiples 


E


of 2p and E


$ y
   (z, t)
  leads E
 $ x
   (z, t)
  by p>2. Accordingly






E


$ x
   (z, t) 
 = iˆ
 E
 0 cos ( kz 
 - v t
 ) (8.6)


E
 y







E


$ y
   (z, t) 
 = jˆ
 E
 0 cos ( kz 
 - v t 
 - p>2) (8.7)


E



x


but that’s equivalent to


E


$ y
   (z, t) 
 = jˆ
 E
 0 [cos ( kz 
 - v t
 ) cos p>2 + sin ( kz 
 - v t
 ) sin p>2]

and so


E



E



y



E


$ y
   (z, t) 
 = jˆ
 E
 0 sin ( kz 
 - v t
 )


E



x


The consequent wave is






E


$ =  E
 0[iˆ
  cos ( kz 
 - v t
 ) + jˆ
  sin ( kz 
 - v t
 )] (8.8) Figure 8.4
     Right-circular light. ( a
 ) Here the electric field, which has a 

constant amplitude, rotates clockwise with the same frequency with which 

(Fig. 8.4). Notice that now the scalar amplitude of E


$, that is,  it oscillates. ( b
 ) Two perpendicular antennas radiating with a 90° phase dif-

(E


$ · E
 $)1>2 =  E


ference produce circularly polarized electromagnetic waves.

0, is a constant. But the direction of E


$ is time-

varying, and it’s not restricted, as before, to a single plane.  

Figure 8.5 depicts what is happening at some arbitrary point  z
 0 

is right-circularly polarized
  (Fig. 8.6), and one generally simply 

on the axis. At  t 
 = 0, E
 $ lies along the reference axis in Fig. 8.5 a
 , 

refers to it as  right-circular light
 . The E


$-vector makes one com-

and so

plete rotation as the wave advances through one wavelength. 

Figure 8.7 shows five successive moments in the unfolding of 


E


$ x 
 = iˆ
 E
 0 cos  kz
 0  and   
 E
 $ y 
 = jˆ
 E
 0 sin  kz
 0

a right-circular E


$-field. Here E
 $ y
  leads E
 $ x
  by p>2, so in part ( a
 ) the 

At a later time,  t 
 =  kz
 0>v, E
 $ x 
 = iˆ
 E
 0, E
 $ y 
 = 0, and E
 $ is along the dot on the  y
 -axis (corresponding to  Ey
 ) is at its maximum dis-x-axis. The resultant electric-field vector E


$ is rotating  clockwise
  at 

placement ( E
 0) and is heading down, while  Ex 
 = 0 and the dot on 

an angular frequency of v, as seen by an observer toward whom 

the  x
 -axis is heading right. The net field is E


$ =  E
 0jˆ
 , and that vector 

the wave is moving (i.e., looking back at the source). Such a wave 

subsequently rotates clockwise until in part ( d 
 ) it is on the  x
 -axis 


y



E



E



y


Reference

v t


axis

v t
  = 0


kz
 0

v t
  = p4

p4


x



E



x


v t
  = p2

v t
  = 3p4


E
 0

Time


Figure 8.5
     Rotation of the electric vector in a 

right-circular wave. Note that the rotation rate is 

(a)

(b)

v and  kz 
 = p>4.
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y


(a)


y



E



x



Ey 
 =  E
 0


x



kz



Ex 
 = 0


E


(b)


y



z



B



E



z



Ey



x



Figure 8.6
     Right-circular light. Looking down the z-axis toward the origin, 


Ex


we see the electric field vector rotates clockwise as the wave advances 

toward the observer.

(c)


y


and E


$ =  E
 0iˆ
 . It is left to the reader to show how phasor addition 


E


(in the manner of Fig. 8.3) leads to circular light.


Ey


In comparison, if e = p>2, 5p>2, 9p>2, and so on (i.e., 


x


e = p>2 + 2 m
 p, where  m 
 = 0, ±1, ±2, ±3, . . .) , then


Ex







E


$ =  E
 0[iˆ
  cos ( kz 
 - v t
 ) - jˆ
  sin ( kz 
 - v t
 )] (8.9) (d)


y


The amplitude is unaffected, but E
  now rotates  counterclock-



wise
 , and the wave is left-circularly polarized
 .

A linearly polarized wave can be synthesized from two oppo-

sitely polarized circular waves of equal amplitude. In particular, 

if we add the right-circular wave of Eq. (8.8) to the left-circular 


Ey 
 = 0


E



x


wave of Eq. (8.9), we get


Ex 
 =  E
 0






E


$ = 2 E
 0iˆ
  cos ( kz 
 - v t
 ) (8.10)

(e)


y


which has a constant amplitude vector of 2 E
 0iˆ
  and is therefore 

linearly polarized.


Ex



8.1.3 Elliptical Polarization



x


As far as the mathematical description is concerned, both lin-


E


ear and circular light may be considered to be special cases of 


y



E



elliptically polarized
  light or, more simply,  elliptical light
 . 

This means that, in general, the resultant electric-field vector E


$ 


Figure 8.7
     The formation of right-circular light. Note that  Ey
  leads  Ex
  by 

will rotate, and change its magnitude, as well. In such cases the 

p>2 or 1>4 of a cycle.

endpoint of E


$ will trace out an ellipse, in a fixed-space perpen-

dicular to k
 $, as the wave sweeps by. We can see this better by 

actually writing an expression for the curve traversed by the tip 

able to get rid of the ( kz 
 - v t
 ) dependence. Expand the expres-

of E


$. To that end, recall that

sion for  Ey
  into


E







E



y
 > E
 0 y 
 = cos ( kz 
 - v t
 ) cos e - sin ( kz 
 - v t
 ) sin e x 
 =  E
 0 x
  cos ( kz 
 - v t
 ) (8.11)

and 


E


and combine it with  Ex
 > E
 0 x
  to yield


y 
 =  E
 0 y
  cos ( kz 
 - v t 
 + e) (8.12)


Ey



E


The equation of the curve we are looking for should not be a 





-  x 
  cos e = -sin ( kz 
 - v t
 ) sin e (8.13)

function of either position or time; in other words, we should be 


E
 0 y



E
 0 x
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Ey


Equation (8.14) might be a bit more recognizable if the principal 


E
 0 y


axes of the ellipse were aligned with the coordinate axes, that is, 

a = 0 or equivalently e = ±p>2, ±3p>2, ±5p>2, . . . , in 


E


which case we have the familiar form

a


E
 0 x



E
 2 y



E
 2


Ex



 


+  x 
 = 1 (8.16)


E
 20 y



E
 20 x


Furthermore, if  E
 0 y 
 =  E
 0 x 
 =  E
 0, this can be reduced to






E
 2 y 
 +  E
 2 x 
 =  E
 20 (8.17)


Figure 8.8
     Elliptical light. The endpoint of the electric field vector 

which, in agreement with our previous results, is a circle. If e is 

sweeps out an ellipse as it rotates once around.

an even multiple of p, Eq. (8.14) yields


E
 0 y







Ey 
 =

  E


It follows from Eq. (8.11) that


E



x
  (8.18)

0 x


sin ( kz 
 - v t
 ) = [1 - ( Ex
 > E
 0 x
 )2]1>2

and similarly for odd multiples of p,


E


so Eq. (8.13) leads to

0 y







Ey 
 = -

  E


   E



x
  (8.19)

0 x



E



E


2


E 
 2

a  y 
 -  x 
  cos eb = c1 - a  x 
 b d sin2 e

These are both straight lines having slopes of ± E
 0 y
 > E
 0 x
 ; in 


E
 0 y



E
 0 x



E
 0 x


other words, we have linear light.

Finally, on rearranging terms, we have

Figure 8.9 diagrammatically summarizes most of these con-

clusions. This very important diagram is labeled across the bottom 


E 
 2

2


y



E



E



x



Ex



y


“Ex
  leads  Ey 
 by: 0, p>4, p>2, 3p>4, . . . ,” where these are the 





a b + a b - 2 a b a b cos e =  sin2e (8.14)


E



E



E



E


positive values of e to be used in Eq. (8.2). The same set of curves 

0 y


0 x


0 x


0 y


will occur if “Ey
  leads  Ex
  by: 2p, 7p>4, 3p>2, 5p>4, . . . ,” 

This is the equation of an ellipse making an angle a with the 

and that happens when e equals -2p, -7p>4, -3p>2, -5p>4,  

( Ex
 ,  Ey
 )-coordinate system (Fig. 8.8) such that

and so forth. Figure 8.9 b
  illustrates how  Ex
  leading  Ey
  by p>2 

is equivalent to  Ey
  leading  Ex
  by 3p>2 (where the sum of these 

2 E
 0 xE
 0 y
  cos e

two angles equals 2p). This will be of continuing concern as we 





tan 2a =

 (8.15)


E
 2

2

0 x 
 -  E
 0 y


go on to shift the relative phases of the two orthogonal compo-

nents making up the wave.

Left-handed

Right-handed


E



y
  leads E
 x
  by:

2p

7p4

3p2

5p4

p

3p4

p2

p4

0


Ey



Ex



E



x
  leads E
 y
  by:

0

p4

p2

3p4

p

5p4

3p2

7p4

2p

(a)

p2

3p2


Ey



Ex


v t


p2

p

3p2


Figure 8.9
   ( a
 ) Various polarization configurations. The light would be cir-

2p

cular with e = p>2 or 3p>2 if  E
 0 x 
 =  E
 0 y
 , but here for the sake of generality  E
 0 y
  was taken to be larger than  E
 0 x
 . ( b
 )  Ex
  leads  Ey
  (or  Ey
  lags  Ex
 ) by (b)

p>2, or alternatively,  Ey
  leads  Ex
  (or  Ex
  lags  Ey
 ) by 3p>2.
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amplitudes of the two circular waves are different. (An analyti-

60°

cal treatment is left for Problem 8.6.)

10, 10

10


Ey


9, 9

11, 11

9

11

8, 8

0, 0

8

0

7, 7


8.1.4 Natural Light


1, 1

7

1

An ordinary light source consists of a very large number of ran-

6, 6

2, 2

6

2

domly oriented atomic emitters. Each excited atom radiates a 

3, 3

5, 5

5

3

polarized wavetrain for roughly 10-8 s. All emissions having 

4, 4

4

the same frequency will combine to form a single resultant po-

9

larized wave, which persists for no longer than 10-8 s. New 

8

10

wavetrains are constantly emitted, and the overall polarization 

changes in a completely unpredictable fashion. If these changes 

7

11

take place at so rapid a rate as to render any single resultant 

polarization state indiscernible, the wave is referred to as natural 


6

0


Ex



light
 . It is also known as  unpolarized
   light
 , but this is a misno-

mer, since in actuality the light is composed of a rapidly varying 

5

1

succession of the different polarization states.  Randomly polar-



ized
  is probably a better way to speak of it.

4

2

3

We can mathematically represent natural light in terms of 

two arbitrary,  incoherent
 , orthogonal, linearly polarized waves 


Figure 8.10
     The phasor representation of the superposition of two orthog-

of equal amplitude (i.e., waves for which the relative phase dif-

onal EM waves. Here  E
 0 x 
 7  E
 0 y
 , where these are the radii of the circles. E
 $ y
 ference varies rapidly and randomly).

leads E
 $ x
  by 60° and so position-0 of E
 y
  is advanced clockwise 60°.

Keep in mind that an idealized monochromatic plane wave 

must be depicted as an infinite wavetrain. If this disturbance is 

To illustrate the general nature of elliptical light let’s use a 

resolved into two orthogonal components perpendicular to the 

phasor diagram like that of Fig. 8.3. Suppose we want to find the 

direction of propagation, they, in turn, must have the same fre-

resultant of two orthogonal harmonic electric fields having differ-

quency, be infinite in extent, and therefore be mutually coherent 

ent amplitudes ( E
 0 x 
 7  E
 0 y
 ), where  Ey
  leads  Ex
  by, say, p>3 rad, (i.e., e = constant). In other words,  
a perfectly monochromatic 



or 60°. Because  Ey
  leads  Ex
  by 60° we rotate the  Ey
  reference axis 



plane wave is always polarized

 . In fact, Eqs. (8.1) and (8.2) are 

from the vertical, 60° clockwise, leaving the  Ex
 -axis horizontal. 

just the Cartesian components of a transverse ( Ez 
 = 0) harmonic 

Figure 8.10 shows that the resulting light is right-handed ellipti-

plane wave.

cal, as one would expect from Fig. 8.9 a
 . In accord with 





Whether natural in origin or artificial, light is generally nei-

Fig. 8.8, the ellipse fits in a rectangle 2 E
 0 y
  high by 2 E
 0 x
  wide.

ther completely polarized nor completely unpolarized; both 

We are now in a position to refer to a particular lightwave in 

cases are extremes. More often, the electric-field vector varies in 

terms of its specific state of polarization
 . We shall say that 

a way that is neither totally regular nor totally irregular, and such 

linearly polarized or plane-polarized light is in a 𝒫-state, and 

an optical disturbance is partially polarized
 . 
 One useful way of 

right- or left-circular light is in an ℛ- or ℒ- state
 , respectively. 

describing this behavior is to envision it as the result of the su-

Similarly, the condition of elliptical polarization corresponds to 

perposition of specific amounts of natural and polarized light.

an ℰ- state
 . We’ve already seen that a 𝒫-state can be represented 

as a superposition of ℛ- and ℒ-states [Eg. (8.10)], and the same 

is true for an ℰ-state. In this case, as shown in Fig. 8.11, the 


8.1.5 Angular Momentum and the Photon Picture


We have already seen that an electromagnetic wave impinging 

on an object can impart both energy and linear momentum to 

that body. Moreover, if the incident plane wave is circularly po-

larized, we can expect electrons within the material to be set 


E


into circular motion in response to the force generated by the 

rotating E


$-field. Alternatively, we might picture the field as be-


E



E


ing composed of two orthogonal 𝒫-states that are 90° 

 out-of-phase. These simultaneously drive the electron in two 

perpendicular directions with a p>2 phase difference. The re-

sulting motion is again circular. In effect, the torque exerted by 


Figure 8.11
     Elliptical light as the superposition of an ℛ- and ℒ-state.

the B


$-field averages to zero over an orbit, and the E
 $-field drives 

M08_HECH7226_05_SE_C08_330-389.indd   336

19/10/15   4:26 PM



 



8.1
   The Nature of Polarized Light  337


the electron with an angular velocity v equal to the frequency 

in its energy and linear momentum, it will undergo a change of 

of the electromagnetic wave. Angular momentum will thus be 

±U in its angular momentum.**

imparted by the wave to the substance in which the electrons 

The energy transferred to a target by an incident monochro-

are imbedded and to which they are bound. We can treat the 

matic electromagnetic wave can be envisaged as being trans-

problem rather simply without actually going into the details of 

ported in the form of a stream of identical photons. We can 

the dynamics. The power delivered to the system is the energy 

anticipate a corresponding quantized transport of angular mo-

transferred per unit time,  d
 ℰ> dt
 . Furthermore, the power gener-

mentum. A purely left-circularly polarized plane wave will 

ated by a torque Γ acting on a rotating body is just vΓ (which is 

impart angular momentum to the target as if all the constituent 

analogous to  vF
  for linear motion), so

photons in the beam had their spins aligned in the direction of 

propagation. Changing the light to right circular reverses the 


d
 ℰ


 


  

=

spin orientation of the photons, as well as the torque exerted by 

vΓ (8.20)


dt


them on the target. In 1935, using an extremely sensitive tor-

sion pendulum, Richard A. Beth was actually able to perform 

Since the torque is equal to the time rate-of-change of the angu-

such measurements.† 

lar momentum  L
 , it follows that on the average

Thus far we’ve had no difficulty in describing purely right- 


d
 ℰ


dL


and left-circular light in the photon picture; but what is linearly 





  

= v   (8.21)


dt



dt


or elliptically polarized light? Classically, light in a 𝒫-state can 

be synthesized by the coherent superposition of equal amounts 

A charge that absorbs a quantity of energy ℰ from the incident 

of light in ℛ- and ℒ-states (with an appropriate phase differ-

circular wave will simultaneously absorb an amount of angular 

ence). Any single photon whose angular momentum is some-

momentum  L
  such that

how measured will be found to have its spin either totally paral-

ℰ

lel or antiparallel to k
 $. A beam of linear light will interact with 






L 
 =  (8.22)

matter as if it were composed, at that instant, of equal numbers 

v

of right- and left-handed photons. There is a subtle point that 

If the incident wave is in an ℛ-state, its E


$-vector rotates clock-

has to be made here. We cannot say that the beam is actually 

wise, looking toward the source. This is the direction in which 

made up of precisely equal amounts of well-defined right- and 

a positive charge in the absorbing medium would rotate, and 

left-handed photons; the photons are all identical. Rather, each 

the angular momentum vector is therefore taken to point in the 

individual photon exists in either spin state with equal likeli-

direction opposite to the propagation direction,* as shown in 

hood. If we measured the angular momentum of the constituent 

Fig. 8.12.

photons,  -U would result as often as +U. This is all we can 

According to the quantum-mechanical description, an elec-

observe. We are not privy to what the photon is doing before the 

tromagnetic wave transfers energy in quantized packets or pho-

measurement (if indeed it exists before the measurement). As a 

tons such that ℰ =  h
 n. Thus ℰ = Uv (where U K  h
 >2p), and the 

whole, a linearly polarized lightbeam will impart no total angu-


intrinsic
  or  spin
  angular momentum of a photon is either -U or 

lar momentum to a target.

+U, where the signs indicate right- or left-handedness, respec-

In contrast, if each photon does not occupy both spin states 

tively. Notice that  the angular momentum of a photon is com-


with the same probability, one angular momentum, say +U, will 


pletely independent of its energy
 . Whenever a charged particle 

be found to occur somewhat more often than the other, -U. In 

emits or absorbs electromagnetic radiation, along with changes 

this instance, a net positive angular momentum will therefore 

be imparted to the target. The result en masse  
 is elliptically po-

larized light, that is, a superposition of unequal amounts of  


k


ℛ- and ℒ-light bearing a particular phase relationship.

-state


L



p


**As a rather important yet simple example, consider the hydrogen atom. It is 

composed of a proton and an electron, each having a spin of U>2. The atom has 


k


slightly more energy when the spins of both particles are in the same direction.  

-state

It is possible, however, that once in a very long time, roughly 107 years, one of 


L



p


the spins will flip over and be antiparallel to the other. The change in angular 

momentum of the atom is then U, and this is imparted to an emitted photon, 

which carries off the slight excess in energy as well. This is the origin of the  


Figure 8.12
     Angular momentum of a photon.

21-cm microwave emission, which is so significant in radio astronomy.

*This choice of terminology is admittedly a bit awkward. Yet its use in Optics is 

fairly well established, even though it is completely antithetic to the more rea-

†Richard A. Beth, “Mechanical detection and measurement of the angular momen-

sonable convention adopted in elementary particle physics.

tum of light,”  Phys. Rev. 
  50
 , 115 (1936).
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8.2 Polarizers


Transmission 

axis

Now that we have some idea of what polarized light is, the next 

u

logical step is to develop an understanding of the techniques 

used to generate, change, and manipulate it to fit our needs. An 

Linear light

optical device whose input is natural light and whose output is 

u

some form of polarized light is a polarizer
 .  
 For example, recall 

that one possible representation of unpolarized light is the su-

Natural

perposition of two equal-amplitude, incoherent, orthogonal 





light

Linear


E


𝒫-states. An instrument that separates these two components, 

polarizer

discarding one and passing on the other, is known as a  linear 



polarizer
 . Depending on the form of the output, we could also 


Figure 8.13
     Natural light incident on a linear polarizer tilted at an angle 

have  circular
  or  elliptical polarizers
 . All these devices vary in 

u with respect to the vertical.

effectiveness down to what might be called leaky or  partial
  

polarizers.

of the detector (e.g., a photocell) will be unchanged because of 

Polarizers come in many different configurations, but they 

the complete symmetry of unpolarized light. Keep in mind that 

are all based on one of four fundamental physical mechanisms: 

we are dealing with waves, but because of the very high fre-


dichroism
 , or selective absorption;  reflection
 ;  scattering
 ;   
 and 

quency of light, our detector will measure only the incident ir-


birefringence
 , or double refraction. There is, however, one un-

radiance. Since the irradiance is proportional to the square of 

derlying property that they all share:  there must be some form of 


the amplitude of the electric field [Eq. (3.44)], we need only 


asymmetry associated with the process. 
 This is certainly under-

concern ourselves with that amplitude.

standable, since the polarizer must somehow select a particular 

Now suppose that we introduce a second identical ideal lin-

polarization state and discard all others. In truth, the asymmetry 

ear polarizer, or analyzer
 , whose transmission axis is vertical 

may be a subtle one related to the incident or viewing angle, but 

(Fig. 8.14). If the amplitude of the electric field transmitted by 

usually it is an obvious anisotropy in the material of the polar-

the first polarizer is  E
 01, only its component,  E
 01 cos u, parallel 

izer itself.

to the transmission axis of the analyzer will be passed on to the 

detector (assuming no absorption). According to Eq. (3.44), the 

irradiance reaching the detector is then given by


8.2.1 Malus’s Law



c
 P


 



I(


0

u ) 
 =

  E
 2

2

01 cos2 u (8.23)

One matter needs to be settled before we go on: how do we 

determine experimentally whether or not a device is actually a 

The maximum irradiance,  I(0) 
 =  c
 P0  E
 201>2 =  I
 1, occurs when 

linear polarizer?

the angle u between the transmission axes of the analyzer and 

By definition, if natural light is incident on an ideal linear 

 polarizer is zero. Equation (8.23) can be rewritten as

polarizer, as in Fig. 8.13, only light in a 𝒫-state will be trans-

mitted. That 𝒫-state will have an orientation parallel to a spe-






I(
 u ) 
 =  I(0)
  cos2 u (8.24)

cific direction called the transmission axis
  of the polarizer. 

Only the component of the optical field parallel to the transmis-

This is known as Malus’s Law
 , having first been published in 

sion axis will pass through the device essentially unaffected. If 

1809 by Étienne Malus, military engineer and captain in the 

the polarizer in Fig 8.13 is rotated about the  z
 -axis, the reading 

army of Napoleon.


I0



Figure 8.14
     A linear polarizer and  

analyzer—Malus’s Law. Natural light of 


I(0)


irradiance  I
 0 is incident on a linear polarizer 


I(
 u )


tilted at an angle u with respect to the ver-

tical. The irradiance leaving the first linear 

u

cos u

polarizer is  I
 1 =  I(0)
 . The irradiance leaving 

u


E


the second linear polarizer (which makes 

= 01

cos u

an angle u with the first) is  I(
 u )
 .


E
 01


E
 02

Natural


E
 01

light


E
 01

Polarizer


E
 01


E
 02

Analyzer


E
 02

Detector
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Keep in mind that  I(0) 
 is the irradiance arriving on the ana-

and so

lyzer. Thus, if 1000 W>m2  of natural light impinges on the first 


I
 2 = 250 W>m2

linear polarizer in Fig. 8.14, assuming that polarizer is ideal, it 

will pass 500 W>m2 of linear light on to the analyzer; that’s  

The light emerges linearly polarized, oscillating at -80.0° in 


I(0)
 . Depending on u, we can use Eq. (8.24) to calculate the 

the second and fourth quadrants. Notice that the order of 

transmitted irradiance  I(
 u )
 . Alternatively, suppose the incident 

 passage through the polarizers is crucial.

beam is 1000 W>m2  of linear light parallel to the transmission 

axis of the first polarizer. In that case  I(0) 
 = 1000 W>m2.

Observe that  I(90
 ° ) 
 = 0. This arises from the fact that the 

electric field that passed through the polarizer is perpendicular 


8.3 Dichroism


to the transmission axis of the analyzer (the two devices so 

 arranged are said to be  crossed
 ). The field is therefore parallel 

In its broadest sense, the term dichroism
  refers to the selective 

to what is called the  extinction
   axis 
 of the analyzer and has no 

absorption of one of the two orthogonal 𝒫-state components of 

component along the transmission axis. We can use the setup of 

an incident beam. The dichroic polarizer itself is physically 

Fig. 8.14 along with Malus’s Law to determine whether a 

anisotropic, producing a strong asymmetrical or preferential 

 particular device is a linear polarizer. 

 absorption of one field component while being essentially 

As we’ll see presently, the most common kind of linear polar-

transparent to the other.

izer used today is the Polaroid filter. And although you certainly 

can confirm Malus’s Law with two ordinary Polaroids, you’ll 

have to be careful to use light in the range from ≈450 nm to 


8.3.1 The Wire-Grid Polarizer


≈650 nm. Ordinary Polaroids are not very good at polarizing IR.

The simplest device of this sort is a grid of parallel conducting 

wires, as shown in Fig. 8.15. Imagine that an unpolarized elec-

EXAMPLE 8.3

tromagnetic wave impinges on the grid from the left. The  electric 

The electric field of a 1000 W>m2 linearly polarized lightbeam 

field can be resolved into the usual two orthogonal components, 

oscillates at +10.0° from the vertical in the first and third quad-

in this case, one chosen to be parallel to the wires and the 

rants. The beam passes perpendicularly through two consecu-

 other perpendicular to them. The  y
 -component of the field drives 

tive ideal linear polarizers. The transmission axis of the first is 

the conduction electrons along the length of each wire, thus 

at  -80.0° from the vertical in the second and fourth quadrants. 

 generating a current. The electrons in turn collide with lattice 

And that of the second is at +55.0° from the vertical in the 

atoms, imparting energy to them and thereby heating the 

first and third quadrants. (a) How much light emerges from the 

wires  (joule heat). In this manner energy is transferred from 

second polarizer? (b) Now interchange the two polarizers with-

the field to the grid. In addition, electrons accelerating along the 

out altering their orientations and determine the amount of light 

  y
 -axis radiate in both the forward and backward directions. As 

that emerges. Explain your answers.

should be expected, the incident wave tends to be canceled by 

the wave reradiated in the forward direction, resulting in little or 

SOLUTION 

no transmission of the  y
 -component of the field. The radiation 

(a) The incident light (at +10°) is perpendicular to the  propagating in the backward direction simply appears as a transmission axis of the first polarizer (at -80°) and so no light 

 reflected wave. In contrast, the electrons are not free to move 

leaves it and no light leaves the second polarizer. (b) With the 

very far in the  z
 -direction, and the corresponding field  component 

polarizers interchanged, the light now oscillates at 45.0° to the 

of the wave is essentially unaltered as it propagates through the 

transmission axis of the first polarizer, which, via Malus’s Law, 

passes ( I
 1) where


y



I(
 u ) 
 =  I(0)
  cos2u

and so here


I
 1 = (1000 W>m2) cos2 45.0°

Hence


z



E



I


1 = 500 W>m2

This light, oscillating at +55.0°, makes an angle of 45.0° with 

the transmission axis of the new second polarizer. Therefore the 

irradiance emerging from it ( I
 2) is


Figure 8.15
     A wire-grid polarizer. The grid eliminates the vertical compo-


I


nent (i.e., the one parallel to the wires) of the  E
 -field and passes the hori-

2 = (500 W>m2)  cos2 45.0°

zontal component.
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grid.   
The transmission axis of the grid is perpendicular to 





the  wires

 .  
 It is a common error to assume naively that the  


y
 -component of the field somehow slips through the spaces 

 between the wires.

One can easily confirm our conclusions using microwaves 

and a grid made of ordinary electrical wire. It is not so easy a 

Optic

matter, however, to fabricate a grid that will polarize light, but it 

axis

has been done! In 1960 George R. Bird and Maxfield Parrish, 

Jr., constructed a grid having an incredible 2160 wires per mm.* 

Their feat was accomplished by evaporating a stream of gold 

(or at other times aluminum) atoms at nearly grazing incidence 

onto a plastic diffraction grating replica (see Section 10.2.7). 

The metal accumulated along the edges of each step in the grat-

ing to form thin microscopic “wires” whose width and spacing 

were less than one wavelength across.

Several kinds of wire-grid polarizers are commercially avail-

able, including ones made with microscopic aluminum wires. 

They offer high transmission across the visible and into the in-

termediate  IR
 .

Although the wire grid is useful, especially at higher tem-

peratures, it is mentioned here more for pedagogical than prac-

tical reasons. The underlying principle is shared by other, more 

common, dichroic polarizers.


8.3.2 Dichroic Crystals


Certain materials are inherently dichroic because of an anisot-

ropy in their respective crystalline structures. Probably the best 

known of these is the naturally occurring mineral  tourmaline
 , a 

semiprecious stone often used in jewelry. Actually there are sev-


Figure 8.16
     A dichroic crystal. The  E
 -field parallel to the optic axis is 

transmitted without any diminution. The naturally occurring ridges evident 

eral tourmalines, which are boron silicates of differing chemical 

in the photograph of the tourmaline crystals correspond to the optic axis. 

composition [e.g., NaFe3B3Al6Si6O27(OH)4]. For this sub-

(E.H.)

stance there is a specific direction within the crystal known as 

the principal or  optic
  axis, which is determined by its atomic 

configuration.  The electric-field component of an incident light-

the  E


$-fields are perpendicular to it (ergo the term dichroic, 

wave that is perpendicular to the principal axis is strongly 

meaning  two colors
 ).

 absorbed by the sample.  The thicker the crystal, the more com-

Several other substances display similar characteristics. A 

plete the absorption (Fig. 8.16). A plate cut from a tourmaline 

crystal of the mineral hypersthene, a ferromagnesium silicate, 

crystal parallel to its principal axis and several millimeters thick 

might look green under white light polarized in one direction 

will serve as a linear polarizer. In this instance the crystal’s prin-

and pink for a different polarization direction.

cipal axis becomes the polarizer’s transmission axis. But the 

We can get a qualitative picture of the mechanism that gives 

usefulness of tourmaline is rather limited by the fact that its crys-

rise to crystal dichroism by considering the microscopic structure 

tals are comparatively small. Moreover, even the transmitted 

of the sample. (You might want to take another look at Section 3.5.) 

light suffers a certain amount of absorption. To complicate mat-

Recall that the atoms within a crystal are strongly bound together 

ters, this undesirable absorption is strongly wavelength depen-

by short-range forces to form a periodic lattice. The electrons, 

dent, and the specimen will therefore be colored. A tourmaline 

which are responsible for the optical properties, can be envi-

crystal held up to natural white light might appear green (they 

sioned as elastically tied to their respective equilibrium positions. 

come in other colors as well) when viewed normal to the princi-

Electrons associated with a given atom are also under the influ-

pal axis and nearly black when viewed along that axis, where all 

ence of the surrounding nearby atoms, which themselves may 

not be symmetrically distributed. As a result, the elastic binding 

forces on the electrons will be different in different directions. 

*G. R. Bird and M. Parrish, Jr., “The wire grid as a near-Infrared polarizer,”  J. Opt. 


Consequently, their response to the harmonic electric field of an 


Soc. Am. 
 50
 , 886 (1960).

incident electromagnetic wave will vary with the direction of E


$. 
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If in addition to being anisotropic the material is absorbing, a 

detailed analysis would have to include an orientation-dependent 

conductivity. Currents will exist, and energy from the wave will 

be converted into joule heat. The attenuation, in addition to vary-

ing in direction, may be dependent on frequency as well. This 

means that if the incoming white light is in a 𝒫-state, the crystal 

will appear colored, and the color will depend on the orientation 

of E


$. Substances that display two or even three different colors 

are said to be dichroic or trichroic, respectively.*

A pair of crossed polaroids. Each polaroid appears gray because it absorbs 

roughly half the incident light. (E.H.)


8.3.3 Polaroid


In 1928 Edwin Herbert Land, then a 19-year-old undergraduate 

experiments, the crystals were aligned nearly parallel to each 

at Harvard College, invented the first dichroic sheet polarizer, 

other by means of magnetic or electric fields. Later, Land found 

known commercially as  Polaroid J-sheet
 . It incorporated a syn-

that they would be mechanically aligned when a viscous col-

thetic dichroic substance called  herapathite
 , or  quinine sulfate 


loidal suspension of the herapathite needles was extruded 


periodide
 .† Land’s own retrospective account of his early work 

through a long narrow slit. The resulting  J
 -sheet was effectively 

makes fascinating reading. It is particularly interesting to fol-

a large flat dichroic crystal. The individual submicroscopic 

low the sometimes whimsical origins of what is now, no doubt, 

crystals still scattered light a bit, and as a result,  J
 -sheet was 

the most widely used group of polarizers. The following is an 

somewhat hazy.

excerpt from Land’s remarks:

In 1938 Land invented  H-sheet
 , which is now probably the 

In the literature there are a few pertinent high spots in the devel-

most widely used linear polarizer. It does not contain dichroic 

opment of polarizers, particularly the work of William Bird  

crystals but is instead a molecular analogue of the wire grid. A 

Herapath, a physician in Bristol, England, whose pupil, a  

sheet of clear polyvinyl alcohol is heated and stretched in a 

Mr. Phelps, had found that when he dropped iodine into the urine 

given direction, its long hydrocarbon molecules becoming 

of a dog that had been fed quinine, little scintillating green crys-

aligned in the process. The sheet is then dipped into an ink 

tals formed in the reaction liquid. Phelps went to his teacher, and 

Herapath then did something which I [Land] think was curious 

 solution rich in iodine. The iodine impregnates the plastic and 

under the circumstances; he looked at the crystals under a micro-

attaches to the straight long-chain polymeric molecules, 

scope and noticed that in some places they were light where they 

 effectively forming a chain of its own. The conduction electrons 

overlapped and in some places they were dark. He was shrewd 

 associated with the iodine can move along the chains as if 

enough to recognize that here was a remarkable phenomenon, a 

they were long thin wires. The component of E


$ in an incident 

new polarizing material [now known as herapathite]. . . .

wave that is parallel to the molecules drives the electrons, does 

Herapath’s work caught the attention of Sir David Brewster, 

work on them, and is strongly absorbed. The transmission axis 

who was working in those happy days on the kaleidoscope. . . . 

of the polarizer is therefore perpendicular to the direction in 

Brewster, who invented the kaleidoscope, wrote a book about it, 

which the film was stretched.

and in that book he mentioned that he would like to use herapa-

Each separate minuscule dichroic entity is known as a  dichro-


thite crystals for the eyepiece. When I was reading this book, 


mophore
 . In  H
 -sheet the dichromophores are of molecular di-

back in 1926 and 1927, I came across his reference to these re-

markable crystals, and that started my interest in herapathite.

mensions, so scattering represents no problem.  H
 -sheet is a very 

effective polarizer across the entire visible spectrum, but is some-

Land’s initial approach to creating a new form of linear po-

what less so at the blue end. When a bright white light is viewed 

larizer was to grind herapathite into millions of submicroscopic 

through a pair of crossed  H
 -sheet Polaroids the  extinction
  color 

crystals, which were naturally needle-shaped. Their small size 

will be a deep blue as a result of this leakage.  HN
 -50 would be the 

lessened the problem of the scattering of light. In his earliest 

designation of a hypothetical, ideal  H
 -sheet having a  neutral
  

  color 
 ( N
 )  
 and transmitting 50% of the incident natural light while 

*More will be said about these processes later on when we consider 

absorbing the other 50%, which is the undesired polarization 

 birefringence. Suffice it to say now that for crystals classified as  uniaxial
  

component. In practice, however, about 4% of the incoming light 

there are two distinct directions, and therefore two colors may be displayed 

will be reflected back at each surface (antireflection coatings are 

by   absorbing
  specimens. In  biaxial
  crystals there are three distinct directions 

and the possibility of three colors.

not generally used), leaving about 92%. Half of this is presum-

ably absorbed, and thus we might contemplate an  HN
 -46 Pola-

†

roid. Actually, large quantities of  HN-
 38 , HN-
 32 ,  
 and   HN
 -22, 

Source: Edwin Herbert Land, “Some Aspects of the Development of Sheet 

Polarizers,”  J Opt. Soc
 .  Am
  41
 , 957 (1951 ) JOSA, Vol. 41, Issue 12, pp. 957–962 

each differing by the amount of iodine present, are produced 

(1951) Journal of Optical Society of America. Optical Society of America.

commercially and are readily available (Problem 8.15).
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Many other forms of Polaroid have been developed.*  K-


(≈12  T
 0) of ≈38%,  ≈32%, and ≈22%, respectively, so that 


sheet, 
 which is humidity- and heat-resistant, has as its dichro-

here  T
 0 is, in turn, 76%, 64%, and 44%.  In other words, for an 

mophore the straight-chain hydrocarbon polyvinylene. A com-


HN
 -38 polarizer 76% of the linear light parallel to its transmis-

bination of the ingredients of  H
 - and  K
 -sheets leads to  HR-sheet, 


sion axis will be passed.

a near-infrared polarizer. And there are commercially available 

By adding increased amounts of iodine the leakage is cut down, 

dichroic sheet linear polarizers that function in the ultraviolet 

but so too is the desired transmittance ( T
 0). Thus  HN
 -32 has a 

from ≈300 nm to ≈400 nm.

 minor  transmittance  ( T
 90) of roughly 0.005%, whereas the corre-

Remember that sheet dichroic polarizers are designed for a 

sponding value for  HN
 -22 is nearly 0.000 5% and the filter is 

specific wavelength range. A pair of crossed sheet linear polar-

 essentially free of leakage. The reason these values are not more 

izers intended to block the visible will leak substantially below 

precise is that transmittance is frequency dependent;  T
 90 peaks in 

≈450 nm and above ≈650 nm. 

the blue around 400 nm. Today many companies produce a variety 

All sorts of dichroic linear polarizers, from sheet Polaroid to 

of polarizing filters and there is no universally accepted designa-

Polarcor (i.e., glass containing aligned elongated silver crystals) 

tion like  HN
 . Sheet polarizers are specified, in part, by their trans-

to tourmaline, can be characterized by specifying their trans-

mittances in unpolarized light,  Tn
 , which can be as high as 46%.

mission properties. To that end consider a linearly polarized 

When two identical real linear polarizers in natural light are 

beam of vertical light impinging normally on a linear polarizer.  

positioned one behind the other with their transmission axes 

The latter can be revolved around an axis parallel to the beam 

parallel, the resulting transmittance is

through an angle u, measured from its transmission axis to the 






T


2


n


 (8.26)

i = 12  T
 0 T
 0 + 12  T
 90 T
 90 ≈ 12  T 
 0

vertical. When the beam’s electric field is parallel to the polar-

izer’s transmission axis (u = 0) the transmitted irradiance, call 

On the other hand, when two such identical linear polarizers 

it  It
  0, will be maximum. Then, given that the incident irradiance 

illuminated by natural light are crossed, whereupon their trans-

is  Ii
 , the quantity  It
  0> Ii
  is known as the principal transmittance
 , mission axes are perpendicular, their total transmittance is


T
 0. It is the fraction of the incident light parallel to the transmis-






Tn
 # = 12  T
 0 T
 90 + 12  T
 90 T
 0 =  T
 0  T
 90 (8.27) sion axis that is passed by the polarizer. When the electric field 

oscillates perpendicular to the transmission axis, the irradiance 

In general, then, when the two filters’ transmission axes are at 

( It
  90) passing out of the polarizer is minimal and  It
  90> Ii
  is known 

an angle u the total transmittance becomes

as the minor transmittance
 ,  T
 90. It is the fraction of the incident 


Tn
 u = (12  T
 0  T
 0 + 12  T
 90  T
 90) cos2 u +  T
 0 T
 90 sin2 u linear light, all of which is aligned perpendicular to the transmission axis, that is passed or leaked by the polarizer. 

or 


T


2


n 
 ≈ 1

 cos2 

u

2  T 
 0

u (8.28)

Again imagine a beam of linear light incident on a linear di-

chroic polarizer making an angle u with the transmission axis.  

EXAMPLE 8.4

Since irradiance is proportional to the field amplitude squared, 

and since there are components of that amplitude parallel and 

The newer  HN
 -42HE variety of sheet dichroic linear polarizer 

perpendicular to the transmission axis, the transmittance
  of 

combines high transmittance with enhanced extinction. Sup-

the polarizer illuminated with linear light is

pose two such identical filters are aligned, one behind the other, 

with their transmission axes parallel. If 250 W>m2 of natural 






Tl 
 =  T
 0 cos2 u + T90 sin2 u (8.25)

light impinges normally on the first polarizer, how much light 

The  transmittance ratio 
 is defined as ( I


will emerge from the second?


t
  0> Ii
 )>( It
  90> Ii
 )  =


T
 0> T
 90 =  It
  0> It
  90 and this could be as high as 30 000 :1.  Like-SOLUTION 

wise the extinction ratio
  is one over that, or  T
 90> T
 0. As a rule,  


T


Because the light is unpolarized, 50% of the incident 

0  7 7   T
 90.

For an ideal dichroic linear polarizer under  natural illumina-


irradiance  ( Ii
 ) can be assumed to vibrate parallel to the 


tion
 , all of the light parallel to the transmission axis will be passed 

transmission axis of the first polarizer and the other 50% 

and so  T


will more or less be absorbed. If the first filter were perfect, 

0 = 1.0, whereas none of the light perpendicular to it 

will be passed, and  T


it would transmit 1

90 = 0. If an actual polarizer is illuminated 

2  Ii
  but it actually transmits a fraction ( T
 0) 

by natural light, both orthogonal directions will transmit and the 

of that, namely, 12  Ii
   T
 0. Here we have an  HN
 -42HE filter for 

total transmittance ( T


which 1


n
 ) of the device will be given by  Tn
   =  

2  T
 0 ≈ 42% and so  T
 0 ≈ 84%; that’s the percentage of 

1

the linear light, all of which is parallel to the transmission 

2 ( T
 0 +  T
 90) ≈ 12  T
 0.  The 12 is there because ideally half the un-

polarized incident light is absorbed. In the case of the original 

axis, which is transmitted by the first filter. The second 

Polaroid sheets illuminated by natural light, designations like 

polarizer passes the fraction ( T
 0) of the linear light (12  Ii
   T
 0) 


HN
 -38,  HN
 -32, and  HN
 -22 correspond to total transmittances 

incident on it, namely,  It 
 = (12  Ii
   T
 20) = 12(250 W>m2)(0.84)2 =

0.353(250 W>m2) = 88.2 W>m2. We can check this using 

Eq. (8.26);  T


2

2


n 
 ≈ 1

 and so  I


) I


i

2  T 
 0


t 
 = (12  T
 0  i
 , which is what we 

just concluded.

*See  Polarized Light: Production and Use
 , by Shurcliff, or its more readable little 

brother,  Polarized Light
 , by Shurcliff and Ballard.
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Polaroid vectograph 
 is a commercial material at one time 

springs of differing stiffness (i.e., having different spring con-

 designed to be incorporated in a process for making three- 

stants). An electron that is displaced from equilibrium along a 

dimensional photographs. The stuff never was successful at its 

direction parallel to one set of “springs” will evidently oscillate 

intended purpose, but it can be used to produce some rather 

with a different characteristic frequency than it would were it 

thought-provoking, if not mystifying, demonstrations. Vecto-

displaced in some other direction. 

graph film is a water-clear plastic laminate of two sheets of poly-

As was pointed out previously, light propagates through a 

vinyl alcohol arranged so that their stretch directions are at right 

transparent substance by exciting the atoms within the  medium. 

angles to each other. In this form there are no conduction elec-

The electrons are driven by the E


$-field, and they reradiate; 

trons available, and the film is not a polarizer. Using an iodine 

these secondary wavelets recombine, and the resultant  refracted 

solution, imagine that we draw an  X
  on one side of the film and a 

wave moves on. The speed of the wave, and therefore the index 


Y
  overlapping it on the other. Under natural illumination the light 

of refraction, is determined by the difference between the 

passing through the  X
  will be in a 𝒫-state perpendicular to the 

 frequency of the E


$-field and the natural frequency of the  atoms. 

𝒫-state light coming from the  Y
 . In other words, the painted 


An anisotropy in the binding force will be manifest in an 


 regions form two crossed polarizers. They will be seen superim-


 anisotropy in the refractive index
 . For example, if 𝒫-state light 

posed on each other. Now, if the vectograph is viewed through a 

was to move through some hypothetical crystal so that it en-

linear polarizer that can be rotated, either the  X
 , the  Y
 , or both will 

countered electrons that could be represented by Fig. 8.17, its 

be seen. Obviously, more imaginative drawings can be made. (One 

speed would be governed by the orientation of E


$. If E
 $ was 

need only remember to make the one on the far side backward.)

parallel to the stiff springs, that is, in a direction of strong bind-

ing, here along the  x
 -axis, the electron’s natural frequency 

would be high (proportional to the square root of the spring 

constant). In contrast, with E


$ along the  y
 -axis, where the bind-


8.4 Birefringence


ing force is weaker, the natural frequency would be somewhat 

lower. Keeping in mind our earlier discussion of dispersion and 

Many crystalline substances (i.e., solids whose atoms are 

the  n(
 v )
  curve of Fig. 3.41, the appropriate indices of refrac-

 arranged in some sort of regular repetitive array) are  optically 


tion might look like those in Fig. 8.18. A material of this sort, 


anisotropic.  
 Their optical properties are not the same in all 

which displays two different indices of refraction, is said to be 

 directions within any given sample. The dichroic crystals of the 


birefringent
 .*

previous section are but one special subgroup. We saw there 

If the crystal is such that the frequency of the incident light ap-

that if the crystal’s lattice atoms were not completely symmetri-

pears in the vicinity of v d
 , in Fig. 8.18, it resides in the absorption 

cally arrayed, the binding forces on the electrons would be 

band of  ny(
 v )
 . A crystal so illuminated will be strongly absorbing 

anisotropic. Earlier, in Fig. 3.38 b
  we represented the isotropic 

for one polarization direction ( y
 ) and transparent for the other ( x
 ). 

oscillator using the simple mechanical model of a spherical 

A birefringent material that absorbs one of the orthogonal 𝒫-states, 

charged shell bound by identical springs to a fixed point. This 

passing on the other, is  dichroic
 . Furthermore, suppose that the 

was fine for  optically isotropic 
 substances (amorphous solids, 

crystal symmetry is such that the binding forces in the  y
 - and 

such as glass and plastic, are usually, but not always, isotropic). 


z
 -directions are identical; in other words, each of these springs has 

Figure 8.17 shows another charged shell, this one bound by 

the same natural frequency and they are equally lossy. The  x
 -axis 

now defines the direction of the optic axis
 . Inasmuch as a crystal 

can be represented by an array of these oriented anisotropic 

charged oscillators,  
the optic axis is actually a direction and not 




x




merely a single line

 . The model works rather nicely for dichroic 

crystals, since if light was to propagate along the optic axis (E


$ in 

the   yz
 -plane), it would be strongly absorbed, and if it moved 

Electron

 normal to that axis, it would emerge linearly polarized.

cloud

Often the natural frequencies of birefringent crystals are 

above the optical range, and they appear colorless. This is 

 represented by Fig. 8.18, where the incident light is now con-

sidered to have frequencies in the region of v


+



b
 . Two different 

indices are  apparent, but absorption for either polarization is 

negligible. Equation (3.71) shows that  n(
 v )
  varies inversely 


z


with the natural frequency. This means that a large effective 


y


*The word  refringence
  used to be used instead of our present-day term  refraction
 . 


Figure 8.17
     Mechanical model depicting a negatively charged shell 

It comes from the Latin  refractus
  by way of an etymological route beginning with 

bound to a positive nucleus by pairs of springs having different stiffness.


frangere
 , meaning to break.
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n(
 v )


Optic

axis


ny


1

v


n(
 v )



nx


1

v

Carbon

v b


v d


Calcium


Figure 8.18
     Refractive index versus frequency along two axes in a crys-

tal. Regions where  dn
 > d
 v 6 0 correspond to absorption bands.

Oxygen


Figure 8.19
     Arrangement of atoms in calcite.

spring constant (i.e., strong binding) corresponds to a low po-

larizability, a low dielectric constant, and a low refractive index.

We will construct, if only pictorially, a linear polarizer utiliz-

edly different when E


$ is either in or normal to those planes 

ing birefringence by causing the two orthogonal 𝒫-states to fol-

(Problem 8.34). In any event the asymmetry is clear enough.

low different paths and separate. Even more fascinating things 

Calcite samples can readily be split, forming smooth sur-

can be done with birefringent crystals, as we shall see later.

faces known as  
cleavage planes

 . The crystal is essentially made 

to come apart between specific planes of atoms where the inter-

atomic bonding is relatively weak. All cleavage planes in calcite 


8.4.1 Calcite


(Fig. 8.20) are normal to three different directions. As a crystal 

Let’s spend a moment relating the above ideas to a typical bire-

grows, atoms are added layer upon layer, following the same 

fringent crystal, calcite. Calcite or calcium carbonate (CaCO3)

pattern. But more raw material may be available to the growth 

is a common naturally occurring substance. Both marble and 

process on one side than on another, resulting in a crystal with 

limestone are made up of many small calcite crystals bonded 

an externally complicated shape. Even so, the cleavage planes 

together. Of particular interest are the beautiful large single 

are dependent on the atomic configuration, and if one cuts a 

crystals, which, although they are becoming rare, can still be 

sample so that each surface is a cleavage plane, its form will be 

found, particularly in India, Mexico, and South Africa. Calcite 

related to the basic arrangement of its atoms.  Such a specimen 

is the most common material for making linear polarizers for 

is referred to as a cleavage form
 . In the case of calcite it is a 

use with high-power lasers.

rhombohedron, with each face a parallelogram whose angles 

Figure 8.19 shows the distribution of carbon, calcium, and 

are 78° 5′ and 101° 55′ (Fig. 8.21).

oxygen within the calcite structure; Fig. 8.20 is a view from 

There are only two  blunt corners
  where the surface planes 

above, looking down along what has, in anticipation, been la-

meet to form three obtuse angles. A line passing through the ver-

beled the optic axis in Fig. 8.19. Each CO3 group forms a trian-

tex of either of the blunt corners, oriented so that it makes equal 

gular cluster whose plane is perpendicular to the optic axis. If 

angles with each face (45.5°) and each edge (63.8°), is clearly an 

Fig. 8.20 is rotated about a line normal to and passing through 

axis of 3-fold symmetry. (This would be a bit more obvious if we 

the center of any one of the carbonate groups, the same exact 

cut the rhomb to have edges of equal length.) Evidently, such a 

configuration of atoms would appear three times during each 

line must correspond to the optic axis. Whatever the natural shape 

revolution. The direction designated as the optic axis corresponds 

of a particular calcite specimen, you need only find a blunt corner 

to a special crystallographic orientation, in that it is an axis of 

and you have the optic axis.


3
 - fold symmetry
 . The large birefringence displayed by calcite 

In 1669 Erasmus Bartholinus (1625–1692), doctor of 





arises from the fact that the carbonate groups are all in planes 

medicine and professor of mathematics at the University of 

normal to the optic axis. The behavior of their electrons, or rath-

Copenhagen (and incidentally, the father-in-law of Ole Römer, 

er the mutual interaction of the induced oxygen dipoles, is mark-

the man who in 1679 first measured the speed of light), came 
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Double image formed by a calcite crystal (not cleavage form). (E.H.)

upon a new and remarkable optical phenomenon in calcite, 

which he called double refraction .  
 Calcite had been discov-

ered not long before, near Eskifjordur in Iceland, and was then 

known as  
Iceland spar

 . In the words of Bartholinus:*

Greatly prized by all men is the diamond, and many are the joys 

which similar treasures bring, such as precious stones and 

pearls. . . but he, who, on the other hand, prefers the knowledge 

of unusual phenomena to these delights, he will, I hope, have no 

less joy in a new sort of body, namely, a transparent crystal, re-

cently brought to us from Iceland, which perhaps is one of the 

greatest wonders that nature has produced. . . .

As my investigation of this crystal proceeded there showed 

itself a wonderful and extraordinary phenomenon: objects which 

are looked at through the crystal do not show, as in the case of 

other transparent bodies, a single refracted image, but they ap-

pear double.

The double image referred to by Bartholinus is quite evi-

dent in the accompanying photograph. If we send a narrow 


Figure 8.20
     Atomic arrangement for calcite looking down the  

beam of natural light into a calcite crystal normal to a cleav-

optical axis.

age plane, it will split and emerge as two parallel beams. To 

see the same effect quite simply, we need only place a black 

dot on a piece of paper and then cover it with a calcite rhomb. 

The image will now consist of two gray dots (black where 

they overlap). Rotating the crystal will cause one of the dots 

to remain stationary while the other appears to move in a 

circle about it, following the motion of the crystal. The rays 

Optic

axis

forming the fixed dot, which is the one invariably closer to 

102°

the upper blunt corner, behave as if they had merely passed 

through a plate of glass. In accord with a suggestion made by 

78°

Bartholinus, they are known as the ordinary rays
 , or  o-rays. 


78°

78°

The rays coming from the other dot, which behave in such an 

78ůnusual fashion, are known as the extraordinary rays
 ,   
 or  

102°

102°


e-rays. 
 If the crystal is examined through an analyzer, it will 

102° 102°

be found that the ordinary and extraordinary images are lin-

102°

early polarized (see photo). Moreover, the two emerging  

𝒫-states are orthogonal.

78° 78°


Figure 8.21
     Calcite cleavage form.

*Source: Erasmus Bartholinus (1625–1692) W.F. Magie,  A Source Book in Physics
 .
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71°


E



o
 -wave

Optic axis

A calcite crystal (blunt corner on the bottom). The transmission axes of the 

two polarizers are parallel to their short edges. Where the image is doubled, 

the lower, undeflected one is the ordinary image. Take a long look: there’s a 

lot in this one. 


Figure 8.23
     An incident plane wave polarized perpendicular to the  

(E.H.)

principal section.

Any number of planes can be drawn through the rhomb so as 

in Fig. 8.23. The wave strikes the surface of the crystal, there-

to contain the optic axis, and these are all called principal 


upon driving electrons into oscillation, and they in turn reradi-


planes
 . More specifically, if the principal plane is also normal 

ate secondary wavelets. The wavelets superimpose and recom-

to a pair of opposite surfaces of the cleavage form, it slices the 

bine to form the refracted wave, and the process is repeated 

crystal across a principal section
 . 
 Evidently, three of these pass 

over and over again until the wave emerges from the crystal. 

through any one point; each is a parallelogram having angles of 

This represents a cogent physical argument for applying the 

109° and 71°. Figure 8.22 is a diagrammatic representation of 

ideas of scattering via Huygens’s Principle. Huygens himself, 

an initially unpolarized beam traversing a principal section of a 

though without benefit of electromagnetic theory, used his 

calcite rhomb. The filled-in circles and arrows drawn along the 

construction to explain many aspects of double refraction in 

rays indicate that the  o
 -ray has its electric-field vector normal to 

calcite as long ago as 1690. It should be made clear from the 

the principal section, and the field of the  e
 -ray is parallel to the 

outset, however, that his treatment is incomplete,* in which 

principal section.

form it is appealingly, though deceptively, simple.

To simplify matters a bit, let E


$ in the incident plane wave 

Inasmuch as the E


$-field is perpendicular to the optic axis, one 

be linearly polarized perpendicular to the optic axis, as shown 

assumes that the wavefront stimulates countless atoms on the 

surface, which then act as sources of spherical wavelets, all of 

Optic

which are in-phase. Presumably, as long as the  field of the wave-


axis


lets is everywhere normal to the optic axis
 , they will expand into 

the crystal in all directions with a speed  v
 #, as they would in an 

isotropic medium. (Keep in mind that the speed is a function of 

frequency.) Since the  o
 -wave displays no anomalous behavior, 

this assumption seems reasonable. The envelope of the wavelets 

is essentially a portion of a plane wave, which in turn stimulates 


e
 -ray

a distribution of secondary atomic point sources. The process 


o
 -ray

71°

continues, and the wave moves straight across the crystal.

In contrast, consider the incident wave in Fig. 8.24 whose  

109°


e
 -ray


E


$-field is parallel to the principal section. Notice that E
 $ now 

has a component normal to the optic axis, as well as a compo-


E


nent parallel to it. Since the medium is birefringent, light of a 

given frequency polarized parallel to the optic axis propagates 


o
 -ray

with a speed  v 
 , where  v


i

i Z  v
 #. In particular for calcite and 

6.2°

sodium yellow light (l = 589 nm),  1.486 v
 i = 1.658 v
 # =  c
 . 

What kind of Huygens’s wavelets can we expect now? At the 

risk of oversimplifying matters, we represent each  e
 -wavelet, 

Optic axis


Figure 8.22
     A lightbeam with two orthogonal field components traversing 

a calcite principal section.

*A. Sommerfeld,  Optics
 , p. 148.
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usually the case). Light will scatter off internal flaws, making its 

71°

path fairly visible.

The electromagnetic description of what is happening is 

rather complicated but well worth examining at this point, 

even if only superficially. Recall from Chapter 3 that the inci-

dent E


$-field will polarize the dielectric; that is, it will shift the 

distribution of charges, thereby creating electric dipoles. The 

field within the dielectric is thus altered by the inclusion of an 

induced field, and one is led to introduce a new quantity, the 


E



displacement
   D


$ (see Appendix 1), which is an electric flux 


e
 -wave

density. In isotropic media D


$ is related to E
 $ by a scalar quan-

tity,  P, the permittivity, such that D
 $ = PE
 $ and the two fields 

are always parallel.  Recall that expressions for E


$ (e.g., de-

rived from Coulomb’s Law or Gauss’s Law) contain a factor 

Optic axis

of 1>P and so D
 $ is independent of the permittivity of the me-

dium, whereas E


$ is not.

In anisotropic crystals D


$ and E
 $ are related by a tensor and 


Figure 8.24
     An incident plane wave polarized parallel to the principal 

are not always parallel. If we now apply Maxwell’s Equations 

section.

to the problem of a wave moving through such a medium, we 

for the moment at least, as a small sphere (Fig. 8.25). Imagine 

find that the fields vibrating within the wavefront are D


$ and B
 $ 

that the E


$-field in the crystal is everywhere tangent to the wave-

and not, as before, E


$ and B
 $. 

let. When that field is parallel to the optic axis the wavelet travels 

Keep in mind that B


$ = mH
 $, where expressions for B
 $ contain 

at  v 
 ; when it’s perpendicular, it travels at  v


i

#. But  v
 i 7  v
 #, so 

a factor of m, and so it is H


$ that is independent of the medium. 

that the wavelet will elongate in all directions normal to the optic 

Still, for all the materials we will be concerned with, m is a sca-

axis. We therefore speculate, as Huygens did, that the secondary 

lar, B


$ and H
 $ are parallel, and we needn’t generally deal with H
 $. 

wavelets associated with the  e
 -wave are ellipsoids of revolution 

The propagation vector k
 $, which is normal to the surfaces of 

about the optic axis. The envelope of all the ellipsoidal wavelets 

constant phase, is now perpendicular to D


$ rather than E
 $. In fact, 

is essentially a portion of a plane wave parallel to the incident 


D


$, E
 $, and k
 $ are all coplanar (Fig. 8.26). The  ray direction
  cor-

wave. This plane wave, however, will evidently undergo a side-

responds to the direction of the Poynting vector S
 $ =  v
 2PE
 $ : B
 $, 

wise displacement in traversing the crystal. The beam moves in 

which is generally different from that of k
 $. Because of the man-

a direction parallel to the lines connecting the origin of each 

ner in which the atoms are distributed, E


$ and D
 $ will, however, 

wavelet and the point of tangency with the planar envelope. This 

be colinear when they are both either parallel or perpendicular 

is known as the  
ray direction

  and corresponds to the direction in 


to the optic axis.* This means that the  o
 -wavelet will encounter 


which energy propagates
 .  Clearly, in an anisotropic crystal the 



direction of the ray is not normal to the wavefront
 .

If the incident beam is natural light, the two situations depict-


D


ed in Figs. 8.23 and 8.24 will exist simultaneously, with the result 

that the beam will split into two orthogonal linearly polarized 


E


beams (Fig. 8.22). You can actually see the two diverging beams 


k


within a crystal by using a properly oriented narrow laserbeam 


H



k



S


(E


$ neither normal nor parallel to the principal plane, which is 


B



v
 ∣∣


Figure 8.25
   Wavelets  

Ray

within calcite.


Figure 8.26
     The relationship between H


$, B
 $, E
 $, D
 $, k
 $, and S
 $ in an anisotropic 

medium.


E


*In the oscillator model, the general case corresponds to the situation in which E
 $ 

is not parallel to any of the spring directions. The field will drive the charge, but 


v
 ⊥

its resultant motion will not be in the direction of E
 $ because of the anisotropy of 

Optic axis

the binding forces. The charge will be displaced most, for a given force compo-

nent, in the direction of weakest restraint. The induced field will thus not have the 

same orientation as E
 $.
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E



S



E



S


Crystals of potassium chloride, calcium carbonate (calcite), and sodium chlo-

ride (table salt). Only the calcite produces a double image. It’s because of 

this that calcite is said to be birefringent. (E.H.)


k



D



e
 -wavelets. It is the orientation of the field with respect to the 


k


optic axis that determines the speeds with which these wavelets 


e
 -wave


D


expand. The E


$- field of the
   o
 - wave is everywhere normal to the 


Optic axis


optic axis
 , as is the D


$-field, so the wave moves at a speed  v
 # in 


o
 -wave

all directions. Similarly, the  e
 -wave has a speed  v
 # only in the 

direction of the optic axis (Fig. 8.25), along which it is always 

tangent to the  o
 -wave. Normal to this direction, both E


$ and D
 $  are
  


Figure 8.27
     Orientations of the E
 $-, D
 $-, S
 $-, and k
 $-vectors.


parallel to the optic axis
 , and that portion of the wavelet expands 

at a speed  v 
  (Fig. 8.28). Uniaxial materials have two principal 

i

 indices of refraction,  no 
 K  c
 > v
 #  
 and  ne 
 K  c
 > v 
  in orthogonal i

an effectively isotropic medium and thus be spherical, having 


S
 $ o
  and k
 $ colinear. In contrast, the  e
 -wavelets will have S
 $ e
  and k
 $, or equivalently E
 $ and D
 $, parallel only in directions along or 


v
 ∣∣

normal to the optic axis. At all other points on the wavelet it is 


D


$ that is tangent to the ellipsoid, and therefore it is always D
 $ 

that ends up in the envelope or composite planar wavefront 

within the crystal (Fig. 8.27).


v



e
 -wave

⊥


o
 -wave


8.4.2 Birefringent Crystals


Optic

axis


Cubic
  crystals, such as sodium chloride (i.e., common salt), have 

their atoms arranged in a relatively simple and highly symmetri-


v



v


⊥

⊥

cal form. (There are  four
  3-fold symmetry axes, each running 

from one corner to an opposite corner, unlike calcite, which has 

one such axis.) Light emanating from a point source within such 

a crystal will propagate uniformly in all directions as a spherical 


v
 ⊥

wave. As with amorphous solids like glass, there will be no pre-

ferred directions in the material. It will have a single index of 

refraction and be  optically isotropic
  (see photo). In that case all 


v


the springs in the oscillator model will evidently be identical.

∣∣

Crystals belonging to the  hexagonal
 ,  tetragonal
 , and   trigonal
  

systems have their atoms arranged so that light propagating in 


Figure 8.28
     Wavelets in a negative uniaxial crystal (their differences 

much exaggerated). The arrows and dots represent the E
 $-fields of the 

some general direction will encounter an asymmetrical struc-

extraordinary and ordinary waves, respectively. The E
 $-field of the  o
 -wave is 

ture. Such substances are optically anisotropic and birefringent. 

everywhere perpendicular to the optic axis. At these particular locations on 

The optic axis corresponds to a direction about which the atoms 

the wavelets the E
 $- and D
 $-fields are parallel. A line from the center point to 

are arranged symmetrically. Crystals like these, for which there 

the ellipse corresponds to a ray in that direction whose length indicates the 

is only one such direction, are known as  
uniaxial

 .
  

wave’s speed in that direction. A tangent to the ellipse at the point where 

that ray intersects the  e
 -wave is the direction of D


$. And the same is true 

A point source of natural light embedded within one of these 

for the  o
 -wave where E
 $ and D
 $ are parallel and perpendicular to the plane 

specimens gives rise to both spherical  o
 -wavelets and ellipsoidal 

of the drawing.
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TABLE 8.1    Refractive Indices of Some Uniaxial 


crystals, lithium tantalate (LiTaO3) is positive birefringent, 


Birefringent Crystals (


whereas lithium niobate (LiNbO

l

3), potassium dihydrogen phos-


0 
 = 589.3 nm)


phate  (KH2PO4), or KDP, and ammonium dihydrogen phos-

Crystal 


no
  


ne


phate (NH4H2PO4), or ADP, are all negative birefringent.

The remaining crystallographic systems, namely, orthorhom-

Calcite 

1.6584 1.4864

bic, monoclinic, and triclinic, have two optic axes and are biaxial
 . 

Ice 

1.309 1.313

Such substances, for example, mica, have three different principal 

KDP 

1.51 1.47

indices of refraction. Each set of springs in the oscillator model 

Lithium niobate 

2.30 

2.21

would then be different. The birefringence of biaxial crystals is 

Quartz 

1.5443 1.5534

measured as the numerical difference between the largest and 

Rutile (TiO2)  2.616 2.903

smallest of these indices. For mica (e.g., muscovite at 589.3 nm) 

Sodium nitrate 

1.5854 

1.3369

these indices are 1.561, 1.590, and 1.594, the last two being close 

Tourmaline 

1.669 1.638

enough so that mica can usually be treated as uniaxial.

The configuration of the three-dimensional wavefront in a 

biaxial crystal is fairly complex. Figure 8.30 illustrates the 

directions (Problem 8.36) as indicated in Table 8.1.  For all such 


 structure across one coordinate-plane slice of the wavefront. 


crystals there is a single
   direction, the optic axis, along which the 


Rather than having two orthogonal principal indices of refrac-


two wavelets share a common tangent
 . Thus all plane waves trav-

tion as in the case of the uniaxial system, the biaxial crystal has 

eling in that direction preserve their state of polarization.

three: two associated with the elliptical segment and one with 

The difference ∆ n 
 = ( n


the circle. But here the two wavelets intermingle and should not 


e 
 -  no
 ) is a measure of the birefrin-

gence, and it’s often called the birefringence
 . In calcite  v


be viewed as if they were independent. The wavefront is a three-

i 7  v
 #, 

( n


dimensional continuous complicated surface.


e 
 -  no
 ) is  - 0.172, and it is  negative uniaxial
 . In comparison, 

there are other crystals, such as quartz (crystallized silicon diox-

An optic axis again corresponds to a direction along which 

ide) and ice, for which  v


plane waves can propagate with a single fixed velocity indepen-

# 7  v 
 . Consequently, the ellipsoidal 

i


e
 -wavelets are enclosed within the spherical  o
 -wavelets, as shown in 

dent of the direction of D


$ within the wavefront. In the diagram 

Fig. 8.29. (Quartz is optically active and therefore actually a bit 

there are four locations where a single plane is tangent to both 

more complicated.) In that case, ( n


the elliptical and circular figures. The two directions passing 


e 
 -  no
 ) is positive, and the crys-

tal is  positive uniaxial
 . Among the modern-day electro-optical 

through the coordinate center (i.e., the imagined imbedded point 

source), perpendicular to these tangent planes are the two optic 

axes of the specimen. In these directions all plane waves would 

travel at the same speed regardless of the orientations of their 


v
 ⊥


D


$-fields. Such waves would preserve their polarization states as 

they moved through the crystal. Fortunately, biaxial crystals are 

generally not of great practical concern, so we needn’t study 


v
 ∣∣

them any further.

Optic

axis


v



v


⊥

⊥

Optic


e
 -wave

axis

Optic

axis


o
 -wave


v
 ∣∣


v
 ⊥


Figure 8.29
     Wavelets in a positive uniaxial crystal (their differences much 

exaggerated). The arrows and dots represent the E
 $-fields of the extraordinary 

and ordinary waves, respectively. The E
 $-field of the  o
 -wave is everywhere 

perpendicular to the optic axis. At these particular locations on the wavelets 

the E
 $- and D
 $-fields are parallel. A line from the center point to either wavelet 

has a length corresponding to the speed of that wavelet in that direction. 


Figure 8.30
     The intersection of one coordinate plane with the complex 

Thus the  o
 -wave has the same speed in every direction.

 continuous wavefront propagating within a biaxial crystal.
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Wavefronts and Rays in Uniaxial Crystals



e
 -wavefront after a time ∆ t
 . The line from  A
  to the point of tan-

gency is the  e
 -ray, the direction of flow of energy, the direction 

We are now in a position to construct a graphical procedure to 

of the Poynting vector S
 $ e
 ; it’s  not
  perpendicular to the  e
 -wavefront 

demonstrate how plane waves propagate into uniaxial crystals. 

and the little arrows along its length depict the D


$-field, which is 

Huygens provided the method, which we illustrated earlier in 

in the plane of the wavefront. Alternatively, had we drawn little 

Fig. 4.31 at the interface between two isotropic materials. The 

arrows representing the E


$-field they would have been perpen-

scheme is equivalent to that of Fig. 4.19, which we used to 

dicular to S
 $ e
 , which itself corresponds to the  e
 -ray. As a rule, an 


 derive Snell’s Law, and it works nicely for anisotropic media as 



e

 -wave does not travel through a birefringent crystal at the 


well. Imagine a planar wavefront  AB
  obliquely incident on the 


same speed in all directions and so an 
 
e

 -ray does not gener-


flat surface of a negative uniaxial crystal in air (Fig. 8.31). For 


ally obey Snell’s Law.


simplicity, the plane of the diagram is taken to be a principal 

It is possible, however, to cut and polish a uniaxial crystal 

section and hence the optic axis is in that plane as shown. 

such that its optic axis is everywhere parallel to the field of the 

Let’s first deal with the  o
 -wave. The incoming wave 


e
 -wave. For example, consider a crystal cube whose edges 

 advances in air and its endpoint  B
  travels to  Q
  in a time 

correspond to the  x
 -,  y
 -, and  z
 -axes, with  x
  and  y
  horizontal, 

∆ t 
 =  BQ
 > c
 . This is the same time it takes from the circular 

and  z
  vertical, such that the crystal’s left vertical face is the 


o
 -wavelet, emitted at  A
 , to advance in the crystal to  C
 , at a 


xz-
 plane. Now suppose that the crystal’s optic axis is vertical 

speed  v
 # =  c
 > no
 . Accordingly, construct a circular wavelet of 

in the  z
 -direction, and light propagates in the  y
 -direction. The 

radius   AC 
 =  v
 #∆ t 
 =  v
 #( BQ
 > c
 ) =  BQ
 > no
  centered at  A
 . Now electric field of the incident light wave can be thought of as 

draw a line from  Q
  tangent to that  o
 -wavelet. As the incoming 

having two orthogonal components, one oscillating horizon-

wave sweeps across the interface, all the scattered circular 

tally and one vertically. The horizontal field is everywhere 


o
 -wavelets that are successively generated will be tangent to 

perpendicular to the vertically optic axis. This is the ordinary 

that same line, which corresponds to the  o
 -wavefront. The line 

wave and, as ever, it obeys Snell’s Law. By contrast, the verti-

from  A
  to the point of tangency is the  o
 -ray, the direction of 

cal component corresponds to the extraordinary wave and in 

flow of energy, the direction of the Poynting vector S
 $ o
 . It’s 

this particular case it’s everywhere parallel to the optic axis. 

perpendicular to the  o
 -wavefront because that portion of the 

The   e
 -wave “sees” an effectively isotropic medium, propa-

EM disturbance behaves as if the crystal medium were isotro-

gates at the same speed in all directions in the horizontal 

pic. For the same reason the black dots on the  o
 -ray show the 

plane, and obeys Snell’s Law.

up and down oscillatory directions of both E


$ and D
 $, which 

are parallel to each other and perpendicular to the plane of the 

EXAMPLE 8.5

drawing.  As a rule, an 
 
o

 -ray comports with Snell’s Law 



 because it travels at the same speed in every direction as if 


A calcite crystal ( no 
 = 1.658 4,  ne 
 = 1.486 4) is cut and pol-


the medium were isotropic.


ished so that the optic axis is perpendicular to the plane of the 

Next we construct an elliptical  e
 -wavelet centered on  A
  such 

drawing, as shown in the accompanying diagram.

that its semi-major axis, that is, its maximum elongation, is 


AD 
 =  BQ
 > ne
 . For a negative crystal  AD 
 7  AC
  and the  e
 -wavelet Air

Ray-1

is tangent to the  o
 -wavelet on the optic axis. Now draw a line 

u1

from  Q
  tangent to that  e
 -wavelet. This line corresponds to the 

Ray-2

u2

40.0°

Calcite

(a) Which ray is the ordinary one and which is the extraordinary 


B


one? Explain your answer. (b) Which of the two will have its 

electric field perpendicular to the optic axis? (c) Determine the 

angle between the two refracted rays.

Air


A



Q


SOLUTION

Crystal


C



(a)
  Because of the way the crystal is cut, one of the field com-

Optic axis

ponents will everywhere be parallel to the optic axes while the 


D


other will everwhere be perpendicular to it. Each will “see” an 

isotropic medium. Hence Snell’s Law applies to both waves and 


S



S



o


determines both angles of refraction. Since the larger the index 


ee
 -ray  o
 -ray

is, the smaller will be u t
 , it follows that because  no 
 7  ne
  it must 

be that u o 
 6 u e
  and hence u o 
 = u2 and u e 
 = u1. Therefore ray-1 


Figure 8.31
     A plane wave incident on a negative uniaxial crystal.

is the extraordinary ray, and ray-2 is the ordinary ray. (b)
  The 
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ordinary ray has its electric field everywhere perpendicular to 

the optic axis. Thus the field must be in the plane of the draw-

ing perpendicular to ray-2. (c)
  From Snell’s Law, which here 

applies to both rays,

Optic axis

68°

68°

1.00 sin 40.0°

 sin u1 =  sin u e 
 =

1.486 4

sin u1 = 0.432 4

and

u1 = u e 
 = 25.62°

whereas

1.00 sin 40.0°

 sin u2 =  sin uo =

1.658 4


o
 -ray

sin u2 = 0.387 6

and

68°


e
 -ray

u2 = u o 
 = 22.80°

Therefore

u1 - u2 = u e 
 - u o 
 = 2.82°


8.4.3 Birefringent Polarizers


It will now be an easy matter, at least conceptually, to make 

some sort of linear birefringent polarizer. Any number of 

schemes for separating the  o
 - and  e
 -waves have been employed, 

all of them relying on the fact that  ne 
 Z  no
 .





The most renowned birefringent polarizer was introduced in 

1828 by the Scottish physicist William Nicol (1768–1851). The 


Nicol prism
  is now mainly of historical interest, having long 

been superseded by other, more effective polarizers. Putting it 

rather succinctly, the device is made by first grinding and pol-

ishing the ends (from 71° to 68°; see Fig. 8.23) of a suitably 

long, narrow calcite rhombohedron; after cutting the rhomb 

 diagonally, the two pieces are polished and cemented back 

 together with Canada balsam (Fig. 8.32). The balsam cement is 

transparent and has an index of 1.55 almost midway between  ne 


and  n



Figure 8.32
     The Nicol prism. The little flat on the blunt corner locates 


o
 . The incident beam enters the “prism.” The  o
 - and  e
 -rays 

are refracted; they separate and strike the balsam layer. The 

the optic axis. (E.H.)

critical angle at the calcite–balsam interface for the  o
 -ray is 

about 69° (Problem 8.37). The  o
 -ray (entering within a narrow 

the optic axis. The two rays traverse the first calcite section with-

cone of roughly 28°) will be totally internally reflected and 

out any deviation. (We’ll come back to this point later on when 

thereafter absorbed by a layer of black paint on the sides of the 

we talk about retarders in Section 8.7.1.) If the angle-of-incidence 

rhomb. The  e
 -ray emerges laterally displaced but otherwise 

on the calcite–air interface is u, one need only arrange things so 

 essentially unscathed, at least in the optical region of the spec-

that  ne 
 6 1>sin u 6  no 
 in order for the  o
 -ray, and not the  e
 -ray, 

trum. (Canada balsam absorbs in the ultraviolet.)

to be totally internally reflected. The transmitted light is 100% 

The  Glan–Foucault polarizer
  (Fig. 8.33a) is constructed of 

linearly polarized, but the reflected beam isn’t.

nothing other than calcite, which is transparent from roughly 

If the two prisms are now cemented together (glycerine or 

5000 nm in the infrared to about 230 nm in the ultraviolet. It 

mineral oil is used in the ultraviolet) and the interface angle is 

therefore can be used over a broad spectral range. The incoming 

changed appropriately, the device is known as a  Glan
 –  Thompson
  

ray strikes the surface normally, and E


$ can be resolved into com-


polarizer
 . Its field of view is roughly 30°, in comparison to 

ponents that are either completely parallel or perpendicular to 

about  10° for the Glan–Foucault, or  Glan
 – Air
 , as it is often 
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(a)

(b)

Optic axis

Absorbing paint

Mostly  o
 -ray

or glass plate

38.5°


e
 -ray


e
 -ray

Calcite

Mostly


o
 -ray

Optic axis

Calcite


v
 ∣∣


v
 ⊥


Figure 8.33
   ( a
 ) The Glan–Foucault prism. 

( b
 ) The Glan–Taylor prism. (E.H.)

called. The latter, however, has the advantage of being able to 

Most of the polarizing prisms are now being produced using 

handle the considerably higher power levels often encountered 

the new birefrigent crystals alpha-barium borate (a-BBO) and 

with lasers. For example, whereas the maximum irradiance for 

yttrium orthovanadate (YVO4). These crystals can provide a  

a Glan–Thompson could be about 1 W>cm2 (continuous wave 

tenfold increase in extinction ratio over that for quartz or calcite.

as opposed to pulsed), a typical Glan–Air might have an upper 

limit of 100 W>cm2  (continuous wave). The difference is due 

to deterioration of the interface cement (and the absorbing 

Optic

paint, if it’s used). The  Glan–Taylor  
 prism (Fig. 8.33b) has 

axis

 better transmission than the Glan-Foucault, and therefore the 


e
 -ray

 reflected light is more highly polarized. Accordingly, it can be 

used as a polarizing beamsplitter.

The  Wollaston
  prism is a polarizing beamsplitter because it 


o
 -ray

passes both orthogonally polarized components. It can be made 

of calcite or quartz in the form indicated in Fig. 8.34. The two 

component rays separate at the diagonal interface. There, the 


e
 -ray becomes an  o
 -ray, changing its index accordingly. In 

 calcite   ne 
 6  no
 , and the emerging  o
 -ray is bent toward the 

 normal. Similarly, the  o
 -ray, whose field is initially perpendicu-

Optic

lar to the optic axis, becomes an  e
 -ray in the right-hand section. 

axis

This time, in calcite the  e
 -ray is bent away from the normal 

to  the interface (see Problem 8.38). The deviation angle be-

tween the two emerging beams is determined by the prism’s 

wedge angle, u. Prisms providing deviations ranging from 


v


Calcite

∣∣


v
 ⊥

about 2° to roughly 45° are available commercially. They can be 

u

purchased cemented (e.g., with castor oil or glycerine) or not 

cemented at all (i.e., optically contacted), depending on the 

 frequency and power  requirements.


Figure 8.34
     The Wollaston prism.
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8.5 Scattering and Polarization


Sunlight streaming into the atmosphere from one direction is 

scattered in all directions by the air molecules (see Section 4.2). 

Without an atmosphere, the daytime sky would be as black as 

the void of space, a point well made in the Apollo lunar photo-

graphs. You would then see only light that shone directly at you. 

With an atmosphere, the red end of the spectrum is, for the most 

part, undeviated, whereas the blue or high-frequency end is sub-

stantially scattered. This high-frequency scattered light reaches 

the observer from many directions, making the entire sky ap-

pear bright and blue (Fig. 8.35).

The smoke rising from the end of a lighted cigarette is made 

up of particles that are smaller than the wavelength of light, 

making it appear blue when seen against a dark background. In 

contrast, exhaled smoke contains relatively large water droplets 

and appears white. Each droplet is larger than the constituent 

wavelengths of light and thus contains so many oscillators that 

it is able to sustain the ordinary processes of reflection and 

A half-Earth hanging in the black Moon sky. (NASA)

 refraction. These effects are not preferential to any one frequency 

component in the incident white light. 

The light reflected and refracted several times by a droplet 

and then finally returned to the observer is therefore also white. 

Moon repeatedly appeared green or blue, and sunrises and sun-

This accounts for the whiteness of small grains of salt and 

sets were abnormally colored.

 sugar, fog, clouds, paper, powders, ground glass, and, more 

ominously, the typical pallid, polluted city sky.

Particles that are approximately the size of a wavelength 


8.5.1 Polarization by Scattering


 (remember that atoms are roughly a fraction of a nanometer 

across) scatter light in a very distinctive way. A large distribu-

Imagine a linearly polarized plane wave incident on an air 

tion of such equally sized particles can give rise to a whole 

 molecule, as pictured in Fig. 8.36. The orientation of the  electric 

range of transmitted colors. In 1883 the volcanic island Kraka-

field of the scattered radiation (i.e., E


$ s
 ) follows the dipole pat-

toa, located in the Sunda Strait west of Java, blew apart in a 

tern such that E


$ s
 , the Poynting vector S
 $, and the oscillating 

fantastic conflagration. Great quantities of fine volcanic dust 

 dipole are all coplanar (Fig. 3.37). The vibrations induced in the 

were spewed high into the atmosphere and drifted over vast 

atom are parallel to the E


$-field of the incoming lightwave and 

 regions of the Earth. For a few years afterward the Sun and 

so are perpendicular to the propagation direction. Observe once 

again that the dipole does not radiate in the direction of its axis. 

Now if the incident wave is unpolarized, it can be represented 

by two orthogonal, incoherent 𝒫-states, in which case the scat-

tered light (Fig. 8.37) is equivalent to a superposition of the 

conditions shown in Fig. 8.36,  a
  and  b
 . Evidently, the scattered 

light in the forward direction is completely unpolarized; off that 

axis it is partially polarized, becoming increasingly more polar-

ized as the angle increases. When the direction of observation is 

normal to the primary beam, the light is completely linearly 

 polarized.

You can easily verify these conclusions with a piece of 

 Polaroid. Locate the Sun and then examine a region of the sky 

at roughly 90° to the solar rays. That portion of the sky will be 

partially polarized normal to the rays (see photo). It’s not 

 completely polarized mainly because of molecular  anisotropies, 

the presence of large particles in the air, and the depolarizing 

effects of multiple scattering. The latter condition can be 

 illustrated by placing a piece of waxed paper between crossed 


Figure 8.35
     Scattering of skylight.

Polaroids (see photo). Because the light undergoes a good deal 
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(a)


E



E



E
 s



E



s



S



S


(b)


Figure 8.37
     Scattering of unpolarized light by a molecule.


E



E
 s



S



Figure 8.36
     Scattering of polarized light by a molecule.

A pair of crossed polarizers. The upper polaroid is noticeably darker than the 

lower one, indicating the partial polarization of sky light. (E.H.)

of scattering and multiple reflections within the waxed paper, a 

given oscillator may “see” the superposition of many  essentially 

unrelated E


$-fields. The resulting emission is almost completely 

depolarized.

As a final experiment, put a few drops of milk in a glass of 

water and illuminate it (perpendicular to its axis) using a bright 

flashlight. The solution will appear bluish white in scattered 

light and orange in direct light, indicating that the operative 

mechanism is Rayleigh Scattering. The scattered light will also 

be partially polarized.

Using very much the same ideas, Charles Glover Barkla 

(1877–1944) in 1906 established the transverse wave nature of 

X-ray radiation by showing that it could be polarized in certain 

directions as a result of scattering off matter.

A piece of waxed paper between crossed polarizers. (E.H.)
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Fig. 8.38 b
 . Observe that a rather interesting thing is happen-


8.6 Polarization by Reflection


ing to the reflected wave. Its flux density is now relatively 

low because the reflected ray direction makes a small angle u 

One of the most common sources of polarized light is the ubiq-

with the dipole axis. If we could arrange things so that u

uitous process of reflection from dielectric media. The glare 

= 0, 

or equivalently u

spread across a window pane, a sheet of paper, or a balding 


r 
 + u t 
 = 90°, the reflected wave would 

 vanish   entirely.   Under those circumstances
 ,  for an incoming 


head, the sheen on the surface of a telephone, a billiard ball, or 


 unpolarized
    wave made up of two incoherent orthogonal
  

a book jacket are all generally partially polarized.

𝒫- states
 ,  only the component polarized normal to the
    incident
  

The effect was first studied by Étienne Malus in 1808. The 


plane and therefore parallel to the surface will be reflected
 . 

Paris Academy had offered a prize for a mathematical theory 

The particular angle-of-incidence for which this situation 

of double refraction, and Malus undertook a study of the 

 occurs is designated by u

 problem. He was standing at the window of his house in the 


p
  and referred to as the polarization 



angle
  or Brewster’s angle
 , whereupon u

Rue d’Enfer one evening, examining a calcite crystal. The Sun 


p 
 + u t 
 = 90°. Hence, 

from Snell’s Law

was setting, and its image reflected toward him from the 

 windows of the Luxembourg Palace not far away. He held up 


ni
  sin u p 
 =  nt
  sin u t


the crystal and looked through it at the Sun’s reflection. To his 

 astonishment, he saw one of the double images disappear as he 

and the fact that u t 
 = 90° - u p
 , it follows that

rotated the calcite. After the Sun had set, he continued to verify 


ni
  sin u p 
 =  nt
  cos u p


his  observations into the night, using candlelight reflected 

from the surfaces of water and glass.* The significance of 

and 

tan u p 
 =  nt
 > ni


 (8.29)

 birefringence and the  actual nature of polarized light were first 

becoming clear. At that time no satisfactory explanation of 

This is known as Brewster’s Law
  
 after the man who discov-

 polarization existed within the context of the wave theory. 

ered it empirically, Sir David Brewster (1781–1868), professor 

 During the next 13 years the work of many people, principally 

of physics at St. Andrews University and, of course, inventor of 

Thomas Young and Augustin Fresnel, finally led to the 

the kaleidoscope.

 representation of light as some sort of transverse vibration. 

When the incident beam is in air  n


(Keep in mind that all this predates the electromagnetic theory 


i 
 = 1, and if the transmit-

ting medium is glass, in which case  n


of light by roughly 40 years.)


t 
 ≈ 1.5, the polarization 

angle is ≈ 56°. Similarly, if an unpolarized beam strikes the 

The electron-oscillator model provides a remarkably sim-

surface of a pond ( n


ple picture of what happens when light is polarized on reflec-


t 
 ≈ 1.33  
 for  H2O) at an angle of 53°, the 

reflected beam will be completely polarized with its E


tion. Unfortunately, it’s not a complete description, since it 

$-field 


perpendicular to the plane-of-incidence or, if you like, parallel 

does not account for the behavior of magnetic nonconducting 

to the water’s surface. This suggests a rather handy way to 

 materials.** Nonetheless, consider an incoming plane wave 

 locate the transmission axis of an unmarked polarizer; one just 

linearly  polarized so that its E


$-field is perpendicular to the  needs a piece of glass or a pond.

plane of incidence (Fig. 8.38). The wave is refracted at the 

The problem immediately encountered in utilizing this 

interface, entering the medium at some transmission angle u t
 . 

 phenomenon to construct an effective polarizer lies in the fact 

Its electric field drives the bound electrons, in this case nor-

that the reflected beam, although completely polarized, is weak, 

mal to the plane-of-incidence, and they in turn reradiate. A 

and the transmitted beam, although strong, is only partially 

portion of that reemitted energy  appears in the form of a re-

 polarized. One scheme, illustrated in Fig. 8.39, is often referred 

flected wave. It should be clear then from the geometry and 

to as a  
pile-of-plates polarizer

 . It was invented by Dominique 

the dipole radiation pattern that both the reflected and re-

F. J. Arago in 1812. Devices of this kind can be fabricated with 

fracted waves must also be in 𝒫-states normal to the incident 

glass plates in the visible, silver chloride plates in the infrared, 

plane.† In contradistinction, if the incoming E


$-field is in the 

and quartz or Vycor in the ultraviolet. It’s an easy matter to 

incident plane, the electron-oscillators near the surface will 

 construct a crude arrangement of this sort with a dozen or so 

vibrate under the influence of the refracted wave, as shown in 

microscope slides. (The beautiful colors that may appear when 

the slides are in contact are discussed in the next chapter.)

The beamsplitter cube uses the same idea to create two 

*Try it with a candle flame and a piece of glass. Hold the glass at u p 
 ≈ 56° for 





orthogonal linearly polarized beams that are conveniently 

the most pronounced effect. At near glancing incidence both of the images will be 

 separated  by  90° (Fig. 8.40). The diagonal face of one of the 

bright, and neither will vanish as you rotate the crystal—Malus apparently lucked 

out at a good angle to the palace window.

†The angle of reflection is determined by the scattering array, as discussed in 

**W. T. Doyle, “Scattering approach to Fresnel’s Equations and Brewster’s Law,” 

Section 10.2.7. The scattered wavelets in general combine constructively in only 


Am. J. Phys
 . 53
 , 463 (1985).

one direction, yielding a reflected ray at an angle equal to that of the incident ray.
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(a)

(c)
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Figure 8.38    
 ( a
 ) A wave reflecting and refracting at an interface. ( b
 ) Electron-oscillators and Brewster’s Law. ( c
 ) The dipole radiation pattern. ( d
 ) The polarization of light that occurs on reflection from a dielectric, such as glass, water, or plastic. At u p
 , the reflected 

beam is a 𝒫-state  perpendicular to the plane-of-incidence. The transmitted beam is strong 

in 𝒫-state light parallel to the plane-of-incidence and weak in 𝒫-state light  perpendicular 

to the plane-of-incidence—it’s partially polarized.

(a)

(b)

Light reflecting off a puddle is partially polarized. 

( a
 ) When viewed through a Polaroid filter whose 

transmission axis is parallel to the ground, the 

glare is passed and visible. (Martin Seymour) ( b
 ) When 

the Polaroid’s transmission axis is perpendicular to  

the water’s surface, most of the glare vanishes. 

(Martin Seymour)
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Squaring the appropriate Fresnel Equations yields

tan2 (u






R



i 
 - u t
 ) (8.30)

i = tan2 (u i 
 + u t
 )

sin2 (u

u

and 


R



i 
 - u t
 )


p


u p


# =

 (8.31)

sin2 (u i 
 + u t
 )

Whereas   R
 #   
 can never be zero,  R   
 is indeed zero when the 

i

 denominator is infinite, that is, when u i 
 + u t 
 = 90°. The reflec-

tance, for linear light with E


$ parallel to the plane-of-incidence, 

thereupon vanishes;  E



Figure 8.39
     The pile-of-plates polarizer.


r
 i = 0   
 and the beam is completely 

 transmitted. This is the essence of Brewster’s Law.

If the incoming light is unpolarized, we can represent it by 

two now familiar orthogonal, incoherent, equal-amplitude 





𝒫-states. Incidentally, the fact that they are equal in amplitude 

means that the amount of energy in one of these two polariza-

tion states is the same as that in the other (i.e.,  Ii
 i =  Ii
 # =  Ii
 >2), 

which is quite reasonable. Thus


Ir



I



I


i =  Ir
 i  i
 >2 Ii
 i =  R
 i  i
 >2

and in the same way  Ir
 # =  R
 # Ii
 >2. The reflectance in natural 

light,  R 
 =  Ir
 > Ii
 , is therefore given by


I



 



R 
 =  r
 i +  Ir
 # = 1


Figure 8.40
     A polarizing cube contains a mutilayer dielectric thin film 


I


2 ( R
 i +  R
 #) (8.32)


i


structure on its diagonal face. Reflection from that structure polarizes the 

Figure 8.41 is a plot of Eqs. (8.30), (8.31), and (8.32) for the par-

incident light, much as would a pile-of-plates.

ticular case when  ni 
 = 1  
 and  nt 
 = 1.5. The middle curve, which 

two prisms is coated with multiple layers of different transpar-

corresponds to incident natural light, shows that only about 7.5% 

ent dielectric films. Because there’s little or no absorption, the 

of the incoming light is reflected when u i 
 = u p
 . The transmitted 

device is well suited for laserbeam applications in which you 

light is then evidently partially polarized. When u i 
 Z u p
  both the 

would want a high damage threshold and low transmitted 

transmitted and reflected waves are partially polarized.

 wavefront  distortion. 

1.0

0.9


8.6.1 An Application of the Fresnel Equations


0.8

In Section 4.6.2 we obtained a set of formulas known as the 

Fresnel Equations, which describe the effects of an incoming 

0.7

electromagnetic plane wave falling on the interface between two 

0.6


nt
  = 1.5

different dielectric media. These equations relate the reflected 

and transmitted field amplitudes to the incident amplitude by 

0.5

way of the angles-of-incidence u i
  and transmission u t
 . For linear 

Reflectance 0.4

light having its E


$-field parallel to the plane-of- incidence, we de-

fined the  amplitude
   reflection coefficient 
 as  r


, that 

0.3

  i

K [ E
 0 r
 > E
 0 i
 ]i

is, the ratio of the reflected to incident electric-field  amplitudes
 . 

Similarly, when the electric field is normal to the incident plane, 

0.2


R 
 ⊥

)2

we have  r



R 
 ⊥

 # K [ E
 0 r
 > E
 0 i
 ]#. The corresponding irradiance ratio 

0.1

(the incident and reflected beams have the same cross-sectional 

0.04


R 
 ∣

( R 
 ∣ + 

area) is known as the  reflectance
 , and since irradiance is propor-

0°

20°

40ů 60°


p


80°

tional to the square of the  amplitude of the field,

u i



R


2

2   
 and   R


2

i =  r 
 i = [ E
 0 r
 > E
 0 i
 ]i

# =  r
 # = [ E
 0 r
 > E
 0 i
 ]2#


Figure 8.41
     Reflectance versus incident angle.
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EXAMPLE 8.6

Note that  V
  is actually a property of the beam, which may be 

partially or even completely polarized before encountering any 

Suppose that 200 W>m2 of natural light is incident on a block 

sort of polarizer.

of glass at its polarization angle. Further, imagine that the  total 

transmittance across the air–glass interface is then 92.5%. 

 Determine the amount of light that is reflected in a 𝒫-state 

 normal to the plane-of-incidence, at that surface.


8.7 Retarders


SOLUTION 


We now consider a class of optical elements known as  retarders
 , 

We are given that 

which serve to change the polarization of an  incident wave. In 


T 
 = 1

principle, the operation of a retarder is quite simple. One of the 

2 ( T
 i +  T
 #) = 92.5%

two constituent coherent 𝒫-states is  somehow caused to have 

At the polarization angle all the light parallel to the incident 

its phase lag behind that of the other by a predetermined amount. 

plane is transmitted, i.e.,  T
 i = 1. Hence

Upon emerging from the retarder, the relative phase of the two 


T 
 = 1

components is different than it was initially, and thus the polar-

2(1 +  T
 # ) = 0.925

ization state is different as well. Once we have developed the 

12 T
 # = 0.925 - 0.50 = 0.425

concept of the retarder, it will be possible to convert any given 

polarization state into any other and in so doing create circular 

and   T
 # = 0.850 or 85.0%. This means that 85.0% of the  and elliptic polarizers as well.





incoming light perpendicular to the plane-of-incidence is 

The term “retarder” is something of a misnomer, since such 

 transmitted. From Eq. (4.66)

a device can just as well be thought of as an “advancer.” What 


R
 # +  T
 # = 1

it actually is, is a “relative phase shifter”; it advances or  retards 

the phase of one of the two orthogonal electric fields by some 

and   R
 # = 1 -  T
 # = 0.150. In other words, 15.0% of the in-

desired amount. Recall Fig. 8.9, which displayed a sequence 

coming light polarized perpendicular to the plane-of-incidence 

of polarization states and their relative phases. A more useful 

is reflected. None of the light parallel to the plane-of-incidence 

version of that diagram is Fig. 8.42, which makes it clear that 

is reflected. Hence, since 

the pattern is endless; the sequence simply repeats itself. As 

shown,  E



R 
 = 1


x
  leads  Ey
  by the indicated positive amount, or lags 

2 ( R
 i +  R
 #) = 12 (0 + 0.150)


Ey
  by the negative amount. The phase shifter will  always have 

the total reflectance is 7.50%. Therefore, the reflected irradi-

two specified perpendicular axes, the  fast 
 and the  slow
 . If its 

ance is (0.075)(200 W>m2) = 15.0 W>m2.

fast axis is in the  x
 -direction (horizontal) it  advances  Ex
  by a 

fixed amount, leaving  Ey
  unaffected. If its fast axis is in the 

It is often desirable to make use of the concept of the degree 



of polarization
   V
 , defined as

Left

–p

Right


Ip


p






V 
 =

 (8.33)


Ip 
 +  In


–5p4

–3p4

3p4

5p4

in which  Ip
  and  In
  are the constituent flux densities of polarized 

+

+

and “unpolarized” or natural light. For example, if  Ip 
 = 4 W>m2

and   In 
 = 6 W>m2,  then   V 
 = 40% and the beam is partially 





polarized. With “unpolarized” light  I


+∆e


p 
 = 0 and obviously 

–3p2

3p2


V 
 = 0, whereas at the opposite extreme, if  I


+

+

+


n 
 = 0,  V 
 = 1 and the 

p2

–p2

light is completely polarized; thus 0 …  V 
 … 1. One frequently 

–∆e

deals with partially polarized, linear, quasimonochromatic 

light. In that case, if we rotate an analyzer in the beam, there 

+

+

will be an orientation at which the transmitted irradiance is 

p4

7p4

maximum ( I
 max), and perpendicular to this, a direction where it 

–7p4

–p4

is minimum ( I
 min). Clearly  Ip 
 =  I
 max -  I
 min, and so

2p

0


I



 



V 
 = max -  I
 min

 (8.34)


I



Figure 8.42
     The resulting polarization states when  E


max +  I
 min


x
  leads or lags  Ey
  by 

the indicated positive or negative amount e.

M08_HECH7226_05_SE_C08_330-389.indd   358

10/11/15   10:03 AM



 



8.7
   Retarders  359



y
 -direction (vertical) it advances  Ey
  by a specified amount, 

be coincident, and a single undeflected plane wave will pass 

leaving  Ex
  unaffected. 

through the crystal; there are no relative phase shifts and no 

To go clockwise from any one polarization state in Fig. 8.42 

double images.*

to the next, we introduce a phase shift of +p>4. To travel coun-

Now suppose that the direction of the optic axis is ar-

terclockwise, one position at a time, we introduce a shift of 

ranged to be parallel to the front and back surfaces, as shown 

-p>4, and eight such shifts (+ or -2p) take the light back to 

in Fig. 8.44. If the E


$-field of an incident monochromatic 

where it started. For example, when linear light in the first and 

plane wave has components parallel and perpendicular to the 

third quadrant ( Ex
  leads  Ey
  by 0) is sent through a retarder 

optic axis, two separate plane waves will propagate through 

whose fast axis is horizontal it will shift the light clockwise in 

the crystal. Since  v
 i 7  v
 #,  no 
 7  ne
 , and the  e
 -wave will move the diagram. With an introduced phase difference of p>4, or 

across the specimen more rapidly than the  o
 -wave. After tra-

p>2, or p, . . . the light will emerge left-handed  elliptical ( Ex
  

versing a plate of thickness  d
 , the resultant electromagnetic 

leads  Ey
  by p>4), left-circular ( Ex
  leads  Ey
  by p>2), linear in the 

wave is the superposition of the  e
 - and  o
 -waves, which now 

second and fourth quadrants ( Ex
  leads  Ey
  by p), and so forth. 

have a relative phase  difference of ∆w. Keep in mind that 

Alternatively, if right-circular light ( Ex
  leads  Ey
  by 3p>2) is 

these are harmonic waves of the same frequency whose  

passed through a retarder whose fast axis is vertical, one that 


E


$-fields are orthogonal. The relative optical path length 

introduces a shift of -p, left-circular light [ Ex
  leads  Ey
  by 

 difference is given by

(3p>2) - p = p>2] will emerge.





Λ =  d
 (0  no 
 -  ne 
 0) (8.35)

and since ∆w =  k



8.7.1 Wave Plates and Rhombs


0Λ, the phase difference, in radians, is

Recall that a plane monochromatic wave incident on a uniaxial 

2p

crystal, such as calcite, is generally divided in two, emerging as 


 


∆w =

  d
 (0  no 
 -  ne 
 0)  (8.36)

l

an ordinary and an extraordinary beam. In contrast, we can cut 

0

and polish a calcite crystal so that its optic axis will be normal 

to both the front and back surfaces (Fig. 8.43). A normally 

where l0, as always, is the wavelength in vacuum. (The form 

incident plane wave can only have its E


$-field perpendicular to 

containing the absolute value of the index difference is the most 

the optic axis. The  E
 -field component in the plane of the dia-

general statement.) The state of polarization of the emergent 

gram does not remain everywhere perpendicular to the optic 

light evidently depends on the amplitudes of the incoming 

axis as it, the extraordinary wave, spreads out in all directions 

 orthogonal field components and of course on ∆w.

into the crystal. If therefore elongates into an ellipsoid. The 


E
 -field component perpendicular to the diagram remains 

 everywhere perpendicular as it spreads out as the spherical 

ordinary wave. The secondary spherical and ellipsoidal  wavelets 


A


will be tangent to each other in the direction of the optic axis. 


o
 -wave

The  o
 - and  e
 -waves, which are envelopes of these wavelets, will 


e
 -wave


A



v
 ∣∣


B



v
 ⊥


B



B


Optic

Optic


A


axis

axis


Figure 8.44
     A calcite plate cut parallel to the optic axis.

Optic

axis


A 
 Optic axis  B


*If you have a calcite rhomb, find the blunt corner and orient the crystal until you 

are looking along the direction of the optic axis through one of the faces. The two 


Figure 8.43
     A calcite plate cut perpendicular to the optic axis.

images will converge until they completely overlap.
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EXAMPLE 8.7

as  the complementary color to that which was extinguished. 

If,  instead, the analyzer is positioned with its transmission axis 

A plate of calcite, as shown in the accompanying figure, has its 

 parallel to the transmission axis of the first polarizer, with the 

optic axis perpendicular to the plane of the diagram (i.e., in the 

 full-wave plate between them, the system acts as a filter. Stacking 


z
 -direction).

several such arrangements produces a narrow-wavelength filter. It 

is a common error to assume that a full-wave plate behaves as if it 

were isotropic at all frequencies; it obviously doesn’t.


y


Recall that in calcite, the wave whose E


$-field vibrations are 

parallel to the optic axis travels fastest, that is,  v
 i 7  v
 #. The 


x


direction of the optic axis in a  negative
  uniaxial retarder is 

therefore often referred to as the fast axis
 , and the direction 

perpendicular to it is the slow axis
 . For  positive
  uniaxial 

 crystals, such as quartz, these principal axes are reversed, with 

the slow axis corresponding to the optic axis.


d


The full-wave retarder is often used to eliminate inadvertent 

changes in the polarization state of light passing through an 

Explain what’s happening, and write an expression for the 

 optical system. For example, linear light reflected from a metal-

phase difference introduced as the light traverses the crystal.

surfaced mirror will have phase shifts introduced that cause it to 

SOLUTION 

emerge as elliptical light. This can be corrected by passing the 

beam through a full-wave plate that has been tilted slightly 


E


$ y
  corresponds to the  o
 -wave, since it is everywhere perpen-

about either its fast or slow axis.

dicular to the optic axis. As usual, the  o
 -wavelets are spherical 

because they “see” an isotropic medium. On the other hand, 


E



The Half-Wave Plate


$ z
  corresponds to the  e
 -wave. It is everywhere parallel to the 

optic axis and therefore also expands as a spherical wavelet. In 

A retardation plate that introduces a relative phase difference of 

calcite  v
 i 7  v
 # and the  e
 -wave advances more swiftly than the 

p 
 radians, or 180°, between the  o
 - and  e
 -waves is known as a 


o
 -wave. Equivalently,  no 
 7  ne
  and the optical path length differ-


half-wave plate
  or half-wave retarder
 . Suppose that the plane-

ence across the plate will be  d
 ( no 
 -  ne
 ). Consequently,

of-vibration of an incoming beam of linear light makes some 

 2p

arbitrary angle u with the fast axis, as shown in Fig. 8.45. In a 

∆w =

  d
 ( no 
 -  ne
 )

l0

Optic

matching Eq. (8.36). Note that it is only when the E


$-field of 

axis

the  e
 -wave has components both parallel and perpendicular to 

u

the optic axis that it will propagate as an ellipsoid.


The Full-Wave Plate


If ∆w is equal to 2p, the  
relative retardation

  is one wavelength; 

the  e
 - and  o
 -waves are back in-phase, and there is no observable 

effect on the polarization of the incident monochromatic beam. 


e
 -wave

When the  relative retardation
   ∆w, which is also known as the 


o
 -wave

 retardance
 , is 360° the device is called a full-wave plate 
 or 



 full-wave  retarder
 . (This does not mean that  d 
 = l.) In general, 

the quantity 0  no 
 -  ne 
 0 in Eq. (8.36) changes little over the optical 

range, so that ∆w varies effectively as 1>l0. Evidently, a full-wave 

plate can function only in the manner discussed for a  particular 

wavelength, and retarders of this sort are thus said to be  chromatic
 . 

If such a device is placed at some arbitrary orientation between 

crossed linear polarizers, all the light entering it (in this case let it 

u

be white light) will be linear. Only the one wavelength that  satisfies 

Eq. (8.36) with ∆


E


w = 2p will pass through the  retarder  unaffected, 

thereafter to be absorbed in the analyzer. All other wavelengths 

will undergo some retardance and will accordingly emerge from 

the wave plate as various forms of  elliptical light. Some portion 


Figure 8.45
     A half-wave plate showing how a net phase shift accumulates 

of this light will proceed through the analyzer, finally emerging 

with the retarder.
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half-wave plate is about 60 microns. Crystalline quartz, single 

crystal magnesium fluoride (for the IR range from 3000 nm to 

Fast

u

about 6000 nm), and cadmium sulfide (for the IR range from 

axis

6000 nm to about 12,000 nm) are also widely used for wave 

u

plates.

Retarders are also made from sheets of polyvinyl alcohol 

that have been stretched so as to align their long-chain organic 

Half-wave

molecules. Because of the evident anisotropy, electrons in the 

retarder

material do not experience the same binding forces along and 

perpendicular to the direction of these molecules. Substances of 


Figure 8.46
     A half-wave plate rotates light initially linearly polarized at 

this sort are therefore permanently birefringent, even though 

an angle u through a total angle of 2u. Here light was incident oscillating 

they are not crystalline.

in the first and third quadrants, and it emerged oscillating in the second 

A rather nice half-wave plate can be made by just attaching 

and fourth quadrants.

a strip of old-fashioned glossy cellophane tape over the sur-

face of a microscope slide. (Not all varieties work—the best is 

 LePage’s “Transparent Tape.”) The fast axis, that is, the vibra-

negative material the  e
 -wave will have a higher speed (same n) 

tion direction of the faster of the two waves, corresponds to 

and a longer wavelength than the  o
 -wave. When the waves 

the transverse direction across the tape’s width, and the slow 

emerge from the plate, there will be a relative phase shift of 

axis is along its length. During its manufacture, cellophane 

l0>2 (that is, 2p>2 radians), with the effect that E


$ will have  (which is made from regenerated cellulose extracted from cot-

rotated through 2u (Fig. 8.46). In fact, half-wave retarders are 

ton or wood pulp) is formed into sheets, and in the process its 

sometimes called polarization rotators for just that reason. 

molecules become aligned, leaving it birefringent. If you put 

 Going back to Fig. 8.9, it should be evident that a half-wave 

your half-wave plate between crossed linear polarizers, it will 

plate will similarly flip elliptical light. In addition, it will invert 

show no effect when its principal axes coincide with those of 

the handedness of circular or elliptical light, changing right to 

the polarizers. If, however, it is set at 45° with respect to the 

left and vice versa. A half-wave plate shifts the polarization 

polarizer, the E


$-field emerging from the tape will be flipped 

states halfway around in Fig. 8.42.

90° and will be parallel to the transmission axis of the ana-

As the  e
 - and  o
 -waves progress through any retardation plate, 

lyzer. Light will pass through the region covered by the tape as 

their relative phase difference ∆w increases, and the state of po-

if it were a hole cut in the black background of the crossed 

larization of the wave therefore gradually changes from one 

polarizers (see photo). A piece of cellophane wrapping will 

point in the plate to the next. Figure 8.9 can be envisioned as a 

generally also function as a half-wave plate. See if you can 

sampling of a few of these states at one instant in time taken at 

determine the  orientation of each of its principal axes using 

different locations. Evidently, if the thickness of the material is 

the tape retarder and crossed Polaroids. (Notice the fine paral-

such that

lel ridges on the sheet  cellophane.)


 



d
 (0  no 
 -  ne 
 0) = (2 m 
 + 1)l0>2  


(8.37)

where   m 
 = 0, 1, 2, . . . , it will function as a half-wave plate 

(∆w = p, 3p, 5p, etc.).

Although its behavior is simple to visualize, calcite is not 

often used to make retardation plates. It is brittle and difficult 

to handle in thin slices, but more than that, its birefringence, 

the difference between  ne
  and  no
 , is a bit too large for conve-

nience. On the other hand, quartz with its much smaller bire-

fringence is frequently used, but it has no natural cleavage 

planes and must be cut, ground, and polished, making it rather 

expensive. The biaxial crystal mica is used most often. Sev-

eral forms of mica serve the purpose admirably, for example, 

fluorophlogopite, biotite, or muscovite. The most commonly 

occurring variety is the pale brown muscovite. It is very easily 

cleaved into strong, flexible, and exceedingly thin large-area 

sections. Moreover, its two principal axes are almost exactly 

parallel to the cleavage planes. Along those axes the indices 

are about 1.599 and 1.594 for sodium light, and although these 

numbers vary slightly from one sample to the next, their dif-

A hand holding a piece of clear cellophane stuck to a microscope slide 

ference is fairly constant. The minimum thickness of a mica 

between two crossed polaroids. (E.H.)
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The Quarter-Wave Plate


through a rotating analyzer. Keep adding one layer at a time 

until the irradiance stays roughly constant as the analyzer 

The quarter-wave plate
 
 

 is an optical element that introduces a 

turns; at that point you will have circular light and a quarter-

relative phase shift of ∆w = p>2 between the constituent  wave plate. This is easier said than done in white light, but it’s orthogonal   o
 - and  e
 -components of a wave. It follows once 

well worth trying.

again from Fig. 8.9 that a phase shift of 90° will convert linear 

to elliptical light (or circular light if  E
 0 x 
 =  E
 0 y
 ) and vice versa. 

EXAMPLE 8.8

It should be apparent that linear light incident parallel to either 

principal axis will be unaffected by any sort of retardation plate. 

Wave plates are often made from mica because it easily cleaves 

You can’t have a  relative
  phase difference without having two 

into thin sheets. For yellow light of wavelength 589 nm inci-

components. With incident  natural
  light, the two constituent  

dent normally on such a sheet, the two orthogonally oscillating 

𝒫-states are incoherent; that is, their relative phase difference 

lightwave components could encounter indices of 1.599 7 and 

changes randomly and rapidly. The introduction of an  additional 

1.594 1—there can be some variation in these values from one 

constant phase shift by any form of retarder will still result in a 

geological source to another. What is the minimum thickness of 

random phase difference and thus have no  noticeable effect. 

a mica sheet that would serve as a quarter-wave plate?

When linear light at 45° to either principal axis is incident on a 

SOLUTION 

quarter-wave plate, its  o
 - and  e
 -components have equal amplitudes. 

Under these special circumstances, a 90° phase shift  converts the 

For a quarter-wave plate the optical path difference has to be an 

wave into circular light (Fig. 8.47). Similarly, an incoming circular 

odd whole-number multiple of l0>4:

beam will emerge linearly polarized.  
Whenever linear light is con-




OPD 
 =  d
 1 no 
 -  ne
 2 = (4 m 
 + 1)l0>4



verted to either elliptical or circular light by a quarter-wave plate, 





the resulting handedness corresponds to the same direction it 



where  m 
 = 0, 1, 2, . . . . Therefore



would take to rotate the initial linear light into alignment with the 



(4 m 
 + 1)l



slow axis, through the smallest angle

 . A quarter-wave plate shifts 


d 
 =

0

the polarization state one quarter of the way around Fig. 8.42.

1 no 
 -  ne
 24

Quarter-wave plates are also usually made of quartz, mica, 

and with  m 
 = 0

or organic polymeric plastic. In any case, the thickness of the 

birefringent material must satisfy the expression 

589 nm


d 
 = (1.5997 - 1.5941)4

   

  


 



d
 (0  no 
 -  ne 
 0) = (4 m 
 + 1)l0>4 (8.38)

where  m 
 = 0, 1, 2, . . . .

Hence  d 
 = 2.63 * 10-5m, or 26.3 mm.

You can make a crude quarter-wave plate using household 

plastic food wrap, the thin stretchy stuff that comes on rolls. 

Like cellophane, it has ridges running in the long direction, 

Commercial wave plates are generally designated by their 

which coincides with a principal axis. Overlap about a half 

  
linear retardation

 , which might be, for example, 140 nm for a 

dozen layers, being careful to keep the ridges parallel. Position 

quarter-wave plate. This simply means that the device has a 90° 

the plastic at 45° to the axes of a polarizer and examine it 

retardance only for green light of wavelength 560 nm (i.e., 

4 * 140). The linear retardation is usually not given quite that 

precisely;  140 ± 20 nm is more realistic. The retardation of a 

wave plate can be increased or decreased from its specified value 

by tilting it somewhat. If the plate is rotated about its fast axis, the 

Fast

axis

retardation will increase, whereas a rotation about the slow axis 

45°

has the  opposite effect. In this way a wave plate can be tuned to a 

 specific frequency in a region about its nominal value.


Retarders (Wave Plates)—Some General 


Quarter-wave

retarder


Considerations


In addition to birefringent plate retarders there are also variable 


Figure 8.47
     After passing through the retarder E
 $ y
  leads E
 $ x
  by p>4. Thus liquid crystal (see Section 8.12) retarders. These typically can 

(from Fig. 8.9) the quarter-wave plate transforms light initially  linearly 

produce an electrically controlled retardance up to l0>2. An 

polarized at an angle 45° (oscillating in the first and third  quadrants) into 

ordinary plate retarder can be one of three general types: zero-

right-circular light (rotating clockwise looking toward the source). Notice 

order, multiple-order, or compound zero-order. A zero- order 


that the linear light would have to be rotated clockwise to come into 

 alignment with the slow axis (through the smallest angle). Therefore the 


retarder
  has the minimum thickness necessary to produce 

emergent light rotates clockwise.

the required phase difference. For example, consider a quartz 
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quarter-wave plate with a birefringence of only 0.009 2 at 550 

Birefringent polymers have a small birefringence and so can 

nm. Equation (8.36) with ∆w = p>2 tells us that a zero-order 

conveniently be made into zero-order retarders. They have a 

quarter-wave retarder will be only 15 mm thick, and therefore 

wide field-of-view and can be made with large apertures. 

will be rather fragile and difficult to fabricate. It does, however, 

The phasor technique for treating orthogonal waves can be 

have a large angular field-of-view. 

applied to retarders.* We’ll begin with linear light vibrating in 

A multiple-order retarder
  would have a thickness that cor-

the first and third quadrants at an arbitrary angle  
 u  
 above the  x
 -

responded to a whole number of 2p phase shifts plus the desired 

axis, as indicated in Fig. 8.48. The length of the electric field 

∆w, whether that’s 2p, p, or p>2. These devices are easier to 

vector E


$ is its specified amplitude E
 $0. Now suppose this wave 

make and less expensive, but they tend to be very sensitive to 

is passed through a quarter-wave plate, and for the sake of gen-

wavelength, incident angle, and temperature, and have a narrow 

erality, imagine that the retarder’s fast axis is up from the  x
 -axis 

field-of-view.

at, say, 30°. In Fig. 8.48 we draw a reference line corresponding 

By combining two multiple-order retarders whose retar-

to the fast axis, 30° above the  x
 -axis, passing through the origin 

dance difference yields the desired value of ∆w, we arrive at the 

of the  xy
 -coordinate system. This line and its perpendicular 


compound zero-order
  wave plate (see Example 8.9 below). 

form a new  x
 ′ y
 ′ -
 coordinate system. In that frame construct a 

That’s accomplished by aligning the fast axis of one with the 

rectangle using the projections of E


$ onto the fast and slow axes. 

slow axis of the other.  This compensates for temperature varia-

That will produce  E
 0 x
 ′ and  E
 0 y
 ′, the two field amplitudes in the 

tions that tend to cancel, but it, too, has a narrow field-of-view.


x
 ′ y
 ′-system. These amplitudes, along and perpendicular to 

the fast axis, allow us to form a rectangular box into which the 

 resultant polarization state will fit, just as it did in Fig. 8.10. 

EXAMPLE 8.9

Extend the boundaries of the box and draw two circles that have 

Imagine a uniaxial birefringent crystal plate of thickness  d
 1 with 

the amplitudes (i.e., radii)  E
 0 x
 ′  
 and  E
 0 y
 ′. 

its optic axis in the  x
 -direction. It is followed by a similar plate 

of thickness  d
 2 whose optic axis is in the  y
 -direction. The com-

bination is to form a compound zero-order wave plate. Write 

an expression for its retardance and compare it with Eq. (8.36).


y


SOLUTION 

1

0

Let’s follow the same analysis that led to Eq. (8.36). According-

ly, we write expressions for the optical path length encountered 

2


y


7

by both the  E



E



x
 -field component, namely,  OPLx
 , and the  Ey
 -field 


y


SLOW

0

component, namely,  OPLy
 , as the wave travels in the  z
 -direction 

3

passing through both plates. Since  E


7, 7


x
  is parallel to the optic axis 

FAST 6

in the first plate it’s associated with the  e
 -wave. Thus for the 

0, 0


E 
 0


x


6, 6

4

first plate only,  OPL


5


x
 1 =  ned
 1 and  OPLy
 1 =  nod
 1. The  o
 - and 

30°


e
 -waves switch in the second plate, where  OPL


1, 1

u


x
 2 =  nod
 2 and 


x



OPLy
 2 =  ned
 2. Hence for both plates together 

5, 5

2, 2


OPL


4, 4


x 
 =  ned
 1 +  nod
 2

3, 3

and

5

4


x



OPLy 
 =  nod
 1 +  ned
 2

6

3

The optical path length difference, Λ, is then

Λ =  OPL


7


y 
 -  OPLx 
 =  d
 1( no 
 -  ne
 ) +  d
 2( ne 
 -  no
 )

2

and so 

0

2p

1





∆w =

 ( d
 1 -  d
 2)( no 
 -  ne
 ) (8.39)

l0


Figure 8.48
     Left-handed elliptical light titled at the angle of the fast axis 

results when linear light (E
 $) passes through a quarter-wave plate. Here the 





Compared with Eq. (8.36) this expression depends not on the 

fast axis of the retarder is at  +30°.

thickness of the plate, but on the difference in the  thicknesses of 

the two component plates, each of which can now be appreciable.

*For a more complete, well-developed treatment, see K. Iizuka,  Elements of 



Photonics
 , Vol. 1, Wiley-Interscience, 2002.
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Because the fast axis is the  x
 ′-axis, the phasor corresponding 


Figure 8.50
     The Mooney rhomb.

to the smaller circle is E


$

60°


y
 ′ 
 and it starts revolving on the  y
 ′-axis 

at its vertical position-0. Similarly, the phasor E


$ x
 ′  
 in the larger 

circle would have started on the  x
 ′-axis pointing to the right, but 

for the fact that it leads E


$ y
 ′  
 by 90°. Consequently, we advance 


E


$ x
 ′  
 by 90° clockwise, so its position-0 is along the  y
 ′-axis and 

pointing downward. The resultant polarization is left-handed 

 elliptical light tilted at 30°, that is, tilted at the arbitrary angle of 

the fast axis of the retarder.


The Fresnel Rhomb



8.7.2 Compensators and Variable Retarders


We saw in Chapter 4 that the process of total internal reflection 


A  
 compensator
  is an optical device that is capable of im-


introduced a relative phase difference between the two orthogo-


pressing a controllable retardance on a wave.
  Unlike a wave 

nal field components. The components parallel and perpendicu-

plate where ∆w is fixed, the relative phase difference arising 

lar to the plane-of-incidence were shifted in-phase with respect 

from a compensator can be varied continuously. Of the many 

to each other. In glass ( n 
 = 1.51) a shift of 45° accompanies 

different kinds of compensators, we shall consider only two of 

internal reflection at the particular incident angle of 54.6° 

those that are used most widely. The Babinet compensator
 , 

(Fig. 4.52 e
 ). The Fresnel rhomb shown in Fig. 8.49 utilizes this 

depicted in Fig. 8.51, consists of two independent calcite, or 

effect by causing the beam to be internally reflected twice, 

more commonly quartz, wedges whose optic axes are indi-

thereby imparting a 90° relative phase shift to its components. If 

cated by the lines and dots in the figure. A ray passing verti-

the incoming plane wave is linearly polarized at 45° to the 

cally downward through the device at some arbitrary point 

plane-of-incidence, the field components [ Ei
 ]  and [ E


i


i
 ]# will 

will traverse a thickness of  d


initially be equal. After the first reflection, the wave within the 

1 in the upper wedge and  d
 2 in the 

lower one. The relative phase difference imparted to the wave 

glass will be elliptically polarized. After the second reflection, 

by the first crystal is 2p d


it will be circular. Since the retardance is almost independent of 

1( 0  no 
 -  ne 
 0 )>l0, and that of the second 

crystal is 

frequency over a large range, the rhomb is essentially an  achro-


-2p d
 2(0  no 
 -  ne 
 0)>l0. As in the Wollaston prism, 

which this system closely resembles but which has larger angles 


matic
  90° retarder. By combining two rhombs end-to-end, we 

and is much thicker, the  o
 - and  e
 -rays in the upper wedge become 

can produce l0>2 retardation over a broad wavelength band 

the  e
 - and  o
 -rays, respectively, in the bottom wedge.

(≈2000 nm). The Mooney rhomb ( n 
 = 1.65) shown in Fig. 8.50 

The compensator is thin (the wedge angle is typically about 

is similar in principle, although its operating characteristics are 

2.5°), and thus the separation of the rays is negligible. The total 

different in some respects.

phase difference, or retardance, is then

2p





∆w =

 ( d
 1 -  d
 2)(0  no 
 -  ne 
 0) (8.40)

l0

If the compensator is made of calcite, the  e
 -wave leads the  o
 -wave 

in the upper wedge, and therefore if  d
 1 7  d
 2, ∆w corresponds to 

54.6°


d
 1


d
 2


Figure 8.49
     The Fresnel rhomb.


Figure 8.51
     The Babinet compensator.
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the total angle by which the  e
 -component leads the  o
 -component. 


8.8 Circular Polarizers


The converse is true for a quartz compensator; in other words, if 


d
 1 7  d
 2, ∆w  
 is the angle by which the  o
 -wave leads the  e
 -wave. 

Earlier we concluded that linear light whose E


$-field is at 45° 

At the center, where  d
 1 =  d
 2, the effect of one wedge is exactly 

to the principal axes of a quarter-wave plate will emerge from 

canceled by the other, and ∆w = 0 for all wavelengths. The retar-

that plate circularly polarized. Any series combination of an 

dation will vary from point to point over the surface, being con-

 appropriately oriented linear polarizer and a 90° retarder will 

stant in narrow regions running the width of the compensator 

therefore perform as a circular polarizer
 . The two elements 

along which the wedge thicknesses are themselves constant. If 

function completely independently, and whereas one might be 

light enters by way of a slit parallel to one of these regions and if 

birefringent, the other could be of the reflection type. The hand-

we then move either wedge horizontally with a micrometer screw, 

edness of the emergent circular light depends on whether the 

we can get any desired ∆w to emerge.

transmission axis of the linear polarizer is at +45° or -45° to 

When the Babinet is positioned at 45° between crossed 

the fast axis of the retarder. Either circular state, ℒ or ℛ, can be 

 polarizers, a series of parallel, equally spaced, dark  extinction 

generated quite easily. In fact, if the linear polarizer is situated 

fringes will appear across the width of the compensator. These 

between two retarders, one oriented at +45° and the other at  

mark the positions where the device acts as if it was a full-wave 

-45°, the combination will be “ambidextrous.” In short, it will 

plate. In white light the fringes will be colored, with the excep-

yield an ℛ-state for light entering from one side and an ℒ-state 

tion of the black central band (∆w = 0). The retardance of an 

when the input is on the other side.

unknown plate can be found by placing it on the compensator 


CP-HN
  is the commercial designation for a popular one-

and examining the fringe shift it produces. Because the fringes 

piece circular polarizer. It is a laminate of an  HN
  Polaroid and a 

are narrow and difficult to “read” electronically, the Babinet has 

stretched polyvinyl alcohol 90° retarder. The  input side
  of such 

become less popular than it once was. It can be modified to 

an arrangement is evidently the face of the linear polarizer. If 

produce a uniform retardation over its surface by merely rotat-

the beam is incident on the  output side
  (i.e., on the retarder), it 

ing the top wedge 180° about the vertical, so that its thin edge 

will thereafter pass through the  H
 -sheet and can only emerge 

rests on the thin edge of the lower wedge. This configuration 

linearly polarized.

will, however, slightly deviate the beam. 

A circular polarizer can be used as an analyzer to deter-

Another variation of the Babinet, which has the advantage 

mine the handedness of a wave that is already known to be 

of producing a uniform retardance over its surface and no 

circular. To see how this might be done, imagine that we have 

beam deviation, is the Soleil compensator
  shown in Fig. 8.52. 

the four elements labeled  A
 ,  B
 ,  C
 , and  D
  in Fig. 8.53. The first 

Generally made of quartz (although MgF2 and CdS are used 

two,  A
  and  B
 , taken together form a circular polarizer, as do  C
  

in the infrared), it consists of two wedges and one plane-

and   D
 . The precise handedness of these polarizers is unim-

parallel slab whose optic axes are oriented as indicated. The 

portant now, as long as they are both the same, which is tanta-

quantity  d
 1  corresponds to the total thickness of both wedges, 

mount to saying that the fast axes of the retarders are parallel. 

which is  constant for any setting of the positioning microm-

Linear light coming from  A
  receives a 90° retardance from B, 

eter screw.

at which point it is circular. As it passes through  C
 , another 

90° retardance is added on, resulting once more in a linearly 

polarized wave. In effect,  B
  and  C
  together form a half-wave 

plate, which merely flips the linear light from  A
  through a 

spatial angle of 2u, in this case 90°. Since the linear wave from 


C
  is parallel to the transmission axis of  D
 , it passes through it 

and out of the system.

A

B

C

D

45°

45°


d
 1

Linear

polarizer

90°

retarder

90°


d
 2

retarder

Linear

polarizer


Figure 8.52
     The Soleil compensator.


Figure 8.53
     Two linear polarizers and two quarter-wave plates.
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A crumpled piece of 

 Assume for the moment that its polarization state is essentially 

 cellophane placed between 

constant for a duration of the order of the coherence time ∆ tc
  

two crossed Polaroids 

(which, as you recall, corresponds to the temporal extent of the 

shows a rainbow of colors. 

wavetrain, i.e., 

Depending on its thickness 

∆ lc
 > c
 ). A typical source generally consists of a 

and the frequency of the 

large collection of such radiating atoms, which can be envi-

light, the cellophane rotates 

sioned as oscillating with different phases at some dominant 

the  E
 -field by  different 

frequency n . 
 Suppose then that we examine the light coming 

amounts. Rotating either 

from a very small region of the source, such that the emitted 

one of the Polaroids will 

rays arriving at a point of observation are essentially parallel. 

shift the colors to their 

complements. (E.H.)

During a time that is short in comparison with the average co-

herence time, the amplitudes and phases of the wavetrains 

from the individual atoms will be essentially constant. This 

means that if we were to look toward the source in some direc-

tion, we would, at least for an instant, “see” a coherent super-

position of the waves emitted in that direction. We would “see” 

In this simple process we’ve actually proved something that 

a resultant wave having a given polarization state. That state 

is rather subtle. If the circular polarizers  A 
 +  B
  and  C 
 +  D
  are 

would last only for an interval less than the coherence time 

both left-handed, we’ve shown that  left-circular light entering a 


before it changed, but even so it would correspond to a great 


left-circular polarizer from the output side will be transmitted
 . 

many oscillations at the frequency n. Clearly, if the bandwidth 

Furthermore, it should be apparent, at least after some thought, 

∆n is broad, the coherence time (∆ tc 
 ≈ 1>∆n) will be small, 

that right-circular light will produce a 𝒫-state perpendicular to 

and any polarization state will be short-lived. Evidently  the 


the transmission axis of  D
  and so will be absorbed. The con-


concepts of polarization and coherence are related in a funda-


verse is true as well; that is,  of the two circular forms, only light 



mental way
 .


in an 
 ℛ -state will pass through a right-circular polarizer hav-


Now consider a wave whose bandwidth is very small in 


ing entered from the output side.


comparison with its mean frequency, a quasimonochromatic 

wave. It can be represented by two orthogonal harmonic 





𝒫-states, as in Eqs. (8.1) and (8.2), but here the amplitudes 

and initial phase angles are functions of time. Furthermore, the 


8.9 Polarization of Polychromatic Light


frequency and propagation number correspond to the mean val-

ues of the spectrum present in the wave, namely, v and  k
 . Thus


8.9.1  Bandwidth and Coherence Time  



 



E


$ x(t) 
 = iˆ
 E (t)
  cos [ kz 
 - v t 
 + e  (t)
 ] (8.41a)

  

0 x
   


x
   


of a Polychromatic Wave


and  



E


By its very nature purely monochromatic light, which is of 

$ y(t) 
 = jˆ
 E (t)
  cos [ kz 
 - v t 
 + e  (t)
 ] (8.41b)





0 y



y
  





course not a physical reality, must be polarized. The two or-

The polarization state, and accordingly  E
 0 x(t)
 ,  E
 0 y(t)
 , e x(t)
 , and thogonal components of such a wave have the same frequency, 

e y(t)
 , will vary slowly, remaining essentially constant over a 





and each has a constant amplitude. If the amplitude of either 

large number of oscillations. Keep in mind that the narrow 

sinusoidal component varied, it would be equivalent to the pres-

bandwidth implies a relatively large coherence time. If we 

ence of other additional frequencies in the Fourier-analyzed 

watch the wave during a much longer interval, the amplitudes 

spectrum. Moreover, the two components have a constant rela-

and phase angles will vary somehow, either independently or in 

tive phase difference; that is, they are coherent. A monochro-

some correlated fashion. If the variations are completely uncor-

matic disturbance is an infinite wavetrain whose properties 

related, the polarization state will remain constant only for an 

have been fixed for all time; whether it is in an ℛ-, ℒ-, 𝒫-, or  

interval that is small compared to the coherence time. In other 

ℰ-state, the wave is completely polarized.

Actual light sources are polychromatic; they emit radiant 

words, the ellipse describing the polarization state may change 

energy having a range of frequencies. Let’s now examine what 

shape, orientation, and handedness. Since, speaking practically, 

happens on a submicroscopic scale, paying particular atten-

no existing detector could discern any one particular state 

tion to the polarization state of the emitted wave. Envision an 

 lasting for so short a time, we would conclude that the wave was 

electron-oscillator that has been excited into vibration (possi-

unpolarized.

bly by a collision) and thereupon radiates. Depending on its 

Antithetically, if the ratio  E
 0 x(t)
 > E (t)
  was constant even 





0 y
  

precise motion, the oscillator will emit some form of polar-

though both terms varied, and if e = e y(t) 
 - e  (t) 
 was constant 






x
  

ized light. 

as well, the wave would be polarized. Here the necessity for 

As in Section 7.4.3, we picture the radiant energy from a 

correlation among these different functions is obvious. Yet we 

single atom as a wavetrain having a finite spatial extent ∆ lc
 . 

can actually impress these conditions on the wave by merely 
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passing it through a polarizer, thereby removing any undesired 

which are in the direction of the transmission axis of the 

constituents. The time interval over which the wave thereafter 

 analyzer, will pass through it and on to the observer.

maintains its polarization state is no longer dependent on the 

Now these components, which also have a phase difference 

bandwidth because the wave’s components have been appropri-

of ∆w, are coplanar and can thus interfere. When ∆w = p, 3p, 

ately correlated. The light could be polychromatic (even white), 

5p, . . . , they are completely out-of-phase and tend to cancel 

yet completely polarized. It will behave very much like the 

each other. When ∆w = 0, 2p, 4p, . . . , the waves are in-phase 

 idealized monochromatic waves treated in Section 8.1.

and reinforce each other. Suppose then that the retardance aris-

Between the two extremes of completely polarized and 

ing at some point- P
 1 on g for blue light (l0 = 435 nm) is 4p. 

 unpolarized light is the condition of partial polarization. In fact, 

In that case blue will be strongly transmitted. It follows from 

it can be shown that any quasimonochromatic wave can be 

Eq. (8.36) that l0∆w = 2p d
 (0  no 
 -  ne 
 0) is essentially a constant 

 determined by the thickness and the birefringence. At the point 

 represented as the sum of a polarized and an unpolarized wave, 

in question, therefore, l

where the two are independent and either may be zero.

0∆w = 1740p for all wavelengths. If 

we now change to incident yellow light (l0 = 580 nm), 

∆w ≈ 3p and the light from  P
 1 is completely canceled. Under 

white-light illumination that particular point on g will seem as 


8.9.2 Interference Colors


if it had removed yellow completely, passing on all the other 

Insert a crumpled sheet of cellophane between two Polaroids 

colors, but none as strongly as blue. Another way of saying this 

illuminated by white light. Alternatively, take an ordinary plas-

is that the blue light emerging from the region about  P
 1 is linear 

tic bag (polyethylene), which shows nothing special between 

(∆w = 4p) and parallel to the analyzer’s transmission axis. In 

crossed Polaroids, and stretch it. That will align its molecules, 

contrast, the yellow light is linear (∆w = 3p) and along the 

making it birefringent. Now crumple it up and examine it again. 

 extinction axis; the other colors are elliptical. The region about 

The resulting pattern will be a profusion of multicolored regions, 


P
 1  
 behaves like a half-wave plate for yellow and full-wave plate 

which vary in hue as either Polaroid rotates. These interference 


for blue. If the analyzer were rotated 90°, the yellow would be 


colors
  arise from the wavelength dependence of the retardation. 

transmitted, and the blue extinguished. 

The usual variegated nature of the patterns is due to local varia-

By definition two colors are said to be complementary when 

tions in thickness, birefringence, or both.

their combination yields white light. Thus when the analyzer  

The appearance of interference colors is commonplace and 

is rotated through 90° it will alternately transmit or absorb 

can easily be observed in any number of substances. For  example, 

complementary colors. In much the same way there might be a 

the effect can be seen with a piece of multilayered mica, a chip 

point- P
 2 somewhere else on g where ∆w = 4p for red 

of ice, a stretched plastic bag, or finely crushed particles of an 

(l0 = 650 nm). Then, l0∆w = 2600p, whereupon bluish green 

ordinary white (quartz) pebble. To appreciate how the phenom-

light (l0 =520 nm) will have a retardance of 5p and be extin-

enon occurs, examine Fig. 8.54. A narrow beam of monochro-

guished. Clearly, if the retardance varies from one region to the 

matic linear light is schematically shown passing through some 

next over the specimen, so too will the color of the light trans-

small region of a birefringent plate g. Over that area the bire-

mitted by the analyzer.

fringence and thickness are both assumed to be constant. The 

transmitted light is generally elliptical. Equivalently, envision 

the light emerging from g as composed of two orthogonal lin-

ear waves (i.e., the  x
 - and  y
 -components of the total E


$-field), 


8.10 Optical Activity


which have a relative phase difference ∆w, determined by 

Eq.  (8.36). Only the components of these two disturbances, 

The manner in which light interacts with material substances 

can yield a great deal of valuable information about their 

 molecular structures. The process to be examined next,  although 

of specific interest in the study of Optics, has had and is 

 continuing to have far-reaching effects in the sciences of chem-


E


istry and biology.

u


y



x


In 1811 the French physicist Dominique F. J. Arago first 


Ey E


observed the rather fascinating phenomenon now known as 


x



optical activity
 . It was then that he discovered that the plane 


Ex 
 sin u

Σ

of vibration of a beam of linear light underwent a continuous 

 rotation as it propagated along the optic axis of a quartz plate 


Ey 
 cos u

(Fig. 8.55). At about the same time Jean Baptiste Biot (1774–

1862) saw this same effect while using both the vaporous and 

liquid forms of various natural substances like turpentine. 


Figure 8.54
     The origin of interference colors.

Any material that causes the E


$-field of an incident linear 
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associated with the structural distribution of the molecules as a 

whole. There are many substances, both organic and inorganic 

(e.g., benzil and NaBrO3, respectively), which, like quartz, 

 exhibit optical activity only in crystal form. In contrast, many 

naturally occurring organic compounds, such as sugar, tartaric 

acid, and turpentine, are optically active in solution or in the 

liquid state. Here the  rotatory power
 , as it is often referred to, is 

Optic

evidently an attribute of the individual molecules. There are 

axis

also more complicated substances for which optical activity is 

associated with both the molecules themselves and their 

Dextro

 arrangement within the various crystals. An example is  rubidium 

Quartz

tartrate. A  d
 -rotatory solution of that compound will change to 


l-rotatory
  when crystallized.

In 1825 Fresnel, without addressing the actual mechanism 

involved, proposed a simple phenomenological description 

of optical activity. Since the incident linear wave can be 


Figure 8.55
     Optical activity displayed by quartz.

 represented as a superposition of ℛ- and ℒ-states, he sug-

gested that these two forms of circular light propagate at 

plane wave to appear to rotate is said to be  optically active
 . 

 different speeds. An  active material shows  circular birefrin-


 Moreover, as Biot found, one must distinguish between right- 


gence
 ; that is, it possesses two indices of refraction, one for 

and  left-handed rotation. If while looking in the direction of 

ℛ-states  ( n
 ℛ) and one for ℒ-states  ( n
 ℒ). In traversing an 

the source, the plane-of-vibration appears to have revolved 

 optically active specimen, the two circular waves would get 

clockwise, the substance is referred to as  dextrorotatory
 , or 

out-of-phase, and the resultant linear wave would appear 


d-rotatory
  (from the Latin  dextro
 , meaning right). Alterna-

to have rotated. We can see how this is  possible analytically 

tively, if E


by returning to Eqs. (8.8) and (8.9), which  described mono-

$  appears to have been displaced counterclockwise, 

the material is  levorotatory
 , or  l-rotatory
  (from the Latin 

chromatic right- and left-circular light propagating in the  


levo
 , meaning left).


z
 -direction. It was seen in Eq. (8.10) that the sum of these two 

In 1822 the English astronomer Sir John F. W. Herschel 

waves is indeed linearly polarized. We now alter these 

(1792–1871) recognized that  d
 -rotatory and  l
 -rotatory behavior 

 expressions slightly in order to remove the factor of two in 

in quartz actually corresponded to two different  crystallographic 

the amplitude of Eq. (8.10), in which case

structures. Although the molecules are identical (SiO2), crystal 


E


quartz can be either right- or left-handed, depending on the 


 



E


$

0

ℛ =

 [iˆ
  cos ( k


 arrangement of those molecules. As shown in Fig. 8.56, the 

2

ℛ z 
 - v t
 ) + jˆ
  sin ( k
 ℛ z 
 - v t
 )] (8.42a)

 external appearances of these two forms are the same in all 

and

 respects, except that one is the mirror image of the other; they 

are said to be  enantiomorphs
  of each other. All transparent 


E


 enantiomorphic substances are optically active. Furthermore, 


 



E


$

0

ℒ =

 [iˆ
  cos ( k


2

ℒ z 
 - v t
 ) - jˆ
  sin ( k
 ℒ z 
 - v t
 )] (8.42b)

molten quartz and  fused
  quartz, neither of which is crystalline, 

are not optically active. Evidently, in quartz optical activity is 

represent the right- and left-handed constituent waves. Since 

v is constant,  k
 ℛ =  k
 0 n
 ℛ  
 and  k
 ℒ =  k
 0 n
 ℒ. The resultant disturbance is given by E


$ = E
 $ℛ + E
 $ℒ, and after a bit of trigonometric 

manipulation, it becomes


E


$ =  E
 0 cos [( k
 ℛ +  k
 ℒ) z
 >2 - v t
 ][iˆ
  cos ( k
 ℛ -  k
 ℒ) z
 >2





+ jˆ
  sin ( k
 ℛ -  k
 ℒ) z
 >2] (8.43)

At the position where the wave enters the medium ( z 
 = 0) it  

Optic axis

Optic axis

is linearly polarized along the  x
 -axis, as shown in Fig. 8.57;  

that is,


 



E


$ =  E
 0iˆ
  cos v t
  (8.44)

(a) Right

(b) Left

Notice that at any point along the path, the two components have 


Figure 8.56
     Right- and left-handed quartz crystals.

the same time dependence and are therefore in-phase. This just 
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Figure 8.57
   The super-

position of an ℛ@ and an 

ℒ@state at  z 
 = 0.


E



E



E



E



E



E



E


ℛ


t
  = 0


E
 ℛ


E
 ℛ

(a)

(b)

(c)

means that anywhere along the  z
 -axis the resultant is linearly 

In sodium light the  specific rotatory power
 , which is 





polarized (Fig. 8.58), although its orientation is certainly a func-

defined as b> d
 , is found to be 21.7°>mm for quartz. It follows 

tion of  z
 . Moreover, if  n


that 

ℛ 7  n
 ℒ or, equivalently,  k
 ℛ 7  k
 ℒ, E


$ will 

0  n
 ℒ -  n
 ℛ 0 = 7.1 * 10-5   
 for light propagating along the 

rotate counterclockwise, whereas if  k


optic axis. In that particular direction ordinary double refraction 

ℒ 7  k
 ℛ, the rotation is 

clockwise (looking toward the source). Traditionally, the angle b 

 vanishes. However, with the incident light propagating normal 

through which E


$ rotates is defined as positive when it is clock-

to the optic axis (as is frequently the case in polarizing prisms, 

wise. Keeping this sign convention in mind, it should be clear 

wave plates, and compensators), quartz behaves like any 

from Eq. (8.43) that the field at point  z
  makes an angle of 

 optically  inactive, positive, uniaxial crystal. There are other 

b = -( k


 birefringent, optically active crystals, both uniaxial and biaxial, 

ℛ -  k
 ℒ) z
 >2 with respect to its original orientation. If 

the medium has a thickness  d
 , the angle through which the 

such as  cinnabar, HgS ( no 
 = 2.854,  ne 
 = 3.201), which has a 

plane-of-vibration rotates is then

 rotatory power of 32.5°>mm. In contrast, the substance NaClO3 

is optically active (3.1°>mm) but not birefringent. The rotatory 

p d



 


 ( n


power of liquids, in comparison, is so relatively small that it is 

b =

ℒ -  n
 ℛ) (8.45)

l0

usually specified in terms of 10-cm path lengths; for example, 

in the case of turpentine (C

where   n


10H6) it is only  - 37°>10 cm (10°C 

ℒ 7  n
 ℛ is  d
 -rotatory and  n
 ℛ 7  n
 ℒ is  l-rotatory
  

with  l

(Fig. 8.59).

0 = 589.3 nm). The rotatory power of solutions varies 

with the concentration. This fact is particularly helpful in deter-

Fresnel was actually able to separate the constituent ℛ- 

mining, for example, the amount of sugar present in a urine 

and ℒ-states of a linear beam using the composite prism of 

sample or a commercial sugar syrup.

Fig. 8.60. It consists of a number of right- and left-handed 

You can observe optical activity rather easily using colorless 

quartz segments cut with their optic axes as shown. The 

corn syrup, the kind available in any grocery store. You won’t 

ℛ-state propagates more rapidly in the first prism than in 

the second and is thus refracted toward the normal to the 

need much of it, since b> d
  is roughly +30°>inch. Put about an 

oblique boundary. The opposite is true for the 

inch of syrup in a glass container between crossed Polaroids 

ℒ-state, and 

the two circular waves  increase in angular separation at 

and illuminate it with a flashlight. The beautiful colors that 

each interface.

 appear as the analyzer is rotated arise from the fact that b is a 


E



E



E
 ℛ


k
 ℛ z



E



E



E


ℛ

ℛ


E



E



k
 z



E



Figure 8.58
   The superposi-

(a)

(b)

(c)

tion of an ℛ@ and an ℒ@state 

at  z 
 =  z
 ′ ( k
 ℒ 7  k
 ℛ).
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basis for the development of the stereochemistry of organic 

and inorganic compounds, where one is concerned with the 

three- dimensional spatial distribution of atoms within a given 

molecule.


E


–( k
 d
  – v t
 )

b


8.10.1 A Useful Model


–( k



E


ℛ –  k
 ) d
 2

The phenomenon of optical activity is extremely complicated, 

ℛ

and although it can be treated in terms of classical Electromag-

netic Theory, it actually requires a quantum-mechanical 

 solution.** Despite this, we will consider a simplified model, 

which will yield a qualitative, yet plausible, description of the 

process. Recall that we represented an optically isotropic 

( k
 ℛ d
  – v t
 )

 medium by a homogeneous distribution of isotropic electron-

oscillators that vibrated parallel to the E


$-field of an incident 

wave. An optically anisotropic medium was similarly depicted 


Figure 8.59
     The superposition of an ℛ@ and an ℒ@state at  z 
 =  d
  

( k


as a distribution of anisotropic oscillators that vibrated at some 

ℒ 7  k
 ℛ, lℒ 6 lℛ, and  v
 ℒ 6  v
 ℛ).

angle to the driving E


$-field. We now imagine that the electrons 

in optically active substances are constrained to move along 

Optic axes

twisting paths that, for simplicity, are assumed to be helical. 

for all segments

Such a molecule is pictured much as if it were a conducting 

helix. The silicon and oxygen atoms in a quartz crystal are 

ℛ

known to be arranged in either right- or left-handed spirals 

ℛ

about the optic axis, as indicated in Fig. 8.61. In the present 

ℛ

representation this crystal would correspond to a parallel array 

of helices. In comparison, an active sugar solution would be 

analogous to a distribution of randomly oriented helices, each 

having the same handedness.†

ℛ

In quartz we might anticipate that the incoming wave would 


Figure 8.60
     The Fresnel composite prism.

interact differently with the specimen, depending on whether it 

“saw” right- or left-handed helices. Thus we could expect 

 different indices for the 

function of 

ℛ- and ℒ-components of the wave. The 

l0, an effect known as  rotatory dispersion
 . Using a 

detailed treatment of the process that leads to circular 

filter to get roughly monochromatic light, you can readily deter-

 birefringence in crystals is by no means simple, but at least the 

mine the rotatory power of the syrup.*

necessary asymmetry is evident. How, then, can a random 

The first great scientific contribution made by Louis Pasteur 

 array  of helices, corresponding to a solution, produce optical 

(1822–1895) came in 1848 and was associated with his doc-

 activity? Let us examine one such molecule in this simplified 

toral research. He showed that racemic acid, which is an opti-

 representation, for example, one whose axis happens to be 

cally inactive form of tartaric acid, is actually composed of a 

 parallel to the harmonic E


$-field of the electromagnetic wave. 

mixture containing equal quantities of right- and left-handed 

That field will drive charges up and down along the length of the 

constituents. Substances of this sort, which have the same 

molecule, effectively producing a time-varying electric  dipole 

 molecular formulas but differ somehow in structure, are called 

moment  p  (t)
 , parallel to the axis. In addition, we now have a 


isomers
 . He was able to crystallize racemic acid and then sepa-

rate the two different types of mirror-image crystals (enantio-

morphs) that resulted. When dissolved separately in water, 

**The review article “Optical activity and molecular dissymmetry,” by S. F. Mason, 

they formed  d
 -rotatory and  l
 -rotatory solutions. This implied 


Contemp. Phys.
  9
 , 239 (1968), contains a fairly extensive list of  references for 

the  existence of molecules that, although chemically the same, 

further reading.

were themselves mirror images of each other; such molecules 

are now known as optical  stereoisomers
 . These ideas were the 

†In addition to these solid and liquid states, there is a third classification of sub-

stances, which is useful because of its remarkable optical properties. It is known 

as the  mesomorphic
  or  liquid crystal
  state. Liquid crystals are organic compounds 

that can flow and yet maintain their characteristic molecular orientations. In 

*A gelatin filter works well, but a piece of colored cellophane will also do nicely. 

particular,  cholesteric
  liquid crystals have a helical structure and therefore exhibit 

Just remember that the cellophane will act as a wave plate (see Section 8.7.1), so 

extremely large rotatory powers, of the order of 40 000°>mm. The pitch of the 

don’t put it between the Polaroids unless you align its principal axes appropriately.

screwlike molecular arrangement is considerably smaller than that of quartz.
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O

O

Si

O

O

Optic axis


Figure 8.61
   Right-handed quartz.

current associated with the spiraling motion of the  electrons. 


on the sense of the particular molecular  helix
 . Clearly, energy 

This in turn generates an oscillating magnetic dipole moment 

has been removed from the field, and both oscillating dipoles 

m  (t)
 , which is also along the helix axis (Fig. 8.62). In contrast, if 

will scatter (i.e.,  reradiate) electromagnetic waves. The electric 

the molecule was parallel to the B


$-field of the wave, there would 

field E


$ p
  emitted in a given direction by an electric dipole is per-

be a time-varying flux and thus an induced electron current cir-

pendicular to the electric field E


$ m
  emitted by a magnetic dipole. 

culating around the molecule. This would again yield oscillating 

The sum of these, which is the resultant field E


$ s
  scattered by a 

axial electric and magnetic dipole moments. In either case  p  (t)
  

helix, will not be parallel to the incident field E


$ i
  along the direc-

and m  (t)
   will be parallel or antiparallel to each other, depending 


tion of propagation. (The same is of course true for the magnetic 

fields.) The plane-of-vibration of the resultant transmitted light 

(E


$ s 
 + E
 $ i
 ) will thus be rotated in a direction determined by the 

p

m

sense of the helix. The amount of the rotation will vary with the 


Ei


orientation of each molecule, but it will always be in the same 

direction for helices of the same sense.

Although this discussion of optically active molecules as 

 helical conductors is admittedly superficial, the analogy is well 


Ei


worth keeping in mind. In fact, if we direct a linear 3-cm 


Bi



Em


 microwave beam onto a box filled with a large number of iden-

tical copper helices (e.g., 1 cm long by 0.5 cm in diameter and 


Ep



E


insulated from each other), the transmitted wave will undergo a 


Es


rotation of its plane-of-vibration.*


Es



8.10.2  Optically Active Biological Substances


p

Among the most fascinating observations associated with 


Ei


 optical activity are those in biology. Whenever organic mole-

cules are synthesized in the laboratory, an equal number of 


d
 - and  l
 -isomers are produced, with the effect that the com-


Em


pound is  optically inactive. One might then expect that if they 


Ei



Bi



E


exist at all, equal amounts of  d
 - and  l
 -optical stereoisomers 

will be found in natural organic substances. This is by no 


Es


means the case. Natural sugar (sucrose, C


Ep


12H22O11), no matter 


Es


where it is grown, whether extracted from sugar cane or sugar 

m

*I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices,”  


Figure 8.62
     The radiation from helical molecules.


J. Phys. Chem.
  61
 , 1196 (1957).
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beets, is always  d
 -rotatory. Moreover, the simple sugar dex-

trose or  d
 -glucose  (C6H12O6), which, as its name implies, is 


d
 -rotatory, is the most important carbohydrate in human 

 metabolism. Evidently, living things can somehow distinguish 

between optical isomers.

All proteins are fabricated of compounds known as  amino acids
 . 

These in turn are combinations of carbon, hydrogen, oxygen, and 

nitrogen. There are twenty-odd amino acids, and all of them 

A clear plastic triangle between polaroids. Those fringes are multicolored. (E.H.)

(with the exception of the simplest one, glycine, which is not 

enantiomorphic) are generally  l
 -rotatory. This means that if we 

break up a protein molecule, whether it comes from an egg or an 

eggplant, a beetle or a Beatle, the constituent amino acids will be 


l
 -rotatory. One important exception is the group of antibiotics, 

induced birefringence is proportional to the stress. If the stress is 

such as penicillin, which do contain some dextro amino acids. In 

not uniform over the sample, neither is the birefringence or the 

fact, this may well account for the toxic effect penicillin has on 

 retardance imposed on a transmitted wave.

bacteria.

Photoelasticity serves as the basis of a technique for studying 

It is intriguing to speculate about the possible origins of life 

the stresses in both transparent and opaque mechanical struc-

on this and other planets. For example, did life on Earth origi-

tures (see photo). Improperly annealed or carelessly mounted 

nally consist of both mirror-image forms? Five amino acids 

glass, whether serving as an automobile windshield or a 

were found in a meteorite that fell in Victoria, Australia, on 

 telescope lens, will develop internal stresses that can easily be 

 September 28, 1969, and analysis has revealed the existence of 

detected. Information concerning the surface strain on opaque 

roughly equal amounts of the optically right- and left-handed 

objects can be obtained by bonding photoelastic coatings to the 

forms. This is in marked contrast to the overwhelming predom-

parts under study. More commonly, a transparent scale model of 

inance of the left-handed form found in terrestrial rocks. The 

the part is made out of a material  optically sensitive to stress
 , 

implications are many and marvelous.*

such as epoxy, glyptol, or modified polyester resins. The model 

is then subjected to the forces that the actual component would 

experience in use. Since the birefringence varies from point to 

point over the surface of the model, when it is placed between 


8.11  Induced Optical Effects—Optical 


crossed polarizers, a complicated variegated fringe pattern will 


Modulators


reveal the internal stresses. Examine almost any piece of clear 

plastic or even a block of unflavored gelatin between two 

A number of different physical effects involving polarized 

 Polaroids; try stressing it further and watch the pattern change 

light  all share the single common feature of somehow being 

accordingly (see photos).

externally induced. In these instances, one exerts an external 

The retardance at any point on the sample is proportional 

influence (e.g., a mechanical force, a magnetic or electric field) 

to the  principal stress difference
 ; that is, (s1 - s2), where the 

on the optical medium, thereby changing the manner in which 

sigmas are the orthogonal principal stresses. For example, if 

it transmits light.

the sample were a plate under vertical tension, s1 would be 

the maximum principal stress in the vertical direction and s2 

would be the minimum principal stress, in this case zero, 

horizontally. In more complicated situations, the principal 


8.11.1 Photoelasticity


stresses, as well as their differences, will vary from one re-

In 1816 Sir David Brewster discovered that normally transparent 

gion to the next. Under white-light illumination, the loci of 

isotropic substances could be made optically anisotropic by the 

all points on the specimen for which (s1 - s2) is constant are 

application of mechanical stress. The phenomenon is known as 

known as  isochromatic   regions
 , and each such region corre-


mechanical birefringence
 , photoelasticity
 , or  stress birefringence
 . 

sponds to a particular color. Superimposed on these colored 

Under compression or tension, the material takes on the properties 

fringes will be a separate  system of black bands. At any point 

of a negative or positive uniaxial crystal, respectively. In either 

where the E


$-field of the incident linear light is parallel to ei-

case, the effective optic axis is in the direction of the stress, and the 

ther local principal stress axis, the wave will pass through the 

sample unaffected, regardless of wavelength. With crossed 

polarizers, that light will be absorbed by the analyzer, yield-

ing a black region known as an  isoclinic
  band (Problem 8.72). 

In addition to being beautiful to look at, the fringes also pro-

vide both a qualitative map of the stress  pattern and a basis 

*See  Physics Today
 , Feb. 1971, p. 17, for additional discussion and references for 

further reading.

for quantitative calculations.
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(a)

(b)

( a
 ) A permanently stressed piece of clear plastic between crossed Polaroids. (E.H.) ( b
 ) The fringe pattern changes with the application of a force. (E.H.)


8.11.2 The Faraday Effect


where  B
  is the static magnetic flux density (usually in gauss), 


d
  is the length of medium traversed (in cm), and 𝒱 is a factor 

Michael Faraday in 1845 discovered that the manner in which 

of proportionality known as the  
Verdet constant

 . The Verdet 

light propagated through a material medium could be influenced 

 constant for a particular medium varies with both frequency 

by the application of an external magnetic field. In particular, he 

(dropping off rapidly as n decreases) and temperature. It is 

found that the plane-of-vibration of linear light incident on a 

roughly of the order of 10-5 min of arc gauss-1 cm-1 for gases 

piece of glass rotated when a strong magnetic field was applied 

and 10-2 min of arc gauss-1 cm-1 for solids and liquids (see 

in the propagation direction. The Faraday Effect
  was one of the 

Table 8.2). You can get a better feeling for the meaning of 

earliest indications of the interrelationship between electromag-

these numbers by imagining, for example, a 1-cm-long 

netism and light. Although it is reminiscent of optical activity, 

 sample  of  H2O in the moderately large field of 104 gauss. 

there is an important distinction.

(The Earth’s field is about one-half gauss.) In that particular 

The angle b (measured in minutes of arc) through which the 

case, a rotation of 2°11′ would result, since 𝒱 = 0.0131.

plane-of-vibration rotates is given by the empirically deter-

By convention,  a positive Verdet constant corresponds to a
  

mined expression

( diamagnetic
 )  material for which the Faraday Effect is l-rotatory 



 


b


when the light moves parallel to the applied
   B


= 𝒱 Bd
  (8.46)

$ -field and  



d- rotatory when it propagates antiparallel to
  B


$. No such rever-

sal of handedness occurs in the case of natural optical activity. 

For a convenient mnemonic, imagine the B


$-field to be generated 

by a solenoidal coil wound about the sample. The plane-of- 

vibration, when 𝒱 is positive, rotates in the same direction as the 

current in the coil, regardless of the beam’s propagation direction 

along its axis. Consequently, the effect can be amplified by 

 reflecting the light back and forth a few times through the sample.

The theoretical treatment of the Faraday Effect involves the 

quantum-mechanical theory of dispersion, including the effects 

of B


$ on the atomic or molecular energy levels. It will suffice 

here merely to outline the limited classical argument for 

 nonmagnetic  materials.

Suppose the incident light to be circular and monochromatic. 

An elastically bound electron will take on a steady-state circu-

lar orbit being driven by the rotating E


The back windows of most cars are heat treated so that if broken they would 

$-field of the wave. (The 

shatter into small, less dangerous pieces. This photo was taken through a 

effect of the wave’s B


$-field is negligible.) The introduction of a 

 linear polarizer and shows the internal stress pattern. (E.H.)

large constant applied magnetic field perpendicular to the plane 
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since each constituent has a characteristic magnetic rotation. 


TABLE 8.2  Verdet Constants for Some Selected 


When utilized in spectroscopic studies, it yields information 


Substances


about the properties of energy states above the ground level. 

  

𝒱 (min of arc  

Interestingly, the Faraday Effect has been used to make optical 

Material 

Temperature (°C) gauss-1 cm-1)

modulators. An infrared version, constructed by R. C. LeCraw, 

utilized the synthetic magnetic crystal yttrium–iron garnet 

Light flint glass 

18 

0.031 7

(YIG), to which has been added a quantity of gallium. YIG has 

Water 

20 0.013 1

a structure similar to that of natural gem garnets. The device is 

NaCl 

16 0.035 9

depicted schematically in Fig. 8.63. A linear infrared laserbeam 

Quartz 

20 0.016 6

enters the crystal from the left. A transverse dc magnetic field 

NH4Fe(SO4)2.12H2O 26  -0.000 58

saturates the magnetization of the YIG crystal in that direction. 

Air* 0 

6.27 * 10-6

The total magnetization vector (arising from the constant field 

CO2* 0 

9.39 * 10-6

and the field of the coil) can vary in direction, being tilted 

 toward the axis of the crystal by an amount proportional to the 

*l = 578 nm and 760 mm Hg. 

modulating current in the coil. Since the Faraday rotation 

More extensive listings are given in the usual handbooks.

 depends on the axial component of the magnetization, the coil 

current controls b. The analyzer then converts this polarization 

of the orbit will result in a radial force  F


modulation to amplitude modulation by way of Malus’s Law 


M
  on the electron. That 

force can point either toward or away from the circle’s center, 

[Eq. (8.24)]. In short, the signal to be transmitted is introduced 

depending on the handedness of the light and the direction of 

across the coil as a modulating voltage, and the emerging 

the constant B


$-field. The total radial force ( F


 laserbeam carries that information in the form of amplitude 


M
  plus the elastic 

restoring force) can therefore have two different values, and so 

variations.

too can the radius of the orbit. Consequently, for a given mag-

There are actually several other magneto-optic effects. We 

netic field there will be two possible values of the electric di-

shall consider only two of these, and rather succinctly at that. 

pole moment, the polarization, and the permittivity, as well as 

The  Voigt
  and  Cotton–Mouton Effects
  both arise when a con-

two values of the index of refraction,  n


stant magnetic field is applied to a transparent medium perpen-

ℛ and  n
 ℒ. The discussion 

can then proceed in precisely the same fashion as that of Fres-

dicular to the direction of propagation of the incident lightbeam. 

nel’s treatment of optical activity. As before, one speaks of two 

The former occurs in vapors, whereas the latter, which is con-

normal modes of propagation of electromagnetic waves through 

siderably stronger, occurs in liquids. In either case the medium 

the medium, the ℛ- and ℒ-states.

displays birefringence similar to that of a uniaxial crystal whose 

For ferromagnetic substances things are somewhat more 

optic axis is in the direction of the dc magnetic field, that is, 

complicated. In the case of a magnetized material b is propor-

normal to the lightbeam [Eq. (8.36)]. The two indices of refrac-

tional to the component of the magnetization in the direction of 

tion now correspond to the situations in which the plane-of- 

propagation rather than the component of the applied dc field.

vibration of the wave is either normal or parallel to the constant 

There are a number of practical applications of the Faraday 

magnetic field. Their difference ∆ n
  (i.e., the birefringence) is 

Effect. It can be used to analyze mixtures of hydrocarbons, 

proportional to the square of the applied magnetic field. It arises 

Modulating

magnetic field

Modulating


E


voltage

YIG


E


Polarizer

Constant

magnetic field


Figure 8.63
     A Faraday Effect 

Polarizer

modulator.
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in liquids from an aligning of the optically and magnetically 

anisotropic molecules of the medium with that field. If the in-

Plate electrodes

coming light propagates at some angle to the static field other 

than 0 or p>2, the Faraday and Cotton–Mouton Effects occur 

concurrently, with the former generally being much the larger 

of the two. The Cotton–Mouton is the magnetic analogue of the 

Kerr (electro-optic) Effect, to be considered next.

Polarizer


8.11.3 The Kerr and Pockels Effects


The first electro-optic effect was discovered by the Scottish 

Modulating

physicist John Kerr (1824–1907) in 1875. He found that an iso-

Polarizer

voltage

tropic transparent substance becomes birefringent when placed 

in an electric field E


$. The medium takes on the characteristics 


Figure 8.64
     A Kerr cell.

of a uniaxial crystal whose optic axis corresponds to the direc-

tion of the applied field. The two indices,  n 
  and  n


i

#, are associ-

the shutter is closed. The application of a modulating voltage 

ated with the two orientations of the plane-of-vibration of the 

generates a field, causing the cell to function as a variable wave 

wave, namely, parallel and perpendicular to the applied electric 

plate and thus opening the shutter proportionately. The great 

field, respectively. Their difference, ∆ n
 , is the birefringence, 

value of such a device lies in the fact that it can respond effectively 

and it is found to be

to frequencies roughly as high as 1010 Hz. Kerr cells, usually con-

taining nitrobenzene or carbon disulfide, have been used for a 





∆ n 
 = l0 KE
 2 (8.47)

number of years in a variety of applications. They serve as shut-

ters in high-speed photography and as lightbeam choppers to 

where  K
  is the  
Kerr constant

 . When  K
  is positive, as it most 

replace rotating toothed wheels. As such, they have been uti-

often is, ∆ n
 , which can be thought of as  ne 
 -  no
 , is positive, and 

lized in measurements of the speed of light. Kerr cells are also 

the substance behaves like a positive uniaxial crystal. Values of 

used as  Q
 -switches in pulsed laser systems.

the Kerr constant (Table 8.3) are often listed in electrostatic  

If the plates functioning as the electrodes have an effective 

cgs units, so that one must remember to enter  E
  in Eq. (8.47) in 

length of 

statvolts per cm (one statvolt ≈ 300 V). Observe that, as with 

/ cm and are separated by a distance  d
 , the retardation 

is given by

the Cotton–Mouton Effect,  the Kerr Effect is proportional to 



the square of the field and is often referred to as the quadratic 






∆w = 2p K
 / V
 2> d
 2 (8.48)


electro-optic effect
 . The phenomenon in liquids is attributed to 

a partial alignment of anisotropic molecules by the E


$-field. In 

where  V
  is the applied voltage. Thus a nitrobenzene cell in which 

solids the situation is considerably more complicated.


d
  is 1 cm and / is several centimeters will require a rather large 

Figure 8.64 depicts an arrangement known as a Kerr shutter 

voltage, roughly 3 * 104 V, in order to respond as a half-wave 

or optical modulator. It consists of a glass cell containing two 

plate. This is a characteristic quantity known as the  half-wave 


electrodes, which is filled with a polar liquid. This  Kerr cell
 , as 


voltage
 ,   V
 l>2. Another drawback is that nitrobenzene is both 

it is called, is positioned between crossed linear polarizers 

 poisonous and explosive. Transparent solid substances, such as 

whose transmission axes are at ±45° to the applied E


$-field. 

the mixed crystal potassium tantalate niobate (KTa0.65Nb0.35O3), 

With zero voltage across the plates, no light will be transmitted; 

KTN for short, or barium titanate (BaTiO3), which show a Kerr 

Effect, are therefore of interest as electro-optical modulators.

There is another very important electro-optical effect known 


TABLE 8.3  Kerr Constants for Some Selected Liquids 


as the  Pockels Effect
 , after the German physicist Friedrich Carl 


(20°C, 
 l0 
 = 589.3 nm)


Alwin Pockels (1865–1913), who studied it extensively in 1893. 


 




 




K
  (in units of 


It is a linear electro-optical effect, inasmuch as the induced bire-


 


Substance 


10-7 
 cm statvolt-2)


fringence is proportional to the first power of the applied E


$-field 

and therefore the applied voltage. The Pockels Effect exists only 

Benzene C6H6 0.6

in certain crystals that lack a center of symmetry—in other 

Carbon disulfide 

CS2 

3.2

words, crystals having no central point through which every 

Chloroform CHCl3 

-3.5

atom can be reflected into an identical atom. There are 32 crystal 

Water H2O 4.7

symmetry classes, 20 of which may show the Pockels Effect. 

Nitrotoluene C5H7NO2 

123

Incidentally, these same 20 classes are also piezoelectric. Thus, 

Nitrobenzene C6H5NO2 220

many crystals and all liquids are excluded from displaying a lin-

ear electro-optic effect.
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The first practical Pockels cell, which could perform as a 


TABLE 8.4    Electro-optic Constants (Room 


shutter or modulator, was not made until the 1940s, when suit-


Temperature, 
 l

able crystals were finally developed. The operating principle 


0 
 = 546.1 nm)


for such a device is one we’ve already discussed. In brief, the 






r
 63 


no
  


V
 l>2 

birefringence is varied electronically by means of a controlled 

Material 

(units of 10-12 m>V)  (approx.)  (in kV)

applied electric field. The retardance can be altered as desired, 

thereby changing the state of polarization of the incident linear 

ADP (NH4H2PO4) 

8.5 

1.52 9.2

wave. In this way, the system functions as a polarization modu-

KDP (KH2PO4) 

10.6 

1.51 7.6

lator. Early devices were made of ammonium dihydrogen 

KDA (KH2AsO4) 

∼13.0 1.57 

∼6.2

phosphate (NH

KD*P (KD2PO4) 

∼23.3 1.52 

∼3.4

4H2PO4), or ADP, and potassium dihydrogen 

phosphate (KH2PO4), known as KDP; both are still in use. A 

great improvement was provided by the introduction of single 

it is aligned such that its optic axis is along the beam’s propaga-

crystals of potassium dideuterium phosphate (KD2PO4), or 

tion direction. For such an arrangement the retardance is given by

KD*P, which yields the same retardation with voltages less 

than half of those needed for KDP. This process of infusing 





∆w = 2p n
 3 o
   r
 63 V
 >l0 (8.49)

crystals with deuterium is accomplished by growing them in a 

solution of heavy water. Cells made with KD*P or CD*A 

where  r
 63 is the  electro-optic constant
  in m>V,  no
  is the  ordinary
  

(cesium dideuterium arsenate) have been produced commercially 

index of refraction,  V
  is the potential difference in volts, and l0 

for some time.

is the vacuum wavelength in meters.* Since the crystals are 

A  Pockels cell
  is simply an appropriate noncentrosymmetri-

anisotropic, their properties vary in different directions, and 

cal, oriented, single crystal immersed in a controllable electric 

they must be described by a group of terms referred to collec-

field. Such devices can usually be operated at fairly low  voltages 

tively as the second-rank electro-optic tensor  rij
 . Fortunately, 

(roughly 5 to 10 times less than that of an equivalent Kerr cell); 

we need only concern ourselves here with one of its compo-

they are linear, and of course there is no problem with toxic 

nents, namely,  r
 63, values of which are given in Table 8.4. The 

liquids. The response time of KDP is quite short, typically less 

half-wave voltage corresponds to a value of ∆w = p, in which 

than 10 ns, and it can modulate a lightbeam at up to about 

case

25 GHz (i.e., 25 * 109 Hz).


V


There are two common cell configurations, referred to as 





∆w = p 

 (8.50)


V



transverse
  and  longitudinal
 , depending on whether the applied 

l>2


E


$-field is perpendicular or parallel to the direction of propaga-

and from Eq. (8.49)

tion, respectively. The longitudinal type is illustrated, in its most 

basic form, in Fig. 8.65. Since the beam traverses the electrodes, 

l

these are usually made of transparent metal-oxide coatings (e.g., 






V


0

 (8.51)

l>2 = 2 n
 3 o
   r
 63

SnO, InO, or CdO), thin metal films, grids, or rings. The crystal 

itself is generally uniaxial in the absence of an applied field, and 

As an example, for KDP,  r
 63 = 10.6 * 10-12 m>V,  no 
 = 1.51, 

and we obtain  V
 l>2 ≈ 7.6 * 103 V  
 at l0 = 546.1 nm.

Pockels cells have been used as ultra-fast shutters,  Q
 -switches 

for lasers, and dc to 30-GHz light modulators.†

Transparent

electrode


8.12 Liquid Crystals


Crystal

In 1888 the Austrian botanist Friedrich Reintzer observed that 

cholesteryl benzoate seemed to have two distinct transition 

points, one at which the crystal changed into a cloudy liquid and 

Polarizer

*This expression, along with the appropriate one for the transverse mode, is 

derived rather nicely in A. Yariv,  Quantum Electronics
 . Even so, the treatment is 

sophisticated and not recommended for casual reading.

Modulating

voltage

Polarizer

†The reader interested in light modulation in general should consult D. F. Nelson, 

“The modulation of laser light,”  Scientific American
  (June 1968). Also see Chapter 


Figure 8.65
     A Pockels cell.

14, Vol. II of  Handbook of Optics
  (1995).

M08_HECH7226_05_SE_C08_330-389.indd   376

19/10/15   4:26 PM






 



8.12
   Liquid Crystals  377


(a)

(b)


Figure 8.66
     The long cigar-shaped 

molecules of a nematic liquid crystal 

align themselves in a random but  

parallel formation.

another where it became transparent. Known today as liquid 



crystal
 , he had discovered a new phase of matter that possessed 

physical properties between those of ordinary liquids and solids. 

Liquid crystals (LCs) have long cigar-shaped molecules that can 

move about, and consequently, like ordinary liquids, they lack 

positional order. Nonetheless, like crystals, their molecules 


Figure 8.67
   ( a
 ) A nematic liquid crystal between two transparent 

strongly interact to sustain a large-scale orientational order. 

 electrodes. The long molecules align parallel to a set of microgrooves on 

the inside faces of the two electrodes. ( b
 ) When a voltage is applied, the 

There are three types of liquid crystal distinguished by the ways 

molecules rotate into alignment with the field.

in which their molecules align. We’ll focus on the nematic
  vari-

ety, in which the molecules tend to be more or less parallel, even 

though their positions are fairly random (Fig. 8.66).

windows. Electric dipoles are either present or induced, and the 

To prepare a  
parallel nematic cell

 , we first coat one face of 

LC molecules experience torques that cause them to try to ro-

each of two pieces of flat glass with a transparent electrically 

tate into alignment with the field. As the voltage increases the 

conducting metallic film, such as indium tin oxide (which has 

molecules (except for those anchored to the inner surfaces of 

maximum transmission from 450 to 1800 nm). These two win-

the windows), more and more turn toward the direction of the 

dows will also serve as the electrodes, between which we’ll place 

field, decreasing the birefringence, ∆ n 
 = ( ne 
 -  no
 ), and the re-

the liquid crystal and across which we’ll apply a controlling volt-

tardance ∆w as well. Since the birefringence (usually from 0.1 

age. We want the LC molecules in contact with the windows to be 

to 0.3) is a function of the voltage, temperature (decreasing 

oriented in a direction that is both parallel to the glass and to each 

about 0.4% per °C increase), and wavelength (decreasing as l0 

other. To accomplish that, it’s necessary to create a template of 

increases)

parallel ridges along which the LC molecules can align. There are 

several ways to do that, the simplest being to just carefully rub 

2

∆

p

w (V
 ,  T
 , l

the indium tin oxide surface (or a thin dielectric layer covering 


0) 
 =

  d
  ∆ n(V
 ,  T
 , l






0)


l0

it), thereby producing parallel microgrooves. 

When the thin space (from just a few microns up to about 

Maximum retardance (typically≈l0>2) obtains when the 

10 mm) between two such prepared glass windows is filled with 

 applied voltage is zero. The retardance when  V
  is large (say, 20 V) 

nematic LC, the molecules in contact with the microgrooves 

is a minimum of around 30 nm (or zero, when a compensator is 

 anchor themselves parallel to the ridges. The LC molecules then 

used to cancel the residual retardance of the anchored layers). 

essentially drag each other into alignment, and soon the entire 

When the incident light is polarized parallel to the slow 

 liquid is similarly oriented (Fig. 8.67 a
 ). The direction in which the 

axis, the device can be used as a voltage-controlled 
 phase 



molecules of a liquid crystal are aligned is known as the  
director

 .



 modulator

 . It can change the phase delay the light will experi-

Because of their elongated shape and ordered orientation, 

ence in  traversing the cell. Alternatively, when the light has 

the liquid crystal molecules behave en masse as an anisotropic 

 components parallel and perpendicular to the slow axis, the LC 

dielectric, one that’s positive uniaxial birefringent. The long 

cell  functions as a  
continuously variable retarder

  over a broad 

axis of the molecules defines the direction of the extraordinary 

range of  frequencies. By placing the cell between crossed po-

index or slow axis. A ray of light linearly polarized parallel to 

larizers (at  ±45°), it becomes a voltage-controlled  
irradiance 



the LC director will be an extraordinary ray and will experience 



modulator

 .

an ongoing phase change as it traverses the cell. By contrast, a 

ray linearly polarized at 45° to the director will suffer a retar-

dance ∆w just as if it had passed through a birefringent crystal. 


The Liquid Crystal Display


Imagine that one of the windows of the parallel LC cell in 

Fig. 8.67 a
  is now rotated 90° in its own plane. This drags 


The Liquid Crystal Variable Retarder


around the nematic liquid so that its molecular layers spiral a 

Now suppose we apply a voltage ( V
 ) across the cell (Fig. 8.67 b
 ), 

quarter of a turn about the twist axis normal to the windows 

thereby creating an electric field perpendicular to the glass  

(much like putting a deck of cards between your two hands and 
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(a)

(b)

plane of polarization of incident light. When the  E
 -field is  

removed, the cell reverts back to its twisted configuration and can 

again rotate light. If the cell is now placed between crossed linear 

polarizers (Fig. 8.69), it becomes a  
voltage- controlled  switch

  

that can transmit or absorb an incident  beam of light.

The simplest liquid crystal display (LCD), the kind found in 

digital watches, clocks, cameras, calculators, and so forth, is 

illuminated by ambient light. Therein lies its principal virtue: it 

consumes very little electrical power because it isn’t self- 

luminous. 

To make an LCD, we just put a flat mirror beyond the last 

polarizer on the right in Fig. 8.69. Ambient light enters from the 

left and is immediately linearly polarized, in this case horizon-

tally. With no voltage on the electrodes the light emerges from 


Figure 8.68
   ( a
 ) A twisted nematic cell. The LC molecules are  

aligned horizontally on the left window and vertically on the right window, 

the twisted LC cell oscillating vertically. It passes through the 

and they gradually twist (plane upon plane) from one to the other.  

second polarizer—unaffected by it—strikes the mirror, and 

( b
 ) When a voltage is applied across the cell, the molecules align  

 reflects off to the left still oscillating vertically. It then retraces 

with the electric field.

its path back through the LC cell, from which it exits traveling 

to the left, horizontally polarized. Looking into the first polar-

fanning it around). The result is a so-called twisted nematic cell
  

izer, we see a relatively bright field of emerging light. 

(Fig. 8.68 a
 ). The molecules are aligned vertically on one window, 

When a voltage is applied across the cell, the liquid crystal 

and gradually they’re rotated, layer upon layer, until they are 

reorients itself and loses its ability to rotate the plane of polar-

horizontal on the other window. The cell will rotate the plane 

ization. Horizontal light enters and leaves the cell, only to be 

of polarization as if it were an optically active medium.* For 

completely absorbed by the second polarizer; the entrance win-

 example, a beam of linear light traveling normal to the entrance 

dow is now black, and no light emerges.

window and polarized parallel to the anchored molecules in 

By properly configuring the front transparent electrode, the 

Fig. 8.68 a
 , that is horizontally, will be rotated through 90° and 

black nonreflecting region can be confined to the shape of a 

emerge vertically polarized. 

number or letter, or anything you like. Usually the numbers on 

Upon putting a voltage across the cell, an electric field  parallel 

your calculator are produced using seven small bar electrodes 

to the twist axis is set up throughout the liquid crystal. Conse-

(Fig. 8.70) that are activated independently (by the decoder-

quently, the LC molecules (except for those anchored to the win-

driver in an integrated circuit) to create all the digits from 0 to 9. 

dows) turn into alignment with the field (Fig. 8.68 b
 ). The twisted 

These bars are formed as isolated regions on the front indium 

structure of the cell vanishes, and it loses its ability to rotate the 

tin oxide film. When a voltage is put across a given bar and the 

(a)

(b)


Figure 8.69
   ( a
 ) A twisted nematic cell between crossed linear polarizers. Light polarized vertically emerges from the device. ( b
 ) When a voltage is applied across the cell it no longer  

rotates the plane of polarization; light polarized horizontally enters and leaves the LC cell.  

That light is subsequently absorbed by the second polarizer and no light emerges from the device.

*For a proof of this, see B. E. A. Saleh and M. C. Teich,  Fundamentals of 



Photonics
 , p. 228.
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(a)

(b)

By rotating a linear polarizer in front of a liquid crystal display we can see the numbers appear and  

disappear. Try it with your calculator. (E.H.)

namely, irradiances. Our motives are far more than the ever- 

present combination of aesthetics and pedagogy. The formalism to 

be considered has far-reaching significance in other areas of study, 

for example, particle physics (the photon is, after all an elementary 

particle) and Quantum Mechanics. It serves in some respects to 

link the classical and quantum-mechanical pictures. But even more 

demanding of our present attention are the considerable practical 

advantages to be gleaned from this alternative description.

We shall evolve an elegant procedure for predicting the ef-

fects of complex systems of polarizing elements on the ultimate 


A   B   C   D   E   F   G


state of an emergent wave. The mathematics, written in the 

compressed form of matrices, will require only the simplest 


Figure 8.70
     A seven-bar electrode array used to display numerals.  

manipulation of those matrices. The complicated logic associ-

For example, to form the number 9, a voltage is applied between all  

of the following segments and the large back electrode,  D
 ,  E
 ,  F
 ,  G
 ,  A
 , and  B
 .

ated with phase retardations, relative orientations, and so forth, 

for a tandem series of wave plates and polarizers is almost all 

built in. One need only select appropriate matrices from a chart 

large continuous back electrode, the  E
 -field just behind the bar 

and drop them into the mathematical mill.

destroys the LC twist in that small region and that segment 

turns black.


8.13.1 The Stokes Parameters


The modern representation of polarized light actually had its 


8.13  A Mathematical Description 


origins in 1852 in the work of G. G. Stokes. He introduced four 


of Polarization


quantities that are functions only of observables of the electro-

magnetic wave and are now known as the Stokes parameters
 .* 

Until now we’ve considered polarized light in terms of the 

The polarization state of a beam of light (either natural or to-

 electric field component of the wave. The most general repre-

tally or partially polarized) can be described in terms of these 

sentation was, of course, that of elliptical light. The endpoint of 

quantities. We will first define the parameters operationally and 

the vector E


$ was envisioned continuously sweeping along the 

then relate them to electromagnetic theory.

path of an ellipse having a particular shape—the circle and line 

being special cases. The period over which the ellipse was tra-

versed equaled that of the lightwave (i.e., roughly 10-15 s) and 

was far too short to be detected. In contrast, measurements 

*Much of the material in this section is treated more extensively in Shurcliff’s 

made in practice are generally averages over comparatively 


Polarized Light: Production and Use
 , which is something of a classic on the sub-

long time intervals.

ject. You might also look at M. J. Walker, “Matrix calculus and the stokes param-

eters of polarized radiation,”  Am. J. Phys.
  22
 , 170 (1954); and W. Bickel and W. 

Clearly, it would be advantageous to formulate an alternative 

Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,”  Am. J. 


description of polarization in terms of convenient observables, 


Phys.
  53
 , 468 (1985).
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Imagine that we have a set of four filters, each of which, 

Here e = e y 
 - e x
  and we’ve dropped the constant P0 c
 >2, so that 

under   natural
  illumination, will transmit half the incident 

the parameters are now  proportional
  to irradiances. For the 

light, the other half being discarded. The choice is not a unique 





hypothetical case of perfectly monochromatic light,  E
 0 x(t)
 , 

one, and a number of equivalent possibilities exist. Suppose 


E
 0 y(t)
 , and e (t)
  are time-independent, and one need only drop 

then that the first filter is simply isotropic, passing all states 

the  8 9 brackets in Eq. (8.53) to get the applicable Stokes 

equally, whereas the second and third are linear polarizers 

 parameters. Interestingly enough, these same results can be 

whose transmission axes are horizontal and at  +45° (diagonal 

 obtained by time averaging Eq. (8.14), which is the general 

along the first and third quadrants), respectively. The last filter 

equation for elliptical light.*

is a circular polarizer opaque to ℒ-states. Each of these four 

If the beam is unpolarized, 8 E
 20 x
 9T = 8 E
 20 y
 9T; neither aver-

filters is positioned alone in the path of the beam under inves-

ages to zero because the amplitude squared is always positive. 

tigation, and the transmitted irradiances  I


In that case 

0,  I
 1,  I
 2,  I
 3   
 are mea-

0 = 8 E
 20 x
 9T + 8 E
 20 y
 9T, but  1 = 2 = 3 = 0. The 

sured with a type of meter that is insensitive to polarization 

latter two parameters go to zero, since both cos e and sin e 

(not all of them are). The operational definition of the Stokes 

 average to zero independently of the amplitudes. It is often con-

parameters is then given by the relations

venient to  normalize
  the Stokes parameters by dividing each 

one by the value of  0. This has the effect of using an incident 





0 = 2 I
 0 (8.52a)

beam of unit irradiance. The set of parameters ( 0,  1,  2,  3) 

for  natural light
  in the normalized representation is then (1, 0, 





1 = 2 I
 1 - 2 I
 0 (8.52b)

0, 0). If the light is horizontally polarized, it has no vertical 





2 = 2 I
 2 - 2 I
 0 (8.52c)

 component, and the normalized parameters are (1, 1, 0, 0). 

 Similarly, for vertically polarized light we have (1, -1, 0, 0). 





3 = 2 I
 3 - 2 I
 0 (8.52d)

Representations of a few other polarization states are listed in 

Table 8.5. (The parameters are displayed vertically for reasons 

Notice that  0 is simply the incident irradiance, and  1,  2, 

to be discussed later.) Notice that for completely polarized light 

and  3 specify the state of polarization. Thus  1 reflects a ten-

it follows from Eq. (8.53) that

dency for the polarization to resemble either a horizontal  

𝒫-state (whereupon  1 7 0) or a vertical one (in which case 





20 = 21 + 22 + 23 (8.54)

1 6 0). When the beam displays no preferential orientation 

Moreover, for partially polarized light it can be shown that the 

with respect to these axes ( 1 = 0), it may be elliptical at ±45°, 

degree of polarization [Eq. (8.29)] is given by

circular, or unpolarized. Similarly,  2 implies a tendency for the 

light to resemble a 𝒫-state oriented in the direction of +45° 


 



V 
 = ( 21 + 22 + 23)1>2> 0 (8.55)

(when  2 7 0) or in the direction of -45° (when  2 6 0) or 

Imagine now that we have two quasimonochromatic waves de-

neither ( 2 = 0). In the same way  3 reveals a tendency of the 

scribed by (

beam toward right-handedness (

′0,  ′1,  ′2,  ′3) and ( ″0,  ″1,  ″2,  ″3), which are super-

3 7 0), left-handedness 

imposed in some region of space. As long as the waves are  inco-


( 3 6 0), or neither ( 3 = 0).


herent
 , any one of the Stokes parameters of the resultant will be 

Now recall the expressions for quasimonochromatic light,

the sum of the corresponding parameters of the constituents  






E


$ x(t) 
 = iˆ
 E
 0 x(t)
  cos [( kz 
 - v t
 ) + e x(t)
 ] [8.41a]

(all of which are proportional to irradiance). In other words,  

the set of parameters describing the resultant is ( ′0 + ″0, 

and

′1 + ″1,  ′2 + ″2,  ′3 + ″3). For example, if a unit-flux density 


 



E


$ y(t) 
 = jˆ
 E
 0 y(t)
  cos [( kz 
 - v t
 ) + e y(t)
 ] [8.41b]

vertical 𝒫-state (1, -1, 0, 0) is added to an  incoherent
  ℒ-state (see 

Table 8.5) of flux density   2, (2, 0, 0, -2), the composite wave has 

parameters (3, 

where E


-1, 0, -2). It is an ellipse of flux density 3, more 

$ (t) 
 = E
 $ x(t) 
 + E
 $ y(t)
 . Using these in a fairly straightfor-

nearly vertical than horizontal ( 1

ward way, we can recast the Stokes parameters* as

6 0), left-handed ( 3 6 0), 

and having a degree of polarization of 15>3.





2

0 = 8 E
 0 x
 9T + 8 E
 20 y
 9T (8.53a)

The set of Stokes parameters for a given wave can be 

 envisaged  as  a   vector
 ; we have already seen how two such 





2

1 = 8 E
 0 x
 9T - 8 E
 20 y
 9T (8.53b)

 (incoherent) vectors add.** Indeed, it will not be the usual 





2 = 82 E
 0 xE
 0 y
  cos e9T (8.53c)

*E. Collett, “The Description of Polarization in Classical Physics,”  Am. J. Phys.
   
36

 , 3 = 82 E
 0 xE
 0 y
  sin e9T (8.53d)

713 (1968).

**The detailed requirements for a collection of objects to form a vector space 

*For the details, see E. Hecht, “Note on an operational definition of the Stokes 

and themselves be vectors in such a space are discussed in, for example, Davis, 

parameters,”  Am. J. Phys.
  38
 , 1156 (1970).


Introduction to Vector Analysis
 .
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where  Ex(t)
  and  Ey(t)
  are the instantaneous scalar components 


TABLE 8.5  Stokes and Jones Vectors for Some 


of  E


$. Obviously, knowing E
 $, we know everything about the 


Polarization States


polarization state. And if we preserve the phase information, we 

State of polarization 

Stokes vectors 

Jones vectors

will be able to handle coherent waves. With this in mind,  rewrite 

Eq. (8.57) in complex form:

1

1

1

Horizontal 𝒫-state 

≥ ¥  

c d


E


0

0






E˜ 
 = c 0 xei
 w x
 d  (8.58)


E


0

0 yei
 w y


1

where  w x
  and w y
  are the appropriate phases. Horizontal and 

-1

0

Vertical 𝒫-state 

≥

¥  

c d

 vertical  𝒫-states are thus given by

0

1

0


E


 0

1


 



E˜
   

0 xei
 w x



h 
 = c

d  and E˜


d  (8.59)

0


v 
 = c E
 0 yei
 w y


0

1

1

𝒫-state at +45° 

≥ ¥  

  c d

1

12 1

0

respectively. The sum of two coherent beams, as with the Stokes 

vectors, is formed by a sum of the corresponding components. 

1

Since E˜


0

1

1

= E˜
 h 
 + E˜
 v
 , when, for example,  E
 0 x 
 =  E
 0 y
  and w x 
 = w y
 ,  

𝒫-state at -45° 

≥

¥  

  c d


E˜
  is given by

-1

12 -1

0


E


1






E˜ 
 = c 0 xei
 w x
 d  (8.60)

0

1

1


E
 0 xei
 w x


ℛ-state 

≥ ¥  

  c d

0

12 - i


1

or, after factoring, by

1

0

1

1

1

ℒ-state 

≥

¥  

  c d






E˜


0


i


=  E
 0 xei
 w x


12

c d  (8.61)

1

-1

which is a 𝒫-state at +45°. This is the case, since the ampli-

kind of  three-dimensional vector, but this sort of representation 

tudes are equal and the phase difference is zero.

is widely used in physics to great advantage. More specifically, 

In many applications it is not necessary to know the exact 

the parameters ( 0,  1,  2,  3) are arranged in the form of what 

amplitudes and phases. In such instances we can  normalize
  the 

is called a  column vector
 ,

irradiance to unity, thereby forfeiting some information but 

gaining much simpler expressions. This is done by dividing 

0

both elements in the vector by the same scalar (real or complex) 

1





quantity, such that the sum of the squares of the components is 1. 

= ≥ ¥  

(8.56)

2

For example, dividing both terms of Eq. (8.60) by  12  E
 0 xei
 w x
  

3

leads to

1

1






E



8.13.2 The Jones Vectors


$45 =

  c d  (8.62)

12 1

Another representation of polarized light, which complements 

Similarly, in normalized form

that of the Stokes parameters, was invented in 1941 by the 

American physicist R. Clark Jones. The technique he evolved 

1

0

has the advantages of being applicable to coherent beams and at 






E


$ h 
 = c d and E
 $

d  (8.63)

0


v 
 = c1

the same time being extremely concise. Yet unlike the previous 

formalism, it is  applicable only to polarized waves
 . In that case 

Right-circular light has  E
 0 x 
 =  E
 0 y
 , and the  y
 -component leads it would seem that the most natural way to represent the beam 

the  x
 -component by 90°. Since we are using the form ( kz 
 - v t
 ), 

would be in terms of the electric vector itself. Written in column 

we will have to add -p>2 to w y
 ; thus 

form, this  Jones vector
  is


E



E







E


$ =  x(t)







E˜


0 xei
 w x


c

d  (8.57)

ℛ = c


E



E



y(t)


0 xei
 (w x 
 - p>2)d  
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Dividing both components by  E



8.13.3 The Jones and Mueller Matrices


0 xei
 w x
  yields

Suppose that we have a polarized incident beam represented by 

1

1





its Jones vector E˜
 i
 , which passes through an optical element, 

c

d  


e
 - i
 p>2d = c- i


emerging as a new vector E˜
 t
  corresponding to the  transmitted 

wave. The optical element has transformed E˜
 i
  into E˜
 t
 , a process 

Hence the normalized complex Jones vector is*

that can be described mathematically using a 2 * 2 matrix. 

 Recall that a matrix is just an array of numbers that has pre-

1

1

1

1






E˜










scribed addition and multiplication operations. Let 𝒜 represent 





ℛ =

c d and similarly E˜


c d  (8.64)

12 - i


ℒ = 12  i


the transformation matrix of the optical element in question. 

Then

The sum E˜
 ℛ + E˜
 ℒ is


 



E˜
 t 
 = 𝒜E˜







i
  (8.66)

1

1 + 1

2

1





  c

d =

  c d  

12 - i 
 +  i


12 0


a


where 

𝒜 = c 11  a
 12d  (8.67)






a


This is a horizontal 𝒫-state having an amplitude twice that 

21


a
 22

of either component, a result in agreement with our earlier cal-

and the column vectors are to be treated like any other matrices. 

culation of Eq. (8.10). The Jones vector for elliptical light can 

As a reminder, write Eq. (8.66) as

be obtained by the same procedure used to arrive at E˜
 ℛ and E˜
 ℒ, 

where now  E
 0 x
  may not be equal to  E
 0 y
 , and the phase difference 


E


  ˜



a



E


  ˜


need not be 90°. In essence, for vertical and horizontal ℰ-states, 





c  tx
 d = c 11  a
 12d c  ix
 d  (8.68)


E


  ˜


all we need to do is stretch out the circular form into an ellipse 


ty



a
 21  a
 22  E
  ˜
 iy


by multiplying either component by a scalar. Thus

and, upon expanding,

1

2


 



E


  ˜











tx 
 =  a
 11 E


  ˜
 ix 
 +  a
 12 E
  ˜
 iy
  

c d  (8.65)

15 - i



E


  ˜
 ty 
 =  a
 21 E
  ˜
 ix 
 +  a
 22 E
  ˜
 iy


describes one possible form of horizontal, right-handed, 

 elliptical  light.

Table 8.6 contains a brief listing of Jones matrices for various 

Two vectors A


$ and B
 $ are said to be orthogonal when 

optical elements. To appreciate how these are used let’s exam-


A


$ · B
 $ = 0; similarly, two complex vectors are orthogonal when  ine a few applications. Suppose that E˜
 i
  represents a 𝒫-state at A˜ · B˜
 * = 0. One refers to two polarization states as being  +45°, which passes through a quarter-wave plate whose fast orthogonal
  when their Jones vectors are orthogonal. For example,

axis is vertical (i.e., in the  y
 -direction). The polarization state of 

the emergent wave is found as follows, where we drop the con-


E˜
 ℛ · E˜
 *ℒ = 12[(1)(1)* + (- i
 )( i
 )*] = 0

stant-amplitude factors for convenience:

or 



E˜
 h 
 · E˜
 * v 
 = [(1)(0)* + (0)(1)*] = 0 

1

0

1


E


  ˜






c

d c d = c  tx
 d  

0

- i 
 1


E


  ˜
 ty


where taking the complex conjugates of real numbers obviously 

leaves them unaltered. Any polarization state will have a corre-

sponding orthogonal state. Notice that

1

and thus  



E˜
 t 
 = c- d 
 i



 



E˜
 ℛ · E˜
 ℛ = E˜
 ℒ · E˜
 *ℒ = 1 

and  



E˜


The beam, as you well know, is right-circular. If the wave passes 

ℛ · E



˜ 
 *ℒ = E˜
 ℒ · E˜
 *ℛ = 0 

through a series of optical elements represented by the matrices 

Such vectors form an  orthogonal set
 , as do E˜  



h 
 and E



˜ 
 v
 . As we  𝒜 𝒜

𝒜





1, 𝒜





2, . . . ,  


n
 , then

have seen, any polarization state can be described by a linear 

combination of the vectors in either one of the orthonormal sets. 


 



E˜
 t 
 = 𝒜

𝒜 𝒜






n 
 g 𝒜





2 

1E



˜ 
 i 


These same ideas are of considerable importance in Quantum 

Mechanics, where one deals with orthonormal wavefunctions.

The matrices do not commute; they must be applied in the 

proper order. The wave leaving the first optical element in the 

series is 𝒜





1E



˜ 
 i
 ; after passing through the second element, it 

*Had we used (v t 
 -  kz
 ) for the phase, the terms in E
 $ℛ would have been inter-

becomes 𝒜 𝒜





2 

1E



˜ 
 i
 , and so on. To illustrate the process, return 

changed. The present notation, although possibly a bit more difficult to keep 

straight (e.g.,

to the wave considered above (i.e., a 𝒫-state at 

-p>2 for a phase lead), is more often used in modern works. Be 

+45°), but now 

wary when consulting references (e.g., Shurcliff).

have it pass through two quarter-wave plates, both with their 
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optical elements is used to examine various states, it becomes desir-


TABLE 8.6  Jones and Mueller Matrices


able to replace the product 𝒜

𝒜 𝒜






n 
 g 𝒜





2 

1 by the single 2 * 2  sys-


Linear optical element  Jones matrix 

Mueller matrix


tem matrix
  obtained by carrying out the multiplication. (The order 

in which it is calculated should be 𝒜 𝒜

𝒜 𝒜 𝒜





1

1

0

0

2𝒜





1, then 𝒜





3𝒜





2 

1, etc.)

In 1943 Hans Mueller, then a professor of physics at the 

Horizontal linear 

1

0

1 1

1

0

0

c

d  

 ≥

¥

    polarizer                

0

0

2 0

0

0

0

Massachusetts Institute of Technology, devised a matrix method 

4  

0

0

0

0

for dealing with the Stokes vectors. Recall that the Stokes 

 vectors have the attribute of being applicable to both polarized 

1

-1 0 0

and partially polarized light. The Mueller method shares this 

Vertical linear  

0

0

1

c

d

-1

1

0

0





 ≥

¥

quality and thus serves to complement the Jones method. The 

    polarizer              D 

0

1

2

0

0

0

0

latter, however, can easily deal with coherent waves, whereas 

0

0

0

0

the former cannot. The Mueller, 4 * 4, matrices are applied in 

1

0

1

0

much the same way as are the Jones matrices. There is therefore 

Linear polarizer 

1 1

1

1 0

0

0

0

  c

d  

 ≥

¥

little need to discuss the method at length; a few simple exam-

  at +45°                D  

2 1

1

2 1

0

1

0

ples, augmented by Table 8.6, should suffice. Imagine that we 

0

0

0

0

pass a unit-irradiance unpolarized wave through a linear hori-

1

0

-1 0

zontal polarizer. The Stokes vector of the emerging wave   t
  is

Linear polarizer  

1 1

-1

1

0

0

0

0

  at -45°                D  

  c

d  

 ≥

¥

2 -1

1

2 -1 0

1

0

1

1

0

0

1

12

0

0

0

0

1 1

1

0

0

0

12

1

0

0

0


t 
 =

≥

¥ ≥ ¥ = ≥ ¥

2 0

0

0

0

0

0

Quarter-wave plate,  

1

0

0

1

0

0


ei
 p>4 c

d  

≥

¥

0

0

0

0

0

0

    fast axis vertical  

0

- i


0

0

0

-1

0

0

1

0

The transmitted wave has an irradiance of 12 (i.e.,  0 = 12) and is 

1

0

0

0

linearly polarized horizontally ( 1 7 0). As another example, 

1

0

0

1

0

0

suppose we have a partially polarized elliptical wave whose 

Quarter-wave plate, 


ei
 p>4 c

d  

≥

¥

    fast axis horizontal 

0


i


0

0

0

1

Stokes parameters have been determined to be, say, (4, 2, 0, 3). 

0

0

-1 0

Its irradiance is 4; it is more nearly horizontal than vertical 

(

1

0

0

1

1 7 0), it is right-handed ( 3 7 0), and it has a degree of po-

1 1


i


1 0

0

0

0

larization of 90%. Since none of the parameters can be larger 

Homogeneous circular   U  

  c

d  

 ≥

¥

2 - i 
 1

2 0

0

0

0

than 

    polarizer right        

0, a value of  3 = 3 is fairly large, indicating that the  

1

0

0

1

ellipse resembles a circle. If the wave is now made to traverse a 

quarter-wave plate with a vertical fast axis, then

1

0

0

-1

Homogeneous circular  V

1 1

- i


1

0

0

0

0

    polarizer left           





  c

d  

 ≥

¥

1

0

0

0

4

2  i


1

2

0

0

0

0

0

1

0

0

2

-1 0 0

1






t 
 = ≥

¥ ≥ ¥  

0

0

0

-1

0

0

0

1

0

3

fast axes vertical. Thus, again discarding the amplitude factors, 

we have

and thus

1

0

1

0

1

4






E˜
 t 
 = c

d c

d c d  

0

0

1

2

- i


- i







t 
 = ≥

¥  

-3

whereupon

0

1

0

1






E˜


The emergent wave has the same irradiance and degree of 


t 
 = c

d c d  

  

0

- i 
 - i


 polarization but is now partially linearly polarized.

and finally

We have only touched on a few of the more important  aspects 

of the matrix methods. The full extent of the subject goes far 

1

beyond these introductory remarks.*






E˜
 t 
 = c- d 

1

*One can weave a more elaborate and mathematically satisfying development in 

The transmitted beam is a 𝒫-state at -45°, having essentially been 

terms of something called the coherence matrix. For further, but more advanced, 

flipped through 90° by a half-wave plate. When the same series of 

reading, see O’Neill,  Introduction to Statistical Optics
 .
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PROBLEMS




Complete solutions to all problems—except those with an asterisk— 




8.12*
  A beam of vertically polarized linear light is perpendicularly 



can be found in the back of the book.



incident on an ideal linear polarizer. Show that if its transmission axis  

makes an angle of 60° with the vertical only 25% of the irradiance will 


8.1*
   Two light waves  Ex 
 =  E
 0 cos ( kz 
 - v t
 ) and  Ey 
 = - E
 0 cos ( kz 
 - v t
 ) be transmitted by the polarizer.

overlap in space. Show that the resultant is linear light and determine 

its amplitude and tilt angle 


8.13*
   The transmittance of a real linear polarizer illuminated by lin-

u.

ear light making an angle of u with its transmission axis is given by


8.2*
   Two waves  Ez 
 = 4 sin ( ky 
 - v t
 ) and  Ex 
 = 3 sin ( ky 
 - v t
 ), both in T


SI units, overlap in space. Describe completely the state of polarization 


l 
 = ( T
 0 -  T
 90) cos 2u +  T
 90

of the resultant.

where  T
 0 and  T
 90 are the maximum and minimum values of transmit-


8.3*
   Consider the following two waves expressed in SI units:  E


tance, respectively. Show that this expression is equivalent to Eq. (8.25).


x
   =

8 sin ( ky 
 - v t 
 + p>2) and  Ez 
 = 8 sin ( ky 
 - v t
 ). Which wave leads, 8.14*
  Suppose 1000 W>m2 of natural light is incident perpendicu-and by how much? Describe the resultant wave. What is the value of its 

larly on a sheet of  HN
 -22 polarizer. Describe the light leaving the filter. 

amplitude?

What is its irradiance?


8.4
   Describe completely the state of polarization of each of the fol-


8.15
  If light that is initially natural and of flux density  I


lowing waves:


i
  passes 

through two sheets of  HN
 -32 whose transmission axes are parallel, 

(a)  E


$ = iˆ
 E
 0 cos ( kz 
 - v t
 ) - jˆ
 E
 0 cos ( kz 
 - v t
 ) what will be the flux density of the emerging beam?

(b)  E


$ = iˆ
 E
 0 sin 2p( z
 >l - n t
 ) - jˆ
 E
 0 sin 2p( z
 >l - n t
 ) 8.16*
   What will be the irradiance of the emerging beam if the ana-

(c)  E


$ = iˆ
 E


lyzer of the previous problem is rotated 30°?

0 sin (v t 
 -  kz
 ) + jˆ
 E
 0 sin (v t 
 -  kz 
 - p>4)

(d)  E


$ = iˆ
 E



8.17*
  Two sheets of  HN
 -38S linear polarizer are in series one behind 

0 cos (v t 
 -  kz
 ) + jˆ
 E
 0 cos (v t 
 -  kz 
 + p>2).

the other with their transmission axes aligned. The first is illuminated 


8.5
  Consider the disturbance given by the expression E
 $ (z, t)
  =

by 1000 W>m2 of natural light. Determine the approximate emerging 

[iˆ
  cos v t 
 + jˆ
  cos (v t 
 - p>2)] E
 0 sin  kz
 . What kind of wave is it? Draw a irradiance. What is the value of the resulting transmittance of the pair?

rough sketch showing its main features.


8.18*
   The irradiance of a beam of natural light is 400 W>m2. It   impinges 


8.6
   Analytically, show that the superposition of an ℛ- and an ℒ-state 

on the first of two consecutive ideal linear polarizers whose transmission 

having different amplitudes will yield an ℰ-state, as shown in Fig. 8.11. 

axes are 40.0° apart. How much light emerges from the two?

What must e be to duplicate that figure?


8.19*
   Imagine four  HN
 -32 Polaroids one behind the other with their 


8.7
   Write an expression for a 𝒫-state lightwave of angular frequency 

transmission axes all parallel. If the irradiance of natural light incident 

v and amplitude  E
 0 propagating along the  x
 -axis with its plane- 

on the first filter is  I


of-vibration at an angle of 25° to the  xy
 -plane. The disturbance is zero 


i
 , what is the transmitted irradiance emerging from 

the stack?

at  t 
 = 0 and  x 
 = 0.


8.20*
   Natural light of irradiance  I



8.8*
   Write an expression for a 𝒫-state lightwave of angular frequency 


i
  is incident normally on an  HN
 -32 

polarizer. (a) How much light emerges from it? (b) A second identical 

v and amplitude  E
 0 propagating along a line in the  xy
 -plane at 45° to 

polarizer is placed parallel to and behind the first. How much light 

the  x
 -axis and having its plane-of-vibration corresponding to the  xy
 -

emerges when the two transmission axes are at 45°?

plane. At  t 
 = 0,  y 
 = 0, and  x 
 = 0 the field is zero.


8.9



8.21*
   Natural light of irradiance  I


 Write an expression for an ℛ-state lightwave of frequency v 


i
  is incident normally on three iden-

tical sheet linear polarizers aligned with parallel transmission axes. If 

propagating in the positive  x
 -direction such that at  t 
 = 0 and  x 
 = 0 the 

each has a principal transmittance of 64% and a high extinction ratio, 


E


$-field points in the negative  z
 -direction.

show that the transmitted irradiance is about 13%  Ii
 .


8.10*
   A beam of linearly polarized light with its electric field vertical 

impinges perpendicularly on an ideal linear polarizer with a vertical 


8.22*
   As we saw in Section 8.10, substances such as sugar and insulin 

transmission axis. If the incoming beam has an irradiance of 200 W>m2,  

are  optically active
 ; they rotate the plane of polarization in proportion 

what is the irradiance of the transmitted beam?

to both the path length and the concentration of the solution. A glass 

vessel is placed between a pair of crossed  HN
 -50 linear polarizers, and 


8.11*
   Given that 300 W>m2 of light from an ordinary tungsten bulb 

50% of the natural light incident on the first polarizer is transmitted 

arrives at an ideal linear polarizer, what is its radiant flux density on 

through the second polarizer. By how much did the sugar solution in 

emerging? 

the cell rotate the light passed by the first polarizer?
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8.23*
   The light from an ordinary flashlight is passed through a linear 


Figure P.8.31


polarizer with its transmission axis vertical. The resulting beam, 

Σ

 having an irradiance of 200 W>m2, is incident normally on a vertical 


HN
 -50 linear polarizer whose transmission axis is tilted at 30° above 

the horizontal. How much light is transmitted?


8.24*
  Linearly polarized light (with an irradiance of 200 W>m2) 

aligned with its electric-field vector at  +55° from the vertical  impinges 

perpendicularly on an ideal sheet polarizer whose transmission axis is 

at  +10° from the vertical. What fraction of the incoming light 

 emerges?

Calcite

Mirror


8.25*
   Two ideal linear sheet polarizers are arranged with respect to 

the vertical with their transmission axis at 10° and 60°, respectively. If 

a linearly polarized beam of light with its electric field at 40° enters the 


8.32*
   A pencil mark on a sheet of paper is covered by a calcite crys-

first polarizer, what fraction of its irradiance will emerge?

tal. With illumination from above, isn’t the light impinging on the pa-


8.26*
   Imagine a pair of crossed polarizers with transmission axes ver-

per already polarized, having passed through the crystal? Why then do 

tical and horizontal. The beam emerging from the first polarizer has 

we see two images? Test your solution by polarizing the light from a 

flux density  I


flashlight and then reflecting it off a sheet of paper. Try specular 

1, and of course no light passes through the analyzer (i.e., 


I


 reflection off glass; is the reflected light polarized?

2 = 0). Now insert a perfect linear polarizer ( HN
 -50) with its trans-

mission axis at 45° to the vertical between the two elements—compute 


8.33
   Discuss in detail what you see in Fig. P.8.33. The crystal in the 


I
 2. Think about the motion of the electrons that are radiating in each 

photograph is calcite, and it has a blunt corner at the upper left. The 

polarizer.

two Polaroids have their transmission axes parallel to their  short
  edges.


8.27*
  Imagine that you have two identical perfect linear polarizers 

and a source of natural light. Place them one behind the other and posi-


Figure P.8.33  
 (E.H.)

tion their transmission axes at 0° and 50°, respectively. Now insert be-

tween them a third linear polarizer with its transmission axes at 25°. If 

1000 W>m2 of light is incident, how much will emerge with and with-

out the middle polarizer in place?


8.28*
   Given that 200 W>m2 of randomly polarized light is incident 

normally on a stack of ideal linear polarizers that are positioned one 

behind the other with the transmission axis of the first vertical, the 

second at 30°, the third at 60°, and the fourth at 90°. How much light 

emerges?


8.29*
  Two ideal  HN
 -50 linear polarizers are positioned one behind 

the other. What angle should their transmission axes make if an inci-


8.34
   The calcite crystal in Fig. P.8.34 is shown in three different ori-

dent unpolarized 100 W>m2 beam is to be reduced to 30.0 W>m2 on 

entations. Its blunt corner is on the left in ( a
 ), the lower left in ( b
 ), and 

emerging from the pair?

the bottom in ( c
 ). The Polaroid’s transmission axis is horizontal.  

Explain each photograph, particularly ( b
 ).


8.30
   An ideal polarizer is rotated at a rate v between a similar pair of 

stationary crossed polarizers. Show that the emergent flux density will 

be modulated at four times the rotational frequency. In other words, 


Figure P.8.34a  
 (E.H.)

show that


I



I 
 = 1 (1 - cos 4v t
 )

8

where  I
 1 is the flux density emerging from the first polarizer and  I
  is 

the final flux density.


8.31
   Figure P.8.31 shows a ray traversing a calcite crystal at near-

ly normal incidence, bouncing off a mirror, and then going through 

the crystal again. Will the observer see a double image of the spot 

on ^?
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Figure P.8.34b  
 (E.H.)


8.40
   The prism shown in Fig. P.8.40 is known as a  Rochon polarizer
 . 

Sketch all the pertinent rays, assuming

(a)  that it is made of calcite.

(b)  that it is made of quartz.

(c)   Why might such a device be more useful than a dichroic polarizer 

when functioning with high–flux density laser light?

(d)   What valuable feature of the Rochon is lacking in the Wollaston 

polarizer?


Figure P.8.40



Figure P.8.34c  
 (E.H.)


8.41*
   Imagine that we have a transmitter of microwaves that radiates 

a linearly polarized wave whose E


$-field is known to be parallel to the 


8.35
   In discussing calcite, we pointed out that its large birefringence 

dipole direction. We wish to reflect as much energy as possible off the 

arises from the fact that the carbonate groups lie in parallel planes (nor-

surface of a pond (having an index of refraction of 9.0). Find the neces-

mal to the optic axis). Show in a sketch and explain why the polariza-

sary incident angle and comment on the orientation of the beam.

tion of the group will be less when E


$ is perpendicular to the CO3 plane 

than when E


$ is parallel to it. What does this mean with respect to  v
 # 


8.42*
   At what angle will the reflection of the sky coming off the surface of 

and  v 
 , that is, the wave’s speeds when E


$ is linearly polarized perpen-

a pond ( n


i

= 1.33) completely vanish when seen through a Polaroid filter?

dicular or parallel to the optic axis?


8.43*
   What is Brewster’s angle for reflection of light from the surface 


8.36
   A beam of light enters a calcite prism from the left, as shown in 

of a piece of glass ( ng 
 = 1.65) immersed in water ( nw 
 = 1.33)?

Fig. P.8.36. There are three possible orientations of the optic axis of 


8.44*
   Given that the critical angle for some transparent material in air 

particular interest, and these correspond to the  x
 -,  y
 -, and  z
 -directions. 

is 41.0°, determine its polarization angle.

Imagine that we have three such prisms. In each case sketch the enter-

ing and emerging beams, showing the state of polarization. How can 


8.45*
   A beam of light is reflected off the surface of some unknown 

any one of these be used to determine  no
  and  ne
 ?

liquid, and the light is examined with a linear sheet polarizer. It is 


Figure P.8.36


found that when the central axis of the polarizer (that is, the perpen-

dicular to the plane of the sheet) is tilted down from the vertical at an 

angle of 54.30°, the reflected light is completely passed, provided the 


z


transmission axis is parallel to the plane of the interface. From this 

information, compute the index of refraction of the liquid.


y



8.46*
   Light reflected from a glass ( ng 
 = 1.65) plate immersed in ethyl 

alcohol ( ne 
 = 1.36) is found to be completely linearly polarized. At what 


x


angle will the partially polarized beam be transmitted into the plate?


8.37
   Compute the critical angle for the ordinary ray, that is, the angle 


8.47*
  A beam of natural light is incident on an air–glass interface 

for total internal reflection at the calcite–balsam layer of a Nicol prism.

( nti 
 = 1.5) at 40°. Compute the degree of polarization of the reflected light.


8.38*
   Draw a quartz Wollaston prism, showing all pertinent rays and 


8.48*
   Prove that the degree of polarization ( Vr
 ) of reflected light can 

their polarization states.

be expressed as 


8.39*
   A Wollaston prism is made of two 45° quartz prisms much like 


R



V


# -  R
 i


r 
 =

Fig. 8.34. Given that l


R


0 = 589.3 nm, determine the angle separating 

# +  R
 i

the two emerging rays. [ Hint:
  As compared to a calcite Wollaston, the 

[ Hint:
  For unpolarized reflected light  Ir
 i =  Ir
 #, whereas for polarized 


e
 -ray and  o
 -ray are interchanged.]

reflected light  Ip 
 =  Ir
 # -  Ir 
 .]

i
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8.49*
   A beam of natural light incident in air on a glass ( n 
 = 1.5) in-


8.62*
  Linear light oscillating at 60° above the horizontal  x
 -axis in the 

terface at 70° is partially reflected. Compute the overall reflectance. 

first and third quadrants passes through a quarter-wave plate with its 

How would this compare with the case of incidence at, say, 56.3°? 

fast axis horizontal. Explain why the light emerges as left elliptical 

Explain.

with its major axis vertical.


8.50*
   A narrow beam of natural light is incident at 56.0° on a glass 


8.63*
  Linear light oscillating along the  x
 -axis is passed through a 

plate ( n 
 = 1.50) in air. The reflected light is partially polarized. Deter-

quarter-wave plate whose fast axis is 45° above the  x
 -axis. Use the pha-

mine the degree of polarization. [ Hint:
  Look at Problem 8.48.]

sor method to graphically show that the emerging light is right-circular. 

[ Hint:
  First draw the  x
 ′-axis at 45° above the  x
 -axis; position-O for the 


8.51*
   A narrow beam of light strikes the surface of a block of clear 


Ey
 ′ phasor is downward off in the negative  y
 ′-direction.]

material and it is determined that the reflected light is totally polarized. 

If the total reflectance is 10% find the transmittance at the air–block 


8.64*
  Linear light polarized horizontally passes through a quarter-

interface.

wave plate whose fast axis is p>8 rad above the horizontal. Use the 

phasor method to graphically determine the polarization state of the 


8.52
  A ray of yellow light is incident on a calcite plate at 50°. The 

emerging light. [ Hint:
  E


$ is along the  x
 -axis below the  x
 ′-axis, and so 

plate is cut so that the optic axis is parallel to the front face and perpen-

the phasor E
 y
 ′ starts pointing downward.]

dicular to the plane-of-incidence. Find the angular separation between 

the two emerging rays.


8.65*
  Left-circular light of wavelength 590 nm traveling in the  


z
 -direction is to be converted into right-circular light by passing per-


8.53*
  A beam of light is incident normally on a quartz plate whose 

pendicularly through a plate of quartz. The quartz has been cut  

optic axis is perpendicular to the beam. If l0 = 589.3 nm, compute the 

and polished so that the optic axis is in the  y
 -direction 

wavelengths of both the ordinary and extraordinary waves. What are 

( no 
 = 1.544 3,  ne 
 = 1.553 4) and the face of the plate is the  xy
 -plane. 

their frequencies?

( a
 ) What is the direction of the fast axis? ( b
 ) How thick, at minimum, 


8.54
   The electric-field vector of an incident 𝒫-state makes an angle 

should the plate be? Explain your reasoning in detail and draw a 

of +30° with the horizontal fast axis of a quarter-wave plate. Describe, 

 diagram.

in detail, the state of polarization of the emergent wave.


8.66*
  An ℒ-state traverses an eighth-wave plate having a horizontal 

fast axis. What is its polarization state on emerging?


8.55*
   Take two ideal Polaroids (the first with its axis vertical and the 

second, horizontal) and insert between them a stack of 10 half-wave 


8.67*
   Figure P.8.67 shows two Polaroid linear polarizers and between 

plates, the first with its fast axis rotated p>40 rad from the vertical, and 

them a microscope slide to which is attached a piece of cellophane tape. 

each subsequent one rotated p>40 rad from the previous one. Deter-

Explain what you see.

mine the ratio of the emerging to incident irradiance, showing your 

logic clearly.


Figure P.8.67  
 (E.H.)


8.56*
   Suppose you were given a linear polarizer and a quarter-wave 

plate. How could you determine which was which, assuming you also 

had a source of natural light?


8.57*
   Linear light at 135° to the horizontal, oscillating in the second 

and fourth quadrants, passes through a p>2 retarder having its fast axis 

vertical. Describe the polarization state of the emerging light. How 

must the linear light be rotated (clockwise or counterclockwise) if it is 

to be aligned with the slow axis?


8.58*
   Right-circular light passes through a l>4 retarder whose fast 

axis is vertical. Describe the emerging polarization state. Did the 

polarization state shift one quarter of the way around the circle in 


8.68
   Imagine that we have randomly polarized room light incident 

Fig. 8.42?

almost normally on the glass surface of a radar screen. A portion of it 


8.59*
   Right-circular light passes through a quarter-wave plate with a 

would be specularly reflected back toward the viewer and would thus 

horizontal fast axis. Explain why you can expect the light to emerge 

tend to obscure the display. Suppose now that we cover the screen with 

linearly polarized at 45° in the first and third quadrants.

a right-circular polarizer, as shown in Fig. P.8.68. Trace the incident 

and reflected beams, indicating their polarization states. What happens 


8.60*
  Linear light oscillating at 135° in the second and fourth 

to the reflected beam?

 quadrants passes through a half-wave plate whose fast axis is vertical. 


8.69
   A Babinet compensator is positioned at 45

Explain why you can expect the emerging light to be linear in the first 

° between crossed lin-

ear polarizers and is being illuminated with sodium light. When a thin 

and third quadrants.

sheet of mica (indices 1.599 and 1.594) is placed on the compensator, 


8.61*
   Right-circular light passes through a half-wave plate whose fast 

the black bands all shift by one quarter of the space separating them. 

axis is vertical. Describe the emerging polarization state.

Compute the retardance of the sheet and its thickness.
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Figure P.8.68


(a)  Describe in detail the polarization states of each of these.

(b)   Determine the resulting Stokes parameters of the combined beam 

Right circular polarizer

Glass screen

and describe its polarization state.

Quarter-wave plate

(c)  What is its degree of polarization?

(d)   What is the resulting light produced by overlapping the incoherent 

Polarizer

beams (1, 1, 0, 0) and (1, -1, 0, 0)? Explain.


8.78*
   Show by direct calculation, using Mueller matrices, that a unit-

irradiance beam of natural light passing through a vertical linear polar-

izer is converted into a vertical 𝒫-state. Determine its relative irradi-

ance and degree of polarization.


8.79*
   Show by direct calculation, using Mueller matrices, that a unit-

irradiance beam of natural light passing through a linear polarizer with 


8.70
   Is it possible for a beam to consist of two orthogonal incoherent 

its transmission axis at  +45° is converted into a 𝒫-state at +45°.  

𝒫-states and not be natural light? Explain. How might you arrange to 

Determine its relative irradiance and degree of polarization.

have such a beam?


8.80*
   Show by direct calculation, using Mueller matrices, that a beam 


8.71*
   The specific rotatory power for sucrose dissolved in water at 

of horizontal 𝒫-state light passing through a 14l-plate with its fast axis 

20°C (l0 = 589.3 nm) is +66.45° per 10 cm of path traversed through 

horizontal emerges unchanged.

a solution containing 1 g of active substance (sugar) per cm3 of solu-


8.81*
   Confirm that the matrix

tion. A vertical 𝒫-state (sodium light) enters at one end of a 1-m tube 

containing 1000 cm3 of solution, of which 10 g is sucrose. At what 

1

0

0

0

orientation will the 𝒫-state emerge?

0

0

0

-1

≥

¥


8.72
   On examining a piece of stressed photoelastic material between 

0

0

1

0

crossed linear polarizers, we would see a set of colored bands (isochro-

0

1

0

0

matics) and, superimposed on these, a set of dark bands (isoclinics). 

How might we remove the isoclinics, leaving only the isochromatics? 

will serve as a Mueller matrix for a quarter-wave plate with its fast axis 

Explain your solution. Incidentally, the proper arrangement is indepen-

at  +45°. Shine linear light polarized at 45° through it. What happens? 

dent of the orientation of the photoelastic sample.

What emerges when a horizontal 𝒫-state enters the device?


8.73*
   Consider a Kerr cell whose plates are separated by a distance  d
 . 


8.82*
   The Mueller matrix 

Let / be the effective length of those plates (slightly different from the 

actual length because of fringing of the field). Show that

1

0

0

0





∆w

0


C
 2

= 2p K
 / V
 2> d
 2 [8.48]

+  S
 2 cos ∆

≥

w


CS
 (1 - cos ∆w) - S
  sin ∆w ¥

0


CS
 (1 - cos ∆w)  S
 2 +  C
 2 cos ∆w


C
  sin ∆w


8.74
   Compute the half-wave voltage for a longitudinal Pockels cell 

0


S
  sin ∆w

- C
  sin ∆w

cos ∆w

made of ADA (ammonium dihydrogen arsenate) at l0 ≈ 550 nm, 

where  r
 63 = 5.5 * 10-12 and  no 
 = 1.58.

in which  C 
 = cos 2a and  S 
 = sin 2a, represents an arbitrary wave 


8.75*
   The Jones vector for an arbitrary linearly polarized state at an 

plate having a retardance ∆w and a fast axis at an angle a measured 

angle u with respect to the horizontal is

with respect to the horizontal. Use it to derive the matrix given in the 

previous problem.

cos 

c ud

sin u


8.83*
   Beginning with the Mueller matrix for an arbitrary retarder pro-

vided in the previous problem, show that it agrees with the matrix in 

Prove that this matrix is in agreement with the one in Table 8.5 for a  

Table 8.6 for a quarter-wave plate with a vertical fast axis.

𝒫-state at +45°.


8.84
   Derive the Mueller matrix for a quarter-wave plate with its fast 


8.76
   Find a Jones vector E˜
 2 representing a polarization state orthog-

axis at 

onal to

-45 °. Check that this matrix effectively cancels the one in 

Problem 8.81, so that a beam passing through the two wave plates suc-

1


E˜


cessively remains unaltered.

1 = c- d

2 i



8.85*
   Pass a beam of horizontally polarized linear light through each 

Sketch both of these.

one of the 14l-plates in the two previous questions and describe the 


8.77*
  Two incoherent lightbeams represented by (1, 1, 0, 0) and  

states of the emerging light. Explain which field component is leading 

(3, 0, 0, 3) are superimposed.

which and how Fig. 8.9 compares with these results.

M08_HECH7226_05_SE_C08_330-389.indd   388

19/10/15   4:38 PM


 


Problems  389



8.86
   Use Table 8.6 to derive a Mueller matrix for a half-wave plate 


8.92*
   An optical filter can be described by a Jones matrix

having a vertical fast axis. Utilize your result to convert an ℛ-state into 

cos 

an ℒ-state. Verify that the same wave plate will convert an ℒ- to an  

c

a

sin a

-

d

sin a

cos a

ℛ-state. Advancing or retarding the relative phase by p>2 should have 

Obtain the form of the emerging light for each of the following inci-

the same effect. Check this by deriving the matrix for a half-wave plate 

dent beams:

with a horizontal fast axis.

(a)   A plane polarized beam polarized at angle u to the horizontal (see  


8.87
   Construct one possible Mueller matrix for a right-circular polar-

Problem 8.75).

izer made out of a linear polarizer and a quarter-wave plate. Such a de-

vice is obviously an inhomogeneous two-element train and will differ 

(b)  A left-circularly polarized beam.

from the  homogeneous
  circular polarizer of Table 8.6. Test your matrix 

(c)  A right-circularly polarized beam.

to determine that it will convert natural light to an ℛ-state. Show that it 

(d)  From the above, identify the filter and explain how it could be  

will pass ℛ-states, as will the homogeneous matrix. Your matrix should 

constructed.

convert  ℒ-states incident on the input side to ℛ-states, whereas the 

homogeneous polarizer will totally absorb them. Verify this.


8.93
   An optical filter can be described by a Jones matrix


8.88*
   If the Pockels cell modulator shown in Fig. 8.65 is illuminated 

cos2 

by light of irradiance  I


c

a

cos a sin ad


i
 , it will transmit a beam of irradiance  It
  such that

cos a sin a

sin2 a


It 
 =  Ii
  sin2 (∆w>2)

(a)   Obtain the form of the emerging beam when the incident light is 

plane polarized at angle u to the horizontal (see Problem 8.75).

Make a plot of  It
 > Ii 
 versus applied voltage. What is the significance of 

(b)  Deduce from the result of part (a) the nature of the filter.

the voltage that corresponds to maximum transmission? What is the 

lowest voltage above zero that will cause  I


(c)  Confirm your deduction above with at least one other test.


t
  to be zero for ADP (l0 =  

546.1 nm)? How can things be rearranged to yield a maximum value of 


8.94*
   Two linear optical filters have Jones matrices


It
 > Ii
  for zero voltage? In this new configuration what irradiance results 

1

1


i


when  V 
 =  V
 l>2?

𝒜

  e
 - i
 p>4 c

d





1 = 12


i


1


8.89
   Construct a Jones matrix for an isotropic plate of absorbing ma-

1

1

terial having an amplitude transmission coefficient of  t
 . It might some-

- i


and  

𝒜

  ei
 p>4 c

d . 





2 =

times be desirable to keep track of the phase, since even if  t 
 = 1, such 

12

- i


1

a plate is still an isotropic phase retarder. What is the Jones matrix for 

Identify these filters.

a region of vacuum? What is it for a perfect absorber?


8.95*
   A liquid cell containing an optically active sugar solution has a 

Jones matix given by


8.90
   Construct a Mueller matrix for an isotropic plate of absorbing 

material having an amplitude transmission coefficient of  t
 . What Muel-

1

1 + 13 -1 + 13

  c

d

ler matrix will completely depolarize any wave without affecting its 

212 1 - 13

1 + 13

irradiance? (It has no physical counterpart.)

(a)  Determine the polarization of the emerging light if the incident 

beam is a horizontal 𝒫-state.


8.91
  Keeping Eq. (8.33) in mind, write an expression for the ran-

(b)   Determine the polarization of the emerging light if the incident 

domly polarized flux density component ( In
 ) of a partially polarized 

beam is a vertical 𝒫-state.

beam in terms of the Stokes parameters. To check your result, add a 

randomly polarized Stokes vector of flux density 4 to an ℛ-state of 

(c)   Determine the angle of rotation produced by the optically active 

flux density 1. Then see if you get  In 
 = 4  
 for the resultant wave.

material.
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9Interference


The intricate color patterns shimmering across an oil slick on a 

wet asphalt pavement (see photo) result from one of the more 

common manifestations of the phenomenon of interference.* 

On a macroscopic scale we might consider the related problem 

of the interaction of surface ripples on a pool of water. Our ev-

eryday experience with this kind of situation allows us to envi-

sion a complex distribution of disturbances (as shown, e.g., in 

Fig. 9.1). There might be regions where two (or more) waves 

have overlapped, partially or even completely canceling each 

other. Still other regions might exist in the pattern, where the 

resultant troughs and crests are even more pronounced than 

those of any of the constituent waves. After being superim-

posed, the individual waves separate and continue on, com-

pletely unaffected by their previous encounter.

Although the subject could be treated from the perspective 

These roughly circular interference fringes are due to an oil film on wet 

of QED (p. 141), we’ll take a much simpler approach. The wave 

pavement. They are  fringes of equal thickness
  (see p. 412) and so don’t 

theory of the electromagnetic nature of light provides a natural 

change when viewed at different angles. Of course, they appear in a 

basis from which to proceed. Recall that the expression describ-

 rainbow of colors. (E.H.)

ing the optical disturbance is a second-order, homogeneous, 

linear, partial, differential equation [Eq. (3.22)]. As we have 

seen, it therefore obeys the important  Superposition Principle
 . 

Accordingly, the resultant electric-field intensity E


$, at a point in 


9.1 General Considerations


space where two or more lightwaves overlap, is equal to the 


vector sum
  of the individual constituent disturbances. Briefly 

We have already examined the problem of the superposition of 

then,  
optical interference corresponds to the interaction of two 



two scalar waves (Section 7.1), and in many respects those re-



or more lightwaves yielding a resultant irradiance that devi-



sults will again be applicable. But light is, of course, a vector 



ates from the sum of the component irradiances

 .

phenomenon; the electric and magnetic fields are vector fields. 

Out of the multitude of optical systems that produce interfer-

An appreciation of this fact is fundamental to any kind of 

ence, we will choose a few of the more important to examine. 

 intuitive understanding of interference. Still, there are many 

Interferometric devices will be divided, for the sake of discus-

 situations in which the particular optical system can be so con-

sion, into two groups:  wavefront splitting
  and  amplitude split-


figured that the vector nature of light is of little practical signifi-


ting
 . In the first instance, portions of the primary wavefront are 

cance. We will derive the basic interference equations within the 

used either directly as sources to emit secondary waves or in 

context of the vector model, thereafter delineating the conditions 

conjunction with optical devices to produce virtual sources of 

under which the scalar treatment is applicable.

secondary waves. These secondary waves are then brought to-

In accordance with the Principle of Superposition, the elec-

gether, thereupon to interfere. In the case of amplitude splitting, 

tric field intensity E


$, at a point in space, arising from the sepa-

the primary wave itself is divided into two segments, which 

rate fields E


$1, E
 $2, . . . of various contributing sources is given by

travel different paths before recombining and interfering.






E


$ = E
 $1 + E
 $2 + g (9.1)

The optical disturbance, or light field E


$, varies in time at an 

*The layer of water on the asphalt allows the oil film to assume the shape of a 

exceedingly rapid rate, roughly

smooth planar surface. The black asphalt absorbs the transmitted light, preventing 

back reflection, which would tend to obscure the fringes.

4.3 * 1014 Hz  to  7.5 * 1014 Hz


390
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are therefore quite general (Problem 9.1). For the sake of sim-

plicity, however, consider two point sources,  S
 1 and  S
 2, emitting 

monochromatic waves of the same frequency in a homogeneous 

medium. Let their separation  a
  be much greater than l. Locate 

the point of observation  P 
 far enough away from the sources so 

that at  P 
 the wavefronts will be planes (Fig. 9.2). For the mo-

ment, consider only linearly polarized waves of the form






E


$1 (
 r
 $,  t) 
 = E
 $





01  cos (k


$1 · r
 $ - v t 
 + e1) (9.2a)

and 


E


$2 (
 r
 $,  t) 
 = E
 $





02  cos (k


$2 · r
 $ - v t 
 + e2) (9.2b)

We saw in Chapter 3 that the irradiance at  P
  is given by


I 
 = P v
 8E
 $29T

Inasmuch as we will be concerned only with relative irradiances 

within the same medium, we will, for the time being at least, 

simply neglect the constants and set 


I 
 = 8E
 $29T

What is meant by  8E
 $29T is of course the time average of the 

magnitude of the electric-field intensity squared, or  8E
 $ · E
 $9T. 


Figure 9.1
     Water waves from two in-phase point sources in a ripple  

Accordingly 

tank. In the middle of the pattern the wave peaks (thin bright bands), and 

troughs (thin black bands) lie within long wedge-shaped areas (maxima) 


E


$2 =  E
 $ · E
 $

separated by narrow dark regions of calm (minima). Although the superim-

posed nodal lines look straight, they’re really hyperbolic. The optical equiv-

where now

alent is the electric field distribution depicted in Fig. 9.3 c
 . ( PSCC College 



Physics
 , 1968. Educational Development Center, Inc.)


E


$2 = (E
 $1 + E
 $2) · 
 (E
 $1 + E
 $2)

making the actual field an impractical quantity to detect. On the 

and thus

other hand, the irradiance  I  
 can be measured directly with a 






E


$2 = E
 $2

2

1 + E


$2 + 2E
 $1· E
 $2 (9.3)

wide variety of sensors (e.g., photocells, bolometers, photo-

graphic emulsions, or eyes). The study of interference is there-

Taking the time average of both sides, we find that the irradi-

fore best approached by way of the irradiance.

ance becomes

Much of the analysis to follow can be performed without 

specifying the particular shape of the wavefronts, and the results 






I 
 =  I
 1 +   I
 2 +   I
 12 (9.4)

(a)

(b)


E



E


2 (t)
  

1


 



(t)



   







k



 


1 k
 1


 



E



S
 1

01


k


Plane-of-vibration of


a



P


1


E


02 k
 2


S
 2


k
 2 k
 2

Plane-of-vibration of


  E


Wavefronts

1


 



P



 E



2



a 
 >> l   



Figure 9.2
     Waves from two point sources overlapping in space.
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provided that


E
 2

and 


I


2

02

2 = 8E


$29T =

 (9.13)






I


2

1 = 8E


$219T (9.5)

The interference term becomes






I
 2 = 8E
 $229T (9.6)


I
 12 = 21 I
 1 I
 2 cos d

and 


I
 12 = 28E
 $1 · E
 $29T (9.7)

whereupon the total irradiance is

The latter expression is known as the  interference term
 . To eval-

uate it in this specific instance, we form






I 
 =  I
 1 +  I
 2 + 21 I
 1 I
 2 cos d (9.14)


E


$1 · E
 $2 = E
 $01 · E
 $02 cos (k
 $1 · r
 $ - v t 
 + e1)

At various points in space, the resultant irradiance can be 

greater, less than, or equal to  I
 1 +  I
 2, depending on the value of 





* cos (k
 $2 · r
 $ - v t 
 + e2) (9.8)


I
 12, that is, depending on d. A maximum irradiance is obtained 

when cos d = 1, so that

or equivalently






I
 max =  I
 1 +  I
 2 + 21 I
 1 I
 2 (9.15)


E


$1 · E
 $2 =


E


when 

d

$01 · E
 $02 [cos (k
 $1 · r


= 0,±2p,±4p, . . . 

$ + e1) cos v t 
 + sin (k
 $1 · r
 $ + e1) sin v t
 ]

   * [cos (k
 $2 · r
 $ + e2) cos v t 
 + sin (k
 $2 · r
 $ + e2) sin v t
 ] (9.9) In this case of  
total constructive interference

 , the phase difference 

between the two waves is an integer multiple of 2p, and the 

Recall that the time average of some function  ƒ(t)
 , taken over an 

disturbances are  in
 - phase
 . When 0 6 cos d 6 1 the waves are 

interval  T
 , is


out-of-phase
 ,  I
 1 +  I
 2 6  I 
 6  I
 max, and the result is  constructive
 t 
 +  T



interference
 . At d = p>2, cos d = 0, the optical disturbances 

1





8 ƒ(t)
 9 T 
 =  


ƒ(t
 ′ )
   dt
 ′ (9.10)

are 90° out-of-phase, and  I 
 =  I
 1 +  I
 2. For  
 0 7 cos d 7 -1 we 


T 
 3 t


have the condition of  destructive
   interference
 ,   I
 1 +  I
 2 7  I 
 7  I
 min. 

A minimum irradiance results when the waves are 180° out- 

The period t of the harmonic functions is 2p>v, and for our 

of-phase, troughs overlap crests, cos d = -1, and

present concern  T
  7 7 t. In that case the 1> T
  coefficient in 

front of the integral has a dominant effect. After multiplying out 






I
 min =  I
 1 +  I
 2 - 21 I
 1 I
 2 (9.16)

and averaging Eq. (9.9) we have

This occurs when d = ±p, ±3p, ±5p, . . . , and it is referred 

8E
 $1 · E
 $29T = 12E
 $01 · E
 $02 cos (k
 $1 · r
 $ + e1 - k
 $2 · r
 $ - e2) to as  
total destructive interference

 .

Another somewhat special yet very important case arises 

where use was made of the fact (p. 50) that 8cos2 v t
 9T = 12, 

when the amplitudes of both waves reaching  P
  in Fig. 9.2 are 

8sin2 v t
 9T = 12, and 8cos v t
  sin v t
 9T = 0. The interference term 

equal (i.e., E


$01 = E
 $02). Since the irradiance contributions from 

is then

both sources are then equal, let  I
 1 =  I
 2 =  I
 0. Equation (9.14) 






I
 12 = E
 $01 · E
 $02 cos d (9.11)

can now be written as

and d, equal to (k
 $1 · r
 $ - k
 $2 · r
 $ + e1 - e2), is the  phase difference
 d






I


arising from a combined path length and initial phase-angle  

= 2 I
 0(1 + cos d) = 4 I
 0 cos2   (9.17)

2

difference. Notice that if E


$01 and E
 $02 (and therefore E
 $1 and E
 $2) 

are perpendicular,  I
 12 = 0 and  I 
 =  I
 1 +  I
 2. Two such orthogonal 

from which it follows that  I
 min = 0 and  I
 max = 4 I
 0. For an analy-

𝒫-states will combine to yield an ℛ-, ℒ-, 𝒫-, or ℰ-state, but the 

sis in terms of the angle between the two beams, see Problem 9.3.

flux-density distribution will be unaltered.

Equation (9.14) holds equally well for the spherical waves 

The most common situation in the work to follow corre-

emitted by  S
 1 and  S
 2. Such waves can be expressed as

sponds to E


$01 parallel to E
 $02. In that case, the irradiance    


E


reduces to the value found in the scalar treatment of Section 7.1. 

$1 (r1, t) 
 = E
 $01 (r1)
  exp [ i
 ( kr
 1 - v t 
 + e1)] (9.18a)

Under those conditions

and  



E


$2 (r2, t) 
 = E
 $02 (r2)
  exp [ i
 ( kr
 2 - v t 
 + e2)] (9.18b)


I
 12 =  E
 01 E
 02 cos d

The terms  r
 1 and  r
 2 are the radii of the spherical wavefronts 

This can be written in a more convenient way by noticing that

overlapping at  P
 ; they specify the distances from the sources to  P
 . 

In this case


E
 2






I


01

1 = 8E


$219T =

 (9.12)





d

2

=  k
 ( r
 1 -  r
 2) + (e1 - e2) (9.19)
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The flux density in the region surrounding  S
 1 and  S
 2 will cer-

such that maximum irradiance occurs when

tainly vary from point to point as ( r
 1 -  r
 2) varies. None theless, 

from the principle of conservation of energy, we expect the spatial 





( r
 1 -  r
 2) = [2p m 
 + (e2 - e1)]> k
  (9.20a)

average of  I
  to remain constant and equal to the average of  I
 1 +  I
 2. 

and minimum when

The space average of  I
 12 must therefore be zero, a property veri-

fied by Eq. (9.11), since the average of the cosine term is, in fact, 





( r
 1 -  r
 2) = [p m
 ′ + (e2 - e1)]> k
  (9.20b)

zero. (For further discussion of this point, see Problem 9.2.)

Equation (9.17) will be applicable when the separation between 

Either one of these equations defines a family of surfaces, each of 


S


which is a hyperboloid of revolution. The vertices of the hyperbo-

1 and  S
 2 is small in comparison with  r
 1 and  r
 2 and when the inter-

ference region is also small in the same sense. Under these circum-

loids are separated by distances equal to the right-hand sides of 

stances, E


$

Eqs. (9.20a) and (9.20b). The foci are located at  S


01 and E


$02 may be considered independent of position, 

1 and  S
 2.  

that is, constant over the small region examined. If the emitting 

If the waves are in-phase at the emitter, e1 - e2 = 0, and  

sources are of equal strength, E


$

Eqs. (9.20a) and (9.20b) can be simplified to

01 = E


$02,  I
 1 =  I
 2 =  I
 0 and we have


I 
 = 4 I


[maxima] 

( r


0 cos2 12[ k
 ( r
 1 -  r
 2) + (e1 - e2)]

1 -  r
 2) = 2p m
 > k 
 =  m
 l (9.21a)

Irradiance maxima occur when

[minima] 

( r
 1 -  r
 2) = p m
 ′> k 
 = 12 m
 ′l (9.21b)

[maxima] 

d = 2p m
  

for maximum and minimum irradiance, respectively. Figure 9.3 a
  

provided that  m 
 = 0,±1, ±2, . . .  Similarly, minima, for which  


shows a few of the surfaces over which there are irradiance maxi-


I 
 = 0, arise when

ma. The dark and light zones that would be seen on a screen placed 

in the region of interference are known as interference fringes
  

[minima] 

d = p m
 ′ 

(Fig. 9.3 b
 ). When the screen is moved perpendicularly, keeping it 

parallel to itself, out far from the point sources, the fringes will 

where   m
 ′ = ±1, ±3, ±5, . . . , or if you like,  m
 ′ = 2 m 
 + 1. 

appear much straighter. Notice that the central bright band, equi-

Using Eq. (9.19) these two expressions for d can be rewritten 

distant from the two sources, is the so-called zeroth-order fringe 

( m 
 = 0), which is straddled by the  m
 ′ = ±1 minima, and these, 

in turn, are bounded by the first-order ( m 
 = ±1) maxima, which 

are straddled by the  m
 ′ = ±3 minima, and so forth.

Since the wavelength l for light is very small, a large number 

of surfaces corresponding to the lower values of  m
  will exist 

close to, and on either side of, the plane  m 
 = 0. A number of 


r



P


1

fairly straight parallel fringes will therefore appear on a distant 


S



r


screen placed perpendicular to that ( m


1

2

= 0) plane and in the vi-

cinity of it, and for this case the approximation  r



m
  = –1


S


1 ≈  r
 2 will hold. 

2

If  S
 1 and  S
 2 are then displaced in the vertical plane of  Fig. 9.3 b
  


m
  = 2


m
  = 0


m
  = 1

(a)


S
 1


r
 1


P



r
 2


S


(c)

2


Figure 9.3
   ( a
 ) Hyperboloidal surfaces of maximum irradiance for two 

point sources. The quantity  m
  is positive where  r
 1 7  r
 2. ( b
 ) Here we see how the irradiance maxima are distributed on a plane containing  S
 1 and  S
 2. 

( c
 ) The electric-field distribution in the plane shown in part ( b
 ). The tall 

peaks are the point sources  S
 1 and  S
 2. Note that the spacing of the  

(b)

sources is different in ( b
 ) and ( c
 ). (Optics Project, Mississippi State University)
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normal to the  S
 1 S
 2 line, the fringes will merely be displaced 

parallel to themselves. Thus  two narrow slits will generate a 



large number of exactly aligned fringes, thereby increasing the 



irradiance, leaving the central region of the two-point source 



pattern otherwise essentially unchanged.



9.1.1 Near  Field / Far  Field


To ensure mathematical simplicity, the analysis of the fringe 

pattern is usually carried out for a location at a substantial dis-

tance from the two point sources. In that region the interfering 

waves can be taken to be planar. There the cosine-squared irra-

diance distribution is established, and one sees a series of fairly 

straight, parallel, bright and dark fringes (Fig. 9.4). The overall 

pattern keeps its shape and simply expands as the viewing 

screen is moved still farther away from the sources. This is the 


S
 1

domain on which most introductory treatments focus and it’s 

called the far field
 .

The two waves were initially spherical and only came to re-


S
 2

semble plane waves far from their sources. Of course, the am-

plitudes of spherical waves fall off with distance traveled. Having 

reached the far field, the waves have progressed enough that 


Figure 9.5
     A schematic representation of the fringe patterns (irradiance 

any small differences in their paths traveled, ( r
 1 -  r
 2), are, as 

mappings) in the vicinity of two point sources  S
 1 and  S
 2, separated by a 

regards their amplitudes, of no consequence. In other words, 

distance  a
 , where  a 
 = 4l. The curves correspond to distances from the 

when  P
  is far away the two waves arrive there with pretty much 

vertical aperture plane of  a
 >2,  a
 , 2 a
 , 4 a
 , and 8 a
 .

the same amplitude. If one wave travels 1 000 000 * l and the 

other 1 000 000.5 * l their amplitudes will hardly differ, even 

though the waves will be p rad out-of-phase. Thus, it’s exclu-

from the far-field cosine-squared distribution. We’ll soon come 

sively the relative phase of the two waves that determines the 

back to this issue when we examine Young’s Experiment.

interference pattern in the far field [Eq. (9.21)], and so we just 

take the amplitudes to be equal there. 

This will not be the case in the region closer to the sources. 

In that near field
 , the two waves can arrive at some arbitrary 


9.2 Conditions for Interference


point with both a phase-angle difference and an appreciable am-

plitude difference. That makes for a more complicated analysis, 

If two beams are to interfere to produce a stable pattern, they 

and a more varied interference pattern, as illustrated in Fig. 9.5. 

must have very nearly the same frequency. A significant frequency 

There we see a representation of the irradiance filling a small 

difference would result in a rapidly varying, time-dependent 

portion of the space beyond two point sources separated by 

phase difference, which in turn would cause  I
 12 to average to 


a 
 = 4l. Notice that at distances of 2l, and 4l, which are quite 

zero during the detection interval (see Section 7.1). Still, if the 

close to the emitters, the patterns are significantly different 

sources both emit white light, the component reds will interfere 

with reds, and the blues with blues. A great many fairly similar, 

slightly displaced, overlapping monochromatic patterns will 

produce one total white-light pattern. It will not be as sharp or 

as extensive as a quasimonochromatic pattern, but  white light 



will produce observable interference
 .

The clearest patterns exist when the interfering waves have 

equal or nearly equal amplitudes. The central regions of the 

dark and light fringes then correspond to complete destructive 

and constructive interference, respectively, yielding maximum 

contrast.

For a fringe pattern to be observed, the two sources need not 


Figure 9.4  
   Cosine-squared fringes associated with far-field double-beam  

interference. The oscillating curve is a bit of an idealization, since the  

be in-phase with each other. A somewhat shifted but otherwise 

fringes actually lose contrast at both right and left extremes.

identical interference pattern will occur if there is some initial 
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phase difference between the sources, as long as it remains con-

(a)

stant. Such sources (which may or may not be in step, but are 


P
 1

always marching together) are coherent
 .* 


P '
 4


9.2.1 Temporal and Spatial Coherence



P
 2


P '
 3

Remember that because of the granular nature of the emission 


P '
 2

process, conventional quasimonochromatic sources produce 

light that is a mix of photon wavetrains. At each illuminated 


P '
 1

point in space there is a net field that oscillates nicely (through 

roughly a million cycles) for less than 10 ns or so before it ran-

domly changes phase. This interval over which the lightwave 

resembles a sinusoid is a measure of its temporal coherence
 . 


P


The average time interval during which the lightwave oscillates 

3

in a predictable way we have already designated as the coher-

ence time of the radiation. The longer the coherence time, the 

greater the temporal coherence of the source.

(b)

As observed from a fixed point in space, the passing light-

wave appears fairly sinusoidal for some number of oscillations 


P
 1

between abrupt changes of phase. The corresponding spatial 

extent over which the lightwave oscillates in a regular, predict-


P '
 4 

able way is the coherence length [Eq. (7.64)]. Once again, it 

will be convenient to picture the lightbeam as a progression of 


P '
 3


P
 2

well-defined, more or less sinusoidal, wavegroups of average 


P '
 2

length ∆ lc
 , whose phases are uncorrelated to one another. Bear 

in mind that  
temporal coherence is a manifestation of spectral 




P '
 1



purity

 . If the light were ideally monochromatic, the wave would 

∆ lc


be a perfect sinusoid with an infinite coherence length. All real 

sources fall short of this, and all actually emit a range of fre-


P


quencies, albeit sometimes quite narrow. For instance, an ordi-

3

nary laboratory discharge lamp has a coherence length of sev-


Figure 9.6
     Temporal and spatial coherence. ( a
 ) Here the waves display 

eral millimeters, whereas certain kinds of lasers routinely 

both forms of coherence perfectly. ( b
 ) Here there is complete spatial 

provide coherence lengths of tens of kilometers.

 coherence but only partial temporal coherence.

Figure 9.6 summarizes some of these ideas. In ( a
 ) the wave, 

which arises from a point source, is monochromatic and has 

complete temporal coherence. What happens at  P
 ′1 will, a mo-

and  P
 3 lie on the same wavefront in both cases; the disturbance 

ment later, happen at  P
 ′2 and still later at  P
 ′3—all totally predict-

at each of these laterally separated points is in-phase and stays 

ably. In fact, by watching  P
 ′4 we can determine what the wave 

in-phase. Both waves therefore exhibit complete spatial coherence
 . 

will be doing at  P
 ′1 at any time. Every point on the wave is cor-

By contrast, suppose the source is broad, that is, composed of 

related; its coherence time is unlimited. By contrast, Fig. 9.6 b 


many widely spaced point sources (monochromatic ones of pe-

shows a point source that changes frequency from moment to 

riod t), as in Fig. 9.7. If we could take a picture of the wave 

moment. Now there’s no correlation of the wave at points that 

pattern in Fig. 9.7 every t seconds, it would be the same; each 

are far apart like  P
 ′1 and  P
 ′4. The waves lack the total temporal 

wavefront would be replaced by an identical one, one wave-

coherence displayed in ( a
 ), but they’re not completely unpre-

length behind it. The disturbances at  P
 ′1,  P
 ′2, and  P
 ′3 are corre-

dictable; the behavior at points that are close together such as  P
 ′2 

lated, and the wave is temporally coherent.

and  P
 ′3 are somewhat correlated. This is an instance of  partial 


Now we insert a little realism; suppose each point source 


temporal coherence
 , a measure of which is the coherence 

changes phase rapidly and randomly, emitting 10-ns-long sinu-

length—the shortest distance over which the disturbance is sinu-

soidal wavetrains. The waves in Fig. 9.7 would randomly 

soidal, that is, the distance over which the phase is predictable.

change phase, shifting, combining, and recombining in a fren-

Notice, in both parts of Fig. 9.6, that the behavior of the 

zied tumult. The disturbances at  P
 ′1,  P
 ′2, and  P
 ′3 would only be 

waves at points- P
 1, - P
 2, and - P
 3 is completely correlated. Each of 

correlated for a time less than 10 ns. And the wave field at two, 

the two wavestreams arises from a single point source and  P
 1,  P
 2, 

even modestly spaced, lateral points such as  P
 1 and  P
 2 would be 

almost completely uncorrelated, depending on the size of the 

*Chapter 12 is devoted to the study of coherence, so here we’ll merely touch on 

source. The beam from a candle flame or a shaft of sunlight is a 

those aspects that are immediately pertinent.

multifrequency mayhem much like this.
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observed and photographed.* The most common means of 


P
 1

overcoming this problem with ordinary thermal sources is to make 

one source serve to produce two coherent secondary sources.


9.2.2  The Fresnel–Arago Laws



P'



P'


1

2


P'
 3

In Section 9.1 it was assumed that the two overlapping optical 

disturbance vectors were linearly polarized and parallel. None-

theless, the formulas apply as well to more complicated situa-

tions; indeed, the treatment is applicable regardless of the polar-

ization state of the waves. To appreciate this, recall that any 

polarization state can be synthesized out of two orthogonal 


P


𝒫-states. For natural light these 𝒫-states are mutually incoher-

2

ent, but that represents no particular difficulty.

Suppose that every wave has its propagation vector in the same 

plane, so that we can label the constituent orthogonal 𝒫-states, 


Figure 9.7
     With multiple (here four) widely spaced point sources,  

the resultant wave is still coherent. But if those sources change phase  

with respect to that plane, for example, E


$  and EE
 $

‘

#, which are 

rapidly and randomly, both the spatial and temporal coherence  

parallel and perpendicular to the plane, respectively (Fig. 9.8 a
 ). 

diminish accordingly.

Thus any plane wave, whether polarized or not, can be written 

in the form (E


$ + E
 $

‘

#). Imagine that the waves (E


$‘1 + E
 $#1) 

and  (E


$‘2 + E
 $#2) emitted from two identical coherent sources 

Two ordinary sources, two lightbulbs, can be expected to 

superimpose in some region of space. The resulting flux-density 

maintain a constant relative phase for a time no greater than 

∆ tc
 , so the interference pattern they produce will randomly 

shift around in space at an exceedingly rapid rate, averaging 

*G. Magyar and L. Mandel, “Interference fringes produced by superposition of 

out and making it quite impractical to observe. Until the ad-

two independent maser light beams,”  Nature
  198
 , 255 (1963); F. Louradour, 

F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two 

vent of the laser, it was a working principle that no two indi-

separate lasers,”  Am. J. Phys
 . 61
 , 242 (1993); L. Basano and P. Ottonello, 

vidual sources could ever produce an observable interference 

“Interference fringes from stabilized diode lasers,”  Am. J. Phys
 . 68
 , 245 (2000);  

pattern. The coherence time of lasers, however, can be appre-

E. C. G. Sudarshan and T. Rothman, “The two-slit interferometer reexamined,”  

ciable, and interference via independent lasers has been 






Am. J. Phys
 . 59
 , 592 (1991).
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Figure 9.8
   Interference  

of polarized light.
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distribution will consist of two independent, precisely overlapping 

interference patterns 8(E
 $‘1 + E
 $#2)29T and 8(E
 $#1 + E
 $#2)29T. 

Therefore,  although we derived the equations of the previous sec-



tion specifically for linear light, they are applicable to any polar-



ization state, including natural light.


Notice that even though E


$#1, and E
 $#2 are always parallel to 

each other, E


$‘1 and E
 $‘2, which are in the reference plane, need 

not be. They will be parallel only when the two beams are them-

selves parallel (i.e., k
 $1 = k
 $2). The inherent vector nature of the 

interference process as manifest in the dot-product representa-

tion [Eq. (9.11)] of  I
 12 cannot be ignored. There are many prac-

tical situations in which the beams approach being parallel, and 

in these cases the scalar theory will do nicely. Even so, ( b
 ) and 

( c
 ) in Fig. 9.8 are included as an urge to caution. They depict the 


Figure 9.9
     The pinhole scatters a wave that is spatially coherent, even 

imminent overlapping of two coherent linearly polarized waves. 

though it’s not temporally coherent.

In Fig. 9.8 b
  the optical vectors are parallel, even though the 

beams aren’t, and interference would nonetheless result. In Fig. 

understand why, the experiment failed because the primary 

9.8 c
  the optical vectors are perpendicular, and  I
 12 = 0, which 

source, the Sun’s disk (which subtends about 32 minutes of 

would be the case here even if the beams were parallel.

arc), was too large and therefore the incident light didn’t have 

Fresnel and Arago made an extensive study of the conditions 

the necessary spatial coherence in order to properly simultane-

under which the interference of polarized light occurs, and their 

ously illuminate the two pinholes. To do that, the Sun would 

conclusions summarize some of the above considerations. The 

have had to subtend only a few seconds of arc.


Fresnel–Arago Laws
  are as follows:

A hundred and forty years later, Dr. Thomas Young (guided by 

the phenomenon of beats, which was understood to be produced 

1.  Two orthogonal, coherent 𝒫-states cannot interfere in the 

by two overlapping sound waves) began his efforts to establish 

sense that  I
 12 = 0 and no fringes result.

the wave nature of light. He redid Grimaldi’s experiment, but this 

2.  Two parallel, coherent 𝒫-states will interfere in the same 

time the sunlight passed through an initial pinhole, which became 

way as will natural light.

the primary source (Fig. 9.9). This had the effect of creating a 

3.   The two constituent orthogonal 𝒫-states of natural light can-

spatially coherent beam that could identically illuminate the 

not interfere to form a readily observable fringe pattern even 

two apertures. The arrangement is pictured schematically in 

if rotated into alignment. This last point is understandable, 

Fig. 9.10; there, with sunlight hitting the first opaque screen, a 

since these 𝒫-states are incoherent.

cone of light emerged from the circular hole. The smaller the 


9.3 Wavefront-Splitting Interferometers


The main problem in producing sustained interference is the 

sources: they must be  coherent
 . And yet separate, independent, 

adequately coherent sources, other than the laser, don’t exist! 

That dilemma was first solved two hundred years ago by Thomas 

Young in his classic double-beam experiment. He brilliantly 

took a single wavefront, split off from it two coherent portions, 

and had them interfere.

Viewing

screen


9.3.1 Young’s Experiment


Aperture

screen

In 1665 Grimaldi described an experiment he had performed to 

examine the interaction between two beams of light. He admit-

ted sunlight into a dark room through two close-together pin-

holes in an opaque screen. Like a camera obscura (p. 220), each 

pinhole cast an image of the Sun on a distant white surface. The 


Figure 9.10
     Young’s Experiment employing cones of light from two 

idea was to show that where the circles of light overlapped, 

small circular holes. Waves of illumination impinge from the left on a 

darkness could result. Although at the time he couldn’t possibly 

screen containing a single circular hole.
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Figure 9.11
     Young’s Experiment. ( a
 ) Cylindrical waves superimposed in the region beyond the aperture screen. ( b
 ) Overlapping waves showing peaks and troughs. The maxima and minima lie along nearly straight hyperbolas. ( c
 ) The geometry of Young’s Experiment. ( d)
  A path length difference of one wave- 

length corresponds to  m 
 = ±1 and the first-order maximum. ( e
 ) (M. Cagnet, M. Francon, and J. C. Thierr:  Atlas optischer
 Erscheinungen
 , Berlin–Heidelberg–New York: Springer, 1962.)

hole, the more the light spread, and the larger was the illumi-

light areas. Today, aware of the physics involved, we generally 

nated disk that formed the base of the cone. Additionally, the 

replace the pinholes with narrow slits that let through much 

smaller the hole, the more spatially coherent was the light fall-

more light (Fig. 9.11 a
 ).

ing on the second or “aperture screen.” That disk of light was 

Consider a hypothetical monochromatic plane wave illumi-

made large enough so that expanding segments of spherical 

nating a long narrow slit. From that primary slit light will be dif-

waves simultaneously illuminated both circular holes. Two co-

fracted out in the forward direction and a cylindrical wave will 

herent cones of light then streamed out from those holes toward 

emerge. Suppose that this wave, in turn, falls on two parallel, 

the “viewing screen.” The closer together the two apertures 

narrow, closed spaced slits,  S
 1 and  S
 2. This is shown in a three-

were, the more the disks of light overlapped on the viewing 

dimensional view in Fig. 9.11 a
 . When symmetry exists, the seg-

screen. In that region of overlap, the two waves interfered and 

ments of the primary wavefront arriving at the two slits will be 

created dark and light bands — fringes. Energy was, of course, 

exactly in-phase, and the slits will constitute two coherent sec-

conserved; it was essentially shifted from the dark areas to the 

ondary sources. We expect that wherever the two waves coming 
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(d)

In accordance with Section 9.1,  constructive
  interference 

will occur when


P



m=+
 1






r
 1 -  r
 2 =  m
 l (9.26)

Thus, from the last two relations we obtain


s



y


[ m
 th bright fringe] 


ym 
 ≈   m


1


a 
 l (9.27)


S
 2

u1


m=
 0

where  m



B


= 0, ±1, ±2, . . . .


S


This gives the position of the  m
 th bright fringe on the screen, 

1

l

if we count the maximum at 0 as the zeroth fringe. The angular 


r
 1 –  r
 2 = 1l

position of the fringe is obtained by substituting the last expres-

sion into Eq. (9.24); thus

l


m
 l


m=
 –1





u m 
 =

 (9.28)


a


This relationship can be obtained directly by inspecting 





Fig. 9.11 c
 . For the  m
 th-order interference maximum,  m
  whole 

wavelengths should fit within the distance  r
 1 -  r
 2. Therefore, 

from the triangle  S
 1 S
 2 B
 ,






a
  sin u m 
 =  m
 l (9.29)

or 

u m 
 ≈  m
 l> a
  

(e)

The spacing of the fringes on the screen can be gotten read-

ily from Eq. (9.27). The difference in the positions of two con-

from  S
 1 and  S
 2 overlap, interference will occur (provided that the 

secutive maxima is

optical path difference is less than the coherence length,  c
 ∆ t



s



s



c
 ).


ym
 +1 -  ym 
 ≈  ( m


  m


Figures 9.11 a
 ,  b
 , and  c
  correspond to the classic arrange-


a


+ 1)l -  a 
 l

ment of Young’s Experiment
 , although there are other varia-


s


tions. Nowadays the first screen is usually dispensed with, and 

or 

∆ y 
 ≈  


a 
 l (9.30)

plane waves from a laser directly illuminate the aperture screen 

(Fig. 9.11 d
 ). In a realistic physical situation, the distance be-

Evidently, red fringes are broader than blue ones.

tween each of the screens ( g a
  and g o
 ) in Fig. 9.11 c
  would be 

Since this pattern is equivalent to that obtained for two over-

very large in comparison with the distance  a
   between the two 

lapping spherical waves (at least in the  r
 1 ≈  r
 2 region), we can 

slits, several thousand times as much, and all the fringes would 

apply Eq. (9.17). Using the phase difference

be fairly close to the center  O 
 of the screen. The optical path 

difference between the rays along  S
 1 P
  and  S
 2 P
  can be deter-

d =  k
 ( r
 1 -  r
 2)

mined, to a good approximation, by dropping a perpendicular 

from  S


we can rewrite Eq. (9.17) as

2 onto  S
 1 P
 . This path difference is given by





( S
 1 B
 ) = ( S
 1 P
 ) - ( S
 2 P
 ) (9.22)


I 
 = 4 I
 0 cos2 k
 ( r
 1 -  r
 2)

2

or 

( S
 1 B
 ) =  r
 1 -  r
 2 

provided, of course, that the two beams are coherent and have 

equal irradiances  I


Continuing with this approximation (see Problem 9.21), 

0. With

( r
 1 -  r
 2) =  a
  sin u and so 


r
 1 -  r
 2 ≈  ya
 > s







r
 1 -  r
 2 ≈  a
 u (9.23)

the resultant irradiance becomes

since u ≈ sin u. Notice that


ya
 p






I



y


= 4 I
 0 cos2 

 (9.31)


s
 l





u ≈  (9.24)


s



a


As shown in Fig. 9.12, consecutive maxima are separated by the 

and so 


r
 1 -  r
 2 ≈   y
  (9.25)


s


∆ y
  given in Eq. (9.30). 

M09_HECH7226_05_SE_C09_390-448.indd   399

28/10/15   4:33 PM





400
   Chapter 9
   Interference

(a)


ya


SOLUTION 


I 
 = 4 I


p

0 cos2 (     )


s
 l

(a) The problem states that  y
 5 = 5.000 mm and from Eq. 9.27 

4 I
 0

we know that in air


s



ym 
 ≈   m



a 
 l0

where here  s 
 = 4.500 m,   a 
 = 2.644 mm, and l0 is to be found. 

2l s


0


y


–

3l s


–

l s


–

l s


–

l s


l s


3l s


2l s



a


2 a



a


2 a


2 a



a


2 a



a


Hence

∆ y



ay
 5

(2.644 * 10-3 m)(5.000 * 10-3 m)

l0 =

=


s
 5

(4.500 m)5

and 

l0 = 587.56 nm 

4 I

or to four significant figures

0

l


a


0 = 587.6 nm

Irradiance

0

(b) When the space is filled with oil the wavelength will de-

0

crease, whereupon the new fringe location (  y
 ′ m
 ) will be closer  

Distance from Central Maximum, 

Slit Spacing, 

to the center of the apparatus. Thus 


y



s



y



y
 ′


m



m 
 =

  m
  al0b =

(b)


a



n



n


(c)

Small  a


5.000 * 10-3 m

and 


y
 ′ m 
 =





1.472 9

Finally,  


y
 ′5 = 3.395 mm 

Large  a


A practical issue arises when the experiment is actually to be 

set up. If a laser is shined directly onto the slits, the beam will 

be narrow and the resulting fringe system will appear more like 

a row of cosine-squared bright spots than extended bands. That 


Figure 9.12
   ( a
 ) Idealized irradiance versus distance curve. ( b
 ) The fringe 

separation ∆ y
  varies inversely with the slit separation, as one might expect 

can be improved upon by letting the beam spread naturally over 

from Fourier considerations; remember the inverse nature of spatial inter-

a distance of tens of meters before fully illuminating the slits. In 

vals and spatial frequency intervals .
  ( c
 ) Increasing slit separation decreases 

a smaller space, one can use two lenses to form a laserbeam 

fringe size. Increasing wavelength also increases fringe size. (Source for b: A.B. 

expander (a backward Galilean telescope), as depicted in Fig. 9.13. 

Bartlett, University of Colorado, and B. Mechtly, Northeast Missouri State University, reproduced  

Laser light is so wonderfully coherent that every fingerprint or 

with permission from  Am. J. Phys
  62
 , 6 (1994). Copyright 1994, American Association of Physics speck of dirt on a lens can produce distracting fringes of its 

Teachers.)

Aperture screen

EXAMPLE 9.1

Laserbeam

Two parallel narrow horizontal slits in an opaque vertical screen 

are separated center-to-center by 2.644 mm. These are directly 

illuminated by yellow plane waves from a filtered discharge 

lamp. Horizontal fringes are formed on a vertical viewing 

screen 4.500 m from the aperture plane. The center of the fifth 

bright band is 5.000 mm above the center of the zeroth or central 

bright band. (a) Determine the wavelength of the light in air. (b) 


Figure 9.13
     A laserbeam expander. This sort of arrangement can be 

If the entire space is filled with clear soybean oil ( n 
 = 1.472 9), 

used to illuminate all sorts of apertures in order to demonstrate interfer-

where would the fifth fringe now appear?

ence and diffraction in a confined space.
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Figure 9.14
     A convenient setup for observing 

interference fringes with a nonlaser source.


L
 1


L
 2

Discharge

lamp

Lens 1

Lens 2

Filter

Aperture

screen

Viewing

screen

own. That can be avoided using the traditional arrangement 

reference direction. Meanwhile wavelet-2 traveling at u now 

shown in Fig. 9.14. It’s probably the best way to go if you want 

goes a shorter  OPL
  to the screen than the reference path, and so 

to see near-perfect fringes like those of Fig. 9.11 e
 . 

phasor-2 leads by d2>2. In other words, phasor-2 is rotated 

counterclockwise (with respect to the reference) by d2>2, as 

phasor-1 is rotated clockwise (with respect to the reference) by 


Electric-Field Amplitude via Phasors


d2>2. The consequence is a phase shift of d2>2 = p( a
  sin u)>l 

Let’s examine how the EM wavelets add to form a resultant elec-

from the reference for each of the two phasors. These phasors 

tric field that varies from point to point on the observation 

are then added tip-to-tail. Because of the symmetry, the resultant 

screen. Figure 9.15 a
  depicts wavelets/rays leaving the two slits 

phasor amplitude ( E
 0 drawn in grey) will always point either to 

at some angle u. They subsequently either pass through a large 

positive lens and converge on a screen at the focal plane, or meet 

(a)

(b)

on a very distant viewing screen at some point- P
 . In either case, 


E
 0 (
 u )


we assume that the wavelets, having traveled the same optical 

wavelet-2

u

2 E
 01

path length ( OPL
 ), arrive together at  P
  with, if any, a negligible 

reference


a
  sin

1.41 E


wavelet-12p

01

l

difference in amplitude. That is to say, their amplitudes,  E



a


u

 =       

01 and 

d 2

90°

180°


E
 02, are essentially equal. Thus the resultant will be determined 

2

d22

0

45°

135°

only by differences in the phases of the superimposed wavelets. 

d 2


c



d



e



f



g


The path-length difference for the two wavelets (as in Fig. 9.11 c
 ) 

1.41 E
 01

is  ( a
  sin u), and that corresponds to a number of wavelengths 

2 E
 01

(c)

 difference  of  ( a
  sin 


E


u)>l and a double-slit phase-angle difference 

0 = +2 E
 01

of 

1

2

d2 = 2p ( a
  sin u)>l. This is the phase difference between the 

d

(d)

22 = 0

two phasors. Keep in mind that even though 


E


u might be small the 

01


E
 01

2

phase-angle difference between the wavelets can be large.

d22

(e)

To graph the field amplitude, we will have to determine the 

2

Reference

90°

1

d

magnitude of the  E
 -field, as well as whether it’s positive or 

22


E
 0 = 0

negative. To that end, take the  OPL
  from the center of the aper-

ture screen to  P
  as the reference; were a wavelet to travel that 


E


1

d

0

22


OPL
  its phasor would be positive. In the forward direction 

1

2

p4

(

d

u = 0) the two wavelets arrive at the screen in-phase, having 

2

2

(f)

135°

traveled the same  OPL
 . The two corresponding phasors add tip-

(g)

to-tail and a maximum results (Fig. 9.15 c
 ) of amplitude 2 E



E
 0

01 

2 180°

(Fig. 9.15 b
 ). This is the largest possible value of the resultant 

2

1

d22 = 180°

amplitude and it is positive. 

d


E


22

0 = –2 E
 01

Now consider the off-axis beam (Fig. 9.15 a
 ) at some arbi-

1

1

p

trary small angle u. Wavelet-1 traveling at angle u goes a longer 


OPL
  than the reference path; it lags behind the reference by 


Figure 9.15
     The electric field generated in two-slit interference. ( a
 ) The 

d2>2; that is, it’s phasor is rotated clockwise from the positive 

two-slit geometry. ( b
 ) The electric-field curve. ( c
 )–( g
 ) Phasor addition. 
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the right (+) or to the left (-). Note that it’s customary to talk 

As discussed earlier (Fig. 9.5), the near-field fringe pattern 

about a “negative amplitude” when a phasor points in the op-

is more complicated than just a cosine-squared distribution. That 

posite direction to the positive reference, even though the word 

raises the issue of the efficacy of the approximation 

“amplitude” is usually defined as a positive quantity.

( r
 1 -  r
 2) =  a
  sin u close by the emitters. It turns out† that it’s 

In Fig. 9.15 d
 , d2>2 = p>4 and so phasor-1 is rotated p>4 

actually remarkably good. The approximation holds, referring to 

clockwise relative to the reference direction, and phasor-2 is 

Fig. 9.11, provided that  r
  7 7 0.354 a
 , and it results in an 

rotated  p>4 counterclockwise (with respect to the refer-

 accuracy of better than 1% for  r
  7 3.54 a
 . The hyperbolas of 

ence). The resultant phasor is then positive and equal to 

Fig. 9.3 asymptotically approach straight lines and do so close to 

1.414 E
 01. It is plotted at 45° in Fig. 9.15 b
 .

the sources. That can be seen in the water waves of Fig. 9.1.

When not colinear, the phasors form isosceles triangles 

and   E
 0 =  E
 01 cos d2>2 +  E
 02 cos d2>2 and since  E
 01 =  E
 02 

generally,


Manifestations of Diffraction



E
 0 = 2 E
 01 cos d2>2

Figure 9.10 depicts two cones of radiant energy emerging from 

circular holes in an opaque screen. That sort of straight-line pro-

With  d2>2 = p( a
  sin u)>l, for small u ≈ sin u—where from 

jection is a simplification of what really happens beyond any 

Eq. (9.24), u =  y
 > s
 —we have d>2 =  ya
 p> s
 l and 

coherently illuminated object. The actual distribution of light is 


E


called a  diffraction pattern
  and we’ll study several such distri-

0 = 2 E
 01 cos ( ya
 p> s
 l)

butions in some detail in the next chapter. Here it will suffice to 

Because irradiance is proportional to the amplitude of the electric 

just point out that although each individual circular aperture 

field squared, squaring this expression for  E
 0 yields Eq. (9.31); 

will project a circular disk onto the viewing screen, that disk 

see Fig. 9.12 as well.

will be brightest at its center, gradually falling off to zero irradi-

In Fig. 9.15 e
  the angle u is such that the phase shift from the 

ance at its periphery. Moreover, the disk will be surrounded by 

reference (d2>2) for each phasor is ±p>2. This means that the 

a number of narrow, increasingly faint, concentric rings of light, 

wavelet from the top slit leads the one from the bottom slit by 

with only the first one or two likely to be visible. Consequently, 

d2 = p. The phasors end up opposed; wavelet-1 lags the central 

when the source in Young’s Experiment consists of two small 

reference by a quarter wavelength, while wavelet-2 leads by a 

circular apertures very close together (or a lens is used, as in 

quarter wavelength, and the resultant field amplitude is now 

Fig. 9.14, to cause the disks to overlap on the viewing screen), 

zero. The wavelets are p out-of-phase with respect to each 

the “cosine-squared” pattern will appear within the diffraction 

 other, and cancel. 

envelope (Fig. 9.16).

In Fig. 9.15 f,
  where u is still larger, d2>2 = 3p>4 = 135°, 

In like fashion, a coherently illuminated, single long slender, 

the resultant phasor is 1.414 E
 01, and it’s negative. Whereas 

vertical slit will project a vertical rectangular band of light onto 

when the path-length difference between wavelet-1 and wavelet-2 

the viewing screen; the narrower the slit, the wider the resulting 

is one wavelength (i.e., d2 = 2p), each phasor is rotated through 

band. That rectangle of light, possessing most of the diffracted 

d2>2 = p with respect to the reference (Fig. 9.15 g
 ), and the 

energy, will be brightest at its center, gradually falling off to 

resultant is negative and again maximum (2 E
 01).

In this way the electric-field amplitude oscillates cosinusoi-

dally as the point of observation on the screen is moved farther 

away from the central axis. The square of the amplitude pic-

tured in Fig. 9.15 b
  is proportional to the irradiance pictured in 

Fig. 9.12. Recall that the peak amplitude squared (2 E
 01)2, for-

getting the constants, equals the peak irradiance 4 I
 0, where  I
 0 is 

the irradiance from each slit (i.e., the irradiance due to each 

wavelet).

It should be remembered that we effectively assumed that 

each slit was infinitesimally wide, and so the cosine-squared 

fringes of Fig. 9.12 are really an unattainable idealization.* The 

actual pattern, Fig. 9.11 e
 , drops off with distance on either side 

of  O 
 because of diffraction.


Figure 9.16
     Double-beam interference fringes from a pair of circular 

apertures. (E.H.)

*Modifications of this pattern arising as a result of increasing the width of either 

the primary  S
  or secondary-source slits will be considered in detail in later 

 chapters (10 and 12). In the latter case, fringe contrast will be used as a mea-

†

sure of the degree of coherence (Section 12.1). In the former, diffraction effects 

D. C. H. Poon, “How good is the approximation ‘path difference ≈  d
  sin u’?” 

become significant.


Phys. Teach
 . 40
 , 460–462 (Nov. 2002).
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Figure 9.17
     Double-slit fringes fade off on either side of the central  

(a)

maximum. The cosine-squared pattern is modulated by the single-slit  

diffraction envelope.


B



C



D



H



G


2

zero irradiance at its vertical edges. Moreover, it will be accom-


A
 2

2

2

2


E
 2  F
 2

2


P


panied, right and left, by a number of increasingly faint narrow 

vertical bands (Fig.10.15 b
 ). 


G



H


1

1

Making the two rectangular slits in Young’s Experiment very 


F



E


1

slender causes the central band of each of the two single-slit 


D


1


C


1

1

diffraction patterns to become quite broad. By positioning the 


B
 1


r
 1 –  r
 2 < ∆ lc


slits very close to one another (or using a lens) those wide cen-


A
 1

tral bands can be made to overlap and thereby interfere. The 

∆ lc


resulting cosine-squared fringe pattern will be modulated by the 

(b)

envelope of the broad central band of the single-slit diffraction 

pattern (Fig. 9.17). In other words, using slit sources we get a 


Figure 9.18
     A schematic representation of how light, composed of a 

pattern that resembles cosine-squared fringes, but for the fact 

progression of wavegroups with a coherence length ∆ lc
 , produces interfer-

that they fall off in irradiance on either side of the central maxi-

ence when ( a
 ) the path length difference exceeds ∆ lc
  and ( b
 ) the path 

mum (Fig. 9.11 e
 ).

length difference is less than ∆ lc
 .

(Fig. 9.18 b
 ). Since a white-light source will have a coherence 


The Effects of Finite Coherence Length


length of less than about three wavelengths, it follows from Eq. 

(9.27) that only about three fringes will be seen on either side of 

As  P
  in Fig. 9.11 c
  is taken farther above or below the axis,  S
 1 B
  

the central maximum.

(which is less than or equal to  S
 1 S
 2) increases. If the primary 

Under white light (or with broad bandwidth illumination), 

source has a short coherence length, as the optical path differ-

all the constituent colors will arrive at  y 
 = 0 in-phase, having 

ence increases, identically paired wavegroups will no longer be 

traveled equal distances from each aperture (Fig. 9.19). The 

able to arrive at  P
  exactly together. There will be an increasing 

zeroth-order fringe will be essentially white, but all other 

amount of overlap in portions of uncorrelated wavegroups, and 

 higher-order maxima will show a spread of wavelengths, since 

the contrast of the fringes will degrade. It is possible for ∆ lc
  to 


ym
  is a function of l, according to Eq. (9.27). Thus in white 

be less than  S
 1 B. 
 In that case, instead of two correlated portions 

of the same wavegroup arriving at  P
 , only segments of different 

wavegroups will overlap, and the fringes will vanish. 

Red

As depicted in Fig. 9.18 a
 , when the path length difference 

Green

exceeds the coherence length, wavegroup- E
 1 from source  S
 1 ar-

White

Blue

rives at  P
  with wavegroup- D
 2 from  S
 2. There is interference, but it 

lasts only a short time before the pattern shifts as wavegroup- D
 1 

begins to overlap wavegroup- C
 2, since the relative phases are 


m
  = –1


m
  = 0


m
  = +1

different. If the coherence length was larger or the path differ-

ence smaller, wavegroup- D



Figure 9.19
     The cosine-squared irradiance distribution for Young’s 

1 would more or less interact with 

Experiment in white light. Notice that the red fringes are wider than the 

its clone wavegroup- D
 2, and so on for each pair. The phases 

green, which are wider than the blue. At the center they all overlap and 

would then be correlated, and the interference pattern stable 

produce a white band. Higher-order fringes are multicolored.
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light we can think of the  m
 th maximum as the  m
 th-order band 

of wavelengths—a notion that will lead directly to the diffrac-

tion grating in the next chapter.

The fringe pattern can be observed by punching two small 

pinholes in a thin card. The holes should be approximately the 


Figure 9.21
     Young’s double-slit fringes produced by a narrow electron 

beam. The slits were 90 nm wide (1540 nm tall) separated by 450 nm. The 

size of the type symbol for a period on this page, and the separa-

cosine-squared fringes are modulated by the diffraction envelope of each 

tion between their centers about three radii. A street lamp, car 

single 90-nm-wide slit. The faint fringes above and below the center line 

headlight, or traffic signal at night, located a few hundred feet 

are due to diffraction at the top and bottom edges of the slits. (S. Frabboni,  

away, will serve as a plane-wave source. The card should be 

C. Frigeri, G.C. Gazzadi, and G. Pozzi,  Am. J. Phys
 . 79
 ,  615–618 [June, 2011], American Association positioned directly in front of and  very close to the eye
 . The 

of Physics Teachers.)

fringes will appear perpendicular to the line of centers. The pat-

we’ll see that in Fig. 11.14. To the extent that the slits can be 

tern is much more readily seen with slits, as discussed in Sec-

considered infinitesimally narrow, the amplitude of the electric 

tion 10.2.2, but you should give the pinholes a try.

field in the diffraction pattern will be cosinusoidal, and the irradi-

Microwaves, because of their long wavelength, also offer an 

ance distribution will vary as the cosine squared, as in Fig. 9.12.

easy way to observe double-slit interference. Two slits (e.g., 

l>2 wide by l long, separated by 2l) cut in a piece of sheet metal 


Particle Interference
   Many physicist believe, as Einstein 

or foil will serve quite well as secondary sources (Fig. 9.20).

did, that light is a stream of photons, though it’s not at all clear 

what photons are. To be sure, light is electromagnetic and oscil-


The Fourier Perspective  
 When the plane waves in 





latory, and an ordinary beam of it manifests wave behavior. It’s 

Fig. 9.11 b
  illuminated the first narrow slit, light spilled out 

therefore natural to speak about the wavelengths of light and, 

(i.e., was diffracted) beyond the opaque screen in a form re-

perforce, the wavelengths of photons. Similarly, we know that 

sembling a cylindrical wave; the narrower the slit, the more 

all material entities, electrons, neutrons, atoms, and even fire 

nearly cylindrical the wave. Beyond the screen the light 

engines have de Broglie wavelengths that are inversely propor-

spread over a very wide range of angles, or equivalently a 

tional to their momenta. So it shouldn’t be too surprising to 

wide range of spatial frequencies. From a Fourier perspec-

learn that electrons passing through a pair of slits a mere 90 nm 

tive, this happened because an infinitesimally narrow source 

wide have generated Young’s interference fringes (Fig. 9.21).

(i.e., narrow in space) generates a light field that is infinitely 

In an analogous way, a beam of light can be made so dim that 

broad (i.e., broad in spatial frequency). The transform of a 

only a single photon at a time impinges on the aperture screen, 

point source, an ideal one-dimensional signal spike (known 

and still, after a while—one flash at a time—the modulated 

as a Dirac delta function, p. 539), is a continuous constant 

cosine-squared pattern emerges. When either one, and only one, 

spectrum containing all spatial frequencies, a spherical wave. 

of the two apertures is opened, the broad peak of a single-slit 

In the same way, an ideal line source results in a disturbance 

diffraction pattern appears; both such peaks, each centered on 

resembling a  cylindrical wave.

its corresponding slit, can be seen in Fig. 9.22. When the two 

In practice, Young’s Experiment usually consists of two  

in-phase slit sources arranged such that  s
  7 7  a
 . As a rule,  s
  is 

so large that the resulting fringe system corresponds to a 

2800

Fraunhofer diffraction pattern (p. 465). The two very thin slits 

Diffraction, left

re semble two line sources, two ideally narrow signal spikes, 

2400

Diffraction, right

Interference model

and the transform of two delta functions is a cosine function—

Both slits open

2000

One slit open
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l
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Figure 9.22
     Young’s Experiment using single photons. (Source: Diagram from 


Figure 9.20
     A microwave interferometer.

TEACHSPIN, Inc.)
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slits are opened at once, photons, passing one at a time through 

process can be described in quantum mechanical terms, how it 

the apertures, gradually build up the bright and dark bands of 

actually unfolds is one of the great marvels of physics.

the classic double-slit pattern. That remarkable observation has 

Don’t pine for the classical EM-wave interpretation of the ex-

raised all sorts of issues about photons (or any other particles) 

periment; it has its magical moments as well. Remember, accord-

presumably passing through both slits at once and interfering 

ing to it, two continuous EM waves each carrying energy, travel 

with themselves. 

out to some distant point- P
 , where they discover, for instance, 

Adding to the confusion of imagery was the somewhat sim-

that they must cancel one another. What then happens to the en-

plistic, and now legendary, 1930 comment by the renowned phys-

ergy those waves arrived with? How does it get redistributed lat-

icist P. A. M. Dirac: “Each photon then interferes only with itself. 

erally into adjacent maxima? Perhaps Eq. (9.31) should have 

Interference between two different photons can never occur.” 

been interpreted as a photon probability distribution at the outset. 

Whatever that means, it gets to be problematic when two separate 

laserbeams generate interference patterns. It makes little or no 


Several Other Interferometers


sense to speak about one sodium atom “interfering” with another, 

or with itself, for that matter. So we would do well not to take 

The same physical and mathematical considerations applied to 

literally the notion of photons interfering. The issue was best 

Young’s Experiment relate directly to a number of other wavefront-

clarified by Roy J. Glauber, winner of the 2005 Nobel Prize: “The 

splitting interferometers. Most common among these are Fresnel’s 

things that interfere in quantum mechanics are not particles. They 

double mirror, Fresnel’s double prism, and Lloyd’s mirror.

are probability amplitudes for certain events. It is the fact that 

probability amplitudes add up like complex numbers that is re-


The Fresnel Double Mirror
   Fresnel’s double mirror  
 con-

sponsible for all quantum mechanical interference.”* Though the 

sists of two plane front-silvered mirrors inclined to each other at 

a very small angle (u), as shown in Fig. 9.23. The line of inter-

*Keep in mind that to some physicists the photon is merely the quantum of the 

section of the mirrors is parallel to the source slit. One portion 

radiation field and has no separate particle existence. Be that as it may, see  

of the cylindrical wavefront coming from slit  S
  is reflected from 

R. J. Glauber, “Dirac’s famous dictum on interference: one photon or two,”  

the first mirror, and another portion of the wavefront is reflected 


Am. J. Phys.
  63
  (1), 12 (Jan. 1995). For a fascinating development, see S. Kocsis, 

from the second mirror. An interference field exists in space in 

B. Braverman, S. Ravets, M. Stevens, R. Mirin, L. Krister Shalm, and A. Steinberg, 

“Observing the average trajectories of single photons in a two-slit interferometer,” 

the region where the two reflected waves are superimposed. 


Science
  332
  (6034), 1170–1173 (June 2011). 

The images ( S
 1  
 and  S
 2) of the slit  S
  in the two mirrors can be 

(a)

Shield

(b)

Shield

Screen


S



P



R



d


u


C



A
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r
 1  R


2


S


u

1


D



R r
 2


a



S
 2

u

(c)


Figure 9.23
   ( a
 ) Fresnel’s double mirror. The angle u

between the two mirrors is here greatly exaggerated. ( b
 ) Two 

waves, one reflected from each mirror, interfere. ( c
 ) These 

fringes were obtained at a wavelength of only 13.9 nm using 

radiation from the LURE synchrotron at Orsay, France.  

(D. Joyeux, Institut d’Optique.)
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considered as separate coherent sources, placed at a distance  a
  


The Fresnel Double Prism
   The Fresnel double prism or  

apart. It follows from the Laws of Reflection, as illustrated in 

biprism consists of two thin prisms joined at their bases, as shown 

Fig. 9.23 a
 , that  SA 
 =  S
 1 A
  and  SB 
 =  S
 2 B
  so that   SA 
 +  AP 
 =  r
 1 

in Fig. 9.24. A single cylindrical wavefront impinges on both 

and  SB 
 +  BP 
 =  r
 2. The optical path length difference between 

prisms. The top portion of the wavefront is refracted downward, 

the two rays is then  r
 1 -  r
 2. The various maxima occur at 

and the lower segment is refracted upward. In the region of super-


r
 1 -  r
 2 =  m
 l, as they do with Young’s Interferometer. Again, 

position, interference occurs. Here, again, two virtual sources  S
 1 

the separation of the fringes is given by

and  S
 2 exist, separated by a distance  a
 , which can be expressed in 


s


terms of the prism angle a (Problem 9.27), where  s
  7 7  a
 . The 

∆ y 
 ≈

expression for the separation of the fringes is the same as before.


a
 l

where   s  
 is the distance between the plane of the two virtual 


Lloyd’s Mirror
   The last wavefront-splitting interferometer 

sources ( S
 1,  S
 2) and the screen. The arrangement in Fig. 9.23 

that we will  consider is Lloyd’s mirror, shown in Fig. 9.25. It 

has been deliberately exaggerated to make the geometry some-

consists of a flat piece of either dielectric or metal that serves as 

what clearer. The angle u between the mirrors must be quite 

a mirror, from which is reflected a portion of the cylindrical 

small if the electric-field vectors for each of the two beams are 

wavefront coming from slit  S
 . Another portion of the wavefront 

to be parallel, or nearly so. Let E


$1 and E
 $2 represent the light-

proceeds directly from the slit to the screen. For the separation 

waves emitted from the coherent virtual sources  S
 1 and  S
 2. At 


a
 , between the two coherent sources, we take the distance be-

any instant in time at the point -P
  in space, each of these vectors 

tween the actual slit and its image  S
 1 in the mirror. The spacing 

can be resolved into components, parallel and perpendicular to 

of the fringes is once again given by ( s
 > a
 )l. The distinguishing 

the plane of the figure. With k
 $1 and k
 $2 parallel to  AP
  and  BP
 , 

feature of this device is that at glancing incidence (u i 
 = p>2) 

respectively, it should be apparent that the components of E


$1 

the reflected beam undergoes a 180° phase shift. (Recall that 

and E


$2 in the plane of the figure will approach being parallel 

the amplitude-reflection coefficients are then both equal to -1.) 

only for small u. As u decreases,  a
  decreases and the fringes 

With an additional phase shift of ±p,

broaden.

d =  k
 ( r
 1 -  r
 2) ± p

EXAMPLE 9.2

and the irradiance becomes

Considering the double mirror in Fig. 9.23 a
 , show that the 

fringe separation is given by


I 
 = 4 I
 0 sin2 ap ay
 b


s
 l

( R 
 +  d
 )

∆

l


y 
 ≈


a


The fringe pattern for Lloyd’s mirror is complementary to 

that of Young’s Interferometer; the maxima of one pattern exist 

where l is the wavelength of the illumination in the surround-

at values of  y 
 that correspond to minima in the other pattern. 

ing medium. (b) Prove that

The top edge of the mirror is equivalent to  y 
 = 0 and will be the 

( R 
 +  d
 )

center of a dark fringe rather than a bright one, as in Young’s 

∆

l


y 
 ≈

2 R
  

device. The lower half of the pattern will be ob structed by the 

u

presence of the mirror itself. Consider what would happen if a 

SOLUTION 

thin sheet of transparent material were placed in the path of the 

(a) From Young’s Experiment

rays traveling directly to the screen. The transparent sheet 


s


would have the effect of increasing the number of wavelengths 

∆ y 
 ≈  

in each direct ray. The entire pattern would accordingly move 


a 
 l

upward, where the reflected rays would travel a bit farther 

and the same is true here where  s 
 =  DP 
 ≈  R 
 +  d
 . Accordingly,

 before interfering. Because of the obvious inherent simplicity 

of this device, it has been used over a very wide region of the 

( R 
 +  d
 )

∆

l


y 
 ≈

electromagnetic spectrum. The actual reflecting surfaces have 


a


ranged from crystals for X-rays, ordinary glass for light, and 

(b) To get u involved notice that in triangle  S


wire screening for microwaves to a lake or even Earth’s iono-

1 CD



a


sphere for radiowaves.*

=  R
  sin u ≈  R
  u

2

and so

( R 
 +  d
 )

∆

l


y 
 ≈

*For a discussion of the effects of a finite slit width and a finite frequency band-

2 R
  u

width, see R. N. Wolfe and F. C. Eisen, “Irradiance distribution in a Lloyd mirror 

interference pattern,”  J. Opt. Soc. Am
 . 38
 , 706 (1948).
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a

~1°


S
 1


a S


u


S
 2


d



s


(a)

(b)


Figure 9.24
     Fresnel’s biprism. ( a
 ) The biprism creates two image sources. 

( b
 ) With a slit source the fringes are bright bands. ( c
 ) Interference fringes 

observed with an electron biprism arrangement by G. Möllenstedt. Once 

again electrons behave like photons. ( Handbuch der Physik
 , edited by S. Flugge, 

(c)

Springer-Verlag, Heidelberg. Springer-Verlag, New York)

EXAMPLE 9.3

via attractive and repulsive forces. At the time, most people 

interested in Optics followed Newton, embracing the so-called 

A line source of 600 nm light is 5.00 mm above and parallel to 


emission theory
 . A few visionaries like Young in England, and 

a Lloyd’s mirror (in air). Fringes are observed on a screen 5.00 

D. F. J. Arago and his protégé Augustin-Jean Fresnel in France, 

m from the source. Locate the first irradiance maximum above 

were wave theorists. For them light was an elastic wave in the 

the mirror’s surface.

aether.

SOLUTION 

One might expect that Young’s Experiment was so compel-

The mirror’s surface bisects the central dark fringe. Thus the center 

ling that it would have promptly convinced the emissionists that 

of the first bright fringe will be a distance ∆ y
 /2 above the mirror.

light was really a wave, pure and simple. But that was not the 

case. Young had “little mathematical training” and his papers 

Since

were stylistically rather obscure and not widely read. Beyond 


s


(5.00 m)

that, the light in his setup passed through two narrow slits and it 

∆ y 
 =  

  600


a 
 l =

* 10-9 m

could be argued that the particles composing it had interacted 

2(5.00 * 10-3 m)

mechanically with the material of the slits’ edges, thereby being 

bent off their straight-line paths (i.e., diffracted). 

and  

∆ y 
 = 3.00 * 10-4 m 

the first maximum will be 0.150 mm above the mirror.

min


S



Establishing The Wave Theory of Light


max

Now that we’ve studied both Young’s Experiment and Fresnel’s 

double mirror, we can appreciate an interesting piece of  history. 


a


min

When Thomas Young, a medical doctor, published his work 

in 1804, the most widely accepted understanding of the nature 

of light was Newton’s corpuscular theory; light was a stream 


S
 1


s


of particles that could agitate the aether and, in turn, be influ-

enced by waves set up in that all-pervading medium. These 

light particles were thought to interact with material objects 


Figure 9.25
   Lloyd’s mirror.
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Fringe-producing

ideas when we consider coherence theory in more detail. 

system

For the moment the discussion is restricted, for the most 

Condensing

Screen

Single

part, to those cases for which the path difference is less than 

Filter

lens

slit

Water cell

the coherence length.

Carbon

arc and lens


9.4.1  Dielectric Films—Double-Beam Interference


Interference effects are observable in sheet transparent materi-

als, the thicknesses of which vary over a very broad range, from 

films less than the length of a lightwave (e.g., for green light l0 

equals about  1

150 the thickness of this printed page) to plates 

several centimeters thick. A layer of material is referred to as a 


Figure 9.26
     A traditional bench setup to study wavefront-splitting 


thin film
  for a given wavelength of electromagnetic radiation 

arrangements with a white-light carbon-arc source. The water cell is needed 

when its thickness is of the order of that wavelength. Before the 

to keep things cool. This arrangement is rather old-fashioned but it’s  

effective in large lecture halls.

early 1940s, interference phenomena associated with thin di-

electric films, although well known, had fairly limited practical 

Without knowing anything about Young’s efforts, Fresnel, a 

value. The rather spectacular color displays arising from oil 

former engineer, created his double-mirror experiment some-

slicks and soap films, however pleasing aesthetically and theo-

time around 1816. It had the great virtue of doing away with 

retically, were mainly curiosities.

diffracting apertures altogether. As he put it in 1819: “If we 

With the advent of suitable vacuum deposition techniques in 

raise one of the mirrors or intercept the light which it reflects 

the 1930s, precisely controlled coatings could be produced on a 

either before or after reflection, the fringes disappear. . . . This 

commercial scale, and that, in turn, led to a rebirth of interest in 

furnishes still further evidence that the fringes are produced, not 

dielectric films. During the Second World War, both sides were 

by the action of the edges of the mirrors, but by the meeting of 

finding the enemy with a variety of coated optical devices, and 

two pencils of light.” Supported by the outstanding theoretical 

by the 1960s multilayered coatings were in widespread use.

and experimental work of Fresnel, the wave theory of light 

gradually gained preeminence, and by 1830 or so, it was recog-


Fringes of Equal Inclination


nized as the more powerful of the two hypotheses.

All the above wavefront-splitting interferometers can be dem-

Consider the simple case of a transparent parallel plate of dielec-

onstrated either using a laser or a discharge lamp or, for white light, 

tric material having a thickness  d
  (Fig. 9.27). Suppose that the 

something a bit more old-fashioned like a carbon arc (Fig. 9.26).

film is nonabsorbing and that the amplitude-reflection coeffi-

cients at the interfaces are so low that only the first two reflected 

beams  E
 1 r
  and  E
 2 r 
 (both having undergone only one reflection) 


9.4 Amplitude-Splitting Interferometers


need be considered (Fig. 9.28). In practice, the amplitudes of the 

higher-order reflected beams ( E
 3 r
 , etc.) generally decrease very 

Suppose that a lightwave is incident on a half-silvered mirror,* 

rapidly, as can be shown for the air–water and air–glass inter-

or simply on a sheet of glass. Part of the wave is transmitted and 

faces (Problem 9.33). For the moment, consider  S
  to be a mono-

part reflected. Both the transmitted and reflected waves have 

chromatic point source. 

lower amplitudes than the original one. It can be said figura-

The film serves as an amplitude-splitting device, so that  E
 1 r
  

tively that the amplitude has been “split.” 

and  E
 2 r 
 may be considered as arising from two coherent virtual 

If the two separate waves could be brought to gether again at 

sources lying behind the film; that is, the two images of  S 


a detector, interference would result, as long as the  original  

formed by reflection at the first and second interfaces. The  

coherence between the two had not been destroyed. If the 

reflected rays are parallel on leaving the film and can be brought 

path lengths differed by a distance greater than that of the 

together at a point  P
  on the focal plane of a telescope objective 

wavegroup (i.e., the coherence length), the portions reunit-

or on the retina of the eye when focused at infinity. From  

ed at the detector would correspond to different waveg-

Fig. 9.28, the optical path length difference for the first two  

roups. No unique phase relationship would exist between 

reflected beams is given by

them in that case, and the fringe pattern would be unstable 

Λ =  nƒ
 [( AB
 ) + ( BC
 )] -  n
 1( AD
 )

to the point of being unobservable. We will get back to these 

and since ( AB
 ) = ( BC
 ) =  d
 >cos u t
 ,

*A  half-silvered mirror
  is one that is semitransparent, because the metallic coating 

is too thin to be opaque. You can look through it, and at the same time you can see 

2 n


your reflection in it.  Beamsplitters
 , as devices of this kind are called, can also be 

Λ


ƒd


=

-  n


made of thin stretched plastic films, known as  pellicles
 , or even uncoated glass plate.

cos 

1( AD
 )

u t
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Now, to find an expression for ( AD
 ), write

( AD
 ) = ( AC
 ) sin u i



S


Using Snell’s Law, this becomes


A


u t



n


u t



f



B


( AD
 ) = ( AC
 )   sin 

Point


D



n


u t


1

source


C


where

u tA 
 u i






( AC
 ) = 2 d
  tan u t
  (9.32)


B



D



C


The expression for Λ now becomes


E
 1 r


2 n



E
 1 t



E
 2 r


Λ


ƒd


=

 (1 - sin2 u


E
 2 t


cos 


t
 )

u t



E
 3 r



d


(a)


n
 2  n



n



f


1


P



Figure 9.28
     Fringes of equal inclination.

or finally





Λ = 2 nƒd
  cos u t
  (9.33)

Film

The corresponding phase difference associated with the opti-

cal path length difference is then just the product of the free-

space propagation number and Λ, that is,  k
 0Λ. If the film is im-

mersed in a single medium, the index of refraction can simply be 

written as  n
 1 =  n
 2 =  n
 . Realize that  n
  may be less than  nf
 , as in the case of a soap film in air, or greater than  nf
 , as with an air 

(b)

film between two sheets of glass. In either case  there will be an 



additional phase shift arising from the reflections themselves
 . 

Recall that for incident angles up to about 30°, regardless of the 

polarization of the incoming light, the two beams, one internally 

and one externally reflected, will experience a  relative phase 



shift
  of p radians (Fig. 4.52 and Section 4.3). Accordingly,

d =  k
 0Λ ± p

and more explicitly

Film

4p nf






d =

  d
  cos u t 
 ± p (9.34)

l0

4p d


or 

d =

 ( n
 2 f 
 -  n
 2 sin2 u i
 )1>2 ± p (9.35)

l0

The sign of the phase shift is immaterial, so we will choose the 


Figure 9.27
     The wave and ray representations of thin-film interference. 

negative sign to make the equations a bit simpler. In re flected 

Light reflected from the top and bottom of the film interferes to create  

a fringe pattern.

light an interference maximum, a bright spot, appears at  P
  when 
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d = 2 m
 p—in other words, an even multiple of p. In that case 

Interference minima in reflected light (maxima in transmit-

Eq. (9.34) can be rearranged to yield

ted light) result when d = (2 m
   ± 1)p, that is, odd multiples of 

p. For such cases Eq. (9.34) yields

l f


[maxima] 


d
  cos u t 
 = (2 m 
 + 1)   (9.36)

l

4


f


[minima] 


d
  cos u t 
 = 2 m
    (9.37)

4

where  m 
 = 0, 1, 2, . . . and use has been made of the fact that 

l f 
 = l0> nf 
 . This also corresponds to minima in the transmitted 

The appearance of odd and even multiples of l f
 >4 in Eqs. 

light. 

(9.36) and (9.37) is significant, as we will see presently. We 

could, of course, have a situation in which  n
 1 7  nf 
 7  n
 2 or 

EXAMPLE 9.4


n
 1 6  nf 
 6  n
 2, as with a fluoride film deposited on an optical 

The yellow  D


element of glass immersed in air. The p phase shift would then 

1 line from a sodium discharge lamp has a vacuum 

wavelength of 5895.923Å. Suppose such light falls at 30.00° 

not be present, and the above equations would simply be modi-

on the surface of a film of soybean oil ( n


fied appropriately.

= 1.472 9) suspended 

(within a wire frame) in air. What minimum thickness should the 

film have in some region if that area is to strongly reflect the light?

EXAMPLE 9.5

SOLUTION 

A thin film of water ( n 
 = 1.333) floats on the surface of a bea-

Equation 9.36 pertains to reflected maxima:

ker of monochlorobenzene ( n 
 = 1.524 8). The arrangement is 

illuminated perpendicularly by 647-nm light and a large region 

l f



d
  cos u t 
 = (2 m 
 + 1) 

of the film appears bright red. At minimum, how thick might 

4

the film be?

Here we want the minimum thickness, which corresponds to 

SOLUTION 

the minimum value of  m
 , namely, zero. Hence

Because at both interfaces the reflections are external there will 

l f


be no additional relative phase shift. Hence from Eq. (9.34),


d
  cos u t 
 = 4

4p nf


d =

  d
  cos u t


We’ll need to compute both l f
  and u t
 . Using Snell’s Law

l0


ni
  sin u i 
 =  nt
  sin u t


Here u t 
 = 0 and so

4p n


it follows that


f


d =

  d


l

sin 30.00°

0

sin u t 
 =

= 0.339 5

1.472 9

But we want constructive interference, which means d = 2p 

and therefore

and u t 
 = 19.844°. Consequently,

l

647 * 10-9 m

l f


1


d 
 = 0 =


d






2 n


=


f


2(1.333)

4 cos 19.844°

Consequently,

At this point we need to use the fact l f 
 = l0 / nf
 , whereupon

l

1


d


0

= 243 nm


d 
 =





4 nf 
 cos 19.844°

This is the minimum thickness; increasing it by whole-number 

Hence

multiples of l ƒ
 >2 will produce more maxima.

589.59 * 10-9

1


d 
 =





4(1.472 9)

0.940 62

If the lens used to focus the rays has a small aperture, inter-

ference fringes will appear on a small portion of the film. 

and  


d 
 = 1.064 * 10-7 m 

Only the rays leaving the point source that are reflected di-

rectly into the lens will be seen (Fig. 9.29). For an extended 

The minimum thickness is a mere

source, light will reach the lens from various directions, and 


d 
 = 106.4 nm

the fringe pattern will spread out over a large area of the film 

(Fig. 9.30).
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n



f


1


P
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n
 2  n



n



f


1


Figure 9.31
     All rays inclined at the same angle arrive at the same point.


Figure 9.29  
   Fringes seen on a small portion of the film.

The angle u i
  or equivalently u t
 , determined by the position of 


P
 , will in turn control d. The fringes appearing at points- P
 1 

and - P
 2 in Fig. 9.31 are known as fringes of equal inclination
 . 

(Problem 9.39 discusses some easy ways to see these fringes.) 

Keep in mind that each source point on the extended source is 

Extended source

incoherent with respect to the others. When the image of the 

extended source is reflected in the surface, it will be seen to be 


E


banded with bright and dark fringes. Each of these is an arc of 

a circle centered on the intersection of a perpendicular drop ped 

from the eye to the film.

As the film becomes thicker, the separation  AC
  between  E
 1 r


and  E
 2 r
  also increases, since






AC 
 = 2 d
  tan u t
  [9.32]


E
 1 r



E


When only one of the two rays is able to enter the pupil of 

2 r


the eye, the interference pattern will disappear. The larger lens 

of a telescope can then be used to gather in both rays, once 

again making the pattern visible. The separation can also be 

reduced by reducing u t
  and therefore u i
 , that is, by viewing 

the film at nearly normal incidence. The equal-inclination fringes 

that are seen in this manner for thick plates are known as 


Haidinger fringes
 , after the Austrian physicist Wilhelm 


P
 1

Karl Haidinger (1795–1871). With an extended source, the 


P
 2

symmetry of the setup requires that the interference pattern 


n
 2  n



n



f


1


P
 3

consists of a series of concentric circular bands centered on 

the perpendicular drawn from the eye to the film (Fig. 9.32). 


Figure 9.30
     Fringes seen on a large region of the film.

As the observer moves, the interference pattern follows along.
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Viewing

screen (retina, ground glass)
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splitter

Extended source
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Dielectric film


Figure 9.32
     Circular Haidinger fringes centered 

on the lens axis.

Haidinger fringes can be seen in the ordinary window glass 

a constant. In general,  n
 ƒ does not vary, so that the fringes cor-

of a store front. Find one with a neon sign in the window and 

respond to regions of constant film thickness. As such, they can 

look out at the street, at night, very close to the glowing tube. 

be quite useful in determining the surface features of optical 

You’ll see circular fringes centered on your eye floating off in 

elements (lenses, prisms, etc.). For example, a surface to be ex-

the distance.

amined may be put into contact with an  optical flat
 .* The air in 

the space between the two generates a thin-film interference 

pattern. If the test surface is flat, a series of straight, equally 


Fringes of Equal Thickness


spaced bands indicates a wedge-shaped air film, usually result-

ing from dust between the flats. Two pieces of plate glass sepa-

A whole class of interference fringes exists for which the 

rated at one end by a strip of paper will form a satisfactory 

optical thickness,  nƒd
 , is the dominant parameter rather than 

wedge with which to observe these bands.

u i
 . These are referred to as fringes of equal thickness
 . Un-

der white-light illumination the iridescence of soap bubbles, 

oil slicks (a few wavelengths thick), and even oxidized metal 

surfaces is the result of variations in film thickness. Interfer-

*A surface is said to be optically flat when it deviates by not more than about l>4 

ence bands of this kind are analogous to the constant-height 

from a perfect plane. In the past, the best flats were made of clear fused quartz. 

Now glass-ceramic materials (e.g., CERVIT) having extremely small thermal coef-

contour lines of a topographical map. Each fringe is the lo-

ficients of expansion (about one-sixth that of quartz) are available. Individual flats 

cus of all points in the film for which the optical thickness is 

of l>200 or a bit better can be made.
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∆ x


a


Figure 9.34
     Fringes caused by a wedge-shaped film between two sheets 

Extended

of flat glass at an angle 

source

a. The seperation between successive maxima is 

Beamsplitter

∆ x 
 = l






ƒ
 >2a. As a S 0 there are fewer fringes and these get wider and 

wider until they vanish altogether.


E



E


The centers of the bright fringes, the maxima, occur at distances 

1 r


2 r


from the apex given by l ƒ
 >4a, 3l ƒ
 >4a, and so on, and consecu-


E


tive fringes are separated by a distance ∆ x
 , given by





∆ x 
 = l ƒ
 >2a (9.40)

The larger a is, the finer are the fringes (Fig. 9.34).

a


n


Notice that the difference in film thickness between adjacent 

1


n


maxima is simply l


f



ƒ
 >2. Since the beam reflected from the  lower 


x



n


Spacer

surface traverses the film twice (u i 
 ≈ u t
   ≈ 0), adjacent maxima 

2

differ in optical path length by l f
 ·
  Note, too, that the film thick-

ness at the various maxima is given by


Figure 9.33
     Fringes from a wedge-shaped film.

l ƒ







dm 
 = ( m 
 + 12)   

(9.41)

When viewed at nearly normal incidence in the manner il-

2

lustrated in Fig. 9.33, the contours arising from a nonuniform 

which is an odd multiple of a quarter wavelength. Traversing 

film are called Fizeau fringes
 . For a thin wedge of small angle 

the film twice yields a phase shift of p, which, when added to 

a, the optical path length difference between two reflected rays 

the shift of p resulting from reflection, puts the two rays back 

may be approximated by Eq. (9.33), where  d
  is the thickness at 

in-phase.

a particular point, that is,






d 
 =  x
 a (9.38)

EXAMPLE 9.6

For small values of u i
  the condition for an interference maxi-

A wedge-shaped air film, as in Fig. 9.33, is illuminated by  

mum becomes

yellow sodium light (l0 = 589.3 nm, the center of the doublet). 

The center of the 173rd maximum will be how far from the apex 

( m 
 + 12)l0 = 2 nƒdm


if the wedge angle is 0.50°?

SOLUTION 

or 

( m 
 + 12)l0 = 2a xmnƒ
  

We could use either

Here,  m 
 = 0, 1, 2, 3, . . . , and the first bright fringe is the zeroth 

( m 
 + 1

( m 
 = 0) maximum. It lies adjacent to the dark fringe at the 


x


2)l f



m 
 =

2a

apex, where a film of zero thickness reflects no light. If you 

like, you can rewrite this last equation as ( m


where  m


′ - 1

= 0, 1, 2, cor

2)l0 = 2a xm
 ′ nƒ
 , 

where now  m
 ′ = 1, 2, 3, c. Although not traditional, this for-

( m
 ′ - 1

mulation has the virtue that the 200th fringe occurs when 


x


2)l f



m
 ′ =

2a


m
 ′ = 200 rather than when  m 
 = 199.

Since  nƒ 
 = l0>l ƒ
 ,  xm
  may be written as 

where  m
 ′ = 1, 2, 3, c. In both cases we’ll need a in radians:


m 
 + 1






x


2

a


m 
 = a

b l ƒ
  (9.39)

= ap radb 0.50° = 8.727 * 10-3 rad

2a

180°


Continued
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Consequently,

(172 + 1


x


2) 589.3 * 10-9


m 
 =  x
 172 =

= 5.8 mm

2(8.727 * 10-3)

or

(173 - 1


x


2) 589.3 * 10-9


m
 ′ =  x
 173 =

= 5.8 mm

2(8.727 * 10-3)

The accompanying photo shows a soap film held vertically 

so that it settles into a wedge shape under the influence of grav-

ity. When illuminated with white light, the bands are various 

Fringes created by an air film between two microscope slides. (E.H.)

colors. The black region at the top is a portion where the film is 

less than l ƒ
 >4 thick. Twice this, plus an additional shift of l ƒ
 >2 

point. Known as Newton’s rings
 †, this pattern is more pre-

due to the reflection, is less than a whole wavelength. The re-

cisely examined with the arrangement of Fig. 9.35. Here a lens 

flected rays are therefore out-of-phase. As the thickness de-

is placed on an optical flat and illuminated at normal incidence 

creases still further, the total phase difference approaches p. 

with quasimonochromatic light. The amount of uniformity in 

The irradiance at the observer goes to a minimum (Eq. 9.16), 

the concentric circular pattern is a measure of the degree of 

and the film appears black in reflected light.*

perfection in the shape of the lens. With  R
  as the radius of 

Press two well-cleaned microscope slides together. The en-

curvature of the convex lens, the relation between the distance 

closed air film will usually not be uniform. In ordinary room 


x
  and the film thickness  d
  is given by

light a series of irregular, colored bands (fringes of equal thick-

ness) will be clearly visible across the surface. The thin glass 


x
 2 =  R
 2 - ( R 
 -  d
 )2

slides distort under pressure, and the fringes move and change 

or more simply by

accordingly. Tape two slides together with transparent (matt-

surfaced) tape. It will scatter light and make the reflected fringes 


x
 2 = 2 Rd 
 -  d
 2

more easily seen.

If the two pieces of glass are forced together at a point, as 

Since  R
  7 7  d
 , this becomes

might be done by pressing on them with a sharp pencil, a series 


x
 2 = 2 Rd


of concentric, nearly circular, fringes is formed about that 

Newton’s rings with two microscope slides. The thin film of air between the 

slides creates the interference pattern. (E.H.)

†Robert Hooke (1635–1703) and Isaac Newton independently studied a whole 

A wedge-shaped film made of liquid dishwashing soap. (E.H.)

range of thin-film phenomena, from soap bubbles to the air film between lenses. 

Quoting from Newton’s  Opticks
 :

I took two Object-glasses, the one a Planoconvex for a fourteen Foot 

Telescope, and the other a large double Convex for one of about fifty Foot; 

and upon this, laying the other with its plane side downwards, I pressed 

*The relative phase shift of p between internal and external reflection is required 

them slowly together to make the Colours successfully emerge in the 

if the reflected flux density is to go to zero smoothly, as the film gets thinner and 

middle of the Circles.

finally disappears.
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(a)

Similarly, the radius of the  m
 th dark ring is

[dark rings] 


xm 
 = ( m
 l ƒR
 )1>2 (9.43)

where  m 
 = 0, 1, 2, . . . , and the central dark circle (in reflected 

light) corresponds to  m 
 = 0. Then the first dark ring arises for 


m 
 = 1, the second for  m 
 = 2, and so forth.

If the two pieces of glass are in good contact (no dust), the 

central fringe at that point ( x
 0 = 0) will clearly be a minimum 

in irradiance, an understandable result, since  d
  goes to zero at 

that point. In transmitted light, the observed pattern will be 

(b)

the complement of the reflected one discussed above, so that 

the center will now appear bright (as in the accompanying 

photo).

As the fringe circles get larger—that is, as  xm
  gets larger—

the fringes become narrower and closer. To see that, form 


dxm
 > dm
 :

Quasimonochromatic


dxm



dxm



R
 l ƒ


point source

2 xm
  

=  R
 l

=


dm



ƒ
   or    dm


2 xm


Thus, the bigger  xm
  is, the faster it changes with  m
 .

Newton’s rings, which are Fizeau fringes, can be distin-

Beamsplitter

guished from the circular pattern of Haidinger’s fringes by the 

Collimator lens

(glass plate)

manner in which the diameters of the rings vary with the order  m
 . 

( R
  –  d
 )  R


The central region in the Haidinger pattern corresponds to the 


E
 1 r


maximum value of  m
  (Problem 9.38), whereas just the opposite 


E
 2 r


applies to Newton’s rings.


E


Optical flat


n



x



f



d


Black surface


Figure 9.35
   ( a
 ) Newton’s rings in reflected light. ( b
 ) A standard setup to 

observe Newton’s rings in reflected light. 

Assume that we need only examine the first two reflected 

beams  E
 1 r
  and  E
 2 r
 . The  m
 th-order interference maximum will 

occur in the thin film when its thickness is in accord with the 

relationship

2 nƒdm 
 = ( m 
 + 12)l0

The radius of the  m
 th bright ring is therefore found by combin-

ing the last two expressions to yield

[bright rings] 


xm 
 = [( m 
 + 12)l ƒR
 ]1>2 (9.42)

Here,   m 
 = 0, 1, 2, 3, . . . and the first, innermost, bright ring 

corresponds to  m 
 = 0. If you’d like the first maximum to arise 

when  m
 ′ = 1 you can write Eq. (9.42) as 

Interference from the thin air film between a convex lens and the flat sheet 

of glass it rests on. The illumination was quasimonochromatic and the fringes 

1


x


were in transmitted light. Such fringes were first studied in depth by Newton 


m
 ′ = [( m
 ′ - 12)l f
   R
 ]2

and are known as Newton’s rings. (E.H.)

M09_HECH7226_05_SE_C09_390-448.indd   415

28/10/15   4:33 PM



416
   Chapter 9
   Interference

As in Figs. 9.26 b
  and 9.31, rays reflect back from the top and 

EXAMPLE 9.7

bottom of the film, and since that’s wasted light we’d like those 

A convex lens rests on an optical flat in a dust-free setup in 

rays to emerge 180° out-of-phase and cancel. The simplest possi-

air. It is illuminated by green light from a mercury discharge at 

bility is to arrange things so that  ns 
 7  nf 
 7  n
 0 whereupon all the 

546.07 nm. If the radius of curvature of the lens is 20.0 cm, how 

reflections are external and there will not be any additional phase 

far from its center will we find the 10th bright fringe?

shifts. We make the film a quarter of a wavelength ( h 
 = l f
 >4) 

SOLUTION 

thick, and the two reflected waves will then, to some extent, can-

cel. Of course, only if the amplitudes of the two reflected waves 

We know that

are nearly equal will they come close to completely canceling. For 


xm 
 = [( m 
 + 12)l f
   R
 ]1>2

that to be the case, assuming the light is not multiply reflected in 

the film, Eq. (4.47) tells us that ( nf 
 -  n
 0)>( nf 
 +  n
 0) must equal 

or better still

( ns 
 -   nf
 )>( ns 
 +  nf
 ). And so the second condition that should be 


x


met by our antireflection film is that


m
 ′ = [( m
 ′ - 12)l f
   R
 ]1>2


nf 
 = ( n
 0  ns
 )1>2

where  m
 ′ = 10. Thus


x


[This is the equivalent of Eq. (9.102).]


m
 ′ = [(10 - 12)(546.07 * 10-9)(20.0 * 10-2)]1>2

Accordingly, for a substrate of glass ( ns 
 = 1.50) in air 

and

( n
 0 = 1.00) the film should have an index of  nƒ 
 = 1.22. Then 

from Eq. (4.47) the reflectance from each film interface will be 


xm
 ′ = 1.02 mm

≈0.98%, or in total ≈2%, compared to the bare glass top-surface 

reflectance of ≈4%. Alas, there is no suitable dielectric with an 

index of precisely 1.22, so we usually make do with magnesium 

An optical shop, in the business of making lenses, will have a 

fluoride (MgF2), which is a wear-resistant, easily vapor depos-

set of precision spherical test plates or gauges. A designer can 

ited, transparent material of index 1.38.

specify the surface accuracy of a new lens in terms of the num-

ber and regularity of the Newton rings that will be seen with a 

EXAMPLE 9.8 

particular test gauge. The use of test plates in the manufacture of 

high-quality lenses, however, is giving way to far more sophisti-

A spectacle lens made of ophthalmic crown glass has an index 

cated techniques involving laser interferometers (Section 9.8.2).

of 1.532 in 555 nm yellow-green light. It is to be front-coated 

with a single-layer antireflection film of magnesium fluoride of 

index 1.38 so it efficiently passes that wavelength. What mini-


A Single-Layer Antireflection Coating


mum thickness should the film have? What color will the lens 

appear in reflection when illuminated by white light?

Today most lenses, from camera lenses to eyeglasses, are coat-

ed with one or more layers of thin transparent dielectrics in or-

SOLUTION 

der to control surface reflections. These films are commonly 

The film thickness  h
  is determined by 

referred to as  antireflection coatings
 . Invented at the Carl Zeiss 

Corporation in 1935, antireflection coats are so effective at im-


h 
 = l f
 >4

proving the efficiency of multielement visual devices—like 

telescopic sights, binoculars, and periscopes—that, at the time, 

where l f 
 = l0> nf
  and so

the German military tried to keep the technique secret for as 


h 
 = l0>4 nf 
 = (555 nm)>4(1.38) = 101 nm

long as they could. We’ll treat the subject in considerable detail 

later in Section 9.7.2. Here, as an introduction for those likely to 

The film will reflect the complementary color to the one it passes, 

skip that more mathematical analysis, we explore the simpler 

and that’s a blue-rich magenta.

case of a single antireflection coating.

Consider a dielectric film of index  nƒ
  layered on top of a 

substrate (of glass or some other optical material) of index  ns
 . 

Assume the surrounding medium (usually air) has an index of 


9.4.2  Mirrored Interferometers



n
 0, and limit the treatment to the common case of near-normal 


The Michelson Interferometer


incidence, that is, light coming, more or less, straight into the 

device. Recall from the Fresnel Equations, and Eq. (4.47) in 

There are a good number of amplitude-splitting interferometers 

particular, that the greater the substrate index is—compared to 

that utilize arrangements of mirrors and beamsplitters. By far the 

the index of air—the greater will be the amount of light reflect-

best known and historically the most important of these is the 

ed from the bare air–glass interface. So, high-index lenses are 

Michelson Interferometer. Its configuration is illustrated in 

especially in need of coating. 

Fig. 9.36. An extended source (e.g., a diffusing ground-glass 
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C
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D



1


(c)

Detector


Figure 9.36
     The Michelson Interferometer. ( a
 ) Circular fringes are cen-

tered on the lens. ( b
 ) Top view of the interferometer showing the path of 

the light. ( c
 ) A wedge fringe pattern was distorted when the tip of a hot 

soldering iron was placed in one arm. Observe the interesting perceptual 

phenomenon whereby the region corresponding to the iron’s tip appears 

faintly yellow. (E.H.)

plate illuminated by a discharge lamp) emits a wave, part of 

To understand how fringes are formed, refer to the con-

which travels to the right. The beamsplitter at  O
  divides the 

struction shown in Fig. 9.37, where the physical components 

wave into two, one segment traveling to the right and one up 

are represented more as mathematical surfaces. An observer at 

into the background. The two waves are reflected by mirrors- M
 1 

the position of the detector will simultaneously see both mir-

and - M
 2 and return to the beamsplitter. Part of the wave coming 

rors  M
 1 and  M
 2 along with the source g in the beamsplitter. 

from  M
 2 passes through the beamsplitter going downward, and 

We can redraw the interferometer as if all the elements were in 

part of the wave coming from  M
 1 is deflected by the beamsplit-

a straight line. Here  M
 1′ corresponds to the image of mirror 

ter toward the detector. The two waves are united, and interfer-


M
 1 in the beamsplitter, and g has been swung over in line 

ence can be expected.

with  O
  and  M
 2. The positions of these elements in the diagram 

Notice that one beam passes through  O
  three times, whereas 

depend on their relative distances from  O
  (e.g.,  M
 1′ can be in 

the other traverses it only once. Consequently, each beam will 

front of, behind, or coincident with  M
 2 and can even pass 

pass through equal thicknesses of glass only when a  compensator 


through it). The surfaces  g1 and g2 are the images of the 


plate C
  is inserted in the arm  OM
 1. The compensator is an exact 

source  g  in mirrors  M
 1 and  M
 2, respectively. Now consider a 

duplicate of the beamsplitter, with the exception of any possible 

single point- S
  on the source emitting light in all directions; 

silvering or thin film coating on the beamsplitter. It is positioned 

let’s follow the course of one emerging ray. In actuality a wave 

at an angle of 45°, so that  O
  and  C
  are parallel to each other. With 

from  S
  will be split at  O
 , and its segments will thereafter be 

the compensator in place, any optical path difference arises from 

reflected by  M
 1 and  M
 2. In our schematic diagram we repre-

the actual path difference. In addition, because of the dispersion 

sent this by reflecting the ray off both  M
 2 and  M
 1′. To an ob-

of the beamsplitter, the optical path is a function of l. Accord-

server at  D,
  the two reflected rays will appear to have come 

ingly, for quantitative work, the interferometer without the com-

from the image points- S
 1 and - S
 2. [ Note that all rays shown in 

pensator plate can be used only with a quasimonochromatic 

( a
 ) and ( b
 ) of Fig. 9.37 share a common plane-of-incidence.] 

source. The inclusion of a compensator negates the effect of dis-

For all practical purposes,  S
 1 and  S
 2 are coherent point sources, 

persion, so that even a source with a very broad bandwidth will 

and we can anticipate a flux-density distribution obeying  

generate discernible fringes.

Eq. (9.14). 
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Figure 9.37
   A conceptual  


o



i


rearrangement of the Michelson 

(b)

Interferometer.

As the figure shows, the optical path difference for these rays 

fringe system of its own. Note, too, that since 2 d
  cos u m
  must be 

is nearly 2 d
  cos u, which represents a phase difference of 

less than the coherence length of the source, it follows that laser 


k
 02 d
  cos u. There is an additional phase term arising from the 

light will be particularly easy to use in demonstrating the inter-

fact that the wave traversing the arm  OM
 2 is internally reflected 

ferometer (see Section 9.5). This point would be made strik-

in the beamsplitter, whereas the  OM
 1-wave is externally reflected 

ingly evident were we to compare the fringes produced by laser 

at  O
 . If the beamsplitter is simply an uncoated glass plate, the 

light with those generated by “white” light from an ordinary 

relative phase shift resulting from the two reflections will be p 

tungsten bulb or a candle. In the latter case, the path difference 

radians.  Destructive
 , rather than constructive, interference will 

must be very nearly zero, if we are to see any fringes at all, 

then exist when

whereas in the former instance a difference of 10 cm has little 

noticeable effect.





2 d
  cos u m 
 =  m
 l0 (9.44)

where  m
  is an integer. If this condition is fulfilled for the point- S
 , 

then it will be equally well fulfilled for any point on g  that lies 

on the circle of radius  O
 ′ S
 , where  O
 ′ is located on the axis of 


S



S


2

1

the detector. If the embedding medium is not vacuum, l0 in  

Eq. (9.44) must be replaced by l for that material. 

As illustrated in Fig. 9.38, an observer will see a circular 

fringe system concentric with the central axis of her eye’s lens. 


O


Because of the small aperture of the eye, the ob server will not 

be able to see the entire pattern without the use of a large lens 

near the beamsplitter to collect most of the emergent light.

Σ

Σ

1

2

If we use a source containing a number of frequency compo-

nents (e.g., a mercury discharge lamp), the dependence of u m
  on 

l0, in Eq. (9.44) requires that each such component generate a 


Figure 9.38
     Formation of circular fringes.
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An interference pattern in quasimonochromatic light typi-

Since u m 
 K u p
 , both are just the half-angle subtended at the de-

cally consists of a large number of alternatively bright and dark 

tector by the particular ring, and since  m 
 =  m
 0 -  p
 , Eq. (9.47) is 

rings. A particular ring corresponds to a fixed  order m
 . As  M
 2 is 

equivalent to Eq. (9.44). The new form is somewhat more conve-

moved toward  M
 ′1,   d
  decreases, and according to Eq. (9.44), 

nient, since (using the same example as above) with  d 
 = 10 cm, 

cos u m
  increases while u m
  therefore decreases. The rings shrink 

the sixth dark ring can be specified by stating that  p 
 = 6, or in 

toward the center, with the highest-order one disappearing 

terms of the  order
  of the  p
 th ring, that  m 
 = 399 994. If u p
  is small,

whenever  d
  decreases by l0>2. Each remaining ring broadens 

u2 p


as more and more fringes vanish at the center, until only a few 

cos u p 
 = 1 - 2

fill the whole screen. By the time  d 
 = 0 has been reached, the 

central fringe will have spread out, filling the entire field of 

and Eq. (9.47) yields

view. With a phase shift of p resulting from reflection off the 


p
 l 1>2

beamsplitter, the whole screen will then be an interference min-





0

u p 
 = a

b  (9.48)

imum. (Lack of perfection in the optical elements can render 


d


this unobservable.) Moving  M
 2 still farther causes the fringes to 

for the angular radius of the  p
 th fringe.

reappear at the center and move outward.

The construction of Fig. 9.37 represents one possible con-

Notice that a central dark fringe for which u m 
 = 0 in Eq. 

figuration, the one in which we consider only pairs of parallel 

(9.44) can be represented by

emerging rays. Since these rays do not actually meet, they can-





2 d 
 =  m
 0l0 (9.45)

not form an image without a condensing lens of some sort. In-

deed, that lens is most often provided by the observer’s eye fo-

(Keep in mind that this is a special case. The central region 

cused at infinity. The resulting  
fringes of equal inclination

  

might correspond to neither a maximum nor a minimum.) Even 

(u m 
 = constant) located at infinity are also  
Haidinger fringes

 . 

if   d
  is 10 cm, which is fairly modest in laser light, and  

A comparison of Figs. 9.37 b
  and 9.3 a
 , both showing two coher-

l0 = 500 nm,  m
 0 will be quite large, namely, 400 000. At a fixed 

ent point sources, suggests that in addition to these (virtual) 

value of  d
 , successive dark rings will satisfy the expressions

fringes at infinity, there might also be (real) fringes formed by 

converging rays. These fringes do in fact exist. Hence, if you 

2 d
  cos u1 = ( m
 0 - 1)l0

illuminate the interferometer with a  broad source
  and shield out 

2 d
  cos u2 = ( m
 0 - 2)l0

all extraneous light, you can easily see the projected pattern on 

a screen in a darkened room (see Section 9.5). The fringes will 

f

appear in the space in front of the interferometer (i.e., where the 





2 d
  cos u p 
 = ( m
 0 -  p
 )l0 (9.46)

detector is shown), and their size will increase with increasing 

distance from the beamsplitter. We will consider the (real) 

The angular position of any ring, for example, the  p
 th ring, is 

fringes arising from point-source illumination a little later on.

determined by combining Eqs. (9.45) and (9.46) to yield

When the mirrors of the interferometer are inclined with re-





2 d
 (1 - cos u p
 ) =  p
 l0 (9.47)

spect to each other, making a small angle (i.e., when  M
 1 and  M
 2 

are not quite perpendicular),  
Fizeau fringes

  are observed. The 

resultant wedge-shaped air film between  M
 2 and  M
 1′ creates a 

pattern of straight parallel fringes. The interfering rays appear to 

diverge from a point behind the mirrors. The eye would have to 

focus on this point in order to make these  localized fringes
  ob-

servable. It can be shown analytically* that by appropriate ad-

justment of the orientation of the mirrors- M
 1 and - M
 2, fringes 

can be produced that are straight, circular, elliptical, parabolic, 

or hyperbolic—this holds as well for the real and virtual fringes.

The Michelson Interferometer can be used to make extremely 

accurate length measurements. As the moveble mirror is displaced 

by l0>2, each fringe will move to the position previously occupied 

by an adjacent fringe. Using a microscope arrangement, one 

need only count the number of fringes  N
 , or portions thereof, 

that have moved past a reference point to determine the distance 

traveled by the mirror ∆ d
 , that is,

∆ d 
 =  N
 (l0>2)

Circular fringes created by a Michelson Interferometer using laser light.  

(J. Mavroudes, S. Ho, Dr. A. Karpf, and Professor G. N. Rao, Physics Department, Adelphi University.)

*See, for example, Valasek,  Optics
 , p. 135. 
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Nowadays this can be done fairly easily by electronic means. 

Michelson used the method to measure the number of wave-

lengths of the red cadmium line corresponding to the standard 

meter in Sèvres near Paris.*

EXAMPLE 9.9

Imagine that a thin glass ( ng 
 = 1.520) sheet 0.050 mm thick is 

inserted into one arm of a Michelson Interferometer illuminated 

by yellow helium light (l0 = 587.56 nm). How many fringe-

pairs will thereupon be displaced?

SOLUTION 

A shift in path of l0>2 corresponds, because the apparatus is in 

air, to a shift in  OPL
  of l0>2, and a displacement of one fringe-

pair. By inserting glass of thickness  D
 —thereby replacing a 

sheet of air—we change the  OPL
  by an amount 


Dng 
 -  Dnair 
 =  D
 ( ng 
 - 1). That’s traversed twice and corre-

Fringes formed by two overlapping beams of sodium atoms. (National Institute of 

sponds to a distance of  N
 l0, where  N
  is the number of fringe-

Standards and Technology)

pairs. Thus

2 D
 ( ng 
 - 1) =  N
 l0

thereupon form interference fringes. The accompanying photo 

shows fringes produced by interfering sodium atoms first cooled 

and

to a few millionths of a kelvin above absolute zero. Because an 

2 D
 ( n


atom’s de Broglie wavelength is a mere hundredth of a nanome-


g 
 - 1)

2(0.050 * 10-3)(0.520)


N 
 =

=

ter or so, differences in path length of as little as a picometer can 

l0

587.56 * 10-9

be detected.

finally  


N 
 = 88.5 


Measuring Coherence Length


The Michelson Interferometer can be used along with a few 

The Michelson Interferometer can also be used to determine the 

polaroid filters to verify the Fresnel–Arago Laws. A polarizer 

coherence length of a light source. Examine Fig. 9.39, in which 

inserted in each arm will allow the optical path length differ-

three consecutive wavetrains (leading a long series of such 

ence to remain fairly constant, while the vector field directions 

trains that are not shown) head toward the beamsplitter. Each 

of the two beams are easily changed.

has a coherence length of around ∆ lc
  but they are out-of-phase 

A microwave Michelson Interferometer can be constructed 

with one another by arbitrary amounts. These three trains will 

with sheet-metal mirrors and a chicken-wire beamsplitter. With the 

each be split (into primed and double-primed parts), with half 

detector located at the central fringe, it can easily measure shifts 

their energy going toward  M
 1 and half going toward  M
 2. There-

from maxima to minima as one of the mirrors is moved, thereby 

after they’ll be reflected back to the beamsplitter and then sent 

determining l. A few sheets of plywood, plastic, or glass inserted 

on to the observer. When the two mirrors are about the same 

in one arm will change the central fringe. Counting the number of 

distance from the beamsplitter,  d
  is roughly zero. The two 

fringe shifts yields a value for the index of refraction, and from that 

streams of light arrive at the observer with wavetrain-A′ more or 

we can compute the dielectric constant of the material.

less completely overlapping wavetrain-A″, wavetrain-B′ more or 

less completely overlapping wavetrain-B″, and so on. Each pair 

of wavetrains (e.g., -A′ and -A″) has a sustained relative phase 


Atomic Interferometers


relationship, and consequently wavetrain-A′ very effectively in-

terferes with wavetrain-A″, -B′ with -B″, and so forth. What re-

In the early 1990s researchers in Germany and the United States 

sults is a bright, sustained fringe pattern with plenty of contrast. 

developed the first atomic interferometers. Streams of atoms can 

As  d
  is made to increase, wavetrain-A″ falls behind wavetrain-A′ 

be sheared in two using a laserbeam. Following different paths 

and begins to partially overlap wavetrain-B′, just as B″ partially 

these streams are subsequently made to converge, overlap, and 

overlaps C′, and so forth all the way down the line back to the source. 

Any two trains (e.g., -A″ and -B′) can interfere, but since their rela-

tive phase-angle difference is arbitrary and different from that of 

*A discussion of the procedure he used to avoid counting the 3 106 327 fringes 

wavetrain-A

directly can be found in Strong,  Concepts of Classical Optics
 , p. 238, or Williams, 

″ and -A′, their fringe pattern will differ, and the overall 


Applications of Interferometry
 , p. 51.

irradiance distribution will fade, losing contrast. When 2 d
  equals 
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Scylla IV, an early setup for studying plasma. (University of California, U.S. 

Department of Energy)


Figure 9.39
     How coherence length (∆ lc
 ) can be measured with a 

used, in a somewhat altered yet conceptually similar form, to 

Michelson Interferometer.

obtain electron interference fringes.*

An object interposed in one beam will alter the optical path 

length difference, thereby changing the fringe pattern. A com-

∆ lc
 , the average wavetrain length, the interference pattern will van-

mon application of the device is to observe the density varia-

ish altogether.

tions in gas-flow patterns within research chambers (wind tun-

nels, shock tubes, etc.). One beam passes through the optically 

flat windows of the test chamber, while the other beam traverses 


The Mach–Zehnder Interferometer


appropriate compensator plates. The beam within the chamber 

The Mach–Zehnder Interferometer is another amplitude-splitting 

will propagate through regions having a spatially varying index 

device. As shown in Fig. 9.40, it consists of two beamsplitters 

of refraction. The resulting distortions in the wavefront gener-

and two totally reflecting mirrors. The two waves within the ap-

ate the fringe contours. A particularly nice application is shown 

paratus travel along separate paths. A difference between the 

in Fig. 9.41, which depicts the magnetic compression device 

optical paths can be introduced by a slight tilt of one of the 

beamsplitters. Since the two paths are separated, the interferom-

eter is relatively difficult to align. For the same reason, however, 

Interference

the interferometer finds myriad applications. It has even been 
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Figure 9.41
   Schematic of Scylla IV.
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*L. Marton, J. Arol Simpson, and J. A. Suddeth,  Rev. Sci. Instr
 . 25
 , 1099 (1954), 


Figure 9.40
     The Mach–Zehnder Interferometer.

and  Phys. Rev
 . 90
 , 490 (1953).
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Interferogram without plasma. (University of California, Los Alamos National Security, LLC. 

Interferogram with plasma. (University of California, Los Alamos National Security, LLC. 

All rights reserved.)

All rights reserved.)

known as Scylla IV. It was used to study controlled thermonu-

Fig. 9.42 b
 ; still others are possible. Notice that the main feature 

clear reactions at the Los Alamos Scientific Laboratory. 





of the device is that there are two identical but oppositely di-

In this case, the Mach–Zehnder Interferometer appears in the 

rected paths taken by the beams and that both form closed loops 

form of a parallelogram. The two ruby laser  interferograms
 , as 

before they are united to produce interference. A deliberate 

these photographs are called, show the background pattern 

slight shift in the orientation of one of the mirrors will produce 

without a plasma in the tube and the density contours within the 

a path length difference and a resulting fringe pattern. Since the 

plasma during a reaction.

beams are superimposed and therefore inseparable, the interfer-

ometer cannot be put to any of the conventional uses. These in 

general depend on the possibility of imposing variations on 


Sagnac Interferometer


only one of the constituent beams.

Another amplitude-splitting device, which differs from the pre-

vious instrument in many respects, is the Sagnac Interferome-


Real Fringes


ter. It is very easy to align and quite stable. An interesting ap-

plication of the device is discussed in the last section of this 

Before we examine the creation of real, as opposed to virtual, 

chapter, where we consider its use as a gyroscope. One form of 

fringes, let’s first consider another amplitude-splitting interfer-

the Sagnac Interferometer is shown in Fig. 9.42 a
  and another in 

ometric device, the Pohl fringe-producing system
 , illustrated 

Mirror

Beamsplitter

Mirror

Source

Detector

Detector

(a)

(b)


Figure 9.42
   ( a
 ) A Sagnac Interferometer. ( b
 ) Another variation of the Sagnac Interferometer.
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Mica

Mica

Screen

Near-normal incidence

Small diverging

quasimonochromatic

source


Figure 9.43
     The Pohl Interferometer.

in Fig. 9.43. It is simply a thin transparent film illuminated by 

9.45.* The two vertical lines in Fig. 9.44, or the inclined ones 

the light coming from a point source. In this case, the fringes 

in Fig. 9.45, represent either the positions of the mirrors or the 

are real and can accordingly be intercepted on a screen 

two sides of the thin sheet in the Pohl Interferometer. Let’s as-

placed anywhere in the vicinity of the interferometer without a 

sume that point- P
  in the surrounding medium is a point at 

condensing-lens system. A convenient light source to use is a 

which there is constructive interference. A screen placed at that 

mercury lamp covered with a shield having a small hole ( ≈14 

point would intercept this maximum, as well as a whole fringe 

inch diameter) in it. As a thin film, use a piece of ordinary mica 

pattern, without any condensing system. The coherent virtual 

taped to a dark-colored book cover, which serves as an opaque 

sources emitting the interfering beams are mirror imag es  S
 1 

backing. If you have a laser, its remarkable coherence length 

and  S
 2 of the actual point source  S
 . It should be noted that this 

and high flux density will allow you to perform this same ex-

kind of real fringe pattern can be observed with both the  

periment with almost anything smooth and transparent. Expand 

Michelson and Sagnac Interferometers. If either device is illu-

the beam to about an inch or two in diameter by passing it 

minated with an expanded laserbeam, a real fringe pattern will 

through a lens (a focal length of 50 to 100 mm will do). Then 

be generated directly by the emerging waves. This is an  

just reflect the beam off the surface of a glass plate (e.g., a mi-

extremely simple and beautiful demonstration.

croscope slide), and the fringes will be evident within the illu-

minated disk wherever it strikes a screen.

The underlying physical principle involved with point-

source illumination for all four of the interferometric devices 

considered above can be appreciated with the help of a con-


P


struction, variations of which are shown in Figs. 9.44 and 


B



S
 2


P



S
 1


S



B



Figure 9.45
     Point-source illumination of inclined surfaces.

u


S
 2


S
 1


S


2 d



d


*A. Zajac, H. Sadowski, and S. Licht, “The Real Fringes in the Sagnac and the 


Figure 9.44
     Point-source illumination of parallel surfaces.

Michelson Interferometers,”  Am. J. Phys
 . 29
 , 669 (1961).
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those that can be seen on a screen without the use of an addi-

tional focusing system. The rays forming these fringes converge 

to the point of observation, all by themselves. Virtual fringes 

cannot be projected onto a screen without a focusing system. In 

this case the rays obviously do not converge.

Nonlocalized fringes are real and exist everywhere within an 

extended (three-dimensional) region of space. The pattern is lit-

erally nonlocalized, in that it is not restricted to some small re-

gion. Young’s Experiment, as illustrated in Fig. 9.11, fills the 

space beyond the secondary sources with a whole array of real 

fringes. Nonlocalized fringes of this sort are generally produced 

by small sources, that is, point or line sources, be they real or 

virtual. In contrast, localized fringes are clearly observable only 

over a particular surface. The pattern is literally localized, 

whether near a thin film or at infinity. This type of fringe will 

always result from the use of extended sources but can be gen-

Real Michelson fringes using He–Ne laser light. (E.H.)

erated with a point source as well.

The Pohl Interferometer (Fig. 9.43) is particularly useful 

in illustrating these principles, since with a point source it 


9.5  Types and Localization  


will produce both real nonlocalized and virtual localized 


of Interference Fringes


fringes. The real nonlocalized fringes (Fig. 9.46, upper half) 

can be intercepted on a screen almost anywhere in front of 

Often it is important to know where the fringes produced in a 

the mica film.

given interferometric system will be located, since that is the 

For the nonconverging rays, realize that since the aperture 

region where we need to focus our detector (eye, camera, tele-

of the eye is quite small, it will intercept only those rays that 

scope). In general, the problem of locating fringes is character-

are directed almost exactly at it. For this small pencil of rays, 

istic of a given interferometer; that is, it has to be solved for 

the eye, at a particular position, sees either a bright or dark 

each individual device.

spot but not much more. To perceive an extended fringe pat-

Fringes can be classified, first, as either  real
  or  virtual
  and, 

tern formed by parallel rays of the type shown in the bottom 

second, as either  nonlocalized
  or  localized
 . Real fringes are 

half of Fig. 9.46, a large lens will have to be used to gather in 


P



P



S
 2


S



S



Figure 9.46
     A parallel film. The rays are 

drawn neglecting refraction.
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9.6 Multiple-Beam Interference


Region of


S


Thus far we have examined a number of situations in which 

localization


P


(real fringes)

two coherent beams are combined under diverse conditions to 

produce interference patterns. There are, however, circumstanc-

es under which a much larger number of mutually coherent 

a

waves are made to interfere. In fact, whenever the amplitude-

reflection coefficients, the  r
 ’s, for the parallel plate illustrated in 


P


Region of localization

Fig. 9.28 are not small, as was previously the case, the higher-

(virtual fringes)

order reflected waves E


$3 r
 , E
 $4 r
 , . . . become quite significant. 

A glass plate, slightly silvered on both sides so that the  r
 ’s ap-


Figure 9.47
     Fringes formed by a wedge-shaped film.

proach unity, will generate a large number of multiply inter-

nally reflected rays. For the moment, we will consider only 

situations in which the film, substrate, and surrounding medi-

light entering at other orientations. In practice, however, the 

um are transparent dielectrics. This avoids the more compli-

source is usually somewhat extended, and fringes can gener-

cated phase changes resulting from metal-coated surfaces.

ally be seen by looking into the film with the eye focused at 

To begin the analysis as simply as possible, let the film be 

infinity. These virtual fringes are localized at infinity and are 

nonabsorbing and let  n
 1 =  n
 2. The notation will be in accord 

equivalent to the  equal-inclination fringes
  of Section 9.4. 

with that of Section 4.10; the amplitude-transmission coeffi-

Similarly, if the mirrors- M


cients are represented by  t
 , the fraction of the amplitude of a 

1 and - M
 2 in the Michelson Interfer-

ometer are parallel, the usual circular, virtual, equal-inclination 

wave transmitted on entering into the film, and  t
 ′, the fraction 

fringes localized at infinity will be seen. We can imagine a 

transmitted when a wave leaves the film. The rays are actually 

thin air film between the surfaces of the mirrors- M


lines drawn perpendicular to the wavefronts and therefore are 

2 and - M
 1  


acting to generate these fringes. As with the configuration of 

also perpendicular to the optical fields E


$1 r
 , E
 $2 r
 , and so forth. 

Fig. 9.43 for the Pohl device, real nonlocalized fringes will 

Since the rays will remain nearly parallel, the scalar theory will 

also be present.

suffice as long as we are careful to account for any possible 

The geometry of the fringe pattern seen in reflected light 

phase shifts. 

from a transparent wedge of small angle a is shown in Fig. 9.47. 

As shown in Fig. 9.49, the scalar amplitudes of the reflected 

The fringe location  P
  will be determined by the direction of 

waves  E


$1 r
 ,  E
 $2 r
 ,  E
 $3 r
 , . . . , are, respectively,  E
 0 r
 ,   E
 0 tr
 ′ t
 ′, incidence of the incoming light. Newton’s rings have this same 


E
 0 tr
 ′3 t
 ′, . . . , where  E
 0 is the amplitude of the initial incoming 

kind of localization, as do the Michelson, Sagnac, and other 

wave and  r 
 = - r
 ′ via Eq. (4.89). The minus sign indicates a 

interferometers for which the equivalent interference system 

phase shift, which we will consider later. Similarly, the trans-

consists of two reflecting planes inclined slightly to each other. 

mitted waves E


$1 t
 , E
 $2 t
 , E
 $3 t
 , . . . will have amplitudes  E
 0 tt
 ′, The wedge setup of the Mach–Zehnder Interferometer is disE 0 tr
 ′2 t
 ′,   E
 0 tr
 ′4 t
 ′, . . . . Consider the set of parallel reflected tinctive in that by rotating the mirrors, one can localize the re-rays. Each ray bears a fixed phase relationship to all the other 

sulting virtual fringes on any plane within the region generally 

reflected rays. The phase differences arise from a combination 

occupied by the test chamber (Fig. 9.48).

of optical path length differences and phase shifts occurring at 

the various reflections. Nonetheless, the waves are mutually 

coherent, and if they are collected and brought to focus at a 

point- P
  by a lens, they will all interfere. The resultant irradi-

ance  expression has a particularly simple form for two special 

cases.

Region of

localization

The difference in optical path length between adjacent rays 

is given by





Λ = 2 nƒ
   d
  cos u t
  [9.33]

All the waves except for the first, E


$1 r
 , undergo an odd num-

ber of reflections  within
  the film. It follows from Fig. 4.49 

that at each internal reflection the component of the field par-

allel to the plane-of-incidence changes phase by either 0 or p, 

de pend ing on the internal incident angle u i 
 6 u c
 . The compo-

nent of the field perpendicular to the plane-of-incidence suf-


Figure 9.48
     Fringes in the Mach–Zehnder Interferometer.

fers no change in-phase on internal reflection when u i 
 6 u c
 . 
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E
 0


E
 0 t



E
 0 r



E
 0 tr



E
 0 tr
 2


E
 0 tr
 t



E



E


0 tr
 3

0 tt



E
 0 tr
 4


E
 0 tr
 3 t



E



E


0 tt
 r
 2

0 tr
 5


E
 0 tr
 5 t



E
 0 tt
 r
 4


P



n
 2 =  n
 1  n



n



f


1


P



Figure 9.49
     Multiple-beam interference from a parallel film.

Clearly, then, no relative change in-phase among these waves 

plitudes, that is, the total  reflected amplitude
  at point- P
 , is 

results from an odd number of such reflections (Fig. 9.50). 

then

As the  first special case
 , if Λ =  m
 l, the second, third, fourth, 


E


and successive waves will all be in-phase at  P
 . The wave E


$

0 r 
 =  E
 0 r 
 - ( E
 0 trt
 ′ +  E
 0 tr
 3 t
 ′ +  E
 0 tr
 5 t
 ′ + g) 1 r
 , 

however, because of its reflection at the top surface of the 

or 


E
 0 r 
 =  E
 0 r 
 -  E
 0 trt
 ′(1 +  r
 2 +  r
 4 + g) film, will be out-of-phase by 180° with respect to all the other 

waves. The phase shift is embodied in the fact that  r 
 = - r
 ′ 

where since Λ =  m
 l, we’ve just replaced  r
 ′ by - r
 . The geomet-

and  r
 ′ occurs only in odd powers. The sum of the scalar am-

ric series in parentheses converges to the finite sum 1>(1 -  r
 2) 

as long as  r
 2 6 1, so that


E
 0 trt
 ′


E







E
 0 r 
 =  E
 0 r 
 -

 (9.49)


E


(1 -  r
 2)


E


⊥


k



E



k
 1

1 r r


It was shown in Section 4.10, when we considered Stokes’s 


E
 1 r
  E



k


treatment of the principle of reversibility (Eq. 4.86), that 

Plane-of-

1 r
 ⊥ 2 r


incidence


tt
 ′


k


= 1 -  r
 2, and it follows that

3


E



r


2 r
 ⊥ E
 2 r



E
 0 r 
 = 0


E
 3 r



E
 2 r
 E
 3 r
 ⊥

Thus when Λ =  m
 l the second, third, fourth, and successive 

Thin film


E
 3 r


waves exactly cancel the first reflected wave, as shown in  


nf


Fig. 9.51. In this case no light is reflected; all the incoming  

energy is transmitted. The  second special case
  arises when 

Λ = ( m 
 + 12)l. Now the first and second rays are in-phase, and 

all other adjacent waves are l>2 out-of-phase; that is, the sec-

ond is out-of-phase with the third, the third is out-of-phase with 

the fourth, and so on. The resultant  scalar amplitude
  is then


E
 0 r 
 =  E
 0 r 
 +  E
 0 trt
 ′ -  E
 0 tr
 3 t
 ′ +  E
 0 tr
 5 t
 ′ - g Figure 9.50
     Phase shifts arising purely from the reflections  

(internal u

′

or 


E



i 
 6 u p
 ).

0 r 
 =  E
 0 r 
 +  E
 0 rtt
 ′(1 -  r
 2 +  r
 4 - g) 
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1

The terms d, 2d, . . . , ( N 
 - 1)d are the contributions to the 

2

phase arising from an optical path length difference between 

3

adjacent rays (d =  k
 0Λ). There is an additional phase contribution 

4

arising from the optical distance traversed in reaching point- P
 , but 

5

this is common to each ray and has been omitted. The relative 

6

phase shift undergone by the first ray as a result of the reflection 

is embodied in the quantity  r
 ′. The resultant  reflected scalar
  


E
 0 r
  = 0 (Resultant amplitude)


wave
  is then


Figure 9.51
   Phasor diagram.


E


  ˜
 r 
 =  E
  ˜
 1 r 
 +  E
  ˜
 2 r 
 +  E
  ˜
 3 r 
 +  g +  E
  ˜
 Nr
 or upon substitution (Fig. 9.53)

The series in parentheses is equal to 1>(1 +  r
 2), in which case

  E
  ˜
 r 
 =  E
 0 rei
 v t 
 +  E
 0 tr
 ′ t
 ′ ei
 (v t
 -d) +  g +  E
 0 tr
 ′(2 N
 -3) t
 ′


tt
 ′


E
 0 r 
 =  E
 0 r 
 c1 +

d

  *  ei
 [v t
 -( N
 -1)d]

(1 +  r
 2)

This can be rewritten as

Again,  tt
 ′ = 1 -  r
 2; therefore, as illustrated in Fig. 9.52,


E


  ˜
 r 
 =  E
 0 ei
 v t
 5 r 
 +  r
 ′ tt
 ′ e
 - i
 d[1 + ( r
 ′2 e
 - i
 d) 2 r



E
 0 r 
 =

  E


(1 +  r
 2) 0

+ ( r
 ′2 e
 - i
 d)2 + g + ( r
 ′2 e
 - i
 d) N
 -2]6

Since this particular arrangement results in the addition of the 

If    r
 ′2 e
 - i
 d  6 1, and if the number of terms in the series ap-

first and second waves, which have relatively large amplitudes, 

proaches infinity, the series converges. The resultant wave becomes

it should yield a large reflected flux density. The irradiance is 

proportional to  E
 20 r
 >2, so from Eq. (3.44)


r
 ′ tt
 ′ e
 - i
 d






E


  ˜
 r 
 =  E
 0 ei
 v t 
 c r 
 +

d  (9.51)

1


E
 2

-  r
 ′2 e
 - i
 d

4 r
 2






I


0


r 
 =

 a b (9.50)

(1 +  r
 2)2 2

In the case of zero absorption, no energy being taken out of the 

waves, we can use the relations  r 
 = - r
 ′ and  tt
 ′ = 1 -  r
 2 to 

That this is in fact the maximum, ( Ir
 )max, will be shown later.

rewrite Eq. (9.51) as

We will now consider the problem of multiple-beam inter-

ference in a more general fashion, making use of the complex 


r
  (1 -  e
 - i
 d)


E


  ˜
 r 
 =  E
 0 ei
 v t


representation. Again let  n


c

d

1 =  n
 2, thereby avoiding the need to 

1 -  r
 2 e
 - i
 d

introduce different reflection and transmission coefficients at 

each interface. The optical fields at point- P
  are given by

The reflected flux density at  P
  is then  Ir 
 =  E
  ˜
 rE
  ˜
 r
 *>2, that is, E


  ˜
 1 r 
 =  E
 0 rei
 v t



E
 2


I


0 r
 2(1 -  e
 - i
 d)(1 -  e
 + i
 d)


r 
 =


E


  ˜


2(1

2 r 
 =  E
 0 tr
 ′ t
 ′ ei
 (v t 
 - d)

-  r
 2 e
 - i
 d)(1 -  r
 2 e
 + i
 d)


E


  ˜


which can be transformed into

3 r 
 =  E
 0 tr
 ′3 t
 ′ ei
 (v t 
 - 2d)

f

2 r
 2(1 - cos d)






Ir 
 =  Ii
  

 (9.52)


E


  ˜


(1


Nr 
 =  E
 0 tr
 ′(2 N 
 - 3) t
 ′ ei
 [v t 
 - ( N 
 - 1)d]

+  r
 4) - 2 r
 2 cos d

where  E
 0 ei
 v t 
 is the incident wave.


E
 0 r


d

1


E
 0 tr
 t


2

3


E


4


r


d

5


E
 0 tr
 3 t


6

7

d

(Resultant amplitude)       E


d

0 r



Figure 9.52
   Phasor diagram.


Figure 9.53
   Phasor diagram.
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The symbol  I


2


i 
 =  E
 0>2 represents the incident flux density, 

Under these conditions, Eq. (9.52) indicates that

since, of course,  E
 0 was the amplitude of the incident wave. 

( Ir
 )min = 0

Similarly, the amplitudes of the transmitted waves given by

as we would expect from Eq. (9.57). Again, from Eq. (9.54) it is 


E


  ˜
 1 t 
 =  E
 0 tt
 ′ ei
 v t


clear that a minimum transmitted flux density will exist when 


E


  ˜
 2 t 
 =  E
 0 tt
 ′ r
 ′2 ei
 (v t
 -d)

the denominator is a maximum, that is, when cos d = -1. In 

that case d = (2 m 
 + 1)p and


E
  ˜
 3 t 
 =  E
 0 tt
 ′ r
 ′4 ei
 (v t
 -2d)

(1 -  r
 2)2

f





( It
 )min =  Ii
  

 (9.58)

(1 +  r
 2)2


E


  ˜
 Nt 
 =  E
 0 tt
 ′ r
 ′2( N
 -1) ei
 [v-( N
 -1)d]

The corresponding maximum in the reflected flux density is

can be added to yield

4 r
 2





( I



tt
 ′


r
 )max =  Ii
  

 (9.59)






E


  ˜



ei
 v t


(1


t 
 =  E
 0

c

d  (9.53)





+  r
 2)2

1 -  r
 2 e
 - i
 d

Notice that the constant-inclination fringe pattern has its maxima 

(Because we are interested in the irradiance, a common factor 

when d = (2 m 
 + 1)p or

of  e
 - i
 d>2, arising from the transmission through the film, was 

omitted. It contributes to the fact that there is a phase difference 

4p nf
   d
  cos u t 
 = (2 m 
 + 1)p

of p>2 between the reflected and transmitted waves, but that is 

l0

of no concern here.)

Multiplying Eq. (9.53) by its complex conjugate yields 

which is the same as the result we arrived at previously, in 

(Problem 9.53) the irradiance of the transmitted beam

Eq. (9.36), by using only the first two reflected waves. Note, 

too, that Eq. (9.59) verifies that Eq. (9.50) was indeed a 


Ii
 ( tt
 ′)2

maximum.






It 
 =

 (9.54)

(1

The form of Eqs. (9.55) and (9.56) suggests that we intro-

+  r
 4) - 2 r
 2 cos d

duce a new quantity, the  
coefficient of finesse

   F
 , such that

Using the trigonometric identity cos d = 1 - 2 sin2 (d>2),  

2 r


2

Eqs. (9.52) and (9.54) become






F 
 K a

b  (9.60)

1 -  r
 2

[2 r
 >(1 -  r
 2)]2 sin2 (d>2)






Ir 
 =  Ii
  

 (9.55)

whereupon these equations can be written as

1 + [2 r
 >(1 -  r
 2)]2 sin2 (d>2)


I



F
  sin2 (d>2)

1






r 
 =

 (9.61)

and 


It 
 =  Ii
  

  

(9.56)


Ii


1 +  F
  sin2 (d>2)

1 + [2 r
 >(1 -  r
 2)]2 sin2 (d>2)

where energy is not absorbed, that is,  tt
 ′ +  r
 2 = 1. If indeed 


I


1

and 


t 
 =

 (9.62)

none of the incident energy is absorbed, the flux density of the 


Ii


1 +  F
  sin2 (d>2)

incoming wave should exactly equal the sum of the flux density 

reflected off the film and the total transmitted flux density 

The term [1 +  F
  sin2 (d>2)]-1 K 𝒜 (
 u )
  is known as the Airy 


emerging from the film. It follows from Eqs. (9.55) and (9.56) 


function
 . It represents the transmitted flux-density distribu-

that this is indeed the case, namely,

tion and is plotted in Fig. 9.54. The complementary function 

[1 - 𝒜 (
 u )
 ], that is, Eq. (9.61), is plotted as well, in Fig. 9.55. 






Ii 
 =  Ir 
 -  It
  (9.57)

When  d>2 =  m
 p, the Airy function is equal to unity for all 

values of  F
  and therefore  r
 . When  r
  approaches 1, the trans-

This will not be true, however, if the dielectric film is coated 

mitted flux density is very small, except within the sharp 

with a thin layer of semitransparent metal. Surface currents in-

spikes centered about the points d

duced in the metal will dissipate a portion of the incident elec-

>2 =  m
 p. Multiple-beam 

interference has resulted in a redistribution of the energy den-

tromagnetic energy.

sity in comparison to the sinusoidal two-beam pattern (of 

Consider the transmitted waves as described by Eq. (9.54). A 

which the curves corresponding to a small reflectance are 

maximum will exist when the denominator is as small as pos-

reminiscent). This effect will be further demonstrated when 

sible, that is, when cos d = 1, in which case  d 
 = 2p m
  and

we consider the diffraction grating. At that time we will see 

( It
 )max =  Ii


this same peaking effect, resulting from an increased number 
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This is the simplest configuration, and as we shall see, other 

1

forms are also widely in use. In practice, two semisilvered or 


F
  = 0.2


r
 2 = 0.046

aluminized glass optical flats form the reflecting boundary 

surfaces. The enclosed air gap generally ranges from several 


r
 2 = 0.18

millimeters to several centimeters when the apparatus is used 


F
  = 1


I i


interferometrically, and often to considerably greater lengths 


I r 
 0.5

when it serves as a laser resonant cavity. If the gap can be 

mechanically varied by moving one of the mirrors, it’s re-

ferred to as an interferometer. When the mirrors are held fixed 


r
 2 = 0.87

and adjusted for parallelism by screwing down on some sort of 


F
  = 200


F
  = 200

spacer (invar or quartz is commonly used), it’s said to be an 

0

–2p

–p

0

p

2p

3p

4p d


etalon
  (although it is still an interferometer in the broad 

sense). If the two surfaces of a single quartz plate are appro-


Figure 9.54
   Airy function.

priately polished and silvered, it too will serve as an etalon; 

the gap need not be air. The unsilvered sides of the plates are 

often made to have a slight wedge shape (a few minutes of arc) 

of coherent sources contributing to the interference pattern. 

to reduce the interference pattern arising from reflections off 

Remember that the Airy function is, in fact, a function of u t
  or 

these sides. 

u i
  by way of its dependence on d, which follows from Eqs. 

The etalon in Fig. 9.56 is shown illuminated by a broad 

(9.34) and (9.35), ergo the notation 𝒜 (
 u )
 . Each spike in the 

source, which might be a mercury arc or a He–Ne laserbeam 

flux-density curve corresponds to a particular d and therefore 

spread out in diameter to several centimeters. This can be done 

a particular u i
 . For a plane-parallel plate, the fringes, in trans-

rather nicely by sending the beam into the back end of a tele-

mitted light, will consist of a series of narrow bright rings on 

scope focused at infinity. The light can then be made diffuse by 

an almost completely dark background. In reflected light, the 

passing it through a sheet of ground glass. Only one ray emitted 

fringes will be narrow and dark on an almost uniformly bright 

from some point- S
 1 on the source is traced through the etalon. 

background.

Entering by way of the partially silvered plate, it is multiply 

Constant-thickness fringes can also be made sharp and nar-

reflected within the gap. The transmitted rays are collected by a 

row by applying a light silver coating to the relevant reflecting 

lens and brought to a focus on a screen, where they interfere to 

surfaces to produce multiple-beam interference.

form either a bright or dark spot. Consider this particular plane-

of-incidence, which contains all the reflected rays. Any other 

ray emitted from a different point- S
 2, parallel to the original ray 


9.6.1 The Fabry–Perot Interferometer


and in that plane-of-incidence, will form a spot at the same 

point- P
  on the screen. As we shall see, the discussion of the 

The multiple-beam interferometer, first constructed by Charles 

previous section is again applicable, so that Eq. (9.54) deter-

Fabry and Alfred Perot in the late 1800s, is of considerable con-

mines the transmitted flux density  It
 . 

temporary interest. Besides being a spectroscopic device of ex-

The multiple waves generated in the cavity, arriving at  P
  

tremely high resolving power, it serves as the basic laser reso-

from either  S
 1 or  S
 2, are coherent among themselves. But the 

nant cavity. In principle, the device consists of two plane, 

rays arising from  S
 1 are completely incoherent with respect to 

parallel, highly reflecting surfaces separated by some distance  d
 . 

those from  S
 2, so that there is no sustained mutual interference. 

The contribution to the irradiance  It
  at  P
  is just the sum of the 

two irradiance contributions.

1


F
  = 200


r
 2 = 0.87


I i



P



I r 
 0.5


r
 2 = 0.18


S
 2


F
  = 1


S
 1

Broad

Lens

Focusing lens


F
  = 0.2


r
 2 = 0.046

Screen

0

source

–2p

–p

0

p

2p

3p

4p d


d



Figure 9.55
     One minus the Airy function.


Figure 9.56
   Fabry–Perot etalon.

M09_HECH7226_05_SE_C09_390-448.indd   429

28/10/15   4:33 PM






430
   Chapter 9
   Interference

(a)

Source

Lens

Etalon

Lens

(b)

Screen


Figure 9.57
   ( a
 ) Fabry–Perot etalon. ( b
 ) The axially symmetrical 

fringes seen looking into the etalon. (E.H.)

All the rays incident on the gap at a given angle will result in 

One further complication introduced by the metallic films is an ad-

a single circular fringe of uniform irradiance (Fig. 9.57). With a 

ditional phase shift f (
 u i)
 , which can differ from either zero or p. 

broad diffuse source, the interference bands will be narrow con-

The phase difference between two successively transmitted 

centric rings, corresponding to the multiple-beam transmission 

waves is then

pattern.

4p nƒ


The fringe system can be observed visually by looking di-





d =

  d
  cos u t 
 + 2f (9.64)

rectly into the etalon, while focusing at infinity. The job of the 

l 0

focusing lens, which is no longer needed, is done by the eye. At 

For the present conditions, u

large values of  d
 , the rings will be close together, and a tele-


i
  is small and f may be considered 

to be constant. In general,  d
  is so large, and l

scope might be needed to magnify the pattern. A relatively in-

0 so small, that f 

can be neglected. We can now express Eq. (9.54) as

expensive monocular will serve the same purpose and will al-

low for photographing the fringes localized at infinity. As 


It



T
 2

might be expected from the considerations of Section 9.5, it is 

=

possible to produce real nonlocalized fringes using a bright 


Ii


1 +  R
 2 - 2 R
  cos d

point source.

The partially transparent metal films that are often used to 

or equivalently

increase the reflectance ( R 
 =  r
 2) will absorb a fraction  A
  of the 


I



T


2

1

flux density; this fraction is referred to as the  
absorptance

 .






t 
 = a

b

 (9.65)

The expression


Ii


1 -  R 
 1 + [4 R
 >(1 -  R
 )2] sin2 (d>2)


tt
 ′ +  r
 2 = 1

Making use of Eq. (9.63) and the definition of the Airy func-

or 


T 
 +  R 
 = 1 [4.60]

tion, we obtain

where  T
  is the transmittance, must now be rewritten as


I



A


2






t 
 = c1 -

d  𝒜 (
 u )
  (9.66)


Ii


(1






T


-  R
 )

+  R 
 +  A 
 = 1 (9.63)
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as compared with the equation for zero absorption

Since  F
  is generally rather large, sin-1 (1> 1 F
 )  ≈ 1> 1 F
 , and 


I


therefore the half-width, g


t


= 2d1>2, becomes





= 𝒜 (
 u )
  [9.62]


Ii






g = 4> 2 F
  (9.69)

Inasmuch as the absorbed portion  A
  is never zero, the transmit-

Recall that  F


ted flux-density maxima ( I


= 4 R
 >(1 -  R
 )2, so that the larger  R
  is, the sharper 


t
 )max will always be somewhat less 

the transmission peaks will be.

than  Ii
 . [Recall that for ( It
 )max, 𝒜 (
 u ) 
 = 1.]

Another quantity of particular interest is the ratio of the sep-

Accordingly, the  peak transmission 
 is defined as ( It
 > Ii
 )max:

aration of adjacent maxima to the half-width. Known as the  

( I



A


2


finesse
 , 


t
 )max

ℱ K 2p>g or, from Eq. (9.69),





= c1 -

d  (9.67)


Ii


(1 -  R
 )

p 2 F






ℱ =

 (9.70)

A silver film 50 nm thick would be approaching its maximum 

2

value of  R
  (e.g., about 0.94), while  T
  and  A
  might be, respec-

Over the visible spectrum, the finesse of most ordinary Fabry–

tively, 0.01 and 0.05. In this case, the peak transmission will be 

Perot instruments is about 30. The physical limitation on ^ is 

down to  136. The relative irradiance of the fringe pattern will still 

set by deviations in the mirrors from plane parallelism. Keep in 

be determined by the Airy function, since

mind that as the finesse increases, the half-width decreases, but 


I


so too does the peak transmission. Incidentally, a finesse of 






t


= 𝒜 (
 u )
  (9.68)

about 1000 is attainable with curved-mirror systems using di-

( It
 )max

electric thin-film coatings.*

A measure of the sharpness of the fringes, that is, how rap-

idly the irradiance drops off on either side of the maximum, is 

given by the half-width g. Shown in Fig. 9.58, g is the width of 


Fabry–Perot Spectroscopy


the peak, in radians, when  It 
 = ( It
 )max>2.

The Fabry–Perot Interferometer is frequently used to examine the 

Peaks in the transmission occur at specific values of the 

detailed structure of spectral lines. We will not attempt a complete 

phase difference dmax = 2p m
 . Accordingly, the irradiance  treatment of interference spectroscopy, but rather will define the will drop to half its maximum value [i.e., 𝒜 (
 u ) 
 = 12] whenever 

relevant terminology, briefly outlining appropriate derivations.**

d = dmax ± d1>2. Inasmuch as

As we have seen, a hypothetical, purely monochromatic 

𝒜 (
 u ) 
 = [1 +  F
  sin2(d>2)]-1

lightwave generates a particular circular fringe system. But d is 

a function of l0, so that if the source were made up of two such 

then when

monochromatic components, two superimposed ring systems 

[1 +  F
  sin2 (d1

would result. When the individual fringes partially overlap, a 

>2>2)]-1 = 12

certain amount of ambiguity exists in deciding when the two 

it follows that

systems are individually discernible, that is, when they are said 

to be  resolved
 . Lord Rayleigh’s† criterion for resolving two 

d1>2 = 2 sin-1 (1> 2 F
 )

equal-irradiance overlapping slit images is well accepted, even 

if somewhat arbitrarily in the present application. Its use, how-

ever, will allow a comparison with prism or grating instruments. 

The essential feature of this criterion is that the fringes are  just 


2 sin–1(1√ F
 )


resolvable
  when the combined irradiance of both fringes at the 

1.0

center, or saddle point, of the resultant broad fringe is 8>p2 

times the maximum irradiance. This simply means that one 

) max It
 ( It 
 0.5

g

*The paper “Multiple beam interferometry,” by H. D. Polster,  Appl. Opt
 . 8
 , 522 

(1969), should be of interest. Also look at E. Abraham, C. Seaton, and S. Smith, 


F
  = 200

“The optical computer,”  Sci. Am
 . (Feb. 1983), p. 85, for a discussion of the use  


R
  = 0.87

of the Fabry–Perot Interfero meter as an optical transistor.

0

d

dmax = 2p m


dmax = 2p( m
  + 1)

**A more complete treatment can be found in Born and Wolf,  Principles of Optics
 , 

and in W. E. Williams,  Applications of Interferometry
 , to name only two.

d = dmax – d12

d = dmax + d12

†The criterion will be reconsidered with respect to diffraction in the next chapter 


Figure 9.58
   Fabry–Perot fringes.

(see Fig. 10.40).
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l


m


2p

or 

0

= - 





(∆l0)

(∆ m
 )

1

( I


The minus will be omitted, since it means only that the order 

8


a
 )max

( Ib
 )max

p2

increases when l0 decreases. When d changes by 2p,  m
  changes 

) max

by 1,


I t
 (

2p

1


I t


=

4p2

(∆d)

(∆ m
 )

l

2p m



I


and thus 

0

=

 (9.75)

(∆l0)

(∆d)

0

d

∆d

The ratio of l0 to the least resolvable wavelength difference, 

d a 
 d b


(∆l0)min, is known as the  
chromatic resolving power

  ℛ of any 

spectroscope. At nearly normal incidence


Figure 9.59
   Overlapping fringes.

l

2 nf
   d






ℛ K

0

≈ ℱ 

 (9.76)

(∆l0)min

l0

or 

ℛ ≈ ℱ m
  

would see a broad bright fringe with a grey central region. To be 

a bit more analytic about it, examine Fig. 9.59, keeping in mind 

For a wavelength of 500 nm,  nf
   d 
 = 10 mm, and  R 
 = 90%, the 

the previous derivation of the half-width. Consider the case in 

resolving power is well over a million, a range achieved by the 

which the two constituent fringes have equal irradiances, 

finest diffraction gratings. It follows as well, in this example, 

( Ia
 )max = ( Ib
 )max. The peaks in the resultant, occurring at d = d a
  

that (∆l0)min is less than a millionth of l0. In terms of frequency, 

and d = d b
 , will have equal irradiances,

the  
minimum resolvable bandwidth

  is





( It
 )max = ( Ia
 )max +  I
 ′ (9.71)


c






(∆n)min =

 (9.77)

ℱ2 nf
    d


At the saddle point, the irradiance (8>p2)( It
 )max is the sum of 

the two constituent irradiances, so that, recalling Eq. (9.68),

inasmuch as 0 ∆n 0 = 0 c
 ∆l0>l20 0.

( I


As the two components present in the source become in-

  (8>


t
 )max

p2)

= [𝒜 (
 u )
 ]d  =  d a
 +∆d>2 + [𝒜 (
 u )
 ]d  =  d b
 +∆d>2 (9.72) creasingly different in wavelength, the peaks shown overlap-

( Ia
 )max

ping in Fig. 9.59 separate. As the wavelength difference increas-

Using ( I


es, the  m
 th-order fringe for one wavelength l


t
 )max given by Eq. (9.71), along with the fact that

0 will approach the 

( m 
 + 1)th-order for the other wavelength (l0 - ∆l0). The par-


I
 ′

ticular wavelength difference at which overlapping takes place, 

= [𝒜 (
 u )
 ]

( I


d   =   d a 
 + ∆d


a
 )max

(∆l0)fsr, is known as the  
free spectral

   
range

 . From Eq. (9.75), 

a change in d of 2p corresponds to (∆l0)fsr = l0> m
 , or at near 

we can solve Eq. (9.72) for ∆d. For large values of  F
 ,

normal incidence,

4.2





(∆l0)fsr ≈ l20>2 nf
    d
  (9.78)





(∆d) ≈

 (9.73)

1 F


and similarly

This then represents the smallest phase increment, (∆d)min, 





(∆n)fsr ≈ c>2 nf
    d
  (9.79)

separating two resolvable fringes. It can be related to equivalent 

minimum increments in wavelength (∆l0)min, frequency  Continuing with the above example (i.e., l0 = 500 nm and (∆n)min, and wave number (∆ k
 )min. From Eq. (9.64), for   nƒ
   d 
 = 10 mm), (∆l0)fsr = 0.0125 nm. If we attempt to increase d = 2p m
 , we have

the resolving power by merely increasing  d
 , the free spectral 

range will decrease, bringing with it the resulting confusion 

fl0

from the overlapping of orders. What is needed is that (∆l0)min 






m
 l0 = 2 nƒ
   d
  cos u t 
 +

 (9.74)

p


be as small as possible and
  (∆l0)fsr  be as large as possible
 . But 

lo and behold,

Dropping the term fl0>p, which is clearly negligible, and then 

differentiating, yields

(∆l





0)fsr = ℱ (9.80)


m
 (∆l0) + l0(∆ m
 ) = 0

(∆l0)min
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Detector

Visible and IR

Source

Source

Back 

silvered

Visible

mirror

Etalon

and

Pinhole

Pinhole

IR

Cold

screen

screen

mirror

IR

Visible


Figure 9.60
     Central spot scanning.

IR

Heat reflector

This result should not be too surprising in view of the original 


Figure 9.61
     A composite drawing showing an ordinary system in the top 

definition of ℱ.

half and a coated one in the bottom.

Both the applications and configurations of the Fabry–Perot 

Interferometer are numerous indeed. Etalons have been ar-

ranged in series with other etalons, as well as with grating and 

mirrors (color-selective beamsplitters that transmit and reflect 

prism spectroscopes, and multilayer dielectric films have been 

particular wavelengths) can be purchased commercially. 

used to replace the metallic mirror coatings.

Figure 9.61 is a segmented diagram illustrating the use of a 

Scanning techniques are now widely in use. These take advan-


cold mirror
  in combination with a  heat reflector
  to channel 

tage of the superior linearity of photoelectric detectors over photo-

infrared radiation to the rear of a motion-picture projector. 

graphic plates, to obtain more reliable flux-density measurements. 

The intense unwanted infrared radiation emitted by the source 

The basic setup for  central-spot scanning
  is illustrated in Fig. 9.60. 

is removed from the beam to avoid heating problems at the 

Scanning is accomplished by varying d, by changing  nƒ
  or  d
  rath-

photographic film. The top half of Fig. 9.61 is an ordinary 

er than cos u t
 . In some arrangements,  nf
  is smoothly varied by 

back-silvered mirror shown for comparison. Solar cells, which 

altering the air pressure within the etalon. Alternatively, mechan-

are one of the prime power-supply systems for space vehicles, 

ical vibration of one mirror with a displacement of l0>2 will be 

and even the astronauts’ helmets and visors, are shielded with 

enough to scan the free spectral range, corresponding as it does to 

similar heat control coverings. 

∆d = 2p. A popular technique for accomplishing this utilizes a 

Multilayer broad and narrow band-pass filters that transmit 

piezoelectric mirror mount. This kind of material will change its 

only over a specific spectral range can be made to span the 

length, and therefore  d
 , as a voltage is applied to it. The voltage 

region from infrared to ultraviolet. In the visible, for example, 

profile determines the mirror motion.

they play an important part in splitting up the image in color 

Instead of photographically recording irradiance over a 

television cameras, and in the infrared they’re used in missile 

large region in space, at a single point in time, this method re-

guidance systems, CO2 lasers, and satellite horizon sensors. 

cords irradiance over a large region in time, at a single point in 

The applications of thin-film devices are manifold, as are their 

space.

The actual configuration of the etalon itself has also under-

gone some significant variations. Pierre Connes in 1956 first 

described the  spherical-mirror Fabry–Perot Interferometer
 . 

Since then, curved-mirror systems have become prominent as 

laser cavities and are also finding increasing use as spectrum 

analyzers.


9.7  Applications of Single and 



Multilayer Films


The optical uses to which coatings of thin dielectric films have 

been put in recent times are many indeed. Coatings to eliminate 

unwanted reflections off a diversity of surfaces, from showcase 

glass to high-quality camera lenses, are now commonplace (see 

This glass disk has an antireflection coating in the shape of a circle applied to 

photo). Multilayer, nonabsorbing beamsplitters and  dichroic
  

the central region of both its sides. (E.H.)
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structures, which extend from the simplest single coatings to 

P

and 


H


0

intricate arrangements of one hundred or more layers.

I =

 ( E


Am 


i
 I -  Er
 I) n
 0 cos u i
 I 

0

The treatment of multilayer film theory used here will deal 

with the  total
  electric and magnetic fields and their boundary 

P






H


0

I =

 ( E


conditions in the various regions. This is a far more practical 

Am


t
 I -  E
 ′ r
 II) n
 1 cos u i
 II (9.82)

 0

approach for many-layered systems than is the multiple-wave 

technique used earlier.*

where use is made of the fact that E


E


$ and H
 $ in nonmagnetic 

media are related through the index of refraction and the unit 

propagation vector:


9.7.1 Mathematical Treatment


P

Consider the linearly polarized wave shown in Fig. 9.62, im-


H


$ =

0   n
 kˆ 
 : E
 $

Am  0

pinging on a thin dielectric film between two semi-infinite trans-

parent media. In practice, this might correspond to a dielectric 

At boundary II

layer a fraction of a wavelength thick, deposited on the surface 


 



E
 II =  Ei
 II +  Er
 II =  Et
 II  


(9.83)

of a lens, a mirror, or a prism. One point must be made clear at 

the outset: each wave  Er
 I,  E
 ′ r
 II,  Et
 II, and so forth, represents the and

resultant of all possible waves traveling in that direction, at that 

P

point in the medium. The summation process is therefore built 


H


0

II =

 ( E


Am


i
 II -  Er
 II) n
 1 cos u i
 II

0

in. As discussed in Section 4.6.2, the boundary conditions re-

quire that the tangential components of both the electric (E


$) and 

P

magnetic (H


$ = B
 $>m) fields be continuous across the boundaries 






H


0

II =

(i.e., equal on both sides). At boundary I

Am   Et
 II ns
  cos u t
 II (9.84)

 0






E
 I =  Ei
 I +  Er
 I =  Et
 I +  E
 ′ r
 II (9.81)

the substrate having an index  ns
 . In accord with Eq. (9.33), a 

wave that traverses the film once undergoes a shift in-phase of 


k
 0(2 n
 1 d
   cos u i
 II)>2, which will be denoted by  k
 0 h
 , so that k







E



r
 I


i
 II =  Et
 I e
 - ik
 0 h
  (9.85)


H
 i
 I


H



r
 I

and  



Er
 II =  E
 ′ r
 II e
 + ik
 0 h 


(9.86)


E



i
 I


E



r
 I


k


Equations (9.83) and (9.84) can now be written as


i
 I

u


n



i
 I

o


 



E


I

II =  Et
 I e
 - ik
 0 h 
 +  E
 ′ r
 II e
 + ik
 0 h 


(9.87)


E



D'



t
 I


E



'r
 II

P

and 


H


0

II = ( Et
 I e
 - ik
 0 h 
 -  E
 ′ r
 II e
 + ik
 0 h
 ) n



n
 1

Am 1 cos u i
 II (9.88)

0


d


u i
 II

These last two equations can be solved for  Et
 I and  E
 ′ r
 II, which 


E



i
 II

when substituted into Eqs. (9.81) and (9.82) yield


E



 



E
 I =  E
 II cos  k
 0 h 
 +  H
 II( i
  sin  k
 0 h
 )>Υ1 (9.89) r
 II

II

and  



H
 I =  E
 IIΥ1 i
  sin  k
 0 h 
 +  H
 II cos  k
 0 h
  (9.90) ns


where


E



t
 II H
 t
 II

u

P


t
 II

Υ

0

1 K

  n


Am 1 cos u i
 II

0


k
 t
 II

When E


$ is in the plane-of-incidence, the above calculations 


Figure 9.62
     Fields at the boundaries.

result in similar equations, provided that now

P

*For a very readable nonmathematical discussion, see P. Baumeister and  

Υ

0

1 K

  n


G. Pincus, “Optical interference coatings,”  Sci. Am
 . 223
 , 59 (December 1970).

Am 1>cos u i
 II

0
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In matrix notation, the above linear relations take the form

inasmuch as


r



E


cos  k



E


=  Er
 I> Ei
 I   
 and   t 
 =  Et
 II> Ei
 I





c Id = c

0 h


( i
  sin  k
 0 h
 )>Υ1d c IId (9.91)


H
 I

Υ1  i
  sin  k
 0 h


cos  k
 0 h



H
 II

Consequently,


E



E


Υ


m



m


or 

I

ℳ c IId  (9.92)






 



r


I

= 0 m
 11 + Υ0Υ s 
 12 -  m
 21 - Υ s 
 22









 (9.97)

c d = ℳ


H



H


Υ0 m
 11

I

II

+ Υ0Υ sm
 12 +  m
 21 + Υ sm
 22













The  characteristic matrix
  ℳ





I relates the fields at the two adja-

2Υ

cent boundaries. It follows, therefore, that if two overlaying 

and  



t 
 =

0

 (9.98)

Υ0 m
 11 + Υ0Υ sm
 12 +  m
 21 + Υ sm
 22













films are deposited on the substrate, there will be three bound-

aries or interfaces, and now

To find either  r
  or  t
  for any configuration of films, we need only 

compute the characteristic matrices for each film, multiply 


E



E






II

ℳ

IIId (9.93)





them, and then substitute the resulting matrix elements into the 

c d = ℳ


H


II c

II


H
 III

above equations.

Multiplying both sides of this expression by ℳ





I, we obtain


E
 I


E
 III


9.7.2  Antireflection Coatings






c d = ℳ ℳ

d  (9.94)


H






Iℳ





II c

I


H
 III

Now consider the extremely important case of normal inci-

dence, that is,

In general, if  p
  is the number of layers, each with a particular 

value of  n
  and  h
 , then the first and the last boundaries are related by

u i
 I = u i
 II = u t
 II = 0


E
 I


E
 ( p
 +1)

which in addition to being the simplest, is also quite frequently 





c d = ℳ ℳ

ℳ

d  (9.95)


H






Iℳ





II g ℳ






p 
 c H


approximated in practical situations. If we put a subscript on  r
  

I

( p 
 + 1)

to indicate the number of layers present, the reflection coeffi-

The characteristic matrix of the entire system is the resultant of 

cient for a single film becomes

the product (in the proper sequence) of the individual 2 3 2 

matrices, that is,


n


2) sin  k



 



r


1( n
 0 -  ns
 ) cos  k
 0 h 
 +  i
 ( n
 0 ns 
 -  n
 1

0 h


1 =

 (9.99)


n


2

1( n
 0 +  ns
 ) cos  k
 0 h 
 +  i
 ( n
 0 ns 
 +  n
 1) sin  k
 0 h
 m






ℳ = ℳ ℳ

ℳ

11


m
 12d (9.96)









Iℳ





II g ℳ






p 
 = c m
 21  m
 22

Multiplying  r
 1 by its complex conjugate leads to the re flectance

To see how all this fits together, we will derive expressions 


n
 2( n


2)2 sin2  k


      R


1 0 -  ns
 )2 cos2  k
 0 h 
 + ( n
 0 ns 
 -  n
 1

0 h


1

for the amplitude coefficients of reflection and trans mis sion 

=

 (9.100)


n
 2

2

1( n
 0 +  ns
 )2 cos2  k
 0 h 
 + ( n
 0 ns 
 +  n
 1)2 sin2  k
 0 h
 using the above scheme. By reformulating Eq. (9.92) in terms 

of the boundary conditions [(9.81), (9.82), and (9.84)] and 

This formula becomes particularly simple when  k
 0 h 
 = 12p, which 

setting

is equivalent to saying that the optical thickness  h
  of the film is 

an odd multiple of 14l0. In this case  d 
 = 14l ƒ
 , and

P

Υ

0

0 =

  n


Am 0 cos u  i
 I

0

( n


2)2






R


0 ns 
 -  n
 1

1 =

 (9.101)

( n


2

0 ns 
 +  n
 1)2

P

and 

Υ

0


s 
 =

  ns
  cos u  t
 II 

which, quite remarkably, will equal zero when

Am0






n
 21

we obtain

=  n
 0  ns
  (9.102)

Generally,   d
  is chosen so that  h
  equals 1

( E



E


4l0  in the yellow-

c  i
 I +  Er
 I) d = ℳ


t
 II d





1 c

green portion of the visible spectrum, where the eye is most 

( Ei
 I -  Er
 I)Υ0


Et
 IIΥ s


sensitive. Cryolite ( n 
 = 1.35), a sodium aluminum fluoride 

compound, and magnesium fluoride ( n


When the matrices are expanded, the last relation becomes

= 1.38) are common 

low-index films. Since MgF2 is by far the more durable, it is 

1 +  r 
 =  m
 11 t 
 +  m
 12Υ st


used more frequently. On a glass substrate, ( ns 
 ≈ 1.5), both 

these films have indices that are still somewhat too large to 

and 

(1 -  r
 )Υ0 =  m
 21 t 
 +  m
 22Υ st
  

satisfy Eq. (9.102). Nonetheless, a single 14l0 layer of MgF2 
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TABLE 9.1    Indices for Antireflection Coating Materials


Material  

Refractive index

Na3AlF6 1.35

MgF2 

1.3 – 1.4

SiO2 1.46

Glasses 

1.5 – 1.7

ThF4 1.52

MgO 1.74

Al2O3 

1.8 – 1.9

SiO 

1.8 – 1.9

Lens elements coated with a single layer of MgF2. (Optical Coating Laboratory, Inc., 

Si

Santa Rosa CA)

3N4 1.9

ZrO





2 2.0

Ta

For  R


2O5 

2.1 – 2.3

2 to be exactly zero at a particular wavelength, we need

TiO2 2.3


n 
 2


n


CeO2 

2.3 – 2.4





a 2b


s 
  (9.106)


n


=

1


n
 0

ZnS 2.32

CdTe 2.69

This kind of film is referred to as a  double-quarter
 ,  single-minimum
  

Si 3.85

coating. When  n
 1  
 and  n
 2 are as small as possible, the reflectance 

Ge 4.05

will have its single broadest minimum equal to zero at the chosen 

PbTe 5.1

frequency. It should be clear from Eq. (9.106) that  n
 2 7  n
 1; accord-

ingly, it is now common practice to designate a (glass) – (high  

index) – (low  index) – (air)  system  as   gHLa
 . Zirconium dioxide 

( n 
 = 2.1), titanium dioxide ( n 
 = 2.40), and zinc sulfide ( n 
 = 2.32) 

are commonly used for  H
 -layers, and magnesium fluoride 

will reduce the reflectance of glass from about 4% to a bit 

( n 
 = 1.38) and cerium fluoride ( n 
 = 1.63) often serve as  L
 -layers.

more than 1%, over the visible spectrum. It is now common 

Other double- and triple-layer schemes can be designed to sat-

practice to apply antireflection coatings to the elements of 

isfy specific requirements for spectral response, incident angle, cost, 

optical instruments. On camera lenses, such coatings pro-

and so on. The accompanying photo is a scene photographed 

duce a decrease in the haziness caused by stray internally 

through a 15-element zoom lens, with a 150-W lamp pointing di-

scattered light, as well as a marked increase in image bright-

rectly into the camera. The lens elements were covered with a single 

ness. At wavelengths on either side of the central yellow-

layer of MgF2. When a triple-layer antireflection coating is used 

green region,  R
  increases and the lens surface will appear 

(see photo), the improved contrast and glare reduction are apparent. 

blue-red in reflected light.

For a double-layer, quarter-wavelength antireflection coating,


9.7.3 Multilayer Periodic Systems


ℳ = ℳ ℳ









I  

II

The simplest kind of periodic system is the  quarter-wave 


or more specifically


stack
 , which is made up of a number of quarter-wave layers. 

0


i
 >Υ

0


i
 >Υ


 


ℳ = c

1d c

2d (9.103)






i
 Υ1

0


i
 Υ2

0

At normal incidence this becomes


 


ℳ = c- n
 2> n
 1

0

d  (9.104)





0

- n
 1> n
 2

Substituting the appropriate matrix elements into Eq. (9.97) 

yields  r
 2, which, when squared, leads to the reflectance


n
 2 n


2 2






R


2 0 -  nsn
 1

2 = c

 (9.105)

Lens elements coated with a multilayer film structure. 


n
 2

2d

(Optical Coating Laboratory, 

2 n
 0 +  nsn
 1

Inc., Santa Rosa, CA.)
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Air

This has the effect of increasing the short-wavelength high-

frequency transmittance and is therefore known as a  high-pass 



filter
 . Similarly, the structure


n



g
 (0.5 H
 ) L
 ( HL
 ) m
 (0.5 H
 ) a


0


nL


merely corresponds to the case in which the end  H
 -layers are 


nH


l0>8 thick. It has a higher transmittance at the long-wavelength, 

Air


n


low-frequency range and serves as a  low-pass filter
 .


L


At nonnormal incidence, up to about 30°, there is quite fre-


n
 0


nH


quently little degradation in the response of thin-film coat-


n



n


1


L



nL


ings. In general, the effect of increasing the incident angle is a 


n
 2


n



n


shift in the whole reflectance curve down to slightly shorter 


H



H


wavelengths. This kind of behavior is evidenced by several 


ns


Glass substrate

Glass substrate


ns


naturally occurring periodic structures, for example, peacock 

and hummingbird feathers, butterfly wings, and the backs of 


g HL a



g HL HL HL a


several varieties of beetles.


g 
 ( HL
 )3 a


The last multilayer system to be considered is the  interfer-


Double-quarter

Quarter-wave stack


ence
 , or more precisely the  Fabry–Perot, filter
 . If the separation 

between the plates of an etalon is of the order of l, the transmis-


Figure 9.63
   A periodic structure. Refraction has been omitted for  

simplicity.

sion peaks will be widely separated in wavelength. It will then 

be possible to block all the peaks but one by using absorbing 

filters of colored glass or gelatin. The transmitted light corre-

The periodic structure of alternately high- and low-index  

sponds to a single sharp peak, and the etalon serves as a narrow 

materials, illustrated in Fig. 9.63, is designated by

band-pass filter. Such devices can be fabricated by depositing a 

semitransparent metal film onto a glass support, followed by a 


g
 ( HL
 )3 a


MgF2 spacer and another metal coating.

Figure 9.64 illustrates the general form of a portion of the 

All-dielectric, essentially nonabsorbing Fabry–Perot filters 

spectral reflectance for a few multilayer filters. The width of the 

have an analogous structure, two possible examples of which are

high-reflectance central zone increases with increasing values of 


g HLH LL HLH a


the index ratio  nH
 > nL
 , and its height increases with the number 

of layers. Note that the maximum reflectance of a periodic struc-

and 


g HLHL HH LHLH a 


ture such as  g
 ( HL
 ) ma
  can be increased further by adding another 

The characteristic matrix for the first of these is


H
 -layer, so that it has the form  g
 ( HL
 ) mHa
 . Mirror surfaces with 

very high reflectance can be produced using this arrangement.

ℳ = ℳ ℳ ℳ ℳ ℳ ℳ ℳ ℳ










H
  ℳ






L
 ℳ






H
  ℳ






L
 ℳ






L
 ℳ






H
  ℳ






L
  


H


The small peak on the short-wavelength side of the central 

zone can be decreased by adding an eighth-wave low-index film 

but from Eq. (9.104)

to both ends of the stack, in which case the whole arrangement 

will be denoted by

ℳ ℳ

d






L
 ℳ






L 
 = c-1

0

0

-1


g
 (0.5 L
 )( HL
 ) mH
 (0.5 L
 ) a


or 

ℳ ℳ






L
  


L 
 = - ℐ 

1.0

0

where ℐ is the unity or identity matrix. The central double layer, 

corresponding to the Fabry–Perot cavity, is a half-wavelength 

0.8


g
 ( HL
 )2 Ha


0.2

thick ( d 
 = 12l ƒ
 ). It therefore has no effect on the reflectance  at 



g
 ( HL
 )3 a



the particular wavelength under consideration
 . Thus, it is said 

0.6

0.4

to be an absentee layer, and as a consequence,

0.4


g
 ( HL
 )3 Ha


0.6

Reflectance

ℳ = -ℳ ℳ ℳ ℳ ℳ ℳ










H
  ℳ






L
 ℳ






H
  ℳ






H
  ℳ






L
  


H


0.2

0.8

The same conditions prevail over and over again at the center 


g
 ( HL
 )5 Ha


and will finally result in

0

1.0

330

550

770

Wavelength (nm)

1

0

ℳ = c

d





0

1


Figure 9.64
     Reflectance and transmittance for several periodic structures.
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In Fig. 9.27 the optical path length  

difference depends on l (i.e., the color  

of the light) and on the viewing angle.  

In a similar way the ink used to print the 

denominations on U.S. currency now  

contains structured particles that produce 

interference colors. The ink is infused  

with tiny flakes all oriented in the same 

direction. Each flake is a multilayered 

interference filter. Here the number 20 

changes from black to green as the  

viewing angle changes. (E.H.)

At the special frequency for which the filter was designed,  r
  at 

in diameter over a good flashlight. Initially, stand back from the 

normal incidence, according to Eq. (9.97), reduces to

mirror about 3 or 4 feet; the fringes will be too fine and closely 

spaced to see if you stand much nearer. Hold the flashlight 


n
 0 -  ns


alongside your cheek and illuminate the mirror so that you can 


r 
 =  n
 0 +  ns


see the brightest reflection of the bulb in it. The fringes will 

then be clearly seen as a number of alternately bright and dark 

the value for the uncoated substrate. In particular, for glass  

bands.

( ns 
 = 1.5), in air ( n
 0 = 1) the theoretical peak transmission is 

In Fig. 9.65 two coherent rays leaving the point source 

96% (neglecting reflections from the back surface of the sub-

are shown arriving at point- P
  after traveling different routes. 

strate, as well as losses in both the blocking filter and the films 

One ray is reflected from the mirror and then scattered by a 

themselves).

single transparent talcum grain toward  P
 . The second ray is 

first scattered downward by the grain, after which it crosses 

the mirror and is reflected back toward  P
 . The resulting op-

tical path length difference determines the interference at  P
 .  


9.8 Applications of Interferometry


There have been many physical applications of the princi-

Point

ples of interferometry. Some of these are only of historical 


a


source

or pedagogical significance, whereas others are now being 

used extensively. The advent of the laser and the resultant 

availability of highly coherent quasimonochromatic light 

Scattering

have made it particularly easy to create new interferometer 

grains

configurations.


9.8.1 Scattered-Light Interference


Probably the earliest recorded study of interference fringes aris-

ing from scattered light is to be found in Sir Isaac Newton’s 


Optiks
  (1704, Book Two, Part IV). Our present interest in this 

phenomenon is twofold. First, it provides an extremely easy 

way to see some rather beautiful colored interference fringes. 

Second, it is the basis for a remarkably simple and highly useful 

interferometer.

Silvered

To see the fringes, lightly rub a thin layer of ordinary talcum 

surface


P



b


powder onto the surface of any common back-silvered mirror 

(dew will do as well). Neither the thickness nor the uniformity 


d


of the coating is particularly important. The use of a bright point 

Mirror

source, however, is crucial. A satisfactory source can be made 

by taping a heavy piece of cardboard having a hole about 14 inch 


Figure 9.65
     Interference of scattered light.
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S


Quasimonochromatic

point source


L
 1


B



P
 0


A



P


Scatter


Figure 9.66
     Scatter plate setup. (Adapted  

plate

from R. M. Scott,  Appl. Opt
 . 8
 , 531 [1969].) 

Image

Camera Beam-

(Source: Based on R. M. Scott,  Appl. Opt
 . 8, 531 (1969). Scott 

plane

lens  L
 2 splitter

R. M., “Scatter Plate Interferometry,” Applied Optics, 531, 

Test mirror

(1969). The Optical Society.)

At normal incidence, the pattern is a series of concentric 

Examining the passage of light through the system in a bit 

rings of radius*

more detail, consider the light initially incident on the scatter 

plate and assume that the wave is planar, as shown in Fig. 9.67. 


nm
 l a
 2 b
 2 1>2

After it passes through the scatter plate, the incident plane 

r ≈ c

d


d
 ( a
 2

wavefront E


-  b
 2)

$ i
  will be distorted into a transmitted wavefront E
 $ T
 . 

We envision this wave, in turn, split into a series of Fourier 

Now consider a related device, which is very useful in test-

components consisting of plane waves, that is,

ing optical systems. Known as a scatter plate
 , it generally con-


 



E


$ T


sists of a slightly rough-surfaced, transparent sheet. In an ar-

= E
 $1 + E
 $2 + g  (9.107)

rangement such as the one shown in Fig. 9.66, it serves as an 

Two of these constituents are shown in Fig. 9.67 a
 . Now suppose 

amplitude-splitting element. In this application it must have a 

we attach a specific meaning to these components; namely, E


$1 

center of symmetry; that is, each scattering site is re quired to 

is taken to represent the light traveling to point- A
  in Fig. 9.67, 

have a duplicate, symmetrically located about a central point.

and E


$2 that traveling toward  B
 . The analysis of the stages that 

In the system under consideration, a point source of qua-

follow could be continued in the same way. Let the portion of the 

simonochromatic light  S
  is imaged, by means of lens- L
 1 on the 

surface, at point  A
  of the mirror being tested. A portion of the 

light coming from the source is scattered by the scatter plate 

and thereafter illuminates the entire surface of the mirror. The 

mirror, in turn, reflects light back to the scatter plate. This 

wave, as well as the light forming the image of the pinhole at 

point- A
 , passes through the scatter plate again and finally 

reaches the image plane (either on a screen or in a camera). 

Fringes are formed on this latter plane. The interference pro-

cess, which is manifest in the formation of these fringes, oc-

curs because each point in the final image plane is illuminated 

by light arriving via two dissimilar routes, one originating at  A
  

and the other at some point- B
 , which reflects scattered light. 

Indeed, as strange as they may look at first sight, well-defined 

fringes do result (see photo).

*For more of the details, see A. J. deWitte, “Interference in scattered light,”  Am. J. 



Phys
 . 35
 , 301 (1967).

Fringes in scattered light. (E.H.)
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u

u

u

u

Scatter plate

Scatter plate

Scatter plate


E
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E
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E E
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E
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B
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E
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(a)

(b)

(c)


Figure 9.67
     Wavefronts passing through the scatter plate.

wavefront returning from  A
  be represented by the wavefront E


$ A
  

the small area in the vicinity of it is free of aberrations. In that 

in Fig. 9.67 b
 . The scatter plate will transform it into an irregular 

case, the wave reflected from it serves as a reference with 

transmitted wave, denoted by E


$ AT
  in the same figure. This again 

which to compare the wavefront corresponding to the entire 

corresponds to a complicated configuration, but it can be split 

mirror surface. The interference pattern will show, as a series 

into Fourier components consisting of plane waves, as in the 

of contour fringes, any deviations from perfection in the mir-

above case. In Fig. 9.67 b
 , two of these component wavefronts 

ror surface.*

have been drawn, one traveling to the left, and the other inclined 

at an angle u. The latter wavefront, which is denoted by E


$ A 
 , is 

u

focused by lens- L
 2 at the point- P
  on the screen (Fig. 9.66).


9.8.2 The Twyman–Green Interferometer


The wavefront returning from  B
  to the scatter plate is denoted 

by E


The Twyman–Green is essentially a variation of the Michelson 

$ B
  in Fig. 9.67 c
 . Upon traversing the scatter plate, it will be 

reshaped into the wave E


Interferometer. It’s an instrument of great importance in the do-

$ BT
 . One of the Fourier components of 

this wavefront, denoted by E 
 , is inclined at the angle 

main of modern optical testing. Among its distinguishing phys-

$ B
 u

u and will 

therefore be focused at the same point- P
  on the screen.

ical characteristics (illustrated in Fig. 9.68) are a quasimono-

Some of the waves arriving at  P
  will be coherent in the sense 

chromatic point source and lens- L
 1, to provide a source of 

that interference occurs. To obtain the resultant irradiance  I


incoming   plane waves
 , and a lens- L
 2, which permits all the 


P
 , 

first add the amplitudes of all the waves arriving at  P
 , that is, E


light from the aperture to enter the eye so that the entire field 

$ P
 , 

and then square and time average E


can be seen, that is, any portion of  M


$

1 and  M
 2. A continuous 


P
 .

In the discussion above, only two point sources at the mirror 

laser serves as a superior source in that it provides the conve-

were considered. Actually, of course, the whole surface of the 

nience of long path length differences and, in addition, short 

mirror is illuminated by the ongoing light, and every point of it 

photographic exposure times. These tend to minimize un want-

will serve as a secondary source of returning waves. All the 

ed vibration effects. Laser versions of the Twyman–Green are 

waves will be deformed by the scatter plate, and these, in turn, 

among the most effective testing tools in Optics. As shown in 

can be split into plane-wave components. In each series of com-

the figure, the device is set up to examine a lens. The spherical 

ponent waves, there will be one inclined at an angle 

mirror- M


u, and all of 

2 has its center of curvature coincident with the focal 

these will be focused at the same point- P
  on the screen. The 

point of the lens. If the lens being tested is free of aberrations, 

resultant amplitude will then have the form

the emerging reflected light returning to the beamsplitter will 

again be a plane wave. If, however, astigmatism, coma, or 


E


$ P 
 = E
 $ A
 u + E
 $ B
 u + g

spherical aberration deforms the wavefront, a fringe pattern 

clearly manifesting these distortions can be seen and photo-

The light reaching the image plane can be envisioned as 

graphed. When  M
 2 is replaced by a plane mirror, a number of 

made up in part of two optical fields of special interest. One 

other elements (prisms, optical flats, etc.) can be tested equally 

of these results from light that was scattered only on its pas-

sage through the plate toward the mirror, and the other results 

from light that was scattered only on the way toward the im-

*For further discussion of the scatter plate, the reader might consult the rather 

age plane. The former broadly illuminates the test mirror and 

succinct papers by J. M. Burch,  Nature
  171
 , 889 (1953), and  J. Opt. Soc. Am
 .  

ultimately results in an image of it on the screen. The latter, 


52
 , 600 (1962). Reference should be made to J. Strong,  Concepts of Classical 



Optics
 , p. 383. Also see R. M. Scott, “Scatter plate interferometry,”  Appl. Opt
 .  

which was initially focused to the region about  A
 , scatters a 


8
 , 531 (1969), and J. B. Houston, Jr., “How to make and use a scatterplate inter-

diffuse blur across the screen. The point- A
  is chosen so that 

ferometer,”  Optical Spectra
  (June 1970), p. 32.
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M
 2
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Wavefronts


L
 2

Test lens


L
 1


Figure 9.68
   The Twyman–Green  

Pinhole

interferometer. (E.H.)

well. The optician interpreting the fringe pattern can then mark 

where  R
  is half the diagonal of the square. Using classical rea-

the surface for further polishing to correct high or low spots. In 

soning, we find that the time of travel of light along  AB
  is

the fabrication of the finest optical systems, telescopes, high-


R


altitude cameras, and so forth, the interferograms may even be 

12


tAB 
 =

scanned electronically, and the resulting data analyzed by com-


c 
 -  v
 > 12

puter. Computer-controlled plotters can then automatically pro-

2 R


duce surface contour maps or perspective “three-dimensional” 

or 


tAB 
 =





drawings of the distorted wavefront generated by the element 

12 c 
 - v R


being tested. These procedures can be used throughout the fabri-

The time of travel of the light from  A
  to  D
  is

cation process to ensure the highest-quality optical instruments. 

Complex systems with wavefront aberrations in the fractional-

2 R


wavelength range are the result of what might be called the new 


tAD 
 = 12 c 
 + v R


technology.

The total time for counterclockwise and clockwise travel is 

given respectively by

8 R



9.8.3 The Rotating Sagnac Interferometer



t 
 = 12 c 
 + v R


The Sagnac Interferometer is widely used to measure rotational 

speed. In particular, the  
ring laser

 , which is essentially a 





Sagnac Interferometer containing a laser in one or more of its 

arms, was designed specifically for that purpose. The first ring 

laser gyroscope was introduced in 1963, and work is continuing 

on various devices of this sort (see photo). The initial experi-

ments that gave impetus to these efforts were performed by  

Sagnac in 1911. At that time he rotated the entire interferometer, 

mirrors, source, and detector, about a perpendicular axis passing 

through its center (Fig. 9.69). Recall, from Section 9.4.2, that two 

overlapping beams traverse the interferometer, one clockwise, 

the other counterclockwise. The rotation effectively shortens the 

path taken by one beam in comparison to that of the other. In the 

interferometer, the result is a fringe shift proportional to the angu-

lar speed of rotation v. In the ring laser, it is a frequency differ-

ence between the two beams that is proportional to v.

Consider the arrangement depicted in Fig. 9.69. The corner 


A
  (and every other corner) moves with a linear speed  v 
 =  R
 v, 

An early ring laser gyro. (Autonetics, a Division of Boeing North America, Inc.)
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Relativity would prevail. In fact, these formalisms yield the 


B



C


same results.


9.8.4 Radar Interferometry


√2 R


In February 2000 the Space Shuttle  Endeavour
  completed a 


O


mission to create a “three-dimensional” map of the Earth cover-

v

ing 119 million square kilometers. The feat was accomplished 


R


using synthetic aperture radar (SAR). In general, the larger the 


v


45°

aperture of a viewing system, the greater the resolution (p. 484) 

and the more details one can see. SAR is a technique for using 


S



A


the motion of an airplane or spacecraft along with signal pro-


D


cessing methods to simulate a large antenna. 

Using a phased array antenna (p. 98), the Shuttle swept a 

radar beam back and forth perpendicular to its line of motion 

painting a 225-km wide swath over the Earth’s surface (Fig. 9.70). 

Orbiting upside-down,  Endeavour
  extended a 60-m mast with 


T


two receiving antennas at its end (Fig. 9.71). The SAR then sent 

out a stream of about 1700 high-powered electromagnetic pulses 


Figure 9.69
     The rotating Sagnac Interferometer. Originally it was  

1 m * 1 m with v = 120 rev>min.

per second from its main antenna in the cargo bay, which was 

both a transmitter and receiver. Actually, the mission utilized 

8 R


two different radars: a C-band system operating at a wavelength 

and 


t 
 =





of 5.6 cm that provided most of the coverage, and a higher-

12 c 
 - v R


resolution X-band 3-cm system that gave a detailed view of a 

For 

narrow 50-km swath (Fig. 9.70). A radar image is made up of 

v R
   6 6  c
  the difference between these two intervals is

countless tiny uniform dots known as pixels (p. 487). The pixel 

∆ t 
 =  t 
 -  t


is the smallest bit of information in the picture—nothing can be 

seen that’s smaller than a single pixel. For the main C-band 

or, using the Binomial Series,

system, each pixel is about 12.5 m in diameter, and the smallest 

object that can be resolved is about 30 m across.

8 R
 2

∆

v


t 
 =

Ordinarily, a radar system sends out a pulse (with a pulsewidth 


c
 2

of 10-50 ms), and then, picking up the backscattered wave, it re-

cords both the amplitude and round-trip time. That gives a rough 

This can be expressed in terms of area  A 
 = 2 R
 2 of the square 

formed by the beams of light as

4 A


∆

v


t 
 =  c
 2

Let the period of the monochromatic light used be t = l> c
 ; 

then the fractional displacement of the fringes, given by 





∆ N 
 = ∆ t
 >t, is

4 A


∆

v


N 
 =  c
 l

a result that has been verified experimentally. In particular, 

Michelson and Gale* used this method to determine the angu-

lar velocity of the Earth.

The preceding classical treatment is obviously lacking, inas-

much as it assumes speeds in excess of  c
 , an assumption that is 

C-band swath

contrary to the dictates of Special Relativity. Furthermore, it 

would appear that since the system is accelerating, General 

High resolution

X-band swath


Figure 9.70
     As the Shuttle orbited, its two radar systems swept out a 

*Michelson and Gale,  Astrophys. J.
  61
 , 140 (1925).

swath across the surface of the Earth.
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Figure 9.71
   The Shuttle  Endeavour
  carried the main C-band transmitter-

receiver antenna in its cargo bay and a second receiver at the end of a 


S z(x)


60-m-long mast.

0


x


idea of the size and location of the target. However, in order to 

gather data about the elevation of surface features on the Earth, 


Figure 9.73  
   The basic geometry of the SAR interferometer. The source 

the Shuttle Radar Topography Mission (SRTM) utilized interfer-

point- S
  is the spot on the ground that reflects the radar pulse back to the 

Shuttle. Points- P


ometry—in a way that suggests Young’s Experiment run back-

1 and - P
 2 correspond to the two receivers, one on the 

mast and the other in the cargo bay of the Shuttle.

wards (p. 397). In any event, similar interferometric techniques 

are of growing importance in radio and optical astronomy. 

The SAR is a coherent imaging system, and it retains infor-

mation about both the amplitude and phase of the radar echo 

returns to the two antennas, one in the cargo bay ( P
 1), the oth-

during data acquisition and processing. A signal is emitted from 

er on the boom ( P
 2). These are separated by a 60-m baseline  a
 . 

the Shuttle (much like the flash from an ordinary camera but 

The two radar echoes are converted into digital data, which 

spectrally more controlled); it strikes the ground (Fig. 9.72) and 

are recorded for later processing and display as an image. It’s 

left for Problem 9.62 (Fig. 9.73) to show that the topography 

in the form of the function  z(x)
  can be expressed in terms of 

Synthetic aperture radar was used to produce this interferogram arising  

from the June 1992 earthquake in Landers, California. Images taken by  

the ERS-1 satellite before and after the quake were combined to generate 


Figure 9.72
     A radar pulse emitted from the Shuttle strikes the ground 

this fringe pattern, which reveals the shift in the ground that took place.  

and reflects back. The echo is picked up by both the outboard and inboard 

The picture covers an area of about 125 by 175 km. (Centre National d’Etudes 

antennas.

Spatiales)
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the altitude  h
 , the  look angle
  of the radar u, and measured 

phase-angle difference, or  interferometric phase
  f between the 

two signals;

These are radar images of 

(lf>2p)2 -  a
 2

San Andreas, California, 






z(x) 
 =  h 
 -

 cos u (9.108)

2 a
  sin (a

taken by the Space Shuttle 

- u) - (lf>2p)


Endeavour
  in 2000. The 

picture on the left (which 

An interferometer of this sort measures f ,
  the difference in 

looks a lot better in color) 

phase between the signals arriving at the ends of its baseline. It 

shows an interferogram 

does this by analytically interfering those signals using a pro-

overlaying the terrain; the 

cess called  cross correlation
  (p. 564). When the two separate 

picture on the right is the 

data sets, one from each antenna, are combined on the ground 

corresponding “three-

dimensional” map that 

the first thing produced is an interferogram or fringe map (see 

results from the analysis  

photo) that encodes the topography. The interferogram corre-

of all of the data. (NASA)

sponds to a collection of “fringes of equal height,” or if you 

will, contours of equal height. But the information needs further 

refining; the elevations of the contours are unknown. Based on 

accurate knowledge of the mast length and orientation, the 

height of each contour,  z(x)
 , is determined, essentially via trian-

gulation. Data collected over the oceans provide a sea-level ref-

erence for all elevations. After a considerable amount of com-

putation, pixel by pixel, a 3-D topographical map is finally 

created (see photo).


PROBLEMS




Complete solutions to all problems— except those with an  




9.3*
   Return to Fig. 2.25 and prove that if two electromagnetic plane 



asterisk — can be found in the back of the book.



waves making an angle u have the same amplitude,  E
 0, the resulting 

interference pattern on the  yx
 -plane is a cosine-squared irradiance dis-


9.1
   Returning to Section 9.1, let

tribution given by 


E˜
 1 (
   
r

 $ , t) 
 = E˜
 1 (
   
r

 $ )e
 - i
 v t
 I(y) 
 = 4 E
 20 cos2 ap  y
  sin ub

and 


E˜
 2 (
   
r



l

$ , t) 
 = E˜
 2 (
   
r

 $ )e
 - i
 v t
  

where the wavefront shapes are not explicitly specified, and E˜
 1 and E˜
 2 

Locate the zeros of irradiance. What is the value of the fringe separa-

are complex vectors depending on space and initial phase angle. Show 

tion? What happens to the separation as u increases? Compare your 

that the interference term is then given by

analysis with that leading to Eq. (9.17). [ Hint
 : Begin with the wave 






I


*

* · E˜


expressions given in Section 2.7, which have the proper phases already 

12 = 12(E



˜ 
 1 · E˜
 2 + E˜
 1 2) (9.109)

worked out, and write them as exponentials.]

You will have to evaluate terms of the form


9.4
   Will we get an interference pattern in Young’s Experiment  


t 
 +  T


(Fig. 9.11) if we replace the source slit  S
  by a single long-filament 

8E˜
 1 · E˜
 2 e
 -2 i
 v t
 9T = (E˜
 1 · E˜
 2> T
  )3  e
 -2 i
 v t
 ′ dt
 ′

lightbulb? What would occur if we replaced the slits  S
 1 and  S
 2 by these 


t


same bulbs?

for  T
  7 7 t (take another look at Problem 3.15). Show that Eq. (9.109) 


9.5*
   Figure P.9.5 shows an output pattern that was measured by a tiny 

leads to Eq. (9.11) for plane waves.

microphone when two small piezo-loudspeakers separated by 15 cm 


9.2
   In Section 9.1 we considered the spatial distribution of energy for 

were pointed toward the microphone at a distance of 1.5 m away. Given 

two point sources. We mentioned that for the case in which the separa-

that the speed of sound at 20°C is 343 m>s, determine the approximate 

tion   a
  7 7 l,   I
 12 spatially averages to zero. Why is this true? What 

frequency at which the speakers were driven. Discuss the nature of the 

happens when  a
  is much less than l?

pattern and explain why it has a central minimum.
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Figure P.9.5
   (Data from CENCO.)


9.12*
  A 3 * 5 card containing two pinholes, 0.08 mm in diameter 

2.00

and separated center to center by 0.10 mm, is illuminated by parallel 

rays of blue light from an argon ion laser (l0 = 487.99 nm). If the 

1.80

fringes on an observing screen are to be 10 mm apart, how far away 

1.60

should the screen be?

1.40


9.13*
   White light falling on two long narrow slits emerges and is ob-

1.20

served on a distant screen. If red light (l0 = 780 nm) in the first-order 

1.00

fringe overlaps violet in the second-order fringe, what is the latter’s 

0.80

wavelength?

0.60


9.14*
  Consider the physical setup shown in Fig. 9.14. If the focal 

0.40

length of the second lens is ƒ, prove that maxima are located at  ym
 , 

0.20

l

where  ym 
 =  mƒ
   . [ Hint
 : Draw a line from the center of the lens-2 to a 


a


Sound Intensity at Microphone (arbitrary units) 0.00

point a height  ym
  above the central axis; it makes an angle u with that 

10

20

30

40

50

60

70

80

90

axis, where u ≈  ym
 > s
 .]

Position of Microphone (cm, zero-point arbitrary)


9.15*
   Using the setup of Fig. 9.14, where the second lens has a focal 

length of  ƒ
 , determine an expression (in terms of  ƒ
 , l, and  a
 ) for the 


9.6*
   Two 1.0-MHz radio antennas emitting in-phase are separated by 

separation between the centers of the first minima above and below the 

600 m along a north–south line. A radio receiver placed 2.0 km east is 

central axis.

equidistant from both transmitting antennas and picks up a fairly 

strong signal. How far north should that receiver be moved if it is again 


9.16*
   Considering the double-slit experiment, derive an equation 

to detect a signal nearly as strong?

for the distance  ym
 ′ from the central axis to the  m
 ′th irradiance 


minimum
 , such that the first dark bands on either side of the cen-


9.7*
   Two parallel narrow slits in an opaque screen are separated by 

tral maximum correspond to  m
 ′ = ±1. Identify and justify all 

0.100 mm. They are illuminated by plane waves of wavelength 589 

your approximations.

nm. A cosine-squared fringe pattern wherein consecutive maxima are 

3.00 mm apart appears on a viewing screen. How far from the aperture 


9.17*
   Two narrow slits in a thin metal sheet are 2.70 mm apart center-

screen is the viewing screen?

to-center. When illuminated directly by plane waves (in air) a fringe 

pattern appears on a screen 4.60 m away. It is found that measuring 


9.8*
   Suppose the separation of the narrow slits in Young’s Experiment 

from the center of any one dark fringe to the center of the minimum 

is 1.000 mm and the viewing screen is 5.000 m away. Plane waves of 

five dark fringes away is a distance of 5.00 mm. Determine the illumi-

monochromatic 589.3-nm light illuminate the slits and the whole setup 

nating wavelength.

is in air where  n 
 = 1.000 29. What would happen to the fringe separa-

tion if all the air was pumped out?


9.18*
   With regard to Young’s Experiment, derive a general ex pression 


9.9
   An expanded beam of red light from a He–Ne laser (l

for the shift in the vertical position of the  m
 th  maximum
  as a result of 

0 = 632.8 nm)

is incident on a screen containing two very narrow horizontal slits 

placing a thin parallel sheet of glass of index  n
  and thickness  d
  directly 

separated by 0.200 mm. A fringe pattern appears on a white screen 

over one of the slits. Identify your assumptions.

held 1.00 m away.


9.19*
   Plane waves of monochromatic light impinge at an angle u i
  on 

(a)  How far (in radians and millimeters) above and below the central 

a screen containing two narrow slits separated by a distance  a
 . Derive 

axis are the first zeros of irradiance?

an equation for the angle measured from the central axis that locates 

(b) How far (in mm) from the axis is the fifth bright band?

the  m
 th maximum.

(c) Compare these two results.


9.20*
   Sunlight incident on a screen containing two long narrow slits 


9.10*
   Two pinholes in a thin sheet of aluminum are 1.00 mm apart 

0.20 mm apart casts a pattern on a white sheet of paper 2.0 m beyond. 

and immersed in a large tank of water ( n 
 = 1.33). The holes are illumi-

What is the distance separating the violet (l0 = 400 nm) in the first-order 

nated by l0 = 589.3 nm plane waves, and the resulting fringe system 

band from the red (l0 = 600 nm) in the second-order band?

is observed on a screen in the water, 3.00 m from the holes. Determine 

the locations of the centers of the two maxima closest to the central 


9.21
   To examine the conditions under which the approximations of 

axis of the apparatus.

Eq. (9.23) are valid:

(a) Apply the law of cosines to triangle  S
 1 S
 2 P
  in Fig. 9.11 c
  to get


9.11*
   Red plane waves from a ruby laser (l0 = 694.3 nm) in air im-

pinge on two parallel slits in an opaque screen. A fringe pattern forms 


r


2 1>2

2


a



a


on a distant wall, and we see the fourth bright band 1.0° above the 

=

b sin u + a b


r


c1 - 2 a

d

1


r
 1


r
 1

central axis. Calculate the separation between the slits.
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(b) Expand this in a Maclaurin series yielding


9.31
   With Lloyd’s mirror, X-ray fringes were observed, the spacing 

of which was found to be 0.002 5 cm. The wavelength used was 8.33 Å. 


a
 2


r
 2 =  r
 1 -  a
  sin u +

 cos2 u + g

If the source–screen distance was 3 m, how high above the mirror 

2 r
 1

plane was the point source of X-rays placed?

(c)  In light of Eq. (9.17), show that if ( r
 1 -  r
 2) is to equal  a
  sin u, it is 9.32
   Imagine that we have an antenna at the edge of a lake picking up 

required that  r
 1 7 7  a
 2>l.

a signal from a distant radio star (Fig. P.9.32), which is just coming up 


9.22
  A stream of electrons, each having an energy of 0.5 eV, im-

above the horizon. Write expressions for d and for the angular position 

pinges on a pair of extremely thin slits separated by 10-2 mm. What is 

of the star when the antenna detects its first maximum.

the distance between adjacent minima on a screen 20 m behind the 

slits? ( me 
 = 9.108 * 10-31 kg, 1 eV = 1.602 * 10-19 J.)


Figure P.9.32



9.23*
   It is our intention to produce interference fringes by illuminat-

ing some sort of arrangement (Young’s Experiment, a thin film, the 

Michelson Interferometer, etc.) with light at a mean wavelength of 500 


a


nm, having a linewidth of 2.5 * 10-3 nm. At approximately what opti-

2

a

cal path length difference can you expect the fringes to vanish? [ Hint
 : 

Think about the coherence length and revisit Problem 7.55.]

Lake


9.24*
   Imagine that you have an opaque screen with three horizontal 

very narrow parallel slits in it. The second slit is a center-to-center 

distance  a
  beneath the first, and the third is a distance 5 a
 >2 beneath the 

first. (a) Write a complex exponential expression in terms of d for the 


9.33*
   If the plate in Fig. 9.27 is glass in air, show that the amplitudes 

amplitude of the electric field at some point- P
  at an elevation u on a 

of  E


distant screen where 

1 r
 ,  E
 2 r
 , and  E
 3 r
  are, respectively, 0.2  E
 0 i
 , 0.192  E
 0 i
 , and 0.008  E
 0 i
 , d =  ka
  sin u. Prove that 

where  E
 0 i
  is the incident amplitude. Make use of the Fresnel coeffi-


I(0)


2 I(0)


cients at normal incidence, assuming no absorption. You might repeat 


I(
 u ) 
 =

+

 (cos d + cos 3d>2 + cos 5d>2)

3

9

the calculation for a water film in air.

Verify that at u = 0,  I(
 u ) 
 =  I(0)
 .


9.34
   A soap film surrounded by air has an index of refraction of 1.34. 

If a region of the film appears bright red (


9.25*


l

  Imagine a Fresnel double mirror (in air) illuminated by mono-

0 = 633 nm) in normally 

reflected light, what is its minimum thickness there?

chromatic light at 600.0 nm. The source slit is parallel to and 1.000 m 

from the line of intersection of the mirrors. If the bright fringes on a 


9.35*
  A thin film of ethyl alcohol ( n 
 = 1.36) spread on a flat glass 

viewing screen 3.900 m from the mirror intersection are spaced 2.00 

plate and illuminated with white light shows a color pattern in reflec-

mm apart, determine the approximate mirror angle u in degrees.

tion. If a region of the film reflects only green light (500 nm) strongly, 

how thick is it?


9.26*
  In the Fresnel double mirror  s 
 = 2 m,  l0 = 589 nm, and the 

separation of the fringes was found to be 0.5 mm. What is the angle of 


9.36*
   A soap film in air of index 1.34 has a region where it is 550.0 

inclination of the mirrors, if the perpendicular distance of the actual 

nm thick. Determine the wavelengths of the radiation that is not re-

point source to the intersection of the two mirrors is 1 m?

flected when the film is illuminated from above with sunlight.


9.27*
   Show that  a
  for the Fresnel biprism of Fig. 9.23 is given by  


9.37*
   A thin uniform layer of water ( n 
 = 1.333) 25.0 nm thick exists 


a 
 = 2 d
 ( n 
 - 1)a.

on top of a sheet of clear plastic ( n 
 = 1.59). At what incident angle will 

the water strongly reflect blue light (l0 = 460 nm)? [ Hint
 : Modify  


9.28*
  The Fresnel biprism is used to obtain fringes from a point 

Eq. (9.34).]

source that is placed 2 m from the screen, and the prism is midway 


9.38
  Consider the circular pattern of Haidinger’s fringes resulting 

between the source and the screen. Let the wavelength of the light be 

from a film with a thickness of 2 mm and an index of refraction of 1.5. 

l0 = 500 nm and the index of refraction of the glass be  n 
 = 1.5. What 

For monochromatic illumination of 

is the prism angle, if the separation of the fringes is 0.5 mm?

l0 = 600 nm, find the value of  m
  

for the central fringe (u t 
 = 0). Will it be bright or dark?


9.29
   What is the general expression for the separation of the fringes 


9.39
   Illuminate a microscope slide (or even better, a thin cover-glass 

of a Fresnel biprism of index  n
  immersed in a medium having an index 

slide). Colored fringes can easily be seen with an ordinary fluorescent 

of refraction  n
 ′?

lamp (although some of the newer versions don’t work well at all) 


9.30*
  A line source of sodium light (l0 = 589.3 nm) illuminates a 

serving as a broad source or a mercury street light as a point source. 

Lloyd’s mirror 10.0 mm above its surface. A viewing screen is 5.00 m 

Describe the fringes. Now rotate the glass. Does the pattern change? 

from the source and the whole apparatus is in air. How far apart are the 

Duplicate the conditions shown in Figs. 9.29 and 9.30. Try it again 

first and third maxima?

with a sheet of plastic food wrap stretched across the top of a cup.
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9.40
  Fringes are observed when a parallel beam of light of wave-


9.45*
   When dust gets between the glass elements of a Newton’s ring 

length 500 nm is incident perpendicularly onto a wedge-shaped film 

setup, it can cause an unknown shift in the film thickness ∆ d
 , and a 

with an index of refraction of 1.5. What is the angle of the wedge if the 

corresponding change in the fringe pattern. The path difference is then 

fringe separation is 1

2( d


3 cm?

+ ∆ d
  ) =  m
 l ƒ
 , and because of the additional relative phase shift on 

reflection, this corresponds to a dark band. Prove that the radius of 


9.41*
   Suppose a wedge-shaped air film is made between two sheets 

curvature of the lens ( R
 ) given by

of glass, with a piece of paper 7.618 * 10-5 m thick used as the spacer 

at their very ends. If light of wavelength 500 nm comes down from 


x
 2

directly above, determine the number of bright fringes that will be seen 


R 
 =


m 
 -  x
 2 m 
 - 1

( mm 
 -  mm
 -1)l ƒ


across the wedge.

can be determined in the lab (via adjacent dark fringes) independent of 


9.42*
   A wedge-shaped air film between two flat sheets of glass is il-

∆ d
 .

luminated from above by sodium light (l0 = 589.3 nm). How thick 

will the film be at the center of the 173rd bright fringe (counted from 


9.46*
   Examining photos of Newton’s rings we observe that fringes at 

the contact line of the two glass sheets).

large values of  m
  seem to be nearly equally spaced. To see that ana-

lytically, show that


9.43
   Figure P.9.43 illustrates a setup used for testing lenses. Show 

that

( xm
 +1 -  xm
 )

1

≈ 1 +

( x



d



m


=  x
 2( R
 2 -  R
 1)>2 R
 1 R
 2

+ 2 -  xm 
 + 1)

2 m


When   m
  is large, the spacings between consecutive fringes are 





when  d
 1 and  d
 2 are negligible in comparison with 2 R
 1 and 2 R
 2, respec-approximately equal.

tively. (Recall the theorem from plane geometry that relates the prod-

ucts of the segments of intersecting chords.) Prove that the radius of 


9.47
   A Michelson Interferometer is illuminated with monochromatic 

the  m
 th dark fringe is then

light. One of its mirrors is then moved 2.35 * 10-5 m, and it is ob-

served that 92 fringe-pairs, bright and dark, pass by in the process. 


xm 
 = [ R
 1 R
 2 m
 l ƒ
 >( R
 2 -  R
 1)]1>2

Determine the wavelength of the incident beam.

How does this relate to Eq. (9.43)?


9.48*
   One of the mirrors of a Michelson Interferometer is moved, and 

1000 fringe-pairs shift past the hairline in a viewing telescope during 

the process. If the device is illuminated with 500-nm light, how far was 


Figure P.9.43


the mirror moved?


d



d


2  d


1


9.49*
   Quasimonochromatic light with an average wavelength of 500 

Test

nm illuminates a Michelson Interferometer. The movable mirror- M


plate

1 is 


x


Lens

farther from the beamsplitter than is fixed mirror- M
 2 by a distance  d
 . 

Decreasing  d
  by 0.100 mm causes a number of fringe-pairs to sweep 

past a hairline in a viewing scope. Determine that number.


R
 1


9.50*
   Suppose we place a chamber 10.0 cm long with flat parallel 

windows in one arm of a Michelson Interferometer that is being illumi-

nated by 600-nm light. If the refractive index of air is 1.000 29 and all 


R


the air is pumped out of the cell, how many fringe-pairs will shift by in 

2

the process?


9.51*
   Cadmium red light has a mean wavelength of l0 = 643.847 nm 

(see Fig. 7.45) and a linewidth of 0.001 3 nm. When used to illuminate 

a Michelson Interferometer it is found that increasing the mirror sepa-

ration from zero to some amount  D
  causes the fringes to vanish. Show 

that

l2

∆

0

l0 = ∆ lc


and then determine  D
  for the cadmium line.


9.44*
  Newton’s rings are observed on a film with quasimonochro-


9.52*
   A form of the Jamin Interferometer is illustrated in Fig. P.9.52. 

matic light that has a wavelength of 500 nm. If the 20th bright ring has 

How does it work? To what use might it be put?

a radius of 1.00 cm, what is the radius of curvature of the lens forming 

one part of the interfering system? [ Hint
 : Be careful with the value of 


9.53
   Starting with Eq. (9.53) for the transmitted wave, compute the 


m
  that you use.]

flux density, that is, Eq. (9.54).
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Figure P.9.52


Show that Eq. (9.72) can be rewritten as

2[𝒜 (
 u )
 ]d =∆d>2 = 0.8151 + [𝒜 (
 u )
 ]d = ∆d6





When  F
  is large g is small, and sin (∆d) = ∆d. Prove that Eq. (9.73) 

then follows.


9.56
   Consider the interference pattern of the Michelson Interferom-

eter as arising from two beams of equal flux density. Using Eq. (9.17), 

compute the half-width. What is the separation, in d, between adjacent 

maxima? What then is the finesse?


9.57*
   Satisfy yourself of the fact that a film of thickness l ƒ
 >4 and 

index  n
 1 will always reduce the reflectance of the substrate on which 

it is deposited, as long as  ns 
 7  n
 1 7  n
 0. Consider the simplest case 

of normal incidence and  n
 0 = 1. Show that this is equivalent to say-

ing that the waves reflected back from the two interfaces cancel one 

another.


9.58
  Verify that the reflectance of a substrate can be increased by 

coating it with a l ƒ
 >4, high-index layer, that is,  n
 1 7  ns
 . Show that  

the reflected waves interfere constructively. The quarter-wave stack 


g
 ( HL
 ) mHa
  can be thought of as a series of such structures.


9.59
   Determine the refractive index and thickness of a film to be de-

posited on a glass surface ( ng 
 = 1.54) such that no normally incident 


9.54
   Given that the mirrors of a Fabry–Perot Interferometer have an 

light of wavelength 540 nm is reflected.

amplitude reflection coefficient of  r 
 = 0.894 4, find


9.60
   A glass microscope lens having an index of 1.55 is to be coated 

(a) the coefficient of finesse,

with a magnesium fluoride film to increase the transmission of nor-

(b) the half-width,

mally incident yellow light (l0 = 500 nm). What minimum thickness 

(c) the finesse, and,

should be deposited on the lens?

(d) the  contrast factor
  defined by


9.61*
   A glass camera lens with an index of 1.55 is to be coated with a 

( I


cryolite film ( n 
 ≈ 1.30) to decrease the reflection of normally incident 


C 
 K  t
 > Ii
 )max

green light (l

( I


0 = 500 nm). What thickness should be deposited on the 


t
 > Ii
 )min

lens?


9.55
  To fill in some of the details in the derivation of the smallest 


9.62*
  Using Fig. 9.73, which depicts the geometry of the Shuttle  

phase increment separating two resolvable Fabry–Perot fringes, that is,

radar interferometer, show that 





(∆d) ≈ 4.2> 1 F
  [9.73]


z(x) 
 =  h 
 -  r
 1 cos u

satisfy yourself that

Then use the Law of Cosines to establish that Eq. (9.108) is correct.

[𝒜 (
 u )
 ]d  =  d a
 ±∆d>2 = [𝒜 (
 u )
 ]d = ∆d>2
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10Diffraction



10.1 Preliminary Considerations


An opaque body placed midway between a screen and a point 

source casts an intricate shadow made up of bright and dark 

regions quite unlike anything one might expect from the tenets 

of Geometrical Optics (see photos).* The work of Francesco 

Grimaldi in the 1600s was the first published detailed study of 

this  
deviation of light from rectilinear propagation

 , something 

he called “diffraction
 .”  The effect is a general characteristic of 



wave phenomena occurring whenever a portion of a wavefront, 



be it sound, a matter wave, or light, is obstructed in some way. 


If in the course of encountering an obstacle, either transparent 

or opaque, a region of the wavefront is altered in amplitude or 

(a)

phase, diffraction will occur.* The various segments of the 

wavefront that propagate beyond the obstacle interfere, causing 

the particular energy-density distribution referred to as the dif-

fraction pattern. There is no significant physical distinction be-

tween   interference
  and  diffraction.
  It has, however, become 

somewhat customary, if not always appropriate, to speak of in-

terference when considering the superposition of only a few 

waves and diffraction when treating a large number of waves. 

Even so, one refers to multiple-beam interference in one con-

text and diffraction from a grating in another.

It would be nice to treat diffraction from the perspective of 

(b)

the most powerful contemporary theory of light, Quantum Elec-

( a
 ) The shadow of Mary’s hand holding a dime, cast directly on 4 * 5 

trodynamics (QED), but that’s impractical; the analysis is far too 

Polaroid A.S.A. 3000 film using a He–Ne beam and no lenses. (E.H.)  

complicated and wouldn’t add much at that. What we  can
  do is 

( b
 ) Fresnel diffraction of electrons by zinc oxide crystals. (H. Boersch,  Handbuch  


show qualitatively how QED applies to a few basic situations. 


der Physik
 , edited by S.Flügge, Springer-Verlag, Heidelberg.)

For our purposes, however, the classical wave theory, which pro-

vides the simplest effective formalism, will more than suffice. 

Still, wherever it’s appropriate, the discussion will be illuminat-

*The effect is easily seen, but you need a fairly strong source. A high-intensity 

ed with insights from Fourier analysis, even though the detailed 

lamp shining through a small hole works well. If you look at the shadow pattern 

treatment of that subject is postponed to the next chapter.

arising from a pencil under point-source illumination, you will see an unusual 

bright region bordering the edge and even a faintly illuminated band down the 

middle of the shadow. Take a close look at the shadow cast by your hand in 

direct sunlight.


The Huygens–Fresnel Principle


As an initial approach to the problem, let’s reconsider Huygens’s 

*Diffraction associated with transparent obstacles is not usually considered, 

Principle (Section 4.4.2). Each point on a wavefront can be en-

although if you have ever driven an automobile at night with a few rain droplets 

visaged as a source of secondary spherical wavelets. The prog-

on your eyeglasses, you are no doubt quite familiar with the effect. If you have 

not, put a droplet of water or saliva on a glass plate, hold it close to your eye, 

ress through space of the wavefront, or any portion thereof, can 

and look directly through it at a point source. You’ll see bright and dark fringes.

then presumably be determined. At any particular time, the shape 
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of the wavefront is supposed to be the envelope of the secondary 

wavelets (Fig. 4.32). The technique, however, ignores most of 

each secondary wavelet, retaining only that portion common to 

the envelope. As a result of this inadequacy, Huygens’s Principle 

by itself is unable to account for the details of the diffraction 


A


process. That this is indeed the case is borne out by everyday 

experience. Sound waves (e.g., n = 500 Hz, l ≈ 68 cm) easily 

“bend” around large objects like telephone poles and trees, yet 

these objects cast fairly distinct shadows when illuminated by 


B


light. Huygens’s Principle is independent of any wavelength con-

siderations, and would predict the same wavefront configura-

tions in both situations.

The difficulty was resolved by Fresnel with his addition 

of the concept of interference. The corresponding Huygens–


(a)


Fresnel Principle
  states that  
every unobstructed point of a 





wavefront, at a given instant, serves as a source of spherical 





secondary wavelets (with the same frequency as that of the 




P




primary wave). The amplitude of the optical field at any point 





beyond is the superposition of all these wavelets (considering 





their amplitudes and relative phases)

 .
  

Applying these ideas on the very simplest qualitative level, 


A


refer to the accompanying ripple tank photographs and the  


B


illustration in Fig. 10.1. If each unobstructed point on the in-

coming plane wave acts as a coherent secondary source, the 

maximum optical path length difference among them will be 

Λmax = 0  AP 
 -  BP 
 0, corresponding to a source point at each 

edge of the aperture. But Λmax is less than or equal to  AB
 , the 

latter being the case when  P
  is on the screen. When l 7  AB
 , as 

in Fig. 10.1 b
 , it follows that 

(b)

l 7 Λmax, and since the waves 

were initially in-phase, they all interfere constructively (to vary-


P


ing degrees) wherever  P
  happens to be (see ripple tank photo  c
 ). 

2

Thus,  
if the wavelength is large compared to the aperture, the 





waves will spread out at large angles into the region beyond 




S



P




the obstruction

 . And the smaller the aperture gets, the more 

0

nearly circular the diffracted waves become (recall the discus-

sion of this point from a Fourier perspective, p. 404).


P
 1

The antithetic situation occurs when l 6  AB
  (as in ripple 

tank photo  a
 ). The area where l 7 Λmax is limited to a small 

region extending out directly in front of the aperture, and it is only 

(c)

there that all the wavelets will interfere constructively. Beyond 


Figure 10.1
     Diffraction at a small aperture. ( a
 ) Huygens’s wavelets.  

this zone some of the wavelets can interfere destructively, and the 

( b
 ) The classical wave picture. ( c
 ) The view via QED and probability  

“shadow” begins. Keep in mind that the idealized  geometric shadow
  

amplitudes.

corresponds to l S 0.

Classically, the reason light goes where it does beyond the 

screen is that the multitude of wavelets emitted from the aper-

photo  a
 ), the many paths to any point- P
  correspond to a broad 

ture “interfere”; that is, they combine (as phasors) at every point 

range of phasor phases. Consider all the paths to a point in the 

in the region, some places enhancing, some canceling, depend-

forward direction such as  P
 0. The straight-line route from  S
  to  P
 0 

ing on the  OPL
 .

corresponds to a minimum in  OPL
 . Any other paths through the 

Quantum mechanically (Section 4.11.1), the reason light 

aperture to  P
 0 are somewhat longer (depending on the size of the 

goes where it does beyond the screen is that the multitude of 

hole) and have phasors (all of which we will take to be the same 

probability amplitudes for photons from the aperture “interfere.” 

size) that are grouped around that stationary  OPL
  value, much 

That is, they combine (as phasors) at every point in the region, 

as those in Fig. 4.80. They have small mutual phase-angle dif-

some places enhancing, some canceling, depending on the  OPL
 . 

ferences (half +, half -) and so added tip-to-tail they turn one 

When the hole is several wavelengths wide (as in ripple tank 

way, then the other, to produce a substantial resultant probability 
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whole thing at this point is rather hypothetical. Gustav Kirchhoff 

developed a more rigorous theory based directly on the solution 

of the differential wave equation. Kirchhoff, though a contempo-

rary of Maxwell, did his work before Hertz’s demonstration (and 

the resulting popularization) of the propagation of electromag-

netic waves in 1887. Accordingly, Kirchhoff employed the older 

elastic-solid theory of light. His refined analysis lent credence to 

the assumptions of Fresnel and led to an even more precise for-

mulation of Huygens’s Principle as an exact consequence of the 

(a)

wave equation. Even so, the Kirchhoff theory is itself an approx-

imation that is valid for sufficiently small wavelengths—that is, 

when the diffracting apertures have dimensions that are large in 

comparison to l. The difficulty arises from the fact that what’s 

required is the solution of a partial differential equation that 

meets the boundary conditions imposed by the obstruction. This 

kind of rigorous solution is obtainable only in a few special cases. 

Kirchhoff’s theory works fairly well, even though it deals only 

with scalar waves and is insensitive to the fact that light is a 

transverse vector field.*

It should be stressed that the problem of determining an ex-

(b)

act solution for a particular diffracting configuration is among 

the most troublesome to be dealt with in Optics. The first such 

solution, utilizing the electromagnetic theory of light, was pub-

lished by Arnold Johannes Wilhelm Sommerfeld (1868–1951) 

in 1896. Although the problem was physically somewhat unre-

alistic, in that it involved an infinitely thin yet opaque, perfectly 

conducting plane screen, the result was nonetheless extremely 

valuable, providing a good deal of insight into the fundamental 

processes involved.

Rigorous solutions of this sort do not exist even today for 

(c)

many of the configurations of practical interest. We will there-

fore, out of necessity, rely on the approximate treatments of 

Diffraction through an aperture with varying l as seen in a ripple tank. 

Huygens–Fresnel and Kirchhoff. In recent times, microwave 

Notice how the waves to the right of the screen spread increasingly into the 

techniques have been employed to conveniently study features 

shadow region as the wavelength becomes larger. (PSSC  Physics
 , D. C. Heath, 

Boston, 1960. Cengage Learning, D. C. Heath, Boston, 1960.)

of the diffraction field that might otherwise be almost impossible 

to examine optically. The Kirchhoff theory has held up remark-

amplitude. A photon counter at  P


ably well under this kind of scrutiny.* In many cases, the simpler 

0 will see lots of light. Off the 

forward direction (where the  OPL
  is not stationary), the phasors 

Huygens–Fresnel treatment will prove adequate to our needs.

each have relatively large phase-angle differences for every path 

and all are of the same sign. Placed tip-to-tail they spiral around, 

adding up to little or nothing. A detector at  P
 1 will record few 


10.1.1 Opaque Obstructions


counts, and one at  P
 2 fewer still.

Diffraction may be envisioned as arising from the interaction of 

If the aperture is now made much smaller, the number of 

electromagnetic waves with some sort of physical obstruction. 

counts at  P
 1 and  P
 2 increases, even as the number at  P
 0 drops 

We would therefore do well to reexamine briefly the processes 

off. With a narrow hole, all the paths to either  P
 1 or  P
 2 are much 

closer together and have nearly the same  OPL
 . The phase-angle 

differences are therefore much smaller, the phasor spirals no 

*A vectorial formulation of the scalar Kirchhoff theory is discussed in J. D. Jackson, 

longer close on themselves, and the resultant probability ampli-


Classical Electrodynamics
 , p. 283. Also see Sommerfeld,  Optics
 , p. 325. You 

tudes, though small, are appreciable everywhere.

might as well take a look at B. B. Baker and E. T. Copson,  The Mathematical 


Qualitatively, both QED and the classical Huygens–Fresnel 


Theory of Huygens’s Principle
 , as a general reference to diffraction. None of these 

Principle lead to much the same general conclusion:  light dif-


texts is easy reading.


fracts and interference is at the heart of the process
 .

The Huygens–Fresnel Principle has some shortcomings 

*C. L. Andrews,  Am. J. Phys
 . 19
 , 250 (1951); S. Silver,  J. Opt. Soc. Am
 . 52
 , 131 

(which we will examine later), in addition to the fact that the 

(1962).
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involved; what actually takes place within the material of the 

opaque object?

One possible description is that a screen may be considered 

to be a continuum; that is, its microscopic structure may be ne-

glected. For a nonabsorbing metal sheet (no joule heating, there-

fore infinite conductivity) we can write Maxwell’s Equations for 

the metal and for the surrounding medium, and then match the 

two at the boundaries. Precise solutions can be obtained for very 

simple configurations. The reflected and diffracted waves then 

result from the current distribution within the sheet.

Examining the screen on a submicroscopic scale, imagine 

the electron cloud of each atom set into vibration by the electric 

field of the incident radiation. The classical model, which 

speaks of electron-oscillators vibrating and reemitting at the 

Ripple-tank photos. In one case, the waves are simply diffracted by a slit; in 

the other, a series of equally spaced point sources span the aperture and 

source frequency, serves quite well so that we need not be con-

generate a similar pattern. (PSSC  Physics
 , D. C. Heath, Boston, 1960. Cengage Learning)

cerned with the quantum-mechanical description. The ampli-

tude and phase of a particular oscillator within the screen are 

the oscillator fields drop off with distance. In this physically 

determined by the local electric field surrounding it. This in 

more realistic view, the electrons within the vicinity of the aper-

turn is a superposition of the incident field and the fields of all 

ture’s edge are affected when the disk is removed. For larger 

the other vibrating electrons. A large opaque screen with no 

apertures, the number of oscillators in the disk is much greater 

apertures, be it made of black paper or aluminum foil, has one 

than the number along the edge. In such cases, if the point  

obvious effect: there is no optical field in the region beyond it. 

of observation is far away and in the forward direction, the 

Electrons near the illuminated surface are driven into oscilla-

Huygens–Fresnel Principle should, and does, work well. For 

tion by the impinging light. They emit radiant energy, which is 

very small apertures, or at points of observation in the vicinity 

ultimately “reflected” backward, absorbed by the material, or 

of the aperture, edge effects become important, and we can an-

both. In any case, the incident wave and the electron-oscillator 

ticipate difficulties. Indeed, at a point within the aperture itself, 

fields superimpose in such a way as to yield zero light at any 

the electron-oscillators on the edge are of the greatest significance 

point beyond the screen. This might seem a remarkably special 

because of their proximity. Yet these electrons were certainly not 

balance, but it actually is not. If the incident wave were not 

unaffected by the removal of the adjacent oscillators of the disk. 

canceled completely, it would propagate deeper into the mate-

In that case the deviation from the Huygens–Fresnel Principle 

rial of the screen, exciting more electrons to radiate. This in turn 

should be appreciable.

would further weaken the wave until it ultimately vanished (if 

the screen were thick enough). Even an ordinarily opaque mate-

rial such as silver, in the form of a sufficiently thin sheet, is 


10.1.2 Fraunhofer and Fresnel Diffraction


partially transparent (recall the half-silvered mirror).

Now, remove a small disk-shaped segment from the center 

Imagine that we have an opaque screen,  g , (like the one in 

of the screen, so that light streams through the aperture. The 

Fig. 10.1) containing a single small aperture, which is being  

oscillators that uniformly cover the disk are removed along with 

illuminated by plane waves from a very distant point source,  

it, so the remaining electrons within the screen are no longer 


S
 . The plane of observation s is a screen parallel with, and very 

affected by them. As a first and certainly approximate approach, 

close to, g . Under these conditions an image of the aperture is 


assume that the mutual interaction of the oscillators is essen-


projected onto the screen, which is clearly recognizable despite 


tially negligible
 ; that is, the electrons in the screen are com-

some slight fringing around its periphery (Fig. 10.2). If the plane 

pletely unaffected by the removal of the electrons in the disk. 

of observation is moved farther away from g , the image of the 

The field in the region beyond the aperture will then be that 

aperture, though still easily recognizable, becomes increasingly 

which existed before the removal of the disk, namely zero, mi-

more structured as the fringes become more prominent. This 

nus the contribution from the disk alone. Except for the sign, it 

phenomenon is known as Fresnel
  or near-field
  diffraction. If 

is as if the source and screen had been taken away, leaving only 

the plane of observation is moved out still farther, a continuous 

the oscillators on the disk, rather than vice versa. In other words, 

change in the fringes results. At a very great distance from  g 

the diffraction field can be pictured as arising exclusively from 

the projected pattern will have spread out considerably, bearing 

a set of fictitious noninteracting oscillators distributed uniformly 

little or no resemblance to the actual aperture. Thereafter mov-

over the region of the aperture. This of course, is the essence of 

ing s essentially changes only the size of the pattern and not its 

the Huygens–Fresnel Principle.

shape. This is Fraunhofer
  or far-field
  diffraction. If at that 

We can expect, however, that instead of no interaction at all 

point we could sufficiently reduce the wavelength of the incom-

between electron-oscillators, there is a short-range effect, since 

ing radiation, the pattern would revert to the Fresnel case. If l 
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b



R


u

(a)

(b)


Figure 10.2
   ( a
 ) A succession of diffraction patterns at increasing distance form a single slit; Fresnel at the  bottom (nearby), going toward Fraunhofer at the top (faraway). The gray band corresponds to 

the width of the slit. (Based on  Fundamentals of Waves
   and Oscillations
  by K. U. Ingard, Cambridge University Press, 1988, page 323.) ( b
 ) The far-field kicks in at a distance of very roughly  R
 , where  R 
 7  b
 2>l.

were decreased even more, so that it approached zero, the fringes 

their relative strengths. When  S
  is nearby, compared with the 

would disappear, and the image would take on the limiting shape 

size of the aperture, a spherical wavefront will illuminate the 

of the aperture, as predicted by Geometrical Optics. Returning to 

hole. The distances from  S
  to each point on the aperture will be 

the original setup, if the point source was now moved toward g , 

different, and the strength of the incident electric field (which 

spherical waves would impinge on the aperture, and a Fresnel 

drops off inversely with distance) will vary from point to point 

pattern would exist, even on a distant plane of observation.

over the diffracting screen. That would not be the case for 

Consider a point source  S
  and a point of observation  P
 , where 

incoming homogeneous plane waves. Much the same thing is 

both are very far from g  and no lenses are present (Problem 

true for the diffracted waves going from the aperture to  P
 . Even 

10.1).  
As long as both the incoming and outgoing waves ap-



if they are all emitted with the same amplitude, if  P
  is nearby, 



proach being planar (differing therefrom by a small fraction 



the waves converging on it are spherical and vary in amplitude, 



of a wavelength) over the extent of the diffracting apertures (or 



because of the different distances from various parts of the 



obstacles), Fraunhofer diffraction obtains.

  Another way to  

aperture to  P
 . Ideally, for  P
  at infinity (whatever that means) 

appreciate this is to realize that the  phase
  of each contribution at 

the waves arriving there will be planar, and we need not worry 


P
 , due to differences in the path traversed, is crucial to the deter-

about differences in field strength. That too contributes to the 

mination of the resultant field. Moreover, if the wavefronts im-

simplicity of the limiting Fraunhofer case.

pinging on, and emerging from, the aperture are planar, then 

As a practical rule-of-thumb, Fraunhofer diffraction will  

these path differences will be describable by a linear function of 

occur at an aperture (or obstacle) of greatest width  b
  when

the two aperture variables.  
This linearity in the aperture vari-




R 
 7  b
 2>l



ables is the definitive mathematical criterion of Fraunhofer 





diffraction.

  On the other hand, when  S
  or  P
  or both are too near 

where  R
  is the smaller of the two distances from  S
  to  g  and 

g for the curvature of the incoming and outgoing wavefronts to 

g to  P
  (Problem 10.1). Of course, when  R 
 = ∞  
 the finite 

be negligible, Fresnel diffraction prevails.

size of the aperture is of little concern. Moreover, an increase 

Each point on the aperture is to be visualized as a source of 

in  l clearly shifts the phenomenon toward the Fraunhofer 

Huygens wavelets, and we should be a little concerned about 

extreme.
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Figure 10.3    
 Fraunhofer diffraction using lenses so 

that the source and fringe pattern can both be at  


P


convenient distances from the aperture.


S



L
 2


L
 1

Σ

s

Once a Fraunhofer pattern is established, it simply enlarges 

meeting at some very distant point- P
 . If the spatial extent of the 

as the screen on which it is being observed moves farther away. 

array is comparatively small, the separate wave amplitudes  

In fact, the angle subtended at the aperture screen, u, by the 

arriving at  P
  will be essentially equal, having traveled nearly 

central main peak in a typical Fraunhofer pattern can be taken 

equal distances, that is,

to be more-or-less constant. Figure 10.2 b
  illustrates the simple 


E
 0 (r
 1 ) 
 =  E
 0 (r2) 
 = g =  E
 0 (rN) 
 =  E
 0 (r)
 case where plane waves illuminate the diffracting aperture. 

We’ll soon see that in general u ≈ l> b
 , since from the diagram 

The sum of the interfering spherical wavelets yields an electric 


R
 u ≈  b
 ,  
 it follows that  R 
 ≈  b
 2>l. Roughly speaking, beyond  R
  

field at  P
 , given by the real part of

lies the far-field.


E


  ˜


A practical realization of the Fraunhofer condition, where 

=  E
 0 (r)ei
 ( kr
 1-v t
 ) +  E
 0 (r)ei
 ( kr
 2-v t
 ) +  g +  E
 0 (r)ei
 ( krN
 -v t
 ) both  S
  and  P
  are effectively at infinity, is achieved by using an 

(10.1)

arrangement equivalent to that of Fig. 10.3. The point source  S
  is 

located at  F
 1, the principal focus of lens- L
 1, and the plane of ob-

It should be clear, from Section 9.1, that we need not be 

servation is the second focal plane of  L
 2. In the terminology of 

concerned with the vector nature of the electric field for this 

Geometrical Optics, the source plane and s are conjugate planes.

configuration. Now then

These same ideas can be generalized to any lens system 


E


  ˜


forming an image of an extended source or object (Problem 10.4).* 

=  E
 0 (r)e
 - i
 v teikr
 1

Indeed, the image would be a Fraunhofer diffraction pattern. It 

* [1 +  eik
 ( r
 2- r
 1) +  eik
 ( r
 3- r
 1) + g +  eik
 ( rN
 - r
 1)]

is because of these important practical considerations, as well 

as the inherent simplicity of Fraunhofer diffraction, that we will 

The phase difference between adjacent sources is obtained from 

examine it before Fresnel diffraction, even though it is a special 

the expression d =  k
 0Λ, and since Λ =  nd
  sin u, in a medium of 

case of the latter.

index  n
 ,  
 d =  kd
  sin u. Making use of Fig. 10.4, it follows that  

d =  k
 ( r
 2 -  r
 1), 2d =  k
 ( r
 3 -  r
 1), and so on. Thus the field at  P
  

may be written as


10.1.3 Several Coherent Oscillators



E


  ˜ 
 =  E
 0 (r)e
 - i
 v teikr
 1

As a simple yet logical bridge between the studies of interfer-

* [1 + ( ei
 d) + ( ei
 d)2 + ( ei
 d)3 +  g + ( ei
 d) N
 -1]

ence and diffraction, consider the arrangement in Fig. 10.4. The 

(10.2)

illustration depicts a linear array of  N
  coherent point oscillators 

The bracketed geometric series has the value

(or radiating antennas), which are all identical, even to their 

polarization. For the moment, assume that the oscillators have 

( ei
 d N 
 - 1)>( ei
 d - 1)

no intrinsic phase difference; that is, they each have the same 

which can be rearranged into the form

initial phase angle. The rays shown are all almost parallel, 


eiN
 d>2[ eiN
 d>2 -  e
 - iN
 d>2]

*A He–Ne laser can be set up to generate magnificent patterns without any  


ei
 d>2[ ei
 d>2

auxiliary lenses, but this requires plenty of space.

-  e
 - i
 d>2]
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(a)

(b)


r
 1


r
 2


d


u


r
 3

( r
 2 −  r
 1)


r
 4

( r
 3 −  r
 1)


r
 5


rN


u


d
  sin u

( N
  − 1) d
  sin u


Figure 10.4
     A linear array of in-phase coherent oscillators. ( a
 ) Note that at the angle shown d = p, while at u = 0, d would be zero. ( b
 ) One of many sets of wavefronts emitted from a 

line of coherent point sources.

or equivalently


I 
 = 4 I
 0  cos2(d>2), in accord with Eq. (9.17). The functional 

sin  N
 d

dependence of  I
  on u is more apparent in the form

>2


ei
 ( N
 -1)d>2 a

b

sin d>2

 sin2 [ N
 ( kd
 >2) sin u]

The field then becomes






I 
 =  I
 0 

 (10.6)

 sin2 [( kd
 >2) sin u]

sin  N
 d>2






E


  ˜ 
 =  E
 0 (r)e
 - i
 v t
   ei
 [ kr
 1+( N
 -1)d>2] a b (10.3)

sin d>2

The  sin2 [ N
 ( kd
 >2) sin u] term undergoes rapid fluctuations, 

Notice that if we define  R
  as the distance from the center of the 

whereas the function that modulates it, 5sin [( kd
 >2) sin u]6 -2, 

line of oscillators to the point- P
 , that is,

varies relatively slowly. The combined expression gives rise 

to a series of sharp principal peaks separated by small subsid-


R 
 = 12 ( N 
 - 1) d
  sin u +  r
 1

iary maxima. The principal maxima occur in directions u m
 , 

then Eq. (10.3) takes on the form

such that d = 2 m
 p, wherein  m 
 = 0, ±1, ±2, . . . . Because 

d =  kd
  sin u,

sin  N
 d>2






E


  ˜ 
 =  E
 0 (r)ei
 ( kR
 -v t
 ) a

b (10.4)

sin d>2






d
  sin u m 
 =  m
 l (10.7)

Finally, then, the flux-density distribution within the diffraction 

pattern due to  N
  coherent, identical, distant point sources in a 

Since [sin2  N
 d>2]>[sin2 d>2] =  N
 2 for d = 2 m
 p (from L’Hos-

linear array is proportional to  E


  ˜
 E


  ˜
 *

pital’s Rule), the principal maxima have values of  N
 2 I


>2 for complex  E
  or

0. This is 

to be expected, inasmuch as all the oscillators are in-phase at 

sin2( N
 d>2)

that orientation. The system will radiate a maximum in a direc-






I 
 =  I
 0 

 (10.5)

tion perpendicular to the array ( m


sin2(d>2)

= 0, u0 = 0 and p). As u in-

creases, d increases and  I
  falls off to zero at  N
 d>2 = p, its first 

where   I
 0 is the flux density from any single source arriving 

minimum. Note that if  d 
 6 l  
 in Eq. (10.7), only the  m 
 = 0  
 or 

at   P
 . For  N 
 = 0,  I 
 = 0, for  N 
 = 1,  I 
 =  I
 0, and for  N 
 = 2, zero-order principal maximum exists.  If we were looking at an 
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y



D
 2

∆ yi


An early interferometric 


ri


radio telescope at the 


P


University of Sydney, 


R


u

Australia ( N 
 = 32, l = 21

cm,  d 
 = 7 m, 2 m diameter, 

700 ft. east–west base line). 


z



x


(W.N. Christiansen)


–D
 2


idealized line source of electron-oscillators separated by atom-



ic distances, we could expect only that one principal maximum 



in the light field.



Figure 10.5
     A coherent line source.

An antenna array like the one in the above photo can trans-

Examine Fig. 10.5, which depicts an idealized line source of 

mit radiation in the narrow beam or lobe corresponding to a 

electron-oscillators (e.g., the secondary sources of the Huygens–

principal maximum. (Parabolic dishes reflect in the forward di-

Fresnel Principle for a long slit whose width is much less than l, 

rection, and the radiation pattern is no longer symmetrical 

illuminated by plane waves). Each point emits a spherical wave-

around the common axis.) Suppose that we have a system in 

let, which we write as

which we can introduce an intrinsic phase shift of P between 

adjacent oscillators. In that case

e


E 
 =

d

a 0b sin (

=  kd
  sin u + P


r


v t 
 -  kr
 )

The various principal maxima will occur at new angles

explicitly indicating the inverse  r
 -dependence of the amplitude. 


d
  sin u

The quantity e0 is said to be the source strength
 . The present 


m 
 =  m
 l - P> k


situation is distinct from that of Fig. 10.4, since now the sources 

Concentrating on the central maximum  m 
 = 0, we can vary its 

are very weak; their number,  N
 , is tremendously large; and the 

orientation u0 at will by merely adjusting the value of P.

separation between them is vanishingly small. A minute but fi-

The Principle of Reversibility, which states that without 

nite segment of the array ∆ yi
  will contain ∆ yi
 ( N
 > D
 ) sources, 

absorption, wave motion is reversible, leads to the same field 

where  D
  is the entire length of the array. Imagine that the array 

pattern for an antenna used as either a transmitter or a receiver. 

is divided up into  M
  such segments (i.e.,  i
  goes from 1 to  M
 ). 

The array, functioning as a radio telescope, can therefore 

The contribution to the electric-field intensity at  P
  from the  i
 th 

be “pointed” by combining the output from the individual 

segment is accordingly

antennas with an appropriate phase shift, P, introduced be-

tween each of them. For a given e the output of the system 

e


N
 ∆ y



E


0


i



i 
 = a

b sin (

b

corresponds to the signal impinging on the array from a spe-


r


v t 
 -  kri
 ) a


i



D


cific direction in space (see the discussion of phased array 

radar, p. 98).

provided that ∆ yi
  is so small that the oscillators within it have a 

The telescope in the above photograph shows the first mul-

negligible relative phase difference ( ri 
 = constant), and their 

tiple radio interferometer, designed by W. N. Christiansen and 

fields simply add constructively. We can cause the array to be-

built in Australia in 1951. It consisted of 32 parabolic antennas, 

come a continuous (coherent) line source by letting  N
  approach 

each 2 m in diameter, designed to function in-phase at the wave-

infinity. This description, besides being fairly realistic on a 

length of the 21-cm hydrogen emission line. The antennas are 

macroscopic scale, also allows the use of the calculus for more 

arranged along an east–west base line with 7 m separating each 

complicated geometries. Certainly as  N
  approaches infinity, the 

one. This particular array utilized the Earth’s rotation as the 

source strengths of the individual oscillators must diminish to 

scanning mechanism.*

nearly zero, if the total output is to be finite. We can therefore 

define a constant e L
  as the  
source strength per unit length

  of 

the array, that is,

1





e L 
 K   lim (e

*See E. Brookner, “Phased-array radars,”  Sci. Am
 . (Feb. 1985), p. 94.


D N
 S ∞ 0 N
  ) (10.8)
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The net field at  P
  from all  M
  segments is

and finally


M


e

sin [( kD


e

>2) sin u]


L







E



E


 sin (v t


=  LD
  

 sin (v t 
 -  kR
 ) (10.13)

= ^

-  kri
 )∆ yi



R



r


( kD
 >2) sin u


i 
 = 1  i


To simplify the appearance of things, let

For a continuous line source the ∆ yi
  must become infinitesimal 

( M 
 S ∞), and the summation is then transformed into a defi-


 


b K ( kD
 >2) sin u (10.14)

nite integral

so that

+ D
 ∙2 sin (v t 
 -  kr
 )






E 
 = e L
  





  dy
  (10.9)

e

sin b

3


r







E


- D
 ∙2

=  LD
  a

b sin (v t 
 -  kR
 ) (10.15)


R


b

where   r 
 =  r(y)
 . The approximation used here to evaluate   The quantity most readily measured is the irradiance (forgetting Eq. (10.9) must depend on the position of  P
  with respect to the 

the constants)  I(
 u ) 
 = 8 E
 29T or

array and will therefore make the distinction between Fraunhofer 

and Fresnel diffraction. The coherent optical line source does 

1 e

2 sin b  2






I(



LD


u )


not exist as a physical entity, but we will make good use of it as 

=  a

b a

b  (10.16)

2


R


b

a mathematical device.

where  8sin2 (v t 
 -  kR
 )9T = 12. When u = 0, sin b>b = 1 and 


I(
 u ) 
 =  I(0)
 , which corresponds to the  principal maximum. The 



irradiance resulting from an idealized coherent line source in 



10.2 Fraunhofer Diffraction



the Fraunhofer approximation
  is then

sin b 2


10.2.1 The Single Slit







I(
 u ) 
 =  I(0)
  a

b  (10.17)

b

Return to Fig. 10.5, where now the point of observation is very 

or, using the  sinc function
  (see Table 1 of the Appendix and  

distant from the coherent line source and  R
  7 7  D
 . Under these 

p. 50),

circumstances  r(y)
  never deviates appreciably from its midpoint 

value  R
 , so that the quantity (e


I(
 u )



L
 > R
 ) at  P
  is essentially constant 

=  I(0)
  sinc2 b

for all elements  dy
 . It follows from Eq. (10.9) that the field at  P
  

There is symmetry about the  y
 -axis, and this expression holds 

due to the differential segment of the source  dy
  is

for  u measured in any plane containing that axis. Notice that 

e L


since  b






dE


 sin (

= (p D
 >l) sin u, when  D
  7 7 l, the irradiance drops 

=

v t 
 -  kr
 )  dy
  (10.10)


R


extremely rapidly as u deviates from zero. This arises from the 

fact that b becomes very large for large values of length  D
  (a 

where (e L
 > R
 )  dy
  is the amplitude of the wave. Notice that the 

centimeter or so when using light). The phase of the line source 

phase is much more sensitive to variations in  r(y) 
 than is the 

is equivalent, by way of Eq. (10.15), to that of a point source 

amplitude, so that we will have to be more careful about intro-

located at the center of the array, a distance  R
  from  P
 . Finally, a 

ducing approximations into it. We can expand  r(y)
 , in precisely 

relatively long coherent line source ( D
  

the same manner as was done in Problem (9.21), to make it an 

7 7 l) can be envi-

sioned as a single-point emitter radiating predominantly in the 

explicit function of  y
 ; thus

forward, u = 0, direction; in other words, its emission resem-






r 
 =  R 
 -  y
  sin u + (  y
 2>2 R
 ) cos2 u + g (10.11)

bles a circular wave in the  xz
 -plane. In contrast, notice that if 

l  7 7  D
 , b is small, sin b ≈ b, and  I(
 u ) 
 ≈  I(0)
 . The irradiance 

where u is measured from the  xz
 -plane. The third term can be 

is then constant for  all
  u, and the line source resembles a point 

ignored as long as its contribution to the phase is insignificant 

source emitting spherical waves.

even when  y 
 = ± D
 >2; that is, (p D
 2>4l R
 ) cos2 u must be neg-

We can now turn our attention to the problem of Fraunhofer 

ligible. This will be true for all values of u when  R
  is adequately 

diffraction by a slit or elongated narrow rectangular hole 





large. We now have the Fraunhofer condition
 , where the dis-

(Fig. 10.6). An aperture of this sort might typically have a width 

tance  r
  is linear in  y
 : the distance to the point of observation and 

of several hundred l and a length of a few centimeters. The 

therefore the phase can be written as a linear function of the 

usual procedure to follow in the analysis is to divide the slit into 

aperture variables. Substituting into Eq. (10.10) and integrating 

a series of long differential strips ( dz
  by /) parallel to the  y
 -axis, 

leads to

as shown in Fig. 10.7 on page 459. We immediately recognize, 

however, that each strip is a long coherent line source and can 

e + D
 ∙2






E



L


 sin [v t


( R 
 -  y
  sin u)]  dy
  (10.12)





therefore be replaced by a point emitter on the  z
 -axis. In effect, 

=

-  k



R 
 3- D
 ∙2

each such emitter radiates a circular wave in the (  y 
 = 0 or)  
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(a)


y



x



z



b


s


L



S


2

Σ


L
 1


Figure 10.6
   ( a
 ) Single-slit Fraunhofer diffrac-

tion. ( b
 ) Diffraction pattern of a single vertical 

(b) 

slit under point-source illumination. (E.H.)


xz
 -plane. This is certainly reasonable, since the slit is long and 

It also follows from Eq. (10.19) that when

the merging wavefronts are practically unobstructed in the slit 

b cos b - sin b = 0

direction. There will thus be very little diffraction parallel to the 

edges of the slit. The problem has been reduced to that of find-





 tan b = b (10.21)

ing the field in the  xz
 -plane due to an infinite number of point 

The solutions to this transcendental equation can be deter-

sources extending across the width of the slit along the  z
 -axis. 

mined graphically, as shown in Fig. 10.8. The points of inter-

We then need only evaluate the integral of the contribution  dE
  

section of the curves  ƒ


from each element  dz
  in the Fraunhofer approximation. But 

1 (
 b ) 
 = tan b   
 with the straight line 


ƒ


once again, this is equivalent to a coherent line source, so that 

2 (
 b ) 
 = b  
 are common to both and so satisfy Eq. (10.21). Only 

one such extremum exists between adjacent minima [Eq. (10.20)], 

the complete solution for the slit is, as we have seen,

so that  I(
 u )
  must have subsidiary maxima at these values of 

sin b 2

b (viz,  ±1.430 3p, ±2.459 0p, ±3.470 7p, . . .).






I(
 u ) 
 =  I(0)
  a

b  [10.17]

There is an essentially nonmathematical way to appreciate 

b

what’s happening here with the aid of Fig. 10.9, which depicts 

provided that

a long narrow slit in profile (aligned perpendicular to the page). 

We envision every point across the aperture emitting Huygens’s 

  

b = ( kb
 >2) sin u (10.18)

wavelets. That corresponds to a flood of electromagnetic waves, 

and u is measured from the  xy
 -plane (see Problem 10.2). Note 

all of the same amplitude, phase, and wavelength, since we as-

that here the line source is short,  D 
 =  b
 , b  
 is not large, and al-

sume that the slit is illuminated perpendicularly by homogeneous 

though the irradiance falls off rapidly, higher-order subsidiary 

monochromatic EM plane waves. The net wave propagating in 

maxima will be observable. The extrema of  I(
 u )
  occur at values 

the forward direction is represented by a ray bundle in Fig. 

of b that cause  dI
 > d
 b  
 to be zero, that is,

10.9 a
 , and it constitutes the undiffracted beam. When dealing 

with Fraunhofer diffraction for some sort of aperture illumi-


dI


2 sin b(b cos b - sin b)

nated like this, there will always be just such a central beam. If 





=  I(0)
  


d
 b

the viewing screen is very far away, or equivalently, if there is a 

b3

= 0 (10.19)

large positive lens near the aperture (like that in Fig. 10.7 e
 ), a 

The irradiance has minima, equal to zero, when sin b = 0, 

bright region will always appear at the center of the screen 

whereupon

where all the wavelets arrive in-phase and constructively inter-





b = ±p, ±2p, ±3p, . . .  


(10.20)

fere, since they all travel equal optical path lengths ( OPL
 s).
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+ b
 2


R



z


−2


P


(a)

(b)

(c)
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P


+ b
 2


R 
 u


x



dz


− b
 2

(d)

(e)

s


Figure 10.7
   ( a
 ) Point- P
  on s is essentially infinitely far from  g. ( b
 ) Huygens wavelets emitted across the aperture. ( c
 ) The equivalent representation in terms of rays. Each point emits rays in all directions. The parallel rays in various directions are seen. ( d
 ) These ray bundles correspond to plane waves, which can be thought of as the three-dimensional Fourier components. ( e
 ) A single slit illuminated by monochromatic plane waves showing the resulting irradiance distribution.

With light emerging from the slit in all directions, let’s ex-

one coming from just below the top, and so on; all across the 

amine the particular beam depicted in Fig. 10.9 b
 . There is now 

aperture such wavelet pairs will cancel, yielding a minimum on 

a difference in  OPL
  to the viewing screen for EM wavelets 

the viewing screen at angle u1. In other words, the resultant 

emitted across the aperture, and that difference depends on the 

electric-field amplitude at angle u1 will be zero on the viewing 

angle of the beam, u,  
 measured from the central axis. For the 

screen. And since the irradiance goes as the electric-field ampli-

particular beam in Fig. 10.9 b
  traveling at u1, the variation in 

tude squared, at the angle u1 above and below the axis, there 

path length between wavelets from the top and bottom of the slit 

will be no light, and we say that the irradiance of the central 

was arranged to be equal to l. Since  b
  is the slit width, that 

maximum has dropped to zero at those first minima.

path-length difference is expressible as  b
  sin u1 = l. Wavelets 

As u increases further, there will again be a net electric-field 

from the middle of the slit will arrive at the viewing screen lag-

amplitude, albeit small, and the irradiance will rise once more 

ging wavelets from the top by 1

to form a  secondary
 , or  subsidiary
   maximum
 . We’ll see how that 

2l, and so cancel each other.

Similarly, a wavelet emitted from just below the center will cancel 

happens presently when we study the corresponding phasors.  
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f(
 b )


phasors (each with the  E
 -field amplitude of a single wavelet: 


E
 01,  E
 02,  E
 03, c, etc.). They align along a straight line, because 

they’re all in-phase (d1, the single-slit phase-angle difference, 

b

equals 0 and b = 0). The net electric-field amplitude at point-1 in 

 tan 

Fig. 10.10 a
  is then  E
 0 (
 u ) 
 =  E
 0 (0) 
 =  E
 01 +  E
 02 +  E
 03 + c, 


)
  = (
 b

and this is the maximum value the resultant amplitude attains. 


f 
 1

Since there are  N
  contributing wavelets, all essentially of ampli-


(
 b )
  = b

tude  E
 01, it follows that  E
 0 (0) 
 =  NE
 01. Here  N
  is chosen to be 9 


f 
 2

to illustrate the procedure.

As u increases and point- P
  moves up the observation screen, 

the wavelets each arrive shifted in relative phase by the same 

b

−p

−p2

0

p2

p

3p2

2p

5p2

new amount. When  P 
 moves to point-2 in Fig. 10.10 a
 , where 

b = p>2,  
 there is a difference in phase between the two wave-

lets bounding the slit, equal to d1 = 2b = p, or half a wave-

length. Take the wavelet from the center of the slit as the refer-

ence. Its phasor (call it phasor-R
 , the one with the black dot at its 

tail) is again drawn horizontally pointing to the right in Fig. 

10.10 c
 . The phasors for wavelets emanating from below the 

slit’s center (phasor-B
 1, -B
 2, and -B
 3 in Fig. 10.10 c
  where  N
  is 

taken to be 7) will travel longer  OPL
 s and so lag the central one. 

On the other hand, those from above center (phasor-A
 1, -A
 2, and 


Figure 10.8
     The points of intersection of the two curves are the solutions 

-A


of Eq. (10.21).

3, where  N 
 = 7) will lead phasor-R
 . Again for point-2 in 

Fig. 10.10 a
 ,  b = p>2 and so d1 = 180°. Figure 10.10 c  
 starts 

with just   N 
 = 7, whereas Fig. 10.10 d
 , goes on to make  N
  ap-

A further increase in angle soon produces another minimum, as 

proach an unspecified very large odd number, as it must.

shown in Fig. 10.9 c
 , where  b
  sin u2 = 2l. In that case imagine 

In Fig. 10.10 c
  with the central horizontal phasor-R
  as the 

the aperture divided into quarters. Wavelet by wavelet, the top 

reference, the ( N 
 - 1)>2 phasors arising from wavelets emitted 

quarter will cancel the one below it, and the next (the third) will 

below the slit’s center are each successively rotated clockwise 

cancel the last quarter, yielding a net zero electric-field ampli-

(they lag), with respect to the preceding one, through an angle 

tude. Wavelet pairs from the same locations in adjacent seg-

d1>( N 
 - 1) = 180°>( N 
 - 1). Similarly the ( N 
 - 1)>2 phasors 

ments are l>2 out-of-phase and destructively interfere.In gen-

arising from wavelets emitted above the slit’s center are each 

eral, then, zeros of irradiance occur when

rotated counterclockwise through 180°>( N 
 - 1). The result is a 


b
  sin u m 
 =  m
 l

net phase shift of p; the phasors from the aperture’s edges point 

down (white tail dot) and up (white arrowhead). Accordingly, if 

where  m 
 = ±1, ±2, ±3, . . . , which is equivalent to Eq. (10.20), 


N 
 = 5, 7, 9, . . . , each phasor is rotated, respectively, through  

since b =  m
 p = ( kb
 >2) sin u m
 . Notice that the optical path-length 

45°, 30°, 2212°, and so on. The resultant for any odd  N
  is the pha-

difference for the two wavelets coming from the top and bottom 

sor of amplitude  E
 0 (
 u 2)
  drawn from the first tail (with the little 

of the slit is ( b
  sin u). That’s equivalent to a number of wave-

white circle) on the left to the last tip (with the white arrow-

lengths’ difference of ( b
  sin u)>l, and a phase-angle difference 

head) on the right; it’s parallel to the reference phasor and there-

for the single slit of d1 = 2p( b
  sin u)>l. Thus  b corresponds to 


fore positive. Moreover, it has a value  E
 0 (
 u 2) 
 6  E
 0 (0)
 , since the half the phase-angle difference (
 d1 ) between wavelets emitted 


overall length of the phasors on the circular arc is  E
 0 (0)
 .


from the top and bottom of the single slit.


By symmetry the resultant will always be horizontal, whether 

positive or negative. In other words, the phasor for a wavelet 

coming from the top of the slit is shifted from the phasor com-


Phasors and the Electric-Field Amplitude


ing from the bottom by an amount 2b = p. Because d1 = p  
 at 

Figure 10.10 a
  depicts the electric field of the Fraunhofer diffrac-

point-2, the phasors lie on a semicircle whose center is at the 

tion pattern produced by a narrow slit on a distant observation 

center of the resultant. The two radii drawn to the first tail and 

screen. To see how the  E
 -field amplitudes combine to generate 

the last tip subtend an angle equal to d1 = 180°.

that pattern, consider the phasor representation of the wavelets. 

Now suppose  N
  is made very large, at any given value of u 

With Figs. 10.7 e
 , 10.9, and 10.10 in mind, suppose that the slit is 

the individual phase shifts, all equal, will be correspondingly 

again divided into some convenient odd number ( N
 ) of equal 

small, as will be the individual phasors. And as  N
  gets still 

parts, each radiating an equal-amplitude wavelet in the forward 

larger, the arc formed by the now tiny tip-to-tailed phasors 

direction. These arrive on the viewing screen at point- P
  on the 

will blend into a continuous curve known as a  
vibration curve

  


central axis, in-phase. Their electric fields will all add, and we 

(Fig. 10.10 d
 ). So that we can better see how it changes with u, 

represent that in Fig. 10.10 b
  by summing, tip-to-tail, all of the 

we again mark the start of the vibration curve with a white 
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Figure 10.9
     The diffraction of light in various 

directions. Here the aperture is a single slit, as 

in Fig. 10.7. Zeros of irradiance occur when 


b
  sin u m 
 =  m
 l, as in parts ( b
 ) and ( c
 ). The 

inserts depict the development of Huygens’s 

wavelets. In all cases the incident light is in the 

(a)

form of plane waves.


b


1

(b)

u

2l

1

l

l

u2

2

(c)

l


z



x


circle and the end with a white arrowhead. The length of the 

bends upward a bit more, closing somewhat as the radius de-

arc is fixed equal to the length of the string of phasors in 

creases, because the arc length remains constant. This is shown 

Fig. 10.10 b
 , namely,  E
 0 (0)
 .

in Fig. 10.10 e
 . The radii drawn to the first tail and the last tip 

For each and every value of u there will be a specific con-

now subtend an angle greater than 180°. The resultant is still left-

figuration of the vibration curve. As u increases, the  OPL
  differ-

to-right and positive, but it has decreased in magnitude. 

ence between wavelets from the aperture’s edges increases, the 

At point-3 in Fig. 10.10 a
 , d1 = 2b = 2p, or one wavelength, 

relative phase angle between individual phasors increases, and 

and we have the situation depicted in Fig. 10.9 b  
 where the 

the vibration curve spirals around, getting tighter (the radius of 

wavelets cancel one another. The arc composed of infinitesimal 

the circular arc decreases) at each location that is farther from 

phasors (Fig. 10.10 e
 ) rises and curls over on the left and right as 

the central axis. That means the maximum possible resultant am-

the radius shrinks until the curve closes at the top (imagine the 

plitude gets smaller as  P
  moves away from the central axis. For 

tiny reference phasor still in place at the bottom) and the resul-

values of b between those of point-2 and point-3 in Fig. 10.10 a 


tant goes to zero; the amplitude of the electric field is zero at 

the semicircular arc of the vibration curve of Fig. 10.10 d
  now 

point-3. The center of the arc of the vibration curve is now the 
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(a)

(b)
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E
 0 (0)



E
 0 (0)
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b = 0


E
 01  E
 02  E
 03


E
 09


N
  = 9

(c)


E
 0 (
 u2 )


Point-2


E
 0 (
 u2 )



B
 3


A
 3

d1 = p


B
 2


A
 2

b = p2


N
  = 7


B
 1


A
 1


R


(d)


E
 0 (
 u2 )


Point-2


E
 0 (
 u3 )


d1 = p

1

2

3

4

5

b = p2


N
  very large

b = 0

b = p

b = 2p

b = p

2

b = 3p

2

(g)

Point-4

(e)

Between points-2 and -3

(f)


E


Point-3

0 (
 u3 )
  = 0

d1 = 3p

d1 = 3p2

b = 3p2

b = 3p4

d


N
  very large

1 = 2p


N
  very large

b = p


N
  very large

(h)

Point-5

d1 = 4p

b = 2p


N
  very large


E
 0 (
 u5 )
  = 0


Figure 10.10
     Electric field for single-slit Fraunhofer diffraction. ( a
 ) A plot of the amplitude of the electric field as a function of position. ( b
 ) The maximum amplitude when b = 0. ( c
 ) The resultant amplitudes for  N 
 = 7. B
 1 lags R
  by 30° and is rotated clockwise through 30° from it. Similarly B
 2 lags B
 1, and B
 3 lags B
 2; B
 3 arises from the bottom of the slit. In the same way A
 1 leads R
 , A
 2 leads A
 1, and A
 3 leads A
 2, each by 30°. A
 3 arises from the top of the slit. ( d
 ) Here d1 = p, and E
 0 (
 u2 )
  is positive. ( e
 ) When d1 = 2p, the amplitude is zero. ( f 
 ) At point-4,   E
 0 (
 u4 )
  is negative. ( g
 ) When d1 = 4p,  E
 0 (
 u5 ) 
 = 0.

center of the circle. This is shown in Fig.10.10 ƒ.
  The two radii 

as the last phasor (starting at the reference phasor) rotates 

previously drawn to the first tail and the last tip of the string of 

through 360° counterclockwise. The two meet, both pointing to 

phasors now overlap and subtend an angle d1 = 360°. The last 

the right, and the resultant electric-field amplitude is again 

infinitesimal phasor on the top of the circle can be imagined 

zero. Since the last infinitesimal phasor is pointing to the right 

pointing to the left because as u increases thereafter, the resul-

(white arrowhead) the field will again become positive as u 

tant will be negative.

increases thereafter. In this way (Fig. 10.11) the resulting elec-

For point-4 in Fig. 10.10 a
 ,  d1 = 2b = 3p, the radius has 

tric-field amplitude oscillates in sign as it diminishes in size 

shrunk a bit more and the vibration curve cycles around through 

with increasing u.

3p  
 (Fig. 10.10 g
 ). Measured from the infinitesimal reference pha-

Figure 10.12 depicts the general case where the amplitude is 

sor (black dot at its tail), and staying tangent to the curve, the first 


E
 0 (
 u ) 
 = 2 r
  sin b and the arc length is  E
 0 (0) 
 = 2 r
 b. Thus the phasor (marked with a little white circle) has rotated clockwise 

normalized electric-field amplitude is

through  3p>2 and points upward. Similarly the tip of the last 


E


 sin b

phasor (marked with a white arrowhead) has rotated counter-

0 (
 u ) 
 =

clockwise through 3


E


b

p>2 and points downward. The resulting 

0 (0)


amplitude is small and the phasor points in the opposite direction 

the square of which yields Eq. 10.17 for the irradiance. The 

to the phasor for the central maximum (the reference phasor). 

amplitude, the sinc function, has its zero values where b = ±p, 



This electric field is therefore negative

 .

±2p, ±3p, c. Unlike the field amplitude, which can be 

For point-5 in Fig. 10.10 a
 , 2b = 4p, the first phasor (starting at 

negative, irradiance—energy per unit area, per unit time—is 

the reference phasor) rotates around 360° clockwise (Fig. 10.10 h
 ), 

never negative. Although electric-field amplitude is of great 
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central axis ( m 
 = +1) to the first zero of irradiance on the other 

side ( m 
 = -1). Then, since  b
  sin u m 
 =  m
 l,  
 and we usually deal with small angles where  
 sin u m 
 ≈ u m
 ,  
 the  
angular width

  
 (∆u) (d)

of the central maximum is, in radians,

∆u

(c)

= 2u1 ≈ 2l> b


The normalized irradiance,  I(
 u )
 > I(0)
 , at the central peak (u = 0) 

(b)

is determined by (sin b)>b, where b = 0. Remembering that b 

is in radians, as b becomes small, sin b ≈ b  
 and (sin b)>b ap-

proaches 1. The next maximum is a tiny peak located (according 

to Fig. 10.8) at b = 1.430 4p. Its relative irradiance is 

(a)

[(sin b)>b]2 = [(sin 1.430 4p)>1.430 4p]2 = 0.04719

  

That fringe peaks at a mere 4.72% of the central maximum. 


Figure 10.11
     A summary of phasor addition for the single slit. As  P
  

Table 10.1 lists the values of b and the corresponding normal-

moves away from the central axis u increases, and the distance from the 

slit to  P
  increases. Consequently, the amplitude of each wavelet reaching  P
  

ized irradiances at several successive maxima and minima. The 

decreases, and so the amplitude of each phasor gradually decreses with 

central, or  
principal maximum

  is twice as wide as the other 

increasing u. That causes the vibration curve to spiral inward. The overall 

higher-order fringes and it comprises more than 80% of the 

length of the curve is constant from ( a
 ) to ( d
 ). However, the resultant pha-

light arriving at the observation screen.

sor (from the open circle to the open arrow head) changes length and sign 

When the width of the slit ( b
 ) is small compared to a 

as  P 
 relocates and the spiral winds inward.

wavelength, the emerging light markedly fans out perpen-

theoretical interest, we actually measure irradiance and so will 

dicular to the slit and the central irradiance peak becomes 

focus our attention on it.

very broad. Figure 10.13 b
  is a plot of the normalized irradi-

We should inject a note of caution at this point: one of the 

ance as  b
  goes from l to 2l to 4l to 10l. Each curve is set to 

frailties of the Huygens–Fresnel Principle is that it does not take 

a maximum of 1.0, but, of course, as the peaks broaden with 

proper regard of the variations in amplitude, with angle, over the 

decreasing   b
 , energy is distributed over a wider region and 

surface of each secondary wavelet. We will come back to this 


I(0)
  must decrease—energy is conserved.

when we consider the  obliquity factor
  in Fresnel diffraction, 

where the effect is significant. In Fraunhofer diffraction the dis-

tance from the aperture to the plane of observation is so large that 

EXAMPLE 10.1 

we need not be concerned about it, provided that u remains small.

Consider the arrangement of Fig. 10.3, where a large lens  L
 2 is 

close to the long narrow (0.250 mm) slit in the aperture screen. 

The illumination is green magnesium light at 518.36 nm. De-


Single-Slit Irradiance


termine the width of the central maximum formed by  L
 2, which 

Figure 10.13 is a plot of the normalized flux density, as ex-

has a focal length of 65.0 cm, on the viewing screen s.

pressed by Eq. (10.17). Envision some point on the curve, for 

SOLUTION 

example, the third subsidiary maximum at b = 3.470 7p; since 

Draw a line from the center of  L
 2, up from the central axis at 

b = (p b
 >l) sin u, an increase in the slit width  b
  requires a de-

an angle u, out to point- P
  on s. The image formed on s is a 

crease in u, if b is to be constant. Under these conditions the 

perpendicular distance of one focal length,  ƒ,
  from the lens. 

pattern shrinks in toward the principal maximum, as it would 

Let   Y
 1 be the distance on s from the central axis to the first 

if l were decreased. 

irradiance zero at  P
 . The width of the principal maximum is 

As a rule, the width of the fringe pattern, and hence the width 

then 2 Y
 1. Here tan u1 =  Y
 1> ƒ
  and so  Y
 1 =  ƒ
  tan u1. For small val-of the central maximum, varies inversely with the width of the slit. 

ues of u1,  Y
 1 =  ƒ
  tan u1 ≈  ƒ
  sin u1 where for the  m 
 th minimum  

The width of the central maximum is conveniently taken to be 


b 
 sin u m 
 =  m
 l and so  Y
 1 ≈  ƒ
 l> b
 . Hence

the distance from the first zero of irradiance on one side of the 

2 Y
 1 ≈ 2 ƒ
 l> b



r


b b


r


2(65.0 * 10-2)(518.36 * 10-9)

2 Y


d

1 ≈


A



B


0.25 * 10-3


r
  sinb


r
  sinb


E
 0 (
 u )


2 Y
 1 ≈ 2.695 mm


r
 b


r
 b


E
 0 (0)


To three significant figures the width of the central maximum 

on the viewing screen is 2.70 mm.


Figure 10.12
     Here the resultant amplitude (from  A
  to  B
 ) is 


E
 0 (
 u ) 
 = 2 r
  sin b, whereas the corresponding arc length is  E
 0  (0) 
 = 2 r
 b.
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Figure 10.13
   The Fraunhofer diffraction pattern of a single slit. ( a
 ) This is 

10l

the irradiance distribution. ( b
 ) Normalized irradiance for different slit 

0

widths:  b 
 = l, 2l, 4l, and 10l.

The light wave that propagates beyond the aperture screen is 


TABLE 10.1    Single-Slit Fraunhofer Diffraction


fairly complicated, having different amplitudes in different di-

  b 

± Normalized Normalized Maximum 

rections (i.e., along different values of u) throughout the space. 

   

     Amplitude 

Irradiance 

or Minimum

Using the setup of Fig. 10.3 with a lens  L
 2 of focal length  ƒ
 , we 

plot the resulting normalized amplitude of the electric field, and 

 0 

1 

1 

Max.

the normalized irradiance, in Fig. 10.14. Recall that  a negative 


  p 

0 

0 Min.


value of the electric-field amplitude indicates that at that loca-


1.430 3p 

-0.217 0.047 Max.


tion it’s 180
 ° out-of-phase with the field of the central maximum
 . 

 2p  0 

0 Min.

Earlier we studied Young’s Experiment and used an initial 

2.459 0p 0.128  0.016  Max.

small hole (Fig. 9.10) or slit (Fig. 9.11) to restrict the light that 

 3p  0 

0 Min.

would then arrive at the aperture screen. What we were doing 

3.470 7p 

-0.091 0.008 Max.

was arranging to illuminate the two apertures (two pinholes or 

  4p  0 

0 Min.

two slits) in the second screen within the central maximum of 

the diffraction pattern of the initial hole. Thus if the first opaque 
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E
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 u )
 I(0)



S
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S
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L
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Σ
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L
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1.43 l f 
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 3.47 l f



b



b



b


(b)


Figure 10.14
   The solid curve is the normalized irradiance. The dotted 

curve is the normalized electric-field amplitude. The pattern is formed by a 

lens with a focal length ƒ. The distance  Y
  is measured from the central axis 

( Y 
 = 0) on the viewing screen.

screen had a very narrow slit in it, the light corresponding to the 

broad principal maximum of the Fraunhofer pattern bathed both 

slits in the aperture screen. As we’ll see in Chapter 12 when we 

study something called the van Cittert–Zernike theorem, the 

light within the principal maximum has a high degree of spatial 

coherence even when the source has a broad bandwidth. 

If the source emits white light, the higher-order maxima 

show a succession of colors trailing off into red with increasing 


Figure 10.15
   ( a
 ) The single-slit pattern with a line source. ( b
 ) The same 

u. Each different-colored light component has its minima and 

single slit illuminated by plane waves. See first photograph of Fig. 10.18.

subsidiary maxima at angular positions characteristic of that 

wavelength (Problem 10.6). Indeed, only in the region about 

u = 0 will all the constituent colors overlap to yield white light.

vertical and about 3 inches long). You can use your imagination 

The point source  S
  in Fig. 10.6 would be imaged at the posi-

to generate all sorts of single-slit arrangements (e.g., a comb or 

tion of the center of the pattern, if the diffracting screen Σ were 

fork rotated to decrease the projected space between the tines, 

removed. Under this sort of illumination, the pattern produced 

or a scratch across a layer of india ink on a microscope slide). 

with the slit in place is a series of dashes in the  yz
 -plane of the 

An inexpensive vernier caliper makes a remarkably good vari-

screen s, much like a spread-out image of  S
  (Fig. 10.6 b
 ). An in-

able slit. Hold the caliper close to your eye with the slit, a few 

coherent line source (in place of  S
 ) positioned parallel to the slit, 

thousandths of an inch wide, parallel to the filament of the 

in the focal plane of the collimator  L
 1, will broaden the pattern 

lamp. Focus your eye beyond the slit at infinity, so that its lens 

out into a series of bands. Any point on the line source generates 

serves as  L
 2.

an independent diffraction pattern, which is displaced, with re-

spect to the others, along the  y
 -direction. With no diffracting 

screen present, the image of the line source would be a line paral-


10.2.2 The Double Slit


lel to the original slit. With the screen in place the line is spread 

out, as was the point image of  S
  (Fig. 10.15). Keep in mind that 

It might at first seem from Fig. 10.7 that the location of the 

it’s the small dimension of the slit that does the spreading out.

principal maximum is always to be in line with the center of 

The single-slit pattern is easily observed without the use of 

the diffracting aperture; this, however, is not generally true. 

special equipment. Any number of sources will do (e.g., a dis-

The diffraction pattern is actually centered about the axis of the 

tant street light at night, a small incandescent lamp, sunlight 

lens and has exactly the same shape and location, regardless of 

streaming through a narrow space in a window shade); almost 

the slit’s position, as long as its orientation is unchanged and 

anything that resembles a point or line source will serve. Prob-

the approximations are valid (Fig. 10.16). All waves traveling 

ably the best source for our purposes is an ordinary clear, 

parallel to the lens axis converge on the second focal point of 


straight-filament
  display bulb (the kind in which the filament is 


L
 2; this then is the image of  S
  and the center of the diffraction 
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z


stant relative phase difference between the secondary sources. 

At normal incidence, the wavelets are all emitted in-phase. The 

interference fringe at a particular point of observation is deter-

mined by the differences in the optical path lengths traversed 

by the overlapping wavelets from the two slits. As we will see, 

the flux-density distribution (Fig. 10.18) is the result of a rap-

idly varying double-slit interference system modulated by a 

single-slit diffraction pattern. 


x


To obtain an expression for the optical disturbance at a point 

on s, we need only slightly reformulate the single-slit analysis. 

Each of the two apertures is divided into differential strips ( dz
  

by  /), which in turn behave like an infinite number of point 

sources aligned along the  z
 -axis. The total contribution to the 


L
 2

electric field, in the Fraunhofer approximation [Eq. (10.12)], is 

Σ

then

s


b
 >2


a 
 +  b
 >2






E 
 =  C



Figure 10.16
     The double-slit setup.

3   F(z)
   dz 
 +  C
 3

  F(z)
   dz
  (10.22)

- b
 >2


a 
 -  b
 >2

where  F(z) 
 = sin [v t 
 -  k
 ( R 
 -  z
  sin u)]. The constant-amplitude 

pattern. Suppose now that we have two long slits of width  b
  

factor  C
  is the secondary source strength per unit length along 

and center-to-center separation  a
  (Fig. 10.17). Each aperture, 

the  z
 -axis (assumed to be independent of  z
  over each aperture) 

by itself, would generate the same single-slit diffraction pattern 

divided by  R
 , which is measured from the origin to  P
  and is 

on the viewing screen s. At any point on s, the contributions 

taken as constant. We will be concerned only with relative flux 

from the two slits overlap, and even though each must be es-

densities on s, so that the actual value of  C
  is of little interest to 

sentially equal in amplitude, they may well differ significantly 

us now. Integration of Eq. (10.22) yields

in-phase. Since the same primary wave excites the secondary 

sources at each slit, the resulting wavelets will be coherent, and 

 sin b

interference must occur. If the primary plane wave is incident 


E 
 =  bC
  a

b [sin(v t 
 -  kR
 ) +  sin (v t 
 -  kR 
 + 2a)] (10.23)

b

on  g  at some angle u i
  (see Problem 10.2), there will be a con-

(a)

(b)


I(
 u )


(c)

4 I


Missing order


b


0


y



a
  = 3 b


l b


“Half-fringe”


z


u


x



R



P



a


Σ

sin u

0

l

l

l

l

−

−


b



a



a



b



Figure 10.17
   ( a
 ) Double-slit geometry. Point- P
  on s is essentially infinitely far away.  

( b
 ) A double-slit pattern ( a 
 = 3 b
 ). A detailed view of a missing order.
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which when squared and averaged over a relatively long inter-

val in time is the irradiance

 sin2 b






I(
 u ) 
 = 4 I
 0 a

b cos2 a (10.24)

b2

In the u = 0 direction (i.e., when b = a = 0),   I
 0 is the flux-

density contribution from either slit, and  I(0) 
 = 4 I
 0  
 is the total 

flux density. The factor of 4 comes from the fact that the ampli-

tude of the electric field is twice what it would be at that point 

with one slit covered.

(a)

If in Eq. (10.24)  b
  becomes vanishingly small ( kb
  6 6 1), 

then  (sin b)>b ≈ 1, and the equation reduces to the flux-

density expression for a pair of long line sources, that is, Young’s 

Experiment, Eq. (9.17). If, on the other hand,  a 
 = 0, the two 

slits coalesce into one, a

I

= 0, and Eq. (10.24) becomes  I(0)
  = 

o

4 I


10b

0(sin2 b)>b2. This is the equivalent of Eq. (10.17) for single-


a


slit diffraction with the source strength doubled. We might 

Irradiance

then envision the total expression as being generated by a 

0

5b

cos2 a interference term modulated by a (sin2 b)

0

>b2 diffrac-

Slit Spacing, 

tion term. 

.5 Z
 o

Distance from Central Maximum, 

If the slits are finite in width but very narrow, the diffraction 

b


Z


pattern from either slit will be uniform over a broad central  

o


Z


region, and bands resembling the idealized Young’s fringes will 

(b)

appear within that region. At angular positions (u-values) where


Figure 10.18
     Single- and double-slit Fraunhofer patterns. ( a
 ) Photographs 

b = ±p, ±2p, ±3p, . . .

taken with monochromatic light. (M. Cagnet, M. Francon, and J.C.  Thrierr:  Atlas optiss-



cher Erscheinungen
 , Berlin-Heidelberg-New York. Springer-Verlag, New York.) ( b
 )  When the slit diffraction effects are such that no light reaches s, and clearly 

spacing equals  b
 , the two slits coalesce into one (of width 2 b
 ) and the sin-

none is available for interference. At points on s where

gle-slit pattern appears—that’s the first curve closest to you. The farthest 

curve corresponds to the two slits separated by  a
   = 10 b
 . Notice that the 

a = ±p>2, ±3p>2, ±5p>2, . . .

two-slit patterns all have their first diffraction minimum at a distance  

from the central maximum of  Z
 0. Note how the curves gradually match  

the various contributions to the electric field will be completely 

Fig. 10.17 b
  as the slit width  b
  gets smaller in comparison to the separation  a
 . 

out-of-phase and will cancel, regardless of the actual amount of 

(Reproduced with permission from “Graphical representations of Fraunhofer interference and diffrac-

light made available from the diffraction process.

tion,”  Am. J. Phys
  62
 , 6 (1994). A. B. Bartlett, University of Colorado, and B. Mechtly, Northeast Missouri State University. Copyright 1994, American Association of Physics Teachers.)

When we studied Young’s Experiment for two idealized narrow 

slits, the phase-angle difference was d =  ka
  sin u and a = d>2. We 

saw then (Fig. 9.14 c
 ) that whenever d equaled an odd whole-

number multiple of p  
 the wavelets from the two slits were to-

tally out-of-phase and canceled on the viewing screen. In other 

with a K ( ka
 >2) sin u and, as before, b K ( ka
 >2) sin u. This is 

words, the two associated phasors were then antiparallel (i.e., 

just the sum of the two fields at  P
 , one from each slit, as given 

oppositely directed), yielding a zero resultant electric-field am-

by Eq. (10.15). The distance from the first slit to  P
  is  R
 , giving 

plitude and a zero irradiance. 

a phase contribution of - kR
 . The distance from the second slit 

The irradiance distribution for a double-slit Fraunhofer pat-

to  P
  is ( R 
 -  a
  sin u) or ( R 
 - 2a> k
 ), yielding a phase term equal tern is illustrated in Figs. 10.17 b
  and 10.19. Notice that it is a 

to (- kR 
 + 2a), as in the second sine function. The quantity 2b

combination of Figs. 9.12 and 10.6. The curve in Fig. 10.7 is for 

is the phase difference ( k
 Λ) between two nearly parallel rays, 

the particular case in which  a 
 = 3 b
  (i.e., a = 3b). You can get a 

arriving at a point- P
  on s, from the edges of one of the slits. The 

rough idea of what the pattern will look like, since if  a 
 =  mb
 , 

quantity 2a is the phase difference between two waves arriving 

where  m
  is any number, there will be 2 m
  bright fringes (counting 

at  P
 , one having originated at any point in the first slit, the other 

“fractional fringes” as well)* within the central diffraction peak 

coming from the corresponding point in the second slit. Simpli-

(Problem 10.14). An interference maximum and a diffraction 

fying Eq. (10.23) a bit further, it becomes

minimum (zero) may correspond to the same u-value. In that 

sin b


E 
 = 2 bC
  a

b cos a sin (v t 
 -  kR 
 + a)

*Notice that  m
  need not be an integer. Moreover, if  m
  is an integer, there will be 

b

“half-fringes,” as shown in Fig. 10.17 c
 .
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2-Slit Diffraction

either side of the central peak. Determine the approximate slit 

width  b
 .


a
  = 2.5


b
  = 0.75

SOLUTION 

We know that for single-slit diffraction  b
  sin u mD
  = mD
 l, where 

the added subscript  D
  indicates “diffraction.” Moreover, for 

two-slit interference  a
  sin u mI 
 =  mI
 l, where the  I
  subscript in-

Irradiance

dicates “interference.” Since there are nine maxima there must 

be four subsidiary peaks on each side of the central peak. And 

hence  mI 
 = ±4. Therefore the location of the edge of the cen-

tral diffraction maximum (u1 D
 ) should correspond to the loca-

−20

−10

0

10

20

tion of the edge of the fourth interference fringe (u4 I
 ). Thus 

Position

sin u4 I 
 = sin u1 D



a
  = 2.5

and so


b
  = 0.5

u4 I 
 = u1 D


Therefore

4l

1l

Irradiance


a 
 =  b


4 b 
 =  a


−20

−10

0

10

20

0.100


b 
 =

 mm

Position

4

and so  b 
 = 0.025 mm.


a
  = 2.5


b
  = 0.25

The double-slit pattern is also rather easily observed, and 

the seeing is well worth the effort. A straight-filament, tubu-

lar bulb is again the best line source. For slits, coat a micro-

Irradiance

scope slide with India ink; if you happen to have some, a col-

loidal suspension of graphite in alcohol works even better 

(it’s more opaque). Scratch a pair of slits across the dry ink 

with a razor blade and stand about 10 feet from the source. 

−20

−10

0

10

20

Hold the slits parallel to the filament and close to your eye, 

Position

which, when focused at infinity, will serve as the needed lens. 


Figure 10.19
     Two-slit Fraunhofer diffraction. Here, keeping the slit spac-

Interpose red or blue cellophane and observe the change in 

ing,  a
 , constant, the slit width,  b
 , is decreased from 0.75 mm to 0.25 mm. 

the width of the fringes. Find out what happens when you 

As each slit is narrowed, the dashed single-slit envelope widens to include 

cover one and then both of the slits with a microscope slide. 

move and more double-slit (cosine-squared) fringes, which remain (except 

Move the slits slowly in the  z
 -direction; then holding them 

for their heights) the same.

stationary, move your eye in the  z
 -direction. Verify that the 

position of the center of the pattern is indeed determined by 

the lens and not the aperture.

case, no light is available at that precise position to partake in the 

interference process, and the suppressed peak is said to be a 


missing order
 .


10.2.3 Diffraction by Many Slits


We now consider diffraction from a number ( N
 ) of long narrow 


EXAMPLE 10.2


parallel slits, but before we carry out a formal mathematical 

Imagine two narrow parallel long slits, each  b
  wide, separated 

analysis let’s use what we know about phasors to anticipate 

by   a 
 = 0.100 mm. These are illuminated perpendicularly by 

some of the results. Figure 10.20 a
  pictures, in cross section, 

plane waves of yellow sodium light (l = 589.6 nm). The re-

three parallel slits (each  b
  wide, each separated by a distance  a
 ), 

sulting fringe pattern on a distant screen consists of a total of 

illuminated perpendicularly by monochromatic plane waves. 

nine narrow maxima that gradually decrease in brightness on 

The attendant electric-field amplitude on a distant viewing 
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3
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3
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2
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1
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Figure 10.20
     Electric field for three-slit diffraction. ( a
 ) 

135° = d3


E


3

3

The aperture screen. ( b
 ) The resulting electric-field ampli-

0 (135°)



E


d3 = 180°

tude. ( c
 ) The maximum field amplitude. ( d
 ) The resultant is 

1

3

2

0 (180°)


2

positive when d3 = 90°. ( e
 ) The resultant amplitude is 

zero when d

2

1

3 = 120°. ( f 
 ) The amplitude is negative when 

135°

1

d3 = 135°. ( g
 ) The amplitude is  E
 01 when d3 = 180°.

screen is plotted in Fig. 10.20 b
 . This is a graph of the net ampli-

counterclockwise). The three phasors then close on themselves, 

tude as the point of observation moves away from the central 

forming an equilateral triangle, and the resultant amplitude is 0. 

axis, across the diffraction pattern, transverse to the slits. We’ll 

In part  ƒ
  phasor-3 and phasor-1 each shift by d3 = 135° with 

use the accompanying phasor diagrams to derive that graph. In 

respect to phasor-2, whereupon the amplitude is small and  neg-


all cases the horizontal will be the reference axis. For three slits 


ative
 . When d3 = 180°, phasor-3 swings 180° counterclockwise 

the phase difference between successive wavelets from the slits 

from phasor-2, while phasor-1 swings 180° clockwise from 

is again d3 = (2p>l) a
  sin u.  
 The wavelet from the center of the 

phasor-2. The three phasors then overlie each other such that 

aperture screen travels the reference  OPL
 , and its phasor (num-

two cancel, leaving only one in the negative direction (Fig. 10.20 g
 ). 

ber 2, drawn with a black dot at its tail) is therefore horizontal, 

The net amplitude is thereupon -1.0 E
 01; this is a small negative 

to the right, stationary, and positive. The other two phasors 



subsidiary maximum

 , about which the curve in Fig. 10.20 b
  

(numbers 1 and 3) are shifted by d3—one clockwise, the other 

turns out to be symmetrical. Squaring the field amplitude yields 

counterclockwise—from the reference. 

the irradiance distribution, whose principal peaks at 0 and 360° 

In part  c
 , which corresponds to a point on the central axis  

are proportional to 32 E
 2

2

01 or 9 E
 01 compared to the subsidiary 

(u = 0), the three wavelets arrive in-phase (d3 = 0), the phasors 

maximum, whose value at 180° is 12 E
 201.

lie on a straight line, and the net amplitude (3 E
 01) is maximum 

Generally, principal maxima occur when the phase shift be-

and positive. In part  d
 , where u has increased, there is a phase 

tween successive wavelets is  m
 2p, where  m
  is a whole number, 

difference of, say, d3 = 90° between successive phasors. The 

including 0. We’ll see that as u increases, the phasors will sub-

reference phasor-2 from the central slit (still with a black dot at 

sequently always form a polygon (in this case of three slits, a 

its tail) remains horizontal and the other two phasors are shifted 

triangle) with  N
  sides. Zeros of amplitude will occur whenever 

90°, phasor-1 clockwise, phasor-3 counterclockwise, with re-

the phase-angle difference equals  m
 ′2p> N
  (where  m
 ′ equals an 

spect to it (see Figs. 9.14 and 10.10, and refer back to the ac-

integer); in this case  m
 ′ = 1,   N 
 = 3, and d3 = 2p>3 = 120°, 

companying discussions). When tip-to-tailed, the resultant field 

whereupon the amplitude has its first zero value. When d N 
 = p, 

amplitude (Fig. 10.20 d
 ) is small (1 E
 01) and positive. 

the phasors will overlie each other, producing a resultant that is 

In part  e
  the individual phase shifts with respect to reference 

either 0 when  N
  is even or ± E
 01 when  N
  is odd, as it is here. 

phasor-2 are each d3 = 120° (phasor-1 clockwise, phasor-3  The second zero in the three-slit pattern occurs when  m
 ′ = 2 
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Figure 10.21
     Multi-slit irradiance patterns ignoring single-slit diffraction. 

p

Here, d N
 >2 =   a
  sin u and  N
  is the number of long, parallel, very narrow 

l

slits. Notice how the principal maxima increase as  N
 2.

and  d3 =  m
 ′2p> N 
 = 4p>3, or at d3>2 = 120°   
 in Fig 10.20 b
 . 

Squaring the electric-field amplitude (except for a constant) 

produces the irradiance distribution.

Figure 10.21 illustrates the normalized irradiance for  N 
 = 2, 

3, 4, 5, and 6. For the moment, the slit widths are idealized to be 


Figure 10.22
     Diffraction patterns for slit systems shown at left. (Francis 

infinitesimal, and single-slit diffraction is therefore ignored. 

Weston Sears,  Optics
 . Reprinted with permission of Addison Wesley Longman, Inc.)

The separations between consecutive slits,  a
 , are the same in all 

setups. Recall that the analyses for odd and even numbers of 

slits were slightly different in that in the first instance there was 

sponding phasors—numbered 1, 2, 3, and 4, each of amplitude 

a central reference slit and in the second there wasn’t. To take 


E
 01—then lie on a line, and the net amplitude (4 E
 01) is maxi-

that into consideration Fig. 10.21 is a plot of relative irradiance 

mum and positive (Fig. 10.23 b
 ). This establishes the reference 

against 1

direction, even though there is no central slit, and so no specific 

2 d N
 . Notice that the principal maxima in the three-slit 

pattern are at the same locations as in the two-slit pattern. Be-

reference phasor. 

cause the former has more phasors, its field amplitude reaches 

In part  c
 , u  
 is such that the phase difference between succes-

its first zero value sooner than does the latter. As we’ll see pres-

sive phasors is d4 = 90°. Because  N
  is an even number there is 

ently, the more slits, the more ways for the wavelets to fall out-

no central wavelet. Accordingly, phasors-2 and -3 are shifted 

of-phase. The principal irradiance maxima thus become nar-

d4>2 = 45° with respect to the reference direction, phasor-2 ro-

rower and taller as  N
  increases, and only a small amount of 

tated clockwise and phasor-3 counterclockwise from the hori-

energy appears in the ( N


zontal. The four phasors, shifted by 90

- 2) subsidiary maxima. The actual 

° with respect to each 

diffraction patterns are shown in Fig. 10.22.

other, then form a polygon, a square, closing on themselves and 

Figure 10.23 treats the four-slit system, and the graph in part 

producing the first zero of field amplitude (Fig. 10.23 c
 ). This is 


a
  again represents the amplitude of the electric field at various 

plotted in the graph (Fig. 10.23 a
 ) at d4>2 = p>4 = 45°. That 

values of u. As always, on the central axis (u

result accords with what we saw earlier, namely, that the first 

= 0), the four 

wavelets arrive in-phase [d

zero occurs when d

4 = (2p>l) a
  sin u = 0]. The corre-

4 =  m
 ′2p> N 
 = 2p>4. 
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Figure 10.23
     Electric field for four-slit diffraction. ( a
 ) The electric-field amplitude. ( b
 ) Here the phasors lie along a straight line and the amplitude is positive and maximum. ( c
 ) When d4 = 90°, the resultant is zero. ( d
 ) As u increases so that d4 7 90°, the amplitude becomes negative. ( e
 ) At d4 = 120°, the amplitude is negative and equal to  - E
 01. ( f
 ) When d4 = 144°, the amplitude is again 

- E
 01. ( g
 ) As d4 goes to 180°, the four phasors cancel. ( h
 ) At d4>2 = 3p>4, the phasors form a square and the resultant is zero. ( i
 ) The phasors align and the amplitude equals  -4 E
 01 when d4 = 2p.

Note that for a three-slit system the first zero didn’t happen 

and it increases to -4 E
 01 at d4 = 2p; the curve in Fig. 10.23 a
  

until d3>2 = 120°; the principal maximum now is even narrower 

shows this as a negative peak beyond d4>2 = 3p>4. Squaring 

than it was before. Just beyond d4 = 90° the tail of phasor-1 (the 

that curve produces the irradiance distribution in Fig. 10.21, 

open circle) crosses to the right over the tip of phasor-4 (open 

which, in turn, corresponds to the four-slit fringe pattern in 

arrow), and the resultant, which is small and horizontal, becomes 

Fig. 10.22.

negative (Fig. 10.23 d
 ). As u increases further (Fig. 10.23 e
 ) phasor-1 

The five-slit field amplitude distribution is pictured in Fig. 

and phasor-4 (rotating clockwise and counterclockwise, respec-

10.24 a
 . The  m 
 = 0  
 principal maximum is 5 E
 01. It’s followed by 

tively) lower, and the horizontal negative resultant grows. That 

the first zero at d5 =  m
 ′2p> N  
 where   m
 ′ = 1 and d5 = 2p>5. 

continues until phasor-1 and phasor-4 overlap and the resultant 

There the phasors close on themselves, forming a pentagon, with 

(drawn from the white circle to the tip of the white arrowhead) 

the reference phasor-3 on the bottom, stationary, horizontal,  

becomes - E
 01. 

and pointing to the right (Fig. 10.24 b
 ). Thereafter, the end of 

Increasing u further increases sin u  
 and that increases d4. The 

phasor-1 (white circle) moves clockwise, as the tip of phasor-5 

phasors then form an incomplete star (Fig. 10.23 ƒ
 ) and the net 

(white arrowhead) moves counterclockwise. They pass each 

amplitude becomes - E
 01. When u is such that the relative phase 

other and the amplitude goes negative (Fig. 10.24 c
 ). Both these 

angle between successive phasors is d4 = 180°, the four phasors 

phasors (1 and 5) subsequently cross over phasor-3 and finally 

are alternately antiparallel and completely cancel (Fig. 10.23 g
 ), 

meet tip-to-tail beneath it. At that value of d5 = 4p>5, corre-

producing the second amplitude zero. In other words,  m
 ′ = 2 

sponding to the second zero,  m
 ′ = 2, the phasors close into a 

and d4 =  m
 ′2p> N 
 = p. 

five-pointed star (Fig. 10.24 d
 ) with the reference phasor still 

Because there’s no central slit, when d4 = 3p>2 the middle 

horizontally to the right. Increasing d5 causes phasor-5 to swing 

two phasors, phasors-2 and -3, are shifted with respect to the 

counterclockwise with its tip to the right of the tail of phasor-1, 

reference axis each by 3p>4, the first clockwise, the second 

resulting in an increasingly positive net amplitude. The central 

counterclockwise. And Fig. 10.23 h
  shows the four phasors each 

positive subsidiary maximum in Fig. 10.24 a
  equals  E
 01 at 

with a 3p>2 shift with respect to the next. The result is a closed 

d5>2 = p>2. There (Fig. 10.24 e
 ) phasor-4 points left, having 

square and zero net field amplitude. Thereafter, as d4 increases, 

swung counterclockwise through 180° from reference phasor-3, 

the tail of phasor-1 (the white circle) moves right, away from the 

and phasor-5 points right, having swung counterclockwise 

tip (white arrow head) of phasor-4, which moves left. The net 

through 180° from phasor-4. Similarly, phasor-2 points left, hav-

amplitude (which is horizontal) is negative beyond d4 = 3p>2 

ing swung clockwise through 180° from reference phasor-3, and 
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Figure 10.24
     Electric field for five-slit diffraction. ( a
 ) The 

3

3

1

5

amplitude of the electric field. ( b
 ) When d5>2 = p>5,  E
 0 (
 u ) 
 = 0. 

d5

2

288°

( c
 ) When d5>2 is between p>5 and 2p>5 the field is negative. 

2 = 3p

5

216°

4

( d
 ) When d5>2 = 2p>5,  E
 0 (
 u ) 
 = 0. ( e
 ) When d5>2 = p, 


E


 d

0 (
 u ) 
 =  E
 01 ( f
 ) When d5>2 = 3p>5,  E
 0 (
 u ) 
 = 0 ( g
 ) When 5= 288°

3

d5>2 = 4p>5,  E
 0 (
 u ) 
 = 0.

phasor-1 points right, having swung clockwise through 180° 

Dividing these two equations leads to

from phasor-2. Thus two phasors point left, whereas three point 

sin  N
 a

right, and so four of them therefore cancel (Fig. 10.24 e
 ). The 


 



E
 0 (
 u ) 
 =  E
 01

 (10.25)

resulting amplitude is +1 E


sin a

01. The entire field amplitude distri-

bution is symmetrical around p>2. 

This is the expression for the electric-field amplitude that cor-

Recall Fig. 10.12, which allowed us to find an expression for 

responds to the idealized curves (which overlook single-slit dif-

the diffracted field from a single slit of width  b
 . In a similar way 

fraction) in Figs. 10.20 b
 , 10.23 a
 , and 10.24 a
 . 

we construct Fig. 10.25 for  N
  narrow parallel slits. Each phasor 

Notice that as u goes to zero, a goes to zero, and this ratio 

is the base of an isosceles triangle with a vertex angle of 2a = d N
 , 

approaches  N
 a

where a = (p a
  sin u)>l. We temporarily continue to take each 

>a or just  N
 . More generally, when a equals an 

integer multiple of  
 p the denominator is zero, as is the numera-

slit to be infinitesimally wide. The diagram shows that each pha-

tor. Then  E


sor has a length (i.e., an electric-field amplitude) given by

0 (
 u ) 
 =  E
 01 = 0>0   
 and we have to use L’Hospital’s 

Rule. Accordingly, we take the derivative of the top and bottom 

2 r
  sin a =  E
 01

of the right side of Eq. (10.25). As a goes to any integer multi-

ple of  
 p, the ratio becomes  
 ± N
 , whereupon for principal max-

The resultant  N
 -phasor amplitude (drawn from the tail with the 

ima,  E
 0 = ± NE
 01, just as we saw in Figs. 10.20 b
 , 10.23 a
 , and 

little white circle to the tip with the white arrowhead) is 

10.24 a
 .

2 r
  sin  N
 a =  E
 0 (
 u )


To include the diffraction effects at each slit, recall that 


E


0

0 (
 u )


 sin b

=


E
 0 (0)


b


r



r



N
 a

a


N
 2a  r
  sin N
 a

where the amplitude of a single phasor due to one slit is 

2


E
 0 (
 u )



r
  sin

2a


E
 0 (0) 
 =  E
 01. Hence 

a

2

sin b sin  N
 a

a


 



E
 0 (
 u ) 
 =  E
 01 





 (10.26)

b

sin a


Figure 10.25
   The amplitude  E
 0 (
 u )
  in Fraunhofer diffraction resulting 

from  N
  narrow parallel slits.

Except for a constant, this quantity squared is the irradiance.
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Figure 10.26
     Multi-slit geometry. Again point- P
  is on s essentially  

infinitely far from  g .


The Irradiance from Several Slits



b
 ∙2


a 
 +  b
 ∙2


E 
 =  C


  F(z)
   dz 
 +  C
  

  F(z)
   dz


The procedure for obtaining the irradiance function for a mono-

3

3

- b
 ∙2


a 
 -  b
 ∙2

chromatic wave diffracted by many slits is essentially the same 

as that used when considering two slits. Here again, the limits of 

2 a 
 +  b
 ∙2

integration must be appropriately altered. Consider the case of  N
  

+  C
  3

  F(z)
   dz 
 + g

long, parallel, narrow slits, each of width  b
  and center-to-center 

2 a 
 -  b
 ∙2

separation  a
 , as illustrated in Fig. 10.26. With the origin of the 

( N 
 - 1) a 
 +  b
 ∙2

coordinate system once more at the center of the first slit, the 





+  C
  3

  F(z)
   dz
  (10.27)

total optical disturbance at a point on the screen s is given by

( N 
 - 1) a 
 -  b
 ∙2
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where, as before,  F(z) 
 = sin [v t 
 -  k
 ( R 
 -  z
  sin u)]. This applies Note that  I
 0 is the flux density in the u = 0 direction emitted 

to the Fraunhofer condition, so that the aperture configuration 

by any one of the slits and that  I(0) 
 =  N
 2 I
 0. In other words, the 

must be such that all the slits are close to the origin, and the ap-

waves arriving at  P
  in the forward direction are all in-phase, and 

proximation [Eq. (10.11)]

their fields add constructively. Each slit by itself would generate 

precisely the same flux-density distribution. Superimposed, the 






r 
 =  R 
 -  z
  sin u (10.28)

various contributions yield a multiple-wave interference system 

applies over the entire array. The contribution from the  j
 th slit 

modulated by the single-slit diffraction envelope. If the width of 

(where the first one is numbered zero), obtained by evaluating 

each aperture were shrunk to zero, Eq. (10.31) would become 

only that one integral in Eq. (10.27), is then

the flux-density expression [Eq. (10.6)] for a linear coherent 

array of oscillators. As in that earlier treatment [Eq. (10.l7)], 


C



principal maxima
  occur when (sin  N
 a>sin a) =  N
 , that is, 


Ej 
 =

 [sin (v t 
 -  kR
 ) sin ( kz
  sin u)


k
  sin u

when

a = 0, ±p, ±2p, . . .

- cos (v t 
 -  kR
 ) cos ( kz
  sin u)]  ja
 + b
 >2


ja 
 -  b
 >2

or equivalently, since a = ( ka
 >2) sin u,

provided that we require u j 
 ≈ u. After some manipulation this 






a
  sin u

becomes


m 
 =  m
 l (10.32)

with  m 
 = 0, ±1, ±2, . . . . The value of  m
  is known as the order
  

sin b


E


of the diffraction. This is quite general and gives rise to the same 


j 
 =  bC
  a

b sin (v t 
 -  kR 
 + 2a j
 )

b

u-locations for these maxima, regardless of the value of  N 
 Ú 2. 

Minima, of zero flux density, exist whenever (sin  N
 a>sin a)2 = 0 

recalling that b = ( kb
 >2) sin u and a = ( ka
 >2) sin u. Notice that 

or when

this is equivalent to the expression for a line source [Eq. (10.15)] 

or, of course, a single slit, where in accord with Eq. (10.28) and 

2p

3p

( N 
 - 1)p

( N 
 + 1)p

Fig. 10.26,  R


a = ± p , ±

 , ±

 , . . . , ±

, ±

 , . . . 


j 
 =  R 
 -  ja
  sin u, so that  -  kR 
 + 2a j 
 = -  kRj
 . The 


N



N



N



N



N


total optical disturbance, as given by Eq. (10.27), is simply the 

sum of the contributions from each of the slits; that is,

(10.33)


N 
 - 1


E 
 = ^ E



EXAMPLE 10.3



j



j 
 = 0

Imagine 12 narrow, parallel, long slits each  b
  millimeters 


N 
 - 1

wide, each separated from the next slit by a center-to-center 

sin b

or 


E 
 = ^ bC
  a

b sin (

distance of 5 b
 . The apertures are illuminated normally by 

v t 
 -  kR 
 + 2a j
 ) 


j 
 = 0

b

plane waves and produce a Fraunhofer diffraction pattern on a 

distant screen. Determine the relative irradiance of the first-

This in turn can be written as the imaginary part of a complex 

order principal maximum compared to the zeroth-order prin-

exponential:

cipal maximum.

sin 


N 
 - 1

b






E 
 = Im  c bC
  a

b  ei
 (v t
 - kR
 )  ^( ei
 2a)  j
 d (10.29)


SOLUTION
  

b


j 
 = 0

Using Eq. (10.31) the principal maxima occur when 

(sin  N
 a>sin a) =  N
  and so here 

But we have already evaluated this same geometric series in the 

process of simplifying Eq. (10.2). Equation (10.29) therefore 

sin b 2

reduces to the form


I(
 u ) 
 =  I(0)
  a

b

b

sin b

sin  N
 a


    E 
 =  bC
  a

b a

b sin [v t 
 -  kR 
 + ( N 
 - 1)a] (10.30)

Moreover, since  a 
 = 5 b


b

sin a

p

p  a


a

The distance from the center of the array to the point- P
  is equal 

b =

  b
  sin u =    sin u =

5

5

to [ R 
 - ( N 
 - 1)( a
 >2) sin 

l

l

u], and therefore the phase of  E
  at  P
  

corresponds to that of a wave emitted from the midpoint of the 

The first-order maximum occurs when a = p; hence, there 

source. The flux-density distribution function is

b = p>5. And so for  m 
 = 1

sin b 2 sin  N
 a 2






I(


2

2

u ) 
 =  I


sin 

sin 

0 a

b a

b  (10.31)

b

p>5

b

sin a


I(
 u ) 
 =  I(0)
  a

b =  I(0)
  a

b

b

p>5

remembering that b = ( kb
 >2) sin u and a = ( ka
 >2) sin u.


Continued
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Thus

width by two adjacent zeros, then each will extend over a length 

in u, (sin u ≈ u) of approximately 2l> Na
 . As  N
  increases, the 


I(
 u )


sin p>5 2

0.587 8 2

principal maxima maintain their relative spacing (l> a
 ) while 

= a

b = a

b = 0.9362


I(0)


p

0.628 3

becoming increasingly narrow. Figure 10.27 shows the case of 

>5

six slits, with  a 
 = 4 b
 .

The first-order principal maximum is 0.875 times as large as 

The multiple-slit interference term in Eq. (10.35) has the 

the zeroth-order maximum.

form (sin2 N
 a)> N
 2sin2 a; thus for large  N
 , ( N
 2 sin2 a)-1 may be 

envisioned as the curve beneath which sin2  N
 a rapidly varies. 

Notice that for small a this interference term looks like 

Recall that between consecutive principal maxima (i.e., over 

sinc2  N
 a (see Fig. 10.28).

the range in a of p) there will be  N 
 - 1 minima. And, of course, 

between each pair of minima there will have to be a subsidiary 



EXAMPLE 10.4



maximum
 . The term (sin  N
 a>sin a)2, which we can think of as 

An opaque screen contains seven long, very narrow parallel 

embodying the interference effects, has a rapidly varying numer-

slits that are closely spaced. When illuminated by monochro-

ator and a slowly varying denominator. The subsidiary maxima 

matic plane waves, a Fraunhofer pattern appears on a distant 

are therefore located approximately at points where sin  N
 a has 

screen. (a) How many subsidiary irradiance maxima will there 

its greatest value, namely,

be between the zeroth- and first-order principal maxima? (b) 

3

5

Assuming each slit to be essentially infinitesimally narrow, 

p

p





a = ±

 , ±

 , . . . (10.34)

compare the irradiance of the smallest subsidiary maximum to 

2 N


2 N


that of a principal maximum.

The   N 
 - 2  subsidiary maxima
  between consecutive princi-


SOLUTION
  

pal maxima are clearly visible in Fig. 10.22, which should 


(a)
  We know that there will be ( N


be carefully compared with Fig. 10.21. We can get some 

- 2) subsidiary maxima 

between consecutive principal maxima. Hence (7

idea of the flux density at these peaks by rewriting 





- 2), or 5, 

small peaks will exist between the  m


Eq. (10.31) as

= 0 and  m 
 = 1 large 

maxima. (b)
  When  N
  is an odd number greater than 2 there 


I(0) 
 sin b 2 sin  N 
 2

will be a subsidiary maximum in the irradiance centrally 

a






I(
 u ) 
 =

 a

b  a

b   


(10.35)

located between the principal peaks. The electric-field 


N
 2

b

sin a

amplitude at that location will equal 1 E
 01, since all but one 

where at the points of interest 

of the seven phasors (six of which are antiparallel) cancel. 

0 sin  N
 a 0 = 1. For large  N
 , a is small 

and   sin2 

This is the smallest subsidiary maximum. The seven phasors 

a ≈ a2. At the first subsidiary peak a = 3p>2 N
 , in 

which case

lie on a straight line at each principal maximum, yielding 

an amplitude of 7 E
 01. Thus the ratio of the corresponding 

sin b 2 2 2

irradiances is 12>72 = 1>49.






I 
 ≈  I(0)
  a

b a b  (10.36)

b

3p

and the flux density has dropped to about  122 of that of the 


10.2.4 The Rectangular Aperture


adjacent principal maximum (see Problem 10.17). Since 

(sin b)>b for small b varies slowly, it will not differ from 1 

Consider the configuration depicted in Fig. 10.29. A mono-

appreciably, close to the zeroth-order principal maximum, so 

chromatic plane wave propagating in the  x
 -direction is incident 

that  I
 > I(0) 
 ≈ 122  .
  This flux-density ratio for the next second-

on the opaque diffracting screen  g . We wish to find the conse-

ary peak is down to  162 , and it continues to decrease as a ap-

quent (far-field) flux-density distribution in space or equiva-

proaches a value halfway between the principal maxima. At 

lently at some arbitrary distant point  P
 . According to the  

that symmetry point, a ≈ p>2, sin a ≈ 1, and the flux-density 

Huygens–Fresnel Principle, a differential area  dS
 , within the 

ratio has its lowest value, approximately 1> N
 2. Thereafter 

aperture, may be envisioned as being covered with coherent 

a 7 p>2, and the flux densities of the subsidiary maxima 

secondary point sources. But  dS
  is much smaller in extent than 

begin to increase.

is l, so that all the contributions at  P
  remain in-phase and in-

Try duplicating Fig. 10.22 using a tubular bulb and home-

terfere constructively. This is true regardless of u; that is,  dS
  

made slits. You’ll probably have difficulty seeing the subsidiary 

emits a spherical wave (Problem 10.22). If e A
  is the source 

maxima clearly, with the effect that the only perceptible differ-

strength per unit area,  assumed to be constant over the entire 


ence between the double- and multiple-slit patterns may be an 


aperture
 , then the optical disturbance at  P
  due to  dS
  is either 

apparent broadening in the dark regions between principal max-

the real or imaginary part of

ima. As in Fig. 10.22, the dark regions will become wider than 

the bright bands as  N
  increases and the secondary peaks fade 

e






dE 
 = a  A
 b  ei
 (v t
 - kr
 )  dS
  (10.37)

out. If we consider each principal maximum to be bounded in 


r
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1

sin2 N
 a

0


N
 a

0

p

2p

3p

4p

5p

6p

7p

8p

9p 10p 11p 12p 13p 14p 15p 16p

1

sin2a

0

a

0

p

p

p

2p 5p

p

7p 4p 3p 5p 11p 2p 13p 7p 5p 8p

6

3

2

3

6

6

3

2

3

6

6

3

2

3


N 
 2


N
  = 2

sin2 N
 a


N
  = 6

sin2a

0

sinu

0

l

2l


a



a



N 
 2

(    

sin b 2

b )


a
  = 4 b



N
  = 6

(    

sin b 2

2

b ) (      )

sin  N
 a

sina


Figure 10.27
   Multiple-slit pattern  

0

sin

( a


u

= 4 b
 ,  N 
 = 6). In the last part, the interfer-

0

l

l

l

2l

ence is modulated by the diffraction envelope 

6 a


2 a



a



a


of a single slit of finite width.

The choice is yours and depends only on whether you like sine 


r
  by the distance  OP
 , that is,  R
 , in the amplitude term, as long 

or cosine waves, there being no difference except for a phase 

as the aperture is relatively small. But the approximation for  r
  

shift. The distance from  dS
  to  P
  is

in the phase needs to be treated a bit more carefully;  k 
 = 2p>l

is a large number. To that end we expand out Eq. (10.38) and, 






r 
 = [ X
 2 + ( Y 
 -  y
 )2 + ( Z 
 -  z
 )2]1>2 (10.38)

by making use of

and as we have seen, the Fraunhofer condition occurs when this 

distance approaches infinity. As before, it will suffice to replace 






R 
 = [ X
 2 +  Y
 2 +  Z
 2]1>2 (10.39)
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2 Slits


a
  = 4.0


y



b
  = 1.0

Irradiance


r


( X
 ,  Y
 ,  Z
 )


dS O



R


u


P



x


−4

−2

0

2

4

Position

4 Slits


z



a
  = 4.0


Figure 10.29
     Fraunhofer diffraction from 


b
  = 1.0

Σ

an arbitrary aperture, where  r
  and  R
  are very 

large compared to the size of the hole.

Irradiance

concern about the directionality of the emitters (the obliquity 

factor). Now


r 
 =  R
 [1 - 2( Yy 
 +  Zz
 )> R
 2]1>2

−4

−2

0

2

4

and dropping all but the first two terms in the binomial expan-

Position

sion, we have

8 Slits


r 
 =  R
 [1 - ( Yy 
 +  Zz
 )> R
 2]


a
  = 4.0

The total disturbance arriving at  P
  is


b
  = 1.0

e






E


  ˜ 
 =  Aei
 (v t
 - kR
 ) 


eik
 ( Yy
 + Zz
 )> R
   dS
  (10.41)


R


33

Aperture

Irradiance

Consider the specific configuration shown in Fig. 10.30. 

Equation (10.41) can now be written as

−4

−2

0

2

4

e


b
 ∙2


a
 ∙2


E


  ˜ 
 =  Aei
 (v t
 - kR
 ) 

  eikYy
 > R
   dy
  

  eikZz
 > R
   dz


Position


R


3

3

- b
 ∙2

- a
 ∙2


Figure 10.28
     Multiple-slit diffraction, each with a finite slit width. The 

where   dS


more slits that are opened, the narrower the peaks. Notice that the princi-

=  dy
   dz
 . With b′ K  kbY
 >2 R
  and a′ K  kaZ
 >2 R
 , we 

pal maxima are located at fixed positions. Note, too, that there are ( N


have

- 2) 

subsidiary maxima between adjacent principal maxima ( N
  being the num-

+ b
 ∙2

ber of slits beyond 1).


ei
 b′ -  e
 - i
 b′

sin b′

3

  eikYy
 > R
   dy 
 =  b
  a

b =  b
  a

b

- b
 ∙2

2 i
 b′

b′

and similarly

obtain

+ a
 ∙2


ei
 a′ -  e
 - i
 a′

sin a′

3

  eikZz
 > R
   dz 
 =  a
  a

b =  a
  a

b


 



r 
 =  R
 [1 + (  y
 2 +  z
 2)> R
 2 - 2( Yy 
 +  Zz
 )> R
 2]1>2 (10.40)

- a
 ∙2

2 i
 a′


a
 ′

In the far-field case  R
  is very large in comparison to the dimen-

so that

sions of the aperture, and the (  y
 2 +  z
 2)> R
 2 term is certainly 


A
 e

sin a′

sin b′

negligible. Since  P
  is very far from Σ, u can still be kept small, 


 



E


  ˜ 
 =


Aei
 (v t 
 -  kR
 ) a

b a

b (10.42)

even though  Y
  and  Z
  are fairly large, and this mitigates any 


R


a′

b′
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y



a



dy dz



r



R



x



Y



b



P



z



P
 0

Σ


Z


s


Figure 10.30
     A rectangular aperture.

where  A
  is the area of the aperture. Since  I


the familiar shape of Fig. 10.13. When b′ and a′ are nonzero 

= 8(Re  E
  ˜
 )29T,

integer multiples of p or, equivalently, when  Y
  and  Z
  are  

sin a′ 2 sin b′ 2

nonzero integer multiples of l R
 > b
  and l R
 > a
 , respectively, 






I(Y, Z) 
 =  I(0)
  a

b a

b  (10.43)


I(Y, Z)


a′

b′

= 0, and we have a rectangular grid of nodal lines,  

as indicated in Fig. 10.31. Notice that the pattern in the  Y
 -,  

where  I(0)
  is the irradiance at  P
 0; that is, at  Y 
 = 0,  Z 
 = 0. At 


Z
 -directions varies  inversely
  with the  y
 -,  z
 -aperture dimensions. 

values of  Y
  and  Z
  such that a′ = 0 or b′ = 0,  I(Y, Z)
  assumes 

A horizontal, rectangular opening will produce a pattern with  

( a
 ) Fraunhofer pattern of a square  

aperture. ( b
 ) The same pattern further 

exposed to bring out more of the faint 

terms. (E.H.)

(a)

(b)
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(a)


I


–3p

–2p

–3p

–2p

–p

–p

p

p

(b)

2p

a

2p

3p

3p

b


Figure 10.31
   ( a
 ) The irradiance distribution for a square aperture. ( b
 ) The irradiance produced by Fraunhofer diffraction at a square aperture. ( c
 ) The electric-field distribution 

produced by Fraunhofer diffraction via a square aperture. (R.G. Wilson, Illinois Wesleyan University)

(c)

a vertical rectangle at its center and vice versa (Figs. 10.32  

(sin a′)>a′ = 1, so that the relative irradiances are approximat-

and 10.33).

ed simply by

Along the b′-axis,  a′ = 0 and the subsidiary maxima are 

located approximately halfway between zeros, that is, at 






I


1





=

 (10.44)

b′ m 
 = ±3p>2, ±5p>2, ±7p>2, . . . . At each subsidiary maxi-


I(0)


b′2


m


mum  sin b′ m 
 = 1, and, of course, along the b′-axis, since a′ = 0, 

Similarly, along the a′-axis


I



I






=


 


(10.45)


I(0)


a′2


m


The flux-density ratio* drops off rather rapidly from 1 to approxi-

mately  122 to  162 to  1

122, and so on. Even so, the off-axis secondary 

*These particular photographs were taken during an undergraduate laboratory 

session. A 1.5-mW He–Ne laser was used as a plane-wave source. The apparatus 

was set up in a long darkened room, and the pattern was cast directly on  

4 × 5 Polaroid (ASA 3000) film. The film was located about 30 feet from a small 

aperture, so that no focusing lens was needed. The shutter, placed directly in 


Figure 10.32
     The Fraunhofer diffraction pattern of a vertical rectangular 

front of the laser, was a student-contrived cardboard guillotine arrangement, and 

hole;  b 
 7  a
 . The aperture is taller than it is wide. (M. Cagnet, M. Francon, and  

therefore no exposure times are available. Any camera shutter (a single-lens reflex 

J.C. Thrierr:  Atlas optisscher Erscheinungen
 , Berlin-Heidelberg-New York. Springer-Verlag, New York.) with the lens removed and the back open) will serve, but the cardboard one was 

more fun.
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   Chapter 10
   Diffraction


10.2.5 The Circular Aperture


0.0002

0.0007

0.016

0.0007

0.0002

Fraunhofer diffraction at a circular aperture is an effect of great 

0.0007

0.002

0.047

0.002

0.0007

practical significance in the study of optical instrumentation. 

Envision a typical arrangement: plane waves impinging on a 

screen Σ containing a circular aperture and the consequent far-

0.016

0.047

1

0.047

0.016

field diffraction pattern spread across a distant observing 

screen s. By using a large focusing lens  L
 2, we can bring s in 

close to the aperture without changing the pattern. Now, if  L
 2 

0.0007

0.002

0.047

0.002

0.0007

is positioned close to the diffracting opening in Σ, the form of 

the pattern is essentially unaltered. The lightwave reaching Σ is 

0.0002

0.0007

0.016

0.0007

0.0002

cropped by the aperture so that only a circular segment propa-

gates through  L
 2 to form an image in the focal plane. This is 


Figure 10.33
     The Fraunhofer diffraction pattern for a vertical  

obviously the same process that takes place in an eye, tele-

rectangular aperture (taller than wide,  b 
 7  a
 ). Draw a cross through the 

scope, microscope, or camera lens. The image of a distant point 

center and lable  A 
 = 1,  B 
 = 0.047, and  C 
 = 0.016. The diagonal terms 

source, as formed by a perfectly aberration-free converging lens, 

are then  B 
 *  B 
 = 0.002 and  C 
 *  C 
 = 0.000 2. The remaining terms are 

is never a point but rather some sort of diffraction pattern. We 


C 
 *  B 
 =  B 
 *  C 
 = 0.000 7. The display can be extended using  D 
 = 0.008 3.

are essentially collecting only a fraction of the incident wave-

front and therefore cannot hope to form a perfect image. As 

peaks are still smaller; for example, the four corner peaks 





shown in the last section, the expression for the optical distur-

(whose coordinates correspond to appropriate combinations of 

bance at  P
 , arising from an arbitrary aperture in the far-field 

b′ = ±3p>2 and a′ = ±3p>2) nearest to the central maxi-

case, is

mum each have relative irradiances of about 1 12222.

e


EXAMPLE 10.5



 



E


  ˜ 
 =  Aei
 (v t
 - kR
 ) 


eik
 ( Yy
 + Zz
 )> R
   dS
  [10.41]


R


33

Aperture

The aperture in the opaque screen shown in Fig. 10.30 is 0.120 

mm in the  y
 -direction by 0.240 mm in the  z
 -direction. It is illu-

For a circular opening, symmetry would suggest introducing 

minated by a helium–neon laser at 543 nm. A large positive lens 

spherical coordinates in both the plane of the aperture and the 

with a focal length of 1.00 m projects a Fraunhofer diffraction 

plane of observation, as shown in Fig. 10.34. Therefore, let

pattern on a screen in the lens’s focal plane. Determine the rela-

tive irradiance,  I(Y, Z)
 > I(0)
 , at  Y 
 = 2.00 mm and  Z 
 = 3.00 mm 


z 
 = r cos f


y 
 = r sin f

on the observation screen.


Z 
 =  q
  cos Φ  Y 
 =  q
  sin Φ


SOLUTION
  

The differential element of area is now

From Eq. (10.43)


dS 
 = r  d
 r  d
 f

sin a′ 2 sin b′ 2


I(Y, Z) 
 =  I(0)
  a

b a

b

Substituting these expressions into Eq. (10.41), it becomes

a′

b′

where a′ =  kaZ
 >2 R
  and b′ =  kbY
 >2 R
 .

e


a


2p


E


  ˜ 
 =  Aei
 (v t
 - kR
 ) 






ei
 ( k
 r q
 > R
 ) cos (f-Φ)r  d
 r  d
 f


R


3

3

Here  R


r

≈  f
 ,  a 
 = 0.240 mm,  b 
 = 0.120 mm, and 

= 0 f = 0

(10.46)

sin(p aZ
 > ƒ
 l) 2 sin(p bY
 > ƒ
 l) 2


I(Y, Z) 
 =  I(0)
  

Because of the complete axial symmetry, the solution must be in-

c

d c

d

p aZ
 > ƒ
 l

p bY
 > ƒ
 l

dependent of Φ. We might just as well solve Eq. (10.46) with 

2

2

Φ = 0 as with any other value, thereby simplifying things slightly.


I(Y, Z)


sin(1388.5 Z
  )

sin(694.27 Y
  )

=

The portion of the double integral associated with the vari-

c

d c

d


I(0)


1388.5 Z


694.27 Y


able f,


I(Y, Z)


2 0.983 4 2

2p

= a -0.854 1b a

b


I(0)


4.165 5

1.388 5

3  ei
 ( k
 r q
 > R
 ) cos f  d
 f

0

= (0.205 0)2(0.708 2)2

is one that arises quite frequently in the mathematics of phys-

and so

ics. It is a unique function in that it cannot be reduced to any 


I(2, 3)


of the more common forms, such as the various hyperbolic, 

= 0.0211 I(0)


exponential, or trigonometric functions, and indeed with the 
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y
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0
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Y



R



a



x



P



q



z


Φ


P
 0

Σ


Z
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Figure 10.34
     Circular aperture geometry.

exception of these, it is perhaps the most often encountered. 

When  m 
 = 1, this clearly leads to

The quantity


u






2p

3  u
 ′ J
 0 (u
 ′ )
   du
 ′ =  uJ
 1 (u)
  (10.50)

1

0






J
 0 (u) 
 =





  eiu
  cos  v
   dv 


(10.47)

2p 3

with  u


0

′  
 just serving as a dummy variable. If we now return to 

the integral in Eq. (10.49) and change the variable such that  

is known as the  Bessel function
  (of the first kind) of order zero. 


w 
 =  k
 r q
 > R
 , then  d
 r = ( R
 > kq
 )  dw 
 and More generally,

r =  a



w 
 =  kaq
 ∙ R



i
 - m 
 2p

3  J
 0 (k
 r q
 > R)
 r  d
 r = ( R
 > kq
 )2 3


J
 0 (w)w
   dw







J






  ei
 ( mv
 + u
  cos  v
 )  dv 


(10.48)

r


m(u) 
 =

= 0


w 
 = 0

2p 30

Making use of Eq. (10.50), we get

represents the Bessel function of order  m
 . Numerical values of 


J
 0 (u)
  and  J
 1 (u)
  are tabulated for a large range of  u
  in most mathe






E


  ˜
 (t) 
 =  Aei
 (v t
 - kR
 ) 2p a
 2( R
 > kaq
 )  J


ematical handbooks. Just like sine and cosine, the Bessel func-


R


1 (kaq
 > R) 


(10.51)

tions have series expansions and are certainly no more esoteric 

than these familiar childhood acquaintances. As seen in Fig. 10.35, 


J


1.0

0 (u)
  and  J
 1 (u)
  are slowly decreasing oscillatory functions that 

do nothing particularly dramatic.


J
 0 (u)


Equation (10.46) can be rewritten as


J
 1 (u) J


0.5

2 (u)


e


a







E


  ˜ 
 =  Aei
 (v t
 - kR
 ) 2p    J



R


3 0 (k
 r q
 > R)
 r  d
 r  


(10.49)

0


u


0

5

10

15

Another general property of Bessel functions, referred to as a 

recurrence relation, is

−0.5


d 
  [ umJ



du



m(u)
 ] =  umJm 
 - 1 (u)



Figure 10.35
   Bessel functions.
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To within a constant the irradiance at point- P
  is 

Since sin u

8(Re  E
  ˜
  )29 or 

=  q
 > R
 , the irradiance can be written as a function  

1

of u,

2  E


 ˜
 E
  ˜
 *, that is,

2


J


2

2 J


2

e2






I



AA
 2  1 (kaq
 > R) 
  (10.52)






I(


1 (ka
  sin u )


u )


=

=  I(0)
  

c

d

c

d  (10.56)


kaq



ka
  sin u


R
 2

> R


where  A
  is the area of the circular opening. To find the irradi-

and as such is plotted in Fig. 10.36. Because of the axial symmetry, 

ance at the center of the pattern (i.e., at  P 
 ), set  q


0

= 0. It follows 

the towering central maximum corresponds to a high-irradiance 

from the above recurrence relation ( m 
 = 1) that

circular spot known as the Airy disk
 . It was Sir George Biddell 

Airy (1801–1892), Astronomer Royal of England, who first de-


d



J







J


1 (u)


0 (u) 
 =

  J
 1 (u) 
 +

 (10.53)

rived Eq. (10.56). The central disk is surrounded by a dark ring 


du



u


that corresponds to the first zero of the function  J
 1 (u)
 . From  

Table 10.2  J
 1 (u) 
 = 0  
 when  u 
 = 3.83, that is,  kaq
 > R 
 = 3.83. The From Eq. (10.47) we see that  J
 0 (0) 
 = 1, and from Eq. (10.48), 

radius  q
 1 drawn to the center of this first dark ring can be thought 


J
 0 (0) 
 = 0. The ratio of  J
 1 (u)
 > u 
 as  u
  approaches zero has the same of as the extent of the Airy disk (Fig. 10.37). It is given by 

limit (L’Hospital’s Rule) as the ratio of the separate derivatives of 


q
 1 = 3.83  R
 l>2p a
  or

its numerator and denominator, namely,  dJ
 1 (u)
 > du
  over 1. But 

this means that the right-hand side of Eq. (10.53) is twice that 


R
 l






q
 1 = 1.22   (10.57)

limiting value, so that  J
 1 (u)
 > u 
 = 12  
 at  u 
 = 0. The irradiance at  P
 0 

2 a


is therefore

For a lens focused on the screen s, the focal length  ƒ 
 ≈  R
 , so

e2






I(0) 
 =  AA
 2 (10.54)

2 R
 2


ƒ
 l

[radius 1st dark ring] 


q
 1 ≈ 1.22   (10.58)


D


which is the same result obtained for the rectangular opening 

[Eq. (10.43)]. If  R
  is assumed to be essentially constant over the 

where  D
  is the aperture diameter, in other words,  D 
 = 2 a
 . (The 

pattern, we can write


diameter 
 of the Airy disk in the visible spectrum is  very roughly
  

2 J


2

equal to the  ƒ


1 (kaq
 > R)


># of the lens in millionths of a meter.) As shown 






I 
 =  I(0)
   c

d  (10.55)

in the accompanying photos,  q
 1 varies inversely with the hole’s 


kaq
 > R


diameter. As  D
  approaches l, the Airy disk can be very large 

(a)


I
 I(0)


1.0

(b)

0.5

0.4

0.3

0.2

0.017 5

0.004 2

(c)

0.1

−


ka
  sin

10

−5

0

5

10

u


Figure 10.36
   ( a
 ) The Airy pattern. ( b
 ) Electric field created by 

Fraunhofer diffraction at a circular aperture. ( c
 ) Irradiance resulting 

8.42

7.02

5.14

3.83

3.83

5.14

7.02

8.42

from Fraunhofer diffraction at a circular aperture. (R.G. Wilson, Illinois 

−

−

−

−

Wesleyan University)
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(a)


TABLE 10.2    Bessel Functions*



 x  J
 1 (x)
 * 


x 



J
 1 (x)
  


x
  


J
 1 (x)


 0.0  0.000 0 

3.0 

0.339 1 

6.0  20.276 7

 0.1  0.049 9 

3.1 

0.300 9 

6.1  20.255 9

 0.2  0.099 5 

3.2 

0.261 3 

6.2  20.232 9

 0.3  0.148 3 

3.3 

0.220 7 

6.3  20.208 1

 0.4  0.196 0 

3.4 

0.179 2 

6.4  20.181 6

 0.5  0.242 3 

3.5 

0.137 4 

6.5  20.153 8

 0.6  0.286 7 

3.6 

0.095 5 

6.6  20.125 0

 0.7  0.329 0 

3.7 

0.053 8 

6.7  20.095 3

 0.8  0.368 8 

3.8 

0.012 8 

6.8  20.065 2

 0.9  0.405 9 

3.9  20.027 2 6.9 

20.034 9

(b)

 1.0  0.440 1 

4.0  20.066 0 7.0 

20.004 7

 1.1  0.470 9 

4.1  20.103 3 

7.1 0.025 2

 1.2  0.498 3 

4.2  20.138 6 

7.2 0.054 3

 1.3  0.522 0 

4.3  20.171 9 

7.3 0.082 6

 1.4  0.541 9 

4.4  20.202 8 

7.4 0.109 6

 1.5  0.557 9 

4.5  20.231 1 

7.5 0.135 2

 1.6  0.569 9 

4.6  20.256 6 

7.6 0.159 2

 1.7  0.577 8 

4.7  20.279 1 

7.7 0.181 3

 1.8  0.581 5 

4.8  20.298 5 

7.8 0.201 4

 1.9  0.581 2 

4.9  20.314 7 

7.9 0.219 2

 2.0  0.576 7 

5.0  20.327 6 

8.0 0.234 6

 2.1  0.568 3 

5.1  20.337 1 

8.1 0.247 6

 2.2  0.556 0 

5.2  20.343 2 

8.2 0.258 0

Airy rings using ( a
 ) a 0.5-mm hole diameter and ( b
 ) a 1.0-mm hole diameter. 

 2.3  0.539 9 

5.3  20.346 0 

8.3 0.265 7

(E.H.)

 2.4  0.520 2 

5.4  20.345 3 

8.4 0.270 8

 2.5  0.497 1 

5.5  20.341 4 

8.5 0.273 1

indeed, and the circular aperture begins to resemble a point 

 2.6  0.470 8 

5.6  20.334 3 

8.6 0.272 8

source of spherical waves.

 2.7  0.441 6 

5.7  20.324 1 

8.7 0.269 7

The higher-order zeros occur at values of  kaq
 > R  
 equal to 

 2.8  0.409 7 

5.8  20.311 0 

8.8 0.264 1

7.02, 10.17, and so forth. The secondary maxima are located 

 2.9  0.375 4 

5.9  20.295 1 

8.9 0.255 9

where  u
  satisfies the condition

* J
 1 (x)
  = 0 for  x
  = 0, 3.832, 7.016, 10.173, 13.324, . . .


d J
 1 (u)


Adapted from E. Kreyszig,  Advanced Engineering Mathematics
 , reprinted by  

  c

permission of John Wiley & Sons, Inc. 


du



u 
 d = 0

which is equivalent to  J
 2 (u) 
 = 0. From math tables, then, these 

secondary peaks occur when  kaq
 > R
  equals 5.14, 8.42, 11.6, and 

so on, whereupon  I
 > I(0)
  drops from 1 to 0.017 5, 0.004 2, and 

0.001 6, respectively (Problem 10.36).

Circular apertures are preferable to rectangular ones, as far 

as lens shapes go, since the circle’s irradiance curve is broader 

around the central peak and drops off more rapidly thereafter. 

Exactly what fraction of the total light energy incident on s is 

confined to within the various maxima is a question of interest, 

but one somewhat too involved to solve here.* On integrating 

the irradiance over a particular region of the pattern, one finds 

that 84% of the light arrives within the Airy disk and 91% with-

in the bounds of the second dark ring.


Figure 10.37
     Fraunhofer diffraction from a circular aperture; the Airy 

*See Born and Wolf,  Principles of Optics
 , p. 398, or the very fine elementary text 

pattern.

by Towne,  Wave Phenomena
 , p. 464.
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(a)


SOLUTION 


We know that sin u =  q
 > R
 . Let ∆u1 be half the angular width of 

the disk. Hence, using Eq. (10.57),

l


q


sin ∆

1

u1 = 1.22 

=

2 a



R


For small angles, sin ∆u1 ≈ ∆u1 and so

l

2∆u1 = 1.22  a


Here

543 * 10-9 m

2∆u1 = 1.22 2.49 * 10-3 m

and 

2∆u

(b)

1 = 2.66 * 10-4 rad 

Finally, when  a 
 = 0.498 mm, 2∆u1 = 2.66 * 10-3 rad. The 

smaller the hole, the larger the Airy disk.


10.2.6 Resolution of Imaging Systems


Imagine that we have some sort of lens system that forms an 

image of an extended object. If the object is self-luminous, it is 

likely that we can regard it as made up of an array of incoher-

ent sources. On the other hand, an object seen in reflected light 

will surely display some phase correlation between its various 

scattering points. When the point sources are in fact incoher-

ent, the lens system will form an image of the object that con-

( a
 ) Airy rings—long exposure (1.5-mm hole dia meter). ( b
 ) Central Airy 

disk—short exposure with the same aper ture. 

sists of a distribution of partially overlapping, yet independent, 

(E.H.)

Airy patterns. In the finest lenses, which have negligible aber-

rations, the spreading out of each image point due to diffrac-

tion represents the ultimate limit on image quality.

EXAMPLE 10.6

Suppose that we simplify matters somewhat and examine 

A circular hole in an opaque screen has a diameter of 4.98 mm. 

only two equal-irradiance, incoherent, distant point sources. 

It is illuminated perpendicularly by light from a helium–neon 

For example, consider two stars seen through the objective lens 

laser (l0 = 543 nm) and forms a Fraunhofer diffraction pattern 

of a telescope, where the entrance pupil corresponds to the dif-

on a distant screen. Determine the angular width, 2∆u1, of the 

fracting aperture. In the previous section we saw that the radius 

Airy disk. How big would it be if the hole was made 10 times 

of the Airy disk was given by  q
 1 = 1.22 ƒ
 l> D
 . If ∆u is the cor-

smaller?

responding angular measure, then ∆u = 1.22l> D
 , inasmuch as 


q
 1> ƒ 
 = sin ∆u ≈ ∆u. The Airy disk for each star will be spread 

Diffraction is being studied as a possible means of rapid auto-

matic analysis of Pap tests for cancer. ( a
 ) The Fraunhofer diffrac-

tion pattern of a normal cervical cell. ( b
 ) The diffraction pattern 

(a)

(b)

of a malignant cervical cell is very different. (Benjamin J. Pernick)
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∆u

∆u

∆

∆w


L
 2

s


Figure 10.38
   Overlapping images. (E.H.)

out over an angular half-width ∆u about its geometric image 


EXAMPLE 10.7


point, as shown in Fig. 10.38. If the angular separation of the 

stars is ∆

A positive lens having a 40-mm diameter is used to form the im-

w and if ∆w 7 7 ∆u, the images will be distinct and 

easily resolved. As the stars approach each other, their respec-

age of two stars on a CCD in a camera. If the stars are 1000 light-

tive images come together, overlap, and commingle into a sin-

years from Earth, how far apart are they if they are just resolvable 

gle blend of fringes. If Lord Rayleigh’s criterion is applied, the 

according to the Rayleigh criterion? Assume l0 = 550 nm.

stars are said to be  just resolved
  when the center of one Airy 


SOLUTION
  

disk falls on the first minimum of the Airy pattern of the other 

From Eq. (10.59)

star. (We can certainly do a bit better than this, but Rayleigh’s 

criterion, however arbitrary, has the virtue of being particularly 

(∆w)min = 1.22l> D


uncomplicated.*) The  minimum resolvable angular separation
  

or  angular limit of resolution
  is

1.22(550 * 10-9 m)

Hence 

(∆w)min =





(∆

40

w)

* 10-3 m

min = ∆u = 1.22l> D
  (10.59)

as depicted in Fig. 10.39. If ∆

and 

(∆

/ is the center-to-center separa-

w)min = 1.677 5 * 10-5 rad

tion of the images, the limit of resolution
  is

The stars’ separation,  L
 , is then





(∆/)


L


min = 1.22 ƒ
 l> D
  (10.60)

=  R
 (∆w)min = 1000(1.677 5 * 10-5)

The resolving power
  for an image-forming system is generally 

and  L 
 = 0.016 8 light-year.

defined as either 1>(∆w)min or 1>(∆/)min.

If the smallest resolvable separation between images is to be 

reduced (i.e., if the resolving power is to be increased), the 

wavelength, for instance, might be made smaller. Using ultravio-

let rather than visible light in microscopy allows for the percep-

*In Rayleigh’s own words: “This rule is convenient on account of its simplicity and 

it is sufficiently accurate in view of the necessary uncertainty as to what exactly is 

tion of finer detail. The electron microscope utilizes equivalent 

meant by resolution.” See Section 9.6.1 for further discussion.

wavelengths of about 10-4 to 10-5 that of light. This makes it 
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∆u

(∆w)min

(∆)min


L
 2

s


Figure 10.39
   Overlapping images. (E.H.)

possible to examine objects that would otherwise be completely 

is Sparrow’s limit. The resultant maximum has a broad flat top. 

obscured by diffraction effects in the visible spectrum. On the 

In other words, at the origin, which is the center of the peak, 

other hand, the resolving power of a telescope can be increased 

the second derivative of the irradiance function is zero; there is 

by increasing the diameter of the objective lens or mirror.  

no change in slope (Fig. 10.40).

Besides collecting more of the incident radiation, this will also 

Unlike the Rayleigh rule, which rather tacitly assumes inco-

result in a smaller Airy disk and therefore a sharper, brighter 

herence, the Sparrow condition can readily be generalized to 

image. The Mount Palomar 200-in. Telescope has a mirror 5 m 

coherent sources. In addition, astronomical studies of equal-

in diameter (neglecting the obstruction of a small region at its 

brightness stars have shown that Sparrow’s criterion is by far 

center). At 550 nm it has an angular limit of resolution of 

the more realistic.

2.7 * 10-2 s of arc. In contrast, the Jodrell Bank radio tele-

scope, with a 250-ft diameter, operates at a rather long, 21-cm 

wavelength. It therefore has a limit of resolution of only about 


10.2.7 The Zeroth-Order Bessel Beam 


700 s of arc. The human eye has a pupil diameter that of course 

varies. Taking it, under bright conditions, to be about 2 mm, 

When light emerges from a narrow circular aperture, the dif-

with l = 550 nm, (∆w)min turns out to be roughly 1 min of arc. 

fracted beam has a central Airy disk that increases with distance 

With a focal length of about 20 mm, (∆/)min on the retina is 

via Eq. (10.57)—the beam spreads out as it propagates. Even 

6700 nm. This is roughly twice the mean spacing between re-

though they resemble parallel ray bundles, laserbeams also di-

ceptors. The human eye should therefore be able to resolve two 

verge. The simplest and one of the most common laserbeam 

points, an inch apart, at a distance of some 100 yards. You will 

configurations is the TEM00 mode Gaussian beam (p. 616). If 

probably not be able to do quite that well; one part in one thou-


D
 0 is the  waist diameter
  (i.e., the diameter where the beam is 

sand is more likely.

narrowest), it will double its cross-sectional area after propagat-

A more appropriate criterion for resolving power has been 

ing a distance  zR
 . This is known as the  Rayleigh range
 , where 

proposed by C. Sparrow. Recall that at the Rayleigh limit there 


zR 
 = p D
 20>4l. Indeed, all real beams, no matter how well colli-

is a central minimum or saddle point between adjacent peaks. 

mated they are, diverge. 

A further decrease in the distance between the two point sources 

Nonetheless, there is a class of solutions to the differential 

will cause the central dip to grow shallower and ultimately disap-

wave equation for free space that are “nondiffracting.” The sim-

pear. The angular separation corresponding to that configuration 

plest of these nonspreading beam solutions corresponds to a 
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This picture is made up of only about 750 pixels. The subject is hard to see 

when the page is close to you because you can resolve the individual pixel 

squares. That’s especially true when you hold the picture close to your face. 

To perceive it more clearly, decrease your ability to resolve each separate 

pixel: decrease  D
 , the aperture of your eye (squint), or decrease the angular 

separation of the edges of each pixel (hold the picture farther away). If you 

do either, you should be able to make out the image of your humble author. 

(E.H.)

monochromatic wave propagating in the  z
 -direction with an elec-

tric field proportional to the zeroth-order Bessel function  J
 0: 


E
  ˜
 (r
 , u,  z
 ,  t) 
 ∝  J
 0 (k
 # r)ei
 ( k
 i z
 -v t
 ) Here  E
  ˜
 (r, 
 u , z, t)
  
 is expressed in cylindrical coordinates (p. 31), k
 i =  k
  cos f,  k
 # =  k
  sin f, and the angle f is fixed between 0 

and  90°. Note that when f = 0, sin f = 0,  J
 0 (0) 
 = 1 and the  

solution is a plane wave. Ideal plane waves don’t spread out as 

they travel. But then again they’re not localized in a narrow 

beam, nor do they actually exist.

We’ll see in Chapter 11, when we study Fourier transforms, 

that in general a complex waveform like  E


  ˜
 (r, 
 u , z, t) 
 can be repre-

sented as an infinite sum of plane waves taken over a continuum 

of  k
  values. In particular,  E


  ˜
 (r, 
 u , z, t) 
 may be considered a super-

The resolution of two small equal-irradiance sources.

position of an infinite number of plane waves, all with propagation 
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Clearly resolved

Rayleigh

Sparrow

A Bessel beam. (Ryan P. MacDonald)

in the front focal plane of a lens of radius  R
 . Each spherical wavelet 

leaves the lens as a plane wave propagating at an angle f, such that

f = tan-1112  a
 > ƒ
 2

Not resolved

The region of overlap of the plane waves in Fig.10.41 b
  extends 

out to a distance  z
 max where  tan f =  R
 > z
 max = 12  a
 > ƒ
  and so Figure 10.40
     The Rayleigh and Sparrow criteria for overlapping point 

2 Rƒ


images.


z
 max =  a


This is the propagation length or range of the Bessel beam. If  a
  

is kept small and  R
  large, it can be substantially greater than the 

vectors (or, if you like, wave vectors) lying along a cone whose 

Rayleigh range for a Gaussian beam of comparable diameter.*

half-angle, measured from its central axis, the  z
 -axis, is f. This is 

the defining characteristic of the Bessel
  or  J
 0-beam
 . 

Because the irradiance is proportional to  E
  ˜
 E
  ˜
 *, all depen-

dence on  z
  vanishes;  I(r, 
 u , t) 
 ∝  J
 20 (k



10.2.8 The Diffraction Grating


# r) 
 and the irradiance is 

the same in every plane perpendicular to the  z-
 axis . 
 This means 

A repetitive array of diffracting elements, either apertures or ob-

that the transverse irradiance pattern does not spread out as the 

stacles, that has the effect of producing periodic alterations in the 

wave advances. That pattern consists of a narrow central region 

phase, amplitude, or both of an emergent wave is said to be a dif-


(of diameter 2.405> k
 #) surrounded by concentric rings (see 


fraction grating
 . One of the simplest such arrangements is the 

photo at the top of the next column). Each ring carries roughly 

multiple-slit configuration of Section 10.2.3. It seems to have been 

the same energy as does the central peak, which is only about 

invented by the American astronomer David Rittenhouse in about 

5% of the initial energy of the beam. 

1785. Some years later Joseph von Fraunhofer independently re-

In reality, one cannot create perfect plane waves from which 

discovered the principle and went on to make a number of impor-

to fabricate an ideal  J
 0-beam. A plane wave has infinite spatial 

tant contributions to both the theory and technology of gratings. 

extent and is therefore an unattainable idealization. So, at best, 

The earliest devices were indeed multiple-slit assemblies, usually 

we can build a wave that only approximates a  J
 0-beam over a 

finite region of space; several methods have been used to ac-

complish just that. 

*Lord Rayleigh, “On the passage of electric waves through tubes, or the  

Figure 10.41 a
  shows an elegant scheme for generating a 

vibrations of dielectric cylinders,”  Phil. Mag
 ., S. 5, 43
 , No. 261, 125 (Feb. 1897); 

quasi- J
 0-beam. A narrow (≈10 mm) circular slit, or annulus, a 

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,”  J. Opt. 


few millimeters in diameter ( a
 ), is illuminated by monochro-


Soc. Am
 .  A
  4
 , 651 (1987); J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,”  Phys. Rev. Lett.
  58
 , 1499 (1987); C. A. McQueen, J. Arit, and K. 

matic plane waves of wavelength l. Every point in the aperture 

Dholakia, “An experiment to study a ‘nondiffracting’ light beam,”  Am. J. Phys
 .  

acts like a point source of spherical waves. The annulus is located 


67
 , 912 (1999).
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(a)

1st order

   ( m
  = 1)

0 th order

( m
  = 0)

1st order

( m
  = −1)


a


(a)

(b)


m 
 th order


R


f

f

u


a



m



C D



a



B


u


A



f



i



AB
  −  CD
  =  a
 (sin u m
  − sinu i
 )


z
 max

(b)

(c)


Figure 10.42
     A transmission grating.

scratching parallel notches into the surface of a flat, clear glass 

plate (Fig. 10.42 a
 ). Each of the scratches serves as a source of 

scattered light, and together they form a regular array of parallel 

line sources. When the grating is totally transparent, so that there 

is negligible amplitude modulation, the regular variations in the 

optical thickness across the grating yield a modulation in-phase, 

and we have what is known as a  
transmission phase grating

  (see 

photo on page 490). In the Huygens–Fresnel representation you 

can envision the wavelets as radiated with different phases over 


Figure 10.41
     An arrangement for producing a Bessel beam using a cir-

the grating surface. An emerging wavefront therefore contains pe-

cular slit. ( a
 ) A ring-shaped opening is illuminated by plane waves. ( b
 ) The 

riodic variations in its shape rather than its amplitude. This in turn 

aperture is placed in the front focal plane of the lens so that parallel rays 

leave the lens. ( c
 ) The plane waves, which all have propagation vectors 

is equivalent to an angular distribution of constituent plane waves.

residing on a cone, overlap out to a distance of  z
 max.

On reflection from this kind of grating, light scattered by the 

various periodic surface features will arrive at some point- P
  with a 

definite phase relationship. The consequent interference pattern 

consisting of a grid of fine wire or thread wound about and extend-

generated after reflection is quite similar to that arising from trans-

ing between two parallel screws, which served as spacers. A 

mission. Gratings designed specifically to function in this fashion 

wavefront, in passing through such a system, is confronted by al-

are known as  
reflection phase gratings

  (Fig. 10.43). Gratings of 

ternate opaque and transparent regions, so that it undergoes a 

this sort have traditionally been ruled in thin films of aluminum 

modulation in  amplitude
 . Accordingly, a multiple-slit configura-

that have been evaporated onto optically flat glass blanks. The alu-

tion is said to be a  
transmission amplitude grating

 . Another, more 

minum, being fairly soft, results in less wear on the diamond ruling 

common form of transmission grating is made by ruling or 

tool and is also a better reflector in the ultraviolet region.
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Light passing through a grating. ( a
 ) The region on the left is the visible spec-

trum; that on the right, the ultraviolet. (Klinger Educational Prod. Corp., College Point, N.Y.) 

( b
 ) Head-on views of the  m 
 = 0 and  m 
 = ±1 diffracted beams arising when 

light from a He–Ne laser passed through a 530 lines>mm grating. In the upper 

version, the grating was in air (l = 632.8 nm). In the lower version, the grating 

was immersed in water. From the measured value of u1 the grating equation 

yielded l w 
 = 471 nm and therefore  nw 
 = 1.34. (A.F. Leung, The Chinese University of 

Hong Kong.)

(a)

(b)

(c)

The manufacture of ruled gratings is extremely difficult, and 

side of u = 0 and is followed, along with alternate intervals 

relatively few are made. In actuality, most gratings are exceed-

of darkness, by the higher-order spectra,  m 
 = ±2, ±3, . . . . 

ingly good plastic castings or  replicas
  of fine, master ruled grat-

Notice that the smaller  a  
 becomes in Eq. (10.32), the fewer 

ings. Today, large numbers of gratings are made holographi-

will be the number of visible orders.

cally (p. 644).

It should be no surprise that the grating equation is in fact 

If you were to look perpendicularly through a transmission 

Eq. (9.29), which describes the location of the maxima in 

grating at a distant parallel line source, your eye would serve as 

Young’s double-slit setup. The interference maxima, all located 

a focusing lens for the diffraction pattern. Recall the analysis of 

at the same angles, are now simply sharper (just as the multiple-

Section 10.2.3 and the expression

beam operation of the Fabry–Perot etalon made its fringes 

sharper). In the double-slit case when the point of observation is 






a
  sin u m 
 =  m
 l [10.32]

somewhat off the exact center of an irradiance maximum, the 

two waves, one from each slit, will still be more or less in-

which is known as the grating equation
  for normal incidence. 

phase, and the irradiance, though reduced, will still be appre-

The values of  m
  specify the  order
  of the various principal 

ciable. Thus the bright regions are fairly broad. By contrast, 

maxima. For a source having a broad continuous spectrum, 

with multiple-beam systems, although all the waves interfere 

such as a tungsten filament, the  m 
 = 0, or zeroth-order, image 

constructively at the centers of the maxima, even a small dis-

corresponds to the undeflected, u0 = 0, white-light view of the 

placement will cause certain ones to arrive out-of-phase by 12l 

source. The grating equation is dependent on l, and so for any 

with respect to others. For example, suppose  P
  is slightly off 

value of  m 
 Z 0  
 the various colored images of the source cor-

from u1 so that  a
  sin u = 1.010l  
 instead of 1.000l. Each of the 

responding to slightly different angles (u m
 ) spread out into a 

waves from successive slits will arrive at  P
  shifted by 0.01l 

continuous spectrum. The regions occupied by the faint sub-

with respect to the previous one. Then 50 slits down from the 

sidiary maxima will show up as bands seemingly devoid of 

first, the path length will have shifted by 12l, and the light from 

any light. The first-order spectrum  m 
 = ±1  
 appears on either 

slit 1 and slit 51 will essentially cancel. The same would be true 
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distances to the extreme wavelengths measured on the screen 

from the central axis. Accordingly,


Y
 2  (600) 
 -  Y
 2  (400) 
 = 2.00 * 10-2 m

Given that u2 (
 l )
  is the angle to a spectral line measured from 

the central axis:

tan u2 =  Y
 2> R 
 =  Y
 2> ƒ


Since 


a
  sin u2 = 2l 

2l

1st order ( m
  = −1)

sin u2 ≈ tan u2 =  a



Y


2l

and 

2 =  


ƒ



a


0 th order ( m
  = 0)

Here  a 
 = 1>500 000 = 2.00 * 10-6 and so

1st order ( m
  = 1)

(a)

2(600 * 10-9) ƒ



Y
 2 (600) 
 = 2.00 * 10-6 = 0.60 ƒ


2(400 * 10-9) ƒ



Y
 2 (400) 
 = 2.00 * 10-6 = 0.40 ƒ


u i



A


and 

2.00 * 10-2 m =  Y
 2 (600) 
 -  Y
 2 (400) 
 = 0.20 ƒ



B



a


from which it follows that  ƒ 
 = 0.10 m.


C


The larger l is, the larger u m
  is, and the farther the spectral 


D


u m


line is from the central axis: violet is closest, and red is farthest.


m 
 th order

Consider next the somewhat more general situation of 

oblique incidence, as depicted in Figs. 10.42 and 10.43. The 


AB
  −  CD
  =  a
 (sin u

(b)


m
  − sin u i
 )

grating equation, for both transmission and reflection, becomes


Figure 10.43
     A reflection grating.






a
 (sin u m 
 - sin u i
 ) =  m
 l (10.61)

This expression applies equally well, regardless of the refrac-

for slit-pairs 2 and 52, 3 and 53, and so forth. The result is a 

tive index of the transmission grating itself (Problem 10.63). 

rapid falloff in irradiance beyond the centers of the maxima.

One of the main disadvantages of the devices examined thus far, 

and in fact the reason for their obsolescence, is that they spread 


EXAMPLE 10.8


the available light energy out over a number of low-irradiance 

spectral orders. For a grating like that shown in Fig. 10.43, most 

Polychromatic light encompassing the wavelength range from 

of the incident light undergoes  specular reflection
 , as if from a 

400 nm to 600 nm impinges normally on a transmission grating 

plane mirror. It follows from the grating equation that u

having 500 000 grooves per meter. A nearby positive lens creates 


m 
 = u i


corresponds to the zeroth order,  m


a Fraunhofer diffraction pattern on a screen at its focal plane. 

= 0. All of this light is es-

sentially wasted, at least for spectroscopic purposes, since the 

Determine the focal length of the lens such that the second-order 

constituent wavelengths overlap.

spectrum is spread out 2.00 cm in length. Discuss the sequence of 

In an article in the  Encyclopedia Britannica
  of 1888, Lord 

colors in the pattern in relation to the central axis.

Rayleigh suggested that it was at least theoretically possible to 


SOLUTION
  

shift energy out of the useless zeroth order into one of the higher-

The grating equation

order spectra. So motivated, Robert Williams Wood (1868–

1955) succeeded in 1910 in ruling grooves with a controlled 


a
  sin u m 
 =  m
 l

shape, as shown in Fig. 10.44. Most modern gratings are of this 

locates the principal maxima. The second-order spectrum is 

shaped or blazed
  variety. The angular positions of the nonzero 

associated with  m 
 = 2. Thus take  Y


orders, u

2  (400)
  and  Y
 2  (600)
  as the 


m
 -values, are determined by  a
 , l, and, of more immediate 
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g


a


g

u i


u

2g

0

0 th order

0 th order


b


Specular reflection

(diffraction peak)


Figure 10.45
   Blazed grating.

made concerning the detailed structure of the hydrogen atom as 

manifested by its emitted radiation, and spectroscopy provided 

the vital proving ground. The need for larger and better gratings 

u

g

became apparent. Grating spectrometers, used over the range 


i


u r


from soft X-rays to the far infrared, have enjoyed continued 

interest. In the hands of the astrophysicist or rocket-borne, they 

yield information concerning the very origins of the Universe, 

information as varied as the temperature of a star, the rotation of 


Figure 10.44
     Section of a blazed reflection phase grating.

a galaxy, and the red shift in the spectrum of a quasar. In the 

mid-1900s George R. Harrison and George W. Stroke remark-

interest, u

ably improved the quality of high-resolution gratings. They 


i
 . But u i
  and u m
  are measured from the normal to the 

grating plane and not with respect to the individual groove sur-

used a ruling engine* whose operation was controlled by an 

faces. On the other hand, the location of the peak in the single-

interferometrically guided servomechanism.

facet diffraction pattern corresponds to  specular reflection
  off 

Let us now examine in some detail a few of the major features 

that face, for each groove. It is governed by the  blaze angle
  g 

of the grating spectrum. Assume an infinitesimally narrow inco-

and can be varied independently of u

herent source. The effective width of an emergent spectral line 


m
 . This is somewhat analo-

gous to the antenna array of Section 10.1.3, where we were able 

may be defined as the angular distance between the zeros on either 

to control the spatial position of the interference pattern [Eq. (10.6)] 

side of a principal maximum; in other words, ∆a = 2p> N
 , which 

by adjusting the relative phase shift between sources without 

follows from Eq. (10.33). At oblique incidence we can redefine a 

actually changing their orientations.

as ( ka
 >2) (sin u - sin u i
 ), and so a small change in a is given by

Consider the situation depicted in Fig. 10.45, when the in-





∆a = ( ka
 >2) cos u (∆u) = 2p> N
  (10.62)

cident wave is normal to the plane of a blazed reflection grat-

ing; that is, u i 
 = 0, so for  m 
 = 0, u0 = 0. For  specular reflec-


where the angle-of-incidence is constant, that is, ∆u i 
 = 0. Thus, 


tion
  u i 
 - u r 
 = 2g (Fig. 10.44), most of the diffracted radiation 

even when the incident light is monochromatic,

is concentrated about u r 
 = -2g. (u r
  is negative because the 





∆u = 2l>( Na
  cos u m
 ) (10.63)

incident and reflected rays are on the same side of the grating 

normal.) This will correspond to a particular nonzero order, on 

is the  angular width of a line
 , due to  instrumental broadening
 . 

one side of the central image, when u m 
 = -2g; in other words, 

Interestingly enough, the angular linewidth varies inversely 


a
  sin  a
  sin (-2g) =  m
 l for the desired l and  m
 .

with the width of the grating itself,  Na
 . Another important 

quantity is the difference in angular position corresponding to a 


Grating Spectroscopy


*For more details about these marvelous machines, see A. R. Ingalls,  Sci. Am
 . 

Quantum Mechanics, which evolved in the early 1920s, had its 


186
 , 45 (1952), or the article by E. W. Palmer and J. F. Verrill,  Contemp. Phys
 . 9
 , initial thrust in the area of atomic physics. Predictions were 

257 (1968).
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difference in wavelength. The angular dispersion
 , as in the 

Applying the expression for the dispersion, we get

case of a prism, is defined as

(∆u)min = (∆l)min  m
 >( a
  cos u m
 )





𝒟 K  d
 u> d
 l (10.64)

The combination of these two equations provides us with ℛ, 

Differentiating the grating equation yields

that is,





𝒟 =  m
 >( a
  cos u m
 ) (10.65)





l>(∆l)min  =  mN
  (10.67)

This means that the angular separation between two different 

frequency lines will increase as the order increases.


Na
 (sin u

Blazed plane gratings with nearly rectangular grooves are 

or 

ℛ =


m 
 - sin u i
 ) (10.68)

l

most often mounted so that the incident propagation vector is al-

most normal to either one of the groove faces. This is the condi-

The resolving power is a function of the grating width  Na
 , the 

tion of  autocollimation
 , in which u i
  and u m
  are on the same side 

angle-of-incidence, and l. A grating 6 inches wide and contain-

of the normal and g ≈ u i 
 ≈ -u m
  (see Fig. 10.46), whereupon

ing 15,000 lines per inch will have a total of 9 * 104 lines and a 





resolving power, in the second order, of 1.8

𝒟auto = (2 tan u i
 )>l (10.66)

* 105. In the vicin-

ity of 540 nm, the grating could resolve a wavelength difference 

which is independent of  a
 .

of 0.003 nm. Notice that the resolving power cannot exceed 

When the wavelength difference between two lines is 

2 Na
 >l, which occurs when u i 
 = -u m 
 = 90°. The largest values 

small enough so that they overlap, the resultant peak becomes 

of ℛ are obtained when the grating is used in autocollimation, 

somewhat ambiguous. The chromatic resolving power
  ℛ of 

whereupon

a spectrometer is defined as 

2 Na
  sin u





ℛ


i


auto =

 (10.69)





l

ℛ K l>(∆l)min [9.76]

and again u i
  and u m
  are on the same side of the normal. For one of 

where (∆l)min is the least resolvable wavelength difference, or 

Harrison’s 260-mm-wide blazed gratings at about 75° in a Littrow 


limit of resolution
 , and l is the  mean wavelength
 . Lord Ray-

mount, with l = 500 nm, the resolving power just exceeds 106.

leigh’s criterion for the resolution of two fringes with equal flux 

We now need to consider the problem of overlapping orders. 

density requires that the principal maximum of one coincide with 

The grating equation makes it quite clear that a line of 600 nm 

the first minimum of the other. (Compare this with the equivalent 

in the first order will have precisely the same position, u m
 , as a 

statement used in Section 9.6.1.) As shown in Fig. 10.40, at the 

300-nm line in the second order or a 200-nm line when  m 
 = 3. 

limit of resolution the angular separation is half the linewidth, or 

If two lines of wavelength l and (l + ∆l) in successive orders 

from Eq. (10.63)

( m 
 + 1) and  m
  just coincide, then

(∆u)min = l>( Na
  cos u m
 )


a
 (sin u m 
 - sin u i
 ) = ( m 
 + 1)l =  m
 (l + ∆l)

Film plate

Source slits


Figure 10.46
     The Littrow autocollimation mounting.
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The precise wavelength difference is known as the free spec-


(∆l)min = (589.592 3 - 588.995 3) nm = 0.597 nm. Hence from 


tral range
 ,

Eq. (10.67) with  m 
 = 2,





(∆l)

l

fsr = l> m
  (10.70)

=  mN


(∆l)min

as it was for the Fabry–Perot Interferometer. In comparison 

with that device, whose resolving power was

589.293 8 nm

and 


N 
 =









ℛ

2(0.597 nm)

= ℱ m
  [9.76]


N 
 = 493.5

we might take  N
  to be the finesse of a diffraction grating 

(Problem 10.65).

To see the two lines we need a grating with at least 494 slits.

A high-resolution grating blazed for the first order, so as to 

have the greatest free spectral range, will require a high groove 

density (up to about 1200 lines per millimeter) in order to main-


Two- and Three-Dimensional Gratings


tain ℛ. Equation (10.68) shows that ℛ can be kept constant by 

ruling fewer lines with increasing spacing, such that the grating 

Suppose that the diffracting screen g contains a large number, 

width  Na
  is constant. But this requires an increase in  m
  and a 


N
 , of identical diffracting objects (apertures or obstacles). These 

subsequent decrease in free spectral range, characterized by 

are to be envisioned as distributed over the surface of g in a 

overlapping orders. If this time  N
  is held constant while  a
  alone 

completely random manner. We also require that each and every 

is made larger, ℛ increases as does  m
 , so that (∆l)fsr again de-

one be similarly oriented. Imagine the diffracting screen to be 

creases. The angular width of a line is reduced (i.e., the spectral 

illuminated by plane waves that are focused by a perfect lens  L
 2, 

lines become sharper), the coarser the grating is, but the disper-

after emerging from g (see Fig. 10.16). The individual aper-

sion in a given order diminishes, with the effect that the lines in 

tures generate identical Fraunhofer diffraction patterns, all of 

that spectrum approach each other.

which overlap on the image plane s. If there is no regular peri-

Thus far we have considered a particular type of periodic 

odicity in the location of the apertures, we cannot anticipate 

array, namely, the  line grating
 . A good deal more information is 

anything but a random distribution in the relative phases of the 

available in the literature* concerning their shapes, mountings, 

waves arriving at an arbitrary point- P
  on s. We have to be rath-

uses, and so forth.

er careful, however, because there is one exception, which oc-

A few unlikely household items can be used as crude gratings. 

curs when  P
  is on the central axis, that is,  P 
 =  P
 0. All rays, from 

The grooved surface of a phonograph record works nicely near 

all apertures, parallel to the central axis will traverse equal opti-

grazing incidence and CDs are lovely reflection gratings. Surpris-

cal path lengths before reaching  P
 0. They will therefore arrive 

ingly enough, with u i 
 ≈ 90° an ordinary fine-toothed comb (or a 

in-phase and interfere  constructively.

stick of staples) will separate out the constituent wavelengths of 

Now consider a group of arbitrarily directed parallel rays (not 

white light. This occurs in exactly the same fashion as it would 

in the direction of the central axis), each one emitted from a dif-

with a more orthodox reflection grating. In a letter to a friend 

ferent aperture. These will be focused at some point on s, such 

dated May 12, 1673, James Gregory pointed out that sunlight 

that each corresponding wave will have an equal probability of 

passing through a feather would produce a colored pattern, and he 

arriving with any phase between 0 and 2p. What must be deter-

asked that his observations be conveyed to Mr. Newton. If you’ve 

mined is the resultant field arising from the superposition of  N
  

got one, a flight feather makes a nice transmission grating.

equal-amplitude phasors all having random relative phases. The 

solution to this problem requires an elaborate analysis in terms 

EXAMPLE 10.9

of probability theory, which is a little too far afield to do here.* 

The important point is that the sum of a number of phasors taken 

We wish to resolve the two bright yellow sodium lines (589.592 3 

at random angles is not simply zero, as might be thought. The 

nm and 588.995 3 nm) in the second-order spectrum produced 

general analysis begins, for statistical reasons, by assuming that 

by a transmission grating. How many slits or grooves must the 

there are a large number of individual aperture screens, each 

grating possess at minimum?

containing  N
  random diffracting apertures and each illuminated, 

SOLUTION  The resolving power of the grating is l>(∆l)min, 

in turn, by a monochromatic wave. We shouldn’t be surprised if 

where l is the mean wavelength, or 12 (589.592 3 + 588.995 3) nm 

there is some difference, however small, between the diffraction 

= 589.293 8 nm. 

patterns of two different random distributions of, say,  N 
 = 100  


holes. After all, they are different, and the smaller  N
  is, the more 

*For a statistical treatment, consult J. M. Stone,  Radiation and Optics
 , p. 146, and 

*See F. Kneubühl, “Diffraction grating spectroscopy,”  Appl. Opt
 . 8
 , 505 (1969);  

Sommerfeld,  Optics
 , p. 194. Also take a look at “Diffraction plates for classroom 

R. S. Longhurst,  Geometrical and Physical Optics
 ; and the extensive article by  

demonstrations,” by R. B. Hoover,  Am. J. Phys
 . 37
 , 871 (1969), and T. A. Wiggins, 

G. W. Stroke in the  Encyclopedia of Physics
 , Vol. 29, edited by S. Flügge, p. 426.

“Hole gratings for optics experiments,”  Am. J. Phys
 . 53
 , 227 (1985).
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obvious that becomes. Indeed, we can expect their similarities to 

or a truly random array of (nonoverlapping) diffracting objects. 

show up statistically on considering a large number of such 

Nonetheless, with a screen containing  N
  “random” apertures 

masks—ergo the general approach.

illuminated by quasimonochromatic, nearly plane-wave illumi-

If the many individual resulting irradiance distributions are all 

nation, we can anticipate seeing a mottled flux-density distribu-

averaged for a particular  off-axis
  point on s, it will be found that 

tion closely resembling that of an individual aperture but  N
  

the average irradiance ( I
 av) there equals  N
  times the irradiance 

times as strong. Moreover, a bright spot will exist on-axis at its 

( I
 0) due to a single aperture:  I
 av =  NI
 0. Still, the irradiance at any 

center, which will have a flux density of  N 
 2 times that of a sin-

point arising from any one aperture screen can differ from this 

gle aperture. If, for example, the screen contains  N
  rectangular 

average value by a fairly large amount, regardless of how great  N
  

holes (Fig. 10.47 a
 ), the resultant pattern (Fig. 10.47 b
 ) will re-

is. These point-to-point fluctuations about the average manifest 

semble the images on page 478. Similarly, the array of circular 

themselves in each particular pattern as a granularity that tends to 

holes depicted in Fig. 10.47 c
  will produce the diffraction rings 

show a radial fiberlike structure. If this fine-grained mottling is 

of Fig. 10.47 d
 .

averaged over a small region of the pattern, which nonetheless 

As the number of apertures increases, the central spot will 

contains many fluctuations, it will average out to  NI
 0.

tend to become so bright as to obscure the rest of the pattern. 

Of course, in any real experiment the situation will not quite 

Note as well that the above considerations apply when all the 

match the ideal—there is no such thing as monochromatic light 

apertures are illuminated completely coherently. In actuality, 

(a)

(b)

(e)

(c)

(d)

(f)


Figure 10.47
   ( a
 ) A random array of rectangular apertures. ( b
 ) The resulting white-light Fraunhofer pattern. ( c
 ) A random array of circular apertures. ( d
 ) The resulting white-light Fraunhofer pattern. ( a-d
 : Richard B. Hoover, Ealing Electro-Optics, Inc.) (e) A candle flame viewed through a fogged piece of glass. The spectral colors are visible as concentric rings. (E.H.) ( f
 ) A similar colored ring system created by viewing a white-light point source through a glass plate covered 

with transparent spherical lycopodium spores. (E.H.)
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the diffracted flux-density distribution will be determined by the 

tunate enough to have mercury-vapor street lights, you’ll have 

degree of coherence (see Chapter 12). The pattern will run the 

no trouble seeing all their constituent visible spectral frequen-

gamut from no interference with completely incoherent light to 

cies. (If not, block out most of a fluorescent lamp, leaving 

the case discussed above for completely coherent illumination 

something resembling a small source.) Notice the increased 

(Problem 10.67).

symmetry as you increase the number of layers of nylon. Inci-

The same kind of effects arise from what we might call a 

dentally, this is precisely the way Rittenhouse, the inventor of 

two-dimensional  phase grating
 . For example, the halo or co-

the grating, became interested in the problem—only he used a 

rona often seen about the Sun or Moon results from diffraction 

silk handkerchief.

by random droplets of water vapor (i.e., cloud particles). If 

Consider the case of a  regular
  two-dimensional array of dif-

you would like to duplicate the effect, fog up a microscope 

fracting elements (Fig. 10.48) under normally incident plane-

slide with your breath, or rub a very thin film of talcum pow-

wave illumination. Each small element behaves as a coherent 

der on it and then fog it up. Look at a white-light point source. 

source. And because of the regular periodicity of the lattice of 

You should see a pattern of clear, concentric, colored rings 

emitters, each emergent wave bears a fixed-phase relation to the 

[Eq. (10.56)] surrounding a white central disk. If you just see 

others. There will now be certain directions in which construc-

a white blur, you don’t have a distribution of roughly equal- 

tive interference prevails. Obviously, these occur when the dis-

sized droplets; have another try at the talcum. Strikingly beau-

tances from each diffracting element to  P
  are such that the 

tiful patterns approximating concentric ring systems can be 

waves are nearly in-phase at arrival. The phenomenon can be 

seen through an ordinary  mesh
  nylon stocking. If you are for-

observed by looking at a point source through a piece of  square 


(a)

(b)


Figure 10.48
  ( a
 ) An ordered array of rectangular apertures.  

( b
 ) The resulting white-light Fraunhofer pattern. ( c
 ) An ordered 

array of circular apertures. ( d
 ) The resulting white-light Fraunhofer 

pattern. (a-d: Richard B. Hoover, Ealing Electro-Optics, Inc.) ( e
 ) A white-light 

point source seen through a piece of tightly woven cloth. (E.H.)

(e)

(c)

(d)
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woven
 , thin cloth (such as nylon curtain material; see Fig. 10.48 e
 ) 

range emitted by an X-ray tube) was directed onto a thin sin-

or the fine metal mesh of a tea strainer. The diffracted image is 

gle crystal. The film plate (Fig. 10.49b) revealed a Fraunhofer 

effectively the superposition of two grating patterns at right 

pattern consisting of an array of precisely located spots. These 

angles. Examine the center of the pattern carefully to see its 

sites of constructive interference occurred whenever the angle 

gridlike structure.

between the beam and a set of atomic planes within the crystal 

As for the possibility of a  three-dimensional grating
 , there 

obeyed Bragg’s Law:

seems to be no particular conceptual difficulty. A regular spatial 





2 d
  sin u

array of scattering centers would certainly yield interference 

=  m
 l (10.71)

maxima in preferred directions. In 1912 Max von Laue (1879–

Notice that in X-ray work u is traditionally measured from the 

1960) conceived the ingenious idea of using the regularly 

plane and not the normal to it. Each set of planes diffracts a 

spaced atoms within a crystal as a three-dimensional grating. It 

particular wavelength into a particular direction. The accompa-

is apparent from the grating equation [Eq. (10.61)] that if l is 

nying photo rather strikingly shows the analogous behavior in a 

much greater than the grating spacing, only the zeroth order 

ripple tank.

( m 
 = 0) is possible. This is equivalent to u0 = u i
 , that is, specu-

Instead of reducing l to the X-ray range, we could have 

lar reflection. Since the spacing between atoms in a crystal is 

scaled everything up by a factor of about a billion and made a 

generally several angstroms (1 Å = 10-1 nm), light can be dif-

lattice of metal balls as a grating for microwaves.

fracted only in the zeroth order.

Von Laue’s solution to the problem was to probe the lattice, 

not with light but with X-rays whose wavelengths were com-

parable to the interatomic distances (Fig. 10.49a). A narrow 


10.3 Fresnel Diffraction


beam of white radiation (the broad continuous frequency 


10.3.1  The Free Propagation of a Spherical Wave


(a)

In the Fraunhofer configuration, the diffracting system was rela-

tively small, and the point of observation was very distant. Under 

these circumstances a few potentially problematic features of the 

Huygens–Fresnel Principle could be completely passed over 

without concern. But we are now going to deal with the near-field 

region, which extends right up to the diffracting element itself, and 

any such approximations would be inappropriate. We therefore 

return to the Huygens–Fresnel Principle in order to reexamine it 

more closely. At any instant, every point on the primary wavefront 

is envisioned as a continuous emitter of spherical secondary wave-

Single

lets. But if each wavelet radiated uniformly in all directions, in 

crystal

Film plane

addition to generating an ongoing wave, there would also be a re-

White incident

verse wave traveling back toward the source. No such wave is 

beam

found experimentally, so we must somehow modify the radiation 

pattern of the secondary emitters. We now introduce the function 

(b)


Figure 10.49
   ( a
 ) Transmission Laue pattern. ( b
 ) X-ray diffraction pattern 

Water waves in a ripple tank reflecting off an array of pegs acting as point 

for quartz (SiO2). (E.H.)

scatterers. (PSSC  Physics
 , D. C. Heath, Boston, 1960. Cengage Learning)
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P


(a)

Primary wave

(b)


Figure 10.50
   ( a
 ) Secondary wavelets. ( b
 ) The obliquity factor  K(
 u )
 .


K(
 u )
 , known as the obliquity
  or inclination factor
 , in order to 

spherical surface corresponds to the primary wavefront at some 

describe the directionality of the secondary emissions. Fresnel 

arbitrary time  t
 ′ after it has been emitted from  S
  at  t 
 = 0. The 

recognized the need to introduce a quantity of this kind, but he did 

disturbance, having a radius r, can be represented by any one 

little more than conjecture about its form.* It remained for the 

of the mathematical expressions describing a harmonic spher-

more analytic Kirchhoff formulation to provide an actual expres-

ical wave, for example,

sion for  K(
 u )
 , which, as we will see in Section 10.4, turns out to be

e






E 
 = 0 cos (v t
 ′ -  k
 r) (10.73)






K(
 u )


r

= 12 (1 + cos u) (10.72)

As illustrated, we have divided the wavefront into a number of 

As shown in Fig. 10.50, u is the angle made with the normal to 

annular regions. The boundaries of the various regions corre-

the primary wavefront, k
 $. This has its maximum value,  K(0)
   = 1, 

spond to the intersections of the wavefront with a series of 

in the forward direction and also dispenses with the back wave, 

spheres centered at  P
  of radius  r


since  K(
 p )


0 + l>2,  r
 0 + l,  r
 0 + 3l>2, and 

= 0.

so forth. These are the Fresnel
  or half-period zones
 . Notice 

Now examine the free propagation of a spherical monochro-

that, for a secondary point source in one zone, there will be a 

matic wave emitted from a  point source S
 . If the Huygens–

point source in the adjacent zone that is farther from  P
  by an 

Fresnel Principle is correct, we should be able to add up the 

amount l

secondary wavelets arriving at a point- P
  and thus obtain the 

>2. Since each zone, though small, is finite in extent, 

we define a ring-shaped differential area element  dS
 , as indi-

unobstructed primary wave. In the process we will gain some 

cated in Fig. 10.52. All the point sources within  dS
  are coherent, 

insights, recognize a few shortcomings, and develop a very useful 

and   we assume that each radiates in
 - phase with the primary 


technique. Consider the construction shown in Fig. 10.51. The 


wave
  [Eq. (10.73)]. The secondary wavelets travel a distance  r
  

to reach  P
 , at a time  t
 , all arriving there with the same phase,  

*It is interesting to read Fresnel’s own words on the matter, keeping in mind that 

v t 
 -  k
 (r +  r
 ). The amplitude of the primary wave at a distance 

he was talking about light as an elastic vibration of the aether.

r from  S
  is e0>r. We assume, accordingly, that the source 

Since the impulse communicated to every part of the primitive wave 

strength per unit area e A
  of the secondary emitters on  dS
  is 

was directed along the normal, the motion which each tends to impress 

upon the aether ought to be more intense in this direction than in any 

proportional to e0>r by way of a constant  Q
 , that is, e A 
 =  Q
 e0>r

other; and the rays which would emanate from it, if acting alone, would be 

. The contribution to the optical disturbance at  P
  from the sec-

less and less intense as they deviated more and more from this direction.

ondary sources on  dS
  is, therefore,

The investigation of the law according to which their intensity varies 

e

about each center of disturbance is doubtless a very difficult matter; . . . 






dE 
 =  K
   A cos [

(Source: Augustine Jean Fresnel, 1788–1827).


r


v t 
 -  k
 (r +  r
 )]  dS 


(10.74)
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Figure 10.51
     Propagation of a spherical wavefront.
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Figure 10.52
     Propagation of a spherical wavefront.
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r
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P


The obliquity factor ( K
  ) must vary slowly and may be assumed 

Hence

to be constant over a single Fresnel zone. To get  dS
  as a function 

- K


of  r
 , begin with


E



l
 e A
 rl


l 
 =

 [sin (v t 
 -  k
 r -  kr
 )]  r
  =  rl


(


r
  

r +  r


=   rl 
 -1

0)


dS 
 = r  d
 w 2p(r sin w)

Upon the introduction of  rl
 -1 =  r
 0 + ( l 
 - 1)l>2   
 and   rl
  =

Applying the law of cosines, we get


r
 0 +  l
 l>2, the expression reduces (Problem 10.69) to


r
 2 = r2 + (r +  r
 0)2 - 2r(r +  r
 0) cos w

2 K


Upon differentiation, this yields






E



l
 e A
 rl


l 
 = ( - 1) l 
 + 1 

 sin [v t 
 -  k
 (r +  r


(

0)] (10.76)

r +  r
 0)

2 r
   dr 
 = 2r(r +  r
 0) sin w  d
 w

Observe that the amplitude of  El
  alternates between positive 

with r and  r
 0 held constant. Making use of the value of  d
 w, we 

and negative values, depending on whether  l
  is odd or even. 

find that the area of the element is therefore

This means that the contributions from adjacent zones are out-

r






dS


  r
   dr 


(10.75)

of-phase and tend to cancel. It is here that the obliquity factor 

= 2p (r +  r
 0)

makes a crucial difference. As  l
  increases, u increases and  K
  

The disturbance arriving at  P
  from the  l
 th zone is

decreases, so that successive contributions do not in fact com-


r


pletely cancel each other. It is interesting that  E



l



l
 > Kl
  is indepen-

e


E



A
 r  

 cos [v t


dent of any position variables. Although the areas of each zone 


l 
 =  Kl
 2p 

-  k
 (r +  r
 )]  dr


(r +  r 
 3

0)  rl 
 - 1

are almost equal, they do increase slightly as  l
  increases, which 
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means an increased number of emitters. But the average dis-

This same result is obtained when

tance from each zone to  P
  also increases, such that  El
 > Kl
  re-

0  El 
 0 6 (0  El
 -1 0 + 0  El
 +1 0)>2

mains constant (see Problem 10.70).

The sum of the optical disturbances from all  m
  zones at  P
  is

If the last term, 0  Em 
 0, in the series of Eq. (10.77) corresponds to 

an even  m
 , the same procedure (Problem 10.71) leads to


E 
 =  E
 1 +  E
 2 +  E
 3 + g+  Em


and since these alternate in sign, we can write

0  E


0  E







E 
 ≈

1 0 -  m 
 0 (10.84)

2

2






E 
 = 0  E
 1 0 - 0  E
 2 0 + 0  E
 3 0 - g ± 0  Em 
 0 (10.77)

Fresnel conjectured that the obliquity factor was such that the 

If  m
  is odd, the series can be reformulated in two ways, either as

last contributing zone occurred at u = 90°, that is,


K(
 u ) 
 = 0 for p>2 …

0  E


0  E


0  E


0  E


0  E


0 u 0 … p


E 
 = 1 0 + a 1 0 - 0  E


3 0 b + a 30 - 0 E


5 0 b + g

2

2

2 0 +

2

2

4 0 +

2

In that case Eqs. (10.83) and (10.84) both reduce to

0  Em


0  Em 
 0

0  Em 
 0

0  E






- 2 0

 (10.78)






E 
 ≈

1 0  (10.85)

+ a

- 0  E


b +

2


m 
 - 1 0 +

2

2

2

or as

when  0  Em 
 0 goes to zero, because  Km(
 p> 2) 
 = 0. Alternatively, 

using Kirchhoff’s correct obliquity factor, we divide the  entire
  

0  E


0  E


0  E



E


2 0

2 0

4 0

spherical wave into zones with the last, or  m
 th, zone surround-

= 0  E
 1 0 -

- a

- 0  E


b

2

2

3 0 +

2

ing  O
 ′. Now u approaches p,  Km(
 p ) 
 = 0, 0  Em 
 0 = 0, and once 

again   E 
 ≈ 0  E
 1 0 >2.   The optical disturbance generated by the 


0  E
 4 0

0  E
 6 0


entire unobstructed wavefront is approximately equal to one
 -

- a

- 0  E


b + g

2

5 0 +

2


half the contribution from the first zone.


If the primary wave were simply to propagate from  S
  to  P
  in 

0  E


0  E


0  E


+ a  m
 -3 0 - 0  E



m 
 - 1 0


m 
 - 1 0


m 
 - 2 0 +

b -

+ 0  Em 
 0

a time  t
 , it would have the form

2

2

2

e

(10.79)






E 
 =

0

 cos [v t 
 -  k
 (r +  r


(

0)] (10.86)

r +  r
 0)

There are now two possibilities: either 0  El 
 0 is greater than the 

Yet the disturbance synthesized from secondary wavelets, Eqs. 

arithmetic mean of its two neighbors 0  El
 -1 0 and 0  El
 +1 0, or it is 

(10.76) and (10.85), is

less than that mean. This is really a question concerning the rate 

of change of  K(
 u )
 . When


K







E 
 = 1e A
 rl sin [v t 
 -  k
 (r +  r


(

0)] (10.87)

r +  r
 0)

0  El 
 0 7 (0  El
 -1 0 + 0  El
 +1 0)>2

These two equations must, however, be exactly equivalent, and 

each bracketed term is negative. It follows from Eq. (10.78) that

we interpret the constants in Eq. (10.87) to make them so. Note 

that there is some latitude in how we do this. We prefer to have 

0  E


0  E







E 
 6

1 0 +  m 
 0 (10.80)

the obliquity factor equal to 1 in the forward direction, that is, 

2

2


K
 1 = 1 (rather than 1>l), from which it follows that  Q
  must be 

and from Eq. (10.79) that

equal to 1>l. In that case, e A
 rl = e0, which is fine dimension-

ally. Keep in mind that e A
  is the secondary-wavelet source 

0  E
 2 0

0  Em
 -1 0

strength per unit area over the primary wavefront of radius r, 






E 
 7 0  E
 1 0 -

-

+ 0  E


2

2


m 
 0  (10.81)

and  e0>r is the amplitude of that primary wave  E
 0 (
 r )
 . Thus 

e A 
 =  E
 0 (
 r )
 >l. There is one other problem, and that’s the p>2 

Since the obliquity factor goes from 1 to 0 over a great many 

phase difference between Eqs. (10.86) and (10.87). This can be 

zones, we can neglect any variation between adjacent zones, 

accounted for if we are willing to assume that the secondary 

that is, 0  E
 1 0 ≈ 0  E
 2 0 and 0  Em
 -1 0 ≈ 0  Em 
 0. Expression (10.81), to sources radiate one-quarter of a wavelength out-of-phase with 

the same degree of approximation, becomes

the primary wave (see Section 4.2.3).

0  E
 1 0

0  Em 
 0

We have found it necessary to modify the initial statement of 






E 
 7

+

 (10.82)

2

2

the Huygens–Fresnel Principle, but this should not distract us 

from our rather pragmatic reasons for using it, which are two-

We conclude from Eqs. (10.80) and (10.82) that

fold. First, the Huygens–Fresnel theory can be shown to be an 

0  E
 1 0

0  Em 
 0

approximation of the Kirchhoff formulation and as such is no 






E 
 ≈

+

 (10.83)

2

2

longer merely a contrivance. Second, it yields, in a fairly simple 
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way, many predictions that are in fine agreement with experi-


Zs
 1

mental observations. Don’t forget that it worked quite well in 


Zs
 3

the Fraunhofer approximation.


10.3.2 The Vibration Curve


We now develop a graphic method for qualitatively analyzing a 

number of diffraction problems that arise predominantly from 


O
 s


circularly symmetric configurations.

Imagine that the first, or polar, Fresnel zone in Fig. 10.51 is 

divided into  N
  subzones by the intersection of spheres, centered 

on  P
 , of radii


r
 0 + l>2 N
 ,  r
 0 + l> N
 ,  r
 0 + 3l>2 N
 , . . . ,  r
 0 + l>2


Zs
 2

Each subzone contributes to the disturbance at  P
 , the resultant of 


Os


which is, of course, just  E
 1. Since the phase difference across the 

entire zone, from  O
  to its edge, is p rad (corresponding to l>2), 

each subzone is shifted by 


Figure 10.54
     Overlapping point images.

p> N
  rad. Figure 10.53 depicts the 

vector addition of the subzone phasors, where, for convenience, 

proportional to the square root of its numerical designation,  m
 . 


N 
 = 10. The chain of phasors deviates very slightly from the 

The radius of the hundredth zone will be only 10 times that of 

circle, because the obliquity factor shrinks each successive am-

the first zone. Initially, therefore, the angle u increases rapidly; 

plitude. When the number of subzones is increased to infinity 

thereafter it gradually slows down as  m
  becomes larger. Accord-

(i.e.,  N 
 S ∞), the polygon of vectors blends into a segment of a 

ingly,  K(
 u )
  decreases rapidly only for the first few zones. The 

smooth spiral called a vibration curve
 . For each additional 

result is that as the spiral circulates around with increasing  m
 , it 

Fresnel zone, the vibration curve swings through  one half-turn
  

becomes tighter and tighter, deviating from a circle by a smaller 

and a phase of p as it spirals inward. As shown in Fig. 10.54, the 

amount for each revolution.

points   Os
 ,  Zs
 1,  Zs
 2,  Zs
 3, . . . ,  O
 ′ s
  on the spiral correspond to Keep in mind that the spiral is made up of an infinite number 

points  O
 ,  Z
 1,  Z
 2,  Z
 3, . . . ,  O
 ′, respectively, on the wavefront in of phasors, each shifted by a small phase angle. The relative 

Fig. 10.51. Each point  Z
 1,  Z
 2, . . . ,  Zm 
 lies on the periphery of a 

phase between any two disturbances at  P
 , coming from two 

zone, so each point  Zs
 1,  Zs
 2, . . . ,  Zsm
  is separated by a half-turn. 

points on the wavefront, say,  O
  and  A
 , can be depicted as shown 

We will see later, in Eq. (10.91), that the radius of each zone is 

in Fig. 10.55. The angle made by the tangents to the vibration 

curve, at points- Os
  and - As
 , is b, and this is the desired phase 

difference. If the point- A
  is considered to lie on the boundary of 

a cap-shaped region of the wavefront, the resultant at  P
  from the 

whole region is the phasor  O


T


s
   As  
 at an angle d.

The total disturbance arriving at  P
  from an unimpeded wave 

is the sum of the contributions from all the zones between  O
  

and   O
 ′. The length of the phasor from  Os
  to  O
 ′ s
  is therefore 

precisely that amplitude. Note that as expected, the amplitude 


OsO
 ′ s
  is just about one-half the contribution from the first zone, 


O


T


sZs
 1. Observe that  Os
   O
 ′ s 
    
 has a phase of 90° with respect to the E
 1

wave arriving at  P
  from  O
 . A wavelet emitted at  O
  in-phase 

with the primary excitation gets to  P
  still in-phase with the pri-

mary wave. This means that  O
 T


s
   O
 ′ s  
 is 90° out-of-phase with the 

unobstructed primary wave. This, as we have seen, is one of the 

shortcomings of the Fresnel formulation.


10.3.3 Circular Apertures


p10


Spherical Waves



Os


Fresnel’s procedure, applied to a point source, can be used as a 


Figure 10.53
   Phasor addition.

semiquantitative method to study diffraction at a circular aperture. 
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Figure 10.55
     Wavefront and corresponding vibration curve.

Envision a monochromatic spherical wave impinging on a screen 

Because each adjacent contribution is nearly equal,

containing a small hole, as illustrated in Fig. 10.56. We first record 


E 
 ≈ 0

the irradiance arriving at a very small sensor placed at point- P
  on 

the symmetry axis. Our intention is to move the sensor around in 

and  I 
 ≈ 0. If, on the other hand,  m
  is odd,

space and so get a point-by-point map of the irradiance of the re-

gion beyond Σ.


E 
 = 0  E
 1 0 - (0  E
 2 0 - 0  E
 3 0)

Assume that the sensor at  P
  “sees” an integral number of 

zones,   m
 , filling the aperture. In actuality, the sensor merely 

- (0  E
 4 0 - 0  E
 5 0) - g-(0  Em
 -1 0 - 0  Em 
 0)

records the irradiance at  P
 , the zones having no reality. If  m
  is 

even, then since  Km 
 Z 0,

and 


E 
 ≈ 0  E
 1 0


E 
 = (0  E
 1 0 - 0  E
 2 0) + (0  E
 3 0 - 0  E
 4 0) + g + (0  Em
 -1 0 - 0  Em 
 0) O



S



A



O



r
 0


P


Σ


Figure 10.56
     A circular aperture.

M10_HECH7226_05_SE_C10_449-533.indd   502

06/11/15   6:37 PM


 



10.3
   Fresnel Diffraction  503



As



Zs
 1


Zs
 1


Zs
 1


Z



As



s
 3


Zs
 3


Zs
 3


O
 s



A



O



O



s



s



s



Zs
 2


Zs
 2


Zs
 2


Os



O



O


(a)


s



s


(b)

(c)


Figure 10.57
   The vibration curves for a circular aperture in an opaque screen. Given that point- A
 lies on the edge of the hole,  As
  is the corresponding point on the vibration spiral. ( a
 ) Here the hole is small, and only about one half of the first Fresnel zone appears within it. The length of the phasor 


O


T

T


sAs 
  is small, and it corresponds to the field amplitude. ( b
 ) As the hole gets bigger,  OsAs 
  gets big-

  

  

ger. Now it encompasses about three quarters of the first zone. ( c
 ) In this case the entire first zone fits in the hole. The phasor  O


T


sAs 
  is a maximum, as is the on-axis electric field. Increasing the size of 

  

the hole will subsequently decrease the phasor and the irradiance on-axis.

which is roughly twice the amplitude of the unobstructed wave. 

through  P
 2, records a bright spot. As it moves radially outward 

This is truly an amazing result. By inserting a screen in the path 

and portions of successive zones are uncovered, the sensor de-

of the wave, thereby blocking out most of the wavefront, we have 

tects a series of relative maxima and minima. The photo on page 

increased the irradiance at  P
  by a factor of four. Conservation 

505 shows the diffraction patterns for a number of holes ranging 

of energy clearly demands that there be other points where the 

in diameter from 1 mm to 4 mm as they appear on a screen 1 m 

irradiance has decreased. Because of the complete symmetry of 

away. Starting from the top left and moving right, the first four 

the setup, we can expect a circular ring pattern. If  m
  is not an in-

holes are so small that only a fraction of the first zone is uncov-

teger (i.e., a fraction of a zone appears in the aperture), the irradi-

ered. The sixth hole uncovers the first and second zones and is 

ance at  P
  is somewhere between zero and its maximum value. 

therefore black at its center. The ninth hole uncovers the first 

You might see this all a bit more clearly if you imagine that 

three zones and is once again bright at its center. Notice that 

the aperture is expanding smoothly from an initial value of 

even slightly beyond the geometric shadow at  P
 3, in Fig. 10.58, 

nearly zero. The amplitude at  P
  can be determined from the vi-

the first zone is partially uncovered. Each of the last few contrib-

bration curve, where  A
  is any point on the edge of the hole. The 

uting segments is only a small fraction of its respective zone and 

phasor magnitude  Os
   As
  is the desired amplitude of the optical 

as such is negligible. The sum of all the amplitudes of the frac-

field. Studying Fig. 10.57, we see that as the hole increases,  As


tional zones, though small, is therefore still finite. Farther into 

moves counterclockwise around the spiral toward  Zs
 1 and a 

the geometric shadow, however, the entire first zone is obscured, 

maximum. Allowing the second zone in reduces  Os
   As
  to  Os
   Zs
 2, 

the last terms are again negligible, and this time the series does 

which is nearly zero, and  P
  becomes a dark spot. As the aperture 

indeed go to zero and darkness.

increases,  Os
   As
  oscillates in length from nearly zero to a num-

We can gain a better appreciation of the actual size of the things 

ber of successive maxima, which themselves gradually de-

we are dealing with by computing the number of zones in a given 

crease. Finally, when the hole is fairly large, the wave is essen-

aperture. The area of each zone (from Problem 10.70) is given by

tially unobstructed,  As
  approaches  O
 ′ s
 , and further changes in 

r


O







A



s
   As
  are imperceptible.

≈

 p r


(

0l  


(10.88)

r +  r
 0)

To map the rest of the pattern, we now move the sensor along 

any line perpendicular to the central axis, as shown in Fig. 10.58. 

The areas of the Fresnel zones are essentially equal, though 

At  P
  we assume that two complete zones fill the aperture and 

they do increase very slightly as their radii increase. 


E 
 ≈ 0. At  P


If the aperture has a radius  R
 , a good approximation of the 

1 the second zone has been partially obscured and 

the third begins to show;  E
  is no longer zero. At  P


number of zones ( N


2 a good frac-


F
 ) within it is simply

tion of the second zone is hidden, whereas the third is even more 

p R
 2

(r +  r


evident. Since the contributions from the first and third zones are 






N


0) R
 2


F 
 =

=


 


(10.89)

in-phase, the sensor, placed anywhere on the dotted circle passing 


A


r r
 0l
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Figure 10.58
     Zones in a circular aperture.
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This quantity is often referred to as the  Fresnel number
 . For exam-

from a great distance away (a data point in the diagram thereupon 

ple, with a point source 1 m behind the aperture (r ≈ 1 m), a plane 

moves from left to right). When viewed by a small detector at a 

of observation 1 m in front of it ( r
 0 = 1 m), and l = 500 nm, there 

location far from that screen, only a tiny fraction of the first zone 

are four zones when  R 
 = 1 nm, and 400 zones when  R 
 = 1 cm. 

will be visible in the hole. The far-field diffraction pattern then 

When both r and  r
 0 are increased to the point where only a small 

obtains and it has an on-axis normalized irradiance of 1.00. 

fraction of a zone appears in the aperture,  NF
  6 6 1 and  Bringing the detector closer to  O
  results in a drop in the on-axis Fraunhofer diffraction occurs. This is essentially a restatement 

irradiance as the arrangement transitions to the near-field. More 

of the Fraunhofer condition of Section 10.1.2; see Problem 10.1 

and more of the first zone appears in the aperture as  P 
 approaches 

as well. When  NF 
 Ú 1, Fresnel diffraction obtains.


O
 , until it entirely fills the hole. At that point much of the light has 

It follows from Eq. (10.89) that the number of zones filling 

redistributed into the off-axis region and the normalized irradiance 

the aperture depends on the distance  r
 0 from  P
  to  O
 . As  P
  moves 

at  P
  has decreased to 0.4; we have unquestionably entered the 

in either direction along the central axis, the number of uncov-

near-field. When  P
  comes close enough so that from this vantage 

ered zones, whether increasing or decreasing, oscillates between 

point the hole contains the first and second Fresnel zones ( NF 
 = 2), 

odd and even integers. As a result, the irradiance goes through a 

the on-axis electric field will be zero at  P
  and the irradiance there 

series of maxima and minima. Clearly, this does not occur in the 

will, accordingly, be zero as well, as seen in Figure 10.59. 

Fraunhofer configuration, where, by definition, only a small 

Notice that the more zones that appear within the fixed-

fraction of a single zone appears in the aperture.*

diameter hole, the smaller must be the area ( A
 ) of each zone; 

Figure 10.59 shows the on-axis normalized irradiance for a 

that’s evident in Eq. (10.89). The net amplitude of the electric 

circular hole of fixed diameter  D
 . It’s normalized so that the max-

field at  P
  from each such diminished zone will be smaller 

imum Fraunhofer irradiance equals 1.00. Imagine that point- P
 , 

as   NF 
 gets larger. Keeping  D
  constant, the maximum on-axis 

the axial point of observation, comes toward the aperture screen 

irradiance—the irradiance arising from any one complete 

zone—will vary as (1> NF
 )2. Consequently, as  P
  approaches  O
 , 

the on-axis secondary irradiance maxima decrease; the peak at 


N


*D. S. Burch, “Fresnel diffraction by a circular aperture,”  Am. J. Phys
 . 53
 , 255 


F 
 = 3  
 in Figure 10.59 is quite small, and at  NF 
 = 5, it’s even 

(1985).

smaller. 
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Diffraction patterns for circular apertures of increasing size. (Francis 

Weston Sears,  Optics
 , ©1949, Addison-Wesley Reading, MA. Pearson Education, Inc.)

By contrast, we saw earlier that if the hole was increased in 

would increase, leaving the area of each zone constant. Each 

diameter, allowing in one more odd-numbered zone (leaving  P
  

zone would then contribute, plus or minus, the same amplitude 

fixed), the on-axis irradiance would increase by the same amount 

electric field at  P
 . And as the hole is gradually opened, letting in 

as would be contributed by the first zone alone. In that situation, 

an odd, and then an even, and then again an odd number of zones, 

as the hole was enlarged the number of zones encompassed 

the field would go from  E
 1 to 0 and back to  E
 1, over and over 

again. Given that  Iu
  is the  unobstructed irradiance at
   P
 , the on-

axis irradiance there, with the aperture screen in place, would 

1

then oscillate from 4 Iu
  to 0 and back to 4 Iu
 , and so forth, as the 

hole enlarged. Figure 10.60 (generated using Fast Fourier trans-

0.8

forms) depicts the irradiance distributions for a circular aperture 

encompassing, in turn, ≈ 0, 0.5, 1.0, 1.5, and 2.0 Fresnel zones. 

0.6

The tallest curve is for the Fraunhofer diffraction (Airy) pattern 

(associated with a small fraction of the first zone) and it’s normal-

0.4

ized to 1.0 on-axis. One complete zone then produces an on-axis 

peak of 0.4, whereas two zones result in an on-axis irradiance of 

Normalized irradiance

zero, as expected. The several irradiance curves drawn to scale, 

0.2

and superimposed for comparison, are pictured in Fig. 10.61.

Consider the configuration where a small opaque disk is now 

00

1

2

3

4

5

6

placed at the center of a circular opening, creating an annulus 

Number of Fresnel zones in aperture

(Fig. 10.62); we’ll need this arrangement presently when we 

study the zone plate. In the diagram the disk happens to obscure 


Figure 10.59
   The normalized irradiance at an on-axis point- P
  that is 

about half of the first zone as seen from an on-axis point- P
 . In 

moved toward  O
 . The number of Fresnel zones within the fixed-diameter 

circular aperture increases accordingly. (James C. Wyant, College of Optical Sciences, 

that case, the phasor on the vibration curve begins at point- As
 , 


University of Arizona, http;//www.optics.arizona.edu/jcwyant/)


which is associated with the edge of the inner disk marked by 
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Figure 10.60  
   Diffraction patterns for circular apertures ranging from Fraunhofer to Fresnel.  


(James C. Wyant, College of Optical Sciences, University of Arizona, http;//www.optics.arizona.edu/jcwyant/)
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1

point- A
 , rather than at  Os
 , which corresponds to the (unob-

Fresnel zones

structed) center of the aperture. Point- As
  is located halfway 

0.8

0.0

along the curve between  Os
  and the end of the first zone  Zs
 1. 

0.5

The phasor extends to point- B


1.0


s
 , which is determined by point- B
  

0.6

1.5

on the edge of the opening. In this case the ring-shaped opening 

2.0

encompasses about 9.2 zones. The length of that phasor corre-

Irradiance 0.4

sponds to the electric-field amplitude at point- P
  resulting from 

Fresnel diffraction at the open annulus.

0.2


Plane Waves


0−

Suppose now that the point source has been moved so far 

3

−2

−1

0

1

2

3

from the diffracting screen that the incoming light can be re-

Angular distance  (
 l D)


garded as a plane wave (r S ∞). Referring to Fig. 10.63, we 


Figure 10.61
   Irradiance distributions produced by circular apertures 

encompassing  ≈0, 0.5, 1.0, 1.5, and 2.0 Fresnel zones. The curves are 

overlapped for ease of comparison. (James C. Wyant, College of Optical Sciences, 


University of Arizona, http;//www.optics.arizona.edu/jcwyant/)
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Figure 10.63
   ( a
 ) Plane waves incident on a circular hole. ( b
 ) A cross  


s


section of the three-dimensional irradiance distribution. The horizontal  

axis is scaled in units of  R
 2>l and the vertical axis in  R
 , where  R
  is the 


Figure 10.62
     An arbitrary ring-shaped hole (an annulus) that passes 

radius of the hole. Thus the aperture extends from  +1 to -1. At a dis-

about 3 23 zones. The opaque central disk (point- A
  is on its edge) obscures 

tance of  R
 2>l =  r
 0 one Fresnel zone fills the aperture and the irradiance 

about two-thirds of the first zone. Point- B
  is on the outer edge of the open-

has a maximum. Beyond that  I(r)
  falls off monotonically until it reaches  

ing. It corresponds to point- B
  

T


s
  on the vibration curve. Phasor  AsBs 
  gives 

the far-field regime. The first four zeros of the Fraunhofer irradiance  

  

us the electric-field amplitude at the on-axis point from which the zones 

distribution lie on the dashed lines. (G. W. Forbes, The Institute of Optics, University  

are viewed.

of Rochester)
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derive an expression for the radius of the  m
 th zone,  Rm
 . Since 

and 


a
 2>l = 7.3 m 


rm 
 =  r
 0 +  m
 l>2,

whereas  R 
 = 3.00 m. We can expect Fresnel diffraction.


R
 2 m 
 = ( r
 0 +  m
 l>2)2 -  r
 20

and so






R
 2 m 
 =  mr
 0l +  m
 2l2>4 (10.90)


10.3.4 Circular Obstacles


Under most circumstances, the second term in Eq. (10.90) is 

In 1818 Fresnel entered a competition sponsored by the French 

negligible as long as  m
  is not extremely large; consequently

Academy. His paper on the theory of diffraction ultimately won 

first prize and the title  Mémoire Courronné
 , but not until it had 






R
 2 m 
 =  mr
 0l  


(10.91)

provided the basis for a rather interesting story. The judging 

committee consisted of Pierre Laplace, Jean B. Biot, Siméon D. 

and  the radii are proportional to the square roots of integers
 . 

Poisson, Dominique F. Arago, and Joseph L. Gay-Lussac—a 

Using a collimated He–Ne laser (l0 = 632.8 nm), the radius of 

formidable group indeed. Poisson, who was an ardent critic of 

the first zone is 1 mm when viewed from a distance of 1.58 m. 

the wave description of light, deduced a remarkable and seem-

Under these particular conditions Eq. (10.91) is applicable as 

ingly untenable conclusion from Fresnel’s theory. He showed 

long as  m
  6 6 107, in which case  Rm 
 = 1 m
  in millimeters. 

that a bright spot would be visible at the center of the shadow of 

Figure 10.58 requires a slight modification in that now the lines 

a circular opaque obstacle, a result that he felt proved the absur-

  O
 1 P
 1,  O
 2 P
 2, and  O
 3 P
 3   
 are perpendiculars dropped from the  dity of Fresnel’s treatment. We can come to the same conclusion points of observation to Σ.

by considering the following, somewhat oversimplified argu-

ment. Recall that an unobstructed wave yields a disturbance [Eq. 

(10.85)] given by  E 
 ≈ 0  E
 1 0 >2. If some sort of obstacle precisely 


EXAMPLE 10.10


covers the first Fresnel zone, so that its contribution of 0  E
 1 0 is 

An opaque screen Σ contains a circular aperture 2.00 mm in 

subtracted out, then  E 
 ≈ - 0  E
 1 0 >2. It is therefore possible that at 

diameter. A monochromatic point source (l0 = 550 nm) lies on 

some point- P
  on the axis, the irradiance will be unaltered by the 

the axis running through the center of the aperture perpendicular 

insertion of that obstruction. This surprising prediction, fash-

to Σ. That source is 3.00 m in front of Σ, and point- P
  is 3.00 m 

ioned by Poisson as the death blow to the wave theory, was al-

beyond it, both on the central axis. Calculate the number of 

most immediately verified experimentally by Arago; the spot 

Fresnel zones that fill the hole as seen from  P
 . Will there be a 

actually existed. Amusingly enough, Poisson’s spot, as it is now 

bright or a dark spot at  P
 ? Verify that the diffraction pattern is of 

called, had been observed many years earlier (1723) by Maraldi, 

the near-field variety.

but this work had long gone unnoticed.*

SOLUTION 

The distance from the point source  S
  to the center of the aperture 


O
  is r. The distance from  O
  to  P
  is  r
 0. Hence

(r +  r


(3.00 + 3.00)(2.00 * 10-3)2


N


0) R
 2


F 
 =

=

r r
 0l

(3.00)(3.00)(550 * 10-9)

6.00(4.00 * 10-6)


NF 
 =

4.95 * 10-6

and the number of zones is  NF 
 = 4.8. If  N
  were 5 zones  P
  would 

correspond to a bright spot; with  N 
 = 4.8 it’s only a fairly bright 

spot.

Fraunhofer diffraction occurs when (according to Section 10.1.2)


R 
 7  a
 2>l

where  a
  is the greatest width of the aperture and  R
  is the smaller 

Shadow of a 1/8-inch diameter ball bearing. The bearing was glued to an 

ordinary microscope slide and illuminated with a He–Ne laserbeam. There 

of the distance from  S
  to Σ or Σ to  P
 . Here  R 
 = 3.00 m,

are some faint extraneous nonconcentric fringes arising from both the micro-


a 
 = 2.00 mm, and l = 550 nm.

scope slide and a lens in the beam. (E.H.)

Hence

*See J. E. Harvey and J. L. Forgham, “The spot of Arago: New relevance for an old 


a
 2>l = (2.00 * 10-3)2>550 * 10-9

phenomenon,”  Am. J. Phys
 . 52
 , 243 (1984).
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We now examine the problem a bit more closely, since it’s 

(a)

quite evident from the accompanying photo that there is a good 

4  10–6

deal of structure in the actual shadow pattern. If the opaque 

obstacle, be it a disk or sphere, obscures the first / zones, then

2  10–6


E 
 = 0  E
 /+1 0 - 0  E
 /+2 0 + g+ 0  Em 
 0

(where, as before, there is no absolute significance to the signs 

0

other than that alternate terms must subtract). Unlike the analy-

Microns

sis for the circular aperture,  Em
  now approaches zero, because 

2  10–6


Km 
 S 0. The series must be evaluated in the same manner  

as that of the unobstructed wave [Eqs. (10.78) and (10.79)].  

Repeating that procedure yields

4  10–6

0

2 10–6

2 10–6

4 10–6

4 10–6

0  E


Microns






E 
 ≈

/ + 1 0  (10.92)

2

(b)

and the irradiance on the central axis is generally only slightly 

4 

less than that of the unobstructed wave.  There is a bright spot 


 10–6


everywhere along the central axis except immediately behind 



the circular obstacle.
  The wavelets propagating beyond the 

2  10–6

disk’s circumference meet in-phase on the central axis. Notice 

that as  P
  moves close to the disk, u increases,  K
 /+1 S 0, and 

0

the irradiance gradually falls off to zero. If the disk is large, the 

Microns

(/ + 1)th zone is very narrow, and any irregularities in the ob-

stacle’s surface may seriously obscure that zone. For Poisson’s 

2  10–6

spot to be readily observable, the obstacle must be smooth and 

circular.

4  10–6

If  A
  is a point on the periphery of the disk or sphere,  As
  is the 

0

2 10–6

2 10–6

4 10–6

4 10–6

corresponding point on the vibration curve (Fig. 10.64). As the 

Microns

disk increases for a fixed  P
 ,   As
  spirals in counterclockwise  


Figure 10.65


toward  O
 ′

    Poisson’s spot. These computed images detail the inner 


s
 , and the amplitude  AsO
 ′ s
  gradually decreases. The 

region of the diffraction pattern. The brightness of the rings has been 

same thing happens as  P
  moves toward a disk of constant 

accentuated to make them a bit more visible. The circular obstacle was  

size. For a small obstacle,  AsO
 ′ s
  is nearly equal to  OsO
 ′ s
  

40 mm in diameter, and in ( a
 ) l = 350 nm, whereas in ( b
 ) l = 700 nm. 

and the irradiance at the on-axis point- P
  is approximately 

(Wolfram Demonstration Project, http://demonstrations.woffram.com/PoissonSpot / contributed by 


equal to the unobstructed irradiance.

Gábor Angler)

Off the axis, the zones covered in Fig. 10.58 for the circular 

aperture will now be exposed and vice versa. Accordingly, a 

whole series of concentric bright and dark rings will surround 

the central spot (Fig. 10.65).

The opaque disk images  S
  at  P
  and would similarly form a 


As


crude image of every point in an extended source. R. W. Pohl 

has shown that a small disk can therefore be used as a crude 


O
 s


positive lens.

The diffraction pattern can be seen with little difficulty, but 

you need a telescope or binoculars. Glue a small ball bearing  

(≈18 or 14 inch in diameter) to a microscope slide, which then 

serves as a handle. Place the bearing a few meters beyond the 

point source and observe it from 3 or 4 meters away. Position it 

so that it is directly in front of and completely obscuring the 


O


source. You will need the telescope to magnify the image, since 


s



r
 0 is so large. If you can hold the telescope steady, the ring sys-


Figure 10.64
     The vibration curve applied to a circular obstruction.

tem should be quite clear.
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Figure 10.66
     The phasors for successive zones alternate in sign. They’re 

also very nearly the same length, so obscuring either all the odd-numbered 

(a)

(b)

ones, or all the even-numbered ones, will greatly increase the electric-field 

amplitude, that is, the sum of all the phasors.


10.3.5 The Fresnel Zone Plate


In our previous considerations, we utilized the fact that succes-

sive Fresnel zones tended to nullify each other (Fig. 10.66). This 

suggests that we will observe a tremendous increase in 





irradiance at  P
 , if we remove either all the even or all the odd 

zones. A screen that alters the light, either in amplitude or phase, 

(c)

coming from every other half-period zone is called a zone plate
 .*

Suppose that we construct a zone plate that passes only the 

first 20 odd zones and obstructs the even zones,


E 
 =  E
 1 +  E
 3 +  E
 5 + g+  E
 39

and each of these terms is approximately equal. For an unob-

structed wavefront, the disturbance at  P
  would be  E
 1>2, where-

as with the zone plate in place,  E 
 ≈ 20 E
 1. Adding the phasors in 

Fig. 10.66, tip-to-tail, for all the odd zones, or all the even zones, 

produces an extremely large on-axis electric-field amplitude. The 

irradiance has thereby been increased by a factor of 1600.

To calculate the radii of the zones or regions shown in Fig. 10.67, 

refer to Fig. 10.68. The outer edge of the  m
 th region is marked 

by the point- Am
 . By definition, a wave that travels the path  


S
 – Am
 – P
  must arrive out-of-phase by  m
 l>2 with a wave that  

traverses the path  S
 – O
 – P
 , that is,





(r m 
 +  rm
 ) - (r0 +  r
 0) =  m
 l>2 (10.93)


Figure 10.67
   ( a
 ) and ( b
 ) zone plates. ( c
 ) A zone plate used to image 

alpha particles coming from a target 1 cm in front, on photographic film  

*Lord Rayleigh seems to have invented the zone plate, as witnessed by this entry 

5 cm behind. The plate is 2.5 mm in diameter and contains 100 zones, the 

of April 11, 1871, in his notebook: “The experiment of blocking out the odd 

narrowest of which is 5.3 mm wide. (University of California, Lawrence Livermore 

Huygens zones so as to increase the light at centre succeeded very well.”

National Laboratory)
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Figure 10.68



f


  Zone-plate geometry.

1


f
 1

Clearly,  r m 
 = ( R
 2 m 
 + r20)1>2   
 and   rm 
 = ( R
 2 m 
 +  r
 20)1>2. Expand both these expressions using the binomial series. Since  Rm
  is 

comparatively small, retaining only the first two terms yields


Figure 10.69
   Zone-plate foci.


R
 2 m



R
 2 m


r m 
 = r0 +

 and  r


Following a suggestion by Lord Rayleigh, R. W. Wood con-

2


m 
 =  r
 0 +

r0

2 r
 0

structed a  phase-reversal zone plate
 . Instead of blocking out 

Finally, substituting into Eq. (10.93), we obtain

every other zone, he increased the thickness of alternate zones, 

thereby retarding their phase by p. Since the entire plate is 

1

1


m
 l

transparent, the amplitude should double, and the irradiance 





a + b =

 (10.94)

should increase by a factor of 4. In actuality, the device does not 

r0


r
 0


R
 2 m


work quite that well because the phase is not really constant 

Under plane-wave illumination (r

over each zone. Ideally, the retardation should be made to vary 

0 S ∞ ), and Eq. (10.94) 





reduces to

gradually over a zone, jumping back by p at the start of the next 

zone.*






R
 2 m 
 =  mr
 0l [10.91]

The usual way to make an optical zone plate is to draw a 

large-scale version and then photographically reduce it. Plates 

which is an approximation of the exact expression stated by  

with hundreds of zones can be made by photographing a 

Eq. (10.90). Equation (10.94) has a form identical to that of the 

Newton’s ring pattern, in collimated quasimonochromatic light. 

thin-lens equation, which is not merely a coincidence, since  S
  is 

Rings of aluminum foil on cardboard work very well for micro-

actually imaged in converging diffracted light at  P
 . Accordingly, 

waves.

the  primary focal length
  is said to be

Zone plates can be made of metal with a self-supporting 


R
 2

spoked structure, so that the transparent regions are devoid of 






ƒ



m


1 =

 (10.95)


m


any material. These will function as lenses in the range from 

l

ultraviolet to soft X-rays, where ordinary glass is opaque.

(Note that the zone plate will show extensive chromatic aberration.) 

The points- S
  and - P
  are said to be conjugate foci. With a colli-


EXAMPLE 10.11


mated incident beam (Fig. 10.69), the image distance is the pri-

The primary focal length of a zone plate is to be 200 cm using 

mary or  first-order
  focal length, which in turn corresponds to a 

500-nm light. The plate must be only slightly larger than 10.0 

principal maximum in the irradiance distribution. In addition to 

mm in diameter; how many transparent zones, or regions, 

this real image, there is also a virtual image formed of diverging 

should it contain? Locate the third-order focal point, from 

light a distance  ƒ
 1 in front of g. At a distance of  ƒ
 1 from g, 

which exactly 3 Fresnel half-period zones on the wavefront fill 

each ring on the plate is filled by exactly one half-period zone 

each transparent region on the plate. 

on the wavefront. If we move a sensor along the  S
 – P
  axis to-


Continued


ward  g, it registers a series of very small irradiance maxima 

and minima until it arrives at a point  ƒ
 1>3  
 from g. At that  third-



order focal point
 , there is a pronounced irradiance peak. Addi-

*See Ditchburn,  Light
 , 2nd ed., p. 232; M. Sussman, “Elementary diffraction 

theory of zone plates,”  Am. J. Phys
 . 28
 , 394 (1960); Ora E. Myers, Jr., “Studies 

tional focal points will exist at  ƒ
 1>5,  ƒ
 1>7, and so forth, unlike 

of transmission zone plates,”  Am. J. Phys
 . 19
 , 359 (1951); and J. Higbie, “Fresnel 

a lens but even more unlike a simple opaque disk.

zone plate: Anomalous foci,”  Am. J. Phys
 . 44
 , 929 (1976).
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SOLUTION
  


dS
  is an area element situated at some arbitrary point- A
  whose 

coordinates are ( y
 ,   z
 ). The location of the origin  O
  is deter-

From Eq. (10.95)

mined by a perpendicular drawn to g from the position of the 


R
 2

monochromatic point source. The contribution to the optical 


ƒ



m


1 =

disturbance at  P
  from the secondary sources on  dS
  has the form 


m
 l

given by Eq. (10.74). Making use of what we learned from the 

freely propagating wave (e A
 rl

(10.0

= e0), we can rewrite that equa-

* 10-3)2

and 

200 * 10-2 =





tion as


m
 (500 * 10-9)


K(
 u )
 e

Accordingly  m







dE


0

= 100; there are to be 100 transparent zones or 


P 
 =

 cos [ k
 (r +  r
 ) - v t
 ]  dS
  (10.96)

r r
 l

regions on the plate. 

For the third-order focal point each transparent region is filled 

The sign of the phase has changed from that of Eq. (10.74) 

by three half-period Fresnel zones. Thus we can concentrate on 

and is written in this way to conform with traditional treat-

the first such region. From Eq. (10.91), the radius of the first 

ment.  In the case where the dimensions of the aperture are 


three half-period Fresnel zones when viewed from  P
  is 


small
  in comparison to r

23 r
 0l, 

0 and  r
 0, we can set  K(
 u ) 
 = 1  
 and 

and that must equal the open radius of the first region,  R


let  1

1, on the 

>r r
  equal 1>r0 r
 0 in the amplitude coefficient. Being 

plate. In other words, when  P
  is at the third-order focal point, 

more careful about approximations introduced into the 


r


phase, apply the Pythagorean theorem to triangles  SOA
  and 

0 =  ƒ
 3 and the radius of the plate’s first zone is


POA
  to get


R
 1 = 23 r
 0l = 23 ƒ
 3l

r = (r20 +  y
 2 +  z
 2)1>2

1  R
 2

1

and so 


ƒ


  1


ƒ


and 


r


3 =

=

1 

= ( r
 20 +  y
 2 +  z
 2)1>2  


3 1l

3

Expand these using the binomial series and form

r


10.3.6  Fresnel Integrals and the Rectangular 






0 +  r
 0

r +  r 
 ≈ r0 +  r
 0 + ( y
 2 +  z
 2) 

 (10.97)


Aperture


2r0 r
 0

We now treat a class of problems within the domain of Fresnel 

Observe that this is a more sensitive approximation than 

diffraction, which no longer have the circular symmetry of  

that used in the Fraunhofer analysis [Eq. (10.40)], where the 

the previously studied configurations. Consider Fig. 10.70 where 

terms quadratic and higher in the aperture variables were 

neglected. The disturbance at  P
  in the complex representa-

tion is


S



z


e


y
 2  z
 2






E


  ˜


0 e
 - i
 v t



P 
 =

  eik
 (r +  r
 )  dy
   dz 


(10.98)

r

3

0 r
 0l 3 y
 1  z
 1

r

r

0

Following the usual form of derivation, we introduce the 





dimensionless variables  u
  and  v
  defined by


y



A 
 ( y
 ,  z
 )


z
 2

2(r

1>2

2(r

1>2






u 
 K  y
   c 0 +  r
 0)d   v 
 K  z
   c 0 +  r
 0)d  (10.99)

lr0 r
 0

lr0 r
 0


O



y
 2

Substituting Eq. (10.97) into Eq. (10.98) and utilizing the new 


z
 1  y
 1

variables, we arrive at


r



r


0

e


u
 2


v
 2


E


  ˜


0

Σ


P 
 =

  ei
 [ k
 (r0+ r
 0)-v t
 ] 

  ei
 p u
 2>2  du
  

  ei
 p v
 2>2  dv


2(r

3

3

0 +  r
 0)


u
 1


v
 1

(10.100)


P


The term in front of the integral represents the unobstructed 

disturbance at  P
  divided by 2; call it  E


  ˜
 u
 >2. The integral itself 


Figure 10.70
     Fresnel diffraction at a rectangular aperture.

can be evaluated using two functions, 𝒞 (w)
  and 𝒮 (w)
 , where  w
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represents either  u
  or  v
 . These quantities, which are known as 


TABLE 10.3    Fresnel Integrals


the Fresnel integrals
 , are defined by


w



 w 


𝒞 (w) 


𝒮 (w) w 


𝒞 (w) 


𝒮 (w)


𝒞 (w) 
 K 3  cos (p w
 ′2>2)  dw
 ′

 0.00 

0.000 0 

0.000 0 

4.50 

0.526 1 

0.434 2

0

 0.10 

0.100 0 

0.000 5 

4.60 

0.567 3 

0.516 2


w


 0.20 

0.199 9 

0.004 2 

4.70 

0.4914 

0.567 2





𝒮 (w) 
 K 3  sin (p w
 ′2>2)  dw
 ′ (10.101)  0.30  0.2994  0.0141 

4.80 

0.433 8 

0.496 8

0

 0.40 

0.397 5 

0.033 4 

4.90 

0.500 2 

0.435 0

Both functions have been extensively studied, and their numerical 

values are available in Table 10.3 and Fig. 10.71. Their interest to 

 0.50 

0.492 3 

0.064 7 

5.00 

0.563 7 

0.499 2

us at this point derives from the fact that

 0.60 

0.581 1 

0.110 5 

5.05 

0.545 0 

0.544 2

 0.70 

0.659 7 

0.172 1 

5.10 

0.499 8 

0.562 4


w


 0.80 

0.723 0 

0.249 3 

5.15 

0.455 3 

0.542 7

3   ei
 p w
 ′2>2  dw
 ′ = 𝒞 (w) 
 +  i
 𝒮 (w)


 0.90 

0.764 8 

0.339 8 

5.20 

0.438 9 

0.496 9

0

 1.00 

0.779 9 

0.438 3 

5.25 

0.461 0 

0.453 6

and this, in turn, has the form of the integrals in Eq. (10.100). 

The disturbance at  P
  is then

 1.10 

0.763 8 

0.536 5 

5.30 

0.507 8 

0.440 5

 1.20 

0.715 4 

0.623 4 

5.35 

0.549 0 

0.466 2


E


  ˜


 1.30 

0.638 6 

0.686 3 

5.40 

0.557 3 

0.514 0






E


  ˜



u



P 
 =

 [𝒞 (u) 
 +  i
 𝒮 (u)
 ] u
 2

 (10.102)

2


u


 1.40 

0.543 1 

0.713 5 

5.45 

0.526 9 

0.551 9

1 [𝒞 (v) 
 +  i
 𝒮 (v)
 ] v
 2


v
 1

which can be evaluated using the tabulated values of 𝒞 (u


 1.50 

0.445 3 

0.697 5 

5.50 

0.478 4 

0.553 7


1)
 , 

𝒞 (u


 1.60 

0.365 5 

0.638 9 

5.55 

0.445 6 

0.518 1


2)
 ,  𝒮 (u1)
 , and so on. The mathematics becomes rather in-

volved if we compute the disturbance at all points of the plane of 

 1.70 

0.323 8 

0.549 2 

5.60 

0.451 7 

0.470 0

observation, leaving the position of the aperture fixed. Instead 

 1.80 

0.333 6 

0.450 8 

5.65 

0.492 6 

0.444 1

we will fix the  S
 – O
 – P
  line and imagine that we move the aper-

 1.90 

0.394 4 

0.373 4 

5.70 

0.538 5 

0.459 5

ture through small displacements in the g-plane. This has the 

 2.00 

0.488 2 

0.343 4 

5.75 

0.555 1 

0.504 9

effect of translating the origin  O
  with respect to the fixed aper-

 2.10 

0.581 5 

0.374 3 

5.80 

0.529 8 

0.546 1

ture, thereby scanning the pattern over the point- P
 . Each new 

 2.20 

0.636 3 

0.455 7 

5.85 

0.481 9 

0.551 3

position of  O
  corresponds to a new set of relative boundary loca-

 2.30 

0.626 6 

0.553 1 

5.90 

0.448 6 

0.516 3

tions  y
 1,  y
 2,  z
 1, and  z
 2. These in turn mean new values of  u
 1,  u
 2, 2.40 

0.555 0 

0.619 7 

5.95 

0.4566 

0.468 8


v
 1, and  v
 2, which, when substituted into Eq. (10.102), yield a 

new  E


  ˜


 2.50 

0.457 4 

0.619 2 

6.00 

0.499 5 

0.447 0


P
 . The error encountered in such a procedure is negligible, 

as long as the aperture is displaced by distances that are small 

 2.60 

0.389 0 

0.550 0 

6.05 

0.542 4 

0.468 9

compared with 

 2.70 

0.392 5 

0.452 9 

6.10 

0.549 5 

0.516 5

r0. This approach is therefore even more appro-

priate to incident plane waves. In that case, if  E


 2.80 

0.467 5 

0.391 5 

6.15 

0.514 6 

0.549 6

0 is the amplitude 

of the incoming plane wave at g, Eq. (10.96) becomes simply

 2.90 

0.562 4 

0.410 1 

6.20 

0.467 6 

0.539 8


E


 3.00 

0.605 8 

0.496 3 

6.25 

0.449 3 

0.495 4


dE


0 K(
 u )



P 
 =

 cos ( kr 
 - v t
 )  dS



r


 3.10 

0.561 6 

0.581 8 

6.30 

0.476 0 

0.455 5

l

 3.20 

0.466 4 

0.5933 

6.35 

0.524 0 

0.456 0

where, as before, e A 
 =  E
 0>l. This time, with

 3.30 

0.405 8 

0.519 2 

6.40 

0.549 6 

0.496 5

 3.40 

0.438 5 

0.429 6 

6.45 

0.529 2 

0.539 8

2 1>2

2 1>2






u 
 =  y
  a b   v 
 =  z
  a b  (10.103)

 3.50 

0.532 6 

0.415 2 

6.50 

0.481 6 

0.545 4

l r
 0

l r
 0

 3.60 

0.588 0 

0.492 3 

6.55 

0.452 0 

0.507 8

where we have divided the numerator and denominator in Eq. 

 3.70 

0.542 0 

0.575 0 

6.60 

0.469 0 

0.463 1

(10.99) by r0 and then let it go to infinity,  E
  ˜
 P
  takes the same 

 3.80 

0.448 1 

0.565 6 

6.65 

0.516 1 

0.454 9

form as Eq. (10.102), where  E


  ˜
 u
  is again the unobstructed distur-

 3.90 

0.422 3 

0.475 2 

6.70 

0.546 7 

0.491 5

bance. The irradiance at  P
  is  E


  ˜
 P
   E
  ˜
 * P
 >2; hence

 4.00 

0.498 4 

0.420 4 

6.75 

0.530 2 

0.536 2


I



I



u


 4.10 

0.573 8 

0.475 8 

6.80 

0.483 1 

0.543 6


P 
 =

 5[𝒞 (u


4


2) 
 - 𝒞 (u1)
 ]2 + [𝒮 (u2) 
 - 𝒮 (u1)
 ]2 6

 4.20 

0.541 8 

0.563 3 

6.85 

0.453 9 

0.506 0

    * 5[𝒞 (v


 4.30 

0.449 4 

0.554 0 

6.90 

0.473 2 

0.462 4


2) 
 - 𝒞 (v1)
 ]2 + [𝒮 (v2) 
 - 𝒮 (v1)
 ]2 6  (10.104)

 4.40 

0.438 3 

0.462 2 

6.95 

0.520 7 

0.4591

where  Iu
  is the unobstructed irradiance at  P
 .
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will also be equal to that found at 0.1 mm to the right of 

0.8


(w)


center. Indeed, because the aperture is square, the same value 


(w)


0.7

obtains 0.1 mm directly above and below center as well  

0.6

(see photo).

grals

We can approach the limiting case of free propagation by 

0.5

allowing the aperture dimensions to increase indefinitely. 

0.4

Making use of the fact that 𝒞 (
 ∞ ) 
 = 𝒮 (
 ∞ ) 
 = 12 and 𝒞 (
 - ∞ ) 


0.3

Fresnel inte

= 𝒮 (
 - ∞ ) 
 = - 12 the irradiance at  P
 , opposite the center of the 

0.2

aperture, is

0.1


IP 
 =  Iu



w


0

0.6 1.2 1.8 2.4 3.0 3.6

which is exactly correct. This is rather remarkable, considering 

that when the length  OA 
 in Fig. 10.70  
 is large, all the approxi-


Figure 10.71
     Fresnel cosine and sine intergrals.

mations made in the derivation are no longer applicable.  

It should be realized, however, that a relatively small aperture 

satisfying the approximations can still be large enough to  


EXAMPLE 10.12


effectively show no diffraction in the region opposite its center. 

A square hole 2.00 mm * 2.00 mm in an opaque screen is  

For example, with r0 =  r
 0 = 1 m an aperture that subtends an 

illuminated normally by plane waves of 500-nm light. The point 

angle of about 1° or 2° at  P
  may correspond to values of 0  u 
 0 and 

of observation  P
  is 4.0 m beyond the screen directly opposite 

0  v 
 0 of roughly 25 to 50. The quantities 𝒞 and 𝒮 are then very 

point- O
  at the center of the aperture. Using the fact that the 

close to their limiting values of 12. Further increases in the aper-

Fresnel integrals are odd functions, determine (with the help  

ture dimensions beyond the point where the approximations 

of Table 10.3) the irradiance at  P
  in terms of the unobstructed 

are violated can therefore introduce only a small error. This 

irradiance  I


implies that we need not be very concerned about restricting 


u
 .

the actual aperture size (as long as  r
 0 7 7l  
 and r0 7 7l). The 


SOLUTION
  

contributions from wavefront regions remote from  O
  must be 

From Eq. (10.103)

quite small, a condition attributable to the obliquity factor and 

the inverse  r
 -dependence of the amplitude of the secondary 

2 1∙2

2 1∙2

wavelets.


u 
 =  y
  a b  and  v 
 =  z
  a b

l r
 0

l r
 0

Referring to Fig. 10.70,  z
 1 = -1.00 mm,  z
 2 = +1.00 mm, 


y
 1 = -1.00 mm, and  y
 2 = +1.00 mm. Hence  u
 1 = -1.00, 


u
 2 =  +1.00,  v
 1 = -1.00, and  v
 2 = +1.00. The Fresnel inte-


10.3.7 The Cornu Spiral


grals are odd functions and so 

Marie Alfred Cornu (1841–1902), professor at the École Poly-

𝒞 (w) 
 = -𝒞 (
 - w)
  and 𝒮 (w) 
 = -𝒮 (
 - w)


technique in Paris, devised an elegant geometrical depiction of 

the Fresnel integrals, akin to the vibration curve already consid-

Eq. 10.104 then becomes

ered. Figure 10.72, which is known as the  
Cornu spiral

 , is a 

plot in the complex plane of the points  B
  ˜
 (w)



I


K 𝒞 (w) 
 +  i 
 𝒮 (w)



I



u


as  w
  takes on all possible values from 0 to ± ∞. This just means 


P 
 =

5 32𝒞 (1)
 42 + 32𝒮 (1)
 4262

4

that we plot 𝒞 (w)
  on the horizontal or real axis and 𝒮 (w)
  on the 

From Table 10.3 𝒞 (1) 
 = 0.779 9 and 𝒮 (1) 
 = 0.438 3 and so

vertical or imaginary axis. The appropriate numerical values are 

taken from Table 10.3. If  d
 / is an element of arc length mea-


I


sured along the curve, then


I



u



P 
 =

52.433 0 + 0.768 462

4


d
 /2 =  d
  𝒞2 +  d
 𝒮2

Hence 


IP 
 = 2.56  Iu
  

From the definitions (10.101),


d
 /2 = (cos2 p w
 2>2 + sin2 p w
 2>2)  dw
 2

To find the irradiance in the above example somewhere else 

and 


d
 / =  dw 


in the pattern—for instance, 0.1 mm to the left of center—move 

the aperture relative to the  OP
 -line accordingly, whereupon 

Values of  w
  correspond to the arc length and are marked off along 


u
 2 = 1.1,  u
 1 = -0.9,  v
 2 = 1.0, and  v
 1 = -1.0. The resultant  IP
  

the spiral in Fig. 10.72. As  w
  approaches ± ∞, the curve spirals 
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(a)

(b)

(c)

(d)

(e)

(f)

( a
 ) A typical Fresnel pattern for a square aperture. ( b
 )–( f
 ) A series of Fresnel patterns for increasing square apertures under identical conditions. Note that as the hole gets larger, the pattern changes from a spread-out Fraunhofer-like distribution to a far more localized structure. (E.H.)

to  O


into its limiting values at  B
 ˜
 +


s
 , because  P
  is now opposite the aperture’s center.) Label 

= 12 +  i
  12 and  B
 ˜
 - = - 12 -  i
  12 . The 

the two points  B
  ˜


slope of the spiral is

1 (u)
  and  B


 ˜
 2 (u)
 , respectively, as in Fig. 10.73. 

The phasor B˜
 12 (u)
  drawn from  B
  ˜
 1 (u)
  to  B
  ˜
 2 (u)
  is just the complex number  B
  ˜
 2 (u) 
 -  B
  ˜
 1 (u)



d
 𝒮

sin p w
 2>2

p w
 2





= tan 

 (10.105)


d
 𝒞 = cos p w
 2>2

2






B˜
 12 (u) 
 = [𝒞 (u) 
 +  i 
 𝒮 (u)
 ] u
 2 u
 1

and is the first term in the expression [Eq. (10.102)] for  E


  ˜
 P
 . 

and so the angle between the tangent to the spiral at any point 

Similarly, for  v
 1 = -1.0 and  v
 2 = 1.0,  B
  ˜
 2 (v) 
 -  B
  ˜
 1 (v) 
 is and the 𝒞-axis is b = p w
 2>2.

The Cornu spiral can be used either as a convenient tool for 


B˜
 12 (v) 
 = [𝒞 (v) 
 +  i 
 𝒮 (v)
 ] v
 2 v
 1

quantitative determinations or as an aid to gaining a qualitative 

picture of a diffraction pattern (which was also the case with the 

which is the latter portion of  E


  ˜
 P
 . The magnitudes of these two 

vibration curve). As an example of its quantitative uses, recon-

complex numbers are just the lengths of the appropriate 





sider the problem of a 2-mm-square hole, dealt with in the pre-


B˜
 12-phasors, which can be read off the curve with a ruler, using 

vious section (l = 500 nm,  r


either axis as a scale. The irradiance is then simply

0 = 4 m, and plane-wave illumina-

tion). We wish to find the irradiance at  P
  directly opposite the 


I


aperture’s center, where in this case  u







I



u


1 = - 1.0   
 and   u
 2 = 1.0.


P 
 =

 0 B˜


4

12 (u) 
 0 2 0 B



˜ 
 12 (v) 
 02 (10.106)

The variable  u
  is measured along the arc; that is,  w
  is replaced 

by  u
  on the spiral. Place two points on the spiral at distances 

and the problem is solved. Notice that the arc lengths along the 

from  O


spiral (i.e., 


s
  equal to  u
 1 and  u
 2. (These are symmetrical with respect 

∆ u 
 =  u
 2 -  u
 1 and ∆ v 
 =  v
 2 -  v
 1) are proportional to 
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Figure 10.72
     The Cornu spiral.
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~
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∞ B
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 50

–0.6

2.5

–0.7

1.5

the aperture’s overall dimensions in the  y
 - and  z
 -direction, re-

Maintaining the position of  P
  opposite the center of the dif-

spectively.  The arc lengths are therefore constant, regardless of 


fracting hole, now suppose that the aperture size is adjustable. 


the position of P in the plane of observation.
  On the other hand, 

As the square hole is gradually opened, ∆ v
  and ∆ u
  increase 

the phasors B˜
 12 (u)
  and B˜
 12 (v)
 , which span the arc lengths, are 

accordingly. The endpoints  B
  ˜
 1 and  B
  ˜
 2 of either of these arc 

not constant, and they do depend on the location of  P
 .

lengths spiral around counterclockwise toward their limiting val-

ues of  B
  ˜
 - and  B
  ˜
 +, respectively. The phasors B˜
 12 (u)
  and B˜
 12 (v)
 , 1.5

which are identical in this instance because of the symmetry, pass 

through a series of extrema. The central spot in the pattern there-

fore gradually shifts from relative brightness to darkness and 


B+


~

back. All the while, the entire irradiance distribution varies con-


u
 2 ~ B
 2

tinually from one beautifully intricate display to the next (see 

photo p. 515). For any particular aperture size, the off-center dif-

~

fraction pattern can be computed by repositioning  P
 . It is helpful 


B
 12( u
 )


u


to visualize the arc length as a piece of string, whose measure is 

0.5

equal to either ∆ v
  or ∆ u
 . Imagine it lying on the spiral, with  Os
  


Os


initially at its midpoint. As  P
  is moved, for example, to the left 

–0.5

∆ u


along the  y
 -axis (Fig. 10.70),  y
 1 and therefore  u
 1 both become 

less negative, and  y
 2 and  u
 2 increase positively. The result is that 

our ∆ u
 -string slides up the spiral. As the distance between the 

~

endpoints of the ∆ u
 -string changes, 0 B˜
 12 (u) 
 0 changes, and the ir-


B
 1


u 
 –1.0

~

radiance [Eq. (10.106)] varies accordingly. When  P
  is at the left 

1


B
 –


edge of the geometric shadow,  y
 1 =  u
 1 = 0. As the point of ob-

servation moves into the geometric shadow,  u
 1 increases  posi-



tively
 , and the ∆ u
 -string is now entirely on the upper half of the 

–1.5

Cornu spiral. As  u
 1 and  u
 2 continue to increase, the string winds 


Figure 10.73
   Cornu spiral.

ever more tightly about the  B
  ˜
 +-limit. Its ends,  B
  ˜
 1 and  B
  ˜
 2, become M10_HECH7226_05_SE_C10_449-533.indd   516
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closer to each other, with the result that 0 B˜



Z


12 (u) 
 0  becomes quite 


s
 1

small, and  IP
  decreases within the geometric shadow region. 

(We will come back to this point in more detail in the next sec-

tion.) The same process applies when we scan in the  z
 -direction; 


B+


~

∆ v
  is constant and 0 B˜
 12 (v) 
 0 varies.

If the aperture is completely opened out, revealing an unob-


Zs
 2

structed wave,  u
 1 =  v
 1 = - ∞, which means that  B
  ˜
 1 (u) 
 -  B
  ˜
 1 (v)
  =


B
  ˜
 - 
 and  B
  ˜
 2 (u) 
 -  B
  ˜
 2 (v) 
 =  B
  ˜
 +. The  B
 ˜
 - B
 ˜
 +-line makes a 45° angle with the 𝒞-axis and has a length equal to 12. Consequently, 


Os


b

the phasors B˜
 12 (u)
  and B˜
 12 (v)
  each have magnitude 12 and 

phase  p>4, that is, B˜
 12 (u) 
 = 12 exp ( i
 p>4) and B˜
 12 (v)
  =

12 exp ( i
 p>4). It follows from Eq. (10.102) that


Z







E


  ˜



s
 2


P 
 =  E


  ˜
 uei
 p>2 (10.107)

and as in Section 10.3.1, we have the unobstructed amplitude, 

~


B
 –


except for a p>2 phase discrepancy.* Finally, using Eq. (10.106), 


IP 
 =  Iu
 .

We can construct a more palpable picture of what the  


Z
 s
 1

Cornu spiral represents by considering Fig. 10.74, which de-

picts a cylindrical wavefront propagating from a coherent line 


Figure 10.75
     Cornu spiral related to the cylindrical wavefront.

source. The present procedure is exactly the same as that used 

in deriving the vibration curve, and the reader is referred back 

to Section 10.3.2 for a more leisurely discussion. Suffice it to 

Each strip zone is similarly divided into  N
  subzones, which 

say that the wavefront is divided into  half-period strip zones
  by 

have a relative phase difference of p> N
 . The vector sum of all 

its intersection with a family of cylinders having a common axis 

the amplitude contributions from zones above the center line is 

and radii of  r
 0 + l>2,  r
 0 + l,  r
 0 + 3l>2, and so on.  The contri-


a spiraling polygon. If  N
  goes to ∞ and the contributions gener-


butions from these strip zones are proportional to their areas, 


ated by the strip zones below the center line are included, the 


which decrease rapidly.
  This is in contrast to the circular zones, 

polygon smooths out into a continuous Cornu spiral. This is not 

whose radii increase, thereby keeping the areas nearly constant. 

surprising, since the coherent line source generates an infinite 

number of overlapping point-source patterns.

Figure 10.75 shows a number of unit tangent vectors at 

various positions along the spiral. The vector at  Os
  corre-

sponds to the contribution from the central axis passing 

through   O
  on the wavefront. The points associated with the 

boundaries of each strip zone can be located on the spiral, 

since at those positions the relative phase, b, is either an even 

or odd multiple of p. For example, the point  Zs
 1 on the spiral 

(Fig. 10.75), which is related to  z
 1 (Fig. 10.74) on the wave-

front, is by definition 180°out-of-phase with  Os
 . Therefore  Zs
 1 


r 
  + 


O


0

l

must be located at the top of the spiral, where  w 
 = 12  
 inas-


z



r 
  + 

0

l2

much as there b = p w
 2>2 = p.

2


r
 0


z


It will be helpful as we go along in the treatment to visualize 

1

the blocking out of these strip zones when analyzing the effects 


P


of obstructions. Obviously, one could even make an appropriate 

zone plate, which would accomplish this to some advantage, 


z
 1

and such devices are in use.


z
 2


Figure 10.74



10.3.8 Fresnel Diffraction by a Slit


    Cylindrical wavefront zones.

We can treat Fresnel diffraction at a long slit as an extension of 

the rectangular-aperture problem. We need only elongate the 

rectangle by allowing  y
 1 and  y
 2 to move very far from  O
 , as 

*The phase discrepancy will be resolved by the Kirchhoff theory in Section 10.4.

shown in Fig. 10.76. As the point of observation moves along 
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z



y



O



O
 1


O
 2


z
 2


P



P
 1


P
 2


z
 1

(b)

Σ


Figure 10.76
   ( a
 ) Single-slit geometry. ( b
 ) A typical near-field irradiance 

distribution fairly close to a wide slit. The aperture was illuminated by a 

(a)

He–Ne laser and the pattern detected via a photodiode. Here the horizontal 

is parallel to the  z
 -axis in the diagram. (W. Klein, I. Physikalisches Institut, Koln, 

the  y
 -axis, as long as the vertical boundaries at either end of the 

Germany)

slit are still essentially at infinity,  u
 2 ≈ ∞,  u
 1 ≈ - ∞, and 


B˜
 12 (u) 
 ≈ 12  ei
 p>4. From Eq. (10.106), for either point-source 

measured and substituted into Eq. (10.108) to find  IP
 . At point-

or plane-wave illumination,


P
 1,  z
 1 and therefore  v
 1 are smaller negative numbers, whereas 


z
 2 and  v
 2 have increased positively. The arc length ∆ v
  (the 


I







I



u
  0 B˜


string) moves up the spiral (Fig. 10.77), and the chord decreas-


P 
 = 2 12 (v) 
 02 (10.108)

es. As the point of observation moves down into the geometric 

and the pattern is independent of  y
 . The values of  z


shadow, the string winds about B˜
 +, and the chord goes through 

1 and  z
 2, 

which fix the slit width, determine the important parameter  

a series of relative extrema. If ∆ v
  is very small, our imaginary 

∆ v 
 =  v


piece of string is small, and the chord 

2 -  v
 1, which in turn governs B



˜ 
 12 (v)
 . Imagine once 

0 B˜
 12 (v) 
 0 decreases ap-

again that we have a string of length ∆ v
  lying along the spiral. At 

preciably only when the radius of curvature of the spiral itself 


P
 , opposite point- O
 , the aperture is symmetrical, and the string 

is small. This occurs in the vicinity of  B
  ˜
 + or  B
  ˜
 -, that is, far out 

is centered on  O


into the geometric shadow. There will thus be light well be-


s
  (Fig. 10.77). The chord  0 B



˜ 
 12 (v) 
 0 need only be  yond the edges of the aperture, as long as the aperture is rela-1.5

tively small. Note, too, that with small ∆ v
  there will be a broad 

central maximum. In fact, if ∆ v
  is much less than 1,  r
 0l is 

much greater than the aperture width, and the Fraunhofer con-


B+


~


~


dition prevails. This transition of Eq. (10.108) into the form of 


B
 2 1.0

Eq. (10.17) is more plausible when we realize that for large  w
  

the Fresnel integrals have trigonometric representations (see 

Problem 10.85).

As the slit widens, ∆ v
  becomes larger, for a fixed  r
 0, until a 

configuration like that in Fig. 10.78 exists for a point opposite 


Os


–0.5

the slit’s center. If the point of observation is moved vertically 

either up or down, ∆ v
  slides either down or up the spiral. Yet the 

chord increases in both cases, so that the center of the diffrac-

tion pattern must be a relative minimum. Fringes now appear 

within the geometric image of the slit, unlike the Fraunhofer 

–1.0  ~



B


~

pattern.

1


B
 –


Figure 10.79 shows two curves of 0 B˜
 12 (w) 
 02 plotted against 

( w
 1 +  w
 2)>2, which is the center point of the arc length ∆ w
 . (Re-

call that the symbol  w
  stands for either  u
  or  v
 .) A family of such 

curves running the range in ∆ w
  from about 1 to 10 would cover 


Figure 10.77
   Cornu spiral for the slit.

the region of interest. The curves are computed by first choosing 
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given slit. For example, Fig. 10.79 a
  can be read as 0 B˜
 12 (v) 
 02 

versus  ( v
 1 +  v
 2)>2 for ∆ v 
 = 2.5. The abscissa relates to 

( z



B+


~

1 +  z
 2)>2, that is, the displacement of the point of observation 

from the center of the slit. In Fig. 10.79 b
   ∆ w 
 = 3.5, which 


~


means that a slit having a ∆ v 
 = 3.5 clearly has fringes appear-


B
 2

ing within the geometric image as expected (Problem 10.84). 

The curves could, of course, be plotted in terms of values of ∆ z
  

or ∆ y
  explicitly, but that would unnecessarily limit them to one 


Os


set of configuration parameters r0,  r
 0, and l.

As the slit is widened still further (Fig. 10.80), ∆ v
  approach-

es and then surpasses 10. An increasing number of fringes ap-

pear within the geometric image, and the pattern no longer ex-

tends appreciably beyond that image. It then looks as though it 


~



B
 1

was formed by two semi-infinite opaque screens (see Section 

~


B
 –


10.3.9).

The same kind of reasoning applies equally well to the anal-

ysis of the rectangular aperture, where use can also be made of 

the curves in Fig. 10.79.

To observe Fresnel slit diffraction, form a long narrow space 


Figure 10.78
     An irradiance minimum in the slit pattern. The central 

between two fingers held at arm’s length. Make a similar paral-

region about  Os
  is open and transmits light.

lel slit close to your eye, using your other hand. With a  bright
  

source, such as the daytime sky or a large lamp, illuminating the 

far slit, observe it through the nearby aperture. After inserting 

a particular ∆ w
  and then reading the appropriate 0 B˜
 12 (w) 
 0 values 

the near slit, the far slit will appear to widen, and rows of fringes 

off the Cornu spiral as ∆ w
  slides along it. For a long slit

will be evident.


I







I



u



P 
 =

 0 B˜


2

12 (v) 
 0 2 [10.108]

and since ∆ z
  is the slit width that corresponds to ∆ v
 , each curve 

in Fig. 10.79  is proportional to the irradiance distribution
  for a 

~B
 12 (w)
 2

~B
 12 (w)
 2

3

3

2

2
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Figure 10.79
    0  B
 ˜
 12 (w) 
 02 versus ( w
 1 +  w
 2)>2 for ( a
 ) ∆ w 
 = 2.5 and ( b
 ) ∆ w 
 = 3.5. ( c
 ) Fresnel diffraction for a beam of neutrons passing through a single slit. (R. Gáhler and A. Zeilinger, “Wave-optical experiments with very cold neutrons,”  Am. J. Phys
  59
 , (4), 316 (1991). American Association of Physics Teachers.) M10_HECH7226_05_SE_C10_449-533.indd   519
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SOLUTION 


The irradiance can be computed via Eq. (10.108)


I



IP 
 = 1


I


2 B



˜ 
 12 (v)
 2


u


We first need to compute  v
  from

2 1>2


v 
 =  z
 a

b

l r
 0

_

_

4

2

0

2

4

and

2

12


v 
 =  z 
 c

d =  z
 (1825.7)

600 * 10-9(1.0 m)

With  z 
 = ±12(0.70 mm)


v


_

_

1 = - 0.64 and  v
 2 = + 0.64

4

2

0

2

4

Put a dot on the spiral at -0.64 where each division on the spiral 

is 0.1. That point is  B
  ˜
 1. Now put a dot on the spiral at +0.64. 

That point is  B
  ˜
 2. The phasor from  B
  ˜
 1 to  B
  ˜
 2 is B˜
 12. Mark off its length on the edge of a piece of paper and then, using either axis 

of the spiral diagram, determine its length to scale. Here the 

length B˜
 12 ≈ 1.25 and so

_

_

4

2

0

2

4


IP 
 = 1


I


2 B



˜ 
 122 ≈ 0.78


u



10.3.9 The Semi-Infinite Opaque Screen


_

_

4

2

0

2

4

We now form a semi-infinite planar opaque screen by remov-

ing the upper half of Σ in Fig. 10.76 a
 . This is done simply 

enough, by letting  z
 2 =  y
 1 =  y
 2 = ∞. Remembering the origi-

nal approximations, we limit the geometry so that the point of 

observation is close to the screen’s edge. Since  v
 2 =  u
 2 = ∞ 

and  u
 1 = - ∞, Eq. (10.104) or (10.108) leads to

∆ w
  = 5.0

_

_


I


4

2

0

2

4


 



I



u



P 
 =

 5[12 - 𝒞 (v1)
 ]2 + [12 - 𝒮 (v1)
 ]26 (10.109)

(mm)

2


Figure 10.80
     Fresnel diffraction from a 5.0-mm-wide vertical slit. Each 

When the point- P
  is directly opposite the edge,  v
 1 = 0, 

identical irradiance distribution has a vertical grey line corresponding to 

𝒞 (0) 
 = 𝒮 (0) 
 = 0, and  IP 
 =  Iu
 >4. This was to be expected, since 

the point where the diffraction is to be computed. The phasors on the 

half the wavefront is obstructed, the amplitude of the distur-

associated Cornu spirals represent the different field amplitudes at those 

bance is halved, and the irradiance drops to one quarter. This 

several locations. (“Single-Slit Diffraction Pattern,” Wolfram Demonstrations Project,  

occurs at point (3) in Figs. 10.81 and 10.82. Moving into the 


http://demonstrations.wolfram.com/ contributed by Hans-
 Joackim Domke and Martin Domke) geometric shadow region to point (2) and then on to (1) and still 

further, the successive chords clearly decrease monotonically 

(Problem 10.85). No irradiance oscillations exist within that re-

gion; the irradiance merely drops off rapidly. At any point above 

(3) the screen’s edge will be below it; in other words,  z



EXAMPLE 10.13


1 6 0 

and  v
 1 6 0. At about  v
 1 = -1.2 the chord reaches a maximum, 

With Fig. 10.76 a
  in mind, consider a long narrow horizontal slit 

and the irradiance is a maximum. Thereafter,  IP
  oscillates about 

of width 0.70 mm. Using the Cornu spiral (Fig. 10.72), deter-


Iu
 , gradually diminishing in magnitude. With sensitive electronic 

mine the approximate ratio of the irradiance 1.0 m from  O
  at  P
  

techniques, many hundreds of these fringes can be observed.*

to the irradiance there with the aperture screen removed. Take 

the illumination to have a wavelength of 600 nm.

*J. D. Barnett and F. S. Harris, Jr.,  J. Opt. Soc. Am
 . 52
 , 637 (1962).
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z


obstruction passes in front of the source slit parallel to it, a se-

ries of fringes will appear.


10.3.10 Diffraction by a Narrow Obstacle


(5

Refer back to the description of the single narrow slit; consider 

)

the complementary case in which the slit is opaque, and the 

(4

screen transparent. Let’s envision, for example, a vertical 

)

(3

opaque wire. At a point directly opposite the wire’s center, there 

)

will be two separate contributing regions extending from  y
 1 to 

- ∞ and from  y
 2 to + ∞. On the Cornu spiral, these correspond 

(2)

to two arc lengths from  u
 1 to  B
  ˜
 - and from  u
 2 to  B
  ˜
 +. The ampli-

(1)

tude of the disturbance at a point- P
  on the plane of observation 

is the magnitude of the  vector
  sum of the two phasors  B
 - u


¡1 and 


I
 Iu


Σ


Figure 10.81
   The semi-infinite 

1.5

opaque screen.

(4)

It is evident that the diffraction pattern in the accompa-

nying photo would appear in the vicinity of the edges of a 

wide  slit
  (∆ v
  greater than about 10) as a limiting case. The 

1.0

irradiance distribution suggested by geometrical optics is 

obtained only when l goes to zero. Indeed, as l decreases, 

the fringes move closer to the edge and become increasingly 

(5)

fine in extent.

Shadow region

Edge

The straight-edge pattern can be observed using any kind of 

slit, held up in front of a broad lamp at arm’s length, as a source. 

Introduce an opaque obstruction (e.g., a blackened microscope 

slide or a razor blade) very near your eye. As the edge of the 

0.25 (3)

(1)

(2)


v


2

1

0

_1

_2

_3

_4

_5

(b)

(1)

(2)

(3)

(5)

1.0

1.8

(c)


Figure 10.82
   ( a
 ) The Cornu spiral for a semi-infinite screen. ( b
 ) The corre-

1.2

sponding calculated irradiance distribution. ( c
 ) The same irradiance pattern 

(4)

under He–Ne laser illumination measured with a photodiode. (W. Klein, I. 

(a)

Physikalisches Institut, Koln, Germany)

M10_HECH7226_05_SE_C10_449-533.indd   521

06/11/15   6:37 PM








522
   Chapter 10
   Diffraction

(a)

(a)

(b)

( a
 ) The fringe pattern for a half-screen formed with light. (Francis Weston Sears, 


Optics,
  © 1949, Addison-Wesley, Reading, MA. Pearson Education) (b) Fresnel electron diffraction at a half plane (MgO crystal)—electrons behave like photons. ( Handbuch der Physik
 , edited by  

S. Flügge, Springer-Verlag, Heidelberg.)

(b)


u
 2 B
 +

¡, illustrated in Fig. 10.83. As with the opaque disk, the 

symmetry is such that there will always be an illuminated re-

gion along the central axis. This can be seen from the spiral, 

since when  P
  is on the central axis,  B
 - u


¡1 =  u
 2 B
 +

¡ and their sum 

can never be zero. The arc length ∆ u
  represents the obscured 

region of the spiral, which increases as the diameter of the wire 

(c)

( a
 ) The shadow pattern cast by the lead from a mechanical pencil. (E.H.)  

( b
 ) The pattern cast by a 1/8-inch-diameter rod. (E.H.) ( c
 ) Matter-wave  

diffraction. Fresnel electron-diffraction pattern of a 2-mm-diameter metallized 


B+


~

quartz filament. (O.E. Klemperer,  Electron Physics,
  Butterworths, [1972] pp. 188–191.)


u
 2

increases. For thick wires,  u
 1 approaches  B
  ˜
 -,  u
 2 approaches  B
  ˜
 +, O


the phasors decrease in length, and the irradiance on the shadow’s 


s


axis drops off. This is evident from the accompanying photos, 

which show the patterns actually cast by a thin piece of lead 


u


from a mechanical pencil and by a rod with a 1

1

8-inch diameter. 

Imagine that we have a small irradiance sensor at point- P
  on the 

plane of observation (or the film plate). As  P
  moves off the cen-

~


B
 –


tral axis to the right,  y
 1 and  u
 1 increase negatively, whereas  y
 2 

and   u
 2, which are positive, decrease. The opaque region, ∆ u
 , 

slides down the spiral. When the sensor is at the right edge of 

the geometric shadow  y
 2 = 0,  u
 2 = 0; in other words,  u
 2 is at  Os
 . 


Figure 10.83
     The Cornu spiral as applied to a narrow obstacle. The  

Notice that if the wire is thin, that is, if ∆ u
  is small, the sensor 

central region about  Os
  is obscured and does not transmit light.

will record a gradual decrease in irradiance as  u
 2 approaches  Os
 . 
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On the other hand, if the wire is thick, ∆ u
  is large and  u
 1 and  u
 2 


~



B


are large. As ∆ u 
 slides down the spiral, the two phasors revolve 

2

through a number of complete rotations, going in- and out-of-

phase in the process. The resulting additional extrema appear-


B+


~

ing within the geometric shadow are evident in the middle photo. 

In fact, the separation between internal fringes varies inversely 

with the width of the rod, just as if the pattern arose from the 

interference of two waves (Young’s Experiment) reflected at the 

rod’s edges.


~



B
 1

EXAMPLE 10.14

Consider a long narrow horizontal opaque rectangular object of 

width 0.70 mm. Using the Cornu spiral (Fig. 10.72), determine 

the approximate ratio of the irradiance at  P
  on the central axis 

(1.0 m from the center point of the rectangle,  O
 ) to the irradi-


B
 ~ –


ance there with the aperture screen removed. Take the illumina-

tion to have a wavelength of 600 nm.


SOLUTION 



Figure 10.84
     The Cornu spiral illustrating Babinet’s Principle.

There will be two phasors involved, one corre-sponding to 

light from below the obstruction, and one for light from above 

determined by integrating over the area bounded by that aper-

it. Thus there will be a phasor from  B
  ˜
 - to  B
  ˜
 1, and another from 

ture. If both  apertures
  are present at once, there are no opaque 


B
  ˜
 2 to  B
  ˜
 +. We need to locate  B
  ˜
 1 and  B
  ˜
 2 by finding  v
 1 and  v
 2. 

regions at all; the limits of integration go to infinity, and we 

Accordingly, since

have the unobstructed disturbance  Eu
 , whereupon

2 1>2


v







E


=  z
 a

b

1 +  E
 2 =  Eu
  (10.110)

l r
 0

and

which is the statement of Babinet’s Principle
 . Take a close 

look at Figs. 10.78 and 10.83, which depict the Cornu spiral con-

2

1>2

figurations for a transparent slit and a narrow opaque obstacle. If 


v 
 =  z 
 c

d

=  z
 (1825.7)

600

the two arrangements are made complementary, Fig. 10.84  

* 10-9(1.0 m)

illustrates Babinet’s Principle quite clearly. The phasor arising 

from a narrow obstacle ( B
 - B


¡1 +  B
 2 B
 +

¡) added to that from a s 

with  z 
 = ±12 (0.70 mm)

lit  B


¡

2 B
 1 yields the unobstructed phase  B
 - B
 +

¡.


v
 1 = -0.64  and   v
 2 = +0.64

The principle implies that when  E
 0 = 0,  E
 1 = - E
 2; in other 

words, these disturbances are precisely equal in magnitude and 

Put a dot on the spiral at -0.64; that’s  B
  ˜
 1. Put a dot on the spiral 

180

¡

° out-of-phase. One would therefore observe exactly the same 

at + 0.64; that’s  B
  ˜
 2. The quantities ∙ B
  ˜
 -1∙ = ∙ B
 - B
 1∙ and ∙ B
  ˜
 1+ ∙ =

irradiance distribution with either g1 or g2 in place, an interest-

∙ B
 1 B
 +

¡∙ are equal to each other and to ≈ 0.38. Since the phasors  ing result indeed. It is evident, however, that the principle cannot are parallel, the net amplitude, ∙B˜
 ∙, is ≈ 0.76 and

be exactly true, since for an unobstructed wave from a point 

source, there are no zero-amplitude points (i.e.,  Eu 
 Z 0 every-


IP 
 = 1

where). Yet if the source is imaged at  P


2 ∙B



˜ 
 ∙2 ≈ 0.29

0 by perfect lenses, as in 


Iu


Fig. 10.6 (with neither g1 nor g2 present), there will be a large, 

essentially zero-amplitude region beyond the immediate vicinity 

of  P
 0 (beyond the Airy disk) in which  E
 1 +  E
 2 =  Eu 
 = 0. It is 

therefore only for the case of Fraunhofer diffraction that com-


10.3.11 Babinet’s Principle


plementary screens will generate equivalent irradiance distri-

Two diffracting screens are said to be  complementary
  when the 

butions, that is,  E
 1 = - E
 2 (excluding point- P
 0). Nonetheless, 

transparent regions on one exactly correspond to the opaque 

Eq. (10.110) is valid in Fresnel diffraction, even though the  

regions on the other and vice versa. When two such screens are 

irradiances obey no simple relationship. This is exemplified by 

overlapped, the combination is obviously completely opaque. 

the slit and narrow obstacle of Fig. 10.84. For a circular hole 

Now then, let  E
 1 or  E
 2 be the scalar optical disturbance arriv-

and disk examine Fig. 10.85. Equation (10.110) is again clearly 

ing at  P
  when either complementary screen  g1 or g2, respec-

applicable, even though the diffraction patterns are certainly not 

tively, is in place. The total contribution from each aperture is 

equivalent.
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10.4  Kirchhoff’s Scalar  



Diffraction Theory



As


We have described a number of diffracting configurations, 





quite satisfactorily, within the context of the relatively simple 


O


Huygens–Fresnel theory. Yet the whole imagery of surfaces cov-


s


ered with fictitious point sources, which was the basis of that anal-

ysis, was merely postulated rather than derived from fundamental 

principles. The Kirchhoff treatment shows that these results are 

actually derivable from the  scalar
  differential wave equation.

The discussion to follow is rather formal and involved. Portions 

of it have therefore been relegated to an appendix, where we can 

indulge in succinctness and risk sacrificing readability for rigor.


Os


In the past, when dealing with a distribution of monochro-

matic point sources, we computed the resultant optical distur-


Figure 10.85
     The vibration curve illustrating Babinet’s Principle.

bance at point- P
  (i.e.,  EP
 ) by carrying out a superposition of the 

individual waves. There is, however, a completely different  

approach, which is founded in potential theory. Here one is con-

The real beauty of Babinet’s Principle is most evident when 

cerned not with the sources themselves but rather with the scalar 

applied to Fraunhofer diffraction, as shown in Fig. 10.86, 

optical disturbance and its derivatives over an arbitrary closed 

where the patterns from complementary screens are almost 

surface surrounding  P
 . We assume that a Fourier analysis can 

identical.


Figure 10.86
   ( a
 )–( d
 ) White-

light diffraction patterns for 

regular arrays of apertures and 

complementary obstacles in 

the form of rounded plus signs. 

( e
 ) and ( f
 ) Diffraction patterns 

for a regular array of rectangu-

lar apertures and obstacles, 

respectively. (Richard B. Hoover, 

Ealing Electro-Optics, Inc.)

(a)

(b)

(e)

(c)

(d)

(f)
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E 
 =  exp (− i
 v t
 )


d
 S



r



P



S



Figure 10.87
     An arbitrary closed surface 


S
  enclosing point- P
 .

separate the constituent frequencies, so that we need only deal 

in which case

with one such frequency at a time. The monochromatic optical 

e

disturbance  E
  is a solution of the differential wave equation





ℰ˜
 (


0

r ) 
 =

  eik
 r (10.116)

r

1 02 E


If we substitute this into Eq. (10.114), it becomes





∇2 E 
 =  

 (10.111)


c
 2 0 t
 2

1


eikr


e

ℰ˜


0

0


P 
 =





Without specifying the precise spatial nature of the wave, we 

cT     a   eik
 rb cos (nˆ
 , Rˆ
 )  dS


4p


S r 
 0r

r

can write it as






E
 ˜ 
 = ℰ˜
 e
 - ikct
  (10.112)

e

0  eikr


- T  0  eik
 r   a b cos (nˆ
 , rˆ
 )  dS
 d


S 
 r

0 r r


Here ℰ˜
  represents the complex space part of the disturbance. 

Substituting this into the wave equation, we obtain

where  d
 S
 $ = nˆ
   dS
 , nˆ
 , rˆ
 ,  
 and Rˆ
  are unit vectors,





∇2ℰ˜ 
 +  k
 2ℰ˜ 
 = 0 (10.113)


eikr



eikr


This is known as the  Helmholtz Equation
  and is solved, with the 

∇

0

 a

b

 a

b


r


= rˆ
  

aid of Green’s Theorem, in Appendix 2. The optical disturbance 

0 r r


existing at a point- P
 , expressed in terms of the optical distur-

and

bance and its gradient evaluated on an arbitrary closed surface 


S
 , enclosing  P
 , is

∇ℰ (
 r ) 
 = Rˆ
 0 ℰ>0r

   

1


eikr



eikr


The differentiations under the integral signs are

ℰ˜
 P 
 =

  c T   ∇ℰ˜ · 
 d
 S
 $ - Tℰ˜
 ∇a b · 
 d
 S
 $d

4p


S r



S



r


0  eik
 r


ik


1





(10.114)

a

b =  eik
 r a - b

0 r 
 r

r

r2

Known as the  Kirchhoff Integral Theorem
 , Eq. (10.114) relates 

and

to the geometric configuration illustrated in Fig. 10.87.

We now apply the theorem to the specific instance of an un-

0  eikr



ik


1

obstructed spherical wave originating at a point source  s
 , as 

 a

b =  eikr
  a

b

0 r r



r 
 -  r
 2

shown in Fig. 10.88. The disturbance has the form

e0

When  r 






E
  ˜
 (


  ei
 ( k
 r-v t
 ) (10.115)

7 7 l and  r
  7 7 l, the 1>r2 and 1> r
 2 terms can be 

r,  t) 
 = r

neglected. This approximation is fine in the optical spectrum 
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Figure 10.88
     A spherical wave emitted from point  s
 .


r



n


(n
 , r
 )


n


(n
 , R)

R


d
 S


r

r


S



r



S



r



P



P


(b)


S


(a)

but certainly need not be true for microwaves. Proceeding, we 

completely surrounds the small spherical surface  S
 1. At r = 0 the 

write

disturbance  E(
 r , t) 
 has a singularity and is therefore properly ex-

cluded from the volume  V
  between  S
 1 and  S
 2. The integral must 

e0 i



eik
 (r+ r
 ) cos (nˆ
 , rˆ
 ) - cos (nˆ
 , Rˆ
 )  

now include both surfaces  S
 1 and  S
 2. But we can have  S
 2 increase 

ℰ˜
 p 
 = -   T 

 d  dS


l

r r


c

2

outward indefinitely by requiring its radius to go to infinity. In that 


S


case, the contribution to the surface integral vanishes. (This is true 

(10.117)

whatever the form of the incoming disturbance, as long as it drops 

off at least as rapidly as a spherical wave.) The remaining surface 

This is the  
Fresnel–Kirchhoff diffraction formula

 .


S
 1 is a sphere centered at the point source. Since, over  S
 1, nˆ
  and Rˆ
  

Take a long look at Eq. (10.96), which represents the 

are antiparallel, it is evident from Fig. 10.88 b
  that the angles (nˆ
 , rˆ
 ) 

 disturbance  at   P
  arising from an element  dS
  in the Huygens–

Fresnel theory, and compare it with Eq. (10.117). In Eq. (10.117) 

the angular dependence is contained in the single term 


n


12[cos (nˆ
 , rˆ
 ) - cos (nˆ
 , Rˆ
 )], which we shall call the obliquity fac-



tor
    K(
 u )
 , showing it to be equivalent to Eq. (10.72) later on. 

Notice as well that  k
  can be replaced by - k
  everywhere, since 

we certainly could have chosen the phase of Eq. (10.115) to have 

been (v t 
 -  k
 r). With Eq. (10.112) in mind, multiply both sides 

of Eq. (10.117) by exp (- i
 v t
 ); the differential element is then


K(
 u )
 e






dE


0

R


P 
 =

 cos [ k
 (r +  r
 ) - v t 
 - p>2]  dS  
 (10.118)

r r
 l


r


This is the contribution to  E



S



P
  arising from an element of surface 

u

2

area  dS
  a distance  r
  from  P
 . The p>2 term in the phase results 

r

from the fact that - i 
 = exp (- i
 p>2). The Kirchhoff formula-


n



r


tion therefore leads to the same total result, with the exception 

that it includes the correct 


P


p>2 phase shift, which is lacking in 


S


the Huygens–Fresnel treatment [Eq. (10.96)].


We have yet to ensure that the surface S can be made to corre-



S
 1


spond to the unobstructed portion of the wavefront, as it does in 



the Huygens–Fresnel theory.
  For the case of a freely propagating 

spherical wave emanating from the point source  s
 , we construct 

the doubly connected region shown in Fig. 10.89. The surface  S
 2 


Figure 10.89
     A doubly connected region surrounding point  S
 .
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and (nˆ
 , Rˆ
 ) are u and 180°, respectively. The obliquity factor then 

becomes

cos u + 1


K(
 u ) 
 =

2

which is Eq. (10.72). Clearly, since the surface of integration  S
 1 

is centered at  s
 , it does indeed correspond to the spherical wave-

front at some instant.  
The Huygens–Fresnel Principle is there-





fore directly traceable to the scalar differential wave equation.



We shall not pursue the Kirchhoff formulation any further, 

other than to point out briefly how it is applied to diffracting 

screens. The single closed surface of integration surrounding 

the point of observation  P
  is generally taken to be the entire 

screen g capped by an infinite hemisphere. There are then three 

distinct areas with which to be concerned. The contribution to 

the integral from the region of the infinite hemisphere is zero. 

Moreover, it is assumed that there is no disturbance immedi-

Ripple-tank waves passing through a slit. (PSSC  Physics
 , D. C. Heath, Boston, 1960. 

ately behind the opaque screen, so that this second region con-

Cengage Learning)

tributes nothing. The disturbance at  P
  is therefore determined 

solely by the contributions arising from the aperture, and one 

propagates beyond the aperture. There are no electron-oscillators 

need only integrate Eq. (10.117) over that area.

here, which implies that these ideas have a certain generality, being 

The fine results obtained by using the Huygens–Fresnel 

applicable to elastic waves as well.

Principle are now justified theoretically, the main limitations 

The formulation of diffraction in terms of the interference of a 

being that r 7 7 l and  r
  7 7l.

scattered edge wave and a geometrical wave is perhaps more phys-

ically appealing than the fictitious emitters of the Huygens–Fresnel 

Principle. It is not, however, a new concept. Indeed, it was first 


10.5 Boundary Diffraction Waves


propounded by the ubiquitous Thomas Young even before Fresnel’s 

celebrated memoir on diffraction. But in time Fresnel’s brilliant 

In Section 10.1.1 we said that the diffracted wave could be envi-

successes unfortunately convinced Young to reject his own ideas, 

sioned as arising from a fictitious distribution of secondary emitters 

and he finally did so in a letter to Fresnel in 1818. Strengthened by 

spread across the unobstructed portion of the wavefront, namely, 

Kirchhoff’s work, the Fresnel conception of diffraction became 

the Huygens–Fresnel Principle. There is, however, another, com-

generally accepted and has persisted (right up to Section 10.4). The 

pletely different, and rather appealing possibility. Suppose that an 

resurrection of Young’s theory began in 1888. At that time, Gian 

incoming wave sets the electrons on the rear of the diffracting 

Antonio Maggi proved that Kirchhoff’s analysis, for a point source 

screen g into oscillation, and these in turn radiate. We anticipate a 

at least, was equivalent to two contributing terms. One of these was 

twofold effect. First, all the oscillators that are remote from the edge 

a geometrical wave, but the other, unhappily, was an integral, 

of the aperture radiate back toward the source in such a fashion as to 

which allowed no clear physical interpretation at the time.

cancel the incoming wave at all points, except within the projection 

In his doctoral thesis (1893), Eugen Maey showed that an 

of the aperture itself. In other words, if this were the only contribut-

edge wave could indeed be extracted from a modified Kirchhoff 

ing mechanism, a perfect geometrical image of the aperture would 

formulation for a semi-infinite half-plane. Arnold Sommerfeld’s 

appear on the plane of observation. There is, however, an addi-

rigorous solution of the half-plane problem (see Section 10.1) 

tional contribution arising from those oscillators in the vicinity of 

showed that a cylindrical wave actually does proceed from the 

the aperture’s edge. A portion of the energy radiated by these sec-

screen’s edge. It propagates into both the geometrical shadow 

ondary sources propagates in the forward direction. The superposi-

region and the illuminated region. In the latter, the boundary dif-

tion of this scattered wave (known as the  boundary diffraction 


fraction wave combines with the geometrical wave, in complete 


wave
 ) and the unobstructed portion of the primary wave (known as 

accord with Young’s theory. In 1917 Adalbert (Wojciech) Ru-

the  geometrical wave
 ) yield the diffraction pattern. A rather cogent 

binowicz was able to prove that Kirchhoff’s formula for a plane 

reason for contemplating such a scheme becomes apparent when 

or spherical wave can be appropriately decomposed into the two 

one examines the following arrangement. Tear a small hole (≈1

desired waves, thereby revealing the basic correctness of Young’s 

2 

cm in diameter) of arbitrary shape in a piece of paper, and holding 

ideas. He also later established that the boundary diffraction 

it at arm’s length, view an ordinary lightbulb some meters distant. 

wave, to a first approximation, was generated by reflection of the 

Even with your eye in the shadow region, the edges of the aperture 

primary wave from the aperture’s edge. In 1923 Friedrich Kottler 

will be brightly illuminated. The accompanying ripple-tank photo-

pointed out the equivalence of the solutions of Maggi and Ru-

graph also illustrates the process. Notice how each edge of the slit 

binowicz, and one now speaks of the Young-Maggi-Rubinowicz 

seems to serve as a center for a circular disturbance, which then 

theory. Most recently, Kenro Miyamoto and Emil Wolf (1962) 
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have extended the boundary diffraction theory to the case of arbi-

of diffraction that is closely related to Young’s edge wave  

trary incident waves.*

picture. Along with the usual rays of Geometrical Optics, Keller 

A very useful contemporary approach to the problem was 

hypothesized the existence of diffracted rays. Rules governing 

devised by Joseph B. Keller. He developed a geometric theory 

these diffracted rays, which are analogous to the Laws of  

Reflection and Refraction, were employed to determine the re-

sultant fields.

*A fairly complete bibliography can be found in the article by A. Rubinowicz in 


Progress in Optics
 , Vol. 4, p. 199.


PROBLEMS




Complete solutions to all problems—except those with an asterisk— 




10.5*
   Consider the case of single-slit Fraunhofer diffraction. Calcu-



can be found in the back of the book.



late the ratio of the irradiance of the central maximum to the irradiance 

of the first secondary maximum on either side of it. Check your answer 


10.1
  A point source  S
  is a perpendicular distance  R
  away from the 

with Fig. 10.13.

center of a circular hole of radius  a
  in an opaque screen. If the distance 


10.6
   The angular distance between the center and the first minimum 

from  S
  to the periphery of the hole is ( R 
 + /), show that Fraunhofer 

of a single-slit Fraunhofer diffraction pattern is called the  half-angular 


diffraction will occur on a very distant screen when


breadth
 ; write an expression for it. Find the corresponding  half-linear 


l R
   7 7  a
 2>2


width
  when no focusing lens is present and the distance from the slit to 

the viewing screen is  L
 . Notice that the half-linear width is also the 

What is the smallest satisfactory value of  R
  if the hole has a radius of  

distance between the successive minima.

1 mm, / … l>10, and l = 500 nm?


10.7*
   A single slit in an opaque screen 0.10 mm wide is illuminated 


10.2*
   In Section 10.1.3 we talked about introducing an intrinsic phase 

(in air) by plane waves from a krypton ion laser (l0 = 461.9 nm). If 

shift e between oscillators in a linear array. With this in mind, show 

the observing screen is 1.0 m away, determine whether or not the  

that Eq. (10.18) becomes

resulting diffraction pattern will be of the far-field variety and then 

b = ( kb
 >2)(sin u - sin u i
 )

compute the angular width of the central maximum.

when the incident plane wave makes an angle u i
  with the plane of the slit.


10.8*
   A narrow single slit (in air) in an opaque screen is illuminated 


10.3
   Referring back to the multiple antenna system on p. 456, com-

by infrared from a He–Ne laser at 1152.2 nm, and it is found that the 

pute the angular separation between successive lobes or principal max-

center of the tenth dark band in the Fraunhofer pattern lies at an angle 

ima and the width of the central maximum.

of  6.2° off the central axis. Determine the width of the slit. At what 

angle will the tenth minimum appear if the entire arrangement is im-


10.4
   Examine the setup of Fig. 10.3 in order to determine what is hap-

mersed in water ( nw 
 = 1.33) rather than air ( na 
 = 1.000 29)?

pening in the image space of the lenses; in other words, locate the exit 

pupil and relate it to the diffraction process. Show that the configurations 


10.9
  A collimated beam of microwaves impinges on a metal screen 

in Fig. P.10.4 are equivalent to those of Fig. 10.3 and will therefore result 

that contains a long horizontal slit that is 20 cm wide. A detector moving 

in Fraunhofer diffraction. Design at least one more such arrangement.

parallel to the screen in the far-field region locates the first minimum of 

irradiance at an angle of 36.87° above the central axis. Determine the 


Figure P.10.4


wavelength of the radiation.


10.10*
   Plane waves from a magnesium lamp (l = 518.36 nm) arrive 


S



P


perpendicularly on an opaque screen containing a long 0.250-mm-wide 

slit. A large nearby positive lens forms a sharp image of the Fraunhofer 

diffraction pattern on a screen. The center of the fourth dark fringe is found 

Σ

to be 1.20 mm from the central axis. Determine the focal length of the lens.


10.11*
   Consider the single-slit Fraunhofer diffraction pattern formed 

on a screen by a lens of focal length  ƒ
 . Show that the peak of the first 

subsidiary bright band is a distance  Y
  (measured from the central axis) 


S



P


on the viewing screen, given by

l ƒ


≈1.430 3 

Σ


b
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10.12*
   Plane waves of green light (l = 546.1 nm) impinge normally 

midway between principal peaks? (d) What does the phasor diagram of 

on a long narrow slit (0.15 mm wide) in an opaque screen. A large lens 

the field amplitude look like for the second minimum (measured from 

with a focal length of  +62.0 cm placed just behind the slit produces a 

the zeroth principal maximum)? (e) What are the angles between suc-

Fraunhofer diffraction pattern on a screen at its focal plane. Determine 

cessive phasors at each minimum considered above?

the width of the central irradiance maximum (zero to zero).


10.22*
   Starting with the irradiance expression for a finite slit, shrink 


10.13*
   A long narrow slit 0.20 mm wide is illuminated normally with 

the slit down to a minuscule area element and show that it emits equally 

collimated blue hydrogen light (l = 486.1 nm). Immediately behind 

in all directions.

the slit is a large positive lens of focal length 60.0 cm. It produces a 


10.23*
  An opaque screen contains a rectangular hole 0.199 mm 

diffraction pattern on a screen in its focal plane. How far apart are the 

(along the  z
 -axis) by 0.100 mm (along the  y
 -axis). It is illuminated by 

first and second zeros of irradiance?

light at 543 nm from a helium–neon laser. A big positive lens with a 


10.14
   Show that for a double-slit Fraunhofer pattern, if  a 
 =  mb
 , the 

1.00-m focal length forms a Fraunhofer pattern on its focal plane. Lo-

number of bright fringes (or parts thereof) within the central diffrac-

cate the first minima along the  Y- 
 and  Z-
 axes.

tion maximum will be equal to 2 m
 .


10.24*
   Consider the Fraunhofer diffraction pattern of a rectangular 


10.15*
   Two long slits 0.10 mm wide, separated by 0.20 mm, in an 

aperture 0.200 mm (in the  y
 -direction) by 0.100 mm (in the  z
 -direction). 

opaque screen are illuminated by light with a wavelength of 500 nm. If 

It is formed in 543-nm light from a helium–neon laser, on a screen 10.0 m 

the plane of observation is 2.5 m away, will the pattern correspond to 

away. Determine the relative irradiance 1.00 mm from the center of the 

Fraunhofer or Fresnel diffraction? How many Young’s fringes will be 

pattern along the orthogonal symmetry axes  Y
  and  Z
 .

seen within the central bright band?


10.25*
   Show that Fraunhofer diffraction patterns have a center of sym-


10.16*
   In a two-slit setup, each slit is 0.020 mm wide. These apertures 

metry [i.e.,  I(Y
 ,  Z) 
 =  I(
 - Y
 , - Z)
 ], regardless of the configuration of the are illuminated by plane waves of yellow sodium light (l = 589.6 nm). 

aperture, as long as there are no phase variations in the field over the re-

The resulting Fraunhofer fringe pattern consists of 11 narrow bright 

gion of the hole. Begin with Eq. (10.41). We’ll see later (Chapter 11) that 

fringes that gradually decrease in irradiance with distance from the cen-

this restriction is equivalent to saying that the aperture function is real.

tral maximum. Determine the separation between the slits.


10.26
   With the results of Problem 10.25 in mind, discuss the sym-


10.17
   What is the relative irradiance of the subsidiary maxima in a 

metries that would be evident in the Fraunhofer diffraction pattern of 

three-slit Fraunhofer diffraction pattern? Draw a graph of the irradi-

an aperture that is itself symmetrical about a line (assuming normally 

ance distribution, when  a 
 = 2 b
 , for two and then three slits.

incident quasimonochromatic plane waves).


10.18*
  Let  E
 01 be the electric-field amplitude on a distant screen due 


10.27
   From symmetry considerations, create a rough sketch of the 

to each one of three very narrow parallel slits illuminated by mono-

Fraunhofer diffraction patterns of an equilateral triangular aperture and 

chromatic plane waves. Compare the amplitude of the central subsid-

an aperture in the form of a plus sign.

iary maximum to the amplitude of the zeroth-order principal maximum 

in the resulting Fraunhofer pattern. How does this stack up against the 


10.28
  Figure P.10.28 is the irradiance distribution in the far field  

results of the previous question? Explain your answer in detail. You 

for a configuration of elongated rectangular apertures. Describe the 

should ignore the diffraction of the individual slits.

arrangement of holes that would give rise to such a pattern and give 

your reasoning in detail.


10.19*
   Imagine two aperture screens arranged to produce two Fraunhofer 

diffraction patterns. One contains 8 very narrow closely spaced parallel 


Figure P.10.28
   (R.G. Wilson, Illinois Wesleyan University)

slits, the other 16 such slits. All else being equal, compare the two irradi-

ance distributions. That is, how many subsidiary maxima between con-

secutive principal maxima will each pattern contain? If the irradiance of 

the zeroth-order peak of the 16-slit pattern is set equal to 1.0, how big will 

the corresponding peak be for the 8-slit pattern? Which arrangement pro-

duces wider principal maxima? Draw a rough sketch of each.


10.20*
   Suppose we have 15 parallel long narrow slits in an opaque 

screen. Furthermore, suppose each slit is separated from the next by a 

center-to-center distance that is equal to 4 slit widths. Given that a 

Fraunhofer diffraction pattern appears on a screen, determine the ratio 

of the irradiance of the second-order principal maximum to that of the 

zeroth-order maximum.


10.21*
   Consider the Fraunhofer diffraction pattern for eight very nar-


10.29
   In Fig. P.10.29 a
  and  b
  are the electric field and irradiance dis-

row parallel slits under monochromatic illumination. (a) Sketch the 

tributions, respectively, in the far field for a configuration of elongated 

resulting irradiance distribution. (b) Explain why the first minimum 

rectangular apertures. Describe the arrangement of holes that would 

occurs, from a phasor perspective. (c) Why is the electric field zero 

give rise to such patterns and discuss your reasoning.
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Figure P.10.29
   (R.G. Wilson, Illinois Wesleyan University)


Figure P.10.31
   (R. G. Wilson, Illinois Wesleyan University.)


Figure P.10.32  
   (R.G. Wilson, Illinois Wesleyan University)


10.30
   Figure P.10.30 is a computer-generated Fraunhofer irradiance 


10.34*
   We wish to use the 15-cm-diameter objective from an amateur 

distribution. Describe the aperture that would give rise to such a pat-

telescope to form an image on a CCD of a distant star. Assuming a 

tern and give your reasoning in detail.

mean wavelength of 540 nm and a focal length of  +140 cm, determine 

the size of the resulting Airy disk. How would that change if we dou-


Figure P.10.30
   (R.G. Wilson, Illinois Wesleyan University)

bled the lens diameter, keeping all else constant?


10.35*
   Imagine that you are staring at a star. You have dilated pupils, 

each with a diameter of 6.00 mm. The retina is about 21.0 mm from the 

pupil in a typical eye. Considering that the index of refraction of the 

vitreous humor is 1.337, determine the size of the Airy disk on your 

retina. Assume a mean vacuum wavelength of 550 nm.


10.36*
   Verify that the peak irradiance  I
 1 of the first “ring” in the Airy 

pattern for far-field diffraction at a circular aperture is such that 


I
 1> I(0) 
 = 0.0175. You might want to use the fact that


u


1

1

1


J
 1 (u) 
 =   c1 -

 (1

 (1

 (1


10.31
   Figure P.10.31 is the electric-field distribution in the far field 

2

1!2! 2  u
 )2 + 2!3! 2  u
 )4 - 3!4! 2  u
 )6 + gd

for a hole of some sort in an opaque screen. Describe the aperture that 

would give rise to such a pattern and give your reasoning in detail.


10.37*
  For large values of  u


1


10.32
   In light of the five previous questions, identify Fig. P.10.32, 


J
 1 (u) 
 =

 (sin  u 
 - cos  u
 )

explaining what it is and what aperture gave rise to it.

2p u



10.33*
   A 2.4-cm-diameter positive lens with a focal length of 100 cm 

Use that relationship to show that the angular separation (∆u) between 

forms an image of a small far-away red (656 nm) hydrogen lamp.  

consecutive minima far from the center of an Airy pattern is given by

Determine the linear size of the central circular spot appearing on the 

∆

l

u =

focal plane.

2 a
  cos u

M10_HECH7226_05_SE_C10_449-533.indd   530

06/11/15   6:37 PM





 


Problems  531


[ Hint:
  Write an expression for  sin u and take the derivative of it with 


10.47*
   A telescope having an objective lens with a diameter of 10.0 

respect to  m
 , where for consecutive minima ∆ m 
 = 1.]

cm will be used to view two equally bright small sources of 550-nm 


10.38


light. (a) Determine the angular separation of the sources if they are 

  No lens can focus light down to a perfect point because there 

just resolvable. Use Rayleigh’s criterion. (b) How far apart can they be 

will always be some diffraction. Estimate the size of the minimum spot 

at a distance of 1000 km?

of light that can be expected at the focus of a lens. Discuss the relation-

ship among the focal length, the lens diameter, and the spot size. Take 


10.48*
   How were blue light–emitting lasers used to improve DVD 

the  ƒ-number
  of the lens to be roughly 0.8 or 0.9, which is just about 

technology? Explain.

what you can expect for a fast lens.


10.49*
   We’d like to read a license plate (numbers about 5.0 cm *


10.39
   Figure P.10.39 shows several aperture configurations. Roughly 

5.0 cm) at a distance of 161 km (about 100 mi). How big an objec-

sketch the Fraunhofer patterns for each. Note that the circular regions 

tive mirror would a spy satellite need? Assume a mean wavelength 

should generate Airy-like ring systems centered at the origin.

of 550 nm.


10.50*
   The Hubble Space Telescope has an objective mirror 2.4 m in 


Figure P.10.39


diameter. With an average wavelength of 550 nm, determine its linear 

limit of resolution at 600 km (about 370 miles).


10.51*
  A transmission grating whose lines are separated by 3.0 *

10-6 m is illuminated by a narrow beam of red light (l0 = 694.3 nm) 


10.40*
  Suppose that we have a laser emitting a diffraction-limited 

from a ruby laser. Spots of diffracted light, on both sides of the unde-

beam (l0 = 632.84 nm) with a 2-mm diameter. How big a light spot 

flected beam, appear on a screen 2.0 m away. How far from the central 

would be produced on the surface of the Moon a distance of 376 * 103 km 

axis is each of the two nearest spots?

away from such a device? Neglect any effects of the Earth’s atmosphere.


10.52*
   A diffraction grating with slits 0.60 * 10-3 cm apart is illumi-


10.41*
   If you peered through a 0.75-mm hole at an eye chart, you would 

nated by light with a wavelength of 500 nm. At what angle will the 

probably notice a decrease in visual acuity. Compute the angular limit of 

third-order maximum appear?

resolution, assuming that it’s determined only by diffraction; take 


10.53*
  A diffraction grating produces a second-order spectrum of 

l0 = 550 nm. Compare your results with the value of 1.7 * 10-4 rad, 

yellow light (l

which corresponds to a 4.0-mm pupil.

0 = 550 nm) at 25°. Determine the spacing between the 

lines on the grating.


10.42*
   We intend to observe two distant equal-brightness stars whose 


10.54*
  Collimated red light (656.281 6 nm) from a hydrogen dis-

angular separation is 50.0 * 10-7rad. Assuming a mean wavelength of 

charge lamp falls perpendicularly onto a transmission grating. The 

550 nm, what is the smallest-diameter objective lens that will resolve 

beam emerges forming a red line in the second-order spectrum at an 

the stars (according to Rayleigh’s criterion)?

angle of 42.00º with the central axis. Compute the number of lines per 


10.43*
  Using Rayleigh’s criterion, determine the smallest angle sub-

centimeter the grating must have. Determine the angular location of 

tended by two points of equal brightness that can just be resolved by the 

the blue (486.132 7 nm) line in the second-order hydrogen spectrum.

human eye. Assume a pupil diameter of 2.0 mm and a mean wavelength 


10.55
   White light falls normally on a transmission grating that con-

of 550 nm. The index of refraction of the medium within the eye is 1.337.

tains 1000 lines per centimeter. At what angle will red light (l0 =


10.44*
   What is the linear separation between two identical points on 

650 nm) emerge in the first-order spectrum?

an object that can just be resolved, if that object is at the near-point of 


10.56*
   Light from a laboratory sodium lamp has two strong yellow 

the eye (25 cm). See the previous question.

components at 589.592 3 nm and 588.995 3 nm. How far apart in the 


10.45
   The neoimpressionist painter Georges Seurat was a member of the 

first-order spectrum will these two lines be on a screen 1.00 m from a 

pointillist school. His paintings consist of an enormous number of closely 

grating having 10 000 lines per centimeter?

spaced small dots (≈ 110 inch) of pure pigment. The illusion of color mix-


10.57*
   With Example 10.9 on page 494 in mind, determine the num-

ing is produced only in the eye of the observer. How far from such a paint-

ber of grooves a transmission grating must have if it is to resolve the 

ing should one stand in order to achieve the desired blending of color?

sodium doublet in the first-order spectrum. Compare the results of 


10.46*
  The Mount Palomar telescope has an objective mirror with a 

both problems.

508-cm diameter. Determine its angular limit of resolution at a wave-


10.58*
   A transmission grating has 5900 lines/cm. Light in the range 

length of 550 nm, in radians, degrees, and seconds of arc. How far apart 

from 400 nm to 720 nm impinges perpendicularly on the grating. How 

must two objects be on the surface of the Moon if they are to be re-

big is the angular width of the first-order spectrum?

solvable by the Palomar telescope? The Earth–Moon distance is 

3.844 * 108 m; take l0 = 550 nm. How far apart must two objects be 


10.59*
   Sunlight impinges on a transmission grating that is formed with 

on the Moon if they are to be distinguished by the eye? Assume a pupil 

5000 lines per centimeter. Does the third-order spectrum overlap the 

diameter of 4.00 mm.

second-order spectrum? Take red to be 780 nm and violet to be 390 nm.
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10.60*
  A beam of collimated polychromatic light ranging from  


Figure P.10.68  
   (E.H.)

500 nm to 700 nm impinges normally on a transmission grating having  

590 000 lines/m. If the complete second-order spectrum is to appear, 

how wide, at most, can the slits be? [ Hint:
  The second-order spectrum 

must fit within the diffraction envelope of each slit.]


10.61
  Light having a frequency of 4.0 * 1014 Hz is incident on a 

grating formed with 10 000 lines per centimeter. What is the highest-

order spectrum that can be seen with this device? Explain.


10.62*
   Suppose that a grating spectrometer while in vacuum on Earth 

sends 500-nm light off at an angle of 20.0° in the first-order spectrum. 

By comparison, after landing on the planet Mongo, the same light is 

diffracted through 18.0°. Determine the index of refraction of the Mon-

goian atmosphere.

Show that the mean distance to the  l
 th zone is


10.63
   Prove that the equation

(2 l 
 - 1)l


r







a
 (sin 


l 
 =  r
 0 +

u m 
 - sin u i
 ) =  m
 l  


[10.61]

4

when applied to a transmission grating, is independent of the refractive 

so that the ratio  Al
 > rl 
 is constant.

index.


10.71*
   Derive Eq. (10.84).


10.64*
   A grating has a total width of 10.0 cm and contains 600 lines/

mm. What is its resolving power in the second-order spectrum? At 


10.72*
   The circular hole in an opaque screen is 6.00 mm in diameter. 

a mean wavelength of 540 nm, what wavelength difference can it 

It is perpendicularly illuminated by collimated light of wavelength 

resolve?

500 nm. How many Fresnel zones will be “seen” from a point- P
  on the 

central axis 6.00 m from the screen? Will that point be bright or dark? 


10.65
  A high-resolution grating 260 mm wide, with 300 lines per 

Roughly, what will the diffraction pattern look like on a vertical plane 

millimeter, at about 75° in autocollimation has a resolving power of 

containing  P
 ?

just about 106 for l = 500 nm. Find its free spectral range. How do 


10.73*
   Collimated light from a krypton ion laser at 568.19 nm im-

these values of ℛ and (∆l)fsr compare with those of a Fabry–Perot 

pinges normally on a circular aperture. When viewed axially from a 

etalon having a 1-cm air gap and a finesse of 25?

distance of 1.00 m, the hole uncovers the first half-period Fresnel zone. 


10.66
   What is the total number of lines a grating must have in order 

Determine its diameter.

just to separate the sodium doublet (l1 = 5895.9 Å, l2 = 5890.0 Å) in 


10.74*
   Plane waves impinge perpendicularly on a screen with a small 

the third order?

circular hole of radius  R
  in it. It is found that when viewed from some 


10.67*
   Imagine an opaque screen containing 30 randomly located cir-

axial point- P
  the hole uncovers 12 of the first half-period zone. What is 

cular holes. The light source is such that every aperture is coherently 

the irradiance at  P
  in terms of the irradiance there when the screen is 

illuminated by its own plane wave. Each wave in turn is completely 

removed? [ Hint:
  Look at Eqs. 10.54 and 10.55.]

incoherent with respect to all the others. Describe the resulting far-field 


10.75*
   Imagine a point source  S
  a perpendicular distance r

diffraction pattern.

0 from a 

circular hole in an aperture screen  g . The screen is a distance  r
 0 in 


10.68
   Imagine that you are looking through a piece of square woven 

front of an axial observation point- P
 . Show that the electric field due to 

cloth at a point source (l

the  l 
 th Fresnel zone as “seen” at  P
  is given by 

0 = 600 nm) 20 m away. If you see a square 

arrangement of bright spots located about the point source (Fig. P.10.68), 

2e0

each separated by an apparent nearest-neighbor distance of 12 cm, how 


El 
 = (-1) l
 +1

 cos [v t 
 -  k
 (r

(

0 +  r
 0)]

r0 +  r
 0)

close together are the strands of cloth?


10.76*
  Monochromatic plane waves perpendicularly illuminate a 


10.69*
  Perform the necessary mathematical operations needed to  

small circular hole in a screen. From point- P
 , beyond the hole on the 

arrive at Eq. (10.76).

central axis, exactly 3 Fresnel zones appear to fill the hole. If the inci-


10.70
  Referring to Fig. 10.52, integrate the expression  dS
  = 

dent irradiance on the aperture screen is  Iu
 , prove that the irradiance at 

2pr2 sin w  d
 w over the  l 
 th zone to get the area of that zone,


P
  is very nearly 4 Iu
 . [ Hint:
  Because these are plane waves, the unob-

structed irradiance at  P
  would equal  Iu
 .]


10.77*
   Plane waves (l = 550 nm) impinge normally on a 5.00-mm-

lpr

(2 l 
 - 1)l


A


diameter hole in an opaque screen (g). The diffraction pattern is ob-


l 
 =

  c r
 0 +

d

r +  r
 0

4

served on another screen (s), which is slowly moved toward the aperture. 
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At what distance from Σ will the near-field pattern (a system of bright 

Using this fact, show that the irradiance in the shadow of a semi-

and dark rings) show its first irradiance maximum on the central axis (at 

infinite opaque screen decreases in proportion to the inverse square 

point- P
 )? At what distance will a minimum first appear at  P
 ? [ Hint:
  The 

of the distance to the edge, as  z
 1 and therefore  v
 1 become large.

first maximum is reached when the entire first Fresnel zone is exposed.]


10.86
   What would you expect to see on the plane of observation if the 


10.78*  
 Envision an opaque screen (Σ) containing a circular hole of 

half-plane Σ in Fig. 10.81 were semi-transparent?

radius  R
 . A point source  S
  lies on the central axis a distance r0 in front 


10.87
  Plane waves from a collimated He–Ne laserbeam (l0 =

of  Σ and an observation point- P
  lies a distance  r
 0 beyond Σ, also on 

632.8 nm) impinge on a steel rod with a 2.5-mm diameter. Draw a 

the central axis. If  R 
 = 1.00 mm,  r0 = 1.00 m,   r
 0 = 1.00 m, and 

rough  graphic
  representation of the diffraction pattern that would be 

l0 = 500 nm, determine how many Fresnel zones will be visible from 

seen on a screen 3.16 m from the rod.


P
  and if it will be brightly illuminated or not. Roughly what would the 

diffraction pattern look like on a vertical screen containing  P
 ?


10.88
   Make a rough sketch of the irradiance function for a Fresnel 

diffraction pattern arising from a double slit. What would the Cornu 


10.79*
  Considering the previous problem, suppose we insert an 

spiral picture look like at point- P
 0?

opaque disk of radius  RD
  at the center of the hole so that the unob-

structed region is now an annulus. If  R



10.89*
   Make a rough sketch of a possible Fresnel diffraction pattern 


D 
 = 0.50 mm, determine the 

ratio of the irradiance at  P
  now ( I
  ) to the irradiance without the screen 

arising from each of the indicated apertures (Fig. P.10.89).

in place ( Iu
 ).


10.80*
   Consider a Fresnel zone plate having a transparent circular 

disk at its center. This is the  m 
 = 1 region, and the tenth transparent 


Figure P.10.89


region has a diameter of 6.00 mm. Determine the plate’s principal focal 

length when l0 = 600 nm.


10.81*  
 We want to make a Fresnel zone plate with a principal focal 

length of 2.00 m for krypton ion laser light of wavelength 647 nm. 

How big should the central transparent disk be? If it has 30 transparent 

regions, what’s the minimum diameter of the plate?


10.82*
   A horizontal hole 2.00 mm by 1.00 mm in an opaque screen is 

illuminated normally by a beam of collimated light of wavelength 500 

nm. If the incident irradiance is 30.0 W>m2, calculate the approximate 


10.90*
   Suppose the slit in Fig. 10.76 is made very wide. What will 

irradiance at a point 5.0 m from the hole on the central axis.

the Fresnel diffraction pattern look like?


10.83*
  A collimated beam from a ruby laser (694.3 nm) having an 


10.91*
   A long narrow slit 0.10 mm wide is illuminated by light of 

irradiance of 10 W>m2 is incident perpendicularly on an opaque screen 

wavelength 500 nm coming from a point source 0.90 m away. Deter-

containing a square hole 5.0 mm on a side. Compute the irradiance at 

mine the irradiance at a point 2.0 m beyond the screen when the slit 

a point on the central axis 250 cm from the aperture. Check that this is 

is centered on, and perpendicular to, the line from the source to the 

near-field diffraction.

point of observation. Write your answer in terms of the unobstructed 

irradiance.


10.84
   Use the Cornu spiral to make a rough sketch of 0 B˜
 12 (w) 
 02 ver-

sus  ( w



10.92*
   A long horizontal narrow slit of width 0.70 mm is illuminated 

1 +  w
 2)>2 for ∆ w 
 = 5.5. Compare your results with those of  

Fig. 10.79.

with 600-nm light. A point- P
 , 1.0 m away from the aperture screen, is 

opposite the lower edge of the screen. If 100 W>m2 arrives at  P
  with 


10.85
   The Fresnel integrals have the asymptotic forms (correspond-

no screen in place, determine the approximate irradiance there when 

ing to large values of  w
 ) given by

the light passes through the slit. Use the Cornu spiral.

1


10.93*
  A long narrow horizontal opaque rectangular object of 

𝒞 (w) 
 ≈ 12 + a

b sin ap w
 2b

p w


2

width 0.70 mm is illuminated by 600-nm light. Consider a point- P
 , 

at the level of the lower edge of the object, 1.0 m from it. Determine 

1

𝒮 (w) 
 ≈ 1

the ratio of the irradiance at  P
  with and without the obstacle in 

2 - a

b cos ap w
 2b

p w


2

place.
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11Fourier Optics



11.1 Introduction



11.2 Fourier Transforms


In what is to follow we will extend the discussion of Fourier 

methods introduced in Chapter 7. It is our intent to provide a 


11.2.1 One-Dimensional Transforms


strong basic introduction to the subject rather than a complete 

treatment. Besides its real mathematical power, Fourier analy-

It was seen in Section 7.4 that a one-dimensional function of 

sis leads to a marvelous way of treating optical processes in 

some space variable  ƒ(x)
  could be expressed as a linear combi-

terms of spatial frequencies.* It is always exciting to discover a 

nation of an infinite number of harmonic contributions:

new bag of analytic toys, but it’s perhaps even more valuable to 

∞

∞

unfold yet another way of thinking about a broad range of phys-

1






ƒ(x) 
 =   c  A(
 k )
  cos k x
   d
 k +


B(
 k )
  sin k x
   d
 kd  [7.56]





ical problems—we shall do both.†

p 3

3

0

0

The primary motivation here is to develop an understand-

ing of the way optical systems process light to form images. In 

The weighting factors that determine the significance of the 

the end we want to know all about the amplitudes and phases 

various angular spatial frequency (k) contributions, that is,  A(
 k )


of the lightwaves reaching the image plane. Fourier methods 

and   B(
 k )
 , are the  Fourier cosine and sine transforms of ƒ(x)
  

are especially suited to that task, so we first extend the treat-

given by

ment of Fourier transforms begun earlier. Several transforms 

+ ∞

are particularly useful in the analysis, and these will be con-


A(
 k ) 
 = 3  ƒ(x
 ′ )
  cos k x
 ′  dx
 ′

sidered first. Among them is the delta function, which will 

- ∞

subsequently be used to represent a point source of light. How 

+ ∞

an optical system responds to an object comprising a large 

and 


B(
 k ) 
 =


ƒ(x
 ′ )
  sin k x
 ′  dx
 ′ [7.57]

number of delta-function point sources will be considered in 

3- ∞

Section 11.3.1. The relationship between Fourier analysis and 

Fraunhofer diffraction is explored throughout the discussion, 

respectively. Here the quantity  x
 ′  
 is a dummy variable over 

but is given special attention in Section 11.3.3. The chapter 

which the integration is carried out, so that neither  A(
 k )
  nor 

ends with a return to the problem of image evaluation, this 


B(
 k )
  is an explicit function of  x
 ′, and the choice of symbol 

time from a different, though related, perspective: the object is 

used to denote it is irrelevant. The sine and cosine transforms 

treated not as a collection of point sources but as a scatterer of 

can be consolidated into a single complex exponential ex-

plane waves.

pression as follows: substituting [Eq. 7.57] into [Eq. 7.56], 

we obtain

1

∞

+ ∞


ƒ(x) 
 =  

cos k x


ƒ (x
 ′ )
  cos k x
 ′ dx
 ′  d
 k

p 3

3

0

- ∞

*See Section 13.2 for a further nonmathematical discussion.

1

∞

+ ∞

+  

sin k x



ƒ(x
 ′ )
  sin k x
 ′ dx
 ′  d
 k

p 3

3





0

- ∞

†As general references for this chapter, see R. C. Jennison,  Fourier Transforms 


But since cos k ( x
 ′


and Convolutions for the Experimentalist
 ; N. F. Barber,  Experimental Correlograms 


-  x
 ) = cos k x
  cos k x
 ′ + sin k x
  sin k x
 ′, this 










and Fourier Transforms
 ; A. Papoulis,  Systems and Transforms with Applications in 


can be rewritten as


Optics; 
 J. W. Goodman , Introduction to Fourier Optics
 ; J. Gaskill,  Linear Systems,
 Fourier Transforms, and Optics
 ; R. G. Wilson,  Fourier Series and Optical Transform 


1

∞

+ ∞


Techniques in Contemporary Optics
 ; and the excellent series of booklets  Images 






ƒ (x) 
 =  

c

ƒ (x
 ′ )
  cos k( x
 ′ -  x
 )  dx
 ′d  d
 k (11.1)

p 3

3


and Information
 , by B. W. Jones et al. 

0

- ∞
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The quantity in the square brackets is an even function of k, and 

Just as  F(
 k )
  is the transform of  ƒ(x)
 ,    ƒ(x)
  itself is said to be 

therefore changing the limits on the outer integral leads to

the inverse Fourier transform
  of  F(
 k )
 , or symbolically

1

+ ∞

+ ∞






ƒ(x) 
 = ℱ-1{ F(
 k )
 } = ℱ -1{ℱ{ ƒ(x)
 }} (11.8)

    ƒ (x) 
 =





c

ƒ (x
 ′ )
  cos k( x
 ′ -  x
 )  dx
 ′d  d
 k (11.2)

2p 3

3

- ∞

- ∞

and  ƒ(x) 
 and  F(
 k )
  are frequently referred to as a Fourier-transform 

Inasmuch as we are looking for an exponential representation, 

pair. It’s possible to construct the transform and its inverse in an 

Euler’s theorem comes to mind. Consequently, observe that

even more symmetrical form in terms of the spatial frequency 

k = 1>l = k>2p. Still, in whatever way it’s expressed, the 


i


+ ∞

+ ∞

transform will not be precisely the same as the inverse trans-





c


ƒ(x
 ′ )
  sin k( x
 ′ -  x
 )  dx
 ′d  d
 k = 0

2p 3

3

- ∞

- ∞

form because of the minus sign in the exponential. As a result 

(Problem 11.13), in the present formulation,

because the factor in brackets is an odd function of k. Adding 

ℱ{ F(
 k )
 }

these last two expressions yields the complex* form of the Fou-

= 2p ƒ(
 - x)
  while ℱ-1{ F(
 k )
 } =  ƒ(x)


rier integral,

When we study Abbe’s image theory we’ll see that this relation-

ship is associated with the fact that a single lens forms real in-

1

+ ∞

+ ∞






ƒ(x)







ƒ(x


verted images. This is most often inconsequential, especially 

=

c

′ )ei
 k x
 ′ dx
 ′d e
 - i
 k x
   d
 k (11.3)

2p 3

3

- ∞

- ∞

for even functions where  ƒ(x) 
 =  ƒ(
 - x)
 , so we can expect a 

Thus we can write

good deal of parity between functions and their transforms.

Obviously, if  ƒ
  were a function of time rather than space, we 

would merely have to replace  x
  by  t
  and then k, the angular spa-

1 + ∞






ƒ(x)



F(
 k )e
 - i
 k x
   d
 k (11.4)

tial frequency, by v, the angular temporal frequency, in order to 

= 2p3-∞

get the appropriate transform pair in the time domain, that is,

1 + ∞

provided that






ƒ(t) 
 =


F(
 v )e
 - i
 v t
   d
 v (11.9)

2p3- ∞

+ ∞

+ ∞






F(
 k )


ƒ (x)ei
 k x
   dx
  (11.5)

and 


F(
 v )


=

=

3

3  ƒ(t)ei
 v t
   dt
  (11.10)

- ∞

- ∞

It should be mentioned that if we write  ƒ(x)
  as a sum of func-

having set  x
 ′

tions, its transform [Eq. (11.5)] will apparently be the sum of the 

=  x
  in Eq. (11.5). The function  F(
 k )
  is the Fourier 



transform
  of  ƒ(x)
 , which is symbolically denoted by

transforms of the individual component functions. This can 

sometimes be a convenient way of establishing the transforms of 






F(
 k )


complicated functions that can be constructed from well-known 

= ℱ{ ƒ(x)
 6 (11.6)

constituents. Figure 11.1 makes this procedure fairly self-evident.

Actually, several equivalent, slightly different ways of defining 

the transform appear in the literature. For example, the signs in 


EXAMPLE 11.1


the exponentials could be interchanged, or the factor of 1>2p

Prove that if  ƒ(x)
  has the transform  F(
 k )
 , then  ƒ(ax)
 , where  a
  is could be split symmetrically between  ƒ(x)
  and  F(
 k )
 ; each would 

a positive constant, has the transform (1> a
 ) F(
 k> a)
 .

then have a coefficient of 1> 12p. Note that  A(
 k )
  is the real part 

of  F(
 k )
 , while  B(
 k )
  is its imaginary part, that is,


SOLUTION
  

The transform of  ƒ(ax)
  is






F(
 k ) 
 =  A(
 k ) 
 +  iB(
 k )
  (11.7a)

+ ∞

As was seen in Section 2.4, a complex quantity like this can 

3  ƒ(ax)
   eikxdx


also be written in terms of a real-valued amplitude, 

- ∞

0  F(
 k ) 
 0, the 


amplitude spectrum
 , and a real-valued phase, f (
 k )
 , the  phase 


Let  y 
 =  ax
  whereupon  dy 
 =  adx
  and the integral becomes


spectrum
 :

1 + ∞  (y)
   ei
 k y
 ady







F(
 k ) 
 = 0  F(
 k ) 
 0  ei
 f (
 k )
  (11.7b)


a
 3- ∞

Considering the angular spatial frequency to now be  k
 > a
 , this 

and sometimes this form can be quite useful [see Eq. (11.96)].

integral equals

1  F(
 k


a


> a)


which was to be proven.

*To keep the notation in standard form, and when there’s no loss of clarity, we 

omit the tilde symbol that would  otherwise indicate a complex quantity.
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Function

Transform

(a)


f(x)


(b)


f(k)



f
 1 (x)



F
 1 (k)


√ a
 p

1


x



k



x



k


0

0

(a)

s x


s k



f
 2 (x)



F
 2 (k)



Figure 11.2
     A Gaussian and its Fourier transform.

The definite integral can be found in tables and equals  1p; 

hence

2






F(
 k ) 
 =  e
 -k >4 a






 (11.12)


x



k


(b)

which is again a Gaussian function (Fig. 11.2 b
 ), this time with 


f
 3 (x)



F
 3 (k)


k as the variable. The standard deviation is defined as the range 

of the variable ( x
  or k) over which the function drops by a fac-

tor of  e
 -1>2 = 0.607 of its maximum value. Thus the standard 

deviations for the two curves are s x 
 = 1> 12 a
  and sk = 12 a
  

and s x
  sk = 1. As  a
  increases,  ƒ(x)
  becomes narrower while, in 

contrast,  F(
 k )
  broadens. In other words, the shorter the pulse 

length, the broader the spatial frequency bandwidth. Table 11.1 

lists some of the symmetry characteristics of the Fourier trans-


x



k


form. The Gaussian is real and even and its transform is real 


f


(c)

and even.

3 (x) 
 =  f
 1 (x) 
 +  f
 2 (x)



F
 3 (k) 
 =  F
 1 (k) 
 +  F
 2 (k)



F(k) 
 =  
 {  f(x)
 }


11.2.2 Two-Dimensional Transforms



Figure 11.1
     A composite function and its Fourier transform.

Thus far the discussion has been limited to one-dimensional 

functions, but Optics generally involves two-dimensional sig-


Transform of the Gaussian Function


nals: for example, the field across an aperture or the flux-density 

distribution over an image plane. The Fourier-transform pair 

As an example of the method, let’s examine the Gaussian prob-

can readily be generalized to two dimensions, whereupon

ability function,





ƒ (x)


+∞

=  Ce
 - ax
 2 (11.11)

1


 



ƒ(x, y) 
 =

  F(
 k

where  C 
 = 1 a
 >p  
 and  a
  is a constant. If you like, you can imagine 

(2


x
   ,
  k y)e
 - i
 (k x
   x 
 + k yy
 ) d
 k x
   d
 k y
  (11.13) p)233

-∞

this to be the profile of a pulse at  t 
 = 0. The familiar bell-shaped 

curve (Fig. 11.2 a
 ) is quite frequently encountered in Optics. It will 

+∞

be germane to a diversity of considerations, such as the wave 

and 


F(
 k x,
  k

  ƒ(x,
   y)
   ei
 (k x
   x
 +k yy
 ) dx







y) 
 =

packet representation of individual photons, the cross-sectional 

33

  dy
  (11.14)

-∞

irradiance distribution of a laserbeam in the TEM00 mode, and the 

statistical treatment of thermal light in coherence theory. Its Fou-

rier transform, ℱ{ ƒ(x)
 }, is obtained by evaluating


TABLE 11.1  Fourier Transform Symmetries


+ ∞

   ƒ(x)
  or  ƒ(t)
  


F(
 k )
  or  F(



F(
 k ) 
 =

v )


3 ( Ce
 - ax
 2) ei
 k x
   dx


- ∞

Real and even 

Real and even

On completing the square, the exponent, - ax
 2 +  i
 k x
 , becomes

Real and odd 

Imaginary and odd

-( x
 1 a 
 -  i
 k>21 a
 )2 - k2>4 a
 , and letting  x
 1 a 
 -  i
 k>21 a 
 = b Imaginary and even 

Imaginary and even

yields

Imaginary and odd 

Real and odd

Complex and even 

Complex and even


C


+ ∞

2


F(
 k ) 
 =

  e
 - k 
 >4 a







e
 -b2 d
 b

Complex and odd 

Complex and odd

1 a


3- ∞
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The quantities k x
  and k y
  are the angular spatial frequencies 


y


along the two axes. Suppose we were looking at the image of a 

tiled floor made up alternately of black and white squares 

la

2


k


aligned with their edges parallel to the  x
 - and  y
 -directions. If the 

l y


a

floor were infinite in extent, the mathematical distribution of 

reflected light could be regarded in terms of a two-dimensional 

l y


Fourier series. With each tile having a length /, the spatial pe-

a

riod along either axis would be 2/, and the associated funda-

−


x


2l x


−

2

mental angular spatial frequencies would equal 

l x


0

l

l

p>/. These and 


x



x


their harmonics would certainly be needed to construct a func-


A
  = 4p

−l y


tion describing the scene. 


A
  = 2p

If the pattern was finite in extent, the function would no longer 


A
  = 0

−2l

be truly periodic, and the Fourier integral would have to replace 


y



A
  = −2p

the series. In effect, Eq. (11.13) says that  ƒ(x, y)
  can be construct-


A
  = −4p

ed out of a linear combination of elementary functions having the 

form exp[- i
 (k x
   x 
 + k yy
 )], each appropriately weighted in ampli-


Figure 11.3  
   Geometry for Eq. (11.15).

tude and phase by a complex factor  F(
 k x,
  k y)
 . The transform sim-





ply tells you how much of and with what phase each elementary 

component must be added to the recipe. In three dimensions, the 

elementary functions appear as exp[- i
 (k x
   x 
 + k yy 
 + k zz
 )] or exp (- i
 k
 $~r
  $), which correspond to planar surfaces. Furthermore, if  ƒ
  

The angular spatial frequency k  ,
  being 2

, is then

a

p>la









is a wavefunction, that is, some sort of three-dimensional wave 

2

2

ƒ (
 
r

  $ , t)
 , these elementary contributions become plane waves that 





k

 (11.18)

a = 2k x 
 + k y


look like exp[(- i
 k
 $~r
  $ - v t
 )]. In other words,  the disturbance 











can be synthesized out of a linear combination of plane waves 


as expected. This just means that in order to construct a 


having various propagation numbers and moving in various di-


two-dimensional function, harmonic terms in addition to 


rections
 . Similarly, in two dimensions the elementary functions 

those of spatial frequency k x
  and k y
  will generally have to be 

are “oriented” in different directions as well. That is to say, for a 

included as well, and these are oriented in directions other 

given set of values of k

than along the  x
 - and  y
 -axes. We’ll see how this works pres-


x
  and k y
 , the exponent or phase of the el-

ementary functions will be constant along lines

ently (p. 546).

Return for a moment to Fig. 10.7, which shows an aperture, 

k x
   x 
 + k yy 
 = constant =  A


with the diffracted wave leaving it represented by several differ-

ent conceptions. One of these ways to envision the complicated 

k


A


emerging wavefront is as a superposition of plane waves com-

or 


y 
 = -   x


  

(11.15)

k    x 
 +

ing off in a whole range of directions (Fig. 7.52). These are the 


y


k y


Fourier-transform components, which emerge in specific direc-

The situation is analogous to one in which a set of planes nor-

tions with specific values of angular spatial frequency—the 

mal to and intersecting the  xy
 -plane does so along the lines 

zero spatial frequency term corresponding to the undeviated 

given by Eq. (11.15) for differing values of  A
 . A vector perpen-

axial wave, the higher spatial frequency terms coming off at 

dicular to the set of lines, call it k
 $ , would have components  

increasingly great angles from the central axis. These Fourier 

a

k

components make up the diffracted field as it emerges from the 


x
  and k y
 . Figure 11.3 shows several of these lines (for a given 

k

aperture.


x
  and k y
 ), where  A 
 = 0,  ± 2p,  ± 4pc. The slopes are all 

equal to -k x
 >k y
  or -l y
 >l x
  while the  y
 -intercepts equal 


A
 >k y 
 =  A
 l y
 >2p. The orientation of the constant phase lines is


Transform of the Cylinder Function


k y


l






x


a = tan-1 

= tan-1   (11.16)

The cylinder function

k x


l y


1

2 x
 2 +  y
 2 …  a


The wavelength, or spatial period l , measured along k
 $ , is 






ƒ(x, y) 
 = e

 (11.19)

a

a

0

obtained from the similar triangles in the diagram, where 

2 x
 2 +  y
 2 7  a


l

2

2 and

a>l y 
 = l x
 > 2l x 
 + l y


(Fig. 11.4 a
 ) provides an important practical example of the  

1

application of Fourier methods to two dimensions. The mathe-





l

 (11.17)

a =

matics will not be particularly simple, but the relevance of the 

2l-2

-2


x


+ l y


calculation to the theory of diffraction by circular apertures and 
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f(x, y)


It follows from Eq. (10.47) that


a







F(
 k  )



J



r)r
   dr
  (11.23)

a = 2p3 0 (
 ka

1


a


0

the  J
 0 (
 k  r)
  being a Bessel function of order zero. Introducing a 

a

change of variable, namely, k  r


-1  dw
 , and 

a

=  w
 , we have  dr 
 = ka

the integral becomes


y


1 k  a


a






J


k2 3

0 (w)w
   dw
  (11.24)

a  w 
 = 0


x


(a)

Using Eq. (10.50), the transform takes the form of a first-order 

Bessel function (see Fig. 10.35), that is,


F(k )


a

2p


F(
 k  )


 k

a = k2 a  a
   J
 1 (
 ka  a)


a


J



a)


or 


F(
 k  )


1 (
 ka

a = 2p a
 2 c

d  (11.25)


k a


a

The similarity between this expression (Fig. 11.4 b
 ) and the 

formula for the electric field in the Fraunhofer diffraction 

pattern of a circular aperture [Eq. (10.51)] is, of course, not 

accidental.

As we’ll soon see, in the case of Fraunhofer diffraction the 


k


transform of the electric-field function across the aperture is 


y


quite generally equal to the electric field of the diffraction pat-


k


tern. Because that field has oscillatory values and so goes 


x


(b)

negative, it’s not easy to represent it pictorially in black and 

white on a printed page. Figure 11.5 is an attempt to do just 


Figure 11.4
     The cylinder, or top-hat, function and its transform.

that; it’s a plot of the absolute values of the two-dimensional 

transforms of several circular apertures of increasing size. By 

the time brightness adjustments are made for printing the 

lenses amply justifies the effort. The evident circular symmetry 

transforms on this page, they end up looking much like irradi-

suggests polar coordinates, and so let

ance distributions.

k x 
 = k  cos 

a

a





k y 
 = k  sin 

a

a 

(11.20)


The Lens as a Fourier Transformer



x 
 =  r
  cos u


y 
 =  r
  sin 

Figure 11.6 shows a transparency, located in the front focal 

u

plane of a converging lens, being illuminated by parallel light. 

in which case  dx
   dy 
 =  r
   dr
   d
 u. The transform, ℱ{ ƒ(x)
 }, then This object, in turn, scatters plane waves, which are collected 

reads

by the lens, and parallel bundles of rays are brought to conver-

gence at its back focal plane. If a screen were placed there, at Σ


a


2


t
 , 

p






F(
 k  ,


  ei
 k  r
  cos (

the so-called transform plane
 , we would see the far-field dif-

a

u - a) d


a a ) 
 = 3

c3

ud  r
   dr
  (11.21)


r 
 = 0

fraction pattern of the object spread across it. (This is essentially 

u = 0

the configuration of Fig. 10.8 e
 .) In other words, the electric-field 

Inasmuch as  ƒ(x, y)
  is circularly symmetrical, its transform must 

distribution across the object mask, which is known as the ap-


be symmetrical as well. This implies that  F(k , 


a a ) 
 is independent 


erture function
 , is transformed by the lens into the far-field 

of a. The integral can therefore be simplified by letting a equal 

diffraction pattern. Although this assertion is true enough for 

some constant value, which we choose to be zero, whereupon

most purposes, it’s not exactly true. After all, the lens doesn’t 


a


2

actually form its image on a plane.

p






F(
 k  )


  ei
 k  r
  cos 

a

u d


Remarkably, that Fraunhofer E


$-field pattern corresponds to 

a = 3 c3

ud  r
   dr
  (11.22)

0

0

the exact Fourier transform of the aperture function—a fact we 
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Figure 11.5  
   The top row depicts four  

circular spatial signals of increasing size. 

The row below it shows the corresponding 

two-dimensional Fourier transforms for 

each circular signal. (K. Betzler, Universität 

Osanabrück)


11.2.3 The Dirac Delta Function


Many physical phenomena occur over very short durations in 

time with great intensity, and one is frequently concerned with 

the consequent response of some system to such stimuli. For 

example: How will a mechanical device, like a billiard ball, 

respond to being slammed with a hammer? Or how will a par-

ticular circuit behave if the input is a short burst of current? In 

much the same way, we can envision some stimulus that is a 

sharp pulse in the space, rather than the time, domain. A bright 

minute source of light embedded in a dark background is es-


f



f


sentially a highly localized, two-dimensional, spatial pulse—a 

Σ t


spike of irradiance. A convenient idealized mathematical rep-

resentation of this sort of sharply peaked stimulus is the Dirac 



Figure 11.6
   The light diffracted by a transparency at the front (or object) 


delta function
  d (x)
 . This is a quantity that is zero everywhere 

focal point of a lens converges to form the far-field diffraction pattern at 

except at the origin, where it goes to infinity in a manner so as 

the back (or image) focal point of the lens.

to encompass a  unit area
 , that is,

0


x 
 Z 0

shall confirm more rigorously in Section 11.3.3. Here the object 





d (x) 
 = e

 (11.26)

∞


x 
 = 0

is in the front focal plane, and all the various diffracted waves 

maintain their phase relationships traveling essentially equal 

+ ∞

optical path lengths to the transform plane. That doesn’t quite 

and 

happen when the object is displaced from the front focal plane. 

3 d (x)
   dx 
 = 1 (11.27)

- ∞

Then there will be a phase deviation, but that is actually of little 

consequence, since we are generally interested in the irradiance 

This is not really a function in the traditional mathematical 

where the phase information is averaged out and the phase dis-

sense. In fact, because it is so singular in nature, it remained the 

tortion is unobservable.

focus of considerable controversy long after it was reintroduced 

Thus if an otherwise opaque object mask (Fig. 11.5) con-

tains a single circular hole, the E


$-field across it will resemble 

the top hat of Fig. 11.4 a
 , and the diffracted field, the Fourier 

(a)

(b)


E(x)


{  E(x)
 }

transform, will be distributed in space as a Bessel function, 

looking very much like Fig. 11.4 b
 . Similarly, if the object 

transparency varies in density only along one axis, such that its 

amplitude transmission profile is triangular (Fig. 11.7 a
 ), then 

the amplitude of the electric field in the diffraction pattern will 


x



x


0

correspond to Fig. 11.7 b
 —the Fourier transform of the triangle 

function is the sinc-squared function.


Figure 11.7
     The transform of the triangle function is the sinc2 function.
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and brought into prominence by P. A. M. Dirac in 1930. Yet 

(a)


f(x)
  = d (x)


physicists, pragmatic as they sometimes are, found it so highly 

useful that it soon became an established tool, despite what 

1

seemed a lack of rigorous justification. The precise mathemati-

cal theory of the delta function evolved roughly 20 years later, 

in the early 1950s, principally at the hands of Laurent Schwartz.


x


0

Perhaps the most basic operation to which d (x)
  can be ap-

plied is the evaluation of the integral

(b)


f(x)
  =  A
 d (x)


+ ∞

d (x)ƒ(x)
   dx



A


3- ∞

Here the expression ƒ (x)
  corresponds to any continuous func-


x


tion. Over a tiny interval running from  x 
 = -g to +g centered 

0

about the origin, ƒ (x) 
 ≈ ƒ (0) 
 ≈ constant, since the function is 

continuous at  x 
 = 0. From  x 
 = - ∞ to  x 
 = -g and from 

(c)


f(x)
  = d (x
 − x
 0 )



x 
 = +g to  x 
 = + ∞, the integral is zero, simply because the  

d-function is zero there. Thus the integral equals

1

+g

ƒ (0)
 3 d (x)
   dx


-g


x


0


x
 0

Because d (x) 
 = 0 for all  x
  other than 0, the interval can be van-

ishingly small, that is, g S 0, and still


Figure 11.8
     The height of the arrow representing the delta function  

corresponds to the area under the function.

+g

3 d (x)
   dx 
 = 1

-g

from Eq. (11.27). Hence we have the exact result that

the lines of defining the effect of d (x)
  on some other function 


ƒ(x)
 . Accordingly, Eq. (11.28) is really the definition of an en-

+ ∞





tire operation that assigns a number  ƒ(0)
  to the function  ƒ(x)
 . 

3 d (x)
 ƒ (x)
   dx 
 = ƒ (0)
  (11.28)

- ∞

Incidentally, an operation that performs this service is called a 


functional
 .

This is often spoken of as the sifting property
  of the d-function 

It is possible to construct a number of sequences of pulses, 

because it manages to extract only the one value of  ƒ(x) 
 taken at 

each member of which has an ever-decreasing width and a 


x 
 = 0 from all its possible values. Similarly, with a shift of origin 

concomitantly increasing height, such that any one pulse en-

of an amount  x
 0,

compasses a unit area. A sequence of square pulses of height 

0


x 
 Z  x



a
 > L
  and width  L
 > a
  for which  a 
 = 1, 2, 3, . . . would fit the bill; 0

d (x 
 -  x0) 
 = e

 (11.29)

∞


x 
 =  x


so would a sequence of Gaussians [Eq. (11.11)],

0

and the spike resides at  x 
 =  x
 0 rather than  x 
 = 0, as shown in 


a






  e
 - ax
 2 (11.31)

Fig. 11.8. The corresponding sifting property can be appreciated 

d a(x) 
 = Ap

by letting  x 
 -  x
 0 =  x
 ′, then with  ƒ(x
 ′ +  x0) 
 =  g(x
 ′ )
 , as in Fig. 11.9, or a sequence of sinc functions

+ ∞

+ ∞

3 d (x 
 -  x
 0 )
 ƒ (x)
   dx 
 = 3 d (x
 ′ )g(x
 ′ )
   dx
 ′ =  g(0)
 a






 sinc ( ax
 ) (11.32)

- ∞

- ∞

d a(x) 
 = p

and since  g(0) 
 =  ƒ(x0)
 ,

Such strongly peaked functions that approach the sifting prop-

erty, that is, for which

+ ∞





+ ∞

3 d (x 
 -  x0)
 ƒ (x)
   dx 
 = ƒ (x0)
  (11.30)





lim

d

- ∞


a 
 S ∞ 3


a(x)ƒ(x)
   dx 
 =  ƒ(0)
  (11.33)

- ∞

Formally, rather than worrying about a precise definition of d (x)
  

are known as  delta sequences
 . It is often useful, but not actually 

for each value of  x
 , it would be more fruitful to continue along 

rigorously correct, to imagine d (x) 
 as the convergence limit of 
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a


This implies, via Eq. (11.4), that the delta function can be 

d a(x)
  =


e–ax2


√p

thought of as the inverse Fourier transform of unity, that is, 

d (x) 
 = ℱ -1{1} and so ℱ{d (x)
 } = 1. We can imagine a square 

pulse becoming narrower and taller as its transform, in turn, 

grows broader, until finally the pulse is infinitesimal in 

width, and its transform is infinite in extent—in other words, 


a
  = 4

a constant.


a
  = 1


a
  = 16


Displacements and Phase Shifts



x


0

If the d-spike is shifted off  x 
 = 0 to, say,  x 
 =  x
 0, its transform 

will change phase but not amplitude—that remains equal to 1. 


Figure 11.9
     A sequence of Gaussians.

To see this, evaluate

+ ∞

such sequences as  a 
 S ∞. The extension of these ideas into two 

ℱ{d (x 
 -  x0)
 } = 3 d (x 
 -  x0)ei
 k xdx


- ∞

dimensions is provided by the definition

∞


x 
 =  y 
 = 0

From the sifting property [Eq. (11.30)] the expression becomes





d (x, y) 
 = e

 (11.34)

0

otherwise





ℱ{d (x 
 -  x0)
 } =  ei
 k x
 0 (11.40)

+∞

What we see is that only the phase is affected, the amplitude 

and 

33 d (x, y)
   dx
   dy 
 = 1 (11.35)

being 1 as it was when  x
 0 = 0. This whole process can be ap-

-∞

preciated somewhat more intuitively if we switch to the time 

and the sifting property becomes

domain and think of an infinitesimally narrow pulse (such as a 

spark) occurring at  t


+∞

= 0. This results in the generation of an 

infinite range of frequency components, which are all initially 





33  ƒ(x,
   y)
  d (x 
 -  x0)
  d (y 
 -  y0)
   dx
   dy 
 =  ƒ(x0
   ,
   y0)
  (11.36) in-phase at the instant of creation ( t 
 = 0). On the other hand, 

-∞

suppose the pulse occurs at a time  t
 0. Again every frequency is 

produced, but in this situation the harmonic components are all 

Another representation of the d-function follows from Eq. (11.3), 

in-phase at  t


the Fourier integral, which can be restated as

=  t
 0. Consequently, if we extrapolate back, the 

phase of each constituent at  t 
 = 0 will now have to be different, 

+ ∞

1 + ∞

depending on the particular frequency. Besides, we know that 


ƒ(x) 
 = 3 c


e
 - i
 k( x 
 -  x
 ′) d
 kd  ƒ(x
 ′ )
   dx
 ′

2

all these components superimpose to yield zero everywhere ex-

- ∞

p3- ∞

cept at  t
 0, so that a frequency-dependent phase shift is quite 

and hence

reasonable. This phase shift is evident in Eq. (11.40) for the 

space domain. Note that it does vary with the angular spatial 

+ ∞

frequency k.





ƒ (x) 
 = 3 d (x 
 -  x
 ′ )
 ƒ (x
 ′ )
   dx
 ′ (11.37)

All of this is quite general in its applicability, and we ob-

- ∞

serve that  
the Fourier transform of a function that is dis-



provided that



placed in space

  
 
(or time)

  
 
is the transform of the undisplaced 





function multiplied by an exponential that is linear in phase

  

1 + ∞

(Problem 11.17). This property of the transform will be of 





d (x 
 -  x
 ′ ) 
 =


e
 - i
 k (x 
 -  x
 ′ )d
 k (11.38)

2p3- ∞

special interest presently, when we consider the image of sev-

eral point sources that are separated but otherwise identical. 

Equation (11.37) is identical to Eq. (11.30), since by definition 

The process can be appreciated diagramatically with the help 

from Eq. (11.29) d (x 
 -  x
 ′ ) 
 = d (x
 ′ -  x)
 . The (divergent) inte-

of Figs. 11.10 and 7.34. To shift the square wave by p>4 to the 

gral of Eq. (11.38) is zero everywhere except at  x 
 =  x
 ′.  

right, the fundamental must be shifted 18-wavelength (or, say, 

Evidently, with  x
 ′ = 0, d (x) 
 = d (
 - x)
  and

1.0 mm), and every component must then be displaced an 

equal distance (i.e., 1.0 mm). Thus each component must be 

1 + ∞

1 + ∞

shifted in-phase by an amount specific to it that produces a 





d (x) 
 =


e
 - i
 k x
   d
 k =


ei
 k xd
 k (11.39)

1.0-mm displacement. Here each is displaced, in turn, by a 

2p3- ∞

2p3- ∞

phase of  m 
 p>4.
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f(x)


(a)


f(x)


(a)


F(k)
  =  A(k)


1

1

2


…



…


p

p

5p

−  d



d



d



x



k



x


− d
 2

0 + d
 2

0

3

−

p

l2

0

l2

p


d


phase

4 shift

−1


Figure 11.11
     Two delta functions and their cosine-function transform.

4 sin  kx


p

When the number of terms is infinite, this periodic function is 

(a)

often called  comb(x)
 . In any event, the transform will simply be 

a sum of terms, such as that of Eq. (11.40):





ℱ{ ƒ(x)
 } = ^ ei
 k xj
  (11.42)


j


4

In particular, if there are two d-functions, one at  x
 0 =  d
 >2  
 and 

sin 3 kx


3p

the other at  x
 0 = - d
 >2,


x


3p


ƒ(x) 
 = d [x 
 -  (
 + d
 > 2)] 
 + d [x 
 -  (
 - d
 > 2)]


phase

4 shift

and 

ℱ {ƒ(x)} 
 =  ei
 k d
 >2 +  e
 - i
 k d
 >2 

which is just

4

1





ℱ{ ƒ(x)
 } = 2 cos (k d
 >2) (11.43)

(b)

(sin  kx
  +     sin 3 kx
 )

p

3

as in Fig. 11.11. Thus the transform of the sum of these two 

symmetrical  d-functions is a cosine function and vice versa. 


The composite is a real even function, and F(
 k ) 
 = ℱ{ ƒ(x)
 }  will 



also be real and even
 . This should be reminiscent of Young’s 

Experiment with infinitesimally narrow slits—we’ll come back 

to it later. If the phase of one of the d-functions is shifted, as in 

4 sin 5 kx


Fig. 11.12, the composite function is asymmetrical, it’s odd,

p5


x



ƒ(x) 
 = d [x 
 -  (
 + d
 >2 )] 
 - d [x 
 -  (
 - d
 >2 )]


5p phase

4 shift

and 

ℱ{ ƒ(x)
 } =  ei
 k d
 >2 -  e
 - i
 k d
 >2 = 2 i
  sin (k d
 >2) (11.44) The real sine transform [Eq. (11.7)] is then

4

1

1

(sin  kx
  +     sin 3 kx
  +     sin 5  kx
 )

p

3

5






B(
 k ) 
 = 2 sin (k d
 >2)  (11.45)

(c)

(a)


f(x)


(a)


B(k)



Figure 11.10
     A shifted square wave showing the corresponding change 

in phase for each component wave.

1

2


…



…



Sines and Cosines


− d
 2


x



k


0 + d
 2

0

We saw earlier (Fig. 11.1) that if the function at hand can be written 

as a sum of individual functions, its transform is simply the sum of 

the transforms of the component functions. Suppose we have a string 

−1

−2

of delta functions spread out uniformly like the teeth on a comb,


Figure 11.12  
   Two delta functions and their real sine-function transform, 






ƒ(x) 
 =

d (x 
 -  x



B(
 k )
 . Still,  F(
 k )
 , as in Eq. 11.44, is actually imaginary. The transform of any 

^


j)
  (11.41)


j


real odd function is an imaginary odd function (see Table 11.1.)
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f(x)
  =  A
 cos  k
 0  (x
 − x
 0 )


(a)


f(x)
  =  A



F(k)



…



…



A



A


2p A



x



k


0

0


x


0


x
 0

(b)


f(x)
  =  A
  cos  k
 0 x



F(k)


− A



A


p A



…



…



F(k)



x



k


l

l

0

0

− k
 0 + k


0

0

0


k


(c)


f(x)
  

− k
 0

+ k


=  A
  cos 3 k
 0 x



F(k)


0


A


p A


f (k)



…



…



k


−3 k
 0

+3 k


0

0


k
 0 x
 0

− k


0


k


0

+ k


(d)


f(x)
  =  A
 (1+cos  k


0

0 x
 )


F(k)


2 A


2p A


− k



…



…


0 x
 0


A



x



k



Figure 11.13
     The spectra of a shifted cosine function.

− k
 0 + k


0

0

and it, too, is an odd function. In general,  the transform of a real 



odd function is an imaginary odd function
 .

(e)


f(x)
  =  A
  sin  k
 0 x



F(k)


This raises an interesting point. Recall that there are two al-

ternative ways to consider the complex transform: either as the 


A


Imaginary p A


sum of a real and an imaginary part, from Eq. (11.7a), or as the 


…



…


+ k


product of an amplitude and a phase term, from Eq. (11.7b). It 


x


0


k


− k
 0

happens that the cosine and sine are rather special functions; the 

0

former is associated with a purely real contribution, and the lat-

ter is associated with a purely imaginary one. Most functions, 

even harmonic ones, will usually be a blend of real and imagi-


Figure 11.14
     Some functions and their transforms.

nary parts. For example, once a cosine is displaced a little, the 

new function, which is typically neither odd nor even, has both 

a real and an imaginary part. Moreover, it can be expressed as a 

cosinusoidal amplitude spectrum, which is appropriately  the pair of d-pulses in the frequency spectrum of a harmonic phase-shifted (Fig. 11.13). Notice that when the cosine is shifted 

function is located along the k-axis at a distance from the ori-

14l into a sine, the relative phase difference between the two  gin equal to the fundamental angular spatial frequency of  ƒ(x)
 . 





component delta functions is again p rad.

Since any well-behaved periodic function can be expressed as 

Figure 11.14 displays in summary form a number of trans-

a Fourier series, it can also be represented as an array of pairs 

forms, mostly of harmonic functions. Observe how the func-

of delta functions, each weighted appropriately and each a 

tions and transforms in ( a
 ) and ( b
 ) combine to produce the 

distance from the k-origin equal to the angular spatial fre-

function and its transform in ( d
 ). As a rule, each member of 

quency of the particular harmonic contribution— the frequency 
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(a)


f(k)



F(k)


changing either the spatial frequency or amplitude, the pattern 

could be shifted right or left with respect to its present position, 

2p

and that corresponds to altering the  
phase

  of the sinusoid. These 

1


d


three quantities—frequency, amplitude, and phase—can specify 


…



…



…



…


the brightness pattern completely.

−


k


3 d 
 − d



d


3 d


−6p

−2p

2p

6p

The signal depicted in Fig. 11.16 is the analogue of a mono-

0


d



d


0


d



d


chromatic wave in that we take it to have a single spatial fre-

−2 k
 0 − k


2 k


0


k
 0

0

quency k0. For that to be true we’ll have to treat it as if it were 

unbounded by the rectangular frame of the picture, and so it’s 

(b)


f(k)



F(k)


actually an idealization, just as the monochromatic wave in the 

time domain is an idealization. A mathematical sinusoid oscil-

2p

1

lates between 


d


-1 and +1 and has an average value of 0. That 


…



…



…



…


cannot be the case for our paper-printed brightness sinusoid, 

since it cannot have negative values. Consequently, the signal 

−


k


3 d 
 − d



d


3 d


−4p

4p

2

2 0 2

2

must contain a zero-frequency  DC
  term, a term that essentially 


d


0


d


raises up the oscillation, keeping it from going negative (see 

Fig. 11.14 d
 ). Accordingly, we’ll add a constant to the sinusoid, 


Figure 11.15  
  ( a
 ) The comb function and its transform. ( b
 ) A shifted 

one just like that in Fig. 11.14 a
 .

comb function and its transform.

Exactly how high this constant raises the cosinusoid,  

beyond the minimum amount needed so the signal isn’t nega-


spectrum of any periodic function will be discrete
 . One of the 

tive, is determined by the contrast of the particular cosinusoi-

most remarkable of the periodic functions is  comb(x)
 : As 

dal pattern; the smallest rise (i.e.,  DC
  term) comports with 

shown in Fig. 11.15, its transform is also a comb function.

the greatest contrast. That  DC
  contribution, which here is like 

a uniform grey background, must be present in all physical 

images of this sort. It’s shown as a zero-frequency spike in 

Figs. 11.14 a
  and  d
  and in Fig. 11.17. If  A
  is the amplitude of 


11.3 Optical Applications


the cosinusoid, to raise it a minimum amount so it’s all above 

the axis and positive, the  DC
  spike must be 2p A
 , as illustrated 

in Fig. 11.14 d
 .


11.3.1 Two-Dimensional Images


Earlier in Fig. 7.42 we introduced the idea of plotting a trans-

form symmetrically with both positive and negative spatial fre-

To begin to understand how a two-dimensional image—for 

quencies. That was done both because the complex mathemati-

example, one on a photograph—can be synthesized out of 

cal representation does as much automatically, and because the 

Fourier components, examine Fig. 11.16. The cosinusoidally 

diffraction pattern is likewise symmetrical around the  DC
  con-

modulated black and white “fringe” pattern on the left is a 

tribution. Accordingly, our cosinusoidal spatial signal will be 

spatial brightness signal. It has a single  
spatial frequency

 , 

represented in frequency space as in Fig. 11.14 d
 : two delta-

which can be determined by scanning it along a horizontal 

function spikes at ±k0, on either side of a  DC
  spike. Because 


x
 -axis perpendicular to the bands.

the k0 contribution has been split in two to make the transform 

Take the  
amplitude

  of this signal to correspond to the ob-

symmetrical, the two nonzero frequency spikes have amplitudes 

served fringe  contrast
 , that is, ( I
 max -  I
 min)/( I
 max +  I
 min). Without of 2p A
 >2.

(a)

(b)


F(k)


2p A



k
 0

0


k
 0


DC



Figure 11.17
     Two delta spikes that correspond to a cosinusoidal spatial 

signal of spatial frequency  k
 0. The  DC
  term raises the signal so that it oscil-


Figure 11.16
   ( a
 ) A brightness sinusoid and ( b
 ) its Fourier transform. 

lates between 0 and  +2 A
  and never goes negative. To make the transform 

(Steven Lehar, http://sharp.bu.edu/~slehar/fourier/fourier.html)


symmetrical, the  k
 0 spike is split in two, as in Fig. 11.14 d
 .
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1 k
 0

3 k
 0

5 k
 0

7 k
 0


Figure 11.18
     Several brightness sinusodial signals and their Fourier tranforms. The spatial frequency ranges from that of the fundamental  k
 0 to the third, fifth, and seventh harmonics. (Steven Lehar,  


http://sharp.bu.edu/~slehar/fourier/fourier.html)


The two-dimensional Fourier transform is illustrated on the 

At this point we make use of the fact that the transform of the 

right in Fig. 11.16, where  
every dot or pixel represents a spe-



sum of several functions is the sum of the individual transforms 



cific Fourier frequency contribution

 . The central dot is the  DC
  

of those separate functions, as illustrated in Fig. 11.1. Accord-

term, and there will always be such a contribution in physical 

ingly, add the several different-frequency cosinusoidal signals 

image systems. It’s flanked by two dots that encode the cosinu-

displayed in Fig. 11.18 to produce the intricate band patterns of 

soid. Although it can’t actually be seen in Fig. 11.16 b
 ,   
the 



Fig. 11.19. The transforms are each just the sum of the individual 



brightness of the pixels represents the magnitude of the par-



transforms, and although it’s hard to see, the  DC
  terms increase 



ticular spatial frequency Fourier component

 . In this case the 

as the central fringe gets brighter and narrower in successive sig-

signal bands are vertical and the Fourier pixels are therefore 

nals. The process is reminiscent of multiple-beam diffraction, in 

spread out along a perpendicular horizontal line through the  DC
  

which the principal maxima become finer and taller as more con-

center. Those three pixels in the frequency domain are entirely 

tributions are added.

equivalent to the associated brightness cosinusoid; they tell us 

Now suppose a single cosinusoidal signal is rotated through 

everything we need to know to specify that signal in the spatial 

some arbitrary angle, as in Fig. 11.3. Neither the spatial wave-

domain. 

length nor the amplitude of the signal in Fig. 11.20 has been 

If the wavelength of the spatial signal is changed, the spac-

altered from that of Fig. 11.16. The resulting transform of the 

ing between the transform pixels will change in an inverse 

tilted signal (again assuming it is boundless) is the same as be-

fashion; the shorter the spatial wavelength, and hence the 

fore, namely, three delta functions. As before, these pixels lie on 

higher the spatial frequency, the farther apart the pixels will be, 

a line perpendicular to the signal bands and so are rotated 

but the pattern will always be symmetrical about the zero. In 

through the same angle as was the signal. In all the cases dis-

Fig. 11.18 we encounter several signals: (a) a fairly low fre-

cussed above,  
if we were to take the inverse transform of each 



quency fundamental, k0, (b) its third harmonic, 3k0, (c) its fifth 



transform (i.e., the delta functions), we’d reproduce the origi-



harmonic, 5k0, and (d) its seventh harmonic, 7k0. Each signal 



nal spatial signals

 .

has a bright band at its center and all are in-phase. The three 

Let’s now add the tilted signal in Fig. 11.20 a
  to the lowest 

transform pixels for each signal are increasingly farther apart. 

frequency signal in Fig. 11.18. In other words, combine Fig. 11.21 a 




The greater the distance (in any direction on the transform 



plus  b
  to generate the pattern on the left in Fig. 11.21 c
 . The 



plane) a pixel is from the center of the transform (i.e., from 



transform of this resultant signal is the sum of the individual 



the central DC value), the higher is its spatial frequency.

  A 

transforms constituting that signal, namely, three horizontal 

fine pattern in space requires high-frequency components (pixels 

delta dots overlying three tilted dots. This begins to suggest 

far from the center) in the transform. However complicated it 

how more complex images might be generated by adding in 

might be,  
any physical transform will always be symmetrical 



many cosinusoidal terms, in different directions, encompassing 



along lines through its center

 . 

a wide range of spatial frequencies. 
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Signals

Transforms

(a)

(b)

(a)

(b)


Figure 11.20
     A tilted sinusoidal signal and its Fourier transform.  

(Steven Lehar, http://sharp.bu.edu/~slehar/fourier/fourier.html)


(c)

(d)

(a)

(e)

(f)

(b)

(c)

(g)

(h)


Figure 11.21
     The sum of two sinusoidal signals, ( a
 ) plus ( b
 ), yields  


Figure 11.19
     Combinations of sinusoidal signals and their transforms. 

( c
 ), and their Fourier transforms. (Steven Lehar, http://sharp.bu.edu/~slehar/fourier/
  

Referring to Fig. 11.17, we see that here ( c
 ) is the sum of the 1 k
 0 and  


fourier.html)


3 k
 0 signals; ( e
 ) is the sum of the 1 k
 0, 3 k
 0, and 5 k
 0 signals; ( g
 ) is the sum of the 1 k
 0, 3 k
 0, 5 k
 0, and 7 k
 0 signals. (Steven Lehar, http://sharp.bu.edu/~slehar/fourier/



fourier.html)


All of this comes together in the several photos that follow, 

starting with Fig. 11.22 a
 . We begin with a picture of a youthful 

Recall the picture of the Mona Lisa and its transform com-

Einstein, overlooking that it happens to be slightly pixelated. 

prising thousands of frequency pixels (Fig. 7.50), which is 

The idea is to show how that image may be synthesized by 

completely equivalent to La Gioconda, though not nearly as 

spatial cosinusoids in a range of frequencies and orientations. 

engaging. Considering that transform, draw a line through its 

The complete Fourier transform of the image is given in 

center. Any pixel on that line corresponds to a specific single 

Fig. 11.22 b
 . That’s the thing we’ll gradually, but only par-

brightness cosinusoid oriented perpendicular to the line, hav-

tially, construct in order to fabricate a semblance of Einstein’s 

ing a spatial frequency proportional to its distance from the  DC
  

image. Going out along the central horizontal line, one en-

center.

counters pixels corresponding to vertically oriented brightness 
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(a)

(b)

(a)

(b)


Figure 11.22
   ( a
 ) A somewhat pixelated image of A. Einstein. ( b
 ) The 


Figure 11.24
     With many more pixels in the transform ( b
 ) Einstein’s 

Fourier transform of that image of Einstein. (K.S. Sasaki and I. Ohzawa, Osaka 

image emerges ( a
 ). (K.S. Sasaki and I. Ohzawa, Osaka University)

University)

sinusoids of increasing frequency. That’s true along any 

1.   multiplying  ƒ (y, z)
  by a constant  a
  produces an output  

straight line through the  DC
  pixel, where the undulating 


ag(Y, Z
   )
 .

bands are perpendicular to the line.

2.   when the input is a weighted sum of two (or more) func-

After adding in only 30 sinusoids with different frequencies 

tions,   a
 ƒ1 (y, z) 
 +  b
 ƒ2 (y, z)
 , the output will similarly have  

in different orientations (Fig. 11.23 b
 ), a visage already appears 

the form  ag
 1 (Y, Z
   ) 
 +  bg
 2 (Y, Z
   )
 , where ƒ1 (y, z)
  and ƒ2 (y, z)
 that is only very slightly suggestive of the great man. Still, 

generate  g
 1 (Y, Z
   )
  and  g
 2 (Y, Z
   )
  respectively.

there seems to be a face there; two eyes, a nose, and even a 

Furthermore, a linear system will be  space invariant
  if it pos-

moustache is discernible (Fig. 11.23 a
 ). Adding many more 

sesses the property of  stationarity
 ; that is, in effect, changing 

terms to the transform (Fig. 11.24 b
 ) results in a clearly recog-

the position of the input merely changes the location of the 

nizable picture of Einstein (Fig. 11.24 a
 ).

output without altering its functional form. The idea behind 

much of this is that the output produced by an optical system 

can be treated as a linear superposition of the outputs arising 


11.3.2 Linear Systems


from each of the individual points on the object. In fact, if we 

symbolically represent the operation of the linear system as 

Fourier techniques provide a particularly elegant framework 

ℒ

from which to evolve a description of the formation of images. 

5 6, the input and output can be written as

And for the most part, this will be the direction in which we 






g(Y, Z
   ) 
 = ℒ{ ƒ(y, z)
 } (11.46)

shall be moving, although some side excursions are unavoid-

able in order to develop the needed mathematics.

Using the sifting property of the d-function [Eq. (11.36)], this 

A key point in the analysis is the concept of a linear system
 , 

becomes

which in turn is defined in terms of its input–output  relations. Sup-

+∞

pose then that an input signal ƒ (y, z)
  passing through some optical 

system results in an output  g(Y, Z)
 . The system is linear if:


g(Y, Z
   ) 
 = ℒ• 33  ƒ(y
 ′ , z
 ′ )
  d (y
 ′ -  y)
  d (z
 ′ -  z)
   dy
 ′ dz
 ′ ¶





-∞

The integral expresses ƒ (y, z)
  as a linear combination of elemen-

tary delta functions, each weighted by a number ƒ (y
 ′ , z
 ′ )
 . It fol-

lows from the second linearity condition that the system operator 

can equivalently act on each of the elementary functions; thus

+∞






g(Y, Z
   ) 
 = 33  ƒ(y
 ′ , z
 ′ )
  ℒ {
 d (y
 ′ -  y)
 d (z
 ′ -  z)}
   dy
 ′ dz
 ′ 





-∞

(11.47)

(a)

(b)

The quantity ℒ {
 d (y
 ′ -  y)
  d (z
 ′ -  z)}
  is the response of the system 

[Eq. (11.46)] to a delta function located at the point ( y
 ′,  z
 ′) in the 


Figure 11.23
     With 30 pixels in the Fourier transform ( b
 ) we can already 

begin to see Einsteins image emerging in ( a
 ). (K.S. Sasaki and I. Ohzawa, Osaka 

input space—it’s called the impulse response
 . Apparently, if 

University)

the impulse response of a system is known, the output can be 
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irradiance distribution in the image plane. Because of the inco-


y


herence of the source, the flux-density contributions from each 

of its elements are additive, so


I
 0 (y, z)


+∞


Y







Ii(Y, Z
   ) 
 =


z


33  I
 0 (y, z)
    (y, z; Y, Z
   ) dy dz
  (11.49)


dy


-∞


dz


Σ0

In a “perfect,” diffraction-limited optical system having no ab-


Z


errations,   (y, z; Y, Z
   )
  would correspond in shape to the dif-

fraction figure of a point source at ( y
 ,  z
 ). Evidently, if we set the 





Σ i


input equal to a d-pulse centered at ( y
  0,  z
 0), then  I
 0 (y, z) 
 = 


A
 d (y 
 -  y0)
 d (z 
 -  z0)
 . Here the constant  A
  of magnitude 1 carries the needed units (i.e., irradiance times area). Thus


Figure 11.25
     A lens system forming an image.

+∞


Ii(Y, Z
   ) 
 =  A
 33 d (y 
 -  y0)
  d (z 
 -  z0)
    (y, z; Y, Z
   ) dy dz
 determined directly from the input by means of Eq. (11.47). If 

-∞

the elementary sources are coherent, the input and output sig-

and so from the sifting property,

nals will have to be electric fields; if incoherent, they’ll be flux 

densities.


Ii(Y, Z
   ) 
 =  A
    (y
 0,  z
 0;  Y
 ,  Z
   )


Consider the self-luminous and, therefore, incoherent source 

depicted in Fig. 11.25. We can imagine that each point on the 

The point-spread function has a functional form identical to 

object plane, Σ0, emits light that is processed by the optical 

that of the image generated by a d-pulse input. It’s the impulse 

system. It emerges to form a spot on the focal or image plane, 

response of the system [compare Eqs. (11.47) and (11.49)], 

Σ i
 . In addition,  assume that the magnification between object 


whether optically perfect or not. In a well-corrected system  , 


and image planes is one
 . The image will be life-sized and erect, 

apart from a multiplicative constant, is the Airy irradiance dis-

which makes it a little easier to deal with for the time being. 

tribution function [Eq. (10.56)] centered on the Gaussian image 

Notice that if the magnification ( MT
 ) was greater than one, the 

point (Fig. 11.26).

image would be larger than the object. Consequently, all of its 

If the system is space invariant, a point-source input can be 

structural details would be larger and broader, so the spatial fre-

moved about over the object plane without any effect other than 

quencies of the harmonic contributions that go into synthesizing 

changing the location of its image. Equivalently, one can say 

the image would be lower than those of the object. For example, 

that the spread function is the same for any point (  y
 ,  z
 ). In prac-

an object that is a transparency of a sinusoidally varying black 

tice, however, the spread function will vary, but even so, the 

and white linear pattern (a sinusoidal amplitude grating) would 

image plane can be divided into small regions, over each of 

be imaged having a greater space between maxima and there-

which   doesn’t change appreciably. Thus if the object, and 

fore a lower spatial frequency. Besides that, the image irradi-

therefore its image, is small enough, the system can be taken to 

ance would be decreased by  M
 2 T
 , because the image area would 

be increased by a factor of  M
 2 T
 .

If  I



Y


0 (y, z) 
 is the irradiance distribution on the object plane, an ele-

ment  dy dz
  located at (  y
 ,  z
 ) will emit a radiant flux of  I
 0 (y, z)
   dy dz
 . 

Because of diffraction (and the possible presence of aberra-

tions), this light is smeared out into some sort of blur spot over 


y


a finite area on the image plane rather than focused to a point. 

The spread of radiant flux is described mathematically by the 


Z


function   (y, z; Y, Z
   )
 , such that the flux density arriving at the 

image point from  dy dz
  is


(Y, Z) 
 Σ i



z



 



dIi(Y,
   Z
   ) 
 =  (
   y, z; Y, Z
   )I
 0 (
   y, z) dy dz
  (11.48) Σ

Optical system

This is the patch of light in the image plane at ( Y
 ,  Z
  ), and 

0


(y, z; Y, Z
   )
  is known as the point-spread function
 . In other 

words, when the irradiance  I
 0 (y, z)
  over the source element 


Figure 11.26
     The point-spread function: the irradiance produced  


dy dz
  is 1 W>m2,   (y, z; Y, Z
   )
   dy dz
  is the profile of the resulting by the optical system with an input point source.
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be space invariant. We can imagine a spread function sitting at 


(Y
  −  y)



Y


every Gaussian image point on Σ i
 , each multiplied by a different 

weighting factor  I
 0 (y, z)
  but all of the same general shape inde-

( a
 ,  b
 )

pendent of (


Y


  y
 ,  z
 ). Since the magnification was set at 1, the coor-


a



(Y
  −  y)


dinates of any object and conjugate image point have the same 


y



y


magnitude.

If we were dealing with coherent light, we would have to 


Z


consider how the system acted upon an input that was again a  


z b


d-pulse, but this time one representing the field amplitude. 

Once more the resulting image would be described by a spread 


Y



Y
  =  y a


function, although it would be an  amplitude
  spread function. 

Σ i


For a diffraction-limited circular aperture, the amplitude spread 

function looks like Fig. 10.36 b
 . And finally, we would have to 


Figure 11.28
     The point-spread function.

be concerned about the interference that would take place on 

the image plane as the coherent fields interacted. By contrast, 

with incoherent object points the process occurring on the im-

age plane is simply the summation of overlapping irradiances, 

with its own strength, corresponds to an appropriately scaled  

as depicted in one dimension in Fig. 11.27. Each source point, 

d-pulse, and in the image plane each of these is smeared out, via 

the spread function. The sum of all the overlapping contribu-

tions is the image irradiance.

What kind of dependence on the image and object space 


I
 0

variables will   (y, z; Y, Z
   )
  have? The spread function can de-

pend only on ( y
 ,  z
 ) as far as the location of its center is con-

cerned. Thus the value of   (y, z; Y, Z
   )
  anywhere on ^ i
  merely 

depends on the displacement at that location from the particular 


y


Gaussian image point ( Y 
 =  y
 ,  Z 
 =  z
 ) on which   is centered  

(a)

(Fig. 11.28). In other words,


(y, Y)







(y, z; Y, Z
   ) 
 =  (Y 
 -  y, Z 
 -  z)
  (11.50)

When the object point is on the central axis (  y 
 = 0,  z 
 = 0), the 

Gaussian image point is as well, and the spread function is then 

(b)

just   (Y, Z
   )
 , as depicted in Fig. 11.26. Under the circumstances 

of space invariance and incoherence,


Ii


+∞






Ii(Y, Z
   ) 
 = 33  I
 0 (
   y, z)
    (Y 
 -  y, Z 
 -  z) dy
   dz
  (11.51) Y


-∞


(y, Y)


(c)


11.3.3 The Convolution Integral


Figure 11.27 shows a one-dimensional representation of the 

(d)

distribution of point-source d-functions that make up the  

object. The corresponding image is essentially obtained by 

“dealing out” an appropriately weighted point-spread func-


I


tion to the location of each image point on Σ


i



i
  and then adding 

up all the contributions at each point along  Y
 . This dealing 

out of one function to every point of (and weighted by) an-

other function is a process known as convolution
 , and we say 


Y


that one function,  I


(e)

0 (y)
 , is convolved with another,   (y, Y
   )
 , or 

vice versa.


Figure 11.27
   Here ( a
 ) is convolved first with ( b
 ) to produce ( c
 ) and then This procedure can be carried out in two dimensions as well, 

with ( d
 ) to produce ( e
 ). The resulting pattern is the sum of all the spread-

and that’s essentially what is being done by Eq. (11.51), the so-

out contributions, as indicated by the dashed curve in ( e
 ).

called  
convolution integral

 . The corresponding one-dimensional 
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f(x1)



h(X – x)



X



f(x


0


x



2)



f(x)



f(0)



f(0) dx



f(x1) h(X – x1)



f(x) h(0)



f(x2) h(X – x2)



f(0) h(X)



f(0) h(X1) dx



f(0) h(X2) dx



X



Figure 11.29
   The overlapping 

0  X
 1


X
 2


x
 1


x
 2

of weighted spread functions.

expression describing the convolution of two functions  ƒ(x)
  

(a)  y


and  h(x)
 ,


x


+ ∞


f(x)



 



g(X) 
 = 3  ƒ(x)
   h(X 
 -  x)
   dx
  (11.52)

- ∞

is easier to appreciate. In Fig. 11.27 one of the two functions 


x


was a group of d-pulses, and the convolution operation was par-

(b)  h
 1 (X – x)


ticularly easy to visualize. Still, we can imagine any function to 

be composed of a “densely packed” continuum of d-pulses and 

treat it in much the same fashion. Let us now examine in some 

(c)


X


detail exactly how the integral of Eq. (11.52) mathematically 


x



g


manages to perform the convolution. The essential features of 

1 (X)


the process are illustrated in Fig. 11.29. The resulting signal 


g(X1)
 , at some point  X
 1 in the output space, is a linear superpo-

sition of all the individual overlapping contributions that exist 


x


at  X
 1. In other words, each source element  dx
  yields a signal of 

a particular strength  ƒ(x)
   dx
 , which is then smeared out by the 

(d)  h
 1 (X – x)


system into a region centered about the Gaussian image point 

( X 
 =  x
 ). The output at  X
 1 is then  dg(X1) 
 =  ƒ(x)h(X1 
 -  x)
   dx
 . 

(e)

The integral sums up all of these contributions from each source 


X


element. Of course, the elements more remote from a given 


x


point on g i
  contribute less because the spread function gener-


g
 2 (X)


ally drops off with displacement. Thus we can imagine  ƒ(x) 
 to 

be a one-dimensional irradiance distribution, such as a series of 


X


vertical bands, as in Fig. 11.30. If the one-dimensional line-



Figure 11.30
     The irradiance distribution is converted to a function ƒ (x)
  


spread function
 ,  h(X 
 -  x)
 , is that of Fig. 11.30 d
 , the resulting 

shown in ( a
 ). This is convolved with d-function ( b
 ) to yield a duplicate of 

image will simply be a somewhat blurred version of the input 

ƒ (x)
 . By contrast, convolving ƒ (x)
  with the spread function  h
 2 in ( d
 ) yields a (Fig. 11.30 e
 ).

smoothed-out curve represented by  g2(x)
  in ( e
 ).
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Let’s now examine the convolution a bit more as a mathe-

is shown in ( c
 ). The convolution of  ƒ(x)
  [depicted in ( d
 )] and  h(x)
  

matical entity. Actually it’s a rather subtle beast, performing a 

is  g(X)
 , as given by Eq. (11.52). This is often written more con-

process that might certainly not be obvious at first glance, so 

cisely as  ƒ(x)
 à h(x)
 . The integral simply says that the area under 

let’s approach it from a slightly different viewpoint. Accord-

the product function  ƒ(x)h(X 
 -  x)
  for all  x
  is  g(X)
 . Evidently, the 

ingly, we will have two ways of thinking about the convolution 

product is nonzero only over the range  d
  wherein  h(X 
 -  x)  
 is 

integral, and we shall show that they are equivalent.

nonzero, that is, where the two curves overlap (Fig. 11.31 e
 ). 

Suppose  h(x)
  looks like the asymmetrical function in Fig. 11.31 a
 . 

At a particular point  X
 1 in the output space, the area under the 

Then  h(
 - x)
  appears in Fig. 11.31 b
 , and its shifted form  h(X 
 -  x)
  

product  ƒ(x)h(X1 
 -  x)
  is  g(X1)
 . This fairly direct interpretation 

can be related back to the physically more pleasing view of the 

integral in terms of overlapping point contributions, as depicted 


h(x)


previously in Fig. 11.29. Remember that there we said that each 

source element was smeared out in a blur spot on the image plane 

having the shape of the spread function. Now suppose we take 

the direct approach and wish to compute the product area in 


x


Fig. 11.31 e
  at  X


0

1, that is,  g(X
 1 ).
  A differential element  dx
  centered 

(a)

on any point in the region of overlap (Fig. 11.32 a
 ), say,  x
 1, will 


h(– x)


(a)


h(X1 – x)



f(x1)



f(x)



x



x


0


x



X


0  x
 1

1


x
 2

(b)


h(X1 – x1)


(b)


h(X –   x)



h(X –   x)



X



x



x



X


(c)

(c)


h(X –   x1)



X



f(x)



x
 1


X
 1

(d)


x



f(x1) h(X – x1)


(d)


X



x
 1


X
 1


h(X –   x)


(e)


f(x)



x



X


(e)


X



d



x
 0


X
 1


x
 2


Figure 11.31
     The geometry of the convolution process in the object 


Figure 11.32
     The geometry of the convolution process in the image 

coordinates.

coordinates.

M11_HECH7226_05_SE_C11_534-579.indd   551

06/11/15   7:59 PM


552
   Chapter 11
   Fourier Optics

contribute an amount ƒ (x
 1 )h(X1 
 -  x1)
   dx
  to the area. This same 


X 
 =  x
 1. A source element  dx
 , in this case located on the object at 

differential element will make an identical contribution when 


x
 1, generates a smeared-out signal proportional to  ƒ(x1)h(X 
 -  x1)
 , 

viewed in the overlapping spread-function scheme. To see this, 

as in ( d
 ), where  ƒ(x1)
  is just a number. The piece of this signal 

examine ( b
 ) and ( c
 ) in Fig. 11.32, which are  now drawn in the 


that exists at  X
 1 is  ƒ(x1)h(X1 
 -  x1)
   dx
 , which indeed is identical 


output space
 . The latter shows the spread function “centered” at 

to the contribution made by  dx
  at  x
 1 in ( a
 ). Similarly, each differ-

ential element of the product area (at any  x 
 =  x
 ′) in Fig. 11.32 a
  

has its counterpart in a curve like that of ( d
 ) but “centered” on a 


f(x)



h(X – x)


new point ( X 
 =  x
 ′). Points beyond  x 
 =  x
 2 make no contribution 

because they are not in the overlap region of ( a
 ) and, equivalently, 

because they are too far from  X



d



d


1 for the smear to reach it, as 

shown in ( e
 ).

If the functions being convolved are simple enough,  g(X) 
 can 

be determined roughly without any calculations at all. The con-


X



x



x


1

1

volution of two identical square pulses is illustrated, from both 

of the viewpoints discussed above, in Figs. 11.33 and 11.34. In 

Fig. 11.33 each impulse constituting  ƒ(x) 
 is spread out into a 

square pulse and summed. In Fig. 11.34 the overlapping area, as 


X



x



x


2

2


h
  varies, is plotted against  X
 . In both instances the result is a 

triangular pulse. 

Incidentally, observe that (ƒà h
 ) = ( h
 àƒ), as can be seen 





by a change of variable ( x
 ′


X


=  X 
 -  x
 ) in Eq. (11.52), being care-


x



x


3

3

ful with the limits (see Problem 11.18).


X



x



x



h(X – x)



f(x)


4

4


x



d



d



X



x



x



x


5

5


X
 1


x



X
 2


X



x



x


6

6


x



X
 3


x



X



X



x



x


4

7

7

2 d



x



X
 5


x



X
 6


g(X)



x



X
 7

2 d



X



x
 2  x
 4  x
 6


x



x


1

3


x
 5  x
 7


Figure 11.33
     Convolution of two rectangular “boxcar” pulses, each of 


g(X)


height 1.0. The fact that we represented ƒ (x)
  by a finite number of delta 

functions (viz., 7) accounts for the steps in  g(X)
 , which should otherwise be 

triangular. Here each impulse, at  x
 1,  x
 2,  x
 3, etc., composing ƒ (x)
  is spread out into a rectangular signal (centered on  x
 1,  x
 2,  x
 3, etc.). The area of each X


such signal in the vertical column of shifted rectangles (on the right) is 


X
 1  X
 2  X
 3  X
 4  X
 5  X
 6  X
 7

then summed to yield the convolution. Note how the convolution stretches 

over a distance of 2 d
 .


Figure 11.34
     Convolution of two square pulses.
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h(x)



f(x) h(4 – x)



f(x)


2


f(x)


2

(a)


h(–1)


1


h(3)



h(4 – x)


1

(g)

1

0.5

0.66


A



x



x



x



x


0

1

2

3

−1 0 1 2 3

0


A
  =  g(4)
  = 2.66


X
  = 4

4


f(x) h(–1–x)



f(x)


2


f(x) h(5 – x)



f(x)



h(X – x)


(b)

1

(h)


h(5 – x)



x



x



A


−4 −3 −2 −1

0

1

2

3


g(–1)
  = 0


x



x


0


A
  =  g(5)
  = 1.66

−1


X
  = 5

5


f(x) h(–x)



f(x)



f(x) h(6 – x)



f(x)



h(0 – x)


(c)

(i)


h(6 – x)



x



A



x


0

1

2

3


A
  =  g(0)
  = 0.33


x



x


0


g(6)
  = 0


X
  = 6

6


f(x) h(1 – x)



f(x)



g(X)



g(2) g(3)


(d)


h(1 – x)


3


A



x



x


2  g(1)



g(5)


0

1

2

3


A
  =  g(1)
  = 1.33

( j)


g(–1) 
 1

1


g(6)



X


–1

0

1

2

3

4

5

6


f(x) h(2 – x)


(e)


h(2 – x)



A



x



x


0

1

2

3


A
  =  g(2)
  = 3.0

2


f(x) h(3 – x)


(f)


h(3 – x)


1


A



Figure 11.35
     The convolution of  ƒ(x)
  and  h(x)
  where  g(X) 
 =  ƒ(x)
 à h(x)
 . 


x



x


We take the product of  ƒ(x)
  and  h(X 
 -  x)
  at every point where both exist at 

0

1

2

3

4


A
  =  g(3)
  = 3.0

a particular value of  X
 . The area, A, under the product curve (on the left) is 

3

the value of  g(X)
  at that value of  X
 .

Equation 11.52 for the convolution can be interpreted 

of  h(
 - x)
  from the stationary point  x 
 = 0, which marks the ori-

literally and we’ll now carry out that integral in a straight-

gin of the dummy variable coordinate frame. In part ( a
 ) of 

forward graphical way, but first a few auxiliary ideas. Con-

Fig. 11.36 these two (the vertical dashed line and the  x 
 = 0 axis) are 

sider the two spatial signals to be convolved,  ƒ(x)
  and  h(x), 


on top of each other,  X 
 = 0, and  h(X 
 -  x) 
 =  h(0 
 -  x) 
 =  h(
 - x). 


shown in Fig. 11.35 a
 . Notice that both of these functions 

To test the scheme, let  x 
 = -3, which corresponds to the left side 

are asymmetrical. There’re plotted using the dummy inte-

of the rectangular function (marked by the little open circle), and 

gration variable  x
 . In general, functions like these, and sev-

examine   h(X 
 -  x)  
 at that location   
 in Fig. 11.36 a
 . There 

eral we’ve already looked at, ones that are zero everywhere 


h[0 
 -  (
 - 3)] 
 =  h(0 
 +  3) 
 =  h(3), 
 and that’s the same value as in but in a finite region, are said to have  compact support
 . 

Fig. 11.35 a 
 (again marked by the little open circle); the math works 

When such functions are convolved,  
the width of the re-



so far. Now displace the rectangle to the right by 1 unit—that is, let 



sulting convolution will always equal the sum of the over-




X 
 = 1—as in Fig. 11.36 b
 . Then  h(X 
 -  x) 
 =  h(1 
 -  x) 
 and if, for 



all widths of the two contributing functions

 . 

example, we set  x 
 = +2, this time to correspond to the right side of 

We will opt to have  h(x)
  sweep across  ƒ(x)
 . Accordingly, flip 

the function (marked by the little black circle),  h(X 
 -  x) 
 =  h(
 - 1)
  


h(x)
  around its ordinate (the dotted vertical line at  x 
 = 0), thereby 

and that again matches  h(x)
  in Fig. 11.35 a. 
 Thus, as  X 
 increases,  


forming the mirror image  h(
 - x)
 , as required by the convolution 


h(X 
 -  x) 
 sweeps to the right, just as we need it to do.

integral. To get  h(
 - x)
  moving to the right, write it as  h(X 
 -  x) 
 and 

Return to the convolution integral and Fig. 11.35, and con-

consult Fig. 11.36. The variable  X
  is the displacement of the ordinate 

tinue the process. In Fig. 11.35 b
  the two functions just touch, 
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EXAMPLE 11.2


h(– x)


(a)

Consider the functions  ƒ(x)
  and  h(x)
  depicted in the accompa-


x


–3 –2 –1

0

1

2

3

4

nying diagram.


X
  = 0


f (x)


1.0


h(1 – x)


(b)


x


0.8

–2 –1

0

1

2

3

4


X
  = 1

1


h(x)


0.6


h(2 – x)


0.4

0.4

(c)

0.3


x


–1

0

1

2

3

4

0.2

0.2


X
  = 2

2

0.1


x



x


–0.4

0

0.4

0.8

–0.5

0

0.5

1


h(3 – x)


(d)

Graphically convolve those two functions, explaining each step 


x


0

1

2

3

4

of the process.


X
  = 3

3

SOLUTION 


Figure 11.36
   The function  h(X 
 -  x)
  at  X 
 = 0, 1, 2, and 3. The rectangular Since  ƒ(x)
  convolved with  h(x)
  is the same as  h(x)
  convolved 

pulse progresses to the right. Note that  h(x)
  is flipped or mirrored about 

with   ƒ(x)
 , let’s keep  ƒ(x)
  stationary and sweep  h(x)
  over it. 

the origin, becoming  h(
 - x)
 .

Because these functions are symmetrical,  h(x) 
 =  h(
 - x)
 , and there 

is no concern about mirroring the function. We’ll develop the 

convolution centered on the vertical origin axis of  ƒ(x)
 . The plot 

there is no overlap and no product area, and  ƒ(x) h(X 
 -  x) 
 = 0. 

of  g(X)
  will turn out to be the light grey curve. 

The dashed moving ordinate of  h(X 
 -  x)
  is at  x 
 = -1. It’s 1 unit 

( a
 ) In this drawing  h(X 
 -  x) 
 just touches  ƒ(x)
  and the overlap 

to the left of the stationary origin 0, and so  X 
 = -1. The convo-

begins there, just as the convolution  
 begins there; that is, it has 

lution,  g(X)
 , at  X 
 = -1 is zero, but it’s about to rise [study the 

a nonzero value beyond that point ( x 
 = -0.75), which is fixed 


g(x)
  curve in Fig. 11.35 j
 ]. As  h(X 
 -  x) 
 moves farther to the right 

by the location ( X 
 = -0.75) of the ordinate, of  h(X 
 -  x)
 . So 

it overlaps   ƒ(x)
 ,  
 which is always stationary,  
 as in  
 Fig. 11.35 c
 . 

plot a point in ( d
 ) on the  X
 -axis at  X 
 = -0.75, and that will be 

Draw a vertical line at each  x
  in the overlap region, and find the 

the start of the convolution curve.

values of both functions on these lines. Then take the product of 

( b
 ) Here  h(X 
 -  x)
  has moved right so that fully half of it 

those two values at each  x
  and plot the product curve [which in 

overlaps  ƒ(x)
 . The grey area in the diagram is bounded by the 

this case lies on the hypotenuse of the triangle because  h(X 
 -  x) 


point-by-point product  ƒ(x)
   h(X 
 -  x)
 , as a function of  x
 ,   
 the has a magnitude of 1]. The area under  ƒ(x)
  

dummy variable. In other words, at every point on the  x
 -axis in 

  h(X 
 -  x) 
 is the value 

of  g(X)
  at the location of the ordinate of  h(X 
 -  x)
 —the dotted 

the region of overlap where both functions exist, draw a verti-

vertical line—which will be, successively, at  X 
 = -1, 0, 1, 2, 3, 

cal line and find the value of each function on that line [e.g., at 

4, 5, and 6. 

some point  x
 1, these would be  ƒ(x1)
  and  h(X 
 -  x1)]
 . Take the 

Because  h(X 
 -  x) 
 happens to have a constant magnitude of 

product of those two values [e.g., at  x
 1 it would be  ƒ(x1)
  * 

1.0, the overlap area, the area bounded by a portion of the trian-


h(X 
 -  x1)]
 . Do that at every point where the two functions 

gle  ƒ(x)
 , equals the area under the product curve. In this instance 

overlap. Of course, only where both functions are nonzero will 

(Fig. 11.35 c
 ) that area is 0.33, and it is plotted in Fig. 11.35 g
  at 

the product have a nonzero value. Then draw a curve represent-


X 
 = 0 because the ordinate of  h(X 
 -  x)
  in Fig. 11.35 c
  is at zero 

ing the product as a function of  x
 .  
The area under that product 



displacement from the origin 0. In Fig. 11.35 d
  the area beneath 



curve (the grey region) is the value of the convolution at the 



the little triangle of base 2 is 1.33. That’s the value of the convo-



single location specified by the vertical axis of h(X 

 -  
x). 

 For 

lution at  X 
 = 1. In Fig. 11.35 e
  with  X 
 = 2, the product area is 

part ( b
 ),  h(X 
 -  x) 
 is constant at a value of 0.5, and  ƒ(x)
  is con-

the area of the whole triangle, namely, 3. It continues to be 3 until 

stant at 1.0, so the product at every  x
  between  -0.5 and -0.25 

the left side of  h(X 
 -  x)
  arrives at  x 
 = 0 (Fig. 11.35 ƒ 
 ), after 

is 0.5. The area under that straight horizontal line at a height 

which some of the  ƒ(x) 
 triangle emerges from the overlap region 

0.5 is (0.5)(0.25) = 0.125. Plot that value at  X 
 = -0.5, which 

at the left and the convolution gradually falls to zero at  X 
 = 6 

is the location of the vertical axis of  h(X 
 -  x)
 , and we have the 

(Fig. 11.35 h
 ).

second point on what will unfold as the convolution ( d 
 ). Bear 
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in mind that in this simple example the overlap area and the 

In ( c
 ) the grey product area is now (0.5)(0.5)  =  0.25, 

product area happen to be equal because  ƒ(x) 
 is constant at 1.0. 
 



and we plot that on the convolution curve ( d
 ) at  X 
 = -0.25 



In general, the product area will not simply equal the area of 



[which is where the vertical axis of  h(X 
 -  x)
  is]. That value 



overlap.



is sustained until  h(X 
 -  x)
  starts to emerge from inside  ƒ(x)
  

at  x 
 = +0.25, and the convolution is flat from  X 
 = -0.25 to 


f(x)



X 
 = +0.25. After that, it decreases linearly, ending up with 

1.0

a base width that equals the sum of the widths of the two 

functions.

0.8

There are ways to physically convolve two two-dimensional 


h(X – x)


0.6

(a)

data sets and we now briefly study the process for some simple 

0.4

situations. Suppose there is a circular, uniformly illuminated 

hole in an opaque screen (Fig. 11.37 a
 ) and we want to deter-

0.2

mine the convolution of that aperture function  ƒ(x, y)
  with it-

self. Because  ƒ(x, y)
  is symmetrical, mirroring it about either 


x


axis has no effect; we just have to sweep one circle over the 

–1

–0.5

0

0.5

1

other and record the product area at each displacement. We’ve 


X
  = −0.75

seen how convolving two rectangular one-dimensional pulses 

results in a triangular figure. Similarly, convolving the circular 

1.0

“top hat” in Fig. 11.37 a
  with itself produces a slightly curved 

conical figure, Fig. 11.37 c
 , an irradiance that drops off almost 

0.8

linearly from its central maximum, Fig. 11.37 b
 . 

0.6

(b)

0.4

0.2


x


–1

–0.5

0

0.5

1


X
  = −0.5

1.0

(a)

(b)

0.8

1.0

0.6

(c)

0.8

0.4

0.2

0.6

Irradiance


x


0.4

–1

–0.5

0

0.5

1


X
  = −0.25

0.2

0.3


f(x) 
 *  h(x)


0

Distance

0.2

(d)

(c)

0.1


X



Figure 11.37
     The convolution of a uniformly illuminated circular hole, 

–1 –0.75 –0.25 0 0.25

0.75 1

depicted in ( a
 ), with itself. ( b
 ) This is what that convolution looks like in 

−0.5

+0.5

space. ( c
 ) A graph of its irradiance.

M11_HECH7226_05_SE_C11_534-579.indd   555

06/11/15   7:59 PM



556
   Chapter 11
   Fourier Optics


f(x, y)



g(X, Y)


Raise the plastic function  h(Y 
 -  y, X 
 -  x) 
 one division in the 


y
 -direction and then scan it one division to the right. This pro-

duces two overlapping pairs, and a bright disk with a maximum 

irradiance of 2.0 should be entered at the first position of the 

second row of the convolution. Another shift again causes the 

overlapping of two pairs, and another bright peak equal to 2.0 in 

the second row of the convolution. Finally, the shifting function 

is again raised one division and swept right, whereupon a single 

overlapping pair is formed and the convolution (Fig. 11.38 b
 ) 

finishes with the topmost peak of 1.0.

Figure 11.39 illustrates the convolution of two functions 

(a)

(b)


I
 0 (y, z)
  and   (y, z)
  in two dimensions, as given by Eq. (11.51). 


Figure 11.38
     The convolution of  ƒ(x, y)
 , shown in ( a
 ), with itself. The 

Here the volume under the product curve  I
 0 (y, z) 
 ( Y 
 -  y
 ,  


result,  g(x, y)
 , is depicted in ( b
 ). See Fig. 11.53.


Z 
 -  z)
 , that is, the region of overlap, equals  Ii (Y, Z)
  at  
 ( Y
 ,  Z
  ); see Problem 11.21.

As a somewhat more complicated example, examine the 


The Convolution Theorem


three-dot pattern in Fig. 11.38 a
 . It might represent light coming 

from three uniformly illuminated circular holes in an opaque 

Suppose we have two functions  ƒ(x)
  and  h(x)
  with Fourier 

screen. This is the two-dimensional signal we now wish to 

transforms ℱ{ ƒ(x)
 } =  F(
 k )
  and ℱ{ h(x)
 } =  H(
 k )
 , respectively. 

graphically convolve with itself. A way to carry out that process 

The convolution theorem
  states that if  g 
 = ƒà h
 ,

is to draw a square grid of horizontal and vertical lines on a piece 

of paper, and place the three bright “top-hat” dots in an L-shaped 





ℱ{ g
 } = ℱ{ ƒ
 à h
 } = ℱ{ ƒ
 } · 
 ℱ{ h
 } (11.53)

pattern (on the  x
 - and  y
 -axes with the corner dot at the origin) 

on the lines of the grid—that’s  ƒ(x, y)
 . The grid line spacing 

or 


G(
 k ) 
 =  F(
 k )H(
 k )
  (11.54)

(one division) should match the center-to-center spacing of the 

nearest neighbor dots. Create an identical grid on which to con-

where ℱ{ g
 } =  G(
 k )
 . The transform of the convolution of two 

struct the convolution. Now draw the same three-dot L on a 

functions is the product of their transforms. The proof is 

piece of clear plastic (on the  x
 - and  y
 -axes as before)—that’s 

straightforward:


h(x, y)
 . Flip the plastic over about the  y
 -axis, creating  h(y, X 
 -  x)
 ; 

+ ∞

the L now faces to the left. Flip it again, this time around the  

ℱ5 ƒ



x
 -axis, creating  h(Y 
 -  y, X 
 -  x)
 ; the L is now upside down and 

à h
 6 = 3  g(X)ei
 k XdX


- ∞

facing left as if it had been rotated through 180° about one of the 

circular apertures. 

+ ∞

+ ∞

Place the plastic,  h(Y 
 -  y, X 
 -  x)
 ,  
 with its three circular dots 

= 3  ei
 k X
 c3  ƒ(x)h(X 
 -  x)
   dx
 d dX


on top of the paper so its  x
 -axis is parallel to, but somewhere 

- ∞

- ∞

below, the  x
 -axis on the paper. Sweep the plastic function to the 

Thus

right one division at a time, recording the number of dot pairs 

+ ∞

+ ∞

(essentially the areas) that overlap—initially there won’t be any. 


G(
 k ) 
 =

Raise the plastic carrying  h(Y 
 -  y, X 
 -  x) 
 one division along 

3

c3  h(X 
 -  x)ei
 k X
   dX
 d ƒ(x)
   dx


- ∞

- ∞

the   y
 -axis, and then sweep it to the right again. Because the 

particular pattern (Fig. 11.38 a
 ) lies on and above the  x
 -axis, the 

If we put  w 
 =  X 
 -  x 
 in the inner integral, then  dX 
 =  dw 
 and

two sets of dots,  h(Y 
 -  y, X 
 -  x) 
 and  ƒ(x, y) 
 =  h(x, y)
 , will be-

+ ∞

+ ∞

gin to overlap only when the two  x
 -axes are collinear. Then, 


G(
 k ) 
 =

when just the two corner dots overlap, record a disk of peak ir-

3  ƒ(x)ei
 k xdx
 3  h(w)ei
 k wdw


- ∞

- ∞

radiance 1.0—that looks just like Fig. 11.37 b
 —at the correspond-

ing location (lower left) on the convolution diagram (Fig. 11.38 b
 ). 

Hence 


G(
 k ) 
 =  F(
 k )H(
 k )
  

Next, shift the plastic one more division to the right, and note that 

which verifies the theorem. As an example of its application, 

now two pairs of overlapping dots occur. Accordingly, enter a 

refer to Fig. 11.40. Since the convolution of two identical square 

bright disk of peak irradiance 2.0 on the convolution diagram. 

pulses (ƒ

Another shift of the clear plastic function to the right produces 

à h
 ) is a triangular pulse ( g
 ), the product of their trans-

forms must be the transform of  g
 ,   namely,

one more dot pair, and we record a disk with a peak of 1.0, finish-

ing the bottom row (1.0, 2.0, 1.0) in Fig. 11.38 b
 .





ℱ{ g
 } = [ d
  sinc (k d
 >2)]2 (11.55)
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I
 0 (y, z)



(y, z)



z



z



y



y



z



z



(y, z)



y



(Y – y, Z – z)



dz



Z



z



dy



I



(–y, –z)


0 (y, z)



y



y



Y



Figure 11.39
     Convolution in two dimensions.


f



h


=


g


That is, the transform of the product is the convolution of the 

transforms.

1

1

Figure 11.42 makes the point rather nicely. Here an infi-

=


x


nitely long cosine, ƒ (x)
 , is multiplied by a rectangular pulse, 


d



d


2 d



h(x)
 , which truncates it into a short oscillatory wavetrain,  g(x)
 . 

The transform of ƒ (x)
  is a pair of delta functions, the transform 

{ f
 }

×

{ h
 }

=

{ g
 }

of the rectangular pulse is a sinc function, and the convolution 


d
 2


d



d


of the two is the transform of  g(x)
 . Compare this result with 

that of Eq. (7.60).


d
  sinc ( u
 ) ×


d
  sinc ( u
 ) =


d
 2 sinc2 ( u
 )

–p 0 p 2p

–p 0 p 2p

–p 0 p 2p


f



h


=


g



u
  =  kd



u
  =  kd



u
  =  kd


2

2

2

=


Figure 11.40
     An illustration of the convolution theorem.


d



d


2 d


As an additional example, convolve a square pulse with the 

two 

{ f
 }

×

{ h
 }

=

{ g
 }

d-functions of Fig. 11.12. The transform of the resulting 

double pulse (Fig. 11.41) is again the product of the individual 


d


sin2  u


transforms.


d
  sinc ( u
 ) ×

2 i
  sin( u
 )

=

2 id u


2 i


2 di


The k-space counterpart of Eq. (11.53), namely, the  frequency 



convolution theorem
 , is given by

0 p

2p

–p 0 p

2p


kd


p 2p  kd



u
  =  kd 
 –2p –p

2

–2 i


2

–2 di


2

1





ℱ{ ƒ 
 · 
 h
 } =

ℱ{ ƒ
 }

2

àℱ{ h
 } (11.56)

p


Figure 11.41
     An illustration of the convolution theorem.
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g


=


h


×


f



…



…


=

×


x


{ g
 }  
 =  
 {  f ·h
 }

{  h
 }

{  f
 }


G(k)


=


H(k)



F(k)


=


Figure 11.42
    

An example of the  

frequency convolution 

− k
 0

+ k



k



k


− k
 0

+ k k


0

0

0

0

0

theorem.


Transform of the Gaussian Wave Packet


Letting  k
 ′ =  k 
 -  k
 0, we get

As a further example of the usefulness of the convolution theo-

+ ∞

rem, let’s evaluate the Fourier transform of a pulse of light in 






F(k
 ′ ) 
 = 3  ƒ(x)eik
 ′ xdx 
 =  F(k 
 -  k0)
  (11.58)

the configuration of the wave packet of Fig. 11.43. Taking a 

- ∞

rather general approach, notice that since a one-dimensional 

In other words, if  F(k) 
 = ℱ{ ƒ(x)
 }, then  F(k 
 -  k


harmonic wave has the form


0) 
 =  

ℱ{ ƒ(x)e
 - ik
 0  x
 }. For the specific case of a Gaussian envelope  


E
  ˜
 (x,
   t) 
 =  E



x 
 - v t
 )

[Eq . (11.11)], as in the figure,  ƒ(x) 
 = 1 a
 >

0 e
 - i
 (k0

p  e
 - ax
 2, that is,

   

one need only modulate the amplitude to get a pulse of the de-






E
  ˜
 (x,
   0) 
 = 1 a
 >p  e
 - ax
 2 e
 - ik
 0  x
  (11.59) sired structure. Assuming the wave’s profile to be independent 

of time, we can write it as

From the foregoing discussion and Eq. (11.12), it follows that


E
  ˜
 (x, 0) 
 =  ƒ(x)e
 - i
 k0 x


( k 
 -  k
 0)2>4 a


   





ℱ{ E
  ˜
 (x,
   0)
 } =  e
 - 

 (11.60)

Now, to determine ℱ5 ƒ(x)e
 - ik
 0  x
 6 evaluate

In quite a different way, the transform can be determined from 

Eq. (11.56). The expression  E
  ˜
 (x,
   0)
  is now viewed as the product 

+ ∞





of the two functions ƒ (x)


3  ƒ(x)e
 - ik
 0  xeikxdx
  (11.57)

= 1 a
 >p exp (- ax
 2) and  h(x) 
 = 

- ∞

exp  (- ik
 0  x
 ). One way to evaluate ^{ h
 } is to set  ƒ(x) 
 = 1 in 

Eq. (11.57). This yields the transform of 1 with  k
  replaced by 


k 
 -  k
 0. Since ^{1} = 2pd (k)
  (see Problem 11.4), we have  

^ { e
 - ik
 0 x
 } = 2pd (k 
 -  k
 0 )
 . Thus ^{ E
  ˜
 (x,
   0)
 }is  1>2p times the 

{ E(x, 0)
 }

convolution of 2pd( k



E(x, 0)


-  k
 0), with the Gaussian  e
 - k
 2>4 a 
 centered 

on zero. The result* is once again a Gaussian centered on  k
 0, 


a


namely,  e
 -( k
 - k
 0)2>4 a
 .


e–ax
 2  e–ik
 0 x 


√p


e–
 ( k – k
 0)24 a


*We should actually have used the real part of exp (- ik
 0 x
 ) to start with in this 

derivation, since the transform of the complex exponential is different from the 


x



k


transform of cos  k
 0 x
  and taking the real part afterward is insufficient. This is the 

0


k
 0

same sort of difficulty one always encounters when forming products of complex 

exponentials. The final answer [Eq. (11.60)] should, in fact, contain an additional 

exp [-( k 
 +  k
 0)2>4 a
 ] term, as well as a multiplicative constant of 12. This second term is usually negligible in comparison, however. Even so, had we used  

2p

l

exp (

0 =

+  ik
 0 x
 ) to start with [Eq. (11.59)], only the negligible term would have  


k
 0

resulted! Using the complex exponential to represent the sine or cosine in this 

fashion is  rigorously incorrect
 , albeit pragmatically common practice. As a  


Figure 11.43
     A Gaussian wave packet and its transform.

short-cut, it should be indulged in only with the greatest caution!
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11.3.4 Fourier Methods in Diffraction Theory



Y



Fraunhofer Diffraction


Fourier-transform theory provides a particularly beautiful in-


X


sight into the mechanism of Fraunhofer diffraction. Let’s go 


k


back to Eq. (10.41), rewritten as

e


P







E(Y, Z) 
 =  Aei
 (v t
 - kR
 )


eik
 ( Yy
 + Zz
 ) R
   dy
   dz
  (11.61)


y



R


33

Aperture


R


This formula refers to Fig. 10.29, which depicts an arbitrary dif-


x


fracting aperture in the  yz
 -plane upon which is incident a mono-

chromatic plane wave. The quantity  R
  is the distance from the 


Z


center of the aperture to the output point where the field is  E(Y, Z)
 . 

The source strength per unit area of the aperture is denoted by e A
 . 

u

We are talking about electric fields that are of course time-varying; 

f

the term exp  i
 (v t 
 -  kR
 )  
 just relates the phase of the net distur-

bance at the point ( Y
 ,  Z 
 ) to that at the center of the aperture. The 

1> R
  corresponds to the dropoff of field amplitude with distance 

from the aperture. The phase term in front of the integral is of 


z


little present concern, since we are interested in the relative am-

plitude distribution of the field, and it doesn’t much matter what 


Figure 11.44
     A bit of geometry.

the resultant phase is at any particular output point. Thus if we 

limit ourselves to a small region of output space over which  R
  is 

To underscore the similarity between Eq. (11.63) and Eq. 

essentially constant, everything in front of the integral, with the 

(11.14), let’s define the  spatial frequencies
  k Y
   and
  k Z
   as


exception of e A
 , can be lumped into a single constant. 





k Y 
 K  kY
 > R 
 =  k
  sin f =  k
  cos b (11.64)

The e A
  has thus far been assumed to be invariant over the 

aperture, but that certainly need not be the case. Indeed, if the 

and 

k

aperture were filled with a bumpy piece of dirty glass, the field 


Z 
 K  kZ
 > R 
 =  k
  sin u =  k
  cos g (11.65)

emanating from each area element  dy dz
  could differ in both 


For each point on the image plane, there is a corresponding 


amplitude and phase. There would be nonuniform absorption, 


spatial frequency.
  The diffracted field can now be written as

as well as a position-dependent optical path length through the 

+∞

glass, which would certainly affect the diffracted field distribu-

tion. The variations in e






E(
 k


A
 , as well as the multiplicative constant, 


Y, 
 k Z) 
 = 33 𝒜 (y, z)ei(
 k Yy
 +k Zz)
   dy
   dz
  (11.66) can be combined into a single complex quantity

-∞  






𝒜 (y, z) 
 = 𝒜

and we’ve arrived at the key point:  
the field distribution in the 



0 (y, z)ei
 f (y, z)
  (11.62)



Fraunhofer diffraction pattern is the Fourier transform of 



which we call the aperture function
 . The amplitude of the 



the field distribution across the aperture

  (
 
i.e., the aperture 



field over the aperture is described by 𝒜0 (y, z)
 , while the 



function

 )
 . Symbolically, this is written as

point-to-point phase variation is represented by exp [ i
 f (y, z)
 ]. 






E(
 k

Accordingly, 


Y,
  k Z)


𝒜

= ℱ{𝒜 (y, z)
 } (11.67)

0 (y, z)
   dy
   dz
  is proportional to the diffracted 

field emanating from the differential source element  dy dz
 . 


The field distribution in the image plane is the spatial-frequency 


Consolidating this much, we can reformulate Eq. (11.61) more 


spectrum of the aperture function.
  The inverse transform is then

generally as

+∞

+∞

1

  






E(Y, Z)


𝒜 (y, z)eik
 ( Yy
 + Zz
 ) R
   dy
   dz
  (11.63)

𝒜 (y
 ,  z)


=

=


 



E(
 k

33

(2

33


Y, 
 k Z)e
 - i
 (k Yy 
 + k Zz
 )  d
 k Y
   d
 k Z
  (11.68) p)2 -∞ 

-∞ 

that is,

The limits on the integral can be extended to ± ∞ because the 

aperture function is nonzero only over the region of the aperture.





𝒜 (y, z) 
 = ^ -1{ E(
 k Y,
  k Z)
 } (11.69)

It might be helpful to envision  dE(Y, Z)
  at a given point- P
  as 

if it were a plane wave propagating in the direction of k
 $ as in 

As we have seen time and again, the more localized the signal, 

Fig. 11.44 having an amplitude determined by 𝒜 (y, z)
    dy dz
 .  

the more spread out is its transform—the same is true in two 
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dimensions. The smaller the diffracting aperture, the larger the 

With k Z 
 =  k
  sin u, this is precisely the form derived in Section 

angular spread of the diffracted beam or, equivalently, the larger 

10.2.1. The far-field diffraction pattern of a rectangular aperture 

the spatial frequency bandwidth.

(Section 10.2.4) is the two-dimensional counterpart of the slit. 

There is a minor issue that should be mentioned here. If we 

With 𝒜 (y, z)
  again equal to 𝒜0 over the aperture (Fig. 10.30),

actually try to observe a Fraunhofer pattern on a distant screen 


E(
 k Y,
  k Z) 
 = ℱ{𝒜 (y, z)
 }

(without a lens), what we get will only be an approximation; the 

true Fraunhofer pattern is formed in parallel light that doesn’t 

converge at any finite distance. That doesn’t  generally cause 

+  b
 2

+  a
 2


E(
 k

any grief because what we do observe is the irradiance, and that 


Y,
  k Z) 
 = 3

 3

 𝒜0 ei
 (k Yy 
 + k Zz
  ) dy
   dz



y 
 = -  b
 2  z 
 = -  a
 2

is indistinguishable from the ideal distribution at great distances. 

hence,

Still, at any distant, but finite, location the  diffracted electric-

field distribution will differ in phase very slightly from the 


bkY



akZ


Fourier transform of the aperture function. Since we cannot 


E(
 k Y,
  k Z) 
 = 𝒜0  ba
  sinc 

 sinc 

2 R


2 R


even measure the electric field, the problem is not likely to be a 

practical one and we shall henceforth simply overlook it.

just as in Eq. (10.42), where  ba
  is the area of the hole.


The Single Slit



Young’s Experiment: The Double Slit
   In our first treat-

As an illustration of the method, consider the long slit in the  y
 -

ment of Young’s Experiment (Section 9.3), we took the slits 

direction of Fig. 10.15, illuminated by a plane wave. Assuming 

to be infinitesimally wide. The aperture function was then two 

that there are no phase or amplitude variations across the aper-

symmetrical  d-pulses, and the corresponding idealized field 

ture, 𝒜 (y, z)
  has the form of a square pulse:

amplitude in the diffraction pattern was the Fourier transform, 

namely, a cosine function. Squared, this yields the familiar 

𝒜0 when 0  z 
 0 …  b
 2

cosine-squared irradiance distribution of Fig. 9.12. More real-

𝒜 (y, z) 
 = e 0

when 0  z 
 0 7  b
 2

istically, each aperture actually has some finite shape, and the 

real diffraction pattern will never be quite so simple. Figure 11.45 

where 𝒜0 is no longer a function of  y
  and  z
 . If we take it as a 

shows the case in which the holes are actual slits. The aper-

one-dimensional problem,

ture function,  g(x)
 , is obtained by convolving the d-function 

+  b
 2

spikes,   h(x)
 , that locate each slit with the rectangular pulse, 


E(
 k Z) 
 = ℱ{𝒜 (z)
 } = 𝒜0

  eikZzdz



ƒ(x)
 , that corresponds to the particular opening. From the con-

3 z
 = - b
 2

volution theorem, the product of the transforms is the modulated 

cosine amplitude function representing the diffracted field as it 


E(
 k Z) 
 = 𝒜0 b
  sinc k Zb
 >2


f(x)



h(x)


=


g(x)



Figure 11.45
   An illustration  

of the convolution theorem.

1

1

2


x



x



x
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0

−  b


+  b
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−  a
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+  a


2
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2

2

2

2

{  f
 }

{ h
 }
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 }


F(k)


×


H(k)


=
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cos  ka
 2

…

…
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(a)

Aperture function

(b)

Electric field

(c)

Irradiance


f(x)



F(k)



F2(k)



x



k



k


0


Figure 11.46
     The Fourier transform of three equal d-functions representing three slits.

appears on the image plane. Squaring that would produce the an-

as viewed with a telescope, is generally completely obscured by 

ticipated double-slit irradiance distribution shown in Fig. 10.18. 

the side lobes of the diffraction pattern of the main star.

The one-dimensional transform curves are plotted against k, but 

Apodization can be accomplished in several ways, for ex-

that’s equivalent to plotting against image-space variables by 

ample, by altering the shape of the aperture or its transmission 

means of Eq. (11.64). (The same reasoning applied to circular 

characteristics.* We already know from Eq. (11.66) that the dif-

apertures yields the fringe pattern of Fig. 12.2.)

fracted field distribution is the transform of 𝒜 (y, z)
 . Thus we 

could effect a change in the side lobes by altering 𝒜0 (y, z)
  or 

f (y, z).
  Perhaps the simplest approach is the one in which only 


Three Slits  
 Looking at Fig. 11.14 d,
  we should see clearly 

𝒜0 (y, z)
  is manipulated. This can be accomplished physically 

that the transform of the array of three d-functions in the dia-

by covering the aperture with a suitably coated flat glass plate 

gram will generate a cosine that is raised by an amount pro-

(or coating the objective lens itself). Suppose that the coating 

portional to the zero-frequency term, that is, the d-function at 

becomes increasingly opaque as it goes radially out from the 

the origin. When that delta function has twice the amplitude of 

center (in the  yz
 -plane) toward the edges of a circular pupil. The 

the other two, the cosine is totally positive. Now suppose we 

transmitted field will correspondingly decrease off-axis until it 

have three ideally narrow parallel slits uniformly illuminated. 

is made to become negligible at the periphery of the aperture. In 

The aperture function corresponds to Fig. 11.46 a
 , where the 

particular, imagine that this dropoff in amplitude follows a 

central  d-function is half its previous size. Accordingly, the 

Gaussian curve. Then 𝒜0 (y, z)
  is a Gaussian function, as is its 

cosine transform will drop one quarter of the way down, as 

transform  E(Y, Z)
 , and consequently the ring system vanishes. 

indicated in Fig. 11.46 b
 . This corresponds to the diffracted 

Even though the central peak is broadened, the side lobes are 

electric-field amplitude, and its square, Fig. 11.46 c
 , is the 

indeed suppressed (Fig. 11.47).

three-slit irradiance pattern.

Another rather heuristic but appealing way to look at the pro-

cess is to realize that the higher spatial frequency contributions 

go into sharpening up the details of the function being synthesized. 


Apodization



E


The term apodization
  derives from the Greek a, to take away, 

and podos, meaning foot. It refers to the process of suppressing 

the secondary maxima (side lobes) or feet of a diffraction pattern. 

In the case of a circular pupil (Section 10.2.5), the diffraction pat-

tern is a central spot surrounded by concentric rings. The first 

ring has a flux density of 1.75% that of the central peak— it’s 

small, but it can be troublesome. About 16% of the light incident 

on the image plane is distributed in the ring system. The presence 

of these side lobes can diminish the resolving power of an optical 

system to a point where apodization is called for, as is often the 

Distance

case in astronomy and spectroscopy. For example, the star Sirius, 

which appears as the brightest star in the sky (it’s in the constel-

lation   Canis Major
 —the big dog), is actually one of a binary 


Figure 11.47
     An Airy pattern compared with a Gaussian.

system. It’s accompanied by a faint white dwarf as they both orbit 

their mutual center of mass. Because of the tremendous differ-

*For an extensive treatment of the subject, see P. Jacquinot and B. Roizen-Dossier, 

ence in brightness (104 to 1), the image of the faint companion, 

“Apodization,” in Vol. III of  Progress in Optics
 .
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As we saw earlier in one dimension (Fig. 7.34), the high fre-

where 𝒜 I
   (y
 ′ , z
 ′ )
  is the individual aperture function applicable 

quencies serve to fill in the corners of the square pulse. In the 

to each hole. This can be recast, using Eqs. (11.64) and (11.65), as

same way, since 𝒜 (y, z) 
 = ℱ-1{ E(
 k Y,
  k Z)
 }, sharp edges on the 

+∞

aperture necessitate the presence of appreciable contributions of 


E(
 k

high spatial frequency in the diffracted field. It follows that mak-


Y,
  k Z) 
 = 33 𝒜 I
   (y
 ′ , z
 ′ )ei
 (k Yy
 ′+k Zz
 ′)  dy
 ′  dz
 ′

ing 𝒜0 (y, z)
  fall off gradually will reduce these high frequencies, 

-∞ 

which in turn is manifest in a suppression of the side lobes.


N


Apodization is one aspect of the more encompassing tech-





* 

nique of  spatial filtering
 , which is discussed in an extensive yet 

^ ei
 (k Yyj
 ) ei
 (k Zzj
 ) (11.72)


j 
 = 1

nonmathematical treatment in Chapter 13.

Notice that the integral is the Fourier transform of the individu-

al aperture function, while the sum is the transform [Eq. (11.42)] 


The Array Theorem


of an array of delta functions

Generalizing some of our previous ideas to two dimensions, 






A
 d = ^d (y 
 -  yj)
  d (z 
 -  zj)
  (11.73)

imagine that we have a screen containing  N
  identical holes, as 


j


in Fig. 11.48. In each aperture, at the same relative position, we 

locate a point  O


Inasmuch as  E(
 k Y, 
 k Z)
  itself is the transform ℱ

1,  O
 2, . . . ,  ON
  at ( y
 1,  z
 1), ( y
 2,  z
 2),  . . . , (  yN
 ,  zN
 ), 5𝒜 (y, z)
 6 of the 

respectively. Each of these, in turn, fixes the origin of a local 

total aperture function for the entire array, we have

coordinate system ( y
 ′,  z
 ′). Thus a point ( y
 ′,  z
 ′) in the local 





ℱ5𝒜 (y, z)
 6 = ℱ5𝒜 I
   (
   y
 ′ , z
 ′ )
 6 ·
  
 ℱ5 A
 d6 (11.74) frame of the  j
 th aperture has coordinates ( yj 
 +  y
 ′,  zj 
 +  z
 ′) in the (  y
 ,  z
 )-system. Under coherent monochromatic illumination, the 

This equation is a statement of the array theorem
 , which says 

resulting Fraunhofer diffraction field  E(Y, Z)
  at some point- P
  on 

that   
the field distribution in the Fraunhofer diffraction pat-



the image plane will be a superposition of the individual fields 



tern of an array of similarly oriented identical apertures 



at  P
  arising from each separate aperture; in other words,



equals the Fourier transform of an individual aperture func-





tion

  (
 
i.e., its diffracted field distribution

 ) 
 
multiplied by the pat-




N 
 + ∞



tern that would result from a set of point sources arrayed in 




E(Y
 ,  Z) 
 = ^  
 33 𝒜 I
   (y
 ′ , z
 ′ )eik
 [ Y
 (  yj
 + y
 ′)+ Z
 ( zj
 + z
 ′)]> R
   dy
 ′ dz
 ′







the same configuration

  (
 
which is the transform of A 

 ).


D


j 
 = 1 -∞  

(11.70)

This can be seen from a slightly different point of view. The 

total aperture function may be formed by convolving the indi-

+∞

vidual aperture function with an appropriate array of delta func-

or 


E(Y
 ,  Z) 
 =

𝒜 I
   (y
 ′ , z
 ′ )eik
 ( Yy
 ′+ Zz
 ′)> R
   dy
 ′ dz
 ′ 





tions, each sitting at one of the coordinate origins (  y
 1,  z
 1), (  y
 2,  z
 2), 33

-∞ 

and so on. Hence


N






𝒜 (y, z) 
 = 𝒜 I
   (
   y
 ′ , z
 ′ )
 à A 
  (11.75)

d





* ^ eik
 ( Yyj
 + Zzj
 ) R
  (11.71)


j


whereupon the array theorem follows directly from the convo-

= 1

lution theorem [Eq. (11.53)].

As a simple example, imagine that we again have Young’s 


z


Experiment with two slits along the  y
 -direction, of width  b
  and 

separation  a
 . The individual aperture function for each slit is a 

step function,


O
 2

𝒜

𝒜


I
  0

when 0  z
 ′ 0 …  b
 2


I
   (z
 ′ ) 
 = e


z


0

when 0  z
 ′ 0 7  b
 2

and so


z



y



j



Oj


ℱ5𝒜 I
   (z
 ′ )
 6 = 𝒜 I
 0 b
  sinc k Zb
 >2

With the slits located at  z



O


= ± a
 >2,

1


A
 d = d (z 
 -  a
 >2 ) 
 + d (z 
 +  a
 >2 )



y



y


0


j


and from Eq. (11.43)

ℱ{ A 
 }

d


Figure 11.48
   Multiple-aperture configuration.

= 2 cos k Z
   a
 >2
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Thus


The Lorentzian Profile


As an indication of the manner in which these ideas are applied 

k  b


k  a



E(
 k


Z



Z


  

  

in practice, consider the damped harmonic wave  ƒ(t)
  at  x



Z) 
 = 2 𝒜 I
 0 b
  sinc a

b cos a

b

= 0

2

2

depicted in Fig. 11.49. Here

which is the same conclusion arrived at earlier (Fig. 11.31). The 

0

from  t 
 = - ∞ to  t 
 = 0

ƒ (t) 
 = e

irradiance pattern is a set of  cosine-squared
  interference fringes 

ƒ0 e
 - t
 2t cos v0 t 
 from  t 
 = 0 to  t 
 = + ∞

modulated by a  sinc-squared
  diffraction envelope.

The negative exponential dependence arises, quite generally, 

whenever the rate-of-change of a quantity depends on its instan-

taneous value. In this case, we might suppose that the power 


11.3.5 Spectra and Correlation


radiated by an atom varies as ( e
 - t
 >t)1>2. In any event, t is known 

as the time constant of the oscillation, and t-1 = g is the damp-


Parseval’s Formula


ing constant. The transform of  ƒ(t)
  is

Suppose that  ƒ(x)
  is a pulse of finite extent, and  F(
 k )
  is its 

∞

Fourier transform [Eq. (11.5)]. Thinking back to Section 7.8, 






F(
 v ) 
 =

we recognize the function  F(
 k )
  as the amplitude of the spatial 

3 (ƒ0 e
 - t
 >2t cos v0 t
 ) ei
 v tdt
  (11.78)

0

frequency spectrum of  ƒ(x)
 . And  F(
 k ) d
 k then connotes the 

amplitude of the contributions to the pulse within the fre-

One finds on performing the calculation that

quency range from k to k +  d
 k. Hence it seems that 0  F(
 k ) 
 0 


ƒ


1

-1


ƒ


1

-1

serves as a spectral amplitude density, and its square,  0  F(
 k ) 
 02, 


F(


0

0

v ) 
 =

c -  i
 (v + v

+

c -  i
 (v - v

should be proportional to the energy per unit spatial frequency 

2 2

0)d

0)d

t

2 2t

interval. Similarly, in the time domain, if  ƒ(t)
  is a radiated 

When  ƒ(t)
  is the radiated field of an atom, t denotes the  life-


electric field,  0  ƒ(t) 
 02 is proportional to the radiant flux or 


time
  of the excited state (from around 1.0 ns to 10 ns). Now if 

power, and the total emitted energy is proportional to 

∞

we form the power spectrum  F(
 v )F*(
 v )
 , it will be composed of 

10 0  ƒ(t) 
 02  dt
 . With  F(
 v ) 
 = ℱ5ƒ (t)
 6it appears that 0  F(
 v ) 
 02 

two peaks centered on ± v

must be a measure of the radiated energy per unit temporal 

0 and thus separated by 2v0. At opti-

cal frequencies where v

frequency interval. To be a bit more precise, let’s evaluate 

0  7 7  g, these will be both narrow and 

+ ∞

widely spaced, with essentially no overlap. The shape of these 

1-∞ 0  ƒ(t) 
 02  dt
  in terms of the appropriate Fourier transforms. 

peaks is determined by the transform of the modulation enve-

Inasmuch as  0  ƒ(t) 
 02 =  ƒ(t)ƒ
 * (t) 
 =  ƒ(t) 
 · 
 [ℱ-15ℱ (
 v )
 6]*, lope in Fig. 11.49, that is, a negative exponential. The location 

+ ∞

+ ∞

1

+ ∞

3 0  ƒ(t) 
 02  dt 
 = 3  ƒ(t)
 c  3  F
 * (
 v )e
 + i
 v td
 vd dt


- ∞

- ∞

2p - ∞


f(t)


Interchanging the order of integration, we obtain

+ ∞

1 + ∞

+ ∞

3 0  ƒ(t) 
 02  dt 
 =


F
 * (
 v ) 
 c 3  ƒ(t)ei
 v tdt
 d d
 v

- ∞

2p3- ∞

- ∞

and so


f
 0  e
 – t
 2t

+ ∞

1 + ∞





3 0  ƒ(t) 
 02  dt 
 =

0  F(
 v ) 
 02  d
 v (11.76)


t


- ∞

2p3- ∞

0

where 0  F(
 v ) 
 02 =  F
 * (
 v )F(
 v ).
  This is  Parseval’s formula
 . As expected, the total energy is proportional to the area under the 

0  F(
 v ) 
 02 curve, and consequently 0  F(
 v ) 
 02 is sometimes called 

the power spectrum
  or  spectral energy distribution
 . The cor-

responding formula for the space domain is

2p c


l0 = v0

+ ∞

1 + ∞





3 0  ƒ(x) 
 02  dx 
 =

0  F(
 k ) 
 02  d
 k (11.77)

- ∞

2p3- ∞


Figure 11.49
     A damped harmonic wave.
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of the peaks is fixed by the frequency of the modulated cosine 

concerned with images where  
the correlation, which is a func-



wave, and the fact that there are two such peaks is a reflection of 



tion of X in the space domain, corresponds to the integral of 



the spectrum of the cosine in this symmetrical frequency represen-



the product of two functions, say, ƒ(x) and h(x), provided one 



tation. To determine the observable spectrum from  F(
 v )F*(
 v )
 , 



of them is first displaced a distance specified by the variable X 



we need only consider the positive frequency term, namely,



along the x-axis

 .
  Often there’s a temporal signal of long dura-

tion (e.g., an ongoing background of obscuring noise) within 

ƒ20

g2>4

which one searches for a briefer particular signal. Alternatively, 





0  F(
 v ) 
 02 =  

 (11.79)

g2 (v

we might have a large display of data, like a picture of the roof-

- v0)2 + g2>4

tops of a city, and we must search it for a particular building. 

This has a maximum value of ƒ2

The cross-correlation of a signal with itself is known as the 

0>g2 at v = v0, as shown 





in Fig. 11.50. At the half-power points (v

autocorrelation. It represents the degree of similarity between a 

- v0) = ±g>2,  

2

given set of data and a time-lagged (or spatially displaced) ver-

0  F(
 v ) 
 02 =  ƒ
 0>2g2, which is half its maximum value. The width 

of the spectral line between these points is equal to g.

sion of that data set. In other words,  
the autocorrelation, which 



The curve given by Eq. (11.79) is known as the  
resonance

  or 



is a function of X in the space domain, corresponds to the in-





Lorentz profile

 . The frequency bandwidth arising from the fi-



tegral of the product of

  
 
a function ƒ(x) with itself, provided 



nite duration of the excited state is called the  
natural linewidth

 .



one of those ƒ(x) functions is first displaced a distance speci-



If the radiating atom suffers a collision, it can lose energy and 



fied by the variable X along the x-axis

 . 
 Today there are optical 

thereby further shorten the duration of emission. The frequency 

devices called  correlators
  that carry out such processes in real 

bandwidth increases in the process, which is known as  Lorentz 


time. These techniques have all sorts of applications, from fin-


broadening
 . Here again, the spectrum is found to have a Lorentz 

gerprint and DNA identification to the operation of production-line 

profile. Furthermore, because of the random thermal motion of the 

robot eyes.

atoms in a gas, the frequency bandwidth will be increased via the 

Let’s go back to the derivation of Parseval’s formula and fol-

Doppler effect.  Doppler broadening
 , as it is called, results in a 

low it through again, this time with a slight modification.  

Gaussian spectrum. The Gaussian drops more slowly in the im-

We wish to evaluate  +∞

1-∞ ƒ (t 
 + t )
 ƒ* (t)
   dt
 , using much the same 

mediate vicinity of v

approach as before. Thus, if  F(
 v )


0 and then more quickly away from it than 

= ℱ5ƒ (t)
 6,

does the Lorentzian profile. These effects can be combined math-

+ ∞

+ ∞

ematically to yield a single spectrum by convolving the Gaussian 

and Lorentzian functions. In a low-pressure gaseous discharge, the 

3


ƒ(t 
 + t )ƒ
 * (t)
   dt 
 = 3  ƒ(t 
 + t )


- ∞

- ∞

Gaussian profile is by far the wider and generally predominates.

1

+ ∞

* c  


F
 * (
 v )e
 + i
 v t
   d
 vd  dt


2p 3- ∞


Autocorrelation and Cross-Correlation


(11.80)

In the discipline of signal analysis—both spatial and temporal—

Changing the order of integration, we obtain

there are important analytic techniques for comparing sets of 

data:  cross-correlation
  and  autocorrelation
 . In the time domain, 

1

+ ∞

+ ∞

cross-correlation provides a measure of the similarity existing 






F
 * (
 v ) 
 c

ƒ (t 
 + t )ei
 v t
   dt
 d  d
 v

2p 3

3

- ∞

- ∞

between two waveforms (or two sets of data), revealed as a 

function of a temporal shift impressed upon one of the two sig-

1

+ ∞

nals. In other words, one signal is moved over the other and they 

=






F
 * (
 v )
 ℱ5 ƒ(t 
 + t )
 6 d
 v

are compared at each relative position. We will more often be 

2p 3- ∞

(a)


F(
 v )
 2

(b)


I(
 v )



f 
 20g2

Gaussian

g

Lorentzian

v

v

v

0

0

v0


Figure 11.50
   ( a
 ) The resonance or Lorentz profile. ( b
 ) A comparison of Gaussian and Lorentzían spectra.

M11_HECH7226_05_SE_C11_534-579.indd   564

06/11/15   7:59 PM



 



11.3
   Optical Applications  565


To evaluate the transform within the last integral, notice that

and write

∞

1

+ ∞

ƒ (t







c


+ t ) 
 =


ƒƒ
   ( 
 -  X) 
 =

3   F(
 v )e
 - i
 v( t
 +t) d
 v

3  ƒ(x)ƒ
 * (x 
 +  X)
   dx


2p - ∞

- ∞

by a change of variable in Eq. (11.9). Hence,

But  ƒ(x)
  is real and so

ƒ (t 
 + t ) 
 = ℱ -15 F(
 v )e
 - i
 vt6

∞


cƒƒ
   (
 - X) 
 = 3  ƒ(x)ƒ(x 
 +  X)
   dx


so as discussed earlier, ℱ5ƒ (t 
 + t )
 6 =  F(
 v )e
 - i
 vt, Eq. (11.80) 

- ∞

becomes

Now let  u 
 =  x 
 +  X
  such that  x 
 =  u 
 -  X
  and  dx 
 =  du
 . Then

+ ∞

1

+ ∞

∞

3   ƒ(t 
 + t )
 ƒ* (t)
   dt 
 =





  F
 * (
 v )F(
 v )e
 - i
 vt  d
 v

2p 3


c


- ∞

-∞


ƒƒ
   ( 
 -  X) 
 = 3  ƒ(u 
 -  X)ƒ(u)
   du


- ∞

(11.81)

and since  u
  is just a dummy variable

and both sides are functions of the parameter t. The left-hand 

side of this formula is said to be the autocorrelation
  of ƒ (t)
 , 


cƒƒ
   (
 - X) 
 =  cƒƒ
   (X)


denoted by

+ ∞

Correlation analysis is essentially a means for comparing 






c
 ƒƒ  (
 t ) 
 K 3 ƒ (t 
 + t )
 ƒ* (t)
   dt
  (11.82)

two signals in order to determine the degree of similarity be-

- ∞

tween them. In autocorrelation the original function is displaced 

in time by an amount t, the product of the displaced and undis-

which is often written symbolically as  ƒ(t)
 ★ ƒ
 * (t)
 . If we take the 

placed versions is formed, and the area under that product (cor-

transform of both sides, Eq. (11.81) then becomes

responding to the degree of overlap) is computed by means of 

the integral. The autocorrelation function,  c
 ƒƒ (
 t )
 , provides the 





ℱ5 cƒƒ
   (
 t )
 6 = 0  F(
 v ) 
 02 (11.83)

result that will be obtained in such a process for all values of t. 

One reason for doing such a thing, for example, is to extract a 

This is a form of the  
Wiener

 – 
Khintchine theorem

 . It allows for 

signal from a background of random noise. Note that the auto-

determination of the spectrum by way of the autocorrelation of 

correlation of a periodic function is itself a periodic function.

the generating function. The definition of  c
 ƒƒ (
 t )
  applies when 

To see how the business works step by step, let’s take the 

the function has finite energy. When it doesn’t, things will have 

autocorrelation of a simple function, such as  A
  sin (v t 
 + P), 

to be changed slightly. The integral can also be restated as

shown in Fig. 11.51. In each part of the diagram the function 

is shifted by a value of t, the product  ƒ(t) 
 · 
 ƒ(t 
 + t )
  is formed, 

+ ∞

and then the area under that product function is computed and 






c
 ƒƒ  (
 t ) 
 = 3 ƒ (t)
 ƒ* (t 
 - t )
   dt
  (11.84)

plotted in part (e). Notice that the process is indifferent to the 

- ∞

value of e. The final result is  c
 ƒƒ (
 t ) 
 = 12  A
 2 cos vt, where this 

by a simple change of variable ( t 
 + t to  t
 ). Similarly, the cross-


function unfolds through one cycle as t goes through 2p, so 


correlation
  of the functions  ƒ(t)
  and  h(t)
  is defined as

it has the same frequency as ƒ (t)
 . Accordingly, if we had a 

process for generating the autocorrelation, we could recon-

+ ∞

struct from that both the original amplitude  A
  and the angular 






cƒh
   (
 t ) 
 = 3  ƒ
 * (t)
   h(t 
 + t )
   dt
  (11.85)

frequency v.

- ∞


EXAMPLE 11.4



EXAMPLE 11.3


Find the autocorrelation:  cƒƒ
   (x)
  for the real function  ƒ(x)
  

where 

Given that  ƒ(x)
  in the spatial domain is real, show that  cƒƒ
   (X)
  is 





an even function.

0


x 
 6 0


SOLUTION 



f
   (x) 
 = • 1 -  x 
 0 6  x 
 6 1

The autocorrelation would be an even function if  cƒƒ
   (X)
  equaled 





0


x



c


7 1


ƒƒ
   ( 
 -  X)
 . Hence, start with  cƒƒ
   (X)
  as given by Eq. (11.84),





∞

This is a single saw tooth. Adjust  cƒƒ
   (x)
  so that it’s symmetrical 


cƒƒ
   (X) 
 = 3  ƒ(x)ƒ
 * (x 
 -  X)
   dx






around  x 
 = 0, at which point it equals 1.0.

- ∞


Continued
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SOLUTION 


which leads to 

Let  u
  be the dummy variable. Using Eq. (11.85),

1


x



x
 3

∞

1 -  x



cƒƒ
   (x) 
 = - +

3

2

6


cƒƒ
   (x) 
 = 3  ƒ
 * (u)
   ƒ(u 
 +  x)
   du 
 = 3 (1 -  u
 )(1 -  u 
 -  x
 )  du


- ∞

0

To have it be symmetrical around  x 
 = 0, write it as

where  ƒ
 * (u) 
 =  ƒ(u) 
 = (1 -  u
 ) and  ƒ(u 
 +  x) 
 = 1 - ( u 
 +  x
 ) 1


x



x
 3


cƒƒ
   (x) 
 = -

+

This formulation, however awkward, yields an autocorrelation 

3

2

6

that is a function of  x
 .

At  x 
 = 0 this has a value of 1>3, so we’ll normalize it by multi-

(1 -  u
 )(1 -  u 
 -  x
 ) = 1 -  u 
 -  x 
 -  u 
 +  u
 2 +  ux
 plying by 3. In the region where  - 1 6  x 
 6 +1

and

3

1

1 -  x



cƒƒ
   (x) 
 = 1 -   x
  +   x
 3

2

2


cƒƒ
   (x) 
 = 3 [(1 -  x
 ) -  u
 (2 -  x
 ) +  u
 2]  du


0

and everywhere else,  x
  7 1, it is 0.

Consequently,

(2 -  x
 )

(1 -  x
 )


cƒƒ
   (x) 
 = (1 -  x
 )2  c1 -

+

d

2

3

Assuming the functions to be real, we can rewrite  c
 ƒ h(
 t )
  as

and 

+ ∞






c
 ƒ h
   (
 t ) 
 =


c


3 ƒ (t)h(t 
 + t )
   dt
  (11.86)


ƒƒ
   (x) 
 = (1 -  x
 )2(1>3 +  x
 >6)

- ∞
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Figure 11.51
     The autocorrelation of a sine function.
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f (x)


{  f(x)
 }  
 =  F(k)



x



k



cf f  
 =  f(x) 
 ★  f (x)



F(k)
 2


Figure 11.52
     The square of the Fourier 

transform of the rectangular pulse  ƒ(x)
  

(i.e.,  0  F(
 k ) 
 02) equals the Fourier transform 


x



k


of the autocorrelation of  ƒ(x)
 .

which is obviously similar to the expression for the convolution 

We want an autocorrelation so there is no mirroring (no flip-

of  ƒ (t)
  and  h(t)
 . Equation (11.86) is written symbolically as 

ping) of the plastic sliding function. Draw the same sort of grid 


cƒh(
 t ) 
 =  ƒ(t)
 ★ h(t)
 . Indeed, if either ƒ (t)
  or  h(t)
  is even, then as before and then place the plastic, in its original orientation, 


ƒ(t)


on the page so that its uppermost dot is on the  x
 -axis of, and to 

à h(t) 
 =  ƒ(t)
 ★ h(t)
 , as we shall see by example presently. 

Recall that the convolution flips one of the functions over and 

the left of, the three-hole L. Now slide the plastic function to the 

then sums up the product area (Fig. 11.31), that is, the area under 

right until its uppermost dot overlaps the corner hole. At a cor-

the product curve. In contrast, the correlation sums up the overlap 

responding location (i.e., on the  y
 -axis, one division below the 

without flipping the function, and thus if the function is even, 

origin of the autocorrelation diagram) record a disk with a peak 

ƒ (t) 
 =  ƒ(
 - t)
 , it isn’t changed by being flipped (or folded about 

central irradiance of 1.0. This is the start of the bottom row in 

the symmetry axis), and the two integrands are identical. For this 

Fig. 11.53 b
 . Slide the plastic function one more division to the 

to obtain, either function must be even, since ƒ (t)


right. Another dot pair appears. Accordingly, record another 

à h(t) 
 =


h(t)


disk of peak irradiance of 1.0, on the bottom row (1.0, 1.0) in 

à ƒ(t)
 . The autocorrelation of a square pulse is therefore 

equal to the convolution of the pulse with itself, which yields a 

the autocorrelation. 

triangular signal, as in Fig. 11.34. This same conclusion follows 

Continuing, place the plastic to the left of the three holes, 

from Eq. (11.83) and Fig. 11.40. The transform of a square pulse 

raise it one division on the grid, thereby overlaying the two  x
 -

is a sinc function, so that the power spectrum varies as sinc2 u
 . 

axes, and then slide it to the right. A single dot pair will occur 

The inverse transform of 0  F(
 v ) 
 02, that is, ℱ -15sinc2 u
 6, is  c
 ƒƒ  (
 t )
 , and so enter a disk with a maximum irradiance of 1.0 at the left, 

which as we have seen, is again a triangular pulse (Fig. 11.52).

at the start of the second line of the autocorrelation diagram. 

Next shift the plastic one more division to the right; all three 

EXAMPLE 11.5

dots now overlap, producing a disk with a maximum irradiance 

of 3.0 located on the center of the second line of the autocorre-

Figure 11.53 depicts a two-dimensional signal and its autocor-

lation. That’s the peak in the autocorrelation occurring when the 

relation. Consider these bright circles to be uniformly illumi-

two functions match up. Sliding the plastic function one more 

nated holes in an opaque screen. Explain how one might arrive 

division to the right results in a 1.0-unit irradiance, which ap-

at its autocorrelation. Discuss its salient features and compare it 

pears on the middle (1.0, 3.0, 1.0) line of the autocorrelation. 

to the convolution shown earlier in Fig. 11.38. 

Raising the plastic function one additional division produces 

SOLUTION 

two consecutive 1.0-unit irradiance disks on the third and last 

line (1.0, 1.0). In that way the L-dot function scans over the 

As we did in the analysis of Fig. 11.38, imagine that you put 

identical  L-hole function to produce a two-dimensional auto-

a piece of clear plastic over the three apertures. Draw three 

correlation. There being no mirroring, this result is very differ-

identical dots, one over each hole. Draw  x
 - and  y
 -axes through 

ent from the self-convolution of Fig. 11.38 b
 .

the L-shaped “holes,” with the origin at the corner circle, and do 

the same thing through the dots on the plastic. 
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f(x, y)



c
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f f (X, Y)


uniform

source


P



T
 1


T
 2

u

u

u

(a)

(b)


f



Figure 11.53
     A two-dimensional function  ƒ(x,y)
  and its autocorrelation 

function. See Fig. 11.38.

It is clearly possible for a function to have infinite energy 


Figure 11.54
     Optical correlation of two functions.

[Eq. (11.76)] over an integration ranging from - ∞ to + ∞ and 

yet still have a finite  average power


1

+  T


the form of the resultant profile, its autocorrelation is unal-

lim  





 0 ƒ (t) 
 02  dt



T 
 S ∞ 2 T 
 3

tered. It is left as a problem to show analytically that when 

-  T



ƒ(t) 
 =  A
  sin (v t 
 + P),  C
 ƒƒ  (
 t ) 
 = ( A
 2>2) cos vt, which confirms Accordingly, we will define a correlation that is divided by the 

the loss of phase information.

integration interval:

Figure 11.54 shows a means of optically correlating two two-

dimensional spatial functions. Each of these signals is represented 

1

+  T


as a point-by-point variation in the irradiance transmission prop-






Cƒh(
 t ) 
 K lim    

  ƒ(t)
   h(t 
 + t ) dt
  (11.87)


T 
 S ∞ 2 T 
 3

erty of a photographic transparency ( T


-  T


1 and  T
 2). For relatively 

simple signals, opaque screens with appropriate apertures could 

For example, if ƒ (t) 
 =  A
  (i.e., a constant), its autocorrelation

serve instead of transparencies (e.g., for square pulses).* The 

irradiance at any point- P
  on the image is due to a focused bundle 

1

+  T



C










 ( A
 )( A
 )  dt


of parallel rays that has traversed both transparencies. The coor-

ƒƒ (
 t ) 
 K lim

=  A
 2


T 
 S ∞ 2 T 
 3-  T


dinates of  P
 ,  (uƒ, wƒ), are fixed by the orientation of the ray 

bundle, that is, the angles u and w. If the transparencies are iden-

and the power spectrum, which is the transform of the autocor-

tical, a ray passing through any point ( x
 ,  y
 ) on the first film with 

relation, becomes

a transmittance  g(x, y)
  will pass through a corresponding point 

ℱ5 C


( x


ƒƒ  (
 t ) 
 6 =  A
 2 2pd (
 v )


+  X
 ,  y 
 +  Y
 )   
 on the second film where the transmittance is 


g(x 
 +  X, y 
 +  Y)
 . The shifts in coordinate are given by  X 
 = /u  


a single impulse at the origin (v = 0), which is sometimes re-

and  Y 
 = /w, where / is the separation between the transparencies. 

ferred to as a  DC
 -term. Notice that  Cƒh
   (
 t )
  can be thought of as 

The irradiance at  P
  is therefore proportional to the autocorrelation 

the time average of a product of two functions, one of which is 

of  g(x, y)
 , that is,

shifted by an interval t. In the next chapter, expressions of the 

form 8 ƒ*(t)
   h(t 
 + t )
 9 arise as coherence functions relating elec-

+∞

tric fields. They are also quite useful in the analysis of noise 






cƒƒ(X, Y) 
 =

problems, for example, film grain noise.

33  g(x, y)g(x 
 +  X, y 
 +  Z)
   dx
   dy
  (11.88)

-∞

We can obviously reconstruct a function from its trans-

form, but once the transform is squared, as in Eq. (11.83), we 

and the entire flux-density pattern is called a  correlogram
 . If 

lose information about the signs of the frequency contribu-

the transparencies are different, the image is of course represen-

tions, that is, their relative phases. In the same way, the auto-

tative of the cross-correlation of the functions. Similarly, if one 

correlation of a function contains no phase information and is 

of the transparencies is rotated by 180° with respect to the other, 

not unique. To see this more clearly, imagine we have a number 

the convolution can be obtained (see Fig. 11.39).

of harmonic functions of different amplitude and frequency. If 

their relative phases are altered, the resultant function changes, 

as does its transform, but in all cases the amount of energy 

*See L. S. G. Kovasznay and A. Arman,  Rev. Sci. Instr
 . 28
 , 793 (1958), and  

available at any frequency must be constant. Thus, whatever 

D. McLachlan, Jr.,  J. Opt. Soc. Am
 . 52
 , 454 (1962).
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f (t)


be somewhat reduced. There will be points in time where 


ƒ(t)
 ƒ (t 
 + t 1)
  is positive and other points where it will be nega-

tive, so that the value of the integral drops off (Fig. 11.55 b
 ). In 


t


other words, by shifting the signal with respect to itself, we have 

reduced the point-by-point similarity that previously (t = 0) 

occurred at any instant. As this shift t increases, what little cor-

(a)

relation existed quickly vanishes, as depicted in Fig. 11.55 c
 . We 

can assume from the fact that the autocorrelation and the power 

spectrum form a Fourier transform pair [Eq. (11.83)] that the 


f (t 
 +  
 t 1)


broader the frequency bandwidth of the noise, the narrower the 


t


autocorrelation. Thus for wide-bandwidth noise even a slight 

shift markedly reduces any similarity between  ƒ(t)
  and  ƒ(t 
 + t )
 . 

Furthermore, if the signal comprises a random distribution of 


f (t)


rectangular pulses, we can see intuitively that the similarity we 


t


spoke of earlier persists for a time commensurate with the width 

of the pulses. The wider (in time) the pulses are, the more slowly 

the correlation decreases as t increases. But this is equivalent to 

(b)

t1

saying that reducing the signal bandwidth broadens  C
 ƒƒ  (
 t )
 . All 

of this is in keeping with our previous observation that the auto-

correlation tosses out any phase information, which in this case 

Wide bandwidth noise

would correspond to the locations in time of the random pulses. 


C


Clearly,   C



f f (
 t )


ƒƒ  (
 t )
  shouldn’t be affected by the position of the 

pulses along  t
 .

In very much the same way, the cross-correlation is a mea-

sure of the similarity between two different waveforms,  ƒ(t)
  and 


h(t)
 , as a function of the relative time shift t. Unlike the auto-

(c)

t

correlation, there is now nothing special about t = 0. Once 

0

again, for each value of t we average the product  ƒ(t)h(t 
 + t )
  to 


Figure 11.55
   A signal  ƒ(t)
  and its autocorrelation.

get  C
 ƒ h(
 t )
  via Eq. (11.87). For the functions shown in Fig. 11.56, 


C
 ƒ h(
 t )
  would have a positive peak at t = t1.

Since the 1960s a great deal of effort has gone into the 

Before moving on, let’s make sure that we actually do have 

development of optical processors that can rapidly analyze 

a good physical feeling for the operation performed by the cor-

pictorial data. The potential uses range from comparing fin-

relation functions. Accordingly, suppose we have a random 

gerprints to scanning documents for words or phrases; from 

noise-like signal (e.g., a fluctuating irradiance at a point in 

screening aerial reconnaissance pictures to creating terrain-

space or a time-varying voltage or electric field), as in Fig. 11.55 a
 . 

following guidance systems for missiles. An example of this 

The autocorrelation of  ƒ(t) 
 in effect compares the function with 

kind of  optical pattern recognition
 , accomplished using cor-

its value at some other time,  ƒ(t 
 + t )
 . For example, with t = 0 

relation techniques, is shown in Fig. 11.57. The input signal 

the integral runs along the signal in time, summing up and aver-


ƒ(x, y)
  depicted in photograph ( a
 ) is a broad view of some 

aging the product of  ƒ(t)
  and  ƒ(t 
 + t )
 ; in this case it’s simply  

region that is to be searched for a particular group of struc-


ƒ
 2 (t)
 . Since at each value of  t
 ,  ƒ
 2 (t)
  is positive,  C


tures [photograph ( b
 )] isolated as the reference signal  h(x, y)
 . 

ƒƒ  (0)
  will be a 

comparatively large number. On the other hand, when the noise 

Of course, that small frame is easy enough to scan directly by 

is compared with itself shifted by an amount  +t

eye, so to make things more realistic, imagine the input to be 

1,  C
 ƒƒ  (
 t 1)
  will 

t = 0


f(t)



t


t1


h(t)



t



Figure 11.56
   The cross-correlation 

of ƒ (t)
  and  h(t)
 .
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(a)

(c)

(b)


Figure 11.57
     An example of optical pattern recognition. 

( a
 ) Input signal, ( b
 ) reference data, ( c
 ) correlation pattern. 

(Reprinted with permission from the November 1980 issue of  Electro-Optical 



Systems
  Design. David Casasent.)

a few hundred feet of reconnaissance film. The result of opti-

cally correlating these two signals is displayed in photograph 

( c
 ), where we immediately see, from the correlation peak 


Y


(i.e., the spike of light), that indeed the desired group of 

structures is in the input picture, and moreover its location is 

marked by the peak.


11.3.6 Transfer Functions



An Introduction to the Concepts



Z


Until recent times, the traditional means of determining the qual-

ity of an optical element or system of elements was to evaluate its 

limit of resolution. The greater the resolution, the better the sys-

tem was presumed to be. In the spirit of this approach, one might 

train an optical system on a resolution target consisting, for in-

stance, of a series of alternating light and dark parallel rectangu-


Y


lar bars. We have already seen that an object point is imaged as a 

smear of light described by the point-spread function   (Y, Z)
 , as 

in Fig. 11.28. Under incoherent illumination, these elementary 

flux-density patterns overlap and add linearly to create the final 

image. The one-dimensional counterpart is the  line-spread func-



tion
    (Z)
 , which corresponds to the flux-density distribution 


(Z)



Z


across the image of a geometrical line source having infinitesimal 

width (Fig. 11.58). Because even an ideally perfect system is lim-

Spread function

ited by diffraction effects, the image of a resolution target (Fig. 

11.59) will be somewhat blurred (see Fig. 11.30). Thus, as the 

width of the bars on the target is made narrower, a limit will be 

reached where the fine-line structure (akin to a  Ronchi ruling
 ) 


Figure 11.58
     The line-spread function.

will no longer be discernible—this then is the resolution limit of 

the system. We can think of it as a spatial frequency cutoff where 

basis of its upper-frequency cutoff. The limitations of this 

each bright and dark bar pair constitutes one cycle on the object 

scheme became quite apparent with the introduction of  detectors 

(a common measure of which is  line pairs per mm
 ). An obvious 

such as the plumbicon, image orthicon, and vidicon. These 

analogy that underscores the shortcomings of this approach 

tubes have a relatively coarse scanning raster, which fixes the 

would be to evaluate a high-fidelity sound system simply on the 

resolution limit of the lens-tube system at a fairly low spatial 
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Ii
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x


0
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1 ( I
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6


Figure 11.59
     A bar target resolution chart.

5

1 ( I


frequency. Accordingly, it would seem reasonable to design the 

2 max +  I
 min)

optics preceding such detectors so that it provided the most con-

trast over this limited frequency range. It would clearly be un-


x


necessary and perhaps, as we shall see, even detrimental to select 

0

a mating lens system merely because of its own high limit of 

resolution. Evidently, it would be more helpful to have some fig-


Figure 11.60
     The irradiance into and out of a system.

ure of merit applicable to the entire operating frequency range.

Figure 11.61 is a plot of the MTF for two hypothetical lenses. 

We have already represented the object as a collection of point 

Both start off with a zero-frequency ( DC
 ) value of 1.0, and both 

sources, each of which is imaged as a point-spread function by 

cross the zero axis somewhere where they can no longer resolve 

the optical system, and that patch of light is then convolved into 

the data at that  cutoff frequency
 . Had they both been diffraction-

the image. Now we approach the problem of image analysis from 

limited lenses, that cutoff would have depended only on diffrac-

a different, though related, perspective. Consider the object to be 

tion and, hence, on the size of the aperture. In any event, sup-

the source of an input lightwave, which itself is made up of plane 

pose one of these is to be coupled to a detector whose cutoff 

waves. These travel off in specific directions corresponding, via 

frequency is indicated in the diagram. Despite the fact that 

Eqs. (11.64) and (11.65), to particular values of spatial frequency. 

lens-1 has a higher limit of resolution, lens-2 would certainly 

How does the system modify the amplitude and phase of each 

provide better performance when coupled to the particular 

plane wave as it transfers it from object to image?

detector.

A highly useful parameter in evaluating the performance of 

It should be pointed out that a square bar target provides 

a system is the contrast
  or modulation
 , defined by

an input signal that is a series of square pulses, and the con-


I
 max -  I
 min

trast in image is actually a superposition of contrast varia-





Modulation K

 (11.89)

tions due to the constituent Fourier components. Indeed, one 


I
 max +  I
 min

of the key points in what is to follow is that  optical elements 


As a simple example, suppose the input is a cosinusoidal irradi-

ance distribution arising from an incoherently illuminated trans-

parency (Fig. 11.60). Here the output is also a cosine, but one 

that’s somewhat altered. The modulation, which corresponds to 

1.0

the amount the function varies about its mean value divided by 

2

that mean value, is a measure of how readily the fluctuations 

1

will be discernible against the  DC
  background. For the input the 

MTF

modulation is a maximum of 1.0, but the output modulation is 

0.5

only 0.17. This is only the response of our hypothetical system 

to essentially one spatial frequency input—it would be nice to 

know what it does at all such frequencies. Moreover, here the 

input modulation was 1.0, and the comparison with the output 

Detector cutoff

was easy. In general it will not be 1.0, and so we define  the ratio 


Spatial frequency (line pairs per mm)


of the image modulation to the object modulation at all spatial 



frequencies
  as the modulation transfer function
 , or MTF.


Figure 11.61
     Modulation versus spatial frequency for two lenses.
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functioning as linear operators transform a sinusoidal input 



into an undistorted sinusoidal output
 . Despite this, the input 


I
 0 (z)


and output irradiance distributions as a rule will not be identical. 

For example, the system’s magnification affects the spatial 

frequency of the output (henceforth, the magnification will be 

taken as 1). Diffraction and aberrations reduce the sinusoid’s 

amplitude (contrast). Finally, asymmetrical aberrations (e.g., 

Irradiance

coma) and poor centering of elements produce a shift in the 

position of the output sinusoid corresponding to the introduc-

tion of a phase shift. This latter point, which was considered 

in Fig. 11.13, can be appreciated using a diagram like that of 


z


Fig. 11.62.

If the spread function is symmetrical, the image irradiance 

will be an unshifted sinusoid, whereas an asymmetrical 

spread function will apparently push the output over a bit, as 


(Z)


Object and idealized image

(unit magnification)

Spread

function


Ii(Z)



I
 max

Irradiance


DC
  level


I


Irradiance

min

Shift


Z, z



Z



Figure 11.63  
   Harmonic input and output with an asymmetric spread 

Diffraction limited image

function.

in Fig. 11.63. In either case,  regardless of the form of the 


Irradiance


spread function, the image is harmonic if the object is har-



monic
 . Consequently, if we envision an object as being com-

posed of Fourier components, the manner in which these in-

dividual harmonic components are transformed by the optical 


Z


system into the corresponding harmonic constituents of the 

image is the quintessential feature of the process. The function 

that performs this service is known as the optical transfer 



function
 , or OTF. It is a spatial frequency-dependent com-

plex quantity whose modulus is the  modulation transfer func-


Asymmetrically aberrated image


tion
  (MTF) and whose phase, naturally enough, is the phase 



transfer function
  (PTF). The former is a measure of the re-

duction in contrast from object to image over the spectrum. 

Irradiance

The latter represents the commensurate relative phase shift. 

Phase shifts in centered optical systems occur only off-axis, 

and often the PTF is of less interest than the MTF. Even so, 

each application of the transfer function must be studied care-

fully; there are situations wherein the PTF plays a crucial 


Z


role. In point of fact, the MTF has become a widely used 


Figure 11.62
     Harmonic input and resulting output.

means of specifying the performance of all sorts of elements 
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and systems, from lenses, magnetic tape, and films to tele-

where use was made of the convolution theorem [Eq. (11.53)]. 

scopes, the atmosphere, and the eye, to mention but a few. 

This says that  the frequency spectrum of the image irradiance 


Moreover, it has the advantage that if the MTFs for the indi-


distribution equals the product of the frequency spectrum of the 


vidual independent components in a system are known, the 


object irradiance distribution and the transform of the spread 


total MTF is often simply their product. This is inapplicable 


function
  (Fig. 11.64). Thus, it is multiplication by ℱ{  (y, z)
 } that 

to the cascading of lenses, since the aberrations in one lens 

produces the alteration in the frequency spectrum of the object, 

can compensate for those of another lens in tandem with it, 

converting it into that of the image spectrum. In other words, it is 

and they are therefore not independent. Thus if we photograph 

ℱ{  (y, z)
 } that, in effect, transfers the object spectrum into the 

an object having a modulation of 0.3 at 30 cycles per mm, 

image spectrum. This is just the service performed by the OTF, 

using a camera whose lens at the appropriate setting has an 

and indeed we shall define the unnormalized OTF
  as

MTF of 0.5 at 30 cycles>mm and a film* such as Tri-X with 





𝒯 (
 k Y, 
 k Z) 
 K ℱ{  (y, z)
 } (11.92)

an MTF of 0.4 at 30 cycles>mm, the image modulation will 

be 0.3 * 0.5 * 0.4 = 0.06.

The modulus of 𝒯 (
 k Y, 
 k Z) 
 will effect a change in the amplitudes 

of the various frequency components of the object spectrum, 

while its phase will, of course, appropriately alter the phase of 


A More Formal Discussion


these components to yield ℱ{ Ii(Y, Z)
 }. Bear in mind that in the 

right-hand side of Eq. (11.90) the only quantity dependent on 

We saw in Eq. (11.51) that the image (under the conditions of 

the actual optical system is   (y, z)
 , so it’s not surprising that the 

space invariance and incoherence) could be expressed as the 

spread function is the spatial counterpart of the OTF.

convolution of the object irradiance and the point-spread func-

Let’s now verify the statement made earlier that a harmonic 

tion, in other words,

input transforms into a somewhat altered harmonic output. To 






Ii(Y, Z) 
 =  I
 0 (y, z)
 à  (y, z)
  (11.90)

that end, suppose

The corresponding statement in the spatial frequency domain is 






I
 0 (z) 
 = 1 +  a
  cos (k Zz 
 + P) (11.93)

obtained by a Fourier transform, namely,

where for simplicity’s sake, we’ll again use a one-dimensional 





ℱ{ Ii(Y, Z)
 } = ℱ{ I
 0 (y, z)
 } · 
 ℱ{  (y, z)
 } (11.91)

distribution. The 1 is a  DC
  bias, which makes sure the irradi-


I
 0 (y, z)



(y, z)


=  Ii(Y, Z)


=


y



Y


{ I
 0}

×

{ }

=

{ Ii
 }


Figure 11.64
   The relation-

ships between the object and 

image spectra by way of the 

×

=

OTF, and the object and image 

irradiances by way of the 

point-spread function—all in 

Frequency spectrum of object

Transfer function

Frequency spectrum of image

incoherent illumination.

*Incidentally, the whole idea of treating film as a noise-free linear system is  

somewhat suspect. For further reading see J. B. De Velis and G. B. Parrent,  

Jr., “Transfer function for cascaded optical systems,”  J. Opt. Soc. Am
 . 57
 , 1486 

(1967).
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ance doesn’t take on any unphysical negative values. Insofar as 

Notice that this is a function of the same form as the input 

ƒ

signal [Eq. (11.93)],  I
 0 (z)
 , which is just what we set out to 

à h 
 =  h
 àƒ, it will be more convenient here to use

determine. If the line-spread function is symmetrical (i.e., 


Ii
   (Z) 
 =  (Z)
 à I
 0 (z)


even), ℱ s
 {  (z)
 } = 0, ℳ (
 k Z) 
 = ℱ c
 {  (z)
 }, and Φ (
 k Z) 
 = 0; there is no phase shift, as was pointed out in the previous section. 

and so

For an asymmetric (odd) spread function, ℱ s
 {  (z)
 } is nonze-

+ ∞

ro, as is the PTF.


Ii
   (Z) 
 = 3  51 +  a
  cos [k Z
  ( Z 
 -  z
 ) + P]6  (z)
   dz
 It has now become customary practice to define a set of  nor-


- ∞


malized transfer functions
  by dividing 𝒯 (
 k Z)
  by its zero spatial 

Expanding out the cosine, we obtain

frequency value, that is, 𝒯 (0) 
 = +∞

1


(z)
   dz
 . The normalized 

-∞

spread function becomes

+ ∞

+ ∞

   (z)



Ii
   (Z) 
 = 3


(z)
   dz 
 +  a
  cos (k ZZ 
 + P)3  cos k Zz  (z)
   dz







n(z) 
 =

+ ∞





(11.100)

- ∞

- ∞

3    (z)
   dz


+ ∞

- ∞

+  a
  sin (k ZZ 
 + P)3  sin k Zz  (z)
   dz


- ∞

while the normalized OTF
  is

Referring back to Eq. (7.57), we recognize the second and third 

integrals as the Fourier cosine and sine transforms of   (z)
 , re-

ℱ5   (z)
 6






T(
 k Z) 
 K

spectively, that is to say, ℱ

+ ∞

= ℱ5   n(z)
 6 

(11.101)


c 
 5  (z) 
 6  and ℱ s 
 5  (z) 
 6 . Hence

3    (z)
   dz


- ∞

+ ∞


Ii
   (Z) 
 = 3


(z)
   dz 
 + ℱ c
 5  (z)
 6 a
  cos (k ZZ 
 + P)

or in two dimensions

- ∞






T(
 k Y
 , k Z) 
 =  M(
 k Y, 
 k Z)ei
 Φ (
 k Y, 
 k Z)
  (11.102)





+ ℱ s
 5  (z)
 6 a
  sin (k ZZ 
 + P) (11.94)

where   M(
 k Y, 
 k Z) 
 K ℳ (
 k Y, 
 k Z)
 >𝒯 (0, 0)
 . Therefore  I
 i (Z)
  in Eq. 

Recall that the complex transform we’ve become so used to 

(11.99) would then be proportional to

working with was defined such that

1 +  aM(
 k Z) 
 cos [k ZZ 
 + P - Φ (
 k Z)
 ]





ℱ5ƒ (z)
 6 = ℱ c
 5ƒ (z) 
 +  i
 ℱ s
 5ƒ (z)
 6 (11.95)

The image modulation [Eq. (11.89)] becomes  aM(
 kZ )
 , the ob-

or 


F(
 k Z) 
 =  A(
 k Z) 
 +  iB(
 k Z)
  [11.7]

ject modulation [Eq. (11.93)] is  a
 , and the ratio is, as expected, 

the normalized MTF =  M(
 kZ )
 .

In addition,

This discussion is only an introductory one designed more 

as a strong foundation than a complete structure. There are 

ℱ5 ƒ(z)
 6 = 0  F(
 k Z) 
 0 ei
 w(k Z
 ) = 0  F(
 k Z) 
 0[cos w +  i
  sin w]

many other insights to be explored, such as the relationship 

between the autocorrelation of the pupil function and the OTF, 

where 

0  F(
 k Z) 
 0 = [ A
 2 (
 k Z) 
 +  B
 2 (
 k Z)
 ]1>2 (11.96) and from there, the means of computing and measuring transfer functions (Fig. 11.65)—but for this the reader is directed to 


B(
 k Z)


the literature.*

and 

w(k) = tan-1 

 (11.97)


A(
 k Z)


In precisely the same way, we apply this to the OTF, writing it as





ℱ5  (z)
 6 K 𝒯 (
 k Z) 
 = ℳ(k Z
 ) ei
 Φ (
 k Z)
  (11.98)

where  ℳ (
 k

*See the series of articles “The evolution of the transfer function,” by  


Z)
  and Φ (
 k Z)
  are the unnormalized MTF and the 

F. Abbott, beginning in March 1970 in  Optical Spectra
 ; the articles “Physical 

PTF, respectively. It is left as a problem to show that Eq. (11.94) 

optics notebook,” by G. B. Parrent, Jr., and B. J. Thompson, beginning in 

can be recast as

December 1964, in the  S.P.I.E. Journal
 , Vol. 3; or “Image structure and trans-

fer,” by K. Sayanagi, 1967, available from the Institute of Optics, University of 

+ ∞

Rochester. A number of books are worth consulting for practical emphasis, e.g., 


Ii(Z) 
 = 3


(z)
   dz 
 +  a
 ℳ (
 k Z) 
 cos [k ZZ 
 + P - Φ (
 k Z)
 ]

Modern Optics, by E. Brown;  Modern Optical Engineering
 , by W. Smith; and 

- ∞


Applied Optics
 , by L. Levi. In all of these, be careful of the sign convention in the 

(11.99)

transforms.
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Problems  575


(a)

(b)

(c)

(d)


Figure 11.65
   An example 

of the kind of lens design 

information available via com-

puter techniques. (Optical 

Research Associates.)


PROBLEMS




Complete solutions to all problems—except those with an  




11.6*
   Consider the function



asterisk—can be found in the back of the book.




E(t) 
 =  E
 0 e
 - i
 v0 te
 - t
 2>2t2


11.1
   Determine the Fourier transform of the function

and first check that the exponents are unitless. Then show that the Fou-

rier transform of  E(t)
  is


E



E(x) 
 = e 0 sin k p
   x 
 0  x 
 0 6  L


0

0  x 
 0 7  L



E(
 v ) 
 = 22p E
 0t e
 -t2(v-v0)2>2

Make a sketch of ℱ5 E(x)
 6. Discuss its relationship to Fig. 11.11.

You might want to use the integral identity


11.2*
   Determine the Fourier transform of

+ ∞

1>2

sin2 k p
   x


0  x 
 0 6  L


3  e
 - ax
 2+ bx
 + c
   dx 
 = apb  e
  1( b
 2

4

> a
 ) +  c







ƒ(x) 
 = e

- ∞


a


0

0  x 
 0 7  L



11.7*
   With the previous problem in mind show that the inverse trans-

Make a sketch of it.

form of


11.3
   Determine the Fourier transform of


E(
 v ) 
 = 22p E
 0t  e
 -t2(v-v0)2>2

cos2 v  t


0  t 
 0 6  T



ƒ(t) 
 = e


p
  

brings you back to  E(t)
 .

0

0  t 
 0 7  T



11.8*
   Show that if  ƒ(x)
  is real and even, its transform is real and even. 

Make a sketch of  F(
 v )
 , then sketch its limiting form as  T 
 S ± ∞.

[ Hint:
  Start with Eq. (11.5), use the Euler formula from Section 2.5, 


11.4*
   Show that ℱ516 = 2pd (
 k )
 .

and assume that  ƒ(x)
  has both a real and an imaginary part.]


11.5*
  Determine the Fourier transform of the function ƒ (x) 
 =  


11.9
   Given that ℱ{ ƒ(x)
 } =  F(
 k )
  and ℱ{ h(x)
 } =  H(
 k )
 , if  a
  and  b
  are A
  cos k0  x
 .

constants, determine ℱ{ aƒ(x) 
 +  bh(x)
 }.
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11.10*
   Figure P.11.10 shows two periodic functions,  ƒ(x)
  and  h(x)
 , 


Figure P.11.14



x
 − x


rect

0

which are to be added to produce  g(x)
 . Sketch  g(x)
 ; then draw diagrams 

(      )


a


of the real and imaginary frequency spectra, as well as the amplitude 

1

spectra for each of the three functions.


x


0


x



Figure P.11.10


0


f(x)



a



11.15*
   With the last two problems in mind, show that ℱ5(1>2p) *

sinc (1


x


2  x
 ) 6 = rect(k), starting with the knowledge that ℱ 5 rect( x
 ) 6 =

sinc (12 k), in other words, Eq. (7.58) with  L 
 =  a
 , where  a 
 = 1.


11.16*
   Utilizing Eq. (11.38), show that ℱ -15ℱ5ƒ (x)
 66 = ƒ (x)
 .


h(x)



11.17*
  Given ℱ5ƒ (x)
 6, show that ℱ5ƒ (x 
 -  x0)
 6 differs from it 

only by a linear phase factor.


11.18
   Prove that ƒ


x


à h 
 =  h
 àƒ  
 directly. Now do it using the convolu-

tion theorem.


11.19*
   Prove that the area under the convolution of the functions  ƒ(x)
  

and  h(x)
  equals the product of the areas under each of those functions.


11.11
   Compute the Fourier transform of the triangular pulse shown 

in Fig. P.11.11. Make a sketch of your answer, labeling all the pertinent 


11.20*
   Examine the three graphs in Fig. P. 11.20 and explain what’s 

values on the curve.

being illustrated. Discuss how the shape of  g(X)
  arises. Why is  g(X)
  

symmetrical about  X 
 = 0? What’s the significance of the width of  g(x)
 ? 


Figure P.11.11



f (x)


Compute the peak value of  g(x)
 .

1


Figure P.11.20


(a)

1.0


f (x)



x



x


−1.5 −1.0 −0.5

0.5

1.0

1.5

− L


0

+ L


0

(b)


11.12*
   Given that ℱ5ƒ (x)
 6 =  F(
 k )
 , introduce a constant scaling fac-

1.0

tor 1> a
  and determine the Fourier transform of  ƒ(x
 > a)
 . Show that the 


h(x)


transform of  ƒ(
 - x)
  is  F(
 -k )
 .


11.13*
   Show that the Fourier transform of the transform, ℱ5ƒ (x)
 6, 


x


−1.5 −1.0 −0.5

0

0.5

1.0

1.5

equals 2pƒ (
 - x)
 , and that this is not the inverse transform of the trans-

form, which equals  ƒ(x)
 . This problem was suggested by Mr. D. Chapman 

(c)

while a student at the University of Ottawa.

1.0


g(X) 
 =  f(x)
  *  h(x)



11.14*
   The rectangular function is often defined as

0.5


X


−1.5 −1.0 −0.5

0.5

1.0

1.5

0, 0 ( x


0


x 
 -  x


-  x
 0)> a 
 0 7 12

rect `

0 ` = c 1   0 ( x 
 -  x



a


2,

0)> a 
 0 = 12


11.21*
  Suppose we have two functions,  ƒ(x, y)
  and  h(x, y)
 , where 

1, 0 ( x 
 -  x
 0)> a 
 0 6 12

both have a value of 1 over a square region in the  xy
 -plane and are zero 

where it is set equal to 1

everywhere else (Fig. P.11.21). If  g(X, Y)
  is their convolution, make a 

2 at the discontinuities (Fig. P.11.14). Determine 

the Fourier transform of

plot of  g(X, 0)
 .


x 
 -  x
 0


11.22
   Referring to the previous problem, justify the fact that the con-

ƒ (x) 
 = rect `  a 
 `

volution is zero for 0  X 
 0 Ú  d 
 + / when  h
  is viewed as a spread function.

Notice that this is just a rectangular pulse, like that in Fig. 11.1 b
 , shifted 


11.23*
   Use the method illustrated in Fig. 11.30 to convolve the two 

a distance  x


functions depicted in Fig. P.11.23.

0 from the origin.
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Figure P.11.21



y



11.28
   Prove that d (x 
 -  x0)
 à ƒ(x) 
 = ƒ (X 
 -  x0)
  and discuss the meaning of this result. Make a sketch of two appropriate functions and con-

volve them. Be sure to use an asymmetrical  ƒ(x)
 .


h(x, y)



f (x, y)



11.29*
   Show that ℱ{ ƒ(x)
  cos k0  x
 } = [ F(
 k - k 0) 
 +  F
 (k + k0)]>2 and that ℱ{ ƒ(x)
  sin k0  x
 } = [ F(
 k - k 0) 
 -  F(
 k + k 0)
 ]>2 i
 .


x



11.30*
   Figure P.11.30 shows two functions. Convolve them graphi-

cally and draw a plot of the result.

2


Figure P.11.30


2 d



f(x)



h(x)



Figure P.11.23


3

2


d



d


2

1


11.24
   Given that  ƒ(x)
 à h(x) 
 =  g(X)
 , show that after shifting one of 

0

1

2

3

4


x


0

1 2 3


x


the functions an amount  x
 0, we get ƒ (x 
 -  x0)
 à h(x) 
 =  g(X 
 -  x0)
 .


11.25*
   Figure P.11.25 depicts a single “saw tooth” function and its 


11.31*
   Graphically convolve, at least approximately, the two func-

convolution. Note that the convolution is asymmetrical—explain why 

tions shown in Fig. P.11.31. Does that solution remind you of any-

that’s reasonable. Why does the convolution begin at 0? How wide is 

thing? Why is the convolution symmetrical? When does its peak value 

the convolution and how does that relate to  ƒ(x)
 ?

occur in relation to  ƒ(x)
  and  h(x)
 ? How wide is the convolution? Why?


Figure P.11.25



Figure P.11.31


(a)

1.0

1.0


f(x)



f(x)


0.5


x



x


−1.5 −1.0 −0.5

0.5

1.0

1.5

−1.0 −0.5

0

0

0.5

1.0

1.5

2.0

(b)

1.0

0.4


g(X) 
 =  f(x)
  *  f(x)



h(x)


0.2


x



X


−1.5 −1.0 −0.5

0.5

1.0

1.5

−1.0 −0.5

0

0

0.5

1.0

1.5

2.0


11.32
   Given the function


11.26*
   Graphically convolve the two functions  ƒ(x)
  and  h(x)
  shown 


x 
 -  a



x 
 +  a


in Fig. P.11.26.

ƒ (x) 
 = rect `  a 
 ` + rect `  a 
 `


Figure P.11.26


determine its Fourier transform. (See Problem 11.14.)


f(x)



h(x)



11.33
  Given the function  ƒ(x) 
 = d (x 
 +  3) 
 + d (x 
 -  2) 
 + d (x 
 -  5)
 , 1

1

convolve it with the arbitrary function  h(x)
 .


11.34*
   Make a sketch of the function arising from the convolution of 


x



x


−1

1

−2 −1

0

0

+1 +2

the two functions depicted in Fig. P.11.34.


Figure P.11.34


How wide will the convolution be? Will it be symmetrical? Where will 

it start?


11.27*
   Prove analytically that the convolution of any function  ƒ(x) 



d



d



d



d


with a delta function, d (x)
 , generates the original function  ƒ(X)
 .
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11.35*
   Figure P.11.35 depicts a  rect
  function (as defined above) and 


Figure P.11.41



f(x)



h(x)


a periodic  comb
  function. Convolve the two to get  g(x)
 . Now sketch the 

transform of each of these functions against spatial frequency 

1

1

k>2p = 1>l. Check your results with the convolution theorem. Label 


x



x


all the relevant points on the horizontal axes in terms of  d
 —like the 

0

1

−1

0

zeros of the transform of  ƒ(x)
 .

How wide will it be? At what value of  x
  will the correlation peak? 

What is the maximum value of  cƒh(x)
 ? Is it symmetrical? [ Hint:
  Slide 


Figure P.11.35


either one over the other.]


f(x)



h(x)



11.42*
   Consider the periodic function


ƒ(x) 
 = cos (k x 
 + P)

where the amplitude is 1.0, and 


…



…


P is an arbitrary phase term. Show that 

the autocorrelation function (before being normalized) is


d



d



cƒƒ
   (x) 
 = 12 cos k x


2

See Fig. 11.49.


11.36
  Figure P.11.36 shows, in one dimension, the electric field 


11.43*
   A rectangular pulse extends from - x
 0 to + x
 0 and has a height 

across an illuminated aperture consisting of several opaque bars form-

of 1.0. Sketch its autocorrelation,  cƒƒ
   (X)
 . How wide is  cƒƒ
   (X)
 ? Is it an ing a grating. Considering it to be created by taking the product of a 

even or odd function? Where does it start (become nonzero) and where 

periodic rectangular wave  h(x)
  and a unit rectangular function  ƒ(x)
 , 

does it end?

sketch the resulting electric field in the Fraunhofer region.


11.44*
   Figure P.11.44 depicts a single “saw tooth” function and its 

autocorrelation. Explain why  cƒƒ
   (X)
  is symmetrical about the origin. 


Figure P.11.36


Why does it extend from -1 to +1? Draw sketches where appropriate.


h(x)


×


f (x)


=


E(x)


1

1


Figure P.11.44


1.0


…



…



f(x)


0.5


x


0


x


−1.0 −0.5

0

0.5

1.0


11.37
   Show (for normally incident plane waves) that if an aperture 

0.4

has a center of symmetry (i.e., if the aperture function is even), then the 


c


diffracted field in the Fraunhofer case also possesses a center of sym-


f f (X) 
 =  f(x) 
 ★  f (x)


0.2

metry.


X


−1.0 −0.5

0

0.5

1.0


11.38
   Suppose a given aperture produces a Fraunhofer field pattern 


E(Y, Z)
 . Show that if the aperture’s dimensions are altered such that the 


11.45*
  Show, from the integral definitions, that  ƒ(x)
 ★ g(x) 
 = 

aperture function goes from 𝒜 (y, z)
  to 𝒜 (
 a y, 
 b z)
 , the newly diffracted ƒ(x)
 à g(
 - x)
 , where the functions are real.

field will be given by


11.46*
   Figure P.11.46 depicts a function  ƒ(x)
 . Draw, to scale, its au-

tocorrelation function  c


1


Y Z



ƒƒ
   (X)
 . How wide is  cƒƒ
   (X)
 ? How wide is each 


E
 ′ (Y, Z) 
 =

  E
  a  ,
   b

individual peak composing  cƒƒ
   (X)
 ?

ab

a b


11.39
   Show that when ƒ (t) 
 =  A
  sin (v t 
 + e),  C
 ƒƒ  (
 t ) 
 = ( A
 2>2) cos v t
 , Figure P.11.46



f(x)


which confirms the loss of phase information in the autocorrelation.


11.40
   Suppose we have a single slit along the  y
 -direction of width  b
  

where the aperture function is constant across it at a value of 𝒜0. What 


x


is the diffracted field if we now apodize the slit with a cosine function 

0

amplitude mask? In other words, we cause the aperture function to go 

from 𝒜0 at the center to 0 at ± b
 >2 via a cosinusoidal dropoff.


11.47*
   Figure P.11.47 shows a function  ƒ(x)
  consisting of a periodic 


11.41*
   Graphically find the cross-correlation  cƒh(x)
  of the two func-

array of equally spaced delta functions. Construct its autocorrelation 

tions shown here:

and discuss whether or not it is periodic.
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Figure P.11.47



f(x)



11.49*
  Figure P.11.49 shows a transparent ring on an otherwise 

opaque mask. Make a rough sketch of its autocorrelation function, tak-

ing  l
  to be the center-to-center separation against which you plot that 


…



…


function.


x



11.48*



Figure P.11.49


  Imagine two uniformly illuminated small circular holes in an 

opaque screen, as shown in Fig. P.11.48. Construct its autocorrelation. 

Discuss the irradiance distribution for each resulting individual patch 

of light in the autocorrelation. Indicate the relative irradiances of the 

several patches of light in the autocorrelation. Discuss the overall size 

of the autocorrelation compared to the original function.


Figure P.11.48



11.50*
   Consider the function in Fig. 11.49 as a cosine carrier multi-

plied by an exponential envelope. Use the frequency convolution theo-

rem to evaluate its Fourier transform.
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12Basics of Coherence 



Theory


Thus far in our discussion of phenomena involving the superpo-

It is often convenient, even if artificial, to divide coherence 

sition of waves, we’ve restricted the treatment to that of either 

effects into two classifications, temporal
  and spatial
  (p. 395) . 


completely coherent or completely incoherent disturbances. 


The former relates directly to the finite bandwidth of the source, 


This was done primarily as a mathematical convenience, since, 


the latter to its finite extent in space
 .

as is quite often the case, the extremes in a physical situation are 

To be sure, if the light were monochromatic, ∆n would be 

the easiest to deal with analytically. In fact, both of these limit-

zero, and ∆ tc
  infinite, but this is, of course, unattainable. How-

ing conditions are more conceptual idealizations than actual 

ever, over an interval much shorter than ∆ tc
  an actual wave be-

physical realities. A middle ground exists between these anti-

haves essentially as if it were monochromatic. In effect, the 

thetic poles, which is of considerable contemporary concern—

coherence time is  the temporal interval over which we can rea-


the domain of  
partial coherence

 . Even so, the need for extending 


sonably predict the phase of the lightwave at a given point in 


the theoretical structure is not new; it dates back at least to the 


space
 . This then is what is meant by temporal coherence
 ; 

mid-1860s, when Emile Verdet demonstrated that a primary source 

namely, if ∆ tc
  is large, the wave has a high degree of temporal 

commonly considered to be incoherent, such as the Sun, could 

coherence and vice versa.

produce observable fringes when it illuminated the closely spaced 

The same characteristic can be viewed somewhat differently. 

pinholes  ( f 0.05 mm) of Young’s Experiment (Section 9.3). 

To that end, imagine that we have two separate points- P
 ′1  
 and - P
 ′2 

Theoretical interest in the study of partial coherence lay dor-

lying on the same radius drawn from a quasimonochromatic 

mant until it was revived in the 1930s by P. H. van Cittert and 

point source (see Fig. 9.6). If the coherence length,  c
 ∆ tc
 , is 

later by Fritz Zernike. And as the technology flourished, ad-

much larger than the distance ( r
 12) between  P
 ′1 and  P
 ′2, then a 

vancing from traditional light sources, which were essentially 

single wavetrain can easily extend over the whole separation. 

optical frequency noise generators, to the laser, a new practical 

The disturbance at  P
 ′1 would then be highly correlated with the 

impetus was given the subject. Moreover, the recent advent of 

disturbance occurring at  P
 ′2. On the other hand, if this longitu-

individual-photon detectors has made it possible to examine re-

dinal separation were much greater than the coherence length, 

lated processes associated with the corpuscular aspects of the 

many wavetrains, each with an unrelated phase, would span the 

optical field.

gap  r
 12. In that case, the disturbances at the two points in space 

Optical coherence theory is currently an area of active re-

would be independent at any given time. The degree to which a 

search. Thus, even though much of the excitement in the field is 

correlation exists is sometimes spoken of alternatively as the 

associated with material beyond the level of this book, we shall 

amount of  longitudinal coherence
 . Whether we think in terms 

nonetheless introduce some of the basic ideas.

of coherence time (∆ tc
 ) or coherence length ( c
 ∆ tc
 ), the effect 

still arises from the finite bandwidth of the source.

The idea of spatial coherence 
 is most often used to de scribe 

effects arising from the finite spatial extent of ordinary light 


12.1 Introduction


sources. Suppose then that we have a classical broad monochro-

matic source. Two point radiators on it, separated by a lateral 

Earlier (Section 7.10) we evolved the highly useful picture of 

distance that is large compared with l, will presumably behave 

quasimonochromatic light as resembling a series of randomly 

quite independently. That is to say, there will be a lack of cor-

phased finite wavetrains (Fig. 7.47). Such a disturbance is nearly 

relation existing between the phases of the two emitted distur-

sinusoidal, although the frequency does vary slowly (in com-

bances. Extended sources of this sort are generally referred to 

parison to the rate of oscillation, 1015 Hz) about some mean 

as incoherent, but this description is somewhat misleading, as 

value. Moreover, the amplitude fluctuates as well, but this too is 

we shall see in a moment. Usually one is interested not so much 

a comparatively slow variation. The average constituent wave-

in what is happening on the source itself but rather in what is 

train exists roughly for a time ∆ tc
 , which is the  coherence time 


occurring within some distant region of the radiation field. The 

given by the inverse of the frequency bandwidth ∆n.

question to be answered is really this: How do the nature of the 


580
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source and the geometrical configuration of the situation relate 


E
 1

to the resulting phase correlation between two laterally spaced 

points in the light field?


t


This brings to mind Young’s Experiment, in which a primary 

monochromatic source  S
  illuminates two pinholes in an opaque 

screen. These in turn serve as secondary sources,  S
 1 and  S
 2, to 


E
 2

generate a fringe pattern on a distant plane of observation,  g o
  

(Fig. 9.11). We already know that if  S
  is an idealized point 


t


source, the wavelets issuing from any set of apertures- S
 1 and - S
 2 

on g a
  will maintain a constant relative phase; they will be pre-

cisely correlated and therefore coherent. A well-defined array 

of stable fringes results, and the field is spatially coherent. At 

the other extreme, if the pinholes are illuminated by separate 


E
 1  E
 2

thermal sources (even with narrow bandwidths), no correlation 

exists; no fringes will be observable with existing detectors, and 


t


the fields at  S
 1 and  S
 2 are said to be incoherent.  The generation 



of interference fringes provides a very convenient measure of 



coherence
 .

We can gain some important insights into the process by re-

turning to the general considerations of Section 9.1 and Eq. (9.7). 

Imagine two scalar waves  E
 1 (t) 
 and  E
 2 (t)
  traveling toward, and 


Figure 12.1  
   Two overlapping  E
 -fields and their product as functions of 

overlapping at, point- P
 , as in Fig. 9.2. If the light is monochro-

time. The more uncorrelated the fields, the more nearly the product will 

matic and both beams have the same frequency, the resulting in-

average to zero.

terference pattern will depend on their relative phase at  P
 . If the 

waves are in-phase,  E
 1 (t)E
 2 (t)
  will be positive for all  t
  as the 

fields rise and fall in together. Hence,  I
 12 = 28 E
 1 (t)E
 2 (t)
 9T will 

Young’s Experiment can also be used to demonstrate temporal 

be a nonzero positive number, and the net irradiance  I
  will exceed 

coherence effects with a finite bandwidth source. Figure 12.2 a
  


I
 1 +  I
 2. Similarly, if the lightwaves are completely out-of-phase, 

shows the fringe patterns obtained with two small circular aper-

one will be positive when the other is negative, with the result 

tures illuminated by a He–Ne laser. Before the photograph in 

that the product  E
 1 (t)E
 2 (t)
  will always be negative, yielding a 

Fig. 12.2 b
  was taken, an optically flat piece of glass, 0.5 mm 

negative interference term  I
 12, and the result that  I
  will be less 

thick, was positioned over one of the pinholes (say,  S
 1). No 

than  I
 1 +  I
 2. In both cases, the product of the two fields moment 

change in the form of the pattern (other than a shift in its loca-

by moment is oscillatory, but it is nonetheless either totally posi-

tion) is evident, because the coherence length of the laser light 

tive or negative and so averages in time to a nonzero value.

far exceeds the optical path length difference introduced by the 

Now consider the more realistic case in which the two light-

glass. On the other hand, when the same experiment is repeated 

waves are quasimonochromatic, resembling the disturbance in 

using the light from a collimated mercury arc [( c
 ) and ( d
 ) in 

Fig. 7.47, which has a finite coherence length. If we again form 

Fig. 12.2], the fringes disappear. Here the coherence length is 

the product  E
 1 (t)E
 2 (t)
 , we see in Fig. 12.1 that it varies in time, 

short enough and the additional optical path length difference of 

drifting from negative to positive values. Accordingly, the inter-

the glass is long enough for uncorrelated wavetrains from the 

ference term 8 E
 1 (t)E
 2 (t)
 9T, which is averaged over a relatively 

two apertures to arrive at the plane of observation. In other 

long interval compared with the periods of the waves, will be 

words, of any two coherent wavetrains that leave  S
 1 and  S
 2, the 

quite small, if not zero:  I 
 ≈  I
 1 +  I
 2. In other words, insofar as 

one from  S
 1 is now delayed so long in the glass that it falls com-

the two lightwaves are uncorrelated in their risings and fallings, 

pletely behind the other and arrives at g o
  to meet a totally dif-

they will not preserve a constant phase relationship, they will 

ferent wavetrain from  S
 2.

not be completely coherent, and they will not produce the ideal 

In both cases of temporal and spatial coherence we are re-

high-contrast interference pattern considered in Chapter 9. We 

ally concerned with one phenomenon, namely, the correlation 

should be reminded here of Eq. (11.87), which expresses the 

between optical disturbances. That is, we are generally inter-

cross-correlation of two functions—with t = 0. Indeed, if  P
  is 

ested in determining the effects arising from relative fluctua-

shifted in space (e.g., along the plane of observation in Young’s 

tions in the fields at two points in space–time. Admittedly, the 

Experiment), there by introducing a relative time delay of t be-

term  temporal coherence
  seems to imply an effect that is ex-

tween the two lightwaves, then the interference term becomes 

clusively temporal. However, it relates back to the finite extent 

8 E
 1 (t)E
 2 (t 
 + t )
 9T, which is the cross-correlation. Coherence is 

of the wavetrain in either space or time, and some people even 

correlation, a point that will be made formally in Section 12.4.

prefer to refer to it as  longitudinal spatial
  rather than temporal 
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(a)

(b)
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I


0

Source

Σ a


Σ s


(c)

(d)


l


Σ o



Figure 12.3
     A filtered thermal source illuminating a pair of apertures. 

The resulting irradiance fringes are formed by partially coherent  

quasimonochromatic light.

filter. Radiation from a thermal source is analogous to noise; it 

comprises a wide frequency spectrum with a random, rapidly 


Figure 12.2
     Double-beam interference from a pair of circular aper-

tures. ( a
 ) He–Ne laser light illuminating the holes. ( b
 ) Laser light once 

fluctuating phase. We filter the light to reduce its bandwidth, 

again but now a glass plate, 0.5 mm thick, is covering one of the holes. 

to make it easier to analyze, and end up with the equivalent of 

( c
 ) Fringes with collimated mercury-arc illumination but no glass plate.  

narrow-band noise. 

( d
 ) This time the fringes disappear when the plate is inserted using mer-

The analysis can get a little confusing here because there’s a 

cury light. (B.J. Thompson,  J. Soc. Photo. Inst. Engr
 . 4
 , 7 [1965])

lot going on all at once. There will be interfering electromag-

netic (EM) wavelets, the irradiance fringes that arise from those 

wavelets (call them constituent fringes), and the actual observed 

coherence. Even so, it does depend intrinsically on the stability 

pattern of light and dark bands (the final fringes) that arises 

of phase in time, and accordingly we will continue to use the 

from the overlaying (sans any interaction) of the constituent 

term  temporal coherence
 . Spatial coherence, or if you will,  lat-


fringes. 


eral spatial coherence
 , is perhaps easier to appreciate because 

The source, the aperture screen, and the plane of observation 

it’s so closely related to the concept of the wavefront. Thus if 

are all separated by large horizontal distances. Consequently, 

two laterally displaced points reside on the same wavefront at 

Young’s cosine-squared pattern is modulated by Fraunhofer dif-

a given time, the fields at those points are spatially coherent 

fraction due to the finite size of the individual apertures, just as 

(see Section 12.4.1).

we’ve seen before. What’s different here (Fig. 12.3) is that the 

graphical irradiance fringes seem to “float” above the  I 
 = 0  


line. They don’t originate at zero (blackness) as they did in the 

idealized situations we studied earlier (e.g., Fig. 9.17), where 


12.2 Fringes and Coherence


the illumination was supposed to be perfectly coherent. Each 

graphical irradiance peak now lies beneath the diffraction enve-

Interference fringes are an easily observable manifestation of 

lope as before, but each is shorter than before; the fringes ap-

coherence. If a setup produces fringes, the extant optical field 

pear less distinct than before (the black bands are gone). Since 

must be coherent, at least to some degree. This section explores 

coherence theory is all about fringes, we say that the optical 

how we can begin to quantify that phenomenon.

field is only partially coherent
 .

In addition to the concepts of coherence length and coherence 

The optical field at a distant aperture plane (shown schemat-

time, there’s another idea, coherence area
 , which is conceptu-

ically in Fig. 12.4) can be considered a flood of independent 

ally useful. To appreciate it, consider the classic double-aperture 

EM plane waves, each originating at a point on the source. Such 

setup depicted schematically in Fig. 12.3. These two apertures 

a wavelet emitted from the center of the source, traveling down 

could be pinholes or very narrow slits. The extended quasimono-

the central axis, would arrive perpendicular to the apertures, 

chromatic source, assumed to have a uniform irradiance, and a 

and ultimately result in a familiar (Fig. 9.14) Young’s fringe 

mean wavelength of l0, sends out light from countless indepen-

system, albeit a rather faint one. But now there are many uncor-

dent atomic emitters. Think of it as some thermal source, like an 

related waves coming in on the aperture screen in lots of direc-

incandescent bulb, a discharge lamp, or the Sun, followed by a 

tions, and each creates a cosine-squared fringe pattern. Every 
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Take  S
 ′ and  S
  to be very close initially. Ignoring diffraction 

in Fig. 12.5 a
 , the two constituent fringe systems almost overlap, 

peak-on-peak, yielding a bright, well-defined pattern, which 


P


nonetheless “floats” slightly above the zero- I
  axis. Moving  S



S


′ 

laterally away from  S
  will move  P
 ′ away from  P
 , and the two 


S
 2

idealized cosine-squared irradiance systems further shift with 

u

u

respect to each other. The final fringes that we actually see, the 


d



S



s


u


a



s



P


result of this superposition, become less distinct, until (Fig. 12.5 c
 ) 


a
  sin 

the irradiance peaks produced by  S
 ′ precisely overlay troughs 

u


S
 1

produced by  S
 . The two contributing sets of fringes then essen-

Extended thermal source  S



P


tially blend, vanishing into a uniform blotch of light (see Prob-

lem 12.2). Where that extreme condition sets in can be used to 

Σ s


Σ a


define the coherence of the light, and that’s in part where this 

Σ o


analysis is going.

The two wavelets, one from  S
  to  S
 2 to  P
 , and the other from 


Figure 12.4
     Irradiance fringes produced by point sources  S
 ,  S
 ,′ and  S
 ″ 


S
  to  S
 1 to  P
  arrive in-phase and produce a traditional cosine-

via Young’s double-aperture setup.

squared irradiance pattern with a maximum at  P
 . Now suppose 


S
 ′ happens to be located such that  P
 ′ lies at a minimum in this 

( S
 ’s) irradiance pattern. The maximum generated by  S
 ′ at  P
 ′

one of these is shifted laterally a bit, depending on the angle u, 

would then precisely overlap the minimum created there by  S
 . 

and they all overlap on the plane of observation g o
 . We want to 

In fact, all of  S
 ’s minima will then overlap all of  S
 ′’s maxima, 

be able to understand what the irradiance distribution due to this 

washing out the final fringe system entirely (Fig. 12.5 c
 ). For 

tumult of EM wavelets looks like, and how it depends on the 

this to happen, we need there to be a relative phase difference 

size, shape, and location of the thermal source. 

between the two sets of light-field (EM) wavelets equal to an 

To simplify matters at first, suppose only two source points 

odd multiple of p radians. That is, the two wavelets from  S
  to 

exist:   S
 ′ at the periphery of the extended source and  S
  at its 


S
 2 to  P
 , and from  S
  to  S
 1 to  P
 ,  
 arrive in-phase, just as the two center. Source point- S
  generates a cosine-squared interference 

wavelets from  S
 ′ to  S
 2 to  P
 ′, and from  S
 ′ to  S
 1 to  P
 ′,  
 arrive pattern centered with its zeroth-order maximum at  P
 . Whereas 

in-phase. But whatever phase the two EM wavelets have at  P
 , 

the irradiance pattern produced by  S
 ′ is centered on the line 

the wavelets at  P
 ′ must have a phase that’s half a wavelength 

from  S
 ′ to  P
 ′ (where  m 
 = 0), its bright bands appear at angular 

different. That will produce a half-wave relative shift in the con-

distances from it equal to u m 
 =  m
 l0> a
 . The location of  P
 ′ is 

stituent irradiance patterns, and put every one of  S
 ′’s maxima  


determined by the location of  S
 ′. These two source points are 

on top of  S
 ’s minima, and vice versa.

independent of each other; the rapidly changing EM waves 

To accomplish this, reexamine Fig. 12.4 and notice that a 

coming from them cannot interfere in any sustained way. Their 

plane wave traveling along the central  SP
 -axis at g a
  makes an 

separate sets of constituent irradiance fringes simply overlap on 

angle  u with a plane wave traveling along the  S
 ′ P
 ′-axis. The 

g o
  (Fig. 12.5). 


OPL
  from  S
 ′ to  P
 ′ is longer than the  OPL
  from  S
  to  P 
 by an amount equal to  a
  sin u. As u  
 gets smaller,  S
 ′ approaches  S
 , and 


a
  sin u approaches zero. To cause the EM wavelets at  P
  and  P
 ′ 

to be out-of-phase by p with respect to each other,  a
  sin u must 

equal  l0>2 (or an odd multiple thereof). For small angles, 

(a)

sin u ≈ u and the fringes will vanish when

u ≈ l0>2 a


or more generally, ideally, when u ≈ ( m 
 + 12)l0> a 
 where  m 
 = 0 , 


1, 3, . . . . Once the final fringes vanish, if  S
 ′ is moved still far-

(b)

ther from  S
 ,  
 maxima in the two constituent irradiance distribu-

tions will again approach one another, and fringes will ideally 

reappear, if only faintly.

Let’s apply the above results to a line source of linear dimen-

sion   ds
 , like the one in Fig. 10.4, except that the constituent 

(c)

point sources are now not coherent. Take it to extend from  S
 ′ to 


S
 ″ in Fig. 12.4. Alternatively, we might consider a slit source in 


Figure 12.5
     The overlapping of two sets of idealized irradiance fringes 

the plane of g s
  (perpendicular to the page), of width  S
 ′ S
 ″. Just 

showing how they become less distinct as they go increasingly out-of-phase.

as  S
 ′ and  S
 , when properly located, act together as a coordinated 
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source pair to blur out the two constituent fringe systems they 

words, the rays from a star impinge on the apparatus at very nar-

individually produced, the same process can be envisioned to 

row angles and all their cosine-squared patterns nearly overlap 

occur point-by-point along the line source. Thus imagine  S
 ′ and 

peak-on-peak.  Coherence increases as the light propagates far-



S 
 positioned such that the fringe systems they individually gen-


ther and farther from its source, that is, as the light approaches 


erate overlap and vanish.  
 Locate a point source on the line just 


being collimated.
  That is why Young’s fringes can be seen by 

below  S
 ′ and another one just below  S
 . These form a coordi-

looking through two closely spaced pinholes at a distant street 

nated pair whose individual fringes on g o
  will also be washed 

lamp—try it. And that is also why it’s generally not so good to 

out. And the same is true for coordinated pairs of points all the 

talk about the source being coherent or partially so; it’s the light 

way down to one source point just above  S
  and one just above 

that’s coherent or not.


S
 ″. Arranging for  S
 ′ and  S
  to have their cosine-squared irradi-

At this point a cautionary note concerning lateral coherence 

ance fringes blur out is enough to have the constituent fringes 

length is appropriate, since it’s basically a contrived idea. The 

from every minute point source (except one) on the entire line 

concept, however useful, should be applied with caution. Be-

source blur out. Clearly, if the line source is displaced perpen-

yond the fact that it’s only an order-of-magnitude quantity in 

dicular to the plane of the diagram (parallel to the rectangular 

the first place, there are different ways to approach it, and 

apertures) it becomes a slit source of finite width  S
 ′ S
 ″ and the 

whether or not one of the apertures lies on the central axis, or 

argument still holds; the fringes still vanish. The source slit sub-

whether that axis is midway between apertures, can lead to al-

tends an angle u s 
 = 2u  
 when the fringes vanish into a more-or-

ternative formulations and even a difference of a factor of 2. 

less uniform blotch of light,  
 and so 

Given variations that arise for differently shaped apertures, 

some authors prefer to be more encompassing and take 


  


u s 
 ≈ l0> a 


(12.1)


dc 
 = 1.22 l0>u s
  to be the “radius” of the area of coherence rather 

than its diameter. 

For fringes to be clearly observable, it’s necessary that the 

source subtend an angle viewed from the aperture plane much 

less than u s
 .

EXAMPLE 12.1

A circular thermal source, assumed to have a uniform irradi-

ance (Fig. 12.4), again lights up two pinholes separated by a 

The angle subtended by the Sun at the surface of the Earth is 

distance  a
 . The source, which has a linear dimension  d


0.533°. Suppose we filter the sunlight, passing a quasimono-


s
 , is fil-

tered so it emits a mean vacuum wavelength of l

chromatic beam at 500 nm, and wish to observe Young’s double-

0. We imagine 

an illuminated circular region of diameter  d


pinhole fringes. How far apart, at the very most, could the tiny 


c 
 ≈  a
  projected onto 

g

apertures be?


a
 , just encompassing both holes, such that  dc 
 ≈ l0>u s
 . Aper-

ture separations less than  dc
  will produce increasingly more dis-

SOLUTION 

cernible fringes. Accordingly,  dc
  might be called the  
lateral co-



Using  d




herence distance

 , in spite of the fact that our analysis was rather 


c 
 ≈ l0>u s
 , where u s 
 = 0.533° = 9.30  * 10-3 rad,

crude. An improved treatment related to coherence theory, the 

500 * 10-9 m

van Cittert–Zernike theorem, and the Airy diffraction pattern, 


dc 
 ≈

≈ 5.4 * 10-5 m

9.30

will be discussed later. It confirms that fringes first vanish when 

* 10-3 rad


dc 
 = 1.22 l0>u s
 . The order-of-magnitude area of the illuminated 

The aperture separation should be less than roughly 54 mm.

circle on g a
 , having a diameter  dc
 ,


 



Ac 
 ≈ (l0>u s
 )2  


(12.2)

Figure 12.6 is something of a visual summary: The individual 

could be called the  
coherence area

  (although a slightly more 

fringe width depends inversely (Section 9.3.1) on the center-to-

practical definition will be considered presently). If the source-

center distance between apertures. The overall size of the final 

to-aperture distance is  l
 , and if we approximate the area of the 

striated disk of light depends inversely (Section 10.2.5) on the 

source  A


2

size of each aperture. We can see from Fig. 12.6 a
  how a small 


s
  simply as  ds 
 , it’s left as a problem to show that an al-

ternative statement of the area of coherence is

thermal source produces a distinct irradiance pattern—bright 

and dark bands. The shifted constituent fringes (two are shown 


l
 2 l 2

graphically) are modulated by the Fraunhofer diffraction enve-


 



A


0


c 
 ≈


 


(12.3)


A


lope of the individual apertures. The resulting graphical fringes 


s


“float,” but only slightly above the  I 
 = 0 axis. On the other 



The area of coherence gets larger as the distance from the 



hand, a large source (Fig. 12.6 b
 ) produces indistinct final fring-



source (l) gets larger. 

 This is essentially the case because the 

es, modulated by a lower envelope as the irradiance spreads out. 

farther  g s
  is from the aperture screen, the more narrowly each 

Both the bright and dark extremes blend into an almost unifor-

incoherent source point illuminates it—and the less separated 

mity. The faint remaining graphical fringes “float” well above 

will be their constituent fringe sets, one from the other. In other 

the  I 
 = 0 axis.
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(a)



Small star



S
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High-contrast



fringes



d


u


a
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(b)



Larger star



S
 1


l


Σ s


Σ a



Lower-contrast



fringes



Figure 12.7
     Diffraction from a thermal source. The diagram shows just 

two of the many constituent Fraunhofer diffraction patterns spread over 

the aperture screen.


Figure 12.6
   ( a
 ) High-contrast fringes resulting from a small uniform 

source. ( b
 ) Lower-contrast fringes resulting from a larger uniform source. 

(Peter Lawson/ Sky & Telescope Magazine
 )

illuminated and produce cosine-squared fringes. That much is 

easily observed (Fig. 9.10).

Plane waves at other angles impinge on the source hole and 

they, in turn, produce diffraction patterns on the aperture screen 


12.2.1 Diffraction and the Vanishing Fringes


that are shifted proportionately off the central axis. Still, each 

broad central diffraction peak will illuminate both of the dou-

Return to the situation in which the light field from a finite 

ble apertures, and that’s an important point. At this juncture, 

thermal source is incoherent and fringes just vanish. It 

with  ds
  small, we again have Young’s Experiment as discussed 

would seem that the diffraction pattern produced by the 

in Chapter 9.

source, when taken as a sizeable aperture, ought to have 

Once more, consider a plane wave along the central axis, 

something to do with the cosine-squared pattern washing 

but now suppose the source hole is widened so that u decreases 

out. Since the light that produces the fringes comes from 

and the central diffraction peak narrows until its width just 

the source, and widening the source degrades the fringes, 

equals  a
 , the distance separating the two apertures in  g a
 . The 

that statement is not, on its face, unreasonable. Indeed, 

Young’s fringes that were being produced before must vanish 

there is a very useful formulation called the van Cittert–

when the first diffraction minima ( m 
 = ±1), on each side of 

Zernike theorem that addresses this relationship, and we’ll 

the central peak (separated by  a
 ), overlay each of the two ap-

come to it soon enough. That theorem is highly mathemati-

ertures. There will simply be no light reaching either aperture 

cal and a tad obscure, so a little groundwork now will pay 

in  g a
 , arising from that central plane wave. What of all the 

off later.

other plane waves emerging from the source? They create iden-

On the left of the screen g s
  in Fig. 12.7 is a provider of fil-

tical Fraunhofer patterns that are slightly shifted off the central 

tered thermal light. The source screen has a hole, of diameter  ds
 , 

axis. Although each such peak will likely illuminate at least 

in it which acts as the extended source illuminating a Young’s 

one aperture (e.g.,  S
 2 in Fig. 12.7), if it does it will necessarily 

setup much like that of Fig. 12.3. The light streaming from the 

fall short of illuminating the other (e.g.,  S
 1 in Fig. 12.7). This 

hole can again be thought of as a barrage of plane waves com-

means the light that does arrive at both holes in  g a
  will be 

ing off in a wide range of directions—that’s been discussed sev-

incoherent, and the Young’s fringes will vanish. If the source 

eral times before. These are the EM wavelets that illuminate the 

is made still wider, the fringes will faintly reappear when the 

two apertures and lead to the cosine-squared fringes. 

tiny second-order diffraction maxima simultaneously reach 

If the small source hole is lit by only plane waves traveling 

both apertures.

in the forward direction (Fig. 10.2 b
 ) it would reemit wavelets in 

Quite generally, there should be a relationship between the 

a cone and thus project a Fraunhofer pattern onto the distant 

far-field diffraction pattern at a region in space that is generated 

aperture screen. Its main diffraction peak would subtend a large 

by a specific representation of a thermal source, and the coher-

angle u ≈ l0> b
  where here  b 
 =  ds
 . Clearly, when  ds
  is small, u 

ence of the resulting light from that source, over that same re-

is large and both of Young’s apertures would be coherently  

gion (that’s what the van Cittert–Zernike theorem is).
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in turn, and then relate all this to the idea of coherence in a more 


12.3 Visibility


formal way. An analytic expression can be derived for the flux-

density distribution with the aid of Fig. 12.8.* We use a lens  L
  

The quality of the fringes produced by an interferometric sys-

to localize the fringe pattern more effectively, that is, to make 

tem can be described quantitatively using the visibility
   𝒱, 

the cones of light diffracted by the finite pinholes more com-

which, as first formulated by Michelson, is given by

pletely overlap on the plane g o
 . A point source  S
 ′ located on 

the central axis would generate the usual pattern given by


I



 


𝒱 (
 
r

 $ ) 
 K max -  I
 min  (12.4)






I
 max +  I
 min


Ya
 p






I 
 = 4 I
 0 cos2 a

b  


(12.5)


s
 l

This is identical to the  modulation
  of Eq. (11.89). Here  I
 max  
 and 


I


from Section 9.3. Similarly, a point source above or below  S


min are the irradiances corresponding to the maximum and 





′ 

adjacent minimum in the fringe system. 

(parallel to the slits in Fig.12.8 b
 ) and lying on a line normal to 

the line  S
 1 S
 2 would generate the same straight band fringe sys-

tem slightly displaced in a direction parallel to the fringes. Thus 


EXAMPLE 12.2


replacing  S
 ′ by an incoherent line source (normal to the plane of 

Go back to the discussion of interference arising from two point 

the drawing) effectively just increases the amount of light avail-

sources, Eq. (9.14), and show that the maximum possible value 

able. This is something we presumably already knew. In con-

of the visibility is then 1.0. When does that happen? When is the 

trast, an off-axis point source at, say,  S
 ″, will generate a pattern 

visibility zero?

centered about  P
 ″, its image point on g o
  in the absence of the 


SOLUTION
  

aperture screen. A “spherical” wavelet leaving  S
 ″ is focused at 


P
 ″; thus all rays from  S
 ″  
 to  P
 ″ traverse equal optical paths, and 

Eq. (9.14) is

the interference must be constructive; in other words, the central 


I 
 =  I
 1 +  I
 2 + 22 I
 1 I
 2 cos d

maximum appears at  P
 ″. The path difference  S
 1 P
 ″ -  S
 2 P
 ″ ac-

counts for the displacement  P
 ′ P
 ″. Consequently,  S
 ″ produces  

It has a maximum value of

a fringe system identical to that of  S
 ′ but shifted by an amount 


I
 max =  I
 1 +  I
 2 + 22 I
 1 I
 2


P
 ′ P
 ″ with respect to it. Since these source points are uncorre-

lated, their irradiances add on g o 
 rather than their field ampli-

and a minimum value of

tudes (Fig. 12.8 e
 ).


I


The pattern arising from a broad quasimonochromatic ther-

min =  I
 1 +  I
 2 - 2 2 I
 1 I
 2

mal source having a rectangular aperture of width  b
  can be de-

Hence the visibility for two ideal sources is

termined by finding the irradiance due to an “incoherent” con-

tinuous line source parallel to  S
 1 S
 2. Notice, in Fig. 12.8 b
 , that 


I
 max -  I
 min

2 I
 1  I
 2

the variable  Y


𝒱 (
   
r

 $ ) 
 =

= 2





0 describes the location of any point on the image 


I
 max +  I
 min

( I
 1 +  I
 2)

of the source when the aperture screen is absent. With  g a
  in 

place, each differential element of the line source will contrib-

Suppose  I
 1 =  CI
 2, where  C
  is some number; then

ute a fringe system centered about its own image point, a dis-

tance  Y
 0 from the origin on g o
 . Moreover, its contribution to 

22 C
   I


2

𝒱

2 C



(
   
r

 $ ) 
 =

2 =





the flux-density pattern  dI 
 is proportional to the differential line 

( C 
 + 1) I
 2


C 
 + 1

element or, more conveniently, to its image,  dY
 0, on g o
 . Thus, 

using Eq. (9.31), the contribution to the total irradiance arising 

and it’s easy to see that this peaks at  C 
 = 1   
 or   I
 1 =  I
 2 =  I
 0, from  dY


whereupon

0 becomes

2 I
 0


a
 p

𝒱 ( 
 
r

 $ ) 
 =

= 1.0

  


dI 
 =  A
   dY
 0 cos2  c  ( Y 
 -  Y


2 I
 0


s


0)d

l

The visibility is zero when  I
 max =  I
 min, that is, when the fringes 

where  A
  is an appropriate constant. This, in analogy to Eq. (12.5), 

vanish into a uniform field of light. Apparently the best setup 

is the expression for an entire fringe system of minute irradi-

for observing Young’s fringes requires that both apertures be 

ance centered at  Y
 0 contributed by the tiny piece of the source 

illuminated equally,  I
 1 =  I
 2.

whose image corresponds to  dY
 0 at  Y
 0. By integrating over the 

If we set up Young’s Experiment, we could again vary the 

separation of the apertures or the size of the primary qua-

*This treatment in part follows that given by Towne in Chapter 11 of  Wave Phenomena
 . 

simonochromatic thermal source, measure 𝒱 as it changes  

See Klein,  Optics
 , Section 6.3, or Problem 12.13 for different versions.
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Figure 12.8
     Young’s Experiment with an extended slit source.  

( e
 ) A simple representation of how shifted fringes with the same spa-

tial frequency overlap and combine to form a net disturbance of that 

same spatial frequency with a reduced visibility (see Fig. 7.9). ( f 
 ) This 

is what the fringes look like as the visibility decreases (from top to 

bottom).
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extent  w
  of the image of the line source, we effectively integrate 


I(Y)
 I


 = 1

over the source and get the entire pattern:

+ w
 >2


a
 p

2


s
 l a
  >>  w



I(Y) 
 =  A
 3  cos2 c  ( Y 
 -  Y
 0)d  dY
 0

- w
 >2


s
 l

After a good bit of straightforward trigonometric manipulation, 

this becomes

(a)


Y


0


Aw



A s
 l


a
 p


a
 p


I(Y) 
 =

+    sin a   w
 b cos a2    Y
 b

2

2  a
 p


s
 l


s
 l

3  s
 l

 = 0.3


w
  = 4 (   )


a


2

The irradiance oscillates about an average value of   I 
 =  Aw
 >2, 

which increases with  w
 , which in turn increases with the width 

+ 0.3

of the source slit. Accordingly,

1

− 0.3


I(Y)


sin  a
 p w
 > s
 l


a
 p





= 1 + a

b cos a2    Y
 b (12.6)

(b)


Y


0


I



a
 p w
 > s
 l


s
 l


I(Y)



s



a


l

p w



a
 p

 = 0


w
  = (   )

or  

= 1 + sinc a

b cos a2    Y
 b (12.7)


a


2


I



s
 l


s
 l

It follows that the extreme values of the relative irradiance are 

given by

1


I



a


(c)


Y


p w






max = 1 + ` sinc a

b `  (12.8)

0


I



s
 l

5  s
 l

 = 0.18


w
  = 4 (   )


I



a
 p w



a


and 

min = 1 - ` sinc a

b `  (12.9)

2


I



s
 l

+ 0.18

When  w
  is very small in comparison to the fringe width ( s
 l> a
 ), 

1

− 0.18

the sinc function approaches 1 and  I
 max> I 
 = 2, while  I
 min> I 
 = 0 

(see Fig. 12.9). As  w
  increases,  I


(d)

min begins to differ from zero, 


Y


0

and the fringes lose contrast until they finally vanish entirely at 


w 
 =  s
 l> a
 . Between the arguments of p and 2p (i.e.,  w 
 =  s
 l> a
 Figure 12.9
     Fringes with varying source slit size. Here  w
  is the width of 

and  w 
 = 2 s
 l> a
 ), the sinc is negative. As the primary slit source 

the image of the slit, and  s
 l> a
  is the peak-to-peak width of the fringes.

widens beyond  w 
 =  s
 l> a
 , the fringes reappear but are shifted in 

phase; in other words, whereas previously there was a maxi-

mum at  Y 
 = 0, now there will be a minimum.

As a rule, the extent of the source ( b
 ) and the separation of 

the slits ( a
 ) are very small compared with the distances between 

the screens ( l
 ) and ( s
 ), and consequently we can make somè sinc             

(     )


a
 p w 
 `


s
 l

simplifying approximations. While the above considerations 

1

were expressed in terms of  w
  and  s
 , it follows from Fig. 12.8 c
 , 

using the central angle h, that  b 
 ≈  l
 h and  w 
 ≈  s
 h; hence 


w
 > s 
 ≈  b
 > l
 . Accordingly, ( a
 p w
 > s
 l) ≈ ( a
 ph>l) ≈ ( a
 p b
 > l
 l). 

The visibility of the fringes follows from Eq. (12.4):


a
 p w



a
 p b






𝒱 = ` sinc a

b ` = ` sinc a

b `  (12.10)


s
 l


l
 l


a
 p w
 s
 l

3p 2p

p

0

p

2p 3p

which is plotted in Fig. 12.10. Observe that 𝒱 is a function of 


Figure 12.10
     The visibility as given by Eq. (12.10). This applies to a slit 

both the source breadth and the aperture separation  a
 . Holding 

source of partially coherent light ( 𝒱 6 1).
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either one of these parameters constant and varying the other 

( a
 ), ( b
 ), and ( c
 ) have a central maximum, while ( d
 ) and ( e
 ) have will cause 𝒱 to change in precisely the same way. Note that the 

a central minimum, and ( ƒ
 ) on the third lobe is back to a maxi-

visibility in Fig. 12.9 a
  is equal to 1 because  I
 min = 0. Clearly, 

mum. In the same way, for a slit source, the domain where 

then, the visibility of the fringe system on the plane of observa-

sinc ( a
 p w
 > s
 l) in Eq. (12.7) is positive or negative will yield a 

tion is linked to the way the light is distributed over the aperture 

maximum or minimum, respectively, in  I(0)
 >  I
 . These in turn 

screen. If the primary source were in fact a point,  b
  would equal 

correspond to the odd or even lobes of the visibility curve of 

zero, and the visibility would be a perfect 1. Shy of that, the small-

Fig. 12.10. Bear in mind that we could define a complex visibil-

er ( a
 p b
 > l
 l) is, the better—that is, the bigger 𝒱 is and the clearer 

ity of magnitude 𝒱, having an argument corresponding to the 

the fringes are. We can think of 𝒱 as a measure of the degree of 

phase shift—we’ll come back to this idea later.

coherence of the light from the primary source as spread over 

Figure 12.13 results when the separation  a
  is held constant 

the aperture screen. Keep in mind that we have encountered the 

while the primary thermal source diameter is increased. Alter-

sinc function before, in connection with the diffraction pattern 

natively, since the width of the fringes is inversely propor-

resulting from a rectangular aperture.

tional to  a
 , the spatial frequency of the bright and dark bands 

When the primary source is circular, the visibility is a good 

increases as  a
  increases from its value in ( a
 ) to that in ( ƒ
 ) in 

deal more complicated to calculate. It turns out to be proportional 

Fig. 12.12.

to a first-order Bessel function (Fig. 12.11). This too is quite rem-

We should also mention that the effects of the finite band-

iniscent of diffraction, this time at a circular aperture [Eq. 

width will show up in a given fringe pattern as a gradually de-

(10.56)]. These similarities between expressions for 𝒱 and the 

creasing value of 𝒱 with  Y
 , as in Fig. 12.14 (see Problem 12.10). 

corresponding diffraction patterns for an aperture of the same 

When the visibility is determined in these cases, using the central 

shape are, as you might guess by now, a manifestation of the van 

region of each of a series of patterns, the dependence of 𝒱 on 

Cittert–Zernike theorem; we will see that presently.

aperture separation will again match Fig. 12.11.

Figure 12.12 shows a sequence of fringe systems in which the 

circular thermal source is constant in size but the separation  a
  

between  S
 1 and  S
 2 is increased. The visibility decreases from ( a
 ) 

to ( d
 ) in the figure, then increases for ( e
 ) and decreases again at 

( ƒ
 ). All the associated 𝒱-values are plotted in Fig. 12.11. Note 


12.4  The Mutual Coherence Function 


the shift in the peaks, that is, the change in phase at the center of 


and the Degree of Coherence


the pattern for each point on the second lobe of Fig. 12.11 (the 

Bessel function is negative over that range). In other words, 

Let’s now carry the discussion a bit further in a more formal 

fashion. Again suppose we have a broad, narrow bandwidth 

source, which generates a light field whose complex representa-

tion is  E
  ˜
 (
   
r

 $ ,
   t)
 . We’ll overlook polarization effects, and there-

fore a scalar treatment will do. The disturbances at two points in 

1.0

space  S
 1 and  S
 2 are then  E
  ˜
 (S1, t)
  and  E
  ˜
 (S2, t)
  or, more succinctly,  E
  ˜
 1 (t)
  and  E
  ˜
 2 (t)
 . If these two points are then isolated using an opaque screen with two circular apertures (Fig. 12.15), we’re 

back to Young’s Experiment. The two apertures serve as sources 

0.8

of secondary wavelets, which propagate out to some point- P
  on 

g o
 . There the resultant field is

0.6






E
  ˜



a



P(t) 
 =  K


 ˜
 1 E
  ˜
 1 (t 
 -  t1) 
 +  K
  ˜
 2 E
  ˜
 2 (t 
 -  t2)
 (12.11)

where   t
 1 =  r
 1> c  
 and   t
 2 =  r
 2> c
 . This says that the field at the space–time point ( P
 ,  t
 ) can be determined from the fields that 

0.4


b


existed at  S
 1 and  S
 2 at  t
 1 and  t
 2, respectively, these being the 

instants when the light, which is now overlapping, first emerged 

from the apertures. The quantities  K


 ˜
 1 and  K
  ˜
 2, which are known 

0.2

as  propagators
 , depend on the size of the apertures and their 


c


relative locations with respect to  P
 . They mathematically affect 


e


the alterations in the field resulting from its having traversed 


d



f


either of the apertures. For example, the secondary wavelets is-


a


0

1

2

3

4

suing from the pinholes in this setup are out-of-phase by p>2 

a

p

0

12 = 0

p

rad, with the primary wave incident on the aperture screen, g a
  


Figure 12.11


(Section 10.3.1). Clearly, someone is going to have to tell 

    The visibility for a uniform circular source of partially 

coherent light (𝒱 6 1).


E
  ˜
 (
   
r

 $ ,
   t)
  to shift phase beyond g a
 —that’s just what the  K
  ˜
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a
  = 0.6 cm


a
  = 0.8 cm


a
  = 1 cm

 = g





12 = 0.593, a12 = 0

= g12 = 0.361, a12 = 0

 = g12 = 0.146, a12 = 0

(a)

(b)

(c)


Figure 12.12
     Double-beam interference patterns using partially coherent light. The photographs correspond to a variation in visibility associated with changes in  a
 , the separation between the apertures. In the theoretical curves  I
 max ∝ 1 +  2  J
 1 (u)
 > u 
   and  I
 min ∝ 1 -  2  J
 1 (u)
 > u 
  . Several of the symbols will be discussed later. (B.J. Thompson and E. Wolf,  J. Opt. Soc. Am
 . 47
 , 895 [1957])

are for. Moreover, they reflect a reduction in the field that might 

It is now assumed that the wave field is  stationary
 , as is almost 

arise from a number of physical causes: absorption, diffraction, 

universally the case in classical Optics; in other words, it does 

and so forth. Here, since there is a p>2 phase shift in the field, 

not alter its statistical nature with time, so that the time average 

which can be introduced by multiplying by exp  i
 p>2,  K
  ˜
 1 and 

is independent of whatever origin we select. Even though there 


K


 ˜
 2 are purely imaginary numbers.

are fluctuations in the field variables, the time origin can be 

The resultant irradiance at  P
  measured over some finite time 

shifted, and the averages in Eq. (12.13) will be unaffected. 

interval, which is long compared with the coherence time, is

The particular moment over which we decide to measure  I
  

shouldn’t matter. Accordingly, the first two time averages can 






I 
 = 8 E
  ˜



˜ 
 *



P(t)E
   P(t)
 9T (12.12)

be rewritten as

It should be remembered that Eq. (12.12) is written sans several 


IS 
 = 8 E
  ˜


= 8 E
  ˜


1

1 (t)E


 ˜ 
 *
 1 (t)
 9T and  IS
 2

2 (t)E


 ˜ 
 *
 2 (t)
 9T

multiplicative constants. Hence using Eq. (12.11),

where the origin was displaced by amounts  t
 1 and  t
 2, respec-


I 
 =  K
  ˜
 1 K
  ˜
 *18 E
  ˜
 1 (t 
 -  t1)E
  ˜
 *
 1 (t 
 -  t1)
 9T

tively. The subscripts underscore the fact that these are the ir-

radiances at points- S
 1 and - S
 2. Furthermore, if we let t =  t
 2 -  t
 1, 

+  K
  ˜
 2 K
  ˜
 *28 E
  ˜
 2 (t 
 -  t2)E
  ˜
 *
 2  (t 
 -  t2)
 9T

we can shift the time origin by an amount  t
 2 in the last two terms 

+  K
  ˜
 1 K
  ˜
 *28 E
  ˜
 1 (t 
 -  t1)E
  ˜
 *
 2  (t 
 -  t2)
 9T

of Eq. (12.13) and write them as





+  K
  ˜
 *1 K
  ˜
 28 E
  ˜
 *1 (t 
 -  t1)E
  ˜
 2  (t 
 -  t2)
 9T (12.13) K


 ˜
 1 K
  ˜
 *28 E
  ˜
 1 (t 
 + t )E
  ˜
 *2 (t)
 9T +  K
  ˜
 *1 K
  ˜
 28 E
  ˜
 *1 (t 
 + t )E
  ˜
 2 (t)
 9T
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a
  = 1.2 cm


a
  = 1.7 cm


a
  = 2.3 cm

 = g





12 = 0.015, a12 = p

= g12 = 0.123, a12 = p

 = g12 = 0.035, a12 = 0

(d)

(e)

(f)

But this is a quantity plus its own complex conjugate and is 

Note that when  S
 1 and  S
 2 are made to coincide, the mutual co-

therefore just twice its real part; that is, it equals

herence function becomes

2 Re [ K


 ˜






Γ ˜
 11 (
 t )


1  K


 ˜ 
 *28 E
  ˜
 1 (t 
 + t )E
  ˜
 *
 2 (t)
 9T]

= 8 E
  ˜
 1 (t 
 + t )
   E
 ˜
 *1 (t)
 9T

The   K


 ˜ 
 -factors are purely imaginary, and so  K


 ˜
 1 K
  ˜
 *2 =  K
  ˜
 *1 K
  ˜
 2 = 

or  

Γ ˜
 22 (
 t ) 
 = 8 E
  ˜
 2 (t 
 + t )
   E
 ˜
 *2 (t)
 9T

0  K
  ˜
 1 0 0 K
  ˜
 2 0. The time-average portion of this term is a cross-

correlation function [Section 11.3.4(iii)], which we denote by

We can imagine that two wavetrains emerge from this coalesced 

source point and somehow pick up a relative phase delay pro-


 


Γ˜
 12 (
 t ) 
 K 8 E
  ˜
 1 (t 
 + t )E
  ˜
 *
 2 (t)
 9T (12.14) portional to t. In the present situation t becomes zero (since 

the optical path difference goes to zero), and these functions 

and refer to as the mutual coherence function
  of the light field 

are reduced to the corresponding irradiances  IS


at  S


= 8 E
  ˜


1

1 (t)
   E
 ˜
 *1 (t)
 9T 

1 and  S
 2. If we make use of all this, Eq. (12.13) takes the form

and  IS 
 = 8 E
  ˜


2

2 (t)
   E
 ˜
 *2 (t)
 9T on g  a
 . Consequently,


 



I 
 = 0  K
  ˜
 1 02 IS 
 + 0  K
  ˜


+ 20  K
  ˜


1

2 0 2 IS
 2

1 0  K


 ˜
 2 0 Re Γ˜
 12 (
 t )  
 (12.15)

Γ11 (0) 
 =  IS 
  and Γ

1

22 (0) 
 =  IS
 2

The terms 0  K
  ˜
 1 02 IS 
  and 0  K
  ˜


, if we again overlook multiplica-

1

2 0 2 IS
 2

and these are called  self-coherence functions
 . Thus

tive constants, are the irradiance at  P
  arising when one or the 

other of the apertures is open alone; in other words,  K


 ˜



I
 1

2  =  0 or 

= 0  K
  ˜
 1 02Γ11 (0)
  and  I
 2 = 0  K
  ˜
 2 02Γ22 (0)



K


 ˜
 1 = 0, respectively. Denoting these as  I
 1 and  I
 2 ,
  Eq. (12.15)  Keeping Eq. (12.16) in mind, observe that becomes


 



I 
 =  I
 1 +  I
 2 + 20  K
  ˜
 1 0  K
  ˜
 2 0 Re Γ ˜
 12 (
 t )
 (12.16)

0  K
  ˜
 1 0  K
  ˜
 2 0 = 2 I
 1 2 I
 2>2Γ11 (0)
  2Γ22 (0)
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Figure 12.13
     Double-beam interference patterns. Here the aperture separation was held constant, thereby yielding a constant number of fringes per unit displacement in each photo. The visibility was altered by varying the size of the primary incoherent source. (B.J. Thompson,  J. Soc. Photo. Inst. Engr
 . 4, 7 [1965]) (a)

(b)
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Figure 12.14
   ( a
 ) A finite bandwidth results in a decreasing value of 𝒱 with increasing  Y
 . ( b
 ) This pattern was formed by a beam of slow neutrons passing through two narrow slits. ( Am. J. Phys
  59, (4), 316 

(1991), American Association of Physics Teachers.)
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amount a12 (
 t )
 . If at the other extreme 0 g ˜
 12 (
 t ) 
 0 = 0,  I 
 =  I
 1 +  I
 2, there is no interference, and the two disturbances are said to be 


incoherent
 . When 0 6 0 g ˜
 12 (
 t ) 
 0 6 1 we have  partial coherence
 , the measure of which is 0 g ˜
 12 (
 t ) 
 0 itself; this is known as the  


S



S
 2


degree of coherence
 . In summary then,


E
 2 (t)



r
 2

s


r



S
 1

1


P







E


0 g ˜
 12 0 = 1  coherent limit

1 (t)






0 g ˜
 12 0 = 0  incoherent limit





0

Σ a


6 0 g ˜
 12 0 6 1  partial coherence

The basic statistical nature of the entire process must be un-

Σ 0


derscored. Clearly Γ ˜
 12 (
 t )
  and, therefore, g ˜
 12 (
 t )
  are the key I
 min

quantities in the various expressions for the irradiance distribu-


I
 max

tion; they are the essence of what we previously called the inter-

ference term. It should be pointed out that  E
  ˜



Figure 12.15
   Young’s Experiment.

1 (t 
 + t )
  and 


E
  ˜
 2 (t)
  are in fact two disturbances occurring at different points in 

both space and time. We anticipate, as well, that the amplitudes 

and phases of these disturbances will somehow fluctuate in 

The normalized form of the mutual coherence function (the 

time. If these fluctuations at  S
 1 and  S
 2 are completely indepen-

normalized cross-correlation) is defined as

dent, then Γ ˜
 12 (
 t ) 
 = 8 E
  ˜
 1 (t 
 + t )
   E
  ˜
 *2 (t)
 9T will go to zero, since  E
  ˜
 1 

and  E
  ˜
 2 can be either positive or negative with equal likelihood, 

Γ˜
 12 (
 t )


8 E
  ˜
 1( t 
 + t) E
  ˜
 *2 (t)
 9T

and their product averages to zero. In that case no correlation 


   


g

 ˜
 12 (
 t ) 
 K

=

 (12.17)

exists, and Γ ˜


2Γ11 (0)
 Γ22 (0)


280  E
  ˜
 1 029T80  E
  ˜
 2 029T

12 (
 t ) 
 = g

 ˜
 12 (
 t ) 
 = 0. If the field at  S
 1 at a time 

( t 
 + t) were perfectly correlated with the field at  S
 2 at a time  t
 , 

and it’s spoken of as the complex degree of coherence
 , for 

their relative phase would remain unaltered despite individual 

reasons that will be clear imminently. Equation (12.16) can then 

fluctuations. The time average of the product of the fields would 

be recast as

certainly not be zero, just as it would not be zero even if the two 

were only slightly correlated.






I 
 =  I
 1 +  I
 2 + 2 2 I
 1 I
 2 Re g ˜
 12 (
 t )
  (12.18) Both 0 g ˜
 12 (
 t ) 
 0 and a12 (
 t )
  are slowly varying functions of t in comparison to cos 2pnt and sin 2pnt. In other words, as  P
  is 

which is the  general interference law for partially coherent light.


moved across the resultant fringe system, the point-by-point 

For quasimonochromatic light, the phase-angle difference 

spatial variations in  I
  are predominantly due to the changes in w 

concomitant with the optical path difference is given by

as ( r
 2 -  r
 1) changes.

2p

The maximum and minimum values of  I
  occur when the co-





w =

 ( r
 2 -  r
 1) = 2pnt (12.19)

sine term in Eq. (12.21) is 

l

+1 and -1, respectively. The visibility 

at  P
  (Problem 12.14) is then

where l  
 and n are the mean wavelength and frequency. Now 

g

 ˜
 12 (
 t )
  
 is a complex quantity expressible as 

22 I



 


𝒱 =

1  2 I
 2 0 g ˜



 


g

 ˜
 12 (
 t ) 
 = 0 g ˜
 12 (
 t ) 
 0 ei
 Φ12 (
 t )
  (12.20) I


12 (
 t ) 
 0  (12.22)

1 +  I
 2

The phase angle of g ˜
 12 (
 t )
  relates back to Eq. (12.14) and the 

Perhaps the most common arrangement occurs when things are 

phase angle between the fields. If we set Φ12 (
 t ) 
 = a12 (
 t ) 
 - w, 

adjusted so that  I
 1 =  I
 2, whereupon

then


 


𝒱 = 0 g ˜
 12 (
 t ) 
 0 (12.23)

Re g ˜
 12 (
 t ) 
 = 0 g ˜
 12 (
 t ) 
 0 cos [a12 (
 t ) 
 - w]

That is,  the modulus of the complex degree of coherence is identi-


Equation (12.18) is then expressible as


cal to the visibility of the fringes
  (take another look at Fig. 12.12).

It is essential to realize that Eqs. (12.17) and (12.18) clearly 






I 
 =  I
 1 +  I
 2 + 2 2 I
 1 I
 20  g ˜
 12 (
 t ) 
 0 cos [a12 (
 t ) 
 - w] (12.21) suggest the way in which the real parts of Γ ˜
 12 (
 t )
  and g ˜
 12 (
 t )
  can It can be shown from Eq. (12.17) and the Schwarz inequality that 

be determined from direct measurement. When the flux densi-

0 … 0 g ˜
 12 (
 t ) 
 0 … 1. In fact, a comparison of Eqs. (12.21) and  ties of two disturbances are adjusted to be equal, Eq. (12.23) (9.14), the latter having been derived for the case of complete co-provides an experimental means of obtaining 0 g ˜
 12 (
 t ) 
 0 from the 

herence, makes it evident that if 0 g ˜
 12 (
 t ) 
 0 = 1,  I
  is the same as that resultant fringe pattern. Furthermore, the off-axis shift in the 

generated by two  coherent
  waves out-of-phase at  S
 1 and  S
 2 by an 

location of the central fringe (from w = 0) is a measure of 
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a12 (
 t )
 , the apparent relative retardation of the phase of the dis-

where  ∆f = f (t 
 + t ) 
 - f (t)
 . For a strictly monochromatic 

turbances at  S
 1 and  S
 2. Consequenty, measurements of the vis-

plane wave of infinite coherence length, f (t) 
 = k
 $ · r
 $ - v t
 , ∆f =

ibility and fringe position yield both the amplitude and phase of 

-vt, and

the complex degree of coherence.

g

 ˜
 11 (
 t ) 
 = cos vt -  i
  sin vt =  e
 - i
 vt

By the way, it can be shown* that 0 g ˜
 12 (
 t ) 
 0 will equal 1 for all 

values of t and any pair of spatial points, if and only if the opti-

Hence  0 g ˜
 11 0 = 1; the argument of g ˜
 11 is just -2pnt, and we 

cal field is strictly monochromatic, and therefore such a situation 

have complete coherence. In contradistinction, for a qua-

is unattainable. Moreover, a nonzero radiation field for which 

simonochromatic wave where t is greater than the coherence 

0 g ˜
 12 (
 t ) 
 0 = 0 for all values of t and any pair of spatial points cannot 

time, ∆f will be random, varying between 0 and 2p such that 

exist in free space either.

the integral averages to zero,   g ˜
 11 (
 t ) 
  = 0, corresponding to 

complete incoherence. A path difference of 60 cm, produced 

when the two arms of a Michelson Interferometer differ in 


12.4.1 Temporal and Spatial Coherence


length by 30 cm, corresponds to a time delay between the re-

combining beams of t

Let’s now relate the ideas of temporal and spatial coherence to 

≈ 2 ns. This is roughly the coherence 

time of a good isotope discharge lamp, and the visibility of the 

the above formalism.

pattern under this sort of illumination will be quite poor. If 

If the primary source  S
  in Fig. 12.15 shrinks down to a point 

white light is used instead, 

source on the central axis having a finite frequency bandwidth, 

∆n is large, ∆ tc
  is very small, and the 

coherence length is less than one wavelength. In order for t to 

temporal coherence effects will predominate. The optical distur-

be less than 

bances at  S


∆ tc
  (i.e., in order that the visibility be good), the 

1 and  S
 2 will then be identical. In effect, the mutual 

optical path difference will have to be a small fraction of a 

coherence [Eq. (12.14)] between the two points will be the self-

wavelength. The other extreme is laser light, in which 

coherence of the field. Hence Γ ˜
 (S


∆ tc
  can 


1, S2, 
 t ) 
 = Γ

 ˜
 12 (
 t ) 
 = Γ ˜
 11 (
 t )
  or 

be so long that a value of  c
 t that will cause an appreciable de-

g

 ˜
 12 (
 t ) 
 = g ˜
 11 (
 t )
 . The same thing obtains when  S
 1 and  S
 2 

crease in visibility would require an impractically large inter-

coalesce, and g ˜
 11 (
 t )
  is sometimes referred to as the complex 


ferometer.


degree of temporal coherence
  at that point for two instances 

We see that 

of time separated by an interval t. This would be the case in an 

Γ˜
 11 (
 t )
 , being a measure of temporal coherence, 

must be intimately related to the coherence time and therefore 

amplitude-splitting interferometer, such as Michelson’s, in 

which 

the bandwidth of the source. Indeed,  
the Fourier transform of 



t equals the path length difference divided by  c
 . The 

expression for  I
 , that is, Eq. (12.18), would then contain 



the self-coherence function, 



g

 ˜


Γ˜
 11 (
 t )
 ,   
is the power spectrum, 



11 (
 t )
  

rather than 



which describes the spectral energy distribution of the light

  

g

 ˜
 12 (
 t )
 . 

Suppose a lightwave is divided into two identical disturbances 

(Section 11.3.4).

of the form

If we go back to Young’s Experiment (Fig. 12.15) with a very 

narrow-bandwidth extended source, spatial coherence effects 






E
  ˜
 (t) 
 =  E
 0 ei
 f (t)
  (12.24)

will predominate. The optical disturbances at  S
 1 and  S
 2 will dif-

fer, and the fringe pattern will depend on  
 Γ ˜
 (S1, S2, 
 t ) 
 = Γ ˜
 12 (
 t )
 . 

by an amplitude-splitting interferometer, which later recom-

By examining the region about the central fringe where 

bines them to generate a fringe pattern. Then

( r
 2 -  r
 1) = 0, t = 0 and  Γ ˜
 12 (0)
 and  g ˜
 12 (0)
  can be determined. 

This latter quantity is the complex degree of spatial coherence
  

8 E
  ˜
 (t 
 + t )E
  ˜
 * (t)
 9





T

g

 ˜
 11 (
 t ) 
 =

 (12.25)

of the two points at the same instant in time. Γ ˜
 12 (0)  
 plays a 

0  E
  ˜ 
 02

central role in the description of the Michelson stellar interfer-

ometer to be discussed forthwith.

or  

g

 ˜
 11 (
 t ) 
 = 8 ei
 f (t
 +t )e
 - i
 f (t)
 9T

There is a very convenient relationship between the complex 

Hence

degree of coherence in a region of space and the corresponding 

irradiance distribution across the extended source giving rise to 

1  T


the light fields. We shall make use of that relationship, the van 






g

 ˜
 11 (
 t ) 
 = lim       ei
 [f (t
 +t )
 -f (t)
 ]  dt
  (12.26) T 
 S ∞  T 
 3


Cittert–Zernike theorem
 , as a calculational aid without going 

0

through its formal derivation. Indeed, the analysis of Section 12.2 

1  T


already suggests some of the essentials. Figure 12.16 represents 

and  

g

 ˜
 11 (
 t ) 
 = lim      (cos ∆f +  i
  sin ∆f)  dt



T 
 S ∞  T 
 3

an extended quasimonochromatic thermal source,  S
 , located on 

0

the plane g s
  and having an irradiance given by  I(y, z)
 . Also shown 

is an observation screen on which are two points,  P
 1 and  P
 2. These 

are at distances  R
 1 and  R
 2, respectively, from a tiny element of  S
 . 

*The proofs are given in Beran and Parrent,  Theory of Partial Coherence
 ,  

It is on this plane that we wish to determine g ˜
 12 (0)
 , which de-

Section 4.2.

scribes the correlation of the field vibrations at the two points. 
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(a)

A star is a collection of countless atoms randomly emitting a tumult of  

uncorrelated incoherent radiation. Yet at great distances from the star the 

light becomes coherent. Here 13 ducks randomly thrashing about in a pond 

produce waves that clearly become well organized as they move away from 

the “thermal” source. (W.H. Knox, M. Alonso and E. Wolf, “Spatial Coherence from Ducks,” 


P
 1


Phys. Today
  63
 , 11 (March 2010), courtesy American Institute of Physics)


y


+ b
 2

u

− b
 2

g

0

12 (0) 1


P
 2

field distribution, normalized to unity at  P
 2, is everywhere (i.e., 

at  P
 1) equal to the value of g ˜
 12 (0)
  at that point. This is the van 

Cittert–Zernike theorem.

When  P
 1 and  P
 2 are close together and  S
  is small compared 

with  l
 , the complex degree of coherence equals the normal-



ized Fourier transform of the irradiance distribution across 



l


(b)


the source
 . Furthermore, if the source has a uniform irradiance, 


Figure 12.16
   ( a
 ) The geometry of the van Cittert–Zernike theorem. ( b
 ) 

then g ˜
 12 (0)
  is simply a sinc function when the source is a slit and 

The normalized diffraction pattern corresponds to the degree of coherence. 

a Bessel function when it’s circular. Observe that in Fig. 12.16 b
  

Here for a rectangular source slit the diffraction pattern is sinc (p by
 > l
 l).

the sinc function corresponds to that used in Fig. 10.13, where 

b = ( kb
 >2) sin u and u ≈ sin u. Thus if  P
 1 is a distance  y
  from 


P
 2, b =  kb
 u>2   
 and  u =  y
 > l
 , hence 0 g ˜
 12 (0) 
 0 = 0 sinc (p by
 > l
 l) 0. 

Note that although the source is “incoherent,” the light reaching  P
 1 

This result is explored further in the problem set. Suffice it to say 

and   P
 2 will generally be correlated to some degree, since each 

that if you wish to produce a region with a high degree of coher-

source element contributes to the field at each such point.

ence using a circular or rectangular thermal source you need 

Calculation of g ˜
 12 (0)
  from the fields at  P
 1 and  P
 2 results in 

only operate within the area of the central maximum of the 

an integral that has a familiar structure. The integral has the 

Fraunhofer diffraction pattern produced by that source on a dis-

same form and will yield the same results as a well-known dif-

tant screen.

fraction integral, provided we reinterpret each term appropri-

ately. For instance,  I(y, z)
  appears in that coherence integral 

where an aperture function would be if it were, in fact, a dif-

fraction integral. Thus, suppose that  S
  is not a source but an 


12.5  Coherence and Stellar 


aperture of identical size and shape, and suppose that  I(y, z)
  is 


Interferometry


not a description of irradiance, but instead its functional form 

corresponds to the field distribution across that aperture. In 


12.5.1  The Michelson Stellar Interferometer


other words, imagine that there is a transparency at the aper-

ture with amplitude transmission characteristics that corre-

In 1890 A. A. Michelson, following an earlier suggestion by 

spond functionally to  I(y, z)
 . Furthermore, imagine that the 

Fizeau, proposed an interferometric device (Fig. 12.17) that is 

aperture is illuminated by a spherical wave converging toward 

of interest here both because it was the precursor of some im-

the fixed point- P
 2 (see Fig. 12.16 b
 ), so that  there will be a 


portant modern techniques, and because it lends itself to an in-


Fraunhofer diffraction pattern centered on P
 2. This diffracted 

terpretation in terms of coherence theory. The function of the 
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Figure 12.17
     Michelson stellar interferometer.


stellar interferometer
 , as it is called, is to measure the small 

the two fringe systems take on an increasing relative displace-

angular dimensions of remote astronomical bodies.

ment, until finally the maxima from one star overlap the min-

Two widely spaced movable mirrors,  M
 1 and  M
 2, collect 

ima from the other, at which point, if their irradiances are 

rays, assumed to be parallel, from a very distant star. The light 

equal, 𝒱 = 0. Hence, when the fringes vanish, one need only 

is then channeled via mirrors  M
 3 and  M
 4 through apertures  S
 1 

measure   h
  to determine the angular separation between the 

and  S
 2 of a mask and thence into the objective of a telescope. 

stars, u. Notice that the appropriate value of  h
  varies inversely 

The optical paths  M
 1 M
 3 S
 1 and  M
 2 M
 4 S
 2 are made equal, so that with u.

the relative phase-angle difference between a disturbance at  M
 1 

Note that even though the source points, the two stars, are 

and  M
 2 is the same as that between  S
 1 and  S
 2. The two apertures 

assumed to be completely uncorrelated, the resulting optical 

generate the usual Young’s Experiment fringe system in the fo-

fields at any two points (  M
 1 and  M
 2) are not necessarily inco-

cal plane of the objective. Actually, the mask and openings are 

herent. For that matter, as  h
  becomes very small, the light from 

not really necessary; the mirrors alone could serve as apertures. 

each point source arrives with essentially zero relative phase at 

Suppose we now point the device so that its central axis is 


M
 1 and  M
 2; 𝒱 approaches 1, and the fields at those locations are 

directed toward one of the stars in a closely spaced double-star 

highly coherent.

configuration. Because of the tremendous distances involved, 

In much the same way as with a double star system, the an-

the rays reaching the interferometer from either star are well 

gular diameter (u = u s
 ) of certain single stars can be measured. 

collimated. Furthermore, we assume, at least for the moment, 

Once again the fringe visibility corresponds to the degree of 

that the light has a narrow linewidth centered about a mean 

coherence of the optical field at  M
 1 and  M
 2. If the star is as-

wavelength of l0. The disturbances arising at  S
 1 and  S
 2 from the 

sumed to be a circular distribution of incoherent point sources 

axial star are in-phase, and a pattern of bright and dark bands 

such that it has a uniform brilliance, its visibility is equivalent to 

forms, centered on  P
 0. 

that already plotted in Fig. 12.11. Earlier, we alluded to the fact 

Similarly, rays from the other star arrive at some angle u, but 

that 𝒱 for this sort of source was given by a first-order Bessel 

this time the disturbances at  M
 1 and  M
 2 (and therefore at  S
 1 and  S
 2) function, and in fact it is expressible as

are out-of-phase by approximately  k
 0 h
 u  
 or, if you will, retarded 

by a time  h



J


u> c
 , as indicated in Fig. 12.17 b
 . The resulting fringe 





𝒱 = 0

1 (
 p h
 us>l0 )


g

 ˜
 12 (0) 
 0 = 2  `

`  (12.28)

system is centered about a point- P
  shifted by an angle u′ from 

p h
 us>l0


P
 0 such that  h
 u> c 
 =  a
 u′> c
 . Since these stars behave as though they were incoherent point sources, the individual irradiance 

Recall that  J
 1 (u)
 > u 
 = 12   
 at   u 
 = 0, and the maximum value of distributions simply overlap. The separation between the fring-

𝒱 is 1. The first zero of 𝒱 occurs when p h
 us>l0 = 3.83, as in 

es set up by either star is equal and dependent solely on  a
 . Yet 

Fig. 10.36. Equivalently, the fringes disappear when

the visibility varies with  h
 . Thus, if  h
  is increased from nearly 

zero until  k


l

0 h
 u = p, that is, until






h 
 = 1.22  0 (12.29)

us

l






h 
 = 0 (12.27)

2

and as before, one simply measures  h
  to find u

u

s.
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In Michelson’s arrangement, the two outrigged mirrors were 

scope can resolve, at least in principle. Alas, Earth’s ever-swirling 

movable on a long girder, which was mounted on the 100-inch 

atmosphere limits even the largest telescopes to resolutions of 

reflector of the Mount Wilson Observatory. Betelgeuse (a Orionis) 

roughly 0.5 arcsecond (as), just about that of a good amateur 

was the first star whose angular diameter was measured with 

backyard instrument. 

the device. It’s the orange-looking star in the upper left of the 

To overcome that limitation, one installs an adaptive optics 

constellation Orion. In fact, its name is a contraction for the 

system (p. 232). Reconfigured in this way, the modern astro-

Arabic phrase meaning  the armpit of the central one
  (i.e., Orion). 

nomical telescope is back to approaching its theoretical resolv-

The fringes formed by the interferometer, one cold December 

ing power, matching or even exceeding that of the Hubble 

night in 1920, were made to vanish at  h 
 = 121   
 inches, and  

Space Telescope. With such systems in place, instruments have 

with  l0 = 570 nm, us = 1.22(570 * 10-9)>121(2.54 * 10-2) =

attained resolutions of  ≈50 milliarcseconds (mas). And the 

22.6 * 10-8 rad, or 0.047 second of arc. Using its known dis-

next generation of large scopes (p. 228) will do even better. But 

tance, determined from parallax measurements, the star’s diam-

in the end, resolution is still constrained by the size of the pri-

eter turned out to be about 240 million miles, or roughly 280 

mary optic and the costs accompanying construction of bigger 

times that of the Sun. Actually, Betelgeuse is an irregular variable 

and bigger telescopes. The larger the scope, the more challeng-

star whose maximum diameter is so tremendous that it’s larger 

ing the technical construction issues become, and the more 

than the orbit of Mars about the Sun. The main limitation on the 

daunting the fight with gravity. We are not likely to see an im-

use of the stellar interferometer is due to the inconveniently 

aging telescope the size of a football field for quite a while.

long mirror separations required for all but the largest stars. 

By comparison, from an engineering perspective, an interfer-

This is true as well in radio astronomy, where an analogous 

ometer can be as large as you care to make it. The resolution of 

setup has been widely used to measure the extent of celestial 

a stellar interferometer depends on the separation of its mirrors, 

sources of radiofrequency emissions.

not on their size (Fig. 12.18). The CHARA Array on Mount Wilson, 

Incidentally, we assume, as is often done, that “good” coher-

overlooking Los Angeles, where Michelson built his original 

ence means a visibility of 0.88 or better. For a disk source this 

device, uses six 1-meter telescopes separated by hundreds of 

occurs when p h
 u> l0 in Eq. (12.28) equals one, that is, when

meters. The light, traveling along evacuated piping, is brought to 

a central lab, where it is combined to form interference fringes, 

l0

much as Michelson had done in 1920. The instrument itself must 






h 
 = 0.32   (12.30)

u

not introduce path differences of any more than a few tenths of a 

s

wavelength, or spurious effects will negate the observations. 

For a narrow-bandwidth source of diameter  D
  a distance  R
  away, 

Moreover, any star being studied has to be tracked as it moves 

there is an area of coherence
  equal to p( h
 >2)2 over which 

across the sky, but that typically changes its optical path length 

0 g12 0 Ú 0.88. Since  D
 > R 
 = us,

difference through the two telescopes by several wavelengths 

per second. This is corrected for using  delay lines
  comprised of 


R
 l






h 
 = 0.32  0 (12.31)

moving mirror-mounted carts rolling back and forth on hundreds 


D


of meters of precision track. With three or more telescopes col-

These expressions are very handy for estimating the required 

lecting light simultaneously, measurements can be made across 

physical parameters in an interference or diffraction experi-

different baselines, enabling a two-dimensional picture of the 

ment. For example, if we put a red filter over a 1-mm-diameter 

outline of a star to be pieced together.

disk-shaped flashlight source and stand back 20 m from it, then

The CHARA Array has a resolution of ≈1 mas; that’s about 

the angle subtended at an observer in Atlanta by a penny held up 


h 
 = 0.32(20)(600 * 10-9)>10-3 = 3.8 mm

in Los Angeles.

where the mean wavelength is taken as 600 nm. This means that 

a set of apertures spaced at about  h
  or less should produce nice 


12.5.2 Correlation Interferometry


fringes.

Let’s return for a moment to the representation of a disturbance 

emanating from a thermal source, as discussed in Section 7.4.3. 

Again the word  thermal
  connotes a light field arising predomi-


Modern Astronomical Interferometry


nantly from the superposition of spontaneously emitted waves 

Today Michelson’s stellar interferometer has morphed into a 

issuing from a great many independent atomic sources.* A qua-

variety of magnificent ultra-high-resolution machines that are 

simonochromatic optical field can be represented by

revolutionizing ground-based astronomy, and promising to do 






E(t) 
 =  E
 0 (t)
  cos [e (t) 
 - 2pn t
 ] [7.65]

the same in space. The central issue is  resolution
 , the ability to 

distinguish details on distant objects. The resolution of a mirror- 

or lens-based image-forming telescope increases with its aper-

*Thermal light is sometimes spoken of as  Gaussian light
  because the amplitude of 

ture; the bigger the main mirror or lens, the finer the details the 

the field follows a Gaussian probability distribution.
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Figure 12.18
     A modern version of the stellar interferometer. Two or more telescopes separated by substantial distances output signals that are then combined to form interference patterns. (Peter Lawson/


Sky & Telescope Magazine
 )

The amplitude is a relatively slowly varying function of time, 

Large fluctuations in e are generally accompanied by corre-

as is the phase. For that matter, the wave might undergo tens 

spondingly large fluctuations of  E
 0. Presumably, knowledge 

of thousands of oscillations before either the amplitude (i.e., 

of these amplitude fluctuations of the field could be related to 

the envelope of the field vibrations) or the phase would 

the phase fluctuations and therefore to the correlation (i.e., co-

change appreciably. Thus, just as the coherence time is a 

herence) functions. Accordingly, at two points in space–time 

measure of the fluctuation interval of the phase, it is also a 

where the phases of the field are correlated, we could expect 

measure of the interval over which  E
 0 (t)
  is fairly predictable. 

the amplitudes to be related as well.
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When a fringe pattern exists for the Michelson stellar inter-


I(t)


ferometer, it is because the fields at  M
 1 and  M
 2, the apertures, 

are somehow correlated; that is, Γ ˜
 12 (0) 
 = 8 E
  ˜
 1 (t)E
  ˜
 *
 2 (t)
 9T Z 0. If we could measure the field amplitudes at these points, their 

〈 I
 〉

fluctuations would likewise show an interrelationship. Since 

this isn’t practicable because of the high frequencies in-

volved, we might instead measure and compare the fluctua-

0


t


(a)

tions in irradiance at the locations of  M
 1 and  M
 2 and from 

this, in some as yet unknown way, infer  0 g ˜
 12 (0) 
 0. In other 

words, if there are values of t for which g ˜
 12 (
 t )
  is nonzero, 

∆ I
  =  I
  − 〈 I
 〉

the field at the two points is partially coherent, and a correla-

tion between the irradiance fluctuations at these locations is 

implied. This is the essential idea behind a series of remark-

able experiments conducted in the years 1952 to 1956 by 

0


t


R. Hanbury–Brown in collaboration with R. Q. Twiss and 

others. The culmination of their work was the so-called  cor-


(b)


relation interferometer
 .

Thus far we have evolved only an intuitive justification for 


Figure 12.19
   Irradiance variations.

the phenomenon rather than a firm theoretical treatment. Such 

an analysis, however, is beyond the scope of this discussion, 

and we shall have to content ourselves with merely outlining its 

(Problem 12.18). These are the desired cross-correlations of the 

salient features.* Just as in Eq. (12.14), we are interested in 

irradiance fluctuations. They exist as long as the field is par-

determining the cross-correlation function, this time, of the ir-

tially coherent at the two points in question. Incidentally, these 

radiances at two points in a partially coherent field,  expressions correspond to linearly polarized light. When the 8 I
 1 (t 
 + t )I
 2 (t)
 9T. The contributing wavetrains, which are again 

wave is unpolarized, a multiplicative factor of 12 must be intro-

represented by complex fields, are assumed to have been ran-

duced on the right-hand side.

domly emitted in accord with Gaussian statistics, with the final 

The validity of the principle of correlation interferometry 

result that

was first established in the radiofrequency region of the 

spectrum, where signal detection was a fairly straightfor-





8 I
 1 (t 
 + t )I
 2 (t)
 9T = 8 I
 19T8 I
 29T + 0 Γ ˜
 12 (
 t ) 
 02 (12.32) ward matter. Soon afterward, in 1956, Hanbury–Brown and 

Twiss proposed the optical stellar interferometer illustrated 

or 

in Fig. 12.20. But the only suitable detectors that could be 

8 I
 1 (t 
 + t )I
 2 (t)
 9T = 8 I
 19T8 I
 29T [1 + 0 g˜
 12 (
 t ) 
 02] (12.33) The instantaneous irradiance fluctuations ∆ I
 1 (t)
  and ∆ I
 2 (t)
  are 

given by the variations of the instantaneous irradiances  I
 1 (t)
  and 


I
 2 (t)
  about their mean values 8 I
 1 (t)
 9T and 8 I
 2 (t)
 9T, as in Fig. 12.19. 

Parallel rays

Consequently, if we use


h


from a star

∆ I
 1 (t) 
 =  I
 1 (t) 
 - 8 I
 19T and ∆ I
 2 (t) 
 =  I
 2 (t) 
 - 8 I
 29T

and the fact that


PM
 1


PM
 2

8∆ I
 1 (t)
 9T = 0 and 8∆ I
 2 (t)
 9T = 0

Eqs. (12.32) and (12.33) become





8∆ I
 1 (t 
 + t )
 ∆ I
 2 (t)
 9T = 0 Γ ˜
 12 (
 t ) 
 02 (12.34) Amplifier 1

Amplifier 2

Delay line

or 

8∆ I
 1 (t 
 + t )
 ∆ I
 2 (t)
 9T = 8 I
 19T8 I
 29T0 g ˜
 12 (
 t ) 
 02 (12.35) Multiplier

Integrator

*For a complete discussion, see, for example, L. Mandel, “Fluctuations of light 

beams,”  Progress in Optics
 , Vol. II, p. 193, or Françon,  Optical Interferometry
 , p. 182.


Figure 12.20
     Stellar correlation interferometer.
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much better than trying to follow the field alternations at 1015 Hz. 


PM
 2

Even so, fast circuitry with roughly a 100-MHz pass bandwidth 

Filtered

is required. In actuality the detectors have a finite resolving 

Hg light

time  T
 , so that the signal currents 


I


ℐ1 and ℐ2 are actually propor-

2( t
 )

tional to averages of  I
 1 (t) 
 and  I
 2 (t)
  over  T
  and not their instanta-Beamsplitter

neous values. In effect, the measured fluctuations are smoothed 

out, as illustrated by the dashed curve of Fig. 12.19 b
 . For 


h



T 
 7 ∆ tc
 , which is normally the case, this just leads to a  

Band-limited

reduction, by a factor of ∆ tc
 > T
 , in the correlation actually  

amplifier

observed:


PM
 1

∆ I
 2


I
 1( t
 ) Band-limited

∆ t


amplifier

Correlator





8∆ℐ


c


1 (t)
 ∆ℐ2 (t)
 9 = 8ℐ198ℐ29 

 0 g ˜


∆ I
 1


T


12 (0) 
 0 2 (12.36)

∆ I
 1  
 ∆ I
 2

For example, in the preceding laboratory arrangement, the fil-

Integrator

tered mercury light had a coherence time of about 1 ns, while the 

〈∆ I
 1  
 ∆ I
 2〉

electronics had a reciprocal pass bandwidth or effective integra-

tion time of ≈40 ns. Note that Eq. (12.36) isn’t any different 


Figure 12.21
     Hanbury–Brown and Twiss experiment.

conceptually from Eq. (12.35)—it’s just been made a bit more 

realistic.

Shortly after their successful laboratory experiment, Hanbury–

used at optical frequencies were photoelectric devices whose 

Brown and Twiss constructed the stellar interferometer shown 

very operation is keyed to the quantized nature of the light 

in Fig. 12.20. Searchlight mirrors were used to collect star-

field. Thus

light and focus it onto two photomultipliers. One arm con-

. . . it was by no means certain that the correlation would be 

tained a delay line, so that the mirrors could physically be 

fully preserved in the process of photo-electric emission. For these 

located at the same height, with compensation for any differ-

reasons a laboratory experiment was carried out as described 

ences in the arrival times of the light. The measurement of 

below.*

8∆ℐ1 (t)
 ∆ℐ2 (t)
 9T at various separations of the detectors al-

That experiment is shown in Fig. 12.21. Filtered light from a Hg 

lowed the square of the modulus of the degree of coherence, 

arc was passed through a rectangular aperture, and different por-

0 g ˜
 12 (0) 
 02, to be deduced, and this in turn yielded the angular 

tions of the emerging wavefront were sampled by two photo-

diameter of the source, just as it did with the Michelson stellar 

multipliers,  PM


interferometer. This time, however, the separation  h
  could be 

1 and  PM
 2. The degree of coherence was altered 

by moving  PM


very large, because one no longer had to worry about messing 

1, that is, by varying  h
 . The signals from the two 

photomultipliers were presumably proportional to the incident 

up the phase of the waves, as was the case in the Michelson 

irradiances  I


device. There, a slight shift in a mirror of a fraction of a wave-

1 (t)
  and  I
 2 (t)
 . These were then filtered and ampli-

fied, such that the steady, or DC, component of each of the sig-

length was fatal. Here, in contrast, the phase was discarded, so 

nals (being proportional to 8 I


that the mirrors didn’t even have to be of high optical quality. 

19T and 8 I
 29T) was removed, leav-

ing only the fluctuations, in other words, ∆ I


The star Sirius was the first to be examined, and it was found 

1 (t) 
 =  I
 1 (t) 
 - 8 I
 19T 

and ∆ I


to have an angular diameter of 0.006 9 second of arc. In 1965, 

2 (t) 
 =  I
 2 (t) 
 - 8 I
 29T. The two signals were then multiplied 

together in the correlator, and the time average of the product, 

a correlation interferometer (the equivalent of a Michelson 

which was proportional to 8∆ I


stellar device with a baseline of 618 feet) was constructed 

1 (t)
 ∆ I
 2 (t)
 9T, was finally recorded. 

The values of 0 g ˜


in Narrabri, Australia. For certain stars, angular diameters of 

12 (0) 
 0 2 for various separations,  h
 , as deduced 

experimentally via Eq. (12.35), were in fine agreement with 

as little as 0.000 5 second of arc could be measured with this 

those calculated from theory. For the given geometry, the corre-

instrument—that’s a long way from the angular diameter of 

lation definitely existed; moreover, it was preserved through 

Betelgeuse (0.047 second of arc).*

photoelectric detection.

The electronics involved in irradiance correlation could be 

The irradiance fluctuations have a frequency bandwidth 

greatly simplified if the incident light were very nearly mono-

roughly equivalent to the bandwidth (∆n) of the incident light, 

chromatic and of considerably higher flux density. Laserlight 

in other words, (∆ t


isn’t thermal and doesn’t display the same statistical fluctuations, 


c
 )-1, which is about 100 MHz or more. This is 

*Taken from R. Hanbury–Brown and R. Q. Twiss, “Correlation between photons in 

*For a discussion of the photon aspects of irradiance correlation, see Garbuny, 

two coherent beams of light,”  Nature
  127
 , 27 (1956).


Optical Physics
 , Section 6.2.5.2, or Klein,  Optics
 , Section 6.4.
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but it can nonetheless be used to generate  pseudothermal
 * light. 

A pseudothermal source is composed of an ordinary bright 

source (a laser is most convenient) and a moving medium of 


nonuniform
  optical thickness, such as a rotating ground-glass 

disk. If the scattered beam emerging from a stationary piece of 

ground glass is examined with a  sufficiently slow detector
 , the 

inherent irradiance fluctuations will be smoothed out completely. 

By setting the ground glass in motion, irradiance fluctuations 

appear with a simulated coherence time commensurate with the 

disk’s speed. In effect, one has an extremely brilliant thermal 

Correlation

source of variable ∆ tc
  (from, say, 1 s to 10-5 s), which can be 

used to examine a whole range of coherence effects. For ex-

ample, Fig. 12.22 shows the correlation function, which is pro-

portional to [2 J
 1 (u)
 > (u)
 ]2, for a pseudothermal circular aperture 

source determined from irradiance fluctuations. The experi-

ment setup resembles that of Fig. 12.21, although the electron-

−4 −2

0

2

4

ics is considerably simpler.†


h
  (mm)


Figure 12.22
     A correlation function for a pseudothermal source.  

(From A.B. Harner and N.R. Isenor,  Am J. Phys
 . 38
 , 748 (1970) American Journal of Physics.)

*See W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” 

†A good overall reference for this chapter is the review article by L. Mandel  


Am J. Phys
 . 32
 , 919 (1964), and A. B. Haner and N. R. Isenor, “Intensity correla-

and E. Wolf, “Coherence properties of optical fields,”  Revs. Modern Phys
 . 

tions from pseudothermal light sources,”  Am. J. Phys
 . 38
 , 748 (1970). Both of 


37
 , 231 (1965); this is rather heavy reading. Take a look at K. I. Kellermann, 

these articles are well worth studying.

“Intercontinental radio astronomy,”  Sci. Am
 . 226
 , 72 (February 1972).


PROBLEMS




Complete solutions to all problems—except those with an asterisk— 



is reasonable. Then approximating  As
  as  d
 2 s
 , show that



can be found in the back of the book.




l
 2 l2


A


  0


c 
 ≈


12.1*  
 Two monochromatic point sources radiate in-phase. At the usual 


A
 s

distant plane of observation (parallel to the line connecting the sources) 

Notice that  Ac
  gets larger as  l 
 gets larger.

the irradiance from one of them is 100 times the irradiance from the 

other. Show that in general the fringe pattern is such that


12.4*
  A small thermal source of quasimonochromatic light with a 

mean wavelength of 500 nm, and an area of 1.0


I


* 10-6 m2, is used 

max = 1 2 I
 1 + 2 I
 2 22

to illuminate an opaque screen containing two pinholes, each 0.10 mm 

and

in diameter. Two meters in front of this screen is the disk-shaped,  


I
 min = 1 2 I
 1 - 2 I
 222

uniform-irradiance source. Determine an order-of-magnitude value of 

the coherence area.

Draw a graph of the net irradiance versus distance from the central 

axis. What does the pattern actually look like? Determine the visibility.


12.5*
  Let Ωs be the solid angle subtended by the source when viewed 

from the center of the aperture screen. Show that


12.2*
  With Fig. 12.3 in mind, establish that when two incoherent 

cosine-squared fringe systems, each of the form  I
 0 cos2 a, overlap so 

l2


A


  0

that peaks fall on troughs, the resultant is  I



c 
 ≈

=  I
 0—a uniform illumination.

Ωs


12.3*
   Show that Eq. (12.2)

represents the coherence area. This equation is useful when we don’t 

2

know the distance to the source. Notice that the smaller the source, the 


Ac 
 ≈ al  0b

u s


larger is the coherence area.
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12.6*
  The Sun’s disk subtends an angle of about 9.3


12.13
   Referring to the slit source and pinhole screen arrangement of 

* 10-3 rad as 

seen from the Earth’s surface. If sunlight is filtered to a mean wave-

Fig. P.12.13, show by integration over the source that

length of 550 nm, roughly what is the area of coherence on an Earth-

sin (p a
 >l l
 ) b


based aperture screen? How far apart will the pinholes in that screen be 


I(Y) 
 ∝  b 
 +

 cos (2p aY
 >l s
 )

p a


when the interference fringes they otherwise generate vanish? [ Hint
 : 

>l l


Study Problem 12.5.]


12.7*
   Even though the coherence area increases as g


Figure P.12.13



Y



a
  moves away 

from  g s
 , there is a quantity that doesn’t change; that’s the solid angle 


y


Ω


P



c
  subtended by the coherence area at the center of the source. Justify 

the expression


S
 2


S



a


l2


O


Ω

0


S



c 
 ≈  As



S



b


1

for a distant object like a star. As  g


l



s



a
  moves away from  g  s
 , it intersects 

the cone of the solid angle, leading to larger and larger values of  Ac
 .

Σ o



12.8
   Suppose we set up a fringe pattern using a Michelson Interfer-

ometer with a mercury vapor lamp as the source. Switch on the lamp in 


12.14
   Carry out the details leading to the expression for the visibility 

your mind’s eye and discuss what will happen to the fringes as the 

given by Eq. (12.22).

mercury vapor pressure builds to its steady-state value.


12.15
   Under what circumstances will the irradiance on  g o
  in 


12.9*
  We wish to examine the irradiance produced on the plane of 

Fig. P.12.15 be equal to 4 I
 0, where  I
 0 is the irradiance due to either 

observation in Young’s Experiment when the slits are illuminated simul-

uncorrelated point source alone?

taneously by two monochromatic plane waves of somewhat different 

frequency,   E
 1 and  E
 2. Sketch these against time, taking l1 = 0.8 l2. 


Figure P.12.15


Now draw the product  E
 1 E
 2 (at a point- P 
 ) against time. What can you 

say about its average over a relatively long interval? What does 


O



S


( E


2

1 +  E
 2)2 look like? Compare it with  E
 21 +  E
 22. Over a time that is long 

compared with the periods of the waves, approximate 8( E



S



O


1 +  E
 2)29T.


S



12.10*  
 With the previous problem in mind, now consider things 


S
 1

spread across space at a given moment in time. Each wave separately 

would result in an irradiance distribution  I
 1 and  I
 2. Plot both on the 

same space axis and then draw their sum  I


Σ

1 +  I
 2. Discuss the meaning 


o


of your results. Compare your work with Fig. 7.16. What happens to 

the net irradiance as more waves of different frequency are added 


12.16*
   Suppose we set up Young’s double-pinhole experiment with a 

in? Explain in terms of the coherence length. Hypothetically, what 

small circular hole of diameter 0.1 mm in front of a sodium lamp 

would happen to the pattern as the frequency bandwidth approached 

(lo = 589.3 nm) as the source. If the distance from the source to the 

infinity?

aperture screen is 1 m, how far apart will the pinholes be when the 

fringe pattern disappears?


12.11
   With the previous problem in mind, return to the autocorrela-

tion of a sine function, shown in Fig. 11.51. Now suppose we have a 


12.17*
   Look at the Young’s Experiment depicted in Fig. 9.10. Ther-

signal composed of a great many sinusoidal components. Imagine that 

mal quasimonochromatic light, filtered to a mean of 500 nm, impinges 

you take the autocorrelation of this complicated signal and plot the 

from the left on the 0.10-mm-diameter hole in the source screen. 

result (use three or four components to start with), as in part ( e
 ) of 

Roughly how far apart at most will the two pinhole apertures be if 

Fig. 11.51. What will the autocorrelation function look like when the 

fringes are to start being observed? The source is 1.0 m from the aper-

number of waves is very large and the signal resembles random noise? 

ture screen.

What is the significance of the t = 0 value? How does this compare 


12.18
   Show that Eqs. (12.34) and (12.35) follow from Eqs. (12.32) 

with the previous problem?

and (12.33).


12.12*
   Imagine that we have the arrangement depicted in Fig. 12.8. 


12.19*
   Return to Eq. (12.21) and separate it into two terms represent-

If the separation between fringes (max. to max.) is 1 mm and if the 

ing a coherent and an incoherent contribution, the first arising from the 

projected width of the source slit on the screen is 0.5 mm, compute the 

superposition of two coherent waves with irradiances of 0 g ˜
 12 (
 t ) 
 0 I
 1 and visibility.

0 g ˜
 12 (
 t ) 
 0  I
 2 having relative phase of a12 (
 t ) 
 - w, and the second from M12_HECH7226_05_SE_C12_580-603.indd   602
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the superposition of incoherent waves of irradiance [1

fringes formed on the plane of observation have minimum visibility 

- 0 g ˜
 12 (
 t ) 
 0] I
 1

and  [1

when

- 0 g ˜
 12 (
 t ) 
 0] I
 2. Now derive expressions for  I
 coh> I
 incoh and for I
 incoh> I
 total. Discuss the physical significance of this alternative formu-a(a2 - a1) = 12  m


lation and how we might view the visibility of fringes in terms of it.

where  m 
 = ±1, ±3, ±5 . . . .


12.20
   Imagine that we have Young’s Experiment, where one of the 

two pinholes is now covered by a neutral-density filter that cuts the 

irradiance by a factor of 10, and the other hole is covered by a trans-


Figure P.12.26


parent sheet of glass, so there is no relative phase shift introduced. 

Compute the visibility in the hypothetical case of completely coherent 

illumination.


12.21*
   Suppose that Young’s double-slit apparatus is illuminated by 

sunlight with a mean wavelength of 550 nm. Determine the separation 

a1


a


of the slits that would cause the fringes to vanish.

a2


S
 1


12.22*
   Return to Fig. 12.8 and the broad, quasimonochromatic, long, 


S
 2

rectangular source of light (

Σ

l


a


0 = 500 nm). How far apart should the 

two movable narrow aperture slits be if the fringe pattern on  g o
  is to 


l



s


disappear for the first time as that separation increases from near zero? 

Σ o


The source is 1.0 m in front of the aperture screen, and the width of the 

source is 0.10 mm.


12.27
  Imagine that we have a wide quasimonochromatic source  


12.23*
  Return to Fig. 12.8 and the broad quasimonochromatic slit 

(l = 500 nm) consisting of a series of vertical, incoherent, infinitesi-

source. How wide should this source be if the fringe visibility is to be 

mally narrow line sources, each separated by 500 mm. This is used to 

0.9? The source is 1.0 m in front of the aperture screen and 

illuminate a pair of exceedingly narrow vertical slits in an aperture 

l0 = 550 nm. The aperture slits are separated by 0.20 mm. [ Hint
 : You 

screen 2.0 m away. How far apart should the apertures be to create a 

might want to look at Table 1 in the back of the book. What’s the sinc 

fringe system of maximum visibility?

of p>4?]


12.28*
   Earlier as an example we used  dc 
 ≈ l0>u s
  to calculate the 


12.24
   We wish to construct a double-pinhole setup illuminated by a 

approximate lateral coherence distance for sunlight. Now find that 

uniform, quasimonochromatic, thermal slit source of incoherent light 

same quantity, the diameter of the coherence area for a circular 

of mean wavelength 500 nm and width  b
 , a distance of 1.5 m from the 

thermal source, using the more conservative notions that lead to 

aperture screen. If the pinholes are 0.50 mm apart, how wide can the 

Eq. (12.31).

source be if the visibility of the fringes on the plane of observation is 


12.29*
  Consider the Michelson stellar interferometer. Under what 

not to be less than 85%?

conditions will the fringes vanish when the light comes from two 


12.25*
   Suppose that we have a quasimonochromatic, uniform thermal 

equally bright stars? Compare this to the situation in which there is 

slit source of incoherent light, such as a discharge lamp with a mask and 

only one uniformly bright star of adequately large angular size. Write 

filter in front of it. We wish to illuminate a region on an aperture screen 

expressions for the angles subtended at the device by the sources in 

10.0 m away, such that the modulus of the complex degree of coherence 

both cases.

everywhere within a region 1.0 mm wide is equal to or greater than 90% 


12.30*
   While studying the star Arcturus with a Michelson stellar in-

when the wavelength is 500 nm. How wide can the slit be?

terferometer the fringes vanished when the two mirrows were 24 ft 


12.26*
   Figure P.12.26 shows two quasimonochromatic point sources 

apart. Assuming light of a mean wavelength of 500 nm, what angle did 

of incoherent light illuminating two pinholes in a mask. Show that the 

the star subtend at the Earth? Give your answer in arcseconds.
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13Modern Optics: 



Lasers and  



Other Topics



13.1 Lasers and Laserlight



13.1.1  Radiant Energy and Matter in Equilibrium


It shouldn’t surprise anyone that if physics was to be turned on 

During the early 1950s a remarkable device known as the 

its head, it would be done while trying to figure out what light 


maser
  came into being through the efforts of a number of 

(i.e., radiant energy) was all about. Quantum theory had its earli-

scientists. Principal among these people were Charles Hard 

est beginnings back in 1859 with the study of a seemingly ob-

Townes of the United States and Alexandr Mikhailovich 

scure phenomenon known as blackbody radiation
 . That year, 

Prokhorov and Nikolai Gennadievich Basov of the USSR, all 

Charles Darwin published  The Origin of Species
 , and Gustav 

of whom shared the 1964 Nobel Prize in Physics for their 

Robert Kirchhoff proffered an intellectual challenge that would 

work. The maser, which is an acronym for Microwave Ampli-

lead to a revolution in physics. 

fication by Stimulated Emission of Radiation, is, as the name 

Kirchhoff was involved in analyzing the way bodies in ther-

implies, an extremely low-noise, microwave amplifier.* It 

mal equilibrium behave in the process of exchanging radiant en-

functioned in what was then a rather unconventional way, 

ergy. This  thermal radiation 
 is electromagnetic energy emitted 

making direct use of the quantum-mechanical interaction of 

by all objects, the source of which is the random motion of their 

matter and radiant energy. Almost immediately after its in-

constituent atoms. He characterized the abilities of a body to 

ception, speculation arose as to whether or not the same 

emit and absorb electromagnetic energy by an  emission coeffi-


technique could be extended into the optical region of the 


cient
  e  and an  absorption coefficient
  a .  Epsilon is the energy 


spectrum. In 1958 Townes and Arthur L. Schawlow prophet-

l

l


per unit area per unit time emitted in a tiny wavelength range 


ically set forth the general physical conditions that would 


around
  l (in units of W>m2>m): thermal radiation comprises a 

have to be met in order to achieve L
 ight  A
 mplification by 

wide range of frequencies, and an energy-measuring device by 


S
 timulated E
 mission of R
 adiation. And then in July of 1960 

necessity admits a band of wavelengths.  Alpha is the fraction of 


Theodore H. Maiman announced the first successful opera-


the incident radiant energy absorbed per unit area per unit time 


tion of an optical maser or laser
 —certainly one of the great 


in that wavelength range
 ; it’s unitless. The emission and absorp-

milestones in the history of Optics, and indeed in the history 

tion coefficients depend on both the nature of the surface of the 

of science, had been achieved.

body (color, texture, etc.) and the wavelength—a body that emits 

The laser is a quantum-mechanical device that manages to 

or absorbs well at one wavelength may emit or absorb poorly at 

produce its “marvelous light” by taking advantage of the sub-

another.

tle ways in which atoms interact with electromagnetic radia-

Consider an isolated chamber of some sort in thermal equi-

tion. To gain a solid, if only introductory, understanding of 

librium at a fixed temperature  T
 . Presumably, it would be filled 

how the laser works and what makes its emissions so special, 

with radiant energy at a myriad of different wavelengths—think 

we’ll first lay out some basic theory about ordinary thermal 

of a glowing furnace. Kirchhoff assumed there was some for-

sources, such as lightbulbs and stars. That will require an in-

mula, or  distribution function
    I (
 l )
 , which depends on  T
  and 

troduction to blackbody radiation, but those insights are also 

l

which provides values of the  
energy per unit area per unit time 



basic to any treatment of the interaction of EM-radiation and 



at each wavelength

 ; call it the  
spectral flux density

  within the 

matter. To that will be added a discussion of the Boltzmann 

cavity (or  
spectral exitance

   
 when it leaves it). He concluded 

distribution (p. 608) as applied to atomic energy levels. With 

that the  total  
 amount of energy at all wavelengths being ab-

this to stand on, we can appreciate the central notion of stimu-

sorbed by the walls versus the amount emitted by them must be 

lated emission via the Einstein  A 
 and  B
  coefficients (p. 608); 

the same, or else  T
  would change, and it doesn’t. Furthermore, 

the rest, more or less, follows.

Kirchhoff argued that if the walls were made of different mate-

rials (which behave differently with  T 
 ), that same balance 

would have to apply for  each  
 wavelength range individually. 

*See James P. Gorden, “The Maser,”  Sci. Am
 . 199, 42
  (December 1958).

The energy absorbed at l, namely, a  I 
 , must equal the energy 

l l


604
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radiated,  e ,  and this is true for all materials no matter how 


l


different.
  Kirchhoff’s Radiation Law 
 is therefore

Source

e





l =  I 
  (13.1)

a

l

l

Radiant energy

wherein the distribution  I 
 , in units of J

l

>m3· 
 s or W>m3, is a 

universal function the same for every type of cavity wall regard-

less of material, color, size, and shape and is only dependent on 


T
  and l. That’s quite extraordinary! Still, the British ceramist 

Thomas Wedgwood had commented long before (1792) that 

objects in a fired kiln all turned glowing red together along with 

Nonabsorbing prism

the furnace walls, regardless of their size, shape, or material 

constitution.

Although Kirchhoff could not provide the energy distribu-

tion function in general, he did observe that a perfectly absorb-

ing body, one for which al = 1, will appear black and, in that 

special case,  I


. Moreover, the distribution function for a 

l = el

perfectly black object is the same as for an isolated chamber at 

that same temperature (visualize such a blackbody at equilibri-

Detector

um inside a hot oven). The radiant energy distribution at equi-

librium within an isolated cavity is in every regard the same, “as 

(a)

if it came from a completely black body of the same tempera-

ture.” Therefore  
the energy that would emerge from a small 





hole in the chamber should be identical to the radiation com-





ing from a perfectly black object at the same temperature.



The scientific community accepted the challenge of experi-

mentally determining  I 
 , but the technical difficulties were 

l

)

great and progress came slowly. The basic setup (Fig. 13.1 a
 ) is 

3

simple enough, although coming up with a reliable source was 

W/m (


T 
 (high)

a daunting problem for a long time. Data must be extracted that 


I 
 l

is independent of the construction of the specific detector, and 

so the best thing to plot is the radiant energy per unit time, 


T 
 (low)

which enters the detector per unit area (of the entrance window) 

per unit wavelength range (admitted by the detector). The kind 

0

1000

2000

3000

of curves that were ultimately recorded are shown in Fig. 13.1 b
 , 

l (nm)

and each is a plot of  I 
  at a specific temperature.

l

(b)


Figure 13.1
   ( a
 )  A basic experimental setup for measuring blackbody 


Stefan–Boltzmann Law


radiation. ( b
 )  Values of  I
 l at successive wavelengths as measured by a 

detector. Each curve corresponds to a specific source temperature.

In 1865 John Tyndall published some experimental results, in-

cluding the determination that the total energy emitted by a 

heated platinum wire was 11.7 times greater when operating at 

cylinder, but instead of atoms, the active agency was electro-

1200°C (1473 K) than it was at 525°C (798 K). Rather amaz-

magnetic waves. The resulting Stefan–Boltzmann Law for 

ingly, Josef Stefan (1879) noticed that the ratio of 





blackbodies (which is correct, though nowadays we would de-

(1473 K)4 to (798 K)4 was 11.6, nearly 11.7, and he surmised 

rive it differently) is

that the rate at which energy is radiated is proportional to  T 
 4. In 

this observation Stefan was quite right (and quite lucky); Tyn-






P 
 = s AT
 4  (13.2)

dall’s results were actually far from those of a blackbody. Still, 

the conclusion was subsequently given a theoretical foundation 

where  P
  is the total radiant power at all wavelengths,  A
  is the 

by L. Boltzmann (1884). His was a traditional treatment of the 

area of the radiating surface,  T
  is the absolute temperature in 

radiation pressure exerted on a piston in a cylinder using the 

kelvins, and s is a universal constant now given as

laws of thermodynamics and Kirchhoff’s Law. The analysis 

s

progressed in much the same way one would treat a gas in a 

= 5.670 33 * 10-8 W>m2 · 
 K4
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The total area under any one of the blackbody-radiation curves 

of Fig. 13.1 b 
 for a specific  T 
 is the power per unit area, and from 

Eq. (13.2) that’s just  P
 > A 
 = s T
 4.

Real objects are not perfect blackbodies; carbon black has an 

absorptivity of nearly 1, but only at certain frequencies (obvi-

ously including the visible). Its absorptivity is much lower in 

the far infrared. Nonetheless, most objects resemble a black-


I e
 l

body (at least at certain temperatures and wavelengths)—you, 

for instance, are nearly a blackbody for infrared. Because of 

6000 K

that, it’s useful to write a similar expression for ordinary ob-

5000 K

jects. This can be done by introducing a multiplicative factor 

4000 K

called the total emissivity (e), which relates the radiated power 

3000 K

to that of a blackbody for which e = 1, at the same tempera-

0

500

1000

1500

2000

ture; thus

Visible

l (nm)


P 
 = es AT
 4


Figure 13.2
     Blackbody radiation curves. The hyperbola passing through 

Table 13.1 provides a few values of e (at room temperature), 

peak points corresponds to Wien’s Law.

where 0 6 e 6 1. Note that emissivity is unitless.

If an object with a  total absorptivity 
 of a is placed in an en-

At the moment when the filament of a lightbulb “blows,” the 

closure such as a cavity or a room having an emissivity ee and 

resistance, current, and temperature rise; it goes from its normal 

a temperature  T
 e, the body will radiate at a rate es AT
  4 and ab-

operating reddish white color to a bright flash of blue-white.

sorb energy inside the enclosure at a rate a(ees AT
  4e). Yet at any 

temperature at which the body and enclosure are in equilibrium 

(i.e.,   T 
 =  T
 e), these rates must be equal; hence, aee = e and 


Wien Displacement Law


that has to be true for all temperatures. The net power radiated 

Perhaps the last notable success in applying classical theory to 

(when  T 
 7  T
 e) or absorbed (when  T 
 6  T
 e) by the body is then

the problem of blackbody radiation came in 1893 at the hands 


P 
 = es A
 ( T
 4 -  T
 4e)

of the German physicist and Nobel laureate Wilhelm Otto Fritz 

Franz Wien (1864–1928), known to his friends as Willy. He 


All bodies not at zero kelvin radiate
 , and the fact that  T 
 is 

derived what is today called the Displacement Law
 . Each 

raised to the fourth power makes the radiation highly sensitive 

blackbody curve reaches a maximum height at a value of wave-

to temperature changes. When a body at 0°C (273 K) is brought 

length (lmax) that is particular to it and therefore to the absolute 

up to 100°C (373 K), it radiates about 3.5 times the previous 

temperature  T.
  At that wavelength, the blackbody radiates the 

power. Increasing the temperature increases the net power radi-

most energy. Wien was able to show that

ated; that’s why it gets more and more difficult to increase the 

temperature of an object. (Try heating a steel spoon to 1300°C.) 





lmax T 
 = constant  (13.3)

Increasing the temperature of an object also shifts the emitted 

where the constant was found experimentally to be 0.002 898 

distribution of energy among the various wavelengths present. 

m·
 K. The peak wavelength is inversely proportional to the tem-

perature.  Raise the temperature
 ,  and the bulk of the radiation 



shifts to shorter wavelengths and higher frequencies 
 (see the 


TABLE 13.1    Some Representative Values of  


dashed curve in Fig. 13.2). As a glowing coal or a blazing star 


Total Emissivity*


gets hotter, it goes from IR warm to red-hot to blue-white. A 

Material 

e

person or a piece of wood, both only roughly blackbodies, radi-

ates for the most part in the infrared and would begin to glow 

Aluminum foil 

0.02

faintly in the visible only at around 600°C or 700°C, long after 

Copper, polished 

0.03

either had decomposed. The bright cherry red of a chunk of 

Copper, oxidized 

0.5

“red” hot iron sets in at around 1300°C.

Carbon 0.8

In 1899 researchers greatly advanced the state of experimen-

White paint, flat 

0.87

tation by using, as a source of blackbody radiation, a small hole 

Red brick 

0.9

in a heated cavity (Fig. 13.3). Energy entering such an aperture 

Concrete 0.94

reflects around inside until it’s absorbed. (The pupil of the eye 

Black paint, flat 

0.94

appears black for precisely the same reason.) A near-perfect ab-

Soot 0.95

sorber is a near-perfect emitter, and the region of a small hole in 

* T 
 = 300 K, room temperature. 

the face of an oven is a wonderful source of  blackbody radiation
 .

M13_HECH7226_05_SE_C13_604-668.indd   606

10/11/15   4:20 PM



 



13.1
   Lasers and Laserlight  607


devised. He assumed that the radiation in a chamber interacted 

with simple microscopic oscillators of some unspecified type. 

These vibrated on the surfaces of the cavity walls, absorbing 


Figure 13.3
     Radiant energy entering a  

and reemitting radiant energy independent of the material. (In 

tiny hole in a chamber will rattle around  

with little chance of ever emerging through 

fact, the atoms of the walls do exactly that. Because of their 

the aperture, and so the hole looks black. 

tightly packed configuration in the solid walls, the atoms inter-

In reverse, the aperture of a heated cham-

act with a huge number of their neighbors. That completely 

ber appears as a blackbody source.

blurs their usual characteristic sharp resonance vibrations, al-

lowing them to oscillate over a broad range of frequencies and 

emit a continuous spectrum.) Try as he might, Planck was un-

It was at this point in time that classical theory began to falter. 

successful. At that time, he was a devotee of E. Mach, who had 

All attempts to fit the entire radiation curve (Fig. 13.2) with 

little regard for the reality of atoms, and yet the obstinate in-

some theoretical expression based on electromagnetism led 

solubility of the problem ultimately led Planck to “an act of 

only to the most limited successes. Wien produced a formula 

desperation.” He hesitantly turned to Boltzmann’s “distasteful” 

that agreed with the observed data fairly well in the short wave-

statistical method, which had been designed to deal with the 

length region but deviated from it substantially at large l. Lord 

clouds of atoms that constitute a gas.

Rayleigh and later Sir James Jeans (1877–1946) developed a 

Boltzmann, the great proponent of the atom, and Planck were 

description in terms of the standing-wave modes of the field 

intellectual adversaries for a while. And now Planck was forced 

within the enclosure. But the resulting  Rayleigh–Jeans formula
  

to use his rival’s statistical analysis, which—ironically—he 

matched the experimental curves only in the very long wave-

would misapply. If Boltzmann’s scheme for counting atoms was 

length region. The failure of classical theory was totally inexpli-

to be applied to something continuous, such as energy, some 

cable; a turning point in the history of physics had arrived.

adjustments would have to be made in the procedure. Thus, ac-

cording to Planck, the total energy of the oscillators had to be 

thought of, at least temporarily, as apportioned into “energy ele-


Planck Radiation Law


ments” so that they could be counted. These energy elements 

Max Karl Ernst Ludwig Planck at 42 was the somewhat reluc-

were given a value proportional to the frequency n of the resona-

tant father of quantum theory. Like so many other theoreticians 

tors. Remember that he already had the formula he was after, 

at the turn of the century, he, too, was working on blackbody 

and in it there appeared the term  h
 n. Planck’s Constant,

radiation. But Planck would succeed not only in producing 

6.626 075 5 * 10-34 J · 
 s or 4.135 669 2 * 10-15 eV · 
 s

Kirchhoff’s distribution function, but also in turning physics 

upside-down in the process. We cannot follow the details of his 

is a very small number and so  h
 n, which has the units of energy, 

derivation here; besides, the original version was wrong. (Bose 

is itself a very small quantity. Accordingly, he set the value of 

and Einstein corrected it years later.) Still, it had such a power-

the energy element equal to it: ℰ =  h
 n.

ful impact that it’s worth looking at some of the features that 

This was a statistical analysis, and counting was central. 

are right.

Still, when the method was applied as Boltzmann intended, it 

Planck knew that if an arbitrary distribution of energetic 

naturally smoothed out energy, making it continuous as usual. 

molecules was injected into a constant-temperature chamber, it 

Again, we needn’t worry about the details. The amazing thing 

would ultimately rearrange itself into the Maxwell–Boltzmann 

was that Planck had stumbled on a hidden mystery of nature: 

distribution of speeds as it inevitably reached equilibrium. Pre-


energy is quantized
 —it comes in tiny bursts, but he didn’t re-

sumably, if an arbitrary distribution of radiant energy is injected 

alize it then.

into a constant-temperature cavity, it, too, will ultimately rear-

Planck derived the following formula for the spectral exi-

range itself into the Kirchhoff distribution of energies as it in-

tance (or spectral irradiance)—which he had already arrived at 

evitably reaches equilibrium.

by fitting curves to the data—and it’s the answer to Kirchhoff’s 

In October 1900, Planck produced a distribution formula 

challenge:

that was based on the latest experimental results. This mathe-

matical contrivance, concocted “by happy guesswork,” fit all 

2p hc
 2

1






I
 l =


hc


d  (13.4)

the data available. It contained two fundamental constants, one 

l5

c e
 l k
 B T 
 - 1

of which ( h
 ) would come to be known as Planck’s Constant
 . 

That much by itself was quite a success, even if it didn’t explain 

where   k
 B is Boltzmann’s Constant. Here  I 
  is energy per unit 

l

anything. Although Planck had no idea of it at the time, he was 

time, per unit area, per unit wavelength interval. This is Planck’s 


about to take a step that would inadvertently revolutionize our 


Radiation Law
 , and, of course, it fit blackbody data splendidly 

perception of the physical Universe.

(Fig. 13.4). Notice how the expression contains the speed of light, 

Naturally enough, Planck set out to construct a theoretical 

Boltzmann’s Constant, and Planck’s Constant ( h
 ). It bridges 

scheme that would logically lead to the equation he had already 

Electromagnetic Theory to the domain of the atom.
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)]

and that their energies were quantized. Each oscillator could 
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120
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cm 100

exist only with an energy that was a whole-number multiple 

• 

••••••••••• ••••••

sr 

80

•

••

of   h
 n (a little like the  gravitational
 -PE of someone walking 
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•

•

•

2 
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•



•••

up a flight of stairs). Moreover, radiant energy itself is quan-


•
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•••


tized
 , existing in localized blasts of an amount 

•

ℰ =  h
 n.
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13.1.2 Stimulated Emission


Frequency (cm–1)

The LAser accomplishes “light amplification” by making use of 


Figure 13.4
     The cosmic background radiation of the Universe. Since the 

energetic atoms in a medium to reinforce the light field. Let’s 

creation of the Universe with the Big Bang, it has expanded and cooled. 

therefore examine the manner in which the energy states of a 

The data points (measured in the microwave spectrum) were detected by 

system of atoms at some arbitrary temperature is normally dis-

the Cosmic Background Explorer (COBE) satellite. The solid line is the 

Planck blackbody curve for a temperature of 2.735 ± 0.06 K.

tributed. The problem is part of the broader discipline of Statis-

tical Mechanics and is addressed specifically in terms of the 

Maxwell–Boltzmann distribution.

EXAMPLE 13.1

A blackbody having an area of 1.0 m2, at a comfortable tem-

perature of 300 K, radiates into space. Determine the amount of 


Population of Energy Levels


power it emits at 1.0 mm over a wavelength range of 0.10 mm.

Imagine a chamber filled with a gas in equilibrium at some tem-

SOLUTION 

perature  T
 . If  T
  is relatively low, as it is in a typical room, most 

The radiated power,  P
 , is the energy emitted per unit time, 

of the atoms will be in their ground states, but a few will mo-

which is 

mentarily pick up enough energy to “rise” into an excited state. 

The classical Maxwell–Boltzmann distribution maintains that, 


P 
 =  I 
 ∆

l l ∆ A


on average, a number of atoms per unit volume,  Ni
 , will be in 

any excited state of energy ℰ i
  such that

Hence


Ni 
 =  N
 0 e
 -ℰ i
 > k
 B T


2p hc
 2

1


P 
 =

d∆l ∆ A


l5

c ehc
 /l k
 B T 
 - 1

where  N
 0 is a constant for a given temperature.  The higher the 



energy state
 ,  that is
 ,  the greater the value of  
 ℰ  
 ( the smaller is
 or using the results of Problem 13.11


the exponential
 )  and the fewer atoms there will be in that state
 . 

Since we will be interested in atomic transition between ar-

3.742 * 10-25 ∆l ∆ A



P 
 =

 W>m2 · 
 nm

bitrary states, consider the  j
 th energy level where ℰ j 
 7 ℰ i
 . Then 

l5( e
 0.014 4>l T
   - 1)

for it  Nj 
 =  N
 0 e
 -ℰ j
 > k
 B T
 , and the ratio of the populations occupying these two states is 

Putting ∆l in nanometers and l in meters yields


Nj



e
 -ℰ j
 > k
 B T


3.742 * 10-25(100 nm)(1)





=

 (13.5)


P 
 =


Ni



e
 -ℰ i
 > k
 B T


1 * 10-30(7.017 * 1020 - 1)

This is the  relative population
 , and it follows that

And so 


P 
 = 5.3 * 10-14 W 






Nj 
 =  Nie
 -(ℰ j
 -ℰ i
 )> k
 B T 
 =  Nie
 - h
 n ji
 > k
 B T
  (13.6) This is a tiny amount of power.

where use was made of the fact that a transition for the  j
 th-state 

to the  i
 th-state corresponds to an energy change of (ℰ j 
 - ℰ i
 ) 

and since such transitions are accompanied by the emission of 

Although Eq. (13.4) represents a great departure from pre-

a photon of frequency n ji
 , we can substitute (ℰ j 
 - ℰ i
 ) =  h
 n ji
 .

vious ideas, Planck did not mean to break with classical theo-

ry. It would have been unthinkable for him even to suggest 

that radiant energy was anything but continuous. “That ener-


The Einstein 
 
A

  and 
 
B

  Coefficients


gy is forced, at the outset, to remain together in certain quan-

ta . . . ,” Planck later remarked, “was purely a formal assump-

In 1916 Einstein devised an elegant and rather simple theoreti-

tion and I really did not give it much thought.” It was only 

cal treatment of the dynamic equilibrium existing for a material 

around 1905, at the hands of a much bolder thinker, Albert 

medium bathed in electromagnetic radiation, absorbing and 

Einstein, that we learned that the atomic oscillators were real 

reemitting. The analysis was used to affirm Planck’s Radiation 
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Initial

Final

then dump its excess energy in-step with the incoming photon, 

in a process now called stimulated emission 
 (Fig. 13.5).

In the case of absorption, the rate-of-change of the number 

Stimulated

of atoms in some initial state, as they leave to some higher state, 


j


absorption

must depend on the strength of the photon field inundating 


i


those atoms. In other words, it must depend on the energy den-

sity  u
 , given by Eq. (3.34), but more specifically it must depend 


h
 n ji


(a)

on the energy density in the frequency range driving the transi-

tion, that is, the spectral energy density  u 
 , which is the energy 

n

per unit volume per unit frequency interval, measured in units 

of joules per meter-cubed per inverse second (J · 
 s>m3). (Note 

that if we consider the radiation field as a photon gas, the spec-

Spontaneous

tral energy density can be thought of as the photon density per 


i


emission

unit frequency range.) The rate-of-change of the number of at-


j


oms, the transition rate
 , will also be proportional to the popu-

lation, that is, the number density of atoms in that state ( Ni
 ); the 

more there are, the more can leave (via absorption) per second. 


h
 n

Because the process is driven by the photon field, let’s call it 


ji


(b)


stimulated absorption
 , whereupon the transition rate is


dNi


[stimulated absorption] 

a b = - B


 (13.7)


dt



ijNiu
 n

ab


h
 n ji



h
 n ji 
 Here  Bij
  is a constant of proportionality, the  Einstein absorption 



coefficient
 , and the minus arises because  Ni
  is decreasing. Simi-

Stimulated


h
 n ji



i


larly, for stimulated emission

emission


dN



j



j


[stimulated emission] 

a b = - B


 (13.8)


dt



jiNju
 n

st

(c)

The constant  Bji
  is the  Einstein stimulated emission coefficient
 . 


Figure 13.5
     A schematic representation of ( a
 ) stimulated absorption,  

In the case of spontaneous emission, the process is independent 

( b
 ) spontaneous emission, and ( c
 ) stimulated emission.

of the field environment and


dNj


[spontaneous emission] 

Law, but more importantly it also created the theoretical foun-

a b = - A



dt



jiNj
  (13.9)

sp

dation for the laser. The reader should already be familiar with 

This is the rate of decrease of the higher-energy population,  N


the basic mechanism of  absorption 
 (see Fig. 3.35). Suppose the 


j
 , 

due to spontaneous emission. And  A


atom is in its lowest energy or ground-state configuration. A 


ji
  is the  Einstein spontane-



ous emission coefficient 
 associated with a drop from energy 

photon having an adequate amount of energy interacts with the 

level- j
  to level- i
 . Because the rate of stimulated emission de-

atom, imparting that energy to the atom, thereby causing the 

pends on  u 
  and the rate of spontaneous emission does not, 

electron cloud to take on a new configuration. The atom jumps 

n

when the energy density is high—as it would be in a laser—we 

into a higher-energy excited state (Fig. 13.5). In a dense medi-

can expect stimulated emission to dominate.

um, the atom is likely to interact with its jiggling neighbors and 

pass off its bounty of energy via collisions.

EXAMPLE 13.2

Such an excess-energy configuration is usually (though not 

always) exceedingly short-lived, and in 10 ns or so, without the 

A 10-mW laser is emitting at a mean wavelength of 500 nm. 

intercession of any external influence, the atom will emit its 

Determine the rate of occurence of stimulated emission.

overload of energy as a photon. As it does, it reverts to a stable 

SOLUTION 

state in a process called  spontaneous emission 
 (Fig. 13.5 b
 ).

The remarkable thing is that there is a third alternative pro-

We have that the laser puts out 10 * 10-3 J>s. We need to find 

cess, one first appreciated by Einstein and crucial to the opera-

out how much energy ( E
 ) each photon carries off. Since  E 
 =  h
 n 

tion of the laser—which wasn’t invented until almost a half 

and  c 
 = ln

century later. For a medium inundated with EM-radiation, it’s 

possible for a photon to interact with an excited atom while that 


hc


(6.626 * 10-34)(2.998 * 108)


E 
 =

=

atom is still in its higher-energy configuration. The atom can 

l

500 * 10-9
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and  E 
 = 3.973 * 10-19 J emitted per photon. The rate of pho-

Cadmium+

ton emission is then


A
  = 1.6 × 105 s−1

2d

10 * 10-3 J>s

32

353.6 nm

= 2.52 * 1016 photons>s

3.973 * 10-19 J

2p32

325.0 nm   

where we can assume it’s essentially all due to stimulated emission.


A
  = 7.8 × 105 s−1

2p12

Keep in mind that the transition rate, the number of atoms mak-


Figure 13.6
     Two strong emission transitions occurring in the He-Cd laser.

ing transitions per second, divided by the number of atoms, is 

the probability of a transition occurring per second, 𝒫. Conse-

Following Einstein’s lead, we assume (1) that thermodynamic 

quently, the probability per second of spontaneous emission is 

equilibrium exists between the radiation field and the atoms 

𝒫sp =  Aji
 .

in it at any  T
 ; (2) that the energy density has the characteris-

For a single excited atom making a spontaneous transition to 

tics of a blackbody at  T
 ; and (3) that the number densities of 

a lower state, the inverse of the transition probability per second 

the two states are in accord with the Maxwell–Boltzmann 

is the mean life 
 or lifetime 
 of the excited state t. Thus (operat-

distribution.

ing under conditions that exclude any other mechanism but 

Given that the system is in equilibrium, the rate of upward 

spontaneous emission), if  N
  atoms are in that excited state, the 

( i 
 S  j
 ) transitions must equal the rate of downward transitions 

total rate of transitions, that is, the number of emitted photons 

(  j 
 S  i
 ):

per second, is  N
 𝒫sp =  NAji 
 =  N
 >t. A low-transition probability 

means a long lifetime. Generally an electron in a high energy 


BijNiu
 n =  BjiNju
 n +  AjiNj


level can decay down to several different lower levels, as shown 

Dividing both sides by  Ni
  and rearranging terms yields

in Fig. 13.6. There will then be different values of the radiative 

transition probability for each different drop, and the total prob-


Nj



Biju


ability is the sum, g Aji
 , of all of those individual probabilities. 

=

n


Ni



Aji 
 +  Bjiu
 n

Transitions that are likely to happen are known as allowed
 ; 

those far less likely are forbidden
 . In the visible,  Aji
  values for 

Making use of Eq. (13.6), that is, what we found from the ap-

allowed transitions are in the range from 106 s-1 to 108 s-1, 

plication of the Maxwell–Boltzmann distribution, this becomes

whereas for forbidden transitions they’re less than 104 s-1.


Biju



e
 - h
 n

n


ji
 > k
 B T


EXAMPLE 13.3

=  Aji 
 +  Bjiu
 n

Suppose a sample exists where there are  Nj
  excited electrons 

and solving for  u 
  leads to

n

per unit volume in energy level- j
  just above the ground state 

level- i
 . Show that the population of energy level- j
  falls expo-


Aji
 > Bji


nentially as electrons leave via spontaneous emission. What can 


 



u


 (13.10)

n = ( Bij
 > Bji
 ) eh
 n ji
 > k
 B T 
 - 1

be said about the lifetime of level- j
 ?

Here Einstein pointed out that as  T


SOLUTION 

S ∞, the spectral energy 

density, that is, the spectral photon density, approaches infinity. 

From Eq. (13.9)

Figure 13.2 shows that  I 
  increases with  T
 , and that implies that 

l


dNj



u 
  will behave in a like fashion. In fact,  I


, a point we will 

n

n = 14  cu
 n

= - A



dt



ji
   Nj


address presently. In any event, since  e
 0 = 1, the only way  u 
  will 

n

be large is if

Therefore


dNj



Bij


= - A


=  Bji 
 =  B



N



ji
   dt



j


for large  T
 , but since these constants are temperature indepen-

and integrating both sides

dent, they must be equal at all  T
 . The probabilities of stimulated 


Nj 
 =  Nj(0)e
 - Ajit


emission and absorption are 𝒫st =  Bjiu 
  and 𝒫

, re-

n

ab =  Biju
 n

spectively. Hence, the probability of stimulated emission is 


where  Nj(0)
  is  Nj
  at  t 
 = 0.


identical to the probability of stimulated absorption
 ; an 

The population drops to 1> e
  of its original value in a time 

atom in the lower state is just as likely to make a stimulated 

t = 1> Aji
 .

transition up as an excited atom is to make a stimulated transi-

tion down.
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Simplifying the notation (let  A 
 =  Aji
 ), Eq. (13.10) becomes

EXAMPLE 13.4

The 632.8-nm beam from a 2-mW He-Ne laser is 1.5 mm in 


A


1

diameter. Determine the value of the ratio of Einstein’s  A
  to  B
  






u






n =

c

d  (13.11)


B eh
 n ji
 > k
 B T
 -1

coefficients.

SOLUTION 

The ratio  A
 > B
  can be expressed via basic quantities by com-

paring this equation with

From Eq. 13.14

1


A


8p h
 n3

8p h


2p hc
 2






I



hc


=

l =

d  [13.4]

l k
 B T



B



e



c
 3

= l3

l5

c

- 1

and so

But first transform  I 
  into  I 
  where these are expressions for 

l

n


A


8p 6.626 * 10-34 J · 
 s

exitance (which is irradiance going outward) per interval  d


=

l 


B


(632.8 * 10-9m)3

and  d
 n, respectively. Using the fact that l =  c
 >n, differentiating 

Then

yields  d
 l = - cd
 n>n2. Because  I 
   d


  d


l

l =  I
 n n, and dropping the 

sign (since it just says that one differential increases while the 


A


other decreases), we get  I c


; and so

l >n2 =  I
 n

= 6.572 * 10-14 J · 
 s>m3


B


2p h
 n3

1






I



h
 n

Imagine a system of atoms in thermal equilibrium having 

n =

d  (13.12)


c
 2 c ek
 B T 
 - 1

only two possible states. Furthermore, require that the atoms 

have a long mean life so that we can ignore spontaneous emis-

Now as a last step we need only to compare the spectral en-

sion. When the system is inundated by photons of the proper 

ergy density  u 
  in the chamber with the spectral exitance,

n

energy, stimulated absorption depopulates the lower  i
 -level, 


c


while stimulated emission depopulates the upper  j
 -level. The 






I


  u 
  (13.13)

n = 4 n

number of photons vanishing from the system per second via 

stimulated absorption is proportional to 𝒫ab Ni
 , and the num-

emerging from it. Rather than burden the reader with a com-

ber entering it via stimulated emission is proportional to 𝒫st Nj
 , 

plete derivation of this relationship, let it suffice merely to jus-

but from the equality of the  B
 -coefficients it follows that 

tify it. Keep in mind that  I 
  corresponds to a flow of energy 

n

𝒫st = 𝒫ab. Therefore 𝒫ab Nj 
 = 𝒫st Nj
 . However, if the system is 

across a unit normal area, in one side and out the other—a beam 

in thermal equilibrium,  Ni 
 7  Nj
 , which means that the number 

leaving the chamber. In Section 3.3.1 we saw that the instanta-

of photons vanishing per second exceeds the number entering 

neous flow of power per unit normal area, the Poynting vector, 

per second; there’s a net absorption of photons by the lower 

was given by  S 
 =  cu
 , and so on average  I 
 =  cu
  for a beam. In-

state because there are more atoms in the lower state at any 

side a chamber, however, with light traveling in every direction, 

given temperature. The reverse would be true if we could 

not all the photons that contribute to  u
  will contribute to the 

create a situation—a  population inversion
 —in which  Ni 
 6  Nj
 ; 

exitance in a particular direction. Presumably, inside the cham-

then stimulated emission would dominate over stimulated 

ber a unit area held horizontally would have as much energy 

absorption.

flowing up through it as down. Moreover, only the components 

perpendicular to the area contribute to  S
 , so a factor of 1>4 is 

not unreasonable.


13.1.3 The Laser


From Eqs. (13.11), (13.12), and (13.14) it follows that

Consider an ordinary medium in which a few atoms are in some 


A


8

excited state; call it 

p h
 n3

0   j
 9 to conform with quantum-mechanical 





=

 (13.14)

notation. If a photon in an incident beam is to trigger one of 


B



c
 3

these excited atoms into stimulated emission, it must have the 

The probability of spontaneous emission is proportional to the 

frequency n ji
 , as in Fig. 13.5 c
 . A remarkable feature of this pro-

probability of stimulated emission; an atom susceptible to one 

cess is that  
the emitted photon is in-phase with, has the polar-



mechanism is proportionately susceptible to the other. Lasers 



ization of, and propagates in the same direction as, the stimu-



work by stimulated emission, and anything that enhances spon-



lating radiation

 . The emitted photon is said to be in the same 

taneous emission (i.e.,  A
 ) at the price of stimulated emission 

radiation mode as the incident wave and tends to add to it, in-

(i.e.,  B
 ) can be expected to work to the detriment of the process. 

creasing its flux density. However, since most atoms are ordi-

Because the ratio of  A
 > B
  varies as n3, it would seem that X-ray 

narily in the ground state, absorption is usually far more likely 

lasers ought to be difficult to build—they are!

than stimulated emission. 

M13_HECH7226_05_SE_C13_604-668.indd   611

10/11/15   4:20 PM



612
   Chapter 13
   Modern Optics: Lasers and Other Topics

This raises an intriguing point: What would happen if a sub-

stantial percentage of the atoms could somehow be excited into 

Flashtube

an upper state, leaving the lower state all but empty? For obvi-

ous reasons this is known as population inversion
 . An incident 

photon of the proper frequency could then trigger an avalanche 

Ruby

of stimulated photons— all in-phase
 . The initial wave would 

continue to build, so long as there were no dominant competi-

Trigger

Beam

tive processes (such as scattering) and provided the population 

electrode

inversion could be maintained. In effect, energy (electrical, 

chemical, optical, etc.) would be pumped in to sustain the inver-

(a)

sion, and a beam of light would be extracted after sweeping 

across the  active medium
 .

Pumping energy

Active


The First (Pulsed Ruby) Laser  
 To see how all of this is ac-

Mirror

medium

complished in practice, let’s take a look at Maiman’s original 

device (Fig. 13.7). The first operative laser had as its active 

medium a small, cylindrical, synthetic, pale pink ruby, that is, 

an Al2O3 crystal containing about 0.05 percent (by weight) of 

Cr2O3. Ruby, which is still a common crystalline laser media, 

had been used earlier in maser applications and was suggested 

Partial

for use in the laser by Schawlow. The rod’s end faces were pol-

mirror

ished flat, parallel and normal to the axis. Then both were sil-

vered (one only partially) to form a resonant cavity
 . 

It was surrounded by a helical gaseous discharge flash-

tube, which provided broadband optical pumping
 . Ruby ap-

pears red because the chromium atoms have absorption bands 

in the blue and green regions of the spectrum (Fig. 13.8 a
 ). 

Firing the flashtube generates an intense burst of light lasting 

a few milliseconds. Much of this energy is lost in heat, but 

many of the Cr3+ ions are excited into the absorption bands. 

A simplified energy-level diagram appears in Fig. 13.8 b
 . The 

excited ions rapidly relax (in about 100 ns), giving up energy 

to the crystal lattice and making nonradiative transitions. 

They preferentially drop “down” to a pair of closely spaced, 

especially long-lived, interim states. They remain in these so-

called metastable states
  for up to several milliseconds ( ≈3 

ms at room temperature) before randomly, and in most cases 

spontaneously, dropping down to the ground state. This is ac-

companied by the emission of the characteristic red fluores-

(b)

cent radiation of ruby. The lower-level transition dominates, 

and the resulting emission occurs in a relatively broad spec-


Figure 13.7
     The first ruby-laser configuration, just about life-sized.

tral range centered about 694.3 nm; it emerges in all direc-

tions and is incoherent. 

Notice how neatly everything works out. The broad absorp-

When the pumping rate is increased somewhat, a population 

tion bands make the initial excitation rather easy, while the long 

inversion occurs, and the first few spontaneously emitted pho-

lifetime of the metastable state facilitates the population inversion. 

tons stimulate a chain reaction. One quantum triggers the rapid, 

The atomic system in effect consists of (1) the absorption bands, 

in-phase emission of another, dumping energy from the meta-

(2) the metastable state, and (3) the ground state. Accordingly, it is 

stable atoms into the evolving lightwave (Fig. 13.7 b
 ). The wave 

spoken of as a  three-level
  laser.

continues to grow as it sweeps back and forth across the active 

Today’s ruby laser is generally a high-power source of 

medium (provided enough energy is available to overcome loss-

pulsed coherent radiation still used mostly for removing tattoos 

es at the mirrored ends). Since one of those reflecting surfaces 

and in holography. Such devices operate with coherence lengths 

was partially silvered, an intense pulse of red laser light (lasting 

ranging from 0.1 m to 10 m. Modern configurations usually 

about 0.5 ms and having a linewidth of about 0.01 nm) emerges 

have flat external mirrors, one totally and the other partially 

from that end of the ruby rod. 

reflecting. As an oscillator, the ruby laser generates millisecond 

M13_HECH7226_05_SE_C13_604-668.indd   612

10/11/15   4:20 PM



 



13.1
   Lasers and Laserlight  613


Since the lightbeam in a laser builds as it sweeps back and 

forth, the process has naturally been described, much like an 

electronic amplifier would be, in terms of a quantity known as 

“gain.” The gain 
 of an amplifier is the ratio of the strength of the 

Absorption

Blue

Green

output signal over that of the input signal. Accordingly, con-

sider a weak signal, a lightbeam, entering an active laser medi-

Cr+++ Ruby laser

300

400

500

600

700

um (i.e., the gain medium) at one end and emerging somewhat 

l (nm)

amplified at the other end. The laser medium is the immediate 

(a)

source of the energy imparted to the beam via stimulated emis-

sion of its constituent atoms. 

Suppose that the laser medium is an excited gas. The light 

emitted by a gas discharge, within which atoms are flying 

3

around at great speeds, is shifted in frequency due to the Doppler 

RELAXATION

effect. The atomic transition emission, which would otherwise 

be confined to a very narrow frequency range centered around no, 

Nonradiative

is now spread out into a wide Gaussian-shaped frequency band. 

transitions

This process, called  
Doppler broadening

 , is a determinant of the 

2

behavioral characteristics of the gas laser. Indeed, gain is pro-

Green

Metastable

portional to the Doppler width of the emission. In other words, 

gy (eV)

states

Blue

gain depends on the line shape, or frequency distribution, of the 

LASER

Ener

spontaneously emitted light suffusing the laser medium. An 

atom in a specific excited state can be stimulated to emit by a 

1

Absorption

photon in the optical field. That photon has to have precisely the 

Photon

694.3 nm

frequency (energy) associated with the atom’s impending transi-

Stimulated

PUMP

tion to a lower energy state. Doppler broadening changes the 

emission

availability of those photons and thereby influences the gain. For 

Ground state

a system with a moderate amount of gain a Gaussian bell-shaped 

0

curve will nicely represent the frequency-dependent gain profile 

(b)

(Fig. 13.9 a
 ). Thus, for a weak signal the peak value of the gain 


Figure 13.8
     Ruby-laser energy levels.

profile, which corresponds to the center of the Doppler curve, is 

the  peak unsaturated gain
 , or just the gain.

pulses in the energy range from around 50 J to 100 J, but by us-

Now if we put the active medium between mirrors to create a 

ing a tandem oscillator-amplifier setup, energies well in excess 

resonant cavity, several loss mechanisms will come into play: there 

of 100 J can be produced. The commercial ruby laser typically 

will be leakage of energy out of the mirrors, absorption and scat-

operates at a modest overall efficiency of less than 1%, produc-

tering by imperfections, and so forth. Let’s assume that the  
gain 



ing a beam that has a diameter ranging from 1 mm to about  



coefficient

  g
  (in units of cm-1) obtains when the beam traverses 

25 mm, with a divergence of from 0.25 mrad to about 7 mrad. 

1.0 cm of the laser medium. Similarly, let a (in units of cm-1) 

There are so many different kinds of lasers now available that 

be the inclusive  
loss coefficient

  per centimeter for all possible 

the ruby laser has lost its one-time dominance.

loss mechanisms (not including the lack of perfect reflection at 

the mirrors, which is easily measured). Then take the reflectance 


Optical Resonant Cavities
   The resonant cavity, which in 

of those end mirrors to be  R
 1 and  R
 2. A beam of irradiance  I
 0 

this case is of course a Fabry–Perot etalon, plays a significant 

starts at the first mirror and reaches the second as  I 
 =  I
 0   
 exp 

role in the operation of the laser. In the early stages of the la-

[( g 
 - a) L
 ]. After reflection from mirror-2 it goes back to mirror-1, 

ser process, spontaneous photons are emitted in every direc-

having traversed the active region twice, whereupon 

tion, as are the stimulated photons. But all of these, with the 


I 
 =  I
 0  R
 1 R
 2 exp [2( g 
 - a) L
 ]

singular exception of those propagating very nearly along the 

cavity axis, quickly pass out of the sides of the ruby. In con-

The  
total two-pass gain

   G
 , which equals  I
 0> I
 , is then

trast, the axial beam continues to build as it bounces back and 


G 
 =  R
 1 R
 2 exp [2( g 
 - a) L
 ]

forth across the active medium. This accounts for the amazing 

degree of collimation of the issuing laserbeam, which is then 

The laser will begin to oscillate when the gain just exceeds 

effectively a coherent plane wave. Although the medium acts 

the losses, that is, when  G 
 = 1.0. Hence the  
threshold gain 



to amplify the wave, the  optical feedback
  provided by the cav-



coefficient

  is

ity converts the system into an oscillator and hence into a light 

generator—the acronym is thus somewhat of a misnomer.


gth 
 = a + (1>2 L
 ) ln (1> R
 1 R
 2)
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Fabry-Perot standing waves

(a)

(a)

Gain

Threshold


L


n

0

Doppler

n

n

n


I


0 −  v


0

0 +  v


2 L


2 L


broadened


v


laserline

2 L


wer

(b)

(b)

Output po

n

0

n

n0

n

n

0 −  v


0

n0 +  v


2 L


2 L


Cavity modes


Figure 13.10
     Single longitudinal mode operation of a laser. Note how 

only one cavity mode fits within the gray active region of the gain curve in 

Cavity modes

(c)

( a
 ). Hence only light at that frequency, no, will build in the cavity and 

Gain

emerge as the laserbeam.

Threshold

1.0

Losses

n

n0


mv



v


and 

n m 
 =

 (13.15)

2 L


2 L


Width of

wer

Fabry-Perot

There are therefore an infinite number of possible oscillatory 

resonance

(d)


longitudinal cavity modes
 , each with a distinctive frequency 

n m
 . Consecutive modes are separated by a constant difference,

Output po

n


q
  – 2


q



q
  + 2


v



 


n m



q
  – 1


q
  + 1

+ 1 - n m 
 = ∆n =

 (13.16)

2 L


Cavity modes

which is the free spectral range of the etalon [Eq. (9.79)] and, 


Figure 13.9
   ( a
 ) Cavity standing waves. ( b
 ) Doppler broadened Gaussian 

emission line. ( c
 ) Gain bandwidth diagram showing locations of cavity 

incidentally, the inverse of the round-trip time. For a gas laser 1 m 

modes. ( d
 ) Modulated Fabry–Perot resonances, which correspond to the 

long, ∆n ≈ 150 MHz. 

laser emissions.

The resonant modes of the cavity are considerably narrower 

in frequency than the bandwidth of the normal spontaneous 

Typically, in gas lasers a is negligible. Consequently, if 

atomic transition (Fig. 13.9 d
 ). These modes, whether the device 


L 
 = 15 cm,   R
 1 = 98%, and  R
 2 =  95%, the equation yields  

is constructed so that there is one or more, will be the ones that 


gth 
 = 2.4 * 10-3 cm-1. 

are sustained in the cavity, and hence the emerging beam is re-

If the operation of any laser is to be stable, the peak gain of 

stricted to a region close to those frequencies. In other words, the 

the active medium must be large enough that the energy made 

radiative transition makes available a relatively broad range of 

available via the medium exceeds the total of all of the energy 

frequencies out of which the cavity will select and amplify only 

losses plus the output beam energy. 

certain narrow bands and, if desired, even only one such band. 

The disturbance propagating within the cavity takes on a 

This is the origin of the laser’s extreme quasimonochromaticity. 

standing-wave configuration determined by the separation ( L
 ) 

Thus, while the bandwidth of the ruby transition to the ground 

of the mirrors (Fig. 13.9 b
 ). The cavity resonates (i.e., standing 

state is roughly a rather broad 0.53 nm (330 GHz)—because of 

waves exist within it) when there is an integer number ( m
 ) of 

interactions of the chromium ions with the lattice—the corre-

half wavelengths spanning the region between the mirrors. The 

sponding laser cavity bandwidth, the frequency spread of the 

idea is simply that there must be a node at each mirror, and this 

radiation of a single resonant mode, is a much narrower 0.000 05 

can happen only when  L
  equals a whole-number multiple of 

nm (30 MHz). This situation is depicted in Fig. 13.9, which 

l>2 (where l = l0> n
 ). Thus

shows a typical transition lineshape and a series of correspond-


L


ing cavity spikes—in case each is separated by 


m



v


=

>2 L
 , and in the 

l>2

case of ruby each is 30 MHz wide. Only those cavity modes that 
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fall within the so-called active region—the gray area in Fig. 

13.9 c
 —will be sustained and emitted as laser emanations.

EXAMPLE 13.5

Doppler broadening for a He-Ne laser operating at 632.8 nm is 

1.5 * 109 Hz; this is essentially the gain bandwidth. Suppose 

the laser’s mirrors are 0.8 m apart; calculate the approximate 

number of longitudinal modes. Assume the index of refraction 

(a)

(b)

(c)

of the gas mixture is 1.0.


Figure 13.12
     Three operation configurations for a c-w gas laser:  

SOLUTION 

( a
 ) illustrates several longitudinal modes under a roughly Gaussian  

The separation between successive modes is given by Eq. 

envelope, ( b
 ) shows several longitudinal and transverse modes, and finally  

( c
 ) depicts a single longitudinal mode. (E.H.)

(13.16) and so


v


3 * 108 m>s

∆n =

=

2 L


2(0.8 m)

This solves to ∆n = 187.5 MHz. Therefore dividing 1.5 * 

109 Hz (which corresponds to the full width at half the maxi-

mum value) by ∆n,

1.5 * 109 Hz = 8

0.187 5 * 109 Hz

There can be 8 frequency intervals, each ∆n wide. And with one 

mode at either extreme, that brings it up to 9. (See Fig. 13.9.)

A possible way to generate only a single mode in the cavity 

would be to have the mode separation, as given by Eq. (13.16), 

exceed the transition bandwidth. Then only one mode would fit 

within the range of available frequencies provided by the broad-

ened transition (Fig. 13.10). For a helium-neon laser operating 

at 632.8 nm we’ll need a cavity length of about 10 cm to ensure 

single longitudinal mode output. The drawback of this particu-

lar approach is that it limits the length of the active region con-

tributing energy to the beam and so limits the output power of 

the laser.

In addition to the longitudinal or axial modes of oscillation, 

which correspond to standing waves set up along the cavity or 


z
 -axis, transverse modes
  can be sustained as well (Figs. 13.11 

and 13.12). Since the fields are very nearly normal to  z
 , these are 

known as TEM mn
  modes (transverse electric and magnetic). The 


m
  and  n
  subscripts are the integer number of transverse nodal 

lines in the  x
 - and  y
 -directions across the emerging beam. That is 


Figure 13.13
     Mode patterns (without the faint interference fringes this is 

what the beam looks like in cross section). (Used with permission of Alcatel-Lucent 

USA Inc.)

wer outputPo

to say, the beam is segmented in its cross section into one or 

Frequency

TEM mnq 
 TEM rsq


TEM mn
 ( q
 +1) TEM rs
 ( q
 +1)

more regions. Each such array is associated with a given TEM 


v
 2 L


mode, as shown in Figs. 13.13 and 13.14. The lowest order, or 


v
 2 L


TEM00, transverse mode is perhaps the most widely used, and 


Figure 13.11
   

this for several compelling reasons: the flux density is ideally 
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A complete specification of each mode has the form TEM mnq
 , 

where  q
  is the longitudinal mode number. For each transverse 

mode ( m
 ,  n
 ) there can be many longitudinal modes (i.e., values of  q
 ). 

Often, however, it’s unnecessary to work with a particular longi-

tudinal mode, and the  q
  subscript is usually simply dropped.*

Several additional cavity arrangements are of considerably 

TEM

TEM

00

10

TEM20

more practical significance than is the original plane-parallel 

setup (Fig. 13.16). For example, if the planar mirrors are re-

placed by identical concave spherical mirrors separated by a dis-

tance very nearly equal to their radius of curvature, we have the 


confocal
  resonator. The focal points are then almost coincident 

on the axis midway between mirrors—ergo the name confocal. 

If one of the spherical mirrors is made planar, the cavity is 

TEM

termed a  hemispherical
  or  hemiconcentric
  resonator. Both of 

01

TEM11

TEM21

these configurations are considerably easier to align than is the 


Figure 13.14
     Mode configurations (rectangular symmetry). Circu larly 

plane-parallel form. Laser cavities are either  stable
  or  unstable
  

symmetrical modes are also observable, but any slight asymmetry (such as 

to the degree that the beam tends to retrace itself and so remain 

Brewster windows) destroys them.

relatively close to the optical axis (Fig. 13.17). A beam in an 

unstable cavity will “walk out,” going farther from the axis on 

Gaussian over the beam’s cross section (Fig. 13.15); there are no 

each reflection until it quickly leaves the cavity altogether. By 

phase shifts in the electric field across the beam, as there are in 

contrast, in a stable configuration (with mirrors that are, say, 

other modes, and so it is completely spatially coherent; the 

100% and 98% reflective) the beam might traverse the resona-

beam’s angular divergence is the smallest; and it can be focused 

tor 50 times or more. Unstable resonators are commonly used in 

down to the smallest-sized spot. Note that the amplitude in this 

mode is actually not constant over the wavefront, and it is conse-

*Take a look at R. A. Phillips and R. D. Gehrz, “Laser mode structure experiments 

quently an inhomogeneous wave.

for undergraduate laboratories,”  Am. J. Phys
 . 38
 , 429 (1970).


I(x, y)



y



x


(a)

(b)


Figure 13.15
   ( a
 ) Gaussian irradiance distribution. ( b
 ) An actual laserbeam profile for a 405-nm, 20-mW, c-w laser diode. This look a lot better in color running from red at the peak to blue at the 

base. (S.J. Bentley, Aldephi University Quantum & Nonlinear Optics Lab.)
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R
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R
 2
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R
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R
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R
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R
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R
 1


R
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R
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Figure 13.16
     Laser cavity config-

urations. (Based on O’Shea, Callen, and 

(g) Concentric

(h) Nearly concentric

(i) Hemi-concentric

Rhodes,  An Introduction to Lasers and Their 



R
 1 =  R
 2 =  L
 2


R
 1 ≲  L
 2;  R
 2 ≲  L
 2


R
 1 =  L
 ;  R
 2 = ∞


Applications
 . Addison-Wesley/Pearson Education, 

marginally stable

unstable

marginally stable

Inc.)

high-power lasers, where the fact that the beam traces across a 

circuit. A high- Q
 , low-loss circuit meant a narrow bandpass and 

wide region of the active medium enhances the amplification 

a sharply tuned radio. If an optical cavity is somehow disrupted, 

and allows for more energy to be extracted. This approach will 

as for example by the displacement or removal of one of the 

be especially useful for media (like carbon dioxide or argon) 

mirrors, the laser action generally ceases. When this is done 

wherein the beam gains a good deal of energy on each sweep of 

deliberately in order to delay the onset of oscillation in the laser 

the cavity. The needed number of sweeps is determined by the 

cavity, it’s known as  Q-spoiling
  or  
Q-switching

 . The power out-

so-called   small-signal gain
  of the active medium. The actual 

put of a laser is self-limited in the sense that the population in-

selection of a resonator configuration is governed by the spe-

version is continuously depleted through stimulated emission 

cific requirements of the system—there is no universally best 

by the radiation field within the cavity. However, if oscillation 

arrangement.

is prevented, the number of atoms pumped into the (long-lived) 

The decay of energy in a cavity is expressed in terms of the 

metastable state can be considerably increased, thereby creating 


Q
  or  
quality factor

  of the resonator. The origin of the expres-

a very extensive population inversion. When the cavity is 

sion dates back to the early days of radio engineering, when it 

switched on at the proper moment, a tremendously powerful 

was used to describe the performance of an oscillating (tuning) 


giant pulse
  (perhaps up to several hundred megawatts) will 

emerge as the atoms drop down to the lower state almost in 

unison. A great many  Q-switching
  arrangements utilizing vari-

(a)

ous control schemes, for example, bleachable absorbers that 

become transparent under illumination, rotating prisms and 

mirrors, mechanical choppers, ultrasonic cells, or electro-optic 

shutters such as Kerr or Pockels cells, have all been used.


M
 1


M
 2


Gaussian Laserbeams  
 The TEM

(b)

00 mode that develops with-

in a resonator has a Gaussian profile (Fig. 13.15); that is, the 

strength of the beamlike wave falls off transversely following 

a bell-shaped curve that’s symmetrical around the central axis 

(Fig. 13.18 a
 ). Recall that a Gaussian is a negative exponential 

that’s a function of the square of the variable, in this case, the 


M
 2

distance ( r
 ) measured, in a transverse plane, from the central 

axis of propagation ( z
 ). Because the beam trails off radially it’s 


M
 1

useful to put an arbitrary boundary to its width. Accordingly, 


Figure 13.17
     Stable and unstable laser resonators. (Based on O’Shea, Callen, and 

let   r 
 =  w  
 be the  beam half-width
 , the distance at which the 

Rhodes,  An Introduction to Lasers and Their Applications
 . Addison-Wesley/Pearson Education, Inc.) electric field of the beam drops from its maximum axial value 
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(a)

(b)
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I 
 =  I
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r



Figure 13.18
     A Gaussian beamlike wave propa-

gating in the  z
 -direction.

of  E


for the half-width at any location  z 
 where  w


0 to  E
 0> e
  or 37% E
 0. At  r 
 =  w 
 the beam’s irradiance, which 0 is the minimum 


depends on the square of the amplitude, is then  I



radius
 . The shape of the beam as specified by this expression 

0> e
 2,  
 which is 

only 14% I


for  w(z) 
 is a hyperbola of revolution about the  z
 -axis.  
 A practi-

0. Most of the energy of the beam resides within this 

imaginary cylinder of radius  w
 , where (Fig. 13.18 b
 )

cal measure of the divergence of the beam is  the distance over 



which its cross-sectional area doubles
 , or equivalently, the val-


I 
 =  I
 0 e
 -2 r
 2> w
 2

ue of  z  
 for which  w(z) 
 = 12 w
 0. This special distance,  zR
 , is 

known as the Rayleigh range
 , and from the above equation for 

and  I 
 =  I
 0 e
 -2, as it’s supposed to, at  r 
 =  w
 .


w(z)
  we see that

As can be seen in Fig. 13.17 a
 , when curved mirrors form 

the laser cavity there is a tendency to “focus” the beam, giving 

p w
 2

it a minimum cross section or  waist
  of radius  w



 



z


0 

0. Under such 


R 
 =





l

circumstances, the external divergence of the laserbeam is 

essentially a continuation of the divergence out from this 

Accordingly, consider a confocal cavity formed by two concave 

waist (Figs. 13.19 and 13.20). In general, there will be a beam 

mirrors, each with a radius of curvature  R
  separated by a dis-

waist somewhere between the mirrors of a laser resonator; its 

tance  L
 . If  R 
 =  L 
 = 2 zR
  it follows from the geometry that the 

exact location depends on the specific design. For example, a 

minimum radius is 

confocal resonator (Fig. 13.16) has a waist halfway between 

l L


the mirrors.






w
 0 =

 (13.18)

A more complete analysis of EM-waves in the cavity, setting 

A2p


z 
 = 0  
 at the beam waist, yields the expression

Many lasers can operate in the TEM00 mode where the emitted 

2 1>2

beam is Gaussian.


 



w(z) 
 =  w
 0 c1 + a l z 
 b d  (13.17)

The smaller the waist (or equivalently, the smaller the 

p w
 20

minimum cross-sectional area), the smaller the Rayleigh 

range and the faster the beam diverges. At large distances 

from the waist ( z
  7 7  zR
 ) the  full-angular width 
 of the beam 

200

(Θ , 
 in radians) approaches 2 w(z)
 > z.
  In other words, as the line 

150

of length  z 
  rotates through the angle Θ, its endpoint sweeps 

100

out a distance of  ≈2 w(z)
 . Consequently, when  z
  is large and 

50


w
 0 is small, the second term in the expression for  w(z) 
 is much 

greater than 1 and

0


r
  (mm) −50

2 1>2

−100


w(z) 
 ≈  w
 0 ca l z 
 b d ≈ l z


p w
 20

p w
 0

−150

−200

−400 −300 −200 −100

0

100

200

300

400

Since Θ S 2 w(z)
 > z
 ,


z
  (mm)

2


Figure 13.19
     Instantaneous irradiance of a Gaussian beam:  w 
 = 40 mm, 

Θ

l

l

=

= 0.637 

p w


l = 30 mm. (Etoombs@en.wikipedia.)


0


w
 0
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r


Beam waist


r



Figure 13.20
     The spreading of a Gaussian beam. Imagine 


w


two concave mirrors separated by a distance  d 
 = 2 z


0


R
  forming 

a confocal cavity. With one mirror partially silvered, the beam 


I(r)



w(z)


√2  w


will emerge with an angular divergence Θ.

0


I(r)


Θ


zR



z 
 = 0

Again,  
the smaller

  
 
w

 0
  
 
is, the larger will be 

 Θ, the beam diver-

Θ ≈ 2.44l> D


gence. In part, that’s why people used to use megaphones—

By comparison, far from the region of minimum cross section, 

waves emerging from a larger aperture diverge less. 

the full-angular width of a waisted laserbeam is

EXAMPLE 13.6


 


Θ ≈ 1.27l> D
 0  


(13.19)

A helium-neon laser in the TEM00 mode emits a 632.8-nm beam. 

where   D
 0 = 2 w
 0, the beam-waist diameter, can be calculated 

The laser’s symmetrical confocal cavity has a mirror-to-mirror 

from the particular cavity configuration.

length of 28.0 cm. Determine the internal minimum radius of the 

beam. Find the angle at which it diverges from the laser.


The Helium-Neon Laser  
 Maiman’s announcement of the 

SOLUTION 

first operative laser came at a New York news conference on 

The minimum radius  w


July 7, 1960.* By February of 1961 Ali Javan and his as-

0 is given by Eq. (13.18):

sociates W. R. Bennett, Jr., and D. R. Herriott had reported 

l L


(632.8 * 10-9)(28 * 10-2) 1>2

the successful operation of a  continuous-wave
  (c-w) helium-


w
 0 =

= c

d

neon, gas laser at 1152.3 nm. The He-Ne laser (Fig. 13.21) 

A2p

2p

is still widely used, most often providing a few milliwatts of 

and so

continuous power in the visible (632.8 nm). Its appeal (be-


w
 0 = 0.168 mm

yond the fact that it’s pedalogically interesting) arises primar-

ily because it’s easy to construct, relatively inexpensive, and 

As for the angular divergence of the beam,

fairly reliable and in most cases can be operated by a flick of 

l

632.8

a single switch. Pumping is usually accomplished by electri-

Θ

* 10-9

= 0.637

= 0.637 

cal discharge (via either dc, ac, or electrodeless rf excitation). 


w
 0

0.168 * 10-3

Free electrons and ions are accelerated by an applied field 

and Θ

and, as a result of collisions, cause further ionization and ex-

= 2.399 m rad, or 0.137°.

citation of the gaseous medium (typically, a mixture of about 

0.8 torr of He and about 0.1 torr of Ne). Many helium atoms, 

While two plane mirrors forming a laser cavity will produce 

after dropping down from several upper levels, accumulate 

a beam that is aperture limited via diffraction, this will not now 

in the long-lived 21S- and 23S-states. These are metastable 

be the case. Recall Eq. (10.58),  q


states (Fig. 13.22) from which there are no allowed radiative 

1 ≈ 1.22 ƒ
 l> D
 , where  D
  is the 

aperture diameter. This expression describes the radius of the Airy 

transitions. The excited He atoms inelastically collide with 

disk, and divide both sides by  ƒ
  to get the half-angular width of 

and transfer energy to ground-state Ne atoms, raising them in 

the diffracted circular beam of initial diameter  D
 . Doubling this 

turn to the 5s- and 4s-states. These are the upper laser levels, 

yields Θ, the  full-angular width
 , or divergence of an aperture-


and there then exists a population inversion with respect to 


limited laserbeam
 :

the lower 4p- and 3p-states. Transitions between the 5s- and 

4s-states are forbidden. Spontaneous photons initiate stimulated 

Anode


E


Discharge tube

u p


Brewster

Cathode

window

Mirror

DC

power

supply

*His initial paper, which would have made his findings known in a more traditional 

fashion, was rejected for publication by the editors of  Physical Review Letters
 —


Figure 13.21
     A simple, early He-Ne laser configuration.

this to their everlasting chagrin.
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mechanism in the cavity, to the ultimate exclusion of the 

Helium

Neon

orthogonal polarization.*

21

3391 nm

Epoxying the windows to the ends of the laser tube and 

21S

5s

4p

mounting the mirrors externally was a typical though dreadful 

Collision

632.8 nm

approach used commercially until the mid-1970s. Inevitably, 

20

543 nm

23S

4s

1523 nm

the epoxy leaked, allowing water vapor in and helium out. To-

1118 nm

1152 nm

day, such lasers are  hard sealed
 ; the glass is bonded directly to 

19

4p

metal (Kovar) mounts, which support the mirrors within the 

tube. The mirrors (one of which is generally 

gy (eV)

≈100% reflec-

18

tive) have modern resistive coatings so they can tolerate the dis-

Ener

Absorption

charge environments within the tube. Operating lifetimes of 

594.5 nm

20 000 hours and more are now the rule (up from only a few 

hundred hours in the 1960s). Brewster windows are usually op-

tional, and most commercial He-Ne lasers generate more or less 

3s

“unpolarized” beams. The typical mass-produced He-Ne laser 

(with an output of from 0.5 mW to 5 mW) operates in the 

1s22s22p6

Ground state

TEM00 mode, has a coherence length of around 25 cm, a beam 

0

diameter of approximately 1 mm, and a low overall efficiency 

Stimulated transition

of only 0.01% to about 0.1%. Although there are infrared and 

Spontaneous transition

green (543.5 nm) He-Ne lasers, the bright red 632.8-nm version 

remains the most popular.


Figure 13.22
   He-Ne laser energy levels.


A Survey of Laser Developments


emission, and the chain reaction begins. The dominant la-

ser transitions correspond to 1152.3 nm and 3391.2 nm in 

Laser technology is so dynamic a field that what was a labora-

the infrared and, of course, the ever-popular 632.8 nm in the 

tory breakthrough a year or two ago may be a commonplace 

visible (bright red). The p-states drain off into the 3s-state, 

off-the-shelf item today. The whirlwind will certainly not pause 

thus themselves remaining uncrowded and thereby continu-

to allow descriptive terms like “the smallest,” “the largest,” “the 

ously sustaining the inversion. The 3s-level is metastable, so 

most powerful,” and so on to be applicable for very long. With 

that 3s-atoms return to the ground state after losing energy 

this in mind, we briefly survey the existing scene without trying 

to the walls of the enclosure. This is why the plasma tube’s 

to anticipate the wonders that will surely come after this type is 

diameter inversely affects the gain and is, accordingly, a sig-

set (see Table 13.2). Laserbeams have already been bounced off 

nificant design parameter. In contrast to the ruby, where the 

the Moon; they have spot welded detached retinas; generated 

laser transition is down to the ground state, stimulated emis-

fusion neutrons; stimulated seed growth; served as communica-

sion in the He-Ne laser occurs between two upper levels. The 

tions links; read CD discs; guided milling machines, missiles, 

significance of this, for example, is that since the 3p-state is 

ships, and grating engines; carried color television pictures; 

ordinarily only sparsely occupied, a population inversion is 

drilled holes in diamonds; levitated tiny objects†; and intrigued 

very easily obtained, and this without having to half empty 

countless among the curious.

the ground state.

Return to Fig. 13.21, which pictures the relevant features 


Solid-State Lasers
   Along with ruby there are a great 

of a basic early He-Ne laser. The mirrors are coated with a 

many other solid-state lasers whose outputs range in wave-

multilayered dielectric film having a reflectance of over 

length from roughly 170 nm to 3900 nm. Such lasers use 

99%. The laser output is made linearly polarized by the in-

a glass or crystal rod doped with ions capable of supply-

clusion of Brewster end windows (i.e., plates tilted at the 

ing the needed energy states. Recall that ruby is corundum 

polarization angle) terminating the discharge tube. If these 

doped with chromium. The trivalent rare earths Nd3+, Ho3+,  

end faces were instead normal to the axis, reflection losses 


The Helium-Neon Laser


(4% at each interface) would become unbearable. By tilting 

*Half of the output power of the laser is not lost in reflections at the Brewster  

them at the polarization angle, the windows presumably 

windows when the transverse 𝒫-state light is scattered. Energy simply isn’t  

have 100% transmission for light whose electric-field com-

continuously channeled into that polarization component by the cavity. If it’s 

ponent is parallel to the plane-of-incidence (the plane of the 

reflected out of the plasma tube, it’s not present to stimulate further emission.

drawing). This polarization state rapidly becomes dominant, 

†

since the normal component is partially reflected off-axis at 

See M. Lubin and A. Fraas, “Fusion by laser,”  Sci. Am
 . 224, 21
  (June 1971);  

R. S. Craxton, R. L. McCrory, and J. M. Soures, “Progress in laser fusion,”  

each transit of the windows. Linearly polarized light in the 


Sci. Am
 . 255, 69
  (August 1986); and A. Ashkin, “The pressure of laser light,”  

plane-of-incidence soon becomes the preponderant stimulating 


Sci. Am
 . 226, 63
  (February 1972).
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TABLE 13.2    A Sample of Existing Lasers and Some of 



Their Emission Wavelengths 


Solid-State Lasers

Metal-Vapor Lasers

Type 

Wavelengths (nm) 

Type 

Wavelengths (nm) 

Cr:Al

Copper vapor 

510.5, 578.2

2O3 (Ruby) 

694.3

Cr:BeAl

Gold vapor 

627.8

2O3 (Alexandrite) 

700–830

Cr:LiCaF 700–830

Lead vapor 

722.9

Cr:LiSrAlF 800–1050

HeAg 224.3

Cr:ZnSe 2200–2800

HeCd 

441.56, 352.0, 353.6 

Er:YAG 2940

HeHg 

567, 615

Ho:YAG 2100

HeSe 

497.5, 499.2, 506.8, 517.6, 522.7, 530.5

Nd:Glass 1080, 

1062, 1054

NeCu 248.6

Nd:YAG 1064.1, 

266, 355, 532, 1320 

Strontium vapor 

430.5

Nd:YCOB 

≈1060

Nd:YLF 

1047, 1053

Semiconductor Lasers

Nd:YVO4 

1064

Type 

Wavelengths (nm) 

Pr:Glass 

933, 1098

AlGaAs 

630 –900

Sm:CaF2 

708.5

AlGaInP 

630 –900

Ti:sapphire 650–1180

GaAlAs/GaAS 

720 –900

Tm:YAG 2000 

GaAs/GaAS 904

U:CaF2 

2500 

GaInPAs/GaAS 

670 – 680

Yb:Glass 1030 

GaN/SiC 423, 

405–425

Yb:YAG 1030

InGaAsP/InP 

1000 –1700

Gas Lasers 

PbSnSe 

8000–30 000 

Quantum cascade 

mid- to far-IR

Type 

Wavelengths (nm) 

Argon ion 

488.0, 514.5, 

Liquid Lasers

275, 363.8, 457.9, 465.8, 528.7

Carbon dioxide 

10600, 9600 

Type 

Wavelengths (nm) 

Carbon  monoxide 

4700 – 8200,  2500 – 4200 

Coumarin 

≈460 –558

Helium-cadmium 

441.6, 330.0

Dicyanomethylene 

610 –705

Helium-neon 

632.8, 543.5, 593.9, 1523

Eu ion chelate 

613.1

Hydrogen cyanide (HCN) 

337 000

Kiton  red 

600 – 650

Krypton ion 

647.1, 676.4, 416, 530.9, 568.2, 752.5, 799.3

Rhodamine  

≈528 – 640

Nitrogen 337.1

Stilbene 

≈391– 465

Water vapor 

28 000, 118 600 

Xenon ion 

540

Chemical Lasers

Excimer (Exciplex) lasers

Type 

Wavelengths (nm) 

ArCl 

169, 175

ArF  

193.4

AGIL (all gas-phase  

1315 

iodine laser) 

ArO 558

COIL (chemical oxygen- 

1315 

F2 157

iodine laser)

HgBr 499–504.6

DF-CO2 

10 600

KrCl  

222

DF 

≈2700 – ≈4200

KrF  

248

HBr 4000

XeBr  

282

HF 

2700 –2900

XeCl  

308

XeF  

353

XeO 

537.6, 544.2
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Gd3+, Tm3+, Er3+, Pr3+, and Eu3+ undergo laser action in a host 

Tremendous power outputs in pulsed systems have been 

of hosts, such as CaWO4, Y2O3, SrMoO4, LaF3, yttrium alu-

obtained by operating several lasers in tandem. The first laser 

minum garnet (YAG for short), and glass, to name only a few. 

in the train serves as a Q-switched oscillator that fires into the 

Of these, neodymium-doped glass and neodymium-doped YAG 

next stage, which functions as an amplifier; and there may be 

are of particular importance. Both constitute high-powered la-

one or more such amplifiers in the system. By reducing the 

ser media operating at approximately 1060 nm. Nd:YAG lasers 

feedback of the cavity, a laser will no longer be self-oscillatory, 

generating in excess of a kilowatt of continuous power have 

but it will amplify an incident wave that has triggered stimu-

long been available. 

lated emission. Thus the amplifier is, in effect, an active me-

dium, which is pumped, but for which the end faces are only 

Nd:YAG (Nd:Y3Al5O12) lasers are among the most widely used 

partially reflecting or even nonreflecting. Ruby systems of 

solid-state laser. They find applications in surgery, target designa-

this kind, delivering a few GW (gigawatts, i.e., 109 W) in the 

tion, range finding, frequency doubling, and material processing, 

form of pulses lasting several nanoseconds, are available 

among others. Somewhat newer are the high-power, neodymium 

commercially. 

doped yttrium lithium fluoride (Nd:YLF) and neodymium-doped 

On December 19, 1984, the largest laser then in existence, 

yttrium orthovanadate (Nd:YVO4) lasers, also operating in the IR 

the Nova at the Lawrence Livermore National Laboratory in 

(1064 nm). A few AAA cells can power an inexpensive IR diode 

California, fired all 10 of its beams at once for the first time, 

laser that can pump a small Nd:YVO4 crystal located in an optical 

producing a warm-up shot of a mere 18 kJ of 350-nm radia-

cavity. Put a KTP frequency-doubling crystal in the cavity and you 

tion in a 1-ns pulse. This immense neodymium-doped glass 

have a well-collimated green-light laser pointer. 

laser was designed to focus up to 120 TW onto a fusion 

Similarly, there are a variety of ytterbium-doped laser media 

pellet—that’s roughly 500 times more power than all the 

like Yb:YAG and Yb:KGW that usually operate at substantial 

electrical generating stations in the United States—albeit 

power levels in the wavelength range from 1020 nm to 1050 nm. 

only for about 10-9 s. In the late 1990s, the last years of its 

The holmium YAG (Ho:YAG) laser at 2100 nm is often used to 

operation, using just one beamline of the Nova, LLNL  

blast gall stones and kidney stones and to destroy cancerous tu-

researchers were able to produce 1.25-PW pulses, each last-

mors. Along with it the erbium YAG (Er:YAG) laser at 2940 nm 

ing 490 fs and carrying 580 J.

is a favorite in dentistry. And these represent just a small sam-

Nova’s successor, which came on line in 1980 (with 24 

pling of the variety of solid-state lasers available today.

solid-state lasers), is housed in the Laboratory for Laser  

Energetics (LLE) at the University of Rochester. At present, 

EXAMPLE 13.7

LLE operates the 30- to 45-kJ Omega laser and is one of the 

A Nd:YAG laser rod is composed of Nd ions doped at a 1% 

world’s premier laser fusion research facilities. Upgraded in 

concentration into an yttrium aluminum garnet host. That cor-

1995, Omega is a 60-beam ultraviolet frequencey–tripled 

responds to a Nd+3 ion density in the laser rod of about 

1.38 * 1026 m-3. Suppose all of these ions are pumped to their 

upper 4F3>2 levels essentially all at once. From there they cas-

cade downward, emitting radiation at 1060 nm. Determine the 

energy radiated per cubic meter of rod.

SOLUTION

Let’s first determine the energy of each photon. Then if we as-

sume all the Nd ions radiate, we can find the total energy emit-

ted. At 1060 nm the photon energy is


hc


(6.626 * 10-34 J · 
 s)(2.998 * 108 m>s)


E 
 =  h
 n =

=

l

1060 * 10-9m

and


E 
 = 1.874 * 10-19 J

Now if there are 1.38 * 1026 ions>m3, each radiating a 

1.874 * 10-19 J photon, the total amount of energy emitted per 

cubic meter is


ET 
 = (1.874 * 10-19 J)(1.38 * 1026 m-3)

and


ET 
 = 25.9 * 106 J>m3

The Nova laser. (Lawernce Livemore National Laboratory.)
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A portion of the NIF laser–based inertial confinement fusion device that  

essentially became operational in 2010. (Lawrence Livermore National Laboratory.)

Inside the target chamber of the LLE laser-fusion device. Fusion reactions 

take place in tiny target-sphere filled with deuterium/tritium and irradiated by 

the 30-kJ Omega laser. (University of Rochester’s Laboratory for Laser Energestic, Eugene 

Kowaluk, Image specialist.)

neodymium-doped phosphate glass laser that can concentrate 

60 * 1012 W of radiant power onto a pinhead-sized target. To 


Gas Lasers


accomplish that feat, the initial laser output is split repeatedly 

and each beam is subsequently amplified using Nd:glass 

A large group of gas lasers operate across the spectrum from 

disks and rods. Just before reaching the target the several 

the far IR to the UV (1 mm to 150 nm). Primary among these 

beams are frequency-tripled to 351 nm using KDP crystals 

are helium-neon, argon, and krypton, as well as several mo-

(Section 13.4.2). Supplying the needs of a variety of research-

lecular gas systems, such as carbon dioxide, hydrogen fluo-

ers, Omega is being operated at its maximum rate of one 

ride, and molecular nitrogen (N2). Argon lases mainly in the 

shoot per hour.

violet, blue-green, and green (predominantly at 457.9, 488.0, 

Omega’s successor is housed in the Department of Energy’s 

and 514.5 nm, respectively) in either pulsed or continuous op-

immense National Ignition Facility (NIF) in Livermore, California. 

eration. Although its output is usually several watts c-w, it has 

The device, which was designed to use 192 beams to produce 

gone as high as 150 W c-w. The argon ion laser is similar in 

500-TW blasts of radiant energy, performed its first ignition 

some respects to the He-Ne laser, although it evidently differs 

experiments in 2010. 

in its usually greater power, shorter wavelength, broader line-

At NIF the radiant energy stream begins as a low-power 

width, and higher price. The TEA (transverse electrical dis-

flash (a few nanojoules) of infrared (1053 nm) from an ytterbi-

charge in gas at atmosphetic pressure) laser is an inexpensive 

um-doped optical fiber laser. That’s split into numerous beams 

source of UV at 337.1 nm. All of the noble gases (He, Ne, Ar, 

that are sent through neodymium glass preamplifiers, from 

Kr, Xe) have been made to lase individually, as have the gas-

which they emerge with an energy of about 6 J. The main series 

eous ions of many other elements, but the former grouping has 

of glass amplifiers, pumped by 7680 xenon flash lamps, boosts 

been studied most extensively.

the total beam energy up to a nominal 4 MJ. Spatial filters clean 

The CO2 molecule, which lases between vibrational modes, 

up the beams, removing any variations introduced along the 

emits in the IR at 10.6 mm, with typical c-w power levels of from 

way by imperfections in the optics, ensuring that they will be 

a few watts to several kilowatts. Its efficiency can be an unusu-

highly uniform when they arrive at the target.

ally high ≈15% when aided by additions of N2 and He. While it 

Infrared is very efficiently absorbed by electrons in the hot 

once took a discharge tube nearly 200 m long to generate 10 kW 

target, thereby seriously interfering with the compression of the 

c-w, considerably smaller “table models” have long been avail-

deuterium-tritium fuel and its subsequent thermonuclear ignition. 

able commercially. For a while in the 1970s, the record output 

Consequently, before reaching the target the beams are converted 

belonged to an experimental gas-dynamic laser utilizing thermal 

into UV by passing successively through two sheets of single 

pumping on a mixture of CO2, N2, and H2O to generate 60 kW 

crystal potassium dihydrogen phosphate. The first sheet converts 

c-w at 10.6 mm in multimode operation.

IR at 1053 nm into green light at 527 nm. The second sheet con-

The pulsed nitrogen laser operates at 337.1 nm in the UV, as 

verts that into UV at 351 nm. This process is only about 50% ef-

does the c-w helium-cadmium laser (325 nm). Several other 

ficient, reducing the total deliverable energy to roughly 1.8 MJ.

metal ion (or metal-vapor) lasers generate deep UV emissions 

NIF fired its full complement of 192 beams into the target 

such as HeAg at 224 nm and NeCu at 248.6 nm. Still others, like 

chamber, delivering 1.1 MJ of UV for the first time in 2009, 

copper vapor (510.6 nm, 578.2 nm) and gold vapor (627 nm), 

thereby becoming the most powerful laser on the planet.

emit in the visible. The He-Cd laser radiates at 325.0 nm and 
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441.6 nm. These are transitions of the cadmium ion arising after 

(a)

+

excitation resulting from collisions with metastable helium  

Current lead to

power supply

atoms.

The excimer laser is a kind of gas laser energized by an elec-

tric discharge. As a rule excimer lasers use a combination of one 


p
 -type

Polished

of the noble gases like xenon, krypton, or argon, with a reactive 

end face

gas like fluorine, chlorine, or bromine. An excimer is a pseudo-


p–n
  junction region

molecule that exists in only an energized state. Excimer lasers 

like XeF (351 nm), XeCl (308 nm), XeBr (282 nm), KrF (248 

nm), KrCl (222 nm), and ArF (193 nm) typically emit tens of 

–

milliwatts in the UV. They’re often used in LASIK eye surgery 

and precision micromachining, and in the production of semi-

Lead to

conductor integrated circuits.

power supply

As was discussed earlier, titanium-doped sapphire (Ti:sapphire) 

Polished


n
 -type

end face

mode-locked lasers are very stable infrared (650–1100 nm) de-

Laserbeam

vices that are highly tunable. They’re ideally suited to produce 

powerful ultrashort pulses and find numerous applications, es-

pecially in spectroscope and in LIDAR (Light Detection And 

(b)

Metal contact

Ranging) systems.


p
 -GaAlAs


Semiconductor Lasers


GaAs

The semiconductor laser—alternatively known as the junction 

(active

or diode laser—was invented in 1962, soon after the develop-

layer)

ment of the light-emitting diode (LED). Today it serves a cen-


n
 -GaAlAs

tral role in electro-optics, primarily because of its spectral pu-


n
 -GaAs

rity, high efficiency (≈100%), ruggedness, ability to be 

modulated at extremely rapid rates, long lifetimes, and moder-

Metal contact

ate power (as much as 200 mW) despite its pinhead size. Junc-

Laserbeam

tion lasers have been used in the millions in fiberoptic commu-

nications, CD (780 nm) and DVD (650 nm) systems, laser pointers, 


Figure 13.23
   ( a
 ) An early GaAs  p
 – n
  junction laser. ( b
 ) A more modern and so forth.

diode laser.

The first such lasers were made of one material, gallium ar-

senide, appropriately doped to form a  p
 – n
  junction. The associ-

ated high lasing threshold of these so-called homostructures 

system lase, the light emitted from the diode is retained within 

limited them to pulsed mode operation and cryogenic tempera-

a resonant cavity, and that’s usually accomplished by simply 

tures; otherwise the heat developed in their small structures 

polishing the end faces perpendicular to the junction channel.

would destroy them. The first tunable lead-salt diode laser was 

Nowadays semiconductor lasers are created to meet specific 

developed in 1964, but it was not until almost a dozen years 

needs, and there are many designs producing wavelengths rang-

later that it became commercially available. It operates at liquid 

ing from around 400 nm to about 30 mm. The early 1970s saw 

nitrogen temperatures, which is certainly inconvenient, but it 

the introduction of the c-w GaAs>GaAlAs laser. Operating at 

could scan from 2 mm to 30 mm.

room temperature in the 750-nm to 900-nm region (depending 

Later advances have since allowed a reduction in the thresh-

on the relative amounts of aluminum and gallium), the tiny di-

old and resulted in the advent of the continuous-wave (c-w), 

ode chip is usually about a sixteenth of a cubic centimeter in 

room temperature diode laser. Transitions occur between the 

volume. Figure 13.23 b
  shows a typical heterostructure (a device 

conduction and valence bands, and stimulated emission results 

formed of different materials) diode laser of this kind. Here the 

in the immediate vicinity of the  p
 – n
  junction (Fig. 13.23). Quite 

beam emerges in two directions from the 0.2-mm-thick active 

generally, as a current flows in the forward direction through a 

layer of GaAs. These little lasers usually produce upward of 20 

semiconductor diode, electrons from the  n
 -layer conduction 

mW of continuous-wave power. To take advantage of the low-

band will recombine with  p
 -layer holes, thereupon emitting en-

loss region (l ≈ 1.3 mm) in fiberoptic glass the GaInAsP>InP 

ergy in the form of photons. This radiative process, which com-

laser was devised in the mid-1970s with an output of 1.2 mm to 

petes for energy with the existing absorption mechanisms (such 

1.6 mm. The gallium nitride (GaN) diode laser emits violet light 

as phonon production), comes to predominate when the recom-

at 405 nm. It’s used to read and write Blu-ray disks. The quantum 

bination layer is small and the current is large. To make the 

cascade laser radiates in the mid- to far-IR region. In 2006 a 
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broadly tunable version became commercially available, and 

the QC laser is now an especially useful research tool.

The cleaved–coupled-cavity laser is shown in the accompa-

nying photo. In it the number of axial modes is controlled in 

order to produce very-narrow-bandwidth tunable radiation. 

Two cavities coupled together across a small gap restrict the 

radiation to the extremely narrow bandwidth that can be sus-

tained in both resonant chambers.*


Liquid Lasers


The first liquid laser was operated in January of 1963.† All of 

the early devices of this sort were exclusively  chelates
  (i.e., 

metallo-organic compounds formed of a metal ion with organic 

radicals). That original liquid laser contained an alcohol solu-

tion of europium benzoylacetonate emitting at 613.1 nm. The 

discovery of laser action in nonchelate organic liquids was 

made in 1966. It came with the fortuitous lasing (at 755.5 nm) 

An early cleaved–coupled-cavity laser. (Used with permission of Alcatel-Lucent USA Inc.)

of a chloroaluminum phthalocyanine solution during a search 

for stimulated Raman emission in that substance.‡

A great many fluorescent dye solutions of such families as 

but it was not until 1969 that a continuous-wave chemical laser 

the fluoresceins, coumarins, and rhodamines have since been 

was developed. The deuterium fluoride-carbon dioxide (DF-

made to lase at frequencies from the IR into the UV. These have 

CO

usually been pulsed, although c-w operation has been obtained. 

2) laser is self-sustaining in that it requires no external power 

source. In brief, the reaction F

There are so many organic dyes that it would seem possible to 

2 + D2 S 2DF, which occurs on 

the mixing of these two fairly common gases, generates enough 

build such a laser at any frequency in the visible. Moreover, 

energy to pump a CO

these devices are distinctive in that they inherently can be tuned 

2 laser. The hydrogen fluoride laser emits 

at 2700–2900 nm, while the deuterium laser emits at 3800 nm.

continuously over a range of wavelengths (of perhaps 70 nm or 

There are solid-state, gaseous, liquid, and vapor (e.g., H

so, although a pulsed system tunable over 170 nm exists). In-

2O) 

lasers; there are semiconductor lasers, free electron (600 nm to 

deed, there are other arrangements that will vary the frequency 

3 mm) lasers, X-ray lasers, doped glass fiber lasers, color center 

of a primary laserbeam (i.e., the beam enters with one color and 

lasers, and lasers with very special properties, such as those that 

emerges with another, Section 13.4), but in the case of the dye 

generate extremely short pulses, or those that have extraordi-

laser, the primary beam itself is tuned internally. This is accom-

nary frequency stability. These latter devices are very useful in 

plished, for example, by changing the concentration or the length 

the field of high-resolution spectroscopy, but there is a growing 

of the dye cell or by adjusting a diffraction grating reflector at 

need for them in other research areas as well (e.g., in the inter-

the end of the cavity. Multicolor dye laser systems, which can 

ferometers used to attempt to detect gravity waves). In any 

easily be switched from one dye to another and thereby operate 

event, these lasers must have precisely controlled cavity con-

over a very broad frequency range, are available commercially.

figurations despite the disturbing influences of temperature 

variations, vibrations, and even sound waves. A laser at the Joint 

Institute for Laboratory Astrophysics in Boulder, Colorado, 


Chemical Lasers


maintains a frequency stability of nearly 1 part in 1014.

A chemical laser is one that is pumped with energy released via 

a chemical reaction. The first of this kind was operated in 1964, 


13.1.4 The Light Fantastic


*See Y. Suematsu, “Advances in semiconductor lasers,”  Phys. Today
 , 32
  (May 

Laserbeams differ somewhat from one type of laser to another; 

1985). For a discussion of heterostructure diode lasers, refer to M. B. Panish  

yet there are several remarkable features that are displayed, to 

and I. Hayashi, “A new class of diode lasers,”  Sci. Am
 . 225, 32
  (July 1971).

varying degrees, by all of them. Quite apparent is the fact that 

most laserbeams are exceedingly directional, or if you will, 

†See Adam Heller, “Laser action in liquids,”  Phys. Today
  (November 1967), p. 35, 

highly collimated. One need only blow some smoke into the 

for a more detailed account.

otherwise invisible, visible laserbeam to see (via scattering) a 

fantastic thread of light stretched across a room. A He-Ne beam 

‡P. Sorokin, “Organic lasers,”  Sci. Am
 . 220, 30
  (February 1969).

in the TEM00 mode generally has a divergence of only about 
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one minute of arc or less. Recall that in that mode the emission 

closely approximates a Gaussian irradiance distribution; that is, 

the flux density drops off from a maximum at the central axis of 

the beam and has no side lobes. The typical laserbeam is quite 

narrow, usually issuing at no more than a few millimeters in 

diameter. Since the beam resembles a truncated plane wave, it is 

of course highly  spatially coherent
 . In fact, its directionality 

may be thought of as a manifestation of that coherence. Laser-

light is quasimonochromatic, generally having an exceedingly 

narrow frequency bandwidth (p. 315). In other words, it is highly 


temporally coherent
 .

Another attribute is the large flux or  radiant power
  that can 

be delivered in that narrow frequency band. As we’ve seen, the 

laser is distinctive in that it emits all its energy in the form of a 

narrow beam. In contrast, a 100-W incandescent lightbulb may 

pour out considerably more radiant energy in toto than a lower-

X-ray diffraction pattern of a Mimivirus using the world’s most powerful free-

power c-w laser, but the emission is incoherent, spread over a 

electron X-ray laser at the Linac Coherent Light Source. (Tomas Ekeberg, Uppsala 

large solid angle, and it has a broad bandwidth as well. A good 

University, SLAC National Accelerator Laboratory, Stanford University.)

lens* can totally intercept a laserbeam and focus essentially all 

of its energy into a minute spot (whose diameter varies directly 

firmly established a new field of research known as  ultrafast 


with l and the focal length and inversely with the beam diame-


phenomena
 . The most effective way to study the progression of 

ter). Spot diameters of just a few thousandths of an inch can 

a process that occurs exceedingly rapidly (e.g., carrier dynamics 

readily be attained with lenses that have a conveniently short 

in semiconductors, fluorescence, photochemical biological pro-

focal length. And a spot diameter of a few hundred-millionths of 

cesses, and molecular configuration changes) is to examine it on 

an inch is possible in principle. Thus flux densities can readily be 

a time scale that is comparatively short with respect to what’s 

generated in a focused laserbeam of over 1017 W>cm2, in con-

happening. Pulses lasting ≈10 fs allow an entirely new access 

trast to, say, an oxyacetylene flame having roughly 103 W>cm2. 

into previously obscure areas in the study of matter.

To get a better feel for these power levels, note that a focused 

Pulses lasting a mere 8 fs (10-15 s), which corresponds to 

CO2 laserbeam of a few kilowatts c-w can burn a hole through a 

wavetrains only about 4 wavelengths of red light in length, can 

quarter-inch stainless steel plate in about 10 seconds. By com-

be produced routinely. One of the techniques that make these 

parison, a pinhole and filter positioned in front of an ordinary 

femtosecond wavegroups possible is based on an idea used in 

source will certainly produce spatially and temporally coherent 

radar work in the 1950s called  pulse compression
 . Here an ini-

light, but only at a minute fraction of the total power output.

tial laser pulse has its frequency spectrum broadened, thereby 

allowing the inverse or temporal pulse width to be shortened—

remember that ∆n and ∆ t
  are conjugate Fourier quantities [Eq. 


Femtosecond Optical Pulses


(7.63)]. The input pulse (several picoseconds long) is passed 

into a nonlinear dispersive medium, namely, a single-mode op-

The advent of the mode-locked dye laser in the early part of the 

tical fiber. When the light intensity is high enough, the index of 

1970s gave a great boost to the efforts then being made at generat-

refraction has an appreciable nonlinear term (Section 13.4), and 

ing extremely short pulses of light.† Indeed, by 1974 subpicosec-

the carrier frequency of the pulse experiences a time-dependent 

ond (1 ps = 10-12 s) optical pulses were already being produced, 

shift. On traversing perhaps 30 m of fiber, the frequency of the 

although the remainder of the decade saw little significant prog-

pulse is drawn out, or “chirped.” That is, a spread occurs in the 

ress. In 1981 two separate advances resulted in the creation of 

spectrum of the pulse, with the low frequencies leading and  

femtosecond laser pulses (i.e., 60.1 ps or 6100 fs)—a group at 

the high frequencies trailing. Next the spectrally broadened 

Bell Labs developed a colliding-pulse ring dye laser, and a team 

pulse is passed through another dispersive system (a delay line), 

at IBM devised a new pulse-compression scheme. 

such as a pair of diffraction gratings. By traveling different 

Above and beyond the implications in the practical domain of 

paths, the blue-shifted trailing edge of the pulse is made to catch 

electro-optical communications, these accomplishments have 

up to the red-shifted leading edge, creating a time-compressed 

output pulse.

*Spherical aberration is usually the main problem, since laserbeams are, as a rule, 

both quasimonochromatic and incident along the axis of the lens.


The Speckle Effect


†

A rather striking and easily observable manifestation of the 

See Chandrashekhar Joshi and Paul Corkum, “Interactions of ultra-intense laser 

light with matter,”  Phys. Today
  36
  (January 1995).

spatial coherence of laserlight is its granular appearance on 
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reflection from a diffuse surface. Using a He-Ne laser (632.8 

change rapidly and randomly in time, washing out the large-

nm), expand the beam a bit by passing it through a simple lens 

scale interference pattern.

and project it onto a wall or a piece of paper. The illuminated 

A real system of fringes is formed of the scattered waves that 

disk appears speckled with bright and dark regions that spar-

converge in front of the screen. The fringes can be viewed by 

kle and shimmer in a dazzling psychedelic dance. Squint and 

intersecting the interference pattern with a sheet of paper at a 

the grains grow in size; step toward the screen and they shrink; 

convenient location. After forming the real image in space, the 

take off your eyeglasses and the pattern stays in perfect focus. 

rays proceed to diverge, and any region of the image can there-

In fact, if you are nearsighted, the diffraction fringes caused 

fore be viewed directly with the eye appropriately focused. In 

by dust on the lens blur out and disappear, but the speckles do 

contrast, rays that initially diverge appear to the eye as if they 

not. Hold a pencil at varying distances from your eye so that 

had originated behind the scattering screen and thus form a vir-

the disk appears just above it. At each position, focus on the 

tual image.

pencil; wherever you focus, the granular display is crystal 

It seems that as a result of chromatic aberration, normal and 

clear. Indeed, look at the pattern through a telescope; as you 

farsighted eyes tend to focus red light behind the screen. Con-

adjust the scope from one extreme to the other, the ubiquitous 

trarily, a nearsighted person observes the real field in front of 

granules remain perfectly distinct, even though the wall is 

the screen (regardless of wavelength). Thus if the viewer moves 

completely blurred.

her head to the right, the pattern will move to the right in the first 

The spatially coherent light scattered from a diffuse surface 

instance (where the focus is beyond the screen) and to the left in 

fills the surrounding region with a  stationary 
 interference pat-

the second (focus in front). The pattern will follow the motion 

tern ( just as in the case of the wavefront-splitting arrangements 

of your head, if you’re viewing it very close to the surface. The 

of Section 9.3). At the surface the granules are exceedingly 

same apparent parallax motion can be seen by looking through 

small, and they increase in size with distance. At any location in 

a window; outside objects will seem to move with your head, 

space, the resultant field is the superposition of many contribut-

inside ones opposite to it. The brilliant, narrow-bandwidth, spa-

ing scattered wavelets. These must have a constant relative phase 

tially coherent laserbeam is ideally suited for observing the 

determined by the optical path length from each scatterer to the 

granular effect, although other means are certainly possible.* In 

point in question, if the interference pattern is to be sustained. 

unfiltered sunlight the grains are minute, on the surface, and 

The accompanying photo illustrates this point rather nicely. It 

multicolored. The effect is easy to observe on a smooth, flat-

shows a cement block illuminated in one case by laserlight and 

black material (e.g., poster-painted paper), but you can see it on 

in the other by collimated light from a Hg arc lamp, both of 

a fingernail or a worn coin as well.

about the same spatial coherence. While the laser’s coherence 

Although it provides a marvelous demonstration, both aes-

length is much greater than the height of the surface features, the 

thetically and pedagogically, the granular effect can be a real 

coherence length of the Hg light is not. In the former case, the 

practical nuisance in coherently illuminated systems. For ex-

speckles in the photograph are large, and they obscure the sur-

ample, in holographic imagery the speckle pattern corresponds 

face structure; in the latter, despite its spatial coherence, the 

to troublesome background noise. Incidentally, very much the 

speckle pattern is not observable in the photograph, and the sur-

same kind of thing is observable when listening to a mobile ra-

face features predominate. Because of the rough texture, the op-

dio where the signal strength fluctuates from one location to the 

tical path length difference between two wavelets arriving at a 

next, depending on the environment and the resulting interfer-

point in space, scattered from different surface bumps, is gener-

ence pattern.

ally greater than the coherence length of the mercury light. This 

means that the relative phases of the overlapping wavetrains 


The Spontaneous Raman Effect


It is possible that an excited atom will not return to its initial 

state after the emission of a photon. This kind of behavior had 

been observed and studied extensively by George Stokes prior 

to the advent of quantum theory. Since the atom drops down to 

an interim state, it emits a photon of lower energy than the inci-

dent primary photon, in what is usually referred to as a  
Stokes 





transition

 . If the process takes place rapidly (roughly 10-7 s), it 

is called fluorescence
 , whereas if there is an appreciable delay 

(in some cases seconds, minutes, or even many hours), it is known 

(a)

(b)

*For further reading on this effect, see L. I. Goldfischer,  J. Opt. Soc. Am
 . 55
 , 247 

Speckle patterns. ( a
 ) A cement block illuminated by a mercury arc and ( b
 ) a 

(1965); D. C. Sinclair,  J. Opt. Soc. Am
 . 55
 , 575 (1965); J. D. Rigden and E. I. 

He-Ne laser. (B.J. Thompson,  J. Soc. Photo. Inst. Engr
 . 4
 , 7 [1965].)

Gordon,  Proc. IRE
  50
 , 2367 (1962); B. M. Oliver,  Proc.
   IEEE
  51
 , 220 (1963). 
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as phosphorescence
 . Using ultraviolet quanta to generate a flu-

(a)

Intermediate

orescent emission of visible light has become an accepted occur-

state

rence in our everyday lives. Any number of commonplace mate-


hvs



hvs


rials (e.g., detergents, organic dyes, and tooth enamel) will emit 


hvi



hvi


characteristic visible photons so that they appear to glow under 

ultraviolet illumination; ergo the widespread use of the phenom-


c
 〉


hv


enon for commercial display purposes and for “whitening” cloths.


cb



b
 〉

If quasimonochromatic light is scattered from a substance, it 


a
 〉

will thereafter consist mainly of light of the same frequency. Yet 

it is possible to observe very weak additional components hav-

ing higher and lower frequencies (side bands). Moreover, the 

(b)

Intermediate

state

difference between the side bands and the incident frequency n i
  

is found to be characteristic of the material and therefore sug-


hvs


gests an application to spectroscopy. The Spontaneous Raman 



hv



hvi



hvs



i



Effect
 , as it is now called, was predicted in 1923 by Adolf Sme-


c
 〉

kal and observed experimentally in 1928 by Sir Chandrasekha-

ra Vankata Raman (1888–1970), then professor of physics at 


b
 〉


hvba


the University of Calcutta. The effect was difficult to put to ac-


a
 〉

tual use, because one needed strong sources (usually Hg dis-

charges were used) and large samples. Often the ultraviolet 


Figure 13.24
     Spontaneous Raman Scattering.

from the source would further complicate matters by decom-

posing the specimen. And so it is not surprising that little sus-

Intermediate

state

tained interest was aroused by the promising practical aspects 

of the Raman Effect. The situation was changed dramatically 

when the laser became a reality.  
Raman spectroscopy

  is now a 


hvi



hvi



hvs



hvs
  =  hvi


unique and powerful analytical tool.


c
 〉

To appreciate how the phenomenon operates, let’s review the 

germane features of molecular spectra. A molecule can absorb 


b
 〉

radiant energy in the far-infrared and microwave regions, con-


a
 〉

verting it to rotational kinetic energy. Furthermore, it can ab-

sorb infrared photons (i.e., ones within a wavelength range 


Figure 13.25
   Rayleigh Scattering.

from roughly 10-2 mm down to about 700 nm), transforming 

that energy into vibrational motion of the molecule. Finally, a 

Figure 13.25, for comparison’s sake, depicts Rayleigh Scatter-

molecule can absorb energy in the visible and ultraviolet re-

ing where n s 
 = n i
 .

gions through the mechanism of electron transitions, much like 

The laser is an ideal source for spontaneous Raman Scattering. 

those of an atom. Suppose then that we have a molecule in some 

It is bright, quasimonochromatic, and available in a wide range 

vibrational state, which, using quantum-mechanical notation, 

of frequencies. Figure 13.26 illustrates a typical laser–Raman 

we call 0  b
 9, as indicated diagrammatically in Fig. 13.24 a
 . This 

system. Complete research instruments of this sort are commer-

need not necessarily be an excited state. An incident photon of 

cially available, including the laser (usually helium-neon, argon, 

energy  h
 n i 
 is absorbed, raising the system to some intermediate 

or krypton), focusing lens systems, and photon-counting electron-

or virtual state, whereupon it immediately makes a Stokes tran-

ics. The double scanning monochromator provides the needed 

sition, emitting a (scattered) photon of energy  h
 n s 
 6  h
 n i
 . In 

discrimination between n i
  and n s
 , since unshifted laserlight (n i
 ) 

conserving energy, the difference  h
 n i 
 -  h
 n s 
 =  h
 n cb
  goes into is scattered along with the Raman spectra (n s
 ). Although Raman 

exciting the molecule to a higher vibrational energy level 0  c
 9. It 

Scattering associated with molecular rotation was observed prior 

is possible that electronic or rotational excitation results as well. 

to the use of the laser, the increased sensitivity now available 

Alternatively, if the initial state is an excited one ( just heat 

makes the process easier and allows even the effects of electron 

the sample), the molecule, after absorbing and emitting a pho-

motion to be examined.

ton, may drop back to an even lower state (Fig. 13.24 b
 ), there-

by making an  
anti-Stokes transition

 . In this instance  h
 n s 
 7  h
 n i
 , which means that some vibrational energy of the molecule 


The Stimulated Raman Effect


( h
 n ba 
 =  h
 n s 
 -  h
 n i
 ) has been converted into radiant energy. In either case, the resulting differences between n

In 1962 Eric J. Woodbury and Won K. Ng rather fortuitously 


s
  and n i
  corre-

spond to specific energy-level differences for the substance 

discovered a remarkable related effect known as  Stimulated 


under study and as such yield insights into its molecular structure. 


Raman Scattering
 . They had been working with a million-watt 
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Figure 13.26
     A laser–Raman system.
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Figure 13.27
     Stimulated Raman Scattering. (Source: See R. W. 

lines

lines

Minck, R. W. Terhune, and C.C. Wang,  Proc. IEEE
  54
 , 1357, [1966].)

pulsed ruby laser incorporating a nitrobenzene Kerr cell shutter 

occur in solids, liquids, or dense gases under the influence of 

(see Section 8.11.3). They found that about 10% of the incident 

focused high-energy laser pulses (Fig. 13.27). The effect is 

energy at 694.3 nm was shifted in wavelength and appeared as 

schematically depicted in Fig. 13.28. Here two photon beams 

a  coherent
  scattered beam at 766.0 nm. It was subsequently de-

are simultaneously incident on a molecule, one corresponding 

termined that the corresponding frequency shift of about 40 

to the laser frequency n i
 , the other having the scattered frequen-

THz was characteristic of one of the vibrational modes of the 

cy n s
 . In the original setup, the scattered beam was reflected 

nitrobenzene molecule, as were other new frequencies also 

back and forth through the specimen, but the effect can occur 

present in the scattered beam. Stimulated Raman Scattering can 

without a resonator. The laserbeam loses a photon  h
 n i
 , while the 
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alteration in voltage that might appear across a pair of termi-

nals at some fixed location in space. By comparison, in Op-


hv



hv



i



i


tics we are most often concerned with information spread 


hv


across a region of space at a fixed location in time. For ex-


s


ample, we can think of the scene depicted in Fig. 13.29 a
  as a 


hv


two-dimensional flux-density distribution. It might be an il-


s



c
 〉

luminated transparency, a television picture, or an image 


hvs



b
 〉


a
 〉


z



Figure 13.28
     Energy-level diagram of Stimulated Raman Scattering.


a


scattered beam gains a photon  h
 n s
  and is subsequently  ampli-



fied
 . The remaining energy ( h
 n i 
 -  h
 n s 
 =  h
 n ba
 ) is transmitted to the sample. The chain reaction in which a large portion of the 

0


y


incident beam is converted into stimulated Raman light can 

occur only above a certain high-threshold flux density of the 

exciting laserbeam.

Stimulated Raman Scattering provides a whole new range of 

(a)

high flux-density coherent sources extending from the infrared 

to the ultraviolet. It should be mentioned that in principle each 

spontaneous scattering mechanism (e.g., Rayleigh and Brillouin 

Scattering) has its stimulated counterpart.*


I(y, 0)



13.2  Imagery—The Spatial Distribution 


0


y



of Optical Information


The manipulation of all sorts of data via optical techniques has 

(b)

already become a technological  fait accompli
 . The literature 

since the 1960s reflects, in a diversity of areas, this far-reaching 

interest in the methodology of optical data processing. Practical 

applications have been made in the fields of television and pho-

tographic image enhancement, radar and sonar signal process-

ing (phased and synthetic array antenna analysis), as well as in 


I(y, a)


pattern recognition (e.g., aerial photointerpretation and finger-

print studies), to list only a very few.

0


y


Our concern here is to develop the nomenclature and some 

Period

of the ideas necessary for an appreciation of this contemporary 

thrust in Optics.

(c)


13.2.1 Spatial Frequencies


Fourier

In electrical processes one is most frequently concerned 

components

with signal variations in time, that is, the moment-by-moment 


y


*For further reading on these subjects you might try the review-tutorial paper  

by Nicolaas Bloembergen, “The Stimulated Raman Effect,”  Am. J. Phys
 . 35
 , 989 

(1967). It contains a fairly good bibliography as well as a historical appendix. 

(d)

Many of the papers in  Lasers and Light 
 also deal with this material and are highly 

recommended reading.


Figure 13.29
     A two-dimensional irradiance distribution.
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projected on a screen; in any event there is presumably some 

are effectively one-dimensional. The spatial frequency spec-

function  I(y, z)
 , which assigns a value of  I 
 to each point in 

trum of Fourier components needed to synthesize the square 

the picture. To simplify matters a bit, suppose we scan across 

wave is shown in Fig. 7.40. On the other hand,  I(y, z)
  for the 

the screen on a horizontal line ( z 
 = 0) and plot point-by-point 

wine bottle candelabra scene is two-dimensional, and we 

variations in irradiance with distance, as in Fig. 13.29 b
 . The 

have to think in terms of two-dimensional Fourier transforms 

function   I(y, 0)  
 can be synthesized out of harmonic func-





(Sections 7.4.4 and 11.2.2). We might mention as well that, at 

tions, using the techniques of Fourier analysis treated in 

least in principle, we could have recorded the amplitude of 

Chapters 7 and 11. In this instance, the function is rather 

the electric field at each point of the scene and then per-

complicated, and it would take many terms to represent it 

formed a similar decomposition of that signal into its Fourier 

adequately. Yet if the functional form of  I(y, 0)
  is known, the 

components.

procedure is straightforward enough. Scanning across an-

Recall (Section 11.3.3) that the far-field or Fraunhofer dif-

other line, for example,  z 
 =  a
 , we get  I(y, a)
 , which is drawn 





fraction pattern is essentially identical to the Fourier transform 

in Fig. 13.29 c
  and which just happens to turn out to be a se-

of the aperture function 𝒜 (y, z)
 . The aperture function is pro-

ries of equally spaced square pulses. This function is one 

portional to e A(y, z)
 , the source strength per unit area [Eq. 

that was considered at length in Section 7.3, and a few of its 

(10.37)] over the input or object plane. In other words, if the 

constituent Fourier components are roughly sketched in Fig. 

field distribution on the object plane is given by 𝒜 (y, z)
 , its 

13.29 d
 . If the peaks in ( c
 ) are separated, center to center, by 

two-dimensional Fourier transform will appear as the field dis-

say, 1-cm intervals, the spatial period equals 1 cm per cycle, 

tribution  E(Y, Z)
  on a very distant screen. As in Figs. 7.52 and 

and its reciprocal, which is the spatial frequency, equals 1 

10.3, we can introduce a lens ( Lt
 ) after the object in order to 

cycle per cm.

shorten the distance to the image plane. That objective lens is 

Quite generally, we can transform the information associ-

commonly referred to as the  
transform lens

 , since we can 

ated with any scan line into a series of sinusoidal functions of 

imagine it as if it were an  optical computer
  capable of generat-

appropriate amplitude and spatial frequency. In the case of 

ing instant Fourier transforms. Now, suppose we illuminate a 

either of the simple sine- or square-wave targets of Fig. 13.30, 

somewhat idealized transmission grating with a spatially co-

each such horizontal scan line is identical, and the patterns 

herent, quasimonochromatic wave, such as the plane wave 

emanating from a laser or a collimated, filtered Hg arc source 

(Fig. 13.31). In either case, the amplitude of the field is as-

sumed to be fairly constant over the incident wavefront. The 

aperture function is then a periodic step function (Fig. 13.32); 

in other words, as we move from point to point on the object 

plane, the amplitude of the field is either zero or a constant. If 

Irradiance or

Period


a
  is the grating spacing, it is also the spatial period of the step 

field amplitude

function, and its reciprocal is the fundamental spatial frequency 

of the grating. The central spot ( m 
 = 0) in the diffraction pat-

tern is the  DC
  term corresponding to a zero spatial frequency—

it’s the bias level that arises from the fact that the input 𝒜 (y)
  is 

everywhere positive. This bias level can be shifted by con-


y


structing the step-function pattern on a uniform gray back-

(a)

ground. As the spots in the image (or in this case the transform) 

plane get farther from the central axis, their associated spatial 

frequencies ( m
 > a
 ) increase in accord with the grating equation 

sin u m 
 = l( m
 > a
 ). A coarser grating would have a larger value of 


a
 , so that a given order ( m
 ) would be concomitant with a lower 

frequency, ( m
 > a
 ), and the spots would all be closer to the cen-

tral or optical axis.

Irradiance or

Had we used as an object a transparency resembling the sine 

field amplitude

Period

target (Fig. 13.30 a
 ), such that the aperture function varied si-

nusoidally, there would ideally have only been three spots on 

the transform plane, these being the zero-frequency central 

peak and the first order or fundamental ( m 
 = ±1) on either 

side of the center. Extending things into two dimensions, a 


y


crossed grating (or mesh) yields the diffraction pattern shown 

(b)

in the photo on p. 632. Note that in addition to the obvious 


Figure 13.30
   ( a
 ) Sine-wave target and ( b
 ) square-wave target.

periodicity horizontally and vertically across the mesh, it is 
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(a)


y



a



m
   =
  3


x



m
   =
  2


m
   =
  1


m
   =
  0

Plane

Transform

waves

lens


m
   =
  −1


z


Grating


m
   =
  −2

Image

plane or


m
   =
  −3

transform

plane

(b)

2

1


m
   =
  0

−1

−2


f



Figure 13.31
     Diffraction pattern of a grating. (E.H.)

( y
 )

also repetitive, for example, along diagonals. A more involved 

object, such as a transparency of the surface of the Moon, 

would generate an extremely complex diffraction pattern. 





Because of the simple periodic nature of the grating, we could 

think of its Fourier-series components, but now we will cer-

…

…

tainly have to think in terms of Fourier transforms. In any case, 


y



a



each spot of light in the diffraction pattern denotes the pres-



ence of a specific spatial frequency, which is proportional to its 


Transform


m
   =
  0

−1

1

Diffraction pattern of a 

−2

2

crossed grating or 

−

mesh. 

3

3

(E.H.)


y


0

Angular spatial

6p

2p 2p

6p

−

−

frequency


a



a



a



a


4p

4


m
 (2p

p


a
 )

−  a



a


Diffraction pattern


Figure 13.32
   Square wave and its transform.
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c


1
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Σ t



P
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Lt



Lt


Σ i


Σ


f



t


Σ i



t



Figure 13.33
   Image formation.


distance from the optical axis 
 ( zero-frequency location
 ). Fre-

We can envision the points- S
 0, - S
 1, - S
 2, and so forth in the 

quency components of positive and negative sign appear dia-

transform plane of Fig. 13.33 a
  as if they were point emitters of 

metrically opposite each other about the central axis. If we 

Huygens wavelets, and the resulting diffraction pattern on g t
  is 

could measure the electric field at each point in the transform 

then the grating’s image. In other words,  the image arises from 


plane, we would indeed observe the transform of the aperture 


a double diffraction process
 . Alternatively, we can imagine that 

function, but this is not practicable. Instead, what will be de-

the incoming wave is diffracted by the object, and the resulting 

tected is the flux-density distribution, where at each point the 

diffracted wave is then diffracted once again by the objective 

irradiance is proportional to the time average of the electric 

lens. If that lens were not there, a diffraction pattern of the ob-

field squared or equivalently to the square of the amplitude of 

ject would appear on g i
  in place of the image.

the particular spatial frequency contribution at that point.


y



y



Y



13.2.2 Abbe’s Theory of Image Formation


Consider the system depicted in Fig. 13.33 a
 , which is just an 

elaborated version of Fig. 13.33 b
 . Plane monochromatic wave-

fronts emanating from the collimating lens ( L



d



c
 ) are diffracted 

by a grating. The result is a distorted wavefront, which we re-

solve into a new set of plane waves, each corresponding to a 

given order  m 
 = 0, ±1, ±2, . . . or spatial frequency and each 

traveling in a specific direction (Fig. 13.33 b
 ). The objective lens 

Σ


L



o



t


Σ t


Σ i


( Lt
 ) serves as a  transform lens
 , forming the Fraunhofer diffrac-

Fraunhofer pattern

tion pattern of the grating on the transform plane g t
  (which is 

Field

also the back focal plane of  Lt
 ). The waves, of course, propa-

amplitude

gate beyond g

Field

Field


t
  and arrive at the image plane  g  i
 . There they 

overlap and interfere to form an inverted image of the grating. 

amplitude

amplitude

Accordingly, points- G
 1 and - G
 2 are imaged at  P
 1 and  P
 2, respec-

tively. The objective lens forms two distinct patterns of interest. 


y



y


One is the Fourier transform on the focal plane conjugate to the 


Y



d


0

–


d



M


0


M


–  Td



T d


plane of the source, and the other is the image of the object, 

2

2

2

2

formed on the plane conjugate to the object plane. Figure 13.34 

Transform

Object plane

or focal plane

Object plane

shows the same setup for a long, narrow, horizontal slit coherently 

illuminated.


Figure 13.34
     The image of a slit.
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These ideas were first propounded by Professor Ernst Abbe 

might be mentioned as well that there is a basic nonlinearity 

(1840–1905) in 1873.* His interest at the time concerned the 

associated with optical imaging systems operating at high spa-

theory of microscopy, whose relationship to the above discus-

tial frequencies.†

sion is clear if we consider  Lt
  as a microscope objective. More-

over, if the grating is replaced by a piece of some thin translu-

cent material (i.e., the specimen being examined), which is 


13.2.3 Spatial Filtering


illuminated by light from a small source and condenser, the 

system certainly resembles a microscope.

Suppose we actually set up the system shown in Fig. 13.33 a
 , us-

Carl Zeiss (1816–1888), who in the mid-1800s was running 

ing a laser as a plane-wave source. If the points- S
 0, - S
 1, - S
 2, and 

a small microscope factory in Jena, realized the shortcomings 

so on are to be the sources of a Fraunhofer pattern, the image 

of the trial-and-error development techniques of that era. In 

screen must presumably be located at  x 
 = ∞ (although 30 or 40 

1866 he enlisted the services of Ernst Abbe, then lecturer at the 

ft will often do). At the risk of being repetitious, recall that the 

University of Jena, to establish a more scientific approach to 

reason for using  Lt 
 originally was to bring the diffraction pattern 

microscope design. Abbe soon found by experimentation that a 

of the object in from infinity. We now introduce an  imaging lens 


larger aperture resulted in higher resolution, even though the 


Li
  (Figs. 13.35 and 13.36) in order to bring in from infinity the 

apparent cone of incident light filled only a small portion of the 

diffraction pattern of the set of source points- S
 0, - S
 1, - S
 2, . . . , 

objective. Somehow the surrounding “dark space” contributed 

thereby relocating g i
  at a convenient distance. The transform 

to the image. Consequently, he took the approach that the then 

lens causes the light from the object to converge in the form of 

well-known diffraction process that occurs at the edge of a lens 

a diffraction pattern on the plane g t
 ; that is, it produces on g t
  

(leading to the Airy pattern for a point source) was not operative 

a two-dimensional Fourier transform of the object. To wit, the 

in the same sense as it was for an incoherently illuminated tele-

spatial frequency spectrum of the object is spread across the 

scope objective. Specimens, whose size was of the order of 

transform plane. Thereafter,  L


l, 


i
  (the “inverse
 ”  transform lens
 ) 

were apparently scattering light into the “dark space” of the mi-

projects the diffraction pattern of the light distributed over g t
  

croscope objective. Observe that if, as in Fig. 13.33 b
 , the aper-

onto the image plane. In other words, it diffracts the diffracted 

ture of the objective is not large enough to collect all of the 

beam, which effectively means that it generates an (inverted) 

diffracted light, the image does not correspond exactly to that 

inverse transform. Thus essentially an inverse transform of the 

object. Rather, it relates to a fictitious object whose complete 

data on g t 
 appears as the final image. 

diffraction pattern matches the one collected by  L


Quite frequently, in practice  Lt
  and  Li
  are identical ( ƒt



t
 . We know 

=  ƒi
 ) 

from the previous section that these lost portions of the outer 

well-corrected multi-element lenses (for quality work these 

region of the Fraunhofer pattern are associated with the higher 

might have resolutions of about 150 line pairs>mm—one line 

spatial frequencies. And, as we shall see presently, their remov-

pair being a period in Fig. 13.30 b
 ). For less demanding applica-

al will result in a loss in image sharpness and resolution.

tions, two projector objectives of large aperture (about 100 mm) 

Practically speaking, unless the grating considered earlier 

having convenient focal lengths of roughly 30 or 40 cm serve 

has an infinite width, it cannot be strictly periodic. This means 

quite nicely. One of these lenses is then merely turned around so 

that it has a continuous Fourier spectrum dominated by the usu-

that both their back focal planes coincide with g t
 . Incidentally, 

al discrete Fourier-series terms, the other being much smaller in 

the input or object plane need not be located a focal length away 

amplitude. Complicated, irregular objects clearly display the 

from  Lt
 ; the transform still appears on g t
 . Moving g0 affects 

continuous nature of their Fourier transforms. In any event, it 

only the phase of the amplitude distribution, and that is gener-

should be emphasized that  unless the objective lens has an infi-


ally of little interest. The device shown in Figs. 13.35 and 13.36 


nite aperture, it functions as a low-pass filter rejecting spatial 



frequencies above a given value and passing all those below
  

(the former being those that extend beyond the physical bound-

ary of the lens). Consequently, all practical lens systems will be 

limited in their ability to reproduce the high spatial frequency 

content of an actual object under coherent illumination.† It 

*An alternative and yet ultimately equivalent approach was put forth in 1896 by 

Lord Rayleigh. He envisaged each point on the object as a coherent source whose 

emitted wave was diffracted by the lens into an Airy pattern. Each of these in turn 

Σ o



L


Σ t


Σ


t



Li



i


was centered on the ideal image point (on  g i
 ) of the corresponding point source. 

Thus  g i
  was covered with a distribution of somewhat overlapping and interfering 


Figure 13.35
     Object, transform, and image planes.

Airy patterns.

†Refer to H. Volkmann, “Ernst Abbe and his work,”  Appl. Opt
 . 5
 , 1720 (1966), for 

†R. J. Becherer and G. B. Parrent, Jr., “Nonlinearity in optical imaging systems,”  

a more detailed account of Abbe’s many accomplishments in Optics.


J. Opt. Soc. Am
 . 57
 , 1479 (1967).
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Figure 13.36
   The Fourier 

transform of the letter E via an 

optical computer. Parts ( a
 ) 

through ( g
 ) show more and more 

of the detail of the transform as 

the exposure time is increased.  

(E.H.) 
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is referred to as a  
coherent optical computer

 . It allows us to in-

large frequency range. There will also be a comparatively 

sert obstructions (i.e., masks or filters) into the transform plane 

low-frequency, concentric ring–like structure. The trans-

and in so doing partially or completely block out certain spatial 

forms of disks and rings and the like will obviously be circu-

frequencies, stopping them from reaching the image plane.  This 


larly symmetrical. Similarly, a horizontal elliptical aperture 


process of altering the frequency spectrum of the image is known 


will generate vertically oriented concentric elliptical bands. 


as 
 spatial filtering
  (see Section 7.4.4). 

Most often, far-field patterns possess a center of symmetry 

From our earlier discussion of Fraunhofer diffraction we 

(see Problems 10.25 and 11.37).

know that a long narrow slit at g0, regardless of its orientation 

We are now in a better position to appreciate the process of 

and location, generates a transform at g t
  consisting of a series 

spatial filtering and to that end will consider an experiment sim-

of dashes of light lying along a straight line perpendicular to the 

ilar to one published in 1906 by A. B. Porter. Figure 13.37 a
  

slit (see Fig. 10.6) and  passing through the origin
 . Consequent-

shows a fine wire mesh whose periodic pattern is disrupted by a 

ly, if the straight-line object is described by  y 
 =  mz 
 +  b
 , the 

few particles of dust. With the mesh at g0, Fig. 13.37 b
  shows 

diffraction pattern lies along the line  Y 
 = - Z
 > m 
 or equivalently, 

the transform as it would appear on g t
 . Now the fun starts—

from Eqs. (11.64) and (11.65), k Y 
 = -k Z
 > m
 . With this and the 

since the transform information relating to the dust is located in 

Airy pattern in mind, we should be able to anticipate some of 

an irregular cloud-like distribution about the center point, we can 

the gross structure of the transforms of various objects. Be 

easily eliminate it by inserting an opaque mask at g t
 . If the 

aware as well that these transforms are centered about the zero-

mask has holes at each of the principal maxima, thus passing on 

frequency optical axis of the system. For example, a transparent 

only those frequencies, the image appears dustless (Fig. 13.38 a
 ). 

plus sign whose horizontal line is thicker than its vertical one 

At the other extreme, if we just pass the cloud-like pattern near 

has a two-dimensional transform again shaped more or less like 

center, very little of the periodic structure appears, leaving an 

a plus sign. The thick horizontal line generates a series of short 

image consisting of essentially just the dust particles (Fig. 

vertical dashes, while the thin vertical element produces a line 

13.38 b
 ). Passing only the zero-order central spot generates a 

of long horizontal dashes. Remember that object elements with 

uniformly illuminated (DC) field, just as if the mesh were no 

small dimensions diffract through relatively large angles. Along 

longer in position. Observe that as more and more of the higher 

with Abbe, one could think of this entire subject in these terms 

frequencies are eliminated, the detail of the image deteriorates 

rather than using the concepts of spatial frequency filtering and 

markedly [( d
 ), ( e
 ), and (  ƒ 
 ) in Fig. 13.38]. This can be under-

transforms, which represent the more modern influence of 

stood quite simply by remembering how a function, with what 

communication theory.

we might call “sharp edges,” was synthesized out of harmonic 

The vertical portions of the symbol E
  in Fig. 13.36 gener-

components. The square wave of Fig. 7.34 serves to illustrate the 

ate the broad frequency spectrum appearing as the horizontal 

point. It is evident that the addition of higher harmonics serves 

pattern. Note that all parallel line sources on a given object 

predominantly to square up the corners and flatten out the peaks 

correspond to a single linear array on the transform plane. 

and troughs of the profile. In this way,  
the high spatial frequen-



This, in turn, passes through the origin on  g t
  (the intercept 



cies contribute to the sharp edge detail between light and dark 



is zero), just as in the case of the grating. A transparent fig-



regions of the image

 . The removal of the high-frequency terms 

ure 5 will generate a pattern consisting of both a horizontal 

causes a rounding out of the step function and a consequent loss 

and vertical distribution of spots extending over a relatively 

of resolution in the two-dimensional case.

(a)

(b)


Figure 13.37
     A fine, slightly dusty mesh and its transform. (D. Dutton, M.P. Givens, and  

R.E. Hopkins,  Spectra-Physics Laser Technical Bulletin Number
   3
 .)
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Figure 13.38
     Images resulting when various portions of the diffraction pattern of Fig. 13.37 b
  are obscured by the accompanying masks or spatial filters. (D. Dutton, M.P. Givens, and R.E. Hopkins,  Spectra-Physics Laser Technical Bulletin Number
   3
 .) What would happen if we took out the  DC
  component 

white will become grayish, as is shown in the photo on 

(Fig. 13.38 c
 ) by passing everything but the central spot? A 

p. 638.

point on the original image that appears black in the photo 

Let’s now examine some of the possible applications of this 

denotes a near-zero irradiance and perforce a near-zero field 

technique. Figure 13.39 a
  shows a composite photograph of the 

amplitude. Presumably, all of the various optical field com-

Moon consisting of film strips pieced together to form a single 

ponents completely cancel each other at that point—ergo, no 

mosaic. The video data were telemetered to Earth by  Lunar 


light. Yet with the removal of the  DC
  term, the point in ques-


Orbiter 1
 . Clearly, the grating-like regular discontinuities be-

tion must certainly then have a nonzero field amplitude. 

tween adjacent strips in the object photograph generate the 

When squared ( I 
 ∝  E
 20>2) this will generate a nonzero irra-

broad-bandwidth, vertical-frequency distribution evident in 

diance. It follows that regions that were originally black in 

Fig. 13.39 c
 . When these frequency components are blocked, 

the photo will now appear whitish, while regions that were 

the enhanced image shows no sign of having been a mosaic. In 
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(a)

yields an image in shades of gray (Fig. 13.41) showing none 

of the discontinuous nature of the original. One could con-

struct a precise filter to obstruct only the square mesh frequen-

cies by actually using a negative transparency of the transform 

of the basic checkerboard array. Alternatively, it usually suf-

fices to use a low-pass circular aperture filter, and in so doing 

inadvertently discard some of the high-frequency detail of the 

original scene, at least as long as the mesh frequency is com-

paratively high. 

The same procedure can be used to remove the graininess of 

highly enlarged photographs, which is of value, for example, in 

aerial photo reconnaissance. In contrast, we could sharpen up 

the details in a slightly blurred photograph by emphasizing its 

high-frequency components. This could be done with a filter 

that preferentially absorbed the low-frequency portion of the 

spectrum. A great deal of effort, beginning in the 1950s, has 

(b)

gone into the study of photographic image enhancement, and 

the ensuing successes have been notable indeed. Prominent 

among these contributors was A. Maréchal of the Institut 

d’Optique, Université de Paris, who combined absorbing and 

phase-shifting filters to reconstitute the detail in badly blurred 

photographs. These filters are transparent coatings deposited on 

optical flats so as to retard the phase of various portions of the 

spectrum (Section 13.2.4).

As this work in optical data processing continues into the 

coming decades, we will surely see the replacement of the pho-

tographic stages, in increasingly many applications, by real-

time electro-optical devices (e.g., arrays of ultrasonic light 

modulators forming a multichannel input are already in use).† 

The coherent optical computer will reach a certain maturity, be-

coming an even more powerful tool when the input, filtering, 

and output functions are performed electro-optically. A contin-

Part (b) is a filtered version of (a) where the zeroth order was removed.  

uous stream of real-time data could flow into and out of such a 

(D. Dutton, M.P. Givens, and R.E. Hopkins,  Spectra-Physics Laser Technical Bulletin Number 3
 .)

device.


13.2.4 Phase Contrast


very much the same way, one can suppress extraneous data in 

bubble chamber photographs of subatomic particle tracks.* 

It was mentioned briefly in the last section that the reconstruct-

These photographs are made difficult to analyze because of 

ed image could be altered by introducing a phase-shifting filter. 

the presence of the unscattered beam tracks (Fig. 13.40), 

Probably the best-known example of this technique dates back 

which, since they are all parallel, are easily removed by spatial 

to 1934 and the work of the Dutch physicist Frits Zernike, who 

filtering.

invented the method of phase contrast
  and applied it in the 

Consider the familiar half-tone or facsimile process by which 


phase-contrast microscope
 .

a printer can create the illusion of various tones of gray while 

An object can be “seen” because it stands out from its  

using only black ink and white paper (take a close look at a 

surroundings—it has a color, tone, or lack of color, which pro-

newspaper photograph). If a transparency of such a facsimile is 

vides contrast with the background. This kind of structure is 

inserted at g0 in Fig. 13.35, its frequency spectrum will appear 

on  g t
 . Once again the relatively high-frequency components 

arising from the half-tone mesh can easily be eliminated. This 

†We have only touched on the subject of optical data processing; a more extensive 

discussion of these matters is given, for example, by Goodman in  Introduction to 



Fourier Optics
 , Chapter 7. That text also includes a good reference list for further 

reading in the journal literature. Also see P. F. Mueller, “Linear multiple image  

*D. G. Falconer, “Optical processing of bubble chamber photographs,”  Appl. Opt
 . 

storage,”  Appl. Opt
 . 8
 , 267 (1969). Here, as in much of modern Optics, the  


5
 , 1365 (1966), includes some additional uses for the coherent optical computer.

frontiers are fast moving, and obsolescence is a hard rider.
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(a)

(b)

(c)

(d)

(a)

(b)


Figure 13.39
     Spatial filtering. ( a
 ) A  Lunar Orbiter
  composite photo of the Moon.  

( b
 ) Filtered version of the photo sans horizontal lines. ( c
 ) A typical unfiltered transform (power spectrum) of a moonscape. ( d
 ) Diffraction pattern with the vertical dot pattern 

filtered out. (D. A. Ansley, W. A. Blikken, The Conductron Corporation, and NASA.)


Figure 13.40
     Unfiltered and filtered bubble 

chamber tracks.

known as an  amplitude object
 , because it is observable by dint of 

transparent, thereby providing practically no contrast with their 

variations that it causes in the amplitude of the lightwave. The 

environs and altering only the phase of the detected wave. The 

wave that is either reflected or transmitted by such an object 

optical thickness of such objects generally varies from point to 

becomes  amplitude modulated
  in the process. In contradistinction, 

point as either the refractive index or the actual thickness, or both, 

it is often desirable to “see”  phase objects
 , that is, ones that are 

vary. Obviously, since the eye cannot detect phase variations, 
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diverging from the object, these higher-order spa-

tial frequency terms (see Section 13.2.2) are caused 

to converge on the image plane. The direct and dif-

fracted waves recombine out-of-phase by p>2, 

again forming the phase-modulated wave. Since 

the amplitude of the reconstructed wave  EPM(
   
r

 $ ,
   t)
  

is everywhere the same on  g i
 , even though the 

phase varies from point to point, the flux density is 

uniform, and no image is perceptible. Likewise, 

the zeroth-order spectrum of a phase grating will 

be p>2 out-of-phase with the higher-order spectra.

If we could somehow shift the relative phase be-

tween the diffracted and direct beams by an addi-

tional p>2 prior to their recombination, they would 

still be coherent and could then interfere either con-

structively or destructively (Fig. 13.44). In either 


Figure 13.41
     A self-portrait of K. E. Bethke consisting of only black and white 

case, the reconstructed wavefront over the region of 

regions as in a halftone. When the high frequencies are filtered out, shades of gray 

the image would then be amplitude modulated—the 

appear and the sharp boundaries vanish. (R.A. Phillips,  Am. J. Phys
 . 37
 , 536 [1969].)

image would be visible.

We can see this in a very simple analytical way 

where

such objects are invisible. This is the problem that led biologists 






Ei
   (x, t)
 0  x
  = 0 =  E
 0 sin v t
  

to develop techniques for staining transparent microscope speci-

mens and in so doing to convert phase objects into amplitude 

is the incoming monochromatic lightwave at g o
  without the 

objects. But this approach is unsatisfactory in many respects, for 

specimen in place. The particle will induce a position-dependent 

example, when the stain kills the specimen whose life processes 

phase variation f (y, z)
  such that the wave just leaving it is





are under study, as is all too often the case.


 



E


Recall that diffraction occurs when a portion of the surface 


PM(
   
r



$ , t)
 0  x
  = 0 =  E
 0 sin [v t 
 + f (
   y, z)
 ] (13.20)

of constant phase is obstructed in some way, that is, when a re-

This is a constant-amplitude wave, which is essentially the 

gion of the wavefront is altered (either in amplitude or phase, 

same on the conjugate image plane. That is, there are some 

i.e., shape). Suppose then  losses, but if the lens is large and aberration-free and we neglect 

that a plane wave passes  the orientation and size of the image, Eq. (13.20) will suffice to 

through a transparent parti-

represent the PM wave on either g o
  or g i
 . Reformulating that 

cle, which retards the phase 

disturbance as

of a region of the front. The 

emerging wave is no longer 


EPM(y, z, t) 
 =  E
 0 sin v t
  cos f +  E
 0 cos v t
  sin f

perfectly planar but contains 

a small indentation corre-

and limiting ourselves to  very small values
  of f, we obtain

Frits Zernike (1888–1966) won the 

sponding to the area retard-

Nobel Prize for Physics in 1953. (E.H.)

ed by the specimen; the 


EPM(y, z, t) 
 =  E
 0 sin v t 
 +  E
 0f (y, z)
  cos v t


wave is  phase modulated
 .

The first term is independent of the object, while the second 

Taking a rather simplistic view of things, we can imagine 

term obviously isn’t. Thus, as above, if we change their relative 

the phase-modulated wave  EPM(
   
r

 $ ,
   t)
  (Fig. 13.42) to consist of phase by p>2, that is, either change the cosine to sine or vice 

the original incident plane wave  Ei
   (x, t)
  plus a localized distur-

versa, we get

bance  Ed
   (
   
r

 $ , t)
 . (The symbol r
 $ means that  EPM
  and  Ed 
 depend on  x
 ,  y
 , and  z
 ; i.e., they vary over the  yz
 -plane, whereas  Ei
  is EAM(y, z, t) 
 =  E
 0[1 + f (y, z)
 ] sin v t
  (13.21)

uniform and does not.) Indeed, if the phase retardation is very 

small, the localized disturbance is a wave of very small ampli-

which is an amplitude-modulated wave. Observe that f (y, z)
  

tude,  E
 0 d
 , lagging by just about l

can be expressed in terms of a Fourier expansion, thereby in-

0>4, as in Fig. 13.43. There 

the difference between  E


troducing the spatial frequencies associated with the object. 


PM(
   
r



$ ,
   t)
  and  Ei
   (x, t)
  is shown to be 


E


Incidentally, this discussion is precisely analogous to the one 


d
   (
   
r



$ , t)
 . The disturbance  Ei
   (x, t)
  is called the direct or  zeroth-



order wave
 , while  E


proposed in 1936 by E. H. Armstrong for converting AM ra-


d
   (
   
r



$ , t)
  is the  diffracted wave
 . The former 

produces a uniformly illuminated field at g

dio waves to FM [f (t)
  could be thought of as a frequency 


i
 , which is unaf-

fected by the object, while the latter carries all of the informa-

modulation wherein the zeroth-order term is the carrier]. An 

tion about the optical structure of the particle. After broadly 

electrical bandpass filter was used to separate the carrier from 
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Figure 13.42
   Phase-contrast setup.

the remaining information spectrum so that the p>2 phase 

Phase object

shift could be accomplished. Zernike’s method of doing es-

sentially the same thing is as follows. He inserted a spatial 

filter in the transform plane  g t
  of the objective, which was 

capable of inducing the p>2 phase shift. Observe that the di-

rect light actually forms a small image of the source on the 


x


optical axis at the location of  g t
 . The filter could then be a 


Ed(t)


(a)


E



E



E



i(t)



PM(t)



i(t)


Phase-modulated wave

Snapshot at


E


some time  t



i(t)
  retarded by p2


Ed(t)



E



Eod



E



o



E



d(t)



i(t)



x



Ei(t)


Localized

wave

(b)

Plane wave


EPM(t)


Phase modulated


Ed(t)



E



E
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od



E
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i(t)
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Note ≈ 90° difference in phase


Figure 13.43
     Wavefronts in the phase-contrast process.


Figure 13.44
     Effect of phase shifts.
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Figure 13.45
     Phase contrast (only zeroth order shown).

small circular indentation of depth  d
  etched in a transparent 

reduced with respect to the higher orders, and the contrast 

glass plate of index  ng
 . Ideally, only the direct beam would 

improves. Or, if you like,  E
 0 is reduced to a value compara-

pass through the indentation, and in so doing it would take on 

ble with that of the diffracted wave  E
 0 d
 . Generally, a micro-

a   phase advance
  with respect to the diffracted wave of 

scope will come with an assortment of these phase plates hav-

( ng 
 - 1) d
 , which is made to equal l0>4. A filter of this sort is 

ing different absorptions.

known as a  
phase plate

 , and since its effect corresponds to 

In the parlance of modern Optics (the still-blushing bride of 

Fig. 13.44 b
 , that is, destructive interference, phase objects 

communications theory), phase contrast is simply the process 

that are thicker or have higher indices appear dark against a 

whereby we introduce a p>2 phase shift in the zeroth-order 

bright background. If, instead, the phase plate had a small 

spectrum of the Fourier transform of a phase object (and  

raised disk at its center, the opposite would be true. The former 

perhaps attenuate its amplitude as well) through the use of an 

case is called  positive-phase contrast
 ; the latter,  negative-phase 


appropriate spatial filter.


contrast
 .

The phase-contrast microscope, which earned Zernike the 

In actual practice, a brighter image is obtained by using 

Nobel Prize in 1953, has found extensive applications (see photo), 

a broad, rather than a point, source along with a substage 

perhaps the most fascinating of which is the study of the life 

condenser. The emerging plane waves illuminate an annular 

functions of otherwise invisible organisms.

diaphragm (Fig. 13.45), which, since it is the source plane, is 

conjugate to the transform plane of the objective. The zeroth-

order waves, shown in the figure, pass through the object 


13.2.5  The Dark-Ground and Schlieren Methods


according to the tenets of Geometrical Optics. They then tra-

verse the thin annular region of the phase plate located at 

Suppose we go back to Fig. 13.42, where we were examining a 

Σ t
 . That region of the plate is quite small, and so the cone 

phase object, and this time rather than retard and attenuate the 

of diffracted rays, for the most part, misses it. By making 

central zeroth order, we remove it completely with an opaque 

the annular region absorbing as well (a thin metal film will 

disk at  So
 . Without the object in place, the image plane will be 

do), the very large uniform zeroth-order term (Fig. 13.46) is 

completely dark—ergo the name  
dark ground

 . With the object in 
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negative. Inasmuch as irradiance is proportional to the amplitude 

squared, this will result in somewhat of a contrast reversal from 

that which would have been seen in phase contrast (see Section 

13.2.3). In general, this technique has not been as satisfactory as 

the phase-contrast method, which generates a flux-density distri-

bution across the image that is directly proportional to the phase 

variations induced across the object.

Electric field

In 1864 A. Toepler introduced a procedure for examining 

amplitude

defects in lenses, which has come to be known as the schlieren 


method.* We will discuss it here because of the widespread 

current usage of the method in a broad range of fluid dynamics 

studies and furthermore because it is another beautiful example 

(a)

Σ i


of the application of spatial filtering. Schlieren systems are 

particularly useful in ballistics, aerodynamics, and ultrasonic 

wave analysis (see photo on p. 644)—indeed, wherever it is 

desirable to examine pressure variations as revealed by refrac-

tive-index mapping.

Suppose that we set up any one of the possible arrange-

ments for viewing Fraunhofer diffraction (e.g., Fig. 10.3 or 

P.10.4). But now, instead of using an aperture of some sort as 

the diffracting amplitude object, we insert a phase object, for 

Electric field

example, a gas-filled chamber (Fig. 13.47). Again a Fraunhofer 

amplitude

pattern is formed in  g t
 , and if that plane is followed by the 

objective lens of a camera, an image of the chamber is formed 

on the film plane. We would then photograph any amplitude 

objects within the test area, but, of course, phase objects would 

(b)

Σ i


still be invisible. Imagine that we now introduce a knife edge at 

g t
 , raising it from below until it obstructs (sometimes only 


Figure 13.46
     Field amplitude over a circular region on the image 

partially) the zeroth-order light and therefore all the higher or-

plane. In one case there is no absorption in the phase plate, and the irra-

ders on the bottom side as well. Just as in the dark-ground 

diance would be a small ripple on a great plateau. With the zeroth order 

attenuated, the contrast increases.

method, phase objects are then perceptible. Inhomogeneities in 

the test chamber windows and flaws in the lenses are also no-

ticeable. For this reason and because of the large field of view 

position, only the localized diffracted wave will appear at g i
  to 

form the image. (This can also be accomplished in microscopy 

by illuminating the object obliquely so that no direct light enters 

the objective lens.) Observe that by eliminating the DC contribu-

*The word  Schlieren
  in German means streaks or striae. It’s frequently capitalized 

tion, the amplitude distribution (as in Fig. 13.46) will be lowered 

because all nouns are capitalized in German and not because there was a Mr. 

and portions that were near zero prior to filtering will become 

Schlieren.

( a
 ) A conventional photomicrograph of diatoms, 

fibers, and bacteria. ( b
 ) A phase photomicrograph 

of the same scene. (T.J. Lowery and R. Hawley.)

(a)

(b)
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on the other hand, allow us to exploit the considerable color 

sensitivity of photographic emulsions, and a number of color 

schlieren systems have been devised.


13.3 Holography


The technology of photography has been with us for a long time, 

and we’ve all grown accustomed to seeing the three-dimensional 

world compressed into the flatness of a scrapbook page. The 

depthless television pitchman who smiles out of a myriad of 

phosphorescent flashes, although inescapably there, seems no 

more palpable than a postcard image of the Eiffel Tower. Both 

share the severe limitation of being simply irradiance map-

pings. In other words, when the image of a scene is ordinarily 

A schlieren photo of a spoon in a candle flame. (E.H.)

reproduced, by whatever traditional means, what we ultimately 

see is not an accurate reproduction of the light field that once 

usually required, mirror systems (Fig. 13.48) have not become 

inundated the object, but rather a point-by-point record of just 

commonplace.

the square of the field’s amplitude. The light reflecting off a pho-

Quasimonochromatic illumination is generally made use 

tograph carries with it information about the irradiance but noth-

of when resulting data are to be analyzed electronically, for 

ing about the phase of the wave that once emanated from the 

example, with a photodetector. Sources with a broad spectrum, 

object. Indeed, if both the amplitude and phase of the original 
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Figure 13.47
     A schlieren setup.

(b)
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Figure 13.48
     A schlieren setup 

(photographic plate)

using mirrors.

wave could be reconstructed somehow, the resulting light field 

or  reference wave
  interfered with the diffracted wave from the 

(assuming the frequencies are the same) would be indistin-

small semitransparent object,  S
 —which was, in those early 

guishable from the original. This means that you would then see 

days, often a piece of microfilm. The key point is that the inter-

(and could photograph) the re-formed image in perfect three-

ference pattern or hologram contains, by way of the fringe con-

dimensionality, exactly as if the object were there before you, 

figuration, information corresponding to both the amplitude 

actually generating the wave.

and phase of the wave scattered by the object.

Admittedly, it’s not at all obvious that by now shining a 

plane wave through the processed hologram one could recon-

struct an image of the original object. Suffice it to say for the 


13.3.1 Methods


moment that if the object were very small, the scattered wave 

Dennis Gabor had been thinking along these lines for a number 

would be nearly spherical, and the interference pattern a series 

of years prior to 1947, when he began conducting his now fa-

of concentric rings (centered about an axis through the object 

mous experiments in holography at the Research Laboratory of 

and normal to the plane wave). Except for the fact that the cir-

the British Thomson–Houston Company. His original setup, 

cular fringes would vary gradually in irradiance from one to the 

depicted in Fig. 13.49, was a two-step lensless imaging process 

next, the resulting flux-density distribution would correspond 

in which he first photographically recorded an interference pat-

to a conventional Fresnel zone plate (Section 10.3.5). Recall 

tern, generated by the interaction of scattered quasimonochro-

that a zone plate functions somewhat like a lens in that it dif-

matic light from an object and a coherent reference wave. The 

fracts collimated light into a beam converging to a real focal 

resulting pattern was something he called 

point,  Pr
 . In addition, it produces a diverging wave, which ap-

a hologram
 , after the Greek word  holos
 , 

pears to come from the point- Pr
  and constitutes a virtual image. 

meaning whole. The second step in the 

Thus we can imagine, albeit rather simplistically, that each 

procedure was the  reconstruction
  of the 

point on an extended object generates its own zone plate dis-

optical field or image, and this was done 

placed from the others and that the ensemble of all such par-

through the diffraction of a coherent 

tially overlapping zone plates forms the hologram.* 

beam by a transparency, which was the 

During the reconstruction step, each constituent zone plate 

Dennis Gabor  

developed hologram. In a way quite rem-

forms both a real and virtual image of a single object point, and 

(1900–1979) 

iniscent of Zernike’s phase-contrast tech-

Hungarian-born British 

physicist won the Nobel 

nique (Section 13.2.4), the hologram was 

Prize in 1971. (E.H.)

formed when the unscattered  background
  

*See M. P. Givens, “Introduction to holography,”  Am. J. Phys
 . 35
 , 1056 (1967).
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Figure 13.49
     Holographic (in-line) recording and reconstruction of an image.

Conjugate image

in this way, point by point, the hologram regenerates the origi-

sometimes spoken of as the  true image
 , while the other is the 

nal light field. When the reconstructing beam has the same 

real or, perhaps more fittingly, the  conjugate image
 . In any 

wavelength as the initial recording beam (which need not nec-

event, we envision the hologram as a composite of interference 

essarily be the case, and quite often isn’t), the virtual image is 

patterns, and at least for this very simple configuration, those 

undistorted and appears at the location formerly occupied by 

patterns resemble zone plates. As we will see presently, the si-

the object. Thus it is the virtual image field that actually corre-

nusoidal grating is an equally fundamental fringe system mak-

sponds to the original object field. As such, the virtual image is 

ing up complex holograms.
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Figure 13.50
     Holographic (side-band) recording and reconstruction of an image.

Mirror
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E
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E


Photo plate


R



x


Hologram

Virtual image

RECONSTRUCTION

Real image

Gabor’s research, which won him the 1971 Nobel Prize in 

What’s happening here can be appreciated in two ways—an 

Physics, had as its motivation an improvement in electron mi-

essentially pictorial, Fourier-optical way and, alternatively, a 

croscopy. His work initially generated some interest, but all in 

direct mathematical way. We will look from both perspectives, 

all it remained in a state of quasi-unnoticed oblivion for about 

because they complement each other. First, this is at heart an 

15 years. In the early 1960s there was a resurgence of interest in 

interference (or, if you like, a diffraction) problem, and we can 

Gabor’s wavefront reconstruction
  process and, in particular, 

in its relation to certain radar problems. Soon, aided by an abun-

dance of the new coherent laserlight and extended by a number 

Mirrors

of technological advances, holography became a subject of 

widespread research and tremendous promise. This rebirth had 

its origin in the Radar Laboratory of the University of Michi-


EB


gan, with the work of Emmett N. Leith and Juris Upatnieks. 

Among other things, they introduced an improved arrangement 

for generating holograms, which is illustrated in Fig. 13.50.  

Unlike Gabor’s  in line
 -configuration, where the conjugate im-

age was inconveniently located in front of the true image, the 

two were now satisfactorily separated off-axis, as shown in the 


E


diagram. Once again, the hologram is an interference pattern 


O


arising from a coherent reference wave and a wave scattered 

from the object (this type is sometimes referred to as a side-band 



Fresnel hologram
 ). Figure 13.51 shows the equivalent arrange-

Object

Photo plate

ment for producing side-band Fresnel holograms from transparent 


Figure 13.51
     A side-band Fresnel holographic setup for a 

objects.

transparent object.
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again return to the notion of the complicated object wavefront 

To see how this occurs, examine the simplified two-wave 

being composed of Fourier-component plane waves (Figs. 7.52 

version depicted in Fig. 13.52. At the moment shown, the refer-

and 10.7 d
 ) traveling in directions associated with the different 

ence wave happens to have a crest along the face of the film 

spatial frequencies of the object’s light field, reflected or trans-

plane, and the scattered object wavelet, coming in at an angle u, 

mitted. Each one of these Fourier plane waves interferes with 

similarly has crests at points  A
 ,  B
 , and  C
 . These correspond to 

the reference wave on the photographic plate and thus preserves 

points where interference maxima will occur at the moment 

the information associated with that particular spatial frequency 

shown. But as both waves progress to the right, they will remain 

in the form of a characteristic fringe pattern.

in-phase at these points, trough will overlap trough, and the 

maxima will remain fixed at  A
 ,  B
 , and  C
 . Similarly, between 

these points, trough overlaps crest, and minima exist. The rela-

tive phase (f) of these two waves, which varies from point to 

point along the film, can be written as a function of  x
 . Since f 

changes by 2p as  x
  goes the length of  AB
 , f>2p =  x
 > AB
 . No-

tice that sin u = l> AB
 , and so getting rid of the specific length 

Reference


A



AB
 , the phase in general becomes

wave





f (x) 
 = (2p x
  sin u)>l (13.22)


B


If the two waves are assumed to have the same amplitude  E
 0, the 

resultant field follows from Eq. (7.17):

Object


E 
 = 2 E
 0 cos 12f sin (v t 
 -  kx 
 - 1f)





2 

wavelet


C


and the irradiance distribution, which is proportional to the field 

amplitude squared, by way of Eq. (3.44), has the form


X



I(x) 
 = 12 c
 P

f)2 = 2 c
 P

f





0(2 E
 0 cos 12 

0 E
 20 cos2 12 

(a)

or 


I(x) 
 = 2 c
 P0 E
 20 + 2 c
 P0 E
 20 cos f .
  (13.23)


A


What we have is a cosinusoidal irradiance distribution across 

l

the film plane with a spatial period of  AB
  and a spatial fre-

quency (1


D


> AB
 ) of sin f>l.

Upon processing the film so that the amplitude transmission 

profile corresponds to  I(x)
 , the result is a cosinusoidal grating. 

u

When this simple hologram (which essentially corresponds to a 

structureless object with no information) is illuminated by a 


B


plane wave identical to the original reference wave (Fig. 13.52 c
 ) 

three beams will emerge: one zeroth and two first order. One of 

these first-order beams will travel in the direction of the original 

(b)

object beam and corresponds to its reconstructed wavefront.

Now suppose we go one step beyond this most basic holo-

gram and examine an object that has some optical structure. 

Accordingly, let’s use as the object a transparency with a simple 

periodic structure that has a single spatial frequency—a cosine 

grating. A slightly idealized representation (which leaves out the 

weak higher-order terms due to the finite size of the beam and 

grating) is depicted in Fig. 13.53, which shows the illuminated 

grating, the three transmitted beams, and the reference beam. 

What results is three slightly different versions of Fig. 13.47, 

where each of the three transmitted waves makes a slightly differ-

ent angle (u) with the reference wave. Consequently, each of the 

three overlap areas will correspond to a set of cosine fringes of a 

(c)

slightly different spatial frequency, from Eq. (13.22). Again when 

we play back the resulting hologram, Fig. 13.53 a
  and  b
 , we have 


Figure 13.52
     The interference of two plane waves to create 

three pieces of business: the undiffracted wave, the virtual image, 

a cosine grating.

and the real image. Observe that it is only where the three beams 
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come together to contribute their spatial frequency content that 

images of the original grating are formed.

When a still more complex object is used, we can antici-

pate that the relative phase between the object and reference 

waves (f) will vary from point to point in a complicated way, 

thereby modulating the basic carrier signal (Fig. 13.54) pro-

Reference wave

duced by two plane waves when no object is present. We can 

generalize from Fig. 13.53 and conclude that the phase-angle 

difference f (which varies with u) is encoded in the configura-

tion of the fringes. Furthermore, had the amplitudes of the ref-

Object waves

erence and object waves been different, the irradiance of those 

fringes would have been altered accordingly. Thus we can 

Cosine grating

guess that the amplitude of the object wave at every point on 

Photo plate

the film plane will be encoded in the visibility of the resulting 

fringes.

(a)

The process depicted in Fig. 13.50 can be treated analyti-

cally as follows. Suppose that the  xy
 -plane is the plane of the 

hologram, g H
 . Then






EB(x, y) 
 =  E
 0 B
  cos [2pn t 
 + f (x, y)
 ] (13.24)

describes the planar background or reference wave at g H
 , over-

looking considerations of polarization. Its amplitude,  E
 0 B
 , is 

Reconstruction

constant, while the phase is a function of position. This just 

wave

means that the reference wavefront is tilted in some known 

manner with respect to g H
 . For example, if the wave were ori-

ented such that it could be brought into coincidence with  g H
  by 

a single rotation through an angle of u about  y
 , the phase at any 

Virtual

point on the hologram plane would depend on its value of  x
 . 

image

Thus f would again have the form

Hologram

(b)

2p

f =

  x
  sin u =  kx
  sin u

Real

l

image

being, in that particular case, independent of n and varying lin-


Figure 13.53
     Notice that there are three regions with different spatial 

early with  x
 . For the sake of simplicity, we’ll just write it, quite 

frequencies. Each of these on the reilluminated hologram generates three 

generally, as f (x, y)
  and keep in mind that it’s a simple known 

waves.

(a)

(b)

(c)


Figure 13.54
     Various degrees of modulation of hologram fringes. (Photos by Emmett N. Leith. Reproduced with permission. Copyright © 2016 Scientific American, Inc. All rights reserved.)
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function. The wave scattered from the object can, in turn, be 

and concentric ring systems that arise from diffraction by dust 

expressed as

and the like on the optical elements.

The amplitude transmission profile of the processed holo-






EO(x, y) 
 =  E
 0 O(x, y)
  cos [2pn t 
 + f O(x, y)
 ] (13.25)

gram can be made proportional to  I(x, y)
 . In that case, the  final 



emerging wave
 ,   EF(x, y)
 , is proportional to the product 





  

where both the amplitude and phase are now complicated 


I(x, y)ER(x, y)
 , where  ER(x, y)
  is the  reconstructing wave
  inci-

functions of position corresponding to an irregular wavefront. 

dent on the hologram. Thus if the reconstructing wave, of fre-

From the communications-theoretic point of view, this is an 

quency n, is incident obliquely on g H
 , as was the background 

amplitude- and phase-modulated carrier wave bearing all of the 

wave, we can write

available information about the object. Note that this informa-

tion is encoded in spatial rather than temporal variations of the 






ER(x, y) 
 =  E
 0 R
  cos [2pn t 
 + f (x, y)
 ] (13.28)

wave. The two disturbances  EB
  and  EO
  superimpose and inter-

fere to form an irradiance distribution, which is recorded by the 

The final wave (except for a multiplicative constant) is the prod-

photographic emulsion. The resulting irradiance, except for a 

uct of Eqs. (13.26) and (13.28):

multiplicative constant, is  I(x, y) 
 = 8( EB 
 +  EO
 )29T, which, from 


EF(x, y) 
 = 12 E
  0 R
 ( E
 20 B 
 +  E
 20 O
 ) cos [2pn t 
 + f (x, y)
 ]

  

Section 9.1, is given by

+ 12 E
  0 RE
 0 BE
 0 O
  cos (2pn t 
 + 2f - f O
 )


E
 2


E
 2


 



I(x, y) 
 = 0 B 
 + 0 O 
 +  E


2

2

0 BE
 0 O
  cos (f - f O
 ) (13.26)





+ 12 E
  0 RE
 0 BE
 0 O
  cos (2pn t 
 + f O
 ) (13.29)

Observe once again that the phase of the object wave deter-

Three terms describe the light issuing from the hologram; the 

mines the location on g H
  of the irradiance maxima and mini-

first can be rewritten as

ma. Moreover, the contrast or fringe visibility

12( E
 2





0 B 
 +  E
 20 O
 ) ER(x, y)






𝒱 K ( I
 max -  I
 min)>( I
 max +  I
 min) [12.4]

and is an amplitude-modulated version of the reconstructing 

across the hologram plane, which is

wave. In effect, each portion of the hologram functions as a dif-





𝒱

fraction grating, and this is again the  zeroth-order, 
 undeflected, 

= 2 E
 0 BE
 0 O
 >( E
 20 B 
 +  E
 20 O
 ) (13.27)

direct beam. Since it contains no information about the phase of 

contains the appropriate information about the object wave’s 

the object wave , 
 f O
 , it is of little concern here.

amplitude.

The next two or  side-band waves 
 are the sum and difference 

Once more, in the parlance of communications theory, we 

terms, respectively. These are the two  first-order waves
  diffracted 

might observe that the film plate serves as both the storage de-

by the grating-like hologram. The first of these (i.e., the sum 

vice and detector or mixer. It produces, over its surface, a distri-

term) represents a wave that, except for a multiplicative con-

bution of opaque regions corresponding to a modulated spatial 

stant, has the same amplitude as the object wave  E
 0 O(x, y). 


waveform. Accordingly, the third or difference frequency term 

Moreover, its phase contains a 2f (x, y)
  contribution, which, as 

in Eq. (13.27) is both amplitude and phase modulated by way of 

you recall, arose from tilting the background and reconstructing 

the position dependence of  E
 0 O(x, y)
  and f O(x, y)
 .

wavefronts with respect to g H
 . It’s this phase factor that pro-

Figure 13.54 b
  is an enlarged view of a portion of the fringe 

vides the angular separation between the real and virtual images. 

pattern that constitutes the hologram for a simple, essentially 

Furthermore, rather than containing the phase of the object 

two-dimensional, semitransparent object. Were the two inter-

wave, the sum term contains its negative. Thus it’s a wave car-

fering waves perfectly planar (as in Fig. 13.54 a
 ), the evident 

rying all of the appropriate information about the object but in 

variations in fringe position and irradiance, which represent the 

a way that is not quite right. Indeed, this is the real image 

information, would be absent, yielding the traditional Young’s 

formed in converging light in the space beyond the hologram, 

pattern (Section 9.3). The sinusoidal transmission-grating con-

that is, between it and the viewer. The negative phase is mani-

figuration (Fig. 13.54 a
 ) may be thought of as the carrier wave-

fest in an inside-out image something like the pseudoscopic ef-

form, which is then modulated by the signal. Furthermore, we 

fect occurring when the elements of a photographic stereo pair 

can imagine that the coherent superposition of countless zone-

are interchanged. Bumps appear as indentations, and object 

plate patterns, one arising from each point on a large object, 

points that were in front of and nearer to  g H
  are now imaged 

have metamorphosed into the modulated fringes of Fig. 13.54 b
 . 

nearer to but beyond g H
 . Thus a point on the original subject 

When the amount of modulation is further greatly increased, as 

closest to the observer appears farthest away in the real image. 

it would be for a large, three-dimensional, diffusely reflecting 

The scene is turned in on itself along one axis in a way that 

object, the fringes lose the kind of symmetry still discernible in 

perhaps must be seen to be appreciated. 

Fig. 13.54 b
  and become considerably more complicated. Inci-

For example, imagine you are looking down the holographic 

dentally, holograms are often covered with extraneous swirls 

conjugate image of a bowling alley. The “back” row of pins, 
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(a)

(b)

(c)

(d)

Parts ( b
 ) through ( d
 ) are three different 

views photographed from the same  

holographic image generated by the  

hologram in (a). (Smith,  Principles of Holography
 /

John Wiley & Sons.)

even though partially obscured by the “front” rows, are none-

is itself just an image) actually change, just as they would in 

theless imaged closer to the viewer than is the one-pin. Despite 

“real” life with a “real” lens and “real” print. In the case of an 

this, bear in mind that it’s not as if you were looking at the array 

extended scene having considerable depth, your eyes would 

from behind. No light from the very backs of the pins was ever 

have to refocus as you viewed different regions of it at various 

recorded—you’re seeing an inside-out front view. As a conse-

distances. In precisely the same way, a camera lens would have 

quence, the conjugate image is usually of limited utility, al-

to be readjusted if you were photographing different regions of 

though it can be made to have a normal configuration by form-

the virtual image (see photo).

ing a second hologram with the real image as the object.

Holograms display other extremely important and interest-

The difference term in Eq. (13.29), except for a multiplicative 

ing features. For example, if you were standing close to a win-

constant, has precisely the form of the object wave  E
 0 O(x, y)
 . If 

dow, you could obscure all of it with, say, a piece of cardboard, 

you were to peer into (not at) the illuminated hologram, as if it 

except for a tiny area through which you could then peer and 

were a window looking out onto the scene beyond, you would 

still see the objects beyond. The same is true of a hologram, 

“see” the object exactly as if it were truly sitting there. You 

since each small fragment of it contains information about the 

could move your head a bit and look around an item in the 

entire object, at least as seen from the same vantage point, and 

foreground in order to see the view it had previously been 

each fragment can reproduce, albeit with diminishing resolu-

obstructing. In other words, in addition to complete three-

tion, the entire image.

dimensionality, parallax effects are apparent as they are in no 

Figure 13.55 summarizes pictorially much of what’s been 

other reproducing technique (see photo). Imagine that you are 

said so far while also providing a convenient setup for actually 

viewing the holographic image of a magnifying glass focused 

making and viewing a hologram. Here the photographic emul-

on a page of print. As you move your eye with respect to the 

sion is shown having some depth, as compared with Fig. 13.52, 

hologram plane, the words being magnified by the lens (which 

where it was treated as though it were purely two-dimensional. 
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Object wave
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Mirror

Interference

pattern

Film
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Figure 13.55
   ( a
 ) The creation of a transmission hologram of a toy locomotive. ( b
 ) Replay of a transmission hologram.

Of course, any emulsion must certainly have a finite thickness. 

are oriented so as to bisect the angle between the reference and 

Typically, it would be about 10 mm thick, as compared with the 

object waves. Realize that all the holograms considered up to 

spatial period of the fringes, which might average around 1 mm 

now have been viewed by looking through them; they’re all 

or so. Figure 13.56 a
  is closer to the point, showing the kind of 


transmission holograms
 , and in each case they were made by 

three-dimensional fringes that actually exist throughout the 

causing the reference wave and the object wave to traverse the 

emulsion. For plane waves, these straight parallel fringe-planes 

film from the same side.
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(a)

(b)

A reconstructed holograph-

ic image of a model auto-

mobile. The camera posi-

tion and plane of focus 

were changed between  

( a
 ) and ( b
 ). (Photos from 

O’Shea, Callen, and Rhodes,  An 



Introduction to Lasers and Their 



Applications
 . Pearson Education, Inc.)

Something similar happens when the reference and object 

The zone-plate interpretation has been applicable to the various 

waves traverse the emulsion from opposite sides, as in Fig. 13.56 b
 . 

holographic schemes we’ve considered thus far, and this regard-

If for simplicity we again let both waves be planar, the resulting 

less of whether the diffracted wave was of the  near
 - or  far
 -field 

pattern can be visualized by sliding two pencils along with the 

variety (i.e., whether we had Fresnel or Fraunhofer holograms, 

fronts; it should then be clear that the fringes are straight bands 

respectively). Indeed, it applies generally where the interferogram 

(planes) lying parallel to the face of the film plate. When an 

results from the superpositioning of the scattered spherical wave-

actual, highly contorted, object wave is made to overlap a pla-

lets from each object point and a coherent plane or even spherical 

nar, coherent, reference wave, these fringes become modulated 

reference wave (provided the latter’s curvature is different from 

with the information describing the object. The corresponding 

that of the wavelets). An inherent problem, which these schemes 

three-dimensional diffraction grating is called a reflection  


therefore have in common, arises from the fact that the zone-plate 


hologram
 . During playback it scatters the reilluminating beam 

radii,  Rm
 , vary as  m
 1>2 from Eq. (10.91). Thus the zone fringes are 

back out toward the viewer, and one sees a virtual image behind 

more densely packed farther from the center of each zone lens 

the hologram (as if looking into a mirror).

(i.e., at larger values of  m
 ). This is tantamount to an increasing 


Figure 13.56
   ( a
 ) The interference of two plane waves traveling toward 

the same side to create a transmission hologram. ( b
 ) The interference of 

two plane waves traveling toward opposite sides to create a reflection 

hologram. Refraction has been omitted.

(a)

(b)
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Figure 13.57
   Lensless Fourier-

(b)


f


transform holography (a transparent 

object).

spatial frequency of bright and dark rings, which must be recorded 

will occur precisely only for a planar two-dimensional object. 

by the photographic plate. The same thing can be appreciated in 

In the case of a three-dimensional object (Fig. 13.58) this only 

the cosine-grating representation, where the spatial frequency in-

happens over one plane, and the resulting hologram is therefore 

creases with u. Since film, no matter how fine-grained, is limited 

a composite of both types, that is, a zone lens and Fourier trans-

in its spatial frequency response, there will be a cutoff beyond which 

form. Unlike the other arrangements, both images generated by 

it cannot record data. All of this represents a built-in limitation on 

a Fourier-transform hologram are virtual, in the same plane, and 

resolution. In contrast, if the mean frequency of the fringes could 

oriented as if reflected through the origin (see photo).

be made constant, the limitations imposed by the photographic 

The grating-like nature of all previous holograms is evident 

medium would be considerably reduced, and the resolution 

here as well. In fact, if you look through a Fourier-transform 

correspondingly increased. As long as it could record the aver-

hologram at a small white-light source (a flashlight in a dark 

age spatial fringe frequency, even a coarse emulsion, such as 

room works beautifully), you see the two mirror images, but 

Polaroid P>N, could be used without extensive loss of resolution. 

they are extremely vague and surrounded by bands of spectral 

Figure 13.57 shows an arrangement that accomplishes just this by 

colors. The similarity with white light that has passed through a 

having the diffracted object wavelets interfere with a spherical ref-

grating is unmistakable.*

erence wave of about the same curvature. The resulting interfero-

gram is known as a Fourier-transform
  hologram (in this specific 

instance, it’s of the high-resolution  lensless
  variety). This scheme 

*See DeVelis and Reynolds,  Theory and Applications of Holography
 ; Stroke,  An 



Introduction to Coherent Optics and Holography; 
 Goodman,  Introduction to 


is designed to have the reference wave cancel the quadratic (zone-


Fourier Optics; 
 Smith,  Principles of Holography
 ; or perhaps  The Engineering Uses 


lens type) dependence of the phase with position on g H
 . But that 


of Holography
 , edited by E. R. Robertson and J. M. Harvey.
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Lens and pinhole

Laser

Mirror


E


3-D

Σ


O



H



E
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B


Photo plate

A reconstruction of a holographic portrait. (L.D. Siebert.)


Figure 13.58
     Lensless Fourier-transform holography (an opaque object).

itself might last on the order of a minute or so. That was the 

still-life era of holography. But now, with the use of new, more 

sensitive films and the short duration (≈40 ns) high-power 

light flashes from a single-mode pulsed ruby laser, even por-

traiture and stop-action holography have become a reality* 

(see photo above).

Throughout the 1960s and much of the 1970s, the emphasis 

in the field was on the obvious visual wonders of holography. 

This continued in the 1980s with the mass production of over a 

hundred million inexpensive plastic reflection holograms (bonded 

to credit cards; tucked in candy packages; decorating magazine 

covers, jewelry, and record albums). The development of a pho-

topolymer that is stable, cheap, and able to produce high-quality 

images has stimulated the manufacture of even more of these 

throwaway holograms. Still, there is now a widespread recogni-

A reconstruction of a Fourier-transform hologram. (G.W. Stroke, D. Brumm,  

tion of the potential of holography as a nonpictorial instrumen-

and A. Funkauser,  J. Opt. Soc. Am
 . 55
 , 1327 [1965].)

tality, and that new direction is finding increasingly important 

applications.


13.3.2 Developments and Applications


For years holography was an invention in search of application, 


Volume Holograms


that notwithstanding certain obvious possibilities, such as the 

Yuri Nikolayevitch Denisyuk of the Soviet Union, in 1962, in-

all too inevitable 3-D billboard. Fortunately, several significant 

troduced a scheme for generating holograms that was conceptu-

technological developments have in recent times begun what 

ally similar to the early (1891) color photographic process of 

will surely be an ongoing extension of the scope and utility of 

Gabriel Lippmann. In brief, the object wave is reflected from 

holography. The early efforts in the field were typified by count-

the subject and propagates backward, overlapping the incoming 

less images of toy cars and trains, chess pieces and statuettes—

coherent background wave. In so doing, the two waves set up a 

small objects resting on giant blocks of granite. They had to be 

three-dimensional pattern of standing waves, as in Fig. 13.56. 

small because of limited laser power and coherence length, 

The spatial distribution of fringes is recorded by the photoemul-

while the ever-present massive granite platform served to iso-

sion throughout its entire thickness to form what has become 

late the slightest vibrations that might blur the fringes and 

known as a volume hologram
 . Several variations have since 

thereby degrade or obliterate the stored data. A loud sound or 

gust of air could result in deterioration of the reconstructed 

image by causing the photographic plate, object, or mirrors to 

*L. D. Siebert,  Appl. Phys. Letters
  11
 , 326 (1967), and R. G. Zech and L. D. 

shift several millionths of an inch during the exposure, which 

Siebert,  Appl. Phys. Letters
  13
 , 417 (1968).
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Three different views of a U.S. postage stamp consisting of a full-color reflection hologram. (E.H.)

been introduced, but the basic ideas are the same; rather than 

used to generate separate, cohabitating, component holograms of 

generating a two-dimensional grating-like scattering structure, 

the object, and this can be done one at a time or all at once. When 

the volume hologram is a three-dimensional grating. In other 

these are illuminated simultaneously by the various constituent 

words, it’s a three-dimensional, modulated, periodic array of 

beams, a multicolored image results.

phase or amplitude objects, which represent the data. It can be 

Another important and highly promising scheme, devised 

recorded in several media, for example, in thick photoemul-

by G. W. Stroke and A. E. Labeyrie, is known as white-light 


sions wherein the amplitude objects are grains of deposited sil-


reflection holography
 . Here, the reconstructing wave is an or-

ver; in photochromic glass; with halogen crystals, such as KBr, 

dinary white-light beam from, say, a flashlight or projector, 

which respond to irradiation via color-center variations; or with 

having a wavefront similar to the original quasimonochromatic 

a ferroelectric crystal, such as lithium niobate, which undergoes 

background wave. When illuminated on the same side as the 

local alterations in its index of refraction, thus forming what 

viewer, only the specific wavelength that enters the volume 

might be called a phase volume hologram. In any event, one is 

hologram at the proper Bragg angle is reflected off to form a 

left with a volume array of data, however stored in the medium, 

reconstructed 3-D virtual image. Thus, if the scene were re-

which in the reconstruction process behaves very much like a 

corded in red laserlight, only red light would presumably be 

crystal being irradiated by X-rays. It scatters the incident (re-

reflected as an image. It is of pedagogical interest to point out, 

constructing) wave according to Bragg’s Law. This isn’t very 

however, that the emulsion may shrink during the fixing pro-

surprising, since both the scattering centers and l have simply 

cess, and if it is not swollen back to its original form chemi-

been scaled up proportionately.

cally (with, say, triethylnolamine), the spacing of the Bragg 

One important feature of volume holograms is the interde-

planes,   d
 , decreases. That means that at a given angle u, the 

pendence [via Bragg’s Law, 2 d
  sin u =  m
 l, Eq. (10.71)] of the 

reflected wavelength will decrease proportionately. Hence, a 

wavelength and the scattering angle; that is, only a given color 

scene recorded in He-Ne red might play back in orange or even 

light will be diffracted at a particular angle by the hologram. 

green when reconstructed by a beam of white light.

Another significant property is that by successively altering the 

If several overlapping holograms corresponding to dif-

incident angle (or the wavelength), a single-volume medium 

ferent wavelengths are stored, a multicolored image will 

can store a great many coexisting holograms at one time. This 

result. The advantages of using an ordinary source of white 

latter property makes such systems extremely appealing as 

light to reconstruct full-color 3-D images are obvious and 

densely packed memory devices. For example, an 8-mm-thick 

far-reaching.

hologram has been used to store 550 pages of information, 

each individually retrievable. In theory, a single lithium nio-

bate crystal is capable of easily storing thousands of holo-


Optoelectronic Image Reconstruction


grams, and any one of them could be replayed by addressing 

the crystal with a laserbeam at the appropriate angle. Current 

Consider the procedure for producing a simple hologram: a 

research is also focusing on potassium tantalate niobate (KTN) 

plane wave incident on a group of objects (e.g., a chess set) 

as a potential photorefractive crystal-storage medium. Imagine 

reflects as a wiggly wavefield. Distortions of the wavefronts 

a 3-D holographic motion picture; a library; or everyone’s vital 

correspond to the features of the objects and their locations in 

statistics—beauty marks, credit cards, taxes, bad habits, in-

space. The reflected wave is then made to interfere with a ref-

come, life history, and so on, all recorded on a handful of small 

erence plane wave identical to the original illuminating wave. 

transparent crystals.

The resulting interference pattern is the heart of the hologram, 

Multicolored reconstructions have been formed using (black 

and it’s usually recorded on a sheet of fine-grain photographic 

and white) volume holographic plates. Two, three, or more differ-

film. The wiggly wave coming from the chess set is what we 

ent colored and mutually incoherent overlapping laserbeams are 

would “see” looking directly at the scene. By overlapping this 
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Holographic Interferometry


One of the most innovative and practical of recent holographic 

advances is in the area of interferometry. Three distinctive ap-

proaches have proved to be quite useful in a wealth of nonde-

structive testing situations where, for example, one might wish 

to study microinch distortions in an object resulting from strain, 

vibration, heat, and so on. In the  double exposure
  technique, one 

simply makes a hologram of the undisturbed object and then, 

before processing, exposes the hologram for a second time to the 

light coming from the now distorted object. The ultimate result 

is two overlapping reconstructed waves, which proceed to form 

a fringe pattern indicative of the displacements suffered by the 

object, that is, the changes in optical path length (see photo). 

Variations in index such as those arising in wind tunnels and the 

like will generate the same sort of pattern.

In the  real-time
  method, the subject is left in its original 

position throughout; a processed hologram is formed, and 

the resulting virtual image is made to overlap the object pre-

A hologram created using an LC-SLM. (Andreas Hermerschmidt and HOLOEYE Photonics 

cisely (Fig. 13.59). Any distortions that arise during subse-

AG, Berlin.)

quent testing show up, on looking through the hologram, as 

a system of fringes, which can be studied as they evolve in 

real time. The method applies to both opaque and transparent 

reflected object wave with a reference plane wave the conse-

objects. Motion pictures can be taken to form a continuous 

quent interference pattern carries all the needed information 

record of the response.

about the amplitude and phase of the object wave. Once devel-

The third method is the  time-average
  approach and is particu-

oped, the film, covered in minute fringes, constitutes the holo-

larly applicable to rapid, small-amplitude, oscillatory systems. 

gram. When illuminated by the reference wave, the hologram 

Here the film plate is exposed for a relatively long duration, 

transmits the reconstructed wiggly chess-set wave. We look 

during which time the vibrating object has executed a number 

into the hologram, much as we might look into a window, and 

of oscillations. The resulting hologram can be thought of as a 

see the scene in 3-D as if the chess set was still there reflecting 

light.

Now suppose, instead, that we remove the chess set and re-

place the scene entirely with a translucent device that could 

somehow reshape an incoming plane wave so as to precisely 

reproduce the original wiggly wave. That ersatz object wave 

could go on to produce a hologram of the chess set even though 

the set was never there. In fact, if this so-called  spatial light 



modulator
  (SLM) were rapidly variable, and if we could record 

the resulting interference patterns in real time, we could create 

3-D holographic movies. We’re not quite there yet, but low-cost 

liquid crystal spatial light modulators (LC-SLM) are now com-

mercially available. Such devices usually consist of an ordered, 

two-dimensional array of electronically addressable, tiny, tightly 

packed, nematic liquid crystal cells. Moreover, without having 

to wait for film to be processed, holograms can be recorded im-

mediately within crystals like Fe:Ce:Ti-doped LiNbO3.

The above photo was retrieved from a volume holographic 

data storage system. A laserbeam, spatially digitally sculpted by 

an LC-SLM, carried the input image information in the form of 

wavefront variations to a photorefractive crystal, where it was 

met by a reference plane wave. The consequent interference pat-

tern, the data, was stored in the crystal as a myriad of refractive 

Double exposure holographic interferogram. (S. M. Zivi and G. H. Humberstone, “Chest 

index gratings. Later, reconstructed by a playback laserbeam 

motion visualized by holographic interferometry,”  Medical Research Eng
 . p. 5 [June 1970].) 

the image was then simply photographed.

Compare this with the radar photo on page 443.
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Figure 13.59
     Real-time holographic interferometry.


Figure 13.60
   Acoustical holography.

superposition of a multiplicity of images, with the effect that a 

standing-wave pattern emerges. Bright areas reveal undeflected 

or stationary nodal regions, while contour lines trace out areas 

of constant vibrational amplitude.

Today holographic testing of mechanical systems is a well-

established practice in industry. It continues to serve in a broad 

range of applications, from noise reduction in automobile trans-

missions to routine jet engine inspections.


Acoustical Holography


In acoustical holography, an ultra-high-frequency sound wave 

(ultrasound) is used to create the hologram initially, and a laser-

beam then serves to form a recognizable reconstructed image. 

In one application, the stationary ripple pattern on the surface of 

Interferometric image of a penny via acoustical holography. (Holosonics, Inc.)

a water body produced by submerged coherent transducers 

corresponds to a hologram of the object beneath (Fig. 13.60). 

Photographing it creates a hologram that can be illuminated 

see something that resembled an X-ray motion picture of the 

optically to form a visual image. Alternatively, the ripples can 

fish. The accompanying photo is the image of a penny formed 

be irradiated from above with a laserbeam to produce an instan-

via acoustical holography using ultrasound at a frequency of 

taneous reconstruction in reflected light.

48 MHz. In water, that corresponds to a wavelength of roughly 

The advantages of acoustical techniques reside in the fact 

30 mm, and so each fringe contour reveals a change in elevation 

that sound waves can propagate considerable distances in dense 

of 12 l or 15 mm.

liquids and solids where light cannot. Thus acoustical holo-

grams can record such diverse things as underwater submarines 

and internal body organs.* In the case of Fig. 13.60, one would 


Holographic Optical Elements


Evidently, when two plane waves overlap, as in Fig. 13.52, they 

*See A. F. Metherell, “Acoustical holography,”  Sci. Am
 . 36
 , 221,  (October 1969). 

produce a cosine grating. This suggests the rather obvious no-

Refer to A. L. Dalisa et al., “Photoanodic engraving of holograms on silicon,”  

tion that holography can be used for nonpictorial purposes, like 


Appl. Phys
 .  Letters
  17
 , 208 (1970), for another interesting use of surface relief patterns.

making diffraction gratings. Indeed, the  holographic optical 
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element
  (HOE) is any diffractive device consisting of a “fringe” 

object appropriately illuminated in a hypothetical recording 

system (i.e., a distribution of diffracting amplitude or phase ob-

session. A computer-controlled plotter drawing or cathode ray 

jects) created either directly by interferometry or by computer 

tube read-out of the interferogram is then photographed, thence 

simulation thereof. Holographic diffraction gratings, both blazed 

to serve as the actual hologram. The result upon illumination is 

and sinusoidal, are available commercially (with up to around 

a three-dimensional reconstructed image of an object that never 

3600 lines>mm). Although generally less efficient than ruled 

had any real existence in the first place. More practically, computer-

gratings, they do produce far less stray light, which can be im-

generated HOEs are now routinely being produced, often to 

portant in many applications.

serve as references for optical testing. Since this mating of tech-

Suppose we record the interference pattern of a converging 

nologies can in principle generate wavefronts otherwise essen-

beam using a planar reference wave. Upon reilluminating the 

tially impossible to produce, the future is very promising.

resulting transmission hologram with a matching plane wave, 

out will come a recreated converging wave—the hologram will 

function like a lens (see Fig. 13.49). Similarly, if the reference 

beam is a diverging wave from a point source and the object is 


13.4 Nonlinear Optics


a plane wave, the resulting hologram, reilluminated by the point 

source, will play back a plane wave. In this way a holographic 

Generally, the domain of  nonlinear optics
  is understood to en-

optical element can perform the tasks of a complex lens with 

compass those phenomena for which electric and magnetic 

the added benefit of allowing for an inexpensive, lightweight, 

field intensities of higher powers than the first play a dominant 

compact system design. 

role. The Kerr Effect (Section 8.11.3), which is a quadratic vari-

Holographic optical elements are already in use inside super-

ation of refractive index with applied voltage, and thereby elec-

market check-out scanners that automatically read the bar pat-

tric field, is typical of several long-known nonlinear effects.

terns of the Universal Product Code (UPC) on merchandise. A 

The usual classical treatment of the propagation of light—

laserbeam passes through a rotating disk composed of a number 

superposition, reflection, refraction, and so forth—assumes a 

of holographic lens-prism facets. These rapidly refocus, shift, 

linear relationship between the electromagnetic light field and 

and scan the beam across a volume of space, ensuring that the 

the responding atomic system constituting the medium. But just 

code will be read on the first pass across the device. HOEs are 

as an oscillatory mechanical device (e.g., a weighted spring) 

used in so-called heads-up displays in airplane cockpits. These 

can be overdriven into nonlinear response through the applica-

allow reflected data to appear on an otherwise transparent screen 

tion of large enough forces, so too we might anticipate that an 

in front of the pilot’s face and yet not obscure the view. They’re 

extremely intense beam of light could generate appreciable 

also in office copy machines and solar concentrators.

nonlinear optical effects. 

As  matched spatial filters
 , HOEs are used in optical correla-

The electric fields associated with lightbeams from ordinary 

tors to spot defects in semiconductors and tanks in reconnais-

or, if you will, traditional sources are far too small for such be-

sance pictures. In such cases the HOE is a hologram formed 

havior to be easily observable. It was for this reason, coupled 

using the Fourier transform of the target (e.g., a picture of a tank 

with an initial lack of technical prowess, that the subject had to 

or perhaps a printed word) as the object. Suppose the problem 

await the advent of the laser in order that sufficient brute force 

is to find a word on a printed page automatically, using an opti-

could be brought to bear in the optical region of the spectrum. As 

cal computer like that in Fig. 13.35, that is, to cross-correlate 

an example of the kinds of fields readily obtainable with the cur-

the word and the page of words. The target-transform hologram 

rent technology, consider that a good lens can focus a laserbeam 

is placed in the transform plane and illuminated with the trans-

down to a spot having a diameter of about 10-3 inch or so, which 

form of an entire page of print. The field amplitude emerging 

corresponds to an area of roughly 10-9 m2. A 200-megawatt 

from this HOE-filter will then be proportional to the product of 

pulse from, say, a  Q
 -switched ruby laser would then produce a 

the transforms of the page and the word. The transform of this prod-

flux density of 20 * 1016 W>m2. It follows (Problem 13.37) 

uct, generated by the last lens and displayed on the image plane, is 

that the corresponding electric-field amplitude is given by

the desired cross-correlation (recall the Wiener–Khintchine theo-

rem). If the word is on the page, there will be a high correlation, 


I 
 1>2






E
 0 = 27.4 a b  (13.30)

and a bright spot of light will appear superimposed in the final 


n


image everywhere the target word occurs.*

It is possible to synthesize, point by point, a hologram of a 

In this particular case, for  n 
 ≈ 1, the field amplitude is about 

fictitious object. In other words, in the most direct approach 

1.2 * 108 V>m. This is more than enough to cause the break-

holograms can be produced by calculating, with a digital com-

down of air (roughly 3 * 106 V>m) and just several orders of 

puter, the irradiance distribution that would arise were some 

magnitude less than the typical fields holding a crystal together, 

the latter being roughly about the same as the cohesive field on 

the electron in a hydrogen atom (5 * 1011 V>m). The availability 

*See A. Ghatak and K. Thyagarajan,  Contemporary Optics
 , p. 214.

of these and even greater (1012 V>m) fields has made possible a 
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wide range of important new nonlinear phenomena and devices. 

As the harmonic lightwave sweeps through the medium, it cre-

We shall limit this discussion in the consideration of several non-

ates what might be thought of as a polarization wave, that is, an 

linear phenomena associated with passive media (i.e., media that 

undulating redistribution of charge within the material in re-

act essentially as catalysts without making their own characteris-

sponse to the field. If only the linear term were effective, the 

tic frequencies evident). Specifically, we’ll consider optical recti-

electric polarization wave would correspond to an oscillatory 

fication, optical harmonic generation, frequency mixing, and 

current following along with the incident light. The light there-

self-focusing of light. In contrast, Stimulated Raman, Rayleigh, 

after reradiated in such a process would be the usual refracted 

and Brillouin Scattering exemplify nonlinear optical phenomena 

wave generally propagating with a reduced speed  v
  and having 

arising in active media that do impose their characteristic fre-

the same frequency as the incident light. In contrast, the pres-

quencies on the lightwave.*

ence of higher-order terms in Eq. (13.33) implies that the polar-

As you may recall, the electromagnetic field of a lightwave 

ization wave does not have the same harmonic profile as the 

propagating through a medium exerts forces on the loosely 

incident field. In fact, Eq. (13.34) can be likened to a Fourier 

bound outer or valence electrons. Ordinarily, these forces are 

series representation of the distorted profile of  P(t)
 .

quite small, and in a linear isotropic medium the resulting elec-

tric polarization is parallel with and directly proportional to the 

applied field. In effect, the polarization follows the field; if the 


13.4.1 Optical Rectification


latter is harmonic, the former will be harmonic as well. Conse-

The second term in Eq. (13.34) has two components of great 

quently, one can write

interest. First, there is a  DC
  or  constant bias polarization
  vary-






P 
 = P0x E
  (13.31)

ing as  E
 20. Consequently, if an intense plane-polarized beam tra-

verses an appropriate (piezoelectric) crystal, the presence of the 

where x is a dimensionless constant known as the electric sus-

quadratic nonlinearity will, in part, be manifest by a constant 

ceptibility, and a plot of  P
  versus  E
  is a straight line. Quite obvi-

electric polarization of the medium. A voltage difference, pro-

ously in the extreme case of very high fields, we can expect that 

portional to the beam’s flux density, will accordingly appear 


P
  will become saturated; in other words, it simply cannot in-

across the crystal. This effect, in analogy to its radiofrequency 

crease linearly indefinitely with  E
  ( just as in the familiar case of 

counterpart, is known as optical rectification
 .

ferromagnetic materials, where the magnetic moment becomes 

saturated at fairly low values of  H
 ). Thus we can anticipate a 

gradual increase of the ever-present, but usually insignificant, 


13.4.2 Harmonic Generation


nonlinearity as  E
  increases. Since the directions of P


$ and E
 $ co-

incide in the simplest case of an isotropic medium, we can ex-

The cos 2v t
  term [Eq. (13.34)] corresponds to a variation in 

press the polarization more effectively as a series expansion:

electric polarization at twice the fundamental frequency (i.e., at 

twice that of the incident wave). The reradiated light that arises 






P 
 = P0(x E 
 + x2 E
 2 + x3 E
 3 + g) (13.32)

from the driven oscillators also has a component at this same 

frequency, 2v, and the process is spoken of as second-harmonic 


The usual linear susceptibility, x, is much greater than the coef-


generation
 , or SHG for short. In terms of the photon represen-

ficients of the nonlinear terms x2, x3, and so on, and hence the 

tation, we can envision two identical photons of energy Uv 

latter contribute noticeably only at high-amplitude fields. Now 

coalescing within the medium to form a single photon of energy 

suppose that a lightwave of the form

U2v. Peter A. Franken and several coworkers at the University 


E 
 =  E
 0 sin v t


of Michigan in 1961 were the first to observe SHG experi-

mentally. They focused a 3-kW pulse of red (694.3 nm) ruby 

is incident on the medium. The resulting electric polarization

laserlight onto a quartz crystal. Just about 1 part in 108 of this 


P


incident wave was converted to the 347.15-nm ultraviolet 

= P0x E
 0 sin v t 
 + P0x2 E
 20 sin2 v t


second harmonic.





+ P0x3 E
 30 sin3 v t 
 + g (13.33)

Notice that, for a given material, if  P(E)
  is an odd function, 

that is, if reversing the direction of the E


$-field simply reverses the 

can be rewritten as

direction of P


$, the even powers of  E
  in Eq. (13.32) must vanish. 

P


P


0x2  E
 2

But this is just what happens in an isotropic medium, such as 

= P0x E
 0 sin v t 
 + 2 0 (1 - cos 2v t
 )

glass or water—there are no special directions in a liquid. 

P0x3

Moreover, in crystals like calcite, which are so structured as 





+

  E
 3

4

0(3 sin v t 
 - sin 3v t
 ) + g (13.34)

to have what’s known as a  center of symmetry
  or an  inversion 



center
 , a reversal of all of the coordinate axes must leave the 

interrelationships between physical quantities unaltered. Thus 

no even harmonics can be produced by materials of this sort. 

*For a more extensive treatment than is possible here, see N. Bloembergen, 


Nonlinear Optics
 , or G. C. Baldwin,  An Introduction to Nonlinear Optics
 .

Third-harmonic generation (THG), however, can exist and has 
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been observed in several materials, including calcite. The re-

quirement for SHG that a crystal not have inversion symmetry 

Laserbeam

is also necessary for it to be piezoelectric. Under pressure a 

piezoelectric crystal [such as quartz, potassium dihydrogen 

v

phosphate (KDP), or ammonium dihydrogen phosphate (ADP)] 

u

undergoes an asymmetric distortion of its charge distribution, 

2v v

thus producing a voltage. Of the 32 crystal classes, 20 are of this 

kind and may therefore be useful in SHG. The simple scalar 

2v

expression [Eq. (13.32)] is actually not an adequate description 

of a typical dielectric crystal. Things are a good deal more com-

Nonlinear

plicated, because the field components in several different di-

crystal

Filter

rections in a crystal can affect the electric polarization in any 

Photomultiplier

one direction. A complete treatment requires that P


$ and E
 $ be 

related not by a single scalar but by a group of quantities ar-

ranged in the particular form of a tensor, namely, the suscepti-

bility tensor.*

A major difficulty in generating copious amounts of second-

harmonic light arises from the frequency dependence of the re-

fractive index, that is, dispersion. At some initial point where the 

incident, or v-wave, generates the second-harmonic, or 2v-wave, 

the two are coherent. As the v-wave propagates through the 

crystal, it continues to generate additional contributions of second-

Output

harmonic light, which all combine totally constructively only if 

they maintain a proper phase relationship. Yet the v-wave travels 

at a phase velocity  v 
 ,   
 which is ordinarily different from the 

v

phase velocity,  v
 2 , of the 2

v

v-wave. Thus the newly emitted 

30

20

10

0

10

20

30

second harmonic periodically falls out-of-phase with some of 

u (degrees)

the previously generated 2v-waves. When the irradiance of the 

second harmonic,  I



Figure 13.61
     Second-harmonic generation as a function of 

2 , emerging from a plate of thickness 

u for a 

v

/ is 

computed,† it turns out to be

0.78-mm-thick quartz plate. Peaks occur when the effective thickness is an 

even multiple of / c
 . (Reprinted with permission from P. D. Maker, R. W. Terhune, M. Nisenoff, 

sin2 [2

and C.M Savage. Effects of Dispersion and Focusing on the Production of Optical Harmonics  Phys. 


p( n


)/>l


 



I


v -  n
 2v

0]


Rev. Lett
 . 8
 , 21—Published 1 January 1962. Copyright 1962 by the American Physical Society 2

∝

 (13.35)

v

( n


)2


http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.8.21)


v -  n
 2v

(see Fig. 13.61). This yields the result that  I
 2  has its maximum 

v

birefringent. Furthermore, it has the interesting property that if 

value when / = / c
 , where

the fundamental light is a linear polarized  ordinary wave
 , the 

resulting second harmonic will be an  extraordinary wave
 . As 

1

l0

can be seen from Fig. 13.62, if light propagates within a KDP 





/ c 
 =  

 (13.36)

4 0  n
 v -  n
 2v 0

crystal at the specific angle u0 with respect to the optic axis, the 

index,   n
 0 , of the ordinary fundamental wave will precisely 

v

This is commonly known as the  coherence length
  (although a 

equal the index of the extraordinary second harmonic  ne
 2 . The 

v

different name would be better), and it’s usually of the order of 

second-harmonic wavelets will then interfere constructively, 

only about 20l0. Despite this, efficient SHG can be accom-

thereupon increasing the conversion efficiency by several orders 

plished by a procedure known as  index matching
 , which negates 

of magnitude. Second-harmonic generators, which are simply 

the undesirable effects of dispersion; in short, one arranges 

appropriately cut and oriented crystals, are available commer-

things so that  n


. A commonly used SHG material is KDP. 

v =  n
 2v

cially, but do keep in mind that u0 is a function of l, and each 

It is piezoelectric, transparent, and also negatively uniaxially 

such device performs at one frequency. Not long ago, a continu-

ous 1-W second-harmonic beam at 532.3 nm was obtained by 

placing a barium sodium niobate crystal within the cavity of a 

*Incidentally, there is nothing extraordinary about this kind of behavior—it comes 

up all the time. There are inertia tensors, demagnetization coefficient tensors, 

1-W 1.06m laser. The fact that the v-wave sweeps back and forth 

stress tensors, and so forth.

through the crystal increases the net conversion efficiency.

Optical harmonic generation soon lost its initial exotic qual-

†

ity and became a routine commercial process by the early 

See, for example, B. Lengyel,  Introduction to Laser Physics
 , Chapter VII. This is a 

fine elementary treatment.

1980s. Still, there were exciting technical accomplishments, 
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(b)

Optic 

axis

u o



ne



n


v


o
 v


ne
 2


n


v


o
 2v

The KDP frequency converter  

for the Nova laser. (Lawrence 

Livermore National Laboratory.)

KDP

crystal layer and are orthogonally polarized. The third harmon-

(b)

ic (blue light at 0.35 mm) is created by reorienting the assembly 

to the appropriate phase-matching angle so as to shift about 

two-thirds of the beam energy into the second harmonic as it 

traverses the first crystal layer. The second layer mixes the re-

maining IR and the second-harmonic green light to produce 

third-harmonic blue.


13.4.3 Frequency Mixing


Another situation of considerable practical interest involves the 

 Second-harmonic output


I 
 2v


mixing
  of two or more primary beams of different frequencies 

within a nonlinear dielectric. The process can most easily be 

appreciated by substituting a wave of the form


 



E 
 =  E
 01 sin v1 t 
 +  E
 02 sin v2 t
  (13.37)

54° 55° 56ů

u o


into the simplest expression for  P
  given by Eq. (13.32). The 

second-order contribution is then


Figure 13.62
     Refractive index surface for KDP. ( b
 )  l
 2v versus crystal  

orientation in KDP. (Reprinted with permission from P. D. Maker, R. W. Terhune, M. Nisenoff, 

P0x2( E
 201 sin2 v1 t 
 +  E
 202 sin2 v2 t 
 + 2 E
 01 E
 02 sin v1 t
  sin v2 t
 ) and C.M Savage. Effects of Dispersion and Focusing on the Production of Optical Harmonics  Phys. 



Rev. Lett
 . 8
 , 21— Published 1 January 1962. Copyright 1962 by the American Physical Society The first two terms can be expressed as functions of 2v1 and 


http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.8.21)


2v2, respectively, while the last quantity gives rise to sum and 

difference terms, v1 + v2 and v1 - v2.

such as the 74-cm-diameter harmonic conversion array (see 

As for the quantum picture, the photon of frequency 

photo) built for the Nova laser-fusion program, which led to the 

v1 + v2 simply corresponds to a coalescing of the two original 

Omega’s frequency-tripling system a decade later. Its function 

photons into a new photon, just as it did in the case of SHG, 

was to convert upwards of 80% of the infrared (1.05 mm) emis-

where both quanta had the same frequency. The energy and 

sion from the neodymium–glass laser into more efficient high-

momentum of the annihilated photons are carried off by the 

frequency radiation. Because of its great size, the converter was 

created sum photon. The generation of an v1 - v2 difference-

an aligned mosaic of smaller KDP single-crystal panels form-

photon is a little more involved. Conservation of energy and 

ing two layers, one behind the other. To generate the second 

momentum requires that on interacting with an v2-photon, 

harmonic (green light at 0.53 mm), the array is positioned so 

only the higher-frequency v1-photon vanishes, thereby creating 

that each layer functions independently to produce two overlap-

two new quanta, one an v2-photon and the other a difference-

ping frequency-shifted components. These arise one from each 

photon.
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v0


Q
 -switched

laser

Laserbeam

v

1058 nm

0, 2v0

2v0 = v p


LiNbO3

crystal

v

529 nm


p
 , v s
 , v i


IR absorbing

v s
 , v i


filter

LiNbO3 crystal

with coated end faces

forming a resonant

cavity

Silicon

filter


Figure 13.63
     An optical parametric oscillator. (After J. A. Giordmaine and R.C. Miller,  Phys. Rev. Letters
  4
 , 973 [1965].) As an application of this phenomenon, suppose we beat, 

barium sodium niobate. The optical parametric oscillator is a 

within a nonlinear crystal, a strong wave of frequency v p
 , called 

laser-like, broadly tunable source of coherent radiant energy in 

the  pump light
 , with a weak  signal wave
  of lower frequency v s
 , 

the IR to the UV.

which is to be amplified. Pump light is thereby converted into 

both signal light and a difference wave, called  idler light
 , of 

frequency v i 
 = v p 
 - v s
 . If the idler light is then made to beat 


13.4.4 Self-Focusing of Light


with the pump light, the latter is converted into additional 

amounts of idler and signal light. In this way both the signal and 

When a dielectric is subjected to an electric field that varies in 

idler waves are amplified. This is actually an extension into the 

space, in other words, when there is a gradient of the field 

optical-frequency region of the well-known concept of  para-


parallel to P
 $, an internal force will result. This has the effect 


metric amplification
 , whose use in the microwave spectrum 

of altering the density, changing the permittivity, and thereby 

dates back to the late 1940s. The first  optical-parametric oscil-


varying the refractive index, and this in both linear and nonlin-


lator
 , which was operated in 1965, is depicted in Fig. 13.63. 

ear isotropic media. Suppose then that we shine an intense 

The flat parallel end faces of a nonlinear crystal (lithium nio-

laserbeam with a transverse Gaussian flux-density distribu-

bate) were coated to form an optical Fabry–Perot cavity. The 

tion onto a specimen. The induced refractive-index variations 

signal and idler frequencies (both about 1000 nm) corresponded 

will cause the medium in the region of the beam to function 

to two of the resonant frequencies of the cavity. When the flux 

much as if it were a positive lens. Accordingly, the beam con-

density of the pumping light was high enough, energy was 

tracts, the flux density increases even more, and the contrac-

transferred from it into the signal and idler oscillatory modes, 

tion continues in a process known as self-focusing
 . The effect 

with the consequent buildup of those modes and emission of 

can be sustained until the beam reaches a limiting filament 

coherent radiant energy at those frequencies. This transfer of 

diameter (of about 5 * 10-6 m), being totally internally re-

energy from one wave to another within a lossless medium typ-

flected as if it were in a fiberoptic element embedded within 

ifies parametric processes. By changing the refractive index of 

the medium.*

the crystal (via temperature, electric field, etc.), the oscillator 

becomes tunable. Various oscillator configurations have since 

evolved, with other nonlinear materials used as well, such as 

*See J. A. Giordmaine, “Nonlinear optics,”  Phys. Today
 , 39
  (January 1969).
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PROBLEMS


∞



Complete solutions to all problems—except those with an  




dx


Use the fact that 



asterisk—can be found in the back of the book.



3   xn
  

= Γ( n 
 + 1)Z( n 
 + 1) where the gamma 

0


ex 
 - 1

function is given by Γ( n 
 + 1) =  n
 !  and the Riemann zeta function  


13.1*
   After a while, a cube of rough steel (10 cm on a side)  reaches 

p4

equilibrium inside a furnace at a temperature of 400°C. Knowing that 

for  n 
 = 3 is Z(4) =

 .]

90

its total emissivity is 0.97, determine the rate at which the cube radiates 

energy from each face.


13.11*
   Start with Eq. (13.4) and show that it’s equivalent to


13.2  
 A somewhat typical person has a total naked area of about 1.4 m2 

and an average skin temperature of 33°C. Determine the net power 

3.742 * 10-25


I


 W/m2 · 
 nm

l =

radiated per unit area, the irradiance or more precisely the exitance, 

l5( e
 0.014 4/l T 
 - 1)

if the person’s total emissivity is 97% and the environment is room 

temperature  (20°C). How much energy does that body radiate per 

where l is in meters,  T
  is in kelvins, and the wavelength interval ∆l 

second?

should be in nanometers. Then  I
 l is the number of joules per second, 


13.3
   Suppose that we measure the emitted exitance from a small hole 

per meter-squared, per nanometer.

in a furnace to be 22.8 W>cm2, using an optical pyrometer of some 


13.12*
   In the atomic domain, energy is often measured in electron-

sort. Compute the internal temperature of the furnace.

volts. Arrive at the following expression for the energy of a light-quantum 


13.4
   The temperature of an object resembling a blackbody is raised 

in eV when the wavelength is in nanometers:

from 200 K to 2000 K. By how much does the amount of energy it 

radiates increase?

1239.8 eV · 
 nm

ℰ =

l


13.5*
  Your average skin temperature is about 33°C. Assuming you 

radiate as does a blackbody at that temperature, at what wavelength do 

What is the energy of a quantum of 600-nm light?

you emit the most energy?


13.13
   Figure P.13.13 shows the  spectral irradiance
  impinging on a 


13.6*
   What is the wavelength that carries away the most energy when 

horizontal surface, for a clear day, at sea level, with the Sun at the zenith. 

an object resembling a blackbody radiates energy into a room-temperature 

What is the most energetic photon we can expect to encounter (in eV 

(20°C) environment?

and in J)?


13.7*
   The surface temperature of a class O blue-white star is around 

40 * 103 K. At what frequency will it radiate most of its energy?


Figure P.13.13



13.8*
  When the Sun’s spectrum is photographed, using rockets to 

1400

range above the Earth’s atmosphere, it is found to have a peak in its 

spectral exitance at roughly 465 nm. Compute the Sun’s surface tem-

1200

perature, assuming it to be a blackbody. This approximation yields a 

)–1 1000

value that is about 400 K too high.

m m–2 800


13.9*
  An object resembling a blackbody emits a maximum amount  

of energy per unit wavelength in the red end of the visible spectrum 

  (W m 600

(l = 680 nm). What is its surface temperature?


I 
 l

400


13.10*
  The energy per unit area per unit time per unit wavelength 

interval emitted by a blackbody at a temperature  T
  is given by

200

2p hc
 2

1

0


I
 l =


hc


d

l k
 B T


0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

l5

c e 
 - 1

l  (mm)

At a specific temperature, the total power radiated per unit area of the 

1 micron = 1mm = 1 × 10–6 m

blackbody is equal to the area under the corresponding  I 
  versus 

l

l 

curve. Use this to derive the Stefan–Boltzmann Law. [ Hint
 : To clean 

up the exponential, change variables in the integral so that 


13.14*
   Suppose we have a 100-W yellow lightbulb (550 nm) 100 m 

away from a 3-cm-diameter shuttered aperture. Assuming the bulb to 


hc



x 
 =

have a 2.5% conversion to radiant power, how many photons will pass 

l k
 B T


through the aperture if the shutter is opened for  1

1000 s?
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13.15
  The  solar constant
  is the radiant flux density at a spherical 


13.25*
   Referring to Fig. 13.6, which shows two transitions for the 

surface centered on the Sun having a radius equal to that of the Earth’s 

He-Cd laser, determine the lifetime of the higher-energy  d
 -state.

mean orbital radius; it has a value of 0.133–0.14 W>cm2. If we assume 


13.26*
   The helium-neon laser is famous for its red-light emission at 

an average wavelength of about 700 nm, how many photons at most 

632.8 nm. But electrons in that same high-energy level can jump down 

will arrive on each square meter per second of a solar cell panel just 

to nine other lower levels (each with appreciable probabilities), emitting 

above the atmosphere?

radiant energy at wavelengths shown in Table 13.3. Determine the life-


13.16
  A 50.0-cm3 chamber is filled with argon gas to a pressure of 

time of that upper energy level. Which transition is most likely to take 

20.3 Pa at a temperature of 0

place? Which should be the brightest visible emission?

°C. All but a negligible number of these 

atoms are initially in their ground states. A flash tube surrounding the 

sample energizes 1.0% of the atoms into the same excited state having 


TABLE 13.3    He-Ne Laser Emissions


a mean life of 1.4 * 10-8 s. What is the maximum rate at which pho-

tons are subsequently emitted by the gas (of course, it falls off with 

l (nm) 


Aji
   (
 s-1 )


time)? Assume both that spontaneous emission is the only mechanism 

  60.0 

 259 * 105

at work and that the medium is an ideal gas.

543.4 

 283 * 105


13.17*
   Show that for a system of atoms and photons in equilibrium at 

593.9 2.00 * 105

a temperature  T
  the ratio of the transition rates of stimulated to sponta-

604.6 2.26 * 105

neous emission is given by

611.8 6.09 * 105

629.4 6.39 * 105

1

632.8 33.9

c

* 105


h
 n

d


ek
 B T 
 - 1

635.2 3.45 * 105

640.1 13.9 * 105


13.18*
   A system of atoms in thermal equilibrium is emitting and ab-

730.5 2.55 * 105

sorbing 2.0-eV light photons. Determine the ratio of the transition rates 

of stimulated emission to spontaneous emission at a temperature of 

300 K. Discuss the implications of your answer. [ Hint
 : See the previ-


13.27*
   The beam (l = 632.8 nm) from a He-Ne laser, which is ini-

ous problem.]

tially 3.0 mm in diameter, shines on a perpendicular wall 100 m away. 


13.19
   Redo the previous problem for a temperature of 30.0 * 103 K

Given that the system is aperture (diffraction) limited, how large is the 

and compare the results of both calculations.

circle of light on the wall?


13.28*
   Make a rough estimate of the amount of energy that can be 


13.20*
   Given a two-level atomic system where level-2 is more energetic 

delivered by a ruby laser whose crystal is 5.0 mm in diameter and 

than the ground state level-1, what is the meaning of the expression

0.050 m long. Assume the pulse of light lasts 5.0 * 10-6 s. The den-

sity of aluminum oxide (Al


dN


2O3) is 3.7 * 103 kg>m3. Use the data in 

2 =  B


the discussion of Fig. 13.7 and the fact that the chromium ions make a 


dt


12 u
 n  N
 1 -  B
 21 u
 n  N
 2 -  A
 21 N
 2

1.79 eV lasing transition. How much power is available per pulse?

When in thermal equilibrium show that 


13.29
   What is the transition rate for the neon atoms in a He-Ne laser 


A


if the energy drop for the 632.8 nm emission is 1.96 eV and the power 

21 N
 2 +  B
 21 u
 n  N
 2 =  B
 12 u
 n  N
 1

output is 1.0 mW?


13.21*
   Determine the rate at which stimulated emission is happening 


13.30*
   A solid-state laser has an active region consisting of a rod 10 mm 

in a 100-mW He-Cd laser emitting at 441.56 nm.

in diameter and 0.20 m long that is operating with an efficiency of 2.0%. 


13.22*
   For a system of atoms (in equilibrium) having two energy lev-

The rod contains 4.0 * 1019 participating ions per cubic centimeter. 

els, show that at high temperatures where  k


The laser emits pulses at 701 nm. Determine the energy of a single 

B T
   7 7  ℰ j 
 - ℰ i
 , the num-

ber densities of the two states tend to become equal. [ Hint
 : Form the 

such pulse.

ratio of the transition rates for total emission to absorption.]


13.31*
   Given that a ruby laser operating at 694.3 nm has a frequency 


13.23*
   Radiation at 21 cm pours down on the Earth from outer space. 

bandwidth of 50 MHz, what is the corresponding linewidth?

Its origin is great clouds of hydrogen gas. Taking the background tem-


13.32*
  Determine the frequency difference between adjacent axial 

perature of space to be 3.0 K, determine the ratio of the transition rates 

resonant cavity modes for a typical gas laser 25 cm long ( n 
 ≈ 1).

of stimulated emission to spontaneous emission and discuss the result.


13.33*
   The 488.0-nm line from an argon ion laser is Doppler broad-


13.24*
   With the Example 13.7 in mind, determine the average power 

ened to 2.7 * 109 Hz. Given that the laser’s mirrors are 1.0 m apart, 

per cubic meter radiated by the Nd:YAG laser rod, given that the transi-

determine the approximate number of longitudinal modes. Assume the 

tion occurs with an upper-level lifetime of 230 ms.

index of refraction of the gas is 1.0.
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13.34*
   A gas laser has a Fabry–Perot cavity of length 40 cm. The index 


13.41
   Repeat the previous problem using Fig. P.13.41 instead.

of refraction of the gas is 1.0. Operating at 600 nm, determine the mode 

number, that is, the number of half-cycles fitting within the cavity.


Figure P.13.41
   (R. A. Phillips)


13.35*
  A He-Ne c-w laser has a Doppler-broadened transition 

(a)

(b)

bandwidth of about 1.4 GHz at 632.8 nm. Assuming  n 
 = 1.0, deter-

mine the maximum cavity length for single-axial mode operation. 

Make a sketch of the transition linewidth and the corresponding 

cavity modes.


13.36*
   Determine the threshold gain coefficient for a semiconductor 

laser where a ≈ 10  cm-1, the resonator is 0.03 cm long, and the “mir-

ror” reflectances are both only 0.4.


13.37
   Show that the maximum electric-field intensity,  E
 max, that ex-

ists for a given irradiance  I
  is


I 
 1>2


E
 max = 27.4 a b  in units of V>m


n



13.42*
   Repeat the previous problem using Fig. P.13.42 this time.

where  n
  is the refractive index of the medium.


Figure P.13.42  
  


13.38*
  A He-Ne laser operating at 632.8 nm has an internal beam-

(R. A. Phillips)

waist diameter of 0.60 mm. Calculate the full-angular width, or diver-

gence, of the beam.


13.39
   What would the pattern look like for a laserbeam diffracted by 

the three crossed gratings of Fig. P.13.39?

(a)


Figure P.13.39


(b)


13.40
   Make a rough sketch of the Fraunhofer diffraction pattern that 

would arise if a transparency of Fig. P.13.40 a
  served as the object. 

How would you filter it to get Fig. P.13.40 b
 ?


Figure P.13.40 
 (E.H.)

(a)

(b)


13.43
   Returning to Fig. 13.37, what kind of spatial filter would pro-

duce each of the patterns shown in Fig. P.13.43?


13.44
   With Fig. 13.36 in mind, show that the transverse magnifica-

tion of the system is given by - ƒi
 > ƒt
  and draw the appropriate ray dia-

gram. Draw a ray up through the center of the first lens at an angle u 

with the axis. From the point where that ray intersects Σ t
 , draw a ray 

downward that passes through the center of the second lens at an angle 

Φ. Prove that Φ>u =  ƒt
 > ƒi
 . Using the notion of spatial frequency, from 
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Eq. (11.64), show that k O
  at the object plane is related to k I
  at the im-


13.47
   Suppose we insert a mask in the transform plane of the previ-

age plane by

ous problem, which obscures everything but the  m 
 = +1  
 diffraction 

k I 
 = k O
 ( ƒt
 > ƒi
 )

contribution. What will the reformed image look like on g i
 ? Explain 

your reasoning. Now suppose we remove  only
  the  m 
 = +1   
 or the 

What does this mean with respect to the size of the image when  ƒi 
 7  ƒt
 ? 


m 
 = -1 term. What will the re-formed image look like?

What can then be said about the spatial periods of the input data as 

compared with the image output?


13.48*
  Referring to the previous two problems with the cosine 

grating oriented horizontally, make a sketch of the electric-field am-

plitude along  y
 ′  
 with no filtering. Plot the corresponding image ir-

radiance distribution. What will the electric field of the image look 


Figure P.13.43
    

like if the DC term is filtered out? Plot it. Now plot the new irradi-

(D. Dutton, M. P. 

ance distribution. What can you say about the spatial frequency of 

Givens, and R. E. 

the image with and without the filter in place? Relate your answers 

Hopkins.)

to Fig. 11.14.


13.49
  Replace the cosine grating in the previous problem with a 

(a)

“square” bar grating, that is, a series of many fine alternating opaque 

and transparent bands of equal width. We now filter out all terms in the 

transform plane but the zeroth and the two first-order diffraction spots. 

These we determine to have relative irradiances of 1.00, 0.36, and 

0.36: compare them with Figs. 7.40 a
  and 7.42. Derive an expression 

for the general shape of the irradiance distribution on the image 

plane—make a sketch of it. What will the resulting fringe system look 

like?


13.50
   A fine square wire mesh with 50 wires per cm is placed verti-

cally in the object plane of the optical computer of Fig. 13.50. If the 

lenses each have 1.00-m focal lengths, what must be the illuminating 

(b)

wavelength, if the diffraction spots on the transform plane are to have 

a horizontal and vertical separation of 2.0 mm? What will be the mesh 

spacing as it appears on the image plane?


13.51*
   Imagine that we have an opaque mask into which are punched 

an ordered array of circular holes, all of the same size, located as if at 

the corners of the boxes of a checkerboard. Now suppose our robot 

puncher goes mad and makes an additional batch of holes essentially 

randomly all across the mask. If this screen is now made the object in 

Problem 13.49, what will the diffraction pattern look like? Given that 


13.45
   A diffraction grating having a mere 50 grooves per cm is the 

the ordered holes are separated from their nearest neighbors on the 

object in the optical computer shown in Fig. 13.41. If it is coherently 

object by 0.1 mm, what will be the spatial frequency of the correspond-

illuminated by plane waves of green light (543.5 nm) from a He-Ne 

ing dots in the image? Describe a filter that will remove the random 

laser and each lens has a 100-cm focal length, what will be the spacing 

holes from the final image.

of the diffraction spots on the transform plane?


13.46*
   Imagine that you have a cosine grating (i.e., a transparency 


13.52*
   Imagine that we have a large photographic transparency on 

whose  amplitude
  transmission profile is cosinusoidal varying between 

which there is a picture of a student made up of a regular array of small 

0 and 1) with a spatial period of 0.01 mm. The grating is illuminated 

circular dots, all of the same size, but each with its own density, so that 

by quasimonochromatic plane waves of l

it passes a spot of light with a particular field amplitude. Considering 

= 500 nm, and the setup is 

the same as that of Fig. 13.36, where the focal lengths of the transform 

the transparency to be illuminated by a plane wave, discuss the idea of 

and imaging lenses are 2.0 m and 1.0 m, respectively.

representing the electric-field amplitude just beyond it as the product 

(on average) of a regular two-dimensional array of top-hat functions 

a)  Discuss the resulting pattern and design a filter that will pass  only
  

(Fig. 11.4) and the continuous two-dimensional picture function: the 

the first-order terms. Describe it in detail.

former like a dull bed of nails, the latter an ordinary photograph.  

b) What will the image look like on g i
  with that filter in place?

Applying the frequency convolution theorem, what does the distribu-

c)  How might you pass only the  DC
  term, and what would the image 

tion of light look like on the transform plane? How might it be filtered 

look like then?

to produce a continuous output image?
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13.53*  
 The arrangement shown in Fig. P.13.53 is used to convert a 


13.54
   What would happen to the speckle pattern if a laserbeam were 

collimated laserbeam into a spherical wave. The pinhole cleans up the 

projected onto a suspension such as milk rather than onto a smooth 

beam; that is, it eliminates diffraction effects due to dust and the like on 

wall?

the lens. How does it manage it?


Figure P.13.53
    (a
 ) and ( b
 ) A high-power laserbeam before and after 

spatial filtering. (Lawrence Livermore National Laboratory.)

(a)

(b)

(c)

Microscope

objective

Laserbeam

Pinhole
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Appendix 1



Electromagnetic Theory


If we compare this with Eq. (3.5), it follows that

MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

0B
 $

The set of integral expressions that have come to be known as Max-





6𝛁 : E
  $~ d
 S
  $ = - 6 ~ d
 S
  $ (A1.4)

0 t


well’s Equations are 

This result must be true for all surfaces bounded by the path  C
 . This 

0B
  $





can be the case only if the integrands are themselves equal, that is, if

C E
 $ ~  d
 O $ = - 6

~  d
 S
  $ [3.5]


C



A 
 0 t 
   

0B
 $





𝛁 : E
 $ = -   (A1.5)


B


$

0E
  $

0 t






C   ~  d
 O $ =

aJ
  $ + P b ~  d
 S
  $ [3.13]

  

6


C 
 m


A


0 t


A similar application of Stokes’s Theorem to B


$, using Eq. (3.13),  

results in





TPE
 $~ d
 S
  $ = 9 r  dV
  [3.7]


A



V


0E
 $





𝛁 : B
 $ = m  aJ
 $ + P b (A1.6)

and

0 t


Gauss’s Divergence Theorem applied to the electric-field intensity 





TB
 $~ d
 S
  $=0 [3.9] yields


A


where the units, as usual, are SI.





TE
 $~ d
 S
 $=

Maxwell’s Equations can be written in a differential form, which 

9 𝛁 ~ E
 $  dV
  (A1.7)

is more useful for deriving the wave aspects of the electromagnetic 

field. This transition can readily be accomplished by making use of two 

If we make use of Eq. (3.7), this becomes

theorems from vector calculus, namely, Gauss’s Divergence Theorem,

1





9 𝛁 ~ E
 $ 
 dV 
 =

 r  dV
  (A1.8)





T F
 $~ d
 S
 $=

P 9 V


9 𝛁 ~ F
 $  dV
  (A1.1)


V



A



V


and since this is to be true for any volume (i.e., for an arbitrary closed 

and Stokes’s Theorem

domain), the two integrands must be equal. Consequently, at any point 

( x
 ,  y
 ,  z
 ,  t
 ) in space–time





C F
 $ ~  d
 O $ = 6 𝛁 : F
  $ ~  d
 S
  $ (A1.2)

r


C



A






𝛁 ~ E
 $ =  (A1.9)

P

Here the quantity F


$ is not one fixed vector but a function that depends 

In the same fashion, Gauss’s Divergence Theorem applied to the  

on the position variables. It is a rule that associates a single vector, for 


B


$-field and combined with Eq. (3.9) yields

example, in Cartesian coordinates, F


$( x
 ,  y
 ,  z
 ), with each point ( x
 ,  y
 ,  z
 ) 

in space. Vector-valued functions of this kind, such as E


$ and B
 $, are 





𝛁 ~ B
 $ = 0 (A1.10)

known as vector fields.

Applying Stokes’s Theorem to the electric-field intensity, we have

Equations (A1.5), (A1.6), (A1.9), and (A1.10) are Maxwell’s Equa-

tions in differential form. Refer back to Eqs. (3.18) through (3.21) for 





the simple case of Cartesian coordinates and  free space
   (r =  J 
 = 0, 

C E
 $ ~  d
 O $ = 6𝛁 : E
  $ ~  d
 S
  $ (A1.3)

P = P0, m = m0).
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   Electromagnetic Theory

physically at rest. By making use of the constitutive relations, we can 

ELECTROMAGNETIC WAVES

rewrite Maxwell’s Equations as

r

To derive the electromagnetic wave equation in its most general form, 





𝛁 ~ E
 $ =  [A1.9]

we must again consider the presence of some medium. We saw in  

P

Section 3.5.1 that there is a need to introduce the  polarization
  vector P


$, 





𝛁 ~ B
 $ = 0 [A1.10]

which is a measure of the overall behavior of the medium, in that it is 

the resultant electric dipole moment per unit volume. Since the field 

0B
 $





𝛁 : E
 $ = -   [A1.5]

within the material has been altered, we are led to define a new field 

0 t


quantity, the  displacement
  D


$:

0E
 $

and 

𝛁 : B
 $ = msE
 $ + mP  (A1.16)






D


$ = P0 E
 $ + P
 $ (A1.11)

0 t


If these expressions are somehow to yield a wave equation (2.61), we 


D



P


had best form some second derivatives with respect to the space vari-

$

$

Clearly, then, 


E


$ =

-  

ables. Taking the curl of Eq. (A1.16), we obtain

P0

P0

0

The internal electric field E






𝛁

$ is the difference between the field D
 $>P

: (𝛁 : B
 $) = ms(𝛁 : E
 $) + mP   (𝛁 : E
 $) (A1.17)

0,  

0 t


which would exist in the absence of polarization, and the field 






P
 $

where, since E


>P0 arising from polarization.

$ is assumed to be a well-behaved function, the space 

For a homogeneous, linear, isotropic dielectric, P


$ and E
 $ are in 

and time derivatives can be interchanged. Equation (A1.5) can be sub-

the same direction and are mutually proportional. It follows that D


$ is 

stituted to obtain the needed second derivative with respect to time:

therefore also proportional to E


$:

0B
 $

02B
 $





𝛁 : (𝛁 : B
 $) = -ms 

- mP 

 (A1.18)






D


$ = PE
 $ (A1.12)

0 t


0 t
 2

Like E


$, D
 $ extends throughout space and is in no way limited to the 

The vector triple product can be simplified by making use of the opera-

region occupied by the dielectric, as is P


$ . The lines of D
 $ begin and 

tor identity

end on free, movable charges. Those of E


$ begin and end on either  free
  





𝛁

charges or bound polarization charges. If no free charge is present, 

: (𝛁 : ) = 𝛁(𝛁 ~ ) - ∇2 (A1.19)

as might be the case in the vicinity of a polarized dielectric or in free 

so that

space, the lines of D


$ close on themselves.

Since in general the response of optical media to B


$-fields is only 

𝛁 : (𝛁 : B
 $) = 𝛁(𝛁 ~ B
 $) - ∇2B
 $

slightly different from that of a vacuum, we need not describe the pro-

cess in detail. Suffice it to say that the material will become polarized. 

where in Cartesian coordinates

We can define a  magnetic polarization
  or  magnetization
  vector M


$  as 

the magnetic dipole moment per unit volume. In order to deal with 

02B
 $

02B
 $

02B
 $

(𝛁 ~ 𝛁)B
 $ = ∇2B
 $ K

+

+

the influence of the magnetically polarized medium, we introduce an 

0 x
 2

0 y
 2

0 z
 2

auxiliary vector H


$, traditionally known as the  magnetic field intensity


Since the divergence of B


$ is zero, Eq. (A1.18) becomes






H


$ = m-1

0 B


$ - M


$  (A1.13)

02B
 $

0B
 $





∇2B


For a homogeneous, linear (nonferromagnetic), isotropic medium, B


$ = mP 

- ms 

= 0 (A1.20)

$ 

0 t
 2

0 t


and H


$ are parallel and proportional:

A similar equation is satisfied by the electric field intensity. 






H


$ = m-1B
 $ (A1.14)

Following essentially the same procedure as above, take the curl of 

Eq. (A1.5):

Along with Eqs. (A1.12) and (A1.14), there is one more  constitutive 



equation
 ,

𝛁

0

: (𝛁 : E
 $) = -   (𝛁 : B
 $)

0 t







J
 $ = sE
 $ (A1.15)

Eliminating B


$ this becomes

Known as  Ohm’s Law
 , it is a statement of an experimentally deter-

mined rule that holds for conductors at constant temperatures. The 

𝛁

0E
 $

02E
 $

: (𝛁 : E
 $) = -ms 

- mP

electric-field intensity, and therefore the force acting on each elec-

0 t


0 t
 2

tron in a conductor, determines the flow of charge. The constant of 

and then by making use of Eq. (A1.19), we arrive at

proportionality relating E


$ and J
 $ is the conductivity of the particular 

medium, s.

Consider the rather general environment of a linear (nonferroelec-

∇2

02E
 $

0E
 $


E


$ - mP 

- ms

= 𝛁(r>P)

tric and nonferromagnetic), homogeneous, isotropic medium, which is 

0 t
 2

0 t
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having utilized the fact that

and similarly

𝛁(𝛁 ~ E
 $) = 𝛁(r>P)

02H
 $





∇2H


$ - mP 

= 0 (A1.24)

0 t
 2

For an uncharged medium (r = 0) and

02D
 $

02B
 $

0E
 $

and 

∇2D
 $ - mP 

= 0 (A1.25)





∇2E
 $ - mP 

- ms 

= 0 (A1.21)

0 t
 2

0 t
 2

0 t


In the special nonconducting medium of a vacuum (free space) where

Equations (A1.20) and (A1.21) are known as the  equations of 



 


r = 0  s = 0   Ke 
 = 1   Km 
 = 1


telegraphy
 .*

In nonconducting media s = 0, and these equations become

these equations become simply

02B
 $





02E
 $

∇2B
 $ - mP 

= 0 (A1.22)





∇2E
 $ = m0P0 

 (A1.26)

0 t
 2

0 t
 2

02E
 $





∇2E
 $ - mP 

= 0 (A1.23)

02B
 $

0 t
 2

and 

∇2B
 $ = m0P0 

 (A1.27)

0 t
 2

*For a pair of parallel wires that might serve as a telegraph line, the finite 

Both of these expressions describe coupled space- and time-dependent 

wire resistance results in a power loss and joule heating. An electromagnetic 

fields, and both have the form of the differential wave equation (see 

wave advancing along the line has less and less energy available to it. The 

Section 3.2 for further discussion).

first-order time derivatives in Eqs. (A1.20) and (A1.21) arise from the conduc-

tion current and lead to the dissipation or damping.
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The Kirchhoff Diffraction Theory


To solve the Helmholtz Equation [Eq. (10.113)], suppose that we have 

since the gradient is directed radially outward. In terms of the solid 

two scalar functions  U
 1 and  U
 2 for which Green’s theorem is

angle ( dS 
 =  r
 2 d
 Ω) measured at  P
 , the integral over  S
 ′ becomes

0ℰ˜


9  ( U
 1∇2 U
 2 -  U
 2∇2 U
 1) dV






T aℰ˜
 - ik
 ℰ˜
 r
 + r
   b  eikr
   d
 Ω (A2.4)


V



S
 ′

0 r


where 𝛁ℰ ˜ 
 ~  d
 S
 $ = -(0ℰ ˜
 >0 r
 ) r
 2 d
 Ω. As the sphere surrounding  P
  shrinks, 

= T ( U


  

1𝛁 U
 2 -  U
 2𝛁 U
 1) ~  d
  S


$ (A2.1)


r 
 S 0 on  S
 ′ and exp ( ikr
 ) S 1. Because of the continuity of ℰ ˜
  its value S


at any point on  S
 ′ approaches its value at  P
 , that is, ℰ ˜
 p
 . The last two It is clear that if  U


terms in Eq. (A2.4) go to zero, and the integral becomes 4

1 and  U
 2 are solutions of the Helmholtz Equation, 

pℰ

 ˜
 p
 . Finally, 

that is, if

then, Eq. (A2.3) becomes

∇2 U
 1 +  k
 2 U
 1 = 0

1


eikr



eikr






ℰ ˜
 p 
 =

  c T   𝛁ℰ ˜
 ~ d
 S
 $ - Tℰ ˜
 𝛁a b~ d
 S
 $d [10.114]

4

  

  

p


S r



S



r


and 

∇2 U
 2 +  k
 2 U
 2 = 0 

which is known as the  Kirchhoff Integral Theorem
 .

then 

T ( U
 1𝛁 U
 2- U
 2𝛁 U
 1)~ d
  S
 $=0 (A2.2)


S


Let  U
 1 = ℰ ˜
 , the space portion of an unspecified scalar optical distur-


n


bance [Eq. (10.112)]. And let


eikr



U
 2 =  r


where  r
  is measured from a point- P
 . Both of these choices clearly sat-

isfy the Helmholtz Equation. There is a singularity at point- P
 , where 


r 
 = 0, so that we surround it by a small sphere in order to exclude  P
  


n



P


from the region enclosed by  S
  (see Fig. A2.1). Equation (A2.2) now 


S



S


becomes


eikr



eikr






Tcℰ ˜
 𝛁a b- 𝛁ℰ ˜
 d~ d
  S
 $ 


S



r



r



eikr



eikr






+ T cℰ ˜
 𝛁a b - 𝛁ℰ ˜
 d ~ d
  S
 $ = 0 (A2.3)


S
 ′


r



r


Now expand out the portion of the integral corresponding to  S
 ′. On 


Figure A2.1


the small sphere, the unit normal nˆ
  points toward the origin at  P
 , and


eikr


1


ik


𝛁a b = a - b  eikr
  nˆ



r



r
 2


r
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Table 1


THE SINC FUNCTION

(sin  u
 )> u



u
  

0.00  0.01 0.02 0.03 0.04  0.05 0.06 0.07 0.08 0.09

0.0 

1.000000 0.999983  0.999933  0.999850 0.999733 0.999583  0.999400 0.999184 0.998934 0.998651

0.1 

0.998334 0.997985  0.997602  0.997186 0.996737 0.996254  0.995739 0.995190 0.994609 0.993994

0.2 

0.993347 0.992666  0.991953  0.991207 0.990428 0.989616  0.988771 0.987894 0.986984 0.986042

0.3 

0.985067 0.984060  0.983020  0.981949 0.980844 0.979708  0.978540 0.977339 0.976106 0.974842

0.4 

0.973546 0.972218  0.970858  0.969467 0.968044 0.966590  0.965105 0.963588 0.962040 0.960461

0.5 

0.958851 0.957210  0.955539  0.953836 0.952104 0.950340  0.948547 0.946723 0.944869 0.942985

0.6 

0.941071 0.939127  0.937153  0.935150 0.933118 0.931056  0.928965 0.926845 0.924696 0.922518

0.7 

0.920311 0.918076  0.915812  0.913520 0.911200 0.908852  0.906476 0.904072 0.901640 0.899181

0.8 

0.896695 0.894182  0.891641  0.889074 0.886480 0.883859  0.881212 0.878539 0.875840 0.873114

0.9 

0.870363 0.867587 0.864784 0.861957 0.859104 0.856227 0.853325 0.850398 0.847446 0.844471

1.0 

0.841471 0.838447  0.835400  0.832329 0.829235 0.826117  0.822977 0.819814 0.816628 0.813419

1.1 

0.810189 0.806936  0.803661  0.800365 0.797047 0.793708  0.790348 0.786966 0.783564 0.780142

1.2 

0.776699 0.773236  0.769754  0.766251 0.762729 0.759188  0.755627 0.752048 0.748450 0.744833

1.3 

0.741199 0.737546  0.733875  0.730187 0.726481 0.722758  0.719018 0.715261 0.711488 0.707698

1.4 

0.703893 0.700071  0.696234  0.692381 0.688513 0.684630  0.680732 0.676819 0.672892 0.668952

1.5 

0.664997 0.661028  0.657046  0.653051 0.649043 0.645022  0.640988 0.636942 0.632885 0.628815

1.6 

0.624734 0.620641  0.616537  0.612422 0.608297 0.604161  0.600014 0.595858 0.591692 0.587517

1.7 

0.583332 0.579138  0.574936  0.570725 0.566505 0.562278  0.558042 0.553799 0.549549 0.545291

1.8 

0.541026 0.536755  0.532478  0.528194 0.523904 0.519608  0.515307 0.511001 0.506689 0.502373

1.9 

0.498053 0.493728 0.489399 0.485066 0.480729 0.476390 0.472047 0.467701 0.463353 0.459002

2.0 

0.454649 0.450294  0.445937  0.441579 0.437220 0.432860  0.428499 0.424137 0.419775 0.415414

2.1 

0.411052 0.406691  0.402330  0.397971 0.393612 0.389255  0.384900 0.380546 0.376194 0.371845

2.2 

0.367498 0.363154  0.358813  0.354475 0.350141 0.345810  0.341483 0.337161 0.332842 0.328529

2.3 

0.324220 0.319916  0.315617  0.311324 0.307036 0.302755  0.298479 0.294210 0.289947 0.285692

2.4 

0.281443 0.277202  0.272967  0.268741 0.264523 0.260312  0.256110 0.251916 0.247732 0.243556

2.5 

0.239389 0.235231  0.231084  0.226946 0.222817 0.218700  0.214592 0.210495 0.206409 0.202334

2.6 

0.198270 0.194217  0.190176  0.186147 0.182130 0.178125  0.174132 0.170152 0.166185 0.162230

2.7 

0.158289 0.154361  0.150446  0.146546 0.142659 0.138786  0.134927 0.131083 0.127253 0.123439

2.8 

0.119639 0.115854  0.112084  0.108330 0.104592 0.100869  0.097163 0.093473 0.089798 0.086141

2.9 

0.082500 0.078876 0.075268 0.071678 0.068105 0.064550 0.061012 0.057492 0.053990 0.050506

3.0 

0.047040 0.043592  0.040163  0.036753 0.033361 0.029988  0.026635 0.023300 0.019985 0.016689

3.1 

0.013413 0.010157 0.006920 0.003704 0.000507 

-0.002669  -0.005825  -0.008960  -0.012075  -0.015169

3.2 

-0.018242  -0.021294  -0.024325  -0.027335  -0.030324  -0.033291  -0.036236  -0.039160  -0.042063  -0.044943

3.3 

-0.047802  -0.050638  -0.053453  -0.056245  -0.059014  -0.061762  -0.064487  -0.067189  -0.069868  -0.072525

3.4 

-0.075159  -0.077770  -0.080358  -0.082923  -0.085465  -0.087983  -0.090478  -0.092950  -0.095398  -0.097823

3.5 

-0.100224  -0.102601  -0.104955  -0.107285  -0.109591  -0.111873  -0.114131  -0.116365  -0.118575  -0.120761

3.6 

-0.122922  -0.125060  -0.127173  -0.129262  -0.131326  -0.133366  -0.135382  -0.137373  -0.139339  -0.141282

3.7 

-0.143199  -0.145092  -0.146960  -0.148803  -0.150622  -0.152416  -0.154186  -0.155930  -0.157650  -0.159345

3.8 

-0.161015  -0.162661  -0.164281  -0.165877  -0.167448  -0.168994  -0.170515  -0.172011  -0.173482  -0.174929

3.9 

-0.176350  -0.177747  -0.179119  -0.180466  -0.181788  -0.183086  -0.184358  -0.185606  -0.186829  -0.188027

4.0 

-0.189201  -0.190349  -0.191473  -0.192573  -0.193647  -0.194698  -0.195723  -0.196724  -0.197700  -0.198652

4.1 

-0.199580  -0.200483  -0.201361  -0.202216  -0.203046  -0.203851  -0.204633  -0.205390  -0.206124  -0.206833

4.2 

-0.207518  -0.208179  -0.208817  -0.209430  -0.210020  -0.210586  -0.21l128  -0.211647  -0.212142  -0.212614

4.3 

-0.213062  -0.213487  -0.213888  -0.214267  -0.214622  -0.214955  -0.215264  -0.215550  -0.215814  -0.216055

4.4 

-0.216273  -0.216469  -0.216642  -0.216793  -0.216921  -0.217028  -0.217112  -0.217174  -0.217214  -0.217232

4.5 

-0.217229  -0.217204  -0.217157  -0.217089  -0.217000  -0.216889  -0.216757  -0.216604  -0.216430  -0.216235

4.6 

-0.216020  -0.215784  -0.215527  -0.215250  -0.214953  -0.214635  -0.214298  -0.213940  -0.213563  -0.213166

4.7 

-0.212750  -0.212314  -0.211858  -0.211384  -0.210890  -0.210377  -0.209846  -0.209296  -0.208727  -0.208140

4.8 

-0.207534  -0.206911  -0.206269  -0.205609  -0.204932  -0.204236  -0.023524  -0.202794  -0.202046  -0.201282

4.9 

-0.200501  -0.199702  -0.198887  -0.198056  -0.197208  -0.196344  -0.195464  -0.194568  -0.193656  -0.192728
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674
     Appendix 2
   The Kirchhoff Diffraction Theory

TABLE 1 (CONTINUED)

(sin  u
 )> u



u
  

0.00  0.01 0.02 0.03 0.04  0.05 0.06 0.07 0.08 0.09

5.0 

-0.191785  -0.190826  -0.189853  -0.188864  -0.187860  -0.186841  -0.185808  -0.184760  -0.183699  -0.182622

5.1 

-0.181532  -0.180428  -0.179311  -0.178179  -0.177035  -0.175877  -0.174706  -0.173522  -0.172326  -0.171117

5.2 

-0.169895  -0.168661  -0.167415  -0.166158  -0.164888  -0.163607  -0.162314  -0.161010  -0.159695  -0.158369

5.3 

-0.157032  -0.155684  -0.154326  -0.152958  -0.151579  -0.150191  -0.148792  -0.147384  -0.145967  -0.144540

5.4 

-0.143105  -0.141660  -0.140206  -0.138744  -0.137273  -0.135794  -0.134307  -0.132812  -0.131309  -0.129798

5.5 

-0.128280  -0.126755  -0.125222  -0.123683  -0.122137  -0.120584  -0.119024  -0.117459  -0.115887  -0.114310

5.6 

-0.112726  -0.111137  -0.109543  -0.107943  -0.106338  -0.104728  -0.103114  -0.101495  -0.099871  -0.098243

5.7 

-0.096611  -0.094976  -0.093336  -0.091693  -0.090046  -0.088396  -0.086743  -0.085087  -0.083429  -0.081768

5.8 

-0.080104  -0.078438  -0.076770  -0.075100  -0.073428  -0.071755  -0.070080  -0.068404  -0.066726  -0.065048

5.9 

-0.063369  -0.061689  -0.060009  -0.058329  -0.056648  -0.054967  -0.053287  -0.051606  -0.049927  -0.048248

6.0 

-0.046569  -0.044892  -0.043216  -0.041540  -0.039867  -0.038195  -0.036524  -0.034856  -0.033189  -0.031525

6.1 

-0.029863  -0.028203  -0.026546  -0.024892  -0.023240  -0.021592  -0.019947  -0.018305  -0.016667  -0.015032

6.2 

-0.013402  -0.011775  -0.010152  -0.008533  -0.006919  -0.005309  -0.003703  -0.002103  -0.000507 0.001083

6.3 

0.002669 0.004249  0.005824  0.007393 0.008956 0.010514  0.012066 0.013612 0.015151 0.016684

6.4 

0.018211 0.019731  0.021244  0.022751 0.024250 0.025743  0.027228 0.028706 0.030177 0.031640

6.5 

0.033095 0.034543  0.035983  0.037414 0.038838 0.040253  0.041661 0.043059 0.044449 0.045831

6.6 

0.047203 0.048567  0.049922  0.051268 0.052604 0.053931  0.055249 0.056558 0.057857 0.059146

6.7 

0.060425 0.061695  0.062955  0.064204 0.065444 0.066673  0.067892 0.069101 0.070299 0.071487

6.8 

0.072664 0.073830  0.074986  0.076130 0.077264 0.078386  0.079498 0.080598 0.081688 0.082765

6.9 

0.083832 0.084887 0.085930 0.086962 0.087982 0.088991 0.089987 0.090972 0.091945 0.092906

7.0 

0.093855 0.094792  0.095717  0.096629 0.097530 0.098418  0.099293 0.100157 0.101008 0.101846

7.1 

0.102672 0.103485  0.104286  0.105074 0.105849 0.106611  0.107361 0.108098 0.108822 0.109533

7.2 

0.110232 0.110917  0.111589  0.112249 0.112895 0.113528  0.114149 0.114756 0.115350 0.115931

7.3 

0.116498 0.117053  0.117594  0.118122 0.118637 0.119138  0.119627 0.120102 0.120563 0.121012

7.4 

0.121447 0.121869  0.122277  0.122673 0.123055 0.123423  0.123779 0.124121 0.124449 0.124765

7.5 

0.125067 0.125355  0.125631  0.125893 0.126142 0.126378  0.126600 0.126809 0.127005 0.127188

7.6 

0.127358 0.127514  0.127658  0.127788 0.127905 0.128009  0.128100 0.128178 0.128243 0.128295

7.7 

0.128334 0.128360  0.128373  0.128373 0.128361 0.128335  0.128297 0.128247 0.128183 0.128107

7.8 

0.128018 0.127917  0.127803  0.127677 0.127539 0.127388  0.127224 0.127049 0.126861 0.126661

7.9 

0.126448 0.126224 0.125988 0.125739 0.125479 0.125207 0.124923 0.124627 0.124320 0.124000

8.0 

0.123670 0.123328  0.122974  0.122609 0.122232 0.121845  0.121446 0.121036 0.120615 0.120183

8.1 

0.119739 0.119286  0.118821  0.118345 0.117859 0.117363  0.116855 0.116338 0.115810 0.115272

8.2 

0.114723 0.114165  0.113596  0.113018 0.112429 0.111831  0.111223 0.110605 0.109978 0.109341

8.3 

0.108695 0.108040  0.107376  0.106702 0.106019 0.105327  0.104627 0.103918 0.103200 0.102473

8.4 

0.101738 0.100994  0.100243  0.099483 0.098714 0.097938  0.097154 0.096362 0.095562 0.094755

8.5 

0.093940 0.093117  0.092287  0.091450 0.090606 0.089755  0.088896 0.088031 0.087159 0.086280

8.6 

0.085395 0.084503  0.083605  0.082701 0.081790 0.080874  0.079951 0.079023 0.078089 0.077149

8.7 

0.076203 0.075253  0.074296  0.073335 0.072369 0.071397  0.070421 0.069439 0.068453 0.067463

8.8 

0.066468 0.065468  0.064465  0.063457 0.062445 0.061429  0.060410 0.059386 0.058359 0.057328

8.9 

0.056294 0.055257 0.054217 0.053173 0.052127 0.051077 0.050025 0.048970 0.047913 0.046853

9.0 

0.045791 0.044727  0.043660  0.042592 0.041521 0.040449  0.039375 0.038300 0.037223 0.036145

9.1 

0.035066 0.033985  0.032904  0.031821 0.030738 0.029654  0.028569 0.027484 0.026399 0.025313

9.2 

0.024227 0.023141  0.022055  0.020970 0.019884 0.018799  0.017714 0.016630 0.015547 0.014464

9.3 

0.013382 0.012301  0.011222  0.010143 0.009066 0.007990  0.006916 0.005843 0.004772 0.003703

9.4 

0.002636 0.001570 0.000507 

-0.000554  -0.001612  -0.002669  -0.003722  -0.004774  -0.005822  -0.006868

9.5 

-0.007911  -0.008950  -0.009987  -0.011021  -0.012051  -0.013078  -0.014101  -0.015121  -0.016138  -0.017150

9.6 

-0.018159  -0.019164  -0.020165  -0.021161  -0.022154  -0.023142  -0.024126  -0.025106  -0.026081  -0.027051

9.7 

-0.028017  -0.028977  -0.029933  -0.030884  -0.031830  -0.032771  -0.033707  -0.034637  -0.035562  -0.036482

9.8 

-0.037396  -0.038304  -0.039207  -0.040104  -0.040995  -0.041881  -0.042760  -0.043633  -0.044500  -0.045361

9.9 

-0.046216  -0.047064  -0.047906  -0.048741  -0.049570  -0.050392  -0.051208  -0.052017  -0.052819  -0.053614
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   The Kirchhoff Diffraction Theory  675


TABLE 1 (CONTINUED)

(sin  u
 )> u



u
  

0.00  0.01 0.02 0.03 0.04  0.05 0.06 0.07 0.08 0.09

10.0 

-0.054402  -0.055183  -0.055957  -0.056724  -0.057484  -0.058237  -0.058982  -0.059720  -0.060450  -0.061173

10.1 

-0.061888  -0.062596  -0.063296  -0.063988  -0.064673  -0.065350  -0.066019  -0.066680  -0.067333  -0.067978

10.2 

-0.068615  -0.069244  -0.069865  -0.070477  -0.071082  -0.071678  -0.072266  -0.072845  -0.073416  -0.073979

10.3 

-0.074533  -0.075078  -0.075615  -0.076143  -0.076663  -0.077174  -0.077677  -0.078170  -0.078655  -0.079131

10.4 

-0.079599  -0.080057  -0.080507  -0.080947  -0.081379  -0.081802  -0.082216  -0.082620  -0.083016  -0.083403

10.5 

-0.083781  -0.084149  -0.084509  -0.084859  -0.085200  -0.085532  -0.085855  -0.086169  -0.086473  -0.086768

10.6 

-0.087054  -0.087331  -0.087599  -0.087857  -0.088106  -0.088346  -0.088576  -0.088797  -0.089009  -0.089212

10.7 

-0.089405  -0.089589  -0.089764  -0.089929  -0.090085  -0.090232  -0.090370  -0.090498  -0.090617  -0.090727

10.8 

-0.090827  -0.090919  -0.091001  -0.091073  -0.091137  -0.091191  -0.091236  -0.091272  -0.091299  -0.091316

10.9 

-0.091324  -0.091324  -0.091314  -0.091295  -0.091267  -0.091229  -0.091183  -0.091128  -0.091064  -0.090990

11.0 

-0.090908  -0.090817  -0.090717  -0.090608  -0.090490  -0.090364  -0.090228  -0.090084  -0.089931  -0.089770

11.1 

-0.089599  -0.089420  -0.089233  -0.089037  -0.088832  -0.088619  -0.088397  -0.088167  -0.087929  -0.087682

11.2 

-0.087427  -0.087163  -0.086891  -0.086612  -0.086324  -0.086027  -0.085723  -0.085411  -0.085091  -0.084763

11.3 

-0.084426  -0.084083  -0.083731  -0.083371  -0.083004  -0.082630  -0.082247  -0.081857  -0.081460  -0.081055

11.4 

-0.080643  -0.080223  -0.079796  -0.079362  -0.078921  -0.078473  -0.078017  -0.077555  -0.077086  -0.076609

11.5 

-0.076126  -0.075636  -0.075140  -0.074637  -0.074127  -0.073611  -0.073088  -0.072559  -0.072023  -0.071481

11.6 

-0.070934  -0.070379  -0.069819  -0.069253  -0.068681  -0.068103  -0.067519  -0.066929  -0.066334  -0.065733

11.7 

-0.065127  -0.064515  -0.063898  -0.063275  -0.062647  -0.062014  -0.061376  -0.060733  -0.060084  -0.059431

11.8 

-0.058773  -0.058111  -0.057443  -0.056771  -0.056095  -0.055414  -0.054728  -0.054039  -0.053345  -0.052646

11.9 

-0.051944  -0.051238  -0.050528  -0.049814  -0.049096  -0.048375  -0.047650  -0.046921  -0.046189  -0.045453

12.0 

-0.044714  -0.043972  -0.043227  -0.042479  -0.041727  -0.040973  -0.040216  -0.039456  -0.038694  -0.037929

12.1 

-0.037161  -0.036391  -0.035618  -0.034844  -0.034067  -0.033288  -0.032506  -0.031723  -0.030938  -0.030152

12.2 

-0.029363  -0.028573  -0.027781  -0.026988  -0.026193  -0.025398  -0.024600  -0.023802  -0.023003  -0.022202

12.3 

-0.021401  -0.020599  -0.019796  -0.018992  -0.018188  -0.017384  -0.016578  -0.015773  -0.014967  -0.014161

12.4 

-0.013355  -0.012549  -0.011743  -0.010937  -0.010131  -0.009326  -0.008521  -0.007716  -0.006912  -0.006109

12.5 

-0.005306  -0.004504  -0.003702  -0.002902  -0.002103  -0.001304  -0.000507 0.000289 0.001083 0.001877

12.6 

0.002668 0.003459  0.004248  0.005035 0.005820 0.006603  0.007385 0.008164 0.008942 0.009717

12.7 

0.010491 0.011262  0.012030  0.012797 0.013560 0.014321  0.015080 0.015836 0.016589 0.017339

12.8 

0.018087 0.018831  0.019572  0.020311 0.021046 0.021778  0.022506 0.023231 0.023953 0.024671

12.9 

0.025386 0.026097 0.026804 0.027507 0.028207 0.028903 0.029594 0.030282 0.030966 0.031645

13.0 

0.032321 0.032992  0.033658  0.034321 0.034978 0.035632  0.036281 0.036925 0.037564 0.038199

13.1 

0.038829 0.039454  0.040075  0.040690 0.041300 0.041905  0.042506 0.043101 0.043690 0.044275

13.2 

0.044854 0.045428  0.045996  0.046559 0.047117 0.047669  0.048215 0.048756 0.049291 0.049820

13.3 

0.050344 0.050861  0.051373  0.051879 0.052379 0.052873  0.053361 0.053843 0.054319 0.054788

13.4 

0.055252 0.055709  0.056160  0.056605 0.057043 0.057476  0.057901 0.058321 0.058733 0.059140

13.5 

0.059540 0.059933  0.060320  0.060700 0.061073 0.061440  0.061800 0.062154 0.062500 0.062840

13.6 

0.063174 0.063500  0.063820  0.064132 0.064438 0.064737  0.065029 0.065314 0.065593 0.065864

13.7 

0.066128 0.066385  0.066636  0.066879 0.067115 0.067344  0.067566 0.067781 0.067989 0.068190

13.8 

0.068384 0.068570  0.068750  0.068922 0.069087 0.069245  0.069396 0.069540 0.069677 0.069806

13.9 

0.069929 0.070044 0.070152 0.070253 0.070346 0.070433 0.070512 0.070584 0.070649 0.070707

14.0 

0.070758 0.070801  0.070838  0.070867 0.070889 0.070904  0.070912 0.070913 0.070907 0.070893

14.1 

0.070873 0.070846  0.070811  0.070770 0.070721 0.070666  0.070603 0.070534 0.070457 0.070374

14.2 

0.070284 0.070186  0.070082  0.069971 0.069854 0.069729  0.069598 0.069460 0.069315 0.069163

14.3 

0.069005 0.068840  0.068668  0.068490 0.068305 0.068114  0.067916 0.067712 0.067501 0.067283

14.4 

0.067060 0.066829  0.066593  0.066350 0.066101 0.065845  0.065584 0.065316 0.065042 0.064762

14.5 

0.064476 0.064183  0.063885  0.063581 0.063271 0.062954  0.062633 0.062305 0.061971 0.061632

14.6 

0.061287 0.060936  0.060580  0.060218 0.059851 0.059478  0.059100 0.058717 0.058328 0.057933

14.7 

0.057534 0.057129  0.056719  0.056304 0.055884 0.055459  0.055029 0.054594 0.054154 0.053710

14.8 

0.053260 0.052806  0.052347  0.051884 0.051416 0.050944  0.050467 0.049985 0.049500 0.049010

14.9 

0.048516 0.048017 0.047515 0.047008 0.046497 0.045983 0.045464 0.044942 0.044416 0.043886
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676
     Appendix 2
   The Kirchhoff Diffraction Theory

TABLE 1 (CONTINUED)

(sin  u
 )> u



u
  

0.00  0.01 0.02 0.03 0.04  0.05 0.06 0.07 0.08 0.09

15.0 

0.043353 0.042815  0.042275  0.041730 0.041183 0.040632  0.040077 0.039520 0.038959 0.038395

15.1 

0.037828 0.037257  0.036684  0.036108 0.035529 0.034948  0.034363 0.033776 0.033187 0.032595

15.2 

0.032000 0.031403  6.030803  0.030202 0.029598 0.028992  0.028383 0.027773 0.027161 0.026547

15.3 

0.025931 0.025313  0.024693  0.024072 0.023450 0.022825  0.022199 0.021572 0.020944 0.020314

15.4 

0.019683 0.019051  0.018418  0.017783 0.017148 0.016512  0.015875 0.015237 0.014599 0.013960

15.5 

0.013320 0.012680  0.012040  0.011399 0.010758 0.010116  0.009475 0.008833 0.008191 0.007549

15.6 

0.006907 0.006266  0.005624  0.004983 0.004342 0.003702  0.003062 0.002422 0.001783 0.001145

15.7 0.000507 

-0.000130  -0.000766  -0.001401  -0.002035  -0.002668  -0.003300  -0.003931  -0.004561  -0.005190

15.8 

-0.005817  -0.006443  -0.007067  -0.007690  -0.008311  -0.008931  -0.009549  -0.010166  -0.010780  -0.011393

15.9 

-0.012004  -0.012613  -0.013219  -0.013824  -0.014427  -0.015027  -0.015625  -0.016221  -0.016814  -0.017405

16.0 

-0.017994  -0.018580  -0.019163  -0.019744  -0.020322  -0.020898  -0.021470  -0.022040  -0.022607  -0.023170

16.1 

-0.023731  -0.024289  -0.024843  -0.025395  -0.025943  -0.026488  -0.027030  -0.027568  -0.028103  -0.028634

16.2 

-0.029162  -0.029686  -0.030207  -0.030724  -0.031237  -0.031747  -0.032252  -0.032754  -0.033252  -0.033746

16.3 

-0.034236  -0.034722  -0.035204  -0.035682  -0.036156  -0.036626  -0.037091  -0.037552  -0.038009  -0.038461

16.4 

-0.038909  -0.039352  -0.039792  -0.040226  -0.040656  -0.041081  -0.041502  -0.041918  -0.042330  -0.042737

16.5 

-0.043139  -0.043536  -0.043928  -0.044315  -0.044698  -0.045076  -0.045448  -0.045816  -0.046179  -0.046536

16.6 

-0.046889  -0.047236  -0.047578  -0.047915  -0.048247  -0.048574  -0.048895  -0.049212  -0.049522  -0.049828

16.7 

-0.050128  -0.050423  -0.050713  -0.050997  -0.051275  -0.051548  -0.051816  -0.052078  -0.052335  -0.052586

16.8 

-0.052831  -0.053071  -0.053306  -0.053535  -0.053758  -0.053975  -0.054187  -0.054393  -0.054594  -0.054789

16.9 

-0.054978  -0.055161  -0.055339  -0.055511  -0.055677  -0.055837  -0.055992  -0.056141  -0.056284  -0.056421

17.0 

-0.056553  -0.056678  -0.056798  -0.056912  -0.057021  -0.057123  -0.057220  -0.057310  -0.057395  -0.057474

17.1 

-0.057548  -0.057615  -0.057677  -0.057732  -0.057782  -0.057826  -0.057865  -0.057897  -0.057924  -0.057944

17.2 

-0.057959  -0.057968  -0.057972  -0.057969  -0.057961  -0.057947  -0.057927  -0.057902  -0.057870  -0.057833

17.3 

-0.057790  -0.057742  -0.057688  -0.057628  -0.057562  -0.057491  -0.057414  -0.057331  -0.057243  -0.057149

17.4 

-0.057049  -0.056944  -0.056834  -0.056717  -0.056596  -0.056468  -0.056336  -0.056197  -0.056054  -0.055905

17.5 

-0.055750  -0.055590  -0.055425  -0.055254  -0.055078  -0.054897  -0.054710  -0.054518  -0.054321  -0.054119

17.6 

-0.053912  -0.053699  -0.053481  -0.053258  -0.053031  -0.052798  -0.052560  -0.052317  -0.052069  -0.051816

17.7 

-0.051558  -0.051296  -0.051028  -0.050756  -0.050479  -0.050198  -0.049911  -0.049620  -0.049324  -0.049024

17.8 

-0.048719  -0.048410  -0.048096  -0.047778  -0.047455  -0.047128  -0.046796  -0.046461  -0.046121  -0.045776

17.9 

-0.045428  -0.045075  -0.044718  -0.044358  -0.043993  -0.043624  -0.043251  -0.042875  -0.042494  -0.042110

18.0 

-0.041722  -0.041330  -0.040934  -0.040535  -0.040132  -0.039726  -0.039316  -0.038902  -0.038485  -0.038065

18.1 

-0.037642  -0.037215  -0.036785  -0.036351  -0.035915  -0.035475  -0.035033  -0.034587  -0.034139  -0.033687

18.2 

-0.033233  -0.032775  -0.032315  -0.031853  -0.031387  -0.030919  -0.030449  -0.029976  -0.029500  -0.029022

18.3 

-0.028541  -0.028059  -0.027574  -0.027086  -0.026597  -0.026105  -0.025612  -0.025116  -0.024619  -0.024119

18.4 

-0.023618  -0.023114  -0.022610  -0.022103  -0.021594  -0.021085  -0.020573  -0.020060  -0.019546  -0.019030

18.5 

-0.018512  -0.017994  -0.017474  -0.016953  -0.016431  -0.015908  -0.015384  -0.014859  -0.014333  -0.013806

18.6 

-0.013278  -0.012750  -0.012220  -0.011691  -0.011160  -0.010629  -0.010098  -0.009566  -0.009033  -0.008501

18.7 

-0.007968  -0.007435  -0.006901  -0.006368  -0.005834  -0.005301  -0.004767  -0.004234  -0.003701  -0.003168

18.8 

-0.002635  -0.002102  -0.001570  -0.001038  -0.000507 0.000024 0.000554 0.001083 0.001612 0.002140

18.9 

0.002668 0.003194 0.003720 0.004245 0.004769 0.005292 0.005813 0.006334 0.006853 0.007371

19.0 

0.007888 0.008404  0.008918  0.009431 0.009942 0.010452  0.010960 0.011466 0.011971 0.012474

19.1 

0.012976 0.013475  0.013973  0.014468 0.014962 0.015454  0.015944 0.016431 0.016917 0.017400

19.2 

0.017881 0.018360  0.018836  0.019310 0.019782 0.020251  0.020717 0.021181 0.021643 0.022102

19.3 

0.022558 0.023011  0.023462  0.023910 0.024355 0.024797  0.025236 0.025672 0.026105 0.026535

19.4 

0.026962 0.027386  0.027807  0.028224 0.028638 0.029049  0.029457 0.029861 0.030262 0.030659

19.5 

0.031053 0.031444  0.031831  0.032214 0.032594 0.032970  0.033342 0.033711 0.034076 0.034437

19.6 

0.034794 0.035148  0.035497  0.035843 0.036185 0.036522  0.036856 0.037186 0.037512 0.037833

19.7 

0.038151 0.038464  0.038774  0.039079 0.039379 0.039676  0.039968 0.040256 0.040540 0.040820

19.8 

0.041095 0.041365  0.041632  0.041893 0.042151 0.042404  0.042652 0.042896 0.043135 0.043370

19.9 

0.043600 0.043826  0.044047  0.044263 0.044475 0.044682  0.044885 0.045082 0.045275 0.045464

Based on L. Levi,  Applied Optics
 , John Wiley & Sons, New York, 1968.
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Solutions to 



Selected Problems


Chapter 2


2.37
   

c (z, 0) 
 =  A
  sin ( kz 
 + e);

c ( 
 -l> 12, 0) 
 =  A
  sin (-p>6 + e) = 0.866


2.6
   (0.003)  (2.54 * 10-2)>580 * 10-9 = number of waves  = 131;  

c (
 l> 6, 0) 
 =  A
  sin (p>3 + e) = 1>2


c 
 = nl, l =  c
 >n = 3 * 108>1010, l = 3 cm. Waves extend 3.9 m.

c (
 l> 4, 0) 
 =  A
  sin (p>2 + e) = 0


2.11
    v 
 = nl = 1498 m>s = (440 Hz)l; l = 3.40 m.


A
  sin (p>2 + e) =  A
 (sin p>2 cos e + cos p>2 sin e)


2.21
   c =  A
  sin 2p (k x 
 - n t
 ), c1 = 4 sin 2p (0.2 x 
 - 3 t
 )

=  A
  cos e = 0, e = p>2

 (a) 

n = 3  

(b)  l = 1>0.2 (c) 

t = 1>3

 (d) 


A 
 = 4 (e) 


v 
 = 15  

(f)  positive  x



A
  sin (p>3 + p>2) =  A
  sin (5p>6) = 1>2


 


c =  A
  sin ( kx 
 + v t
 ),  

c2 = (1>2.5) sin (7 x 
 + 3.5 t
 )

therefore  A 
 = 1, hence c (z, 0) 
 = sin ( kz 
 + p>2).

 (a) 

n = 3.5>2p (b) 

l = 2p>7 (c) 

t = 2p>3.5


2.38
  Both (a) and (b) are waves, since they are twice differentiable 

 (d) 


A 
 = 1>2.5 (e) 


v 
 = 12  

(f)  negative  x


functions of ( z 
 -  vt
 ) and ( x 
 +  vt
 ), respectively. Thus for (a) c = 


2.27
    vy 
 = -v A
  cos ( kx 
 - v t 
 + e),  ay 
 = -v2 y
 . Simple harmonic mo-a 2( z 
 -  bt
 > a
 )2  
 and the velocity is  b
 > a
  in the positive  z
 -direction. For (b) tion, since  ay 
 ∝  y
 .

c =  a
 2( x 
 +  bt
 > a 
 +  c
 > a
 )2  and the velocity is  b
 > a
  in the negative 2.28
  


x
 -direction.

t = 2.2 * 10-15 s; therefore n = 1>t = 4.5 * 1014 Hz;  v 
 = nl, 

3 * 108 m>s = (4.5 * 1014 Hz)l; l = 6.6 * 10-7 m and  k 
 = 2p>l =


2.40
   c (x, t) 
 = 5.0 exp [- a
 ( x 
 + 1 b
 > at
 )2], the propagation direction 9.5 * 106 m-1.  c (x, t) 
 = (103 V>m)   cos [9.5 * 106 m-1 * ( x 
 + 3 * 

is negative  x
 ;  v 
 = 1 b
 > a 
 = 0.6 m>s. c (x, 0) 
 = 5.0 exp (-25 x
 2); 108 m>s  t
 )]. It’s cosine because cos 0 = 1.


2.29
    y(x, t) 
 =  C
 >[2 + ( x 
 +  vt
 )2].


y



t
  = 2


t
  = 0


C
 2

c


v
  = 1ms


x



t
  = 0

−2 −1

0

1

2

3


2.31
   No, not twice differentiable (in a nontrivial way) and not a solu-

tion of the differential wave equation.


d
 c

0c  dx


0c  dy



d
 c

0c


x



2.34
  

=





+

   and let  y 
 =  t
 , whereupon 

=

 (± v
 ) + 

−0.6 −0.4 −0.2

0.2

0.4

0.6


dt


0 x dt


0 y dt



dt


0 x


0

0c = 0 and the desired result follows immediately.


2.42  
 30° corresponds to  1

0 t


12l or (1>12)3 * 108>6 * 1014 = 42 nm.


z



t



d
 w

0w  dx


0w


dx



2.43
  

c =  A
  sin 2p a ± b


2.35
  

=





+

= 0 =  k
  

-  kv
 , and this is zero provided  

l

t


dt


0 x dt


0 t



dt



dx



z



t


= ± v
 , as it should be. For the particular wave of Problem 2.26,  

c = 60 sin 2p a

-

b


dt


400 * 10-9

1.33 * 10-15


d
 w

0w

0w

l = 400 nm

=

 (± v
 ) +

= p3 * 106(± v
 ) + p9 * 1014 = 0 and the 


dt


0 y


0 t



v 
 = 400 * 10-9>1.33 * 10-15 = 3 * 108 m>s

speed is -3 * 108 m>s.





n = (1>1.33) * 10+15 Hz,  t = 1.33 * 10-15 s


677
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678
   Solutions to Selected Problems


2.48
  

c =  A
  exp  i
 ( kxx 
 +  kyy 
 +  kzz
 )

1  t 
 +  T



3.15
   8cos2 (k
 $ ~ r
 $ - v t
 )9 =  

cos2 (k
 $ ~ r



 



k



T 
 3

$ - v t
 ′)  dt
 ′.


x 
 =  k
 a   



ky 
 =  k
 b   



kz 
 =  k
 g


t



k
 $ = [( k
 a)2 + ( k
 b)2 + ( k
 g)2]1>2 =  k
 [a2 + b2 + g2]12

Let k
 $ ~ r
 $ - n t
 ′ =  x
 ; then  


1


2.52
   l =  h
 > mv 
 = 6.6 * 10-34>6(1) = 1.1 * 10-34 m

8cos2 (k
 $ ~ r
 $ - v t
 )9 =





-v T 
 3cos2  x
   dx



2.53
   k
 $ 
 can be constructed by forming a unit vector in the proper direc-

1

1 + cos 2 x


tion and multiplying it by  k
 . The unit vector is 

=





  dx


-v T 
 3 

2

[(4 - 0)iˆ 
 + (2 - 0)jˆ 
 + (1 - 0)kˆ
 ]> 242 + 22 + 12

1


x


sin 2 x 
 k
 $~ r
 $ - v( t 
 +  T
 )





= (4iˆ 
 + 2jˆ 
 + kˆ
 )> 221

= - 

  c +

d

   v T 
 2

4

                                                                                         k
 $~ r
 $ - v t
 and k
 $ =  k
 (4iˆ 
 + 2jˆ 
 + kˆ
 )> 221.


3.25  E
 $0 = (- E
 0> 22)iˆ 
 + ( E
 0> 22)jˆ
 ; k
 $ = (2p>l)(iˆ
 > 22 + jˆ
 22), hence r



E


$ =  x
 iˆ 
 +  y
 jˆ 
 +  z
 kˆ


$ = (1>22)(-10iˆ 
 + 10jˆ
 ) cos [(22p>l)( x 
 +  y
 ) - v t
 ] and 


I


hence c (x, y, z, t)


= 1

2

2  c
 P0 E
 0 = 0.13 W>m2.


=  A
  sin [(4 k
 > 221) x 
 + (2 k
 > 221) y 
 +  

( k
 > 221)  z 
 - v t
 ].


3.26
  


2.55
  

c (
   
r

 $ 1, t) 
 = c [
   
r

 $ 2 
 -  (
   
r

 $ 2 
 -  
r

 $ 1),
   t] 
 = c (
   
k

 $ ~  
r

 $ 1,
   t)
 (a)   l 
 =  c
 ∆ t 
 = (3.00 * 108 m>s)(2.00 * 10-9 s) = 0.600 m.





(b)   The volume of one pulse is (0.600 m)(p R
 2)

= c [
 
k

 $ ~  
r



= 2.945 * 10-6 m3; 

$ 2 
 -  
k

 $ ~  (
   
r

 $ 2 
 -  
r

 $ 1), t]


therefore (6.0 J)>(2.945 * 10-6 m3) = 2.0 * 106 J>m3.





= c (
 
k

 $ ~  
r

 $ 2, t) 
 = c (
   
r

 $ 2, t)


since k


(power)( t
 )

$

(10-3 W)( t
 )

~ (r


10-3 W

$2 - r
 $1) = 0.


3.28
    u 
 =

=

=

(volume)

(p r
 2)( ct
 )

p(10-3)2(3 * 108)

Chapter 3

10-5


 



u 
 =

 J>m3 = 1.06 * 10-6 J>m3

3p


3.1
  


Ey 
 = 2 cos [2p * 1014( t 
 -  x
 > c
 ) + p>2]


3.30  
 h 
 = 6.63 * 10-34,  E 
 =  h
 n






Ey 
 =  A
  cos [2pn( t 
 -  x
 > v
 ) + p>2]     from Eq. (2.26)


I


19.88 * 10-2

=


h
 n

(a)  n

(6.63

= 1014 Hz,  v 
 =  c
 ,  
 and l =  c
 >n = 3 * 108>1014 = 3 * 10-6 m,  


* 10-34)(100 * 106)

moves in positive  x
 -direction,   A 
 = 2 V>m, e = p>2  
 linearly po-

= 3 * 1024 photons>m2 s

larized in  y
 -direction.

All photons in volume  V
  cross the unit area in one second.

2

(b)   Bx 
 = 0,  By 
 = 0,  Bz 
 =  cos [2p * 1014( t 
 -  x
 > c
 ) + p>2].


 



V



c


= ( ct
 )(1 m2) = 3 * 108 m3





3


3.2  
 E


* 1024 =  V
  (density)


z 
 = 0,  Ey 
 =  Ex 
 =  E
 0 sin ( kz 
 - v t
 )  
 or cosine;  Bz 
 = 0,  By 
 =

- Bx 
 =  Ey
 > c
 , or if you like,

 density 

= 1016 photons>m3


E
 0


E
 0


3.32  
 Pe 
 =  iV 
 = (0.25)(3.0) = 0.75 W. This is the electrical power dis-


E


$ =

 (iˆ 
 + jˆ
 ) sin ( kz 
 - v t
 ), B
 $ =

 (jˆ 
 - iˆ
 ) sin ( kz 
 - v t
 )

sipated. The power available as light is  P



c



l


22

22

= (0.01) Pe 
 = 75 * 10-4 W.

(a)  Photon flux


3.6  
 The field is linearly polarized in the  y
 -direction and varies sinu-

soidally from zero at  z 
 = 0  
 to zero at  z 
 =  z
 0.  
 Using the wave equation





=  Pl
 > h
 n = 75 * 10-4l> hc


02 Ey


02 Ey


02 Ey


1 02 Ey






= 75 * 10-4 (550 * 10-9)>(6.63 * 10-34) 3 * 108

+

+

-  

= 0

0 x
 2

0 y
 2

0 z
 2

c2 0 t
 2





= 2.08 * 1016 photons>s 

p2

v2

p z


(b)  There are 2.08 * 1016 in volume (3 * 108)(1 s)(10-3 m2);

c- k
 2 -

+

 cos ( kx 
 - v t
 ) = 0


z
 2


z


0


c
 2 d   E
 0 sin  0

2.08 * 1016

6  

= photons>m3 = 0.69 * 1011

and since this is true for all  x
 ,  z
 , and  t
 , each term must equal zero

3 * 105

v


c
 p 2

(c)   I 
 = 75 * 10-14 W>10 * 10-4 m2 = 7.5 W>m2

and so  k 
 =   1 - a

b .


c 
 B

v z
 0


3.34  
 Imagine two concentric cylinders of radius  r
 1 and  r
 2 surrounding 

the wave. The energy flowing per second through the first cylinder 


c


must pass through the second cylinder; that is, 8 S
 192p r
 1 = 8 S
 292p r
 2, v


c
 p 2

and so 8 S
 92p r 
 = constant and 8 S
 9 varies inversely with  r
 . Therefore, 

Moreover,  v 
 =

=

.


k


1 - a

b

since 

v z


8 S
 9 ∝  E
 20,  E
 0 varies as 11> r
 .

B

0
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dp


1  dW



n(
 v )



3.36
  

h

i =  h

i


dt



c



dt


1


dp


1


dW



I



A 
 = area.  

8𝒫9 =  h

i =

 h

i =  


A



dt



Ac



dt



c



3.39
  

ℰ = 300 W(100 s) = 3 * 104 J

v

R O Y G B V


p 
 = ℰ> c 
 = 3 * 104>3 * 108 = 10-4 kg · 
 m>s


3.40


(a)  8𝒫9 = 28 S
 9> c 
 = 2(1.4 * 103 W>m2)>(3 * 108 m>s) = 9 *  

10-6 N>m2.


3.61  
 With  v in the visible, (v20 - v2) is smaller for lead glass and 

(b)   S
 , and therefore 𝒫, drops off with the inverse square of the dis-

larger for fused silica. Hence  n(
 v )
  is larger for the former and smaller 

tance, and hence 8 S
 9 = [(0.7 * 109 m)-2>(1.5 * 1011 m)-2] *  

for the latter.

(1.4 * 103 W>m2) = 6.4 * 107 W>m2, and 8𝒫9 = 0.21 N>m2.


3.63  
 C
 1 is the value that  n
  approaches as l gets larger.


3.43
  

8 S
 9 = 1400 W>m2


3.64  
 The horizontal values of  n(
 v )
  approached in each region between 

absorption bands increase as v decreases.

8𝒫9 = 2(1400 W>m2>3 * 108 m>s) = 9.3 * 10-6 N>m2

8 F
 9 =  A
 8𝒫9 = 2000 m2(9.3 * 10-6 N>m2) = 1.9 * 10-2 N


3.44
  

Chapter 4

8 S
 9 = (200 * 103  W
 )(500 * 2 * 10-6 s)> A
 (1s)

8 F
 9 =  A
 8𝒫9 =  A
 8 S
 9> c 
 = 6.7 * 10-7 N


VE



VE



VK



4.1  
 E


0 i


0 i


0 s 
 ∝

=  K
  

; thus 

 must be unitless, and so  K
  has 

10 W


r



r



r



3.45
  

8 F
 9 =  A
 8𝒫9 =  A
 8 S
 9> c 
 =

= 3.3 * 10-8 N

units of ( length
 )-2. The only quantity unaccounted for is l, and so we

3 * 108


I


conclude that  K



 



a


=


s


l-2, and 

∝  K
 2 ∝ l-4.

= 3.3 * 10-8>100 kg = 3.3 * 10-10 m>s2


Ii



 



v 
 =  at 
 = 13 * 10-9( t
 ) = 10 m>s


4.4  
 x


2

0( - v2 + v0 +  i
 gv) = ( qeE
 0> me
 ) ei
 a = ( qeE
 0> me
 )  
 (cos a +  i
  sin a); squaring the magnitude of both sides yields  x
 2

2


 



t


0[(v0

= 3 * 1010 s   
 1 year = 3.2 * 107 s

- v2)2 + g2v2] = 

( qeE
 0> me
 )2(cos2 a + sin2 a)— x
 0 follows immediately. As for a, divide 


3.46  B


$ surrounds v
 $ in circles, and E
 $ is radial; hence E
 $ : B
 $ is tangent 

the imaginary parts of both sides of the first equation above, namely, 

to the sphere, and no energy radiates outward from it.


x


2

0gv = ( qeE
 0> me
 ) sin a, by the real parts,  x
 0(v0 - v2) = ( qeE
 0> me
 )  *  

cos a, to get a


3.51
    n


= tan-1[gv>(v20 - v2)]. a ranges continuously from 0 

=  c
 > v 
 = (2.998 * 108 m>s)>(1.245 * 108 m>s) = 2.41 .


to p>2 to p.


3.56  
 Thermal agitation of the molecular dipoles causes a marked re-


4.5  
 The phase angle is retarded by an amount ( n
 ∆ y
  2p>l) - ∆ y
  2p>l duction in  Ke
  but has little effect on  n
 . At optical frequencies  n
  is pre-or ( n 
 - 1)∆ y
  v> c
 . Thus 

dominantly due to electronic polarization, rotations of the molecular 


E


dipoles having ceased to be effective at much lower frequencies.


p 
 =  E
 0 exp  i
 v[ t 
 - ( n 
 - 1)∆ y
 > c 
 -  y
 > c
 ]


3.57  
 From Eq. (3.70), for a single resonant frequency we get

or  



Ep 
 =  E
 0 exp [- i
 v( n 
 - 1)∆ y
 > c
 ] exp  i
 v( t 
 -  y
 > c
 ) 2

if  n


12

≈ 1 or ∆ y
  6 6 1. Since  ex 
 ≈ 1 +  x
  for small  x
 ,






Nq


1


n 
 = c1 +


e 
  a

b

2

d

 exp 

[

P0  me 
 v

- i
 v( n 
 - 1)∆ y
 > c
 ] ≈ 1 -  i
 v( n 
 - 1)∆ y
 > c
 0 - v2

and since exp (- i
 p>2) = - i
 ,

since for low-density materials  n 
 ≈ 1, the second term is 6 6 1, and 

v( n


we need only retain the first two terms of the binomial expansion of  n
 . 

- 1)∆ y



Ep 
 =  Eu 
 +

  E


Thus  11 +  x 
 ≈ 1 +  x
 >2 and 


c



ue
 - i
 p2


4.11  
  


ni
  sin u i 
 =  nt
  sin u t


1  Nq
 2

1

sin 30


e


° = 1.52 sin u t



n 
 = 1 +  

 a

b

2 P

2

0  me 
 v

u

0 - v2


t 
 = sin-1(1>3.04)

u t 
 = 19° 13′


3.59  
 The normal order of the spectrum for a glass prism is R, O, Y, G, 


n



c
 > v



v


nl

l

B, V, with red (R) deviated the least and violet (V) deviated the most. 


4.17  
 n



t



t



i



i



i



ti 
 =

=

=

=

=  .


For a fuchsin prism, there is an absorption band in the green, and so 


ni



c
 > vi



vt


nl t


l t


the indices for yellow and blue on either side ( nY
  and  nB
 ) of it are ex-

Therefore  
 l t 
 = l i
 3>4 = 9 cm

tremes, as in Fig. 3.26; that is,  nY
  is the maximum,  nB
  the minimum, 

sin u

and  n



i 
 =  nti
  sin u t



Y 
 7  nO 
 7  nR 
 7  nV 
 7  nB
 . Thus the spectrum in order of increasing deviation is B, V, black band, R, O, Y.

sin-1[3(0.707)]

4

= u t 
 = 32°
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4.21 



4.34
  Since u i 
 = u r
 , kˆ
 ix 
 = kˆ
 rx
  and kˆ
 iy 
 = -kˆ
 ry
 , and since (kˆ
 t 
 ~ uˆ
 n
 )uˆ
 n
 = 


kˆ
 iy
 , kˆ
 i 
 - kˆ
 r 
 = 2(kˆ
 i 
 ~ uˆ
 n
 )uˆ
 n
 .


k



k



i



r



y



x



u
 n



k
 t



4.35
  Since  SB
 ′ 7  SB
  and  B
 ′ P 
 7  BP
 , the shortest path corresponds to B
 ′ coincident with  B
  in the plane-of-incidence.

41.8°


S


u


P



t



B



u



B



n


Interface

0

90ů i



4.30
   The number of waves per unit length along  AC
  on the interface 

u

equals  ( BC
 >

u


i


l


i



i
 )>( BC
  sin u i
 ) = ( AD
 >l t
 )( AD
 >sin u t
 ). Snell’s Law fol-n 1


A


lows on multiplying both sides by  c
 >n.

u i



4.32
  Let t be the time for the wave to move along a ray from  b
 1 to  b
 2, from 


a



d



n


1 to  a
 2, and from  a
 1 to  a
 3. Thus  a
 1 a
 2 =  b
 1 b
 2 =  vi
 t and  a
 1 a
 3 =  vi
 t.

2

sin u

u


i 
 =  b
 1 b
 2> a
 1 b
 2 =  vi
 > a
 1 b
 2

u t



t


u i
  − u t


sin 


n


u

1


t 
 =  a
 1 a
 3> a
 1 b
 2 =  vt
 > a
 1 b
 2


C


sin 

u


a


u


t



r 
 =  a
 1 a
 2> a
 1 b
 2 =  vi
 > a
 1 b
 2


a



B


sin u


v



n







i 
 =  i 
 =  t


sin 

  =  nti
  and u i 
 = u r


u t



vt



ni



4.38  



n
 1 sin u i 
 =  n
 2 sin u t 


u t 
 = u′ i



4.33
  


ni
  sin u i 
 =  nt
  sin u t



 



n
 2 sin u i
 ′ =  n
 1 sin u t
 ′


ni
  (kˆ
 i 
 : uˆ
 n
 ) =  nt
  (kˆ
 t 
 : uˆ
 n
 )


 



n


where kˆ


1 sin u i 
 =  n
 1 sin u t
 ′   
 and   
 u i 
 = u′ t



i
 , k



ˆ
 t
  are unit propagation vectors. Thus





cos 


n


u t 
 =  d
 > AB



t
 (k



ˆ
 t 
 : uˆ
 n
 ) -  ni
 (kˆ
 i 
 : uˆ
 n
 ) = 0





( n






sin (u


t
 k



ˆ
 t 
 -  ni
 kˆ
 i
 ) : uˆ
 n 
 = 0


i 
 - u t
 ) =  a
 > AB



a


Let  nt
 kˆ
 t 
 -  ni
 kˆ
 i 
 = 𝚪$ = Γuˆ
 n
 .





sin (u i 
 - u t
 ) =  cos u


d



t


Γ is often referred to as the  astigmatic constant
 ; 𝚪$ = the difference 


d
  sin (u

between the projections of  n



i 
 - u t
 )


t
 k



ˆ



kˆ






=  a







t
  and  ni
    i
  on u



ˆ 
 n
 ; in other words, take dot 

product 𝚪$ ~ uˆ


cos u t



n
 :

Γ =  nt
  cos u t 
 -  ni
  cos u i



4.40
   Rather than propagating from B


$ point- S
  to point- P
  in a straight 

line, the ray traverses a path that crosses the plate at a sharper angle. 

𝚪

Although in so doing the path lengths in air are slightly increased, the 


ni
 k
 i


decrease in time spent within the plate more than compensates. This 

u


n


being the case, we might expect the displacement  a
  to increase with  n



i
 −u t



t
 k
 t


21.  

As  n



k


21 gets larger for a given u i
 , u t
  decreases, (u i 
 - u t
 ) increases, and 


t


u t


from the results of Problem 4.34,  a
  clearly increases.


u


u


n



4.42
   From Eq. (4.40)


i


1.52 cos 30° - cos 19°13′


k
 i



r
 i = cos 19°13′ + 1.52 cos 30°
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where from Problem 4.11 u t 
 = 19°13′. Similarly,


4.71


1.0

2 cos 30


t
 i = cos 19°13′ + 1.52 cos 30°

1.32 - 0.944


r
 i =

= 0.165

0.944 + 1.32

0.5

1.732


t
 i =

= 0.766

Reflectance

0.944 + 1.32


R
 ⊥


R
 ∣∣


4.43  
 Starting with Eq. (4.34), divide top and bottom by  ni
  and replace 


nti
  with sin u i
 >sin u t
  to get

0.04

0.0

sin u

33.7° 41.8°

90°


r



t
  cos u i 
 - sin u i
  cos u t


# =

u

sin u


i



t
  cos u i 
 + sin u i
  cos u t


which is equivalent to Eq. (4.42). Equation (4.44) follows in exactly 


nt
  cos u t


the same way. To find  r 
  start the same way with Eq. (4.40) and get


4.72  
 T
 # = a

b  t
 2#.  
 From Eq. (4.44) and Snell’s Law,

i


ni
  cos u i 
  

sin u


r



i
  cos u i 
 - cos u t
  sin u t


sin u

4 sin2 u

sin 2u

i =


i
  cos u t



t
  cos2 u i



i
  sin 2u t


cos u


T



t
  sin u t 
 + sin u i
  cos u i


# = a

b a

b =

sin u t
  cos u i


sin2 (u i 
 + u t
 )

sin2 (u i 
 + u t
 )

There are several routes that can be taken now: one is to rewrite  r 
  as

i

Similarly for  T 
 .

i 

(sin u


r



i
  cos u t 
 - sin u t
  cos u i
 )(cos u i
  cos u t 
 - sin u i
  sin u t
 ) 4.74  
 If Φ i
  is the incident radiant flux or power and  T
  is the transmit-i = (sin u i
  cos u t 
 + sin u t
  cos u i
 )(cos u i
  cos u t 
 + sin u i
  sin u t
 ) tance across the first air–glass boundary, the transmitted flux is then 

sin (


T
 Φ

u

tan (u


i
  . From Eq. (4.68), at normal incidence the transmittance from 

and so  r



i 
 - u t
 ) cos (u i 
 + u t
 )


i 
 - u t
 ) .

glass to air is also  T
 . Thus a flux  T
 Φ

i =

=

sin (


iT 
 emerges from the first slide, 

u i 
 + u t
 ) cos (u i 
 - u t
 )

tan (u i 
 + u t
 )

and Φ iT
 2 N
  from the last one. Since  T 
 = 1 -  R
 ,  Tt 
 = (1 -  R
 )2 N 
 from We can find  t 
 , which has the same denominator, in a similar way.

Eq. (4.67).

i


R 
 = (0.5>2.5)2 = 4%,   T 
 = 96%


4.63  
 [ E
 0 r
 ]# + [ E
 0 i
 ]# = [ E
 0 t
 ]#; tangential field in incident medium equals that in transmitting medium, 


Tt 
 = (0.96)6 ≈ 78.3%

[ E
 0 t
 > E
 0 i
 ]# - [ E
 0 r
 > E
 0 i
 ]# = 1,   t
 # -  r
 # = 1


I(y)



4.75
   T 
 =

=  e
 -a y
 ,   T
 1 =  e
 -a,   T 
 = ( T
 1) y


Alternatively, from Eqs. (4.42) and (4.44),


I
 0

+sin (u


T



i 
 - u t
 ) + 2 sin u t
  cos u i 
 ≟


t 
 = (1 -  R
 )2 N
 ( T
 1) d


1

sin (u i 
 + u t
 )


n


2


4.76  
 At 


t 
 -  ni


u i 
 = 0,  R 
 =  R


. [4.67]

i =  R
 # = a

b

sin u


n



i
  cos u t 
 - cos u i
  sin u t 
 + 2 sin u t
  cos u i



t 
 +  ni


= 1

sin u i
  cos u t 
 + cos u i
  sin u t


As  nti 
 S 1,  nt 
 S  ni 
 and clearly  R 
 S 0.

At u


4.66 



i 
 = 0,

u i 
 + u t 
 = 90°  
 when  
 u i 
 = u p


4 ntni



ni
  sin u p 
 =  nt
  sin u t 
 =  nt
  cos u p



T 
 =  T
 i =  T
 #( nt 
 +  ni
 )2





tan u p 
 =  nt
 > ni 
 = 1.52,  u p 
 = 56°40′ [8.29]

and since  n


2


t 
 S  ni 
 ,   
 lim   T 
 = 4 ni 
 >(2 ni
 )2 = 1.


4.68 


tan 


n


u


ti 
 S 1


p 
 =  nt
 > ni 
 =  n
 2> n
 1

From Problem 4.91, and the fact that as  nt 
 S  ni
  Snell’s Law says that 

tan u′ p 
 =  n
 1> n
 2,  tan u p 
 = 1>tan u′ p


u t 
 S u i
 , we have





sin2 2

sin 

u

u


i



p


cos u′ p


lim  T


= 1 ,   
 lim  T


=





i =

# = 1

6 sin u


nti 
 S 1

sin2 2


nti 
 S 1

cos 


p
  sin u′ p 
 - cos u p
  cos u′ p 
 = 0

u

u


i



p


sin u′ p


From Eq. (4.43) and the fact that  R


2 and 


 R


i =  r 
 i

u t 
 S u i
 ,  lim

= 0.

cos (

‘

u


n



p 
 + u′ p
 ) = 0,  u p 
 + u′ p 
 = 90°


ti 
 S 1

Similarly, from Eq. (4.42)  lim   
 R


n


# = 0.


4.69
   From Eq. (4.92)


ti 
 S 1


4.78  
 For u i 
 7 u c
 , Eq. (4.70) can be written

r

2

tan 

#

g

cos 

)12


r 
 =  r
 #[ E
 0 i
 ]#> r 
 [ E


  tan 

u

i

0 i
 ]i =

g


i 
 -  i
 (sin2 u i 
 -  nti


r


i



r


i

# = cos u

2


i 
 +  i
 (sin2 u i 
 -  nti
 )12

and from Eqs. (4.42) and (4.43)

cos2 u

2


r 
 *


i 
 + sin2 u i 
 -  nti


# r
 # =

= 1

cos (

2

u

cos2 u i 
 + sin2 u i 
 -  nti


tan 


i 
 - u t
 )

g r 
 = - 

 tan g

cos (


i


u

*


i 
 + u t
 )

Similarly  r r 
 = 1.

‘ #

Z02_HECH7226_05_SE_Sol_677-699.indd   681

14/11/15   4:20 PM


682
   Solutions to Selected Problems


4.86  
 From Eq. (4.73) we see that the exponential will be in the form 

Similarly,  t
 # t
 ′# =  T
 #


k
 ( x 
 -  vt
 ), provided that we factor out  kt
  sin u i
 > nti
 , leaving the second tan (u

2

term as 

, which must be 

-tan (u

2

v ntit
 > kt
  sin u i



vtt
 . Hence v nt
 >(2p>l t
 ) ni
  * 






r
 2

1 - u2)

2 - u1)

i = c

d = c

d

sin u

.

tan (u


i 
 =  vt
  and so  vt 
 =  c
 > ni
  sin u i 
 =  vi
 >sin u i
 1 + u2)

tan (u1 + u2)


4.87  
 From the defining equation b =  kt
 [(sin2 u i
 > n
 2 ti
 ) - 1]1>2 =  

3.702

tan (u

2

* 106 m-1, and since  y
 b = 1,  y 
 = 2.7 * 10-7 m.


r
 ′2

2 - u1)

i = c

d =  r
 2

tan (

i =  R
 i

u


4.91  
 The beam scatters off the wet paper and is mostly transmit-

1 + u2)

ted until the critical angle is attained, at which point the light is re-

flected back toward the source. tan u c 
 = ( R
 >2)> d
 , and so  nti 
 = 1> ni
  =  



4.101  
 From Eq. (4.45)

sin[tan-1 ( R
 >2 d
 )].

2 sin u p
  cos u′ p



4.92  
 1.000 29 sin 88.7° =  n
  sin 90°


t
 ′ (



(


i u′ p)t
 i u p) 
 = c

d

sin (u p






(1.000 29)(0.999 74)

+ u′ p
 ) cos (u′ p 
 - u p
 )

=  n
 ;   n 
 = 1.000 03


4.93  
 Can be used as a mixer to get various proportions of the two 

2 sin u′ p
  cos u p


incident waves in the emitted beams. This could be done by adjusting 

* c

d

sin (u p 
 + u′ p
 ) cos (u p 
 - u′ p
 )

gaps. [For some further remarks, see H. A. Daw and J. R. Izatt,  J
 .  Opt. 



Soc. Am
 . 55,
  201 (1965).]

sin 2u′ p
  sin 2u p


=

 , since u

cos2 (


p 
 + u′ p 
 = 90ů p 
 - u′ p
 )

sin2 2u p


=

 , since sin 2u′

cos2


p 
 = sin 2u p


   (u p 
 - u′ p
 )

sin2 2u p


=

= 1

cos2 (2u p 
 - 90°)

Chapter 5


4.94  
 Light traverses the base of the prism as an evanescent wave, 

which propagates along the adjustable coupling gap. Energy moves 


5.1  
 All   OPL
 s from  S
  to  P
  must be equal; therefore / on
 1 + / in
 2 =  

into the dielectric film when the evanescent wave meets certain re-


son
 1 +  sin
 2 = constant; drop a perpendicular from  A
  to the optical axis, 

quirements. The film acts like a waveguide, which will support char-

the point where it touches is  B
 .  BP 
 =  so 
 +  si 
 -  x
  and the rest follows acteristic vibration configurations or modes. Each mode has associ-from the Pythagorean Theorem.

ated with it a given speed and polarization. The evanescent wave will 


5.2  
 Using  / on
 1 + / in
 2 = constant,  / o 
 + / i
 3>2 = constant,  5 +





couple into the film when it matches a mode configuration.

(6) 3>2 = 14. Therefore 2/ o 
 + 3/ i 
 = 28 when / o 
 = 6,  / i 
 = 5.3, 


4.95  
 From Fig. 4.69 the obvious choice is silver. Note that in the vi-

/ o 
 = 7, / i 
 = 4.66. Note that the arcs centered on  S
  and  P
  have to intercinity of 300 nm,  nI 
 ≈  nR 
 ≈ 0.6,   
 in which case Eq. (4.83) yields  

cept for physically meaningful values of / o
  and / i
 . 


R 
 ≈ 0.18.  
 Just above 300 nm  nI 
 increases rapidly, while  nR 
 decreases quite strongly, with the result that  R 
 ≈ 1  
 across the visible and then some.


4.99



E
 0  tr
 3 t



E
 0 tr
 4

7

6


E
 0 tr
 3


S



P



E
 0 tr
 2 t


4.66

5.33

2 sin u


 



t


2 cos u1

i = sin (u1 + u2) cos (u1 - u2)

2 sin u


 



t 
 ′

1 cos u2

i

= sin (u1 + u2) cos (u2 - u1)


5.4
   From Fig. 5.4 a plane wave impinging on a concave elliptical 

sin 2u

surface becomes spherical. If the second spherical surface has that 


 



t t
 ′

1 sin 2u2

i i = sin2 (

same curvature, the wave will have all rays normal to it and emerge 

u1 + u2) cos2 (u1 - u2)

unaltered.





=  T
 i from Eq. (4.98)
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5.17
   1> so 
 + 1> si 
 = 1> ƒ


1


s



C



R


1 +

1

=


i



so si



f


2 f



f



s


0


o



f


2 f


3 f



5.20
    si 
 6 0 because image is virtual. 1>100 + 1> -50 = 1> ƒ
 , 


ƒ 
 = -100 cm. Image is 50 cm to the right as well.  MT 
 = - si
 > so
  = 


n



n



n


50>100 = 0.5. Ant’s image is half-sized and erect ( M



5.8
   First surface:  1 + 2 = 2 -  n
 1


T 
 7 0).


so



si



R



5.23
   1> ƒ 
 = ( nl 
 - 1)[(1> R
 1) - (1> R
 2)]

1

1.5

0.5

= 0.5[(1> ∞) - (1>10)] = -0.5>10

+

=

1.2


si


0.1


ƒ 
 = -20 cm,  𝒟 = 1> ƒ 
 = -1>0.2 = -5 D


5.31 



si 
 = 0.36 m (real image 0.36 m to the right of first vertex). Second 

surface:  s


(a)  From the Gaussian lens equation


o 
 = 0.20 - 0.36 = - 0.16 m (virtual object distance).

1.5

1

-0.5

1

1

1

+

=

 ,   s


+

=

-0.16


s



i 
 = 0.069


i


-0.1

15.0 m


si


3.00 m

Final image is real ( s


 and 


s



i 
 7 0), inverted ( MT 
 6 0), and 6.9 cm to the right 


i 
 = + 3.75 m.

of the second vertex.

(b)  Computing the magnification, we obtain


5.13  
 From Eq. (5.8), 1>8 + 1.5> s



si


3.75 m


i 
 = 0.5> - 20. At first surface, 


MT 
 = -  = - 

= -0.25


s



s


15.0 m


i 
 = - 10 cm.  
 Virtual image is 10 cm to left of first vertex. At second 


o


surface, object is  real
  15 cm from second vertex.





 Because the image distance is positive, the image is  real
 . Because 

1.5>15 + 1> s


the magnification is negative, the image is  inverted
 , and because 


i 
 = - 0.5>10,  si 
 = - 20>3 = - 6.66 cm

the absolute value of the magnification is less than 1, the image is 

Virtual, to left of second vertex.


minified
 .

(c)  From the definition of magnification, it follows that 


5.15  
 so 
 +  si 
 =  sosi
 > ƒ 
 to minimize  so 
 +  si
 , y







i 
 =  MTyo 
 = ( - 0.25)(2.25 m) = - 0.563 m


d



ds






where the minus sign reflects the fact that the image is inverted.

 ( s



i



ds



o 
 +  si
 ) = 0 = 1 +


o



dso


(d)  Again from the Gaussian equation


d



s



s



s ds


1

1

1

or  


 a  osi
 b =  i 
 +  o
    i 
 = 0

+

=


ds


17.5 m


si


3.00 m


o



ƒ



ƒ



ƒ dso


 and 


si 
 = +3.62 m. The entire equine image is only 0.13 m long.


ds



ds



s


Thus   i 
 = -1  and    i 
 = -   i



5.38
   The first thing to find is the focal length in water, using the Lens-


ds


 , 6  si 
 =  so



o



dso



so


maker’s Formula. Taking the ratio  ƒw
 > ƒa 
 =  ƒw
 >(10 cm) = ( ng 
 - 1)> 

[( ng
 > nw
 ) - 1] = 0.56>0.17 = 3.24;   ƒw 
 = 32 cm. The Gaussian lens 

The separation would be maximum if either were ∞, but both could 

formula gives the image distance: 1> si 
 + 1>100 cm = 1>32.4 cm; 

not be. Hence,  si 
 =  so 
 is the condition for a minima. From the Gaussian 


si 
 = 48 cm.

equation,  so 
 =  si 
 = 2 ƒ
 .


5.39
   The image will be inverted if it’s to be real, so the set must be 


5.16  
 1>5 + 1> si 
 = 1>10,   
 si 
 = -10 cm virtual,  MT 
 = - si
 > so 
 =  

upside down or else something more will be needed to flip the image; 

10>5 = 2   
 erect. Image is 4 cm high. Or -5( xi
 ) = 100,   xi 
 = -20, 


MT 
 = -3 = - si
 > so
 ;  1> so 
 + 1>3 so 
 = 1>0.60 m;   so 
 = 0.80 m, hence MT 
 = - xi
 > ƒ 
 = 20>10 = 2.

0.80 m + 3(0.80 m) = 3.2 m.
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obtained from (

1

1

1

-4)( xi
 ) = 81,  xi 
 = -20.2 cm; in other words, the im-


5.40
   

= ( nlm 
 - 1) a

-

b

age is 11.2 cm to the right of  L
 1.  MT 
 = 20.2>9 = 2.2; hence the edge 


ƒ



R
 1


R
 2

of  L
 2 is imaged 4.4 cm above the axis. Thus its subtended angle at  S
  is 

1

( nlm 
 - 1) 1

1.5>1.33 - 1 1

0.125 1

tan-1 4.4>(12 + 11.2) or  
 9.8°. Accordingly, the diaphragm is the A.S., 

=





=





=






ƒw


( nl 
 - 1)  ƒa


1.5 - 1


ƒa


0.5  ƒa


and the entrance pupil (its image in  L
 1) has a diameter of 1.5 cm at 






ƒ


4.5 cm behind  L



w 
 = 4 ƒa


1. The image of the diaphragm in  L
 2 is the exit pupil. 

Consequently, 12 + 1> si 
 = 13 and  si 
 = -6,  
 that is, 6 cm in front of  L
 2. 


5.44
   1> ƒ 
 = 1> ƒ
 1 + 1> ƒ
 2,  1>50 = 1> ƒ






1 - 1>50,   ƒ
 1 = 25 cm. If  R
 11


MT 
 = 62 = 3, so that the exit pupil diameter is 3 cm.

and  R
 12, and  R


,  
 are the radii of the first and second lenses, 





21 and  R
 22 

respectively,

9

1> ƒ


5

1 = ( nl 
 - 1)(1> R
 11 - 1> R
 12),  1>25 = 0.5(2> R
 11)

4.5


R



L


11 = -  R
 12 = -  R
 21 = 25 cm

1


L


1> ƒ


2

2 = ( nl 
 - 1)(1> R
 21 - 1> R
 22)

3

2

-1>50 = 0.55[1>(-25) - 1> R


14°


S


22]


R
 22 = -275 cm


5.45
  



MT 
 = - s


1


i
 1> so
 1 = -  ƒ
 1>( so
 1 -  ƒ
 1)


 



MT 
 = - s


9

3

2


i
 2> so
 2 = -  si
 2>( d 
 -  si
 1)

12

3

3


 



MT 
 =  ƒ
 1 si
 2>( so
 1 -  ƒ
 1)( d 
 -  si
 1)

From Eq. (5.30), on substituting for  si
 1, we have


5.57
   Either the margin of  L
 1 or  L
 2 will be the A.S.; thus, since no 


ƒ


lenses are to the left of  L



M


1 si
 2

1, either its periphery or  P
 1 corresponds to 


T 
 = ( s


the entrance pupil. Beyond (to the left of) point- A
 ,   L



o
 1 -  ƒ
 1) d 
 -  so
 1 ƒ
 1

1 subtends the 

smallest angle and is the entrance pupil; nearer in (to the right of  A
 ),  P



5.47
  First  lens:  1> s


1 


i
 1 = 1>30 - 1>30 = 0,   si
 1 = ∞ . Second lens: 

marks the edge of the entrance pupil. In the former case  P


1> s


2 is the exit 


i
 2 = 1>( - 20) - 1>( - ∞ ); the object for the second lens is to the 

pupil; in the latter (since there are no lenses to the right of  L


right at ∞, that is,  s


2) the exit 


o
 2 = - ∞ .  si
 2 = - 20 cm,  
 virtual, 10 cm to the left 

pupil is the edge of  L


of first lens.

2 itself.

2


M


(image of edge


P
 1


T 
 = ( - ∞ >30)( + 20> - ∞ ) = 3


P
 2

of  L
 2 formed by  L
 1)

or from Eq. (5.34)

(image of edge

of  L


30(-20)

2

1 formed by  L
 2)


MT 
 =

=

10(30 - 30) - 30(30)

3


Fo
 1


A



Fo
 2


Fi
 1


Fi
 2


L
 1


L
 2


5.58  
 The A.S. is either the edge of  L
 1 or  L
 2. Thus the entrance pupil is 

either marked by  P
 1 or  P
 2. Beyond  Fo
 1,  P
 1 subtends the smaller angle; 5.51


thus Σ1 locates the A.S. The image of the A.S. in the lenses to its right, 


L
 2, locates  P
 3 as the exit pupil.

Σ2


P
 2

Σ1


fo


Σ3


fe



P
 1


5.55
  The angle subtended by  L
 1   
 at   S
  is tan-1 3>12 = 14°. To find 


F



P


the image of the diaphragm in  L



o
 1


Fi
 2

3

1   
 we use Eq. (5.23):  xo
   xi 
 =  ƒ
 2, 

(-6)( x



O



i
 ) = 81,  xi 
 = - 13.5 cm, so that the image is 4.5 cm behind  L
 1. 

The magnification is - xi
 > ƒ 
 = 13.5>9 = 1.5, and thus the image (of 

the edge) of the hole is (0.5)(1.5) = 0.75 cm in radius. Hence the an-


L
 1

gle subtended at  S
  is tan-1 0.75>16.5 = 2.6°. The image of  L



L


2  
 in  L
 1 is  

2
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5.60
   Draw the chief ray from the tip to  L
 1 such that when extended 

and 9 inches tall.

it passes through the center of the entrance pupil. From there it goes 

through the center of the A.S., and then it bends at  L
 2 so as to extend 

through the center of the exit pupil. A marginal ray from  S
  extends to the 

edge of the entrance pupil, bends at  L
 1 so it just misses the edge of 

A.S., and then bends at  L
 2 so as to pass by the edge of the exit pupil.


S


Image


L
 2


L 
 Exit

A.S.

Entrance

1 pupil

pupil


5.61



S



5.92
   Image rotated through 180°.


5.93
   From Eq. (5.61)

NA = (2.624 - 2.310)1>2 = 0.550

umax = sin-1 0.550 = 33°22′

Maximum acceptance angle is 2umax = 66°44′. A ray at 45° would 


5.62
   No—although she might be looking at you.

quickly leak out of the fiber; in other words, very little energy fails to 

escape, even at the first reflection.


5.63
  The mirror is parallel to the plane of the painting, and so the 

girl’s image should be directly behind her and not off to the right.


5.95
  Considering Eq. (5.62), log 0.5 = -0.30 = -a L
 >10, and so 


L 
 = 15 km.


5.64
   1> so 
 + 1> si 
 = -2> R
 . Let   R 
 S ∞: 1> so 
 + 1> si 
 = 0,   so 
 = - si
 ,  
  

and  M



5.98
   From Eq. (5.61) NA = 0.232 and  N



T 
 = + 1. Image is virtual, same size, and erect.


m 
 = 9.2 * 102.


5.71
  From Eq. (5.49), 1>100 + 1> si 
 = -2>80, and so 

Eye relief


si 
 = -28.5 cm. Virtual ( si 
 6 0), erect ( MT 
 7 0), and mini-

fied. (Check with Table 5.5.)


CR



5.74
   Image on screen must be real 6  si
  is +

1

1

2

5

2

+

= -   , 

= -  ,   R 
 = -40 cm

25

100


R


100


R



CR



5.75
   The image is erect and minified. That implies (Table 5.5) 

Objective

Field lens

Eye lens

Exit pupil

a convex spherical mirror.


5.101
    MT 
 = - ƒ
 > xo 
 = -1> xo
 𝒟. For the human eye 𝒟 ≈ 58.6 diopters.


5.80
   To be magnified and erect, the mirror must be concave, and the 


xo 
 = 230000 * 1.61 = 371 * 103 km

image virtual;  MT 
 = 2.0 =  si
 >(0.015 m),   si 
 = -0.03 m, and hence 


M


1> ƒ 
 = 1>(0.015 m) + 1>(-0.03 m);   ƒ 
 = 0.03 m and  ƒ 
 = - R
 >2; T 
 = - 1>3.71 * 106(58.6) = 4.6 * 10-11


R 
 = -0.06 m.


yi 
 = 2160 * 1.61 * 103 * 4.6 * 10-11 = 0.16 mm


5.81
    M



5.103
   1>20 + 1> sio 
 = 1>4,   sio 
 = 5 m


T 
 =  yi
 > yo 
 = -  si
 > so
 ; using Eq. (5.50),  si 
 =  ƒso
 >( so 
 -  ƒ
 ), and since 


ƒ 
 = - R
 >2,   MT 
 = - ƒ
 >( so 
 -  ƒ
 ) = -(- R
 >2)>( so 
 +  R
 >2) =  

1>0.3 + 1> sie 
 = 1>0.6,   sie 
 = -0.6 m


R
 >(2 so 
 +  R
 ).


MTo 
 = -5>10 = -0.5


5.84
    MT 
 = - si
 >25 cm = -0.064;  si 
 = 1.6 cm. 1>25 cm + 1>1.6 cm = 

-2> R
 ,  R 
 = -3.0 cm.


MTe 
 = -(-0.6)>0.5 = +1.2


5.89
    ƒ 
 = - R
 >2 = 30 cm,  
 1>20 + 1> si 
 = 1>30,  
 1> si 
 = 1>30 - 1>20.


MToMTe 
 = -0.6


si 
 = -60 cm,   MT 
 = - si
 > so 
 = 60>20 = 3


5.107
   Ray-1 in the figure next page misses the eye-lens, and there is, 

Image is virtual ( s


therefore, a decrease in the energy arriving at the corresponding image 


i 
 6 0), erect ( MT 
 7 0), located 60 cm behind mirror, 

point. This is vignetting.
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5.108
   Rays that would have missed the eye-lens in the previous problem 

are made to pass through it by the field-lens. Note how the field-lens bends 

the chief rays a bit so that they cross the optical axis slightly closer to the 

eye-lens, thereby moving the exit pupil and shortening the eye relief. (For 

more on the subject, see  Modern Optical Engineering
 , by Smith.)

Eye relief

2  CR



CR


1

Objective

Eye lens

Exit pupil

𝒟

3.2 D



5.117
   𝒟


c



l 
 -

=

= +3.03 D


1 + 𝒟 c
   d


1 + (3.2 D
 )(0.017 m)

or to two figures  +3.0 D
 .   ƒ
 1 = 0.330 m, and so the far point is  

0.330 m - 0.017 m = 0.313 m behind the eye lens. For the contact 

lens ƒ c 
 = 1>3.2 = 0.313 m. Hence the far point at 0.31 m is the same 


6.3
  From Eq. (6.2), 1> ƒ 
 = 0 when -(1> R
 1 - 1> R
 2) = ( nl 
 - 1) * 

for both, as it indeed must be.


d
 > nlR
 1 R
 2. Thus  d 
 =  nl
 ( R
 1 -  R
 2)>( nl 
 - 1).


5.119 



6.5
   1> ƒ 
 = 0.5[1>6 - 1>10 + 0.5(3)>1.5(6)10]

(a)   The intermediate image-distance is obtained from the lens formula 

applied to the objective:

= 0.5[10>60 - 6>60 + 1>60];  ƒ 
 = +24

1

1

1


h
 1 = -24(0.5)(3)>10(1.5) = -2.4

+

=

27 mm


si


25 mm


h
 2 = -24(0.5)(3)>6(1.5) = -4





 and   s



6.7
    ƒ



i 
 = 3.38 * 102 mm.   
 This is the distance from the ob-

= 12  nR
 >( n 
 - 1);  h
 1 = + R
 ,  h
 2 = - R
 .

jective to the intermediate image, to which must be added 


6.11  
 ƒ 
 = 29.6 + 0.4 = 30 cm;   
 so 
 = 49.8 + 0.2 = 50 cm;   
 1>50 + 


the focal length of the eyepiece to get the lens separation: 

1> si 
 = 1>30 cm.  
 si 
 = 75 cm 
 from  H
 2 and 74.6 cm from the back face.

3.38 * 102 mm + 25 mm = 3.6 * 102 mm.


6.13
   From Eq. (6.2),

(b)   MTo 
 = - si
 > so 
 = -3.38 * 102 mm>27 mm = -12.5*,   
 while the 

eyepiece has a magnification of  do
 𝒟 = (254 mm)(1>25 mm) =  


1> ƒ 
 = 12 [(1>4.0) - (1> -15) + 12 (4.0)>(3>2)(4.0)(-15)]

10.2*.   
 Thus the total magnification is MP = (-12.5)(10.2) = 

-1.3 * 102; the minus sign just means the image is inverted.

= 0.147 and  ƒ 
 = 6.8 cm


h
 1 = -(6.8)12 (4.0)>(-15)(3>2) = +0.60 cm, while  h
 2 = -2.3. To find 

the image 1>(100.6) + 1> si 
 = 1>(6.8);  si 
 = 7.3 cm or 5 cm from the 

Chapter 6

back face of the lens.


6.2
   From Eq. (6.8),


6.22
    h
 1 =  ni
 1(1 -  a
 11)> - a
 12 = (𝒟2 d
 21> nt
 1) ƒ


1> ƒ 
 = 1> ƒ
 ′ + 1> ƒ
 ′ -  d
 > ƒ
 ′ ƒ
 ′ = 2> ƒ
 ′ - 2>3 ƒ
 ′,   ƒ 
 = 3 ƒ
 ′>4

= -( nt
 1 - 1) d
 21 ƒ
 > R
 2 nt
 1

From Eq. (6.9),  H
 11 H
 1 = (3 ƒ
 ′>4)(2 ƒ
 ′>3)> ƒ
 ′ =  ƒ
 ′>2.

from Eq. (5.71) where  nt
 1 =  nl
 ; 

From Eq. (6.10),  H
 22 H
 2 = -(3 ƒ
 ′>4)(2 ƒ
 ′>3)> ƒ
 ′ = - ƒ
 ′>2.


h
 2 =  nt
 2( a
 22 - 1)> - a
 12

F.S.

= -(𝒟1 d
 21> nt
 1) ƒ
  from Eq. (5.70)

2 f 


3

= -( ni
 1 - 1) d
 21 ƒ
 > R
 1 nt
 1


6.23
   𝒜 = ℛ 𝒯 ℛ









2𝒯





21 

1, but for the planar surface

1


H
 2


H
 1

ℛ

-𝒟2d





2 = c0

1


f 



f 


and 𝒟2 = ( nt
 1 - 1)>(- R
 2) but  R
 2 = ∞

4


f 


2

2

1

0

3 f 


ℛ

d





2 = c

4

0

1

which is the unit matrix, hence 𝒜 = 𝒯 ℛ









21 

1.
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6.24
   

𝒟


7.8  
 E


1 = (1.5 - 1)>0.5 = 1

=  E
 1 =  E
 2 =  E
 01{sin[v t 
 -  k
 ( x 
 + ∆ x
 ) + sin(v t 
 -  kx
 )}.

and 𝒟

Since  sin b

2 = (1.5 - 1)> - ( - 0.25) = 2.

+ sin g = 2 sin 12 (b + g) cos 12 (b - g)

1 - 2(0.3)>1.5 -1 + 2(1)(0.3)>(1.5 - 2)


k
 ∆ x


∆ x


𝒜 = c

d






E 
 = 2 E
 01 cos 

 sin  cv t 
 -  k
  a x 
 +

bd

0.3>1.5

-1(0.3)>1.5 + 1

2

2


7.9  
 E 
 =  E
 0 Re [ ei
 ( kx
 +v t
 ) -  ei
 ( kx
 -v t
 )]

0.6

-2.6

= c

d





0.2

0.8

=  E
 0 Re[ eikx
 ( ei
 v t 
 -  e
 - i
 v t
 )] 





=  E
 0 Re [ eikx
 2 i
  sin v t
 ]

𝒜 = 0.6(0.8) - (0.2)(-2.6) = 0.48 + 0.52 = 1









=  E
 0 Re [2 i
  cos  kx
  sin v t 
 - 2 sin  kx
  sin v t
 ]


6.30
  See E. Slayter,  Optical Methods in Biology
 .   PC
 > CA 
 =   


and  E 
 = -2 E
 0 sin  kx
  sin v t
 . Standing wave with node at  x 
 = 0.

( n
 1> n
 2) R
 > R 
 =  n
 1> n
 2,  
 while  CA
 > P
 ′ C 
 =  n
 1> n
 2. Therefore triangles  ACP
  

and  ACP
 ′  
 are similar; using the sine law

sin ∡  PAC


sin ∡  APC


0 E


0 B


=


7.13
   

= - 


PC



CA


0 x


0 t


or

Integrate to get


n
 2 sin ∡  PAC 
 =  n
 1 sin ∡  APC


0 E


but  u


B(x, t)



i 
 = ∡  PAC
 , thus u t 
 = ∡  APC 
 = ∡  P
 ′ AC
 , and the refracted ray  

= -3    dt 
 = -2 E


0 x


0 k
  cos  kx
 3 cos v t
   dt


appears to come from  P
 9.

2 E



6.31  
 From Eq. (5.6), let cos w = 1 - w2>2; then





= -  0 k
  cos  kx
  sin v t


v

/ o 
 = [ R
 2 + ( so 
 +  R
 )2 - 2 R
 ( so 
 +  R
 ) +  R
 ( so 
 +  R
 )w2]1>2

2

But  E


-1

0  k
 >v =  E
 0> c 
 =  B
 0; thus





/ o 
 = [ so 
 +  R
 ( so 
 +  R
 )w2]-1>2

2


B(x, t)


-1

= -2 B
 0 cos  kx
  sin v t






/ i 
 = [ si 
 -  R
 ( si 
 -  R
 )w2]-1>2

where the first two terms of the binomial series are used,


y






/-1

-1

3


o


≈  so 
 - ( so 
 +  R
 ) h
 2>2 soR
   where w ≈  h
 > R
 ,





/-1

-1

3


i


≈  si 
 + ( si 
 -  R
 ) h
 2>2 si R


Substituting into Eq. (5.5) leads to Eq. (6.46).


E



6.32



B



z



x


Chapter 7


7.21  
 E 
 =  E



7.1
   E
 2

0 cos v ct 
 +  E
 0a cos v mt
  cos v ct


0 = 36 + 64 + 2 · 
 6 · 
 8 cos p>2 = 100,  E
 0 = 10; tan a = 86,  

a = 53.1° = 0.93 rad.


E






=  E


0a [cos (v


E 
 = 10 sin (120

0 cos v ct 
 +


c 
 - v m
 ) t 
 + cos (v c 
 + v m
 ) t
 ]

p t 
 + 0.93)

2

1 m


7.5 


= 0.2 * 107 = 2 000 000 waves.

Audible range n m 
 = 20 Hz to 20 * 103 Hz. Maximum modulation  

500 nm

frequency n m
 (max) = 20 * 103 Hz.

0.05

0.05(1.5)

n

In the glass 

=

= 1.5 * 105


c 
 - n m
 (max) … n … n c 
 + n m
 (max)

l0> n


500 nm

∆n = 2n m
 (max) = 40 * 103 Hz

0.95


7.22
   v 
 = v> k 
 =  ak
 ,     v


in air   

= 0.19 * 107


g 
 =  d
 v> dk 
 = 2 ak 
 = 2 v
 .

l0


g
 l


7.29 



v 
 =

= 1 g
 > k


total 2 050 000 waves.

A2p


OPD 
 = [(1.5)(0.05) + (1)(0.95)] - (1)(1)


dv



 



vg 
 =  v 
 +  k
    [7.38]


OPD 
 = 1.025 - 1.000 = 0.025 m


dk



dv


1


g



v






Λ

= - 

= - 

0.025


dk


2 k 
 A  k


2 k


=

= 5 * 104 waves

l


 



v


0

500 nm


g 
 =  v
 >2
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dv



dv



dv d
 v


dv


1  a


sin k L
 >2


7.31  
 vg 
 =  v 
 +  k
    and 

=





=  vg 
 .


7.50 



ƒ
 ′ (x) 
 =

  E
 0 L
  

 cos k x
   d
 k


dk



dk



d
 v  dk



d
 v 

p30

k L
 >2


dv



dv dn



c dn


Since  v 
 =  c
 > n
 ,  

=





= -   


E



b 
 sin (k L
 >2 + k x
 )


d
 v


dn d
 v


n
 2  d
 v 





= 0 L 
  

  d
 k

p2 30

k L
 >2


vgck dn



v



c



vg 
 =  v 
 -





=

=


d
 v


n



E



b 
 sin (k L



n
 2

1

+ v( dn
 > d
 v)

>2 - k x
 )

+ ( ck
 > n
 2)( dn
 > d
 v)





+ 0 L 
  

  d
 k

p2 30

k L
 >2


Nq
 2

2


e



Nqe


Let  
 k L



7.40  
 v 





.

>2 =  w
 , ( L
 >2)  d
 k =  dw
 , k x 
 =  wx
 ′.

7 7 v i
 ,  n
 2 = 1 -

^ ƒi 
 = 1 -

v2P0 me


v2P0  me



E b 
 sin ( w 
 +  wx
 ′)


E



b 
 sin( w 
 -  wx
 ′)


ƒ
 ′ (x)


Using the binomial expansion, we have

= 0   

  dw 
 + 0   

  dw


p 3

3

0


w


p 0


w


1

(1

  x
  for 


x
  

where   b


-  x
 )1>2 ≈ 1 -

6 6 1

=  aL
 >2. Let  w 
 +  wx
 ′ =  t
 ,   dw
 > w 
 =  dt
 > t
 .  0 …  w 
 …  b  
 and 2

0 …  t 
 … ( x
 ′ + 1) b
 . Let  w 
 -  wx
 ′ = - t
  in the other integral. 0 …  w 
 …  b
 n 
 = 1 -  Nq
 2

2


e 
 >v2P0  me
 2,     dn
 > d
 v =  Nqe 
 >P0  me
 v3

and 0 …  t 
 … ( x
 ′ - 1) b
 .


c



 



vg 
 =


E


( x
 ′ + 1) b 
 sin  t



E


( x
 ′ - 1) b 
 sin  t



n 
 + v( dn
 > d
 v)


ƒ
 ′ (x) 
 = 0 





  dt 
 - 0 





  dt


p 3

3

0


t


p 0


t



c


=

2

2


E



E


1 -  Nqe
 >v2P0  me
 2 +  Nqe
 >P0  me
 v2


ƒ
 ′ (x) 
 = 0 Si[ b
 ( x
 ′ + 1)] - 0 Si [ b
 ( x
 ′ - 1)] ,  x
 ′ = 2 x
 > L


p

p


c






= 1 +  Nq
 2

Si (u)



e 
 >P0  me
 v22

and  vg 
 6  c
 ,

p2


c



v 
 =  c
 > n 
 = 1 -  Nq
 2 e
 >P0  me
 v22

Binomial expansion





(1 -  x
 )-1 ≈ 1 +  x
 ,   x
  6 6 1


u


p

2p


 



v 
 =  c
 [1 +  Nq
 2 e
 >P0  me
 v22] ;  v
   vg 
 =  c
 2

l


7.43  
 3  sin  a
 k x
  sin  b
 k x
   dx


0

−p2

1

l

l

=

  c  cos [( a 
 -  b
 )k x
 ]k  dx 
 -  cos [( a 
 +  b
 )k x
 ]k  dx
 d 2k 3

3

0

0


7.54  
 By analogy with Eq. (7.61),

1 sin( a 
 -  b
 )k x 
 l

1 sin ( a 
 +  b
 )k x 
 l





=





  `   -





  `

∆ t


∆ t


2k


a 
 -  b


0

2k


a 
 +  b


0


A(
 v ) 
 =

  E


2

0 sinc (v p 
 - v)  2





= 0 if  a 
 Z  b


From Table 1 (p. 673) sinc (p>2) = 63.7%. Not quite 50% actually,

Whereas if  a 
 =  b


l

1 l

l

sinc a p b = 49.8%

3  sin2  a
 k x
   dx 
 =

 (1 + cos 2 a
 k x
 )k  dx 
 =

1.65

0

2k30

2

∆ t


The other integrals are similar.

`

p

p

p

(v p 
 - v)  ` 6  or - 

6 (v

2

2

∆ t



p 
 - v) 6 ∆ t



7.44  
 Even function, therefore  Bm 
 = 0.

Thus appreciable values of  A(
 v )
  lie in a range ∆v ∼ 2p>∆ t
  and 

2 l> a


2

l

4

∆n  
 ∆ t 
 ≈ 1. The power spectrum is proportional to  A
 2 (
 v )
 , and [sinc  



A
 0 =  

  dx 
 =  al + b =

(

l 3

p>2)]2 = 40.6%.

-


a



a



a


l> a


l


7.55  
 ∆ lc 
 =  c
  ∆ tc
 , ∆ lc 
 ≈  c
 >∆n. But   
 ∆v>∆ k
 0 = v> k
 0 =  c
 ; thus 2 l> a



 



A


 ∆n>∆l


m 
 =





 (1) cos  m
 k x
   dx


0    = n>l0,

l 3


c
 l

-

0

l> a






∆ l


2


c 
 ≈

  ∆ l


∆


c 
 ≈ l 0>∆l0

l0n

2

l> a







Am 
 =

 sin  m
 k x
 d


m
 k

Or try using the uncertainty principle:

l

-l> a


2


m
 2


h


p


 



A


∆ l 
 ≈

 where 


p 
 =  h
 >l and ∆l


m 
 =

 sin 

0  6 6  l0


m
 p


a


∆ p
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7.57  


∆ lc 
 =  c
  ∆ tc 
 = 3 * 108 m>s * 10-8 s = 3 m

Let  E
 0 +  E
 ′0 =  E
 ″0 x 
 and  E
 0 -  E
 ′0 =  E
 ″0 y
 ; then E
 $ = iˆ
 E
 ″0 x
  cos ( kz 
 - v t
 ) + 

2


jˆ
 E






″

∆l

0 y
  sin ( kz 
 - v t
 ). From Eqs. (8.11) and (8.12) it is clear that we have 

0 ≈ l0>∆ lc 
 = (500 * 10-9 m)2>3 m

an ellipse where e = -p>2 and a = 0.





∆l0 ≈ 8.3 * 10-14 m = 8.3 * 10-5 nm


8.7
   


E
 0 y 
 =  E
 0 cos 25°;  E
 0 z 
 =  E
 0 sin 25°;

∆l0>l0 = ∆n>n = 8.3 * 10-5>500 =  1.6 * 10-7





≈ 1 part in  
 107


 



E


$( x
 ,  t
 ) = (0.91jˆ 
 + 0.42kˆ
 ) E
 0 cos ( kx 
 - v t 
 + 12 p).


7.58  
 ∆n = 54 * 103 Hz


8.9 



E


$ =  E
 0[jˆ
  sin ( kx 
 - v t
 ) - kˆ
  cos ( kx 
 - v t
 )].

(54 * 103)(10 600 * 10-9 m)

  ∆n>n =


8.15
   In natural light each filter passes 32% of the incident beam. Half 

(3 * 108 m>s)

of the incoming flux density is in the form of a 𝒫-state parallel to the 





= 1.91 * 10-9

extinction axis, and effectively none of this emerges. Thus, 64% of 

the light parallel to the transmission axis is transmitted. In the pres-





∆ lc 
 =  c
  ∆ tc 
 ≈  c
 >∆n

ent problem 32% Ii
  enters the second filter, and 64% (32% Ii
 ) = 21% Ii


(3 * 108 m>s)

leaves it.





∆ lc 
 ≈

= 5.55 * 103 m

(54 * 103 Hz)


8.30
   From the figure, it follows that


7.60
   ∆ lc 
 =  c
  ∆ tc 
 = 3 * 108 * 10-10 = 3 * 10-2 m

E2


 



I






∆n ≈ 1

= 1

01

>∆ t


2  E
 201 sin2 u cos2 u =

 (1 - cos 2u)(1 + cos 2u)


c 
 = 1010 Hz

8





∆l

2

0 ≈ l 0>∆ lc 
 (see Problem 7.55)


E
 2

E2





= (632.8 nm)2>3 * 10-2 m = 0.013 nm





= 01 (1 - cos2 2

01

u) =

 [1 - (1

8

8

2 cos 4u + 12)]





∆n = 1015 Hz, ∆ lc 
 =  c 
 * 10-15 = 300 nm

2


E
 2


I






∆l0 ≈ l 0>∆ lc 
 = 1334.78 nm





= 01 (1 - cos 4

1

u) =

 (1 - cos 4u)  u = v t


16

8

Chapter 8


8.4 


(a)  E


$ = iˆ
 E
 0 cos ( kz 
 - v t
 ) + jˆ
 E
 0 cos ( kz 
 - v t 
 + p). Equal amplitudes, E



E



o
 1


y 
 lags  Ex 
 by p. Therefore 𝒫-state at 135° or  - 45°.


Eo
 1  
 cosu

(b)  E


$ = iˆ
 E
 0 cos ( kz 
 - v t 
 - p>2) + jˆ
 E
 0 cos ( kz 
 - v t 
 + p>2). Equal amplitudes,  Ey 
 lags  Ex
  by p. Therefore same as (a).


Eo
 1  
 cosu

u

(c)   E



E



x
  leads  Ey
  by p>4. They have equal amplitudes. Therefore it is an 


o
 1  
 cos u  
 cos (90 – u)

90 – u

ellipse tilted at  +45° and is left-handed.

(d)   Ey
  leads  Ex
  by p>2. They have equal amplitudes. Therefore it is 

an ℛ-state.


8.5
   


E


$ x 
 = iˆ
  cos v t
 ,   E
 $ y 
 = jˆ
  sin v t


Left-handed circular standing wave.


y



x



8.31
   No. The crystal performs as if it were two oppositely oriented 

specimens in series. Two similarly oriented crystals in series would 

behave like one thick specimen and thus separate the  o
 - and  e
 -rays 

even more.


8.33
   Light scattered from the paper passes through the polaroids and 

becomes linearly polarized. Light from the upper left filter has its E


$- 


z


field parallel to the principal section (which is diagonal across the sec-

ond and fourth quadrants) and is therefore an  e
 -ray. Notice how the 

letters  P
  and  T
  are shifted downward in an  extraordinary
  fashion. The 

lower right filter passes an  o
 -ray so that the  C
  is undeviated. Note that 


8.6
   E


$

the ordinary image is closer to the blunt corner.

ℛ = iˆ
 E
 0 cos ( kz 
 - v t
 ) + jˆ
 E
 0 sin ( kz 
 - v t
 ) E


$


8.34
   (a) and (c) are two aspects of the previous problem. (b) shows 

ℒ = iˆ
 E
 ′0 cos ( kz 
 - v t
 ) - jˆ
 E
 ′0 sin ( kz 
 - v t
 ) double refraction because the polaroid’s axis is at roughly 45° to the 


E


$ = E
 $ℛ + E
 $ℒ = iˆ
  ( E
 0 +  E
 ′0) cos ( kz 
 - v t
 )

principal section of the crystal. Thus both an  o
 - and an  e
 -ray will 

+ jˆ
 ( E


exist.

0 -  E
 ′0) sin ( kz 
 - v t
 ).
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8.36
  Calcite  no 
 7  ne
 . Two spectra will be visible when (b) or (c) is used 





in a spectrometer. The indices are computed in the usual way, using

sin 1

+


 



n 
 =

2 (a + d m
 )

Oxygen


E


sin 12 a

−

where d m
  is the angle of minimum deviation of either beam.


n


1.55

+


8.37
   sin 

balsam

u c 
 =

=

= 0.935; u

Oxygen

+


n



c 
 ≈ 69°

0

1.658

Carbon

Carbon

Oxygen

−


8.40


−


e



o


a

(a) Calcite


o, e



o


(a)


e


(b) Quartz

(c)   Undesired energy in the form of one of the 𝒫-states can be dis-


e


posed of without local heating problems.


o


(d)   The Rochon transmits an undeviated beam (the  o
 -ray), which is 

(b)

therefore achromatic as well.


8.52
    no 
 = 1.658 4,  ne 
 = 1.486 4. Snell’s Law:





sin u i 
 =  no
  sin u to 
 = 0.766





sin u i 
 =  ne
  sin u te 
 = 0.766





sin u to 
 ≈ 0.463,  u to 
 ≈ 27°35′


e



o






sin u te 
 ≈ 0.516,  u te 
 ≈ 31°4′





∆u ≈ 3°29′

(c)


8.54
    Ex 
 leads  Ey 
 by p>2. They were initially in-phase and  Ex 
 7  Ey
 .  

Therefore the wave is left-handed, elliptical, and horizontal.


8.35
  When E


$ is perpendicular to the CO3 plane, the polarization will 

be less than when it is parallel. In the former case, the field of each po-


8.68
  The ℛ-state (looking toward the source) incident on the glass 

larized oxygen atom tends to reduce the polarization of its neighbors. 

screen drives the electrons in circular orbits, and they reradiate reflect-

In other words, the induced field, as shown in the figure, is down while 

ed circular light whose E


$-field rotates in the same direction as that of 


E


the incoming beam. But the propagation direction has been reversed 

$ is up. When E
 $ is in the carbonate plane, two dipoles reinforce the 

third and vice versa. A reduced polarizability leads to a lower dielectric 

on reflection, so that although the incident light is in an ℛ-state, the 

constant, a lower refractive index, and a higher speed. Thus 

reflected light (looking toward the source) is left-handed. It will there-


v 
 7  v


‘

#.

fore be completely absorbed by the right-circular polarizer. This is il-

lustrated in the figure below.


E
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2p

1

0

0

0

1

1


8.69
  

∆w =

  d
  ∆ n


l0

0

1

0

0

0

0

≥

¥  ≥

¥ = ≥ ¥

but ∆w

0

0

= (1>4)(2p) because of the fringe shift. Therefore ∆w = p>2 

-1

0

0

0

and

0

0

0

-1

-1

1

p

2p  d
  (0.005)





=

2

1

0

0

0

1

0

0

0

1

0

0

0

589.3 * 10-9

0

1

0

0

0

1

0

0

0

1

0

0

589.3 * 10-9

≥

¥  ≥

¥ = ≥

¥


 



d 
 =

= 2.94 * 10-5 m

0

0

0

1

0

0

0

1

0

0

-1

0

2(10-2)

0

0

-1 0

0

0

-1 0

0

0

0

-1


8.70
  Yes. If the amplitudes of the 𝒫-states differ. The transmitted 

beam, in a pile-of-plates polarizer, especially for a small pile.


8.87



8.72
   Place the photoelastic material between circular polarizers with 

1

0

0

0

1

0

1

0

1

0

1

0

both retarders facing it (as in Fig. 8.59). Under circular illumination 

0

1

0

0

0

0

0

0

0

0

0

0

no orientation of the stress axes is preferred over any other, and they 

≥

¥  1

¥ = 1

¥

0

0

0

-1 2 ≥ 1 0 1 0

2  ≥ 0 0 0 0

will thus all be indistinguishable. Only the birefringence will have an 

0

0

1

0

0

0

0

0

1

0

1

0

effect, and so the isochromatics will be visible. If the two polarizers are 

different, that is, one an ℛ, the other an ℒ, regions where ∆ n 
 leads to 

1

0

1

0

1

1

∆w = p will appear bright. If they are the same, such regions appear 

1

0

0

0

0

0

0

dark.

2  ≥

¥  ≥ ¥ = 1

¥

0

0

0

0

0

2  ≥ 0


8.74
    V
 l>2 = l0>2 n
 30  r
 63 [8.51]

1

0

1

0

0

1





= 550 * 10-9>2(1.58)35.5 * 10-12

1

0

1

0

1

1





= 105>2(3.94) = 12.7 kV

1

0

0

0

0

0

0

2  ≥

¥  ≥ ¥ = 1

¥

0

0

0

0

0

2  ≥ 0


e



8.76
   E


$

21

1 · E


$*2 = 0,   E
 $2 = c d

1

0

1

0

1

1


e
 22

1

0

0

1

1

1


 



E


$1 · E
 $*2 = (1)( e
 21)* + (-2 i
 )( e
 22)* = 0

1

0

0

0

0

0

0

2

2  ≥

¥  ≥ ¥ = 1

¥

0

0

0

0

0

2  ≥ 0


 



E


$2 = c d i


1

0

0

1

1

1

1

0

1

0

1

1


 



           E


$1 is               

1

0

0

0

0

0

0

2  ≥

¥  ≥

¥ = 1

¥

0

0

0

0

0

2  ≥ 0


E


$2 is

1

0

1

0

-1

1

1

0

0

1

1

0

1

0

0

0

0

0

0

2  ≥

¥  ≥

¥ = ≥ ¥

0

0

0

0

0

0

1

0

0

1

-1

0


8.84 



tei
 w

0


8.89 


c 0  tei
 wd

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

-1

0

1

0

0

where a phase increment of w is introduced into both components as a 

≥

¥  ≥

¥ = ≥

¥

0

0

1

0

0

0

1

0

0

0

1

0

result of traversing the plate.

0

-1 0 0

0

1

0

0

0

0

0

1

1

0

0

0





c

d    c

d


8.86


0

1

0

0

1

0

0

0

1

0

0

0

1

0

0

0


t
 2

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0


t
 2

0

0

0

0

0

0

≥

¥  ≥

¥ = ≥

¥

0

0

0

0

0

0

0

0


8.90
   

-1

-1

-1

0

≥

¥   ≥

¥

0

0


t
 2

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

-1

0

0

0


t
 2

0

0

0

0

1

0

0

0

1

1


Ip


( 2

0

1

0

0

0

0


8.91
  



V 
 =

= 1 + 22 + 23)1/2

≥

¥  ≥ ¥ = ≥

¥


Ip 
 +  Iu


0

0

0

-1

0

0

0


I


0

0

0

1


p 
 = ( 21 + 22 + 23)1/2;   I 
 -  Ip 
 =  Iu


-1

-1
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(c)   Since the fringes vary as cosine-squared and the answer to (a) is 

0 - ( 21 + 22 + 23)1/2 =  Iu


half a fringe width, the answer to (b) is 10 times larger.

4

1

5


9.21
    r
 22 =  a
 2 +  r
 21 - 2 ar
 1 cos(90 - u). The contribution to cos d>2 

0

0

0

from the third term in the Maclaurin expansion will be negligible if

≥ ¥ + ≥ ¥ = ≥ ¥

0

0

0


k a
 2

0

1

1

 a  cos2 ub 6 6 p>2

2 2 r
 1

5 - (0 + 0 + 1)1/2 =  Iu


Therefore  r



8.93


1  7 7   a
 2>l.

cos2 a

cos a sin a

cos u


9.22
    E 
 = 12  mv
 2;   v 
 = 0.42 * 106 m>s

(a) 

c

d   c

d =

cos a sin a

sin2 a

sin u

l =  h
 > mv 
 = 1.73 * 10-9;  ∆ y 
 =  s
 l> a 
 = 3.46 mm.

cos2 a cos u + cos a sin a sin u

cos a


9.29
   ∆ y 
 =  s
 l0>2 d
 a( n 
 -  n
 ′).





c

d = cos (u - a)c

d

 cos a sin a cos u + sin2 a sin u

sin a


9.31
   ∆ y 
 = ( s
 > a
 )l,  a 
 = 10-2 cm,  a
 >2 = 5 * 10-3 cm.

(b)  Emerging beam is polarized at angle a to the horizontal and its 


9.32
   d =  k
 ( r
 1 -  r
 2) + p  (Lloyd’s mirror)

amplitude is reduced by a factor cos (u - a). This is exactly what an 

d =  k
 5 a
 >2 sin a - [sin (90 - 2a)] a
 >2 sin a6 + p

ideal linear polarizer would do if its transmission axis were oriented at 

d =  ka
 (1 - cos 2a)>2 sin a + p

a to the horizontal (recall Malus’s law).

maximum occurs for 

(c)  (For example). Construct the Jones matrix for crossed polarizers. 

d

Let the second polarizer be at angle 

= 2p when sin a(l> a
 ) = (1 - cos 2a) = 2 sin2 a

a - 90° so that cos a is replaced 

by sin a and sin a by -cos a. The Jones matrix for the combination 

First maximum a = sin-1 (l>2 a
 ).

is then


9.34
  Here 1.00 6 1.34 7 1.00, hence from Eq. (9.36) with  m 
 = 0, 

cos2 a

cos a sin a

sin2 a

sin a cos a


d 
 = 10 + 122(633 nm)>2(1.34) = 118 nm.

c

d   c

d =

cos a sin a

sin2 a

sin a cos a

cos2 a


9.38
   Eq. (9.37)  m 
 = 2 nƒd
 >l





0 = 10 000. A minimum, therefore cen-

tral dark region.

0

0

c

d  (the null matrix!)

0

0


d
 1


x



x


Chapter 9


R
 1 −  d
 1


9.1  E


$1 ~ E
 $2 = 12 (E
 $1 e
 - i
 v t 
 + E
 $*1 ei
 v t
 ) ~ 12 (E
 $2 e
 - i
 v t 
 + E
 $*2 ei
 v t
 ), where Re  
 ( z
 ) = 12 ( z 
 +  z
 *).


R



E


$

*

1

1 ~ E


$2 = 14[E
 $1 ~ E
 $2 e
 -2 i
 v t 
 + E
 $*1 ~ E
 $*2 e
 2 i
 v t 
 + E
 $1 ~ E
 $*2 + E
 $1 ~ E
 $2]

The last two terms are time independent, while 

8E
 $1 ~ E
 $2 e
 -2 i
 v t
 9 S 0 and 8E
 $*1 ~ E
 $*2 e
 2 i
 v t
 9 S 0

because of the 1> T
 v coefficient. Thus


9.39
   The fringes are generally a series of fine jagged bands, which are 


I


fixed with respect to the glass.

12 = 28E


$1 ~ E
 $29 = 12 (E
 $1 ~ E
 $*2 + E
 $*1 ~ E
 $2)


9.2
  The largest value of ( r



9.40
   ∆ x 
 = l

1 -  r
 2) is equal to  a
 . Thus if e1 = e2,  


ƒ
 >2a,  a = l0>2 nƒ
 ∆ x


d =  k
 ( r
 1 -  r
 2) varies from 0 to  ka
 . If  a
  7 7 l, cos d  
 and therefore  I
 12 

a = 5 * 10-5 rad = 10.2 seconds.

will have a great many maxima and minima and therefore average to 


9.43
    x
 2 =  d
 1[( R
 1 -  d
 1) +  R
 1] = 2 R
 1 d
 1 -  d
 21.

zero over a large region of space. In contrast, if  a
  6 6 l, d varies only 

slightly from 0 to  ka
  6 6 2

Similarly,  x
 2 = 2 R


p. Hence  I


2 d
 2 -  d
 22

12  
 does not average to zero, and 

from Eq. (9.17),  I
  deviates little from 4 I
 0. The two sources effectively 


x
 2 1

1

l ƒ


behave as a single source of double the original strength. 


d 
 =  d
 1 -  d
 2 =   c - d ,   d 
 =  m
  

2  R
 1


R
 2

2


9.4
  A bulb at  S
  would produce fringes. We can imagine it as made 

up of a very large number of incoherent point sources. Each of these 

As  R
 2 S ∞,  xm 
 approaches Eq. (9.43).

would generate an independent pattern, all of which would then over-


9.47
   A motion of l>2 causes a single fringe-pair to shift past, hence 

lap. Bulbs at  S


92 

1   
 and   S
 2   
 would be incoherent and could not generate 

l>2 = 2.53 * 10-5 m and l = 550 nm.

detectable fringes.


9.53
    E
 2

*


t 
 =  EtEt 
 =  E
 20( tt
 ′)2>(1 -  r
 2 e
 - i
 d)(1 -  r
 2 e
 + i
 d) 9.9



It 
 =  Ii
 ( tt
 ′)2>(1 -  r
 2 e
 - i
 d -  r
 2 ei
 d +  r
 4) (a)  ( r
 1 -  r
 2) = ±12l, hence  a
  sin u1 = ±12l and u1 ≈ ±12l> a
  = 

±1


9.54
  (a)  R 
 = 0.80 6  F 
 = 4 R
 >(1 -  R
 )2 = 80

2 (632.8 * 10-9 m)>(0.200 * 10-3 m) = ± 1.58 * 10-3 rad, or 

since  y
 1 =  s
 u1 = (1.00 m)(±1.58 * 10-3 rad) = ±1.58 mm.

(b) g = 4 sin-1 1> 2 F 
 = 0.448

(b)   y
 5 =  s
 5l> a 
 = (1.00 m)5(632.8 * 10-9)>(0.200 * 10-3 m) =  

(c) ℱ = 2p>0.448 

1.582 * 10-2 m.

(d)  C 
 = 1 +  F
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2

1


9.55
  

= 0.81 c1 +

1 +  F
 (∆d>4)2

1 +  F
 (∆d>2)2d


F
 2(∆d)4 - 15.5 F
 (∆d)2 - 30 = 0


P



9.56
    I 
 =  I
 max cos2 d>2


I 
 =  I
 max>2  
 when d = p>2 6g = p


S



P


Separation between maxima is 2p

ℱ = 2p>g = 2

Exit


9.58
  At near-normal incidence (u i 
 ≈ 0) Fig. 4.52 indicates that the 

pupil

relative phase shift between an internally and externally reflected 

beam is p rad. That means a total relative phase difference of 


10.6
     


b = ±p

sin u = ±l> b


u ≈ ±l> b



n
 0  
 <  n
 1


L
 u ≈ ± L
 l> b


2p [2(l


n
 1  
 >  ns



f
 4)] + p


L
 u ≈ ± ƒ


l

2l> b



f



ns


≈  L
 l b


or 2p. The waves are in-phase and interfere constructively.


b



9.59
   n
 0 = 1  ns 
 =  ng
   n
 1 = 2 ng



L


21.54 = 1.24

1

1 l

1 540


d 
 =  

0

l





=  

 nm

4  ƒ 
 = 4  n



10.9
   l = (20 cm) sin 36.87° = 12 cm.

1

4 1.24

No relative phase shift between two waves.


ka



kb



10.14
  

a =

 sin u,  b =

 sin u

2

2


9.60
   The refracted wave will traverse the film twice, and there will be 

no relative phase shift on reflection. Hence


a 
 =  mb
 , a =  m
 b, a =  m
 2p


d 
 = l0>4 nƒ 
 = (550 nm)>4(1.38) = 99.6 nm


N 
 = number of fringes =  a
 >p =  m
 2p>p = 2 m



10.17
  

a = 3p>2 N 
 = p>2 [10.34]


I(0) 
 sin b 2

Chapter 10


I(
 u ) 
 =

 a

b     from Eq. (10.35)


N
 2

b


10.1
   ( R 
 + /)2 =  R
 2 +  a
 2; therefore  R 
 = ( a
 2 - /2)>2/ ≈  a
 2>2/, and  I
 > I(0) 
 ≈ 19 .

/ R 
 =  a
 2>2, so for l 7 7 /, l R
  7 7  a
 2>2 6  R 
 = (1 * 10-3)210>2l = 

10 m.


R
  + 


a



S



R


sin u

sin u

l

l

l

l


a



b



a



b



10.3
   d
  sin u m 
 =  m
 l,     
 u =  N
 d>2 = p





7 sin u = (1)(0.21)  d = 2p> N 
 =  kd
  sin u





sin 


10.26
   If the aperture is symmetrical about a line, the pattern will 

u = 0.03   sin u = 0.000 9

be symmetrical about a line parallel to it. Moreover, the pattern 


 


u = 1.7°     
 u = 3 min

will be symmetrical about yet another line perpendicular to the ap-


10.4
   Converging spherical wave in image space is diffracted by the 

erture’s symmetry axis. This follows from the fact that Fraunhofer 

exit pupil.

patterns have a center of symmetry.
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10.27



10.28
   Three parallel short slits.


10.29
   Two parallel short slits.


10.30
   An equilateral triangular hole.


10.31
   A cross-shaped hole.


10.32
  The  E
 -field of a rectangular hole.


10.38
   From Eq. (10.58),  q
 1 ≈ 1.22( ƒ
 > D
 )l ≈ l.


10.39
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n


u i



a


u n


u n


u m



10.65
   ℛ =  mN 
 = 106,  N 
 = 78 * 103

6  m 
 = 106>78 * 103

∆lfsr = l> m 
 = 500 nm>(106>78 * 103) = 39 nm

2 nƒd
  





ℛ = ℱ m 
 = ℱ 

= 106 [9.76]

l





∆lfsr = l2>2 nƒd 
 = 0.012 5 nm [9.78]


10.66
   

ℛ = l>∆l = 5892.9>5.9 = 999






N 
 = ℛ> m 
 = 333


10.68
   



y 
 =  L
 l> d



 



d 
 = 12 * 10-6>12 * 10-2 = 10-4 m

w


10.70
  



A 
 = 2pr23 sin w  d
 w = 2pr2(1 - cos w)

0


10.45
   1 part in 1000. 3 yd ≈ 100 inches. (See figure below.)





cos w = [r2 + (r +  r
 0)2 -  r
 2 l
 ]>2r(r +  r
 0)






rl 
 =  r
 0 +  l
 l>2

1

Area of first  l
  zones

inch

10


 



A 
 = 2pr2 - pr(2r2 + 2r r
 0 -  l
 l r
 0 -  l
 2l2>4)>(r +  r
 0) lpr

(2 l 
 - 1)l


 



Al 
 =  A 
 -  Al
 -1 =

  c r
 0 +

d

r +  r
 0

4

1

1


10.84


inch

inch

10

10

3


10.55
  From Eq. (10.32), where  a 
 = 1>(1000 lines per cm) = 0.001 

1

cm per line (center to center), sin u m 
 = 1(650 * 10-9 m)>(0.001 *

10-2 m) = 6.5 * 10-2 and u1 = 3.73°.

0

1

2

3


10.61
  The largest value of  m
  in Eq. (10.32) occurs when the sine 

∆ w
  = 5.5

function is equal to 1, making the left side of the equation as large 


I


as possible; then  m 
 =  a
 >l = (1>10 * 105)>(3.0 * 108 m>s , 4.0 * 


10.85
   I 
 = 0 5[12 - 𝒞 (v1)
 ]2 + [12 - 𝒮 (v1)
 ]26

1014 Hz) = 1.3, and only the first-order spectrum is visible.

2

2


10.63
   sin u


I


1


i 
 =  n
  sin u n



 



I 
 = 0 a

b csin2 ap v
 21b + cos2 ap v
 21bd

Optical path length difference =  m


2

2

2

l

p v
 1


a
  sin u m 
 -  na
  sin u n 
 =  m
 l


I


2

0

1


a
 (sin 






I 
 =  a

b

u m 
 - sin u i
 ) =  m
 l

2 p v
 1
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10.86
   Fringes in both the clear and shadow region [(see M. P. Givens 

and W. L. Goffe,  Am. J. Phys
 . 34,
  248 (1966)].


10.87
   u 
 =  y
 [2>l r
 0]1>2;   
 ∆ u 
 = ∆ y 
 * 103 = 2.5.

v

v

−2v

0

2v


p



p


−2v

0

2v


p



p



T  
 ∞


11.9
   ℱ5 af(x) 
 +  bh(x)
 6 =  aF(
 k ) 
 +  bH(
 k ).



11.11
    F(
 k ) 
 =  L
  sinc2  kL
 >2  
 at k = 0,  F(0) 
 =  L
 , and  F
 (±2p> L
 ) = 0.


x 
 = +∞

0 1.25

5


11.18
   3


ƒ(x)h(X 
 -  x)
   dx



10.88



x 
 = -∞


x
 ′ = -∞

+∞

= -3


ƒ(X 
 -  x
 ′ )h(x
 ′ )
   dx
 ′ = 3  h(x
 ′ )ƒ(X 
 -  x
 ′ )
   dx
 ′


x
 ′ = +∞

-∞

where  x
 ′ =  X 
 -  x
 ,  dx 
 = - dx
 ′.


ƒ
 à h 
 =  h
 à ƒ


or

ℱ5 ƒ
 à h
 6 = ℱ5 ƒ
 6 · 
 ℱ5 h
 6 = ℱ5 h
 6 · 
 ℱ5 ƒ
 6 = ℱ5 h
 à ƒ
 6


11.22
   A point on the edge of  ƒ(x
 ,  y)
 , for example, at ( x 
 =  d
 ,  y 
 = 0), is spread out into a square 2/ on a side centered on  X 
 =  d
 . Thus it extends no farther than  X 
 =  d 
 + /, and so the convolution must be zero 

at  X 
 =  d 
 + / and beyond.

Chapter 11

+∞


11.24
    ƒ(x 
 -  x0)
 à h(x) 
 = 3  ƒ(x 
 -  x0)h(X 
 -  x) dx
 ,


11.1
    E


-∞

0 sin k px 
 =  E
 0( ei
 k px 
 -  e
 - i
 k px
 )>2 i


and setting  x 
 -  x
 0 = a,  
 this becomes


E


+ L


+ L



F(
 k )


0


ei
 (k + k p
 ) x
   dx



ei
 (k - k p
 ) x
   dx


+∞

=

c

-

d

2 i 
 3

3

- L


- L


3  ƒ(
 a )h(X 
 - a -  x0)
   d
 a =  g(X 
 -  x0)


-∞


iE
 0 sin (k + k p
 ) L



iE
 0 sin (k + k p
 ) L



F(
 k )



11.28


= - 

+


f(x)


(k + k p
 )

(k - k p
 )


F(
 k ) 
 =  iE
 0 L
 [sinc (k - k p
 ) L 
 - sinc (k + k p
 ) L
 ]


F(k)



x


0

− kp



k


0

+ k


d (x
  −  x



p



0)



e
 2 i
 v pt 
 +  e
 -2 i
 v pt



x



11.3
   cos2 v pt 
 = 12 + 12 cos 2v pt 
 = 12 +

0


x
 0

4

+ T



F(
 v ) 
 = 123  ei
 v t
   dt 
 + 143 ei
 (v+2v p
 ) t
   dt 
 + 143 ei
 (v-2v p
 ) t
   dt


- T



f(x
  −  x0)


1

1


F(
 v ) 
 =  sin v T 
 +

 sin (v + 2v p
 ) T


v

2(v + 2v p
 )

1


f(x) 


d (x
  

 sin(

−  x


v


0)


+

- 2v

2(


p
 ) T


v - 2v p
 )


T



x


0


F(
 v ) 
 =  T
  sinc v T 
 +  sinc(v + 2v

2


p
 ) T



T



x
 0

+  sinc(v - 2v

2


p
 ) T
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11.32
   We see that  ƒ(x) 
 is the convolution of a rect-function with two 

d-functions, and from the convolution theorem, 


F(
 k ) 
 = ℱ5rect ( x
 )à[d (x 
 -  a) 
 + d (x 
 +  a)
 ]6

= ℱ5rect ( x
 )6 · 
 ℱ5[d (x 
 -  a) 
 + d (x 
 +  a)
 ]6

=  a
  sinc 12 k a 
 · 
 ( ei
 k a 
 +  e
 - i
 k a
 )

=  a
  sinc112 k a
 2 · 
 2 cos k a



11.33
   ƒ(x)
 à h(x)


= [d (x 
 +  3) 
 + d (x 
 -  2) 
 + d (x 
 -  5)
 ]à h(x)


=  h(x 
 +  3) 
 +  h(x 
 -  2) 
 +  h(x 
 -  5)



11.36


{  h(x)
 }

{  f(x)
 }

=

{ E(x)
 }

1

2

=

0


11.37
   
 𝒜 (y, z) 
 = 𝒜 (
 - y, 
 - z)


+ b
 >2


11.40 



E(
 k Z) 
 = 3 𝒜0  
 cos (p z
 > b
 ) ei
 k Zz dz


- b
 >2


E(Y, Z, t) 
 ∝ 6𝒜 (y, z)ei
 (k Yy
 +k Zz
 )  dy
   dz


p z


p z


= 𝒜

 cos k

 sin k

Change  Y
  to - Y
 ,

0 


Zz
   dz 
 +  i
 𝒜0 


Zz
   dz


  Z
  to  - Z
 ,  y
  to - y
 ,  z
  to - z
 ; then k

3cos 

3cos 


Y
  goes to  - k Y
  and 


b



b


k Z
  to -k Z
 .

1

1


b
 k

+


E(
 k


Z



Z) 
 = 𝒜0 cos 


 
 C


E(
 - Y, 
 - Z) 
 ∝

2

6𝒜 (
 - y, 
 - z)ei
 (k Yy
 +k Zz
 ) dy
   dz


ap - k

ap + k


b



Z
 b


b



Z
 b S

6 E(
 - Y, 
 - Z) 
 =  E(Y, Z)


Chapter 12


11.38  
 From Eq. (11.63),


12.8
   At low pressures, the intensity emitted from the lamp is low, the 


E(Y, Z) 
 = 6𝒜 (y, z)ei
 k( Yy
 + Zz
 )> R
   dy
   dz


bandwidth is narrow, and the coherence length is large. The fringes 

will initially display a high contrast, although they’ll be fairly faint. 

As the pressure builds, the coherence length will decrease, the contrast 


E
 ′ (Y, Z) 
 = 6𝒜 (
 a y, 
 b z)ei
 k( Yy
 + Zz
 )> R
   dy
   dz
 will drop off, and the fringes might even vanish entirely.


12.11  
 Each sine function in the signal produces a cosinusoidal au-

now let  y
 ′ = a y 
 and  z
 ′ = b z
 :

tocorrelation function with its own wavelength and amplitude. All 

1

of these are in phase at the zero delay point corresponding to t = 0. 


E
 ′ (Y, Z) 
 =

Beyond that origin, the cosines soon fall out of phase, producing a 

ab 6 𝒜 (y
 ′ , z
 ′ )ei
 k[( Y
 >a) y
 ′ + ( Z
 >b) z
 ′]  dy
 ′  dz
 ′

jumble where destructive interference is more likely. (The same sort 

1

or   



E
 ′ (Y, Z) 
 =

  E(Y
 >

of thing happens when, say, a square pulse is synthesized out of  

a , Z
 >b ) 


ab

sinusoids—everywhere beyond the pulse all the contributions cancel.) 

As the number of components increases and the signal becomes more 


11.39


complex—resembling random noise—the autocorrelation narrows, 





1 + T



C


ultimately becoming a 


ƒƒ 
 = lim  


A
  sin (v t 
 + e)  A
  sin (v t 
 - vt + e)  dt


d-spike at t = 0.


T 
 S ∞ 2 T
 3- T



12.13  
 The irradiance at g0 arising from a point source is


A
 2

4 I


= lim    

0 cos2 (d>2) = 2 I
 0(1 + cos d)


T 
 S ∞ 2 T 
 3 312 cos (vt) - 12 cos (2v t 
 - vt + 2e) 4  dt


For a differential source element of width  dy
  at point  S
 ′,  y
  from axis, 

the  OPD
  to  P
  at  Y
  via the two slits is 

since cos a - cos b = -2 sin 12 (a + b) sin 12 (a - b). Thus

Λ = ( S
 ′ S
 1 +  S
 1 P
 ) - ( S
 ′ S
 2 +  S
 2 P
 )


A
 2

= ( S
 ′ S
 1 -  S
 ′ S
 2) + ( S
 1 P 
 +  S
 2 P
 )


Cƒƒ 
 =  cos (vt)

2





=  ay
 > l 
 +  aY
 > s
  from Section 9.3.
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The contribution to the irradiance from  dy
  is then 

is therefore also a series of d-functions. Hence the  P
 1 P
 2,  
 the slit sep-


dI 
 ∝ (1

aration   d
 , must correspond to the location of the first-order diffrac-

+ cos  k
 Λ)  dy


tion fringe of the source if 𝒱 is to be maximum.  a
 u1 ≈ l,   
 and so 

+ b
 >2


d 
 ≈  l
 u1 ≈ l l
 > a 
 = (500 * 10-9 m)(2.0 m)>(500 * 10-6 m) = 2.0 mm.


I 
 ∝ 3 (1 + cos  k
 Λ)  dy


- b
 >2


d



aY



ab



aY



ab


Chapter 13


I 
 ∝  b 
 +

  csin a

+

b - sin a

-

bd


ka



s


2 l



s


2 l



d



13.2
    P
 > A 
 = Ps( T
 4 -  T
 4e) = (0.97)(5.670 3 * 10-8 W>m2 · 
 K4) *


I 
 ∝  b 
 +

 [sin ( kaY
 > s
 ) cos ( kab
 >2 l
 )

(3064


ka


- 2934) =  I 
 = 76.9 W>m2.  P 
 = 108 W.

+ cos ( kaY
 > s
 ) sin ( kab
 >2 l
 )


13.3
    Ie 
 = s T
 4

- sin ( kaY
 > s
 ) cos ( kab
 >2 l
 )

(22.8 W cm2)(104 cm2>m2) = (5.7 * 10-8 W m-2 K-4) T
 4

+ cos ( kaY
 > s
 ) sin ( kab
 >2 l
 )]

22.8 * 104 1>4


T



l
 2

= c

= 1.414 * 103 = 1414 K


I


 sin ( kab


5.7

∝  b 
 +

>2 l
 ) cos ( kaY
 > s
 )

* 10-8d


ka



13.4
    T
 42> T
 41 =  P
 2> P
 1 = 16 * 1012>16 * 108 = 1.0 * 104.


I
 max -  I
 min


13.13
   l(min)


12.14
  

𝒱 =

= 300 nm


I
 max +  I
 min


h
 n =  hc
 >l


I


∼

max =  I
 1 +  I
 2 + 2 2 I
 1 I
 2g12

(6.63 * 10-34 J · 
 s)(3 * 108 m>s)

∼

=


I
 min =  I
 1 +  I
 2 - 22 I
 1 I
 2g12

300 * 10-9 m

4

∼

ℰ

2 I


= 6.63 * 10-19 J = 4.14 eV


 


𝒱 =

1 I
 2g12

2( I
 1 +  I
 2)


13.15
   Nh
 n = (1.4 * 103 W>m2)(1 m2)(1 s)


12.15  
 When 

1.4 * 103(700 * 10-9)

980 * 1020


N 
 =

=


S
 ″ S
 1 O
 ′ -  S
 ′ S
 1 O
 ′ - l>2, 3l>2, 5l>2, c

(6.63 * 10-34)(3 * 108)

19.89

the irradiance due to  S
 ′ is given by 


N 
 = 49.4 * 1020


13.16  
 Find the number of atoms present.  pV 
 =  nRT
 ;  n 
 = 4.47 * 10-7 


I
 ′ = 4 I
 0 cos2 (d′>2) = 2 I
 0(1 + cos d′)

mol; so there are 2.69 * 1017 atoms and 2.67 * 1015 get excited; the 

while the irradiance due to  S
 ″  
 is 

emission rate is 2.67 * 1015>t = 1.92 * 1023 photons per second.

1


I
 ″ = 4 I
 0 cos2 (d″>2) = 4 I
 0 cos2 (d′ + p)>2 


13.19  
 h
 n> k
 B T 
 = 0.774  
 and 

= 0.86; at the elevated 


e
 0.774 - 1

= 2 I
 0(1 - cos d′)

temperature the ratio is substantial, and the two modalities are 





Hence   I
 ′ +  I
 ″ = 4 I
 0.

comparable.


12.18
   I
 1 (t) 
 = ∆ I
 1 (t) 
 + 8 I
 19


13.29  
 The transition rate must equal  P
 > h
 n = 3 * 1015 s-1.

hence


n 
 P 1>2


13.37
   I


8 I
 1 (t 
 + t )I
 2 (t)
 9 = 8[8 I
 19 + ∆ I
 1 (t 
 + t )
 ][8 I
 29 + ∆ I
 2 (t)
 ]9

= 1

0

2  v
 P E
 20 =

 a b  E
 2

2

0, where m ≈ m0

m0

since 8 I
 19 is independent of time.


E
 20 = 2(m0>P0)1>2  I
 > n  
 (m0>P0)1>2 = 376.730 Ω

8 I
 1 (t 
 + t )I
 2 (t)
 9 = 8 I
 198 I
 29 + 8∆ I
 1 (t 
 + t )
  ∆ I
 2 (t)
 9


E
 0 = 27.4 ( I
 > n
 )1>2

if we recall that8∆ I
 1 (t)
 9 = 0. Eq. (12.34) follows by comparison with 


13.39


Eq. (12.32).


12.20
  From Eq. (12.22), 𝒱 = 22(10 I
 ) I
 >(10 I 
 +  I
 ) = 2210>11 =  


0.57.


12.24  
 Using the van Cittert–Zernike theorem, we can find g

∼12 (0)
  

from the diffraction pattern over the apertures, and that will yield the 

visibility on the observation plane: 𝒱 = g∼12 (0)
  = sinc b. From 

Table 1, sin  u
 > u 
 = 0.85 when  u 
 = 0.97, hence p by
 > l
 l = 0.97, and if   y 
 =  P
 1 P
 2 = 0.50 mm,   
 then   b 
 = 0.97( l
 l>p y
 ) = 0.97(1.5 m)(500 *  

10-9 m)>p(0.50 * 10-3 m) = 0.46 mm.


13.40



12.27  
 From the van Cittert–Zernike theorem, the degree of coherence 

can be obtained from the Fourier transform of the source function, 

which itself is a series of d-functions corresponding to a diffraction 

grating with spacing  a
 , where  a
  sin u m 
 =  m
 l. The coherence function 
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13.41



13.44
   From the geometry,  ƒt
 u =  ƒi
  Φ: k O 
 =  k
  sin u and k I 
 =  k
  sin Φ, hence  sin u ≈ u ≈ k O
 l>2p and sin Φ ≈ Φ ≈ k I
 l>2p; therefore 

u>Φ = k O
 >k I 
 and k I 
 = k O
 (Φ>u) = k O
 ( ƒt
 > ƒi
 ). When  ƒi 
 7  ƒt 
 the image will be larger than the object, the spatial periods in the image will also 

be larger, and the spatial frequencies in the image will be smaller than 

in the object.


13.45
    a 
 = (1>50) cm:  a
  sin u =  m
 l, sin u ≈ u, hence u = (5000 m)l, 

and the distance between orders on the transform plane is 


ƒ
 u = 5000 l ƒ 
 = 2.7 mm.


13.47  
 Each point on the diffraction pattern corresponds to a single spa-

tial frequency, and if we consider the diffracted wave to be made up of 

plane waves, it also corresponds to a single-plane wave direction. Such 

waves, by themselves, carry no information about the periodicity of the 

object and produce a more or less uniform image. The periodicity of the 

source arises in the image when the component plane waves interfere.


13.49
  The relative field amplitudes are 1.00, 0.60, and 0.60; hence 


E 
 ∝ 1 + 0.60 cos (+ ky
 ′) + 0.60 cos (- ky
 ′) = 1 + 1.2 cos  ky
 ′. This is 

a cosine oscillating about a line equal to 1.0. It varies from  +2.2 to  


-0.2. The square of this will correspond to the irradiance, and it will 


13.43


be a series of tall peaks with a relative height of (2.2)2, between each 

pair of which there will be a short peak proportional to (0.2)2; notice 

the similarity with Fig. 11.46.


13.50
    a
  sin u = l, here   ƒ
 u = 50l ƒ 
 = 0.20 cm;   
 hence  l = 

0.20>50(100) = 400 nm. The magnification is 1.0 when the focal 

lengths are equal; hence the spacing is again 50 wires>cm.


13.54  
 The inherent motion of the medium would cause the speckle 

pattern to vanish.
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Apodization, 561–562



Birefringent crystals, 344–351



Abu Sàd al-Àla’ Ibn Sahl (940-1000), 1



Apollo, 89, 133, 196



Blackbody radiation, 53, 80, 604, 606



Accommodation, 210–211, 212


Arago, Dominique François Jean (1786-1853), 


Blazed gratings, 491–492



Achromates, 4, 217, 272, 275



5, 355, 367, 508



Blind spot, 209–210



Acoustical holography, 658



Area of coherence, 597



Bluejay’s feathers, 89



Adaptive optics, 232–234



Arecibo Observatory, 262



Blur spot, 151



Additive coloration, 134–136



Argand diagram, 22, 



Bohr, Niels Henrik David (1885-1962), 8



ADP (ammonium dihydrogen phosphate), 661



Argon laser, 621, 623



Boltzmann, Ludwig (1844-1906), 605



Aether, 3, 5–7



Aristophanes, 1, 162


Boltzmann’s Constant ( k
 B), 607



Afocal, 223



Aristotle, 1, 4, 220



Boltzmann’s distribution, 604



Airy, Sir George Biddell (1801-1891), 7, 214, 



Armstrong, E. H., 640



Born, Max (1882-1970), 141



482



Array theorem, 562–563


Bose-Einstein:


Airy disk, 175, 233, 229, 230, 233, 260, 



Aspherical surfaces, 152–154, 184–185



condensate, 323



482–484, 548



Aspherics, 152–154



distribution, 58



Airy function, 428



Astigmatic difference, 266



statistics, 55, 58



Alhazen, 1, 208, 220



Astigmatism, 214–215, 228, 266–268



Bosons, 55



Alkali metals, 132



Astronomical telescope, 222



Boundary conditions, 114, 288



Aluminum, 134, 180



Atomic interferometers, 420



Boundary diffraction wave, 527–528



AM radiowaves, 66



Atoms, 66–67



Boundary wave, 126–130



Ametropic, 212


Attenuation coefficient (a), 131



Bradley, James (1693-1762), 7



Amici objective, 220



Autocollimation, 493



Bragg’s Law, 497, 656


Ammonium dihydrogen phosphate (ADP), 


Autocorrelation, 565–567



Bremsstrahlung, 81
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Automatic lens design, 259



Brewster, David (1781-1868), 341, 355, 372



Ampère, André Marie (1775-1836), 42



Averaging harmonic functions, 50



Brewster windows, 619, 620



Ampère’s Circuital Law, 42–43, 45



Aviogon lens, 222



Brewster’s angle, 355, 620



Amplification, of light, 604, 630



Axial chromatic aberration, 271



Brewster’s Law, 355, 357



Amplitude, 14


Azimuthal angle (g), 148



Brillouin scattering, 296, 630, 660



Amplitude, squeezed light, 59



Broglie, Louis Victor, Prince de (1892-1987), 8



Amplitude coefficients, 116, 357



B



Brumberg, Evgenii M., 54


reflection ( r
 ), 116–125, 357



Babinet compensator, 364–365



Bunsen, Robert Wilhelm (1811-1899), 8


transmission ( t
 ), 116–125



Babinet’s Principle, 523



Burning glass, 1, 153, 162



Amplitude modulation, 295, 640



Baboon’s blue buttocks, 89



Amplitude splitting, 390, 408–424



Back focal length, 162, 173, 213, 250, 256



C



Analytical ray tracing, 251



Bacon, Roger (1215-1294), 1, 211



C-W laser, 619



Analyzer, 338



Bandwidth, 315–316, 366–367, 580



Cadmium red line, 316



Anamorphic lenses, 215



minimum resolvable, 432



Calcite, 4, 344–349



Anastigmats, 269



Barkla, Charles Glover (1877-1944), 354



Calcium fluoride lenses, 220
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Camera, 179, 220–222



Color(s), 105, 134–138



Dark-ground method, 642–643



lenses, 221–223



additive, 134, 137



De Broglie wavelength, 36



pinhole, 220–221, 271



primary, 135



Degree of coherence, 317, 593 



single lens reflex, 221



subtractive, 136, 137


Degree of polarization ( V
 ), 358, 380



Camera obscura, 1, 220



Coma, 228, 263–266



Delta function, 539–544, 549



Canada balsam, 351



negative, 264



Denisyuk, Yuri Nikolayevitch (1927-2006), 655



Capillary optics, 206–207



positive, 264


Dense wavelength division multiplexing 


Carbon dioxide laser, 318, 621, 623



tangential, 264



(DWDM), 201



Carbon disulfide, 375



sagittal, 264



Descartes, René (1596-1650), 2, 3, 143, 153, 



Cardinal points, 247



Comatic circle, 263



207, 238



Carotene, 137



Comb function, 310, 542



Destructive interference, 284, 392



Carrier wave, 296



Compensator plate, 416–418



Deviation, angular, 191



Cassegrain telescope, 227



Compensators, 364–365



Dextrorotatory, 368



Cartesian oval, 238



Babinet, 364–365



Dichroic crystals, 340–341



Cataract, 212



Soleil, 365



Dichroism, 339



Catoptrics, 1, 184



Complementary colors, 136, 367



Dichromophore, 341



Cauchy, Augustin Louis (1789-1857), 87



Complex amplitude, 286


Dielectric constant ( KE
 ), 41



Cauchy’s equation, 87



Complex degree of coherence, 593



Dielectric films, 9, 408–416, 433–438



Caustic, 104–105



Complex numbers, 22



double-beam interference, 408–416



Cavities, optical, 258


Complex index of refraction ( ñ
 ), 131



multilayer systems, 433–438



Cavity modes, 614



Complex representation, 22–23, 131, 286


Differential wave equation:


transverse, 615



Compound lens, 157, 250



one-dimensional, 12



Centered optical system, 157



Compound microscope, 218–220



three-dimensional, 28–31, 46–49



Central-spot scanning, 433



Compound zero-order wave plate, 359



Diffraction, 3, 151, 449–528, 559–563



Cesium clock, 77



Compton, A. H., 127



array theorem, 562–563



Cesium gas, 322



Compton Effect, 60, 



Babinet’s Principle, 523–524



Chandra X-Ray Observatory, 82



Concave lens, 153, 158



boundary waves, 527–528



CHARA Array, 597


Conductivity (s), 127–128



cancer cells, 484



Characteristic radiation, 82



Confocal resonator, 616–617



circular apertures, 501–510



Chelate lasers, 625



Conjugate foci, 152



circular obstacles, 508



Chief ray, 176



Conjugate points, 151



coherent oscillators, 454–457



Chlorophyll, 137



Connes, Pierre, 433


comparison of Fraunhofer and Fresnel, 


Cholesteric crystals, 370



Constructive interference, 284, 392



452–454



Christiansen, C., 87



Continuously variable retarder, 377



Fourier methods, 559–563



Christiansen, W. N., 456


Contrast (𝒱), 571, 650



Fraunhofer, 452–454, 457–486, 559–563



Chromatic aberration(s), 217, 258, 271–276


Contrast factor ( C
 ), 448



condition, 457



axial, 271–272



Converging lens, 153, 157



double slit, 465–468, 560



lateral, 271–272



Convex lens, 157



many slits, 468–475, 561


Chromatic resolving power ( R
 ), 432


Convolution:


Fresnel, 452–454, 497–528



Cinnabar, 369



integral, 549–556



circular apertures, 501–510



Circle of least confusion, 260, 266



theorem, 556–561



circular obstacles, 508



Circular birefringence, 368



Cooke (or Taylor) triplet, 222, 269, 276



rectangular aperture, 512



Circular light, 333–334, 335, 365



Copper, 132, 134



single slit, 517–520



Circular polarizers, 365–366



Corner cube, 196



gratings, 488–497, 631, 632



Cittert, Pieter Hendrik van, 580



Cornu, Marie Alfred (1841-1902), 514



line gratings, 494



Cladding, 197



Cornu spiral, 287, 514–523



two- and three-dimensional, 494–497



Clausius, Rudolf Julius Emanuel (1822-1888), 265



Corpuscular theory, 3–9



Kirchhoff’s theory, 524–527



Clear aperture, 178



Correlation interferometry, 597–601



limited, 151, 229



Cleavage form, 344, 345



Correlogram, 568



of microwaves, 451



Coddington magnifier, 217



COSTAR, 262



narrow obstacle, 521–523


Coefficient of finesse ( F
 ), 428



Cotton-Mouton Effect, 374–375



nondiffracting beams, 488



Coherence, 580–603



Cover glass slides, 199



opaque obstructions, 451–452



area of, 582



Crab Nebula, 64, 82



rectangular aperture, 475–480, 512–514


complex degree of (g

∙12), 594



Critical angle, 119, 126, 193, 197



semi-infinite screen, 520–521



functions, 589–594



Cross-correlation, 444, 564, 565



single slit, 457–465, 517–520


length (∆ lc
 ), 316–318, 366, 403, 580



Cross talk, 197



zones, 497–501



longitudinal, 561, 580



Cryolite, 435



Diode laser, 624



partial, 580



Cube corner reflector, 196


Dioptric power (𝒟), 211–212



spatial, 395, 580, 594–595



Cusa, Nicholas (1401-1464), 211



Dioptrics, 184



temporal, 395, 580–581, 594–595



Cylinder lens, 214–215


Dipole moment ( p ), 64–66, 70–72



theory, 580–601



Cylindrical waves, 31, 517



Dipole radiation, 64–66


time (∆ tc
 ), 316, 366, 395, 580



Dirac, Paul Adrien Maurice (1902-1984), 8, 



Coherent fiber bundle, 198



D



540



Coherent waves, 284, 395–397



D’Alembert, Jean Le Rond (1717-1783), 12



Dirac delta function, 539–544



Cold mirror, 433



D lines of sodium, 69, 136, 322



Director (liquid crystals), 377



Collimated light, 162



Da Vinci, Leonardo (1452-1519), 1, 10, 220



Discrete Fourier transform, 318
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Dispersion, 68, 70–75, 131, 191–193



Electronic polarization, 70



F


angular (𝒟), 493



Elliptical light, 334–336



f
 -number ( ƒ
 /#), 179, 198, 221–222, 228, 482



anomalous, 74, 297–298


Emission coefficient (e ), 604


l


Fabry, Charles (1867-1945), 429



equation, 72–74, 131–133



Emission from an atom, 8, 66–67



Fabry-Perot cavity, 613,



of glass, 72–74



Emission theory, 8



Fabry-Perot etalon, 429, 613, 614, 663



intermodal, 202


Emissivity (e), 606



Fabry-Perot filter, 430



normal, 74, 297



Emmetropic eye, 212



Fabry-Perot Interferometer, 429–433, 494



relation, 298



Enantiomorphs, 368



Fabry-Perot spectroscopy, 431–433



rotatory, 370



Endoscope, 199



Far field, 394


Dispersive:


Energy, 49


Far-field diffractions; see Fraunhofer  


indices, 272


Energy density ( u
 ), 49–50


diffraction


power, 272



Energy level, 66–67, 609, 610, 613, 620, 628, 



Far point, 212


Displacement current density (J
 $ D
 ), 43



630



Faraday, Michael (1791-1867), 5, 38, 373



Dissipative absorption, 69



Entoptic perception, 209



Faraday Effect, 373–375



Distortion, 269



Entrance pupil, 175, 178



Faraday’s Induction Law, 38, 45



Divergence, 44



Entrance window, 219



Farsightedness, 213–214



Diverging lens, 153



Erbium-doped fiber amplifiers (EDFAs), 200



Fast axis, 360



Dollond, John (1706-1761), 4, 274



Erecting system, 225


“Faster than light” light; see Superluminal light

Donders, Franciscus Cornelius (1818-1889), 


Etalon, Fabry-Perot, 429–433



Fermat, Pierre de (1601-1665), 3, 109



214



Euclid, 1, 98, 184



Fermat’s Principle, 109–113, 139, 142,  



Doppler broadening, 564, 613



Euler formula, 22



155, 184



Doppler Effect, 296, 564



Euler, Leonhard (1707-1783), 4, 113



Fermions, 55



Doppler shift, 68



Evanescent wave, 127–128



Feynman, Richard Phillips (1918-1988), 113, 



Double refraction, 345



Ewald-Oseen Extinction Theorem, 96



141–142



Drude, Paul Karl Ludwig (1863-1906), 131, 



Excited state, 66



Fiberoptic(s), 9, 196–206



293



Exit pupil, 175–176, 216



acceptance angle, 198



Dupin, C., 108



Exitance, spectral, 604



amplifiers, 200


DWDM; see Dense wavelength division 


Extended objects, images of, 162–167, 



bandgap, 204


multiplexing


180–182



cladding, 197



External reflection, 96, 119



coherent bundle, 198



E



Extinction color, 341



communications technology, 200–206


EDFAs; see Erbium-doped fiber amplifiers


Extraordinary rays, 345



cross talk, 197



Effective focal length, 174, 249



Eye, 207–211



fractional refractive index difference, 201



Einstein, Albert (1879-1955), 7, 70, 83, 140, 



accommodation, 210–211



graded-index, 203



236, 608, 610



ciliary muscles, 210–211



holey, 204



Einstein coefficients, 604, 608–611



aqueous humor, 208



incoherent bundle, 198



Einstein Ring, 237



choroid, 209



intermodal dispersion, 202



Electric dipole, 64–66



compound, 208



microstructured, 204


Electric field (E


$), 38, 113–122, 139, 283



cornea, 208–209 



mode field, 203


Electric permittivity (P), 41



crystalline lens, 208–210



mosaics, 199



Electro-optic constant, 376



far point, 212–213



multimode, 201



Electro-optics, 9



human, 207


number of modes ( Nm
 ), 201



Electromagnetic-photon spectrum, 75–82



iris, 136, 209



numerical aperture (NA), 198, 220



gamma rays, 82



near point, 210



photonic crystal, 204



infrared, 77–79, 82



powers, 211



single-mode fibers, 203



light, 79–81, 82



pupil, 208



spectral dispersion, 203



microwaves, 77



resolution, 486–487



stepped-index, 201



radiofrequency, 76–77, 82



retina, 209



V-number, 201



ultraviolet, 81



blind spot, 209–210



weakly guiding approximation, 201



X-rays, 81–82



cones, 209



Field curvature, 268–269



Electromagnetic theory, 6, 37, 38, 46, 



fovea centralis, 210



Field flattener, 199, 269



113–124



macula, 209–210



Field-lens, 218


electric polarization (P


$), 70



rods, 209



Field stop, 175



Maxwell’s Equation, 43–44



sclera, 208


Films; see Dielectric films

momentum ( p
 ), 59–61



vitreous humor, 208



Filters, 433



nonconducting media, 68



Eye-lens, 218


Finesse (ℱ), 428, 431, 448, 494



radiation, 61–67



Eye point, 217



Finite conjugates, 220



pressure, 59



Eye relief, 218



Finite imagery, 162–168



Electromagnetic waves, 46–49, 113–128, 



Eyeglasses, 1–2, 211–210



First-order theory, 156



131–134



Eyepiece(s), 217–218


Fizeau, Armand Hippolyte Louis (1819-1896), 

Electromagnetically induced transparency 


Erfle, 218, 226



5, 7, 47, 595



(EIT), 323



Huygens, 217–218



Fizeau fringes, 413, 419



Electromotive force, 38–40



Kellner, 218, 226



Floaters, 208–209



Electron, 8



orthoscopic, 218



Fluorescence, 627



diffraction, 449, 522



Ramsden, 218, 278



Flux density, 52, 286



probe, 51



symmetric (Plössl), 218



ƒ
 -number ( f/#
 ), 178–180, 186, 220, 221
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Focal length (ƒ):


Frequency stability, 317



Glan-Foucault polarizer, 352



back (b.f.l.), 173–174, 213, 247


CO2 laser, 318



Glan-Thompson polarizer, 352



effective, 174, 249



He-Ne laser, 318



Glass, 72, 73, 194, 273–274



first, 156



Fresnel, Augustin Jean (1788-1827), 5, 355, 



Golay cell, 76



front (f.f.l.), 173, 247



368, 450, 508, 527


Gold:


image, 156



Fresnel-Arago Laws, 396–397, 420



bound electrons, 136



of a lens, 160, 247



Fresnel-Kirchhoff diffraction, 526



color, 132



of two lenses in contact, 174



Fresnel composite prism, 370



reflectance, 134



of a mirror, 186–187



Fresnel diffraction, 452, 497–524



Goos-Hänchen shift, 129



object, 156



Fresnel double mirror, 405–406



Graded-index fibers, 201, 203



second, 156



Fresnel double prism, 406–407



Gradient index (GRIN) lens, 208,  



of a zone plate, 510–512



Fresnel Equations, 5, 115–125, 357



276–278



Focal plane, 160–162, 187



derivation, 115–117



axial-GRIN lens, 277–278



back, 162



interpretation, 118



gradient constant, 277



front, 162


amplitude coefficients ( r, t
 ), 118



radial-GRIN rod, 276



of a lens, 160



phase shifts, 120



Gran Telescopio Canarias (GTC), 230



Focal-plane ray tracing, 169–170, 173


reflectance ( R
 ), 121–125, 357



Grating equations, 490



Focal point, 153, 160–162


transmittance ( T
 ), 121–125



Gravitational lensing, 236–237



Focal ratio, 178–180, 186, 220, 221



Fresnel integrals, 512–514



Gregory, James (1638-1675), 227, 494



Fontana, Francisco (1580-1656), 2



Fresnel multiple prism, 370



Grimaldi, Francesco Maria (1618-1663), 3, 


Foucault, Jean Bernard Léon (1819-1868), 


Fresnel number, 504



192, 397, 449



5, 143



Fresnel rhomb, 364


GRIN lens; see Gradient index lens

Fourier:


Fresnel zone plate, 510–512, 646



Grosseteste, Robert, 1



analysis, 9, 300, 321



Fresnel zones, 498



Ground state, 66, 81



discrete, 304



Fresnel’s double mirror, 405–406



Group index of refraction, 298



diffraction theory, 559



Fresnel’s double prism, 406–407


Group velocity ( vg
 ), 296–302



integral(s), 310, 310–315



Fried parameter, 233



Gyroscope, 296



optics, 534–579



Fringe(s): 393–395



series, 301–310



equal inclination, 408–412, 419



H


Fourier, Jean Baptiste Joseph, Baron de  


equal thickness, 412–416



Haidinger, Wilhelm Karl (1795-1871), 411



(1768-1830), 9, 302



Fizeau, 413, 419



Haidinger fringes, 411–413, 415, 419



Fourier series, 301



Haidinger, 411–412, 415, 419



Hale telescope, 227



Fourier transform hologram, 654, 655



localization, 419, 424–425



Half-angular breadth, 528



Fourier transforms, 310–314, 534–544



order, 393, 419



Half-linear width, 528



of cylinder function, 537–538



resolvable, just, 431



Half-wave plate, 360–361



discrete analysis, 304, 318–320



Front focal length (f.f.l.), 162, 173, 247, 256


Half-wave voltage, ( V
 l>2), 375



of Gaussian, 536



Front stop, 175



Hall, Chester Moor (1703-1771), 4, 274



of Gaussian wave packet, 311, 558


Frustrated total internal reflection (FTIR), 


Hall, John, 310



irradiance spectrum, 319



129–130, 197



Hamilton, William Rowan (1805-1865), 113



power spectrum, 319



Fuchsin, 87



Hanbury-Brown, R., 599, 601



two-dimensional, 536–539



Fundamental frequency component, 308



Hanbury-Brown and Twiss experiment, 599



via a lens, 538–539



Hänsch, Theodor, 310



Fourier’s Theorem, 302



G



Harmonic functions, 14–17



Fox, Talbot (1800-1877), 87



Gabor, Dennis (1900-1979), 645



averaging of, 50–51



Franken, Peter A. (1928-1999), 660


Gain coefficient ( g
 ), 613



superposition of, 20–21


Fraunhofer, Joseph von (1787-1826),  


threshold, 613



Harmonic generation, 9, 660–662



8, 488



Galileo Galilei (1564-1642), 2, 3, 219, 222, 226



Harmonic waves, 14–17



Fraunhofer diffraction, 321, 452–454, 



Galileo’s telescope, 2, 222, 226–227



Harmonics, 308



457–486, 559–560



Gallium, 133



Harrison, George R., 492



coherent oscillators, 454



Gallium arsenide laser, 624



Hartmann sensor, 233



condition, 452–454



Gamma rays, 82



Heisenberg uncertainty principle, 316



double slit, 465–468, 560



Garbage bags, 93



Helium-neon (He-Ne) laser, 267, 318, 454, 



many slits, 468–475, 561



Gauge forces, 84



479, 508, 581, 615, 619–620



rectangular aperture, 475–480



Gauss, Karl Friedrich (1777-1855), 40, 156


Helmholtz, Hermann Ludwig Ferdinand von 


single slit, 457–460, 463–465, 560


Gauss’s Law:


(1821-1894), 265



Fraunhofer lines, 273



electric, 40–41, 45, 62



Helmholtz equation, 525



Free spectral range, 432, 494



magnetic, 41



Hemispherical resonator, 616


Frequency (n), 15



Gaussian function, 11, 311, 312, 316, 536, 



Herapath, William Bird, 341


angular (v), 15, 308



541, 548



Herapathite, 341



bandwidth, 315–316



Gaussian laserbeams, 617–619



Hero of Alexandria, 1, 109



beat, 294–296



Gaussian Lens Formula, 159



Herriott, Donald Richard, 619



mixing, 9, 643



Gaussian Optics, 156



Herschel, Sir William (1738-1822), 77, 227,


natural (v0), 69–71



Gaussian wave group, 322, 558


Herschel, Sir John Frederick William  

plasma (v p
 ), 132



Gay-Lussac, Joseph Louis (1778-1850), 508



(1738-1822), 368


resonance (v0), 69–71



Geometrical Optics, 37, 151–246, 247–281



Hertz, Heinrich Rudolf (1857-1894), 6,
   


spectrum, 302, 312



Geometrical wave, 527



76, 292



stability, 317



Giant Magellan Telescope (GMT), 230



Holey fibers, 204
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Holographic interferometry, 657–658



term, 283, 392



L



Holography, 9, 644–659



thin films, 3, 433–438



Labeyrie, A. E., 656



acoustical, 658



scattered light, 438



Lagrange, Joseph Louis (1736-1813), 113



computer-generated, 659



Interferogram, 422, 657, 658



Land, Edwin Herbert (1909-1991), 341



Fourier transform, 654, 655



Interferometers, 397–423


Laplace, Pierre Simon, Marquis de  


in-line, 646



amplitude-splitting, 408–423



(1749-1827), 508



reflection, 653



Mach-Zehnder, 421–422, 425



Laplacian operator, 28–30, 46



side-band Fresnel, 647



Michelson, 416–420, 425



Laserlight, 604



transmission, 652



Pohl, 422–424



Laser(s), 9, 604, 608–625



volume holograms, 655–656



Sagnac, 422, 425, 441–442



cavities, 613–617



white light reflection, 656



Twyman-Green, 440–441



chemical, 621



zone-plate interpretation, 645, 653



Fabry-Perot, 429–433, 494



cooling, 67–68



Hooke, Robert (1635-1703), 3, 414



Jamin, 447



coupled-cavity, 625



Hubble Space Telescope (HST), 185, 228, 



microwave, 404, 442–444



developments, 620–625



237, 246, 262



radar, 442–444



diode, 322



COSTAR, 262



radio, 456



first (pulsed ruby), 612–613



Hughes, David, 76



Twyman-Green, 440–441



fusion, 622–623



Hull, Gordon Ferrie (1870-1957), 61



wavefront-splitting, 397–408



gas, 623–624



Huygens, Christian (1629-1695), 3–4, 107, 



Fresnel’s double mirror, 405–406



giant pulse, 617



260, 346



Fresnel’s double prism, 406



helium-neon, 267, 318, 479, 508, 582, 



Huygens’s Principle, 100, 107–108, 346, 449



Lloyd’s mirror, 406–407



619–620



Huygens’s ray construction, 108



Young’s Experiment, 397–404



liquid, 621



Huygens-Fresnel Principle, 107, 449–451, 



Intermodal dispersion, 202



metastable states, 612



463, 497, 527



Internal reflection, 96–97, 125–129



modes, 614–616



Hyperbolic interface, 152



Inverse Square Law, 53, 142



optical pumping, 612



Hyperopia, 212, 213–214



Inversion, 181



population inversion, 612



Ion bombardment polishing, 9



Q-spoiling, 617



I



Ionic polarization, 70



Q-switching, 617



Iceland spar (calcite), 4, 344, 345


Irradiance ( I
 ), 51



Rayleigh range, 618


Image:


dipole radiation, 64–66



resonant cavity, 612


distance ( si
 ), 155



Irradiance modulator, 377



ruby, 612



erect, 163



Isoplanatic region, 233



semiconductor, 621, 624–625


focal length ( ƒi
 ), 156



solid state, 620



inverted, 163



J



tunable, 625



perfect, 151



Jamin Interferometer, 447



Laserbeam, profile, 616



real, 154, 164



Janssen, Zacharias (1588-1632), 2, 219, 222



Lateral chromatic aberration, 271



space, 151



Javan, Ali, 619



Lateral color, 271



virtual, 154, 169



Jeans, James (1877-1946), 607



Laue, Max von (1879-1960), 497



Imagery, 162–169, 187–190



Jodrell Bank, 486



Law of Reflection, 1, 2, 97–100, 143



Impulse response, 547



Jones, Robert Clark (1916-2004), 381



Law of Refraction, 2, 100–103, 143



Index matching, 661



Jones matrices, 381–383



Le Craw, R. C., 374


Index of refraction ( n
 ):


Jones vectors, 381–382



Le Roux, 87



absolute, 68



Lebedev, Pyotr Nikolaievich (1866-1912), 58



complex, 131



K



Left-circular light, 334



glass, 273–275



KDP, 376, 661, 662



Leith, Emmett N. (1927-2005), 647


group ( ng
 ), 298



KD*P, 376



Lens(es), 1, 2, 151–180



relative, 103



Keller, Joseph Bishop, 528



bending, 248



and specific gravity, 103



Kepler, Johannes (1571-1630), 2, 59, 153, 



compound, 170



table, 95, 96



207, 220



cylindrical, 214–215



and transmission, 93–96



Dioptrice
 , 2



equation, 164



Indium oxide, 376



Keplerian astronomical telescope, 224–225



field flattener, 199, 269



Induction law, 38–40



Kerr, John (1824-1907), 375



finite imagery, 162–166



Infinite conjugates, 223



Kerr cell, 375–376, 388



first-order theory, 156



Infrared, 9, 77, 433



Kerr constants, 375



fluorite, 275



mirrors, 180



Kerr Effect, 375–376, 659



focal points and planes, 160–162



Inhomogeneous waves, 128



Kirchhoff, Gustav Robert (1824-1887), 8, 



magnification, 164



Intensity, 50



107–108, 451, 604



meniscus, 211



Interference, 4, 21, 284, 390–448



Kirchhoff’s diffraction theory, 451,  



optical center, 161



colors, 359–367



524–527



simple, 157



conditions for, 394–397



Kirchhoff’s distribution function, 604



telephoto, 222, 271



constructive, 90, 91, 284, 392



Kirchhoff’s integral theorem, 525



Tessar, 222, 223, 269



destructive, 90, 91, 284, 392



Kirchhoff’s Radiation Law, 605



thick, 247–250



double beam, 390–394, 397, 403–408



Klingenstjerna, Samuel (1698-1765), 4



thin, 157–175



filter, 435–438



Kodak disk camera, 154



thin-lens combinations, 170–175



fringes, 393, 397–424



Kohlrausch, Rudolph (1809-1858), 47



Thin-Lens Equation, 158–160



law for partial coherence, 593



Kottler, Friedrich (1886-1965), 527



toric, 215



multiple-beam, 425–433



Krypton, 79, 318



Lensing, gravitational, 236–237
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Lensmaker’s Formula, 159



Mariner IV, 133



matrix analysis of, 257–258



Lenz’s law, 40



Maser, 604



micromirrors, 183



Levorotatory, 368


Matrix methods:


mirror formula, 186–187



Lewis, G. N. (1875-1946), 8



lens design, 252



moving, 182



L’Hospital’s Rule, 455, 482



mirrors, 257



off-axis, 185



Lifetime, of excited state, 610



flat, 258



parabolic, 184–185, 246



Light, 79:



planar optical cavity, 258



planar, 180–183



colors, 79



polarization, 372–373



sign convention, 189


speed of


thin films, 434–437



spherical, 185–191



measured by Jupiter’s moon, 4



thin lenses, 257



Missing order, 466



measured by rotating mirrors, 5



Matter waves, 8, 37



Miyamoto, Kenro, 527


measured by rotating toothed wheel, 


Maupertuis, Pierre de (1698-1759), 113



Modes, waveguide, 197



5, 47



Maxwell, James Clerk (1831-1879), 6–7, 37, 



Modulation, 571


in vacuum ( c
 ), 47



43, 47, 59, 76



Modulation frequency, 294



subluminal, 323, 324



Maxwell-Boltzmann statistics, 55, 608



Modulation transfer function (MTF), 571



superluminal, 321–323



Maxwell’s Equations, 5–6, 37, 43–45, 48, 131



Modulators, optical, 372



white, 79–81



Maxwell’s Relation, 68–69


MOEMS; see Micro-OptoElectroMechanical 


Light-emitting diodes, 203



Meniscus lens, 158



Systems, 183



Light field, 293



Mercury, 318


Momentum ( p
 ), 49, 59–61



Light pipe, 196



Meridional focus, 266



Monochromatic, 17



Light propagation, 88



Meridional plane, 266



Monochromatic aberration, 258



Light rays, 99–105



Meridional ray, 197, 251



astigmatism, 266



beam, 108



Metal(s), 131–134:



coma, 263–266



pencil, 108



dispersion equation, 131



distortion, 258, 269



Limit of resolution, 493



optical properties, 131–134



field (Petzval) curvature, 258, 268



Line-spread function, 550, 570



plasma frequency, 132



spherical, 258–259



Linear systems, 547–549



reflection from, 133–134



Mooney rhomb, 364



Linewidth, natural, 316, 564



wave in, 131



Morley, Edward Williams (1838-1923), 7



Lippershey, Hans (1587-1619), 2, 222



Metamaterials, 75



Mount Palomar, 179, 227, 486



Lippmann, Gabriel (1845-1921), 655



left-handed materials, 75



Mount Wilson Observatory, 597



Liquid crystal display, 377



Metastable states, 612



Mueller, Hans (1900-1965), 383



Liquid crystal variable retarder, 377



Mica, 362



Mueller matrices, 382–383



Liquid crystals, 376–379



Michelson, Albert Abraham (1852-1931), 7, 



Multilayer films, 9, 433–438



Lister objective, 220



298, 586, 595



antireflection, 435–438



Lithium niobate, 656, 663



Michelson-Morley Experiment, 7



periodic systems, 436–438



Littrow mount, 493



Michelson interferometer, 416–420



Multiple-beam interference, 425–429



Lloyd’s mirror, 407



Michelson stellar interferometer, 595–598



Multiple-order retarder, 363



Lorentz, Hendrik Antoon (1853-1928), 7, 70, 


Micro-OptoElectroMechanical Systems  


Mutual coherence function, 589–594



131



(MOEMS), 183, 206



Myopia, 212–213



Lorentz broadening, 564



Micromirrors, 183



Lorentzian profile, 563–564


Micron (1 mm = 10-6), 15



N



Loss coefficient, 613



Microscope, compound, 2, 218–220


Nanometer (1 nm = 10–9 m), 15, 79



Lunar Orbiter, 637



angular field, 219



Natural frequency, 71



magnifying power, 219



Natural light, 336, 362



M



numerical aperture (NA), 220



Natural linewidth, 316



Mach-Zehnder, 421



objective, 219



Near field, 394



Mach-Zehnder interferometer, 421–422



resolving power, 220


Near-field diffraction; see Fresnel diffraction


Maey, Eugen, 527



tube length, 219



Near point, 216



Maggi, Gian Antonio (1856-1937), 527



Microwaves, 77, 130, 296, 337



Nearsightedness, 212–213



Magnesium fluoride, 180, 435–436



Mie, Gustav (1869-1957), 93



Negative lens, 158, 212–213


Magnetic induction (B


$), 38–49



Mie Scattering, 93



Negative phase velocity, 324



Magneto-optic effect, 374



Mirage, 110–111



Negative uniaxial crystal, 349


Magnification:


Mirror formula, 186–187



Nematic liquid crystals, 376–379


angular ( MA
 ), 216



Mirror(s), 180–191



Neodymium (Nd), 620–622


lateral or transverse ( MT
 ), 164–168, 188, 



aberrations, 258, 261, 263



Nernst, Walther (1864-1941), 293



225, 250



aspherical, 184–185



Neutron diffraction, 592


longitudinal ( ML
 ), 168



coatings, 180



Newton, Sir Isaac (1642-1727), 3–5, 68, 164, 



Magnifying glass, 1, 215–217



cold, 433



192, 227, 274, 414, 438, 494



Magnifying power (MP), 216, 219, 224–225



dichroic, 433



Newtonian form of lens equation, 164, 249



Maiman, Theodore Harold (1927-2007), 604, 612



elliptical, 185


Newton’s  Opticks
 , 164



Malus, Étienne Louis (1775-1812), 5, 108, 



finite imagery, 187–191



Newton’s rings, 414–415, 425, 511



338, 355



formula, 186



Ng, Won K., 623



Malus and Dupin, Theorem of, 108



half silvered, 417



Nichols, Ernest Fox (1869-1924), 61



Malus’s Law, 338–339



history, 1



Nicol, William (1768-1851), 351



Maraldi, 508



hyperbolic, 185



Nicol prism, 351



Maréchal, A., 638



liquid, 228



Niépce, Joseph Nicéphore (1765-1833), 220



Marginal ray, 176, 220



magnification, 188–190



Night glasses, 177
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Nitrobenzene, 368, 369



Pellicles, 408



Plane-of-vibration, 330



Nodal points, 247



Penetration depth in metals, 131



Plane waves, 24–28, 48–49



Nodes, 289



Perfect image, 151


propagation vector (k
 $), 25–29 



Nonlinear optics, 659


Period:

Plasma frequency (v p
 ), 132



Nonperiodic wave, 310


spatial (l), 15, 308



Plato, 1



Nonresonant scattering, 69


temporal (t), 15



Pockels, Friedrich Carl Alwin (1865-1913), 375



Normal congruence, 108


Permeability (m), 43



Pockels cell, 376



Numerical aperture (NA), 198, 220


relative ( KM
 ), 43, 68



Pockels effect, 375–376


Permittivity (P), 41



Pohl, Robert Wichard (1884-1976), 509



O


relative ( KE
 ), 41, 68



Pohl interferometer, 422–423


Object:


Perot, Alfred (1863-1925), 429



Poincaré, Jules Henri (1854-1912), 7


distance ( so
 ), 155–169 



Petzval, Josef Max (1807-1891), 222, 268


Point-spread function ( ), 548



compound lens, 157



Petzval condition, 268



Poisson, Siméon Denis (1781-1840), 508


focal length ( ƒo
 ), 156



Petzval field curvature, 265, 268



Poisson distribution, 57



space, 151



Petzval lens, 223



Poisson’s spot, 508



Objective, 219, 224



Petzval surface, 268



Polar molecules, 70–71



Obliquity factor, 463, 498



Phase, 18



Polarization, 330–389


Ocular; see Eyepiece


addition, 286–288


angle (u p
 ), 118–119, 355



Oil immersion objective, 220, 261



conjugation, 235–236



atomic, 70



Omega laser, 622


difference (d), 94, 97, 119–120, 139, 283, 



circular, 333–334



Optic axis, 340, 343–352



392



compensators, 364–365



Optical activity, 367


initial (e), 18



cosmic, 331



Optical axis, 155



lags and leads, 93–96, 335, 358


degree of ( V 
 ), 358



Optical center, 161



modulation, 640



electric, 70



Optical computer, coherent, 631, 636



rate of change with distance, 19


electrical (P


$), 70, 660



Optical cooling, 67–68



rate of change with time, 19



electronic, 70



Optical field, 52



Phase contrast, 638–642



elliptical, 334–336



Optical flat, 412



Phase grating, 496



full-wave plate, 360



Optical frequency comb, 310



Phase modulator (liquid crystals), 377



half-wave plate, 360–361



Optical glass, 74, 272–274



Phase plate, 642



historical notes, 5



Optical-parametric oscillator, 663



Phase shifts, 120–121



ionic, 70


Optical path difference ( OPD
 ,  
 Λ), 284, 408, 



Phase singularity, 33



linear (plane), 47, 330–332



409, 417



Phase spectrum, 535



orientational, 70


Optical path length ( OPL
 ), 110–112, 155 



Phase transfer function (PTF), 572



photons, 37, 336–337



Optical pattern recognition, 569


Phase velocity ( v
 ), 18–20, 296–298, 324



plane (linear), 330–332


Optical power ( P
 ), 52



negative, 324



quarter-wave plates, 362



Optical pulses, 626



Phased array radar, 98



by reflection, 355–358



Optical pumping, 612



Phasors, 23–24, 286–288, 401, 427, 460, 469, 



retarders, 358–364



Optical rectification, 660



471–472, 515–524



rhombs, 364



Optical sine theorem, 265



Phosphorescence, 628



by scattering, 353–354



Optical stereoisomers, 370



Photochromic glass, 656



unpolarized (natural) light, 336, 380



Optical transfer function (OTF), 570–575



Photoelasticity, 372–373



wave plates, 359–364



Optical vortex, 33



Photoelectric Effect, 54



Polarized sky light, 353–354



Optoelectronic image reconstruction, 656



Photon, 8, 37, 53–59, 88, 140, 628–630



Polarizers, 338–343



Ordinary rays, 340–352


angular momentum ( L
 ), 337



birefringent, 351–352



Orientational polarization, 70



bunching, 58



circular, 365–366



Orthometer, 269



counting, 56–59



Glan-Air, 352



Orthoscopic system, 271



flux, 56



Glan-Foucault, 352



Oscillating dipole radiation, 64–66



flux density, 56, 80



Glan-Thompson, 352



Oscillator, 454–457



harmonic generation, 660–662



linear, 338



Oscillator strengths, 73



and law of reflection/refraction, 143



extinction axis, 339


OTF; see Optical transfer function


mass, 37



transmission axis, 338



Ozone and UV, 71



probability, 140–141



pile-of-plates, 355–357



spectrum, 75–82



Rochon, 386



P


speed ( c
 ), 93



wire-grid, 339–340



Palomar Observatory, 64, 179, 227, 231, 486



spin, 336–337



Wollaston, 352, 386



Pap tests, 484



virtual, 38, 83



Polarizing cube, 357



Parabolic mirror, 184–187, 227–231, 456



Physical optics, 37



Polaroid, 341–343



Parallel nematic cell, 377



Pi electrons, 137



Polychromatic light, 366–367



Parametric amplification, 663



Pile-of-plates polarizer, 355–357



Polyvinyl alcohol, 341, 361, 365



Paraxial ray, 156, 185



Pin-cushion distortion, 270



Population inversion, 612



Parrish, Maxfield, Jr., 340



Pinhole camera, 221


Porta, Giovanni Battista Della (1535-1615), 


Parseval’s formula, 563


Planck, Max Karl Ernst Ludwig (1858-1947), 


2, 220



Partially polarized light, 336



7, 53, 607



Porter, A. B., 636



Pasteur, Louis (1822-1895), 370


Planck’s Constant ( h
 ), 8, 54, 58, 607



Portrait lens, Petzval’s, 222–223



Pauli, Wolfgang (1900-1958), 8



Planck’s Radiation Law, 607–608



Positive lens, 158–164



Peak transmission, 431



Plane-of-incidence, 99, 114–117



Positive uniaxial crystal, 349
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Potassium dideuterium phosphate (KD*P), 


Quantum Field Theory, 82–84



Reflection, 96–100



376



Quantum fields, 82



diffuse, 100



Potassium dihydrogen phosphate (KDP), 376, 



Quantum jump, 67



external, 97, 112, 115–125



661



Quantum mechanics, 8, 113



internal, 97, 125–130



Power spectrum, 319, 594



Quantum nature of light, 8, 37



law of, 97



Poynting, John Henry (1852-1914), 49, 50



Quantum noise, 58



specular, 99–100, 491–492



Poynting vector, 49–50, 65, 75, 121, 151



Quarter-wave plate, 362



Reflection hologram, 653


Pressure, radiation (𝒫), 59



Quarter-wave stack, 436–438



Refraction, 74, 100–112



Primary aberrations, 259



Quartz, 74, 349, 368, 374, 497



at aspherical surfaces, 152, 184–185, 215, 



Primary colors, 135



optical activity, 367–372



227



Principal angle of incidence, 133



Quasimonochromatic, 17, 317



Cartesian oval, 238



Principal maxima, 463–474



Law of, 100–101



Principal planes, 247, 346



R


matrix (ℛ), 252







Principal points, 247



Radar interference, 285



negative, 74, 106–107



Principal ray, 263



Radar interferometry, 442–444



from a point source, 104–105



Principal section, 346



Radiant flux, 52



at spherical surfaces, 154–157



Principle of Interference, 4



Radiant flux density, 52


Refractive index ( n
 ), 68, 70–75



Principle of Least Action, 113



Radiation, 61–67



absolute, 68



Principle of Least Time (1657), 3, 109–111



atomic, 66–67



of air, 6



Principle of Reversibility, 113, 456



characteristic, 82



of birefringent crystals, table, 349



Principle of Superposition, 282, 390



electric-dipole, 64–66



negative, 75



Prism(s), 191–196



field, 62



relative, 103



Abbe prism, 193



linearly accelerating charge, 61–63



Relative aperture, 178



achromatic, 194


pressure (𝒫), 59


Relative index of refraction ( nti
 ), 103



Amici, 194



synchrotron, 63–64, 79



Resolution, 227, 432, 484–487, 597



angular deviation, 193



zone, 65



Resolving power, 220, 485



constant deviation, 193



Radio interferometer, 456


chromatic (ℛ), 432



corner-cube, 196



Radio waves, 66, 76–77



Resonance frequency, 67, 69–70



dispersing, 191–193 


Raman, Sir Chandrasekhara Vankata  


Resonance (Lorentz) profile, 564



apex angle, 191



(1888-1970), 628



Resonant cavity, 258, 612, 613–617



minimum deviation, 192



Raman Scattering, 628, 660



Resonant frequency, 67–71



Dove, 194



Raman spectroscopy, 628



Resonant scattering, 69–70



Fresnel composite, 370



Ray tracing, 169, 251–252



Leman-Springer, 195



focal-plane, 169



Retarders, 358, 362–365



minimum deviation, 192



matrix methods, 252–258


Retarders, variable; see Compensators


Nicol, 351



Rayleigh-Jeans formula, 607



Reticle (or reticule), 218



Pellin-Broca, 193


Rayleigh [John William Strutt] (1842-1919), 


Retina, 209



Porro, 194



485, 491, 510, 607



Reversion, 181



reflecting prisms, 193–19



Rayleigh range, 618



Rhomb, Fresnel, 364



rhomboid, 195



Rayleigh Scattering, 88–90, 354, 628, 630, 660



Right-circular light, 333



right-angle, 194



Rayleigh’s criterion, 431, 484–486, 488, 493



Ring laser, 296, 441



Rochon, 386



Ray(s), 99–104, 108



Ritchey-Chrétien telescope, 228



Wollaston, 352, 386



chief, 176



Rittenhouse, David, 488, 496


Probability amplitude (℘), 140–142



collimated, 162



Ritter, Johann Wilhelm (1776-1810), 81



Probability density, 140



converging, 153



Rods, 209–210



Profile, 11–14



direction in crystals, 347



Römer, Ole Christensen (1644-1710), 4, 344



Progressive wave, 14



diverging, 153



Ronchi ruling, 570


Prokhorov, Alexander Mikhailovich  


extraordinary, 346–352



Röntgen, Wilhelm Conrad (1845-1923), 81



(1916-2002), 604



marginal, 176



Rotating Sagnac Interferometer, 441–442



Propagation number, 14, 294



meridional, 197, 251



Rotatory dispersion, 370



Propagation vector, 25



ordinary, 346–352



Rotatory power, 368



Propagators, 589



principal, 263



Rubinowicz, Adalbert, 527



Pseudothermal light, 601



skew, 251



Ptolemy, Claudius, 1



tracing, focal plane, 169



S



Pulses, 11–14, 27, 67, 314–316, 626



Rectification, optical, 660



Sagittal coma, 264



femtosecond, 626


Reflectance ( R
 ), 121, 357, 430



Sagittal focus, 267



Pumping, 612



of metals, 133



Sagittal plane, 266, 267



Pupil(s), 175–178, 209



Reflecting prisms, 193–196



Sagittal rays, 266



Purkinje figures, 210



achromatic, 194



Sagnac interferometer, 422, 425, 441–442



Amici, 194



Salt, 70, 348



Q



corner-cube, 196


SAR; see Synthetic aperture radar


Q
  (quality factor), 617



Dove, 194



Saturated color, 136



Q
 -switch, 375–376



Leman-Springer, 195



Scatter plate, 439



QED (Quantum Electrodynamics), 37, 82–84, 



Penta, 195, 221



Scattered-light interference, 438–440



139–141, 174–175



Porro, 194, 196



Scattering, 69, 88–91, 353–354



diffraction, 449



rhomboid, 195



coherent, 629



thin lens, 174–175



right-angle, 194



elastic, 88
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interference and, 90–93



Spatial frequency, 17, 308, 535, 559, 631



Subtractive coloration, 137



Mie, 93



angular, 535



Superluminal light, 321–323



nonresonant, 69



spectrum, 312, 559



Superposition, 20–21, 282, 285, 390



and polarization, 353–354



Spatial light modulator (SLM), 657



algebraic method, 283



Rayleigh, 88–91, 354, 628, 660


Spatial period (l), 15, 308



complex method, 286



spontaneous Raman, 628



Special Relativity, 7, 60, 74, 236, 322



interference term, 283



stimulated Raman, 628, 660



Speckle effect, 626–627



of many waves, 285



Schawlow, Arthur Leonard (1921-1999), 604



Spectacle lenses, 211



phasor addition, 286



Scheiner, Christopher (1573-1650), 207



Spectral exitance, 604



Superposition Principle, 20–21, 282



Schlieren method, 642–644



Spectral flux density, 604



Surface waves, 127–129


Schmidt, Bernhard Voldemar (1879-1935), 


Spectral irradiance, 664



Synchrotron radiation, 63–64



230



Spectral lines, 8, 316



Synthetic aperture radar (SAR), 442



Schmidt telescope (camera), 231, 269


Spectrum

System matrix (𝒜), 253



Schrödinger, Erwin C. (1887-1961), 8, 37, 



amplitude, 535



83, 113



phase, 535



T



Schrödinger’s Equation, 37


Speed:


T-rays, 77



Schwartz, Laurent, 540



lens, 178–179 



Tangential coma, 264



Scylla IV, 421


of light


Tangential focus, 266



Secondary spectrum, 275



measured by Jupiter’s moon, 4



Tangential plane, 266, 267



Seidel, Ludwig van (1821-1896), 259



measured by rotating mirrors, 5



Taylor, H. Dennis, 222, 263



Seidel aberrations, 259–271


measured by rotating toothed wheel, 


Taylor (or Cooke) triplet, 222, 269, 276



Self-coherence function, 591



5, 47



Telephoto lens, 222



Self-focusing, 663



in vacuum, 47



Telescope, 2, 3, 222–231



Sellmeier, 87



of profile, 11–17



astronomical, 222



Seneca (3 b.c.e.–65 c.e.), 1



Spherical monochromatic aberration, 230, 



catadioptric systems, 230, 230



Shot-noise, 58



259–263



Baker, 231


Shuttle Radar Topography Mission (SRTM), 


lateral or transverse, 260



Bouwers–Maksutov, 231



443



Spherical waves, 29–31, 48, 497–501



Schmidt, 231



Side-band waves, 630



Spin, 84



reflecting systems, 3, 227



Sidebands, 326



Spontaneous emission, 609



Cassegrainian, 185, 227, 228, 230



Sifting property, 540



Spontaneous Raman effect, 627–628



Giant Magellan Telescope (GMT), 230



Sign convention, 155, 165, 189



Square wave, 307



Gran Telescopio Canarias (GTC), 230


Signal velocity ( vs
 ), 322



Squeezed light, 58



Gregorian, 185, 227, 228



Silicon monoxide, 180


SRTM (Shuttle Radar Topography Mission), 


Hubble Space, 185, 228, 229



Sinc function, 51, 308, 457–458, 462, 



443



Keck, 230



464–467, 472, 588, Table 1  



Stained glass, 74, 137



light-gathering power, 227



(appendix) 673



Standard length, 79



Newtonian, 3, 186, 228



Sine Condition, 266



Standard lens, 222



prime focus, 228



Sine theorem, optical, 265



Standing waves, 288–293



refracting systems, 2, 222–227



Sine waves, 14–18



antinodes, 289



angular magnification, 224



Skew rays, 251



boundary conditions, 288



astronomical, 222



Skin depth, 131



in a microwave oven, 293



erecting system, 225–



Sky, blue color of, 136, 353



nodes, 289



Keplerian, 224–225



Slow axis, 360



partial, 290-291



magnifying power, 224–225



Smekal, Adolf, 628



Stationarity, 547



terrestrial, 225



Smith, Robert, 163



Stationary paths, 112



TEM mode, 615–617



Smith, T., 252



Stationary wave, 289



Temporal coherence, 395–396, 580, 594–595, 



Smoluchowski, M., 89



Stealth fighter (F-117A), 99



626
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