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Introduction










Arduino compatible boards are undoubtedly one the most popular development tools invented for hobbyists and professional developers. Numerous measurement and control systems based upon Arduino boards have been designed and will be designed in future. This book comprises material that allows the readers to expand the capabilities of Arduino when designing measurement and control systems. Limitations that are inherent in Arduino may be successfully overcome when using additional electronic circuits. This book shows how the simple electronics can expand capabilities of systems based upon Arduino boards.







The book contains various projects aimed at processing small signals with instrumentation amplifiers, digital signal analysis and synthesis with Analog-To-Digital and Digital-To-Analog converters, designing digitally programmable oscillator circuits, using Direct Digital Synthesis (DDS) for generating analog waveforms, signal measuring with Voltage-To-Frequency and Frequency-To-Voltage converters, etc. Most of projects were assembled and tested on the Arduino Uno R3 and Arduino Nano boards. A few projects involve the Arduino Due board. Each project is accompanied by a relevant source code as well.







The material of this book assumes that the readers are familiar, at least, with basics of designing and assembling electronic circuits. For most projects having some basic skill in electronics will serve you well and allow you to understand what is going on behind the scenes. Each project is accompanied by a brief description which helps to make things clear. Most projects described here may be easily improved or modified if necessary.








Disclaimer








The design techniques described in this book have been tested on the Arduino Uno board without damage of the equipment. I will not accept any responsibility for damages of any kind due to actions taken by you after reading this book.







Let’s begin with processing continuous signals using stand-alone analog-to-digital converters driven by Arduino.








Analog-to-digital converters in Arduino projects








When continuous (analog) signals should be measured with high precision, a developer can apply some external analog-to-digital converter (ADC, A/D converter), providing 12-bit or higher resolution.















The following sections describe uses of SAR (Successive Approximation Register) analog-to-digital converters. Th
 e″
 SA
 R″
 term applies to the converter that uses approximation to convert an analog input signal into a digital output code. SAR converters can typically operate in the 8- to 16-bit range and can have sample speeds up to several MSPS.



One major benefit of a S
 AR converter is its ability to be connected to multiplexed inputs at a high data acquisition rate. The input is sampled and held on an internal capacitor, and this charge is converted to a digital output code using the successive approximation routine. Since this charge is held throughout the conversion time, only the initial sample and hold period or acquisition time is of concern to a fast-changing input. The conversion time is the same for all conversions. This makes the SAR converter ideal for many real-time applications, including motor control, touch-screen sensing, medical and other data acquisition systems.



The
 following projects illustrate using popular SAR analog-to-digital converters controlled by Arduino Uno R3.








Using the analog-to-digital converter MCP3201 in measurement systems








This section is dedicated to interfacing and programming a low-cost 12-bit single channel A/D converter MCP3201 from Microchip Inc.



The Microchip MCP3201 device is a successive approximation 12-bit
 analog-to-digital (A/D) Converter with on-board sample and hold circuitry. The device provides a single pseudo-differential input. Communication with the device may be established via a simple serial SPI-compatible interface. The device can operate with sampling rates up to 100 ksps at a clock rate of 1.6 MHz. The power supply to MCP3201 device may be of 2.7V through 5.5V. Low-current design permits operation with typical standby and active currents of only 500 nA and 300 A, respectively.







The schematic circuit of the project is shown in
 Fig.1
 .






[image: ]



Fig.1











The connections
 between the Arduino board and ADC MCP3201 are detailed in the following table.









	

Arduino Uno R3 pin



	

MCP3201
 pin






	

″
 2
 ″



	

7 (CLK)






	

″
 ~
 3
 ″



	

6 (DOUT)






	

″4
 ″



	

5 (CS)













The common wire of Arduino (th
 e″
 GN
 D
 ″
 pin) must be connected to the common wire of the MCP3201 circuit. In this circuit, MCP3201 is supplied directly from the Arduino board
 (″
 5
 V
 ″
 terminal).



The binary data
 stream representing an analog input voltage is taken in succession by a microcontroller through an SPI-compatible interface. The interface is controlled via the
 CS
 ,
 DOUT
 and
 CLK
 lines using the timing diagram shown below (
 Fig.2)
 .
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Fig.2







The single measurement cycle
 involves two phases. In the first phase the data sampling is executed during some time T
 SAMPLE
 . In the second phase the result of the conversion (12-bit data stream) is transferred to Arduino. The measurement cycle of MCP3201 begins with the
 CS
 signal going low. If the device was powered up with the
 CS
 pin low, it must be brought high and back low to initiate communication. The device will begin to sample an analog input on the first rising edge of
 CLK
 after
 CS
 is brought low.







The sample period will end on the falling edge of the second
 CLK
 clock, at which time a device will output a low null bit. Next 12 clocks will output the result of a conversion with MSB going first. Data is always output from a device on the falling edge of the clock; a receiver should pick up the data bit on the rising edge of the
 CLK
 pulse.







If all 12 data bits have been transmitted and the device continues to receive clocks while
 CS
 is held low, the device will output the conversion result LSB first. If more clocks are provided to the device while
 CS
 is still low (after the LSB first data has been transmitted), the device will clock out zeros indefinitely.







The reference input (V
 REF
 ) determines the analog input voltage range and the LSB size:







LSB size = V
 REF
 / 2
 12
 = V
 REF
 / 4096







As the reference input is reduced, the LSB size is reduced as well. The theoretical digital output code issued by the A/D Converter is a function of the analog input signal and the reference input. That can be expressed as:







DigitalOutputCode = (V
 IN
 * 4096) / V
 REF
 ,







where:







V
 IN
 – an analog input voltage between pins
 IN+
 and
 IN-
 ,



V
 REF
 – the reference voltage.







The analog-to-digital conversion is driven by the program with the following source code (
 Listing 1)
 .







Listing 1.







const int CLK = 2;



const int DOUT = 3;



const int CS = 4;







const float Vref = 4.99;







int binData;



int bitDOUT;



float res;







void InitPort()



{



pinMode(CLK, OUTPUT);



pinMode(DOUT, INPUT);



pinMode(CS, OUTPUT);



}







void ReadADC()



{



binData = 0;



digitalWrite(CS, HIGH);



digitalWrite(CLK, HIGH);



digitalWrite(CS, LOW);



for (int i = 14; i >= 0; i--)



{



 digitalWrite(CLK, LOW);



 bitDOUT = digitalRead(DOUT);



 digitalWrite(CLK, HIGH);



 bitDOUT = bitDOUT << i;



 binData |= bitDOUT;



}



digitalWrite(CS, HIGH);



binData &= 0xFFF;



}



void setup()



{



InitPort();



Serial.begin(9600);



}







void loop()



{



ReadADC();



res = Vref * (float)binData / 4096.0;



Serial.print("Input voltage on pin 2 of MCP3201, V = " );



Serial.println(res);



delay(7000);



}







As it is seen, t
 he SPI-compatible interface uses pins 2, 3 and 4 of the Arduino board. The measurement cycle is controlled by the ReadADC() function being called by the loop() procedure every 7 seconds. According to the timing diagram, 14 clock pulses are needed to complete the measurement cycle. Therefore, the data are processed in the for() loop which runs from 14 down to 0.



Before the
 for() loop is entered, the measurement cycle starts by bringing the
 CS
 line up then down. The following sequence performs that:







digitalWrite(CS, HIGH);



digitalWrite(CLK, HIGH);



digitalWrite(CS, LOW);







In each iteration, the bitDOUT variable is assigned the data bit taken from the
 DOUT
 line upon the raising edge of the
 CLK
 pulse. That is done by the following sequence:







digitalWrite(CLK, LOW);



bitDOUT = digitalRead(DOUT);



digitalWrite(CLK, HIGH);







This data bit is then shifted to the right position in the binData variable after the following two statements have been executed:







bitDOUT = bitDOUT << i;



binData |= bitDOUT;







After
 the data transfer is complete, the for() loop exits and the measurement cycle ends by bringing the
 CS
 line up:







digitalWrite(CS, HIGH);







After leaving the for() loop, the binData variable will contain 14 bits, of which the low 12 bits will represent the measurement result. The following statement clears bits 12-13 leaving only data bits:







binData &= 0xFFF;







The following sequence converts the binary code in binData to the float representation and sends the result to the terminal window via port COM3:







res = Vref * (float)binData / 4096.0;



Serial.print("Input voltage on pin 2 of MCP3201, V = " );



Serial.println(res);







The measurement results are reflected in t
 he SerialMonitor window (
 Fig.3).
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Fig.3








Using
 the high-resolution SAR converter LTC1864








The higher resolution of analog-to-digital conversion can be achieved when using the 16-bit SAR analog-to-digital converter LTC1864 from Linear Technology. That is illustrated by the next project with the schematic circuit shown in
 Fig.4
 .
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Fig.4











The connections between Arduino and
 the A/D converter are shown in the table below.









	

Arduino pin



	

LTC1864
 pin






	

″
 2
 ″



	

6 (SDO)






	

″
 ~
 3
 ″



	

7 (SCK)






	

″4
 ″



	

5
  (CONV)













The common wire of the circuit
 (″
 groun
 d″
 ) should be tied to any of th
 e″
 GN
 D
 ″
 pins on the Arduino board.



The timing diagram of the SPI
 -compatible interface of LTC1864 is shown in
 Fig.5
 .
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Fig.5







The LTC1864 conversion cycle begins with the rising edge of the
 CONV
 framing signal. This starts the analog-to-digital conversion process which takes the period
 t
 CONV
 . When the conversion is complete, the
 CONV
 signal has to be brought low, thereby starting the sample mode. Alternatively, when
 CONV
 is kept high after the conversion is complete, the LTC1864 chip goes into a sleep mode drawing only the leakage current. The
 SDO
 data line becomes enabled when sampling begins.







The data bit stream is 16 bits long. Each bit is shifted out on the
 SDO
 line upon the falling edge of the
 SCK
 signal that synchronizes the data transfer. The receiving system (Arduino) should capture the data from
 SDO
 on the rising edge of
 SCK
 . After data transfer is complete and the further
 SCK
 clocks are applied with
 CONV
 being low, the
 SDO
 line will output zeros indefinitely. Bringing
 CONV
 high ends the sampling process.



The source code
 for driving LTC1864 is shown in
 Listing 2
 .







Listing 2
 .







const int pSDO = 2;



const int pSCK = 3;



const int pCONV = 4;







unsigned int binData = 0;



unsigned int bitSDO;



float res;







unsigned int del, mask;







void InitPort()



{



pinMode(pSCK, OUTPUT);



pinMode(pSDO, INPUT);



pinMode(pCONV, OUTPUT);



}







void ReadADC()



{



 del = 5;



 binData = 0;



 mask = 0x8000;







 digitalWrite(pCONV, LOW);



 digitalWrite(pSCK, HIGH);



 digitalWrite(pCONV, HIGH);



 while(del-- != 0);







 digitalWrite(pCONV, LOW);



 for (int i = 0; i < 16; i++)



{




 digitalWrite(pSCK, LOW);




 bitSDO = digitalRead(pSDO);




 digitalWrite(pSCK, HIGH);




 if(bitSDO) binData |= mask;




 mask = mask >> 1;



}



digitalWrite(pCONV, HIGH);



}







void setup()



{



 InitPort();



 Serial.begin(9600);



}







void loop()



{



 ReadADC();



 res = 5.0 * (float)binData / (4096.0 * 16);



 Serial.print("Input Voltage on Pin 2 of LTC1864, V = " );



 Serial.println(res);



 delay(5000);



}







To obtain
 16 data bits from ADC the for() loop in the ReadADC() function will be running 16 iterations. The binary code in binData is modified by using the mask variable in each iteration. After the current data bit has been put in binData, the value of the mask variable is shifted to the right by 1 in preparation for capturing the next bit from the data stream in the following iteration.



The
 program delay







while(del-- != 0);







allows the conversion process to complete.








Using the high-speed analog-to-digital converter ADS7816








This project illustrates using a popular high-speed 12-bit A/D converter ADS7816. The converter operates from a single +5V supply and accepts a 0 to 5V analog input. The brief description of the device is represented by the excerpt from the datasheet.



The ADS7816 is a 12-bit, 200kHz sampling analog
 -to-digital converter. It features low power operation with automatic power down, a synchronous serial interface, and a differential input. The reference voltage can be varied from 100mV to 5V, with a corresponding resolution from 24V to 1.22mV.







The ADS7816 is a classic successive approximation register (SAR) analog-to-digital (A/D) converter. The architecture is based on capacitive redistribution which inherently includes a sample/hold function. The architecture and process allow the ADS7816 to acquire and convert an analog signal at up to 200,000 conversions per second while consuming very little power. The ADS7816 requires an external reference, an external clock, and a single +5V power source. The external reference can be any voltage between 100mV and V
 CC
 .







The value of the reference voltage directly sets the range of the analog input. The reference input current depends on the conversion rate of the ADS7816. The external clock can vary between 10 KHz (625Hz throughput) and 3.2 MHz (200 KHz throughput). The duty cycle of the clock is essentially unimportant as long as the minimum high and low times are at least 150ns. The minimum clock frequency is set by the leakage on the capacitors internal to the ADS7816.







The ADS7816 communicates with the Raspberry Pi via a synchronous 3-wire SPI-compatible serial interface as is shown in
 Fig.6
 .
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Fig.6







The connections between Arduino and ADS7816 are given in the table below.









	

Arduino Uno R3 pin



	

ADS7816 pin






	

″7
 ″



	

7 (DCLOCK)






	

″
 ~
 6
 ″



	

6 (DOUT) (through R1-R2)






	

″
 ~
 5
 ″



	

5 (CS/SHDN)













The serial interface requires three digital lines
 ,
 DCLOCK
 ,
 CS
 and
 DOUT
 .



In this circuit
 , the
 DCLOCK
 line (pin 7 of ADS7816) is tied to pin 7 on the Arduino board; this signal provides clocking while data are transferred to Arduino. The
 CS
 signal (pin 5 of A/D converter) enables conversion; it is wired to pin 5 of Arduino. The data bits are shifted onto the
 DOUT
 line (pin 6 of ADS7816) that is wired to pin 6 of Arduino.







In this circuit, the reference voltage to ADC (
 V
 ref
 , pin 1 of ADS7816) is taken from the +5V power rail. If the higher precision is needed, a suitable reference IC must be applied. The bypass capacitors C1 and C2 should be placed as close as possible to the power input (pin 8) of ADC. The test analog signal to the ADC is taken from the wiper of the potentiometer R1.



T
 he timing diagram of the conversion process is shown in
 Fig.7
 .
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Fig.
 7







Here the
 DCLOCK
 signal synchronizes the data transfer with each bit being transmitted on the falling edge. A receiving system can capture the bit stream on the rising edge of
 DCLOCK
 . However, if the minimum hold time for
 DOUT
 is acceptable, the system can use the falling edge of
 DCLOCK
 to capture each bit. A falling
 CS
 signal initiates the conversion and data transfer.







The first 1.5 to 2.0 clock periods of the conversion cycle are used to sample the input signal. After the second falling
 DCLOCK
 edge,
 DOUT
 is enabled and will be set to a low value for one clock period. For the next 12
 DCLOCK
 periods,
 DOUT
 will output the conversion result, most significant bit first. After the least significant bit (B0) has been output, subsequent clocks will repeat the output data but in a least significant bit first format.







After the most significant bit (B11) has been repeated,
 DOUT
 goes in the high-impedance state. Subsequent clocks will have no effect on the converter. A new conversion is initiated only when
 CS
 has been taken HIGH and returned LOW. For more detail you can consult the datasheet on the ADS7816 device.







The Arduino source code driving the above circuit is shown in
 Listing 3
 .







Listing 3
 .







const int pCS = 5;



const int pDOUT = 6;



const int pDCLOCK = 7;







unsigned int binData, bRead, bRes;



float res, Vref = 5.14;







void setup()



{



pinMode(pCS, OUTPUT);



pinMode(pDCLOCK, OUTPUT);



pinMode(pDOUT, INPUT);



Serial.begin(9600);



}







int ReadADC()



{



binData = 0;



digitalWrite(pCS, HIGH);



digitalWrite(pDCLOCK, LOW);



digitalWrite(pCS, LOW);



delayMicroseconds(100);



for (int i1 = 0; i1 < 15; i1++)



{



 digitalWrite(pDCLOCK, HIGH);



 bRead = digitalRead(pDOUT);



 digitalWrite(pDCLOCK, LOW);



 bRead = bRead << 14 - i1;



 binData |= bRead;



}



digitalWrite(pCS, HIGH);



binData = binData & 0xFFF;



return binData;



}







void loop()



{



bRes = ReadADC();



res = Vref * bRes / 4096.0;



Serial.print("ADS7816 input, V: ");



Serial.println(res,3);



delay(5000);



}







As you can see, the above source code is almost the same as that for MCP3201 ADC, so we will not discuss that in detail. The conversion process suggested by the timing diagram in
 Fig.7
 is controlled by the for() loop. The floating-point result of the conversion then goes to the console.








Using the high precision Delta-Sigma analog-to-digital converter MCP3551








To provide very high precision we need to take some delta-sigma(also calle
 d″
 sigma-delt
 a″
 ) analog-to-digital converter. The delta-sigma (Δ-Σ) A/D converter is the device of choice for modern voice band, audio and high precision industrial measurement applications. The delta-sigma ADC tackles the application demands of a slow analog signal that requires a high signal-to-noise-ratio (SNR) and wide dynamic range. Delta-sigma converters are ideal for converting signals over a wide range of frequencies from DC to several MHz with very high resolution.







The signal chain for the delta-sigma converter application starts with the sensor (
 Fig.8)
 . Unlike circuits with SAR analog-to-digital converters, Δ-Σ devices don’t require additional analog gain circuits such as amplifiers and instrumentation amplifiers, following the sensor block. Between the sensor and the delta-sigma A/D converter, there will only be an anti-aliasing, active or passive low-pass filter. As
 Fig.8
 suggests, the delta-sigma ADC usually requires only a first order, passive filter (this will be discussed in the next section).
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Fig.8







Circuit designers may find the simplicity of this signal chain attractive – the required external elements are the passive, anti-aliasing filter and the voltage reference.







Let’s discuss the following project which illustrates using a popular low-cost Δ-Σ analog-to-digital converter MCP3551 from Microchip Corp. The MCP3551 device is 22-bit delta-sigma ADC that include fully differential analog inputs, a third-order delta-sigma modulator, a fourth-order modified SINC decimation filter, an on-chip, low-noise internal oscillator, a power supply monitoring circuit and an SPI 3-wire digital interface. These devices can be easily used to measure low-frequency, low-level signals such as those found in pressure transducers, temperature, strain gauge, industrial control or process control applications. The power supply range for this product family is 2.7V to 5.5V.







The MCP3551/3 devices communicate with a simple 3-wire SPI interface. The interface controls the conversion start event, with an added feature of an auto-conversion at system power-up by tying the
 CS
 signal line in to logic LOW. The device can communicate with bus speeds of up to 5 MHz, with 50 pF capacitive loading. The interface offers two conversion modes:
 SingleConversion
 mode for multiplexed applications and a
 ContinuousConversion
 mode for multiple conversions in series.







Every conversion is independent of each other. That is, all internal registers are flushed between conversions. When the device is not converting, it automatically goes into
 Shutdown
 mode and, while in this mode, consumes less than 1 A. Before using this type of ADC (as well as other Δ-Σ device) it is worth learning appropriate datasheets, so that to implement proper PCB layout and grounding.







In the given project the Δ-Σ converter MCP3551 is put in the
 SingleConversion
 mode. The measurement system will periodically check the positive analog input voltage ranging from 0 through 5V and output the result in the COM3 terminal window.



The schematic circuit of this project is
 shown in
 Fig.9
 .
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Fig.9







In this circuit, the analog input voltage arrives at pin
 V
 IN+
 while the
 V
 IN-
 pin is wired to
 ″
 groun
 d″
 . The connections between Arduino and MCP3551 Δ-Σ ADC are detailed in the table below.









	

Arduino pin



	

MCP3551
 pin






	

″
 2
 ″



	

5
  (SCK)






	

″
 ~
 3
 ″



	

6
  (SDO/RDY)






	

″
 4
 ″



	

7
  (CS)













It is seen that the reference voltage to the converter (pin 1 of MCP3551) is taken from th
 e″
 5
 V
 ″
 pin of Arduino Uno R3. The common wire of the circuit should be tied to any of th
 e″
 GN
 D
 ″
 pins of Arduino. The bypass capacitor C1 should be tied as close as possible to pin 8 of the chip.



Th
 e diagram below (
 Fig.10
 ) illustrates operating MCP3551 in the
 Single Conversion
 mode.
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Fig.10







Serial communication between the microcontroller and the MCP3551 device is achieved using
 CS
 ,
 SCK
 and
 SDO/RDY
 signals. The
 CS
 signal controls the conversion start. There are 24 bits in the data word: 22 bits of conversion data and two overflow bits. The conversion process takes place via the internal oscillator and the status of this conversion must be detected by software. The status of the internal conversion is reflected by the
 SDO/RDY
 signal and is available with
 CS
 low.







A high state (log
 .″1″
 ) on
 SDO/RDY
 means the device is busy converting, while a low state (log
 .″0″
 ) means the conversion is finished.
 SDO/RDY
 remains in a high-impedance state when
 CS
 is held high. Data is ready for transfer when
 SCK
 goes low; each data bit is latched into a microcontroller when the
 SCK
 signal goes high.
 CS
 must be brought low before clocking out the data using
 SCK
 and
 SDO/RDY
 .



.



The SPI-compatible interface, in turn, may operate in either (0, 0) or (1, 1) mode. In SPI mode (0, 0) the data is read using 25 clocks or four byte transfers. Note that in this mode the data ready bit (
 SDO/RDY
 ) goes first. In the SPI mode (1, 1), the read operation requires only 24 clocks or three byte transfers. The data ready bit on the
 SDO/RDY
 line has to be checked prior to the falling edge of the clock.







In this project we will use the SPI mode (1, 1) whose timing diagram is shown in
 Fig.11
 .
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Fig.11







Here Bit 22 is Overflow High (OVH). When
 V
 IN
 >
 V
 REF
 - 1 LSB, OVH toggles to logi
 c″1″
 , detecting an overflow high in the analog input voltage. Bit 23 is Overflow Low (OVL). When
 V
 IN
 <
 -V
 REF
 , OVL toggles to logi
 c″1″
 , detecting an overflow low in the analog input voltage. The state OVH = OVL
 =″1″
 is not defined and should be considered as an interrupt for the SPI interface meaning erroneous communication.



Bit
 s 21 through 0 represent the output code in a 22-bit binary two's complement format. Bit 21 is the sign bit and is set to logi
 c″0″
 when the differential analog input is positiveand logi
 c″1″
 when the differential analog input is negative. From Bit 20 to bit 0, the output code is given MSB first (MSB is bit 20 and LSB is Bit 0). When the analog input value is comprised between
 –V
 and
 V-
 1 LSB, the two overflow bits are set to logi
 c″0″
 .







Some words about checking
 RDY
 flag in the
 SingleConversion
 mode. At every falling edge of
 CS
 during the internal conversion, the state of the internal conversion is latched on the
 SDO/RDY
 pin to give ready or busy information. A high state means the device is currently performing an internal conversion and data cannot be clocked out. A low state means the device has finished its conversion and the data is ready for retrieval on the falling edge of
 SCK
 . This sequence is shown in
 Fig.12
 .
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Fig.12







Note
 that the Ready state is latched on each falling edge of
 CS
 and will not dynamically update if
 CS
 stays low.
 CS
 must be pulled from high to low to fix the Ready state.



The Arduino source code driving
 the A/D conversion is given in
 Listing 4
 .







Listing 4
 .







const int pSCK = 2;



const int SDO_RDY = 3;



const int CS = 4;







const float Vref = 4.87;







long int binData;



long int bitDOUT;



float res;







void InitPort()



{



pinMode(pSCK, OUTPUT);



pinMode(SDO_RDY, INPUT);



pinMode(CS, OUTPUT);



}







void ReadADC()



{



binData = 0;



digitalWrite(pSCK, HIGH);



do {



 digitalWrite(CS, HIGH);



 digitalWrite(CS, LOW);



 bitDOUT = digitalRead(SDO_RDY);



 } while(bitDOUT != 0x0);



for (int i = 23; i >= 0; i--)



{



 digitalWrite(pSCK, LOW);



 bitDOUT = digitalRead(SDO_RDY);



 digitalWrite(pSCK, HIGH);



 bitDOUT = bitDOUT << i;



 binData |= bitDOUT;



}



digitalWrite(CS, HIGH);



binData &= 0x3FFFFF;



}







void setup()



{



 InitPort();



 Serial.begin(9600);



}







void loop()



{



 delay(5000);



 ReadADC();



 res = Vref * (float)binData / 2048.0;



 res = res / 1024.0;



 Serial.print("The input Voltage on Vin+ PIN of MCP3551: " );



 Serial.print(res, 3);



 Serial.println("V");



}







The constants pSCK, SDO_RDY and CS
 are associated with signal lines
 SCK
 ,
 SDO/RDY
 and
 CS
 of the SPI-compatible interface. The Vref constant determines the reference voltage on pin 1 of MCP3551. In this particular case, the reference was taken from pi
 n″
 5
 V
 ″
 of the Arduino board; it measured value was 4.87V. Much more precision can be achieved when using some special high-precision voltage reference IC. For example, the AD680 reference with the 2.5V output could be applied. When using this IC, pin 1 of MCP3551 (
 V
 REF
 ) must be wired to the AD680 output and the Vref constant should be assigned the value of 2.5.







The A/D conversion is accomplished by calling the ReadADC() function. The following sequence initiates internal A/D conversion, then checks the SDO_RDY bit indicating the state of the operation:







digitalWrite(pSCK, HIGH);



do {



 digitalWrite(CS, HIGH);



 digitalWrite(CS, LOW);



 bitDOUT = digitalRead(SDO_RDY);



 } while(bitDOUT != 0x0);







When
 the bitDOUT variable turns out to be 0x0, that means that the internal conversion has completed and the binary data can be transferred to Arduino.







The data transfer is performed by the for() loop. The program code should read 24 bits, so the loop variable i runs from 23 through 0. In the current iteration, each data bit being held in the bitDOUT variable is brought to the SDO_RDY line on the falling edge of pSCK and is latched into the microcontroller on the rising edge of pSCK. Then the bit just taken is shifted to the right position in the binData variable. The following statements perform those steps:







digitalWrite(pSCK, LOW);



bitDOUT = digitalRead(SDO_RDY);



digitalWrite(pSCK, HIGH);



bitDOUT = bitDOUT << i;



binData |= bitDOUT;







When the for() loop exits, the binData variable will hold the 24-bit value where bits 22-23 will be overflow bits and bit 21 will be a sign bit. In our case, the positive analog voltage between 0 and 5V is fed to pin 1 (
 V
 IN+
 ),
 so bits 21-23 are assigned 0; in other cases they may have other values. The statement







binData &= 0x3FFFFF;







clears bits 21-23 while leaving just the data bits (0 through 20).



T
 he single conversion completes by the following statement:







digitalWrite(CS, HIGH);







The res variable will be assigned the float value corresponding to the measured analog voltage:







res = Vref * (float)binData / 2048.0;



res = res / 1024.0;







Since we obtain the 21-bit binary code, the LSB is calculated as:







LSB = Vref / 2
 21
 = Vref / (2
 11
  2
 10
 ) = Vref / (2048  1024)







To simplify the above source code we can replace the do…while() loop checking the SDO_RDY bit by an usual delay() function. The interval for the delay() function must be taken long enough to allow the internal conversion to complete before the interval expires. In this case, the time interval is set to 100 milliseconds.



T
 he modified source code will then look like the following (
 Listing 5)
 .







Listing 5
 .







const int pSCK = 2;



const int SDO_RDY = 3;



const int CS = 4;







const float Vref = 4.87;







long int binData;



long int bitDOUT;



float res;











void InitPort()



{



pinMode(pSCK, OUTPUT);



pinMode(SDO_RDY, INPUT);



pinMode(CS, OUTPUT);



}







void ReadADC()



{



binData = 0;



digitalWrite(pSCK, HIGH);



digitalWrite(CS, HIGH);



digitalWrite(CS, LOW);







delay(100);



for (int i = 23; i >= 0; i--)



{



 digitalWrite(pSCK, LOW);



 bitDOUT = digitalRead(SDO_RDY);



 digitalWrite(pSCK, HIGH);



 bitDOUT = bitDOUT << i;



 binData |= bitDOUT;



}



digitalWrite(CS, HIGH);



binData &= 0x3FFFFF;



}







void setup()



{



 InitPort();



 Serial.begin(9600);



}







void loop()



{



 delay(5000);



 ReadADC();



 res = Vref * (float)binData / 2048.0;



 res = res / 1024.0;



 Serial.print("The input voltage on Vin+ Input of MCP3551 = " );



 Serial.print(res, 3);



 Serial.println("V");



}







As
 it seen from the above code, the delay(100) function is launched before the for () loop is entered.







The output window of the running program is shown below (
 Fig.13
 ).
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Fig.13








Using low-pass filters








Almost all signals regardless of their origin are contaminated with noise – that is true whether we acknowledge that fact or not. The best method to get rid of noise riding on a useful signal is to apply an analog low-pass filter (LPF). LPF should be in every circuit with an analog-to-digital conversion stage. This is true regardless of the type of an analog-to-digital converter being used for digitizing signals.



An
 LPF stage must always be placed on the analog side before an analog signal reaches some analog input of an Arduino board. The same is true for stand-alone A/D converters.







LPF allows to reduce the high frequency noise that is outside half of a sampling frequency of an analog-to-digital converter. After digitizing the input signal a developer can apply a digital filter to reduce the lower in-band, frequency noise. Such digital filter may be implemented as a part of the program code of a microcontroller.







Besides removing the superimposed higher frequency noise from an analog signal, a LPF also eliminates extraneous noise peaks. Note that digital filters cannot eliminate such peaks. With an LPF standing prior to ADC, the task of successfully achieving high-resolution is placed squarely on circuit design and a converter.



The simplest analog low-pass filter
 appears as a combination of a resistor and a capacitor (
 Fig.14
 ).
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Fig.
 14







The input signal is passed through the R1C1 pair which attenuates frequencies higher than 1/(2πR1C1). A frequency determined by this expression is called a "cut-off" frequency of a low-pass filter. As you can see, th
 e″
 cut-of
 f″
 frequency may be set through selection of values of the resistor R1 and capacitor C1. For slow speed input signals there is a reason to set th
 e″
 cut-of
 f″
 frequency as low as possible, close to DC.



Connecting
 an operational amplifier (op-amp) to the LPF significantly improves its characteristics. Such LPF (also called active LPF) allows to match the impedances of a signal source and an input stage of an A/D converter. With an op-amp it is also possible to amplify an input signal. The simplest possible active analog 1
 st
 order LPF is shown in
 Fig.15
 .
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Fig.15







As it is seen, the R1C1 pair is wired to the non-inverting input of the op-amp A1 arranged as a voltage follower. Almost any single-supply opamp (MCP601, MCP6001, TL061, OPA348, OPA364, etc.) can fit this circuit. The power to the circuit may be taken from a DC voltage source +5V, so th
 e″
 5
 V
 ″
 pin on an Arduino board can be used.



Remember that a full range of an op
 -amp output voltage is usually several ten or hundred millivolts less than the supply voltage, so the input signals close to the +5V power rail will be clipped. The same is true for the signals close to 0V – they will be clipped as well. A developer should take care when dealing with input signals close to either power rail.




Filtering
 PWM signals








Low-pass filters allow to obtain the steady DC voltage from a PWM source. The following diagram (
 Fig.16
 ) illustrates the theory of the operation.
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Fig.16







It is seen that the average DC voltage (
 V
 av
 ) produced by the PWM signal is related to the peak voltage (
 V
 p-p
 ) as:







V
 av
 = V
 p-p
 x Duty,







where Duty (duty cycle) is the ratio of a pulse width to a period. For PWM circuits, the period of a signal is kept constant while the pulse width can change. If a pulse train has the constant amplitude
 V
 p-p
 , then the corresponding DC voltage
 V
 av
 will only be determined by the duty cycle
 Duty
 . A TTL-compatible signal ranges between 0V and +5V, therefore
 V
 p-p
 will be close to 5V.
 Fig.16
 illustrates the cases when the duty cycle is 50% (
 V
 av
 = 2.5V) and 66% (
 V
 av
 = 3.3V).







In real life, DC output obtained from a PWM circuit can produce a large ripple voltage. This, however, doesn’t prevent to use PWM circuits for handling many electronic circuits, such as DC motors or buck-SPC converters. On the other hand, many circuits should be fed by a precision DC voltage. For example, voltage controlled oscillators (VCO) and precision amplifiers need a highly stable DC voltage source without any ripple injected.



T
 o obtain a steady DC voltage level from a PWM pulse train a developer can add a low-pass filter to the PWM output. If, for instance, the PWM signal comes from pin 9 of Arduino, then the simple low-pass filter with the R1C1 pair should be inserted prior to the load R
 L
 (
 Fig.17)
 .
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Fig.17







In this circuit, the resistor R1 can range from 2.2k to 4.5k and the capacitor C1 can be between 5 and 10 F.




Using external Digital-To-Analog converters








A d
 igitally controlled high-stable analog signal may be obtained from external digital-to-analog converters (DAC, D/A converter). DACs can produce much more stable and precision output compared to PWM circuits. As you may notice, the PWM output of Arduino provides the resolution 2
 8
 that corresponds to 256 output voltage levels. With the output voltage in the range of 0 to +5V, the LSB value will be equal to 5/256 = 0.0195 V. This means that the adjacent voltage levels cannot differ from each other less than the value of LSB.



On the other hand,
 a common 12-bit external DAC has much more resolution that turns out to be 5/2
 12
 = 5/4096 = 0.00122 V. For that reason, the high-resolution digital-to-analog converters come in handy when high-precision analog output voltage is needed.







The next project describes interfacing and programming a popular low-cost 12-bit DAC MCP4921 from Microchip Corp. The schematic circuit of the project is shown in
 Fig.18
 .
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Fig.18







The connections between Arduino and the MCP4921 DAC are detailed in the table below:









	

Arduino pin



	

MCP4921 pin






	

″
 RX<-
 0
 ″



	

5 (LDAC)






	

″
 ~
 5
 ″



	

3 (SCK)






	

″
 ~
 6
 ″



	

2
  (CS)






	

″
 7
 ″



	

4 (SDI)













Th
 e″
 GN
 D
 ″
 pin of the Arduino board must be tied to the common wire of the circuit.







An MCP4921 DAC operates according to the timing diagram shown in
 Fig.19
 .
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Fig.19







MCP4921 is designed to operate through a serial SPI-compatible interface, so it is easily to control this device from an Arduino board. Commands and data are sent to the DAC via the
 SDI
 pin, with data being clocked in on the rising edge of
 SCK
 . The communications are unidirectional, so data cannot be read out of the MCP492X devices. The
 CS
 pin must be kept low for the duration of a write command.







The command to be sent to DAC is 16 bits long; it allows to configure the DAC’s control and data latches. A write operation is initiated by pulling
 CS
 pin low, followed by clocking four configuration bits and 12 data bits onto
 SDI
 pin on the rising edge of
 SCK
 . After data transfer is complete, the
 CS
 signal should be brought high thereby forcing the data to be latched into the selected DAC’s input registers. An MCP4921 chip contains a double-buffered latch structure to allow DAC output to be synchronized with the
 LDAC
 pin, if necessary.







When the
 LDAC
 signal goes low, the value held in the DAC input register is transferred into the DAC output register. Since all write operations to the MCP492X are 16-bit wide, any clocks past 16 will be ignored. The most significant bits 15 – 12 are configuration bits, while the remaining 12 bits are data bits. After
 CS
 has been pulled high, no data can be transferred into the device. Note that if the
 CS
 signal is driven high before all 16 bits have been transferred, shifting the data into the input registers will be aborted.







Before a write operation begins, the 16-bit word should be formed. Its bits are described in the table below.









	

Bit



	

Name



	

Description






	

15



	

A/B



	

″
 1″
 means the data will be written to DACB
 ,″0″
 allows writing to DACA






	

14



	

BUF



	

″
 1″
 enables the buffered mode of the input, whil
 e″0″
 puts the input to the unbuffered mode






	

13



	

GA



	

″
 1″
 sets the gain of the output signal equal to 1
 ,″0″
 allows to double the magnitude of the output signal






	

12



	

SHDN



	

″
 1″
 allows all operations on DAC
 ,″0″
 disables the output buffer although write operations are still allowed






	

11–0



	

D11–D0



	

Data bits which represent t
 he 12-bit number between 0 and 4095













In this case, we will set the configuration bits 15 – 12 to 0111 (0x7 in hexadecimal notation).







The source code for driving the MCP4921 DAC is given below (
 Listing 6
 ).







Listing 6.







const int pLDAC = 0;



const int pSCK = 5;



const int pCS = 6;



const int pSDI = 7;







int fword;



int cmd = 0x7000; // the highest 4 bits compose the command



int data = 3099; // data bits for the output voltage of 3.78V



int tmp;







void setup()



{



 // configuring digital pins as outputs:



pinMode(pLDAC, OUTPUT);



pinMode(pSCK, OUTPUT);



pinMode(pCS, OUTPUT);



pinMode(pSDI, OUTPUT);



}







void loop()



{



fword = cmd | data;







digitalWrite(pCS, HIGH); // the CS is brought HIGH, then LOW to



digitalWrite(pCS, LOW); // start writing



digitalWrite(pLDAC, HIGH); // LDAC goes HIGH



for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = fword & 0x8000;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pSCK, HIGH);



 fword = fword << 1;



}



digitalWrite(pCS, HIGH); // the end of the conversion



digitalWrite(pLDAC, LOW); // writing data to the output buffer



delay(1000);



}







Here the cmd variable
 determines the command assigned the value 0x7. The data variable represents the binary code for the DAC’s output. In this example, this value is assigned 3099 that corresponds to the DAC output voltage of 3.78V. The fword variable holds the full 16-bit word to be transferred via the SPI-interface.







The pSCK, pSDI, pCS and pLDAC constants determine the Arduino pins associated with the SPI-compatible interface. Since the data transfer is unidirectional (writing only), those pins are configured as outputs.



The data transfer requires 16 iterations
 which are executed in the for() loop where the loop variable i1 changes from 0 through 15. Before the loop is entered, the conversion starts by bringing the
 CS
 line high, then low. Meanwhile, the
 LDAC
 line must be pulled high. The following sequence accomplishes that:







digitalWrite(pCS, HIGH); // the CS is brought HIGH, then LOW to



digitalWrite(pCS, LOW); // start
 conversion



digitalWrite(pLDAC, HIGH); // LDAC goes HIGH







In each
 iteration, the current MSB of fword is taken and stored in the tmp variable:







tmp = fword & 0x8000;







Depending on the value held in tmp, the
 SDI
 line is set either high or low. When the data bit has been put on
 SDI,
 it should be clocked out by the
 SCK
 signal. Those steps are performed by the following sequence:







digitalWrite(pSDI, LOW);



if (tmp)



 digitalWrite(pSDI, HIGH);



digitalWrite(pSCK, HIGH);







The value in the
 fword variable is then shifted to the left by 1 in preparation for the next iteration:







fword = fword << 1;







When the loop exits, the
 CS
 is pulled high thereby disabling the data transfer. The data obtained will be written to the output buffer of DAC by bringing the
 LDAC
 line low.




Signal synthesis with serial
 digital-to-analog converters








Serial DACs like MCP4921 can be used for generating various waveforms such as rectangle, sine wave, triangular, sawtooth
 (″
 ram
 p″
 ). This can be achieved in the following way. First, a developer needs to make up a binary data array representing a continuous signal; this array is frequently referred to as
 a″
 look-up tabl
 e″(
 LUT). Then the program code should take each element out of this array and write it to DAC by using some loop construction. Each iteration in such a loop would be synchronized by some clock source, for example, built-in timer of a microcontroller.



The
 next two projects illustrate generating sawtooth and sine waveforms by the MCP4921 serial DAC driven by the Arduino board. Both projects will use the same schematic circuit shown in
 Fig.18
 .



The source code for generating sawtooth signal is given in
 Listing 7
 .







Listing 7.







#include <avr/io.h>



#include <avr/interrupt.h>







const int pLDAC = 0;



const int pSCK = 5;



const int pCS = 6;



const int pSDI = 7;







int fword;



int cmd = 0x7000; //
 the highest 4 bytes are reserved for the command



int data = 0;
  // holds the binary data for the DAC output



int tmp;







void SPIInit()



{



pinMode(pLDAC, OUTPUT);



pinMode(pSCK, OUTPUT);



pinMode(pCS, OUTPUT);



pinMode(pSDI, OUTPUT);



}







void Timer1Init()



{




 // initialize Timer1



cli(); // disable global interrupts



TCCR1A = 0; // set entire TCCR1A register to 0



TCCR1B = 0; // same for TCCR1B



 // set compare match register to desired timer count:



OCR1A = 5000;



// turn on CTC mode:



TCCR1B |= (1 << WGM12);








 // Set CS10, CS11 and CS10 bits for the proper prescaler:



TCCR1B |= (1 << CS10); // no prescaler is used







// enable timer compare interrupt:



TIMSK1 |= (1 << OCIE1A);



sei();



}







void WriteDAC()



{



fword = cmd | data;



digitalWrite(pCS, HIGH); // the CS is brought HIGH



digitalWrite(pCS, LOW); // Framing is started by bringinh CS LOW



digitalWrite(pLDAC, HIGH); // LDAC goes HIGH



for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = fword & 0x8000;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pSCK, HIGH);



 fword = fword << 1;



}



digitalWrite(pCS, HIGH); // the end of the conversion



digitalWrite(pLDAC, LOW); // writing data to the output buffer



}







void setup() {



// set the digital pin as output:



SPIInit();



Timer1Init();



}







void loop() {}







ISR(TIMER1_COMPA_vect)



{



WriteDAC();



data += 40;



if (data > 4096)



 data = 0;



}







T
 he procedure WriteDAC() writes the single data sample into the DAC. This procedure is called whenever the Timer 1 event is triggered. As the interrupt service routine (ISR) gains the control, the value in the data variable is transferred to MCP4921. The content of data is then incremented by 40 until 4096 has been reached. At this point, the data variable is assigned 0 in preparation to the next cycle. It is seen, that the values of data samples change linearly in time, therefore a sawtooth signal appears on the DAC output.



To vary
 the output frequency we should alter the value in the OCR1A register (the Timer1Init() procedure).







The following source code allows to generate a sine wave (
 Listing 8
 .)







Listing 8.







#include <avr/io.h>



#include <avr/interrupt.h>



#include <math.h>







const int pLDAC = 0;



const int pSCK = 5;



const int pCS = 6;



const int pSDI = 7;







const int NUM_SAMPLES = 256;



unsigned short SINE_TABLE[NUM_SAMPLES];







int fword;



int cmd = 0x7000; // highest 4 bytes are reserved for the command



int tmp;



int cnt = 0;







void SPIInit()



{



pinMode(pLDAC, OUTPUT);



pinMode(pSCK, OUTPUT);



pinMode(pCS, OUTPUT);



pinMode(pSDI, OUTPUT);



}







void Timer1Init()



{



// initialize Timer1



cli(); // disable global interrupts



TCCR1A = 0; // set entire TCCR1A register to 0



TCCR1B = 0; // same for TCCR1B



 // set compare match register to desired timer count:



OCR1A = 5000;



 // turn on CTC mode:



TCCR1B |= (1 << WGM12);



TCCR1B |= (1 << CS10); // no prescaler is used




 // enable timer compare interrupt:



TIMSK1 |= (1 << OCIE1A);



sei();



}







void FillBuf(void)



{



//calulating step noticing that the sine period is 2*PI



const float tstep = (2* M_PI)/(float)NUM_SAMPLES;



float s;







//in radians



for(int i = 0;i < NUM_SAMPLES;i++)



{



s = sin(i * tstep );



SINE_TABLE[i] = (unsigned short) round(2048.0 + s*2047.0);



}



}







void WriteDAC(int cnt)



{



fword = cmd | SINE_TABLE[cnt];



digitalWrite(pCS, HIGH); // the CS is brought HIGH



digitalWrite(pCS, LOW); // Framing is started by bringinh CS LOW



digitalWrite(pLDAC, HIGH); // LDAC goes HIGH



for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = fword & 0x8000;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pSCK, HIGH);



 fword = fword << 1;



}



digitalWrite(pCS, HIGH); // the end of the conversion



digitalWrite(pLDAC, LOW); // writing data to the output buffer



}







void setup() {



// set the digital pin as output:



FillBuf();



SPIInit();



Timer1Init();



}







void loop() {}







ISR(TIMER1_COMPA_vect)



{



WriteDAC(cnt);



cnt += 3;



if (cnt > 256)



 cnt = 0;



}







First, we create the lookup table (LUT) within the FillBuf() procedure. This LUT is represented by the array SINE_TABLE of the unsigned short type. The size of the array is determined by the NUM_SAMPLES constant (256, in our case).







The interrupt service routine sequentially takes out elements of this array and writes them into MCP4921 DAC using the WriteDAC() procedure; the output sine wave signal appears on the DAC output (pin 8 of MCP4921). Note that the WriteDAC() procedure has the single parameter cnt which is the index of the element being taken from the SINE_TABLE array. By altering the increment for cnt (that is 3 in our case) we can adjust the output frequency.




 



Both signals were evaluated using
 the LabVIEW virtual oscilloscope with the PCI NI-6221 DAQ module. The windows below reflect the sawtooth (
 Fig.20
 ) and the sine wave (
 Fig.21
 ) signals at the MCP4921 DAC output.
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Fig.20
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Fig.21







Since the digital bit stream is transferred sequentially, the output frequencies turn out low. Increasing a frequency of synthesized signal may be achieved by applying a digital-to-analog-converter with parallel input data lines. The next section illustrates such approach.







 
Signal synthesis using the digital-to-analog converters with parallel inputs








To synthesize signals with frequencies of a few hundred Hz and higher we can use digital-to-analog converters with parallel data inputs. Digital word to such DACs can be load during a single write operation thus allowing to create continuous signals having much higher frequencies than in the case of using DACs with serial interfaces.



Programming DACs with parallel inputs is simple and straightforward. The
 typical timing diagram for a common DAC with parallel data inputs may look like the following (
 Fig.22
 ).
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Fig.22







A typical DAC with parallel inputs (
 D0 … DN
 ) is usually driven by enable (
 CS
 ) and write (
 WR
 ) signals. Some DACs may have an optional control input line (
 LDAC
 ) that allows to update (latch) data on the DAC’s output. Digital-to-analog conversion begins when the
 CS
 line is pulled to active state (usually log
 .″0″
 ). The active level of
 CS
 enables write and update operations affecting inner buffers and registers of a DAC chip.







Once
 CS
 is in its active state, the write operation can start. Input binary code on
 D0…DN
 data lines can be written to DAC by bringing the
 WR
 signal to its active state (usually log
 .″0″
 ). The data on
 D0…DN
 lines must be valid before
 WR
 becomes active. Input data are usually written to inner registers when
 WR
 transits from its active to inactive state. In our example, data will be written upon the rising edge of
 WR
 (point 1 in
 Fig.22
 ). The
 CS
 signal that follows must go to its inactive state (point 2) thus completing the write operation. Often
 CS
 also forces DAC to update its output.



Many modern DACs
 also use a special signal called
 LDAC
 to update an output buffer (point 3 in
 Fig.22
 ).



Most DACs produces the output signals as
 a voltage level, thereby simplifying an interface to external circuits. Some DACs provide current output, so some kind of
 a″
 current-to-voltag
 e″
 circuit is needed to obtain the voltage output.



The
 following project illustrates using DAC with parallel inputs for generating a sine wave signal. This project uses the LTC1450 chip from Linear Technology; the schematic circuit of the project is shown in
 Fig.23
 .
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Fig.23







The Arduino board is connected to LTC1450 as shown in the table below:









	

Arduino pin



	

LTC1450 pin






	

″
 RX<-
 0
 ″



	

4 (
 D0)






	

″
 1->T
 X
 ″



	

5 (D1)






	

″2
 ″



	

6 (D2)






	

″
 ~
 3
 ″



	

7 (D3)






	

″4
 ″



	

8 (D4)






	

″
 ~
 5
 ″



	

9 (D5)






	

″
 ~
 6
 ″



	

10 (D6)






	

″7
 ″



	

11 (D7)






	

″
 ~1
 1
 ″



	

1 (WR)






	

″
 1
 2
 ″



	

2 (CSLSB)






	

″
 ~1
 0
 ″



	

24 (LDAC)













The LTC1450 voltage output (pin 21)
 is followed by the small signal amplifier. This circuit is arranged as a non-inverting amplifier with the MCP6001 op-amp. The amplifier provides the gain equal to 1 + R3/R2, so when R3= 68k and R2 = 6.8k the gain turns out to be 11. The simplest low-pass filter with R3C1 pair reduces the high frequency noise riding on the useful signal. Almost any single supply op-amp with GainBandWidthProduct (GBWP) = 1 MHz or higher will work in this circuit. Th
 e″
 GN
 D
 ″
 pin of Arduino should be connected to the common wire of the circuit as well.



The source code
 for driving the DAC is shown in
 Listing 9
 .







Listing 9
 .







#include <avr/io.h>



#include <avr/interrupt.h>







const int nLDAC = 10;



const int nWR = 11;



const in
 t nCSLSB = 12;







const int NUM_SAMPLES = 256;



unsigned char SINE_TABLE[NUM_SAMPLES];



int cnt = 0;







void InitPorts(void)



{



DDRD = 0xFF; // Port D outputs 8 data bits (D0 - D7) for DAC



DDRB = 0xFF; // Port B provides control signals for DAC



}







void WritePDAC(unsigned int cnt)



{



PORTD = SINE_TABLE[cnt];



digitalWrite(nLDAC, HIGH);



digitalWrite(nWR, HIGH);



digitalWrite(nCSLSB, HIGH);







// Writing 8 data bits to DAC







digitalWrite(nCSLSB, LOW); // Line CSLSB goes LOW



digitalWrite(nWR, LOW); // Line WR goes LOW



digitalWrite(nWR, HIGH); // Line WR goes HIGH



digitalWrite(nCSLSB, HIGH); // Line CSLSB goes HIGH







digitalWrite(nLDAC, LOW); // LDAC goes LOW thus enabling the output latch



digitalWrite(nLDAC, HIGH); // LDAC goes HIGH latching data in the output register.



}







void Timer1Init(void)



{



 // initialize Timer1



 cli(); // disable global interrupts



 TCCR1A = 0; // set entire TCCR1A TCCR1B registers to 0



 TCCR1B = 0;



 // set compare match register to desired timer count:



 OCR1A = 300;



 // turn on CTC mode:



 TCCR1B |= (1 << WGM12);







 // Set CS10, CS11 and CS10 bits for the proper prescaler:



 TCCR1B |= (1 << CS10); // no prescaler is used



 // enable timer compare interrupt:



 TIMSK1 |= (1 << OCIE1A);



 sei();



}







void FillBuf(void)



{



//sine period is 2*PI



const float step = (2*M_PI)/(float)NUM_SAMPLES;



float s;







// calculations are in radians



for(int i = 0;i < NUM_SAMPLES;i++)



{



 s = sin( i * step );



 SINE_TABLE[i] = (unsigned char) (128.0 + (s*127.0));



}



}







ISR(TIMER1_COMPA_vect)



{



 WritePDAC(cnt);



 cnt ++;



 if (cnt > NUM_SAMPLES)



 cnt = 0;



}







void setup()



{



 InitPorts();



 FillBuf();



 Timer1Init();



}







void loop(){}







It is seen that the source code looks much simpler than that for the serial DAC. The
 FillBuf() procedure creates the lookup table of a sine wave signal. The WritePDAC() procedure writes the single 8-bit data sample into LTC1450 through the parallel interface. As a clock source, Timer 1 is used.








Using Voltage-To-Frequency converters








Voltage-to-frequency (V-to-F converter, VFC) converters are handy when measuring or generating AC signals. VFC converts the voltage applied to its input to a pulse train with the frequency being linearly proportional to this voltage. High precision V-to-F converters are basically used in voltage controlled oscillators (VCO) and measurement systems processing signals from remote sensors. Using frequencies instead of voltage significantly increases the reliability of such measurement systems.



VFC
 s allow to easily pass signals through isolated circuits (opto-couplers or transformers), thereby separating high-power parts of a system from low-power and precision measurement circuits. This way allows to essentially reduce noise and increase precision of measurements.







The next projects illustrate using a popular VFC AD7741 from Analog Devices in Arduino-based systems. AD7741 can generate digital pulse trains within a wide range of frequencies (from tens Hz up to 3 MHz) with high linearity. The AD7741 chip can also serve as a voltage controlled high-frequency oscillator; the following project illustrates this approach.







The schematic circuit of the project is shown in
 Fig.24
 .
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Fig.
 24







In this circuit, the AD7741 device is driven by the PWM signal coming from pi
 n″
 ~
 9
 ″
 of Arduino Uno R3. To achieve the high stable frequency the steady DC voltage should be applied to the control input of AD7741 (pin 6). That is done by placing the simplest low-pass filter R1C1 before the
 V
 in
 input. To calculate the frequency of the AD7741 signal we will refer to the datasheet on the device. The transfer characteristic taken from there is shown in
 Fig.25
 .
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Fig.25







Here the f
 CLKIN
 is the clock frequency at the output of AD7741. In our case, f
 CLKIN
 (3.579MHz) is determined by the crystal connected to pins 3-4. The
 REFIN
 pin of AD7741 is left unconnected, so the inner reference voltage of 2.5V is enabled (see
 Fig.25)
 . With these data it is easily to calculate the output frequency of VFC.







From
 Fig.25
 we obtain:







f
 OUT
 = f
 OUT
 MIN + K  V
 in
 (1),







where f
 OUT
 – the output frequency on pin 8 of AD7741,




 f
 OUT
 MIN – the output frequency at the input voltage equal to 0 (V
 in
 = 0),




 K – some coefficient which will be calculated a bit later,




 V
 in
 – the input voltage applied to pin 6 of AD7741.







The coefficient
 K
 ca
 n
 be calculated as:







K = (f
 OUT
 MAX – f
 OUT
 MIN) / REFIN (2),







where REFIN = 2.5.







In this circuit, f
 OUT
 MIN = 3579000  0.05 = 178950 (Hz). This output frequency corresponds to the case when V
 in
 = 0 V. The f
 OUT
 MAX will be determined as follows:







f
 OUT
 MAX = 3579000  0.45 = 1610550 (Hz)







f
 OUT
 MAX is the output frequency at maximum V
 in
 = 2.5V. Finally, we can calculate K from formula (2):







K = (1610550 – 178950)/2.5 = 572640 (Hz/V)







Now we can rewrite formula (1) as:







f
 OUT
 = 178950 + 572640  V
 in
 (3)







Relationship (3) determines the output frequency f
 OUT
 at any input voltage V
 in
 .
 Conversely, knowin
 g
 f
 OUT
 allows to calculate the voltage V
 in
 at the control input of the VFC (pin 6 of AD7741).







As it is seen from formulas (1-2), the frequency range of AD7741 depends upon two values, f
 OUT
 MIN and f
 OUT
 MAX
 .
 Both values, in turn, are determined by the clock frequency of the inner crystal oscillator; we can adjust the output frequency in a wide range by choosing a suitable crystal.







Alternatively, we can apply the external clock frequency (up to 6 MHz) to pin
 CLKIN
 while leaving
 CLKOUT
 unconnected. AD7741 can be used for measuring signals from remote sensors. Once the output frequency of AD7741 has been measured, it is easily to determine the voltage fed to the input (pin 6) using the above formulas 1-2.







The next project illustrates calculating the analog input signal at the control input of AD7741 knowing the output frequency. The schematic circuit of this project is shown in
 Fig.26
 .
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Fig.
 26







The output signal
 fout
 (pin 8 of AD7741) goes to pi
 n″
 ~
 5
 ″
 of the Arduino board. To measure the AD7741 output frequency we can use the functions from the FrequencyLib library uploaded on
 
www.arduino.cc

 . The source code for measuring
 the frequency is shown in
 Listing 10
 .







Listing 10.







#include <FreqCounter.h>



//
 The input signal must go to the digital pin 5







unsigned long frq;



int cnt;







void setup() {



 Serial.begin(9600);



 Serial.println("Frequency Counter");



}



void loop() {







 // wait if any serial is going on



 FreqCounter::f_comp=10;



 FreqCounter::start(1000);







 while (FreqCounter::f_ready == 0)







 frq=FreqCounter::f_freq / 1000; // convert the measured frequency



 // into KHz



 Serial.print(cnt++);



 Serial.print(" Freq, KHz: ");



 Serial.println(frq);







// Here there may be your code to calculate the input voltage from
 



//
 formulas 1-2







 delay(10000);



}







You can insert additional statements
 for calculating the input voltage just before the delay() function.







V-to-F converters are handy when a developer needs to isolate external power circuits from precision conditioning circuitry. The simple isolating interface may be arranged by placing the opto-coupler IC between pin 8 of AD7741 and the digital pi
 n″
 ~
 5
 ″
 of Arduino. Such interface operating at low frequencies is shown in
 Fig.27
 .
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Fig.
 27







In this circuit, the opto-coupler 4N37 delivers the pulse train to the digital pi
 n″
 ~
 5
 ″
 of Arduino. This interface can reliably operate in the range from several tens Hz through several KHz.







At higher frequencies (several KHz and more) digital signals tend to be distorted because of the low slew rate of opto-couplers, so a developer must apply ICs capable of operating at high frequencies. For example, we can apply popular high-frequency opto-coupler devices HCPL0631, HCPL2631, 6N137, etc. with TTL-compatible outputs.








Using Frequency-To-Voltage converters








Frequency-To-Voltage (F-To-V, FVC) converters are mainly used in systems where sensors yield AC signals whose frequency changes proportionally to some physical quantity (temperature, humidity, pressure, light, etc.) being measured. A typical FVC provides the output voltage being proportional to the input frequency. The output signal of FVC may be fed to some conditioning circuit with an analog-to-digital converter for further processing.







F-To-V converters may also be regarded as some kind of a digital-to-analog converter which converts an input pulse train into an output DC voltage. In this section we will take a look at several useful Arduino-based applications with a popular VFC LM231. The LM231/LM331 family of Voltage-To-Frequency converters is ideally suited for use in simple low-cost circuits foranalog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions.







The next project uses the LM231 chip, although LM131/331 will work as well. The LM231 converter may be put in either V-to-F or F-to-V mode. In this project, LM231 operates in the F-to-V mode running the reliable high-precision F-to-V conversion. The output of LM231 is fed to th
 e″
 A
 0
 ″
 analog input of the Arduino board. The program code measures the voltage level on A0 and then calculates the corresponding input frequency.



The
 schematic circuit of the project is shown in
 Fig.28
 .
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Fig.28







The input signal with the frequency
 f
 IN
 is coupled to the
 THR
 input (pin 6) of the FVC LM231 through the capacitor C1. The output voltage
 V
 out
 will be extremely linear to the input frequency
 f
 IN
 , the resistor R
 L
 and the R
 t
 C
 t
 pair (see the formula in
 Fig.28
 ).







The F-to-V conversion begins with differentiating the input frequency using the capacitor C1 and resistor R1. The pulse train then goes to pin 6 (threshold) of the chip. The negative edge of the pulse on this pin affects the built-in comparator circuit which, in turn, triggers the timer circuit. The current flowing through pin 6 will be proportional to the input frequency and the timing constant determined by the R
 t
 C
 t
 pair.







LM231 yields the output current on terminal
 IOUT
 (pin 1). This current will be proportional to the input frequency being fed to pin 6 of LM231. Since developers prefer to deal with the output voltage
 V
 out
 rather than with the output current, pin 1 is wired to the R
 L
 C
 2
 network. The pair R
 L
 C
 2
 serves as the simplest low-pass filter and provides the load for the output current. Signal
 V
 out
 then arrives at the analog inpu
 t″
 A
 0
 ″
 of ArduinoUno R3. The
 ″
 groun
 d″
 wire of the circuit should be connected to an
 y″
 GN
 D
 ″
 terminal on the Arduino board.



The LM
 231 chip is powered by the +5V voltage source (the Arduino on-board +5V source can be used as well). The value of R3 depends on the supply voltage and should be calculated as:







R3 = (Vs – 2V) / (0.2mA)







The source code for this project is given in
 Listing 11
 .







Listing 11
 .







const int analogInPin = A0; // Analog input pin where the




  // LM231 output is attached to



int inpDigValue;



float Vout;



float inpFreq;



float Kf;







void setup() {



// initialize serial communications at 9600 bps



Serial.begin(9600);



Kf = 845.53;



}







void loop() {



// read the analog
 signal:



inpDigValue = analogRead(analogInPin);



Vout = (5.0 * inpDigValue) / 1024.0;



inpFreq = Kf * Vout;







// print the results to the serial monitor:



Serial.print("Input frequency, Hz : " );



Serial.println(inpFreq);







 // wait 5 seconds before the next
 iteration



 delay(5000);



}







The inpDigValue holds the binary code provided by the A/D converter after processing the channe
 l″
 A
 0
 ″
 . The Vout variable is assigned the value of the voltage on
 ″
 A
 0
 ″
 . The calculated value of the input frequency is stored in the inpFreq variable.



T
 he Kf variable is determined as:







V
 out
 = f
 IN
 x 2.09 x (R
 L
 / R
 S
 ) x (R
 t
 x C
 t
 )







From there we get:







Kf = 1 / (2.09 x (R
 L
 / R
 S
 ) x (R
 t
 x C
 t
 ))







An F-to-V converter can also serve as a steady DC voltage source driven by an input frequency. In that case, the signal
 f
 IN
 fed to FVC may come from some digital pin of an Arduino board. As
 f
 IN
 changes, the corresponding DC output voltage changes as well. In this way, we get a digitally controlled DC voltage source driven by a pulse train from Arduino.







One more use of F-to-V converters is a tachometer. Tachometers allow to measure the speed at which the engine of a vehicle turns. The simple tachometer, for example, may comprise a sensor attached to a motor and a F-to-V converter. When the motor turns, the sensor generates a signal whose frequency is proportional to the speed of the motor. This signal is then conditioned by the F-to-V converter which produces the DC signal proportional to the input frequency. The DC voltage, in turn, may be picked up by some Arduino analog input (
 A0
 , for example) for further processing.







Designing tachometers has some specifics. First, signals going from sensors might not be strong pulses compatible with TTL logic. These may be of various shape and amplitude and contaminated with noise. Second, the frequencies produced by sensors usually range from about DC to a few hundred Hz. Measuring very low frequencies has its own specifics and drawbacks, especially when high precision is needed. Luckily, there are several F-to-V devices which simplify the task. These are popular F-to-V converters LM2907/LM2917 specifically designed for using in tachometers. These devices, however, might also be used in common circuits where F-to-V conversion is required. LM2907/LM2917 devices can also process differential input signals that is an additional benefit compared to similar parts.







The following project shows how to measure the frequency of the input signal and send the result to the terminal window (COM3, by default). The schematic circuit of the tachometer (
 Fig.29
 ) is built around the LM2917 chip with 14 pins (that is what I had on my hands), although 8 pin device can be taken as well.
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Fig.29







The LM2917 chip should be powered by +5V source, so the Arduino on-board power source +5V can be used. LM2917 accepts low-level input signals of various shapes (square wave, sine wave), so the sine wave signal was fed to pin 1 of LM2917 while testing the circuit. The connections to LM2917 are the same as those represented in the device datasheet, except that pin 9 is directly wired to the power source. The output signal
 V
 out
 is fed to pi
 n″
 A
 0
 ″
 of Arduino through the R3C3 low-pass filter providing noise immunity.



The source code for measuring the input frequency
 f
 IN
 is given in
 Listing 12
 .







Listing 12
 .







const int analogInPin = A0; // Analog input pin where the




   // output signal goes to



int inpBinCode = 0;
   // binary value read from pin A0



float K = 0.01074;
  // this value is calculated from Vout = K * freq,




   // where K = Vcc * C1 * R1



float inpVal;



float inpFreq;







void setup() {



 // initialize serial communications at 9600 bps



 Serial.begin(9600);



}







void loop() {



 // reading the analog input







 inpBinCode = analogRead(analogInPin);



 inpVal = (4.9
 9*(float)inpBinCode)/1024.0;



 inpFreq = inpVal/K;







 // print the results to the serial
 port monitor



 Serial.print("LM2917 F-To-V converter input frequency, Hz: " );



 Serial.println(inpFreq);







 // wait 7 seconds before the next iteration starts off



 delay(7000);



}







Here the coefficient K can be obtained from the formula below:







V
 out
 = f
 in
 x V
 cc
 x R1 x C1







Provided that K = V
 cc
 x R1 x C1 we get:







V
 out
 = K * f
 in







With the measured values of
 V
 cc
 (4.99V), R1 (98K) and C1 (22nF), K will be equal to 0.010737 or, by rounding off, 0.01074. The interval between adjacent measurements is taken equal to 7 s.



Wh
 ile testing the system, the input signal was fed to the LM2917 converter input (pin 9) from the LabVIEW virtual signal generator based upon the NIPCI-6221 DAQ board (
 Fig.30
 ).
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Fig.30







The amplitude of the sine wave signal was close to 0.3V while the frequency varied from 10 to 300 Hz. The Serial Monitor window (
 Fig.31
 ) shows the results obtained at the input frequency of 166 Hz.
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Fig.31







 
The simple triangle waveform oscillator








This section describes how to build a simple triangle waveform generator driven by a digital pulse train from Arduino. The following circuit (
 Fig.32
 ) allows to convert the digital pulse train coming from the digital pi
 n″
 6
 ″
 of the Arduino Uno R3 board into the triangle shaped signal.
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Fig.32







In this circuit, the square wave signal from pi
 n″
 6
 ″
 arrives at the non-inverting input (pin 3) of the op-amp OPA364 being arranged in the integrator circuit with the timing networks R1C1 and R2C3. Note that there should be R1 = R2 and C1 = C3 to avoid malfunctioning. The capacitor C3 is being charged by the constant current determining by the resistor R2, so the voltage across the C3 will change linearly thereby providing the triangle signal at the op-amp output. 



This circuit was tested at frequencies ranging from 1 to 10 KHz. Since the impedance of the RC networks
 reduces as a frequency increases, the amplitude of the output (pin 6 of the OPA364 op-amp) also reduces. To increase the amplitude of the output triangle signal we can place an additional amplifier stage at the integrator output. Additionally, by altering values in the RC networks it is possible to adjust the amplitude of the triangle signal in a wide range. 



Most general-purpose single-supply op-amps with a GBWP
 ≥ 5 MHz and a high slew rate will fit this circuit (OPA348, MCP6021, AD8515, etc.). The JFET (Q1) may be one of the general purpose N-channel JFETs (MMBFJ309, J309, J310, BF245, 2N3819, etc.).







The source code of the program driving this circuit is given in
 Listing 13
 .







Listing 13.







#include <TimerOne.h>







void setup()



{



 // Configuring the digital pin 6 as output.







 pinMode(6, OUTPUT);



 Timer1.initialize(200); // set a timer of length 200 microseconds



 // that corresponds to the frequency



 // 5KHz



 Timer1.attachInterrupt( timerIsr ); // attach the service



 // routine here



}







void loop(){}







// Timer ISR







void timerIsr()



{



// Toggling output



digitalWrite(6, digita
 lRead(6) ^ 1);



}







As you can see, the source code is extremely simple. The source signal is taken from the digital pi
 n″
 6
 ″
 configured as output. The pulse train on pi
 n″
 6
 ″
 is generated by the Timer 1 interrupt service routine called timerIsr(). This routine gains the control when the Timer 1 interrupt is triggered (every 200 microseconds). The output frequency on pi
 n″
 6
 ″
 will be half of that configured for Timer1, i.e. 5 KHz / 2 = 2.5 KHz.




The d
 igitally controlled wide-band oscillator with DS1077 IC








A simple digitally controlled oscillator can be built using a DS1077 chip. Let’s begin with the brief description of the device taken from its datasheet.







The DS1077 is a dual-output, programmable, fixed-frequency oscillator requiring no external components for operation. The DS1077 can be used as a processor-controlled frequency synthesizer or as a standalone oscillator. The two synchronous output operating frequencies are user-adjustable in submultiples of the master frequency through the use of two on-chip programmable prescalers and a divider. The specific output frequencies chosen are stored in NV (EEPROM) memory. The DS1077 defaults to these values upon power-up.







The DS1077 features a 2-wire serial interface that allows in-circuit on-the-fly programming of the programmable prescalers (P0 & P1) and divider (N) with the desired values being stored in NV (EEPROM) memory. Design changes can be accommodated in-circuit on-the-fly by simply programming different values into the device (or reprogramming previously programmed devices).



Alternatively, for fixed frequency applications, previously programmed devices can be used and no
 connection to the serial interface is required.



The detail description of the DS1077 device can be found in its datasheet.
 From the developer point of view three registers of DS1077 are involved. The MUX register determines the mode of operation (MUX), the DIV register contains the value of operating frequency, and the BUS register allows to configure the bus settings. The register settings are nonvolatile, the values being stored automatically or as required in EEPROM when the registers are programmed via the SDA and SCL pins.



The following (
 Fig.33
 ) shows the configuration bits of the MUX register.
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Fig.33







Here the DIV1 bit when set (DIV1 = 1) allows the output of the Prescaler P1 to be routed directly to the OUT1 pin. In this case the additional divider is bypassed. If DIV1 is zero (DIV1= 0, by default) then the signal from the Prescaler P1 is additionally divided by the divider. The value N of divider is determined by the DIV register.



The bits
 0M1, 0M0, 1M1, 1M0 relate to the prescalers P0 and P1 respectively and determine the value (1, 2, 4, or 8) of division as is shown in
 Fig.34
 .
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Fig.34







The DIV register contains the value N of division the frequency coming from the Prescaler P1 (
 Fig.35
 ).
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Fig.
 35







These ten bits (N0-N9) determine the value of the programmable divider (N). The range of divisor values is from 2 to 1025, and is equal to the programmed value of N plus 2. Possible values of N are shown in
 Fig.36
 .
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Fig.36







The last to discuss is the BUS register whose format is given in
 Fig.37
 .
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Fig.37







The bits A0, A1 and A2 determine the address of the device and are cleared (000) by default. The WC bit which is set to 0 by default determines when/if the EEPROM is written to after register contents have been changed. If WC = 0 the EEPROM is written automatically after a write register command.



If WC = 1 the EEPROM is only written when the “WRITE” command is issued.
 Regardless of the value of the WC bit, when the BUS register (A0, A1, A2) is written, the current value in all registers (DIV, MUX, and BUS) are immediately written to the EEPROM.







The following project illustrates configuring and measuring the output frequency of the DS1077 oscillator for the OUT1 output. The schematic circuit of our project is shown in
 Fig.38
 .
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Fig.38







In this circuit the DS1077 is driven through I
 2
 C interface; the
 SCL
 control line is wired to pi
 n″
 A
 5
 ″
 of Arfuino Nano and the
 SDA
 data line is wired t
 o″
 A
 4
 ″
 . The pull-up resistors R1-R2 are both 2.7k, although the values up to 10k can be taken. The output signal is taken from the
 OUT1
 output; the Arduino program measures the frequency of this signal on pi
 n″
 D
 5
 ″
 .



The Arduino source code is given in
 Listing 14
 .







Listing 14
 .







#include <Wire.h>



#include <FreqCounter.h>



// An input signal goes to the digital pin D5







const int DS1077_Addr = 0xB0 >> 1; //DS1077 default address



unsigned long freq;







byte MUX
 [2] = {0x19, 0x80}; // M = 8 for PR1



byte DIV[2] = {0xFF, 0xC0}; // DIV = 1025 - 2 = 1023, F = 16.1 KHz



//byte DIV[2] = {0x7F, 0x80}; // DIV = 512 - 2 = 510, F = 32.2 KHz



//byte DIV[2] = {0xCF, 0x40}; // DIV = 831 - 2 = 829, F = 19.8 KHz







void setup()



{



 Wire.begin();



 Serial.begin(9600);







 ////writing data to the BUS register



 i2c_write(DS1077_Addr, 0x0D, 0x8);



 delay(500);







 // writing data to the MUX register



 i2c_write(DS1077_Addr, 0x02, MUX[0], MUX[1]);



 delay(500);







 // writing data to the DIV register



 i2c_write(DS1077_Addr, 0x01, DIV[0], DIV[1]);



 delay(500);







 // writing data to EEPROM



 i2c_write(DS1077_Addr, 0x3F);



 delay(500);



}







void loop()



{



 // read the frequency



 FreqCounter::f_comp=10;



 FreqCounter::start(1000); // 1000 ms Gate Time







 while (FreqCounter::f_ready == 0)



 freq = FreqCounter::f_freq;



 Serial.print("Frequency on OUT1: ");



 Serial.print(freq);



 Serial.println(" Hz");



 delay(2000);



}







void i2c_write(int device, byte address)



{



 Wire.beginTransmission(device); //start transmission to device



 Wire.write(address); // send register address



 Wire.endTransmission(); //end transmission



}







void i2c_write(int device, byte address, byte byte1)



{



 Wire.beginTransmission(device); //start transmission to device



 Wire.write(address); // send register address



 Wire.write(byte1); // send value to write



 Wire.endTransmission(); //end transmission



}







void i2c_write(int device, byte address, byte byte1, byte byte2)



{



 Wire.beginTransmission(device); //start transmission to device



 Wire.write(address); // send register address



 Wire.write(byte1); // send value to write



 Wire.write(byte2); // send value to write



 Wire.endTransmission(); //end transmission



}







Here the MUX value (2 bytes) is assigned to the array MUX[2]. In our example this value is equal 8, although you can change it
 if needed. The MUX value will be written to the MUX register to configure the Prescaler P1.



The value of division (the DIV array) is taken to be 1025 that is maximal for that device. Combined with the MUX value this gives us the minimal possible frequency.








The w
 ide-band digitally programmed oscillator with LTC6903








As it is known, an Arduino board can be programmed to produce pulse trains. The common way to accomplish that is to use built-in timers. There are, however, some limitations on timer uses. The main is that Arduino cannot provide high precision signals for frequencies higher than a few MHz. When a frequency rises toward 1 MHz, the waveform parameters become less predictable. To obtain the frequencies higher than 1 MHz we need to apply special techniques. One obvious approach is to use some single-chip digitally controlled oscillator capable of being driven through some popular interface (SPI, I
 2
 C, etc).







The following project illustrates the design of a digitally programmed wideband oscillator built around a popular chip LTC6903 from Linear Technology. This chip provides a TTL-compatible high-stable and high-accuracy signal in the range from 1 KHz through 68 MHz. The LTC6903 oscillator is driven through SPI-compatible interface, so it is easily to attach the device to Arduino and write a simple program for configuring the LTC603 output frequency.







Let’s begin with the brief description of how the LTC6903 oscillator operates.



The LTC6903 device is a low-power, self contained digital frequency source providing a precision frequency from 1 KHz to 68 MHz, set-able through a serial port. LTC6903 requires no external components other than a power supply bypass capacitor, and it operates over a single wide supply range of 2.7V to 5.5V. In our project the supply voltage will be 5.0V.







As the datasheet says, the LTC6903
 oscillator chip features a proprietary feedback loop that linearizes the relationship between the digital control setting and the output frequency, resulting in a very simple frequency setting equation:







f = 2
 OCT
  2078(Hz) / (2 - DAC/1024
 )
 (1),







where 1 KHz < f < 68 MHz, OCT is a 4-bit integer value (0-15) represented by the serial port register bits OCT [3:0] and DAC is a 10-bit integer value (from 0 through 1023) represented by the serial port register bits DAC[9:0].







The output frequency of LTC6903 can be set programmatically via a 3-wire SPI-compatible interface which connects the Arduino board to the LTC6903 chip. The schematic circuit of the project is shown in
 Fig.39
 .
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Fig.39







In this circuit, th
 e″
 RX<-
 0
 ″
 pin of Arduino is wired to the
 SDI
 line of the LTC6903 chip, th
 e″
 TX->
 1
 ″
 pin is attached to the
 SCK
 line and pi
 n″
 2
 ″
 is attached to
 SEN
 .Th
 e″
 GN
 D
 ″
 pin of the Arduino board must be wired to the common wire of the circuit
 (″
 groun
 d″
 ).







The output frequency appears on the
 CLK
 output (pin 6 of LTC6903). The inverse output signal can be taken from pin 5 (not used here), so this pin 5 is left unconnected. The
 OE
 signal line is wired to the source voltage +5V thereby enabling both
 CLK
 outputs. To reduce noise and increase accuracy the bypass capacitor C1 of about 0.01uF should be tied as close as possible to the power pins of LTC6903. It is worth cutting off any excess of the capacitor leads as much as possible to minimize their series inductance.







Let’s see how to configure the LTC6903’s output frequency.



The appropriate output frequency of LTC6903 can be set by
 applying formula (1). The following steps are required:







	
Select the appropriate value of OCT from the Table1 shown below:









Table1. Output Frequency Range vs. OCT Setting (Frequency Resolution 0.001 * f)













	

f ≥



	

f <



	

OCT






	

34.05 MHz



	

68.03 MHz



	

15






	

17.02 MHz



	

34.01 MHz



	

14






	

8.511 MHz



	

17.01 MHz



	

13






	

4.256 MHz



	

8.503 MHz



	

12






	

2.128 MHz



	

4.252 MHz



	

11






	

1.064 MHz



	

2.126 MHz



	

10






	

532 KHz



	

1063 KHz



	

9






	

266 KHz



	

531.4 KHz



	

8






	

133 KHz



	

265.7 KHz



	

7






	

66.5 KHz



	

132.9 KHz



	

6






	

33.25 KHz



	

66.43 KHz



	

5






	

16.62 KHz



	

33.22 KHz



	

4






	

8.312 KHz



	

16.61 KHz



	

3






	

4.156 KHz



	

8.304 KHz



	

2






	

2.078 KHz



	

4.152 KHz



	

1






	

1.039 KHz



	

Z



	

0













	
Choos
 e the variable DAC by using formula(2) below and round off DAC to the nearest integer:









  DAC = 2048 – 2078(Hz)  2
 (10+OCT)
 / f (2)







	
After OCT and DAC has been determined, we should make up the 16-bit word to be written to the serial register of LTC6903 (
 Fig.40
 ):
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Fig.40







In our case, we assign zero to the D1–D0 fields. Finally, the 16-bit data word should be written into the LTC6903 device according to the timing diagram shown in
 Fig.41
 .
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Fig.41







As it is seen from the above figure, the
 SEN
 signal frames the writing cycle of the 16-bit stream into the serial register of LTC6903. When
 SEN
 goes low, the data transfer is enabled. Each bit shifted onto the
 SDI
 line (MSB goes first) will be clocked into the device on the rising edge of the
 SCK
 pulse. After the last bit (D0) has been written,
 SEN
 has to go high to complete the writing cycle.



The
 source code driving the LTC6903 oscillator is shown in
 Listing 15
 .







Listing 15
 .







const int pSCK = 1;



const int pSDI = 0;



const int pSEN = 2;







int freq;



int tmp;







void WriteOsc(void)



{



freq = 0x2E1A;
  // Freq = 7432 Hz



digitalWrite(pSEN, HIGH); // the CS is brought HIGH



digitalWrite(pSEN, LOW);  // Framing begins by bringing CS low







for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = freq & 0x8000;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pSCK, HIGH);



 freq = freq << 1;



}



digitalWrite(pSEN, HIGH); // the end of the conversion



}







void setup() {



 // set the digital pin as output:



 pinMode(pSCK, OUTPUT);



 pinMode(pSEN, OUTPUT);



 pinMode(pSDI, OUTPUT);



 WriteOsc();



}







void loop(){};







The program
 controls the SPI interface through pin
 s″
 0
 ″-
 ″
 2
 ″
 configured as outputs in the setup() procedure:







pinMode(pSCK, OUTPUT);



pinMode(pSEN, OUTPUT);



pinMode(pSDI, OUTPUT);







The pSCK pin drives the
 SCK
 signal line, pSEN provides the framing signal on the
 SEN
 line and pSDI is associated with the data bit being shifted onto the
 SDI
 line.



The
 freq variable keeps the value of the frequency of interest. In our case, the output frequency is set close to 7432 Hz, so freq is assigned the value 0x2E1A. The tmp variable keeps the current MSB being taken from the freq variable.







Before writing the data word into the LTC6903 inner registers the
 SEN
 signal is pulled high, then low. When low,
 SEN
 enables the data transfer:







digitalWrite(pSEN, HIGH);



digitalWrite(pSEN, LOW);
 







Since the data word contains 16 bits (D15 through D0), the for() loop will run 16 iterations. In each iteration, the current MSB is shifted onto the
 SDI
 line while the
 SCK
 signal is kept low. The MSB bit should be written into the LTC6903 device by pulling the
 SCK
 signal high. The single iteration includes the following sequence:







digitalWrite(pSCK, LOW); // SCK goes LOW



tmp = freq & 0x8000;



digitalWrite(pSDI, LOW);



if (tmp)



 digitalWrite(pSDI, HIGH);



digitalWrite(pSCK, HIGH);



freq = freq << 1;







The last
 statement in this sequence shifts all bits in the freq variable to the left by 1 in preparation for the next iteration. After all data bits have been written, the loop exits. The framing signal pSEN goes high thus terminating the write operation:







digitalWrite(pSEN, HIGH);







In order to set the output frequency other than that in this project, you should recalculate the value of the freq variable.








Signal synthesis using Direct Digital Synthesizer AD9833








Direct Digital Synthesis (DDS) is a method of producing an analog waveform (usually a sine wave) by generating a time-varying signal in digital form and then performing a digital-to-analog conversion. Because operations within a DDS device are primarily digital, this gives fast switching between output frequencies, fine frequency resolution, and operation over a broad spectrum of frequencies.







The ability to accurately produce and control waveforms of various frequencies and profiles has become a key requirement common to a number of industries.
 Many possibilities for frequency generation are open to a designer, but the DDS technique is rapidly gaining
 acceptance for solving frequency (or waveform) generation requirements in both communications and industrial applications because single-chip IC devices can generate programmable analog output waveforms simply and with high resolution and accuracy.







By using modern DDS chips we can obtain sine wave, triangular and rectangle signals with low-level total harmonic distortion (THD). This section described a simple but effective function generator built around a popular chip AD9833 from Analog Devices. The DDS chip is driven by the Arduino Uno R3 board through an SPI-compatible interface. This function generator uses the following circuit (
 Fig.42
 ).
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Fig.42







The AD9833 DDS chip is connected to Arduino via 3 signal lines
 FSYNC
 ,
 SCLK
 and
 SDATA
 being inputs to AD9833. The
 FSYNC
 provides the frame synchronization signal for the input data stream. As
 FSYNC
 is pulled low, the internal logic of the DDS chip is informed that a new word is being loaded into the device. The
 FSYNC
 line is wired to pi
 n″
 8
 ″
 of Arduino.



The
 16-bit configuration data are brought to the
 SDATA
 line which is wired to pi
 n″
 ~
 6
 ″
 of Arduino. The
 SCLK
 signal clocks each data bit on the
 SDATA
 line in AD9833 on each falling edge. The
 SCLK
 line is wired to pi
 n″
 7
 ″
 of Arduino Uno R3.



The output signal
 of AD9833 DDS can be taken from the
 VOUT
 pin. Both analog and digital outputs from the AD9833 are available at the same
 VOUT
 pin. An external load resistor to this pin is not required, because the device has a 200 Ohm on-board resistor. The output signal on the
 VOUT
 pin comes from the inner 10-bit digital-to-analog converter (DAC).







The digital clock source to the AD9833 device is wired to the
 MCLK
 input. DDS output frequencies are expressed as a binary fraction of the frequency of
 MCLK
 . The output frequency accuracy and phase noise are determined by this clock as well. In this project the single-chip crystal oscillator with a frequency of 25 MHz delivers the pulse train to the
 MCLK
 input; any crystal oscillator providing 25 MHz TTL-compatible output signal may be taken as well. It is possible to use a clock source with a different frequency (say, 10 MHz), but the configuration parameters of AD9833 must be recalculated.







The theory of operation of AD9833 is complicated enough, so it will not be discussed here. More information abou
 t
 AD9833 can be obtained from the datasheet on the device and/or application notes provided by Analog Devices.



From the programming point of view
 , at least three registers of AD9833 must be configured: the control register, one of two frequency registers and one of two phase registers. The 16-bit control register of AD9833 determines the operation mode of a DDS chip. All control bits other than the mode bit are sampled on the internal falling edge of
 MCLK
 .







The frequency register (0 or 1) defines the output frequency as a fraction of the
 MCLK
 frequency. The register contains 32 bits where the lower 28 bits are data bits used for configuring the output frequency. The phase register (0 or 1) has the contents being added to the output of the phase accumulator. The lower 12 bits of each phase register are data bits.







In order to change the entire contents of a frequency register two consecutive writes to the same address must be performed. Each write operation takes 16 bit. The phase register requires one writing operation. The complete configuring requires at least 5 write operations, each 16 bit long. The sequence must begin with writing the control register (16 bit) followed by two 16-bit write cycles to the frequency register. Afterwards the 16-bit data word should be written in the phase register and finally the 16-bit word is moved to the control register, thereby terminating the write cycle.







The timing diagram of the write operation is given below (
 Fig.43
 ).
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Fig.43







It is seen that data is loaded into the AD9833 device as a 16-bit word under the control of a serial clock input,
 SCLK
 . The
 FSYNC
 input is a level-triggered input that acts as a frame synchronization and chip enable. Data can be transferred into the device only when
 FSYNC
 is low.



After
 bringing
 FSYNC
 low the serial data stream is shifted into the input shift register of the device on the falling edges of
 SCLK
 for 16 clock pulses.
 FSYNC
 may be taken high after the 16
 th
 falling edge of
 SCLK
 .



Alternatively,
 the
 FSYNC
 line can be kept low for a multiple of 16
 SCLK
 pulses and then brought high at the end of the data transfer. In this way, a continuous stream of 16-bit words can be loaded while
 FSYNC
 is held low;
 FSYNC
 goes high only after the 16
 th
 SCLK
 falling edge of the last word loaded.



The
 SCLK
 can be continuous, or it can idle high or low between write operations. In either case, it must be high when
 FSYNC
 goes low.







The following source code (
 Listing 16
 ) allows to configure the AD9833 DDS chip to produce a sine wave with a frequency 14.81 KHz.







Listing 16
 .







// Generating the sine wave with the frequency of 14.81 KHz at MCLK = 25MHz







const int FSYNC = 8;



const int SCLK = 7;



const int SDATA = 6;







int DATA[5] = {0x2100, 0x6D2D, 0x4009, 0xC000, 0x2000};



int tmp;







void SPIInit()



{



pinMode(FSYNC, OUTPUT);



pinMode(SCLK, OUTPUT);



pinMode(SDATA, OUTPUT);



}







void WriteDDS(int word16)



{



 digitalWrite(SCLK, HIGH); // SCLK should be kept HIGH before



 digitalWrite(FSYNC, HIGH); // FSYNC is brought HIGH



 digitalWrite(FSYNC, LOW); // Framing is started by bringing FSYNC LOW



 for (int i1 = 0; i1 < 16; i1++)



 {



 digitalWrite(SCLK, HIGH); // SCLK goes HIGH



 tmp = word16 & 0x8000;



 digitalWrite(SDATA, LOW);



 if (tmp)



 digitalWrite(SDATA, HIGH);



 digitalWrite(SCLK, LOW); // writing data bit into a DDS chip



 word16 = word16 << 1; // preparing next bit to write



}



 digitalWrite(FSYNC, HIGH); // the end of the conversion



}







void setup() {



 SPIInit();



 for (int k = 0; k < 5; k++)



 {



 WriteDDS(DATA[k]);



 }



}







void loop() {}







In this program, the configuration data for AD9833 is held in the DATA array of 5 elements. In our case, the values assigned to the elements of DATA determine the sine wave output with a frequency 14.81 KHz at the source clock of 25 MHz applied to the MCLK input. The bit sequence in DAT
 A
 [0
 ]
 will be written in the control register. DATA[0] determines the operating mode and causes the chip to be reset prior to configuring the frequency register 0 and phase register 0.







The elements DATA[1] and DATA[2] contain 32-bit data for the frequency register 0. The 16-bit value of the element DATA[3] will be written to the phase register 0. The last element, DATA[4], keeps the value for the control register. After DATA[4] has been transferred, the reset mode exits and the DDS chip goes to its operating mode.







We can calculate values of elements of the DATA array manually by means of the formulas given in the AD9833 datasheet. It is much easier, however, to launch a special programming tool from Analog Devices called
 DDS
 
 ConfigurationAssistant
 located at
 
http://designtools.analog.com/dt/ad98334/ad9833.html

 .







Below you can see the example of
 the
 DDSConfigurationAssistant
 window with parameters estimated for the sine wave signal of 10.56 KHz (
 Fig.44
 ).
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Fig.44







Let’s back to our source code. In order to generate the triangle signal of the same frequency (14.81 KHz) we should replace the first and last elements of DATA. The DATA array will then look like the following:







int DATA[5] = {0x2102, 0x6D2D, 0x4009, 0xC000, 0x2002};







The WriteDDS() function accomplishes the write operation for a single 16-bit value on the SPIinterface. Pin
 s
 6
 -
 8
 of Arduino must be put in the OUTPUT mode prior to writing, so the SPIInit() function is called before configuring the DDS chip.







The operability of this function generator was tested by using LabVIEW virtual oscilloscope built upon the multifunction DAQ NI PCI-6221. The output windows of the LabVIEW application for the sine wave and triangle signals are shown in
 Fig.45-Fig.46
 respectively.
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Fig.45
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Fig.
 46







Note that the amplitude of the analog signal at the DAC output of AD9833 turns out to be about 0.6V, so the additional amplifier stage may be placed on pin
 VOUT
 . Additionally, it would be worth filtering the output signal. Both functions (amplifying and filtering) may be combined in a single stage built around an op-amp.








Signal synthesis using AD9850 DDS








This section describes one more project with DDS. The project is based upon using the popular DDS chip AD9850 which can produce the sine wave and square wave signals in a wide range of frequencies. The device output frequency is controlled through the SPI-compatible interface by the Arduino Uno R3 board. Before we start describing the hardware/software let’s see on how AD9850 works. The brief description that follows is taken from the datasheet on the device.







The AD9850 is a highly integrated device that uses advanced DDS technology coupled with an internal high speed, high performance D/A converter and comparator to form a complete, digitally programmable frequency synthesizer and clock generator function. When referenced to an accurate clock source, the AD9850 generates a spectrally pure, frequency/phase programmable, analog output sine wave. This sine wave can be used directly as a frequency source, or it can be converted to a square wave for agile-clock generator applications.







The AD9850’s innovative high speed DDS core provides a 32-bit frequency tuning word, which results in an output tuning resolution of 0.0291 Hz for a 125 MHz reference clock input. The AD9850’s circuit architecture allows the generation of output frequencies of up to one-half the reference clock frequency (or 62.5 MHz), and the output frequency can be digitally changed (asynchronously) at a rate of up to 23 million new frequencies per second. The device also provides five bits of digitally controlled phase modulation, which enables phase shifting of its output in increments of 180, 90, 45, 22.5, 11.25, and any combination thereof. The AD9850 also contains a high speed comparator that can be configured to accept the (externally) filtered output of the DAC to generate a low jitter square wave output. This facilitates the device’s use as an agile clock generator function.







The frequency tuning, control, and phase modulation words are loaded into the AD9850 via a parallel byte or serial loading format. The parallel load format consists of five iterative loads of an 8-bit control word (byte). The first byte controls phase modulation, power-down enable, and loading format; Bytes 2 to 5 comprise the 32-bit frequency tuning word. Serial loading is accomplished via a 40-bit serial data stream on a single pin. The AD9850 Complete DDS uses advanced CMOS technology to provide this breakthrough level of functionality and performance on just 155 mW of power dissipation (3.3 V supply).



The following common scheme (
 Fig.47
 ) for connecting AD9850 to external circuitry is shown below.
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Fig.
 47







Assembling such a circuit can be a hard work, so it would be much better to apply one of numerous ready-to-use modules with AD9850. One of such modules taken to this project is shown in
 Fig.48
 .
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Fig.48







It is seen that the reference clock fed to the AD9850 chip is 125 MHz, therefore the output frequency can reach 62.5 MHz. As to this module, it is stated that the real output frequency can reach 40 MHz because of the low-pass filter placed at the DAC output of AD9850. However, the developers experimenting with this module will be capable to pull up the output to its maximal frequency.



The project described here
 uses the above module.
 Fig.49
 shows connections between the AD9850 board and Arduino Uno R3.
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Fig.49







In this circuit, the
 DATA
 line (pin D7 of AD9850) is connected to pi
 n″
 7
 ″
 of Arduino Uno R3. The framing signal
 FQ_UG
 goes to pi
 n″
 6
 ″
 of Arduino and the clock input
 W_CLK
 of AD9850 is wired to pi
 n″
 5
 ″
 of Arduino.



The
 RESET
 signal arrives at the AD9850 chip through pi
 n″
 8
 ″
 of Arduino. We can also attach the
 RESET
 pin of AD9850 t
 o″
 groun
 d″
 if reset is not needed.



Note
 that the connections in circuit shown in
 Fig.49
 are specific for my own AD9850 board purchased at
 
www.dx.com

 ; the pin configuration on other AD9850 boards may be different, so you must carefully examine your own AD9850 board before connecting it to Arduino!



There will be two various source codes for driving circuit shown in
 Fig.49
 . The first is shown in
 Listing 17
 . The data for configuring AD9850 chip is obtained from the special application
 DDSConfigurationAssistant
 that can be found at
 
http://designtools.analog.com/dt/dds/ad9850.html

 .



In this project, the output frequency is set to 7 KHz.







Listing 17
 .







const int FQ_UD = 6;



const int W_CLK = 5;



const int DATA = 7;



const int RESET = 8; // Pin 8 is wired to reset pin RST







byte SDATA[5] = {0x61, 0xD5, 0xC0, 0x00, 0x00};// F = 7.0KHz



//byte SDATA[5] = {0x49, 0xB2, 0xC0, 0x00, 0x00};// F = 6.3KHz



//byte SDATA[5] = {0xB5, 0xFE, 0xA0, 0x00, 0x00};// F = 10.488KHz



//byte SDATA[5] = {0xCA, 0xD2, 0x10, 0x00, 0x00};// F = 15.820KHz



//byte SDATA[5] = {0xC3, 0xEA, 0x90, 0x00, 0x00};// F = 17.82KHz



//byte SDATA[5] = {0xD5, 0xD7, 0x90, 0x00, 0x00};// F = 18.922KHz



//byte SDATA[5] = {0x17, 0x8D, 0x50, 0x00, 0x00};// F = 20.399KHz



//byte SDATA[5] = {0xDB, 0xC5, 0x30, 0x00, 0x00};// F = 24.109KHz



//byte SDATA[5] = {0x96, 0x28, 0x88, 0x00, 0x00};// F = 32.577KHz







int tmp;







void PinConfig()



{



pinMode(FQ_UD, OUTPUT);



pinMode(W_CLK, OUTPUT);



pinMode(DATA, OUTPUT);



pinMode(RESET, OUTPUT);



}







void WriteDDS(byte w8)



{



for (int i1 = 0; i1 < 8; i1++, w8 <<= 1)



{



 digitalWrite(W_CLK, LOW);



 tmp = w8 & 0x80;



 digitalWrite(DATA, tmp>>=7);



 digitalWrite(W_CLK, HIGH); // writing data bit into a DDS chip



}



}







void StartInit()



{



digitalWrite(RESET, HIGH);



digitalWrite(RESET, LOW);







digitalWrite(W_CLK, HIGH);



digitalWrite(W_CLK, LOW);







digitalWrite(FQ_UD, HIGH);



digitalWrite(FQ_UD, LOW);



}







void setup()



{



PinConfig();



StartInit();



for (int k = 0; k < 5; k++)



 WriteDDS(SDATA[k]);



digitalWrite(FQ_UD, HIGH); // configuration data has been latched into the chip



}







void loop() {}







Here the SDATA elements were calculated using the
 DDS Configuration Assistant
 whose windows is shown in
 Fig.50.
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Fig.50







We can also calculate the tuning word for configuring the output frequency without using the
 DDSConfigurationAssistant
 application. To do that we need to know the relationship of the output frequency, reference clock, and tuning word of the AD9850. This is determined by the formula taken from the datasheet on AD9850 (
 Fig.51)
 .
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Fig.51







Here ΔPhase is the value of the 32-bit tuning word, CLKIN is the input reference clock frequency in MHz.



f
 OUT
 is the frequency of the output signal in MHz.



The following source code (
 Listing 18
 ) allows to directly set the output frequency using the formula shown in
 Fig.51
 .







Listing 18
 .







const int W_CLK = 5; // Pin 5 is connected to pin W_CLK of AD9850



const int FQ_UD = 6; // Pin 6 is wired pin FQ_UD



const int DATA = 7; // Pin 7 is wired to pin DATA



const int RESET = 8; // Pin 8 is wired to reset pin RST







void setFreq(double freq)



{



 unsigned long freqWord = freq * pow(2, 32) / 125E6; // assuming ref.clock = 125MHz



 int mask = 0x1;



 for (int w = 0; w < 32; w++, freqWord >>=1) //
 writing bits W0 --> W31



 {



 digitalWrite(W_CLK, LOW);



 digitalWrite(DATA, freqWord & mask);



 digitalWrite(W_CLK, HIGH);



 }



 for (int w = 32; w < 40; w++) // last byte to write = 0x00, bits W32 --> W39



 {



 digitalWrite(W_CLK, LOW);



 digitalWrite(DATA, LOW);



 digitalWrite(W_CLK, HIGH);



 }



 digitalWrite(FQ_UD, HIGH);



}







void setup()



{



// configuring Arduino pins



 pinMode(FQ_UD, OUTPUT);



 pinMode(W_CLK, OUTPUT);



 pinMode(DATA, OUTPUT);



 pinMode(RESET, OUTPUT);







 digitalWrite(RESET, HIGH);



 digitalWrite(RESET, LOW);







 digitalWrite(W_CLK, HIGH);



 digitalWrite(W_CLK, LOW);







 digitalWrite(FQ_UD, HIGH);



 digitalWrite(FQ_UD, LOW);



}







void loop()



{



 setFreq(19
 090); // output frequency in Hz



 while(1);



}







Here we configure the output frequency of AD9850 to be 19090 Hz. The output of the AD9850 oscillator is shown in the LabVIEW virtual oscilloscope (
 Fig.52
 ).
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Fig.52












Using
 single-channel digital potentiometers








Digital potentiometers may significantly expand capabilities of electronic circuits because they can simplify design of digitally controlled circuits by replacing mechanical resistors and potentiometers. In this section we will discuss using popular MCP41xx devices from Microchip Corp. Some excerpts from the relevant datasheets will clarify the matter.







According to the datasheet, the MCP41XXX/42XXX devices are 256 position single and dual digital potentiometers that can be used in place of standard mechanical potentiometers. Digital potentiometers have resistance values of 10k, 50k and 100k. The following projects will use the MCP41010 device with the resistance of 10k. Each potentiometer is made up of a variable resistor and an 8-bit (2
 8
 = 256 position) data register that determines the wiper position. The nominal wiper resistance equals 52 Ohm for the 10k version and 125 Ohm for the 50k and 100k versions. The resistance between the wiper and either of the resistor endpoints varies linearly according to the value stored in the data register.







The MCP41XXX series provides 256 taps and accept a power supply from 2.7 through 5.5V. The next projects use the MCP41010 device powered by +5V source. This also means that LSB will be equal to 5 / 2
 8
 = 0.0195 V. If, for example, an application writes the binary code of 100 to the device, the digital potentiometer yields 0.0195  100 = 1.95 V on its output.







Digital potentiometer applications usually fall into two categories: those that use
 a
 ″
 rheosta
 t″
 mode and applications using
 a
 ″
 potentiomete
 r″
 mode. Th
 e
 ″
 potentiomete
 r″
 mode is also called
 a
 ″
 voltage divide
 r″
 mode. In th
 e
 ″
 rheosta
 t″
 mode, a potentiometer is connected as a two-terminal resistive element. The unused terminal should be tied to the wiper (
 Fig.53)
 . Note that reversing the polarity of the
 A
 and
 B
 terminals will not affect operation.
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Fig.
 53







Using the device in th
 e
 ″
 rheosta
 t″
 mode allows to control the total resistance between the two nodes. The total measured resistance would be the least at code 0x00, where the wiper is tied to the
 B
 terminal. The resistance at this code is equal to the wiper resistance, typically 52 Ohms for the 10k MCP4X010 devices, 125 Ohms for the 50k (MCP4X050), and 100k (MCP4X100) devices. For the 10k device, the LSB size would be 39.0625 Ohms (assuming 10k total resistance). The resistance would then increase with this LSB size until the total measured resistance at code 0xFF would be 9985.94 Ohms. The wiper will never be directly connected to the
 A
 terminal of the resistor stack.







In the 0x00 state, the total resistance is the wiper resistance. To avoid damage of the internal wiper circuitry in this configuration care should be taken to ensure the current flow never exceeds 1 mA.







In th
 e
 ″
 potentiomete
 r″
 mode, all three terminals of the device are tied to different nodes in the circuit. This allows the potentiometer to output a voltage proportional to the input voltage (
 Fig.54
 ). The potentiometer is used to provide a variable voltage
 V
 2
 by adjusting the wiper position between two endpoints
 A
 and
 B
 . The
 A
 endpoint is wired to the voltage source
 V
 1
 and the
 B
 point is tied to the common wire of a circuit
 (″
 groun
 d″
 ). Note that reversing the polarity of the
 A
 and
 B
 terminals will not affect operation.
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Fig.
 54







For the MCP41XXX devices the output analog voltage
 V2
 appears on the
 PW
 line. In the case of MCP41010, for instant, this will be pin 6 ("wiper"). Note that the digital potentiometers provide the relatively high output impedance, so an additional buffer should be inserted between the wiper and external circuitry. The buffer is also needed if an external load consumes the higher current. The simple buffer may be implemented as a voltage follower built around an op-amp.







As you can see, the voltage divider is composed of the
 R
 WA
 and
 R
 WB
 resistors. The total resistance between
 A
 and
 B
 endpoints is determined by the parameters of a particular device. MCP41010, for instance, has the full resistance equal to 10k. The resistance of each "resistor" of this voltage divider may be calculated as follows:







R
 WA
 (D
 n
 ) = (R
 AB
 )  (256 – D
 n
 ) / 256 + R
 W



R
 WB
 (D
 n
 ) = (R
 AB
 )  (D
 n
 ) / 256 +R
 W
 ,







where R
 WA
 is a resistance between the terminal
 PA
 and the wiper (see
 Fig.54
 ), R
 WB
 is a resistance between the terminal
 PB
 and the wiper, R
 W
 is a wiper resistance, R
 AB
 is the overall resistance of the particular device and D
 n
 is a 8–bit binary code that determines the output voltage of the potentiometer. In our projects we will ignore the wiper resistance because it is very low, though for very precision circuits this value should be considered. When the device is powered on, the data registers will be set to mid–scale (0x80).







Let’s take a look at how to program the MCP41XXX chips. To configure R
 WA
 and R
 WB
 resistors we should write the predetermined 16-bit value in the data register of the digital potentiometer. The timing diagram below illustrates the write operation (
 Fig.55
 ).
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Fig.55







Writing the bit stream into the digital potentiometer is accomplished via SPI-compatible interface. As it is seen, the 16-bit word consists of the
 command
 and
 data
 bytes. In our projects, the command byte will be assigned the value 0x11. The data byte (D
 n
 ) will determine the output voltage. More details can be found in the datasheet on the device.







The write operation begins when the
 CS
 signal goes high then low. Each data bit of the bit stream is shifted out on the
 SI
 line when the clock signal
 SCK
 is kept low. The data bit is latched into the data register on the rising edge of
 SCK
 . After all 16 bits have been written in the device data register, the
 CS
 signal is pulled high thus completing the operation.



The
 next project illustrates the design of the digitally programmed DC voltage source using the MCP41010 digital potentiometer. The schematic circuit of the project is shown in
 Fig.56
 .
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Fig.56







In this circuit, the digital potentiometer MCP41010 operates in th
 e″
 potentiomete
 r
 ″
 mode. The DC output voltage
 V
 out
 is taken from pin 6 of the device. MCP41010 is driven by the Arduino board via the SPI-compatible interface. The
 SCK
 ,
 SI
 and
 CS
 lines are connected to the digital ports 5-7 of Arduino. The optional buffer A1 can be placed at the output
 V
 out
 to isolate the low-power part output
 PW0
 from an external load.



The connections of the
 above circuit are detailed in the following table.









	

Arduino pin



	

MCP41010
 pin






	

″
 ~
 5
 ″



	

2 (SCK)






	

″
 ~
 6
 ″



	

3
  (SI)






	

″
 7
 ″



	

1
  (CS)













The source code for programming the MCP41010 device is given in
 Listing 19
 .







Listing 19
 .







const int pSCK = 5;



const int pSI = 6;



const int pCS = 7;







int cmd = 0x1100;



int binData = 64, binCode;



int tmp;







// binData = 32, 1/8 of the full scale --> 0.635 V (5.08 Vref)



// bitData = 64, 2/8 of the full scale --> 1.27 V



// binData = 96, 3/8 of the full scale --> 1.905 V



// binData = 128, 4/8 of the full scale --> 2.54 V







// binData = 160, 5/8 of the full scale --> 3.175 V



// binData = 192, 6/8 of the full scale --> 3.81 V



// binData = 224, 7/8 of the full scale --> 4.445 V







void WriteDP(void)



{



binCode = cmd + binData;



digitalWrite(pCS, HIGH); // the CS is brought HIGH



digitalWrite(pCS, LOW);
 // Framing is started by bringing CS LOW



for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = binCode & 0x8000;



 digitalWrite(pSI, LOW);



 if (tmp)




  digitalWrite(pSI, HIGH);



 digitalWrite(pSCK, HIGH);



 binCode = binCode << 1;



}



digitalWrite(pCS, HIGH); // writing is complete



}







void setup() {



pinMode(pSCK, OUTPUT);



pinMode(pSI, OUTPUT);



pinMode(pCS, OUTPUT);



WriteDP();



}







void loop(){}







The high byte of the binCode variable is assigned the command (0x11), while the low byte (0 through 255) is kept in the binData variable. In our case, binData is assigned 64 that results in the output voltage of 1.27V at the reference voltage of 5.08V. The output voltage
 V
 out
 is taken from the wiper
 PW
 . Note that
 V
 out
 depends on the voltage applied to the endpoints of the potentiometer (5.08V, in our case). Some possible binary values of binData for the several outputs are shown in commented lines.







Writing 16-bit value to the device is accomplished within the for() loop. The data transfer begins when the
 CS
 signal is pulled low. After LSB has been written, the
 CS
 line is pulled high thus completing the write operation.







The MCP41010 part can be replaced by the MCP41050 device with the total resistance of 50k or MCP41100 with the resistance of 100k. This application can be easily expanded for using dual channel digital potentiometers MCP42XXX, though such evolution will require modifications in both hardware and software.







To replace mechanical resistors and potentiometers a digital potentiometer must be put in th
 e″
 rheosta
 t
 ″
 mode. The circuit shown in
 Fig.57
 demonstrates how to implement the digitally controlled amplification of an analog signal. In this circuit, the analog input signal
 V
 in
 is fed to the input of the amplifier built around the op-amp OPA2277P.
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Fig.
 57







Both parts, R
 WA
 and R
 WB,
 of the digital potentiometer MCP41010 act as the feedback chain to the op-amp OPA2277. Th
 e″
 wipe
 r″
 of the digital potentiometer is wired to the inverting input (pin 2) of the op-amp OPA2277 configured as the non-inverting amplifier. The gai
 n
 G
 of this amplifier is given by the formula:







G = V
 ou
 t / V
 in
 = 1 + R
 WA
 / R
 WB







Here the R
 WA
 ″
 resisto
 r″
 is connected between pins 2 and 1 of the op-amp and the R
 WB
 connects the inverting input (pin 2) t
 o″
 groun
 d″
 . If, for instance, the digital potentiometer is configured by the value 64, then the ratio R
 WA
 / R
 WB
 will be 192/64 = 3, resulting in the gain G = 4. Therefore, the amplitude of the output signal on pin 1 of OPA2277P) will be 4 times larger than that on the non-inverting input (pin 3).



The voltage divider (resistors R4-R5) provides the
 reference voltage 5V x R5 / (R4 + R5)
 to the non-inverting input. The amplified reference voltage appears on the op-amp output signal will be equal to:







5V x G x R5 / (R4 + R5),







where G is the gain of the circuit. The
 V
 in
 signal is AC coupled to the non-inverting input of opamp through the capacitor C2. The Arduino source code for testing this project may be taken from
 Listing 19
 .







Other circuits where digital potentiometers may come in handy are RC-oscillators. Signal parameters (frequency, pulse width, amplitude) in those circuits are usually determined by resistors and/or potentiometers. Those mechanical components can be easily substituted by digital potentiometers in timing RC networks determining the parameters of oscillators.



The
 next project illustrates the design of the pulse-width modulator (PWM) whose duty cycle is adjusted programmatically by the digital potentiometer.







The schematic circuit of this PWM uses a CMOS timer TLC555 and the digital potentiometer MCP41010 (
 Fig.58
 ).
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Fig.58







The TLC555 timer operates in the multivibrator mode. The duty cycle of the oscillator is altered by the digital potentiometer MCP41010. The capacitor C2, digital potentiometer PA0-PW0-PB0 and resistor R4 determine the frequency of the multivibrator (about 4000Hz). The diodes D1 and D2 provide separate paths for charging/discharging the capacitor C2. By varying R
 WA
 and R
 WB
 resistors of MCP41010 we can change the duty cycle of the output signal on pin 5 of TLC555. The resistor R4 limits the current through the terminals of MCP41010 at low values either of R
 WA
 or R
 WB
 . The duty cycle of the output signal varies as the wiper
 PW0
 moves. Any of 555 devices (LMC555, 7555, etc.) will work in this circuit.



The source code for this project
 will be the same as that shown in
 Listing 19
 .







One more PWM circuit using a digital potentiometer can be built around a low-cost comparator TLC3702 (
 Fig.59
 ).
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Fig.59







In this circuit, the comparator A2.1 (1/2 TLC3702) produces the triangle waveform of the frequency about 750 Hz. The frequency of the PWM output signal is determined by the C2R7 pair in the oscillator built around A2.1. The triangle waveform signal arrives at the non-inverting input (pin 5) of the comparator A2.2 which forms the PWM output. The reference voltage applied to the inverting input (pin 6) of A2.2 from the wiper
 PW0
 of the digital potentiometer sets the threshold. This threshold, in turn, determines the duty cycle of the pulse train at the A2.2 output (pin 7); the PWM signal will be linearly proportional to the DC voltage at pin 6. The threshold can be varied by the software driving the digital potentiometer A1 (MCP41010).







Any single-supply (+3.3V) high-speed comparator will fit this circuit. In our case, the TLC3702 device provides push-pull outputs, so the pull-up resistors at pins 1 and 7 aren’t needed. Comparators wit
 h″
 open collecto
 r″
 (OC) output need with pull-up resistors can be applied in this circuit as well.








Digitally controlled current sources: project 1








Current sources are used in plenty applications including bias networks, surge protection, low power references, ramp generation, LED and laser diode drivers, temperature sensing, etc. Using Arduino and digital potentiometers allows to build current source circuits where the output current can be controlled by software.







Let’s take a look at how to control voltage sources by software. The first project uses the circuit built around the digital potentiometer MCP41010, op-amp OPA364 and the bipolar transistor 2N3904 (
 Fig.60
 ).
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Fig.60







In this circuit, the emitter current
 I
 E
 of the transistor Q1 is determined by the
 V
 ref
 voltage and the resistor R5 as:







I
 E
 = V
 ref
 / R5







The output current
 I
 C
 is being taken from the Q1 collector having high impedance.
 I
 C
 will be equal to



I
 E
 –
 I
 B
 ,
 so at a very low current I
 B
 we can consider
 I
 C
 ≈
 I
 E
 . To minimize
 I
 B
 we should select the transistor Q1 with a large DC current gain (denoted as
 h
 fe
 or
 β
 ). The
 Vref
 voltage is obtained from the digital potentiometer
 PA0-PW0-PB0
 arranged as the voltage divider (“
 potentiometer
 ” mode).



Using negative feedback, the op-amp
 OPA364 tries to maintain the voltage drop across the resistor R5. Even if the resistance R
 L
 of the load changes, the drop across R5 stays the same. Remember, though, this current control has operational limits; it can only swing the output voltage so far to compensate for load variance. Once these limits are reached, the current regulation can no longer exist.








Digitally controlled current sources: project 2








This current source uses the versatile chip LM334 (LM134 or LM234 can be applied as well). The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1V to 40V. Current is established with one external resistor and no other parts are required. Initial current accuracy is 3%. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.







The sense voltage used to establish operating current in the LM134 is 64mV at 25C and is directly proportional to absolute temperature (K). The simplest one external resistor connection, then, generates a current with ≈+0.33%/C temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode. Applications for the current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing.







The LM234-3 and LM234-6 are specified as true temperature sensors with ensured initial accuracy of 3C and 6C, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.







The basic circuit for the digitally controlled current source LM334 is shown in
 Fig.61
 .
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Fig.61







In this circuit, the total current through LM334 (
 I
 SET
 ) is the sum of the current going through the resistor
 R
 SET
 (
 I
 R
 ) and the LM334’s bias current (
 I
 BIAS
 ). The resistor
 R
 SET
 is a combination of the resistor R4 and the digital potentiometer
 PA0-PW0-PB0
 (let’s call it
 DP
 ) connected in series. R4 is needed to limit the current at low resistance of the digital potentiometer; in our case, R4 = 100 Ohm though other value can be selected as well.



The
 current
 I
 SET
 flowing through the resistor
 R
 SET
 is expressed as:







I
 SET
 = (V
 R
 / R
 SET
 ) x (1.059) = (227 V/K) / R
 SET







This equation can be rearranged as:







I
 SET
 = (V
 R
 / R
 SET
 ) x (1.059) = (227 V/K) / (R4 + DP)







The above equations can be applied for calculating
 I
 SET
 in the range from 2A to 1mA.



The LM334 makes an ideal remote temperature sensor because its current mode operation does not lose accuracy over long wire runs. Output current is directly proportional to absolute temperature in degrees Kelvin, according to the following formula:







I
 SET
 = (V
 R
 / R
 SET
 ) x (1.059) = (227 V/K) x (T) / R
 SET







Adding a diode and a resistor to the standard LM134 configuration can cancel the temperature-dependent characteristic of the LM334. This approach is described in detail in the datasheet on the LM334 device.








Using 4-channel digital potentiometer AD5204








Here we will talk about using 4-channel digital potentiometers. Such devices have numerous applications due to availability of four independent digitally controlled resistors. The following projects will illustrate using versatile 4-channel digital potentiometer AD5204.







The AD5204 provides 4-channel, 256-position digitally controlled variable resistor (VR) devices. These devices perform the same electronic adjustment function as a potentiometer or variable resistor. Each channel of the AD5204 contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the SPI-compatible serial-input register.







The resistance between the wiper and either end-point of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. The variable resistor offers a completely programmable value of resistance between the A terminal and the wiper or the B terminal and the wiper. The fixed A-to-B terminal resistance of 10k, 50k, or 100k has a nominal temperature coefficient of 700 ppm/C.







The simple project illustrates the basic programming techniques when dealing with AD5204. The schematic circuit of the project is shown in
 Fig.62
 .
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Fig.62







In this circuit, the AD5204 digital potentiometer of 10k is driven by the Arduino Nano through the SPI-compatible interface. The framing signal line
 CS
 is wired to pi
 n″
 D
 7
 ″
 , the clock source line
 CLK
 is driven by pi
 n″
 D
 6
 ″
 and the
 SDI
 data line is connected to pi
 n″
 D
 5
 ″
 . We will not deal with shutdown and reset modes in this project, so
 SHDN
 and
 PR
 lines are connected to +5V power rail.



The digital potentiometer uses channel
 A1-W1-B1
 configured as a voltage divider where the output voltage
 V
 out
 is taken from the wiper
 W1
 .



The bypass capacitor C1 should be tied as close as possible to the power pins of AD5204 device. The timing diagram of operation of the AD5204 device is shown in
 Fig.63
 .
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Fig.63







Here the
 CS
 signal frames (allows) the transfer of 11-bit data stream to the device. When
 CS
 is pulled low, each data bit on the
 SDI
 line is shifted into the serial input register on the rising edge of
 CLK
 . After
 CS
 has been pulled high, the data bits are latched into corresponding RDAC register. The address of RDAC is determined by the A2-A0 bits of the data stream.







The source code for this project is given in
 Listing 20
 .







Listing 20
 .







const int pCLK = 6;



const int pSDI = 5;



const int pCS = 7;







unsigned int addr = 0x00; // RDAC1 addr



unsigned int tmp;







//unsigned int binCode = 32; // 0.661 V, Vref = 5.29V



//unsigned int binCode = 64; // 1.322 V



//unsigned int binCode = 97; // 2.004 V



//unsigned int binCode = 111; // 2.293 V



//unsigned int binCode = 128; // 2.645 V



//unsigned int binCode = 140; // 2.890 V



//unsigned int binCode = 151; // 3.120 V



//unsigned int binCode = 166; // 3.43 V



//unsigned int binCode = 181; // 3.740 V







//unsigned int binCode = 197; // 4.070 V



unsigned int binCode = 229; // 4.736 V



//unsigned int binCode = 247; // 5.109 V







void WriteDP(void)



{



digitalWrite(pCS, HIGH); // the CS is brought HIGH



digitalWrite(pCLK, HIGH); // SCK goes LOW



digitalWrite(pCLK, LOW); // SCK goes LOW



digitalWrite(pCS, LOW); // Framing is started by bringing CS LOW







for (int i1 = 0; i1 < 3; i1++)



{



 digitalWrite(pCLK, LOW); // SCK goes LOW



 tmp = addr & 0x4;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pCLK, HIGH);



 addr = addr << 1;



}







for (int i2 = 0; i2 < 8; i2++)



{



 digitalWrite(pCLK, LOW); // SCK goes LOW



 tmp = binCode & 0x80;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pCLK, HIGH);



 binCode = binCode << 1;



}



digitalWrite(pCS, HIGH); // writing is complete







}







void setup() {



pinMode(pCLK, OUTPUT);



pinMode(pSDI, OUTPUT);



pinMode(pCS, OUTPUT);



WriteDP();



}







void loop(){}







As it is seen from the timing diagram in
 Fig.63
 , the data stream to the AD5204 consists of the address (bits A2-A0) and the data byte (bits D7-D0). When using 4-channel digital potentiometer AD5204 we need to configure the address of the channel prior to data transfer to the device.



In our project
 , we will involve the
 A1-W1-B1
 (called
 RDAC1
 ) channel, so its address will be 0x00. The address is assigned to the addr variable at the beginning of the code. To transfer the address of the channel to the device the







for (int i1 = 0; i1 < 3; i1++)







loop is used.



The data are delivered to the device through the
 for (int i2 = 0; i2 < 8; i2++) loop.



Configuring channels RDAC2-RDAC4 of AD5204 can be accomplished using addresses 0x01 through 0x03.








The q
 uadrature sinewave RC oscillator driven by a digital potentiometer








Four channel digital potentiometers allow to build digitally controlled RC sinewave oscillators. In such oscillators there are several identical timing RC networks. Replacing mechanical resistors in those networks with digital potentiometers allows to control RC oscillators by software.







The following project will illustrate using the four-channel digital potentiometer AD5204 for driving quadrature sine/cosine waveform RC oscillator. Prior to placing the digital potentiometer in the oscillator circuit, we should know how to configure AD5204. The simple circuit in
 Fig.64
 helps us to understand the matter.



In this circuit
 all channels of AD4204 are set t
 o″
 rheosta
 t″
 mode.
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Fig.64







The nominal resistance of the RDACx between Terminal
 A
 and Terminal
 B
 is available with values of 10k, 50k, and 100k. The last digits of the part number determine the nominal resistance value; for example, 10k = 10 and 100k = 100.The nominal resistance (R
 AB
 ) has 256 contact points accessed by the wiper terminal, plus Terminal
 B
 contact. The 8-bit data-word in the RDACx latch is decoded to select one of the 256 possible settings. The first connection of the wiper starts at Terminal
 B
 for the 0x00 data.







The Terminal
 B
 connection has a wiper contact resistance of 45 Ohm. The second connection (for a 10k part) is the first tap point, located at 84 Ohm. The resistance for the 0x01 data will be equal to







R
 AB
 (nominal resistance) / 256 + R
 W
 = 84 Ohm + 45 Ohm







The third connection is the next tap point, representing 78 + 45 = 123 Ohm for the 0x02 data. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at 10.006k
 Note
 that the wiper is not directly connected to Terminal
 A
 .



The general transfer equation determining the digitally
 programmed output resistance between the
 W
 X
 and
 B
 X
 terminals is given by the following formula:







R
 WB
 (D
 X
 ) = (D
 X
 ) / 256 x R
 AB
 + R
 W







where D
 X
 is the data contained in the 8-bit RDACx latch, and R
 AB
 is the nominal end-to-end resistance. For example, when V
 B
 = 0 V and Terminal
 A
 is open, the output resistance values are set as outlined in the table below for the RDACx latch codes (applies to the 10k potentiometer). The table below shows relationships between the RDACx resistances and binary codes when terminal A is open.







Output Resistance Values for the RDACx Latch Codes





	

D(Decimal)



	

R
 WB
 , Ohm



	

Output State






	

255



	

10006



	

Full scale






	

128



	

5045



	

Midscale






	

1



	

84



	

1 LSB






	

0



	

45



	

Zero scale (wiper contact resistance)













In the zero-scale condition, a finite total wiper resistance of 45
 Ohm is present. Regardless of which setting the part is operating in, care should be taken to limit the current between Terminal
 A
 to Terminal
 B
 , Wiper
 W
 to Terminal
 A
 , and Wiper
 W
 to Terminal
 B
 , to the maximum continuous current of 5.65 mA (10 K) or 1.35 mA (50 K and 100 K) or pulse current of 20 mA. Otherwise, degradation or possible destruction of the internal switch contact can occur.







Like the mechanical potentiometer that the RDAC replaces, the RDAC is completely symmetrical. The resistance between Wiper
 W
 and Terminal
 A
 produces a digitally controlled resistance R
 WA
 . When these terminals are used, Terminal
 B
 should be tied to the wiper. Setting the resistance value for R
 WA
 starts at a maximum value of resistance and decreases as the data loaded to the latch is increased in value. The general transfer equation for this operation is given by:







R
 WA
 (D
 X
 ) = (256 – D
 X
 ) / 256 x R
 AB
 + R
 W







where D
 X
 is the data contained in the 8-bit RDACx latch, and R
 AB
 is the nominal end-to-end resistance.



For example, when V
 A
 = 0 V and Terminal
 B
 is tied to wiper
 W
 , the output resistance values outlined in the below table are set for the RDAC latch codes.









	

D (Decimal)



	

R
 WA
 (Ohm)



	

Output State






	

255



	

84



	

Full scale






	

128



	

5045



	

Midscale






	

1



	

10006



	

1 LSB






	

0



	

10045



	

Zero scale













Let’s look at t
 he basic circuit of the quadrature sine/cosine wave RC oscillator (
 Fig.65)
 .
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Fig.65







This quadrature oscillator circuit is based upon the phase shift that is determined by three RC sections (R1C1, R2C2 and R3C3). Each section contributes 90 of phase shift, so the oscillator provides both sine and cosine waveform outputs (the outputs are quadrature, or 90 apart), which is a distinct advantage over other phase shift oscillators.



The idea of the quadrature oscillator is to use the fact that the double integral of a sine wave is a negative sine wave of the same frequency and phase. The phase of the second integrator is then
 inverted and applied as positive feedback to induce oscillation. The above circuit oscillates when R1C1 = R2C2 = R3C3. Assuming R1C1 = R2C3 = R3C3 = RC we can calculate the output frequency f as







f = 1/2πRC







Note
 that the real frequency is dependent on discrepancies between components. Both outputs have relatively high distortion that can be reduced with a gain stabilizing circuit. Adjusting the gain can increase the amplitudes although this causes narrowing the bandwidth.



To convert the RC quadrature oscillator into
 the digitally controlled device we need to replace resistors R1-R3 by the digital potentiometers. The following circuit (
 Fig.66
 ) shows how to apply the AD5204 digital potentiometer channels (terminals
 Wx
 -
 Bx
 ) instead of the resistors R1-R3.
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Fig.66







In this circuit, each of R1-R3 resistors is replaced with RDACx resistors (each 100k) and the 500 Ohm resistor R’x. The latter is needed to restrict the current flowing through the wiper Wx when RDACx is close to zero Ohms.



The source code for driving
 the RC quadrature oscillator is shown in
 Listing 21
 .







Listing 21
 .







const int pCLK = 6;



const int pSDI = 5;



const int pCS = 7;







unsigned int addr[4] = {0x00, 0x1, 0x2, 0x3}; // RDAC1-4 addresses



unsigned int tmp;







//unsigned int binCode = 25; // Rwb = 10k



//unsigned int binCode = 17; // Rwb = 7k



unsigned int binCode = 37; // Rwb = 15k



//unsigned int binCode = 50; // Rwb = 20k



//unsigned int binCode = 57; // Rwb = 23k



//unsigned int binCode = 7; // Rwb = 3k



//unsigned int binCode = 42; // Rwb = 17k







void WriteDP(unsigned int addr, unsigned int binCode)



{



digitalWrite(pCS, HIGH); // the CS is brought HIGH



digitalWrite(pCLK, HIGH); // SCK goes LOW



digitalWrite(pCLK, LOW); // SCK goes LOW



digitalWrite(pCS, LOW); // Framing is started by bringing CS LOW







for (int i1 = 0; i1 < 3; i1++)



{



 digitalWrite(pCLK, LOW); // SCK goes LOW



 tmp = addr & 0x4;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pCLK, HIGH);



 addr = addr << 1;



}







for (int i2 = 0; i2 < 8; i2++)



{



 digitalWrite(pCLK, LOW); // SCK goes LOW



 tmp = binCode & 0x80;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pCLK, HIGH);



 binCode = binCode << 1;



}



digitalWrite(pCS, HIGH); // writing is complete







}







void setup() {



pinMode(pCLK, OUTPUT);



pinMode(pSDI, OUTPUT);



pinMode(pCS, OUTPUT);



for (int i3 = 0; i3 < 4; i3++)



{



 WriteDP(addr[i3], binCode);



}



}







void loop(){}







The program code driving the digital potentiometer
 sets all channels to the same value. All 4 channels are processed within the following loop:







for (int i3 = 0; i3 < 4; i3++)



{



 WriteDP(addr[i3], binCode);



}







The function WriteDP
 () being executed within the loop takes two parameters – the address of RDACx held in the addr array and the binCode that determines the position of the wiper of RDACx. Since all channels must be of the same resistance, the binCode will be assigned the same value for all channels.



The output signal of the quadrature
 sine/cosine wave RC oscillator is illustrated by the LabVIEW virtual oscilloscope (
 Fig.67
 ).
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Fig.67











Measuring high frequenc
 y signals







Due to the FrequencyLib library, it is possible to measure the frequency of the digital pulse trains arriving at the digital inputs of Arduino. There is, however, the hardware restriction preventing to precisely measure signals with high frequencies (> 1 MHz). Nevertheless, we can measure high frequency signals by applying a simple frequency divider circuit placed between a signal source and a digital input of Arduino.







The demo circuit for measuring high frequencies is shown in
 Fig.68
 . The high frequency pulse train being taken from the 25MHz oscillator arrives at the clock input
 CLK
 (pin 10) of the 12-stage binary counter 74HC4040. The output signal may be taken from any of
 Q0
 –
 Q11
 outputs of the counter.
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Fig.68







In our circuit, the input signal is divided by 2
 11
 (2048). The output frequency on Q10 (pin 15) goes to the digital pi
 n″
 ~
 5
 ″
 of Arduino Uno R3. Since the 4040 counter is capable of operating at several tens MHz, we can process very high frequencies.



The
 Arduino source code for measuring the frequency using the above circuit looks like the following (
 Listing 22)
 .







Listing 22.







#include <FreqCounter.h>



//
 an input signal goes to the digital pin 5







unsigned long freq;



int cnt = 0;







void setup() {



 Serial.begin(9600); // connect to the serial port



 Serial.println("Frequency Counter");



}



void loop() {



 FreqCounter::f_comp=10;



 FreqCounter::start(1000); // 1000 ms Gate Time







 while (FreqCounter::f_ready == 0)







 freq = FreqCounter::f_freq * 2048 / 1000;



 Serial.print(cnt++);



 Serial.print(" Freq, KHz: ");



 Serial.println(freq);



 delay(10000);



}







After obtaining the value of the frequency at the
 Q10
 output we need to multiply the data stored in the variable freq by 2048 – that gives us the original frequency. Since the result is represented in KHz, it should be divided by 1000.







The results of the measurements then appear in the terminal window COM3 (
 Fig.69)
 .
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Fig.69








Frequency doubling








To double the frequency of a digital signal generated by Arduino we can apply a simple circuit using a versatile retriggerable monostable multivibrator 74HC123 (
 Fig.70
 ).
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Fig.
 70







This circuit doubles the frequency of the input signal. The basic output pulse width is essentially determined by the values of the external timing components R1 and C1. The output frequency on either pin 13 or 4 will be twice the input frequency on pins 1-2. The input signal may come from any digital output pin of Arduino. The values of R1 and C1 can be calculated using information from the datasheet on the 74HC123 chip.



The frequency doubler may also
 use the 74HC4538 IC that functions similar to 74HC123.
 Note
 that the pinout of 74HC4538 differs from that of 74HC123, so the connections of the circuit with 4538 must be rearranged.




Expanding
 Arduino outputs








Often a developer needs more digital outputs than the Arduino board can offer. To add extra outputs we can use a very simple circuit with the 4-to-16 line decoder 74HC4514. The following demo project illustrates such approach. The schematic circuit of the project is shown in
 Fig.71
 .
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Fig.
 71







The binary code determining the active output channel is set on the binary weighted address inputs
 A0 –
 A3
 of the decoder. This forces one of the output lines
 Q0
 -
 Q15
 to go high, so the LED on this output will be driven ON.



The table below specifies connections between Arduino and the
 decoder circuit.









	

Arduino pin



	

External line






	

″
 RX<–
 0
 ″



	

Pin 2
 of 74HC4514 (A0)






	

″
 TX–>
 1
 ″



	

Pin
 3 of 74HC4514 (A1)






	

″
 2
 ″



	

Pin
 21 of 74HC4514 (A2)






	

″
 ~
 3
 ″



	

Pin
 22 of 74HC4514 (A3)













The source code
 of the test program is shown in
 Listing 23
 .







Listing 23
 .







#include <avr/io.h>



int dataPortD = 0;







void setup(
 ) {



DDRD = 0xF; // Low 4 bits (D0 - D3) are set as outputs



PORTD = 0x0;



}







void loop(){



PORTD = dataPortD;



delay(500);



if (dataPortD++ > 7)



 dataPortD = 0;



}











T
 he variable dataPortD will keep the binary code that goes to the address lines
 A0 – A3
 of the decoder. This program code toggles the LEDs connected to the
 Q0
 –
 Q7
 outputs of 74HC4514 every 0.5 s.



The







DDRB = 0xF;







statement within the
 setup() procedure configures the lower 4 bits of PortD of the Atmega328 microcontroller as outputs.



Writing the value to the
 PortD is accomplished by:







PORTD = dataPortD;







The if() statement checks when MSB (Q7) has been reached:







if (dataPortD++ > 7)



 dataPortD = 0;







After
 the Q7 bit has been processed, the loop repeats.




Expanding
 Arduino inputs








To obtain more input channels than the Arduino board can offer we can use a simple circuit with a multiplexer IC. The multiplexer allows to route multiple input signals through its single output, so the program code can pick up multiple inputs using a single Arduino input, either digital or analog.







The following demo project allows to read 8 digital input signals via the digital input por
 t″
 RX<-
 0
 ″ of Arduino. The schematic circuit of the project is given in
 Fig.72
 .
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Fig.72







In this circuit, the digital signals are brought to the
 Y0
 –
 Y7
 inputs of the multiplexer 74HC4051. The number of the input channel being read (0 through 7) is determined by the binary weighted code on pins
 S0
 –
 S2
 of the multiplexer.
 S0
 –
 S2
 lines are driven by bits 0 – 2 of PortB of the microprocessor (terminal
 s″
 8
 –
 1
 0
 ″
 of Arduino Uno R3).







The signal taken from the selected input line of the multiplexer appears on the output
 Z
 (pin 3 of 4051). The
 Z
 line, in turn, can be read into bit 0 of PortD (termina
 l″
 RX<-
 0
 ″
 of Arduino) for further processing.



F
 or example, in order to pick up the digital signal on the line
 Y2
 , we need to put the binary code 0x2 on the lines
 S0
 –
 S2
 prior to reading the
 Z
 output. The Schmitt trigger inverting buffers of 74HC14 transform slowly changing input signals into sharply defined, jitter-free output signals.



Th
 e″
 groun
 d″
 wire of the circuit should be tied to th
 e″
 GN
 D
 ″
 pin of Arduino; the bypass capacitors C1 and C2 should be tied closely to the power pins of the chips.



The table below specifies connections between
 the Arduino board and the external circuitry.









	

Arduino pin



	

External line






	

″
 RX<–
 0
 ″



	

Pin
 4 of 74HC14 (signal from the Z output of the multiplexor)






	

″
 8
 ″



	

Pin 11 of 74HC4051 (S0)






	

″
 ~
 9
 ″



	

Pin 10 of 74HC4051 (S1)






	

″
 ~1
 0
 ″



	

Pin 9 0f 74HC4051
 (S2)













The source code of a program driving the multiplexer 4051 is shown below (
 Listing 24
 ).







Listing 24
 .







#include <avr/io.h>







unsigned int dataPort = 0;



unsigned int tmp;



unsigned int res = 0;



unsigned int dataPortB;



unsigned int dataPortD; // data byte of PORTD is kept here







unsigned int ReadPortD()



{



dataPortD = 0;



dataPortB = 0;



for(int i = 0; i < 8; i++)



{



 PORTB = dataPortB;



 tmp = digitalRead(0);



 tmp = tmp << i;



 dataPortD |= tmp;



 dataPortB++;



}



return dataPortD;



}







void setup()



{



 Serial.begin(9600);



 DDRB = 0xF; // Low 4 bits (D0 - D3) are set as outputs



 PORTB = 0x0;



}







void loop()



{



res = ReadPortD();



Serial.print("Byte on the port D: ");



Serial.println(res);



delay(5000);



}







Here the dataPortB variable keeps the binary code to be put onto the lines
 S0
 –
 S2
 of the 74HC4051 multiplexer. The dataPortD variable is assigned the value obtained from the selected channel. The statement







DDRB = 0xF;







within the setup() procedure configures the first four bits of PortB of the Atmega328 microcontroller as outputs.







Note that bits 0–2 of PortB correspond to terminal
 s″
 8
 ″–″
 1
 0
 ″
 of the Arduino Uno R3 board. The input bit will be taken from the termina
 l″
 RX<–
 0
 ″
 of Arduino – that is bit 0 of PortD.



A
 ll 8 channels of the multiplexor are read in the ReadPortD() procedure. The for() loop runs 8 iterations polling one channel in each iteration. After the loop exits, the dataPortD variable will hold the binary code present on the multiplexer inputs
 Y0
 –
 Y7
 . This value is then returned to the main loop() procedure. The data processing is repeated every 5 seconds and the result goes to the terminal window COM3. 







The above circuit may be also applied for measuring continuous (analog) external signals. This way we can increase the number of analog channels to be processed by Arduino. The next project illustrates using the multiplexer 74HC4051 in the analog data acquisition system. Analog signals are fed to the input channels
 Y0
 –
 Y7
 of the multiplexer; the output signal on pin
 Z
 is then fed to the analog inpu
 t″
 A
 0
 ″
 of Arduino.







This project uses the schematic circuit from
 Fig.72
 , though with little modifications. Since analog signals are processed, the buffer 74HC14 is not needed any more; the
 Z
 output of 74HC4051 is directly connected to the termina
 l″
 A
 0
 ″
 of Arduino. The modified circuit is shown in
 Fig.73
 .
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Fig.73







Note that any input channel of 4051 in th
 e″
 O
 N″
 state has some resistance (called R
 (ON)
 in the datasheets) which may reach several tens Ohm. The current I
 SW
 flowing through the open channel results in the voltage drop V
 (ON)
 given by the expression:







V
 (ON)
 = I
 SW
  R
 (ON)







The I
 SW
 current depends on the load connected to the output
 Z
 of multiplexer. Usually,
 Z
 drives an ADC input with very high impedance, so I
 SW
 will be extremely small, about units of microamperes. As the datasheet on 4051 says, typical value of R
 (ON)
 is close to 80 Ohm at 4.5V power supply. If, for example, we evaluate I
 SW
 to 1A, then the voltage drop V
 (ON)
 across the open channel will be about 0.00008V or 0.08mV. Both I
 SW
 and R
 (ON)
 may vary depending on the conditions specified by a manufacturer, so a developer needs to carefully examine the datasheet on 74HC4051 derivatives in order to calculate V
 (ON)
 properly.







Note that when the supply voltage of the multiplexer is close to 2.0V, the analog switch ON resistance becomes extremely non-linear; in this case, this device can be used only for transmitting digital signals.







We definitely need to take into account the V
 (ON)
 voltage drop when writing the program code for precision measurements of analog input signals. The following source code illustrates measuring an analog input signal fed to the
 Y2
 input of the multiplexer (
 Listing 25
 ).







Listing 25
 .







#include <avr/io.h>







unsigned int aInput = A0;



float res;







float ReadA0(unsigned int channel)



{



unsigned int binData = 0;



float tmp = 0;



PORTB = channel;



binData = analogRead(aInput);



tmp = (5.0/1024.0)*(float)binData;



return tmp;



}







void setup()



{



Serial.begin(9600);



DDRB = 0xF; // Low 4 bits (D0 - D3) are set as outputs



PORTB = 0x0;



}







void loop()



{



res = ReadA0(2);  // Reading channel 2



res = res + 0.
 000008; // Adding the voltage drop 0.000008V across




   // the open channel



Serial.print("Analog voltage on A0, V = ");



Serial.println(res);



delay(5000);



}







Here it is assumed that the voltage drop V
 (ON)
 across the open channel is close to 0.000008V. Reading the binary code of the analog signal is accomplished by the ReadA0() function. The function takes the single parameter channel of the unsigned int type; this parameter indicates the number of the input channel of the multiplexor 74HC4051 and may range from 0 through 7.







Since the
 Y2
 input channel is involved, the channel variable is assigned 2. The calculated value of the analog input voltage goes into the res variables. Because of the voltage drop V
 (ON)
 of about 0.000008 V on the ON resistance of the channel we need to add the value of 0.000008 to the final result:







res = res + 0.000008;







Obviously, in most cases the voltage drop V
 (ON)
 can be neglected for its extremely small value unless you need very high precision measurement.







We can expand the number of input channels up to 16 by taking the 74HC4067 chip which has additional 8 inputs compared with 4051. In order to use 4067 we need to connect an additional address input line (
 S3
 ) to the PortB and let the for() loop make 16 iterations instead of 8.




Analog
 comparators in data processing








In many cases an application only needs to know when an analog signal level has reached some value instead of implementing continuous measurements. Using such approach requires some type of an analog comparator circuit. The comparator output may go either high or low depending on the comparison of the voltage levels on inputs. The comparator output may also be connected to some external interrupt pin of Arduino thus triggering the interrupt once the output voltage changes. Such approach simplifies the program code together with improving the performance of the whole system.







The following project illustrates this concept. It represents the simple measurement system which checks when the temperature of environment drops below 30C. Its schematic circuit is shown in
 Fig.74
 .
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Fig.74







The LM35 temperature sensor provides the output voltage proportional to the absolute temperature T of the room where the sensor has been placed. That fact is reflected by the following formula:







T = 100 x V
 out
 ,







where V
 out
 is the voltage at the sensor output. If, for example, V
 out
 reaches 0.22V then the temperature in the room is 22C.







The sensor output is connected to the non-inverting input of the comparator LMC7221A (pin 3). The voltage level on this input is compared to the reference
 (″
 threshol
 d″
 ) present on the inverting input (pin 2). The reference voltage is taken from the wiper of the resistor R1; since the temperature being checked is 30C, the reference is set to 0.3V. When the threshold voltage becomes greater than that of the sensor output, the comparator output (pin 6) goes low. Conversely, the comparator output goes high when the sensor output exceeds the threshold. Since the signal on the LMC7221A output is TTL-compatible, the comparator output (pin 6) is connected directly to the digital pi
 n″
 2
 ″
 of the Arduino board. Pi
 n″
 2
 ″
 has a special purpose – it is where the interrupt 0 can be activated.







Once the threshold has been adjusted in hardware, we can build the program code driving the above circuit.



In
 the source code (
 Listing 26
 ) we need to configure the interrupt service routine that is called when the interrupt is triggered on the digital pi
 n″
 2
 ″
 .







Listing 26
 .







boolean Done = false;



void setup()



{



Serial.begin(9600);







// Most Arduino boards have two external interrupts:



// number 0 (on digital pin 2) and 1 (on digital pin 3).



//
 Here we configure interrupt 0.







attachInterrupt(0, sendMsg, FALLING);



}



void loop()



{



if (Done)



{



 Serial.println("The temperature has dropped below 30 deg.



 Celsius");



 Done = false;



}



}



void sendMsg()



{



Done = true;



}







Here the external interrupt 0 is triggered when the falling edge of a digital pulse arrives on pi
 n″
 2
 ″
 ; this occurs when the comparator output falls from log
 .″1″
 to log
 .″0″
 . The interrupt service routine sendMsg() will take the single action – it assign
 s″
 tru
 e″
 to the Done variable thus indicating that the temperature has dropped below the threshold. The loop() procedure constantly checks Done and sends the message to the terminal window when Doneis set t
 o″
 tru
 e″
 . Then the Done variable is assigne
 d″
 fals
 e″
 and the loop repeats.




Using external
 clocks for raising interrupts








The Arduino interrupts can be periodically raised by feeding an external clock signal to an interrupt pin.



The following project illustrates this
 approach. The schematic circuit of the project is shown in
 Fig.75
 .
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Fig.75







In this circuit, the timer TLC555 serves as a clock source for activating interrupt 1. Its frequency can change in the wide range, from hundred Hz to several KHz. The output signal (pin 3 of the timer) goes to the digital pi
 n″
 ~
 3
 ″
 of the Arduino board and raises the interrupt 1. The frequency of the timer is adjusted by the potentiometer R1. Instead of TLC555 we can take any CMOS 555 timer providing a TTL-compatible signal on its output.



T
 he Arduino demo source code for driving this circuit is shown in
 Listing 27
 .







Listing 27
 .







boolean Done = false;



void setup()



{



Serial.begin(9600);







// configuring an external interrupt 1



attachInterrupt(1, sendMsg, FALLING);



}



void loop()



{



if (Done)



{



 Serial.println("The Interrupt 1 IS ACTIVATED!");



 Done = false;



}



}



void sendMsg()



{



Done = true;



}







This source code is almost the same as that shown in
 Listing 26
 except the number of external interrupt to be configured (interrupt 1).
 Important note
 : the period of an external timer should be taken long enough, so that the current interrupt being serviced could terminate before the next interrupt occurs.








High precision measurements with Arduino








This section covers several common approaches to high-precision measurements of analog signals. High precision is necessary when we deal with small signals travelling within numerous industry and laboratory applications; those signals are frequently originated by various sources in biology, medicine and physics – to name but a few.



High precis
 ion measurements of small signals usually require applying special devices calle
 d″
 instrumentation amplifier
 s″
 or, in short,
 in-amps
 .



I
 nstrumentation amplifiers (in-amps) show up in a broad spectrum of applications: measuring heart signals, factory monitoring equipment, aircraft controls, and even animal tagging. Developers have found them to be a simple and effective way to amplify small signals and remove power-line noise. A typical in-amp usually has two adjustments: gain and reference voltage. Unlike op-amps, where poor feedback design means oscillation, in-amps are quite stable.







The instrumentation amplifier's ease of use can lead to a sense of unconcern. While it is easy to get an in-amp up and running on the bench, poor attention to detail can lead to mediocre performance in the field. Since an in-amp is typically connected directly to a sensor, designers must think about the full range of signals this sensor could present.







Using in-amps for precision measurements will be illustrated by the following projects. The first one describes the use of the low-cost instrumentation amplifier INA122 from Texas Instruments. The single-ended output signal from INA122 goes toth
 e″
 A
 0
 ″
 analog input of the Arduino board for further processing.



Some words about INA122.
 This in-amp consists of two precision op-amps arranged as shown in
 Fig.76
 .
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Fig.76







According to the datasheet, INA122 is the precision instrumentation amplifier for accurate, low noise differential signal acquisition. Its two-op-amp design provides excellent performance with very low quiescent current, and is ideal for portable instrumentation and data acquisition systems. The INA122 in-amp can be operated with single power supplies from 2.2V to 36V and quiescent current is a mere 60A.



It can also be operated from dual supplies. By
 utilizing an input level-shift network, the input common mode range extends to 0.1V below negative rail (single supply ground). A single external resistor sets gain from 5V/V to 10000V/V. Laser trimming provides very low offset voltage (250V max), offset voltage drift (3V/C max) and excellent common-mode rejection.



When we
 should process bipolar signals the voltage reference at the Ref input (pin 5) should be kept positive.



The schematic circuit
 of our project is shown in
 Fig.77
 .
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Fig.77







The input signal for this circuit was the square wave pulse train of 0.1Hz with magnitude ranging from –0.079V to +0.045V.The input signal (V
 dif in
 Fig.77
 )
 was applied between the V
 in
 +
 and V
 in
 -
 inputs of INA122. The resistor R
 G
 determines the overall gain G of the circuit by the formula







G = 5 + (200k / R
 G
 )







In the given case, G is set to 7. Such system will process bipolar input signals only when the positive reference voltage is applied to pin 5 of INA122.







For the vast majority of in-amp, the reference pin must be connected to low impedance, either ground or an amplifier output. A resistor divider simply won't do, because driving from a high-impedance source will result in poor common-mode rejection (CMR). For that reason, the reference voltage circuit to this in-amp includes the resistor divider R1 followed by the buffer (voltage follower) MCP6001. In our case, the wiper of the potentiometer R1 should provide the steady DC voltage 1.2V at the output of the MCP6001 op-amp.







The voltage applied to the Ref terminal is added to the output signal. The MCP6001 op-amp buffer also provides low impedance at the Ref terminal to preserve good common-mode rejection.







The output voltage
 V
 out
 of the circuit can be calculated as:







V
 out
 = G  V
 dif
 + V
 ref







where V
 dif
 is the differential voltage between pins 3-2 of INA122 and V
 ref
 is the reference voltage on pin 5. 







In this particular case, the reference voltage is 1.2V, so the output voltage on pin 6 of the in-amp will always be positive. The output is followed by the low-pass filter R2C3 that reduces high-frequency noise.



The source code for
 processing the analog voltage on th
 e″
 A
 0
 ″
 input of Arduino is shown in
 Listing 28
 .







Listing 28
 .







int Channel_0 = A0; // analog input channel to measure







int binData = 0;  // binary representation of the analog input signal



int Vref = 1.
 2;  // reference voltage applied to the Ref input of INA122



float Gain = 7.0;
  // predetermined gain of the amplifier



float V
 dif, Vout;  // variables to hold input and output voltage levels







void setup() {



 Serial.begin(9600);



}







void loop() {



 // read the value from the
 channel A0



 binData = analogRead(Channel_0);



 Vout = (5.0 / 1024) * (float)binData;



 V
 dif = (Vout - Vref) / Gain;



 Serial.print("
 (Vin+ - Vin-), V = ");



 Serial.println(V
 dif, 4);



 delay(3000);



}











In this code, t
 he binary representation of the voltage on pin 6 of INA122 is stored in the binData variable. The Vin variable is assigned the value of the differential voltage
 (V
 in
 +
 –
 V
 in
 -
 ) on the INA122 inputs. The measurements repeat every 3 seconds and the result goes to the serial terminal window.







The next project involves the instrumentation amplifier AD623 from AnalogDevices. The excerpt from the datasheet on AD623 is given below.







The AD623 device is an integrated single-supply instrumentation amplifier that delivers rail-to-rail output swing on a 3 V to 12 V supply. AD623 offers superior user flexibility by allowing single gain set resistor programming and by conforming to the 8-lead industry standard pinout configuration. With no external resistor, the AD623 in-amp is configured for unity gain (G = 1), and with an external resistor, AD623 can be programmed for gains up to 1000.



The AD623
 device holds errors to a minimum by providing superior CMRR that increases with increasing gain. Line noise, as well as line harmonics, is rejected because the CMRR remains constant up to 200 Hz. The AD623 in-amp has a wide input common mode range and can amplify signals that have a common-mode voltage 150 mV below ground.



Although
 the design of AD623 was optimized to operate from a single supply, this chip still provides superior performance when powered from a dual voltage supply (2.5 V to 6.0 V).







The schematic circuit of this project is shown in
 Fig.78
 .
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Fig.78







The measurement circuit built around AD623 provides the amplification of the differential signal
 V
 dif
 between
 +IN
 and
 –IN
 inputs according to the following formula:







V
 out
 = (1 + 100K / R
 G
 )  V
 dif
 + V
 ref
 ,







where V
 out
 is the output voltage on pin 6 of AD623, R
 G
 is the value of the resistor connected between pins 1 and 8, V
 dif
 is the differential voltage applied between
 +IN
 and
 –IN
 inputs and V
 ref
 is the reference voltage applied to the
 REF
 input (pin 5).







The reference terminal potential defines the zero output voltage and is especially useful when the load does not share a precise ground with the rest of the system. It provides a direct means of injecting a precise offset to the output. The reference terminal is also useful when bipolar signals are being amplified because it can be used to provide a virtual ground voltage. The voltage on the reference terminal can be varied in the full range from the negative to positive power rail.







The voltage reference 2.5V is fed to pin 5 from the AD680 reference IC which also provides low output impedance to the
 REF
 input (pin 5 of AD623). Remember that processing bipolar input signals requires the suitable
 V
 ref
 voltage (2.5V, in our case). Provided the R
 G
 = 50k, we obtain the gain equal to 3. Note that the output impedance of the signal source involved in this project was low.







If a signal source signal provides high output impedance, then some correction circuit should be connected to the
 +IN
 and
 –IN
 inputs as the AD623 datasheet says.



The
 Arduino source code for processing the signal amplified by this circuit is given in
 Listing 29
 .







Listing 29
 .







int Channel_0 = A0;



unsigned int binData = 0; //
 binary code of the output of




  // the instrumentation amplifier AD623



float Vref = 2.5;
   // the reference voltage 2.5 V to AD623



float Gain = 3.0;



float Vdif, Vout;







void setup() {



Serial.begin(9600);



}







void loop() {



 // read the
 output voltage from AD623



 binData = analogRead(Channel_0);



 Vout = (5.0 / 1024) * (float)binData;



 V
 dif = (Vout - Vref) / Gain;



 Serial.print("
 (Vin+ - Vin-), V = ");



 Serial.println(V
 dif);



 delay(3000);



}







The binary code representing the voltage on pin 6 of AD623 is stored in the binData variable. The Vdif variable will contain the value of the differential voltage applied between
 +IN
 and
 –IN
 inputs of AD623. The measurements repeat every 3 seconds and the results go to the serial terminal window.







Using instrumentation amplifiers requires proper grounding and PCB layout for minimizing noise level. All component leads should be as short as possible. If there is only a single power supply available, it must be shared by both digital and analog circuitry. Any way I encourage you to carefully explore a datasheet on a particular instrumentation amplifier.








Customizing digital outputs








The Arduino digital outputs yield TTL-compatible signals with the amplitude which is either about 0V (log
 .″0″
 ) or +5V (log
 .″1″
 ). Sometimes, however, external circuits need to operate with signals whose amplitudes should vary in a wide range, especially when interfacing digital and analog circuits. In many cases, the low level of digital signals will remain 0V, while the high level should differ from +5V. The simplest method to reduce the amplitude of a TTL-compatible digital signal is to introduce a voltage divider using potentiometer or a pair of resistors.



Such voltage divider should have the low output impedance (from tens to hundred
 s Ohm), so that to avoid signal losses. This requires the low value resistors or potentiometer placed at the Arduino outputs. Such solution however, causes the higher currents flowing through the digital outputs of Arduino that can’t be tolerated.







The following project illustrates how to drive the amplitude of the Arduino digital signals using the simple external circuitry (
 Fig.79)
 .
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Fig.79







In this circuit, the digital pulse train (
 V
 in
 ) coming from th
 e″
 RX<-
 0
 ″
 pin arrives at the non-inverting input (pin 3) of the differential amplifier using the OP279 op-amp (A2). The reference voltage (
 V
 REF
 , pin 1 of A1) is taken from the 1
 st
 order active low-pass filter consisting of the OPA348NA op-amp and R1C1 pair. The input voltage to the active filter comes from the PWM output (pi
 n″
 ~
 9
 ″
 of Arduino). Note that values of R2 – R5 resistors are taken the same.







The output voltage of the differential input amplifier (pin 1 of A2) will be as follows:







V
 out
 = (V
 in
 - V
 REF
 ) (R4 / R3)







Since R2 = R3 = R4 = R5, we obtain:







V
 out
 = V
 in
 – V
 REF







The suitable V
 REF
 voltage can be obtained by adjusting the parameters of the PWM signal on pi
 n″
 ~
 9
 ″
 of Arduino.







The OP279 op-amp can sink and source currents of 60 mA (typical) and is stable with capacitive loads to 10 nF. This allows to directly drive power circuits connected to the op-amp output. The resistor R6 restricts the possible discharge current across the OP279 output stage when the capacitive load is attached; the capacitor C3 prevents the possible oscillation at higher frequencies. It is possible to substitute OP279 with AD8531 or another power op-amp with high Gain BandWidth Product (GBWP = 3MHz or higher) and a high slew rate.







The following source code illustrates how to drive the amplitude of digital pulses (
 Listing 30
 ).







Listing 30
 .







#include <MsTimer2.h>







const int digOutPin = 0;  // digital output pin where the signal




   // comes from



const int analogOutPin = 9; // Analog output pin
 handling signal







int outputValue = 207;  // value to the PWM output of 4.06V







void setup() {



pinMode(digOutPin, OUTPUT);



MsTimer2::set(1, togglePin);  // 1ms period



MsTimer2::start();



analogWrite(analogOutPin, outputValue);



}







void loop() {}







void togglePin()



{



digitalWrite(digOutPin, digitalRead(digOutPin) ^ 1);



}







Here the MsTimer2 library functions are used for interfacing Timer2 to user applications. You can find it on
 
http://www.arduino.cc/playground/Main/MsTimer2

 .
 Since the interval of 1 mS is chosen for Timer 2, we obtain the 500Hz digital pulse train on pi
 n″
 RX<-
 0
 ″
 of Arduino. The outputValue variable keeps the digital code for driving PWM. In our case, its value is assigned 207 that results in V
 REF
 = 4.06V at +5V power supply. The amplitude of the signal V
 out
 on pin 1 of OP279 then will be 5 – 4.06 = 0.94V.








Measuring the frequency of periodical analog signals








Often a developer needs to measure a frequency (period) of periodical analog (continuous) signals coming from analog sensors and/or external analog circuits. Those signals may be of various waveforms such as sine wave, triangular, sawtooth, etc. It is clear that an Arduino microprocessor can’t directly measure the frequency (period) of such signals. One approach to process those signals uses two steps: conversion of an analog signal into a suitable pulse train and measuring its frequency using the FrequencyLib library.



Th
 e conversion stage requires some conditioning electronic circuitry. The common block diagram of such circuit may appear as follows (
 Fig.80).
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Fig.80







Amplitudes of analog input signals may vary in a wide range, from several tens millivolts through several volts. To amplify signals of several tens millivolts or even smaller we can apply some instrumentation amplifier (in-amp). If the amplitude of an incoming signal is too large, the non-linear effects can appear. In those cases we need to attenuate signal amplitude to the reasonable level. As a simple attenuator circuit we can apply a voltage divider consisting of two resistors in series or a potentiometer.







Experimental measurements are never perfect, even with sophisticated modern instruments, so almost every signal contains unwanted componentcalle
 d″
 nois
 e″
 . Noise is a random fluctuation in an electrical signal when unpredictable variations in the measured signal from moment to moment or from measurement to measurement occur. Remember that every analog signal has high and low frequency noise. We can significantly reduce high frequency noise by applying a simple active low-pass or bandpass filter with appropriate parameters.



T
 he filter can be followed by a zero-crossing detector which creates a rectangular waveform from a random analog signal. The zero-crossing detector produces a TTL-compatible pulse train suitable for processing by Arduino.







Let’s look at the following circuits that may come in handy while measuring periodical non-rectangular signals. The input signals to those circuits were taken from the LabVIEW virtual signal generator based upon NIPCI-6221 DAQ module. The signals were of various waveforms (sine wave, sawtooth, triangular and rectangular) with the frequencies ranging from 100 Hz through 5000 Hz and amplitudes between 0.15V and 2V. The useful signals were deliberately combined with low-level noise o
 f″
 whit
 e″
 an
 d″
 1/
 F″
 types.



The
 first circuit is presented in
 Fig.81
 . 
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Fig.81







In this circuit, the analog input signal goes to the low-pass active filter (R1C2 network and op-amp OPA364) through the coupling capacitor C1. Th
 e″
 cut-of
 f″
 frequency of the filter is determined as 1/2πR1C2 that gives us the value about 6 KHz. By varying the values of R1 and/or C2 we can extend or narro
 w″
 cut-of
 f″
 frequency of the filter.



The filtered signal
 is fed to the next stage arranged as a zero-crossing detector with the comparator TLC3702 (A2). The zero-crossing detector converts the input signal into the TTL-compatible pulse train picked up by the Arduino board on the digital pi
 n″
 ~
 5
 ″
 .







This circuit allows to reliably measure the frequency of analog signals (sine wave, triangle and sawtooth) with amplitudes ranging from 0.15 V through 1.9V. The frequency of signals may vary from several tens Hz to 5 KHz. Note that when the higher level of noise was injected into the tested analog signals the reliable measurements would be possible at the amplitudes greater than 0.4-0.5V.







The Arduino source code for measuring the frequency of analog signals is given in
 Listing 31
 .







Listing 31
 .







#include <FreqCounter.h>







unsigned long frq;



int cnt = 0;







void setup() {



Serial.begin(9600); // connect to the serial port



Serial.println("Square/Sine/Triangle/Sawtooth Frequency Meter");



}







void loop() {



 FreqCounter::f_comp=10;



FreqCounter::start(1000); // 1000 ms Gate Time







while (FreqCounter::f_ready == 0)







frq = FreqCounter::f_freq;



Serial.print(++cnt);



Serial.print(": ");



Serial.print(" Input Frequency, Hz: ");



Serial.println(frq);



delay(5000);



}







It is seen that the program uses the functions from the FrequencyLib library. The frq variable will hold the calculated value of the frequency of the input signal. To calculate the period of signal we should take the reciprocal of the measured frequency (1/frq).



The
 results of testing the circuit are shown in
 Fig.82 – Fig.83
 .






[image: ]



Fig.82







As you can see from the figure above, the generator produces the bipolar sine wave with the inverse (1/F) noise riding on the useful signal. The signal has the frequency 2000 Hz and a peak-to-peak (V
 p-p
 ) voltage equal to 3.38V. This signal has been converted into the rectangular waveform and has been brought to pi
 n″
 ~
 5
 ″
 of Arduino. The values of frequencies being measured by the Arduino program were also sent to the COM3 terminal window (
 Fig.83
 ).
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Fig.
 83







The second circuit performing the signal conversion is given below (
 Fig.84
 ). In this circuit, we use the low-cost LMV722 IC which is a dual single-supply op-amp with a rail-to-rail output. Any op-amp with the rail-to-rail output, Gain BandWidth Product (GBWP) greater than 5 MHz and a high slew rate (several volts per microsecond) will work in this configuration. Any zener diode (D1) with the breakdown voltage of 3.6V may fit this circuit.
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Fig.
 84







The first stage is the inverting active low-pass filter with the LMV722 op-amp (A1). The filter reduces the high frequency noise riding on a useful signal. The filtered signal then goes to the zero-crossing detector (A2) which forms the pulse train for further processing by the Arduino board. This circuit allows to reliably measure sine wave signals ranging from about 50Hz through 5000Hz; the amplitude of input signals may vary from 0.2 through 2V.



The reliable measurements of sawtooth and triangle signals can be executed in the range from 50 through 2200Hz; the amplitude of such signals may
 vary from about 0.6V through 2V. I didn’t take special care when designing the circuit shown in
 Fig.84
 , so you can easily improve it if necessary.








Arduino Due project 1: using the Delta-Sigma A/D converter LTC2420








This section represents the data acquisition system with the Δ-Σ A/D converter LTC2420 driven by the Arduino Due board. Let’s begin with the short description of LTC2420 taken from the datasheet.



The LTC2420 is a micropower 20-bit A/D converter with
 an integrated oscillator, 8ppm INL and 1.2ppm RMS noise that operates from 2.7V to 5.5V. It uses Δ-Σ technology and provides a digital filter that settles in a single cycle for multiplexed applications. Through a single pin, the LTC2420 can be configured for better than 110dB rejection at 50Hz or 60Hz 2%, or it can be driven by an external oscillator for a user-defined rejection frequency in the range 1Hz to 800Hz. The internal oscillator requires no external frequency setting components.







The converter accepts any external reference voltage from 0.1V to VCC. With its extended input conversion range of –12.5% VREF to 112.5% VREF the LTC2420 smoothly resolves the offset and overranges problems of preceding sensors or signal conditioning circuits. The LTC2420 communicates through a flexible 3-wire digital interface which is compatible with SPI protocol.



T
 he schematic circuit of the demo project is shown in
 Fig.85
 .
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Fig.85







The connections between Arduino Due and LTC2420 are given in the table below.









	

Arduino Due pin



	

LTC2420
 pin






	

″
 7
 ″



	

7 (
 SCK)






	

″
 6
 ″



	

6 (
 SDO)






	

″
 5
 ″



	

5 (CS)













The
 Δ-Σ A/D converter LTC2420 (A1) provides the digitization of the analog signal according to the timing diagram shown in
 Fig.86
 .
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Fig.86







Initially, the LTC2420 performs a conversion. Once the conversion is complete, the device enters the sleep state. While in this sleep state, power consumption is reduced by an order of magnitude. The part remains in the sleep state as long as the
 CS
 signal is logic HIGH. The conversion result is held indefinitely in a static shift register while the converter is in the sleep state.



When the device is in the sleep state (
 EOC
 = 0), its conversion result is held in an internal static shift register. The device remains in the sleep state until the first rising edge of
 SCK
 signal occurs while
 CS
 is low. Data is shifted out the
 SDO
 pin bit by bit on each falling edge of
 SCK
 . External circuitry may latch the output on the rising edge of
 SCK
 . The
 EOC
 state can be latched on the first rising edge of
 SCK
 ; the last bit of the conversion result can be latched on the 24
 th
 rising edge of
 SCK
 . On the 24
 th
 falling edge of
 SCK
 , the device begins a new conversion. Again, the
 SDO
 goes high (
 EOC
 = 1) indicating a conversion is in progress.



At the conclusion of the data cycle,
 the
 CS
 signal may remain low. Alternatively,
 CS
 may be driven high setting the
 SDO
 line to high–impedance state. As described above,
 CS
 may be pulled low at any time in order to monitor the conversion status. That is how the converter digitizes the input analog signal.







Some words about design. Using Δ-Σ converter advances additional requirements concerning PCB layout. You should connect analog and digital power pins together, preferably on the same plane. The requirements on the analog and digital power planes will be the same as with the high resolution SAR converters.



When using Σ–Δ converters, a
 ground plane is mandatory; this implies that you need a minimum a two-layer board. This double-sided board should have the ground plane covering at least
 
 of the area or even more. Interruptions in the plane should be minimized as much as possible. Such ground plane layer is to reduce grounding resistance and inductance. Also it provides a shield against electro-magnetic and radio-frequency interference. If for some reasons, interconnect traces are placed on the ground-plane side of the board, they should be as short as possible and perpendicular to the ground current return paths.



The source code for driving LTC2420 is shown in
 Listing 32
 .







Listing 32
 .







//LTC2420 Sigma-Delta ADC Test



const int pSCK = 7;



const int pSDO = 6;



const int pCS = 7;







const double FS = 1048576; // FS = 2^20



double k = 0.0065;







const double Vref = 3.275;



unsigned int bRead;



unsigned int counter = 1;



unsigned int binData, res;



double fres;







void setup() {



 Serial.begin(9600);



 pinMode(pSCK, OUTPUT);



 pinMode(pCS, OUTPUT);



 pinMode(pSDO, INPUT);



}







unsigned long ReadADC()



{



 digitalWrite(pCS, HIGH);



 digitalWrite(pSCK, LOW); // External Clock Mode is selected



 digitalWrite(pCS, LOW);



 do {



 bRead = digitalRead(pSDO);



 } while (bRead != 0x0);







 binData = 0x0;



 for (int i1 = 24; i1 > 0; i1--)



 {



 digitalWrite(pSCK, LOW);



 delayMicroseconds(1);



 bRead = digitalRead(pSDO);



 binData |= bRead << i1-1;



 digitalWrite(pSCK, HIGH);



 delayMicroseconds(1);



 }



digitalWrite(pCS, HIGH);



binData &= 0xFFFFF;



return binData;



}



void loop()



{



delay(1000);



while(1)



{



 res = ReadADC();



 fres = Vref * (double)res / FS;



 fres = fres + k*fres;



 Serial.print(counter++);



 Serial.print(": LTC2420 input, V: ");



 Serial.println(fres, 3);



 delay(5000);



}



}







The program code digitizing the analog signal is located in the ReadADC() function. First, we determine the synchronization mode – that will be External Clock mode. The following sequence
 puts the A/D converter in this mode:







digitalWrite(pCS, HIGH);



digitalWrite(pSCK, LOW);







Then the program checks when data are ready. This is done by the do … while() loop:







do {



 bRead = digitalRead(pSDO);



 } while (bRead != 0x0);







To latch data
 we use the for (int i1 = 24; i1 > 0; i1--) loop.








Arduino Due project 2: measuring frequencies of digital signals








As you may know, the Arduino Due features the possibility to raise interrupts when digital signal comes to dedicated pin; this is realized in attachInterrupt() function. The first parameter of this function is the number of pin where the external signal arrives to. The interrupt may trigger on the dedicated pin when one of the following events occurs:



-
 the signal on the stays low – the parameter should be assigned LOW;



-
 the signal on the stays high – the parameter should be assigned HIGH;



- the signal changes its state (either LOW-HIGH or HIGH-LOW) – the parameter should be assigned



 CHANGE;



- the signal raises from low to high – the parameter should be assigned
 RISING;



- the signal drops from high to low – the parameter should be assigned
 FALLING.







The simple project with the LTC6903 digitally controlled oscillator illustrates using interrupt for the frequency measurement. The schematic circuit of this demo project is shown in
 Fig.87
 .
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Fig.87







In this circuit, the
 SEN
 line (pin 4 of LTC6903) is wired to pi
 n″
 4
 ″
 of Arduino Due;
 SCK
 (pin 3 of LTC6903) is attached to pi
 n″
 3
 ″
 of Arduino Due; SDI (pin 2 of LTC6903) goes to pi
 n″
 2
 ″
 of Arduino Due.



The signal bei
 ng measured comes from
 CLK
 (pin 6 of LTC6903) to pi
 n″
 7
 ″
 of Arduino Due. Raising signal from low to high on this pin triggers the interrupt.



The source code for Arduino Due is given below (
 Listing 33
 ).







Listing 33
 .







const int pSCK = 3;



const int pSDI =
 2;



const int pSEN = 4;







const int pin7ISR = 7; // here the interrupt is assigned. nCLK goes here







int tmp;



float error;



volatile unsigned long cnt;



volatile bool done;







//int freq = 0x844; // F = 1400 Hz



// int freq = 0x1774; // F = 2710 Hz



//int freq = 0x1C54; // F = 3380 Hz



//int freq = 0x2274; // F = 4500 Hz



//int freq = 0x262C; // F = 5150 Hz



//int freq = 0x2C5C; // F = 6770 Hz



//int freq = 0x2E1C; // F = 7432 Hz



//int freq = 0x2E7C; // F = 7590 Hz



//int freq = 0x4250; // F = 17920 Hz



//int freq = 0x4C6C; // F = 27168 Hz



//int freq = 0x5048; // F = 33540 Hz



//int freq = 0x58C8; // F = 45835 Hz



int freq = 0x5C28; // F = 53610 Hz







void WriteOsc(void)



{



digitalWrite(pSEN, HIGH); // the CS is brought HIGH



digitalWrite(pSEN, LOW); // Framing begins by bringing CS low







for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = freq & 0x8000;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pSCK, HIGH);



 freq = freq << 1;



}



digitalWrite(pSEN, HIGH); // the end of the conversion



}







void fCount() {



 if (!done)



 cnt++;



}











void setup() {



 Serial.begin(9600);







// set the digital pins 2-4 as outputs







 pinMode(pSCK, OUTPUT);



 pinMode(pSEN, OUTPUT);



 pinMode(pSDI, OUTPUT);







// set the digital pin 7 as input



 pinMode(7, INPUT);







 WriteOsc();



 attachInterrupt(7, fCount, RISING);



 done = true;



}







void loop()



{



cnt = 0;



done = false;



delay(1000);



done = true;



//detachInterrupt(7);



Serial.print("Frequency on nCLK: ");



error = (float)(cnt * 0.006);







Serial.print(cnt + (int)error);



Serial.println(" Hz");



delay(5000);



};







Let’s see on how this code works. The Interrupt Service Routine code processing the interrupt resides in the fCount() function. Each time when ISR is called the done variable is checked. If done is false the counter variable cnt is incremented, otherwise fCount() immediately returns the control to the loop() program. As it is seen, the done variable serves for synchronization between the loop() program and the ISR function fCount().







The frequency measurement itself is done by counting the number of low-to-high transitions of the signal on pi
 n″
 7
 ″
 during 1 second. The error variable adds some value to the result; this is needed because the cnt variable is being incremented while delay() function is executed. The error value is empirically determined – I didn’t take special care to get extremely precision value.



In this project the measurement results are provided for frequencies close to 50 KHz. At 53610 Hz the error
 appears to be about 25-30 Hz.








Arduino Due project 3: signal synthesis using the built-in D/A converter








The low-frequency analog signal may be produced when using the built-in DAC blocks of the Arduino Due. The simple project that illustrates using the channel DAC0 is described below. The schematic circuit of the project is shown in
 Fig.88
 .
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Fig.
 88







In this circuit, the output signal on DAC0 goes to the buffer based upon  of MCP6022 op-amp. The buffer isolates the low-current DAC0 output from external load which may draw a large current. MCP6022 may be replaced by almost any op-amp with GBWP > 3 MHz capable of driving several tens milliamperes in load.



The source code of Arduino Due driving the DAC0 is shown in
 Listing 34
 .







Listing 34
 .







volatile boolean l;







const int NUM_SAMPLES = 256; // set buf. size to operate with 8 bit resolution



volatile unsigned char SINE_TABLE[NUM_SAMPLES];



volatile int cnt = 0;







void FillBuf(void)



{



//sine period is 2*PI



const float step = (2*M_PI)/(float)NUM_SAMPLES;



float s;







// calculations are in radians



for(int i = 0;i < NUM_SAMPLES;i++)



{



 s = sin(i * step);



 SINE_TABLE[i] = (unsigned char) (128.0 + (s*127.0));



}



}







// Timer TC0 Channel 1 is selected







void TC1_Handler() // IRQ handler for Channel 1 of TC0



{



TC_GetStatus(TC0, 1);



analogWrite(DAC0, SINE_TABLE[cnt]); // use DAC0



cnt++;



if (cnt == 255)cnt = 0;



}







void startTimer(Tc *tc, uint32_t channel, IRQn_Type irq, uint32_t frequency)



{



pmc_set_writeprotect(false);



pmc_enable_periph_clk((uint32_t)irq);



TC_Configure(tc, channel, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC |



 TC_CMR_TCCLKS_TIMER_CLOCK3);







uint32_t rc = VARIANT_MCK/32/frequency; // 32 was taken by default if we selected



 //TIMER_CLOCK3 above







TC_SetRA(tc, channel, rc/2); // duty = 50%



TC_SetRC(tc, channel, rc);



TC_Start(tc, channel);



tc->TC_CHANNEL[channel].TC_IER=TC_IER_CPCS;



tc->TC_CHANNEL[channel].TC_IDR=~TC_IER_CPCS;



NVIC_EnableIRQ(irq);



}







void setup()



{



analogWriteResolution(8); // 8-bit resolution



FillBuf();



startTimer(TC0, 1, TC1_IRQn, 164000); //TC0 channel 1, the IRQ for that



 //channel and the desired frequency



 //the DAC0 output freq will approximatelly



 //be equal to timer frequency divided by resolution



 // in that case Fout will approximatelly



 // be 164000 / 256 = 641 Hz



}







void loop(){}







Here we design the look-up table for sine waveform using the FillBuf() function. The synthesized signal will have 8-bit resolution, so we need the buffer of 256 bytes long which will contain all samples. To reproduce all buffer sample by sample, we will apply a timer interrupt. The channel 1 of timer TC0 of the microprocessor will be involved. Each sample will be reproduced within an Interrupt Service Routine (ISR) TC1_Handler().



The generated sine wave signal
 reproduced by the LabVIEW virtual oscilloscope is shown in
 Fig.89
 .
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Fig.89







With Arduino Due DAC channels we can easily build various waveform. The following source code (
 Listing 35
 ) shows how to generate the sawtooth signal on DAC0.







Listing 35
 .







volatile boolean l;



const int NUM_SAMPLES = 512; // set buf. size to operate with
 10 bit resolution



volatile int cnt = 0;







// Timer TC0 Channel 1 is selected







void TC1_Handler() // IRQ handler for Channel 1 of TC0



{



TC_GetStatus(TC0, 1);



analogWrite(DAC0, cnt++); // use DAC0



if (cnt == NUM_SAMPLES-1)cnt = 0;



}







void startTimer(Tc *tc, uint32_t channel, IRQn_Type irq, uint32_t frequency)



{



pmc_set_writeprotect(false);



pmc_enable_periph_clk((uint32_t)irq);



TC_Configure(tc, channel, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC |



 TC_CMR_TCCLKS_TIMER_CLOCK3);







uint32_t rc = VARIANT_MCK/32/frequency; // 32 was taken by default if we selected



 //TIMER_CLOCK3 above







//TC_SetRA(tc, channel, rc/2); //50% high, 50% low



TC_SetRC(tc, channel, rc);



TC_Start(tc, channel);



tc->TC_CHANNEL[channel].TC_IER=TC_IER_CPCS;



tc->TC_CHANNEL[channel].TC_IDR=~TC_IER_CPCS;



NVIC_EnableIRQ(irq);



}







void setup()



{



analogWriteResolution(9); // 9-bit resolution



startTimer(TC0, 1, TC1_IRQn, 125000); //TC0 channel 1, the IRQ for that



 //channel and the desired frequency



 //the DAC0 output freq will approximatelly



 //be equal to timer frequency divided by resolution



 // in that case Fout will approximatelly



 // be 125000 / 512 = 245 Hz



}







void loop(){}







The LabVIEW virtual oscilloscope reflects the sawtooth signal generated by DAC0 (
 Fig.90
 ).
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Fig.90








Arduino Due project 4: signal synthesis using the external clock with LTC6903








We can modify a bit the previous project when replacing the timer by the external clock source being the LTC6903 oscillator. In that case, we don’t need to involve any Arduino Due timer. The schematic circuit of such synthesizer is shown in
 Fig.91
 .
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Fig.91







In this circuit,the interrupt line is associated with pi
 n″
 7
 ″
 of Arduino Due. The interrupt is triggered by the rising edge of the pulse coming from the LTC6903 output.



The
 Arduino Due source code for this project is shown in
 Listing 36
 .







Listing 36
 .







const int pSCK = 3;



const int pSDI = 2;



const int pSEN = 4;







const int pin7ISR = 7; // here the interrupt is assigned. nCLK goes here







int tmp;



int freq = 0x685C; // F = 90 KHz, DAC0 ≈ 350 Hz



//int freq = 0x6568; // F = 80 KHz, DAC0 ≈ 312 Hz







// Configuring look-up table for sine wave







const int NUM_SAMPLES = 256; // set buf. size to operate with 8 bit resolution



volatile unsigned char SINE_TABLE[NUM_SAMPLES];



volatile int cnt = 0;







void WriteOsc(void)



{



digitalWrite(pSEN, HIGH); // the CS is brought HIGH



digitalWrite(pSEN, LOW); // Framing begins by bringing CS low







for (int i1 = 0; i1 < 16; i1++)



{



 digitalWrite(pSCK, LOW); // SCK goes LOW



 tmp = freq & 0x8000;



 digitalWrite(pSDI, LOW);



 if (tmp)



 digitalWrite(pSDI, HIGH);



 digitalWrite(pSCK, HIGH);



 freq = freq << 1;



}



digitalWrite(pSEN, HIGH); // the end of the conversion



}







void FillBuf(void)



{



//sine period is 2*PI



const float step = (2*M_PI)/(float)NUM_SAMPLES;



float s;







// calculationa are in radians



for(int i = 0;i < NUM_SAMPLES;i++)



{



 s = sin(i * step);



 SINE_TABLE[i] = (unsigned char) (128.0 + (s*127.0));



}



}







void sampleWrite()



{



analogWrite(DAC0, SINE_TABLE[cnt]); // use DAC0



cnt++;



if (cnt == 256)cnt = 0;



}







void setup()



{



 // configuring digital pins







 pinMode(pSCK, OUTPUT);



 pinMode(pSEN, OUTPUT);



 pinMode(pSDI, OUTPUT);



 pinMode(pin7ISR, INPUT);







 WriteOsc();



 analogWriteResolution(8); // 8-bit resolution



 FillBuf();



 attachInterrupt(pin7ISR, sampleWrite, RISING);



}







void loop(){}







You can experiment with this code configuring various parameters of D/A conversion and clock source.
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