

AWS Certified Solutions Architect Study Outline: Associate Exam

By Christian Leo

Copyright 2018 by Christian Leo

All rights reserved. No part of this book may be reproduced or used in any manner without written permission by the copyright owner.

AWS Certified Solutions Architect Study Outline: Associate Exam

Table of Contents

Basics

of

Identity

Access

Management

(

IAM

):

IAM

Terms

:

Users

&

End

Users

=

People

:

Groups

:

Roles

:

Policies

:

Root

Account

:

IAM

is

Global

:

To

log

into

AWS

Command

line

must

have

:

Set

up

Billing

Alarm

:

IAM

(

Identity

Access

Management

)

Summary

S

3

Basics

:

Objects

are

Simple

Key

Value

Store

:

S

3

Bucket

:

S

3

Data

Consistency

:

S

3

Quality

:

Life

Cycle

Management

:

Versioning

Basics

:

Encryption

Basics

:

Secure

Data

Basics

:

S

3

Storage

Tiers

:

S

3

Bucket

Object

Based

:

Versioning

:

Cross

Region

Replication

:

S

3

Lifecycle

Management

:

Cloudfront

-

CDN

:

S

3

Security

&

Encryption

:

Securing

Buckets

:

Encryption

:

Storage

Gateway

:

Volume

Gateway

:

Snowballs

:

Static

Website

Hosting

:

S

3

Summary

Elastic

Compute

Cloud

(

EC

2)

Basics

:

EC

2

Pricing

Options

:

Elastic

Block

Storage

(

EBS

):

EBS

Volume

Types

:

Security

Group

Basics

:

Volumes

and

Snapshots

:

Security

:

Volumes

vs

.

Snapshots

RAIDs

:

Encrypt

Root

Devices

,

Volumes

&

Snapshots

:

Amazon

Machine

Image

(

AMI

)

Types

:

Elastic

Load

Balancers

:

Cloud

Watch

:

Identity

Access

Management

Roles

with

EC

2:

Bash

scripts

:

EC

2

Instance

Metadata

:

Launch

Configurations

&

Auto

Scaling

Groups

:

EC

2

Placement

Groups

:

Elastic

File

System

(

EFS

)

Concepts

:

Lambda

Concepts

:

EC

2

Summary

Overview

:

Domain

name

levels

:

DNS

Basics

:

Domain

Registrars

:

Start

of

Authority

Record

(

SOR

):

Name

Server

(

NS

)

Records

:

Time

To

Live

(

TTL

):

Alias

Records

:

Route

53/

DNS

Review

AWS

Route

53

Routing

Policies

are

:

Simple

Routing

Policies

:

Weighted

Routing

Policy

:

Latency

Based

Routing

:

Failover

Routing

Policies

:

Geolocation

Routing

Policies

:

Multivalue

Answer

Routing

Policies

:

AWS

Route

53

Routing

Policies

Review

OLTP

&

OLAP

:

AWS

Database

Overview

Review

RDS

Backups

,

plus

Multi

Availability

Zones

vs

.

Read

Replicas

Automated

Backups

:

Snapshots

:

Encryption

:

Multi

Availability

Zone

(

AZ

)

RDS

:

Read

Replicas

:

DynamoDB

:

Redshift

:

Elasticache

:

AWS

Application

Systems

Summary

Overview

:

How

to

Connect

to

a

VPC

:

VPC

Uses

:

VPC

Improves

Security

:

Default

VPC

vs

.

Custom

VPC

:

VPC

Peering

:

NAT

Instances

:

NAT

Gateways

:

Network

Access

Control

Lists

(

Network

ACL

’

s

)

v

.

Security

Group

Private

Network

ACL

’

s

:

Custom

VPC

’

s

&

Elastic

Load

Balancers

(

ELB

):

VPC

Flow

Logs

:

NAT

v

.

Bastion

:

VPC

Endpoints

:

VPC

Clean

Up

:

VPC

Summary

SQS

:

Visibility

Timeout

of

SQS

:

Elasticity

of

SQS

:

Standard

&

FIFO

Queues

:

SQS

Short

v

.

Long

Polling

:

Quick

SQS

Review

Simple

WorkFlow

:

SWF

Activity

Workers

: :

SWF

Deciders

:

Deciders

are

programs

that

control

the

coordination

of

tasks

:

SWF

Domains

SQS

v

.

Simple

WorkFlow

(

SWF

),

A

common

exam

topic

SNS

(

Simple

Notification

Service

):

SNS

triggers

Lambda

functions

:

SNS

Structure

:

SNS

Features

:

Elastic

Transcoder

:

API

(

Application

Program

Interface

)

Gateway

:

Amazon

API

Gateway

Caching

:

API

Gateway

Benefits

:

Cross

-

Origin

Resource

Sharing

(

CORS

):

Kinesis

:

Kinesis

Streams

:

Kinesis

Firehose

:

Kinesis

Analytics

:

Application

Service

Summary

 Identity Access Management (IAM)

❏

 Basics of Identity Access Management (IAM):

❏
 Allows management of Users access to the AWS console

❏
 Gives centralized control of your AWS account

❏
 Shared access to your AWS account

❏
 Gives granular permissions

❏
 Gives identity Federation:

❏
 Can connect your IAM to:

❏
 Active Directory

❏
 Linkedin

❏
 Facebook, etc

❏
 Multi-factor authentication

❏
 Provides temporary access for Users to utilize devices & services

❏
 Allows the setup and management of your organization’s password rotation policy

❏
 Integrates with various AWS services

❏
 Supports PCI DSS compliance

❏

 IAM Terms:

❏

 Users & End Users = People:

❏
 New Users by default have NO permissions when first created

❏
 If permissions are not assigned then the newly created User will have zero access

❏

 Groups:

❏
 All of the people who are under the same set of permissions

❏
 Ex: Fundraising group, Legal research group, etc

❏
 Each group has their own set of permissions.

❏
 Ex: Fundraising group may have permissions to financial records, while legal research group does not

❏
 Ex: Legal research group will have permission access to contract documents, while the fundraising group will not

❏

 Roles:

❏
 Roles are created for trusted entities

❏
 Roles are assigned to AWS resources

❏
 An IAM User in another account

❏
 An AWS application that needs to act on your resources in your account

❏
 An application code on EC2 Instance that must perform actions on AWS resources

❏
 Ex: EC2 Instance is given a role

❏
 That role allows it to access an S3 Bucket

❏
 Now that EC2 Instance can write files directly to the S3

❏
 Roles will have Policies/Permissions assigned to them

❏
 No need to assign User names or passwords to that particular AWS resource (ex: the EC2)

❏

 Policies:

❏

 A document defining one or more permissions

❏
 Policies = Permissions

❏
 Attached/applied to:

❏
 Users

❏
 Groups

❏
 Roles

❏
 It is possible for Users, Groups, and Roles to share the same Policy document

❏
 Policies/Permissions can be applied to a single User

❏
 Even if that User is in a Group(s)

❏
 Default policies types can be selected on Console with one click

❏
 Do not need to read document

❏
 On the AWS console:

❏
 IAM is located under Security, Identity, and Compliance

❏

 Root Account:

❏
 The email address used to sign up with to the AWS platform

❏
 Root Account grants Root Access

❏
 Root Access allows you to do unlimited activities in the AWS Cloud

❏
 Advised to only login with Root Account a handful of times

❏
 Do not give Root Account/Access to employees

❏
 Instead assign Users to Groups and Permissions

❏
 To safeguard your Root Account if email and password is found:

❏
 Activate MFA (Multifactor authentication)

❏
 MFA requires a virtual or hardware physical device

❏

 IAM is Global:

❏
 Global means the assigned Users, Groups, and Roles are applicable from anywhere on the planet.

❏
 Ex: if you part of the Legal Research Group in San Francisco, then you will still be in that Group while in Hong Kong

❏
 Console:

❏
 When logging into AWS Console use User Name & password

❏

 To log into AWS Command line must have:

❏
 Tokens

❏
 Tokens = Access Key ID & Secret Access Key

❏
 Users receive their own Access Key ID & Secret Access Key

❏
 Tokens = Both these Keys

❏
 Tokens are used ONLY to programatically interact with AWS Command Line

❏
 Tokens used to install Command Line on a laptop and run commands to AWS

❏
 Ex: Copy your laptop files to S3

❏
 Tokens/Access Key ID & Secret Access Key are only viewed once

❏
 Must download cvs file with Token credentials

❏
 Save cvs file

❏
 If not saved, then will have to regenerate Tokens

❏
 Tokens/Access Key & Secret Access Key can’t be used to login to Console

❏
 Root User can make deactivate the Access Key & Secret Access Key of another User

❏
 Prevents that User from programatically accessing AWS Command Line

❏

 Set up Billing Alarm:

❏
 Billing alarm sends you an email notification when a certain monetary threshold has been reached

❏
 Click on upper right hand corner of AWS console

❏
 Scroll down to “My Billing Dashboard”

❏
 “Bill and Cost Management Dashboard” screen shows up

❏
 Scroll down to Alerts and Notifications

❏
 Enable “Monitor….billing alerts…”

❏
 Preference screen appears:

❏
 Click onto “Receive Billing Alerts”

❏
 Then click “Manage Billing Alerts”

❏
 Metric Summary screen appears

❏
 Look on the left side of the screen

❏
 See heading “Alarms”

❏
 Under “Alarms” you’ll see the word “Billing”

❏
 Click “Billing”

❏
 “Billing Alarm” box shows up

❏
 Type in the monetary threshold amount

❏
 Type in email address where you want to receive the billing alarm

❏
 Click “Create Alarm”

 IAM (Identity Access Management) Summary

❏
 IAM Terms:

❏
 Users:

An identity recognized by AWS

❏
 Groups:

❏
 A way to consolidate Users

❏
 Those consolidated Users share the same Policies/Permissions

❏
 Roles:

❏
 Entity with a set of permissions to make service requests

❏
 Policies/Permissions:

❏
 Policies consist of Policy documents written in JSON

❏
 Policies/Policy Documents/Permissions can be a applied

❏
 To Users

❏
 To Groups

❏
 To Roles

❏
 Policies/Permissions/Policy Documents are universal

❏
 Not restricted by region

❏
 Same globally

❏
 Can customize Password Rotation Policies

❏
 Ex: 8 characters, expire every 120 days, etc

❏
 IAM is universal:

❏
 The regions where a User, a Group, or Role is created is of no consequence

❏
 They are all consistent across the AWS around the world

❏
 Root Account:

❏
 The account created when the AWS account was first set up

❏
 Complete Administrator Access by default

❏
 The only account that has complete Admin access by default

❏
 Always set up Multi-factor Authentication on Root Account

❏
 New Users:

❏
 By default have NO permissions when first created

❏
 If permissions are not assigned then the newly created User will have zero access

❏
 Assigned Access Key ID & Secret Access Key

❏
 These can be used to interact with AWS:

❏
 Command line

❏
 API’s

❏
 SDK’s

❏
 Cannot be use Access Key ID & Secret Access Key to login to AWS console

❏
 Can only viewed once

❏
 Download cdv file

❏
 Save to safe location

❏
 If lost, must regenerate new Assigned Access Key ID & Secret Access Key

/

 AWS Object Storage & CDN (Content Delivery Network): S3, Glacier, and Cloudfront

❏

 S3 Basics:

❏

 S3 means Simple Storage Service

❏

 Secure

❏

 Highly scalable

❏

 Has a web interface

❏

 Data is spread across multiple facilities

❏

 Data is spread across multiple devices

❏

 Unlimited Storage

❏

 Storage is charge per GB

❏

 Both S3 Buckets and Objects can be tagged

❏

 Objects do not inherit the Bucket tags

❏

 Objects Storage:

❏

 Objects are:

❏

 PDF’s

❏

 Videos

❏

 Word files

❏

 Photographs

❏

 Not applications or database systems

❏

 Objects are uploaded to S3

❏

 If upload is a success:

❏

 On AWS console successful upload is indicated on the bottom of the console

❏

 On Command Line successful upload is indicated by an HTTP 200 status message code

❏

 Object files can range from 0 Bytes - 5 TB

❏

 Objects are Simple Key Value Store:

❏

 Key

❏

 The name of the Object

❏

 Value

❏

 The data inside file

❏

 Made up a sequence of bytes

❏

 Version Id

❏

 Important for Versioning

❏

 Metadata

❏

 Data about the data you are storing

❏

 Subresources

❏

 Access Control Lists:

❏

 Places permissions on individual files

❏

 Ex: Only permit videographers to access to a celebrity interview. But the rest of the Media Department can still access the department finance materials

❏

 S3 Bucket:

❏

 S3 Bucket here files are stored in an S3

❏

 By default all S3 Buckets are private

❏

 Must give Permissions to S3 Bucket

❏

 Ex: Set Everyone/public Permission to Read only

❏

 An S3 Bucket is basicly a file folder in the AWS Cloud

❏

 It is called a Bucket due to having universal namespace:

❏

 Universal namespace means each created bucket will posses a website/DNS address

❏

 Since website/DNS is universal global, then Bucket name must be the only one of it’s kind in S3.

❏

 If someone anywhere on the planet has already taken that S3 Bucket name then no one else can use it

❏

 S3 Bucket website/DNS namespace example.

❏

 If S3 Bucket’s name is cats, then the website/DNS namespace is:

https

://

S

3-

us

-

west

-1.

amazonaws

.

com

/

cats

❏

 S3 namespace breakdown is:

https

://

S

3-

region

dot

amazonaws

dot

com

 forward slash bucket name

❏

 The bucket name is the last word on the namespace

❏

 Sadly, cats as a bucket name is probably already taken, therefore making it unavailable

❏

 S3 Data Consistency:

❏

 Read after Write Consistency or PUTS New Objects

❏

 Immediately after uploading/writing a file we can see the contents

❏

 Eventual Consistency for overwrite PUTS and Deletes

❏

 If we check it we could find:

❏

 The older form

❏

 The updated form:

❏

 May appear immediately

❏

 May take a few moments

❏

 Delay is due to S3 possessing on multiple Availability Zones (AZ’s)

❏

 One AZ needs time send the update to the other AZ’s

❏

 S3 Quality:

❏

 Build for 99.99% availability

❏

 Amazon guarantees 99.9% availability

❏

 Amazon a guarantees information durability of 99.999999999%, or “eleven 9’s”

❏

 Guarantee of information durability means you will not lose more than the of “eleven 9’s” of information

❏

 Eleven 9’s refers to the number 99.999999999%

❏

 Tiered Storage is available

❏

 Different storage classes available

❏

 Life Cycle Management:

❏

 After a set period of time can move a file from one storage area to another

❏

 Often leads to the archiving of a file

❏

 Versioning Basics:

❏

 Keeps variations of an object in the same S3 Bucket

❏

 Used to preserve, retrieve, and restore versions of every object stored in the chosen S3 Bucket

❏

 Every newly added Version is marked Private by default

❏

 Since every new Object added to the S3 Bucket is private by default

❏

 Must change permissions to Public if you want to view it

❏

 If you delete an Object it will only place a “delete” marker over it

❏

 Objects will still exist in your S3 Bucket

❏

 To restore the Object delete the “delete” marker

❏

 The restored Object will have the earlier assigned permissions

❏

 To permanently delete an Object must delete each Version of it

❏

 Versioning must be enabled

❏

 Once Versioning is enabled cannot be disabled

❏

 Can only be suspended

❏

 Encryption Basics:

❏

 Client Side Encryption:

❏

 User encrypt files

❏

 User utilizes their own own computer/resources to encrypt

❏

 Then User uploads those encrypted files to S3 in the AWS Cloud

❏

 Server Side Encryption:

❏

 Server Side Encryption with Amazon S3 Managed Keys (SSE-S3)

❏

 Server Side Encryption with KMS (SSE-KMS)

❏

 Server Side Encryption with Customer Provided Keys (SSE-C)

❏

 Secure Data Basics:

❏

 Use Access Control Lists:

❏

 Pertains to Objects & S3 Buckets

❏

 Ex: Access Control List for Object/individual file on a animal rescue donor list

❏

 Keeps out most of the animal rescue fundraising team.

❏

 Yet allows the animal rescue’s donor liaison officer to have access to that list

❏

 S3 Bucket Security:

❏

 By default everything is disabled and turned off

❏

 Control access to an entire S3 Bucket

❏

 Access Control Lists also available to Buckets

❏

 Ex: Give zero permissions to Everyone/public

❏

 S3 Bucket Policies

❏

 Activate Policy generator

❏

 Select S3 Policy type

❏

 Choose to Allow or Deny someone

❏

 S3 Storage Tiers:

❏

 S3 Standard:

❏

 99.99% availability

❏

 99.999999999% durability

❏

 Stored redundantly across discs across multiple Availability Zones (AZ’s)

❏

 Designed to sustain the loss of 2 concurrent failed facilities

❏

 Very stable and durable

❏

 Recommended:

❏

 If need as durable as possible

❏

 If cost is not an issue/problem

❏

 S3-IA (Infrequently Accessed):

❏

 For data that is accessed less frequently

❏

 Gives quick access to stored data in seconds, or milliseconds

❏

 Low fees than S3 Standard

❏

 Recommended:

❏

 If need quick retrieval times at cheap cost

❏

 If need durability

❏

 However, you are charged a retrieval fee

❏

 Stored redundantly across discs across multiple Availability Zones (AZ’s)

❏

 Designed to sustain the loss of 2 concurrent failed facilities

❏

 S3 One Zone - IA (Infrequently Accessed), or called S3 Reduced Redundancy Storage:

❏

 Used for infrequently Accessed data

❏

 Is a lower cost option than S3 - IA

❏

 Recommended:

❏

 If need quick retrieval times at cheap cost

❏

 Better suited if data that is can be recreated

❏

 Not good if you durability is necessary

❏

 Lacks data resiliency

❏

 Stored in only 1 Availability Zone

❏

 Lacks multiple Availability Zones (AZ’s)

❏

 Glacier:

❏

 Archival only

❏

 Cheapest storage

❏

 Recommended if retrieval time isn’t an issue & want to store data at cheapest cost

❏

 3 different Glacier models

❏

 Expedited model:

❏

 Higher fee

❏

 Data restored within minutes

❏

 Standard model:

❏

 3-5 to restore data

❏

 Bulk model:

❏

 5-12 hours to restore data

❏

 S3 Bucket Charges:

❏

 Storage per GB

❏

 Number of Requests

❏

 Storage Management

❏

 Charged for labeling it with tags

❏

 Ex: S3 Bucket tagged/labeled, “Creative Department” showing who controls that Bucket

❏

 Data Transfer Pricing

❏

 Charged for Cross Region Replication:

❏

 The transference of data from one region to another

❏

 Transference Acceleration:

❏

 Enables fast, easy, secure transference of files

❏

 Transference occurs through long distances between end users & S3 Bucket

❏

 Utilizes CloudFont’s global Edge Locations

❏

 Edge Locations are small data centers close to the User

❏

 User uploads their Objects (files, videos, etc) to Edge Location

❏

 Then the Edge Location sends Objects through Amazon’s backbone network to the S3 Bucket

❏

 Ex: S3 Bucket is located in Northern California, USA

❏

 Users are located in Mexico, United States, and Italy

❏

 These Users in different countries upload Objects to the S3 Bucket

❏

 But actually they are uploading Objects to the Edge Location closest to them

❏

 Objects are sent from those Edge Locations to the S3 Bucket via Amazon’s backbone network

❏

 Users uploaded Objects are now in the S3 located in Northern California, USA

❏

 S3 Bucket Object Based:

❏

 Allows you to upload files

❏

 Word documents

❏

 Photos

❏

 Videos

❏

 PDF, etc

❏

 No databases

❏

 No applications

❏

 No operating system

❏

 Files can range from 0 Bytes to 5 TB

❏

 Unlimited storage

❏

 Successful uploads

❏

 On AWS console successful upload is indicated on the bottom of the console

❏

 On Command Line successful upload is indicated by an HTTP 200 status message code

❏

 Files stored in Buckets

❏

 S3 is a universal namespace - common exam question

❏

 Names must be unique

❏

 Names are global

❏

 Ex:

https

://

S

3-

us

-

west

-1.

amazonaws

.

com

/

cats

❏

 S3 namespace breakdown is:

https

://

S

3-

region

dot

amazonaws

dot

com

 forward slash bucket name

❏

 Read after Write consistency for PUTS of new Objects

❏

 Can read a new object, or new creation, to S3 immediately

❏

 Eventual Consistency for overwrite PUTS and DELETES

❏

 Takes a few moments to see the updates and edits

❏

 This is due to S3 replication
 across different Availability Zones (AZ’s)

❏

 S3 Storage Tiers Quick Review:

❏

 S3 Standard:

❏

 Durable

❏

 Stored data is Immediately available

❏

 Can be frequently accessed

❏

 Multiple Availability Zones (AZ’s)

❏

 S3 - IA:

❏

 Durable

❏

 Stored data is immediately available

❏

 Somewhat cheaper than S3 Standard

❏

 Multiple Availability Zones (AZ’s)

❏

 For infrequently accessed files

❏

 Ex: Files accessed once a month or more

❏

 S3 One Zone - IA, or called S3 Reduced Redundancy Storage

❏

 Cheaper than S3-IA

❏

 But is only in one Availability Zone (AZ)

❏

 Glacier:

❏

 Archived data

❏

 3 - 5 hour average retrieval time

❏

 Expedited

❏

 Standard

❏

 Bulk

❏

 S3 Object Fundamentals:

❏

 Key - the name

❏

 Value - the data

❏

 Version ID

❏

 Metadata

❏

 Subresources:

❏

 Access Control List (ACL)

❏

 Versioning:

❏

 A good backup tool

❏

 Once enabled it can’t be disabled:

❏

 Can only suspended

❏

 Keeps all versions of large files

❏

 So storage costs can increase rapidly with large files

❏

 Not advisable for large files prone to change

❏

 The total bytes of all versions is charged

❏

 Stores all versions of an Object:

❏

 Stores all Write versions

❏

 If Object is deleted, it is still stored

❏

 Multi-factor Authentication delete capability:

❏

 Utilizes Multi-factor authentication to provide additional lawyer of security

❏

 Stops people from deleting Object by accident

❏

 To delete a User must provide security credentials

❏

 Integrates with Lifecycle Rules

❏

 Cross Region Replication:

❏

 Objects in an S3 Bucket can be copied to a different

❏

 S3 Bucket in another region

❏

 Each regions must be unique

❏

 Create a Source Bucket

❏

 Create a Destination Bucket

❏

 Versioning must be enabled in both the source and destination for S3 Buckets for Cross Region Replication to take place

❏

 Make sure Cross Region Replication is enabled

❏

 For efficiency, copy your Objects to the Source Bucket

❏

 As opposed to replicating object by object

❏

 Existing Objects are not Replicated to Destination Bucket

❏

 Only new, or changed, Objects are replicated to the destination S3 Bucket

❏

 S3 Buckets Cross Region Replication:

❏

 Can duplicate the entire source Bucket

❏

 Can duplicate source Bucket to a destination Bucket in your own AWS account an entirely different AWS account

❏

 Can duplicate source Bucket to a destination Bucket in an entirely different AWS account

❏

 Deletes:

❏

 Delete markers are replicated

❏

 If you delete something in your Source Bucket, then delete the marker will be replicated & show up in your Destination Bucket

❏

 Deleting individual versions is not replicated to the Destination Bucket

❏

 Delete individual markers is not replicated to the Destination Bucker

❏

 Cannot:

❏

 You can’t replicate multiple Buckets at the same time

❏

 You can’t have your Source Bucket copied to a chain/series of other Buckets

❏

 You can’t have files in an existing Bucket automatically replicated to the source Bucket

❏

 To replicate an existing Bucket you must go to the AWS Command line

❏

 To copy the contents of an already existing source S3 Bucket to a destination S3 Bucket:

❏

 Log into the AWS Command Line with your Access Key ID & Secret Access Key

❏

 Choose your default region, ex: us-east-1

❏

 Type “ls S3” to show Bucket contents

❏

 Your Bucket name should be listed

❏

 Type in “aws s3 cp --recursive s3://sourcebucketname s3://destinationbucketname

❏

 Click Enter. Source Bucket is now copies to the destination Bucket

❏

 Can change storage option of the destination S3 Bucket

❏

 Ex: Your Bucket is set at S3 Standard Storage. Replica destination Bucket could be Glacier

❏

 S3 Lifecycle Management:

❏

 Lifecycle Rules manage Objects

❏

 Automates transfer to tiered storage

❏

 Ex of transfer: Begins at S3 Standard---> then to S2-IA--->and finally ends up at Glacier

❏

 Can set a time frame for Lifecycle Management to automates to the permanent deletion of Objects

❏

 Can Lifecycle Management with or without Versioning

❏

 Can Lifecycle Manage the storage of both current and previous versions of Objects

❏

 Transitions Object to different Storage Tiers:

❏

 Ex: Configure Transition for 30 days after creation date.

❏

 This means that 30 days after the creation date Object moves to the Standard Infrequent Access Storage Tier (S-IA)

❏

 Next configure Transition for 60 days after creation date to Glacier

❏

 This means that 30 days after it is stored in Standard Infrequent Access Storage Tier (S-IA), and 60 days after the Object’s original creation date, that Object moves to Glacier

❏

 By default 30 days after being Standard Infrequent Access Storage, then Object is moved to Glacier Archive Tier

❏

 Remember that Transitions can be done with both previous & current Versions

❏

 Can configure Objects to an expiration, which will permanently delete them

❏

 Cloudfront - CDN:

❏

 Content Delivery Networks = CDN

❏

 Cloudfront is a CDN

❏

 Cloudfront Content Delivery Network (CDN) distributes from the Origin of all files

❏

 Origin

❏

 The Origin is where the original a files are located

❏

 Origins within AWS used by Cloudfront are these:

❏

 S3

❏

 EC2

❏

 Elastic Load Balancing

❏

 Route 53

❏

 All of the above AWS services will be discussed further in this outline

❏

 If you have a non AWS origin server that stores the Origin, then Cloudfront can work with it also

❏

 Edge Locations are used to cache files from an Origin(s)

❏

 Object file is cached in the Edge Location for a set TTL (Time To Live)

❏

 Edge Location are:

❏

 A location where content is cached

❏

 There are 50 Edge Locations worldwide

❏

 Edge Locations is NOT an Availability Zone/Region

❏

 Edge Location is entirely separate from an Availability Zone/Region

❏

 NOT Read only

❏

 Can also Write onto Edge Locations

❏

 Requests for you website content is routed to the closest Edge Location:

❏

 The close proximity allows for the Edge Location to respond with your content more quickly

❏

 Requests for content are automatically routed to the nearest Edge Location

❏

 From an Edge Location the content can be delivered with the best speed and performance

❏

 Cloudfront is a system of Distribution

❏

 A Distribution is a Content Network Delivery (CDN) that consists of a collection Edge Locations

❏

 The Distribution is Collection of Edge Locations as a whole.

❏

 Two different types of Distributions:

❏

 Web Distribution

❏

 Typically used for websites

❏

 RTMP:

❏

 Used for media streaming

❏

 Distribution/Collection of Edge Locations deliver webpages, and other content, to a User based on:

❏

 Geographic location of the User

❏

 Origin of the webpage

❏

 Content delivery server

❏

 There can be multiple Origins within a Distribution

❏

 Cloudfront can be used to deliver an entire website content that is:

❏

 Dynamic

❏

 Static

❏

 Streaming

❏

 Interactive content

❏

 Please note that a Distribution = A collection of of Edge Locations.

❏

 Therefore, A Distribution means more than a one Edge Location such as in a community of Edge Locations

❏

 The phrase “Edge Location” refers to just a singular Edge Location

❏

 Transfer Acceleration:

❏

 Uses Cloudfront Edge Locations accelerate the upload data to S3:

❏

 Uses a distinct URl to upload directly the Edge Locations

❏

 Data is uploaded to the Edge Locations

❏

 The Edge Location then uploads the data file to S3

❏

 Cloudfront has Restrict Viewer Access to prevent public viewing

❏

 Use signed url’s or

❏

 Use signed Cookies

❏

 Controls who can see your content

❏

 S3 Security & Encryption:

❏

 Securing Buckets:

❏

 By default all newly created S3 Buckets are private

❏

 S3 Bucket Access Controls:

❏

 Bucket Policies

❏

 These policies/permissions are applied to the entire Bucket

❏

 Access Control Lists

❏

 Can apply to individual Objects within the Bucket

❏

 Ex: A single Object in the Bucket may be Public, while keeping the rest of the S3 Bucket private

❏

 S3 Buckets can be configured to create Access Logs

❏

 Logs all requests made to the Bucket

❏

 Can be done to a Bucket in a different AWS account

❏

 Encryption:

❏

 Encrypt Data In Transit:

❏

 Used when sending information and from you S3 Bucket

❏

 Ex: Using from your Mac/PC to your S3 Bucket

❏

 Secured with SSL/TLS Encryption

❏

 Encrypt Data at Rest there are four methods total:

❏

 Server Side Encryption:

❏

 Server Side Encryption has three methods:

❏

 S3 Managed Keys = SSE- S3

❏

 Each Object is encrypted with a unique key

❏

 Utilizes strong multi-factor encryption

❏

 Has an additional safety feature:

❏

 Amazon encrypts the key with a regularly rotating master key using

❏

 Amazon handles all this for you using Advanced Encryption Standard 256 = AES - 256

❏

 Amazon encrypts all the keys for you

❏

 User just click onto the Object and hit click

❏

 AWS KMS (Key Management Service), Managed Keys, SSE - KMS:

❏

 Extra protection against unauthorized access to your Objects

❏

 Uses envelope key

❏

 An envelope key is a key case that protects your datas encryption key

❏

 Envelope key has separate permissions

❏

 Provides an audit trail

❏

 Some additional charges

❏

 Can create and manage key encryption yourself

❏

 Or Have Amazon assign a default key that is unique to the service you are using and the key you are working in

❏

 Server Side Encryption with Customer Provided Keys = SSE-C:

❏

 Amazon manages the encryption when it writes to disks

❏

 Amazon manages the decryption when you access your Objects

❏

 You manage the encrypted keys yourself

❏

 Client Side Encryption:

❏

 Client encrypts the data on their side on their device, then uploads to S3

❏

 Storage Gateway:

❏

 AWS Storage Gateway software appliance is downloaded as a VM (virtual machine)

❏

 That VM is installed in the your/organization’s datacenter

❏

 Storage Gateway supports:

❏

 VMware ESXi

❏

 Supports Microsoft Hyper-V

❏

 Once installed, then associate it with the AWS account

❏

 Use activation process to associate

❏

 It is AWS Cloud based scalable storage

❏

 Use AWS Management Console to utilize the Secure Storage

❏

 Total of 4 Types of Storage Gateway:

❏

 File Gateway

❏

 Volume Gateway:

❏

 Stored Volumes

❏

 Cached Volumes

❏

 Gateway Virtual Tape Library (VTL)

❏

 File Gateway:

❏

 Accessed through Network File Service (NFS) mount point

❏

 Stores flat files

❏

 Flat files are:

❏

 Word files, PDF’s, pictures, videos, etc

❏

 Not applications or databases

❏

 Flat files stored directly on S3

❏

 User metadata of Object associated with the file is stored on S3.

❏

 That metadata shows:

❏

 Ownership

❏

 Permissions

❏

 Timestamps

❏

 Once files and Objects are in S3 they can utilize S3 features:

❏

 S3 Bucket policies

❏

 Versioning

❏

 Cross Region Replication

❏

 Lifecycle Management

❏

 Ex: S3-1A, Glacier, etc

❏

 File Gateway common journey:

❏

 Application Server--->through NFS--->to Storage Gateway--->goes through either Direct Connect/the Internet/or a VPC--->S3

❏

 Volume Gateway:

❏

 Uses iSCSI block protocol

❏

 Take on site hard disks and back them up on a virtual hard disk

❏

 Think of Volume Gateway as a virtual hard disk

❏

 Block based storage

❏

 Stores databases

❏

 Stores operating systems

❏

 Stores applications

❏

 Data written to these Volumes can be asynchronously backed up as point in time Volume Snapshots

❏

 Volume Snapshots are stored as Elastic Block Store (EBS) Snapshots

❏

 Volume Snapshots are incremental backups

❏

 They only capture changed blocks

❏

 All Snapshot storage is compresses

❏

 2 Types of Volume Gateway:

❏

 Stored Volumes:

❏

 Store an entire dataset on site

❏

 Mounts to iSCSI devices from on site application servers

❏

 Asynchronously stores backup volumes on S3

❏

 Stored as Elastic Block Storage (EBS)

❏

 Low latency to datasets

❏

 Storage can range from 1 GB - 16 TB

❏

 Volume Gateway journey:

❏

 Ex: Users--->Application/web server--->iSCSI connection--->Virtual hard disks stored on on site--->Storage Gateway takes a Snapshot--->It is a flat file ---sent to Upload Buffer--->S3--->stored as EBS Volume Snapshots

❏

 Cached Volumes:

❏

 Stores/Caches only the most recently accessed data on site in your Storage Gateway

❏

 Recently read data is cached on site

❏

 Data that is not frequently accessed is stored on an S3

❏

 Data that you write to your Volumes is stored on S3

❏

 Low latency

❏

 Cached Volumes 1 - 32 TB

❏

 Cached Volume Journey: Check this

❏

 Users write data--->Application/web server--->iSCSI connection--->Cache storage--->Uploaded buffer--->Virtual disk (S3 holds that virtual disk)--->Snapshots of disks are taken--->Turned into flat files--->written date stored to S3

❏

 Gateway Virtual Tape Library (VTL):
 check this

❏

 For archives and backups

❏

 Create virtual tape cartridges on the Virtual Tape Gateway

❏

 Send these to S3

❏

 Virtual tape cartridges stored on S3

❏

 Uses backup applications:

❏

 NetBackup, Backup Exec, Veeam, etc

❏

 Can use Lifecycle policies to sent off to Glacier’

❏

 Gateway Virtual Tape Journey:

❏

 Servers--->Back up application (i.e. Net Backup, Backup Exec, Veeam, etc)--->iSCSI--->connect to Storage Gateway--->Virtual Tapes—>upload to S3—>Lifecycle Management policies

❏

 Snowballs:

❏

 History:

❏

 Before Snowball there was Import/Export Disk

❏

 Import/Export Disk transfers data directly on/off of storage devices using Amazon’s high speed networking

❏

 Bypassed internet

❏

 Moves large amounts of data in/out of AWS Cloud

❏

 Data was transported by portable storage devices

❏

 Ex: Problem: Need 500 GB stored, but it is too much for your internet connection to transfer

❏

 Solution: Send a external hard disk to Amazon. Amazon then transfers the 500 GB off the external storage device to onto another storage device. To accomplish this Amazon uses their high speed internal network

❏

 Too many people starting flooding Amazon with Import/Export Disks, so Amazon had to develop Snowballs

❏

 Snowball Types:

❏

 Snowball:

❏

 Storage only

❏

 Large scale data transport solution

❏

 Uses secure appliances to transfer large amounts of data in/out of AWS

❏

 Snowball is a solution to:

❏

 Large scale data transfers

❏

 High network costs

❏

 Long transfer times

❏

 Security concerns

❏

 All regions have access to a 80TB Snowball

❏

 Snowball appliance is secure & tamper resistant

❏

 256 bit encryption

❏

 Comes with a Kindle to track Snowball at any time

❏

 When data is transferred & verified a software erasure is done to the Snowball appliance.

❏

 Snowball Edge:

❏

 Storage:

❏

 Uses secure appliances to transfer large amounts of data in/out of AWS

❏

 Compute capabilities

❏

 A small AWS data center

❏

 Can run Lambda functions on it

❏

 Good for places where you may not otherwise have access to compute services

❏

 100 TB of storage

❏

 Snowmobile:

❏

 A massive safe 45 foot long container placed on the back of a huge 18 wheeler truck

❏

 Transport petabyte or exabyte storage

❏

 Can transfer up to 100 PB per Snowmobile

❏

 Moves massive amounts of data to the AWS Cloud

❏

 Video libraries, complete data center migration, etc.

❏

 Static Website Hosting:

❏

 Static website is Static

❏

 Cannot have dynamic content

❏

 No php

❏

 No asp

❏

 No dynamic content

❏

 Static website scales infinitely

❏

 Can handle alot of online hits/inquiries within a brief time period

❏

 If you want a domain to point directly to your S3 then:

❏

 Go to Amazon’s DNS service, Route 53

❏

 Purchase & register a domain name with Route 53

❏

 S3 Bucket name and Route 53 domain name must be exactly the same

❏

 To set up a Static Website:

❏

 Go to “Services” on AWS console

❏

 Go to “Storage”

❏

 Click on to “S3”

❏

 Go to “Properties”

❏

 Then click on “Static Website Hosting”

❏

 Enable Static Website Hosting

❏

 URL for static website hosting will be:

❏

http

://

BucketNameDots

3-

website

-

RegionDotamazaonaws

.

com

❏

 Ex:

http

://

kittens

.

s

3-

website

-

us

-

west

-1-

amazon

.

aws

.

com

❏

 Recognizing a static website url is a common exam question

❏

 Name your index document/default landing

❏

 Click “Save”

❏

 Static Website set up is done!

❏

 Remember to grant “Public” read access this Object, or no one will be able to see your website

❏

 To upload files

❏

 Go to Overview

 S3 Summary

❏

 S3 is Object based storage:

❏

 Allows files to be uploaded

❏

 Ex: Image files, video files, photo files, etc

❏

 Not for operating systems

❏

 Not for databases

❏

 Files can be from 0 bytes - 5TB

❏

 To load files faster enable Multipart Upload:

❏

 It uploads Object as pieces

❏

 Those pieces are then put back together in S3

❏

 Unlimited Storage

❏

 Storage arrays are added when certain thresholds are met

❏

 More storage means more charges

❏

 S3 Buckets store all files

❏

 A S3 Bucket is basicly a folder for holding files

❏

 S3 has a universal namespace

❏

 Names must be unique globally

❏

 Must be all lower case

❏

 S3 Bucket name always follows the same format:

❏

https

://

s

3-

regionDOTamazonawsDOTcom

/

bucketname

❏

 Ex:

https

://

s

3-

us

-

east

-1.

amazonaws

.

com

/

bunnies

❏

 S3 Consistency:

❏

 Read after Write consistency for PUTS of new Objects

❏

 New Object to S3 is immediately readable

❏

 Eventual Consistency for overwrite PUTS and DELETES

❏

 Updates or Deletes to an Object is not instant

❏

 It might take a bit of time to show up

❏

 Ex; 5 minutes

❏

 After successful Write you receive a HTTP 200 code

❏

 S3 Storage Tiers or Classes:

❏

 S3 Standard:

❏

 99.99% Availability

❏

 99.999999999 Durability

❏

 Stored redundantly across multiple facilities

❏

 Designed to sustain the concurrent loss of 2 facilities

❏

 S3 - IA (Infrequently Accessed)”

❏

 For less frequently accessed data

❏

 Rapid access

❏

 Cheaper than S3 Standard

❏

 Charged a retrieval fee

❏

 S3 One Zone - IA (Infrequently Accessed)

❏

 Cheaper than S3 Standard

❏

 Cheaper than S3 - IA

❏

 Less resilient

❏

 Has only one AZ (availability zone)/facility

❏

 Not advised for data you can not afford to lose

❏

 Glacier:

❏

 Archival only

❏

 Very cheap

❏

 3 Storage Classes:

❏

 Expedited

❏

 Standard:

❏

 3-5 hours retrieval time

❏

 Bulk

❏

 S3 Fundamental Core:

❏

 Key:

❏

 Name of Object

❏

 Value:

❏

 Data of Object

❏

 Version ID:

❏

 Metadata:

❏

 Data about data

❏

 Access Control Lists

❏

 Versioning:

❏

 Stores all versions of an Object:

❏

 Must be enabled to work

❏

 Good for backups

❏

 Stores all Writes

❏

 Stores even deleted Objects

❏

 Pay for each Version of an Object

❏

 Pay for GB’s

❏

 Once enabled can’t be disabled

❏

 Can only be suspended

❏

 Can only delete Versioning by deleting the entire S3 Bucket

❏

 MFA (Multi-factor Authentication) capability on Delete

❏

 Need an authentication token to Delete

❏

 Ex: using a toke like Google Authenticator

❏

 Provides extra layer of security

❏

 Cross Region Replication

❏

 Versioning must be enabled to work on both:

❏

 Source Bucket

❏

 Destination Bucket

❏

 Versioning Integrates with Lifecycle Rules

❏

 Lifecycle Management:

❏

 Can be used with Versioning

❏

 Can be used without Versioning

❏

 Can apply to current Versions

❏

 Can apply to previous Versions

❏

 Can transition to Standard - IA (Infrequent Access) Storage Class:

❏

 Object must be at least 128 KB in size (check this) to be transferred to S - IA

❏

 Object must be at least 30 days after the creation date (check this) to go to S-IA

❏

 Only after being in S-IA for 30 days can Object be transferred to Glacier

❏

 This means if Object goes to S-IA, then it must wait at least a total of 60 days after creation before transferring to Glacier

❏

 Directly to Glacier storage :

❏

 If want t Object does not go to S-IA, then that Object can be directly transferred to Glacier the day after it is uploaded to S#

❏

 Permanently Delete Objects

❏

 Cloudfront:

❏

 Edge Location:

❏

 Separate from a Availability Zone/region

❏

 The location where content will be cached

❏

 Cached Objects are there for TTL (Time To Live)

❏

 TTL is quantified in seconds

❏

 Can clear cached Objects for a fee

❏

 Can READ from Edge Locations

❏

 Can PUT Objects to/Write on Edge Locations

❏

 The PUT/Write to an Edge Location will replicate up to the Origin

❏

 Origin:

❏

 The origin of all files that the Cloudfront Content Delivery Network (CDN) will distribute.

❏

 Ex: S3 Bucket

❏

 Ex: EC2 Instance

❏

 Ex: ELB (Elastic Load Balancer)

❏

 Route 53

❏

 Distribution:

❏

 A Content Delivery Network (CDN) with a collection of Edge Locations

❏

 Web Distribution:

❏

 Used for websites

❏

 RTMP

❏

 Used for media streaming

❏

 Ex: Streaming flash files

❏

 By default Distribution sets up TTL of Objects at 24 hours

❏

 Default time can be changed

❏

 Securing S3 Buckets:

❏

 All newly created S3 Buckets are Private by default

❏

 To set up access control to Bucket utilize:

❏

 Bucket Policies

❏

 Access Control Lists

❏

 Can apply to individual Objects

❏

 Can be configured to create access logs:

❏

 Logs all requests made to the S3 Bucket

❏

 Can log it to the Bucket itself

❏

 Can log it to another Bucket within your AWs account

❏

 Can log it to Buckets not in your AWS account

❏

 Encryption:

❏

 In Transit:

❏

 SSL/TLS

❏

 Must use HTTPS to connect to your S3 Buckets or Cloudfront

❏

 At Rest:

❏

 Server Side Encryption:

❏

 S3 Managed Keys are SSE-S3

❏

 Each Object is encrypted with a unique key

❏

 Uses strong multi-factor encryption Check this

❏

 As extra security it utilizes Advanced Encryption Standard (AES) 256:

❏

 AES 256 encrypts the key itself with a master key

❏

 The master key rotates

❏

 Amazon manages all of AES 256 themselves

❏

 AWS Key Management Service, Managed Keys are SSE-KMS

❏

 Has an audit trail telling of who used your key and when

❏

 Separate permissions for the use of an envelope key

❏

 Envelope key protects your datas encryption key

❏

 Gives additional protection against unauthorized access of Objects within S-3

❏

 Server Side Encryption with Customer Provided Keys are SSE-C

❏

 User manages the encryption keys

❏

 Amazon manages the encryption as it writes to disk

❏

 Amazon manages the decryption when User tries to read their Object

❏

 Client Side Encryption:

❏

 User encrypts data themselves

❏

 User then uploads the encrypted data to S3 Bucket

❏

 Storage Gateway:

❏

 File Gateway:

❏

 Flat Files only

❏

 Those flat files are stored directly to S3 Bucket

❏

 Volume Gateway:

❏

 Stored Volumes:

❏

 iSCSI (
 Internet Small Computer Systems Interface)

❏

 Block based storage

❏

 Ex: Virtual machines

❏

 Ex: Virtual hard disks

❏

 Ex: Operating systems

❏

 Ex: Databases

❏

 Entire dataset is stored on site

❏

 Entire stored dataset is asynchronously backed up on S3

❏

 Solves connectivity issues of dropped connections

❏

 Solves need for low latency

❏

 Cached Volumes:

❏

 Only the most frequently accessed data is stored on site

❏

 Entire database stored on S3

❏

 Gateway Virtual Tape Libraries (VTL):

❏

 Used for backups

❏

 Utilizes backup applications such as:

❏

 NetBackup

❏

 Backup Exec

❏

 Veeam,

❏

 Takes virtual backups of the servers and stores those virtual tapes to S3

❏

 Can use Lifecycle Management Rules to archive them to Glacier

❏

 Snowball:

❏

 Snowball is used to import/export large amounts of data to/from S3

❏

 Uses 3 different sizes of data transport containers:

❏

 Snowball:

❏

 Storage

❏

 Stores up to 80TB

❏

 Snowball Edge:

❏

 Storage

❏

 Compute capabilities

❏

 A mini version of an AWS data center

❏

 Can run Lambda functions from it

❏

 Snowmobile:

❏

 Storage on a 45 foot container

❏

 Transported by an 18 wheeler semi truck

❏

 Only available in the United States

❏

 Price available upon application

❏

 S3 Transfer Acceleration:

❏

 Speed data transfers to S3 Bucket

❏

 Utilizes Edge Locations

❏

 Upload files to an Edgel Location

❏

 The from the Edge Location the files WRITE to your S3 Bucket

❏

 Ideal solution for people in distant locations

❏

 Extra fee

❏

 Static Websites

❏

 Can use S3 Buckets to host static websites

❏

 Static Only

❏

 HTML

❏

 Severless

❏

 No EC2 Instances

❏

 No virtual machines

❏

 Scales automatically

❏

 Very cheap

❏

 Can’t host dynamic websites

❏

 Can’t have php

❏

 Can’t have dot net websites

 EC2 (Elastic Compute Cloud)

❏

 Elastic Compute Cloud (EC2) Basics:

❏

 Provides elastic computer capacity in the Cloud

❏

 Boots as a new server within minutes

❏

 Allows to quickly scale less, or more, according to User’s needs

❏

 Can change Instance types

❏

 Pay only for the capacity that you use

❏

 EC2 Pricing Options:

❏

 On Demand:

❏

 Pay at an hourly or by the second fixed rate

❏

 No commitment

❏

 Used by AWS clients who:

❏

 Want low cost

❏

 Do not want up front payments

❏

 Do not want to be in a long term contract/commitment

❏

 Used for Applications that are:

❏

 Short term

❏

 Unpredictable workloads that must not be interrupted

❏

 Being developed/tested on EC2 for the first time

❏

 Teaching or learning

❏

 Reserved:

❏

 1 or 3 year contracts

❏

 May pay a portion or all costs upfront

❏

 For maximum savings have 3 year contract paying all fees up front

❏

 Offers a significant discount an hourly for a Instance

❏

 Provides for a capacity reservation

❏

 Type of Reserved Instances:

❏

 Standard Reserved Instance:

❏

 Saves up to 75% on a 3 year contract

❏

 Convertible Reserved Instance:

❏

 Allows AWS client to change attributes of the Reserved Instance

❏

 Only requires that the results of the newly created Reserved Instance are of equal or greater value

❏

 Scheduled Reserved Instance:

❏

 Launched within the time frame you reserve

❏

 Can be on a recurring schedule

❏

 Can be reserved for hours, days, weeks, or a month

❏

 Used by AWS clients who:

❏

 Prefer to make up front payments to reduce future costs

❏

 Used for Applications that are:

❏

 Steady

❏

 Have predictable usage

❏

 Actions that require reserve capacity

❏

 Spot:

❏

 Bid a price you desire to pay for use of Instance capacity

❏

 Advised for applications with flexible start and end times

❏

 Ex: Big Data research that can be done at 3 am

❏

 Great savings if you can obtain the price you desire

❏

 Spot prices change

❏

 If Spot Instance prices rises during your provisioned time it will be terminated by the EC2

❏

 However you will not be charged for that hour

❏

 If you terminate the Spot instance, then you’ll still need to pay

❏

 Spot used by AWS clients who:

❏

 Have an urgent need for large amounts of additional computing capacity

❏

 Spot used for Applications:

❏

 That have flexible start and end times

❏

 Only feasible at very low compute costs

❏

 Dedicates Hosts:

❏

 Physical EC2 servers

❏

 Placed at AWS client site

❏

 Can reduce cost with use of existing server bound software licenses

❏

 Can be purchased on Demand for hourly rate

❏

 Can be purchased on Reservation

❏

 Reservation cost can be up to 70% of the on Demand price

❏

 Dedicated Hosts used by AWS clients who:

❏

 Live reside in places where regulatory requirements that do not support multi-tenant virtualization

❏

 Work with licensing that does not support multi-tenant or Cloud deployment

❏

 Instance Types:

❏

 EC2 Instances types for different purposes do exist:

❏

 Ex: General Purpose for Application service

❏

 Ex: Compute Optimized for CPU Intensive Apps/DB

❏

 And more

❏

 Elastic Block Storage (EBS):

❏

 A virtual hard disk in the Cloud

❏

 Allows for the creation of storage volumes

❏

 Storage volumes attach to EC2 Instances

❏

 Can create a file system on top of these storage volumes

❏

 There you can:

❏

 Run a database

❏

 Store applications

❏

 Store files

❏

 Or run another block device

❏

 EBS volumes placed in specific Availability Zone (AZ)

❏

 In a different Availability Zone (AZ) your EBS is automatically replicated

❏

 So if the original EBS fails there is a replica at a different AZ

❏

 A Root Device Volume:

❏

 EBS Volume that is attached to your EC2 Instance

❏

 That EC2 Instance has Windows or Linux installed

❏

 EBS Volume Types:

❏

 General Purpose SSD (GP2)

❏

 General purpose

❏

 Balances both price & performance

❏

 Ratio of 3 IOPS per GB

❏

 Up to 10,000 IOPS

❏

 For volumes 3334 GiB and more

❏

 Ability of 3000 IOPS for extended time

❏

 Provisioned IOPS SSD (IO1):

❏

 Use if you need more than 10,00 IOPS

❏

 Can provision up to 20,000 IOPS per volume

❏

 For high performance applications

❏

 Designed for I/O intensive applications

❏

 Ex: NoSQL databases

❏

 Magnetic Storage Volume

❏

 Throughput Optimized HDD (ST1)

❏

 Used for:

❏

 Big Data

❏

 Log processing

❏

 Data warehouses

❏

 Cannot be a boot/root volume:

❏

 Meaning it cannot be your C drive

❏

 It would need to be your additional volume

❏

 Cold HDD (SC1)

❏

 Cannot be a boot/root volume (check boot and root if have same meaning)

❏

 Lowest cost storage

❏

 Used for infrequently accessed workloads

❏

 Ex: A file server

❏

 Magnetic (Standard)

❏

 Legacy

❏

 Can be your boot volume

❏

 Lowest cost per GB of bootable EBS volume types

❏

 Used for:

❏

 Workloads with infrequently accessed data

❏

 Applications where lowest storage cost is important

❏

 Security Group Basics:

❏

 Security Group is a virtual firewall

❏

 Security Group is the first line of defense against hackers

❏

 All Inbound traffic to EC2 is blocked by default

❏

 In contrast, all Outbound traffic from EC2 is allowed by default

❏

 A single security group can hold multiple EC2 Instances

❏

 Multiple security groups can be attached to an individual EC2 Instance

❏

 Due to the fact that the “allow” rules will add up and be combined to that single individual EC2 Instance

❏

 When an EC2 Instance is launched it is associated with one or more Security Groups

❏

 Rules must be added to Security Group for traffic to pass

❏

 Security Group Rules:

❏

 Any rule applied to a Security Group takes effect immediately

❏

 Rules are Stateful (important exam and interview topc):

❏

 When you add an Inbound rule, then that same rule also becomes Outbound

❏

 Meaning that the traffic allowed in will automatically be allowed back out

❏

 Ex: If you allow HTTP, HTTP, or SSH as inbound, then that traffic is also allowed out.

❏

 Cannot use Security Groups to block specific IP addresses

❏

 Volumes and Snapshots:

❏

 Volumes exist on EBS

❏

 A Volume is a Virtual Hard Disk Drive

❏

 A Root Device Volume is where the operating system is installed

❏

 Ex: The C Drive on Windows

❏

 Snapshots exist on S3

❏

 Snapshots are point in time copies of Volumes/the Virtual Hard Disk Drive

❏

 Very first Snapshot of your selected Volume will contain a copy of the entire Volume

❏

 First Snapshot will take longer

❏

 Snapshots are incremental:

❏

 After the first Snapshot of your selected Volume, then only the Blocks that have been changed will be moved to S3

❏

 Meaning, only blocks that have changed since your last Snapshot are moved to S3

❏

 Saves on storage by not having to add data that has already been stored

❏

 Will not see any visual indication of Snapshots on S3

❏

 Sorry, no “Snapshot Section” labeled portion on the S3

❏

 Just know that Snapshots exist on S3

❏

 Snapshots of Root Device Volumes:

❏

 For an Amazon EBS Volume that is used as a Root Device

❏

 If you wish to take a Snapshot of it:

❏

 Stop the EC2 Instance

❏

 After the Instance is stopped, then take the Snapshot of the Root Device Volume

❏

 Can take the Snapshot while the EC2 Instance is running

❏

 Can create AMI’s from:

❏

 EBS-backed Instances

❏

 Snapshots

❏

 EBS Volume sizes & storage type can be changed quickly

❏

 EBS Volumes always in the same Availability Zone (AZ)/Region as the EC2 Instance

❏

 To move an EC2 Volume from one AZ/Region to another:

❏

 Take a Snapshot of it, or

❏

 Take and AMI/Image of it

❏

 Then copy it to a new AZ/Region

❏

 Security: Volumes vs. Snapshots

❏

 Encrypted Volume-->Snapshot of Volume is taken--->Snapshot is also encrypted & encrypted automatically

❏

 If the Volume is encrypted

❏

 Then the Snapshot of that Volume

❏

 Is also encrypted

❏

 The encryption is done automatically

❏

 Volumes restored from encrypted Snapshots are encrypted automatically

❏

 Only unencrypted Snapshots can be shared

❏

 Unencrypted Snapshots can be shared to:

❏

 Other AWS accounts

❏

 Public

❏

 RAIDs:

❏

 RAID
 stands for
 R
 edundant
 A
 rray of
 I
 ndependent
 D
 isks

❏

 Places a whole bunch of disks together

❏

 They acts as one disk within the operating system

❏

 Types of RAIDs:

❏

 RAID 0:

❏

 Striped

❏

 Striped across 2 disks, or more

❏

 Create a single Volume from those disks

❏

 If you lose one of those disks, then you lose your entire RAID Array

❏

 Good Performance

❏

 No Redundancy :(

❏

 Ex: Used with gaming PC’s

❏

 RAID 1

❏

 Mirrored

❏

 You have one disk

❏

 Mirror an exact copy your disk of it to another disk

❏

 Gives it Redundancy

❏

 If one disk fails the RAID Array can still work by using the other disk

❏

 RAID 5

❏

 3 disks or more

❏

 Writing Parity

❏

 Parity is basicly a checksum

❏

 Checksum is essentially a mathematical formula informing you what data is mussing

❏

 If one disk fails, then the RAID array can but rebuilt using the checksum

❏

 Gives Redundancy

❏

 Good for Reads

❏

 Bad for Writes

❏

 AWS does advise AGAINST putting RAID 5’s on EBS

❏

 RAID 10

❏

 Striped

❏

 Mirrored

❏

 Good Redundancy

❏

 Good performance

❏

 Used when desire more disk I/O

❏

 Ex: Provisioned a volume to its maximum size. Yet still need more I/O

❏

 Achieves more I/O by having multiple volumes

❏

 Most popular AWS used RAID arrays are:

❏

 RAID 0, and

❏

 RAID 10

❏

 To create a RAID if you want to increase the disk I/O:

❏

 Add additional EBS Volumes to create a RAID.

❏

 Then the I/Owill be spread across multiple EBS volumes

❏

 Taking a Snapshot of a RAID Array:

❏

 Issue: Snapshots exclude data held in the OS and application’s cache.

❏

 Not an issue when taking a Snapshot of a single Volume

❏

 In a RAID Array there are multiple Volumes

❏

 Therefore, there is an interdependencies of the EBS Volumes within that array

❏

 So there is a problem when taking the Snapshot of the RAID Array

❏

 Solution:

❏

 Take an application consistent Snapshot

❏

 How do take an application consistent SNAPSHOT of a RAID Array?:

❏

 Must stop the application from writing to the disks

❏

 To achieve this must flush all the caches to the disk

❏

 How do we flush all caches to the disk:

❏

 1) Freeze file system,

❏

 2) Unmount RAID Array,

❏

 3) Then take SNAPSHOT, or

❏

 1) Shutdown associated EC2 Instance,

❏

 2) Take a SNAPSHOT,

❏

 3) Then power if back up again.

❏

 Encrypt Root Devices, Volumes & Snapshots:

❏

 Amazon EBS volumes that serve as root devices:

❏

 To create a SNAPSHOT

❏

 Stop the EC2 Instance

❏

 Then take the SNAPSHOT

❏

 Security:

❏

 SNAPSHOTS of encrypted volumes are encrypted automatically

❏

 Volumes restored from encrypted SNAPSHOTS are automatically encrypted.

❏

 Can share SNAPSHOTS, but only if they are unencrypted.

❏

 These unencrypted SNAPSHOTS can be shared with other AWS accounts or made public

❏

 Amazon Machine Image (AMI) Types:

❏

 Can choose AMI’s based on several factors:

❏

 Availability Zone / AZ / Region

❏

 Operating system

❏

 Architecture (32 bit or 64 bit)

❏

 Launch Permissions

❏

 Root Device Volume / Storage for the Root Device:

❏

 Types of Storage for your Root Device / Root Device Volume:

❏

 EBS backed Volumes:

❏

 Can be stopped and you will not lose your data.

❏

 Can reboot and will not lose data

❏

 By default both root volumes will be deleted upon termination.

❏

 EBS volumes can always keep root volume device

❏

 By default, Root Devices will be deleted upon termination

❏

 EBS allows you to tell AWS to keep the Root device volume

❏

 Instance Store / Ephemeral Storage:

❏

 Instance Store Volumes cannot be stopped

❏

 If the underlying host fails you will lose your Instance Store data

❏

 Has less durability than the EBS backed Volume

❏

 So if you have an EC2 Instance that is Instance store based, and the host fails then you will lose all your data

❏

 Can reboot and will not lose data

❏

 By default, Root Devices will be deleted upon termination

❏

 AMI”s backed by EBS Volume means:

❏

 The root device from the Instance, launched from the AMI, is an EBS Volume

❏

 That EBS Volume is created from an Amazon EBS Snapshot

❏

 AMI’s backed by Instance Store Volume means:

❏

 The root device from the Instance, launched from the AMI, is an Instance Store Volume

❏

 That Instance Store Volume was created from a template stored in S3

❏

 Can take a bit longer to provision then an EBS Volume

❏

 Elastic Load Balancers:

❏

 Elastic Load Balancer:

❏

 A virtual machine that balances the load of your web application

❏

 Ex: HTTP or HTTPS web traffic

❏

 ELB balances that load across different web servers

❏

 No one web server gets overwhelmed

❏

 Elastic Load Balancers (ELB’s) are given their own domain name

❏

 ELB’s are never given an IP address

❏

 ELB’s monitor Instances with health checks

❏

 Instances monitored by Elastic Load Balancer (ELB) are reported as:

❏

 Inservice, or

❏

 Outservice

❏

 3 Types of Load Balancers
 :

❏

 Application Load Balancers:

❏

 Operates at layer 7

❏

 Network Load Balancers

❏

 Operate at layer 4

❏

 Classic Load Balancers (ELB is also an old term used)

❏

 Operate mostly operate at layer 4, but can operate at layer 7.

❏

 504 Message:

❏

 Means the gateway has timed out

❏

 The application is not responding within within the idle timeout period.

❏

 Troubleshoot the application:

❏

 Find out if the issue is web server or database server?

❏

 Cloud Watch:

❏

 Cloudwatch Features:

❏

 Standard Monitoring - Examine it every 5 minutes

❏

 Detailed Monitoring: - Examines it every 1 minute

❏

 Dashboards: - To see what is happening in your AWS environment

❏

 Alarms - To notify you when specific thresholds have been reached

❏

 Events - To help you respond to state changes in your AWS resources

❏

 Ex: Your EC2 Instance is coming online

❏

 Logs - Allows you to aggregate, monitor, and store logs

❏

 Amazon likes to test on difference between Cloud Watch & Cloud Trial

❏

 Cloudwatch:

❏

 Logging

❏

 Performance monitoring of resources within AWS

❏

 Ex: monitoring CPU utilization

❏

 Cloudtrail:

❏

 Create an audit trail of what people are doing with your AWS account

❏

 Ex: Keeps track of when there is a new user

❏

 Ex: Keeps track when a new role is created

❏

 Ex: Keeps tracks of a when new S3 bucket is created

❏

 Identity Access Management Roles with EC2:

❏

 First, give EC2 Instance the Role of having S3 access

❏

 All roles are global:

❏

 You do not have to create a new role just for a new region

❏

 Can attach and replace IAM roles to running EC2 Instances.

❏

 Benefits of Roles:

❏

 More secure

❏

 No need to install credentials

❏

 Can access S3 immediately

❏

 Can list contents of S3 Buckets

❏

 Do not need to store credentials locally

❏

 If credentials change no need to log into EC2 Instance to update those credentials.

❏

 If EC2 is compromised:

❏

 No need to delete or changing Access Key ID & Secret Access Key

❏

 No need to update Access Key ID & Secret Access Key in multiple EC2 Instances.

❏

 Bash scripts:

❏

 A list of AWS command lines that will be run when your EC2 Instance starts up

❏

 You provide commands n a script

❏

 Used:

❏

 To install Apache

❏

 Apply Kernel updates

❏

 Install php, MySQL, etc.

❏

 Bash Scripts always placed in “Advanced Details” box

❏

 Bash Scripts always start bash script with #!

❏

 Followed by an interpreter /bin/bash

❏

 Copy command to Notepad to bash script manually

❏

 EC2 Instance Metadata:

❏

 The data about your EC2 Instance

❏

 Ex: Public ip address

❏

 Ex: Private ip address, etc,

❏

 The latest data can be accessed through the AWS command line (CSI):

❏

 Go to CSI

❏

 Use curl command

❏

 Use word latest in ip since you want the latest info available

❏

 Type in: curl

http

://169.254.169.254/

latest

/

meta

-

data

❏

 Memorize this ip address since it can be a test question

❏

 Memorize ip 169.254.169.254

❏

 Curl

169.254.169.254/

latest

/

meta

-

data

 can have other /[insert variable] to find other information on EC2 Instance data

❏

 Ex: To see the EC2 Instance’s public ip address type in

169.254.169.254/

latest

/

meta

-

data

 /public-ipv4

❏

 Launch Configurations & Auto Scaling Groups:

❏

 Auto Scaling Groups are a group of EC2 Instances utilized with a specific criteria in mind.

❏

 Ex: Running a particular application

❏

 Scaling Policy automatically allows you to increase or decrease the number of Instances in our Auto Scaling Group depending on the settings we choose

❏

 This allows your Auto Scaling Group to grow or shrink.

❏

 Create Alarm to know when to switch to new Instance

❏

 Ex: if CPU utilization is less than 90% start killing Instances within that Auto Scaling Group.

❏

 This allows your Auto Scaling Group to grow or shrink

❏

 To create Auto Scaling Group must first create a Launch Configuration:

❏

 Go to EC2 Dashboard

❏

 Go to Launch Configurations section

❏

 Click Auto Scaling Groups:

❏

 To create Launch Configuration must go through steps you would in launching an EC2 Instance

❏

 Click Launch Configurations, select your AMI ,or go into My AMI’s if you have your own custom AMI’s that you’ve already provisioned via SNAPSHOTS

❏

 Select micro (ex: t2 micro)

❏

 Create/name launch configuration group

❏

 Select Spot instance if applicable

❏

 Select IAM role

❏

 Click Advanced Details

❏

 Click onto User Data

❏

 Paste in bootstrap scripts in User Data box,

❏

 See IP Address Type section

❏

 Leave on default to access each EC2 Instance individually and to access it via the Elastic Load Balancers

❏

 Select Storage,

❏

 Select Security Group,

❏

 Click Review

❏

 Then click Create Launch, EC2 Key Pair will come up

❏

 Then click Launch Configuration Group

❏

 Create Auto Scaling Group page should appear

❏

 EC2 Placement Groups:

❏

 Two types of EC2 Placement Groups: Spread & Clustered

❏

 Exam typically asks about Clustered

❏

 Clustered Placement Group is:

❏

 A grouping of Instances always within a single Availability Zone/AZ

❏

 A Clustered Placement Group can only occupy a single Availability Zone

❏

 It can not occupy multiple AV’s

❏

 Recommend for applications that need:

❏

 Low latency, or high network throughput, or both

❏

 Ex: Cassandra clusters, Big Data.

❏

 Only certain Instances can be launched into a
 Clustered Placement Group.

❏

 Ex; Instances with high RAM utilization

❏

 Ex: High CPU utilization

❏

 If you see the words “Placement Group” in exam assume it means Clustered Placement Group.

❏

 Spread Placement Group:

❏

 A group of Instances that are each placed on district underlying hardware

❏

 A Spread Placement Group occupies multiply Availability Zones

❏

 Recommended for applications that have a small number of critical Instances

❏

 Those Instances should be kept separate from each other

❏

 Ensures across multiples devices in multiple Availability Zones.

❏

 EC2 Placement Groups Commonalities:

❏

 The name you give the EC3 Placement Group must be unique within your AWS account

❏

 Only certain types of Instances can be launched in Placement Group.

❏

 Ex: Compute Optimized

❏

 Ex: GPU

❏

 Ex: Memory Optimized

❏

 Ex: Storage Optimized

❏

 You cannot merge Placement Groups

❏

 AWS recommends homogenous Instances within Placement Groups

❏

 Meaning both the size, and family, of the Instance should be the same

❏

 You cannot move an existing Instance into a Placement Group.

❏

 Solution:

❏

 Create an AMI in your Instance

❏

 Launch a new Instance from the AMI into a Placement Group.

❏

 Elastic File System (EFS) Concepts:

❏

 Amazon Elastic File System (Amazon EFS):

❏

 EFS is Amazon’s file storage service for Amazon Elastic Compute Cloud (Amazon EC2) Instance

❏

 EFS provides a simple interface

❏

 EFS allows you to create and configure file systems quickly and easily within the Amazon EFS
 storage capacity

❏

 EFS is elastic:

❏

 Since is is elastic it grows and shrinks automatically as you add and remove files.

❏

 EFS Features:

❏

 Allows you to mount an EBS Volume to two different EC2 Instances at once

❏

 Supports Network File System version 4 (NFSv4) protocol

❏

 Only pay for storage you use

❏

 No pre-provisioning required

❏

 Scale up to the petabytes

❏

 Supports thousands of Network File System (NFS) connections

❏

 Data is stored across multiple Availability Zones (AZ’s) within a region

❏

 EFS is Block Based Storage (not object based)

❏

 Whereas S3 is object based storage

❏

 Can be shared with other EC2 Instances

❏

 Read After Write Consistency

❏

 Make sure Instances are in the same Security Group as the EFS you created

❏

 Benefits of EFS:

❏

 No need to have multiple copies of your code

❏

 No need have bash scripts pulled from your S3 upon provisioning new EC2 Instances

❏

 Code is in one centralized repository

❏

 Can have EC2 Instances that Auto Scale

❏

 Uses for EFS:

❏

 A centralized repository to store files within your EC2 Instances

❏

 Multiple EC2 Instances connecting into the same Elastic File System (EFS) volume

❏

 All EC2 Instances accessing the same EFS.

❏

 Apply User level permissions and directory level permissions to EFS.

❏

 User level permissions and directory level permissions can done at both a file level, and/or universal level.

❏

 Universal level connects the permissions all EC2 Instances

❏

 Exam topics for EFS:

❏

 Decide if a scenario requires EBS or EFS

❏

 Remember Elastic File System (EFS) allows multiple EC2 Instances to connect to it.

❏

 EBS (Elastic Block Store) can only be mounted to a single EC2 Instance.

❏

 Lambda Concepts:

❏

 AWS Lambda is a compute service

❏

 AWS Lambda is where you can upload your code

❏

 That code will create a Lambda function:

❏

 Take a code,

❏

 Connect it to Lambda

❏

 Enable an event trigger

❏

 Lambda Functions are independent:

❏

 1 Event = 1 Function

❏

 1 Request = 1 Function

❏

 Lambda functions can trigger other functions:

❏

 One Lambda function can set off a series of other Lambda functions in a chain

❏

 The maximum time for a function is 5 minutes

❏

 Lambda works globally:

❏

 Not restricted by region or country

❏

 Ex: Lambda event that can trigger another event in an S3 Bucket across the world.

❏

 AWS Lambda:

❏

 Takes care of provisioning

❏

 Managing the servers that you use to run the code.

❏

 User does not have to worry about operating systems, patching, scaling, etc.

❏

 AWS Lambda is serverless

❏

 AWS serverless items are frequently utilized with Lambda:.

❏

 S3

❏

 API Gateway

❏

 Lambda

❏

 DynamoDB

❏

 AWS Lambda encapsulates and manages all for you:

❏

 Data Centers

❏

 Hardware

❏

 Assembly Code/Protocols

❏

 High Level Languages

❏

 Operating Systems

❏

 Application Layer/AWS API’s

❏

 AWS Lambda

❏

 You can use Lambda in the following ways:

❏

 AWS runs your code

❏

 Code reacts to an event, or trigger

❏

 Events, or Triggers, can be changes

❏

 Ex: Changes to data in an Amazon S3 Bucket = Event or Trigger

❏

 Ex: Changes to an Amazon DynamoDB Table = Events or Triggers

❏

 Lambda events, or triggers, can bring about other Lambda events

❏

 Lambda can also communicate with other AWS services.

❏

 So you can have Lambda communicate with SQS and/or SNS

❏

 Lambda communicating with other AWS services can go on, and on to trigger further Lambda events

❏

 Like a chain of Lambda triggers to different services

❏

 Each action you do with Lambda is just one single Lambda code running:.

❏

 Ex: If multiples users are uploading multiple memes it would invoke multiple Lambda functions.

❏

 Code would still remain the same

❏

 Lambda scales automatically:

❏

 It scales out:

❏

 No need to worry about Elastic Load Balancers (ELB)

❏

 Ex: If a million users hit Lambda at once to try to request that function, then automatically a million different functions will be deployed and information will be returned to the users

❏

 Scales out, NOT up, automatically

❏

 Lambda Triggers are AWS functions that can be used to trigger a Lambda event in AWS services.
 These are the important to know for exam:

❏

 API Gateway - Very heavy in exam

❏

 Alexa Skills Kit - When using Alexa, it is the Alexa Skills Kit that makes your Lambda deploy.

❏

 Ex: “Alexa look up high schools near my home.” It is Alexa Skills Kit that is deploying that Lambda function to retrieve information

❏

 CloudFront

❏

 CloudWatch Events

❏

 CloudWatch Logs

❏

 DynamoDB

❏

 Kinesis

❏

 S3

❏

 SNS

❏

 In response to HTTP requests, AWS runs your code using Amazon API Gateway/API calls:

❏

 Uses AWS SDK’s

❏

 API Gateway - Important exam topic::

❏

 Ex: User is using internet to look at a blog

❏

 User sends HTTP request

❏

 The HTTP request triggers a Lambda function

❏

 Lambda will return the response for the blog to the User

❏

 Remember, Lambda scales out automatically

❏

 Meaning that if there are a thousand Users sending HTTP requests to view the same blog, then that will trigger a thousand Lambda functions

❏

 Lambda will then respond back with a thousand responses.

❏

 In sum, each time a User sends a request to API Gateway, and that request is forwarded to Lambda, you are invoking a new Lambda function.

❏

 Ex; 1 User sending 1 HTTP request = 1 Lambda function

❏

 Ex: 2 Users sending 2 HTTP requests = 2 Lambda functions

❏

 Ex: 3 Users sending 3 HTTP requests = 3 Lambda functions, etc…

❏

 One single Lambda function response per request.

❏

 Inside actual Lambda a code can be identical

❏

 That one set of code responds to multiple requests

❏

 Lambda one set of code responding to multiple requests is in contrast to EC2 with Elastic Load Balancers

❏

 Ex: 3 webs servers behind an ELB.

❏

 Those 3 web servers will always be the ones that will respond, regardless of how many Users there are.

❏

 In Lambda, one set of code responds.

❏

 In an EC2 with Elastic Load Balancers behind 3 web servers, those three web servers respond no matter how many Users there are

❏

 Languages supported by Lambda:

❏

 Node.js

❏

 Java

❏

 Python

❏

 C#

*Will not be tested on version numbers of these languages

❏

 How Lambda is priced:

❏

 Won’t need to know exact amount on exam

❏

 Charge amount is here for perspective and understanding of subject matter

❏

 First one million requests are free. After that it’s 20 cents per million requests

❏

 Duration

❏

 Duration is calculated by the time your code begins executing until it returns or otherwise terminates, rounded up to the nearest 100 millisecond. The price depends on the amount of memory you allocate to your function. You are charge $.0000167 for every GB second used

❏

 Duration maximum threshold is 5 minutes. If your function exceeds 5 minutes it will have to be broken up into multiple functions. Then get one function to trigger the next one

❏

 Benefits of Lambda:

❏

 No servers

❏

 No database administrators

❏

 No network administrators

❏

 No system administrators

❏

 Continuous Scaling:

❏

 API Gateway will scale automatically to handle the number of Users making requests

❏

 Lambda will scale automatically instantly to handle the number of Users making requests.

❏

 Unlike Autoscaling that scales up and takes a couple of minutes

❏

 Lambda is really super cheap

 EC2 Summary

❏

 EC2 Pricing Models:

❏

 On Demand EC2:

❏

 Pay by the second, or

❏

 Pay by the hour

❏

 Spot EC2:

❏

 Set bid price.

❏

 Soon as Spot price = Your bid price

❏

 Then your EC2 Instances is provisioned

❏

 When Spot price exceeds your bid price, then your EC2 Instance will terminate.

❏

 If spot price exceeds bid price, and your Instance is terminated, then you will not be charged for that hour.

❏

 However, if you are the one who terminates the EC2 Instance, then you will be charged

❏

 Reserved EC2:

❏

 Reserve capacity

❏

 Contracts range from 12- 36 months

❏

 The more you pay upfront, then the more you save

❏

 Dedicated EC2:

❏

 Mostly used in issues with licensing, or

❏

 Regulator does not want you to utilize shared or multi tenanted hardware.

❏

 EBS (Elastic Block Store):

❏

 EBS Consist of:

❏

 SSD:

❏

 General Purpose - GP2 - (Up to 10,000 IOPS).

❏

 Need faster? Then go to -->

❏

 SSD:

❏

 Provisioned IOPS - 101 - (More than 10,000 IOPS)

❏

 Boot volumes only good on SSD

❏

 HDD:

❏

 Throughput Optimized - ST1 - frequently accessed workloads

❏

 HDD:

❏

 Cold - SC1 - Less frequently accessed data

❏

 For a file server

❏

 Can’t use boot volume on HDD

❏

 HDD:

❏

 Magnetic - Standard - cheap, infrequently accessed storage

❏

 1 EBS Volume = 1 EC2 Instance.:

❏

 Cannot mount more than 1 EBS Volume to multiple EC2 Instances

❏

 If you need to share the same data between EC2 Instances, then use EFS.

❏

 Mount an EFS to multiple EC2 Instances, or

❏

 Attach an S3 Bucket and assign a role to those EC2 Instances so they may access the S3 Bucket

❏

 Dashboard:

❏

 Must turn on Termination Protection

❏

 It is turned off by default

❏

 EBS-backed Instance

❏

 Default action for the root EBS to be deleted when the Instance is terminated.

❏

 EBS backed root volumes can be encrypted - known exam topic

❏

 Use API, or

❏

 Use console

❏

 Provision your Instance

❏

 Take SNAPSHOT of your Instance

❏

 Deploy that SNAPSHOT again

❏

 Then Encrypt that volume, or

❏

 Use 3rd party tool (Ex: BitLocker), to encrypt the root volume

❏

 Additional volumes can be encrypted.

❏

 Volumes v. SNAPSHOTS:

❏

 Volumes exist on EBS:

❏

 This is basicly a virtual hard disk in the Cloud

❏

 SNAPSHOTS exist on S3

❏

 SNAPSHOTS are point in time copies of Volumes.

❏

 Can take a SNAPSHOT of a Volume

❏

 That Volume created from the SNAPSHOT will be stored on S3

❏

 SNAPSHOTS are incremental

❏

 Only the Blocks that have changed since your last SNAPSHOT are moved to S3

❏

 First SNAPSHOT will take more time to create depending on the size of the Volume

❏

 Security:

❏

 SNAPSHOTS of encrypted Volumes are encrypted automatically. Meaning, if the Volume is encrypted then any SNAPSHOT take of it will be encrypted too

❏

 Volumes restored from encrypted SNAPSHOTS are encrypted automatically

❏

 Can share SNAPSHOTS, but only if they are unencrypted

❏

 Ex: When you provision an EC2 Instance in an AMI, then it cannot be encrypted.

❏

 You must have an unencrypted root device Volume when you provision it.

❏

 Take a SNAPSHOT of that.

❏

 Deploy that SNAPSHOT

❏

 Then you can encrypt the root device Volume

❏

 Unencrypted SNAPSHOTS can be shared with other AWS accounts, or the public.

❏

 Remember, must be unencrypted

❏

 SNAPSHOTS of Root Device Volumes:

❏

 To create SNAPSHOTS of Amazon’s root device Volumes that serve as root devices:

❏

 Stop Instance prior to taking the SNAPSHOT

❏

 Instance Store v. EBS:

❏

 Instance Store Volumes are sometimes called Ephemeral Storage

❏

 Instance Store Volumes can’t be stopped.

❏

 If underlying host fails, then all your data is lost.

❏

 EBS Volumes can be stopped.

❏

 If this Instance is stopped you will not lose data

❏

 You will not lose data if it is stopped

❏

 Both Instance Store and EBS can reboot and won’t lose data

❏

 Both root volumes will be deleted upon termination.

❏

 However, if you are using an EBS Volume, then you can tell AWS to keep the root volume

❏

 Only if EBS backed.

❏

 How to take a SNAPSHOT of a RAID Array:

❏

 Obstacle: A SNAPSHOT excludes data held in the cache by applications and the OS

❏

 On a single volume this is not a problem.

❏

 However, on multiple volumes of a RAID array this is an issue

❏

 Issue is due to the interdependencies of the array

❏

 Solution: Take an application consistent SNAPSHOT

❏

 How to take SNAPSHOT of RAID Array:

❏

 Take application consistent SNAPSHOT:

❏

 Stop application from writing to disk

❏

 Flush all caches to the disk

❏

 Then take the Volume Consistent SNAPSHOT

❏

 How do we do this?

❏

 Freeze the file system

❏

 Unmount the RAID array

❏

 Shutting down the associated EC2 Instance

❏

 Amazon Machine Images (AMI):

❏

 AMI’s are regional

❏

 Can only launch an AMI from region where it is stored

❏

 Can copy AMI’s to other regions using:

❏

 Console

❏

 Command line, or

❏

 Amazon EC2 API

❏

 Monitoring

❏

 Standard Monitoring = Every 5 minutes

❏

 Detailed Monitoring = Every 1 minute, will cost extra

❏

 Cloudwatch is for performance monitoring:

❏

 CPU utilization

❏

 Network throughput

❏

 Disk utilization

❏

 CloudTrail is for auditing

❏

 Any API code

❏

 Anything done in the AWS console

❏

 What does Cloudwatch do?

❏

 Dashboards.- Creates graphs and helpful visuals on Dashboard to help you see what is happening in your AWS environment

❏

 Alarms - To notify you know when a certain threshold has been reached

❏

 Events - Helps you respond to state changes in your AWS resources

❏

 Logs - Helps you aggregate, monitor, and store logs

❏

 Can send data from outside AWS environment to Cloudwatch logs

❏

 Roles:

❏

 More secure than storing Access Key & Secret Access Key on EC2 Instances.

❏

 If EC2 Instance is compromised then your keys are available.

❏

 Your AWS resources can then be accessed from anywhere on the planet

❏

 Easier to manage.

❏

 Ex: If access key & secret access keys are stored on multiple EC2 Instances, and those keys become compromised, then you have to revoke them and issue new ones.

❏

 Now you have to go into each and every multiple EC2 Instance and update keys

❏

 Roles can be assigned to an EC2 Instance after it has been provisioned.

❏

 Use command line, or

❏

 AWS console

❏

 Roles are universal, meaning you can use them in any region

❏

 Instance Meta-data:

❏

 Used to get meta-data

❏

 Meta-data is data about the Instance:

❏

 Command is: curl http://169.254.169.254/latest/meta-data/

❏

 Ex: Private

❏

 Ex:Public IP address

❏

 Ex: DNS name, etc...

❏

 To obtain data about the User type the command:

curl

http

://169.254.169.254/

latest

/

user

-

data

/

❏

 EFS Features:

❏

 Supports Network File System version 4 (NFSv4) protocol

❏

 No pre provisioning required

❏

 You only pay for the storage you use

❏

 Can scale up to the petabytes

❏

 Can support thousands of concurrent NFS connections

❏

 Very resilient

❏

 Stored across multiple AZ’s within a region

❏

 Read after Write Consistency

❏

 As soon as you write or make written edits, you will be able to see it.

❏

 Lambda:

❏

 A compute service where you can upload your code

❏

 Your uploaded code creates a Lambda function

❏

 AWS Lambda takes care of provisioning & managing the servers that you use to run your code

❏

 You do not have to worry about operating systems, patching, scaling, etc.

❏

 Use Lambda in the following ways:

❏

 An event driven compute service where AWS Lambda runs your code in response to events.

❏

 Ex: Events = changes in data in your:

❏

 S3, or

❏

 DynamoDB table, etc

❏

 A compute service used to run your code in response to HTTP requests using:

❏

 API Gateway

❏

 API Calls made using AWS SDK’s

❏

 Placement Groups:

❏

 Two types of EC2 Placement Groups:

❏

 Clustered & Spread

❏

 Exam mostly asks about Clustered

❏

 Clustered Placement Group:

❏

 Clustered Placement Group is a grouping of Instances always within a single Availability Zone

❏

 Clustered is recommended for applications that need:

❏

 Low latency

❏

 High network throughput, or both.

❏

 Ex: Big Data

❏

 Only certain Instances can be launched into a
 Clustered Placement Group.

❏

 Ex; Instances with high RAM utilization

❏

 High CPU utilization

❏

 If see the words Placement Group in exam assume it means Clustered Placement Group.

❏

 Spread Placement Group:

❏

 A Spread Placement Group is a group of Instances that are each placed:

❏

 On district underlying hardware, and

❏

 In different Availability Zones (AZ’s)

❏

 Spread Placement Groups are recommended for:

❏

 Applications that have a small number of critical Instances

❏

 When those applications should be kept separate from each other.

❏

 Ex: When you don’t want important EC2 Instances on the same hardware

 Route 53/DNS

❏

 Overview:

❏

 Route 53 is basicly the name given to DNS within AWS Cloud services

❏

 DNS operates on port 53.

❏

 Hence, AWS referring it as Route 53

❏

 DNS is used to convert friendly names to Internet Protocol (IP) addresses

❏

 Ex: DNS converts cats.com to its IP address
 165.227.29.123

❏

 IP addresses are used by computers to identify themselves on network

❏

 IP addresses are usually in two different forms:

❏

 IPv4 and IPv6

❏

 IPv4 vs. IPv6:

❏

 IPv4:

❏

 Most IP addresses are IPv4

❏

 Invented prior to internet

❏

 Didn’t foresee the near infinity of the internet at time of invention

❏

 IPv6:

❏

 Created to as a solution to the depletion of IPv4 addresses

❏

 Domain name levels:

❏

 Look at domain names such as google.com, or harvard.edu. You will see a string of characters separated by periods/dots.

❏

 There are top level and second level domain names:

❏

 Top level domain name is the last word in the domain name.

❏

 Ex. .com, .gov, .edu Are top level domain names

❏

 Second level domain names is optional. It is first word in a domain name that is holding two words.

❏

 Ex: harvard.edu

❏

 harvard is the second level domain name, and

❏

 .edu is still the top level domain name

❏

 DNS always pertains to the Top Level Domain Name.

❏

 Ex: .com, .gov, .edu

❏

 Top level domain names are owned by Internet Assigned Numbers Authority (IANA) in a root zone database

❏

 Root zone database is a database of all available top level domains

❏

 It can be found at:

https

://

www

.

iana

.

org

/

domains

/

root

/

db

❏

 DNS Basics:

❏

 Domain Registrars:

❏

 A registrar is an authority that can assign domain names directly under one, or more, top level domains

❏

 It is a way to keep all domain names unique and organized.

❏

 Example of registrars are:

❏

 GoDaddy.com

❏

 HostGator.com

❏

 Domain names are registered with InterNIC

❏

 InterNic is a service of ICANN

❏

 ICANN enforces uniqueness of domain names in the internet

❏

 Each domain name also becomes registered in the central database called WhoIS.

❏

 Start of Authority Record (SOR):

❏

 Stores information about:

❏

 The administrator/owner of the zone

❏

 The current version of the actual data file that contains the zone,

❏

 The name of server that supplied data for the zone

❏

 The default number of seconds for the Time To Live (TTL) file on resource records

❏

 Name Server (NS) Records:

❏

 Top domain servers use Name Servers

❏

 The Name Servers then direct traffic to the Content DNS server.

❏

 Content DNS server contains the authoritative DNS records

❏

 “A” Records
 :
 Not on exam, but helps in understanding this section

❏

 “A” record is a fundamental type of DNS record. The “A” stands for address. “A” record is used by a computer to translate the domain name to the IP address.

❏

 Ex: Translates cats.com to its IP address of
 165.227.29.123

❏

 Time To Live (TTL):

❏

 The length of time that a DNS record is cached:

❏

 Either on the Resolving Server. or

❏

 The user’s own local PC

❏

 The lower the TTL, the faster changes to the DNS records take to propagate throughout the internet

❏

 The Value of the TTL is measured in seconds

❏

 Ex: 60 seconds = 1 minute, etc.

❏

 Want TTL as low as possible when making changes

❏

 Canonical Names (CNAMES):

❏

 Not on exam, but helps in understanding this section

❏

 A Canonical Name (CNAME) can be used to resolve one domain name to another

❏

 Alias Records:

❏

 Alias records are unique to Amazon

❏

 Alias records are Amazon’s answer to not being able to use CNAMES for naked domain names

❏

 Alias records allow naked domain names to point to AWS services.

❏

 Ex:

www

.

cats

.

com

 gets pointed to the naked domain name of the:

❏

 Elastic Load Balancer (ELB)

❏

 CloudFront

❏

 S3 Buckets that are configured as websites

❏

 Alias Records are used to map resource record sets:

❏

 Resource record sets are in your hosted zone to:

❏

 Elastic Load Balancers (ELB’s)

❏

 Cloudfront distributions, or

❏

 S3 buckets that are configured as websites

❏

 Alias Records work like a CNAME record:

❏

 In that you can map one DNS name to a “target” DNS name.

❏

 Ex: Website address mapped to ELB web address

❏

 Difference is that CNAME can’t be used for naked domain names (i.e. the zone apex record)

❏

 Ex: If web address is

www

.

cats

.

com

 , (

www

.

domainname

.

top

 level domain name) then CNAME is only cats.com.

❏

 There is no www. preceding the domain name, nor preceding the top level domain name

 Route 53/DNS Review

❏

 Elastic Load Balancers (ELB’s) do not have predefined IPv4 addresses.

❏

 You resolve this by using a DNS name

❏

 When you have a naked domain name:

❏

 Ex: cats.com

❏

 And you want it to point to your ELB

❏

 Then you use an Alias Record.

❏

 That Alias Record will point to the DNS name of your ELB

❏

 Alias v. CNAME:

❏

 Alias records can be used for naked domain names:

❏

 Naked domain names lack the http://www.

❏

 cats.com is a naked domain name

❏

 Naked domain name means there is no

http

://

www

 before the word/domain name cats

❏

 CNAME’s can’t be used for naked domain names

❏

 When given a choice on exam always use an Alias record over a CNAME:

❏

 It is the likely answer.

❏

 Start of Authority (SOA) Records:

❏

 A Start of Authority Records is information within a DNS zone about that particular zone:

❏

 Each zone contains a single SOA record

❏

 A DNS zone is where you store:

❏

 It’s “A” records, CNAME’s, etc.)

❏

 A DNS zone is part of a domain for which an individual DNS server is responsible

❏

 Alias records:

❏

 Alias records sets can save you time

❏

 If the Elastic Load Balancer IP changes, then Amazon Route 53 will automatically reflect those changes in the DNS:

❏

 This is done without any changes to the hosted zone:

❏

 Remember, hosted zone contains resource record sets for your Naked Domain:

❏

 Ex: Alias record for cats.com points to an ELB at lb1-2468.us.east.

1.

elb

.

amazonaws

.

com

❏

 If the ELB lb1-2468.us.east.1.elb.amazonaws.com changes

❏

 Then Amazon Route 53 will automatically reflect those changes in DNS answers for cats.com

❏

 However, there will not be any changes to the hosted zone which contains resource record sets for cats.com

❏

❏

 When Amazon Route 53 automatically changes the exact record sets to which the Alias Resource record refers, then your ELB will have an IP address known only by Amazon.

❏

 Amazon handles it & keeps stable

❏

 AWS Route 53 Routing Policies are:

❏

 Simple Routing

❏

 Weighted Routing

❏

 Latency based Routing

❏

 Failover Routing

❏

 Geolocation Routing

❏

 Multivalue Answer Routing

❏

 Simple Routing Policies:

❏

 Simple routing policy can only have:

❏

 One record

❏

 It can have one, or multiple IP addresses within that particular record

❏

 If you specify multi values in a record, meaning multiple IP’s, then Route 53 returns those values/IP addresses to Users in a random order.

❏

 If you have multiple IP addresses, multiple values, then Route 53 will return one of those randomly to the User’s DNS server, or to User’s browser

❏

 Ex: User makes query to Route 53 for dogs.com

❏

 Route 53 picks a value/IP address at random

❏

 Will obtain value/IP address 40.0.01

❏

 When the next User queries dogs.com Route 53 picks value/IP address 40.0.0.2 at random

❏

 All values/IP addresses, 40.0.01 & 40.0.02 pertain to dogs.com

❏

 40.0.01 ad 40.0.02 are all multiple values/IP’s stored in the same record

❏

 Can only have one record.

❏

 If you’d like multiple IP addresses/values in that particular record you’d have to place them in that record

❏

 Weighted Routing Policy:

❏

 Splits the traffic based on a percentage

❏

 Allocation based on weights, meaning percentages assigned

❏

 Ex: User does query

❏

 Query hits Route 53

❏

 Route 53 splits traffic:

❏

 Sends 10% of traffic to region U.S-East-1 and 80% traffic to region U.S.-West-1

❏

 Latency Based Routing:

❏

 Latency based routing allows you to route your traffic so that the end User receives the lowest network latency

❏

 Meaning, the latency that will get them the fastest response time

❏

 To use Latency based routing:

❏

 Create latency resource “A” record set for Amazon EC2. or

❏

 Create an ELB resource for each region that hosts your website

❏

 When Amazon Route 53 receives a query for your site it selects a latency resource record set for that region, that will give the lowest latency

❏

 Route 53 will then respond with the value associated with that resource record set:

❏

 Ex: Australian user gets a 50 millisecond latency from EU-West-2, and a 200 millisecond latency from Asia Pacific-South East- 2

❏

 Region Route 53 would then choose EU-West-2 region, because it has a lower latency

❏

 Failover Routing Policies:

❏

 Failover Routing Policies are used when you create an active/passive set up

❏

 Route 53 will monitor the health of your primary website by using the health check.

❏

 Health check monitors the health of your end points

❏

 Ex: Primary site at EU-West-1, Secondary DR (Disaster Recovery) site in AP-Southeast-1

❏

 Active Website is EU-West-1,

❏

 Passive Website is AP-Southeast-2

❏

 User connects to Route 53

❏

 They go to Active Website

❏

 Then.there is power outage in region EU-West-1, where the active website is located

❏

 The entire EU-West-1 region, and all AZ ‘s within that region, are out.

❏

 As a result, the Active website is now offline

❏

 The Active website will now Fail Health checks

❏

 Route 53 will then point to your passive website, the DR site, located in region AP-Southeast-2

❏

 Geolocation Routing Policies:

❏

 Geolocation Routing Policy lets you choose where your traffic will be sent to based on the geographic location of your Users:

❏

 Meaning the location from which the DNS queries originate;

❏

 Ex: Queries from the United States will be routed to a fleet of EC2 Instances that are specifically configured to United States customers.

❏

 Ex: These servers may have all customer prices displayed as dollars

❏

 Ex: A customer from the Eastern part of the U.S. makes a request to your website, petfood.com

❏

 Route 53 determines where that User is located. Then will directs User to U.S.-East-1

❏

 Ex: Western European customer makes a request to your same website petfood.com through Route 53

❏

 Route 53 determines this User is from England. Then directs that User to EU-West-1

❏

 Multivalue Answer Routing Policies:

❏

 Multivalue Answer allows you to have multiple answer record sets for a single domain name:

❏

 Each answer record has its own IP address

❏

 Multivalue Answer distributes DNS responses across the multiple IP addresses

❏

 Able to create one multivalue answer record for each resource

❏

 Ex: Creates a multivalue answer record for each web server/IP address

❏

 Web server/IP address = resource in the above example

❏

 Multivalue Answer Routing Policy is used:

❏

 To route traffic approximately & randomly to multiple resources:

❏

 Ex: Routing to web servers/IP addresses

❏

 Route 53 responds to DNS queries with up to eight healthy answer records selected at random for the particular domain name

❏

 Option to have a Health Check against each answer record set/IP address:

❏

 If one health check indicates the one of those servers of an IP address has gone down, then that server is removed from the DNS record;

❏

 This prevents the querier from receiving a DNS response that is unreachable

❏

 The Process is a s follows:

❏

 Each DNS query for a domain name goes through Route 53

❏

 Each of DNS query is sent to multiple IP addresses in the answer record

❏

 Each answer record/IP address receive traffic in roughly equal parts

❏

 Amazon Route 53 will give different record answers (each answer record has a different IP) to different DNS resolvers

❏

 Even if a web server is downs and becomes unresolvable after a resolver caches a response, then the client software can try another IP address within the response

❏

 Ex: User goes

www

.

jklm

.

com

❏

 It goes through AWS Route 53

❏

 That responds with a multivalue answer.

❏

 Some of those randomly picked multivalue answers are 50.0.0.1 and 50.0.0.2

❏

 If a health check finds 50.0.0.1 is unhealthy that value/IP address will not resolve.

❏

 Route 53 will then send the results to 50.0.0.2

 AWS Route 53 Routing Policies Review

❏

 AWS Routing Policies:

❏

 Simple:
 One record with multiple IP addresses.

❏

 If multiple IP’s/values in the record, then those IP’s/values are returned in random order.

❏

 Ex: User queries

www

.

kittens

.

com

 to Route 53.

❏

 There are two IP’s/values 60.0.0.1 and 60.0.02 on record

❏

 Route 53 returns one of the IP’s/value at random to User

❏

 No health checks available in Simple routing

❏

 Weighted:
 Set policy where a certain percentage of traffic goes to one region, and remaining percentage of the traffic goes to another region.

❏

 Ex: 90% of traffic goes to US-West-1 in Northern California

❏

 10% of traffic goes to US-West-2 in Oregon

❏

 Latency based
 :

❏

 Sends User to the region with lowest latency, since that will bring the User a quicker response.

❏

 Lowest latency is the region closest to the User

❏

 Failover:

❏

 Failover policy sets an Active Primary site and a Secondary/Passive site.

❏

 Health Checks signal if an AWS region is down

❏

 An AWS region is dow usually due to power outage, natural disaster, etc.

❏

 If the Active/Primary site region goes down, then Health Check policy sends a signal

❏

 Traffic is now sent to the Secondary/Passive site:

❏

 Ex: Primary site is in US-West-2 in Oregon

❏

 Active site goes down

❏

 Health check signals US-West-2 is down

❏

 Traffic now directed to the Secondary site in region US-West-1 in Northern California

❏

 Geolocation:
 Your website traffic is directed to the region nearest to your website Users.

❏

 Ex: Users in England will have their traffic directed to region EU-West-2 in London

❏

 Users in Ireland will have their traffic directed to EU-West-1 in Ireland.

❏

 Multivalue Answer
 :

❏

 Multiple values/IP’s

❏

 Can hold up to 8 healthy answer records

❏

 Health checks can be set to all values/IP’s

❏

 If one value/IP fails health check then traffic directed to a different value/IP

❏

 Ex: User sent to Route 53

❏

 2 records have been set - 60.0.01 and 60.0.0.2

❏

 Health check finds 60.0.0.1 is out

❏

 Traffic automatically sent to 60.0.0.2

 AWS Databases

❏

 Overview:

❏

 Two Types of Databases:

❏

 Relational

❏

 Non Relational

❏

 Relational Database:

❏

 Relational Database is similar to a spreadsheet

❏

 A spreadsheet has Fields organized into:

❏

 Tables

❏

 Rows

❏

 Columns

❏

 In spreadsheet need to know & understand all Fields (Table, Rows, and Columns) before creation

❏

 Or if you create additional Fields you will have to update the whole spreadsheet

❏

 The interdependent nature of relational databases are structured similar to that of a spreadsheet

❏

 List of Relational Databases:

❏

 SQL Server - lots of accounting runs from it,

❏

 MySQL - open source, popular in developer community

❏

 Oracle - Often used by large enterprises

❏

 PostgreSQL - open source, popular in developer community

❏

 MariaDB - open source, also popular in developer community

❏

 Aurora - good redundancy & performance

❏

 Non Relational Databases

❏

 Database consists of:

❏

 Collection (Table, which consist of rows and columns)

❏

 Document (Row)

❏

 Key Value Pairs (Fields)

❏

 Flexible - Can add Documents (rows) and Collections (tables) and Fields as you go

❏

 No need for preordained number of Documents, Collections or Fields

❏

 The preceding Table structure does not dictate

❏

 A Non Relational AWS NoSQL database is DynamoDB:

❏

 DynamoDB:

❏

 JSON format

❏

 Can have nest values:

❏

 Data Warehousing:

❏

 Is for Business Intelligence

❏

 Is used to pull in complex and huge data sets.with tools such as:

❏

 Oracle Hyperion

❏

 Jaspersoft

❏

 SQL server Reporting Services

❏

 Cognos

❏

 SAP Netweaver

❏

 Data is often utilized by management to analyze:

❏

 Target profit goals,

❏

 Product performance, etc.

❏

 OLTP & OLAP:

❏

 OLTP:

❏

 Is RDS (Relational Database Service) oriented

❏

 Online Transaction Processing

❏

 Ex:Input Invoice number 1234

❏

 Data such as date, name, and delivery address show up

❏

 Ex: Online shopping carts create a OLTP

❏

 OLAP:

❏

 Online Analytical Processing is used for Data Warehousing

❏

 Used for large numbers that can stress a database

❏

 That’s when you use a OLAP data warehouse

❏

 Ex: Calculating data from a product’s performance in an entire area of the world like the U.S. Southwest

❏

 Elasticache:

❏

 A memory cache in the Cloud

❏

 Is easy to use and scale.

❏

 Quickly retrieves information from in memory caches

❏

 Does not rely on slow disk based data bases

❏

 Stores most common queries

❏

 Ex: T-shirt shop has 5 top selling T-shirts.

❏

 Those top 5 selling T-shirts can be placed in Elasticache.

❏

 Now your server can just to go Elasticache to retrieve info of those 5 top selling T-shirts

❏

 Instead of getting it from database server

❏

 Now database server has more space for other important information to be processed faster for customers

❏

 Elasticache supports open sourced memory caches such as:

❏

 Memcached

❏

 Redis

 AWS Database Overview Review

❏

 Relational Database Overview:

❏

 RDS databases are:

❏

 SQL

❏

 MySQL

❏

 PostgreSQL

❏

 Oracle

❏

 Aurora

❏

 MariaDB

❏

 OLTP (Online Transaction Processing) is relational database

❏

 DynamoDB:

❏

 Is NoSQL database for the AWS Cloud

❏

 DynamoDB in non RDS

❏

 OLAP (Online Analytical Processing) uses Redshift

❏

 Redshift:

❏

 Is an AWS data warehouse

❏

 A relational database

❏

 Used for very complicated queries that are too intense for the production database, so then:

❏

 Take a copy of the production database

❏

 Place it in a Redshift cluster

❏

 Utilize the Redshift cluster

❏

 Elasticache

❏

 Memory caching in the AWS Cloud.

❏

 Relational Database Service (RDS) Troubleshooting:

❏

 Here is a common exam topic:.

❏

 Problem: The MySQL RDS and EC2 are not talking

❏

 By default they do not talk to each other.

❏

 Solution: Go to AWS RDS section:

❏

 Click onto Instances subsection

❏

 Look on the page and find “Security Groups”

❏

 Click onto the Security Group link that corresponds on the same line as “CIDR/IP Inbound”

❏

 You’ll find “CIDR/IP Inbound” under the heading reading “Type”

❏

 After clicking the Security Group link you should now be launched on an entire Security Group section

❏

 Now click onto tab reading “Inbound”

❏

 Then click the “Edit” box below

❏

 Now a larger box that says, “Edit Inbound Rules” should appear on the screen

❏

 Click “Add Rule” box on the left side of the box.

❏

 Look under “Type” section of the Add Rule box. Now scroll down and choose MySQL

❏

 Port 3306 should automatically appear under the “Port” section

❏

 Now click under “Source” section in the Edit Inbound Rules box

❏

 Choose “Custom”

❏

 In the small box next to “Custom” type in the name of the Security Group that corresponds to the EC2 Instance you want to talk to.

❏

 Click “Save”

❏

 Done! YAY!

❏

 The steps were broken down for you to gain an understanding. The exam will not likely ask about each step. But being familiar with the steps is essential to understanding the solution’s concept.

❏

 RDS Backups, plus Multi Availability Zones vs. Read Replicas

❏

 AWS Database (DB) Backups:

❏

 Two kinds:

❏

 Automated, and

❏

 Snapshots

❏

 Automated Backups:

❏

 Automated backups are enabled by default

❏

 Allow you to recover your database to any point of time within a “retention period

❏

 Retention period can be between 1-35 days

❏

 Takes a full daily snapshot

❏

 Stores transaction logs throughout the day

❏

 When a Recovery is done:

❏

 Must be done during the Retention period

❏

 AWS chooses the most recent daily backup

❏

 Then applies transaction logs relevant to that day

❏

 Allows you to do a point in time recover down to the last second

❏

 Albeit, within the Retention period window of time

❏

 Backup data is stored in S3 bucket

❏

 Storage that is equal to the size of your database is free

❏

 Ex: If your RDS (relational database service) is 15 Gb, then your free S3 storage is also 15 Gb

❏

 Backup taken within a preset window of time

❏

 During the backup window storage I/O might be suspended

❏

 If so there will likely be higher latency levels

❏

 When that original RDS is deleted, then that RDS’s Automated Backups are also deleted

❏

 Snapshots:

❏

 It is a Snapshot of the database (DB)

❏

 Manually done by the User

❏

 DB Snapshots stored, even when the original RDS Instance is deleted

❏

 Unlike Automated backups

❏

 Restored Version of Automated & Database DB Backups

❏

 Restored version will be a new RDS Instance

❏

 That new RDS Instance will have a new DNS endpoint

❏

 Therefore, the original and restored versions are:

❏

 Completely separate databases

❏

 And have completely different DNS endpoints

❏

 Encryption:

❏

 Encryption
 at res
 t
 is supported for these RDS databases:

❏

 Oracle

❏

 SQL Server

❏

 MySQL

❏

 PostgreSQL

❏

 Maria DB

❏

 Aurora

❏

 Encryption is done with the AWS Key Management Service (KMS)

❏

 Once the
 at rest
 RDS (Relational Data Service) Instance is encrypted, then these items from that at rest RDS are also encrypted:

❏

 Stored data at rest in the underlying storage

❏

 Automated backups

❏

 Read replicas

❏

 Snapshots

❏

 Once you encrypt the
 at res
 t database, then any type of future copy you make of, or from it, is also encrypted

❏

 An
 existing
 DB (database) is not supported for encryption

❏

 A common exam topic is how to encrypt an
 existing
 database

❏

 To encrypt an existing database (DB) with Amazon RDS encryption..

❏

 Step 1: Create a snapshot

❏

 Step 2: Copy that snapshot

❏

 Step 3: Now encrypt that copy

❏

 Multi Availability Zone (AZ) RDS:

❏

 Multi AZ allows you to have an exact copy of your database in another AZ

❏

 AWS handles the replication for you

❏

 When your production database is written this write is automatically copied to the standby database

❏

 The standby database is in another AZ

❏

 Multi AZ is for the Events:

❏

 Disaster recovery

❏

 Planned maintenance

❏

 Natural disaster

❏

 AZ failures

❏

 Database failure

❏

 When one of these Events has occurred, Amazon RDS will automatically failover to the standby database

❏

 Standby database in in another AZ

❏

 Failover is done quickly so operations can resume without administrative intervention

❏

 Multi AZ is not to be used for performance improvement

❏

 For performance improvement use Read Replicas

❏

 Multi AZ allows an exact copy of a production database in another availability zone (AZ).

❏

 AWS replicates the production database for you

❏

 The writes on your production database will automatically be copied to the standby database

❏

 Amazon’s RDS will automatically failover to a standby in another AZ

❏

 Allows the database (DB) operations to proceed without the intervention of administrators.

❏

 Downtime is very short, less than 2 minutes

❏

 Ex: Elastic Load Balancer (ELB) with EC2 Instances behind it

❏

 ELB’s and EC2’s point at an RDS database

❏

 RDS database is located in AZ US-West-1A

❏

 EC2’s make any Writes or change to that RDS database located in US-West-1A

❏

 Those Writes and changes will be synchronously replicated to the other AZ in US-West-1B

❏

 It will be an exact copy

❏

 RDS always uses the DNS endpoint IP address

❏

 When, and if, the primary RDS database is lost AWS will detect it

❏

 AWS will update the DNS endpoint address:

❏

 This RDS’s DNS endpoint will failover automatically to the copied standby database.

❏

 That updated DNS endpoint address will point to the IP address of the Multi AZ copy

❏

 Multi Availability Zones DBs available for these RDS’s:

❏

 Oracle

❏

 SQL

❏

 MySQL

❏

 PostgreSQL

❏

 Maria DB

❏

 Aurora (multi AZ’s are included in Aurora by default)

❏

 Read Replicas:

❏

 Read only replicas are Read Only copies of a production database

❏

 Used mostly for read heavy database workloads

❏

 By default can have up to 5 Read Replicas per production database

❏

 Each Read Replica has its own DNS point

❏

 Must have Automatic Backups turned on to utilize Read Replica

❏

 Process:

❏

 ELB’s with EC2’s do a Write to an RDS database

❏

 Then these Writes will be pushed out to other copies of the database

❏

 When EC2’s read from Read Replicas

❏

 Now EC2’s won’t need to go to the primary database

❏

 Load is taken off the primary database

❏

 Load is now spread out among the Read Replicas

❏

 Allows for the primary database to do more valuable tasks

❏

 Recommended when over 50% of traffic is from read only:

❏

 Ex: Blogs, education websites, etc

❏

 Read Replicas can be used to scale out:

❏

 Can have Read Replicas of Read Replicas

❏

 Some replication latency

❏

 Can have Read Replicas in different AZ’s

❏

 Multi AZ must be enabled

❏

 Can have Read Replicas in a second region

❏

 Multi AZ must be turned on for this to be effective

❏

 Can make Read Replicas of Multi AZ source databases

❏

 If Multi AZ is turned on to the RDS Instance, then you can create Read Replicas

❏

 Read Replicas can become their own databases.

❏

 However, sometimes replication will break

❏

 Sometimes done when work is to be done on a database, but you don’t want to do the work on the primary database

❏

 Read Replica Databases:

❏

 PostgreSQL

❏

 MySQL

❏

 Maria DB

❏

 Aurora

❏

 DynamoDB:

❏

 NoSQL database application

❏

 Flexible data model

❏

 Rapid

❏

 Reliable performance

❏

 Fully managed database

❏

 Supports:

❏

 Document

❏

 Key value models

❏

 Ideally used for applications that need:

❏

 Dependable single digit millisecond latency at all scales

❏

 Recommended for:

❏

 Gaming

❏

 Mobile

❏

 Ad-tech

❏

 Web

❏

 IoT

❏

 DynamoDB Factors:

❏

 Stored on SSD storage

❏

 Stored across 3 geographically distinct facilities

❏

 NOT officially different AZ’s

❏

 Eventual consistent reads by default

❏

 This means there is consistency across all copies of data

❏

 Consistency across all copies of data is usually reached within a second

❏

 Repeating a read after a short time should return the updated data

❏

 Considered to have best read performance

❏

 If the application needs information to be accessible in less than 1 second then use Strongly Consistent Read

❏

 Strongly Consistent Reads:

❏

 Returns a result that reflects all writes which received a successful response prior to the read

❏

 Prices:

❏

 Provisioned Throughput Capacity Hourly Fee

❏

 Write throughput;

❏

 10 units is
 .
 0065 cents / per hour

❏

 Read throughput;

❏

 50 units is .0065 cents / per hour

❏

 Storage

❏

 1 Gb of storage is 25 cents / per month

❏

 Writes are expensive

❏

 Reads are inexpensive

❏

 DynamoDB can have Reserved capacity

❏

 Good if you can predict your Read & Write throughput

❏

 1-3 year contract

❏

 Can save money

❏

 As a non-RDS a DynamoDB:

❏

 Can add columns as database grows:

❏

 Allowed because DynamoDB is a NoSQL database

❏

 Allowed because columns in a relationship to tables and rows does not have to be maintained.

❏

 In contrast, RDS must maintain relationships.

❏

 Ratio of columns to tables must be maintained

❏

 DynamoDB hasPush Button Scaling of database:

❏

 Increase Read capacity units of Table

❏

 Increase Write capacity units of Table

❏

 In contrast, to increase size of database in RDS

❏

 Must take a SNAPSHOT, or

❏

 Create a Read Replica, then adjust size of Instance

❏

 There is a point when run out of Read Replicas

❏

 Can’t scale out any further at some point

❏

 Scaling downtime
 :

❏

 DynamoDB no downtime while scaling

❏

 In contrast, RDS some downtime while changing Instance size

❏

 Redshift:

❏

 A Relational Data storage:

❏

 Data warehousing in AWS Cloud

❏

 Data warehousing focuses on columns

❏

 Redshift data warehousing is:

❏

 Peta scale data

❏

 Fully managed

❏

 Very fast and powerful

❏

 Used for Online Analytical Processing (OLAP)

❏

 Pricing

❏

 Pay as you go:

❏

 25 cents per hour

❏

 No upfront costs

❏

 No commitment

❏

 Can scale out to a petabyte or more:

❏

 $1,000 = 1 terabyte / per year

❏

 Approximately 1/10 price of other data warehouse options elsewhere

❏

 Compute Node Hours:

❏

 The total number of hours of all compute nodes that use Redshift for the billing period

❏

 Only compute nodes are charged

❏

 NOT leader nodes

❏

 1 unit = 1 node / per hour

❏

 Backups

❏

 Charged for transfer within the VPC, not outside

❏

 Redshift Configuration:

❏

 Single Node:

❏

 Recommended for small and medium business

❏

 160 Gb of storage to start

❏

 Multi Node to scale out:

❏

 Leader Node:

❏

 Manages client connections

❏

 Receives queries

❏

 Compute Node:

❏

 Underneath Leader Node

❏

 Stores data

❏

 Performs queries

❏

 Performs computations

❏

 Limit 128 Compute Nodes underneath the Leader Node

❏

 Column Data Storage

❏

 AWS Redshift organized by columns, not rows

❏

 Set of columns are selected.

❏

 Selecting side by side columns is not a must

❏

 Date queries are done to columns that are selected by User:

❏

 Queries limited to only the selected columns

❏

 Column data is stored sequential on the storage media

❏

 Column based system ideal for:

❏

 Warehousing

❏

 Analytics:

❏

 Analytic queries performed with aggregates over large number sets

❏

 Column system requires few I/O

❏

 The need for lesser I/O = better query performance

❏

 Having no rows, and the ability to select specific columns make it possible for the lesser I/O

❏

 Advanced Compression:

❏

 Significant compression compared to other relational data stores

❏

 Redshift uses multiple compression techniques:

❏

 When loading the empty table of a column, it scans a sample of the data and employs the best compression scheme

❏

 Great compression makes Redshift very fast

❏

 Massively Parallel Processing (MPP):

❏

 Automatically distributes the data and query load across all nodes

❏

 Easy to add nodes to this data warehouse

❏

 Will maintain speedy query performance as this data warehouse grows

❏

 Redshift Security:

❏

 Encrypted in transit using SSL

❏

 Encrypted at rest using AES-256 encryption

❏

 Redshift keys:

❏

 By default Redshift manages key

❏

 Option of managing your own key using Hardware Security Modules (HSM)

❏

 Option to manage your key using AWS Key management service

❏

 Reshift Availability

❏

 Only in one AZ (availability zone)

❏

 Since Redshift is used for businesses to run queries and reports, as opposed to production or order, one AZ is sufficient

❏

 If there is an outage, it can restore Snapshots to a new AZ

❏

 Redshift Summary:

❏

 A data storage warehouse

❏

 Really fast

❏

 Very inexpensive

❏

 Column storage gives it speed

❏

 Stores data sequentially on the disk:

❏

 So when asked to access that data it just goes to one area of the disk

❏

 Doesn’t need to look across lots of record sets

❏

 Elasticache:

❏

 Is a web service:

❏

 Can be used to scale an in memory cache in the cloud:

❏

 Easy to deploy

❏

 Easty operate

❏

 Improves web applications performance:

❏

 Allows fast retrieval of information from managed in memory caches:

❏

 Speed is due to not having to rely on disk based databases

❏

 Improves latency:

❏

 Stores critical pieces of data in memory giving it low latency

❏

 Improves throughput for compute intensive workloads

❏

 Improves throughput for read heavy application workloads:

❏

 Ex: Social networking, Q & A portals, gaming, media sharing

❏

 Cached information:

❏

 May include I/O intensive database results

❏

 May include results of computation intense calculations

❏

 Types of Elasticache:

❏

 Memcached:

❏

 Memory object caching system

❏

 Elasticache protocol compliant with Memcached:

❏

 Meaning popular tools that works with Memcached will work seamlessly with Elasticache

❏

 Redis;

❏

 Open source

❏

 In memory key value store

❏

 Supports data structures as sorted sets and lists

❏

 Supports master/slave replication

❏

 Supports Multi AZ which is used to achieve cross AZ redundancy

❏

 Possible Exam Scenario:

❏

 A database is under a lot of stress, or has a large load.

❏

 You are asked which service will give some relief to the database

❏

 If database is read heavy and not likely to have frequent changes, then Elasticache is a good choice

❏

 If database stressed due to management running lots of OLAP transactions, then Redshift is a good choice

 AWS Application Systems Summary

❏

 Types of Databases:

❏

 Relational Database Service (RDS)

❏

 Online Transaction Process (OLTP) frequently uses:

❏

 6 Different relational database engines:

❏

 SQL

❏

 MySQL

❏

 PostgreSQL

❏

 Oracle

❏

 Aurora

❏

 Maria DB

❏

 Redshift:

❏

 Used for data warehousing

❏

 Frequently used for Online Analytical Processing (OLAP)

❏

 Non Relational Databases:

❏

 DynamoDB:

❏

 Amazon’s NoSQL service

❏

 Elasticache:

❏

 In memory caching in the Cloud

❏

 Has 2 different engines:

❏

 Memcached

❏

 Redis

❏

 RDS:

❏

 Scaling:

❏

 Use Read Replica. or

❏

 Use bigger Instance size

❏

 Multi Availability Zones:

❏

 Must turn on Multi AZ

❏

 Multi AZ Process:

❏

 EC2’s point to the an RDS Instance

❏

 That “primary” RDS Instance is located in an AZ (ex: US-West-1)

❏

 That RDS uses a DNS endpoint obtained during its creation

❏

 The standby RDS Instance is in a different AZ (ex: US-West-2) .

❏

 “Primary” is automatically and synchronicity being copied to the “Standby”

❏

 If lose “primary” RDS Instance , then AWS will failover to “standby” RDS Instance “B” in the other Availability Zone

❏

 DNS endpoint on “B” is automatically updated by AWS

❏

 Can simulate a failover by rebooting “primary” Instance

❏

 “Primary” Instance will then automatically failover to the “standby” Instance in the alternative AZ

❏

 Read Replica:

❏

 Read Replica is good for applications that do much more Reads than Writes

❏

 Ex: Blogs, cooking recipe websites, etc.

❏

 EC2 Instances are connect to a production database:

❏

 You can then create a Read Replica of that production database

❏

 Can re-architect so the production database just reads from the Read Replicas

❏

 The main production (not the read replica) database can spend more focus on Writes

❏

 Can have Read Replicas of Read Replica

❏

 But more replicas you have then data will run slower

❏

 Limit 5 Read Replicas per production database

❏

 Aurora:
 Not likely to be on exam, but just in case let’s touch on it

❏

 Physical Storage Media:

❏

 This is not the actual Instance that is running the database

❏

 Each AZ holds 2 copies of your data

❏

 Minimum of 3 AZ’s:

❏

 Therefore minimum of 6 data copies total

❏

 For multiple AZ for the actual Instance that run your database, then create Aurora replicas

❏

 Can lose up to 2 copies of data without affecting the database Write availability

❏

 Can lose up to 3 copies of data without affecting the database Read availability

❏

 Self Healing storage

❏

 Data disks & blocks continuously scanned for errors

❏

 Errors repaired automatically

❏

 Aurora Replicas

❏

 Two types

❏

 Aurora Replica

❏

 Limit 15

❏

 MySQL Read Replicas of Aurora database

❏

 Limit 5

❏

 Scaling;

❏

 Significant downtime

❏

 Suggested to do during a maintenance window period

❏

 DynamoDB:

❏

 Is Non RDS

❏

 “Push Button” scaling:

❏

 Can scale database at a moments with no down time

❏

 In contrast, to scale an RDS need a larger Instance or add a Read Replica

❏

 Significant downtime

❏

 Suggested to do during a maintenance window period

❏

 Stored on SSD storage

❏

 Spread across 3 geographically different data centers

❏

 Default Eventual Consistency for reads

❏

 Strong consistent reads:

❏

 Presents information back to the application in less than 1 second

❏

 Redshift Configuration:

❏

 Amazon’s data warehousing

❏

 Single Node:

❏

 Recommended for small and medium business

❏

 160 Gb of storage

❏

 Multi Node:

❏

 Leader Node:

❏

 Manages client connections and receives queries

❏

 Compute Node:

❏

 Underneath Leader Node

❏

 Stores data

❏

 Performs queries

❏

 Performs computations

❏

 Limit 128 Compute Nodes underneath the Leader Node

❏

 Elasticache:

❏

 Is a web service

❏

 It is a scale an memory cache in the Cloud:

❏

 Easy to deploy

❏

 Easy operate

❏

 Improves web applications performance:

❏

 Allows fast retrieval of information in from managed in memory caches

❏

 Improves performance for online commercial clients since the data isn’t stored on slow disk based database, but rather in the Cloud

❏

 Supports 2 open source in memory caching engines:

❏

 Memcached

❏

 Redis

❏

 Exam hints:

❏

 Exam may give scenario where answer is between Redshift and DynamoDB

❏

 May ask a question about the difference between RDS and DynamoDB. Understand the differences in these two

❏

 Exam may give scenario where database is slow. Will ask what can be done to speed it up. Make a Read Replica? Or use Elasticache?

 VPC (Virtual Private Cloud)

❏

 Overview:

❏

 VPC stands for Virtual Private Cloud

❏

 A logical and virtual data center in the Cloud

❏

 Consists of:

❏

 Virtual Private Gateways

❏

 Route Tables

❏

 Network Access Control Lists

❏

 Stateless:

❏

 You must explicitly allow traffic in both directions

❏

 Must open each inbound, and

❏

 Must open each outbound port to permit traffic

❏

 Subnets

❏

 1 Subnet per 1 Availability Zone

❏

 Security Groups:

❏

 Stateful:

❏

 Any connection inbound will also allow the response to be returned outbound without any additional rules

❏

 Ex: When Port 80 is open both inbound and outbound traffic is permitted automatically

❏

 Can have multiple VPC’s in a region:

❏

 Soft limit 5

❏

 Email AWS to request more than 5

❏

 AWS account by default provides User with an isolated section of Amazon Web Services Cloud

❏

 In an AWS VPC:

❏

 Launch AWS in a virtual network of your own parameters

❏

 User has complete control over the virtual networking environment:

❏

 Control of IP range,

❏

 Control of creation of subnets

❏

 Ex: Create public facing subnets for web servers with access to the internet, and

❏

 Place your backend systems, such as databases or applications servers, in a private facing subnet with no internet access

❏

 Control of configuration of route tables

❏

 Control of network gateways:

❏

 Ex: Have security groups and Network Access Control Lists to help control access to the Amazon EC2 Instances in each subnet

❏

 One subnet per Availability Zone

❏

 1 subnet = 1 AZ

❏

 One Internet Gateway (IGW) per Virtual Private Cloud

❏

 1 IGW = 1 VPC

❏

 Can create a Hardware Virtual Private Network (VPN) between your a corporate datacenter and a VPC

❏

 Then leverage the AWS Cloud as an extension of the corporate datacenter

❏

 How to Connect to a VPC:

❏

 Internet Public Gateway:

❏

 Traffic connects using internet access

❏

 Virtual Private Gateway:

❏

 Traffic connects using the VPN (Hardware Virtual Private Network)

❏

 Traffic through the internet:

❏

 If there is SSH from the Public Subnet into the Private Subnet (use Bastion servers)

❏

 Private Gateway & Virtual Private Gateway connections then become the same

❏

 Traffic goes to Router Tables

❏

 Through Network ACL

❏

 Will then reach your Public or Private Subnet

❏

 Subnets Contain Security Groups

❏

 Security Groups protect the Instances

❏

 VPC Internal CIDR IP ranges:

❏

 10.0.0.0 - 10.255.255.255

❏

 10/8 prefix

❏

 Highest number of address range

❏

 172.16.0.0. - 172.31.255.255

❏

 172.16/12 prefix

❏

 Medium number of address range

❏

 192.168.0.0. - 192.168.255.255

❏

 192/168 prefix

❏

 Lowest number of address range

❏

 Remember, the first 4 IP addresses and the last IP address in each subnet CIDR are unavailable and cannot be assigned to an Instance

❏

 VPC Uses:

❏

 Launch Instances into your selected Subnet

❏

 Assign chosen IP range within each Subnet

❏

 Configure Route Tables that allow, or prohibit, communication between other Subnets with the VPC

❏

 Create an Internet Gateway and attach it to our VPC

❏

 Internet Gateway is spread across AZ’s:

❏

 If one Internet Gateway goes out another in a different AZ will take over

❏

 Only 1 Internet Gateway per VPC:

❏

 Trick exam question may ask if you can add, or if you need, another Internet Gateway to a VPC

❏

 VPC Improves Security:

❏

 Network ACL’s can be configured to block certain IP’s

❏

 Can move Instances into Private Subnets:

❏

 This stops public from accessing those Instances

❏

 Can create Instance Security Groups within a VPC:

❏

 Those Instance Security Groups can go across multiple AZ’s

❏

 Therefore, can have Instance Security Groups across multiple Subnets:

❏

 Since there is 1 subnet for each AZ

❏

 So with multiple AZ’s come multiple subnets

❏

 Each subnet has its own internal IP address

❏

 Subnet Network Access Control Lists (ACL’s) allow you to block IP addresses

❏

 Default VPC vs. Custom VPC:

❏

 Default VPC:

❏

 Default VPC provisioned upon account set up

❏

 All Subnets in the Amazon’s VPC’s are internet accessible

❏

 Default VPC does not come with Private Subnets

❏

 If you want to add a Private Subnet you must set it up

❏

 Each EC2 Instance are deployed into default VPC’s comes with both a public and private IP address

❏

 Custom VPC:

❏

 Private Subnets are set up

❏

 If it only has a Private Subnet, then the EC2 Instance only comes with a private IP address

❏

 VPC Peering:

❏

 Allows one VPC to be connected and “talk” to another

❏

 “Talking” occurs through a direct network route

❏

 Uses private IP addresses

❏

 Ex: EC2 Instance “A” is within a subnet:

❏

 That subnet is located in a VPC #1

❏

 EC2 “B” is within subnet

❏

 That subnet is located in VPC #2

❏

 EC2 Instance “A” can communicate to EC2 Instance “B” while they are in their separate VPC’s

❏

 The two EC2’s in entirely different VPC’s can communicate with each other through VPC Peering.

❏

 All VPC Peering is done through the private IP address

❏

 Instances perform as if they are on the same private network

❏

 VPC’s can be Peered with VPC’s in other AWS accounts

❏

 VPC’s can be Peered with other VPC’s in the same account

❏

 VPC Peering is a model of star or spoke:

❏

 One VPC is the center point

❏

 4 points are connected to the 1 single center point

❏

 So this means 4 VPC’s are connected to one 1 single center VPC

❏

 Hence, the connections appearing like a star, or a spoke

❏

 VPC Peering is NOT transitive:

❏

 Meaning only the 1 single center VPC can talk to all the 4 other VPC’s

❏

 Because the 1 single center VPC is the only one directly connected to the other four

❏

 The 4 VPC’s cannot talk to each other :(

❏

 Only the control freak 1 single center VPC can talk to those 4

❏

 But there’s hope!

❏

 If you want the other four VPC’s to talk to each other, then you must select the VPC”s with which you wish to have a conversation/communication

❏

 Then you have those VPC’s Peered to one another

❏

 NAT Instances:

❏

 NAT Instances are being used less, but still may be an exam topic

❏

 NAT Instance must be located on a Public Subnet

❏

 Must Disable the source/destination check on the Instance

❏

 If it is not disabled, then The NAT Instance will be the source, or destination, of traffic sent or received

❏

 You need a route out from the default route table through the NAT Instance

❏

 Add another route to the outside

❏

 There must also be a route out of the Private Subnet for the NAT Instance to be utilized, therefore:

❏

 Using Public Instance, SSH into the Private Instance

❏

 Instance size will bear on the amount of traffic the NAT Instance can support:

❏

 If you choose to bottle neck, then increase Instance size

❏

 Can create high availability:

❏

 Auto Scaling Groups

❏

 Multiple subnets in different AZ’s

❏

 Scripts to automate failover

❏

 Nat Instances work behind a security group

❏

 T2 micros not advised for NAT Instances in a production environment if you are going to need gigabytes of bandwidth out

❏

 NAT Gateways:

❏

 NAT Gateways are preference of Business & Enterprise Users

❏

 Does not sit behind a security group

❏

 NAT Gateways are Stateful:

❏

 Stateful:

❏

 Means its allows all outbound traffic, and traffic received, in response to an outbound request

❏

 No need to disable source/destination checks

❏

 To create your NAT Gateway:

❏

 In VPC select Public subnet

❏

 Select Elastic IP address

❏

 Default Route Table:

❏

 Must update route table so it pointing to the NAT Gateway

❏

 Making the NAT Gateway the target for a route out

❏

 Features:

❏

 Automatically assigned a public IP once created

❏

 Automatic scaling for up to 10 Gbps (10 Gb per second)

❏

 Amazon manages

❏

 Patching operating system

❏

 Security groups

❏

 Antivirus

❏

 Place NAT Gateways in multiple AZ’s for redundancy in case of AZ failure

❏

 Must update route tables so they are pointing them to those multiple NAT Gateways

❏

 NAT Gateways more secure than NAT Instances

❏

 NAT Gateways are preferred over NAT Instances every time.

❏

 Network Access Control Lists (Network ACL’s) v. Security Group

❏

 Network Access Control List is created by default when your VPC is provisioned

❏

 Network ACL is Stateless:

❏

 Responses to inbound traffic are subject to the rules for outbound traffic, and vice-versa

❏

 Must create Inbound/Outbound Rules

❏

 The Default Network ACL allows all inbound/outbound traffic

❏

 In contrast, the Custom Network ACL denies all inbound/outbound traffic

❏

 Must explicitly associate a VPC with a Network ACL

❏

 If you do not, then the subnet is automatically associated with the default Network ACL

❏

 A Network ACL can have multiple Subnets

❏

 In contrast, a Subnet can only have 1 Network ACL

❏

 Remember, a Virtual Private Cloud (VPC) can hold both a Public & Private Subnet

❏

 Ex: VPC contains:

❏

 Public Subnet “A”, and

❏

 Private subnet “B”,

❏

 Along with Network ACL “X”

❏

 Public Subnet “A” only has 1 Network ACL

❏

 That Network ACL is “X”.

❏

 Private subnet “B” only has 1 Network ACL

❏

 That Network ACL is also “X”

❏

 Therefore, each subnet has only 1 Network ACL

❏

 Private Network ACL’s:

❏

 Private and custom default Network ACL’s:

❏

 Inbound/outbound rules deny everything

❏

 Must add rules

❏

 Rules evaluated in numerical order:

❏

 Smaller numbers take precedent

❏

 If a there is a conflict, then the smaller numbered Rule is the Rule that is followed

❏

 Ex: If Rule number 100 and Rule number 101 conflict, then Rule number 100 is followed

❏

 To add rules:

❏

 Must edit the Type and Source of the Inbound/Outbound Rules

❏

 Ex: To change Inbound Rule:

❏

 Type in your chosen Rule number

❏

 Rule number 100 will be the one that is followed since it is the lowest numbered.

❏

 Change Type to HTTP

❏

 Change Source to “anywhere IP” of 0.0.0.0/0

❏

 Change Default from Deny to Allow

❏

 Can continue to edit Inbound Rule

❏

 Ex: Edit the Types to HTTPS, SSH

❏

 Remember to a
 ssociate Network ACL’s with a specific Subnet

❏

 Network Access Control Lists (Network ACLS) can be used as a security:

❏

 To block specific IP addresses

❏

 To block certain IP address ranges

❏

 Network Access Control List will take precedent over the Security Group:

❏

 Meaning traffic will be filtered out through the Network ACL’s first before it reaches the Security Group

❏

 So if the traffic is blocked by the Network ACL, then Security Group will never have the opportunity to decipher it

❏

 Network ACL Common Exam Topics:

❏

 All Amazon VPC’s come with a Network ACL:

❏

 That Network ACL allows for inbound/outbound traffic by default

❏

 Custom Network ACL’s can be created:

❏

 Custom Network ACL’s deny inbound/outbound traffic by default

❏

 Must add Rules to allow traffic inbound/outboud

❏

 A VPC’s subnet must be associated with a Network ACL

❏

 The subnet is automatically associated with the VPC’s default Network ACL

❏

 Therefore, must explicitly change your subnet to a different Network ACL if you do not want to use default

❏

 A Network ACL can be associated with multiple subnets:

❏

 When you associate a network ACL with a subnet, the previous association is removed.

❏

 Remember, a subnet can ONLY have one Network ACL at a time

❏

 Network ACL has a numbered list of Rules:

❏

 Each Rule Denies or Allows inbound/outbound traffic

❏

 Network ACL’s are stateless:

❏

 Responses to inbound traffic are subject to the rules of outbound traffic and vice versa

❏

 Network ACL’s allow for ephemeral ports for outbound Rules only

❏

 Network ACL’s can block specific IP addresses and IP address ranges

❏

 In contrast, no way to block a specific IP address using Security Groups

❏

 Custom VPC’s & Elastic Load Balancers (ELB):

❏

 When creating Custom VPC:

❏

 Application Load Balancers need to always being in a minimum of 2 Availability Zones

❏

 The 2 Availability Zones must be public:

❏

 If these two AZ’s aren’t public then you will not be able to create the Custom VPC

❏

 VPC Flow Logs:

❏

 VPC Flow log is a feature that allows you to obtain information about IP traffic going to, and from, your VPC network interfaces

❏

 Amazon CloudWatch stores the VPC Flow Log data:

❏

 Given Flow Log has been created, th flow Log data can be seen and retrieved from Amazon’s Cloudwatch Logs

❏

 If you use your own DNS server, then all traffic to that DNS server is logged

❏

 IP Traffic Monitored not monitored by VPC Flow Log are:

❏

 Traffic generated by Instances upon contacting the Amazon DNS server

❏

 Traffic generated by Windows Instance for Amazon Windows license activation or authentication

❏

 Traffic to and from IP 169. 254.169.254 for Instance metadata

❏

 DHCP traffic

❏

 Traffic to the reserved IP address for the default VPC router

❏

 Peered VPC’s Flow Logs:

❏

 Can not enable Flow Logs for a VPC’s that are Peered with your VPC

❏

 Unless the Peer VPC is also in your account

❏

 Flow Logs can be created at 3 different levels:

❏

 VPC level:

❏

 Captures all ENI (Elastic Network Interface) traffic within the VPC

❏

 Subnet level:

❏

 Only EC2 Instances and ENI’s within that specific subnet

❏

 Network Interface level

❏

 A Flow Log can’t be tagged

❏

 How to Create Flow Logs:

❏

 Go to console

❏

 Click on to VPC

❏

 Select your VPC

❏

 Go to “Actions”

❏

 Box will appear

❏

 Select the “Filter” that describes the data you want logged

❏

 Next, for a “Role” assign a Role or set up Permissions to create a Role

❏

 Then it will ask you for “Destination Logs Group”

❏

 If you do not have a Log Group, then open a new window

❏

 In the new window go to AWS Management Tools

❏

 Click on to Cloudwatch, which is located under Management Tools

❏

 Now create a new log group

❏

 Click onto Logs

❏

 Then click, “Create log group”

❏

 Name it

❏

 Return to open window with “Create Flow Logs” box

❏

 Now click on to “Destination Log Group”

❏

 Your newly formed and named log group should appear for you to select

❏

 VPC Flow Logs can stream to Lambda:

❏

 Your environment could proactively react to anything in your VPC

❏

 Can stream logs to Elasticsearch service also

❏

 VPC Flow Log can export the data to an S3 Bucket

❏

 After VPC Flow is created the configurations cannot be changed

❏

 You cannot associate a different IAM with a VPC Flow Log

❏

 NAT v. Bastion:

❏

 NAT:

❏

 Provides Instances internet traffic to EC2 Instances located in Private Subnets:

❏

 NAT is located behind the security group

❏

 NAT allows Instances are able to connect out the VPC to the internet

❏

 NAT will not allow inbound traffic that has been initiated by someone one the internet

❏

 People on the internet CAN’T:

❏

 Use SSH, or RDP ,to connect via NAT to your Instance for the purposes of administering the servers

❏

 Need to use Bastion Host to accomplish

❏

 Bastion:

❏

 Used to securely administer an EC2 Instance located in a private subnet:

❏

 Uses SSH, or RDP

❏

 Bastions are located in the Public subnet

❏

 Allows an SSH or RDP into the Bastion

❏

 Initiate a private connection over the private network of the Instance

❏

 Then you can administer the Instances with the use of SSH or RDP

❏

 Connect SSH/RDP ports to your specific IP addresses :

❏

 In this way only you can connect to Bastion and administer

❏

 Bastions are only for administration

❏

 Highly available Bastion host:

❏

 Remember, 1 subnet = 1 availability zone

❏

 Therefore, have at least 2 public subnets:

❏

 2 public subnets = 2 AZ’s

❏

 Do auto scaling groups

❏

 So if one bastion host goes down then auto scaling group deploys it to a different AZ

❏

 Could also have Route 53 running health checks on Bastion server.

❏

 VPC Endpoints:

❏

 VPC Endpoint allows the VPC to securely connect to another service

❏

 VPC Interface Endpoint:

❏

 Elastic Network Interface (ENI) attached to EC2 Instances

❏

 Serves as an enter point for traffic headed to the servers

❏

 VPC Gateway Endpoints:

❏

 Not on a single interface

❏

 Not on an ENI

❏

 Highly available

❏

 Available to all the different AWS services

❏

 Goes over private network--not the public network

❏

 VPC Clean Up:

❏

 To delete VPC:

❏

 Start with deleting EC2 Instances since there is a dependency

❏

 Terminate the web server

❏

 Once EC2 and web server are terminated, then you can begin process of deleting VPC

❏

 Go to VPC on console:

❏

 Delete NAT Gateway

❏

 Detach Internet Gateways

❏

 Delete Internet Gateways

❏

 Delete Endpoints

❏

 Go to Actions:

❏

 Delete VPC

❏

 Make sure key pairs and associated objects are not stored outside of VPC

 VPC Summary

❏

 Custom VPC with Private & Public Subnet:

❏

 A Private Subnet Instance:

❏

 Those Instances receive internet traffic via NAT Gateway

❏

 The NAT Gateway is located in the Public Subnet

❏

 Route Table:

❏

 New subnets by default are always associated with a default Route table

❏

 Create new Route Table with a route leading out of the Internet Gateway

❏

 Then every subnet we designate/select to be public we associate with that newly created Route Table that leads out the Internet Gateway

❏

 This allows us more control over which subnets will have outbound internet traffic

❏

 Application Load Balancer:

❏

 Need 2 public subnets to deploy an Application Load Balancer

❏

 NAT Instances:

❏

 When creating a NAT Instance disable the source/destination check on the Instance

❏

 NAT Instance must be located on a Public Subnet

❏

 If it is a Private Subnet, then there must be a route out of the Private Subnet for the NAT Instance to be utilized

❏

 Instance size will bear on the amount of traffic the NAT Instance can support

❏

 If you choose to bottle neck, then increase Instance size

❏

 Can create high availability NAT Instances:

❏

 Auto Scaling Groups

❏

 Multiple subnets in different AZ’s

❏

 Scripts to automate failover

❏

 NAT Instance works behind a security group

❏

 NAT Gateway:

❏

 The preference of Business and Enterprise users

❏

 No disabling source/destination checks

❏

 Automatically assigned a public IP address

❏

 Remember to update Route Tables when provision a NAT Gateway

❏

 Not associated with security groups

❏

 Automatic scaling for up to 10 Gbps per second

❏

 Amazon manages:

❏

 Patching operating system

❏

 Security groups

❏

 Antivirus protection

❏

 NAT Gateways more secure than NAT Instances

❏

 Because no need to patch

❏

 Amazon patches it

❏

 Place NAT Gateways in multiple AZ’s for redundancy

❏

 Do this in case of one AZ fails

❏

 Must update Route Tables so they point to the multiple NAT Gateways

❏

 Network ACL (Network Access Control List):

❏

 Network Access Control List is created by default when the VPC is provisioned

❏

 Network ACL’s are stateless, meaning responses to inbound traffic rules are subject to the rules for outbound traffic and vice versa

❏

 1 Network ACL can have more than 1 Subnet

❏

 Default Network ACL allows all inbound/outbound traffic

❏

 Custom Network ACL are Stateless:

❏

 Custom Network ACL denies all inbound/outbound

❏

 Must create Inbound/Outbound Rules

❏

 Rules evaluated in numerical order:

❏

 Smaller numbers take precedent

❏

 If you don’t associate a subnet with a Network ACL, then the subnet is automatically associated with the default Network ACL

❏

 A
 ssociate Network ACL’s with a specific Subnet

❏

 When you associate a Network ACL with a subnet, then the previous subnet association is removed:

❏

 Because remember, a subnet can only have 1 Network ACL

❏

 Can’t have subnet associated with multiple Network ACL

❏

 Network Access Control Lists (Network ACLS) can be issued as security:

❏

 To block specific IP addresses and ranges

❏

 Network Access Control List will take precedent over the Security Group

❏

 VPC Flow Logs:

❏

 Logs that monitor all network traffic across the elastic network interfaces

❏

 Upon creating your VPC make a firm decision on its configuration:

❏

 You will not be able to change configuration after VPC is created

❏

 Ex: Cannot associate a different IAM with the VPC Flow Log

❏

 Peered VPC’s:

❏

 To enable VPC’s that are peered, the peered VPC must be within your account

❏

 VPC Flow Logs cannot be tagged

❏

 VPC Flow Log Traffic NOT Monitored:

❏

 Traffic generated by Instances upon their contacting the Amazon DNS server

❏

 However, if using your own DNS server, then all traffic is logged

❏

 Traffic to and from IP 169.254.169.254 for Instance metadata

❏

 Traffic generated by a Windows Instance for the purpose of Amazon Windows license activation

❏

 DHCP Traffic

❏

 Traffic to the reserved IP address for the default VPC Router

❏

 VPC Endpoints:

❏

 Allows VPC to securely connect to another service

❏

 VPC Endpoints can be Gateways or Interfaces

❏

 Gateways are more durable and resilient

❏

 They do not rely on just a single Elastic Network Interface (ENI)

❏

 Interface relies on a single Elastic Network Interface (ENI)

❏

 Inside private subnet can create an Endpoint

❏

 Ex: An Endpoint for a S3 Bucket

 AWS Application Services

❏

 SQS:

❏

 An Amazon web service that gives access to a message queue

❏

 In general, a queue is a temporary repository for messages that are awaiting processing

❏

 While a computer is waiting to process a message, those messages can be stored in a fails safe SQS queue

❏

 Messages can contain up to 256 KB of text in any format

❏

 SQS is always a poll based system

❏

 Poll means the messages in the queue are pulled down

❏

 Not push based

❏

 Ex: A User on a travel website types into the browser a query to get the cheapest flight from point A to point B

❏

 That query then goes to an EC2 Instance

❏

 EC2 takes what User is looking for and put it together as a message

❏

 That message then goes to an SQS queue

❏

 The message is then polled by and EC2 Instance

❏

 Polling means it pulls the message down:

❏

 Ex: The EC2 processes message about need the cheapest flight from point A to point B.

❏

 Then the EC2 obtains information from airline servers regarding flights that fit the user’s criteria

❏

 Messages default retention period in SQS is 4 days

❏

 Messages can be kept in queue from 1 minute to 14 days

❏

 SQS guarantees message will be processed at least 1 time

❏

 SQS allows for decoupling of application components so those applications may run independently:

❏

 Eases message management between components

❏

 Any component of a distributed application service can store messages in the fail safe SQS queue:

❏

 If an EC2 Instance goes down, then you will not lose that message.

❏

 That message will stay in SQS until another EC2 picks it up

❏

 Ex: Upload photo with caption to a website:

❏

 That website stores the photo to an S3 bucket

❏

 After the photo with caption uploads to the S3 bucket it triggers a Lambda function

❏

 Lambda sends all the photo data (caption, S3 bucket location, user data, etc) to SQS

❏

 Photo and all the its data sit in SQS while it is waiting to be processed

❏

 EC2 Instances want to pull from SQS as they scan for messages/jobs to do

❏

 EC2 Instance finds this message about the photo and its data

❏

 EC2 creates the photo with the caption, and stores it to the same S3 bucket or a different S3

❏

 The EC2 goes back to the SQS and looks for more jobs to do

❏

 If an EC2 Instance goes down, then you will not lose that message.

❏

 That message will stay in SQS until another EC2 picks it up

❏

 Visibility Timeout of SQS:

❏

 Visibility Timeout is the amount of time the message is marked “invisible” in the SQS queue after the reader picks up the message

❏

 “Invisible” means SQS prevents others from receiving and processing the message

❏

 Message is in the queue marked as “Invisible” until timed out

❏

 Default Timeout is 30 seconds

❏

 Timeout can be increased up to 12 hours

❏

 Provided the message/job is processed before the Visibility Timeout expires, then the message will be deleted from the queue

❏

 Processed meaning the message or job task is completed

❏

 Ex: Process such as making a meme, retrieving airline info, analyzing data, etc.

❏

 If the message/job is not processed before the Visibility Timeout expires, then:

❏

 The message will become visible again, and

❏

 Another reader/EC2 Instance will process it

❏

 This makes for the possibility of a message being delivered twice

❏

 Visibility Timeout should be set at a length that will allow the task of your message/job to be processed and completed so as to avoid repetition.

❏

 Visibility Timeout comes into use if an application systems fails

❏

 Any component can later retrieve the messages programmaticly using Amazon SQS API

❏

 Elasticity of SQS:

❏

 Auto Scaling Groups can also be utilized behind the SQS

❏

 A set number of messages in the queue could trigger the provisioning of more EC2 Instances

❏

 If messages go under a certain number have a cool down to reduce EC2 Instances in use

❏

 This allows elasticity

❏

 SQS queue acts as a buffer:

❏

 A buffer between the components producing and saving data and the component receiving data from for processing

❏

 Meaning the SQS queue resolves issues that arise if:

❏

 The producer is making more work than the consumer can process, or

❏

 If the producer or consumer are only intermittently connected to the network

❏

 Ex: Two EC2 Instances polling the SQS

❏

 Then all of sudden the SQS receives a ton of messages.

❏

 To solve this issue configure Auto Scaling groups to monitor the SQS queue for a certain number of messages/jobs

❏

 When that number is reached then have it provision more EC2 Instances to process the messages/jobs

❏

 Standard & FIFO Queues:

❏

 Standard Queue:

❏

 Standard Queue is the SQS default:

❏

 Nearly an unlimited number of transactions per second

❏

 Guarantees a message is delivered at least once

❏

 Possibility of more than one message being delivered out of order due to high throughput

❏

 Provides best effort ordering that messages/jobs are generally delivered in the order they are received

❏

 FIFO: First In First Out:

❏

 Just as the name says, it means the first message/jobs in are the first ones out

❏

 Limited to 300 transactions per second

❏

 Order is strictly preserved

❏

 Messages will be sent, and received, in the order they arrived

❏

 Message is delivered once

❏

 Messages is made available until the consumer processes and deletes it

❏

 Duplicates are not placed in the queue

❏

 Supports message groups that allow multiple ordered groups within a single queue

❏

 SQS Short v. Long Polling:

❏

 Short polling:

❏

 Retrieves messages from SQS queues immediately

❏

 Polls SQS even if queue is empty

❏

 Is the Default SQS setting

❏

 Long Polling:

❏

 Must be enabled

❏

 Can save money because not continuously polling an empty queue

❏

 Only returns a response when:

❏

 There is a message in the SQS queue, or

❏

 If long poll is timed out

 Quick SQS Review

❏

 SQS is a distributed message queueing system

❏

 Allows you to decouple components of an application system so they are independent

❏

 Ex: An EC2 Instance fails

❏

 Another EC2 will pick it up, and

❏

 Message will stay in the SQS queue

❏

 Pull based (not pushed)

❏

 Standard Queues:

❏

 Is the Default SQS setting

❏

 Best effort ordering

❏

 Message delivered at least once

❏

 FIFO Queues:

❏

 First in first out

❏

 Order is strictly preserved

❏

 Message delivered once

❏

 No duplicates

❏

 Ideal for banking which needs transactions done on a strict order

❏

 Visibility Timeout:

❏

 Default is 30 seconds

❏

 Can be increased up to 12 hours

❏

 Short Polling

❏

 Returns immediately even if there is no message/job in the queue

❏

 Long Polling:

❏

 Polls queue periodically

❏

 Only returns a response when a message is in the queue or timeout is reached

❏

 Simple WorkFlow:

❏

 Amazon Simple Workflow Service coordinates works across distributed application components

❏

 SWF can run on:

❏

 EC2 Instances

❏

 Machines behind firewalls

❏

 Amazon Cloud infrastructure

❏

 SWF maximum retention period for a workflow is up to 1 year

❏

 Always measured in seconds

❏

 Workflow Starters:

❏

 An application that starts a workflow

❏

 Ex: E-commerce website app that searches train schedule times

❏

 SWF enables applications for a range of use cases such as:

❏

 Media processing

❏

 Business process workflows

❏

 Web application backends

❏

 Analytical pipelines

❏

 SWF allows for a coordination of tasks:

❏

 Tasks for SWF purposes are:

❏

 Invocations of various processing steps within an application

❏

 Ex: The application can be performed by these tasks (i.e. invocations of various processing steps within an application):

❏

 Executable code

❏

 Human actions

❏

 Web service calls, and

❏

 Scripts

❏

 Example of SWF: Customer places online order:

❏

 Customer Order--->Verify Order (EC2 Instances verifies order and check stock)--->

❏

 Charge Credit Card (credit card processors)--->

❏

 Ship Order (human worker needs to retrieve the item)--->

❏

 Record Completion (database records order is shipped gives tracking number)--->

❏

 End

❏

 SWF Activity Workers:
 :

❏

 SWF Activity Workers get tasks

❏

 SWF Activity Workers process received tasks

❏

 SWF Activity Workers return results

❏

 SWF Activity Workers can be human

❏

 SWF Deciders:

❏

 Deciders are programs that control the coordination of tasks:

❏

 Controls the ordering of tasks

❏

 Controls the concurrency of tasks

❏

 Controls scheduling of tasks in accordance with the application logic

❏

 SWF allows the Decider:

❏

 To get consistent views into the progress of task, and

❏

 To initiate new tasks in an ongoing manner

❏

 Amazon SWF Deciders & Workers:

❏

 SWF Deciders & Workers can run on AWS Cloud infrastructure:

❏

 Can run on Amazon EC2, or

❏

 On machines behind firewalls

❏

 Amazon SWF brokers interactions between Workers & Deciders

❏

 Workers & Deciders can run independently and scale quickly

❏

 Amazon maintains state durability

❏

 Workers and Deciders don’t have to keep track of the state of progress or execution

❏

 While Amazon SWF is brokering tasks it also:

❏

 Stores tasks

❏

 Assigns tasks to workers when the tasks are ready

❏

 Monitors task progress

❏

 Assures task is done once

❏

 Assures task is never duplicated

❏

 SWF Domains

❏

 SWF Domains include your:

❏

 Workflow

❏

 Workflow activity types

❏

 Workflow execution itself

❏

 Domains:

❏

 Isolates a set of types

❏

 Isolates execution of tasks

❏

 Isolates a task list

❏

 All from others within the account

❏

 Can register a domain:

❏

 On the AWS console

❏

 On Register Domain Action on the Amazon SWF API

❏

 SWF Domain Parameters

❏

 JSON format

❏

 SQS v. Simple WorkFlow (SWF), A common exam topic

❏

 SQS presents message oriented tasks API

❏

 SWF presents tasks oriented API

❏

 SQS you may need to deal with duplicate messages

❏

 May need to makes sure a message is processed only once.

❏

 SWF ensures task is assigned only once

❏

 Ensures task is never duplicated

❏

 SQS need to keep track all application level tracking

❏

 Especially if your application uses multiple queues

❏

 SWF keeps track of all tasks and events in the application

❏

 SNS (Simple Notification Service):

❏

 Amazon SNS, Simple Notification Service, sends notifications from the Cloud

❏

 SNS is:

❏

 Highly scalable

❏

 Flexible

❏

 Cost effective

❏

 Important in production systems

❏

 SNS publishes messages from an application to:

❏

 Subscribers, or

❏

 To other applications

❏

❏

 SNS is “push” notification service

❏

 SNS is used to “push” messages to mobile services

❏

 SNS notifies:

❏

 Apple

❏

 Google

❏

 Windows devices

❏

 Fire OS

❏

 SNS can be found under “Mobile Services” in the console

❏

 SNS delivers messages to:

❏

 Mobile devices

❏

 SMS text

❏

 Email

❏

 SQS

❏

 HTTP endpoints

❏

 Trigger Lambda functions

❏

 All messages published on SNS Amazon are stored redundantly across multiple Availability Zones

❏

 SNS triggers Lambda functions:

❏

 When a message is published to an SNS topic that has a Lambda function subscribed to it, then the Lambda function will be invoked

❏

 The Lambda function is invoked with the payload of the published message

❏

 The Lambda function receives the payload message as an input to the parameter, and

❏

 Can manipulate the information in the message

❏

 Can then:

❏

 Publish to other SNS topics, or

❏

 Send message to other AWS services

❏

 SNS Structure:

❏

 SNS uses Topics

❏

 Allows you to group multiple recipients using Topics

❏

 A Topic is:

❏

 An “access point” that allows recipients to dynamically subscribe

❏

 Those recipients subscribe for identical copies of the same notification

❏

 One Topic can support deliveries to multiple types of endpoints

❏

 Ex: Can group together iOS, Android, and SMS recipients

❏

 When you/Sender publishes once to a Topic then :

❏

 SNS delivers appropriately formatted copies of your/Sender’s message to each subscriber

❏

 To prevent loss, all message published to Amazon SNS are stored redundantly across multiple AZ’s

❏

 SNS Topics are commonly used in:

❏

 Auto Scaling

❏

 CloudWatch Billing Alarms

❏

 SNS Features:

❏

 AWS console web interface for convenience

❏

 Instant push based delivery

❏

 Not like SQS waiting for polling by an EC2

❏

 Simple API’s and easy integration with applications

❏

 Flexible message delivery over multiple transport protocols

❏

 Such as SMS, HTTP, email, Lambda, etc.

❏

 Cost effective & convenient

❏

 It is a pay as you go model

❏

 No upfront cost

❏

 Inexpensive

❏

 SNS v. SQS (Comparing the two is a common exam topic):

❏

 Both are AWS messaging services

❏

 SNS = Push v. SQS = Poll (pull)

❏

 Remember SQS:

❏

 EC2 Instance polls the SQS queue

❏

 EC2 downloads the message and does task

❏

 When task is deleted it deletes that task from the queue

❏

 SNS Prices:

❏

 50 cents per 1 million Amazon SNS requests

❏

 6 cents per 1,000 Notification deliveries over HTTP

❏

 75 cents per 100 Notifications deliveries over SMS

❏

 $2 per 100,000 Notifications over email

❏

 Elastic Transcoder:

❏

 A media transcoder in the Cloud

❏

 Converts media files from their original format to various formats that will play on:

❏

 Smartphones

❏

 Tablets

❏

 PC’s, etc

❏

 Provides transcoding presets for popular output formats

❏

 Meaning no need to guess at what format works best on a specific devise

❏

 Transcoder will know what format will work

❏

 Pay based on:

❏

 Minutes transcoded

❏

 Resolution to which you transcode

❏

 Example:

❏

 Record video--->

❏

 Output to mp4 file--->

❏

 Upload to S3 Bucket, Upload completed--->

❏

 Triggers Lambda function--->

❏

 Invokes Elastic Transcoder--->

❏

 Mp4 file converted to optimal formats for viewing on various devices--->

❏

 Transcoded files saved to a S3 Bucket

❏

 API (Application Program Interface) Gateway:

❏

 Allows developers to:

❏

 Publish

❏

 Maintain

❏

 Monitor

❏

 Secure API’s of any scale

❏

 Is a fully managed service

❏

 Available in AWS console

❏

 Create
 API on console to act as a “front door” for the purposes of:

❏

 Applications to access data

❏

 Business logic

❏

 Create API on console to be utilized as functionality from back end services:

❏

 Ex: Application running on an EC2 Instance

❏

 Ex: Code running on AWS Lambda,

❏

 Ex: Other web applications

❏

 API Gateway architectural example:

❏

 Users watching a video on a laptop make calls to --->

❏

 The API Gateway

❏

 Then API Gateway sends those calls over to--->

❏

 Trigger a Lambda function, or

❏

 Trigger an EC2

❏

 Amazon API Gateway Caching:

❏

 Amazon API Caching must be enabled to work

❏

 Enable API Caching

❏

 When you enable API Caching for a stage, API Gateway will then cache your Endpoint response:

❏

 The Endpoint response is cached for a specific TTL (Time To Live) in seconds

❏

 API Gateway then responds to the request by looking up the Endpoint response in the API cache

❏

 API Gateway Caching Architecture:

❏

 Ex: User has enabled API Gateway Caching with TTL for 60 seconds

❏

 Laptop makes API calls to the API Gateway--->

❏

 API Gateway sends that call to trigger a Lambda function--->

❏

 Lambda function is sent back to API Gateway→

❏

 Result is cached in API Gateway Cache for 60 seconds/TTL

❏

 Response is now sitting in API Gateway Cache for TTL

❏

 Do not need to make the API Call back again to the Lambda function again because the response is in the API Gateway Cache

❏

 Has much faster response rate for end Users.

❏

 API Gateway Benefits:

❏

 Low Cost

❏

 Efficient:

❏

 Speeds up API Gateway response rate

❏

 Reduces number of calls made to your Endpoint

❏

 Improves latency of requests to your API

❏

 API Gateway Scales automatically:

❏

 No EC2’ servers

❏

 No need for Auto Scaling Groups having to responding to API requests

❏

 However, may leave open to security risk:

❏

 Ex: Someone flooding API Gateway with fake API calls

❏

 To handle this security risk you may throttle requests to prevent an attack

❏

 Can also connect Cloudwatch to log all API requests as a security measure

❏

 Same Origin Policy:

❏

 A web application security model

❏

 Under the Same Origin policy:

❏

 The web browser permits scripts contained in the first web page to access data in the second web page

❏

 BUT, If, and only if,
 both web pages
 have the same origin:

❏

 Same origin means they have the same domain name

❏

 Cross-Origin Resource Sharing (CORS):

❏

 CORS used In the design of complex web applications when API Gateway calls utilizing multiple domains

❏

 CORS must be enabled on API Gateway to work

❏

 CORS is a way so that the server at the other end (not the client code in browser) can relax the same origin policy

❏

 If you receive an error message stating, “Origin policy cannot read the remote resource”, then enable CORS on API Gateway

❏

 CORS is a mechanism that allows restricted resources (ex: fonts on a web page) to be requested from another domain outside the domain from which the resource was first served

❏

 Enable CORS
 if you use Javascript/Ajax with multiple domains with API Gateway

❏

 Quick API Gateway Main Points:

❏

 Caching capabilities to increase performance

❏

 Low cost

❏

 Scales automatically

❏

 Can throttle requests to prevent attacks

❏

 Cloudwatch can be connected to log API calls

❏

 Kinesis:

❏

 An AWS platform to send streaming data

❏

 Easy to load

❏

 Easy to analyze streaming data

❏

 Provides the ability to build custom applications for business needs

❏

 Streaming data:

❏

 Is generated by thousands of data sources

❏

 Data records are sent simultaneously

❏

 Data is of small sizes, kilobytes

❏

 Ex: Online store purchases:

❏

 Transactions

❏

 Products, etc

❏

 Ex: Angry birds game:

❏

 Game streams back what the user is doing and the score, etc

❏

 Ex: Social network data

❏

 Posts, updating status, etc.

❏

 Ex: Geospatial data:

❏

 Uber app

❏

 Maps

❏

 Location of driver

❏

 Kinesis Services:

❏

 Kinesis Streams

❏

 Kinesis Firehose

❏

 Kinesis Analytics

❏

 Kinesis Streams:

❏

 Data producers make data

❏

 Data producers send data to Kinesis Streams

❏

 Examples of data producers:

❏

 Ex; EC2’s

❏

 Ex: Mobile phone

❏

 Ex: Laptop computer

❏

 Shards store data:

❏

 Can have multiple Shards

❏

 Kinesis Stream data capacity is:

❏

 A function of the number of Shards:

❏

 You specify the number of Shards for that Kinesis Stream

❏

 Entire capacity of the stream = sum of capacities of the Shards

❏

 By default, Shards store data for 24 hours

❏

 Can increase Shards storage to 7 days

❏

 Data Consumers take data taken from Shards:

❏

 Data Consumers are a fleet of EC2’s

❏

 Data Consumers (i.e. the fleet of EC2’s) take the data from the Shards

❏

 After the Data Consumers/fleet of EC2’s takes the data from the Shards, it uses the data to make various types of calculations:

❏

 Ex: Aggregate the data

❏

 Ex: Uss the data to help run an analysis of social media news feeds

❏

 Ex: Use the data for an algorithm to make predictions

❏

 When Data Consumers finish their calculations they can send the data to be stored in a variety of AWS services, such as:

❏

 Ex: S3 Bucket,

❏

 Ex: DynamoDB

❏

 Ex: Elastic Mapreduce (EMR)

❏

 Ex: Redshift

❏

 Kinesis Firehose:

❏

 Completely automated, meaning:

❏

 Kinesis Firehose has no Shards that must be added in order to keep up with data

❏

 Kinesis Firehose has no Data Consumers mining the data

❏

 Kinesis Firehose does have data producers:

❏

 Ex; EC2’s

❏

 Ex: Fleet of EC2’s

❏

 Ex: Mobile phone

❏

 Ex: Laptop computer

❏

 Ex: IoT

❏

 These data producers send the data to Kinesis Firehose

❏

 Kinesis Firehose does not have data retention

❏

 Data is either analyzed, or directly stored:

❏

 Data is analyzed using Lambda:

❏

 Lambda can analyze the data in real time

❏

 Once data is analyzed, then it is sent to an S3 Bucket

❏

 Analytics of data is optional

❏

 If data is not analyzed, then:

❏

 Data can be sent directly to S3

❏

 Data can be written directly to Elasticsearch Cluster

❏

 Data can be sent to Redshift, however must go via S3:

❏

 Data writes to S3

❏

 The data is copied from the S3 to Redshift

❏

 Kinesis Analytics:

❏

 Sits on top of Kinesis Streams & Kinesis Firehose

❏

 Kinesis Analytics uses SQL query language to analyze data

❏

 Analyzes data as it exists:

❏

 In Kinesis Streams, or

❏

 In Kinesis Firehose

❏

 Can use SQL query to store the analyzed data to:

❏

 S3

❏

 Redshift

❏

 Elasticsearch Cluster

Quick Kinesis Streams Review

❏

 Understand differences between Kinesis Stream vs/ Kinesis Firehose

❏

 Hints:

❏

 If an exam question emphasis is on Shards then it is referring to Kinesis Streams

❏

 If an exam question emphasis is analyzing data automatically using Lambda, on not having to be concerned with Data Consumers, then that is referring to Kinesis Firehose

❏

 Understand Kinesis Analytics, such as using SQL query

 Application Service Summary

❏

 SQS:

❏

 An Amazon web service that gives access to a message queue

❏

 While a computer is waiting to process a message, those messages can be stored in a fails safe SQS queue

❏

 Messages can contain up to 256 KB of text in any format

❏

 SQS is always a poll (pull) based system

❏

 Poll means the messages in the queue are pulled down

❏

 SQS is NOT push based

❏

 Messages default retention period in SQS is 4 days

❏

 Messages can be kept in queue from 1 minute to 14 days

❏

 SQS guarantees message will be processed at least 1 time

❏

 Example of SQS:

❏

 A User on a travel website types a query in the browser. They query is to get the cheapest flight from point A to point B.

❏

 That query then goes to an EC2 Instance

❏

 EC2 takes what the User is looking for and puts it together as a message

❏

 That message then goes to an SQS queue

❏

 The message is then polled (pulled) by an EC2 Instance

❏

 The EC2 processes message regarding the need to find the cheapest flight from point A to point B.

❏

 Then the EC2 obtains information from airline servers regarding flights that fit the user’s criteria

❏

 Visibility Timeout:

❏

 The amount of time the message is marked “invisible” in the SQS queue after the reader picks up the message

❏

 “Invisible” means SQS prevents others from receiving and processing the message

❏

 Message is in the queue marked as “Invisible” until timed out

❏

 Default Timeout is 30 seconds

❏

 Timeout can be increased up to 12 hours

❏

 Provided the message/job is processed before the Visibility Timeout expires:

❏

 Then the message will be deleted from the queue

❏

 Processed meaning the message, or job, task was completed

❏

 If the message/job is not processed before the Visibility Timeout expires

❏

 Then the message will become visible again

❏

 When message becomes visible again, then another reader/EC2 Instance will process it

❏

 Makes it possible for a message being delivered twice

❏

 Because if message isn’t finished being processed within the Visibility Timeout, then it will reappear in the SQS queue for another reader/EC2 to process

❏

 Visibility Timeout should give enough time so your message/job can be processed and completed,

❏

 This will avoid repetition.

❏

 SQS standard default is Short Polling:

❏

 Short polling returns to queue to poll messages immediately

❏

 Short polling returns to queue even when nothing is in queue

❏

 When EC2 goes to the SQS to find a message/job, SQS will return a response:

❏

 Immediately

❏

 Even when there is no message/job is in the queue

❏

 SQS Long Polling:

❏

 When EC2 goes to the SQS to find a message/job, SQS only returns a response when there is an actual message/job is in the queue

❏

 Or SQS returns a response when the long poll has timed out

❏

 SQS Polls Standard v. FIFO:

❏

 Standard best attempts to keep messages ordered:

❏

 Order is not guaranteed

❏

 FIFO means First In First Out:

❏

 Order is strictly preserved

❏

 SQS v. SWF:

❏

 SQS messages/job retention = up to 14 days

❏

 SWF workflow retention = up to 1 year

❏

 SQS offers message oriented API

❏

 SWF offers task oriented API

❏

 Humans can be involved in SWF

❏

 SQS must handle duplicate messages

❏

 May need to make sure a message is processed only once

❏

 SWF makes sure task is assigned once

❏

 Task is never duplicated

❏

 SQS must implement your own application level tracking

❏

 Especially if application has multiple queues

❏

 SWF keeps track of all events and tasks in an application

❏

 SWF 3 Different Types of Actors:

❏

 Workflow Starters:

❏

 An application that starts a workflow

❏

 Ex: e-commerce website app that searches train schedule times

❏

 Deciders:

❏

 Control workflow activity task

❏

 Decider chooses what to do next If a task in workflow is finishes, or fails

❏

 Activity workers

❏

 Carry out the active task

❏

 Can be a human who gets an item

❏

 SNS (Simple Notification Service):

❏

 SNS Subscribers and Protocols

❏

 Different types of Protocols are:

❏

 HTTP

❏

 HTTPS

❏

 Application

❏

 Email using JSON

❏

 Email

❏

 Amazon SQS

❏

 AWS Lambda

❏

 SNS v SQS

❏

 Both are AWS services

❏

 SNS pushes

❏

 SNS is sent out to mobile phones, emails,

❏

 SQS poll

❏

 Message resides in SQS queue

❏

 An EC2 is polling/pulling the data down

❏

 Elastic Transcoder:

❏

 Elastic Transcoder:

❏

 A Cloud media transcoder

❏

 Converts media files from their original format

❏

 Converts to various formats that will play on:

❏

 Smartphones

❏

 Tablets

❏

 PC’s, etc

❏

 Provides transcoding presets for popular output formats:

❏

 Meaning, no need to guess at what format works best on a specific devise

❏

 Pay based on:

❏

 Minutes transcoded

❏

 Resolution to which you transcode

❏

 Kinesis Services:

❏

 Kinesis Streams

❏

 Kinesis Firehose

❏

 Kinesis Analytics

❏

 Kinesis Streams:

❏

 Data producers: They produce the data

❏

 Ex; EC2’s

❏

 Ex: Mobile phone

❏

 Ex: Laptop computer

❏

 Architecture:

❏

 Data Producers send data to Kinesis Streams

❏

 Streams are split into Shards

❏

 Shards store data

❏

 Shards pipe the data to the Data Consumers

❏

 Data Consumers take data taken from Shards

❏

 Data Consumers are a fleet of EC2’s

❏

 Data Consumers store data in a variety of AWS services:

❏

 Ex: S3 Bucket

❏

 Ex: DynamoDB

❏

 Ex: Elastic Mapreduce (EMR)

❏

 Ex: Redshift

❏

 Kinesis Firehose:

❏

 Data Producers send data to Kinesis Firehose

❏

 Firehose does not retain data

❏

 Kinesis Firehose does not have data retention

❏

 Data is either analyzed, or directly stored:

❏

 Data is analyzed using Lambda:

❏

 Lambda can analyze the data in real time

❏

 Once data is analyzed, then it is sent to an S3 Bucket

❏

 Analytics of data is optional

❏

 If data is not analyzed, then:

❏

 Data can be sent directly to S3

❏

 Data can be written directly to Elasticsearch Cluster

❏

 Data can be sent to Redshift, however must go via S3:

❏

 Data writes to S3

❏

 The data is copied from the S3 to Redshift

❏

 Kinesis Analytics:

❏

 Sits on top of Kinesis Streams & Kinesis Firehose

❏

 Does SQL queries on Kinesis Streams & Kinesis Firehose

❏

 Data from SQL queries can be stored in:

❏

 S3 Bucket

❏

 Elasticsearch Cluster

❏

 Redshift

1

OEBPS/Image00000.jpg

OEBPS/Image00002.jpg
Study Outline:

into eaty o read
stop by step detalls

