

C++11 for Programmers

Second Edition

Deitel® Developer Series

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

[image: Image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

 U. S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-343985-4
ISBN-10: 0-13-343985-2

Text printed in the United States at RR Donnelley in Crawfordsville, Indiana..
First printing, February 2013

Trademarks

DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates, Inc.

Microsoft, Visual Studio and the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit of the trademark owner, with no intention of infringement of the trademark.

To our review team:

Dean Michael Berris

Danny Kalev

Linda M. Krause

James P. McNellis

Robert C. Seacord

José Antonio González Seco

We are grateful for your guidance and expertise.

Paul and Harvey Deitel

Contents

Chapter 24 and Appendices F–K are PDF documents posted online at www.informit.com/title/9780133439854

Preface

1 Introduction

1.1 Introduction

1.2 C++

1.3 Object Technology

1.4 Typical C++ Development Environment

1.5 Test-Driving a C++ Application

1.6 Operating Systems

1.6.1 Windows—A Proprietary Operating System

1.6.2 Linux—An Open-Source Operating System

1.6.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch® Devices

1.6.4 Google’s Android

1.7 C++11 and the Open Source Boost Libraries

1.8 Web Resources

2 Introduction to C++ Programming, Input/Output and Operators

2.1 Introduction

2.2 First Program in C++: Printing a Line of Text

2.3 Modifying Our First C++ Program

2.4 Another C++ Program: Adding Integers

2.5 Arithmetic

2.6 Decision Making: Equality and Relational Operators

2.7 Wrap-Up

3 Introduction to Classes, Objects and Strings

3.1 Introduction

3.2 Defining a Class with a Member Function

3.3 Defining a Member Function with a Parameter

3.4 Data Members, set Member Functions and get Member Functions

3.5 Initializing Objects with Constructors

3.6 Placing a Class in a Separate File for Reusability

3.7 Separating Interface from Implementation

3.8 Validating Data with set Functions

3.9 Wrap-Up

4 Control Statements: Part 1; Assignment, ++ and -- Operators

4.1 Introduction

4.2 Control Structures

4.3 if Selection Statement

4.4 if...else Double-Selection Statement

4.5 while Repetition Statement

4.6 Counter-Controlled Repetition

4.7 Sentinel-Controlled Repetition

4.8 Nested Control Statements

4.9 Assignment Operators

4.10 Increment and Decrement Operators

4.11 Wrap-Up

5 Control Statements: Part 2; Logical Operators

5.1 Introduction

5.2 Essentials of Counter-Controlled Repetition

5.3 for Repetition Statement

5.4 Examples Using the for Statement

5.5 do...while Repetition Statement

5.6 switch Multiple-Selection Statement

5.7 break and continue Statements

5.8 Logical Operators

5.9 Confusing the Equality (==) and Assignment (=) Operators

5.10 Wrap-Up

6 Functions and an Introduction to Recursion

6.1 Introduction

6.2 Math Library Functions

6.3 Function Definitions with Multiple Parameters

6.4 Function Prototypes and Argument Coercion

6.5 C++ Standard Library Headers

6.6 Case Study: Random Number Generation

6.7 Case Study: Game of Chance; Introducing enum

6.8 C++11 Random Numbers

6.9 Storage Classes and Storage Duration

6.10 Scope Rules

6.11 Function Call Stack and Activation Records

6.12 Functions with Empty Parameter Lists

6.13 Inline Functions

6.14 References and Reference Parameters

6.15 Default Arguments

6.16 Unary Scope Resolution Operator

6.17 Function Overloading

6.18 Function Templates

6.19 Recursion

6.20 Example Using Recursion: Fibonacci Series

6.21 Recursion vs. Iteration

6.22 Wrap-Up

7 Class Templates array and vector; Catching Exceptions

7.1 Introduction

7.2 arrays

7.3 Declaring arrays

7.4 Examples Using arrays

7.4.1 Declaring an array and Using a Loop to Initialize the array’s Elements

7.4.2 Initializing an array in a Declaration with an Initializer List

7.4.3 Specifying an array’s Size with a Constant Variable and Setting array Elements with Calculations

7.4.4 Summing the Elements of an array

7.4.5 Using Bar Charts to Display array Data Graphically

7.4.6 Using the Elements of an array as Counters

7.4.7 Using arrays to Summarize Survey Results

7.4.8 Static Local arrays and Automatic Local arrays

7.5 Range-Based for Statement

7.6 Case Study: Class GradeBook Using an array to Store Grades

7.7 Sorting and Searching arrays

7.8 Multidimensional arrays

7.9 Case Study: Class GradeBook Using a Two-Dimensional array

7.10 Introduction to C++ Standard Library Class Template vector

7.11 Wrap-Up

8 Pointers

8.1 Introduction

8.2 Pointer Variable Declarations and Initialization

8.3 Pointer Operators

8.4 Pass-by-Reference with Pointers

8.5 Built-In Arrays

8.6 Using const with Pointers

8.6.1 Nonconstant Pointer to Nonconstant Data

8.6.2 Nonconstant Pointer to Constant Data

8.6.3 Constant Pointer to Nonconstant Data

8.6.4 Constant Pointer to Constant Data

8.7 sizeof Operator

8.8 Pointer Expressions and Pointer Arithmetic

8.9 Relationship Between Pointers and Built-In Arrays

8.10 Pointer-Based Strings

8.11 Wrap-Up

9 Classes: A Deeper Look; Throwing Exceptions

9.1 Introduction

9.2 Time Class Case Study

9.3 Class Scope and Accessing Class Members

9.4 Access Functions and Utility Functions

9.5 Time Class Case Study: Constructors with Default Arguments

9.6 Destructors

9.7 When Constructors and Destructors Are Called

9.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a Pointer to a private Data Member

9.9 Default Memberwise Assignment

9.10 const Objects and const Member Functions

9.11 Composition: Objects as Members of Classes

9.12 friend Functions and friend Classes

9.13 Using the this Pointer

9.14 static Class Members

9.15 Wrap-Up

10 Operator Overloading; Class string

10.1 Introduction

10.2 Using the Overloaded Operators of Standard Library Class string

10.3 Fundamentals of Operator Overloading

10.4 Overloading Binary Operators

10.5 Overloading the Binary Stream Insertion and Stream Extraction Operators

10.6 Overloading Unary Operators

10.7 Overloading the Unary Prefix and Postfix ++ and -- Operators

10.8 Case Study: A Date Class

10.9 Dynamic Memory Management

10.10 Case Study: Array Class

10.10.1 Using the Array Class

10.10.2 Array Class Definition

10.11 Operators as Member vs. Non-Member Functions

10.12 Converting Between Types

10.13 explicit Constructors and Conversion Operators

10.14 Overloading the Function Call Operator ()

10.15 Wrap-Up

11 Object-Oriented Programming: Inheritance

11.1 Introduction

11.2 Base Classes and Derived Classes

11.3 Relationship between Base and Derived Classes

11.3.1 Creating and Using a CommissionEmployee Class

11.3.2 Creating a BasePlusCommissionEmployee Class Without Using Inheritance

11.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy

11.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data

11.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data

11.4 Constructors and Destructors in Derived Classes

11.5 public, protected and private Inheritance

11.6 Software Engineering with Inheritance

11.7 Wrap-Up

12 Object-Oriented Programming: Polymorphism

12.1 Introduction

12.2 Introduction to Polymorphism: Polymorphic Video Game

12.3 Relationships Among Objects in an Inheritance Hierarchy

12.3.1 Invoking Base-Class Functions from Derived-Class Objects

12.3.2 Aiming Derived-Class Pointers at Base-Class Objects

12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers

12.3.4 Virtual Functions and Virtual Destructors

12.4 Type Fields and switch Statements

12.5 Abstract Classes and Pure virtual Functions

12.6 Case Study: Payroll System Using Polymorphism

12.6.1 Creating Abstract Base Class Employee

12.6.2 Creating Concrete Derived Class SalariedEmployee

12.6.3 Creating Concrete Derived Class CommissionEmployee

12.6.4 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee

12.6.5 Demonstrating Polymorphic Processing

12.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”

12.8 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info

12.9 Wrap-Up

13 Stream Input/Output: A Deeper Look

13.1 Introduction

13.2 Streams

13.2.1 Classic Streams vs. Standard Streams

13.2.2 iostream Library Headers

13.2.3 Stream Input/Output Classes and Objects

13.3 Stream Output

13.3.1 Output of char * Variables

13.3.2 Character Output Using Member Function put

13.4 Stream Input

13.4.1 get and getline Member Functions

13.4.2 istream Member Functions peek, putback and ignore

13.4.3 Type-Safe I/O

13.5 Unformatted I/O Using read, write and gcount

13.6 Introduction to Stream Manipulators

13.6.1 Integral Stream Base: dec, oct, hex and setbase

13.6.2 Floating-Point Precision (precision, setprecision)

13.6.3 Field Width (width, setw)

13.6.4 User-Defined Output Stream Manipulators

13.7 Stream Format States and Stream Manipulators

13.7.1 Trailing Zeros and Decimal Points (showpoint)

13.7.2 Justification (left, right and internal)

13.7.3 Padding (fill, setfill)

13.7.4 Integral Stream Base (dec, oct, hex, showbase)

13.7.5 Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed)

13.7.6 Uppercase/Lowercase Control (uppercase)

13.7.7 Specifying Boolean Format (boolalpha)

13.7.8 Setting and Resetting the Format State via Member Function flags

13.8 Stream Error States

13.9 Tying an Output Stream to an Input Stream

13.10 Wrap-Up

14 File Processing

14.1 Introduction

14.2 Files and Streams

14.3 Creating a Sequential File

14.4 Reading Data from a Sequential File

14.5 Updating Sequential Files

14.6 Random-Access Files

14.7 Creating a Random-Access File

14.8 Writing Data Randomly to a Random-Access File

14.9 Reading from a Random-Access File Sequentially

14.10 Case Study: A Transaction-Processing Program

14.11 Object Serialization

14.12 Wrap-Up

15 Standard Library Containers and Iterators

15.1 Introduction

15.2 Introduction to Containers

15.3 Introduction to Iterators

15.4 Introduction to Algorithms

15.5 Sequence Containers

15.5.1 vector Sequence Container

15.5.2 list Sequence Container

15.5.3 deque Sequence Container

15.6 Associative Containers

15.6.1 multiset Associative Container

15.6.2 set Associative Container

15.6.3 multimap Associative Container

15.6.4 map Associative Container

15.7 Container Adapters

15.7.1 stack Adapter

15.7.2 queue Adapter

15.7.3 priority_queue Adapter

15.8 Class bitset

15.9 Wrap-Up

16 Standard Library Algorithms

16.1 Introduction

16.2 Minimum Iterator Requirements

16.3 Algorithms

16.3.1 fill, fill_n, generate and generate_n

16.3.2 equal, mismatch and lexicographical_compare

16.3.3 remove, remove_if, remove_copy and remove_copy_if

16.3.4 replace, replace_if, replace_copy and replace_copy_if

16.3.5 Mathematical Algorithms

16.3.6 Basic Searching and Sorting Algorithms

16.3.7 swap, iter_swap and swap_ranges

16.3.8 copy_backward, merge, unique and reverse

16.3.9 inplace_merge, unique_copy and reverse_copy

16.3.10 Set Operations

16.3.11 lower_bound, upper_bound and equal_range

16.3.12 Heapsort

16.3.13 min, max, minmax and minmax_element

16.4 Function Objects

16.5 Lambda Expressions

16.6 Standard Library Algorithm Summary

16.7 Wrap-Up

17 Exception Handling: A Deeper Look

17.1 Introduction

17.2 Example: Handling an Attempt to Divide by Zero

17.3 Rethrowing an Exception

17.4 Stack Unwinding

17.5 When to Use Exception Handling

17.6 Constructors, Destructors and Exception Handling

17.7 Exceptions and Inheritance

17.8 Processing new Failures

17.9 Class unique_ptr and Dynamic Memory Allocation

17.10 Standard Library Exception Hierarchy

17.11 Wrap-Up

18 Introduction to Custom Templates

18.1 Introduction

18.2 Class Templates

18.3 Function Template to Manipulate a Class-Template Specialization Object

18.4 Nontype Parameters

18.5 Default Arguments for Template Type Parameters

18.6 Overloading Function Templates

18.7 Wrap-Up

19 Class string and String Stream Processing: A Deeper Look

19.1 Introduction

19.2 string Assignment and Concatenation

19.3 Comparing strings

19.4 Substrings

19.5 Swapping strings

19.6 string Characteristics

19.7 Finding Substrings and Characters in a string

19.8 Replacing Characters in a string

19.9 Inserting Characters into a string

19.10 Conversion to Pointer-Based char * Strings

19.11 Iterators

19.12 String Stream Processing

19.13 C++11 Numeric Conversion Functions

19.14 Wrap-Up

20 Bits, Characters, C Strings and structs

20.1 Introduction

20.2 Structure Definitions

20.3 typedef

20.4 Example: Card Shuffling and Dealing Simulation

20.5 Bitwise Operators

20.6 Bit Fields

20.7 Character-Handling Library

20.8 C String-Manipulation Functions

20.9 C String-Conversion Functions

20.10 Search Functions of the C String-Handling Library

20.11 Memory Functions of the C String-Handling Library

20.12 Wrap-Up

21 Other Topics

21.1 Introduction

21.2 const_cast Operator

21.3 mutable Class Members

21.4 namespaces

21.5 Operator Keywords

21.6 Pointers to Class Members (.* and ->*)

21.7 Multiple Inheritance

21.8 Multiple Inheritance and virtual Base Classes

21.9 Wrap-Up

22 ATM Case Study, Part 1: Object-Oriented Design with the UML

22.1 Introduction

22.2 Introduction to Object-Oriented Analysis and Design

22.3 Examining the ATM Requirements Document

22.4 Identifying the Classes in the ATM Requirements Document

22.5 Identifying Class Attributes

22.6 Identifying Objects’ States and Activities

22.7 Identifying Class Operations

22.8 Indicating Collaboration Among Objects

22.9 Wrap-Up

23 ATM Case Study, Part 2: Implementing an Object-Oriented Design

23.1 Introduction

23.2 Starting to Program the Classes of the ATM System

23.3 Incorporating Inheritance into the ATM System

23.4 ATM Case Study Implementation

23.4.1 Class ATM

23.4.2 Class Screen

23.4.3 Class Keypad

23.4.4 Class CashDispenser

23.4.5 Class DepositSlot

23.4.6 Class Account

23.4.7 Class BankDatabase

23.4.8 Class Transaction

23.4.9 Class BalanceInquiry

23.4.10 Class Withdrawal

23.4.11 Class Deposit

23.4.12 Test Program ATMCaseStudy.cpp

23.5 Wrap-Up

A Operator Precedence and Associativity

B ASCII Character Set

C Fundamental Types

D Number Systems

D.1 Introduction

D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers

D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers

D.4 Converting from Binary, Octal or Hexadecimal to Decimal

D.5 Converting from Decimal to Binary, Octal or Hexadecimal

D.6 Negative Binary Numbers: Two’s Complement Notation

E Preprocessor

E.1 Introduction

E.2 #include Preprocessing Directive

E.3 #define Preprocessing Directive: Symbolic Constants

E.4 #define Preprocessing Directive: Macros

E.5 Conditional Compilation

E.6 #error and #pragma Preprocessing Directives

E.7 Operators # and ##

E.8 Predefined Symbolic Constants

E.9 Assertions

E.10 Wrap-Up

Index

Online Chapters and Appendices

Chapter 24 and Appendices F–K are PDF documents posted online at www.informit.com/title/9780133439854

24 C++11 Additional Features

F C Legacy Code Topics

G UML 2: Additional Diagram Types

H Using the Visual Studio Debugger

I Using the GNU C++ Debugger

J Using the Xcode Debugger

K Test Driving a C++ Program on Mac OS X

[Note: The test drives for Windows and Linux are in Chapter 1.]

Preface

“The chief merit of language is clearness ...”

—Galen

Welcome to C++11 for Programmers! This book presents leading-edge computing technologies for software developers.

We focus on software engineering best practices. At the heart of the book is the Deitel signature “live-code approach”—concepts are presented in the context of complete working programs, rather than in code snippets. Each complete code example is accompanied by live sample executions. All the source code is available at

www.deitel.com/books/cpp11fp

As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

We’ll respond promptly. For book updates, visit www.deitel.com/books/cpp11fp. Join our social media communities on Facebook (www.deitel.com/DeitelFan), Twitter (@deitel), Google+ (gplus.to/deitel) and LinkedIn (bit.ly/DeitelLinkedIn), and subscribe to the Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Features

Here are the key features of C++11 for Programmers.

C++11 Standard

[image: Image]

The new C++11 standard, published in 2011, motivated us to write C++11 for Programmers. Throughout the book, each new C++11 feature we discuss is marked with the “11” icon you see here in the margin. These are some of the key C++11 features of this new edition:

• Conforms to the new C++11 standard. Extensive coverage of many of the key new C++11 features (Fig. 1).

• Code thoroughly tested on three popular industrial-strength C++11 compilers. We tested the code examples on GNU™ C++ 4.7, Microsoft® Visual C++® 2012 and Apple® LLVM in Xcode® 4.5.

• Smart pointers. Smart pointers help you avoid dynamic memory management errors by providing additional functionality beyond that of built-in pointers. We discuss unique_ptr in Chapter 17, and shared_ptr and weak_ptr in Chapter 24.

[image: Image]

Fig. 1. A sampling of C++11 features in C++11 for Programmers.

• Earlier coverage of template-based Standard Library containers, iterators and algorithms, enhanced with C++11 capabilities. We moved the treatment of Standard Library containers, iterators and algorithms from Chapter 20 in the previous edition to Chapters 15 and 16 and enhanced it with new C++11 features. The vast majority of your data structure needs can be fulfilled by reusing these Standard Library capabilities.

• Online Chapter 24, C++11: Additional Topics. In this chapter, we present additional C++11 topics. The new C++11 standard has been available since 2011, but not all C++ compilers have fully implemented the features. If all three of our key compilers already implemented a particular C++11 feature at the time we wrote this book, we generally integrated a discussion of that feature into the text with a live-code example. If any of these compilers had not implemented that feature, we included a bold italic heading followed by a brief discussion of the feature. Many of those discussions will be expanded in online Chapter 24 as the features are implemented. Placing the chapter online allows us to evolve it dynamically. This chapter includes discussions of regular expressions, the shared_ptr and weak_ptr smart pointers, move semantics and more. You can access this chapter at:

 www.informit.com/title/9780133439854

• Random Number generation, simulation and game playing. To help make programs more secure (see Secure C++ Programming on the next page), we now discuss C++11’s new non-deterministic random-number generation capabilities.

Object-Oriented Programming

• Early-objects approach. The book introduces the basic concepts and terminology of object technology in Chapter 1. You’ll develop your first customized C++ classes and objects in Chapter 3.

• C++ Standard Library string. C++ offers two types of strings—string class objects (which we begin using in Chapter 3) and C strings (from the C programming language). We’ve replaced most occurrences of C strings with instances of C++ class string to make programs more robust and eliminate many of the security problems of C strings. We discuss C strings later in the book to prepare you for working with the legacy code in industry. In new development, you should favor string objects.

• C++ Standard Library array. Our primary treatment of arrays now uses the Standard Library’s array class template instead of built-in, C-style, pointer-based arrays. We also cover built-in arrays because they still have some uses in C++ and so that you’ll be able to read legacy code. C++ offers three types of arrays—class templates array and vector (which we start using in Chapter 7) and C-style, pointer-based arrays which we discuss in Chapter 8. As appropriate, we use class template array and occasionally, class template vector, instead of C arrays throughout the book. In new development, you should favor class templates array and vector.

• Crafting valuable classes. A key goal of this book is to prepare you to build valuable reusable C++ classes. In the Chapter 10 case study, you’ll build your own custom Array class. Chapter 10 begins with a test-drive of class template string so you can see an elegant use of operator overloading before you implement your own customized class with overloaded operators.

• Case studies in object-oriented programming. We provide case studies that span multiple sections and chapters and cover the software development lifecycle. These include the GradeBook class in Chapters 3–7, the Time class in Chapter 9 and the Employee class in Chapters 11–12. Chapter 12 contains a detailed diagram and explanation of how C++ can implement polymorphism, virtual functions and dynamic binding “under the hood.”

• Optional case study: Using the UML to develop an object-oriented design and C++ implementation of an ATM. The UML™ (Unified Modeling Language™) is the industry-standard graphical language for modeling object-oriented systems. We introduce the UML in the early chapters. Chapters 22 and 23 include an optional case study on object-oriented design using the UML. We design and implement the software for a simple automated teller machine (ATM). We analyze a typical requirements document that specifies the system to be built. We determine the classes needed to implement that system, the attributes the classes need to have, the behaviors the classes need to exhibit and we specify how the classes must interact with one another to meet the system requirements. From the design we produce a complete C++ implementation. Readers often report that the case study “ties it all together” and helps them achieve a deeper understanding of object orientation.

• Exception handling. We integrate basic exception handling early in the book. You can easily pull more detailed material forward from Chapter 17, Exception Handling: A Deeper Look.

• Key programming paradigms. We discuss object-oriented programming and generic programming.

Pedagogic Features

• Examples. We include a broad range of example programs selected from computer science, business, simulation, game playing and other topics.

• Illustrations and figures. Abundant tables, line drawings, UML diagrams, programs and program outputs are included.

Other Features

• Pointers. We provide thorough coverage of the built-in pointer capabilities and the intimate relationship among built-in pointers, C strings and built-in arrays.

• Debugger appendices. We provide three debugger appendices—Appendix H, Using the Visual Studio Debugger, Appendix I, Using the GNU C++ Debugger and Appendix J, Using the Xcode Debugger.

Secure C++ Programming

It’s difficult to build industrial-strength systems that stand up to attacks from viruses, worms, and other forms of “malware.” Today, via the Internet, such attacks can be instantaneous and global in scope. Building security into software from the beginning of the development cycle can greatly reduce vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and respond promptly to attacks. CERT—the Computer Emergency Response Team—is a government-funded organization within the Carnegie Mellon University Software Engineering Institute™. CERT publishes and promotes secure coding standards for various popular programming languages to help software developers implement industrial-strength systems that avoid the programming practices that leave systems open to attacks.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Seacord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our C programs from a security standpoint, recommending that we adhere to the CERT C Secure Coding Standard.

We’ve done the same for C++11 for Programmers, adhering to key CERT C++ Secure Coding Standard guidelines (as appropriate for a book at this level), which you can find at:

www.securecoding.cert.org

We were pleased to discover that we’ve already been recommending many of these coding practices in our books since the early 1990s. If you’ll be building industrial-strength C++ systems, Secure Coding in C and C++, Second Edition (Robert Seacord, Addison-Wesley Professional) is a must read.

Training Approach

C++11 for Programmers stresses program clarity and concentrates on building well-engineered software.

Live-Code Approach. The book includes hundreds of “live-code” examples—each new concept is presented in the context of a complete working C++ program that is immediately followed by one or more actual executions showing the program’s inputs and outputs.

Syntax Shading. For readability, we syntax shade the code, similar to the way most integrated-development environments and code editors syntax color the code. Our syntax-shading conventions are:

Click here to view code image

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

Code Highlighting. We place light-gray rectangles around each program’s key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each defining occurrence in bold italic text for easier reference. We emphasize on-screen components in the bold Helvetica font (e.g., the File menu) and emphasize C++ program text in the Lucida font (e.g., int x = 5).

Web Access. All of the source-code examples can be downloaded from:

www.deitel.com/books/cpp11fp

Objectives. The chapter opening quotations are followed by a list of chapter objectives.

Programming Tips. We include hundreds of programming tips to help you focus on important aspects of program development. These tips and practices represent the best we’ve gleaned from a combined eight decades of programming and teaching experience.

[image: Image] Good Programming Practice

The Good Programming Practices call attention to techniques that will help you produce programs that are clearer, more understandable and more maintainable.

[image: Image] Common Programming Error

Pointing out these Common Programming Errors reduces the likelihood that you’ll make them.

[image: Image] Error-Prevention Tip

These tips contain suggestions for exposing and removing bugs from your programs; many of the tips describe aspects of C++ that prevent bugs from getting into your programs.

[image: Image] Performance Tip

These tips highlight opportunities for making your programs run faster or minimizing the amount of memory that they occupy.

[image: Image] Portability Tip

The Portability Tips help you write code that will run on a variety of platforms.

[image: Image] Software Engineering Observation

The Software Engineering Observations highlight architectural and design issues that affect the construction of software systems, especially large-scale systems.

Online Chapter and Appendices

The following chapter and appendices are available online:

• Chapter 24, C++11: Additional Features

• Appendix F, C Legacy Code Topics

• Appendix G, UML 2: Additional Diagram Types

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU C++ Debugger

• Appendix J, Using the Xcode Debugger

• Appendix K, Test Driving a C++ Program on Mac OS X

To access the online chapter and appendices, go to:

www.informit.com/register

You must register for an an InformIT account and then login. After you’ve logged into your account, you’ll see the Register a Product box. Enter the book’s ISBN (9780133439854) to access the page with the online chapter and appendices.

Obtaining the Software Used in C++11 for Programmers

We wrote the code examples in C++11 for Programmers using the following C++ development tools:

• Microsoft’s free Visual Studio Express 2012 for Windows Desktop, which includes Visual C++ and other Microsoft development tools. This runs on Windows 7 and 8 and is available for download at

 www.microsoft.com/express

• GNU’s free GNU C++ (gcc.gnu.org/install/binaries.html), which is already installed on most Linux systems and can also be installed on Mac OS X and Windows systems.

• Apple’s free Xcode, which OS X users can download from the Mac App Store.

C++11 Fundamentals: Parts I, II, III and IV LiveLessons Video Training Product

Our C++11 Fundamentals: Parts I, II, III and IV LiveLessons video training product shows you what you need to know to start building robust, powerful software with C++. It includes 20+ hours of expert training synchronized with C++11 for Programmers. For additional information about Deitel LiveLessons video products, visit

www.deitel.com/livelessons

or contact us at deitel@deitel.com. You can also access our LiveLessons videos if you have a subscription to Safari Books Online (www.safaribooksonline.com). These LiveLessons will be available in the Summer of 2013.

Acknowledgments

We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long hours devoted to this project. Abbey co-authored Chapter 1 and this Preface, and she and Barbara painstakingly researched the new capabilities of C++11.

We’re fortunate to have worked on this project with the dedicated publishing professionals at Prentice Hall/Pearson. We appreciate the extraordinary efforts and mentorship of our friend and professional colleague Mark L. Taub, Editor-in-Chief of Pearson Technology Group. Carole Snyder did a great job recruiting distinguished members of the C++ community to review the manuscript. Chuti Prasertsith designed the cover with creativity and precision—we gave him our vision for the cover and he made it happen. John Fuller does a superb job managing the production of all of our Deitel Developer Series books and LiveLessons video products.

Reviewers

We wish to acknowledge the efforts of the reviewers whose constructive criticisms helped us shape the recent editions of this content. They scrutinized the text and the programs and provided countless suggestions for improving the presentation: Dean Michael Berris (Google, Member ISO C++ Committee), Danny Kalev (C++ expert, certified system analyst and former member of the C++ Standards Committee), Linda M. Krause (Elmhurst College), James P. McNellis (Microsoft Corporation), Robert C. Seacord (Secure Coding Manager at SEI/CERT, author of Secure Coding in C and C++); José Antonio González Seco (Parliament of Andalusia), Virginia Bailey (Jackson State University), Thomas J. Borrelli (Rochester Institute of Technology), Ed Brey (Kohler Co.), Chris Cox (Adobe Systems), Gregory Dai (eBay), Peter J. DePasquale (The College of New Jersey), John Dibling (SpryWare), Susan Gauch (University of Arkansas), Doug Gregor (Apple, Inc.), Jack Hagemeister (Washington State University), Williams M. Higdon (University of Indiana), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis Integration Solutions), Ed James-Beckham (Borland), Wing-Ning Li (University of Arkansas), Dean Mathias (Utah State University), Robert A. McLain (Tidewater Community College), Robert Myers (Florida State University), Gavin Osborne (Saskatchewan Institute of Applied Science and Technology), Amar Raheja (California State Polytechnic University, Pomona), April Reagan (Microsoft), Raymond Stephenson (Microsoft), Dave Topham (Ohlone College), Anthony Williams (author and C++ Standards Committee member) and Chad Willwerth (University Washington, Tacoma).

As you read the book, we’d sincerely appreciate your comments, criticisms and suggestions for improving the text. Please address all correspondence to:

deitel@deitel.com

We’ll respond promptly. We enjoyed writing C++11 for Programmers. We hope you enjoy reading it!

Paul Deitel
Harvey Deitel

About the Authors

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate of MIT, where he studied Information Technology. Through Deitel & Associates, Inc., he has delivered hundreds of programming courses to industry, government and military clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc., has more than 50 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University. In the 1960s, through Advanced Computer Techniques and Computer Usage Corporation, he worked on the teams building various IBM operating systems. In the 1970s, he built commercial software systems. He has extensive college teaching experience, including earning tenure and serving as the Chairman of the Computer Science Department at Boston College before founding Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. The Deitels’ publications have earned international recognition, with translations published in Chinese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming courses to corporate, academic, government and military clients.

Deitel® Dive-Into® Series Corporate Training

Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally recognized authoring and corporate training organization, specializing in computer programming languages, object technology, mobile app development and Internet and web software technology. The company’s clients include many of the world’s largest corporations, government agencies, branches of the military, and academic institutions. The company offers instructor-led training courses delivered at client sites worldwide on major programming languages and platforms, including C++, Visual C++®, C, Java™, Visual C#®, Visual Basic®, XML®, Python®, object technology, Internet and web programming, Android app development, Objective-C and iOS app development and a growing list of additional programming and software development courses.

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel & Associates, Inc., publishes leading-edge programming professional books, college textbooks and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be reached at:

deitel@deitel.com

To learn more about Deitel Dive-Into® Series Corporate Training curriculum, visit:

www.deitel.com/training

To request a proposal for worldwide on-site, instructor-led training at your organization, e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so through www.deitel.com. Bulk orders by corporations, the government, the military and academic institutions should be placed directly with Pearson. For more information, visit

www.informit.com/store/sales.aspx

1. Introduction

Objectives

In this chapter you’ll:

• Review object-technology concepts.

• Learn the elements of a typical C++ program-development environment.

• Test-drive a C++ application.

Outline

1.1 Introduction

1.2 C++

1.3 Object Technology

1.4 Typical C++ Development Environment

1.5 Test-Driving a C++ Application

1.6 Operating Systems

1.6.1 Windows—A Proprietary Operating System

1.6.2 Linux—An Open-Source Operating System

1.6.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch® Devices

1.6.4 Google’s Android

1.7 C++11 and the Open Source Boost Libraries

1.8 Web Resources

1.1. Introduction

Welcome to C++—a powerful computer programming language that’s appropriate for technically oriented people with little or no programming experience, and for experienced programmers to use in building substantial information systems.

You’ll learn object-oriented programming in C++. You’ll create many C++ software objects that model things in the real-world.

[image: Image]

C++ is one of today’s most popular software development languages. This text provides an introduction to programming in C++11—the latest version standardized through the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC).

1.2. C++

C++ evolved from C, which was developed by Dennis Ritchie at Bell Laboratories. C is available for most computers and is hardware independent. With careful design, it’s possible to write C programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes called hardware platforms) unfortunately led to many variations. A standard version of C was needed. The American National Standards Institute (ANSI) cooperated with the International Organization for Standardization (ISO) to standardize C worldwide; the joint standard document was published in 1990 and is referred to as ANSI/ISO 9899: 1990.

C11 is the latest ANSI standard for the C programming language. It was developed to evolve the C language to keep pace with increasingly powerful hardware and ever more demanding user requirements. C11 also makes C more consistent with C++. For more information on C and C11, see our book C How to Program, 7/e and our C Resource Center (located at www.deitel.com/C).

C++, an extension of C, was developed by Bjarne Stroustrup in 1979 at Bell Laboratories. Originally called “C with Classes”, it was renamed to C++ in the early 1980s. C++ provides a number of features that “spruce up” the C language, but more importantly, it provides capabilities for object-oriented programming.

You’ll begin developing customized, reusable classes and objects in Chapter 3, Introduction to Classes, Objects and Strings. The book is object oriented, where appropriate, from the start and throughout the text.

We also provide an optional automated teller machine (ATM) case study in Chapters 22–23, which contains a complete C++ implementation. The case study presents a carefully paced introduction to object-oriented design using the UML—an industry-standard graphical modeling language for developing object-oriented systems. We guide you through a friendly design experience intended for the novice.

C++ Standard Library

C++ programs consist of pieces called classes and functions. You can program each piece yourself, but most C++ programmers take advantage of the rich collections of classes and functions in the C++ Standard Library. Thus, there are really two parts to learning the C++ “world.” The first is learning the C++ language itself; the second is learning how to use the classes and functions in the C++ Standard Library. We discuss many of these classes and functions. Most compiler vendors provide online C++ Standard Library reference documentation. You can also learn about the C++ Standard library at:

www.cppreference.com

In addition to the C++ Standard Library, many special-purpose class libraries are supplied by independent software vendors and by the open-source community.

[image: Image] Software Engineering Observation 1.1

Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use existing pieces wherever possible. Called software reuse, this practice is central to object-oriented programming.

[image: Image] Software Engineering Observation 1.2

When programming in C++, you typically will use the following building blocks: classes and functions from the C++ Standard Library, classes and functions you and your colleagues create and classes and functions from various popular third-party libraries.

The advantage of creating your own functions and classes is that you’ll know exactly how they work. You’ll be able to examine the C++ code. The disadvantage is the time-consuming and complex effort that goes into designing, developing and maintaining new functions and classes that are correct and that operate efficiently.

[image: Image] Performance Tip 1.1

Using C++ Standard Library functions and classes instead of writing your own versions can improve program performance, because they’re written carefully to perform efficiently. This technique also shortens program development time.

[image: Image] Portability Tip 1.1

Using C++ Standard Library functions and classes instead of writing your own improves program portability, because they’re included in every C++ implementation.

1.3. Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time when demands for new and more powerful software are soaring. Objects, or more precisely—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable software components. There are date objects, time objects, audio objects, video objects, automobile objects, people objects, etc. Almost any noun can be reasonably represented as a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating). Software developers have discovered that using a modular, object-oriented design-and-implementation approach can make software-development groups much more productive than was possible with earlier techniques—object-oriented programs are often easier to understand, correct and modify.

The Automobile as an Object

Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by pressing its accelerator pedal. What must happen before you can do this? Well, before you can drive a car, someone has to design it. A car typically begins as engineering drawings, similar to the blueprints that describe the design of a house. These drawings include the design for an accelerator pedal. The pedal hides from the driver the complex mechanisms that actually make the car go faster, just as the brake pedal hides the mechanisms that slow the car, and the steering wheel hides the mechanisms that turn the car. This enables people with little or no knowledge of how engines, braking and steering mechanisms work to drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that describe it. A completed car has an actual accelerator pedal to make the car go faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver must press the pedal to accelerate the car.

Member Functions and Classes

Let’s use our car example to introduce some key object-oriented programming concepts. Performing a task in a program requires a member function. The member function houses the program statements that actually perform its task. It hides these statements from its user, just as the accelerator pedal of a car hides from the driver the mechanisms of making the car go faster. In C++, we create a program unit called a class to house the set of member functions that perform the class’s tasks. For example, a class that represents a bank account might contain one member function to deposit money to an account, another to withdraw money from an account and a third to inquire what the account’s current balance is. A class is similar in concept to a car’s engineering drawings, which house the design of an accelerator pedal, steering wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings before you can actually drive a car, you must build an object from a class before a program can perform the tasks that the class’s methods define. The process of doing this is called instantiation. An object is then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can reuse a class many times to build many objects. Reuse of existing classes when building new classes and programs saves time and effort. Reuse also helps you build more reliable and effective systems, because existing classes and components often have gone through extensive testing, debugging and performance tuning. Just as the notion of interchangeable parts was crucial to the Industrial Revolution, reusable classes are crucial to the software revolution that has been spurred by object technology.

Messages and Member Function Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—that is, to go faster. Similarly, you send messages to an object. Each message is implemented as a member function call that tells a member function of the object to perform its task. For example, a program might call a particular bank account object’s deposit member function to increase the account’s balance.

Attributes and Data Members

A car, besides having capabilities to accomplish tasks, also has attributes, such as its color, its number of doors, the amount of gas in its tank, its current speed and its record of total miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are represented as part of its design in its engineering diagrams (which, for example, include an odometer and a fuel gauge). As you drive an actual car, these attributes are carried along with the car. Every car maintains its own attributes. For example, each car knows how much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These attributes are specified as part of the object’s class. For example, a bank account object has a balance attribute that represents the amount of money in the account. Each bank account object knows the balance in the account it represents, but not the balances of the other accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation

Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object’s attributes and member functions are intimately related. Objects may communicate with one another, but they’re normally not allowed to know how other objects are implemented—implementation details are hidden within the objects themselves. This information hiding, as we’ll see, is crucial to good software engineering.

Inheritance

A new class of objects can be created quickly and conveniently by inheritance—the new class absorbs the characteristics of an existing class, possibly customizing them and adding unique characteristics of its own. In our car analogy, an object of class “convertible” certainly is an object of the more general class “automobile,” but more specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design (OOAD)

Soon you’ll be writing programs in C++. How will you create the code (i.e., the program instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on your computer and start typing. This approach may work for small programs (like the ones we present in the early chapters of the book), but what if you were asked to create a software system to control thousands of automated teller machines for a major bank? Or suppose you were asked to work on a team of thousands of software developers building the next U.S. air traffic control system? For projects so large and complex, you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for determining your project’s requirements (i.e., defining what the system is supposed to do) and developing a design that satisfies them (i.e., deciding how the system should do it). Ideally, you’d go through this process and carefully review the design (and have your design reviewed by other software professionals) before writing any code. If this process involves analyzing and designing your system from an object-oriented point of view, it’s called an object-oriented analysis and design (OOAD) process. Languages like C++ are object oriented. Programming in such a language, called object-oriented programming (OOP), allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)

Although many different OOAD processes exist, a single graphical language for communicating the results of any OOAD process has come into wide use. This language, known as the Unified Modeling Language (UML), is now the most widely used graphical scheme for modeling object-oriented systems. We present our first UML diagrams in Chapters 3 and 4, then use them in our deeper treatment of object-oriented programming through Chapter 12. In our optional ATM Software Engineering Case Study in Chapters 22–23 we present a simple subset of the UML’s features as we guide you through an object-oriented design experience.

1.4. Typical C++ Development Environment

C++ systems generally consist of three parts: a program development environment, the language and the C++ Standard Library. C++ programs typically go through six phases: edit, preprocess, compile, link, load and execute. The following discussion explains a typical C++ program development environment.

Phase 1: Editing a Program

Phase 1 consists of editing a file with an editor program, normally known simply as an editor (Fig. 1.1). You type a C++ program (typically referred to as source code) using the editor, make any necessary corrections and save the program on a secondary storage device, such as your hard drive. C++ source code filenames often end with the .cpp, .cxx, .cc or .C extensions (note that C is in uppercase) which indicate that a file contains C++ source code. See the documentation for your C++ compiler for more information on file-name extensions.

[image: Image]

Fig. 1.1. Typical C++ development environment—editing phase.

Two editors widely used on Linux systems are vi and emacs. C++ software packages for Microsoft Windows such as Microsoft Visual C++ (microsoft.com/express) have editors integrated into the programming environment. You can also use a simple text editor, such as Notepad in Windows, to write your C++ code.

For organizations that develop substantial information systems, integrated development environments (IDEs) are available from many major software suppliers. IDEs provide tools that support the software-development process, including editors for writing and editing programs and debuggers for locating logic errors—errors that cause programs to execute incorrectly. Popular IDEs include Microsoft® Visual Studio 2012 Express Edition, Dev C++, NetBeans, Eclipse, Apple’s Xcode and CodeLite.

Phase 2: Preprocessing a C++ Program

In Phase 2, you give the command to compile the program (Fig. 1.2). In a C++ system, a preprocessor program executes automatically before the compiler’s translation phase begins (so we call preprocessing Phase 2 and compiling Phase 3). The C++ preprocessor obeys commands called preprocessing directives, which indicate that certain manipulations are to be performed on the program before compilation. These manipulations usually include other text files to be compiled, and perform various text replacements. The most common preprocessing directives are discussed in the early chapters; a detailed discussion of preprocessor features appears in Appendix E, Preprocessor.

[image: Image]

Fig. 1.2. Typical C++ development environment—preprocessor phase.

Phase 3: Compiling a C++ Program

In Phase 3, the compiler translates the C++ program into machine-language code—also referred to as object code (Fig. 1.3).

[image: Image]

Fig. 1.3. Typical C++ development environment—compilation phase.

Phase 4: Linking

Phase 4 is called linking. C++ programs typically contain references to functions and data defined elsewhere, such as in the standard libraries or in the private libraries of groups of programmers working on a particular project (Fig. 1.4). The object code produced by the C++ compiler typically contains “holes” due to these missing parts. A linker links the object code with the code for the missing functions to produce an executable program (with no missing pieces). If the program compiles and links correctly, an executable image is produced.

[image: Image]

Fig. 1.4. Typical C++ development environment—linking phase.

Phase 5: Loading

Phase 5 is called loading. Before a program can be executed, it must first be placed in memory (Fig. 1.5). This is done by the loader, which takes the executable image from disk and transfers it to memory. Additional components from shared libraries that support the program are also loaded.

[image: Image]

Fig. 1.5. Typical C++ development environment—loading phase.

Phase 6: Execution

Finally, the computer, under the control of its CPU, executes the program one instruction at a time (Fig. 1.6). Some modern computer architectures can execute several instructions in parallel.

[image: Image]

Fig. 1.6. Typical C++ development environment—execution phase.

Problems That May Occur at Execution Time

Programs might not work on the first try. Each of the preceding phases can fail because of various errors that we’ll discuss throughout this book. For example, an executing program might try to divide by zero (an illegal operation for integer arithmetic in C++). This would cause the C++ program to display an error message. If this occurred, you’d have to return to the edit phase, make the necessary corrections and proceed through the remaining phases again to determine that the corrections fixed the problem(s). [Note: Most programs in C++ input or output data. Certain C++ functions take their input from cin (the standard input stream; pronounced “see-in”), which is normally the keyboard, but cin can be redirected to another device. Data is often output to cout (the standard output stream; pronounced “see-out”), which is normally the computer screen, but cout can be redirected to another device. When we say that a program prints a result, we normally mean that the result is displayed on a screen. Data may be output to other devices, such as disks and hardcopy printers. There is also a standard error stream referred to as cerr. The cerr stream (normally connected to the screen) is used for displaying error messages.

[image: Image] Common Programming Error 1.1

Errors such as division by zero occur as a program runs, so they’re called runtime errors or execution-time errors. Fatal runtime errors cause programs to terminate immediately without having successfully performed their jobs. Nonfatal runtime errors allow programs to run to completion, often producing incorrect results.

1.5. Test-Driving a C++ Application

In this section, you’ll run and interact with your first C++ application. You’ll begin by running an entertaining guess-the-number game, which picks a number from 1 to 1000 and prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct, the application indicates whether your guess is higher or lower than the correct number. There is no limit on the number of guesses you can make. [Note: Normally this application randomly selects the correct answer as you execute the program. This test-drive version of the application uses the same correct answer every time the program executes (though this may vary by compiler), so you can use the same guesses we use in this section and see the same results as we walk you through interacting with your first C++ application.]

We’ll demonstrate running a C++ application using the Windows Command Prompt and a shell on Linux. The application runs similarly on both platforms. Many development environments are available in which you can compile, build and run C++ applications, such as GNU™ C++, Microsoft® Visual C++®, Apple® Xcode®, NetBeans®, Eclipse™, etc.

We use fonts to distinguish between features you see on the screen (e.g., the Command Prompt) and elements that are not directly related to the screen. We emphasize screen features like titles and menus (e.g., the File menu) in a semibold sans-serif Helvetica font and emphasize filenames, text displayed by an application and values you should enter into an application (e.g., GuessNumber or 500) in a sans-serif Lucida font. As you’ve noticed, the defining occurrence of each term is set in bold type. For the figures in this section, we point out significant parts of the application. To make these features more visible, we’ve modified the background color of the Command Prompt window (for the Windows test drive only). To modify the Command Prompt colors on your system, open a Command Prompt by selecting Start > All Programs > Accessories > Command Prompt, then right click the title bar and select Properties. In the “Command Prompt” Properties dialog box that appears, click the Colors tab, and select your preferred text and background colors.

Running a C++ Application from the Windows Command Prompt

1. Checking your setup. It’s important to read the Before You Begin section at www.deitel.com/books/cpp11fp/ to make sure that you’ve copied the book’s examples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To change to the directory for the completed GuessNumber application, type cd C:\examples\ch01\GuessNumber\Windows, then press Enter (Fig. 1.7). The command cd is used to change directories.

[image: Image]

Fig. 1.7. Opening a Command Prompt window and changing the directory.

3. Running the GuessNumber application. Now that you are in the directory that contains the GuessNumber application, type the command GuessNumber (Fig. 1.8) and press Enter. [Note: GuessNumber.exe is the actual name of the application; however, Windows assumes the .exe extension by default.]

[image: Image]

Fig. 1.8. Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first guess.", then displays a question mark (?) as a prompt on the next line (Fig. 1.8). At the prompt, enter 500 (Fig. 1.9).

[image: Image]

Fig. 1.9. Entering your first guess.

5. Entering another guess. The application displays "Too high. Try again.", meaning that the value you entered is greater than the number the application chose as the correct guess. So, you should enter a lower number for your next guess. At the prompt, enter 250 (Fig. 1.10). The application again displays "Too high. Try again.", because the value you entered is still greater than the number that the application chose as the correct guess.

[image: Image]

Fig. 1.10. Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game by entering values until you guess the correct number. The application will display "Excellent! You guessed the number!" (Fig. 1.11).

[image: Image]

Fig. 1.11. Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess correctly, the application asks if you’d like to play another game (Fig. 1.11). At the "Would you like to play again (y or n)?" prompt, entering the one character y causes the application to choose a new number and displays the message "Please type your first guess." followed by a question mark prompt (Fig. 1.12) so you can make your first guess in the new game. Entering the character n ends the application and returns you to the application’s directory at the Command Prompt (Fig. 1.13). Each time you execute this application from the beginning (i.e., Step 3), it will choose the same numbers for you to guess.

[image: Image]

Fig. 1.12. Playing the game again.

[image: Image]

Fig. 1.13. Exiting the game.

8. Close the Command Prompt window.

Running a C++ Application Using GNU C++ with Linux

For this test drive, we assume that you know how to copy the examples into your home directory. Also, for the figures in this section, we use a bold highlight to point out the user input required by each step. The prompt in the shell on our system uses the tilde (~) character to represent the home directory, and each prompt ends with the dollar sign ($) character. The prompt will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed GuessNumber application directory (Fig. 1.14) by typing

 cd Examples/ch01/GuessNumber/GNU_Linux

then pressing Enter. The command cd is used to change directories.

Click here to view code image

~$ cd examples/ch01/GuessNumber/GNU_Linux
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.14. Changing to the GuessNumber application’s directory.

2. Compiling the GuessNumber application. To run an application on the GNU C++ compiler, you must first compile it by typing

 g++ GuessNumber.cpp -o GuessNumber

as in Fig. 1.15. This command compiles the application and produces an executable file called GuessNumber.

Click here to view code image

~/examples/ch01/GuessNumber/GNU_Linux$ g++ GuessNumber.cpp -o GuessNumber
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.15. Compiling the GuessNumber application using the g++ command.

3. Running the GuessNumber application. To run the executable file GuessNumber, type ./GuessNumber at the next prompt, then press Enter (Fig. 1.16).

Click here to view code image

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.16. Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first guess.", then displays a question mark (?) as a prompt on the next line (Fig. 1.16). At the prompt, enter 500 (Fig. 1.17). [Note: This is the same application that we modified and test-drove for Windows, but the outputs could vary based on the compiler being used.]

Click here to view code image

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
?

Fig. 1.17. Entering an initial guess.

5. Entering another guess. The application displays "Too high. Try again.", meaning that the value you entered is greater than the number the application chose as the correct guess (Fig. 1.17). At the next prompt, enter 250 (Fig. 1.18). This time the application displays "Too low. Try again.", because the value you entered is less than the correct guess.

Click here to view code image

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
? 250
Too low. Try again.
?

Fig. 1.18. Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game (Fig. 1.19) by entering values until you guess the correct number. When you guess correctly, the application displays "Excellent! You guessed the number."

Click here to view code image

Too low. Try again.
? 375
Too low. Try again.
? 437
Too high. Try again.
? 406
Too high. Try again.
? 391
Too high. Try again.
? 383
Too low. Try again.
? 387
Too high. Try again.
? 385
Too high. Try again.
? 384
Excellent! You guessed the number.
Would you like to play again (y or n)?

Fig. 1.19. Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess the correct number, the application asks if you’d like to play another game. At the "Would you like to play again (y or n)?" prompt, entering the one character y causes the application to choose a new number and displays the message "Please type your first guess." followed by a question mark prompt (Fig. 1.20) so you can make your first guess in the new game. Entering the character n ends the application and returns you to the application’s directory in the shell (Fig. 1.21). Each time you execute this application from the beginning (i.e., Step 3), it will choose the same numbers for you to guess.

Click here to view code image

Excellent! You guessed the number.
Would you like to play again (y or n)? y

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.20. Playing the game again.

Click here to view code image

Excellent! You guessed the number.
Would you like to play again (y or n)? n

~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.21. Exiting the game.

1.6. Operating Systems

Popular desktop operating systems include Linux, Windows and OS X (formerly called Mac OS X)—we used all three in developing this book. Popular mobile operating systems used in smartphones and tablets include Google’s Android, Apple’s iOS (for iPhone, iPad and iPod Touch devices), BlackBerry OS and Windows Phone. You can develop applications in C++ for all of the following key operating systems, including several of the latest mobile operating systems.

1.6.1. Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a graphical user interface built on top of DOS—an enormously popular personal-computer operating system that users interacted with by typing commands. Windows borrowed from many concepts (such as icons, menus and windows) developed by Xerox PARC and popularized by early Apple Macintosh operating systems. Windows 8 is Microsoft’s latest operating system—its features include enhancements to the user interface, faster startup times, further refinement of security features, touch-screen and multitouch support, and more. Windows is a proprietary operating system—it’s controlled by Microsoft exclusively. Windows is by far the world’s most widely used desktop operating system.

1.6.2. Linux—An Open-Source Operating System

The Linux operating system is perhaps the greatest success of the open-source movement. Open-source software departs from the proprietary software development style that dominated software’s early years. With open-source development, individuals and companies contribute their efforts in developing, maintaining and evolving software in exchange for the right to use that software for their own purposes, typically at no charge. Open-source code is often scrutinized by a much larger audience than proprietary software, so errors often get removed faster. Open source also encourages innovation. Enterprise systems companies, such as IBM, Oracle and many others, have made significant investments in Linux open-source development.

Some key organizations in the open-source community are the Eclipse Foundation (the Eclipse Integrated Development Environment helps programmers conveniently develop software), the Mozilla Foundation (creators of the Firefox web browser), the Apache Software Foundation (creators of the Apache web server used to develop webbased applications) and SourceForge (which provides tools for managing open-source projects—it has hundreds of thousands of them under development). Rapid improvements to computing and communications, decreasing costs and open-source software have made it much easier and more economical to create a software-based business now than just a decade ago. A great example is Facebook, which was launched from a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-featured operating system. It’s developed by a loosely organized team of volunteers and is popular in servers, personal computers and embedded systems. Unlike that of proprietary operating systems like Microsoft’s Windows and Apple’s OS X, Linux source code (the program code) is available to the public for examination and modification and is free to download and install. As a result, Linux users benefit from a community of developers actively debugging and improving the kernel, and the ability to customize the operating system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-friendly Linux applications and the diversity of Linux distributions, such as Red Hat Linux, Ubuntu Linux and many others—have prevented widespread Linux use on desktop computers. Linux has become extremely popular on servers and in embedded systems, such as Google’s Android-based smartphones.

1.6.3. Apple’s OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch® Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in personal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical user interface (GUI). That GUI served as the inspiration for the Apple Macintosh, launched with much fanfare in a memorable Super Bowl ad in 1984.

The Objective-C programming language, created by Brad Cox and Tom Love at Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP) to the C programming language. At the time of this writing, Objective-C was comparable in popularity to C++.1 Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988, NeXT licensed Objective-C from StepStone and developed an Objective-C compiler and libraries which were used as the platform for the NeXTSTEP operating system’s user interface and Interface Builder—used to construct graphical user interfaces.

1. www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s OS X operating system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is derived from Apple’s OS X and is used in the iPhone, iPad and iPod Touch devices.

1.6.4. Google’s Android

Android—the fastest growing mobile and smartphone operating system—is based on the Linux kernel and Java. Experienced Java programmers can quickly dive into Android development. One benefit of developing Android apps is the openness of the platform. The operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 companies initially and 84 by 2011—was formed to continue developing Android. As of June 2012, more than 900,000 Android devices were being activated each day!2 Android smartphones are now outselling iPhones in the United States.3 The Android operating system is used in numerous smartphones (such as the Motorola Droid, HTC One S, Samsung Galaxy Nexus and many more), e-reader devices (such as the Kindle Fire and Barnes and Noble Nook™), tablet computers (such as the Dell Streak and the Samsung Galaxy Tab), in-store touch-screen kiosks, cars, robots, multimedia players and more.

2. mashable.com/2012/06/11/900000-android-devices/.

3. www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html.

1.7. C++11 and the Open Source Boost Libraries

[image: Image]

C++11 (formerly called C++0x)—the latest C++ programming language standard—was published by ISO/IEC in 2011. Bjarne Stroustrup, the creator of C++, expressed his vision for the future of the language—the main goals were to make C++ easier to learn, improve library building capabilities and increase compatibility with the C programming language. The new standard extends the C++ Standard Library and includes several features and enhancements to improve performance and security. The major C++ compiler vendors have already implemented many of the new C++11 features (Fig. 1.22). Throughout the book, we discuss various key features of C++11. For more information, visit the C++ Standards Committee website at www.open-std.org/jtc1/sc22/wg21/ and isocpp.org. Copies of the C++11 language specification (ISO/IEC 14882:2011) can be purchased at:

http://bit.ly/CPlusPlus11Standard

[image: Image]

Fig. 1.22. C++ compilers that have implemented major portions of C++11.

Boost C++ Libraries

The Boost C++ Libraries are free, open-source libraries created by members of the C++ community. They are peer reviewed and portable across many compilers and platforms. Boost has grown to over 100 libraries, with more being added regularly. Today there are thousands of programmers in the Boost open source community. Boost provides C++ programmers with useful libraries that work well with the existing C++ Standard Library. The Boost libraries can be used by C++ programmers working on a wide variety of platforms with many different compilers.

Some of the new C++11 Standard Library features were derived from corresponding Boost libraries. We overview the libraries and provide code examples for the “regular expression” and “smart pointer” libraries, among others.

Regular expressions are used to match specific character patterns in text. They can be used to validate data to ensure that it’s in a particular format, to replace parts of one string with another, or to split a string.

Many common bugs in C and C++ code are related to pointers, a powerful programming capability that C++ absorbed from C. As you’ll see, smart pointers help you avoid errors associated with traditional pointers.

1.8. Web Resources

This section provides links to our C++ and related Resource Centers that will be useful to you as you learn C++. These include blogs, articles, whitepapers, compilers, development tools, downloads, FAQs, tutorials, webcasts, wikis and links to C++ game programming resources. For updates on Deitel publications, Resource Centers, training courses, partner offers and more, follow us on Facebook® at www.facebook.com/deitelfan/, Twitter® @deitel, Google+ at gplus.to/deitel and LinkedIn at bit.ly/DeitelLinkedIn.

Deitel & Associates Websites

www.deitel.com/books/cpp11fp/

The Deitel & Associates C++11 for Programmers site. Here you’ll find links to the book’s examples and other resources.

www.deitel.com/cplusplus/

www.deitel.com/visualcplusplus/

www.deitel.com/codesearchengines/

www.deitel.com/programmingprojects/

Check these Resource Centers for compilers, code downloads, tutorials, documentation, books, e-books, articles, blogs, RSS feeds and more that will help you develop C++ applications.

www.deitel.com

Check this site for updates, corrections and additional resources for all Deitel publications.

www.deitel.com/newsletter/subscribe.html

Subscribe here to the Deitel® Buzz Online e-mail newsletter to follow the Deitel & Associates publishing program, including updates and errata to C++11 for Programmers.

2. Introduction to C++ Programming, Input/Output and Operators

Objectives

In this chapter you’ll:

• Write simple C++ programs.

• Write input and output statements.

• Use fundamental types.

• Use arithmetic operators.

• Learn the precedence of arithmetic operators.

• Write decision-making statements.

Outline

2.1 Introduction

2.2 First Program in C++: Printing a Line of Text

2.3 Modifying Our First C++ Program

2.4 Another C++ Program: Adding Integers

2.5 Arithmetic

2.6 Decision Making: Equality and Relational Operators

2.7 Wrap-Up

2.1. Introduction

We now introduce C++ programming. We show how to display messages on the screen and obtain data from the user at the keyboard for processing. We explain how to perform arithmetic calculations and save their results for later use. We demonstrate decision-making by showing you how to compare two numbers, then display messages based on the comparison results.

Compiling and Running Programs

At www.deitel.com/books/cpp11fp, we’ve posted videos that demonstrate compiling and running programs in Microsoft Visual C++, GNU C++ and Xcode.

2.2. First Program in C++: Printing a Line of Text

Consider a simple program that prints a line of text (Fig. 2.1). This program illustrates several important features of the C++ language. The line numbers are not part of the source code.

Click here to view code image

 1 // Fig. 2.1: fig02_01.cpp
 2 // Text-printing program.
 3 #include <iostream> // allows program to output data to the screen
 4
 5 // function main begins program execution
 6 int main()
 7 {
 8 std::cout << "Welcome to C++!\n"; // display message
 9
10 return 0; // indicate that program ended successfully
11 } // end function main

Welcome to C++!

Fig. 2.1. Text-printing program.

Comments

Lines 1 and 2

// Fig. 2.1: fig02_01.cpp
// Text-printing program.

each begin with //, indicating that the remainder of each line is a comment. The comment Text-printing program describes the purpose of the program. A comment beginning with // is called a single-line comment because it terminates at the end of the current line. [Note: You also may use comments containing one or more lines enclosed in /* and */.]

#include Preprocessing Directive

Line 3

#include <iostream> // allows program to output data to the screen

is a preprocessing directive, which is a message to the C++ preprocessor (introduced in Section 1.4). Lines that begin with # are processed by the preprocessor before the program is compiled. This line notifies the preprocessor to include in the program the contents of the input/output stream header <iostream>. This header is a file containing information used by the compiler when compiling any program that outputs data to the screen or inputs data from the keyboard using C++’s stream input/output. The program in Fig. 2.1 outputs data to the screen, as we’ll soon see. We discuss headers in more detail in Chapter 6 and explain the contents of <iostream> in Chapter 13.

[image: Image] Common Programming Error 2.1

Forgetting to include the <iostream> header in a program that inputs data from the keyboard or outputs data to the screen causes the compiler to issue an error message.

Blank Lines and White Space

Line 4 is simply a blank line. Together, blank lines, space characters and tab characters are known as whitespace. Whitespace characters are normally ignored by the compiler.

The main Function

Line 5

// function main begins program execution

is another single-line comment indicating that program execution begins at the next line.

Line 6

int main()

is a part of every C++ program. The parentheses after main indicate that main is a program building block called a function. C++ programs typically consist of one or more functions and classes (as you’ll learn in Chapter 3). Exactly one function in every program must be named main. Figure 2.1 contains only one function. C++ programs begin executing at function main, even if main is not the first function defined in the program. The keyword int to the left of main indicates that main returns an integer value. The complete list of C++ keywords can be found in Fig. 4.2. We’ll say more about return a value when we demonstrate how to create your own functions in Section 3.3. For now, simply include the keyword int to the left of main in each of your programs.

The left brace, {, (line 7) must begin the body of every function. A corresponding right brace, }, (line 11) must end each function’s body.

An Output Statement

Line 8

std::cout << "Welcome to C++!\n"; // display message

instructs the computer to perform an action—namely, to print the characters contained between the double quotation marks. Together, the quotation marks and the characters between them are called a string, a character string or a string literal. In this book, we refer to characters between double quotation marks simply as strings. Whitespace characters in strings are not ignored by the compiler.

The entire line 8, including std::cout, the << operator, the string "Welcome to C++!\n" and the semicolon (;), is called a statement. Most C++ statements end with a semicolon, also known as the statement terminator (we’ll see some exceptions to this soon). Preprocessing directives (like #include) do not end with a semicolon. Typically, output and input in C++ are accomplished with streams of characters. Thus, when the preceding statement is executed, it sends the stream of characters Welcome to C++!\n to the standard output stream object—std::cout—which is normally “connected” to the screen.

[image: Image] Good Programming Practice 2.1

Indent the body of each function one level within the braces that delimit the function’s body. This makes a program’s functional structure stand out and makes the program easier to read.

[image: Image] Good Programming Practice 2.2

Set a convention for the size of indent you prefer, then apply it uniformly. The tab key may be used to create indents, but tab stops may vary. We prefer three spaces per level of indent.

The std Namespace

The std:: before cout is required when we use names that we’ve brought into the program by the preprocessing directive #include <iostream>. The notation std::cout specifies that we are using a name, in this case cout, that belongs to namespace std. The names cin (the standard input stream) and cerr (the standard error stream)—introduced in Chapter 1—also belong to namespace std. Namespaces are an advanced C++ feature that we discuss in depth in Chapter 21, Other Topics. For now, you should simply remember to include std:: before each mention of cout, cin and cerr in a program. This can be cumbersome—the next example introduces using declarations and the using directive, which will enable you to omit std:: before each use of a name in the std namespace.

The Stream Insertion Operator and Escape Sequences

In the context of an output statement, the << operator is referred to as the stream insertion operator. When this program executes, the value to the operator’s right, the right operand, is inserted in the output stream. Notice that the operator points in the direction of where the data goes. A string literal’s characters normally print exactly as they appear between the double quotes. However, the characters \n are not printed on the screen (Fig. 2.1). The backslash (\) is called an escape character. It indicates that a “special” character is to be output. When a backslash is encountered in a string of characters, the next character is combined with the backslash to form an escape sequence. The escape sequence \n means newline. It causes the screen cursor to move to the beginning of the next line on the screen. Some common escape sequences are listed in Fig. 2.2.

[image: Image]

Fig. 2.2. Escape sequences.

The return Statement

Line 10

return 0; // indicate that program ended successfully

is one of several means we’ll use to exit a function. When the return statement is used at the end of main, as shown here, the value 0 indicates that the program has terminated successfully. The right brace, }, (line 11) indicates the end of function main. According to the C++ standard, if program execution reaches the end of main without encountering a return statement, it’s assumed that the program terminated successfully—exactly as when the last statement in main is a return statement with the value 0. For that reason, we omit the return statement at the end of main in subsequent programs.

2.3. Modifying Our First C++ Program

We now present two examples that modify the program of Fig. 2.1 to print text on one line by using multiple statements and to print text on several lines by using a single statement.

Printing a Single Line of Text with Multiple Statements

Welcome to C++! can be printed several ways. For example, Fig. 2.3 performs stream insertion in multiple statements (lines 8–9), yet produces the same output as the program of Fig. 2.1. [Note: From this point forward, we use a light gray background to highlight the key features each program introduces.] Each stream insertion resumes printing where the previous one stopped. The first stream insertion (line 8) prints Welcome followed by a space, and because this string did not end with \n, the second stream insertion (line 9) begins printing on the same line immediately following the space.

Click here to view code image

 1 // Fig. 2.3: fig02_03.cpp
 2 // Printing a line of text with multiple statements.
 3 #include <iostream> // allows program to output data to the screen
 4
 5 // function main begins program execution
 6 int main()
 7 {
 8 std::cout << "Welcome ";
 9 std::cout << "to C++!\n";
10 } // end function main

Welcome to C++!

Fig. 2.3. Printing a line of text with multiple statements.

Printing Multiple Lines of Text with a Single Statement

A single statement can print multiple lines by using newline characters, as in line 8 of Fig. 2.4. Each time the \n (newline) escape sequence is encountered in the output stream, the screen cursor is positioned to the beginning of the next line. To get a blank line in your output, place two newline characters back to back, as in line 8.

Click here to view code image

 1 // Fig. 2.4: fig02_04.cpp
 2 // Printing multiple lines of text with a single statement.
 3 #include <iostream> // allows program to output data to the screen
 4
 5 // function main begins program execution
 6 int main()
 7 {
 8 std::cout << "Welcome\nto\n\nC++!\n";
 9 } // end function main

Welcome
to

C++!

Fig. 2.4. Printing multiple lines of text with a single statement.

2.4. Another C++ Program: Adding Integers

Our next program obtains two integers typed by a user at the keyboard, computes the sum of these values and outputs the result using std::cout. Figure 2.5 shows the program and sample inputs and outputs. In the sample execution, we highlight the user’s input in bold. The program begins execution with function main (line 6). The left brace (line 7) begins main’s body and the corresponding right brace (line 22) ends it.

Click here to view code image

 1 // Fig. 2.5: fig02_05.cpp
 2 // Addition program that displays the sum of two integers.
 3 #include <iostream> // allows program to perform input and output
 4
 5 // function main begins program execution
 6 int main()
 7 {
 8 // variable declarations
 9 int number1 = 0; // first integer to add (initialized to 0)
10 int number2 = 0; // second integer to add (initialized to 0)
11 int sum = 0; // sum of number1 and number2 (initialized to 0)
12
13 std::cout << "Enter first integer: "; // prompt user for data
14 std::cin >> number1; // read first integer from user into number1
15
16 std::cout << "Enter second integer: "; // prompt user for data
17 std::cin >> number2; // read second integer from user into number2
18
19 sum = number1 + number2; // add the numbers; store result in sum
20
21 std::cout << "Sum is " << sum << std::endl; // display sum; end line
22 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.5. Addition program that displays the sum of two integers.

Variable Declarations

Lines 9–11

Click here to view code image

int number1 = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of number1 and number2 (initialized to 0)

are declarations. The identifiers number1, number2 and sum are the names of variables. These declarations specify that the variables number1, number2 and sum are data of type int, meaning that these variables will hold integer values. The declarations also initialize each of these variables to 0.

[image: Image] Error-Prevention Tip 2.1

Although it’s not always necessary to initialize every variable explicitly, doing so will help you avoid many kinds of problems.

All variables must be declared with a name and a data type before they can be used in a program. Several variables of the same type may be declared in one declaration or in multiple declarations. We could have declared all three variables in one declaration by using a comma-separated list as follows:

int number1 = 0, number2 = 0, sum = 0;

This makes the program less readable and prevents us from providing comments that describe each variable’s purpose.

[image: Image] Good Programming Practice 2.3

Declare only one variable in each declaration and provide a comment that explains the variable’s purpose in the program.

Fundamental Types

We’ll soon discuss the type double for specifying real numbers, and the type char for specifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and –11.19. A char variable may hold only a single lowercase letter, a single uppercase letter, a single digit or a single special character (e.g., $ or *). Types such as int, double and char are called fundamental types. Fundamental-type names consist of one or more keywords and therefore must appear in all lowercase letters. Appendix C contains the complete list of fundamental types.

Identifiers

A variable name (such as number1) is any valid identifier that is not a keyword. An identifier is a series of characters consisting of letters, digits and underscores (_) that does not begin with a digit. C++ is case sensitive—uppercase and lowercase letters are different, so a1 and A1 are different identifiers.

[image: Image] Portability Tip 2.1

C++ allows identifiers of any length, but your C++ implementation may restrict identifier lengths. Use identifiers of 31 characters or fewer to ensure portability.

[image: Image] Good Programming Practice 2.4

Choosing meaningful identifiers makes a program self-documenting—a person can understand the program simply by reading it rather than having to refer to program comments or documentation.

[image: Image] Good Programming Practice 2.5

Avoid using abbreviations in identifiers. This improves program readability.

[image: Image] Good Programming Practice 2.6

Do not use identifiers that begin with underscores and double underscores, because C++ compilers may use names like that for their own purposes internally. This will prevent the names you choose from being confused with names the compilers choose.

Placement of Variable Declarations

Declarations of variables can be placed almost anywhere in a program, but they must appear before their corresponding variables are used in the program. For example, in the program of Fig. 2.5, the declaration in line 9

int number1 = 0; // first integer to add (initialized to 0)

could have been placed immediately before line 14

std::cin >> number1; // read first integer from user into number1

Obtaining the First Value from the User

Line 13

std::cout << "Enter first integer: "; // prompt user for data

displays Enter first integer: followed by a space. This message is called a prompt because it directs the user to take a specific action. We like to pronounce the preceding statement as “std::cout gets the string "Enter first integer: ".” Line 14

std::cin >> number1; // read first integer from user into number1

uses the standard input stream object cin (of namespace std) and the stream extraction operator, >>, to obtain a value from the keyboard. Using the stream extraction operator with std::cin takes character input from the standard input stream, which is usually the keyboard. We like to pronounce the preceding statement as, “std::cin gives a value to number1” or simply “std::cin gives number1.”

When the computer executes the preceding statement, it waits for the user to enter a value for variable number1. The user responds by typing an integer (as characters), then pressing the Enter key (sometimes called the Return key) to send the characters to the computer. The computer converts the character representation of the number to an integer and assigns (i.e., copies) this number (or value) to the variable number1. Any subsequent references to number1 in this program will use this same value.

The std::cout and std::cin stream objects facilitate interaction between the user and the computer.

Users can, of course, enter invalid data from the keyboard. For example, when your program is expecting the user to enter an integer, the user could enter alphabetic characters, special symbols (like # or @) or a number with a decimal point (like 73.5), among others. In these early programs, we assume that the user enters valid data. As you progress through the book, you’ll learn various techniques for dealing with the broad range of possible data-entry problems.

Obtaining the Second Value from the User

Line 16

std::cout << "Enter second integer: "; // prompt user for data

prints Enter second integer: on the screen, prompting the user to take action. Line 17

std::cin >> number2; // read second integer from user into number2

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User

The assignment statement in line 19

sum = number1 + number2; // add the numbers; store result in sum

adds the values of variables number1 and number2 and assigns the result to variable sum using the assignment operator =. We like to read this statement as, “sum gets the value of number1 + number2.” Most calculations are performed in assignment statements. The = operator and the + operator are binary operators—each has two operands. In the case of the + operator, the two operands are number1 and number2. In the case of the preceding = operator, the two operands are sum and the value of the expression number1 + number2.

[image: Image] Good Programming Practice 2.7

Place spaces on either side of a binary operator. This makes the operator stand out and makes the program more readable.

Displaying the Result

Line 21

Click here to view code image

std::cout << "Sum is " << sum << std::endl; // display sum; end
line

displays the character string Sum is followed by the numerical value of variable sum followed by std::endl—a stream manipulator. The name endl is an abbreviation for “end line” and belongs to namespace std. The std::endl stream manipulator outputs a newline, then “flushes the output buffer.” This simply means that, on some systems where outputs accumulate in the machine until there are enough to “make it worthwhile” to display them on the screen, std::endl forces any accumulated outputs to be displayed at that moment. This can be important when the outputs are prompting the user for an action, such as entering data.

The preceding statement outputs multiple values of different types. The stream insertion operator “knows” how to output each type of data. Using multiple stream insertion operators (<<) in a single statement is referred to as concatenating, chaining or cascading stream insertion operations.

Calculations can also be performed in output statements. We could have combined the statements in lines 19 and 21 into the statement

std::cout << "Sum is " << number1 + number2 << std::endl;

thus eliminating the need for the variable sum.

A powerful feature of C++ is that you can create your own data types called classes (we introduce this capability in Chapter 3 and explore it in depth in Chapter 9). You can then “teach” C++ how to input and output values of these new data types using the >> and << operators (this is called operator overloading—a topic we explore in Chapter 10).

2.5. Arithmetic

Most programs perform arithmetic calculations. Figure 2.6 summarizes the C++ arithmetic operators. The asterisk (*) indicates multiplication and the percent sign (%) is the modulus operator that will be discussed shortly. The arithmetic operators in Fig. 2.6 are all binary operators, i.e., operators that take two operands. For example, the expression number1 + number2 contains the binary operator + and the two operands number1 and number2.

[image: Image]

Fig. 2.6. Arithmetic operators.

Integer division (i.e., where both the numerator and the denominator are integers) yields an integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is truncated—no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder after integer division. The modulus operator can be used only with integer operands. The expression x % y yields the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later chapters, we discuss many interesting applications of the modulus operator, such as determining whether one number is a multiple of another (a special case of this is determining whether a number is odd or even).

Arithmetic Expressions in Straight-Line Form

Arithmetic expressions in C++ must be entered into the computer in straight-line form. Thus, expressions such as “a divided by b” must be written as a / b, so that all constants, variables and operators appear in a straight line. The algebraic notation

[image: Image]

is generally not acceptable to compilers, although some special-purpose software packages do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions

Parentheses are used in C++ expressions in the same manner as in algebraic expressions. For example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence

C++ applies the operators in arithmetic expressions in a precise order determined by the following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first. Parentheses are at the highest level of precedence. In cases of nested, or embedded, parentheses, such as

 (a * (b + c))

the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an expression contains several multiplication, division and modulus operations, operators are applied from left to right. Multiplication, division and modulus are on the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains several addition and subtraction operations, operators are applied from left to right. Addition and subtraction also have the same level of precedence.

The rules of operator precedence define the order in which C++ applies operators. When we say that certain operators are applied from left to right, we are referring to the associativity of the operators. For example, the addition operators (+) in the expression

a + b + c

associate from left to right, so a + b is calculated first, then c is added to that sum to determine the whole expression’s value. We’ll see that some operators associate from right to left. Figure 2.7 summarizes these rules of operator precedence. We expand this table as we introduce additional C++ operators. Appendix A contains the complete precedence chart.

[image: Image]

Fig. 2.7. Precedence of arithmetic operators.

Sample Algebraic and C++ Expressions

Now consider several expressions in light of the rules of operator precedence. Each example lists an algebraic expression and its C++ equivalent. The following is an example of an arithmetic mean (average) of five terms:

[image: Image]

The parentheses are required because division has higher precedence than addition. The entire quantity (a + b + c + d + e) is to be divided by 5.

The following is an example of the equation of a straight line:

[image: Image]

No parentheses are required. The multiplication is applied first because multiplication has a higher precedence than addition.

The following example contains modulus (%), multiplication, division, addition, subtraction and assignment operations:

[image: Image]

The circled numbers indicate the order in which C++ applies the operators. The multiplication, modulus and division are evaluated first in left-to-right order (i.e., they associate from left to right) because they have higher precedence than addition and subtraction. The addition and subtraction are applied next. These are also applied left to right. The assignment operator is applied last because its precedence is lower than that of any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial

To develop a better understanding of the rules of operator precedence, consider the evaluation of a second-degree polynomial y = ax2 + bx + c:

[image: Image]

The circled numbers indicate the order in which C++ applies the operators. There is no arithmetic operator for exponentiation in C++, so we’ve represented x2 as x * x. In Chapter 5, we’ll discuss the standard library function pow (“power”) that performs exponentiation.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initialized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.8 illustrates the order in which the operators are applied and the final value of the expression.

[image: Image]

Fig. 2.8. Order in which a second-degree polynomial is evaluated.

Redundant Parentheses

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the expression clearer. These are called redundant parentheses. For example, the preceding assignment statement could be parenthesized as follows:

 y = (a * x * x) + (b * x) + c;

2.6. Decision Making: Equality and Relational Operators

We now introduce a simple version of C++’s if statement that allows a program to take alternative action based on whether a condition is true or false. If the condition is true, the statement in the body of the if statement is executed. If the condition is false, the body statement is not executed. We’ll see an example shortly.

Conditions in if statements can be formed by using the relational operators and equality operators summarized in Fig. 2.9. The relational operators all have the same level of precedence and associate left to right. The equality operators both have the same level of precedence, which is lower than that of the relational operators, and associate left to right.

[image: Image]

Fig. 2.9. Relational and equality operators.

[image: Image] Common Programming Error 2.2

Reversing the order of the pair of symbols in the operators !=, >= and <= (by writing them as =!, => and =<, respectively) is normally a syntax error. In some cases, writing != as =! will not be a syntax error, but almost certainly will be a logic error that has an effect at execution time. You’ll understand why when you learn about logical operators in Chapter 5. A fatal logic error causes a program to fail and terminate prematurely. A nonfatal logic error allows a program to continue executing, but usually produces incorrect results.

[image: Image] Common Programming Error 2.3

Confusing the equality operator == with the assignment operator = results in logic errors. We like to read the equality operator as “is equal to” or “double equals,” and the assignment operator as “gets” or “gets the value of” or “is assigned the value of.” As you’ll see in Section 5.9, confusing these operators may not necessarily cause an easy-to-recognize syntax error, but may cause subtle logic errors.

Using the if Statement

The following example (Fig. 2.10) uses six if statements to compare two numbers input by the user. If the condition in any of these if statements is satisfied, the output statement associated with that if statement is executed.

Click here to view code image

 1 // Fig. 2.13: fig02_13.cpp
 2 // Comparing integers using if statements, relational operators
 3 // and equality operators.
 4 #include <iostream> // allows program to perform input and output
 5
 6 using std::cout; // program uses cout
 7 using std::cin; // program uses cin
 8 using std::endl; // program uses endl
 9
10 // function main begins program execution
11 int main()
12 {
13 int number1 = 0; // first integer to compare (initialized to 0)
14 int number2 = 0; // second integer to compare (initialized to 0)
15
16 cout << "Enter two integers to compare: "; // prompt user for data
17 cin >> number1 >> number2; // read two integers from user
18
19 if (number1 == number2)
20 cout << number1 << " == " << number2 << endl;
21
22 if (number1 != number2)
23 cout << number1 << " != " << number2 << endl;
24
25 if (number1 < number2)
26 cout << number1 << " < " << number2 << endl;
27
28 if (number1 > number2)
29 cout << number1 << " > " << number2 << endl;
30
31 if (number1 <= number2)
32 cout << number1 << " <= " << number2 << endl;
33
34 if (number1 >= number2)
35 cout << number1 << " >= " << number2 << endl;
36 } // end function main

Enter two integers to compare: 3 7
3 != 7
3 < 7
3 <= 7

Enter two integers to compare: 22 12
22 != 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 == 7
7 <= 7
7 >= 7

Fig. 2.10. Comparing integers using if statements, relational operators and equality operators.

using Declarations

Lines 6–8

Click here to view code image

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

are using declarations that eliminate the need to repeat the std:: prefix as we did in earlier programs. We can now write cout instead of std::cout, cin instead of std::cin and endl instead of std::endl, respectively, in the remainder of the program.

In place of lines 6–8, many programmers prefer to provide the using directive

using namespace std;

which enables a program to use all the names in any standard C++ header (such as <iostream>) that a program might include. From this point forward in the book, we’ll use the preceding directive in our programs. In Chapter 21, Other Topics, we’ll discuss some issues with using directives in large-scale systems.

Variable Declarations and Reading the Inputs from the User

Lines 13–14

Click here to view code image

int number1 = 0; // first integer to compare (initialized to 0)
int number2 = 0; // second integer to compare (initialized to 0)

declare the variables used in the program and initializes them to 0.

The program uses cascaded stream extraction operations (line 17) to input two integers. Remember that we’re allowed to write cin (instead of std::cin) because of line 7. First a value is read into variable number1, then a value is read into variable number2.

Comparing Numbers

The if statement in lines 19–20

Click here to view code image

if (number1 == number2)
 cout << number1 << " == " << number2 << endl;

compares the values of variables number1 and number2 to test for equality. If the values are equal, the statement in line 20 displays a line of text indicating that the numbers are equal. If the conditions are true in one or more of the if statements starting in lines 22, 25, 28, 31 and 34, the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 2.10 has a single statement in its body and each body statement is indented. In Chapter 4 we show how to specify if statements with multiple-statement bodies (by enclosing the body statements in a pair of braces, { }, creating what’s called a compound statement or a block).

[image: Image] Common Programming Error 2.4

Placing a semicolon immediately after the right parenthesis after the condition in an if statement is often a logic error (although not a syntax error). The semicolon causes the body of the if statement to be empty, so the if statement performs no action, regardless of whether or not its condition is true. Worse yet, the original body statement of the if statement now becomes a statement in sequence with the if statement and always executes, often causing the program to produce incorrect results.

White Space

Recall that whitespace characters, such as tabs, newlines and spaces, are normally ignored by the compiler. So, statements may be split over several lines and may be spaced according to your preferences. It’s a syntax error to split identifiers, strings (such as "hello") and constants (such as the number 1000) over several lines.

[image: Image] Good Programming Practice 2.8

A lengthy statement may be spread over several lines. If a single statement must be split across lines, choose meaningful breaking points, such as after a comma in a comma-separated list, or after an operator in a lengthy expression. If a statement is split across two or more lines, indent all subsequent lines and left-align the group of indented lines.

Operator Precedence

Figure 2.11 shows the precedence and associativity of the operators introduced in this chapter. The operators are shown top to bottom in decreasing order of precedence. All these operators, with the exception of the assignment operator =, associate from left to right. Addition is left-associative, so an expression like x + y + z is evaluated as if it had been written (x + y) + z. The assignment operator = associates from right to left, so an expression such as x = y = 0 is evaluated as if it had been written x = (y = 0), which, as we’ll soon see, first assigns 0 to y, then assigns the result of that assignment—0—to x.

[image: Image]

Fig. 2.11. Precedence and associativity of the operators discussed so far.

[image: Image] Good Programming Practice 2.9

Refer to the operator precedence and associativity chart (Appendix A) when writing expressions containing many operators. Confirm that the operators in the expression are performed in the order you expect. If you’re uncertain about the order of evaluation in a complex expression, break the expression into smaller statements or use parentheses to force the order of evaluation, exactly as you’d do in an algebraic expression. Be sure to observe that some operators such as assignment (=) associate right to left rather than left to right.

2.7. Wrap-Up

You learned many important basic features of C++ in this chapter, including displaying data on the screen, inputting data from the keyboard and declaring variables of fundamental types. In particular, you learned to use the output stream object cout and the input stream object cin to build simple interactive programs. We explained how variables are stored in and retrieved from memory. You also learned how to use arithmetic operators to perform calculations. We discussed the order in which C++ applies operators (i.e., the rules of operator precedence), as well as the associativity of the operators. You also learned how C++’s if statement allows a program to make decisions. Finally, we introduced the equality and relational operators, which you use to form conditions in if statements.

The non-object-oriented applications presented here introduced you to basic programming concepts. As you’ll see in Chapter 3, C++ applications typically contain just a few lines of code in function main—these statements normally create the objects that perform the work of the application, then the objects “take over from there.” In Chapter 3, you’ll learn how to implement your own classes and use objects of those classes in applications.

3. Introduction to Classes, Objects and Strings

Objectives

In this chapter you’ll:

• Define a class and use it to create an object.

• Implement a class’s behaviors as member functions.

• Implement a class’s attributes as data members.

• Call a member function of an object to perform a task.

• Learn the differences between data members of a class and local variables of a function.

• Use a constructor to initialize an object’s data when the object is created.

• Engineer a class to separate its interface from its implementation and encourage reuse.

• Use objects of class string.

Outline

3.1 Introduction

3.2 Defining a Class with a Member Function

3.3 Defining a Member Function with a Parameter

3.4 Data Members, set Member Functions and get Member Functions

3.5 Initializing Objects with Constructors

3.6 Placing a Class in a Separate File for Reusability

3.7 Separating Interface from Implementation

3.8 Validating Data with set Functions

3.9 Wrap-Up

3.1. Introduction

In this chapter, you’ll begin writing programs that employ the basic concepts of object-oriented programming that we introduced in Section 1.3. One common feature of every program in Chapter 2 was that all the statements that performed tasks were located in function main. Typically, the programs you develop in this book will consist of function main and one or more classes, each containing data members and member functions. If you become part of a development team in industry, you might work on software systems that contain hundreds, or even thousands, of classes. In this chapter, we develop a simple, well-engineered framework for organizing object-oriented programs in C++.

We present a carefully paced sequence of complete working programs to demonstrate creating and using your own classes. These examples begin our integrated case study on developing a grade-book class that instructors can use to maintain student test scores. We also introduce the C++ standard library class string.

3.2. Defining a Class with a Member Function

We begin with an example (Fig. 3.1) that consists of class GradeBook (lines 8–16)—which, when it’s fully developed in Chapter 7, will represent a grade book that an instructor can use to maintain student test scores—and a main function (lines 19–23) that creates a GradeBook object. Function main uses this object and its displayMessage member function (lines 12–15) to display a message on the screen welcoming the instructor to the grade-book program.

Click here to view code image

 1 // Fig. 3.1: fig03_01.cpp
 2 // Define class GradeBook with a member function displayMessage,
 3 // create a GradeBook object, and call its displayMessage function.
 4 #include <iostream>
 5 using namespace std;
 6
 7 // GradeBook class definition
 8 class GradeBook
 9 {
10 public:
11 // function that displays a welcome message to the GradeBook user
12 void displayMessage() const
13 {
14 cout << "Welcome to the Grade Book!" << endl;
15 } // end function displayMessage
16 }; // end class GradeBook
17
18 // function main begins program execution
19 int main()
20 {
21 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
22 myGradeBook.displayMessage(); // call object's displayMessage function
23 } // end main

Welcome to the Grade Book!

Fig. 3.1. Define class GradeBook with a member function displayMessage, create a GradeBook object and call its displayMessage function.

Class GradeBook

Before function main (lines 19–23) can create a GradeBook object, we must tell the compiler what member functions and data members belong to the class. The GradeBook class definition (lines 8–16) contains a member function called displayMessage (lines 12–15) that displays a message on the screen (line 14). We need to make an object of class GradeBook (line 21) and call its displayMessage member function (line 22) to get line 14 to execute and display the welcome message. We’ll soon explain lines 21–22 in detail.

The class definition begins in line 8 with the keyword class followed by the class name GradeBook. By convention, the name of a user-defined class begins with a capital letter, and for readability, each subsequent word in the class name begins with a capital letter. This capitalization style is often referred to as Pascal case, because the convention was widely used in the Pascal programming language. The occasional uppercase letters resemble a camel’s humps. More generally, camel case capitalization style allows the first letter to be either lowercase or uppercase (e.g., myGradeBook in line 21).

Every class’s body is enclosed in a pair of left and right braces ({ and }), as in lines 9 and 16. The class definition terminates with a semicolon (line 16).

[image: Image] Common Programming Error 3.1

Forgetting the semicolon at the end of a class definition is a syntax error.

Recall that the function main is always called automatically when you execute a program. Most functions do not get called automatically. As you’ll soon see, you must call member function displayMessage explicitly to tell it to perform its task.

Line 10 contains the keyword public, which is an access specifier. Lines 12–15 define member function displayMessage. This member function appears after access specifier public: to indicate that the function is “available to the public”—that is, it can be called by other functions in the program (such as main), and by member functions of other classes (if there are any). Access specifiers are always followed by a colon (:). For the remainder of the text, when we refer to the access specifier public in the text, we’ll omit the colon as we did in this sentence. Section 3.4 introduces the access specifier private. Later in the book we’ll study the access specifier protected.

When you define a function, you must specify a return type to indicate the type of the value returned by the function when it completes its task. In line 12, keyword void to the left of the function name displayMessage is the function’s return type. Return type void indicates that displayMessage will not return any data to its calling function (in this example, line 22 of main, as we’ll see in a moment) when it completes its task. In Fig. 3.5, you’ll see an example of a function that does return a value.

The name of the member function, displayMessage, follows the return type (line 12). By convention, our function names use the camel case style with a lowercase first letter. The parentheses after the member function name indicate that this is a function. An empty set of parentheses, as shown in line 12, indicates that this member function does not require additional data to perform its task. You’ll see an example of a member function that does require additional data in Section 3.3.

We declared member function displayMessage const in line 12 because in the process of displaying "Welcome to the Grade Book!" the function does not, and should not, modify the GradeBook object on which it’s called. Declaring displayMessage const tells the compiler, “this function should not modify the object on which it’s called—if it does, please issue a compilation error.” This can help you locate errors if you accidentally insert code in displayMessage that would modify the object. Line 12 is commonly referred to as a function header.

Every function’s body is delimited by left and right braces ({ and }), as in lines 13 and 15. The function body contains statements that perform the function’s task. In this case, member function displayMessage contains one statement (line 14) that displays the message "Welcome to the Grade Book!". After this statement executes, the function has completed its task.

Testing Class GradeBook

Next, we’d like to use class GradeBook in a program. As you saw in Chapter 2, the function main (lines 19–23) begins the execution of every program.

In this program, we’d like to call class GradeBook’s displayMessage member function to display the welcome message. Typically, you cannot call a member function of a class until you create an object of that class. (As you’ll learn in Section 9.14, static member functions are an exception.) Line 21 creates an object of class GradeBook called myGradeBook. The variable’s type is GradeBook—the class we defined in lines 8–16. When we declare variables of type int, as we did in Chapter 2, the compiler knows what int is—it’s a fundamental type that’s “built into” C++. In line 21, however, the compiler does not automatically know what type GradeBook is—it’s a user-defined type. We tell the compiler what GradeBook is by including the class definition (lines 8–16). If we omitted these lines, the compiler would issue an error message. Each class you create becomes a new type that can be used to create objects. You can define new class types as needed; this is one reason why C++ is known as an extensible programming language.

Line 22 calls the member function displayMessage using variable myGradeBook followed by the dot operator (.), the function name displayMessage and an empty set of parentheses. This call causes the displayMessage function to perform its task. At the beginning of line 22, “myGradeBook.” indicates that main should use the GradeBook object that was created in line 21. The empty parentheses in line 12 indicate that member function displayMessage does not require additional data to perform its task, which is why we called this function with empty parentheses in line 22. (In Section 3.3, you’ll see how to pass data to a function.) When displayMessage completes its task, the program reaches the end of main (line 23) and terminates.

UML Class Diagram for Class GradeBook

Recall from Section 1.3 that the UML is a standardized graphical language used by software developers to represent their object-oriented systems. In the UML, each class is modeled in a UML class diagram as a rectangle with three compartments. Figure 3.2 presents a class diagram for class GradeBook (Fig. 3.1). The top compartment contains the class’s name centered horizontally and in boldface type. The middle compartment contains the class’s attributes, which correspond to data members in C++. This compartment is currently empty, because class GradeBook does not yet have any attributes. (Section 3.4 presents a version of class GradeBook with an attribute.) The bottom compartment contains the class’s operations, which correspond to member functions in C++. The UML models operations by listing the operation name followed by a set of parentheses. Class GradeBook has only one member function, displayMessage, so the bottom compartment of Fig. 3.2 lists one operation with this name. Member function displayMessage does not require additional information to perform its tasks, so the parentheses following displayMessage in the class diagram are empty, just as they are in the member function’s header in line 12 of Fig. 3.1. The plus sign (+) in front of the operation name indicates that displayMessage is a public operation in the UML (i.e., a public member function in C++).

[image: Image]

Fig. 3.2. UML class diagram indicating that class GradeBook has a public displayMessage operation.

3.3. Defining a Member Function with a Parameter

In our car analogy from Section 1.3, we mentioned that pressing a car’s gas pedal sends a message to the car to perform a task—make the car go faster. But how fast should the car accelerate? As you know, the farther down you press the pedal, the faster the car accelerates. So the message to the car includes both the task to perform and additional information that helps the car perform the task. This additional information is known as a parameter—the value of the parameter helps the car determine how fast to accelerate. Similarly, a member function can require one or more parameters that represent additional data it needs to perform its task. A function call supplies values—called arguments—for each of the function’s parameters. For example, to make a deposit into a bank account, suppose a deposit member function of an Account class specifies a parameter that represents the deposit amount. When the deposit member function is called, an argument value representing the deposit amount is copied to the member function’s parameter. The member function then adds that amount to the account balance.

Defining and Testing Class GradeBook

Our next example (Fig. 3.3) redefines class GradeBook (lines 9–18) with a displayMessage member function (lines 13–17) that displays the course name as part of the welcome message. The new version of displayMessage requires a parameter (courseName in line 13) that represents the course name to output.

Click here to view code image

 1 // Fig. 3.3: fig03_03.cpp
 2 // Define class GradeBook with a member function that takes a parameter,
 3 // create a GradeBook object and call its displayMessage function.
 4 #include <iostream>
 5 #include <string> // program uses C++ standard string class
 6 using namespace std;
 7
 8 // GradeBook class definition
 9 class GradeBook
10 {
11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage(string courseName) const
14 {
15 cout << "Welcome to the grade book for\n" << courseName << "!"
16 << endl;
17 } // end function displayMessage
18 }; // end class GradeBook
19
20 // function main begins program execution
21 int main()
22 {
23 string nameOfCourse; // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25
26 // prompt for and input course name
27 cout << "Please enter the course name:" << endl;
28 getline(cin, nameOfCourse); // read a course name with blanks
29 cout << endl; // output a blank line
30
31 // call myGradeBook's displayMessage function
32 // and pass nameOfCourse as an argument
33 myGradeBook.displayMessage(nameOfCourse);
34 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.3. Define class GradeBook with a member function that takes a parameter, create a GradeBook object and call its displayMessage function.

Before discussing the new features of class GradeBook, let’s see how the new class is used in main (lines 21–34). Line 23 creates a variable of type string called nameOfCourse that will be used to store the course name entered by the user. A variable of type string represents a string of characters such as "CS101 Introduction to C++ Programming". A string is actually an object of the C++ Standard Library class string. This class is defined in header <string>, and the name string, like cout, belongs to namespace std. To enable lines 13 and 23 to compile, line 5 includes the <string> header. The using directive in line 6 allows us to simply write string in line 23 rather than std::string. For now, you can think of string variables like variables of other types such as int. You’ll learn additional string capabilities in Section 3.8 and in Chapter 19.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts the user to enter a course name. Line 28 reads the name from the user and assigns it to the nameOfCourse variable, using the library function getline to perform the input. Before we explain this line of code, let’s explain why we cannot simply write

cin >> nameOfCourse;

to obtain the course name.

In our sample program execution, we use the course name “CS101 Introduction to C++ Programming,” which contains multiple words separated by blanks. (Recall that we highlight user-entered data in bold.) When reading a string with the stream extraction operator, cin reads characters until the first white-space character is reached. Thus, only “CS101” would be read by the preceding statement. The rest of the course name would have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter to submit it to the program, and we’d like to store the entire course name in the string variable nameOfCourse. The function call getline(cin, nameOfCourse) in line 28 reads characters (including the space characters that separate the words in the input) from the standard input stream object cin (i.e., the keyboard) until the newline character is encountered, places the characters in the string variable nameOfCourse and discards the newline character. When you press Enter while entering data, a newline is inserted in the input stream. The <string> header must be included in the program to use function getline, which belongs to namespace std.

Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse variable in parentheses is the argument that’s passed to member function displayMessage so that it can perform its task. The value of variable nameOfCourse in main is copied to member function displayMessage’s parameter courseName in line 13. When you execute this program, member function displayMessage outputs as part of the welcome message the course name you type (in our sample execution, CS101 Introduction to C++ Programming).

More on Arguments and Parameters

To specify in a function definition that the function requires data to perform its task, you place additional information in the function’s parameter list, which is located in the parentheses following the function name. The parameter list may contain any number of parameters, including none at all (represented by empty parentheses as in Fig. 3.1, line 12) to indicate that a function does not require any parameters. The displayMessage member function’s parameter list (Fig. 3.3, line 13) declares that the function requires one parameter. Each parameter specifies a type and an identifier. The type string and the identifier courseName indicate that member function displayMessage requires a string to perform its task. The member function body uses the parameter courseName to access the value that’s passed to the function in the function call (line 33 in main). Lines 15–16 display parameter courseName’s value as part of the welcome message. The parameter variable’s name (courseName in line 13) can be the same as or different from the argument variable’s name (nameOfCourse in line 33)—you’ll learn why in Chapter 6.

A function can specify multiple parameters by separating each from the next with a comma. The number and order of arguments in a function call must match the number and order of parameters in the parameter list of the called member function’s header. Also, the argument types in the function call must be consistent with the types of the corresponding parameters in the function header. (As you’ll learn in subsequent chapters, an argument’s type and its corresponding parameter’s type need not always be identical, but they must be “consistent.”) In our example, the one string argument in the function call (i.e., nameOfCourse) exactly matches the one string parameter in the member-function definition (i.e., courseName).

Updated UML Class Diagram for Class GradeBook

The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class GradeBook defined in Fig. 3.1, this GradeBook class contains public member function displayMessage. However, this version of displayMessage has a parameter. The UML models a parameter by listing the parameter name, followed by a colon and the parameter type in the parentheses following the operation name. The UML has its own data types similar to those of C++. The UML is language independent—it’s used with many different programming languages—so its terminology does not exactly match that of C++. For example, the UML type String corresponds to the C++ type string. Member function displayMessage of class GradeBook (Fig. 3.3, lines 13–17) has a string parameter named courseName, so Fig. 3.4 lists courseName : String between the parentheses following the operation name displayMessage. This version of the GradeBook class still does not have any data members.

[image: Image]

Fig. 3.4. UML class diagram indicating that class GradeBook has a public displayMessage operation with a courseName parameter of UML type String.

3.4. Data Members, set Member Functions and get Member Functions

In Chapter 2, we declared all of a program’s variables in its main function. Variables declared in a function definition’s body are known as local variables and can be used only from the line of their declaration in the function to the closing right brace (}) of the block in which they’re declared. A local variable must be declared before it can be used in a function. A local variable cannot be accessed outside the function in which it’s declared. When a function terminates, the values of its local variables are lost. (You’ll see an exception to this in Chapter 6 when we discuss static local variables.)

A class normally consists of one or more member functions that manipulate the attributes that belong to a particular object of the class. Attributes are represented as variables in a class definition. Such variables are called data members and are declared inside a class definition but outside the bodies of the class’s member-function definitions. Each object of a class maintains its own attributes in memory. These attributes exist throughout the life of the object. The example in this section demonstrates a GradeBook class that contains a courseName data member to represent a particular GradeBook object’s course name. If you create more than one GradeBook object, each will have its own courseName data member, and these can contain different values.

GradeBook Class with a Data Member, and set and get Member Functions

In our next example, class GradeBook (Fig. 3.5) maintains the course name as a data member so that it can be used or modified throughout a program’s execution. The class contains member functions setCourseName, getCourseName and displayMessage. Member function setCourseName stores a course name in a GradeBook data member. Member function getCourseName obtains the course name from that data member. Member function displayMessage—which now specifies no parameters—still displays a welcome message that includes the course name. However, as you’ll see, the function now obtains the course name by calling another function in the same class—getCourseName.

Click here to view code image

 1 // Fig. 3.5: fig03_05.cpp
 2 // Define class GradeBook that contains a courseName data member
 3 // and member functions to set and get its value;
 4 // Create and manipulate a GradeBook object with these functions.
 5 #include <iostream>
 6 #include <string> // program uses C++ standard string class
 7 using namespace std;
 8
 9 // GradeBook class definition
10 class GradeBook
11 {
12 public:
13 // function that sets the course name
14 void setCourseName(string name)
15 {
16 courseName = name; // store the course name in the object
17 } // end function setCourseName
18
19 // function that gets the course name
20 string getCourseName() const
21 {
22 return courseName; // return the object's courseName
23 } // end function getCourseName
24
25 // function that displays a welcome message
26 void displayMessage() const
27 {
28 // this statement calls getCourseName to get the
29 // name of the course this GradeBook represents
30 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
31 << endl;
32 } // end function displayMessage
33 private:
34 string courseName; // course name for this GradeBook
35 }; // end class GradeBook
36
37 // function main begins program execution
38 int main()
39 {
40 string nameOfCourse; // string of characters to store the course name
41 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
42
43 // display initial value of courseName
44 cout << "Initial course name is: " << myGradeBook.getCourseName()
45 << endl;
46
47 // prompt for, input and set course name
48 cout << "\nPlease enter the course name:" << endl;
49 getline(cin, nameOfCourse); // read a course name with blanks
50 myGradeBook.setCourseName(nameOfCourse); // set the course name
51
52 cout << endl; // outputs a blank line
53 myGradeBook.displayMessage(); // display message with new course name
54 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.5. Defining and testing class GradeBook with a data member and set and get member functions.

A typical instructor teaches several courses, each with its own course name. Line 34 declares that courseName is a variable of type string. Because the variable is declared in the class definition (lines 10–35) but outside the bodies of the class’s member-function definitions (lines 14–17, 20–23 and 26–32), the variable is a data member. Every instance (i.e., object) of class GradeBook contains each of the class’s data members—if there are two GradeBook objects, each has its own courseName (one per object), as you’ll see in the example of Fig. 3.7. A benefit of making courseName a data member is that all the member functions of the class can manipulate any data members that appear in the class definition (in this case, courseName).

Access Specifiers public and private

Most data-member declarations appear after the private access specifier. Variables or functions declared after access specifier private (and before the next access specifier if there is one) are accessible only to member functions of the class for which they’re declared (or to “friends” of the class, as you’ll see in Chapter 9). Thus, data member courseName can be used only in member functions setCourseName, getCourseName and displayMessage of class GradeBook (or to “friends” of the class, if there are any).

[image: Image] Error-Prevention Tip 3.1

Making the data members of a class private and the member functions of the class public facilitates debugging because problems with data manipulations are localized to either the class’s member functions or the friends of the class.

[image: Image] Common Programming Error 3.2

An attempt by a function, which is not a member of a particular class (or a friend of that class) to access a private member of that class is a compilation error.

The default access for class members is private so all members after the class header and before the first access specifier (if there are any) are private. The access specifiers public and private may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When a program creates a GradeBook object, data member courseName is encapsulated (hidden) in the object and can be accessed only by member functions of the object’s class. In class GradeBook, member functions setCourseName and getCourseName manipulate the data member courseName directly.

Member Functions setCourseName and getCourseName

Member function setCourseName (lines 14–17) does not return any data when it completes its task, so its return type is void. The member function receives one parameter—name—which represents the course name that will be passed to it as an argument (as we’ll see in line 50 of main). Line 16 assigns name to data member courseName, thus modifying the object—for this reason, we do not declare setCourseName const. In this example, setCourseName does not validate the course name—i.e., the function does not check that the course name adheres to any particular format or follows any other rules regarding what a “valid” course name looks like. Suppose, for instance, that a university can print student transcripts containing course names of only 25 characters or fewer. In this case, we might want class GradeBook to ensure that its data member courseName never contains more than 25 characters. We discuss validation in Section 3.8.

Member function getCourseName (lines 20–23) returns a particular GradeBook object’s courseName, without modifying the object—for this reason, we declare getCourseName const. The member function has an empty parameter list, so it does not require additional data to perform its task. The function specifies that it returns a string. When a function that specifies a return type other than void is called and completes its task, the function uses a return statement (as in line 22) to return a result to its calling function. For example, when you go to an automated teller machine (ATM) and request your account balance, you expect the ATM to give you a value that represents your balance. Similarly, when a statement calls member function getCourseName on a GradeBook object, the statement expects to receive the GradeBook’s course name (in this case, a string, as specified by the function’s return type).

If you have a function square that returns the square of its argument, the statement

result = square(2);

returns 4 from function square and assigns to variable result the value 4. If you have a function maximum that returns the largest of three integer arguments, the statement

biggest = maximum(27, 114, 51);

returns 114 from function maximum and assigns this value to variable biggest.

The statements in lines 16 and 22 each use variable courseName (line 34) even though it was not declared in any of the member functions. We can do this because courseName is a data member of the class and data members are accessible from a class’s member functions.

Member Function displayMessage

Member function displayMessage (lines 26–32) does not return any data when it completes its task, so its return type is void. The function does not receive parameters, so its parameter list is empty. Lines 30–31 output a welcome message that includes the value of data member courseName. Line 30 calls member function getCourseName to obtain the value of courseName. Member function displayMessage could also access data member courseName directly, just as member functions setCourseName and getCourseName do. We explain shortly why it’s preferable from a software engineering perspective to call member function getCourseName to obtain the value of courseName.

Testing Class GradeBook

The main function (lines 38–54) creates one object of class GradeBook and uses each of its member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 44–45 display the initial course name by calling the object’s getCourseName member function. The first line of the output does not show a course name, because the object’s courseName data member (i.e., a string) is initially empty—by default, the initial value of a string is the so-called empty string, i.e., a string that does not contain any characters. Nothing appears on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable nameOfCourse (declared in line 40) is set to the course name entered by the user, which is obtained by the call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName member function and supplies nameOfCourse as the function’s argument. When the function is called, the argument’s value is copied to parameter name (line 14) of member function setCourseName. Then the parameter’s value is assigned to data member courseName (line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage member function to display the welcome message containing the course name.

Software Engineering with Set and Get Functions

A class’s private data members can be manipulated only by member functions of that class (and by “friends” of the class as you’ll see in Chapter 9). So a client of an object—that is, any statement that calls the object’s member functions from outside the object—calls the class’s public member functions to request the class’s services for particular objects of the class. This is why the statements in function main call member functions setCourseName, getCourseName and displayMessage on a GradeBook object. Classes often provide public member functions to allow clients of the class to set (i.e., assign values to) or get (i.e., obtain the values of) private data members. These member function names need not begin with set or get, but this naming convention is common. In this example, the member function that sets the courseName data member is called setCourseName, and the member function that gets the value of the courseName data member is called getCourseName. Set functions are sometimes called mutators (because they mutate, or change, values), and get functions are also called accessors (because they access values).

Recall that declaring data members with access specifier private enforces data hiding. Providing public set and get functions allows clients of a class to access the hidden data, but only indirectly. The client knows that it’s attempting to modify or obtain an object’s data, but the client does not know how the object performs these operations. In some cases, a class may internally represent a piece of data one way, but expose that data to clients in a different way. For example, suppose a Clock class represents the time of day as a private int data member time that stores the number of seconds since midnight. However, when a client calls a Clock object’s getTime member function, the object could return the time with hours, minutes and seconds in a string in the format "HH:MM:SS". Similarly, suppose the Clock class provides a set function named setTime that takes a string parameter in the "HH:MM:SS" format. Using string capabilities presented in Chapter 19, the setTime function could convert this string to a number of seconds, which the function stores in its private data member. The set function could also check that the value it receives represents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). The set and get functions allow a client to interact with an object, but the object’s private data remains safely encapsulated (i.e., hidden) in the object itself.

The set and get functions of a class also should be used by other member functions within the class to manipulate the class’s private data, even though these member functions can access the private data directly. In Fig. 3.5, member functions setCourseName and getCourseName are public member functions, so they’re accessible to clients of the class, as well as to the class itself. Member function displayMessage calls member function getCourseName to obtain the value of data member courseName for display purposes, even though displayMessage can access courseName directly—accessing a data member via its get function creates a better, more robust class (i.e., a class that’s easier to maintain and less likely to malfunction). If we decide to change the data member courseName in some way, the displayMessage definition will not require modification—only the bodies of the get and set functions that directly manipulate the data member will need to change. For example, suppose we want to represent the course name as two separate data members—courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Programming"). Member function displayMessage can still issue a single call to member function getCourseName to obtain the full course name to display as part of the welcome message. In this case, getCourseName would need to build and return a string containing the courseNumber followed by the courseTitle. Member function displayMessage could continue to display the complete course title “CS101 Introduction to C++ Programming.” The benefits of calling a set function from another member function of the same class will become clearer when we discuss validation in Section 3.8.

[image: Image] Good Programming Practice 3.1

Always try to localize the effects of changes to a class’s data members by accessing and manipulating the data members through their corresponding get and set functions.

[image: Image] Software Engineering Observation 3.1

Write programs that are clear and easy to maintain. Change is the rule rather than the exception. You should anticipate that your code will be modified, and possibly often.

GradeBook’s UML Class Diagram with a Data Member and set and get Functions

Figure 3.6 contains an updated UML class diagram for the version of class GradeBook in Fig. 3.5. This diagram models GradeBook’s data member courseName as an attribute in the middle compartment. The UML represents data members as attributes by listing the attribute name, followed by a colon and the attribute type. The UML type of attribute courseName is String, which corresponds to string in C++. Data member courseName is private in C++, so the class diagram lists a minus sign (–) in front of the corresponding attribute’s name. Class GradeBook contains three public member functions, so the class diagram lists three operations in the third compartment. Operation setCourseName has a String parameter called name. The UML indicates the return type of an operation by placing a colon and the return type after the parentheses following the operation name. Member function getCourseName of class GradeBook has a string return type in C++, so the class diagram shows a String return type in the UML. Operations setCourseName and displayMessage do not return values (i.e., they return void in C++), so the UML class diagram does not specify a return type after the parentheses of these operations.

[image: Image]

Fig. 3.6. UML class diagram for class GradeBook with a private courseName attribute and public operations setCourseName, getCourseName and displayMessage.

3.5. Initializing Objects with Constructors

As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.5) is created, its data member courseName is initialized to the empty string by default. What if you want to provide a course name when you create a GradeBook object? Each class you declare can provide one or more constructors that can be used to initialize an object of the class when the object is created. A constructor is a special member function that must be defined with the same name as the class, so that the compiler can distinguish it from the class’s other member functions. An important difference between constructors and other functions is that constructors cannot return values, so they cannot specify a return type (not even void). Normally, constructors are declared public. In the early chapters, our classes will generally have one constructor—in later chapters, you’ll see how to create classes with more that one constructor using the technique of function overloading, which we introduce in Section 6.17.

C++ automatically calls a constructor for each object that’s created, which helps ensure that objects are initialized properly before they’re used in a program. The constructor call occurs when the object is created. If a class does not explicitly include constructors, the compiler provides a default constructor with no parameters. For example, when line 41 of Fig. 3.5 creates a GradeBook object, the default constructor is called. The default constructor provided by the compiler creates a GradeBook object without giving any initial values to the object’s fundamental type data members. For data members that are objects of other classes, the default constructor implicitly calls each data member’s default constructor to ensure that the data member is initialized properly. This is why the string data member courseName (in Fig. 3.5) was initialized to the empty string—the default constructor for class string sets the string’s value to the empty string.

In the example of Fig. 3.7, we specify a course name for a GradeBook object when the object is created (e.g., line 47). In this case, the argument "CS101 Introduction to C++ Programming" is passed to the GradeBook object’s constructor (lines 14–18) and used to initialize the courseName. Figure 3.7 defines a modified GradeBook class containing a constructor with a string parameter that receives the initial course name.

Click here to view code image

 1 // Fig. 3.7: fig03_07.cpp
 2 // Instantiating multiple objects of the GradeBook class and using
 3 // the GradeBook constructor to specify the course name
 4 // when each GradeBook object is created.
 5 #include <iostream>
 6 #include <string> // program uses C++ standard string class
 7 using namespace std;
 8
 9 // GradeBook class definition
10 class GradeBook
11 {
12 public:
13 // constructor initializes courseName with string supplied as argument
14 explicit GradeBook(string name)
15 : courseName(name) // member initializer to initialize courseName
16 {
17 // empty body
18 } // end GradeBook constructor
19
20 // function to set the course name
21 void setCourseName(string name)
22 {
23 courseName = name; // store the course name in the object
24 } // end function setCourseName
25
26 // function to get the course name
27 string getCourseName() const
28 {
29 return courseName; // return object's courseName
30 } // end function getCourseName
31
32 // display a welcome message to the GradeBook user
33 void displayMessage() const
34 {
35 // call getCourseName to get the courseName
36 cout << "Welcome to the grade book for\n" << getCourseName()
37 << "!" << endl;
38 } // end function displayMessage
39 private:
40 string courseName; // course name for this GradeBook
41 }; // end class GradeBook
42
43 // function main begins program execution
44 int main()
45 {
46 // create two GradeBook objects
47 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
48 GradeBook gradeBook2("CS102 Data Structures in C++");
49
50 // display initial value of courseName for each GradeBook
51 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
52 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
53 << endl;
54 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.7. Instantiating multiple objects of the GradeBook class and using the GradeBook constructor to specify the course name when each GradeBook object is created.

Defining a Constructor

Lines 14–18 of Fig. 3.7 define a constructor for class GradeBook. The constructor has the same name as its class, GradeBook. A constructor specifies in its parameter list the data it requires to perform its task. When you create a new object, you place this data in the parentheses that follow the object name (as we did in lines 47–48). Line 14 indicates that class GradeBook’s constructor has a string parameter called name. We declared this constructor explicit, because it takes a single parameter—this is important for subtle reasons that you’ll learn in Section 10.13. For now, just declare all single-parameter constructors explicit. Line 14 does not specify a return type, because constructors cannot return values (or even void). Also, constructors cannot be declared const (because initializing an object modifies it).

The constructor uses a member-initializer list (line 15) to initialize the courseName data member with the value of the constructor’s parameter name. Member initializers appear between a constructor’s parameter list and the left brace that begins the constructor’s body. The member initializer list is separated from the parameter list with a colon (:). A member initializer consists of a data member’s variable name followed by parentheses containing the member’s initial value. In this example, courseName is initialized with the value of the parameter name. If a class contains more than one data member, each data member’s initializer is separated from the next by a comma. The member initializer list executes before the body of the constructor executes. You can perform initialization in the constructor’s body, but you’ll learn later in the book that it’s more efficient to do it with member initializers, and some types of data members must be initialized this way.

Notice that both the constructor (line 14) and the setCourseName function (line 21) use a parameter called name. You can use the same parameter names in different functions because the parameters are local to each function—they do not interfere with one another.

Testing Class GradeBook

Lines 44–54 of Fig. 3.7 define the main function that tests class GradeBook and demonstrates initializing GradeBook objects using a constructor. Line 47 creates and initializes GradeBook object gradeBook1. When this line executes, the GradeBook constructor (lines 14–18) is called with the argument "CS101 Introduction to C++ Programming" to initialize gradeBook1’s course name. Line 48 repeats this process for GradeBook object gradeBook2, this time passing the argument "CS102 Data Structures in C++" to initialize gradeBook2’s course name. Lines 51–52 use each object’s getCourseName member function to obtain the course names and show that they were indeed initialized when the objects were created. The output confirms that each GradeBook object maintains its own data member courseName.

Ways to Provide a Default Constructor for a Class

Any constructor that takes no arguments is called a default constructor. A class can get a default constructor in one of several ways:

1. The compiler implicitly creates a default constructor in every class that does not have any user-defined constructors. The default constructor does not initialize the class’s data members, but does call the default constructor for each data member that’s an object of another class. An uninitialized variable contains an undefined (“garbage”) value.

2. You explicitly define a constructor that takes no arguments. Such a default constructor will call the default constructor for each data member that’s an object of another class and will perform additional initialization specified by you.

3. If you define any constructors with arguments, C++ will not implicitly create a default constructor for that class. We’ll show later that C++11 allows you to force the compiler to create the default constructor even if you’ve defined non-default constructors.

[image: Image]

For each version of class GradeBook in Fig. 3.1, Fig. 3.3 and Fig. 3.5 the compiler implicitly defined a default constructor.

[image: Image] Error-Prevention Tip 3.2

Unless no initialization of your class’s data members is necessary (almost never), provide constructors to ensure that your class’s data members are initialized with meaningful values when each new object of your class is created.

[image: Image] Software Engineering Observation 3.2

Data members can be initialized in a constructor, or their values may be set later after the object is created. However, it’s a good software engineering practice to ensure that an object is fully initialized before the client code invokes the object’s member functions. You should not rely on the client code to ensure that an object gets initialized properly.

Adding the Constructor to Class GradeBook’s UML Class Diagram

The UML class diagram of Fig. 3.8 models the GradeBook class of Fig. 3.7, which has a constructor with a name parameter of type string (represented by type String in the UML). Like operations, the UML models constructors in the third compartment of a class in a class diagram. To distinguish a constructor from a class’s operations, the UML places the word “constructor” between guillemets (« and ») before the constructor’s name. By convention, you list the class’s constructor before other operations in the third compartment.

[image: Image]

Fig. 3.8. UML class diagram indicating that class GradeBook has a constructor with a name parameter of UML type String.

3.6. Placing a Class in a Separate File for Reusability

One of the benefits of creating class definitions is that, when packaged properly, your classes can be reused by other programmers. For example, you can reuse C++ Standard Library type string in any C++ program by including the header <string> (and, as you’ll see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from Fig. 3.7 in another program. As you learned in Chapter 2, function main begins the execution of every program, and every program must have exactly one main function. If other programmers include the code from Fig. 3.7, they get extra “baggage”—our main function—and their programs will then have two main functions. Attempting to compile a program with two main functions produces an error. So, placing main in the same file with a class definition prevents that class from being reused by other programs. In this section, we demonstrate how to make class GradeBook reusable by separating it into another file from the main function.

Headers

Each of the previous examples in the chapter consists of a single .cpp file, also known as a source-code file, that contains a GradeBook class definition and a main function. When building an object-oriented C++ program, it’s customary to define reusable source code (such as a class) in a file that by convention has a .h filename extension—known as a header. Programs use #include preprocessing directives to include headers and take advantage of reusable software components, such as type string provided in the C++ Standard Library and user-defined types like class GradeBook.

Our next example separates the code from Fig. 3.7 into two files—GradeBook.h (Fig. 3.9) and fig03_10.cpp (Fig. 3.10). As you look at the header in Fig. 3.9, notice that it contains only the GradeBook class definition (lines 7–38) and the headers on which the class depends. The main function that uses class GradeBook is defined in the source-code file fig03_10.cpp (Fig. 3.10) in lines 8–18. To help you prepare for the larger programs you’ll encounter later in this book and in industry, we often use a separate source-code file containing function main to test our classes (this is called a driver program). You’ll soon learn how a source-code file with main can use the class definition found in a header to create objects of a class.

Click here to view code image

 1 // Fig. 3.9: GradeBook.h
 2 // GradeBook class definition in a separate file from main.
 3 #include <iostream>
 4 #include <string> // class GradeBook uses C++ standard string class
 5
 6 // GradeBook class definition
 7 class GradeBook
 8 {
 9 public:
10 // constructor initializes courseName with string supplied as argument
11 explicit GradeBook(std::string name)
12 : courseName(name) // member initializer to initialize courseName
13 {
14 // empty body
15 } // end GradeBook constructor
16
17 // function to set the course name
18 void setCourseName(std::string name)
19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22
23 // function to get the course name
24 std::string getCourseName() const
25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName
28
29 // display a welcome message to the GradeBook user
30 void displayMessage() const
31 {
32 // call getCourseName to get the courseName
33 std::cout << "Welcome to the grade book for\n" << getCourseName()
34 << "!" << std::endl;
35 } // end function displayMessage
36 private:
37 std::string courseName; // course name for this GradeBook
38 }; // end class GradeBook

Fig. 3.9. GradeBook class definition in a separate file from main.

Click here to view code image

 1 // Fig. 3.10: fig03_10.cpp
 2 // Including class GradeBook from file GradeBook.h for use in main.
 3 #include <iostream>
 4 #include "GradeBook.h" // include definition of class GradeBook
 5 using namespace std;
 6
 7 // function main begins program execution
 8 int main()
 9 {
10 // create two GradeBook objects
11 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
12 GradeBook gradeBook2("CS102 Data Structures in C++");
13
14 // display initial value of courseName for each GradeBook
15 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
16 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
17 << endl;
18 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.10. Including class GradeBook from file GradeBook.h for use in main.

Use std:: with Standard Library Components in Headers

Throughout the header (Fig. 3.9), we use std:: when referring to string (lines 11, 18, 24 and 37), cout (line 33) and endl (line 34). For subtle reasons that we’ll explain in a later chapter, headers should never contain using directives or using declarations (Section 2.6).

Including a Header That Contains a User-Defined Class

A header such as GradeBook.h (Fig. 3.9) cannot be used as a complete program, because it does not contain a main function. To test class GradeBook (defined in Fig. 3.9), you must write a separate source-code file containing a main function (such as Fig. 3.10) that instantiates and uses objects of the class.

The compiler doesn’t know what a GradeBook is because it’s a user-defined type. In fact, the compiler doesn’t even know the classes in the C++ Standard Library. To help it understand how to use a class, we must explicitly provide the compiler with the class’s definition—that’s why, for example, to use type string, a program must include the <string> header. This enables the compiler to determine the amount of memory that it must reserve for each string object and ensure that a program calls a string’s member functions correctly.

To create GradeBook objects gradeBook1 and gradeBook2 in lines 11–12 of Fig. 3.10, the compiler must know the size of a GradeBook object. While objects conceptually contain data members and member functions, C++ objects actually contain only data. The compiler creates only one copy of the class’s member functions and shares that copy among all the class’s objects. Each object, of course, needs its own data members, because their contents can vary among objects (such as two different BankAccount objects having two different balances). The member-function code, however, is not modifiable, so it can be shared among all objects of the class. Therefore, the size of an object depends on the amount of memory required to store the class’s data members. By including GradeBook.h in line 4, we give the compiler access to the information it needs (Fig. 3.9, line 37) to determine the size of a GradeBook object and to determine whether objects of the class are used correctly (in lines 11–12 and 15–16 of Fig. 3.10).

Line 4 instructs the C++ preprocessor to replace the directive with a copy of the contents of GradeBook.h (i.e., the GradeBook class definition) before the program is compiled. When the source-code file fig03_10.cpp is compiled, it now contains the GradeBook class definition (because of the #include), and the compiler is able to determine how to create GradeBook objects and see that their member functions are called correctly. Now that the class definition is in a header (without a main function), we can include that header in any program that needs to reuse our GradeBook class.

How Headers Are Located

Notice that the name of the GradeBook.h header in line 4 of Fig. 3.10 is enclosed in quotes (" ") rather than angle brackets (< >). Normally, a program’s source-code files and user-defined headers are placed in the same directory. When the preprocessor encounters a header name in quotes, it attempts to locate the header in the same directory as the file in which the #include directive appears. If the preprocessor cannot find the header in that directory, it searches for it in the same location(s) as the C++ Standard Library headers. When the preprocessor encounters a header name in angle brackets (e.g., <iostream>), it assumes that the header is part of the C++ Standard Library and does not look in the directory of the program that’s being preprocessed.

[image: Image] Error-Prevention Tip 3.3

To ensure that the preprocessor can locate headers correctly, #include preprocessing directives should place user-defined headers names in quotes (e.g., "GradeBook.h") and place C++ Standard Library headers names in angle brackets (e.g., <iostream>).

Additional Software Engineering Issues

Now that class GradeBook is defined in a header, the class is reusable. Unfortunately, placing a class definition in a header as in Fig. 3.9 still reveals the entire implementation of the class to the class’s clients—GradeBook.h is simply a text file that anyone can open and read. Conventional software engineering wisdom says that to use an object of a class, the client code needs to know only what member functions to call, what arguments to provide to each member function and what return type to expect from each member function. The client code does not need to know how those functions are implemented.

If client code does know how a class is implemented, the programmer might write client code based on the class’s implementation details. Ideally, if that implementation changes, the class’s clients should not have to change. Hiding the class’s implementation details makes it easier to change the class’s implementation while minimizing, and hopefully eliminating, changes to client code.

In Section 3.7, we show how to break up the GradeBook class into two files so that

1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to call them and what return types to expect, and

3. the clients do not know how the class’s member functions are implemented.

3.7. Separating Interface from Implementation

In the preceding section, we showed how to promote software reusability by separating a class definition from the client code (e.g., function main) that uses the class. We now introduce another fundamental principle of good software engineering—separating interface from implementation.

Interface of a Class

Interfaces define and standardize the ways in which things such as people and systems interact with one another. For example, a radio’s controls serve as an interface between the radio’s users and its internal components. The controls allow users to perform a limited set of operations (such as changing the station, adjusting the volume, and choosing between AM and FM stations). Various radios may implement these operations differently—some provide push buttons, some provide dials and some support voice commands. The interface specifies what operations a radio permits users to perform but does not specify how the operations are implemented inside the radio.

Similarly, the interface of a class describes what services a class’s clients can use and how to request those services, but not how the class carries out the services. A class’s public interface consists of the class’s public member functions (also known as the class’s public services). For example, class GradeBook’s interface (Fig. 3.9) contains a constructor and member functions setCourseName, getCourseName and displayMessage. GradeBook’s clients (e.g., main in Fig. 3.10) use these functions to request the class’s services. As you’ll soon see, you can specify a class’s interface by writing a class definition that lists only the member-function names, return types and parameter types.

Separating the Interface from the Implementation

In our prior examples, each class definition contained the complete definitions of the class’s public member functions and the declarations of its private data members. However, it’s better software engineering to define member functions outside the class definition, so that their implementation details can be hidden from the client code. This practice ensures that you do not write client code that depends on the class’s implementation details.

The program of Figs. 3.11–3.13 separates class GradeBook’s interface from its implementation by splitting the class definition of Fig. 3.9 into two files—the header GradeBook.h (Fig. 3.11) in which class GradeBook is defined, and the source-code file GradeBook.cpp (Fig. 3.12) in which GradeBook’s member functions are defined. By convention, member-function definitions are placed in a source-code file of the same base name (e.g., GradeBook) as the class’s header but with a .cpp filename extension. The source-code file fig03_13.cpp (Fig. 3.13) defines function main (the client code). The code and output of Fig. 3.13 are identical to that of Fig. 3.10. Figure 3.14 shows how this three-file program is compiled from the perspectives of the GradeBook class programmer and the client-code programmer—we’ll explain this figure in detail.

Click here to view code image

 1 // Fig. 3.11: GradeBook.h
 2 // GradeBook class definition. This file presents GradeBook's public
 3 // interface without revealing the implementations of GradeBook's member
 4 // functions, which are defined in GradeBook.cpp.
 5 #include <string> // class GradeBook uses C++ standard string class
 6
 7 // GradeBook class definition
 8 class GradeBook
 9 {
10 public:
11 explicit GradeBook(std::string); // constructor initialize courseName
12 void setCourseName(std::string); // sets the course name
13 std::string getCourseName() const; // gets the course name
14 void displayMessage() const; // displays a welcome message
15 private:
16 std::string courseName; // course name for this GradeBook
17 }; // end class GradeBook

Fig. 3.11. GradeBook class definition containing function prototypes that specify the interface of the class.

Click here to view code image

 1 // Fig. 3.12: GradeBook.cpp
 2 // GradeBook member-function definitions. This file contains
 3 // implementations of the member functions prototyped in GradeBook.h.
 4 #include <iostream>
 5 #include "GradeBook.h" // include definition of class GradeBook
 6 using namespace std;
 7
 8 // constructor initializes courseName with string supplied as argument
 9 GradeBook::GradeBook(string name)
10 : courseName(name) // member initializer to initialize courseName
11 {
12 // empty body
13 } // end GradeBook constructor
14
15 // function to set the course name
16 void GradeBook::setCourseName(string name)
17 {
18 courseName = name; // store the course name in the object
19 } // end function setCourseName
20
21 // function to get the course name
22 string GradeBook::getCourseName() const
23 {
24 return courseName; // return object's courseName
25 } // end function getCourseName
26
27 // display a welcome message to the GradeBook user
28 void GradeBook::displayMessage() const
29 {
30 // call getCourseName to get the courseName
31 cout << "Welcome to the grade book for\n" << getCourseName()
32 << "!" << endl;
33 } // end function displayMessage

Fig. 3.12. GradeBook member-function definitions represent the implementation of class GradeBook.

Click here to view code image

 1 // Fig. 3.13: fig03_13.cpp
 2 // GradeBook class demonstration after separating
 3 // its interface from its implementation.
 4 #include <iostream>
 5 #include "GradeBook.h" // include definition of class GradeBook
 6 using namespace std;
 7
 8 // function main begins program execution
 9 int main()
10 {
11 // create two GradeBook objects
12 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
13 GradeBook gradeBook2("CS102 Data Structures in C++");
14
15 // display initial value of courseName for each GradeBook
16 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
17 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
18 << endl;
19 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.13. GradeBook class demonstration after separating its interface from its implementation.

[image: Image]

Fig. 3.14. Compilation and linking process that produces an executable application.

GradeBook.h: Defining a Class’s Interface with Function Prototypes

Header GradeBook.h (Fig. 3.11) contains another version of GradeBook’s class definition (lines 8–17). This version is similar to the one in Fig. 3.9, but the function definitions in Fig. 3.9 are replaced here with function prototypes (lines 11–14) that describe the class’s public interface without revealing the class’s member-function implementations. A function prototype is a declaration of a function that tells the compiler the function’s name, its return type and the types of its parameters. Also, the header still specifies the class’s private data member (line 16) as well. Again, the compiler must know the data members of the class to determine how much memory to reserve for each object of the class. Including the header GradeBook.h in the client code (line 5 of Fig. 3.13) provides the compiler with the information it needs to ensure that the client code calls the member functions of class GradeBook correctly.

The function prototype in line 11 (Fig. 3.11) indicates that the constructor requires one string parameter. Recall that constructors don’t have return types, so no return type appears in the function prototype. Member function setCourseName’s function prototype indicates that setCourseName requires a string parameter and does not return a value (i.e., its return type is void). Member function getCourseName’s function prototype indicates that the function does not require parameters and returns a string. Finally, member function displayMessage’s function prototype (line 14) specifies that displayMessage does not require parameters and does not return a value. These function prototypes are the same as the first lines of the corresponding function definitions in Fig. 3.9, except that the parameter names (which are optional in prototypes) are not included and each function prototype must end with a semicolon.

[image: Image] Good Programming Practice 3.2

Although parameter names in function prototypes are optional (they’re ignored by the compiler), many programmers use these names for documentation purposes.

GradeBook.cpp: Defining Member Functions in a Separate Source-Code File

Source-code file GradeBook.cpp (Fig. 3.12) defines class GradeBook’s member functions, which were declared in lines 11–14 of Fig. 3.11. The definitions appear in lines 9–33 and are nearly identical to the member-function definitions in lines 11–35 of Fig. 3.9. Note that the const keyword must appear in both the function prototypes (Fig. 3.11, lines13–14) and the function definitions for functions getCourseName and displayMessage (lines 22 and 28).

Each member-function name (lines 9, 16, 22 and 28) is preceded by the class name and ::, which is known as the scope resolution operator. This “ties” each member function to the (now separate) GradeBook class definition (Fig. 3.11), which declares the class’s member functions and data members. Without “GradeBook::” preceding each function name, these functions would not be recognized by the compiler as member functions of class GradeBook—the compiler would consider them “free” or “loose” functions, like main. These are also called global functions. Such functions cannot access GradeBook’s private data or call the class’s member functions, without specifying an object. So, the compiler would not be able to compile these functions. For example, lines 18 and 24 in Fig. 3.12 that access variable courseName would cause compilation errors because courseName is not declared as a local variable in each function—the compiler would not know that courseName is already declared as a data member of class GradeBook.

[image: Image] Common Programming Error 3.3

When defining a class’s member functions outside that class, omitting the class name and scope resolution operator (::) preceding the function names causes errors.

To indicate that the member functions in GradeBook.cpp are part of class GradeBook, we must first include the GradeBook.h header (line 5 of Fig. 3.12). This allows us to access the class name GradeBook in the GradeBook.cpp file. When compiling GradeBook.cpp, the compiler uses the information in GradeBook.h to ensure that

1. the first line of each member function (lines 9, 16, 22 and 28) matches its prototype in the GradeBook.h file—for example, the compiler ensures that getCourseName accepts no parameters and returns a string, and that

2. each member function knows about the class’s data members and other member functions—for example, lines 18 and 24 can access variable courseName because it’s declared in GradeBook.h as a data member of class GradeBook, and line 31 can call function getCourseName, because it’s declared as a member function of the class in GradeBook.h (and because the call conforms with the corresponding prototype).

Testing Class GradeBook

Figure 3.13 performs the same GradeBook object manipulations as Fig. 3.10. Separating GradeBook’s interface from the implementation of its member functions does not affect the way that this client code uses the class. It affects only how the program is compiled and linked, which we discuss in detail shortly.

As in Fig. 3.10, line 5 of Fig. 3.13 includes the GradeBook.h header so that the compiler can ensure that GradeBook objects are created and manipulated correctly in the client code. Before executing this program, the source-code files in Fig. 3.12 and Fig. 3.13 must both be compiled, then linked together—that is, the member-function calls in the client code need to be tied to the implementations of the class’s member functions—a job performed by the linker.

The Compilation and Linking Process

The diagram in Fig. 3.14 shows the compilation and linking process that results in an executable GradeBook application that can be used by instructors. Often a class’s interface and implementation will be created and compiled by one programmer and used by a separate programmer who implements the client code that uses the class. So, the diagram shows what’s required by both the class-implementation programmer and the client-code programmer. The dashed lines in the diagram show the pieces required by the class-implementation programmer, the client-code programmer and the GradeBook application user, respectively. [Note: Figure 3.14 is not a UML diagram.]

A class-implementation programmer responsible for creating a reusable GradeBook class creates the header GradeBook.h and the source-code file GradeBook.cpp that #includes the header, then compiles the source-code file to create GradeBook’s object code. To hide the class’s member-function implementation details, the class-implementation programmer would provide the client-code programmer with the header GradeBook.h (which specifies the class’s interface and data members) and the GradeBook object code (i.e., the machine code instructions that represent GradeBook’s member functions). The client-code programmer is not given GradeBook.cpp, so the client remains unaware of how GradeBook’s member functions are implemented.

The client code programmer needs to know only GradeBook’s interface to use the class and must be able to link its object code. Since the interface of the class is part of the class definition in the GradeBook.h header, the client-code programmer must have access to this file and must #include it in the client’s source-code file. When the client code is compiled, the compiler uses the class definition in GradeBook.h to ensure that the main function creates and manipulates objects of class GradeBook correctly.

To create the executable GradeBook application, the last step is to link

1. the object code for the main function (i.e., the client code),

2. the object code for class GradeBook’s member-function implementations and

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by the class-implementation programmer and the client-code programmer.

The linker’s output is the executable GradeBook application that instructors can use to manage their students’ grades. Compilers and IDEs typically invoke the linker for you after compiling your code.

For further information on compiling multiple-source-file programs, see your compiler’s documentation. We provide links to various C++ compilers in our C++ Resource Center at www.deitel.com/cplusplus/.

3.8. Validating Data with set Functions

In Section 3.4, we introduced set functions for allowing clients of a class to modify the value of a private data member. In Fig. 3.5, class GradeBook defines member function setCourseName to simply assign a value received in its parameter name to data member courseName. This member function does not ensure that the course name adheres to any particular format or follows any other rules regarding what a “valid” course name looks like. Suppose that a university can print student transcripts containing course names of only 25 characters or less. If the university uses a system containing GradeBook objects to generate the transcripts, we might want class GradeBook to ensure that its data member courseName never contains more than 25 characters. The program of Figs. 3.15–3.17 enhances class GradeBook’s member function setCourseName to perform this validation (also known as validity checking).

Click here to view code image

 1 // Fig. 3.15: GradeBook.h
 2 // GradeBook class definition presents the public interface of
 3 // the class. Member-function definitions appear in GradeBook.cpp.
 4 #include <string> // program uses C++ standard string class
 5
 6 // GradeBook class definition
 7 class GradeBook
 8 {
 9 public:
10 explicit GradeBook(std::string); // constructor initialize courseName
11 void setCourseName(std::string); // sets the course name
12 std::string getCourseName() const; // gets the course name
13 void displayMessage() const; // displays a welcome message
14 private:
15 std::string courseName; // course name for this GradeBook
16 }; // end class GradeBook

Fig. 3.15. GradeBook class definition presents the public interface of the class.

GradeBook Class Definition

GradeBook’s class definition (Fig. 3.15)—and hence, its interface—is identical to that of Fig. 3.11. Since the interface remains unchanged, clients of this class need not be changed when the definition of member function setCourseName is modified. This enables clients to take advantage of the improved GradeBook class simply by linking the client code to the updated GradeBook’s object code.

Validating the Course Name with GradeBook Member Function setCourseName

The changes to class GradeBook are in the definitions of the constructor (Fig. 3.16, lines 9–12) and setCourseName (lines 16–29). Rather than using a member initializer, the constructor now calls setCourseName. In general, all data members should be initialized with member initializers. However, sometimes a constructor must also validate its argument(s)—often, this is handled in the constructor’s body (line 11). The call to setCourseName validates the constructor’s argument and sets the data member courseName. Initially, courseName’s value will be set to the empty string before the constructor’s body executes, then setCourseName will modify courseName’s value.

Click here to view code image

 1 // Fig. 3.16: GradeBook.cpp
 2 // Implementations of the GradeBook member-function definitions.
 3 // The setCourseName function performs validation.
 4 #include <iostream>
 5 #include "GradeBook.h" // include definition of class GradeBook
 6 using namespace std;
 7
 8 // constructor initializes courseName with string supplied as argument
 9 GradeBook::GradeBook(string name)
10 {
11 setCourseName(name); // validate and store courseName
12 } // end GradeBook constructor
13
14 // function that sets the course name;
15 // ensures that the course name has at most 25 characters
16 void GradeBook::setCourseName(string name)
17 {
18 if (name.size() <= 25) // if name has 25 or fewer characters
19 courseName = name; // store the course name in the object
20
21 if (name.size() > 25) // if name has more than 25 characters
22 {
23 // set courseName to first 25 characters of parameter name
24 courseName = name.substr(0, 25); // start at 0, length of 25
25
26 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
27 << "Limiting courseName to first 25 characters.\n" << endl;
28 } // end if
29 } // end function setCourseName
30
31 // function to get the course name
32 string GradeBook::getCourseName() const
33 {
34 return courseName; // return object's courseName
35 } // end function getCourseName
36
37 // display a welcome message to the GradeBook user
38 void GradeBook::displayMessage() const
39 {
40 // call getCourseName to get the courseName
41 cout << "Welcome to the grade book for\n" << getCourseName()
42 << "!" << endl;
43 } // end function displayMessage

Fig. 3.16. Member-function definitions for class GradeBook with a set function that validates the length of data member courseName.

In setCourseName, the if statement in lines 18–19 determines whether parameter name contains a valid course name (i.e., a string of 25 or fewer characters). If the course name is valid, line 19 stores it in data member courseName. Note the expression name.size() in line 18. This is a member-function call just like myGradeBook.displayMessage(). The C++ Standard Library’s string class defines a member function size that returns the number of characters in a string object. Parameter name is a string object, so the call name.size() returns the number of characters in name. If this value is less than or equal to 25, name is valid and line 19 executes.

The if statement in lines 21–28 handles the case in which setCourseName receives an invalid course name (i.e., a name that is more than 25 characters long). Even if parameter name is too long, we still want to leave the GradeBook object in a consistent state—that is, a state in which the object’s data member courseName contains a valid value (i.e., a string of 25 characters or less). Thus, we truncate the specified course name and assign the first 25 characters of name to the courseName data member (unfortunately, this could truncate the course name awkwardly). Standard class string provides member function substr (short for “substring”) that returns a new string object created by copying part of an existing string object. The call in line 24 (i.e., name.substr(0, 25)) passes two integers (0 and 25) to name’s member function substr. These arguments indicate the portion of the string name that substr should return. The first argument specifies the starting position in the original string from which characters are copied—the first character in every string is considered to be at position 0. The second argument specifies the number of characters to copy. Therefore, the call in line 24 returns a 25-character substring of name starting at position 0 (that is, the first 25 characters in name). For example, if name holds the value “CS101 Introduction to Programming in C++”, substr returns "CS101 Introduction to Pro". After the call to substr, line 24 assigns the substring returned by substr to data member courseName. In this way, setCourseName ensures that courseName is always assigned a string containing 25 or fewer characters. If the member function has to truncate the course name to make it valid, lines 26–27 display a warning message using cerr, as mentioned in Chapter 1.

The if statement in lines 21–28 contains two body statements—one to set the courseName to the first 25 characters of parameter name and one to print an accompanying message to the user. Both statements should execute when name is too long, so we place them in a pair of braces, { }. Recall from Chapter 2 that this creates a block. You’ll learn more about placing multiple statements in a control statement’s body in Chapter 4.

The statement in lines 26–27 could also appear without a stream insertion operator at the start of the second line of the statement, as in:

Click here to view code image

cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
 "Limiting courseName to first 25 characters.\n" << endl;

The C++ compiler combines adjacent string literals, even if they appear on separate lines of a program. Thus, in the statement above, the C++ compiler would combine the string literals "\" exceeds maximum length (25).\n" and "Limiting courseName to first 25 characters.\n" into a single string literal that produces output identical to that of lines 26–27 in Fig. 3.16. This behavior allows you to print lengthy strings by breaking them across lines in your program without including additional stream insertion operations.

Testing Class GradeBook

Figure 3.17 demonstrates the modified version of class GradeBook (Figs. 3.15–3.16) featuring validation. Line 12 creates a GradeBook object named gradeBook1. Recall that the GradeBook constructor calls setCourseName to initialize data member courseName. In previous versions of the class, the benefit of calling setCourseName in the constructor was not evident. Now, however, the constructor takes advantage of the validation provided by setCourseName. The constructor simply calls setCourseName, rather than duplicating its validation code. When line 12 of Fig. 3.17 passes an initial course name of "CS101 Introduction to Programming in C++" to the GradeBook constructor, the constructor passes this value to setCourseName, where the actual initialization occurs. Because this course name contains more than 25 characters, the body of the second if statement executes, causing courseName to be initialized to the truncated 25-character course name "CS101 Introduction to Pro" (the truncated part is highlighted in line 12). The output in Fig. 3.17 contains the warning message output by lines 26–27 of Fig. 3.16 in member function setCourseName. Line 13 creates another GradeBook object called gradeBook2—the valid course name passed to the constructor is exactly 25 characters.

Click here to view code image

 1 // Fig. 3.17: fig03_17.cpp
 2 // Create and manipulate a GradeBook object; illustrate validation.
 3 #include <iostream>
 4 #include "GradeBook.h" // include definition of class GradeBook
 5 using namespace std;
 6
 7 // function main begins program execution
 8 int main()
 9 {
10 // create two GradeBook objects;
11 // initial course name of gradeBook1 is too long
12 GradeBook gradeBook1("CS101 Introduction to Programming in C++");
13 GradeBook gradeBook2("CS102 C++ Data Structures");
14
15 // display each GradeBook's courseName
16 cout << "gradeBook1's initial course name is: "
17 << gradeBook1.getCourseName()
18 << "\ngradeBook2's initial course name is: "
19 << gradeBook2.getCourseName() << endl;
20
21 // modify gradeBook1's courseName (with a valid-length string)
22 gradeBook1.setCourseName("CS101 C++ Programming");
23
24 // display each GradeBook's courseName
25 cout << "\ngradeBook1's course name is: "
26 << gradeBook1.getCourseName()
27 << "\ngradeBook2's course name is: "
28 << gradeBook2.getCourseName() << endl;
29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBook1's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig. 3.17. Creating and manipulating a GradeBook object in which the course name is limited to 25 characters in length.

Lines 16–19 of Fig. 3.17 display the truncated course name for gradeBook1 (we highlight this in the program output) and the course name for gradeBook2. Line 22 calls gradeBook1’s setCourseName member function directly, to change the course name in the GradeBook object to a shorter name that does not need to be truncated. Then, lines 25–28 output the course names for the GradeBook objects again.

Additional Notes on Set Functions

A public set function such as setCourseName should carefully scrutinize any attempt to modify the value of a data member (e.g., courseName) to ensure that the new value is appropriate for that data item. For example, an attempt to set the day of the month to 37 should be rejected, an attempt to set a person’s weight to zero or a negative value should be rejected, an attempt to set a grade on an exam to 185 (when the proper range is zero to 100) should be rejected, and so on.

[image: Image] Software Engineering Observation 3.3

Making data members private and controlling access, especially write access, to those data members through public member functions helps ensure data integrity.

[image: Image] Error-Prevention Tip 3.4

The benefits of data integrity are not automatic simply because data members are made private—you must provide appropriate validity checking and report the errors.

A set function could return a value indicating that an attempt was made to assign invalid data to an object of the class. A client could then test the return value of the set function to determine whether the attempt to modify the object was successful and to take appropriate action if not. We will do that in later chapters after we introduce a bit more programming technology. In C++, clients of objects also can be notified of problems via the exception-handling mechanism, which we begin discussing in Chapter 7 and present indepth in Chapter 17.

3.9. Wrap-Up

In this chapter, you created user-defined classes, and created and used objects of those classes. We declared data members of a class to maintain data for each object of the class. We also defined member functions that operate on that data. You learned that member functions that do not modify a class’s data should be declared const. We showed how to call an object’s member functions to request the services the object provides and how to pass data to those member functions as arguments. We discussed the difference between a local variable of a member function and a data member of a class. We also showed how to use a constructor and a member-initializer list to ensure that every object is initialized properly. You learned that a single-parameter constructor should be declared explicit, and that a constructor cannot be declared const because it modifies the object being initialized. We demonstrated how to separate the interface of a class from its implementation to promote good software engineering. You learned that using directives and using declarations should never be placed in headers. We presented a diagram that shows the files that class-implementation programmers and client-code programmers need to compile the code they write. We demonstrated how set functions can be used to validate an object’s data and ensure that objects are maintained in a consistent state. UML class diagrams were used to model classes and their constructors, member functions and data members. In the next chapter, we begin our introduction to control statements, which specify the order in which a function’s actions are performed.

4. Control Statements: Part 1; Assignment, ++ and -- Operators

Objectives

In this chapter you’ll:

• Use the if and if...else selection statements to choose among alternative actions.

• Use the while repetition statement to execute statements in a program repeatedly.

• Implement counter-controlled repetition and sentinel-controlled repetition.

• Use the increment, decrement and assignment operators.

Outline

4.1 Introduction

4.2 Control Structures

4.3 if Selection Statement

4.4 if...else Double-Selection Statement

4.5 while Repetition Statement

4.6 Counter-Controlled Repetition

4.7 Sentinel-Controlled Repetition

4.8 Nested Control Statements

4.9 Assignment Operators

4.10 Increment and Decrement Operators

4.11 Wrap-Up

4.1. Introduction

In this chapter, we introduce C++’s if, if...else and while control statements. We devote a portion of this chapter (and Chapters 5–7) to further developing the GradeBook class. We add a member function that uses control statements to calculate the average of a set of student grades and we introduce C++’s assignment, increment and decrement operators.

4.2. Control Structures

Normally, statements in a program execute one after the other in the order in which they’re written. This is called sequential execution. Various C++ statements we’ll soon discuss enable you to specify that the next statement to execute may be other than the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control was the root of much difficulty experienced by software development groups. Blame was pointed at the goto statement, which allows you to specify a transfer of control to one of a wide range of possible destinations in a program (creating what’s often called “spaghetti code”). The notion of so-called structured programming became almost synonymous with “goto elimination.”

Böhm and Jacopini’s1 research demonstrated that all programs could be written in terms of only three control structures, namely, the sequence structure, the selection structure and the repetition structure. The term “control structures” comes from the field of computer science. When we introduce C++’s implementations of control structures, we’ll refer to them in the terminology of the C++ standard document as “control statements.”

1. Böhm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 366–371.

Sequence Structure in C++

The sequence structure is built into C++. Unless directed otherwise, the computer executes C++ statements one after the other in the order in which they’re written—that is, in sequence. The UML activity diagram of Fig. 4.1 illustrates a typical sequence structure in which two calculations are performed in order. C++ allows you to have as many actions as you want in a sequence structure. As you’ll soon see, anywhere a single action may be placed, you may place several actions in sequence.

[image: Image]

Fig. 4.1. Sequence-structure activity diagram.

In this figure, the two statements add a grade to a total variable and add the value 1 to a counter variable. Such statements might appear in a program that averages several student grades. To calculate an average, the total of the grades being averaged is divided by the number of grades. A counter variable would be used to keep track of the number of values being averaged. You’ll see similar statements in the program of Section 4.6.

An activity diagram models the workflow (also called the activity) of a portion of a software system. Such workflows may include a portion of an algorithm, such as the sequence structure in Fig. 4.1. Activity diagrams are composed of special-purpose symbols, such as action state symbols (a rectangle with its left and right sides replaced with arcs curving outward), diamonds and small circles; these symbols are connected by transition arrows, which represent the flow of the activity.

Activity diagrams clearly show how control structures operate. Consider the sequence-structure activity diagram of Fig. 4.1. It contains two action states that represent actions to perform. Each action state contains an action expression—e.g., “add grade to total” or “add 1 to counter”—that specifies a particular action to perform. Other actions might include calculations or input/output operations. The arrows in the activity diagram are called transition arrows. These arrows represent transitions, which indicate the order in which the actions represented by the action states occur—the program that implements the activities illustrated by the activity diagram in Fig. 4.1 first adds grade to total, then adds 1 to counter.

The solid circle at the top of the diagram represents the activity’s initial state—the beginning of the workflow before the program performs the modeled activities. The solid circle surrounded by a hollow circle that appears at the bottom of the activity diagram represents the final state—the end of the workflow after the program performs its activities.

Figure 4.1 also includes rectangles with the upper-right corners folded over. These are called notes in the UML—explanatory remarks that describe the purpose of symbols in the diagram. Figure 4.1 uses UML notes to show the C++ code associated with each action state in the activity diagram. A dotted line connects each note with the element that the note describes. Activity diagrams normally do not show the C++ code that implements the activity. We use notes for this purpose here to illustrate how the diagram relates to C++ code. For more information on the UML, see the ATM case study in Chapters 22–23.

Selection Statements in C++

C++ provides three types of selection statements (discussed in this chapter and Chapter 5). The if selection statement either performs (selects) an action if a condition is true or skips the action if the condition is false. The if...else selection statement performs an action if a condition is true or performs a different action if the condition is false. The switch selection statement (Chapter 5) performs one of many different actions, depending on the value of an integer expression.

The if selection statement is a single-selection statement because it selects or ignores a single action (or, as you’ll soon see, a single group of actions). The if...else statement is called a double-selection statement because it selects between two different actions (or groups of actions). The switch selection statement is called a multiple-selection statement because it selects among many different actions (or groups of actions).

Repetition Statements in C++

C++ provides three types of repetition statements (also called looping statements or loops) for performing statements repeatedly while a condition (called the loop-continuation condition) remains true. These are the while, do...while and for statements. (Chapter 5 presents the do...while and for statements, and Chapter 7 presents a specialized version of the for statement that’s used with arrays and containers.) The while and for statements perform the action (or group of actions) in their bodies zero or more times—if the loop-continuation condition is initially false, the action (or group of actions) will not execute. The do...while statement performs the action (or group of actions) in its body at least once.

Each of the words if, else, switch, while, do and for is a C++ keyword. Keywords cannot be used as identifiers, such as variable names, and must be spelled with only lowercase letters. Figure 4.2 provides a complete list of C++ keywords.

[image: Image]

Fig. 4.2. C++ keywords.

Summary of Control Statements in C++

C++ has only three kinds of control structures, which from this point forward we refer to as control statements: the sequence statement, selection statements (three types—if, if...else and switch) and repetition statements (three types—while, for and do...while). Each program combines as many of each of these control statements as appropriate for the algorithm the program implements. We can model each control statement as an activity diagram with initial and final states representing that control statement’s entry and exit points, respectively. These single-entry/single-exit control statements make it easy to build programs—control statements are attached to one another by connecting the exit point of one to the entry point of the next. We call this control-statement stacking. There’s only one other way to connect control statements—called control-statement nesting, in which one control statement is contained inside another.

[image: Image] Software Engineering Observation 4.1

Any C++ program can be constructed from only seven different types of control statements (sequence, if, if...else, switch, while, do...while and for) combined in only two ways (control-statement stacking and control-statement nesting).

4.3. if Selection Statement

Programs use selection statements to choose among alternative courses of action. For example, suppose the passing grade on an exam is 60. The statement

if (grade >= 60)

 cout << "Passed";

determines whether the condition grade >= 60 is true or false. If the condition is true, "Passed" is printed and the next statement in order is performed. If the condition is false, the output statement is ignored and the next statement in order is performed. The indentation of the second line is optional, but it’s recommended because it emphasizes the inherent structure of the program.

It’s important to note here that we’re casually assuming that grade contains a valid value—an integer in the range 0 to 100. Throughout the book, we’ll introduce many important validation techniques.

[image: Image] Error-Prevention Tip 4.1

In industrial-strength code, always validate all inputs.

Figure 4.3 illustrates the single-selection if statement. It contains what is perhaps the most important symbol in an activity diagram—the diamond or decision symbol, which indicates that a decision is to be made. A decision symbol indicates that the workflow will continue along a path determined by the symbol’s associated guard conditions, which can be true or false. Each transition arrow emerging from a decision symbol has a guard condition specified in square brackets above or next to the transition arrow. If a particular guard condition is true, the workflow enters the action state to which that transition arrow points. In Fig. 4.3, if the grade is greater than or equal to 60, the program prints “Passed” to the screen, then transitions to the final state of this activity. If the grade is less than 60, the program immediately transitions to the final state without displaying a message.

[image: Image]

Fig. 4.3. if single-selection statement activity diagram.

You saw in Chapter 2 that decisions can be based on conditions containing relational or equality operators. Actually, in C++, a decision can be based on any expression—if the expression evaluates to zero, it’s treated as false; if the expression evaluates to nonzero, it’s treated as true. C++ provides the data type bool for variables that can hold only the values true and false—each of these is a C++ keyword.

[image: Image] Portability Tip 4.1

For compatibility with earlier versions of C, which used integers for Boolean values, the bool value true also can be represented by any nonzero value (compilers typically use 1) and the bool value false also can be represented as the value zero.

The if statement is a single-entry/single-exit statement. We’ll see that the activity diagrams for the remaining control statements also contain initial states, transition arrows, action states that indicate actions to perform, decision symbols (with associated guard conditions) that indicate decisions to be made and final states.

4.4. if...else Double-Selection Statement

The if single-selection statement performs an indicated action only when the condition is true; otherwise the action is skipped. The if...else double-selection statement allows you to specify an action to perform when the condition is true and a different action to perform when the condition is false. For example, the statement

if (grade >= 60)

 cout << "Passed";

else

 cout << "Failed";

displays "Passed" if grade >= 60, but displays "Failed" if the student’s grade is less than 60. In either case, the next statement in sequence is then performed. The body of the else is also indented. Figure 4.4 illustrates the the if...else statement’s flow of control.

[image: Image]

Fig. 4.4. if...else double-selection statement activity diagram.

Conditional Operator (?:)

C++ provides the conditional operator (?:), which is closely related to the if...else statement. The conditional operator is C++’s only ternary operator—it takes three operands. The operands, together with the conditional operator, form a conditional expression. The first operand is a condition, the second operand is the value for the entire conditional expression if the condition is true and the third operand is the value for the entire conditional expression if the condition is false. For example, the output statement

cout << (grade >= 60 ? "Passed" : "Failed");

contains a conditional expression, grade >= 60 ? "Passed" : "Failed", that evaluates to the string "Passed" if the condition grade >= 60 is true, but evaluates to "Failed" if the condition is false. Thus, the statement with the conditional operator performs essentially the same as the preceding if...else statement. As we’ll see, the precedence of the conditional operator is low, so the parentheses in the preceding expression are required.

[image: Image] Error-Prevention Tip 4.2

To avoid precedence problems (and for clarity), place conditional expressions (that appear in larger expressions) in parentheses.

The values in a conditional expression also can be actions to execute. For example, the following conditional expression also prints "Passed" or "Failed":

grade >= 60 ? cout << "Passed" : cout << "Failed";

The preceding conditional expression is read, “If grade is greater than or equal to 60, then cout << "Passed"; otherwise, cout << "Failed".” This, too, is comparable to the preceding if...else statement. Conditional expressions can appear in some program contexts where if...else statements cannot.

Nested if...else Statements

Nested if...else statements test for multiple cases by placing if...else selection statements inside other if...else selection statements. For example, the following if...else statement displays A for exam grades greater than or equal to 90, B for grades in the range 80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69 and F for all other grades:

Click here to view code image

if (studentGrade >= 90) // 90 and above gets "A"

 cout << "A";

else

 if (studentGrade >= 80) // 80-89 gets "B"

 cout << "B";

 else

 if (studentGrade >= 70) // 70-79 gets "C"

 cout << "C";

 else

 if (studentGrade >= 60) // 60-69 gets "D"

 cout << "D";

 else // less than 60 gets "F"

 cout << "F";

If studentGrade is greater than or equal to 90, the first four conditions are true, but only the statement after the first test executes. Then, the program skips the else-part of the “outermost” if...else statement.

Many programmers write the preceding statement as

Click here to view code image

if (studentGrade >= 90) // 90 and above gets "A"

 cout << "A";

else if (studentGrade >= 80) // 80-89 gets "B"

 cout << "B";

else if (studentGrade >= 70) // 70-79 gets "C"

 cout << "C";

else if (studentGrade >= 60) // 60-69 gets "D"

 cout << "D";

else // less than 60 gets "F"

 cout << "F";

The two forms are identical except for the spacing and indentation, which the compiler ignores. The latter form is popular because it avoids deep indentation of the code to the right, which can force lines to wrap.

[image: Image] Performance Tip 4.1

A nested if...else statement can perform much faster than a series of single-selection if statements because of the possibility of early exit after one of the conditions is satisfied.

[image: Image] Performance Tip 4.2

In a nested if...else statement, test the conditions that are more likely to be true at the beginning of the nested statement. This will enable the nested if...else statement to run faster by exiting earlier than if infrequently occurring cases were tested first.

Dangling-else Problem

The compiler always associates an else with the immediately preceding if unless told to do otherwise by the placement of braces ({ and }). This behavior can lead to what’s referred to as the dangling-else problem. For example,

if (x > 5)

 if (y > 5)

 cout << "x and y are > 5";

else

 cout << "x is <= 5";

appears to indicate that if x is greater than 5, the nested if statement determines whether y is also greater than 5. If so, "x and y are > 5" is output. Otherwise, it appears that if x is not greater than 5, the else part of the if...else outputs "x is <= 5".

Beware! This nested if...else statement does not execute as it appears. The compiler actually interprets the statement as

if (x > 5)

 if (y > 5)

 cout << "x and y are > 5";

 else

 cout << "x is <= 5";

in which the body of the first if is a nested if...else. The outer if statement tests whether x is greater than 5. If so, execution continues by testing whether y is also greater than 5. If the second condition is true, the proper string—"x and y are > 5"—is displayed. However, if the second condition is false, the string "x is <= 5" is displayed, even though we know that x is greater than 5.

To force the nested if...else statement to execute as originally intended, we can write it as follows:

if (x > 5)

{

 if (y > 5)

 cout << "x and y are > 5";

}

else

 cout << "x is <= 5";

The braces ({}) indicate to the compiler that the second if statement is in the body of the first if and that the else is associated with the first if.

Blocks

The if selection statement expects only one statement in its body. Similarly, the if and else parts of an if...else statement each expect only one body statement. To include several statements in the body of an if or in either part of an if...else, enclose the statements in braces ({ and }). A set of statements contained within a pair of braces is called a block.

[image: Image] Software Engineering Observation 4.2

A block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in the else part of an if...else statement.

Click here to view code image

if (studentGrade >= 60)

 cout << "Passed.\n";

else

{

 cout << "Failed.\n";

 cout << "You must take this course again.\n";

}

In this case, if studentGrade is less than 60, the program executes both statements in the body of the else and prints

Failed.

You must take this course again.

Notice the braces surrounding the two statements in the else clause. These braces are important. Without the braces, the statement

cout << "You must take this course again.\n";

would be outside the body of the else part of the if and would execute regardless of whether the grade was less than 60. This is a logic error.

Just as a block can be placed anywhere a single statement can be placed, it’s also possible to have no statement at all, which is called a null statement or an empty statement. The null statement is represented by placing a semicolon (;) where a statement would normally be.

[image: Image] Common Programming Error 4.1

Placing a semicolon after the condition in an if statement leads to a logic error in single-selection if statements and a syntax error in double-selection if...else statements (when the if part contains an actual body statement).

4.5. while Repetition Statement

As an example of C++’s while repetition statement, consider a program segment designed to find the first power of 3 larger than 100. Suppose the integer variable product has been initialized to 3. When the following while repetition statement finishes executing, product contains the result:

int product = 3;

while (product <= 100)

 product = 3 * product;

When the while statement begins execution, product’s value is 3. Each repetition multiplies product by 3, so product takes on the values 9, 27, 81 and 243 successively. When product becomes 243, the while statement condition (product <= 100) becomes false. This terminates the repetition, so the final value of product is 243. At this point, program execution continues with the next statement after the while statement.

The UML activity diagram of Fig. 4.5 illustrates the flow of control that corresponds to the preceding while statement. Once again, the symbols in the diagram (besides the initial state, transition arrows, a final state and three notes) represent an action state and a decision. This diagram also introduces the UML’s merge symbol, which joins two flows of activity into one flow of activity. The UML represents both the merge symbol and the decision symbol as diamonds. In this diagram, the merge symbol joins the transitions from the initial state and from the action state, so they both flow into the decision that determines whether the loop should begin (or continue) executing. The decision and merge symbols can be distinguished by the number of incoming and outgoing transition arrows. A decision symbol has one transition arrow pointing to the diamond and two or more transition arrows pointing out from the diamond to indicate possible transitions from that point. In addition, each transition arrow pointing out of a decision symbol has a guard condition next to it. A merge symbol has two or more transition arrows pointing to the diamond and only one transition arrow pointing from the diamond, to indicate multiple activity flows merging to continue the activity. Unlike the decision symbol, the merge symbol does not have a counterpart in C++ code.

[image: Image]

Fig. 4.5. while repetition statement UML activity diagram.

The diagram of Fig. 4.5 clearly shows the repetition of the while statement discussed earlier in this section. The transition arrow emerging from the action state points to the merge, which transitions back to the decision that’s tested each time through the loop until the guard condition product > 100 becomes true. Then the while statement exits (reaches its final state) and control passes to the next statement in sequence in the program.

4.6. Counter-Controlled Repetition

This section and Section 4.7 solve two variations of a class average problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (0 to 100) for this quiz are available to you. Calculate and display the total of the grades and the class average.

The class average is equal to the sum of the grades divided by the number of students. The algorithm for solving this problem on a computer must input each of the grades, calculate the average and print the result. We use counter-controlled repetition to input the grades one at a time.

This section presents a version of class GradeBook (Figs. 4.6–4.7) that implements the algorithm in a C++ member function, and an application (Fig. 4.8) that demonstrates the algorithm in action.

Click here to view code image

 1 // Fig. 4.6: GradeBook.h

 2 // Definition of class GradeBook that determines a class average.

 3 // Member functions are defined in GradeBook.cpp

 4 #include <string> // program uses C++ standard string class

 5

 6 // GradeBook class definition

 7 class GradeBook

 8 {

 9 public:

10 explicit GradeBook(std::string); // initializes course name

11 void setCourseName(std::string); // set the course name

12 std::string getCourseName() const; // retrieve the course name

13 void displayMessage() const; // display a welcome message

14 void determineClassAverage() const; // averages user-entered grades

15 private:

16 std::string courseName; // course name for this GradeBook

17 }; // end class GradeBook

Fig. 4.6. Class average problem using counter-controlled repetition: GradeBook header.

Click here to view code image

 1 // Fig. 4.7: GradeBook.cpp

 2 // Member-function definitions for class GradeBook that solves the

 3 // class average program with counter-controlled repetition.

 4 #include <iostream>

 5 #include "GradeBook.h" // include definition of class GradeBook

 6 using namespace std;

 7

 8 // constructor initializes courseName with string supplied as argument

 9 GradeBook::GradeBook(string name)

10 {

11 setCourseName(name); // validate and store courseName

12 } // end GradeBook constructor

13

14 // function to set the course name;

15 // ensures that the course name has at most 25 characters

16 void GradeBook::setCourseName(string name)

17 {

18 if (name.size() <= 25) // if name has 25 or fewer characters

19 courseName = name; // store the course name in the object

20 else // if name is longer than 25 characters

21 { // set courseName to first 25 characters of parameter name

22 courseName = name.substr(0, 25); // select first 25 characters

23 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"

24 << "Limiting courseName to first 25 characters.\n" << endl;

25 } // end if...else

26 } // end function setCourseName

27

28 // function to retrieve the course name

29 string GradeBook::getCourseName() const

30 {

31 return courseName;

32 } // end function getCourseName

33

34 // display a welcome message to the GradeBook user

35 void GradeBook::displayMessage() const

36 {

37 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"

38 << endl;

39 } // end function displayMessage

40

41 // determine class average based on 10 grades entered by user

42 void GradeBook::determineClassAverage() const

43 {

44 // initialization phase

45 int total = 0; // sum of grades entered by user

46 unsigned int gradeCounter = 1; // number of grade to be entered next

47

48 // processing phase

49 while (gradeCounter <= 10) // loop 10 times

50 {

51 cout << "Enter grade: "; // prompt for input

52 int grade = 0; // grade value entered by user

53 cin >> grade; // input next grade

54 total = total + grade; // add grade to total

55 gradeCounter = gradeCounter + 1; // increment counter by 1

56 } // end while

57

58 // termination phase

59 int average = total / 10; // ok to mix declaration and calculation

60

61 // display total and average of grades

62 cout << "\nTotal of all 10 grades is " << total << endl;

63 cout << "Class average is " << average << endl;

64 } // end function determineClassAverage

Fig. 4.7. Class average problem using counter-controlled repetition: GradeBook source code file.

Click here to view code image

 1 // Fig. 4.8: fig04_08.cpp

 2 // Create GradeBook object and invoke its determineClassAverage function.

 3 #include "GradeBook.h" // include definition of class GradeBook

 4

 5 int main()

 6 {

 7 // create GradeBook object myGradeBook and

 8 // pass course name to constructor

 9 GradeBook myGradeBook("CS101 C++ Programming");

10

11 myGradeBook.displayMessage(); // display welcome message

12 myGradeBook.determineClassAverage(); // find average of 10 grades

13 } // end main

Welcome to the grade book for

CS101 C++ Programming

Enter grade: 67

Enter grade: 78

Enter grade: 89

Enter grade: 67

Enter grade: 87

Enter grade: 98

Enter grade: 93

Enter grade: 85

Enter grade: 82

Enter grade: 100

Total of all 10 grades is 846

Class average is 84

Fig. 4.8. Class average problem using counter-controlled repetition: Creating a GradeBook object (Fig. 4.6–Fig. 4.7) and invoking its determineClassAverage member function.

Enhancing GradeBook Validation

Let’s consider an enhancement we made to class GradeBook. In Fig. 3.16, our setCourseName member function validated the course name by testing whether the course name’s length was less than or equal to 25 characters, using an if statement. If this was true, the course name would be set. This code was followed by an if statement that tested whether the course name’s length was larger than 25 characters (in which case the course name would be shortened). The second if statement’s condition is the exact opposite of the first if statement’s condition. If one condition evaluates to true, the other must evaluate to false. Such a situation is ideal for an if...else statement, so we’ve modified our code, replacing the two if statements with one if...else statement, as shown in lines 18–25 of Fig. 4.7).

Implementing Counter-Controlled Repetition in Class GradeBook

Class GradeBook (Figs. 4.6–4.7) contains a constructor (declared in line 10 of Fig. 4.6 and defined in lines 9–12 of Fig. 4.7) that assigns a value to the class’s data member courseName (declared in line 16 of Fig. 4.6). Lines 16–26, 29–32 and 35–39 of Fig. 4.7 define member functions setCourseName, getCourseName and displayMessage, respectively. Lines 42–64 define member function determineClassAverage.

Because the gradeCounter variable (Fig. 4.7, line 46) is used to count from 1 to 10 in this program (all positive values), we declared the variable as an unsigned int, which can store only non-negative values (that is, 0 and higher). Local variables total (Fig. 4.7, line 45), grade (line 52) and average (line 59) to be of type int. Variable grade stores the user input. Notice that the preceding declarations appear in the body of member function determineClassAverage. Also, variable grade is declared in the while statement’s body because it’s used only in the loop—in general, variables should be declared just before they’re used. We initialize grade to 0 (line 52) as a good practice, even though a new value is immediately input for grade in line 53.

In this chapter’s versions of class GradeBook, we simply read and process a set of grades. The averaging calculation is performed in member function determineClassAverage using local variables—we do not preserve any information about student grades in the class’s data members. In Chapter 7, we modify class GradeBook to maintain the grades in memory using a data member that refers to an array. This allows a GradeBook object to perform various calculations on a set of grades without requiring the user to enter the grades multiple times.

Lines 45–46 initialize total to 0 and gradeCounter to 1 before they’re used in calculations. Line 49 indicates that the while statement should continue looping (also called iterating) as long as gradeCounter’s value is less than or equal to 10. While this condition remains true, the while statement repeatedly executes the statements between the braces that delimit its body (lines 49–56).

Line 51 displays the prompt "Enter grade: ". Line 53 reads the grade entered by the user and assigns it to variable grade. Line 54 adds the new grade entered by the user to the total and assigns the result to total, which replaces its previous value.

Line 55 adds 1 to gradeCounter to indicate that the program has processed the current grade and is ready to input the next grade from the user. Incrementing gradeCounter eventually causes gradeCounter to exceed 10. At that point the while loop terminates because its condition (line 49) becomes false.

When the loop terminates, line 59 performs the averaging calculation and assigns its result to the variable average. Line 62 displays the text "Total of all 10 grades is " followed by variable total’s value. Line 63 then displays the text "Class average is " followed by variable average’s value. Member function determineClassAverage then returns control to the calling function (i.e., main in Fig. 4.8).

Demonstrating Class GradeBook

Figure 4.8 contains this application’s main function, which creates an object of class GradeBook and demonstrates its capabilities. Line 9 of Fig. 4.8 creates a new GradeBook object called myGradeBook. The string in line 9 is passed to the GradeBook constructor (lines 9–12 of Fig. 4.7). Line 11 of Fig. 4.8 calls myGradeBook’s displayMessage member function to display a welcome message to the user. Line 12 then calls myGradeBook’s determineClassAverage member function to allow the user to enter 10 grades, for which the member function then calculates and prints the average.

Notes on Integer Division and Truncation

The averaging calculation performed in response to the function call in line 12 of Fig. 4.8 produces an integer result. The sample execution indicates that the sum of the grade values is 846, which, when divided by 10, should yield 84.6—a number with a decimal point. However, the result of the calculation total / 10 (line 59 of Fig. 4.7) is the integer 84, because total and 10 are both integers. Dividing two integers results in integer division—any fractional part of the calculation is truncated. We’ll see how to obtain a result that includes a decimal point from the averaging calculation in the next section.

[image: Image] Common Programming Error 4.2

Assuming that integer division rounds (rather than truncates) can lead to incorrect results. For example, 7 ÷ 4, yields 1.75 in conventional arithmetic, but truncates the floating-point part (.75) in integer arithmetic. So the result is 1. Similarly, –7 ÷ 4, yields –1.

In Fig. 4.7, if line 59 used gradeCounter rather than 10, the output for this program would display an incorrect value, 76. This would occur because in the final iteration of the while statement, gradeCounter was incremented to the value 11 in line 55.

A Note About Arithmetic Overflow

In Fig. 4.7, line 54

total = total + grade; // add grade to total

added each grade entered by the user to the total. Even this simple statement has a potential problem—adding the integers could result in a value that’s too large to store in an int variable. This is known as arithmetic overflow and causes undefined behavior, which can lead to unintended results (en.wikipedia.org/wiki/Integer_overflow#Security_ramifications). Figure 2.5’s addition program had the same issue in line 19, which calculated the sum of two int values entered by the user:

sum = number1 + number2; // add the numbers; store result in sum

The maximum and minimum values that can be stored in an int variable are represented by the constants INT_MAX and INT_MIN, respectively, which are defined in the header <climits>. There are similar constants for the other integral types and for floating-point types. You can see your platform’s values for these constants by opening the headers <climits> and <cfloat> in a text editor (you can search your file system for these files).

It’s considered a good practice to ensure that before you perform arithmetic calculations like the ones in line 54 of Fig. 4.7 and line 19 of Fig. 2.5, they will not overflow. The code for doing this is shown on the CERT website www.securecoding.cert.org—just search for guideline “INT32-CPP.” The code uses the && (logical AND) and || (logical OR) operators, which are introduced in Chapter 5. In industrial-strength code, you should perform checks like these for all calculations.

A Deeper Look at Receiving User Input

Any time a program receives input from the user various problems might occur. For example, in line 53 of Fig. 4.7

cin >> grade; // input next grade

we assume that the user will enter an integer grade in the range 0 to 100. However, the person entering a grade could enter an integer less than 0, an integer greater than 100, an integer outside the range of values that can be stored in an int variable, a number containing a decimal point or a value containing letters or special symbols that’s not even an integer.

To ensure that the user’s input is valid, industrial-strength programs must test for all possible erroneous cases. As you progress through the book, you’ll learn various techniques for dealing with the broad range of possible input problems.

4.7. Sentinel-Controlled Repetition

Let’s generalize the class average problem. Consider the following problem:

Develop a class average program that processes grades for an arbitrary number of students each time it’s run.

In the previous example, the problem statement specified the number of students, so the number of grades (10) was known in advance. In this example, no indication is given of how many grades the user will enter during the program’s execution. The program must process an arbitrary number of grades. How can the program determine when to stop the input of grades? How will it know when to calculate and print the class average?

To solve this problem, we can use a special value called a sentinel value (also called a signal value, a dummy value or a flag value) to indicate “end of data entry.” After typing the legitimate grades, the user types the sentinel value to indicate that the last grade has been entered.

The sentinel value must be chosen so that it’s not confused with an acceptable input value. Grades are normally nonnegative integers, so –1 is an acceptable sentinel value. Thus, a run of the program might process inputs such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class average for the grades 95, 96, 75, 74 and 89. Since –1 is the sentinel value, it should not enter into the averaging calculation.

Implementing Sentinel-Controlled Repetition in Class GradeBook

Figures 4.9–4.10 show class GradeBook containing member function determineClassAverage (this class is demonstrated in Fig. 4.11). Although each grade entered is an integer, the averaging calculation is likely to produce a number with a decimal point—in other words, a real number or floating-point number (e.g., 7.33, 0.0975 or 1000.12345). C++ provides several data types for storing floating-point numbers in memory, including float and double. The primary difference between these types is that, compared to float variables, double variables can typically store numbers with larger magnitude and finer detail (i.e., more digits to the right of the decimal point—also known as the number’s precision). This program introduces a special operator called a cast operator to force the averaging calculation to produce a floating-point numeric result.

Click here to view code image

 1 // Fig. 4.9: GradeBook.h

 2 // Definition of class GradeBook that determines a class average.

 3 // Member functions are defined in GradeBook.cpp

 4 #include <string> // program uses C++ standard string class

 5

 6 // GradeBook class definition

 7 class GradeBook

 8 {

 9 public:

10 explicit GradeBook(std::string); // initializes course name

11 void setCourseName(std::string); // set the course name

12 std::string getCourseName() const; // retrieve the course name

13 void displayMessage() const; // display a welcome message

14 void determineClassAverage() const; // averages user-entered grades

15 private:

16 std::string courseName; // course name for this GradeBook

17 }; // end class GradeBook

Fig. 4.9. Class average using sentinel-controlled repetition: GradeBook header.

Click here to view code image

 1 // Fig. 4.10: GradeBook.cpp

 2 // Member-function definitions for class GradeBook that solves the

 3 // class average program with sentinel-controlled repetition.

 4 #include <iostream>

 5 #include <iomanip> // parameterized stream manipulators

 6 #include "GradeBook.h" // include definition of class GradeBook

 7 using namespace std;

 8

 9 // constructor initializes courseName with string supplied as argument

10 GradeBook::GradeBook(string name)

11 {

12 setCourseName(name); // validate and store courseName

13 } // end GradeBook constructor

14

15 // function to set the course name;

16 // ensures that the course name has at most 25 characters

17 void GradeBook::setCourseName(string name)

18 {

19 if (name.size() <= 25) // if name has 25 or fewer characters

20 courseName = name; // store the course name in the object

21 else // if name is longer than 25 characters

22 { // set courseName to first 25 characters of parameter name

23 courseName = name.substr(0, 25); // select first 25 characters

24 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"

25 << "Limiting courseName to first 25 characters.\n" << endl;

26 } // end if...else

27 } // end function setCourseName

28

29 // function to retrieve the course name

30 string GradeBook::getCourseName() const

31 {

32 return courseName;

33 } // end function getCourseName

34

35 // display a welcome message to the GradeBook user

36 void GradeBook::displayMessage() const

37 {

38 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"

39 << endl;

40 } // end function displayMessage

41

42 // determine class average based on 10 grades entered by user

43 void GradeBook::determineClassAverage() const

44 {

45 // initialization phase

46 int total = 0; // sum of grades entered by user

47 unsigned int gradeCounter = 0; // number of grades entered

48

49 // processing phase

50 // prompt for input and read grade from user

51 cout << "Enter grade or -1 to quit: ";

52 int grade = 0; // grade value

53 cin >> grade; // input grade or sentinel value

54

55 // loop until sentinel value read from user

56 while (grade != -1) // while grade is not -1

57 {

58 total = total + grade; // add grade to total

59 gradeCounter = gradeCounter + 1; // increment counter

60

61 // prompt for input and read next grade from user

62 cout << "Enter grade or -1 to quit: ";

63 cin >> grade; // input grade or sentinel value

64 } // end while

65

66 // termination phase

67 if (gradeCounter != 0) // if user entered at least one grade...

68 {

69 // calculate average of all grades entered

70 double average = static_cast< double >(total) / gradeCounter;

71

72 // display total and average (with two digits of precision)

73 cout << "\nTotal of all " << gradeCounter << " grades entered is "

74 << total << endl;

75 cout << setprecision(2) << fixed;

76 cout << "Class average is " << average << endl;

77 } // end if

78 else // no grades were entered, so output appropriate message

79 cout << "No grades were entered" << endl;

80 } // end function determineClassAverage

Fig. 4.10. Class average problem using sentinel-controlled repetition: GradeBook source code file.

Click here to view code image

 1 // Fig. 4.11: fig04_11.cpp

 2 // Create GradeBook object and invoke its determineClassAverage function.

 3 #include "GradeBook.h" // include definition of class GradeBook

 4

 5 int main()

 6 {

 7 // create GradeBook object myGradeBook and

 8 // pass course name to constructor

 9 GradeBook myGradeBook("CS101 C++ Programming");

10

11 myGradeBook.displayMessage(); // display welcome message

12 myGradeBook.determineClassAverage(); // find average of 10 grades

13 } // end main

Welcome to the grade book for

CS101 C++ Programming

Enter grade or -1 to quit: 97

Enter grade or -1 to quit: 88

Enter grade or -1 to quit: 72

Enter grade or -1 to quit: -1

Total of all 3 grades entered is 257

Class average is 85.67

Fig. 4.11. Class average problem using sentinel-controlled repetition: Creating a GradeBook object and invoking its determineClassAverage member function.

This example stacks control statements on top of one another—the while statement (lines 56–64 of Fig. 4.10) is immediately followed by an if...else statement (lines 67–79) in sequence. Much of the code in this program is identical to the code in Fig. 4.7, so we concentrate on the new features and issues.

Lines 46–47 initialize variables total and gradeCounter to 0, because no grades have been entered yet. Remember that this program uses sentinel-controlled repetition. To keep an accurate record of the number of grades entered, the program increments variable gradeCounter only when the user enters a grade value that is not the sentinel value and the program completes the processing of the grade. We declared and initialized variables grade (line 52) and average (line 70) where they are used. Notice that line 70 declares the variable average as type double. Recall that we used an int variable in the preceding example to store the class average. Using type double in the current example allows us to store the class average calculation’s result as a floating-point number. Finally, notice that both input statements (lines 53 and 63) are preceded by an output statement that prompts the user for input.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition

Compare the program logic for sentinel-controlled repetition with that for counter-controlled repetition in Fig. 4.7. In counter-controlled repetition, each iteration of the while statement (lines 49–56 of Fig. 4.7) reads a value from the user, for the specified number of iterations. In sentinel-controlled repetition, the program reads the first value (lines 51–53 of Fig. 4.10) before reaching the while. This value determines whether the program’s flow of control should enter the body of the while. If the condition is false, the user entered the sentinel value, so the body does not execute (i.e., no grades were entered). If, on the other hand, the condition is true, the body begins execution, and the loop adds the grade value to the total (line 58) and increments gradeCounter (line 59). Then lines 62–63 in the loop’s body prompt for and input the next value from the user. Next, program control reaches the closing right brace (}) of the while’s body in line 64, so execution continues with the test of the while’s condition (line 56). The condition uses the most recent grade input by the user to determine whether the loop’s body should execute again. The value of variable grade is always input from the user immediately before the program tests the while condition. This allows the program to determine whether the value just input is the sentinel value before the program processes that value (i.e., adds it to the total and increments gradeCounter). If the sentinel value is input, the loop terminates, and the program does not add the value –1 to the total.

After the loop terminates, the if...else statement (lines 67–79) executes. The condition in line 67 determines whether any grades were entered. If none were, the else part (lines 78–79) of the if...else statement executes and displays the message "No grades were entered" and the member function returns control to the calling function.

Notice the block in the while loop in Fig. 4.10. Without the braces, the last three statements in the body of the loop would fall outside the loop, causing the computer to interpret this code incorrectly, as follows:

Click here to view code image

// loop until sentinel value read from user

while (grade != -1)

 total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user

cout << "Enter grade or -1 to quit: ";

cin >> grade;

This would cause an infinite loop in the program if the user did not input –1 for the first grade (in line 53).

Floating-Point Number Precision and Memory Requirements

Variables of type float represent single-precision floating-point numbers and have approximately seven significant digits on most of today’s systems. Variables of type double represent double-precision floating-point numbers. These require twice as much memory as float variables and provide approximately 15 significant digits on most of today’s systems—approximately double the precision of float variables. Most programmers represent floating-point numbers with type double. In fact, C++ treats all floating-point numbers you type in a program’s source code (such as 7.33 and 0.0975) as double values by default. Such values in the source code are known as floating-point literals. See Appendix C, Fundamental Types, for the ranges of values for floats and doubles.

In conventional arithmetic, floating-point numbers often arise as a result of division—when we divide 10 by 3, the result is 3.3333333..., with the sequence of 3s repeating infinitely. The computer allocates only a fixed amount of space to hold such a value, so clearly the stored floating-point value can be only an approximation.

Due to the imprecise nature of floating-point numbers, type double is preferred over type float, because double variables can represent floating-point numbers more accurately. For this reason, we use type double throughout the book.

Converting Between Fundamental Types Explicitly and Implicitly

The variable average is declared to be of type double (line 70 of Fig. 4.10) to capture the fractional result of our calculation. However, total and gradeCounter are both integer variables. Recall that dividing two integers results in integer division, in which any fractional part of the calculation is lost truncated). In the following statement:

double average = total / gradeCounter;

the division occurs first—the result’s fractional part is lost before it’s assigned to average. To perform a floating-point calculation with integers, we must create temporary floating-point values. C++ provides the static_cast operator to accomplish this task. Line 70 uses the cast operator static_cast<double>(total) to create a temporary floating-point copy of its operand in parentheses—total. Using a cast operator in this manner is called explicit conversion. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version of total) divided by the integer gradeCounter. The compiler knows how to evaluate only expressions in which the operand types are identical. To ensure that the operands are of the same type, the compiler performs an operation called promotion (also called implicit conversion) on selected operands. For example, in an expression containing values of data types int and double, C++ promotes int operands to double values. In our example, we are treating total as a double (by using the static_cast operator), so the compiler promotes gradeCounter to double, allowing the calculation to be performed—the result of the floating-point division is assigned to average. In Chapter 6, Functions and an Introduction to Recursion, we discuss all the fundamental data types and their order of promotion.

Cast operators are available for use with every data type and with class types as well. The static_cast operator is formed by following keyword static_cast with angle brackets (< and >) around a data-type name. The static_cast operator is a unary operator—an operator that takes only one operand. In Chapter 2, we studied the binary arithmetic operators. C++ also supports unary versions of the plus (+) and minus (-) operators, so that you can write such expressions as -7 or +5. Cast operators have higher precedence than other unary operators, such as unary + and unary -. This precedence is higher than that of the multiplicative operators *, / and %, and lower than that of parentheses. We indicate the cast operator with the notation static_cast<type>() in our precedence charts.

Formatting for Floating-Point Numbers

The formatting capabilities in Fig. 4.10 are discussed here briefly and explained in depth in Chapter 13, Stream Input/Output: A Deeper Look. The call to setprecision in line 75 (with an argument of 2) indicates that double variable average should be printed with two digits of precision to the right of the decimal point (e.g., 92.37). This call is referred to as a parameterized stream manipulator (because of the 2 in parentheses). Programs that use these calls must contain the preprocessing directive (line 5)

#include <iomanip>

The manipulator endl is a nonparameterized stream manipulator (because it isn’t followed by a value or expression in parentheses) and does not require the <iomanip> header. If the precision is not specified, floating-point values are normally output with six digits of precision (i.e., the default precision on most of today’s systems), although we’ll see an exception to this in a moment.

The stream manipulator fixed (line 75) indicates that floating-point values should be output in so-called fixed-point format, as opposed to scientific notation. Scientific notation is a way of displaying a number as a floating-point number between the values of 1.0 and 10.0, multiplied by a power of 10. For instance, the value 3,100.0 would be displayed in scientific notation as 3.1 × 103. Scientific notation is useful when displaying values that are very large or very small. Formatting using scientific notation is discussed further in Chapter 13. Fixed-point formatting, on the other hand, is used to force a floating-point number to display a specific number of digits. Specifying fixed-point formatting also forces the decimal point and trailing zeros to print, even if the value is a whole number amount, such as 88.00. Without the fixed-point formatting option, such a value prints in C++ as 88 without the trailing zeros and without the decimal point. When the stream manipulators fixed and setprecision are used in a program, the printed value is rounded to the number of decimal positions indicated by the value passed to setprecision (e.g., the value 2 in line 75), although the value in memory remains unaltered. For example, the values 87.946 and 67.543 are output as 87.95 and 67.54, respectively. It’s also possible to force a decimal point to appear by using stream manipulator showpoint. If showpoint is specified without fixed, then trailing zeros will not print. Like endl, stream manipulators fixed and showpoint do not use parameters, nor do they require the <iomanip> header. Both can be found in header <iostream>.

Lines 75 and 76 of Fig. 4.10 output the class average rounded to the nearest hundredth and with exactly two digits to the right of the decimal point. The parameterized stream manipulator (line 75) indicates that variable average’s value should be displayed with two digits of precision to the right of the decimal point—as indicated by setprecision(2). The three grades entered during the execution of the program in Fig. 4.11 total 257, which yields the average 85.666... and prints with rounding as 85.67.

A Note About Unsigned Integers

In Fig. 4.7, line 46 declared the variable gradeCounter as an unsigned int because it can assume only the values from 1 through 11 (11 terminates the loop), which are all positive values. In general, counters that should store only non-negative values should be declared with unsigned types. Variables of unsigned integer types can represent values from 0 to approximately twice the positive range of the corresponding signed integer types. You can determine your platform’s maximum unsigned int value with the constant UINT_MAX from <climits>.

Figure 4.7 could have also declared as unsigned int the variables grade, total and average. Grades are normally values from 0 to 100, so the total and average should each be greater than or equal to 0. We declared those variables as ints because we can’t control what the user actually enters—the user could enter negative values. Worse yet, the user could enter a value that’s not even a number. (We’ll show how to deal with such erroneous inputs later in the book.)

Sometimes sentinel-controlled loops use intentionally invalid values to terminate a loop. For example, in line 56 of Fig. 4.10, we terminate the loop when the user enters the sentinel -1 (an invalid grade), so it would be improper to declare variable grade as an unsigned int. As you’ll see, the end-of-file (EOF) indicator—which is introduced in the next chapter and is often used to terminate sentinel-controlled loops—is also normally implemented internally in the compiler as a negative number.

4.8. Nested Control Statements

We’ve seen that control statements can be stacked on top of one another (in sequence). Here, we examine the only other structured way control statements can be connected, namely, by nesting one control statement within another. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate brokers. Last year, ten of the students who completed this course took the exam. The college wants to know how well its students did on the exam. You’ve been asked to write a program to summarize the results. You’ve been given a list of these 10 students. Next to each name is written a 1 if the student passed the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter result” each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop can be used because the number of test results is known in advance.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test result, the program must determine whether the number is a 1 or a 2. For simplicity, we test only for a 1 in our algorithm. If the number is not a 1, we assume that it’s a 2.

3. Two counters are used to keep track of the exam results—one to count the number of students who passed the exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide whether more than eight students passed the exam.

Program That Solves Examination Results

The program that solves the examination-results prolem is shown in Fig. 4.12. This example does not contain a class—it contains just a source code file with function main performing all the application’s work. In this chapter and in Chapter 3, you’ve seen examples consisting of one class (including the header and source code files for this class), as well as another source code file testing the class. This source code file contained function main, which created an object of the class and called its member functions. Occasionally, when it does not make sense to try to create a reusable class to demonstrate a concept, we’ll use an example contained entirely within the main function of a single source code file.

Click here to view code image

 1 // Fig. 4.12: fig04_12.cpp

 2 // Examination-results problem: Nested control statements.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // initializing variables in declarations

 9 unsigned int passes = 0; // number of passes

10 unsigned int failures = 0; // number of failures

11 unsigned int studentCounter = 1; // student counter

12

13 // process 10 students using counter-controlled loop

14 while (studentCounter <= 10)

15 {

16 // prompt user for input and obtain value from user

17 cout << "Enter result (1 = pass, 2 = fail): ";

18 int result = 0; // one exam result (1 = pass, 2 = fail)

19 cin >> result; // input result

20

21 // if...else nested in while

22 if (result == 1) // if result is 1,

23 passes = passes + 1; // increment passes;

24 else // else result is not 1, so

25 failures = failures + 1; // increment failures

26

27 // increment studentCounter so loop eventually terminates

28 studentCounter = studentCounter + 1;

29 } // end while

30

31 // termination phase; display number of passes and failures

32 cout << "Passed " << passes << "\nFailed " << failures << endl;

33

34 // determine whether more than eight students passed

35 if (passes > 8)

36 cout << "Bonus to instructor!" << endl;

37 } // end main

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Passed 6

Failed 4

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Passed 9

Failed 1

Bonus to instructor!

Fig. 4.12. Examination-results problem: Nested control statements.

Lines 9–11 and 18 declare and initialize the variables used to process the examination results. Looping programs sometimes require initialization at the beginning of each repetition; such reinitialization would be performed by assignment statements rather than in declarations or by moving the declarations inside the loop bodies.

The while statement (lines 14–29) loops 10 times. Each iteration inputs and processes one exam result. The if...else statement (lines 22–25) for processing each result is nested in the while statement. If the result is 1, the if...else statement increments passes; otherwise, it assumes the result is 2 and increments failures. Line 28 increments studentCounter before the loop condition is tested again in line 15. After 10 values have been input, the loop terminates and line 32 displays the number of passes and the number of failures. The if statement in lines 35–36 determines whether more than eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

Figure 4.12 shows the input and output from two sample executions of the program. At the end of the second sample execution, the condition in line 35 is true—more than eight students passed the exam, so the program outputs a message indicating that the instructor should receive a bonus.

C++11 List Initialization

[image: Image]

C++11 introduces a new variable initialization syntax. List initialization (also called uniform initialization) enables you to use one syntax to initialize a variable of any type. Consider line 11 of Fig. 4.12

unsigned int studentCounter = 1;

In C++11, you can write this as

unsigned int studentCounter = { 1 };

or

unsigned int studentCounter{ 1 };

The braces ({ and }) represent the list initializer. For a fundamental-type variable, you place only one value in the list initializer. For an object, the list initializer can be a comma-separated list of values that are passed to the object’s constructor. For example, consider an Employee class that contains an employee’s first name, last name and salary. Assuming the class defines a constructor that receives strings for the first and last names and a double for the salary, you could initialize Employee objects as follows:

Click here to view code image

Employee employee1{ "Bob", "Blue", 1234.56 };

Employee employee2 = { "Sue", "Green", 2143.65 };

For fundamental-type variables, list-initialization syntax also prevents so-called narrowing conversions that could result in data loss. For example, previously you could write

int x = 12.7;

which attempts to assign the double value 12.7 to the int variable x. A double value is converted to an int, by truncating the floating-point part (.7), which results in a loss of information—a narrowing conversion. The actual value assigned to x is 12. Many compilers generate a warning for this statement, but still allow it to compile. However, using list initialization, as in

int x = { 12.7 };

or

int x{ 12.7 };

yields a compilation error, thus helping you avoid a potentially subtle logic error. For example, Apple’s Xcode LLVM compiler gives the error

Type 'double' cannot be narrowed to 'int' in initializer list

We’ll discuss additional list-initializer features in later chapters.

4.9. Assignment Operators

C++ provides several assignment operators for abbreviating assignment expressions. For example, the statement

c = c + 3;

can be abbreviated with the addition assignment operator += as

c += 3;

which adds the value of the expression on the operator’s right to the value of the variable on the operator’s left and stores the result in the left-side variable. Any statement of the form

variable = variable operator expression;

in which the same variable appears on both sides of the assignment operator and operator is one of the binary operators +, -, *, /, or % (or a few others we’ll discuss later in the text), can be written in the form

variable operator= expression;

Thus the assignment c += 3 adds 3 to c. Figure 4.13 shows the arithmetic assignment operators, sample expressions using these operators and explanations.

[image: Image]

Fig. 4.13. Arithmetic assignment operators.

4.10. Increment and Decrement Operators

In addition to the arithmetic assignment operators, C++ also provides two unary operators for adding 1 to or subtracting 1 from the value of a numeric variable. These are the unary increment operator, ++, and the unary decrement operator, --, which are summarized in Fig. 4.14. A program can increment by 1 the value of a variable called c using the increment operator, ++, rather than the expression c = c + 1 or c += 1. An increment or decrement operator that’s prefixed to (placed before) a variable is referred to as the prefix increment or prefix decrement operator, respectively. An increment or decrement operator that’s postfixed to (placed after) a variable is referred to as the postfix increment or postfix decrement operator, respectively.

[image: Image]

Fig. 4.14. Increment and decrement operators.

Using the prefix increment (or decrement) operator to add (or subtract) 1 from a variable is known as preincrementing (or predecrementing) the variable. Preincrementing (or predecrementing) causes the variable to be incremented (decremented) by 1, then the new value of the variable is used in the expression in which it appears. Using the postfix increment (or decrement) operator to add (or subtract) 1 from a variable is known as postincrementing (or postdecrementing) the variable. Postincrementing (or postdecrementing) causes the current value of the variable to be used in the expression in which it appears, then the variable’s value is incremented (decremented) by 1.

Figure 4.15 demonstrates the difference between the prefix increment and postfix increment versions of the ++ increment operator. The decrement operator (--) works similarly.

Click here to view code image

 1 // Fig. 4.15: fig04_15.cpp

 2 // Preincrementing and postincrementing.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // demonstrate postincrement

 9 int c = 5; // assign 5 to c

10 cout << c << endl; // print 5

11 cout << c++ << endl; // print 5 then postincrement

12 cout << c << endl; // print 6

13

14 cout << endl; // skip a line

15

16 // demonstrate preincrement

17 c = 5; // assign 5 to c

18 cout << c << endl; // print 5

19 cout << ++c << endl; // preincrement then print 6

20 cout << c << endl; // print 6

21 } // end main

5

5

6

5

6

6

Fig. 4.15. Preincrementing and postincrementing.

Line 9 initializes c to 5, and line 10 outputs c’s initial value. Line 11 outputs the value of the expression c++. This postincrements the variable c, so c’s original value (5) is output, then c’s value is incremented. Thus, line 11 outputs c’s initial value (5) again. Line 12 outputs c’s new value (6) to prove that the variable’s value was incremented in line 11.

Line 17 resets c’s value to 5, and line 18 outputs that value. Line 19 outputs the value of the expression ++c. This expression preincrements c, so its value is incremented, then the new value (6) is output. Line 20 outputs c’s value again to show that the value of c is still 6 after line 19 executes.

The arithmetic assignment operators and the increment and decrement operators can be used to simplify program statements. The three assignment statements in Fig. 4.12

passes = passes + 1;

failures = failures + 1;

studentCounter = studentCounter + 1;

can be written more concisely with assignment operators as

passes += 1;

failures += 1;

studentCounter += 1;

with prefix increment operators as

++passes;

++failures;

++studentCounter;

or with postfix increment operators as

passes++;

failures++;

studentCounter++;

When you increment (++) or decrement (--) an integer variable in a statement by itself, the preincrement and postincrement forms have the same logical effect, and the predecrement and postdecrement forms have the same logical effect. It’s only when a variable appears in the context of a larger expression that preincrementing the variable and postincrementing the variable have different effects (and similarly for predecrementing and post-decrementing).

[image: Image] Common Programming Error 4.3

Attempting to use the increment or decrement operator on an expression other than a modifiable variable name, e.g., writing ++(x + 1), is a syntax error.

Figure 4.16 shows the precedence and associativity of the operators introduced to this point. The operators are shown top-to-bottom in decreasing order of precedence. The second column indicates the associativity of the operators at each level of precedence. Notice that the conditional operator (?:), the unary operators preincrement (++), predecrement (--), plus (+) and minus (-), and the assignment operators =, +=, -=, *=, /= and %= associate from right to left. All other operators in Fig. 4.16 associate from left to right. The third column names the various groups of operators.

[image: Image]

Fig. 4.16. Operator precedence for the operators encountered so far in the text.

4.11. Wrap-Up

In this chapter, you learned that only three types of control structures—sequence, selection and repetition—are needed to develop any algorithm. We demonstrated two of C++’s selection statements—the if single-selection statement and the if...else double-selection statement. The if statement is used to execute a set of statements based on a condition—if the condition is true, the statements execute; if it isn’t, the statements are skipped. The if...else double-selection statement is used to execute one set of statements if a condition is true, and another set of statements if the condition is false. We then discussed the while repetition statement, where a set of statements are executed repeatedly as long as a condition is true. We used control-statement stacking to total and compute the average of a set of student grades with counter-controlled and sentinel-controlled repetition, and we used control-statement nesting to analyze and make decisions based on a set of exam results. We introduced assignment operators that can be used for abbreviating statements. We presented the increment and decrement operators, which can be used to add or subtract the value 1 from a variable. In the next chapter, we continue our discussion of control statements, introducing the for, do...while and switch statements.

5. Control Statements: Part 2; Logical Operators

Objectives

In this chapter you’ll:

• Use for and do...while to execute statements in a program repeatedly.

• Implement multiple selection using the switch selection statement.

• Learn how break and continue alter the flow of control.

• Use the logical operators to form complex conditional expressions in control statements.

• Learn to avoid the consequences of confusing the equality and assignment operators.

Outline

5.1 Introduction

5.2 Essentials of Counter-Controlled Repetition

5.3 for Repetition Statement

5.4 Examples Using the for Statement

5.5 do...while Repetition Statement

5.6 switch Multiple-Selection Statement

5.7 break and continue Statements

5.8 Logical Operators

5.9 Confusing the Equality (==) and Assignment (=) Operators

5.10 Wrap-Up

5.1. Introduction

In this chapter, we present C++’s remaining control statements. The control statements we study here and those you learned in Chapter 4 will help you build and manipulate objects. We continue our early emphasis on object-oriented programming.

In this chapter, we demonstrate the for, do...while and switch statements. Through examples using while and for, we explore counter-controlled repetition. We expand the GradeBook class to use a switch statement to count the number of A, B, C, D and F grades in a set of letter grades entered by the user. We introduce the break and continue program control statements. We discuss the logical operators, which enable you to use more powerful conditional expressions. We also examine the common error of confusing the equality (==) and assignment (=) operators, and how to avoid it.

5.2. Essentials of Counter-Controlled Repetition

This section uses the while repetition statement to formalize the elements required to perform counter-controlled repetition:

1. the name of a control variable (or loop counter)

2. the initial value of the control variable

3. the loop-continuation condition that tests for the final value of the control variable (i.e., whether looping should continue)

4. the increment (or decrement) by which the control variable is modified each time through the loop.

The program in Fig. 5.1 prints the numbers from 1 to 10. The declaration in line 8 names the control variable (counter), declares it to be an unsigned int, reserves space for it in memory and sets it to an initial value of 1. Declarations that require initialization are executable statements. In C++, it’s more precise to call a variable declaration that also reserves memory a definition. Because definitions are declarations, too, we’ll use the term “declaration” except when the distinction is important.

Click here to view code image

 1 // Fig. 5.1: fig05_01.cpp
 2 // Counter-controlled repetition.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 unsigned int counter = 1; // declare and initialize control variable
 9
10 while (counter <= 10) // loop-continuation condition
11 {
12 cout << counter << " ";
13 ++counter; // increment control variable by 1
14 } // end while
15
16 cout << endl; // output a newline
17 } // end main

1 2 3 4 5 6 7 8 9 10

Fig. 5.1. Counter-controlled repetition.

Line 13 increments the loop counter by 1 each time the loop’s body is performed. The loop-continuation condition (line 10) in the while statement determines whether the value of the control variable is less than or equal to 10 (the final value for which the condition is true). The body of this while executes even when the control variable is 10. The loop terminates when the control variable is greater than 10 (i.e., when counter is 11).

Figure 5.1 can be made more concise by initializing counter to 0 and by replacing the while statement with

Click here to view code image

counter = 0;
while (++counter <= 10) // loop-continuation condition
 cout << counter << " ";

This code saves a statement, because the incrementing is done in the while condition before the condition is tested. Also, the code eliminates the braces around the body of the while, because the while now contains only one statement. Coding in such a condensed fashion can lead to programs that are more difficult to read, debug, modify and maintain.

[image: Image] Error-Prevention Tip 5.1

Floating-point values are approximate, so controlling counting loops with floating-point variables can result in imprecise counter values and inaccurate tests for termination. Control counting loops with integer values. Separately, ++ and -- can be used only with integer operands.

5.3. for Repetition Statement

In addition to while, C++ provides the for repetition statement, which specifies the counter-controlled repetition details in a single line of code. To illustrate the power of for, let’s rewrite the program of Fig. 5.1. The result is shown in Fig. 5.2.

Click here to view code image

 1 // Fig. 5.2: fig05_02.cpp
 2 // Counter-controlled repetition with the for statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // for statement header includes initialization,
 9 // loop-continuation condition and increment.
10 for (unsigned int counter = 1; counter <= 10; ++counter)
11 cout << counter << " ";
12
13 cout << endl; // output a newline
14 } // end main

1 2 3 4 5 6 7 8 9 10

Fig. 5.2. Counter-controlled repetition with the for statement.

When the for statement (lines 10–11) begins executing, the control variable counter is declared and initialized to 1. Then, the loop-continuation condition (line 10 between the semicolons) counter <= 10 is checked. The initial value of counter is 1, so the condition is satisfied and the body statement (line 11) prints the value of counter, namely 1. Then, the expression ++counter increments control variable counter and the loop begins again with the loop-continuation test. The control variable is now 2, so the final value is not exceeded and the program performs the body statement again. This process continues until the loop body has executed 10 times and the control variable counter is incremented to 11—this causes the loop-continuation test to fail, so repetition terminates. The program continues by performing the first statement after the for statement (in this case, the output statement in line 13).

for Statement Header Components

Figure 5.3 takes a closer look at the for statement header (line 10) of Fig. 5.2. Notice that the for statement header “does it all”—it specifies each of the items needed for counter-controlled repetition with a control variable. If there’s more than one statement in the body of the for, braces are required to enclose the body of the loop. Typically, for statements are used for counter-controlled repetition and while statements are used for sentinel-controlled repetition.

[image: Image]

Fig. 5.3. for statement header components.

Off-By-One Errors

If you incorrectly wrote counter < 10 as the loop-continuation condition in Fig. 5.2, then the loop would execute only 9 times. This is a common off-by-one error.

General Format of a for Statement

The general form of the for statement is

for (initialization; loopContinuationCondition; increment)
 statement

where the initialization expression initializes the loop’s control variable, loopContinuationCondition determines whether the loop should continue executing and increment increments the control variable. In most cases, the for statement can be represented by an equivalent while statement, as follows:

initialization;

while (loopContinuationCondition)
{
 statement
 increment;
}

There’s an exception to this rule, which we’ll discuss in Section 5.7.

If the initialization expression declares the control variable (i.e., its type is specified before its name), the control variable can be used only in the body of the for statement—the control variable will be unknown outside the for statement. This restricted use of the control variable name is known as the variable’s scope. The scope of a variable specifies where it can be used in a program. Scope is discussed in detail in Chapter 6.

Comma-Separated Lists of Expressions

The initialization and increment expressions can be comma-separated lists of expressions. The commas, as used in these expressions, are comma operators, which guarantee that lists of expressions evaluate from left to right. The comma operator has the lowest precedence of all C++ operators. The value and type of a comma-separated list of expressions is the value and type of the rightmost expression. The comma operator is often used in for statements, where its primary application is to enable you to use multiple initialization expressions and/or multiple increment expressions. For example, there may be several control variables in a single for statement that must be initialized and incremented.

Expressions in the for Statement’s Header Are Optional

The three expressions in the for statement header are optional but the two semicolon separators are required. If the loopContinuationCondition is omitted, the condition is true, thus creating an infinite loop. One might omit the initialization expression if the control variable is initialized earlier in the program. One might omit the increment expression if the increment is calculated by statements in the body of the for or if no increment is needed.

Increment Expression Acts Like a Standalone Statement

The increment expression in the for statement acts like a standalone statement at the end of for statement’s body. Therefore, for integer counters, the expressions

counter = counter + 1
counter += 1
++counter
counter++

are all equivalent in the increment expression (when no other code appears there). The integer variable being incremented here does not appear in a larger expression, so both preincrementing and postincrementing actually have the same effect.

[image: Image] Common Programming Error 5.1

Placing a semicolon immediately to the right of the right parenthesis of a for header makes the body of that for statement an empty statement. This is usually a logic error.

for Statement: Notes and Observations

The initialization, loop-continuation condition and increment expressions of a for statement can contain arithmetic expressions. For example, if x = 2 and y = 10, and x and y are not modified in the loop body, the for header

for (unsigned int j = x; j <= 4 * x * y; j += y / x)

is equivalent to

for (unsigned int j = 2; j <= 80; j += 5)

The “increment” of a for statement can be negative, in which case it’s really a decrement and the loop actually counts downward (as shown in Section 5.4).

If the loop-continuation condition is initially false, the body of the for statement is not performed. Instead, execution proceeds with the statement following the for.

Frequently, the control variable is printed or used in calculations in the body of a for statement, but this is not required. It’s common to use the control variable for controlling repetition while never mentioning it in the body of the for statement.

[image: Image] Error-Prevention Tip 5.2

Although the value of the control variable can be changed in the body of a for statement, avoid doing so, because this can lead to subtle logic errors.

for Statement UML Activity Diagram

The for repetition statement’s UML activity diagram is similar to that of the while statement (Fig. 4.5). Figure 5.4 shows the activity diagram of the for statement in Fig. 5.2. The diagram makes it clear that initialization occurs once before the loop-continuation test is evaluated the first time, and that incrementing occurs each time through the loop after the body statement executes. Note that (besides an initial state, transition arrows, a merge, a final state and several notes) the diagram contains only action states and a decision.

[image: Image]

Fig. 5.4. UML activity diagram for the for statement in Fig. 5.2.

5.4. Examples Using the for Statement

The following examples show methods of varying the control variable in a for statement. In each case, we write the appropriate for statement header. Note the change in the relational operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

 for (unsigned int i = 1; i <= 100; ++i)

b) Vary the control variable from 100 down to 0 in decrements of 1. Notice that we used type int for the control variable in this for header. The condition does not become false until control variable i contains -1, so the control variable must be able to store both positive and negative numbers.

 for (int i = 100; i >= 0; --i)

c) Vary the control variable from 7 to 77 in steps of 7.

 for (unsigned int i = 7; i <= 77; i += 7)

d) Vary the control variable from 20 down to 2 in steps of -2.

 for (unsigned int i = 20; i >= 2; i -= 2)

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.

 for (unsigned int i = 2; i <= 17; i += 3)

f) Vary the control variable over the following sequence of values: 99, 88, 77, 66, 55.

 for (unsigned int i = 99; i >= 55; i -= 11)

[image: Image] Common Programming Error 5.2

Not using the proper relational operator in the loop-continuation condition of a loop that counts downward (such as incorrectly using i <= 1 instead of i >= 1 in a loop counting down to 1) is a logic error that yields incorrect results when the program runs.

[image: Image] Common Programming Error 5.3

Do not use equality operators (!= or ==) in a loop-continuation condition if the loop’s control variable increments or decrements by more than 1. For example consider the for statement header for (unsigned int counter = 1; counter != 10; counter += 2). The loop-continuation test counter != 10 never becomes false (resulting in an infinite loop).

Application: Summing the Even Integers from 2 to 20

The program of Fig. 5.5 uses a for statement to sum the even integers from 2 to 20. Each iteration of the loop (lines 11–12) adds control variable number’s value to variable total.

Click here to view code image

 1 // Fig. 5.5: fig05_05.cpp
 2 // Summing integers with the for statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 unsigned int total = 0; // initialize total
 9
10 // total even integers from 2 through 20
11 for (unsigned int number = 2; number <= 20; number += 2)
12 total += number;
13
14 cout << "Sum is " << total << endl; // display results
15 } // end main

Sum is 110

Fig. 5.5. Summing integers with the for statement.

The body of the for statement in Fig. 5.5 actually could be merged into the increment portion of the for header by using the comma operator as follows:

Click here to view code image

for (unsigned int number = 2; // initialization
 number <= 20; // loop continuation condition
 total += number, number += 2) // total and increment
 ; // empty body

[image: Image] Good Programming Practice 5.1

Although statements preceding a for and statements in the body of a for often can be merged into the for header, doing so can make the program more difficult to read, maintain, modify and debug.

Application: Compound Interest Calculations

Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming that all interest is left on deposit in the account, calculate and print the amount of money in the account at the end of each year for 10 years. Use the following formula for determining these amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal),

r is the annual interest rate,

n is the number of years and

a is the amount on deposit at the end of the nth year.

The for statement (Fig. 5.6, lines 21–28) performs the indicated calculation for each of the 10 years the money remains on deposit, varying a control variable from 1 to 10 in increments of 1. C++ does not include an exponentiation operator, so we use the standard library function pow (line 24). The function pow(x, y) calculates the value of x raised to the yth power. In this example, the algebraic expression (1 + r)n is written as pow(1.0 + rate, year), where variable rate represents r and variable year represents n. Function pow takes two arguments of type double and returns a double value.

Click here to view code image

 1 // Fig. 5.6: fig05_06.cpp
 2 // Compound interest calculations with for.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cmath> // standard math library
 6 using namespace std;
 7
 8 int main()
 9 {
10 double amount; // amount on deposit at end of each year
11 double principal = 1000.0; // initial amount before interest
12 double rate = .05; // annual interest rate
13
14 // display headers
15 cout << "Year" << setw(21) << "Amount on deposit" << endl;
16
17 // set floating-point number format
18 cout << fixed << setprecision(2);
19
20 // calculate amount on deposit for each of ten years
21 for (unsigned int year = 1; year <= 10; ++year)
22 {
23 // calculate new amount for specified year
24 amount = principal * pow(1.0 + rate, year);
25
26 // display the year and the amount
27 cout << setw(4) << year << setw(21) << amount << endl;
28 } // end for
29 } // end main

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.63
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

Fig. 5.6. Compound interest calculations with for.

This program will not compile without including header <cmath> (line 5). Function pow requires two double arguments. Variable year is an integer. Header <cmath> includes information that tells the compiler to convert the value of year to a temporary double representation before calling the function. This information is contained in pow’s function prototype. Chapter 6 summarizes other math library functions.

[image: Image] Common Programming Error 5.4

Forgetting to include the appropriate header when using standard library functions (e.g., <cmath> in a program that uses math library functions) is a compilation error.

A Caution about Using Type float or double for Monetary Amounts

Lines 10–12 declare the double variables amount, principal and rate. We did this for simplicity because we’re dealing with fractional parts of dollars, and we need a type that allows decimal points in its values. Unfortunately, this can cause trouble. Here’s a simple explanation of what can go wrong when using float or double to represent dollar amounts (assuming setprecision(2) is used to specify two digits of precision when printing): Two dollar amounts stored in the machine could be 14.234 (which prints as 14.23) and 18.673 (which prints as 18.67). When these amounts are added, they produce the internal sum 32.907, which prints as 32.91. Thus your printout could appear as

 14.23
+ 18.67

 32.91

but a person adding the individual numbers as printed would expect the sum 32.90! You’ve been warned! [Note: Some third-party vendors sell C++ class libraries that perform precise monetary calculations.]

Using Stream Manipulators to Format Numeric Output

The output statement in line 18 before the for loop and the output statement in line 27 in the for loop combine to print the values of the variables year and amount with the formatting specified by the parameterized stream manipulators setprecision and setw and the nonparameterized stream manipulator fixed. The stream manipulator setw(4) specifies that the next value output should appear in a field width of 4—i.e., cout prints the value with at least 4 character positions. If the value to be output is less than 4 character positions wide, the value is right justified in the field by default. If the value to be output is more than 4 character positions wide, the field width is extended rightward to accommodate the entire value. To indicate that values should be output left justified, simply output nonparameterized stream manipulator left (found in header <iostream>). Right justification can be restored by outputting nonparameterized stream manipulator right.

The other formatting in the output statements indicates that variable amount is printed as a fixed-point value with a decimal point (specified in line 18 with the stream manipulator fixed) right justified in a field of 21 character positions (specified in line 27 with setw(21)) and two digits of precision to the right of the decimal point (specified in line 18 with manipulator setprecision(2)). We applied the stream manipulators fixed and setprecision to the output stream (i.e., cout) before the for loop because these format settings remain in effect until they’re changed—such settings are called sticky settings and they do not need to be applied during each iteration of the loop. However, the field width specified with setw applies only to the next value output. We discuss C++’s powerful input/output formatting capabilities in Chapter 13, Stream Input/Output: A Deeper Look.

The calculation 1.0 + rate, which appears as an argument to the pow function, is contained in the body of the for statement. In fact, this calculation produces the same result during each iteration of the loop, so repeating it is wasteful—it should be performed once before the loop.

[image: Image] Performance Tip 5.1

Avoid placing expressions whose values do not change inside loops. Even if you do, many of today’s so-phisticated optimizing compilers will automatically place such expressions outside the loops in the generated machine code.

[image: Image] Performance Tip 5.2

Many compilers contain optimization features that improve the performance of the code you write, but it’s still better to write good code from the start.

5.5. do...while Repetition Statement

The do...while repetition statement is similar to the while statement. In the while statement, the loop-continuation condition test occurs at the beginning of the loop before the body of the loop executes. The do...while statement tests the loop-continuation condition after the loop body executes; therefore, the loop body always executes at least once.

Figure 5.7 uses a do...while statement to print the numbers 1–10. Upon entering the do...while statement, line 12 outputs counter’s value and line 13 increments counter. Then the program evaluates the loop-continuation test at the bottom of the loop (line 14). If the condition is true, the loop continues from the first body statement in the do...while (line 12). If the condition is false, the loop terminates and the program continues with the next statement after the loop (line 16).

Click here to view code image

 1 // Fig. 5.7: fig05_07.cpp
 2 // do...while repetition statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 unsigned int counter = 1; // initialize counter
 9
10 do
11 {
12 cout << counter << " "; // display counter
13 ++counter; // increment counter
14 } while (counter <= 10); // end do...while
15
16 cout << endl; // output a newline
17 } // end main

1 2 3 4 5 6 7 8 9 10

Fig. 5.7. do...while repetition statement.

do...while Statement UML Activity Diagram

Figure 5.8 contains the do...while statement’s UML activity diagram, which makes it clear that the loop-continuation condition is not evaluated until after the loop performs its body at least once.

[image: Image]

Fig. 5.8. UML activity diagram for the do...while repetition statement of Fig. 5.7.

Braces in a do...while Statement

It’s not necessary to use braces in the do...while statement if there’s only one statement in the body; however, most programmers include the braces to avoid confusion between the while and do...while statements. For example,

while (condition)

normally is regarded as the header of a while statement. A do...while with no braces around the single statement body appears as

do
 statement
while (condition);

which can be confusing. You might misinterpret the last line—while(condition);—as a while statement containing as its body an empty statement. Thus, the do...while with one statement often is written as follows to avoid confusion:

do
{
 statement
} while (condition);

5.6. switch Multiple-Selection Statement

C++ provides the switch multiple-selection statement to perform many different actions based on the possible values of a variable or expression. Each action is associated with the value of an integral constant expression (i.e., any combination of character and integer constants that evaluates to a constant integer value).

GradeBook Class with switch Statement to Count A, B, C, D and F Grades

This next version of the GradeBook class asks the user to enter a set of letter grades, then displays a summary of the number of students who received each grade. The class uses a switch to determine whether each grade entered is an A, B, C, D or F and to increment the appropriate grade counter. Class GradeBook is defined in Fig. 5.9, and its member-function definitions appear in Fig. 5.10. Figure 5.11 shows sample inputs and outputs of the main program that uses class GradeBook to process a set of grades.

Click here to view code image

 1 // Fig. 5.9: GradeBook.h
 2 // GradeBook class definition that counts letter grades.
 3 // Member functions are defined in GradeBook.cpp
 4 #include <string> // program uses C++ standard string class
 5
 6 // GradeBook class definition
 7 class GradeBook
 8 {
 9 public:
10 explicit GradeBook(std::string); // initialize course name
11 void setCourseName(std::string); // set the course name
12 std::string getCourseName() const; // retrieve the course name
13 void displayMessage() const; // display a welcome message
14 void inputGrades(); // input arbitrary number of grades from user
15 void displayGradeReport() const; // display report based on user input
16 private:
17 std::string courseName; // course name for this GradeBook
18 unsigned int aCount; // count of A grades
19 unsigned int bCount; // count of B grades
20 unsigned int cCount; // count of C grades
21 unsigned int dCount; // count of D grades
22 unsigned int fCount; // count of F grades
23 }; // end class GradeBook

Fig. 5.9. GradeBook class definition that counts letter grades.

Click here to view code image

 1 // Fig. 5.10: GradeBook.cpp
 2 // Member-function definitions for class GradeBook that
 3 // uses a switch statement to count A, B, C, D and F grades.
 4 #include <iostream>
 5 #include "GradeBook.h" // include definition of class GradeBook
 6 using namespace std;
 7
 8 // constructor initializes courseName with string supplied as argument;
 9 // initializes counter data members to 0
10 GradeBook::GradeBook(string name)
11 : aCount(0), // initialize count of A grades to 0
12 bCount(0), // initialize count of B grades to 0
13 cCount(0), // initialize count of C grades to 0
14 dCount(0), // initialize count of D grades to 0
15 fCount(0) // initialize count of F grades to 0
16 {
17 setCourseName(name);
18 } // end GradeBook constructor
19
20 // function to set the course name; limits name to 25 or fewer characters
21 void GradeBook::setCourseName(string name)
22 {
23 if (name.size() <= 25) // if name has 25 or fewer characters
24 courseName = name; // store the course name in the object
25 else // if name is longer than 25 characters
26 { // set courseName to first 25 characters of parameter name
27 courseName = name.substr(0, 25); // select first 25 characters
28 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
29 << "Limiting courseName to first 25 characters.\n" << endl;
30 } // end if...else
31 } // end function setCourseName
32
33 // function to retrieve the course name
34 string GradeBook::getCourseName() const
35 {
36 return courseName;
37 } // end function getCourseName
38
39 // display a welcome message to the GradeBook user
40 void GradeBook::displayMessage() const
41 {
42 // this statement calls getCourseName to get the
43 // name of the course this GradeBook represents
44 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
45 << endl;
46 } // end function displayMessage
47
48 // input arbitrary number of grades from user; update grade counter
49 void GradeBook::inputGrades()
50 {
51 int grade; // grade entered by user
52
53 cout << "Enter the letter grades." << endl
54 << "Enter the EOF character to end input." << endl;
55
56 // loop until user types end-of-file key sequence
57 while ((grade = cin.get()) != EOF)
58 {
59 // determine which grade was entered
60 switch (grade) // switch statement nested in while
61 {
62 case 'A': // grade was uppercase A
63 case 'a': // or lowercase a
64 ++aCount; // increment aCount
65 break; // necessary to exit switch
66
67 case 'B': // grade was uppercase B
68 case 'b': // or lowercase b
69 ++bCount; // increment bCount
70 break; // exit switch
71
72 case 'C': // grade was uppercase C
73 case 'c': // or lowercase c
74 ++cCount; // increment cCount
75 break; // exit switch
76
77 case 'D': // grade was uppercase D
78 case 'd': // or lowercase d
79 ++dCount; // increment dCount
80 break; // exit switch
81
82 case 'F': // grade was uppercase F
83 case 'f': // or lowercase f
84 ++fCount; // increment fCount
85 break; // exit switch
86
87 case '\n': // ignore newlines,
88 case '\t': // tabs,
89 case ' ': // and spaces in input
90 break; // exit switch
91
92 default: // catch all other characters
93 cout << "Incorrect letter grade entered."
94 << " Enter a new grade." << endl;
95 break; // optional; will exit switch anyway
96 } // end switch
97 } // end while
98 } // end function inputGrades
99
100 // display a report based on the grades entered by user
101 void GradeBook::displayGradeReport() const
102 {
103 // output summary of results
104 cout << "\n\nNumber of students who received each letter grade:"
105 << "\nA: " << aCount // display number of A grades
106 << "\nB: " << bCount // display number of B grades
107 << "\nC: " << cCount // display number of C grades
108 << "\nD: " << dCount // display number of D grades
109 << "\nF: " << fCount // display number of F grades
110 << endl;
111 } // end function displayGradeReport

Fig. 5.10. GradeBook class uses switch statement to count letter grades.

Click here to view code image

 1 // Fig. 5.11: fig05_11.cpp
 2 // Creating a GradeBook object and calling its member functions.
 3 #include "GradeBook.h" // include definition of class GradeBook
 4
 5 int main()
 6 {
 7 // create GradeBook object
 8 GradeBook myGradeBook("CS101 C++ Programming");
 9
10 myGradeBook.displayMessage(); // display welcome message
11 myGradeBook.inputGrades(); // read grades from user
12 myGradeBook.displayGradeReport(); // display report based on grades
13 } // end main

Welcome to the grade book for
CS101 C++ Programming!

Enter the letter grades.
Enter the EOF character to end input.
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Number of students who received each letter grade:
A: 3
B: 2
C: 3
D: 2
F: 1

Fig. 5.11. Creating a GradeBook object and calling its member functions.

Like earlier versions of the class definition, the GradeBook class definition (Fig. 5.9) contains function prototypes for member functions setCourseName (line 11), getCourseName (line 12) and displayMessage (line 13), as well as the class’s constructor (line 10). The class definition also declares private data member courseName (line 17).

GradeBook Class Header

Class GradeBook (Fig. 5.9) now contains five additional private data members (lines 18–22)—counter variables for each grade category (i.e., A, B, C, D and F). The class also contains two additional public member functions—inputGrades and displayGradeReport. Member function inputGrades (declared in line 14) reads an arbitrary number of letter grades from the user using sentinel-controlled repetition and updates the appropriate grade counter for each grade entered. Member function displayGradeReport (declared in line 15) outputs a report containing the number of students who received each letter grade.

GradeBook Class Source-Code File

Source-code file GradeBook.cpp (Fig. 5.10) contains the member-function definitions for class GradeBook. Lines 11–15 in the constructor initialize the five grade counters to 0—when a GradeBook object is first created, no grades have been entered yet. These counters will be incremented in member function inputGrades as the user enters grades. The definitions of member functions setCourseName, getCourseName and displayMessage are identical to those in the earlier versions of class GradeBook.

Reading Character Input

The user enters letter grades for a course in member function inputGrades (lines 49–98). In the while header, in line 57, the parenthesized assignment (grade = cin.get()) executes first. The cin.get() function reads one character from the keyboard and stores that character in integer variable grade (declared in line 51). Normally, characters are stored in variables of type char; however, characters can be stored in any integer data type, because types short, int, long and long long are guaranteed to be at least as big as type char. Thus, we can treat a character either as an integer or as a character, depending on its use. For example, the statement

Click here to view code image

cout << "The character (" << 'a' << ") has the value "
 << static_cast< int > ('a') << endl;

prints the character a and its integer value as follows:

The character (a) has the value 97

The integer 97 is the character’s numerical representation in the computer. Appendix B shows the characters and decimal equivalents from the ASCII (American Standard Code for Information Interchange) character set.

Generally, assignment statements have the value that’s assigned to the variable on the left side of the =. Thus, the value of the assignment expression grade = cin.get() is the same as the value returned by cin.get() and assigned to the variable grade.

The fact that assignment expressions have values can be useful for assigning the same value to several variables. For example,

a = b = c = 0;

first evaluates c = 0 (because the = operator associates from right to left). The variable b is then assigned the value of c = 0 (which is 0). Then, a is assigned the value of b = (c = 0) (which is also 0). In the program, the value of grade = cin.get() is compared with the value of EOF (a symbol whose acronym stands for “end-of-file”). We use EOF (which normally has the value –1) as the sentinel value. However, you do not type the value –1, nor do you type the letters EOF as the sentinel value. Rather, you type a system-dependent keystroke combination that means “end-of-file” to indicate that you have no more data to enter. EOF is a symbolic integer constant that is included into the program via the <iostream> header.1 If the value assigned to grade is equal to EOF, the while loop (lines 57–97) terminates. We’ve chosen to represent the characters entered into this program as ints, because EOF has type int.

1. To compile this program, some compilers require the header <cstdio> which defines EOF.

Entering the EOF Indicator

On OS X/Linux/UNIX systems and many others, end-of-file is entered by typing

<Ctrl> d

on a line by itself. This notation means to press and hold down the Ctrl key, then press the d key. On other systems such as Microsoft Windows, end-of-file can be entered by typing

<Ctrl> z

[Note: In some cases, you must press Enter after the preceding key sequence. Also, the characters ^Z sometimes appear on the screen to represent end-of-file, as shown in Fig. 5.11.]

[image: Image] Portability Tip 5.1

The keystroke combinations for entering end-of-file are system dependent.

[image: Image] Portability Tip 5.2

Testing for the symbolic constant EOF rather than –1 makes programs more portable. The C standard, from which C++ adopts the definition of EOF, states that EOF is a negative integral value, so EOF could have different values on different systems.

In this program, the user enters grades at the keyboard. When the user presses the Enter (or the Return) key, the characters are read by the cin.get() function, one character at a time. If the character entered is not end-of-file, the flow of control enters the switch statement (Fig. 5.10, lines 60–96), which increments the appropriate letter-grade counter.

switch Statement Details

The switch statement consists of a series of case labels and an optional default case. These are used in this example to determine which counter to increment, based on a grade. When the flow of control reaches the switch, the program evaluates the expression in the parentheses (i.e., grade) following keyword switch (line 60). This is called the controlling expression. The switch statement compares the value of the controlling expression with each case label. Assume the user enters the letter C as a grade. The program compares C to each case in the switch. If a match occurs (case 'C': in line 72), the program executes the statements for that case. For the letter C, line 74 increments cCount by 1. The break statement (line 75) causes program control to proceed with the first statement after the switch—in this program, control transfers to line 97. This line marks the end of the body of the while loop that inputs grades (lines 57–97), so control flows to the while’s condition (line 57) to determine whether the loop should continue executing.

The cases in our switch explicitly test for the lowercase and uppercase versions of the letters A, B, C, D and F. Note the cases in lines 62–63 that test for the values 'A' and 'a' (both of which represent the grade A). Listing cases consecutively with no statements between them enables the cases to perform the same set of statements—when the controlling expression evaluates to either 'A' or 'a', the statements in lines 64–65 will execute. Each case can have multiple statements. The switch selection statement does not require braces around multiple statements in each case.

Without break statements, each time a match occurs in the switch, the statements for that case and subsequent cases execute until a break statement or the end of the switch is encountered.

[image: Image] Common Programming Error 5.5

Forgetting a break statement when one is needed in a switch statement is a logic error.

[image: Image] Common Programming Error 5.6

Omitting the space between the word case and the integral value tested in a switch statement—e.g., writing case3: instead of case 3:—is a logic error. The switch statement will not perform the appropriate actions when the controlling expression has a value of 3.

Providing a default Case

If no match occurs between the controlling expression’s value and a case label, the default case (lines 92–95) executes. We use the default case in this example to process all controlling-expression values that are neither valid grades nor newline, tab or space characters. If no match occurs, the default case executes, and lines 93–94 print an error message indicating that an incorrect letter grade was entered. If no match occurs in a switch statement that does not contain a default case, program control continues with the first statement after the switch.

[image: Image] Error-Prevention Tip 5.3

Provide a default case in switch statements. Cases not explicitly tested in a switch statement without a default case are ignored. Including a default case focuses you on the need to process exceptional conditions. There are situations in which no default processing is needed. Although the case clauses and the default case clause in a switch statement can occur in any order, it’s common practice to place the default clause last.

[image: Image] Good Programming Practice 5.2

The last case in a switch statement does not require a break statement. Nevertheless, include this break for clarity and for symmetry with other cases.

Ignoring Newline, Tab and Blank Characters in Input

Lines 87–90 in the switch statement of Fig. 5.10 cause the program to skip newline, tab and blank characters. Reading characters one at a time can cause problems. To have the program read the characters, we must send them to the computer by pressing the Enter key. This places a newline character in the input after the character we wish to process. Often, this newline character must be specially processed. By including these cases in our switch statement, we prevent the error message in the default case from being printed each time a newline, tab or space is encountered in the input.

Testing Class GradeBook

Figure 5.11 creates a GradeBook object (line 8). Line 10 invokes its displayMessage member function to output a welcome message to the user. Line 11 invokes member function inputGrades to read a set of grades from the user and keep track of how many students received each grade. The output window in Fig. 5.11 shows an error message displayed in response to entering an invalid grade (i.e., E). Line 12 invokes GradeBook member function displayGradeReport (defined in lines 101–111 of Fig. 5.10), which outputs a report based on the grades entered (as in the output in Fig. 5.11).

switch Statement UML Activity Diagram

Figure 5.12 shows the UML activity diagram for the general switch multiple-selection statement. Most switch statements use a break in each case to terminate the switch statement after processing the case. Figure 5.12 emphasizes this by including break statements in the activity diagram. Without the break statement, control would not transfer to the first statement after the switch statement after a case is processed. Instead, control would transfer to the next case’s actions.

[image: Image]

Fig. 5.12. switch multiple-selection statement UML activity diagram with break statements.

The diagram makes it clear that the break statement at the end of a case causes control to exit the switch statement immediately. Again, note that (besides an initial state, transition arrows, a final state and several notes) the diagram contains action states and decisions. Also, the diagram uses merge symbols to merge the transitions from the break statements to the final state.

Each case can be used to test only an integral constant expression—any combination of character constants and integer constants that evaluates to a constant integer value. A character constant is represented as the specific character in single quotes, such as 'A'. An integer constant is simply an integer value. Also, each case label can specify only one integral constant expression.

[image: Image] Common Programming Error 5.7

Providing case labels with identical values in a switch statement is a compilation error.

Notes on Data Types

C++ has flexible data type sizes (see Appendix C, Fundamental Types). Different applications, for example, might need integers of different sizes. C++ provides several integer types. The range of integer values for each type is platform dependent. In addition to the types int and char, C++ provides the types short (an abbreviation of short int), long (an abbreviation of long int) and long long (an abbreviation of long long int). The minimum range of values for short integers is –32,767 to 32,767. For the vast majority of integer calculations, long integers are sufficient. The minimum range of values for long integers is –2,147,483,647 to 2,147,483,647. On most computers, ints are equivalent either to short or to long. The range of values for an int is at least the same as that for short integers and no larger than that for long integers. The data type char can be used to represent any of the characters in the computer’s character set. It also can be used to represent small integers.

C++11 In-Class Initializers

[image: Image]

C++11 allows you to provide a default value for a data member when you declare it in the class declaration. For example, lines 18–22 of Fig. 5.9 could have initialized data members aCount, bCount, cCount, dCount and fCount to 0 as follows:

Click here to view code image

unsigned int aCount = 0; // count of A grades
unsigned int bCount = 0; // count of B grades
unsigned int cCount = 0; // count of C grades
unsigned int dCount = 0; // count of D grades
unsigned int fCount = 0; // count of F grades

rather than initializing them in the class’s constructor (Fig. 5.10, lines 10–18). In later chapters, we’ll continue discussing in-class initializers and show how they enable you to perform certain data member initializations that were not possible in earlier C++ versions.

5.7. break and continue Statements

C++ also provides statements break and continue to alter the flow of control. The preceding section showed how break can be used to terminate a switch statement’s execution. This section discusses how to use break in a repetition statement.

break Statement

The break statement, when executed in a while, for, do...while or switch statement, causes immediate exit from that statement. Program execution continues with the next statement. Common uses of the break statement are to escape early from a loop or to skip the remainder of a switch statement. Figure 5.13 demonstrates the break statement (line 13) exiting a for repetition statement.

Click here to view code image

 1 // Fig. 5.13: fig05_13.cpp
 2 // break statement exiting a for statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 unsigned int count; // control variable also used after loop terminates
 9
10 for (count = 1; count <= 10; ++count) // loop 10 times
11 {
12 if (count == 5)
13 break; // break loop only if count is 5
14
15 cout << count << " ";
16 } // end for
17
18 cout << "\nBroke out of loop at count = " << count << endl;
19 } // end main

1 2 3 4
Broke out of loop at count = 5

Fig. 5.13. break statement exiting a for statement.

When the if statement detects that count is 5, the break statement executes. This terminates the for statement, and the program proceeds to line 18 (immediately after the for statement), which displays a message indicating the control variable value that terminated the loop. The for statement fully executes its body only four times instead of 10. The control variable count is defined outside the for statement header, so that we can use the control variable both in the loop’s body and after the loop completes its execution.

continue Statement

The continue statement, when executed in a while, for or do...while statement, skips the remaining statements in the body of that statement and proceeds with the next iteration of the loop. In while and do...while statements, the loop-continuation test evaluates immediately after the continue statement executes. In the for statement, the increment expression executes, then the loop-continuation test evaluates.

Figure 5.14 uses the continue statement (line 11) in a for statement to skip the output statement (line 13) when the nested if (lines 10–11) determines that the value of count is 5. When the continue statement executes, program control continues with the increment of the control variable in the for header (line 8) and loops five more times.

Click here to view code image

 1 // Fig. 5.14: fig05_14.cpp
 2 // continue statement terminating an iteration of a for statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 for (unsigned int count = 1; count <= 10; ++count) // loop 10 times
 9 {
10 if (count == 5) // if count is 5,
11 continue; // skip remaining code in loop
12
13 cout << count << " ";
14 } // end for
15
16 cout << "\nUsed continue to skip printing 5" << endl;
17 } // end main

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Fig. 5.14. continue statement terminating an iteration of a for statement.

In Section 5.3, we stated that the while statement could be used in most cases to represent the for statement. The one exception occurs when the increment expression in the while statement follows the continue statement. In this case, the increment does not execute before the program tests the loop-continuation condition, and the while does not execute in the same manner as the for.

5.8. Logical Operators

So far we’ve studied only simple conditions, such as counter <= 10, total > 1000 and number != sentinelValue. We expressed these conditions in terms of the relational operators >, <, >= and <=, and the equality operators == and !=. Each decision tested precisely one condition. To test multiple conditions while making a decision, we performed these tests in separate statements or in nested if or if...else statements.

C++ provides logical operators that are used to form more complex conditions by combining simple conditions. The logical operators are && (logical AND), || (logical OR) and ! (logical NOT, also called logical negation).

Logical AND (&&) Operator

Suppose that we wish to ensure that two conditions are both true before we choose a certain path of execution. In this case, we can use the && (logical AND) operator, as follows:

if (gender == FEMALE && age >= 65)
 ++seniorFemales;

This if statement contains two simple conditions. The condition gender == FEMALE is used here to determine whether a person is a female. The condition age >= 65 determines whether a person is a senior citizen. The simple condition to the left of the && operator evaluates first. If necessary, the simple condition to the right of the && operator evaluates next. As we’ll discuss shortly, the right side of a logical AND expression is evaluated only if the left side is true. The if statement then considers the combined condition

gender == FEMALE && age >= 65

This condition is true if and only if both of the simple conditions are true. Finally, if this combined condition is indeed true, the statement in the if statement’s body increments the count of seniorFemales. If either (or both) of the simple conditions are false, then the program skips the incrementing and proceeds to the statement following the if. The preceding combined condition can be made more readable by adding redundant parentheses:

(gender == FEMALE) && (age >= 65)

[image: Image] Common Programming Error 5.8

Although 3 < x < 7 is a mathematically correct condition, it does not evaluate as you might expect in C++. Use (3 < x && x < 7) to get the proper evaluation in C++.

Figure 5.15 summarizes the && operator. The table shows all four possible combinations of false and true values for expression1 and expression2. Such tables are often called truth tables. C++ evaluates to false or true all expressions that include relational operators, equality operators and/or logical operators.

[image: Image]

Fig. 5.15. && (logical AND) operator truth table.

Logical OR (||) Operator

Now let’s consider the || (logical OR) operator. Suppose we wish to ensure that either or both of two conditions are true before we choose a certain path of execution. In this case, we use the || operator, as in the following program segment:

Click here to view code image

if ((semesterAverage >= 90) || (finalExam >= 90))
 cout << "Student grade is A" << endl;

which contains two simple conditions. The simple condition semesterAverage >= 90 evaluates to determine whether the student deserves an “A” in the course because of a solid performance throughout the semester. The simple condition finalExam >= 90 evaluates to determine whether the student deserves an “A” in the course because of an outstanding performance on the final exam. The if statement then considers the combined condition

(semesterAverage >= 90) || (finalExam >= 90)

and awards the student an “A” if either or both of the simple conditions are true. The message “Student grade is A” prints unless both of the simple conditions are false. Figure 5.16 is a truth table for the logical OR operator (||).

[image: Image]

Fig. 5.16. || (logical OR) operator truth table.

The && operator has a higher precedence than the || operator. Both operators associate from left to right. An expression containing && or || operators evaluates only until the truth or falsehood of the expression is known. Thus, evaluation of the expression

(gender == FEMALE) && (age >= 65)

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the condition age >= 65 is true). This performance feature for the evaluation of logical AND and logical OR expressions is called short-circuit evaluation.

[image: Image] Performance Tip 5.3

In expressions using operator &&, if the separate conditions are independent of one another, make the condition most likely to be false the leftmost condition. In expressions using operator ||, make the condition most likely to be true the leftmost condition. This use of short-circuit evaluation can reduce a program’s execution time.

Logical Negation (!) Operator

C++ provides the ! (logical NOT, also called logical negation) operator to “reverse” a condition’s meaning. The unary logical negation operator has only a single condition as an operand. The unary logical negation operator is placed before a condition when we are interested in choosing a path of execution if the original condition (without the logical negation operator) is false, such as in the following program segment:

Click here to view code image

if (!(grade == sentinelValue))
 cout << "The next grade is " << grade << endl;

The parentheses around the condition grade == sentinelValue are needed because the logical negation operator has a higher precedence than the equality operator.

You can often avoid the ! operator by using an appropriate relational or equality operator. For example, the preceding if statement also can be written as follows:

Click here to view code image

if (grade != sentinelValue)
 cout << "The next grade is " << grade << endl;

This flexibility often can help you express a condition in a more “natural” or convenient manner. Figure 5.17 is a truth table for the logical negation operator (!).

[image: Image]

Fig. 5.17. ! (logical negation) operator truth table.

Logical Operators Example

Figure 5.18 demonstrates the logical operators by producing their truth tables. The output shows each expression that’s evaluated and its bool result. By default, bool values true and false are displayed by cout and the stream insertion operator as 1 and 0, respectively. We use stream manipulator boolalpha (a sticky manipulator) in line 9 to specify that the value of each bool expression should be displayed as either the word “true” or the word “false.” For example, the result of the expression false && false in line 10 is false, so the second line of output includes the word “false.” Lines 9–13 produce the truth table for &&. Lines 16–20 produce the truth table for ||. Lines 23–25 produce the truth table for !.

Click here to view code image

 1 // Fig. 5.18: fig05_18.cpp
 2 // Logical operators.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // create truth table for && (logical AND) operator
 9 cout << boolalpha << "Logical AND (&&)"
10 << "\nfalse && false: " << (false && false)
11 << "\nfalse && true: " << (false && true)
12 << "\ntrue && false: " << (true && false)
13 << "\ntrue && true: " << (true && true) << "\n\n";
14
15 // create truth table for || (logical OR) operator
16 cout << "Logical OR (||)"
17 << "\nfalse || false: " << (false || false)
18 << "\nfalse || true: " << (false || true)
19 << "\ntrue || false: " << (true || false)
20 << "\ntrue || true: " << (true || true) << "\n\n";
21
22 // create truth table for ! (logical negation) operator
23 cout << "Logical NOT (!)"
24 << "\n!false: " << (!false)
25 << "\n!true: " << (!true) << endl;
26 } // end main

Logical AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Logical OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Logical NOT (!)
!false: true
!true: false

Fig. 5.18. Logical operators.

Summary of Operator Precedence and Associativity

Figure 5.19 adds the logical and comma operators to the operator precedence and associativity chart. The operators are shown from top to bottom, in decreasing order of precedence.

[image: Image]

Fig. 5.19. Operator precedence and associativity.

5.9. Confusing the Equality (==) and Assignment (=) Operators

There’s one error that C++ programmers, no matter how experienced, tend to make so frequently that we feel it requires a separate section. That error is accidentally swapping the operators == (equality) and = (assignment). What makes this so damaging is that it ordinarily does not cause syntax errors—statements with these errors tend to compile correctly and the programs run to completion, often generating incorrect results through runtime logic errors. Some compilers issue a warning when = is used in a context where == is expected.

Two aspects of C++ contribute to these problems. One is that any expression that produces a value can be used as a condition—if the value of the expression is zero, it’s treated as false, and if the value is nonzero, it’s treated as true. The second is that assignments produce a value—namely, the value assigned to the variable on the left side of the assignment operator. For example, suppose we intend to write

Click here to view code image

if (payCode == 4) // good
 cout << "You get a bonus!" << endl;

but we accidentally write

Click here to view code image

if (payCode = 4) // bad
 cout << "You get a bonus!" << endl;

The first if statement properly awards a bonus to the person whose payCode is equal to 4. The second one—which contains the error—evaluates the assignment expression in the if condition as the value 4. Any nonzero value is interpreted as true, so this condition always evaluates as true and the person always receives a bonus regardless of what the actual paycode is! Even worse, the paycode has been modified when it was only supposed to be examined!

[image: Image] Error-Prevention Tip 5.4

Programmers normally write conditions such as x == 7 with the variable name on the left and the constant on the right. By placing the constant on the left, as in 7 == x, you’ll be protected by the compiler if you accidentally replace the == operator with = . The compiler treats this as a compilation error, because you can’t change the value of a constant. This will prevent the potential devastation of a runtime logic error.

lvalues and rvalues

Variable names are said to be lvalues (for “left values”) because they can be used on the left side of an assignment operator. Constants are said to be rvalues (for “right values”) because they can be used on only the right side of an assignment operator. Lvalues can also be used as rvalues, but not vice versa.

There’s another equally unpleasant situation. Suppose you want to assign a value to a variable with a simple statement like

x = 1;

but instead write

x == 1;

Here, too, this is not a syntax error. Rather, the compiler simply evaluates the conditional expression. If x is equal to 1, the condition is true and the expression evaluates to the value true. If x is not equal to 1, the condition is false and the expression evaluates to the value false. Regardless of the expression’s value, there’s no assignment operator, so the value simply is lost. The value of x remains unaltered, probably causing an execution-time logic error. Unfortunately, we do not have a handy trick to help you with this problem!

[image: Image] Error-Prevention Tip 5.5

Use your text editor to search for all occurrences of = in your program and check that you have the correct assignment operator or logical operator in each place.

5.10. Wrap-Up

We’ve now completed our introduction to control statements. This chapter demonstrated the for, do...while and switch statements. We showed that any algorithm can be developed using combinations of the sequence structure, the three types of selection statements—if, if...else and switch—and the three types of repetition statements—while, do...while and for. We discussed how you can combine these building blocks. You used the break and continue statements to alter a repetition statement’s flow of control. We also introduced logical operators, which enable you to use more complex conditional expressions in control statements. Finally, we examined the common errors of confusing the equality and assignment operators and provided suggestions for avoiding these errors. In Chapter 6, we examine functions in greater depth.

6. Functions and an Introduction to Recursion

Objectives

In this chapter you’ll:

• Construct programs modularly from functions.

• Use common math library functions.

• Pass data to functions and return results.

• Learn how the function call and return mechanism is supported by the function call stack and activation records.

• Use random number generation to implement game-playing applications.

• Learn how the visibility of identifiers is limited to specific regions of programs.

• Write and use recursive functions.

Outline

6.1 Introduction

6.2 Math Library Functions

6.3 Function Definitions with Multiple Parameters

6.4 Function Prototypes and Argument Coercion

6.5 C++ Standard Library Headers

6.6 Case Study: Random Number Generation

6.7 Case Study: Game of Chance; Introducing enum

6.8 C++11 Random Numbers

6.9 Storage Classes and Storage Duration

6.10 Scope Rules

6.11 Function Call Stack and Activation Records

6.12 Functions with Empty Parameter Lists

6.13 Inline Functions

6.14 References and Reference Parameters

6.15 Default Arguments

6.16 Unary Scope Resolution Operator

6.17 Function Overloading

6.18 Function Templates

6.19 Recursion

6.20 Example Using Recursion: Fibonacci Series

6.21 Recursion vs. Iteration

6.22 Wrap-Up

6.1. Introduction

In this chapter, we discuss functions, beginning with an overview of a portion of the C++ Standard Library’s math functions. Next, you’ll learn how to declare a function with more than one parameter. We’ll also present additional information about function prototypes and how the compiler uses them to convert the type of an argument in a function call to the type specified in a function’s parameter list, if necessary.

Next, we’ll take a brief diversion into simulation techniques with random number generation and develop a version of a popular casino dice game that uses most of the C++ capabilities we’ve discussed.

We then present storage-class specifiers and scope rules. These determine the period during which an object exists in memory and where its identifier can be referenced in a program. You’ll learn how C++ keeps track of which function is currently executing, how parameters and other local variables of functions are maintained in memory and how a function knows where to return after it completes execution. We discuss topics that help improve program performance—inline functions that can eliminate the overhead of a function call and reference parameters that can be used to pass large data items to functions efficiently.

Many of the applications you develop will have more than one function of the same name. This technique, called function overloading, is used to implement functions that perform similar tasks for arguments of different types or possibly for different numbers of arguments. We consider function templates—a mechanism for defining a family of overloaded functions. The chapter concludes with a discussion of recursive functions—functions that call themselves, either directly, or indirectly through other functions.

6.2. Math Library Functions

Sometimes functions, such as main, are not members of a class. Such functions are called global functions. Like a class’s member functions, the function prototypes for global functions are placed in headers, so that the global functions can be reused in any program that includes the header and that can link to the function’s object code. For example, recall that we used function pow of the <cmath> header to raise a value to a power in Fig. 5.6. We introduce various functions from the <cmath> header here to present the concept of global functions that do not belong to a particular class.

The <cmath> header provides a collection of functions that enable you to perform common mathematical calculations. For example, you can calculate the square root of 900.0 with the function call

sqrt(900.0)

The preceding expression evaluates to 30.0. Function sqrt takes an argument of type double and returns a double result. There’s no need to create any objects before calling function sqrt. Also, all functions in the <cmath> header are global functions—therefore, each is called simply by specifying the name of the function followed by parentheses containing the function’s arguments. If you call sqrt with a negative argument, the function sets a global variable named errno to the constant value EDOM. The variable errno and the constant EDOM are defined in the <cerrno> header. We’ll discuss global variables in Section 6.9.

[image: Image] Error-Prevention Tip 6.1

Do not call sqrt with a negative argument. For industrial-strength code, always check that the arguments you pass to math functions are valid.

Function arguments may be constants, variables or more complex expressions. If c = 13.0, d = 3.0 and f = 4.0, then the statement

cout << sqrt(c + d * f) << endl;

displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Some math library functions are summarized in Fig. 6.1. In the figure, the variables x and y are of type double.

[image: Image]

[image: Image]

Fig. 6.1. Math library functions.

6.3. Function Definitions with Multiple Parameters

Let’s consider functions with multiple parameters. Figures 6.2–6.4 modify class GradeBook by including a user-defined function called maximum that determines and returns the largest of three int grades. When the application executes, the main function (lines 5–13 of Fig. 6.4) creates one GradeBook object (line 8) and calls its inputGrades member function (line 11) to read three integer grades from the user. In class GradeBook’s implementation file (Fig. 6.3), lines 52–53 of member function inputGrades prompt the user to enter three integer values and read them from the user. Line 56 calls member function maximum (defined in lines 60–73). Function maximum determines the largest value, then the return statement (line 72) returns that value to the point at which function inputGrades invoked maximum (line 56). Member function inputGrades then stores maximum’s return value in data member maximumGrade. This value is then output by calling function displayGradeReport (line 12 of Fig. 6.4). [Note: We named this function displayGradeReport because subsequent versions of class GradeBook will use this function to display a complete grade report, including the maximum and minimum grades.] In Chapter 7, we’ll enhance class GradeBook to process sets of grades.

Click here to view code image

 1 // Fig. 6.2: GradeBook.h
 2 // Definition of class GradeBook that finds the maximum of three grades.
 3 // Member functions are defined in GradeBook.cpp
 4 #include <string> // program uses C++ standard string class
 5
 6 // GradeBook class definition
 7 class GradeBook
 8 {
 9 public:
10 explicit GradeBook(std::string); // initializes course name
11 void setCourseName(std::string); // set the course name
12 std::string getCourseName() const; //retrieve the course name
13 void displayMessage() const; // display a welcome message
14 void inputGrades(); // input three grades from user
15 void displayGradeReport() const; // display report based on the grades
16 int maximum(int, int, int) const; // determine max of 3 values
17 private:
18 std::string courseName; // course name for this GradeBook
19 int maximumGrade; // maximum of three grades
20 }; // end class GradeBook

Fig. 6.2. Definition of class GradeBook that finds the maximum of three grades.

Click here to view code image

 1 // Fig. 6.3: GradeBook.cpp
 2 // Member-function definitions for class GradeBook that
 3 // determines the maximum of three grades.
 4 #include <iostream>
 5 using namespace std;
 6
 7 #include "GradeBook.h" // include definition of class GradeBook
 8
 9 // constructor initializes courseName with string supplied as argument;
10 // initializes maximumGrade to 0
11 GradeBook::GradeBook(string name)
12 : maximumGrade(0) // this value will be replaced by the maximum grade
13 {
14 setCourseName(name); // validate and store courseName
15 } // end GradeBook constructor
16
17 // function to set the course name; limits name to 25 or fewer characters
18 void GradeBook::setCourseName(string name)
19 {
20 if (name.size() <= 25) // if name has 25 or fewer characters
21 courseName = name; // store the course name in the object
22 else // if name is longer than 25 characters
23 { // set courseName to first 25 characters of parameter name
24 courseName = name.substr(0, 25); // select first 25 characters
25 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
26 << "Limiting courseName to first 25 characters.\n" << endl;
27 } // end if...else
28 } // end function setCourseName
29
30 // function to retrieve the course name
31 string GradeBook::getCourseName() const
32 {
33 return courseName;
34 } // end function getCourseName
35
36 // display a welcome message to the GradeBook user
37 void GradeBook::displayMessage() const
38 {
39 // this statement calls getCourseName to get the
40 // name of the course this GradeBook represents
41 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
42 << endl;
43 } // end function displayMessage
44
45 // input three grades from user; determine maximum
46 void GradeBook::inputGrades()
47 {
48 int grade1; // first grade entered by user
49 int grade2; // second grade entered by user
50 int grade3; // third grade entered by user
51
52 cout << "Enter three integer grades: ";
53 cin >> grade1 >> grade2 >> grade3;
54
55 // store maximum in member maximumGrade
56 maximumGrade = maximum(grade1, grade2, grade3);
57 } // end function inputGrades
58
59 // returns the maximum of its three integer parameters
60 int GradeBook::maximum(int x, int y, int z) const
61 {
62 int maximumValue = x; // assume x is the largest to start
63
64 // determine whether y is greater than maximumValue
65 if (y > maximumValue)
66 maximumValue = y; // make y the new maximumValue
67
68 // determine whether z is greater than maximumValue
69 if (z > maximumValue)
70 maximumValue = z; // make z the new maximumValue
71
72 return maximumValue;
73 } // end function maximum
74
75 // display a report based on the grades entered by user
76 void GradeBook::displayGradeReport() const
77 {
78 // output maximum of grades entered
79 cout << "Maximum of grades entered: " << maximumGrade << endl;
80 } // end function displayGradeReport

Fig. 6.3. Member-function definitions for class GradeBook that determines the maximum of three grades.

Click here to view code image

 1 // Fig. 6.4: fig06_04.cpp
 2 // Create GradeBook object, input grades and display grade report.
 3 #include "GradeBook.h" // include definition of class GradeBook
 4
 5 int main()
 6 {
 7 // create GradeBook object
 8 GradeBook myGradeBook("CS101 C++ Programming");
 9
10 myGradeBook.displayMessage(); // display welcome message
11 myGradeBook.inputGrades(); // read grades from user
12 myGradeBook.displayGradeReport(); // display report based on grades
13 } // end main

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 86 67 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 86 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 75 86
Maximum of grades entered: 86

Fig. 6.4. Create GradeBook object, input grades and display grade report.

[image: Image] Software Engineering Observation 6.1

The commas used in line 56 of Fig. 6.3 to separate the arguments to function maximum are not comma operators as discussed in Section 5.3. The comma operator guarantees that its operands are evaluated left to right. The order of evaluation of a function’s arguments, however, is not specified by the C++ standard. Thus, different compilers can evaluate function arguments in different orders. The C++ standard does guarantee that all arguments in a function call are evaluated before the called function executes.

[image: Image] Portability Tip 6.1

Sometimes when a function’s arguments are expressions, such as those with calls to other functions, the order in which the compiler evaluates the arguments could affect the values of one or more of the arguments. If the evaluation order changes between compilers, the argument values passed to the function could vary, causing subtle logic errors.

[image: Image] Error-Prevention Tip 6.2

If you have doubts about the order of evaluation of a function’s arguments and whether the order would affect the values passed to the function, evaluate the arguments in separate assignment statements before the function call, assign the result of each expression to a local variable, then pass those variables as arguments to the function.

Function Prototype for maximum

Member function maximum’s prototype (Fig. 6.2, line 16) indicates that the function returns an integer value, has the name maximum and requires three integer parameters to perform its task. The function’s first line (Fig. 6.3, line 60) matches the function prototype and indicates that the parameter names are x, y and z. When maximum is called (Fig. 6.3, line 56), the parameter x is initialized with the value of the argument grade1, the parameter y is initialized with the value of the argument grade2 and the parameter z is initialized with the value of the argument grade3. There must be one argument in the function call for each parameter (also called a formal parameter) in the function definition.

Notice that multiple parameters are specified in both the function prototype and the function header as a comma-separated list. The compiler refers to the function prototype to check that calls to maximum contain the correct number and types of arguments and that the types of the arguments are in the correct order. In addition, the compiler uses the prototype to ensure that the value returned by the function can be used correctly in the expression that called the function (e.g., a function call that returns void cannot be used as the right side of an assignment statement). Each argument must be consistent with the type of the corresponding parameter. For example, a parameter of type double can receive values like 7.35, 22 or –0.03456, but not a string like "hello". If the arguments passed to a function do not match the types specified in the function’s prototype, the compiler attempts to convert the arguments to those types. Section 6.4 discusses this conversion.

[image: Image] Common Programming Error 6.1

Declaring function parameters of the same type as double x, y instead of double x, double y is a syntax error—a type is required for each parameter in the parameter list.

[image: Image] Common Programming Error 6.2

Compilation errors occur if the function prototype, header and calls do not all agree in the number, type and order of arguments and parameters, and in the return type. Linker errors and other types of errors can occur as well as you’ll see later in the book.

[image: Image] Software Engineering Observation 6.2

A function that has many parameters may be performing too many tasks. Consider dividing the function into smaller functions that perform the separate tasks. Limit the function header to one line if possible.

Logic of Function maximum

To determine the maximum value (lines 60–73 of Fig. 6.3), we begin with the assumption that parameter x contains the largest value, so line 62 of function maximum declares local variable maximumValue and initializes it with the value of parameter x. Of course, it’s possible that parameter y or z contains the actual largest value, so we must compare each of these values with maximumValue. The if statement in lines 65–66 determines whether y is greater than maximumValue and, if so, assigns y to maximumValue. The if statement in lines 69–70 determines whether z is greater than maximumValue and, if so, assigns z to maximumValue. At this point the largest of the three values is in maximumValue, so line 72 returns that value to the call in line 56. When program control returns to the point in the program where maximum was called, maximum’s parameters x, y and z are no longer accessible to the program.

Returning Control from a Function to Its Caller

There are several ways to return control to the point at which a function was invoked. If the function does not return a result (i.e., it has a void return type), control returns when the program reaches the function-ending right brace, or by execution of the statement

return;

If the function does return a result, the statement

 return expression;

evaluates expression and returns the value of expression to the caller. Some compilers issue errors and others issue warnings if you do not provide an appropriate return statement in a function that’s supposed to return a result.

6.4. Function Prototypes and Argument Coercion

A function prototype (also called a function declaration) tells the compiler the name of a function, the type of data it returns, the number of parameters it expects to receive, the types of those parameters and the order in which the parameters of those types are expected.

[image: Image] Software Engineering Observation 6.3

Function prototypes are required unless the function is defined before it is used. Use #include preprocessing directives to obtain function prototypes for the C++ Standard Library functions from the headers of the appropriate libraries (e.g., the prototype for sqrt is in header <cmath>; a partial list of C++ Standard Library headers appears in Section 6.5). Also use #include to obtain headers containing function prototypes written by you or other programmers.

[image: Image] Common Programming Error 6.3

If a function is defined before it’s invoked, then its definition also serves as the function’s prototype, so a separate prototype is unnecessary. If a function is invoked before it’s defined, and that function does not have a function prototype, a compilation error occurs.

[image: Image] Software Engineering Observation 6.4

Always provide function prototypes, even though it’s possible to omit them when functions are defined before they’re used. Providing the prototypes avoids tying the code to the order in which functions are defined (which can easily change as a program evolves).

Function Signatures

The portion of a function prototype that includes the name of the function and the types of its arguments is called the function signature or simply the signature. The function signature does not specify the function’s return type. Functions in the same scope must have unique signatures. The scope of a function is the region of a program in which the function is known and accessible. We’ll say more about scope in Section 6.10.

In Fig. 6.2, if the function prototype in line 16 had been written

void maximum(int, int, int);

the compiler would report an error, because the void return type in the function prototype would differ from the int return type in the function header. Similarly, such a prototype would cause the statement

cout << maximum(6, 7, 0);

to generate a compilation error, because that statement depends on maximum to return a value to be displayed.

Argument Coercion

An important feature of function prototypes is argument coercion—i.e., forcing arguments to the appropriate types specified by the parameter declarations. For example, a program can call a function with an integer argument, even though the function prototype specifies a double argument—the function will still work correctly.

Argument Promotion Rules and Implicit Conversions1

1. Promotions and conversions are complex topics discussed in Section 4 and the beginning of Section 5 of the C++ standard. You can purchase a copy of the standard at bit.ly/CPlusPlus11Standard.

Sometimes, argument values that do not correspond precisely to the parameter types in the function prototype can be converted by the compiler to the proper type before the function is called. These conversions occur as specified by C++’s promotion rules. The promotion rules indicate the implicit conversions that the compiler can perform between fundamental types. An int can be converted to a double. A double can also be converted to an int but the fractional part of the double value is truncated. Keep in mind that double variables can hold numbers of much greater magnitude than int variables, so the loss of data may be considerable. Values may also be modified when converting large integer types to small integer types (e.g., long to short), signed to unsigned or unsigned to signed. Unsigned integers range from 0 to approximately twice the positive range of the corresponding signed type.

The promotion rules apply to expressions containing values of two or more data types; such expressions are also referred to as mixed-type expressions. The type of each value in a mixed-type expression is promoted to the “highest” type in the expression (actually a temporary version of each value is created and used for the expression—the original values remain unchanged). Promotion also occurs when the type of a function argument does not match the parameter type specified in the function definition or prototype. Figure 6.5 lists the arithmetic data types in order from “highest type” to “lowest type.”

[image: Image]

Fig. 6.5. Promotion hierarchy for arithmetic data types.

Conversions Can Result in Incorrect Values

Converting values to lower fundamental types can result in incorrect values. Therefore, a value can be converted to a lower fundamental type only by explicitly assigning the value to a variable of lower type (some compilers will issue a warning in this case) or by using a cast operator (see Section 4.7). Function argument values are converted to the parameter types in a function prototype as if they were being assigned directly to variables of those types. If a square function that uses an integer parameter is called with a floating-point argument, the argument is converted to int (a lower type), and square could return an incorrect value. For example, square(4.5) returns 16, not 20.25.

[image: Image] Common Programming Error 6.4

It’s a compilation error if the arguments in a function call do not match the number and types of the parameters declared in the corresponding function prototype. It’s also an error if the number of arguments in the call matches, but the arguments cannot be implicitly converted to the expected types.

6.5. C++ Standard Library Headers

The C++ Standard Library is divided into many portions, each with its own header. The headers contain the function prototypes for the related functions that form each portion of the library. The headers also contain definitions of various class types and functions, as well as constants needed by those functions. A header “instructs” the compiler on how to interface with library and user-written components. Figure 6.6 lists some common C++ Standard Library headers, most of which are discussed later in the book. The term “macro” that’s used several times in Fig. 6.6 is discussed in detail in Appendix E, Preprocessor.

[image: Image]

[image: Image]

[image: Image]

Fig. 6.6. C++ Standard Library headers.

6.6. Case Study: Random Number Generation

[image: Image]

[Note: The random-number generation techniques shown in this section and Section 6.7 are included for readers who are not yet using C++11 compilers. In Section 6.8, we’ll present C++11’s improved random-number capabilities.]

We now take a brief and hopefully entertaining diversion into a popular programming application, namely simulation and game playing. In this and the next section, we develop a game-playing program that includes multiple functions.

The element of chance can be introduced into computer applications by using the C++ Standard Library function rand. Consider the following statement:

i = rand();

The function rand generates an unsigned integer between 0 and RAND_MAX (a symbolic constant defined in the <cstdlib> header). You can determine the value of RAND_MAX for your system simply by displaying the constant. If rand truly produces integers at random, every number between 0 and RAND_MAX has an equal chance (or probability) of being chosen each time rand is called.

The range of values produced directly by the function rand often is different than what a specific application requires. For example, a program that simulates coin tossing might require only 0 for “heads” and 1 for “tails.” A program that simulates rolling a six-sided die would require random integers in the range 1 to 6. A program that randomly predicts the next type of spaceship (out of four possibilities) that will fly across the horizon in a video game might require random integers in the range 1 through 4.

Rolling a Six-Sided Die

To demonstrate rand, Fig. 6.7 simulates 20 rolls of a six-sided die and displays the value of each roll. The function prototype for the rand function is in <cstdlib>. To produce integers in the range 0 to 5, we use the modulus operator (%) with rand as follows:

rand() % 6

Click here to view code image

 1 // Fig. 6.7: fig06_07.cpp
 2 // Shifted, scaled integers produced by 1 + rand() % 6.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cstdlib> // contains function prototype for rand
 6 using namespace std;
 7
 8 int main()
 9 {
10 // loop 20 times
11 for (unsigned int counter = 1; counter <= 20; ++counter)
12 {
13 // pick random number from 1 to 6 and output it
14 cout << setw(10) << (1 + rand() % 6);
15
16 // if counter is divisible by 5, start a new line of output
17 if (counter % 5 == 0)
18 cout << endl;
19 } // end for
20 } // end main

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

Fig. 6.7. Shifted, scaled integers produced by 1 + rand() % 6.

This is called scaling. The number 6 is called the scaling factor. We then shift the range of numbers produced by adding 1 to our previous result. Figure 6.7 confirms that the results are in the range 1 to 6. If you execute this program more than once, you’ll see that it produces the same “random” values each time. We’ll show how to fix this in Figure 6.9.

Rolling a Six-Sided Die 6,000,000 Times

To show that the numbers produced by rand occur with approximately equal likelihood, Fig. 6.8 simulates 6,000,000 rolls of a die. Each integer in the range 1 to 6 should appear approximately 1,000,000 times. This is confirmed by the program’s output.

Click here to view code image

 1 // Fig. 6.8: fig06_08.cpp
 2 // Rolling a six-sided die 6,000,000 times.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cstdlib> // contains function prototype for rand
 6 using namespace std;
 7
 8 int main()
 9 {
10 unsigned int frequency1 = 0; // count of 1s rolled
11 unsigned int frequency2 = 0; // count of 2s rolled
12 unsigned int frequency3 = 0; // count of 3s rolled
13 unsigned int frequency4 = 0; // count of 4s rolled
14 unsigned int frequency5 = 0; // count of 5s rolled
15 unsigned int frequency6 = 0; // count of 6s rolled
16
17 // summarize results of 6,000,000 rolls of a die
18 for (unsigned int roll = 1; roll <= 6000000; ++roll)
19 {
20 unsigned int face = 1 + rand() % 6; // random number from 1 to 6
21
22 // determine roll value 1-6 and increment appropriate counter
23 switch (face)
24 {
25 case 1:
26 ++frequency1; // increment the 1s counter
27 break;
28 case 2:
29 ++frequency2; // increment the 2s counter
30 break;
31 case 3:
32 ++frequency3; // increment the 3s counter
33 break;
34 case 4:
35 ++frequency4; // increment the 4s counter
36 break;
37 case 5:
38 ++frequency5; // increment the 5s counter
39 break;
40 case 6:
41 ++frequency6; // increment the 6s counter
42 break;
43 default: // invalid value
44 cout << "Program should never get here!";
45 } // end switch
46 } // end for
47
48 cout << "Face" << setw(13) << "Frequency" << endl; // output headers
49 cout << " 1" << setw(13) << frequency1
50 << "\n 2" << setw(13) << frequency2
51 << "\n 3" << setw(13) << frequency3
52 << "\n 4" << setw(13) << frequency4
53 << "\n 5" << setw(13) << frequency5
54 << "\n 6" << setw(13) << frequency6 << endl;
55 } // end main

Face Frequency
 1 999702
 2 1000823
 3 999378
 4 998898
 5 1000777
 6 1000422

Fig. 6.8. Rolling a six-sided die 6,000,000 times.

As the output shows, we can simulate the rolling of a six-sided die by scaling and shifting the values produced by rand. The program should never get to the default case (lines 43–44) in the switch structure, because the switch’s controlling expression (face) always has values in the range 1–6; however, we provide the default case as a matter of good practice. After we study arrays in Chapter 7, we show how to replace the entire switch structure in Fig. 6.8 elegantly with a single-line statement.

[image: Image] Error-Prevention Tip 6.3

Provide a default case in a switch to catch errors even if you are absolutely, positively certain that you have no bugs!

Randomizing the Random Number Generator

Executing the program of Fig. 6.7 again produces

Click here to view code image

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

The program prints exactly the same sequence of values shown in Fig. 6.7. How can these be random numbers? When debugging a simulation program, this repeatability is essential for proving that corrections to the program work properly.

[image: Image]

Function rand actually generates pseudorandom numbers. Repeatedly calling rand produces a sequence of numbers that appears to be random. However, the sequence repeats itself each time the program executes. Once a program has been thoroughly debugged, it can be conditioned to produce a different sequence of random numbers for each execution. This is called randomizing and is accomplished with the C++ Standard Library function srand. Function srand takes an unsigned integer argument and seeds the rand function to produce a different sequence of random numbers for each execution. C++11 provides additional random number capabilities that can produce nondeterministic random numbers—a set of random numbers that can’t be predicted. Such random number generators are used in simulations and security scenarios where predictability is undesirable. Section 6.8 introduces C++11 random-number generation capabilities.

[image: Image] Good Programming Practice 6.1

Ensure that your program seeds the random number generator differently (and only once) each time the program executes; otherwise, an attacker would easily be able to determine the sequence of pseudorandom numbers that would be produced.

Seeding the Random Number Generator with srand

Figure 6.9 demonstrates function srand. The program uses the data type unsigned int. An int is represented by at least two bytes, is typically four bytes on 32-bit systems and can be as much as eight bytes on 64-bit systems. An int can have positive and negative values. A variable of type unsigned int is also stored in at least two bytes of memory. A four-byte unsigned int can have only nonnegative values in the range 0–4294967295. Function srand takes an unsigned int value as an argument. The function prototype for the srand function is in header <cstdlib>.

Click here to view code image

 1 // Fig. 6.9: fig06_09.cpp
 2 // Randomizing the die-rolling program.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cstdlib> // contains prototypes for functions srand and rand
 6 using namespace std;
 7
 8 int main()
 9 {
10 unsigned int seed = 0; // stores the seed entered by the user
11
12 cout << "Enter seed: ";
13 cin >> seed;
14 srand(seed); // seed random number generator
15
16 // loop 10 times
17 for (unsigned int counter = 1; counter <= 10; ++counter)
18 {
19 // pick random number from 1 to 6 and output it
20 cout << setw(10) << (1 + rand() % 6);
21
22 // if counter is divisible by 5, start a new line of output
23 if (counter % 5 == 0)
24 cout << endl;
25 } // end for
26 } // end main

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Enter seed: 432
 4 6 3 1 6
 3 1 5 4 2

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Fig. 6.9. Randomizing the die-rolling program.

The program produces a different sequence of random numbers each time it executes, provided that the user enters a different seed. We used the same seed in the first and third sample outputs, so the same series of 10 numbers is displayed in each of those outputs.

Seeding the Random Number Generator with the Current Time

To randomize without having to enter a seed each time, we may use a statement like

srand(static_cast<unsigned int>(time(0)));

This causes the computer to read its clock to obtain the value for the seed. Function time (with the argument 0 as written in the preceding statement) typically returns the current time as the number of seconds since January 1, 1970, at midnight Greenwich Mean Time (GMT). This value (which is of type time_t) is converted to an unsigned int and used as the seed to the random number generator—the static_cast in the preceding statement eliminates a compiler warning that’s issued if you pass a time_t value to a function that expects an unsigned int. The function prototype for time is in <ctime>.

Scaling and Shifting Random Numbers

Previously, we simulated the rolling of a six-sided die with the statement

face = 1 + rand() % 6;

which always assigns an integer (at random) to variable face in the range 1 ≤face ≤6. The width of this range (i.e., the number of consecutive integers in the range) is 6 and the starting number in the range is 1. Referring to the preceding statement, we see that the width of the range is determined by the number used to scale rand with the modulus operator (i.e., 6), and the starting number of the range is equal to the number (i.e., 1) that is added to the expression rand % 6. We can generalize this result as

number = shiftingValue + rand() % scalingFactor;

where shiftingValue is equal to the first number in the desired range of consecutive integers and scalingFactor is equal to the width of the desired range of consecutive integers.

6.7. Case Study: Game of Chance; Introducing enum

One of the most popular games of chance is a dice game known as “craps,” which is played in casinos and back alleys worldwide. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6 spots. After the dice have come to rest, the sum of the spots on the two upward faces is calculated. If the sum is 7 or 11 on the first roll, the player wins. If the sum is 2, 3 or 12 on the first roll (called “craps”), the player loses (i.e., the “house” wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first roll, then that sum becomes the player’s “point.” To win, you must continue rolling the dice until you “make your point.” The player loses by rolling a 7 before making the point.

The program in Fig. 6.10 simulates the game. In the rules, notice that the player must roll two dice on the first roll and on all subsequent rolls. We define function rollDice (lines 62–74) to roll the dice and compute and print their sum. The function is defined once, but called from lines 20 and 44. The function takes no arguments and returns the sum of the two dice, so empty parentheses and the return type unsigned int are indicated in the function prototype (line 8) and function header (line 62).

Click here to view code image

 1 // Fig. 6.10: fig06_10.cpp
 2 // Craps simulation.
 3 #include <iostream>
 4 #include <cstdlib> // contains prototypes for functions srand and rand
 5 #include <ctime> // contains prototype for function time
 6 using namespace std;
 7
 8 unsigned int rollDice(); // rolls dice, calculates and displays sum
 9
10 int main()
11 {
12 // enumeration with constants that represent the game status
13 enum Status { CONTINUE, WON, LOST }; // all caps in constants
14
15 // randomize random number generator using current time
16 srand(static_cast<unsigned int>(time(0)));
17
18 unsigned int myPoint = 0; // point if no win or loss on first roll
19 Status gameStatus = CONTINUE; // can contain CONTINUE, WON or LOST
20 unsigned int sumOfDice = rollDice(); // first roll of the dice
21
22 // determine game status and point (if needed) based on first roll
23 switch (sumOfDice)
24 {
25 case 7: // win with 7 on first roll
26 case 11: // win with 11 on first roll
27 gameStatus = WON;
28 break;
29 case 2: // lose with 2 on first roll
30 case 3: // lose with 3 on first roll
31 case 12: // lose with 12 on first roll
32 gameStatus = LOST;
33 break;
34 default: // did not win or lose, so remember point
35 gameStatus = CONTINUE; // game is not over
36 myPoint = sumOfDice; // remember the point
37 cout << "Point is " << myPoint << endl;
38 break; // optional at end of switch
39 } // end switch
40
41 // while game is not complete
42 while (CONTINUE == gameStatus) // not WON or LOST
43 {
44 sumOfDice = rollDice(); // roll dice again
45
46 // determine game status
47 if (sumOfDice == myPoint) // win by making point
48 gameStatus = WON;
49 else
50 if (sumOfDice == 7) // lose by rolling 7 before point
51 gameStatus = LOST;
52 } // end while
53
54 // display won or lost message
55 if (WON == gameStatus)
56 cout << "Player wins" << endl;
57 else
58 cout << "Player loses" << endl;
59 } // end main
60
61 // roll dice, calculate sum and display results
62 unsigned int rollDice()
63 {
64 // pick random die values
65 unsigned int die1 = 1 + rand() % 6; // first die roll
66 unsigned int die2 = 1 + rand() % 6; // second die roll
67
68 unsigned int sum = die1 + die2; // compute sum of die values
69
70 // display results of this roll
71 cout << "Player rolled " << die1 << " + " << die2
72 << " = " << sum << endl;
73 return sum; // end function rollDice
74 } // end function rollDice

Player rolled 2 + 5 = 7
Player wins

Player rolled 6 + 6 = 12
Player loses

Player rolled 1 + 3 = 4
Point is 4
Player rolled 4 + 6 = 10
Player rolled 2 + 4 = 6
Player rolled 6 + 4 = 10
Player rolled 2 + 3 = 5
Player rolled 2 + 4 = 6
Player rolled 1 + 1 = 2
Player rolled 4 + 4 = 8
Player rolled 4 + 3 = 7
Player loses
Player rolled 3 + 3 = 6
Point is 6
Player rolled 5 + 3 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 1 = 3
Player rolled 1 + 5 = 6
Player wins

Fig. 6.10. Craps simulation.

enum Type Status

The player may win or lose on the first roll or on any subsequent roll. The program uses variable gameStatus to keep track of this. Variable gameStatus is declared to be of new type Status. Line 13 declares a user-defined type called an enumeration that’s introduced by the keyword enum and followed by a type name (in this case, Status) and a set of integer constants represented by identifiers. The values of these enumeration constants start at 0, unless specified otherwise, and increment by 1. In the preceding enumeration, the constant CONTINUE has the value 0, WON has the value 1 and LOST has the value 2. The identifiers in an enum must be unique, but separate enumeration constants can have the same integer value.

[image: Image] Good Programming Practice 6.2

Capitalize the first letter of an identifier used as a user-defined type name.

[image: Image] Good Programming Practice 6.3

Use only uppercase letters in enumeration constant names. This makes these constants stand out in a program and reminds you that enumeration constants are not variables.

Variables of user-defined type Status can be assigned only one of the three values declared in the enumeration. When the game is won, the program sets variable gameStatus to WON (lines 27 and 48). When the game is lost, the program sets variable gameStatus to LOST (lines 32 and 51). Otherwise, the program sets variable gameStatus to CONTINUE (line 35) to indicate that the dice must be rolled again.

[image: Image] Common Programming Error 6.5

Assigning the integer equivalent of an enumeration constant (rather than the enumeration constant, itself) to a variable of the enumeration type is a compilation error.

Another popular enumeration is

Click here to view code image

enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,
 SEP, OCT, NOV, DEC };

which creates user-defined type Months with enumeration constants representing the months of the year. The first value in the preceding enumeration is explicitly set to 1, so the remaining values increment from 1, resulting in the values 1 through 12. Any enumeration constant can be assigned an integer value in the enumeration definition, and subsequent enumeration constants each have a value 1 higher than the preceding constant in the list until the next explicit setting.

[image: Image] Error-Prevention Tip 6.4

Use unique values for an enum’s constants to help prevent hard-to-find logic errors.

Winning or Losing on the First Roll

After the first roll, if the game is won or lost, the program skips the body of the while statement (lines 42–52) because gameStatus is not equal to CONTINUE. The program proceeds to the if...else statement in lines 55–58, which prints "Player wins" if gameStatus is equal to WON and "Player loses" if gameStatus is equal to LOST.

Continuing to Roll

After the first roll, if the game is not over, the program saves the sum in myPoint (line 36). Execution proceeds with the while statement, because gameStatus is equal to CONTINUE. During each iteration of the while, the program calls rollDice to produce a new sum. If sum matches myPoint, the program sets gameStatus to WON (line 48), the while-test fails, the if...else statement prints "Player wins" and execution terminates. If sum is equal to 7, the program sets gameStatus to LOST (line 51), the while-test fails, the if...else statement prints "Player loses" and execution terminates.

The craps program uses two functions—main and rollDice—and the switch, while, if...else, nested if...else and nested if statements.

C++11—Scoped enums

[image: Image]

In Fig. 6.10, we introduced enums. One problem with enums (also called unscoped enums) is that multiple enums may contain the same identifiers. Using such enums in the same program can lead to naming collisions and logic errors. To eliminate these problems, C++11 introduces so-called scoped enums, which are declared with the keywords enum class (or the synonym enum struct). For example, we can define the Status enum of Fig. 6.10 as:

enum class Status { CONTINUE, WON, LOST };

To reference a scoped enum constant, you must qualify the constant with the scoped enum’s type name (Status) and the scope-resolution operator (::), as in Status::CONTINUE. This explicitly identifies CONTINUE as a constant in the scope of enum class Status. Thus, if another scoped enum contains the same identifier for one of its constants, it’s always clear which version of the constant is being used.

[image: Image] Error-Prevention Tip 6.5

Use scoped enums to avoid potential naming conflicts and logic errors from unscoped enums that contain the same identifiers.

C++11—Specifying the Type of an enum’s Constants

[image: Image]

The constants in an enum are represented as integers. By default, an unscoped enum’s underlying integral type depends on its constants’ values—the type is guaranteed to be large enough to store the constant values specified. By default, a scoped enum’s underlying integral type is int. C++11 allows you to specify an enum’s underlying integral type by following the enum’s type name with a colon (:) and the integral type. For example, we can specify that the constants in the enum class Status should have type unsigned int, as in

enum class Status : unsigned int { CONTINUE, WON, LOST };

[image: Image] Common Programming Error 6.6

A compilation error occurs if an enum constant’s value is outside the range that can be represented by the enum’s underlying type.

6.8. C++11 Random Numbers

[image: Image]

According to CERT, function rand does not have “good statistical properties” and can be predictable, which makes programs that use rand less secure (CERT guideline MSC30-CPP). As we mentioned in Section 6.6, C++11 provides a new, more secure library of random-number capabilities that can produce nondeterministic random numbers for simulations and security scenarios where predictability is undesirable. These new capabilities are located in the C++ Standard Library’s <random> header.

Random-number generation is a mathematically sophisticated topic for which mathematicians have developed many random-number generation algorithms with different statistical properties. For flexibility based on how random numbers are used in programs, C++11 provides many classes that represent various random-number generation engines and distributions. An engine implements a random-number generation algorithm that produce pseudorandom numbers. A distribution controls the range of values produced by an engine, the types of those values (e.g., int, double, etc.) and the statistical properties of the values. In this section, we’ll use the default random-number generation engine—default_random_engine—and a uniform_int_distribution, which evenly distributes pseudorandom integers over a specified range of values. The default range is from 0 to the maximum value of an int on your platform.

Rolling a Six-Sided Die

Figure 6.11 uses the default_random_engine and the uniform_int_distribution to roll a six-sided die. Line 14 creates a default_random_engine object named engine. Its constructor argument seeds the random-number generation engine with the current time. If you don’t pass a value to the constructor, the default seed will be used and the program will produce the same sequence of numbers each time it executes. Line 15 creates randomInt—a uniform_int_distribution object that produces unsigned int values (as specified by <unsigned int>) in the range 1 to 6 (as specified by the constructor arguments). The expression randomInt(engine) (line 21) returns one unsigned int value in the range 1 to 6.

Click here to view code image

 1 // Fig. 6.11: fig06_11.cpp
 2 // Using a C++11 random-number generation engine and distribution
 3 // to roll a six-sided die.
 4 #include <iostream>
 5 #include <iomanip>
 6 #include <random> // contains C++11 random number generation features
 7 #include <ctime>
 8 using namespace std;
 9
10 int main()
11 {
12 // use the default random-number generation engine to
13 // produce uniformly distributed pseudorandom int values from 1 to 6
14 default_random_engine engine(static_cast<unsigned int>(time(0)));
15 uniform_int_distribution<unsigned int> randomInt(1, 6);
16
17 // loop 10 times
18 for (unsigned int counter = 1; counter <= 10; ++counter)
19 {
20 // pick random number from 1 to 6 and output it
21 cout << setw(10) << randomInt(engine);
22
23 // if counter is divisible by 5, start a new line of output
24 if (counter % 5 == 0)
25 cout << endl;
26 } // end for
27 } // end main

 2 1 2 3 5
 6 1 5 6 4

Fig. 6.11. Using a C++11 random-number generation engine and distribution to roll a six-sided die.

The notation <unsigned int> in line 15 indicates that uniform_int_distribution is a class template. In this case, any integer type can be specified in the angle brackets (< and >). In Chapter 18, we discuss how to create class templates and various other chapters show how to use existing class templates from the C++ Standard Library. For now, you should feel comfortable using class template uniform_int_distribution by mimicking the syntax shown in the example.

6.9. Storage Classes and Storage Duration

The programs you’ve seen so far use identifiers for variable names and functions. The attributes of variables include name, type, size and value. Each identifier in a program also has other attributes, including storage duration, scope and linkage.

C++ provides five storage-class specifiers that determine a variable’s storage duration: register, extern, mutable and static. This section discusses storage-class specifiers register, extern and static. Storage-class specifier mutable is used exclusively with classes and thread_local is used in multithreaded applications—these are discussed in Chapters 21 and 24, respectively.

Storage Duration

An identifier’s storage duration determines the period during which that identifier exists in memory. Some exist briefly, some are repeatedly created and destroyed and others exist for a program’s entire execution. First we discuss the storage durations static and automatic.

Scope

An identifier’s scope is where the identifier can be referenced in a program. Some identifiers can be referenced throughout a program; others can be referenced from only limited portions of a program. Section 6.10 discusses the scope of identifiers.

Linkage

An identifier’s linkage determines whether it’s known only in the source file where it’s declared or across multiple files that are compiled, then linked together. An identifier’s storage-class specifier helps determine its storage duration and linkage.

Storage Duration

The storage-class specifiers can be split into four storage durations: automatic, static, dynamic and thread. Automatic and static storage duration are discussed below. In Chapter 10, you’ll see how to request additional memory in your program dynamically at execution time. Variables allocated dynamically have dynamic storage duration.

Local Variables and Automatic Storage Duration

Variables with automatic storage duration include:

• local variables declared in functions

• function parameters

• local variables or function parameters declared with register

Such variables are created when program execution enters the block in which they’re defined, they exist while the block is active and they’re destroyed when the program exits the block. An automatic variable exists only in the nearest enclosing pair of curly braces within the body of the function in which the definition appears, or for the entire function body in the case of a function parameter. Local variables are of automatic storage duration by default. For the remainder of the text, we refer to variables of automatic storage duration simply as automatic variables.

[image: Image] Performance Tip 6.1

Automatic storage is a means of conserving memory, because automatic storage duration variables exist in memory only when the block in which they’re defined is executing.

[image: Image] Software Engineering Observation 6.5

Automatic storage is an example of the principle of least privilege. In the context of an application, the principle states that code should be granted only the amount of privilege and access that it needs to accomplish its designated task, but no more. Why should we have variables stored in memory and accessible when they’re not needed?

[image: Image] Good Programming Practice 6.4

Declare variables as close to where they’re first used as possible.

Register Variables

Data in the machine-language version of a program is normally loaded into registers for calculations and other processing.

The compiler might ignore register declarations. For example, there might not be a sufficient number of registers available. The following definition suggests that the unsigned int variable counter be placed in one of the computer’s registers; regardless of whether the compiler does this, counter is initialized to 1:

register unsigned int counter = 1;

The register keyword can be used only with local variables and function parameters.

[image: Image] Performance Tip 6.2

The storage-class specifier register can be placed before an automatic variable declaration to suggest that the compiler maintain the variable in one of the computer’s high-speed hardware registers rather than in memory. If intensely used variables such as counters or totals are kept in hardware registers, the overhead of repeatedly loading the variables from memory into the registers and storing the results back into memory is eliminated.

[image: Image] Performance Tip 6.3

Often, register is unnecessary. Today’s optimizing compilers can recognize frequently used variables and may place them in registers without needing a register declaration.

Static Storage Duration

Keywords extern and static declare identifiers for variables with static storage duration and for functions. Variables with static storage duration exist in memory from the point at which the program begins execution and until the program terminates. Such a variable is initialized once when its declaration is encountered. For functions, the name of the function exists when the program begins execution. Even though function names and static-storage-duration variables exist from the start of program execution, their identifiers cannot necessarily be used throughout the program. Storage duration and scope (where a name can be used) are separate issues, as we’ll see in Section 6.10.

Identifiers with Static Storage Duration

There are two types of identifiers with static storage duration—external identifiers (such as global variables) and local variables declared with the storage-class specifier static. Global variables are created by placing variable declarations outside any class or function definition. Global variables retain their values throughout a program’s execution. Global variables and global functions can be referenced by any function that follows their declarations or definitions in the source file.

[image: Image] Software Engineering Observation 6.6

Declaring a variable as global rather than local allows unintended side effects to occur when a function that does not need access to the variable accidentally or maliciously modifies it. This is another example of the principle of least privilege—in general, except for truly global resources such as cin and cout, the use of global variables should be avoided unless there are unique performance requirements.

[image: Image] Software Engineering Observation 6.7

Variables used only in a particular function should be declared as local variables in that function rather than as global variables.

static Local Variables

Local variables declared static are still known only in the function in which they’re declared, but, unlike automatic variables, static local variables retain their values when the function returns to its caller. The next time the function is called, the static local variables contain the values they had when the function last completed execution. The following statement declares local variable count to be static and to be initialized to 1:

static unsigned int count = 1;

All numeric variables of static storage duration are initialized to zero by default, but it’s nevertheless a good practice to explicitly initialize all variables.

Storage-class specifiers extern and static have special meaning when they’re applied explicitly to external identifiers such as global variables and global function names. In Appendix F, C Legacy Code Topics, we discuss using extern and static with external identifiers and multiple-source-file programs.

6.10. Scope Rules

The portion of the program where an identifier can be used is known as its scope. For example, when we declare a local variable in a block, it can be referenced only in that block and in blocks nested within that block. This section discusses block scope, function scope, global namespace scope and function-prototype scope. Later we’ll see two other scopes—class scope (Chapter 9) and namespace scope (Chapter 21).

Block Scope

Identifiers declared inside a block have block scope, which begins at the identifier’s declaration and ends at the terminating right brace (}) of the block in which the identifier is declared. Local variables have block scope, as do function parameters. Any block can contain variable declarations. When blocks are nested and an identifier in an outer block has the same name as an identifier in an inner block, the identifier in the outer block is “hidden” until the inner block terminates. The inner block “sees” its own local identifier’s value and not that of the enclosing block’s identically named identifier. Local variables declared static still have block scope, even though they exist from the time the program begins execution. Storage duration does not affect an identifier’s scope.

[image: Image] Common Programming Error 6.7

Accidentally using the same name for an identifier in an inner block that’s used for an identifier in an outer block, when in fact you want the identifier in the outer block to be active for the duration of the inner block, is typically a logic error.

[image: Image] Error-Prevention Tip 6.6

Avoid variable names that hide names in outer scopes.

Function Scope

Labels (identifiers followed by a colon such as start: or a case label in a switch statement) are the only identifiers with function scope. Labels can be used anywhere in the function in which they appear, but cannot be referenced outside the function body.

Global Namespace Scope

An identifier declared outside any function or class has global namespace scope. Such an identifier is “known” in all functions from the point at which it’s declared until the end of the file. Global variables, function definitions and function prototypes placed outside a function all have global namespace scope.

Function-Prototype Scope

The only identifiers with function-prototype scope are those used in the parameter list of a function prototype. As mentioned previously, function prototypes do not require names in the parameter list—only types are required. Names appearing in the parameter list of a function prototype are ignored by the compiler. Identifiers used in a function prototype can be reused elsewhere in the program without ambiguity.

Scope Demonstration

The program of Fig. 6.12 demonstrates scoping issues with global variables, automatic local variables and static local variables. Line 10 declares and initializes global variable x to 1. This global variable is hidden in any block (or function) that declares a variable named x. In main, line 14 displays the value of global variable x. Line 16 declares a local variable x and initializes it to 5. Line 18 outputs this variable to show that the global x is hidden in main. Next, lines 20–24 define a new block in main in which another local variable x is initialized to 7 (line 21). Line 23 outputs this variable to show that it hides x in the outer block of main as well as the global x. When the block exits, the variable x with value 7 is destroyed automatically. Next, line 26 outputs the local variable x in the outer block of main to show that it’s no longer hidden.

Click here to view code image

 1 // Fig. 6.12: fig06_12.cpp
 2 // Scoping example.
 3 #include <iostream>
 4 using namespace std;
 5
 6 void useLocal(); // function prototype
 7 void useStaticLocal(); // function prototype
 8 void useGlobal(); // function prototype
 9
10 int x = 1; // global variable
11
12 int main()
13 {
14 cout << "global x in main is " << x << endl;
15
16 int x = 5; // local variable to main
17
18 cout << "local x in main's outer scope is " << x << endl;
19
20 { // start new scope
21 int x = 7; // hides both x in outer scope and global x
22
23 cout << "local x in main's inner scope is " << x << endl;
24 } // end new scope
25
26 cout << "local x in main's outer scope is " << x << endl;
27
28 useLocal(); // useLocal has local x
29 useStaticLocal(); // useStaticLocal has static local x
30 useGlobal(); // useGlobal uses global x
31 useLocal(); // useLocal reinitializes its local x
32 useStaticLocal(); // static local x retains its prior value
33 useGlobal(); // global x also retains its prior value
34
35 cout << "\nlocal x in main is " << x << endl;
36 } // end main
37
38 // useLocal reinitializes local variable x during each call
39 void useLocal()
40 {
41 int x = 25; // initialized each time useLocal is called
42
43 cout << "\nlocal x is " << x << " on entering useLocal" << endl;
44 ++x;
45 cout << "local x is " << x << " on exiting useLocal" << endl;
46 } // end function useLocal
47
48 // useStaticLocal initializes static local variable x only the
49 // first time the function is called; value of x is saved
50 // between calls to this function
51 void useStaticLocal()
52 {
53 static int x = 50; // initialized first time useStaticLocal is called
54
55 cout << "\nlocal static x is " << x << " on entering useStaticLocal"
56 << endl;
57 ++x;
58 cout << "local static x is " << x << " on exiting useStaticLocal"
59 << endl;
60 } // end function useStaticLocal
61
62 // useGlobal modifies global variable x during each call
63 void useGlobal()
64 {
65 cout << "\nglobal x is " << x << " on entering useGlobal" << endl;
66 x *= 10;
67 cout << "global x is " << x << " on exiting useGlobal" << endl;
68 } // end function useGlobal

global x in main is 1
local x in main's outer scope is 5
local x in main's inner scope is 7
local x in main's outer scope is 5

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 6.12. Scoping example.

To demonstrate other scopes, the program defines three functions, each of which takes no arguments and returns nothing. Function useLocal (lines 39–46) declares automatic variable x (line 41) and initializes it to 25. When the program calls useLocal, the function prints the variable, increments it and prints it again before the function returns program control to its caller. Each time the program calls this function, the function recreates automatic variable x and reinitializes it to 25.

Function useStaticLocal (lines 51–60) declares static variable x and initializes it to 50. Local variables declared as static retain their values even when they’re out of scope (i.e., the function in which they’re declared is not executing). When the program calls useStaticLocal, the function prints x, increments it and prints it again before the function returns program control to its caller. In the next call to this function, static local variable x contains the value 51. The initialization in line 53 occurs only once—the first time useStaticLocal is called.

Function useGlobal (lines 63–68) does not declare any variables. Therefore, when it refers to variable x, the global x (line 10, preceding main) is used. When the program calls useGlobal, the function prints the global variable x, multiplies it by 10 and prints it again before the function returns program control to its caller. The next time the program calls useGlobal, the global variable has its modified value, 10. After executing functions useLocal, useStaticLocal and useGlobal twice each, the program prints the local variable x in main again to show that none of the function calls modified the value of x in main, because the functions all referred to variables in other scopes.

6.11. Function Call Stack and Activation Records

To understand how C++ performs function calls, we first need to consider a data structure (i.e., collection of related data items) known as a stack. Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on the stack is the first item popped (removed) from the stack.

Function-Call Stack

One of the most important mechanisms for programmers to understand is the function call stack (sometimes referred to as the program execution stack). This data structure—working “behind the scenes”—supports the function call/return mechanism. It also supports the creation, maintenance and destruction of each called function’s automatic variables. As we’ll see in Figs. 6.14–6.16, last-in, first-out (LIFO) behavior is exactly what a function needs in order to return to the function that called it.

Stack Frames

As each function is called, it may, in turn, call other functions, which may, in turn, call other functions—all before any of the functions return. Each function eventually must return control to the function that called it. So, somehow, we must keep track of the return addresses that each function needs to return control to the function that called it. The function call stack is the perfect data structure for handling this information. Each time a function calls another function, an entry is pushed onto the stack. This entry, called a stack frame or an activation record, contains the return address that the called function needs in order to return to the calling function. It also contains some additional information we’ll soon discuss. If the called function returns, instead of calling another function before returning, the stack frame for the function call is popped, and control transfers to the return address in the popped stack frame.

The beauty of the call stack is that each called function always finds the information it needs to return to its caller at the top of the call stack. And, if a function makes a call to another function, a stack frame for the new function call is simply pushed onto the call stack. Thus, the return address required by the newly called function to return to its caller is now located at the top of the stack.

Automatic Variables and Stack Frames

The stack frames have another important responsibility. Most functions have automatic variables—parameters and any local variables the function declares. Automatic variables need to exist while a function is executing. They need to remain active if the function makes calls to other functions. But when a called function returns to its caller, the called function’s automatic variables need to “go away.” The called function’s stack frame is a perfect place to reserve the memory for the called function’s automatic variables. That stack frame exists as long as the called function is active. When that function returns—and no longer needs its local automatic variables—its stack frame is popped from the stack, and those local automatic variables are no longer known to the program.

Stack Overflow

Of course, the amount of memory in a computer is finite, so only a certain amount of memory can be used to store activation records on the function call stack. If more function calls occur than can have their activation records stored on the function call stack, a fatal error known as stack overflow occurs.

Function Call Stack in Action

Now let’s consider how the call stack supports the operation of a square function called by main (lines 9–14 of Fig. 6.13). First the operating system calls main—this pushes an activation record onto the stack (shown in Fig. 6.14). The activation record tells main how to return to the operating system (i.e., transfer to return address R1) and contains the space for main’s automatic variable (i.e., a, which is initialized to 10).

Click here to view code image

 1 // Fig. 6.13: fig06_13.cpp
 2 // square function used to demonstrate the function
 3 // call stack and activation records.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int square(int); // prototype for function square
 8
 9 int main()
10 {
11 int a = 10; // value to square (local automatic variable in main)
12
13 cout << a << " squared: " << square(a) << endl; // display a squared
14 } // end main
15
16 // returns the square of an integer
17 int square(int x) // x is a local variable
18 {
19 return x * x; // calculate square and return result
20 } // end function square

10 squared: 100

Fig. 6.13. square function used to demonstrate the function call stack and activation records.

[image: Image]

Fig. 6.14. Function call stack after the operating system invokes main to execute the program.

Function main—before returning to the operating system—now calls function square in line 13 of Fig. 6.13. This causes a stack frame for square (lines 17–20) to be pushed onto the function call stack (Fig. 6.15). This stack frame contains the return address that square needs to return to main (i.e., R2) and the memory for square’s automatic variable (i.e., x).

[image: Image]

Fig. 6.15. Function call stack after main invokes square to perform the calculation.

After square calculates the square of its argument, it needs to return to main—and no longer needs the memory for its automatic variable x. So square’s stack frame is popped from the stack—giving square the return location in main (i.e., R2) and losing square’s automatic variable. Figure 6.16 shows the function call stack after square’s activation record has been popped.

[image: Image]

Fig. 6.16. Function call stack after function square returns to main.

Function main now displays the result of calling square (Fig. 6.13, line 13). Reaching the closing right brace of main causes its stack frame to be popped from the stack, gives main the address it needs to return to the operating system (i.e., R1 in Fig. 6.14)—at this point, main’s automatic variable (i.e., a) no longer exists.

You’ve now seen how valuable the stack data structure is in implementing a key mechanism that supports program execution. Data structures have many important applications in computer science.

6.12. Functions with Empty Parameter Lists

In C++, an empty parameter list is specified by writing either void or nothing at all in parentheses. The prototype

void print();

specifies that function print does not take arguments and does not return a value. Figure 6.17 shows both ways to declare and use functions with empty parameter lists.

Click here to view code image

 1 // Fig. 6.17: fig06_17.cpp
 2 // Functions that take no arguments.
 3 #include <iostream>
 4 using namespace std;
 5
 6 void function1(); // function that takes no arguments
 7 void function2(void); // function that takes no arguments
 8
 9 int main()
10 {
11 function1(); // call function1 with no arguments
12 function2(); // call function2 with no arguments
13 } // end main
14
15 // function1 uses an empty parameter list to specify that
16 // the function receives no arguments
17 void function1()
18 {
19 cout << "function1 takes no arguments" << endl;
20 } // end function1
21
22 // function2 uses a void parameter list to specify that
23 // the function receives no arguments
24 void function2(void)
25 {
26 cout << "function2 also takes no arguments" << endl;
27 } // end function2

function1 takes no arguments
function2 also takes no arguments

Fig. 6.17. Functions that take no arguments.

6.13. Inline Functions

Implementing a program as a set of functions is good from a software engineering standpoint, but function calls involve execution-time overhead. C++ provides inline functions to help reduce function call overhead. Placing the qualifier inline before a function’s return type in the function definition advises the compiler to generate a copy of the function’s body code in every place where the function is called (when appropriate) to avoid a function call. This often makes the program larger. The compiler can ignore the inline qualifier and generally does so for all but the smallest functions. Reusable inline functions are typically placed in headers, so that their definitions can be included in each source file that uses them.

[image: Image] Software Engineering Observation 6.8

If you change the definition of an inline function, you should recompile all of that function’s clients.

[image: Image] Performance Tip 6.4

Compilers can inline code for which you have not explicitly used the inline keyword. Today’s optimizing compilers are so sophisticated that it’s best to leave inlining decisions to the compiler.

Figure 6.18 uses inline function cube (lines 9–12) to calculate the volume of a cube. Keyword const in function cube’s parameter list (line 9) tells the compiler that the function does not modify variable side. This ensures that side’s value is not changed by the function during the calculation. (Keyword const is discussed in detail in Chapters 7–9.)

Click here to view code image

 1 // Fig. 6.18: fig06_18.cpp
 2 // inline function that calculates the volume of a cube.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Definition of inline function cube. Definition of function appears
 7 // before function is called, so a function prototype is not required.
 8 // First line of function definition acts as the prototype.
 9 inline double cube(const double side)
10 {
11 return side * side * side; // calculate cube
12 } // end function cube
13
14 int main()
15 {
16 double sideValue; // stores value entered by user
17 cout << "Enter the side length of your cube: ";
18 cin >> sideValue; // read value from user
19
20 // calculate cube of sideValue and display result
21 cout << "Volume of cube with side "
22 << sideValue << " is " << cube(sideValue) << endl;
23 } // end main

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 is 42.875

Fig. 6.18. inline function that calculates the volume of a cube.

[image: Image] Software Engineering Observation 6.9

The const qualifier should be used to enforce the principle of least privilege. Using the principle of least privilege to properly design software can greatly reduce debugging time and improper side effects and can make a program easier to modify and maintain.

6.14. References and Reference Parameters

Two ways to pass arguments to functions in many programming languages are pass-by-value and pass-by-reference. When an argument is passed by value, a copy of the argument’s value is made and passed (on the function call stack) to the called function. Changes to the copy do not affect the original variable’s value in the caller. This prevents the accidental side effects that so greatly hinder the development of correct and reliable software systems. So far, each argument in the book has been passed by value.

[image: Image] Performance Tip 6.5

One disadvantage of pass-by-value is that, if a large data item is being passed, copying that data can take a considerable amount of execution time and memory space.

Reference Parameters

This section introduces reference parameters—the first of the two means C++ provides for performing pass-by-reference. With pass-by-reference, the caller gives the called function the ability to access the caller’s data directly, and to modify that data.

[image: Image] Performance Tip 6.6

Pass-by-reference is good for performance reasons, because it can eliminate the pass-by-value overhead of copying large amounts of data.

[image: Image] Software Engineering Observation 6.10

Pass-by-reference can weaken security; the called function can corrupt the caller’s data.

Later, we’ll show how to achieve the performance advantage of pass-by-reference while simultaneously achieving the software engineering advantage of protecting the caller’s data from corruption.

A reference parameter is an alias for its corresponding argument in a function call. To indicate that a function parameter is passed by reference, simply follow the parameter’s type in the function prototype by an ampersand (&); use the same convention when listing the parameter’s type in the function header. For example, the following declaration in a function header

int &count

when read from right to left is pronounced “count is a reference to an int.” In the function call, simply mention the variable by name to pass it by reference. Then, mentioning the variable by its parameter name in the body of the called function actually refers to the original variable in the calling function, and the original variable can be modified directly by the called function. As always, the function prototype and header must agree.

Passing Arguments by Value and by Reference

Figure 6.19 compares pass-by-value and pass-by-reference with reference parameters. The “styles” of the arguments in the calls to function squareByValue and function squareByReference are identical—both variables are simply mentioned by name in the function calls. Without checking the function prototypes or function definitions, it isn’t possible to tell from the calls alone whether either function can modify its arguments. Because function prototypes are mandatory, the compiler has no trouble resolving the ambiguity.

Click here to view code image

 1 // Fig. 6.19: fig06_19.cpp
 2 // Passing arguments by value and by reference.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int squareByValue(int); // function prototype (value pass)
 7 void squareByReference(int &); // function prototype (reference pass)
 8
 9 int main()
10 {
11 int x = 2; // value to square using squareByValue
12 int z = 4; // value to square using squareByReference
13
14 // demonstrate squareByValue
15 cout << "x = " << x << " before squareByValue\n";
16 cout << "Value returned by squareByValue: "
17 << squareByValue(x) << endl;
18 cout << "x = " << x << " after squareByValue\n" << endl;
19
20 // demonstrate squareByReference
21 cout << "z = " << z << " before squareByReference" << endl;
22 squareByReference(z);
23 cout << "z = " << z << " after squareByReference" << endl;
24 } // end main
25
26 // squareByValue multiplies number by itself, stores the
27 // result in number and returns the new value of number
28 int squareByValue(int number)
29 {
30 return number *= number; // caller's argument not modified
31 } // end function squareByValue
32
33 // squareByReference multiplies numberRef by itself and stores the result
34 // in the variable to which numberRef refers in function main
35 void squareByReference(int &numberRef)
36 {
37 numberRef *= numberRef; // caller's argument modified
38 } // end function squareByReference

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

Fig. 6.19. Passing arguments by value and by reference.

[image: Image] Common Programming Error 6.8

Because reference parameters are mentioned only by name in the body of the called function, you might inadvertently treat reference parameters as pass-by-value parameters. This can cause unexpected side effects if the original variables are changed by the function.

Chapter 8 discusses pointers; pointers enable an alternate form of pass-by-reference in which the style of the call clearly indicates pass-by-reference (and the potential for modifying the caller’s arguments).

[image: Image] Performance Tip 6.7

For passing large objects, use a constant reference parameter to simulate the appearance and security of pass-by-value and avoid the overhead of passing a copy of the large object.

To specify that a reference should not be allowed to modify the argument, place the const qualifier before the type specifier in the parameter declaration. Note the placement of & in function squareByReference’s parameter list (line 35, Fig. 6.19). Some C++ programmers prefer to write the equivalent form int& numberRef.

References as Aliases within a Function

References can also be used as aliases for other variables within a function (although they typically are used with functions as shown in Fig. 6.19). For example, the code

Click here to view code image

int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
++cRef; // increment count (using its alias cRef)

increments variable count by using its alias cRef. Reference variables must be initialized in their declarations and cannot be reassigned as aliases to other variables. Once a reference is declared as an alias for another variable, all operations supposedly performed on the alias (i.e., the reference) are actually performed on the original variable. The alias is simply another name for the original variable. Unless it’s a reference to a constant, a reference argument must be an lvalue (e.g., a variable name), not a constant or rvalue expression (e.g., the result of a calculation).

Returning a Reference from a Function

Functions can return references, but this can be dangerous. When returning a reference to a variable declared in the called function, unless that variable is declared static, the reference refers to an automatic variable that’s discarded when the function terminates. An attempt to access such a variable yields undefined behavior. References to undefined variables are called dangling references.

[image: Image] Common Programming Error 6.9

Returning a reference to an automatic variable in a called function is a logic error. Compilers typically issue a warning when this occurs. For industrial-strength code, always eliminate all compilation warnings before producing executable code.

6.15. Default Arguments

It’s common for a program to invoke a function repeatedly with the same argument value for a particular parameter. In such cases, you can specify that such a parameter has a default argument, i.e., a default value to be passed to that parameter. When a program omits an argument for a parameter with a default argument in a function call, the compiler rewrites the function call and inserts the default value of that argument.

Default arguments must be the rightmost (trailing) arguments in a function’s parameter list. When calling a function with two or more default arguments, if an omitted argument is not the rightmost argument in the argument list, then all arguments to the right of that argument also must be omitted. Default arguments must be specified with the first occurrence of the function name—typically, in the function prototype. If the function prototype is omitted because the function definition also serves as the prototype, then the default arguments should be specified in the function header. Default values can be any expression, including constants, global variables or function calls. Default arguments also can be used with inline functions.

Figure 6.20 demonstrates using default arguments to calculate a box’s volume. The function prototype for boxVolume (line 7) specifies that all three parameters have been given default values of 1. We provided variable names in the function prototype for readability. As always, variable names are not required in function prototypes.

Click here to view code image

 1 // Fig. 6.20: fig06_20.cpp
 2 // Using default arguments.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // function prototype that specifies default arguments
 7 unsigned int boxVolume(unsigned int length = 1, unsigned int width = 1,
 8 unsigned int height = 1);
 9
10 int main()
11 {
12 // no arguments--use default values for all dimensions
13 cout << "The default box volume is: " << boxVolume();
14
15 // specify length; default width and height
16 cout << "\n\nThe volume of a box with length 10,\n"
17 << "width 1 and height 1 is: " << boxVolume(10);
18
19 // specify length and width; default height
20 cout << "\n\nThe volume of a box with length 10,\n"
21 << "width 5 and height 1 is: " << boxVolume(10, 5);
22
23 // specify all arguments
24 cout << "\n\nThe volume of a box with length 10,\n"
25 << "width 5 and height 2 is: " << boxVolume(10, 5, 2)
26 << endl;
27 } // end main
28
29 // function boxVolume calculates the volume of a box
30 unsigned int boxVolume(unsigned int length, unsigned int width,
31 unsigned int height)
32 {
33 return length * width * height;
34 } // end function boxVolume

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Fig. 6.20. Using default arguments.

The first call to boxVolume (line 13) specifies no arguments, thus using all three default values of 1. The second call (line 17) passes only a length argument, thus using default values of 1 for the width and height arguments. The third call (line 21) passes arguments for only length and width, thus using a default value of 1 for the height argument. The last call (line 25) passes arguments for length, width and height, thus using no default values. Any arguments passed to the function explicitly are assigned to the function’s parameters from left to right. Therefore, when boxVolume receives one argument, the function assigns the value of that argument to its length parameter (i.e., the leftmost parameter in the parameter list). When boxVolume receives two arguments, the function assigns the values of those arguments to its length and width parameters in that order. Finally, when boxVolume receives all three arguments, the function assigns the values of those arguments to its length, width and height parameters, respectively.

[image: Image] Good Programming Practice 6.5

Using default arguments can simplify writing function calls. However, some programmers feel that explicitly specifying all arguments is clearer.

6.16. Unary Scope Resolution Operator

It’s possible to declare local and global variables of the same name. C++ provides the unary scope resolution operator (::) to access a global variable when a local variable of the same name is in scope. The unary scope resolution operator cannot be used to access a local variable of the same name in an outer block. A global variable can be accessed directly without the unary scope resolution operator if the name of the global variable is not the same as that of a local variable in scope.

Figure 6.21 shows the unary scope resolution operator with local and global variables of the same name (lines 6 and 10). To emphasize that the local and global versions of variable number are distinct, the program declares one variable int and the other double.

Click here to view code image

 1 // Fig. 6.21: fig06_21.cpp
 2 // Unary scope resolution operator.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int number = 7; // global variable named number
 7
 8 int main()
 9 {
10 double number = 10.5; // local variable named number
11
12 // display values of local and global variables
13 cout << "Local double value of number = " << number
14 << "\nGlobal int value of number = " << ::number << endl;
15 } // end main

Local double value of number = 10.5
Global int value of number = 7

Fig. 6.21. Unary scope resolution operator.

[image: Image] Good Programming Practice 6.6

Always using the unary scope resolution operator (::) to refer to global variables makes it clear that you’re intending to access a global variable rather than a nonglobal variable.

[image: Image] Software Engineering Observation 6.11

Always using the unary scope resolution operator (::) to refer to global variables makes programs easier to modify by reducing the risk of name collisions with nonglobal variables.

[image: Image] Error-Prevention Tip 6.7

Always using the unary scope resolution operator (::) to refer to a global variable eliminates logic errors that might occur if a nonglobal variable hides the global variable.

[image: Image] Error-Prevention Tip 6.8

Avoid using variables of the same name for different purposes in a program. Although this is allowed in various circumstances, it can lead to errors.

6.17. Function Overloading

C++ enables several functions of the same name to be defined, as long as they have different signatures. This is called function overloading. The C++ compiler selects the proper function to call by examining the number, types and order of the arguments in the call. Function overloading is used to create several functions of the same name that perform similar tasks, but on different data types. For example, many functions in the math library are overloaded for different numeric types—the C++ standard requires float, double and long double overloaded versions of the math library functions discussed in Section 6.2.

[image: Image] Good Programming Practice 6.7

Overloading functions that perform closely related tasks can make programs more readable and understandable.

Overloaded square Functions

Figure 6.22 uses overloaded square functions to calculate the square of an int (lines 7–11) and the square of a double (lines 14–18). Line 22 invokes the int version of function square by passing the literal value 7. C++ treats whole number literal values as type int. Similarly, line 24 invokes the double version of function square by passing the literal value 7.5, which C++ treats as a double. In each case the compiler chooses the proper function to call, based on the type of the argument. The last two lines of the output window confirm that the proper function was called in each case.

Click here to view code image

 1 // Fig. 6.22: fig06_22.cpp
 2 // Overloaded square functions.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // function square for int values
 7 int square(int x)
 8 {
 9 cout << "square of integer " << x << " is ";
10 return x * x;
11 } // end function square with int argument
12
13 // function square for double values
14 double square(double y)
15 {
16 cout << "square of double " << y << " is ";
17 return y * y;
18 } // end function square with double argument
19
20 int main()
21 {
22 cout << square(7); // calls int version
23 cout << endl;
24 cout << square(7.5); // calls double version
25 cout << endl;
26 } // end main

square of integer 7 is 49
square of double 7.5 is 56.25

Fig. 6.22. Overloaded square functions.

How the Compiler Differentiates Among Overloaded Functions

Overloaded functions are distinguished by their signatures. A signature is a combination of a function’s name and its parameter types (in order). The compiler encodes each function identifier with the types of its parameters (sometimes referred to as name mangling or name decoration) to enable type-safe linkage. Type-safe linkage ensures that the proper overloaded function is called and that the types of the arguments conform to the types of the parameters.

Figure 6.23 was compiled with GNU C++. Rather than showing the execution output of the program (as we normally would), we show the mangled function names produced in assembly language by GNU C++. Each mangled name (other than main) begins with two underscores (__) followed by the letter Z, a number and the function name. The number that follows Z specifies how many characters are in the function’s name. For example, function square has 6 characters in its name, so its mangled name is prefixed with __Z6. The function name is then followed by an encoding of its parameter list. In the parameter list for function nothing2 (line 25; see the fourth output line), c represents a char, i represents an int, Rf represents a float & (i.e., a reference to a float) and Rd represents a double & (i.e., a reference to a double). In the parameter list for function nothing1, i represents an int, f represents a float, c represents a char and Ri represents an int &. The two square functions are distinguished by their parameter lists; one specifies d for double and the other specifies i for int. The return types of the functions are not specified in the mangled names. Overloaded functions can have different return types, but if they do, they must also have different parameter lists. Again, you cannot have two functions with the same signature and different return types. Function-name mangling is compiler specific. Also, function main is not mangled, because it cannot be overloaded.

Click here to view code image

 1 // Fig. 6.23: fig06_23.cpp
 2 // Name mangling to enable type-safe linkage.
 3
 4 // function square for int values
 5 int square(int x)
 6 {
 7 return x * x;
 8 } // end function square
 9
10 // function square for double values
11 double square(double y)
12 {
13 return y * y;
14 } // end function square
15
16 // function that receives arguments of types
17 // int, float, char and int &
18 void nothing1(int a, float b, char c, int &d)
19 {
20 // empty function body
21 } // end function nothing1
22
23 // function that receives arguments of types
24 // char, int, float & and double &
25 int nothing2(char a, int b, float &c, double &d)
26 {
27 return 0;
28 } // end function nothing2
29
30 int main()
31 {
32 } // end main

__Z6squarei
__Z6squared
__Z8nothing1ifcRi
__Z8nothing2ciRfRd
main

Fig. 6.23. Name mangling to enable type-safe linkage.

[image: Image] Common Programming Error 6.10

Creating overloaded functions with identical parameter lists and different return types is a compilation error.

The compiler uses only the parameter lists to distinguish between overloaded functions. Such functions need not have the same number of parameters. Use caution when overloading functions with default parameters, because this may cause ambiguity.

[image: Image] Common Programming Error 6.11

A function with default arguments omitted might be called identically to another overloaded function; this is a compilation error. For example, having a program that contains both a function that explicitly takes no arguments and a function of the same name that contains all default arguments results in a compilation error when an attempt is made to use that function name in a call passing no arguments. The compiler cannot determine which version of the function to choose.

Overloaded Operators

In Chapter 10, we discuss how to overload operators to define how they should operate on objects of user-defined data types. (In fact, we’ve been using many overloaded operators to this point, including the stream insertion << and the stream extraction >> operators, which are overloaded for all the fundamental types. We say more about overloading << and >> to be able to handle objects of user-defined types in Chapter 10.)

6.18. Function Templates

Overloaded functions are normally used to perform similar operations that involve different program logic on different data types. If the program logic and operations are identical for each data type, overloading may be performed more compactly and conveniently by using function templates. You write a single function template definition. Given the argument types provided in calls to this function, C++ automatically generates separate function template specializations to handle each type of call appropriately. Thus, defining a single function template essentially defines a whole family of overloaded functions.

Figure 6.24 defines a maximum function template (lines 3–17) that determines the largest of three values. All function template definitions begin with the template keyword (line 3) followed by a template parameter list to the function template enclosed in angle brackets (< and >). Every parameter in the template parameter list (often referred to as a formal type parameter) is preceded by keyword typename or keyword class (they are synonyms in this context). The formal type parameters are placeholders for fundamental types or user-defined types. These placeholders, in this case, T, are used to specify the types of the function’s parameters (line 4), to specify the function’s return type (line 4) and to declare variables within the body of the function definition (line 6). A function template is defined like any other function, but uses the formal type parameters as placeholders for actual data types.

Click here to view code image

 1 // Fig. 6.24: maximum.h
 2 // Function template maximum header.
 3 template < typename T > // or template< class T >
 4 T maximum(T value1, T value2, T value3)
 5 {
 6 T maximumValue = value1; // assume value1 is maximum
 7
 8 // determine whether value2 is greater than maximumValue
 9 if (value2 > maximumValue)
10 maximumValue = value2;
11
12 // determine whether value3 is greater than maximumValue
13 if (value3 > maximumValue)
14 maximumValue = value3;
15
16 return maximumValue;
17 } // end function template maximum

Fig. 6.24. Function template maximum header.

The function template declares a single formal type parameter T (line 3) as a placeholder for the type of the data to be tested by function maximum. The name of a type parameter must be unique in the template parameter list for a particular template definition. When the compiler detects a maximum invocation in the program source code, the type of the data passed to maximum is substituted for T throughout the template definition, and C++ creates a complete function for determining the maximum of three values of the specified data type—all three must have the same type, since we use only one type parameter in this example. Then the newly created function is compiled—templates are a means of code generation.

Figure 6.25 uses the maximum function template to determine the largest of three int values, three double values and three char values, respectively (lines 17, 27 and 37). Separate functions are created as a result of the calls in lines 17, 27 and 37—expecting three int values, three double values and three char values, respectively.

Click here to view code image

 1 // Fig. 6.25: fig06_25.cpp
 2 // Function template maximum test program.
 3 #include <iostream>
 4 #include "maximum.h" // include definition of function template maximum
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // demonstrate maximum with int values
10 int int1, int2, int3;
11
12 cout << "Input three integer values: ";
13 cin >> int1 >> int2 >> int3;
14
15 // invoke int version of maximum
16 cout << "The maximum integer value is: "
17 << maximum(int1, int2, int3);
18
19 // demonstrate maximum with double values
20 double double1, double2, double3;
21
22 cout << "\n\nInput three double values: ";
23 cin >> double1 >> double2 >> double3;
24
25 // invoke double version of maximum
26 cout << "The maximum double value is: "
27 << maximum(double1, double2, double3);
28
29 // demonstrate maximum with char values
30 char char1, char2, char3;
31
32 cout << "\n\nInput three characters: ";
33 cin >> char1 >> char2 >> char3;
34
35 // invoke char version of maximum
36 cout << "The maximum character value is: "
37 << maximum(char1, char2, char3) << endl;
38 } // end main

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

Fig. 6.25. Function template maximum test program.

The function template specialization created for type int replaces each occurrence of T with int as follows:

Click here to view code image

int maximum(int value1, int value2, int value3)
{
 int maximumValue = value1; // assume value1 is maximum
 // determine whether value2 is greater than maximumValue
 if (value2 > maximumValue)
 maximumValue = value2;
 // determine whether value3 is greater than maximumValue
 if (value3 > maximumValue)
 maximumValue = value3;
 return maximumValue;
} // end function template maximum

C++11—Trailing Return Types for Functions

[image: Image]

C++11 introduces trailing return types for functions. To specify a trailing return type you place the keyword auto before the function name, then follow the function’s parameter list with -> and the return type. For example, to specify a trailing return type for function template maximum (Fig. 6.24), you’d write

template < typename T >
auto maximum(T x, T y, T z) -> T

As you build more complex function templates, there are cases for which only trailing return types are allowed. Such complex function templates are beyond this book’s scope.

6.19. Recursion

A recursive function is a function that calls itself, either directly, or indirectly (through another function). [Note: The C++ standard document indicates that main should not be called within a program or recursively. Its sole purpose is to be the starting point for program execution.]

Recursion Concepts

We first consider recursion conceptually, then examine programs containing recursive functions. Recursive problem-solving approaches have a number of elements in common. A recursive function is called to solve a problem. The function knows how to solve only the simplest case(s), or so-called base case(s). If the function is called with a base case, the function simply returns a result. If the function is called with a more complex problem, it typically divides the problem into two conceptual pieces—a piece that the function knows how to do and a piece that it does not know how to do. To make recursion feasible, the latter piece must resemble the original problem, but be a slightly simpler or smaller version. This new problem looks like the original, so the function calls a copy of itself to work on the smaller problem—this is referred to as a recursive call and is also called the recursion step. The recursion step often includes the keyword return, because its result will be combined with the portion of the problem the function knew how to solve to form the result passed back to the original caller, possibly main.

[image: Image] Common Programming Error 6.12

Omitting the base case or writing the recursion step incorrectly so that it does not converge on the base case causes an infinite recursion error, typically causing a stack overflow. This is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

The recursion step executes while the original call to the function is still “open,” i.e., it has not yet finished executing. The recursion step can result in many more such recursive calls, as the function keeps dividing each new subproblem with which the function is called into two conceptual pieces. In order for the recursion to eventually terminate, each time the function calls itself with a slightly simpler version of the original problem, this sequence of smaller and smaller problems must eventually converge on the base case. At that point, the function recognizes the base case and returns a result to the previous copy of the function, and a sequence of returns ensues up the line until the original call eventually returns the final result to main. This sounds quite exotic compared to the kind of problem solving we’ve been using to this point. As an example of these concepts at work, let’s write a recursive program to perform a popular mathematical calculation.

Factorial

The factorial of a nonnegative integer n, written n! (and pronounced “n factorial”), is the product

n · (n – 1) · (n – 2) · ... · 1

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1, which is equal to 120.

Iterative Factorial

The factorial of an integer, number, greater than or equal to 0, can be calculated iteratively (nonrecursively) by using a for statement as follows:

Click here to view code image

factorial = 1;
for (unsigned int counter = number; counter >= 1; --counter)
 factorial *= counter;

Recursive Factorial

A recursive definition of the factorial function is arrived at by observing the following algebraic relationship:

n! = n · (n – 1)!

For example, 5! is clearly equal to 5 * 4! as is shown by the following:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Evaluating 5!

The evaluation of 5! would proceed as shown in Fig. 6.26, which illustrates how the succession of recursive calls proceeds until 1! is evaluated to be 1, terminating the recursion. Figure 6.26(b) shows the values returned from each recursive call to its caller until the final value is calculated and returned.

[image: Image]

Fig. 6.26. Recursive evaluation of 5!.

Using a Recursive factorial Function to Calculate Factorials

Figure 6.27 uses recursion to calculate and print the factorials of the integers 0–10. (The choice of the data type unsigned long is explained momentarily.) The recursive function factorial (lines 18–24) first determines whether the terminating condition number <= 1 (line 20) is true. If number is less than or equal to 1, the factorial function returns 1 (line 21), no further recursion is necessary and the function terminates. If number is greater than 1, line 23 expresses the problem as the product of number and a recursive call to factorial evaluating the factorial of number - 1, which is a slightly simpler problem than the original calculation factorial (number).

Click here to view code image

 1 // Fig. 6.27: fig06_27.cpp
 2 // Recursive function factorial.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 unsigned long factorial(unsigned long); // function prototype
 8
 9 int main()
10 {
11 // calculate the factorials of 0 through 10
12 for (unsigned int counter = 0; counter <= 10; ++counter)
13 cout << setw(2) << counter << "! = " << factorial(counter)
14 << endl;
15 } // end main
16
17 // recursive definition of function factorial
18 unsigned long factorial(unsigned long number)
19 {
20 if (number <= 1) // test for base case
21 return 1; // base cases: 0! = 1 and 1! = 1
22 else // recursion step
23 return number * factorial(number - 1);
24 } // end function factorial

 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800

Fig. 6.27. Recursive function factorial.

Why We Chose Type unsigned long in This Example

Function factorial has been declared to receive a parameter of type unsigned long and return a result of type unsigned long. This is shorthand notation for unsigned long int. The C++ standard requires that a variable of type unsigned long int be at least as big as an int.

Typically, an unsigned long int is stored in at least four bytes (32 bits); such a variable can hold a value in the range 0 to at least 4,294,967,295. (The data type long int is also typically stored in at least four bytes and can hold a value at least in the range –2,147,483,647 to 2,147,483,647.) As can be seen in Fig. 6.27, factorial values become large quickly. We chose the data type unsigned long so that the program can calculate factorials greater than 7! on computers with small (such as two-byte) integers. Unfortunately, the function factorial produces large values so quickly that even unsigned long does not help us compute many factorial values before even the size of an unsigned long variable is exceeded.

C++11 Type unsigned long long int

[image: Image]

C++11’s new unsigned long long int type (which can be abbreviated as unsigned long long) on some systems enables you to store values in 8 bytes (64 bits) which can hold numbers as large as 18,446,744,073,709,551,615.

Representing Even Larger Numbers

Variables of type double could be used to calculate factorials of larger numbers. This points to a weakness in many programming languages, namely, that the languages are not easily extended to handle the unique requirements of various applications. As we’ll see when we discuss object-oriented programming in more depth, C++ is an extensible language that allows us to create classes that can represent arbitrarily large integers if we wish. Such classes already are available in popular class libraries.

6.20. Example Using Recursion: Fibonacci Series

The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of successive Fibonacci numbers converges on a constant value of 1.618.... This number frequently occurs in nature and has been called the golden ratio or the golden mean. Humans tend to find the golden mean aesthetically pleasing. Architects often design windows, rooms and buildings whose length and width are in the ratio of the golden mean. Postcards are often designed with a golden mean length/width ratio.

Recursive Fibonacci Definition

The Fibonacci series can be defined recursively as follows:

Click here to view code image

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

The program of Fig. 6.28 calculates the nth Fibonacci number recursively by using function fibonacci. Fibonacci numbers tend to become large quickly, although slower than factorials do. Therefore, we chose the data type unsigned long for the parameter type and the return type in function fibonacci. Figure 6.28 shows the execution of the program, which displays the Fibonacci values for several numbers.

Click here to view code image

 1 // Fig. 6.28: fig06_28.cpp
 2 // Recursive function fibonacci.
 3 #include <iostream>
 4 using namespace std;
 5
 6 unsigned long fibonacci(unsigned long); // function prototype
 7
 8 int main()
 9 {
10 // calculate the fibonacci values of 0 through 10
11 for (unsigned int counter = 0; counter <= 10; ++counter)
12 cout << "fibonacci(" << counter << ") = "
13 << fibonacci(counter) << endl;
14
15 // display higher fibonacci values
16 cout << "\nfibonacci(20) = " << fibonacci(20) << endl;
17 cout << "fibonacci(30) = " << fibonacci(30) << endl;
18 cout << "fibonacci(35) = " << fibonacci(35) << endl;
19 } // end main
20
21 // recursive function fibonacci
22 unsigned long fibonacci(unsigned long number)
23 {
24 if ((0 == number) || (1 == number)) // base cases
25 return number;
26 else // recursion step
27 return fibonacci(number - 1) + fibonacci(number - 2);
28 } // end function fibonacci

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(2) = 1
fibonacci(3) = 2
fibonacci(4) = 3
fibonacci(5) = 5
fibonacci(6) = 8
fibonacci(7) = 13
fibonacci(8) = 21
fibonacci(9) = 34
fibonacci(10) = 55

fibonacci(20) = 6765
fibonacci(30) = 832040
fibonacci(35) = 9227465

Fig. 6.28. Recursive function fibonacci.

The application begins with a for statement that calculates and displays the Fibonacci values for the integers 0–10 and is followed by three calls to calculate the Fibonacci values of the integers 20, 30 and 35 (lines 16–18). The calls to fibonacci (lines 13 and 16–18) from main are not recursive calls, but the calls from line 27 of fibonacci are recursive. Each time the program invokes fibonacci (lines 22–28), the function immediately tests the base case to determine whether number is equal to 0 or 1 (line 24). If this is true, line 25 returns number. Interestingly, if number is greater than 1, the recursion step (line 27) generates two recursive calls, each for a slightly smaller problem than the original call to fibonacci.

Evaluating fibonacci(3)

Figure 6.29 shows how function fibonacci would evaluate fibonacci(3). This figure raises some interesting issues about the order in which C++ compilers evaluate the operands of operators. This is a separate issue from the order in which operators are applied to their operands, namely, the order dictated by the rules of operator precedence and associativity. Figure 6.29 shows that evaluating fibonacci(3) causes two recursive calls, namely, fibonacci(2) and fibonacci(1). In what order are these calls made?

[image: Image]

Fig. 6.29. Set of recursive calls to function fibonacci.

Order of Evaluation of Operands

Most programmers simply assume that the operands are evaluated left to right. C++ does not specify the order in which the operands of most operators (including +) are to be evaluated. Therefore, you must make no assumption about the order in which these calls execute. The calls could in fact execute fibonacci(2) first, then fibonacci(1), or they could execute in the reverse order: fibonacci(1), then fibonacci(2). In this program and in most others, it turns out that the final result would be the same. However, in some programs the evaluation of an operand can have side effects (changes to data values) that could affect the final result of the expression.

C++ specifies the order of evaluation of the operands of only four operators—&&, ||, comma (,) and ?:. The first three are binary operators whose two operands are guaranteed to be evaluated left to right. The last operator is C++’s only ternary operator—its leftmost operand is always evaluated first; if it evaluates to true, the middle operand evaluates next and the last operand is ignored; if the leftmost operand evaluates to false, the third operand evaluates next and the middle operand is ignored.

[image: Image] Portability Tip 6.2

Programs that depend on the order of evaluation of the operands of operators other than &&, ||, ?: and the comma (,) operator can function differently with different compilers and can lead to logic errors.

[image: Image] Common Programming Error 6.13

Writing programs that depend on the order of evaluation of the operands of operators other than &&, ||, ?: and the comma (,) operator can lead to logic errors.

[image: Image] Error-Prevention Tip 6.9

Do not depend on the order in which operands are evaluated. To ensure that side effects are applied in the correct order, break complex expressions into separate statements.

[image: Image] Common Programming Error 6.14

Recall that the && and || operators use short-circuit evaluation. Placing an expression with a side effect on the right side of a && or || operator is a logic error if that expression should always be evaluated.

Exponential Complexity

A word of caution is in order about recursive programs like the one we use here to generate Fibonacci numbers. Each level of recursion in function fibonacci has a doubling effect on the number of function calls; i.e., the number of recursive calls that are required to calculate the nth Fibonacci number is on the order of 2n. This rapidly gets out of hand. Calculating only the 20th Fibonacci number would require on the order of 220 or about a million calls, calculating the 30th Fibonacci number would require on the order of 230 or about a billion calls, and so on. Computer scientists refer to this as exponential complexity. Problems of this nature humble even the world’s most powerful computers!

[image: Image] Performance Tip 6.8

Avoid Fibonacci-style recursive programs that result in an exponential “explosion” of calls.

6.21. Recursion vs. Iteration

This section compares the recursive and iterative problem-solving approaches and discusses why you might choose one over the other in a particular situation.

• Both iteration and recursion are based on a control statement: Iteration uses a repetition structure; recursion uses a selection structure.

• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition structure; recursion achieves repetition through repeated function calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-continuation condition fails; recursion terminates when a base case is recognized.

• Iteration with counter-controlled repetition and recursion each gradually approach termination: Iteration modifies a counter until the counter assumes a value that makes the loop-continuation condition fail; recursion produces simpler versions of the original problem until the base case is reached.

• Both iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-continuation test never becomes false; infinite recursion occurs if the recursion step does not reduce the problem during each recursive call in a manner that converges on the base case.

Iterative Factorial Implementation

To illustrate the differences between iteration and recursion, let’s examine an iterative solution to the factorial problem (Fig. 6.30). A repetition statement is used (lines 23–24 of Fig. 6.30) rather than the selection statement of the recursive solution (lines 20–23 of Fig. 6.27). Both solutions use a termination test. In the recursive solution, line 20 (Fig. 6.27) tests for the base case. In the iterative solution, line 23 (Fig. 6.30) tests the loop-continuation condition—if the test fails, the loop terminates. Finally, instead of producing simpler versions of the original problem, the iterative solution uses a counter that is modified until the loop-continuation condition becomes false.

Click here to view code image

 1 // Fig. 6.30: fig06_30.cpp
 2 // Iterative function factorial.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 unsigned long factorial(unsigned int); // function prototype
 8
 9 int main()
10 {
11 // calculate the factorials of 0 through 10
12 for (unsigned int counter = 0; counter <= 10; ++counter)
13 cout << setw(2) << counter << "! = " << factorial(counter)
14 << endl;
15 } // end main
16
17 // iterative function factorial
18 unsigned long factorial(unsigned int number)
19 {
20 unsigned long result = 1;
21
22 // iterative factorial calculation
23 for (unsigned int i = number; i >= 1; --i)
24 result *= i;
25
26 return result;
27 } // end function factorial

 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800

Fig. 6.30. Iterative function factorial.

Negatives of Recursion

Recursion has negatives. It repeatedly invokes the mechanism, and consequently the overhead, of function calls. This can be expensive in both processor time and memory space. Each recursive call causes another copy of the function variables to be created; this can consume considerable memory. Iteration normally occurs within a function, so the overhead of repeated function calls and extra memory assignment is omitted. So why choose recursion?

[image: Image] Software Engineering Observation 6.12

Any problem that can be solved recursively can also be solved iteratively (nonrecursively). A recursive approach is normally chosen when the recursive approach more naturally mirrors the problem and results in a program that’s easier to understand and debug. Another reason to choose a recursive solution is that an iterative solution is not apparent.

[image: Image] Performance Tip 6.9

Avoid using recursion in performance situations. Recursive calls take time and consume additional memory.

[image: Image] Common Programming Error 6.15

Accidentally having a nonrecursive function call itself, either directly or indirectly (through another function), is a logic error.

6.22. Wrap-Up

In this chapter, you learned more about function declarations, including function prototypes, function signatures, function headers and function bodies. We overviewed the math library functions. You learned about argument coercion, or the forcing of arguments to the appropriate types specified by the parameter declarations of a function. We demonstrated how to generate random numbers and use them in a game-playing application. We showed how to define sets of constants with enums. You also learned about the scope of variables, storage-class specifiers and storage duration. Two different ways to pass arguments to functions were covered—pass-by-value and pass-by-reference. For pass-by-reference, references are used as an alias to a variable. We showed how to implement inline functions and functions that receive default arguments. You learned that multiple functions in one class can be overloaded by providing functions with the same name and different signatures. Such functions can be used to perform the same or similar tasks, using different types or different numbers of parameters. We demonstrated a simpler way of overloading functions using function templates, where a function is defined once but can be used for several different types. We discussed recursion, where a function calls itself, either directly or indirectly through another function, to solve a problem.

In Chapter 7, you’ll learn how to maintain lists and tables of data in array and vector objects. You’ll see enhanced versions of the GradeBook class that use arrays to store the actual grades entered.

7. Class Templates array and vector; Catching Exceptions

Objectives

In this chapter you’ll:

• Use C++ Standard Library class template array—a fixed-size collection of related data items.

• Use arrays to store, sort and search lists and tables of values.

• Declare arrays, initialize arrays and refer to the elements of arrays.

• Use the range-based for statement.

• Pass arrays to functions.

• Declare and manipulate multidimensional arrays.

• Use C++ Standard Library class template vector—a variable-size collection of related data items.

Outline

7.1 Introduction

7.2 arrays

7.3 Declaring arrays

7.4 Examples Using arrays

7.4.1 Declaring an array and Using a Loop to Initialize the array’s Elements

7.4.2 Initializing an array in a Declaration with an Initializer List

7.4.3 Specifying an array’s Size with a Constant Variable and Setting array Elements with Calculations

7.4.4 Summing the Elements of an array

7.4.5 Using Bar Charts to Display array Data Graphically

7.4.6 Using the Elements of an array as Counters

7.4.7 Using arrays to Summarize Survey Results

7.4.8 Static Local arrays and Automatic Local arrays

7.5 Range-Based for Statement

7.6 Case Study: Class GradeBook Using an array to Store Grades

7.7 Sorting and Searching arrays

7.8 Multidimensional arrays

7.9 Case Study: Class GradeBook Using a Two-Dimensional array

7.10 Introduction to C++ Standard Library Class Template vector

7.11 Wrap-Up

7.1. Introduction

This chapter discusses arrays, which are fixed-size collections consisting of data items of the same type, and vectors which are collections (also of data items of the same type) that can grow and shrink dynamically at execution time. Both array and vector are C++ standard library class templates. To use them, you must include the <array> and <vector> headers respectively.

After discussing how arrays are declared, created and initialized, we present examples that demonstrate several common array manipulations. We show how to search arrays to find particular elements and sort arrays to put their data in order.

We enhance the GradeBook class by using both one and two-dimensional arrays to maintain a set of grades in memory and analyze the grades from multiple exams. We introduce the exception-handling mechanism and use it to allow a program to continue executing when the program attempts to access an array or vector element that does not exist.

7.2. arrays

An array is a contiguous group of memory locations that all have the same type. To refer to a particular location or element in the array, we specify the name of the array and the position number of the particular element in the array.

Figure 7.1 shows an integer array called c that contains 12 elements. You refer to any one of these elements by giving the array name followed by the particular element’s position number in square brackets ([]). The position number is more formally called a subscript or index (this number specifies the number of elements from the beginning of the array). The first element has subscript 0 (zero) and is sometimes called the zeroth element. Thus, the elements of array c are c[0] (pronounced “c sub zero”), c[1], c[2] and so on. The highest subscript in array c is 11, which is 1 less than the number of elements in the array (12). array names follow the same conventions as other variable names.

[image: Image]

Fig. 7.1. array of 12 elements.

A subscript must be an integer or integer expression (using any integral type). If a program uses an expression as a subscript, then the program evaluates the expression to determine the subscript. For example, if we assume that variable a is equal to 5 and that variable b is equal to 6, then the statement

c[a + b] += 2;

adds 2 to array element c[11]. A subscripted array name is an lvalue—it can be used on the left side of an assignment, just as non-array variable names can.

Let’s examine array c in Fig. 7.1 more closely. The name of the entire array is c. Each array knows its own size, which can be determined by calling its size member function as in c.size(). Its 12 elements are referred to as c[0] to c[11]. The value of c[0] is -45, the value of c[7] is 62 and the value of c[11] is 78. To print the sum of the values contained in the first three elements of array c, we’d write

cout << c[0] + c[1] + c[2] << endl;

To divide the value of c[6] by 2 and assign the result to the variable x, we would write

x = c[6] / 2;

The brackets that enclose a subscript are actually an operator that has the same precedence as parentheses. Figure 7.2 shows the precedence and associativity of the operators introduced so far. The operators are shown top to bottom in decreasing order of precedence with their associativity and type.

[image: Image]

Fig. 7.2. Precedence and associativity of the operators introduced to this point.

7.3. Declaring arrays

arrays occupy space in memory. To specify the type of the elements and the number of elements required by an array use a declaration of the form:

array< type, arraySize > arrayName;

The notation <type, arraySize> indicates that array is a class template. The compiler reserves the appropriate amount of memory based on the type of the elements and the arraySize. (Recall that a declaration which reserves memory is more properly known as a definition.) The arraySize must be an unsigned integer. To tell the compiler to reserve 12 elements for integer array c, use the declaration

array< int, 12 > c; // c is an array of 12 int values

arrays can be declared to contain values of most data types. For example, an array of type string can be used to store character strings.

7.4. Examples Using arrays

The following examples demonstrate how to declare, initialize and manipulate arrays.

7.4.1. Declaring an array and Using a Loop to Initialize the array’s Elements

The program in Fig. 7.3 declares five-element integer array n (line 10). Line 5 includes the <array> header, which contains the definition of class template array. Lines 13–14 use a for statement to initialize the array elements to zeros. Like other automatic variables, automatic arrays are not implicitly initialized to zero although static arrays are. The first output statement (line 16) displays the column headings for the columns printed in the subsequent for statement (lines 19–20), which prints the array in tabular format. Remember that setw specifies the field width in which only the next value is to be output.

Click here to view code image

 1 // Fig. 7.3: fig07_03.cpp
 2 // Initializing an array's elements to zeros and printing the array.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 using namespace std;
 7
 8 int main()
 9 {
10 array< int, 5 > n; // n is an array of 5 int values
11
12 // initialize elements of array n to 0
13 for (size_t i = 0; i < n.size(); ++i)
14 n[i] = 0; // set element at location i to 0
15
16 cout << "Element" << setw(13) << "Value" << endl;
17
18 // output each array element's value
19 for (size_t j = 0; j < n.size(); ++j)
20 cout << setw(7) << j << setw(13) << n[j] << endl;
21 } // end main

Element Value
 0 0
 1 0
 2 0
 3 0
 4 0

Fig. 7.3. Initializing an array’s elements to zeros and printing the array.

In this program, the control variables i (line 13) and j (line 19) that specify array subscripts are declared to be of type size_t. According to the C++ standard size_t represents an unsigned integral type. This type is recommended for any variable that represents an array’s size or an array’s subscripts. Type size_t is defined in the std namespace and is in header <cstddef>, which is included by various other headers. If you attempt to compile a program that uses type size_t and receive errors indicating that it’s not defined, simply include <cstddef> in your program.

7.4.2. Initializing an array in a Declaration with an Initializer List

The elements of an array also can be initialized in the array declaration by following the array name with an equals sign and a brace-delimited comma-separated list of initializers. The program in Fig. 7.4 uses an initializer list to initialize an integer array with five values (line 11) and prints the array in tabular format (lines 13–17).

Click here to view code image

 1 // Fig. 7.4: fig07_04.cpp
 2 // Initializing an array in a declaration.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 using namespace std;
 7
 8 int main()
 9 {
10 // use list initializer to initialize array n
11 array< int, 5 > n = { 32, 27, 64, 18, 95 };
12
13 cout << "Element" << setw(13) << "Value" << endl;
14
15 // output each array element's value
16 for (size_t i = 0; i < n.size(); ++i)
17 cout << setw(7) << i << setw(13) << n[i] << endl;
18 } // end main

Element Value
 0 32
 1 27
 2 64
 3 18
 4 95

Fig. 7.4. Initializing an array in a declaration.

If there are fewer initializers than array elements, the remaining array elements are initialized to zero. For example, the elements of array n in Fig. 7.3 could have been initialized to zero with the declaration

array< int, 5 > n = {}; // initialize elements of array n to 0

which initializes the elements to zero, because there are fewer initializers (none in this case) than array elements. This technique can be used only in the array’s declaration, whereas the initialization technique shown in Fig. 7.3 can be used repeatedly during program execution to “reinitialize” an array’s elements.

If the array size and an initializer list are specified in an array declaration, the number of initializers must be less than or equal to the array size. The array declaration

array< int, 5 > n = { 32, 27, 64, 18, 95, 14 };

causes a compilation error, because there are six initializers and only five array elements.

7.4.3. Specifying an array’s Size with a Constant Variable and Setting array Elements with Calculations

Figure 7.5 sets the elements of a 5-element array s to the even integers 2, 4, 6, 8 and 10 (lines 15–16) and prints the array in tabular format (lines 18–22). These numbers are generated (line 16) by multiplying each successive value of the loop counter by 2 and adding 2.

Click here to view code image

 1 // Fig. 7.5: fig07_05.cpp
 2 // Set array s to the even integers from 2 to 10.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 using namespace std;
 7
 8 int main()
 9 {
10 // constant variable can be used to specify array size
11 const size_t arraySize = 5; // must initialize in declaration
12
13 array< int, arraySize > s; // array s has 5 elements
14
15 for (size_t i = 0; i < s.size(); ++i) // set the values
16 s[i] = 2 + 2 * i;
17
18 cout << "Element" << setw(13) << "Value" << endl;
19
20 // output contents of array s in tabular format
21 for (size_t j = 0; j < s.size(); ++j)
22 cout << setw(7) << j << setw(13) << s[j] << endl;
23 } // end main

Element Value
 0 2
 1 4
 2 6
 3 8
 4 10

Fig. 7.5. Set array s to the even integers from 2 to 10.

Line 11 uses the const qualifier to declare a constant variable arraySize with the value 5. A constant variable that’s used to specify array’s size must be initialized with a constant expression when it’s declared and cannot be modified thereafter (as shown in Fig. 7.6 and Fig. 7.7). Constant variables are also called named constants or read-only variables.

Click here to view code image

 1 // Fig. 7.6: fig07_06.cpp
 2 // Using a properly initialized constant variable.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int x = 7; // initialized constant variable
 9
10 cout << "The value of constant variable x is: " << x << endl;
11 } // end main

The value of constant variable x is: 7

Fig. 7.6. Using a properly initialized constant variable.

Click here to view code image

 1 // Fig. 7.7: fig07_07.cpp
 2 // A const variable must be initialized.
 3
 4 int main()
 5 {
 6 const int x; // Error: x must be initialized
 7
 8 x = 7; // Error: cannot modify a const variable
 9 } // end main

Microsoft Visual C++ compiler error message:

error C2734: 'x' : const object must be initialized if not extern
error C3892: 'x' : you cannot assign to a variable that is const

GNU C++ compiler error message:

fig07_07.cpp:6:14: error: uninitialized const 'x' [-fpermissive]
fig07_07.cpp:8:8: error: assignment of read-only variable 'x'

LLVM compiler error message:

Default initialization of an object of const type 'const int'

Fig. 7.7. A const variable must be initialized.

[image: Image] Common Programming Error 7.1

Not initializing a constant variable when it’s declared is a compilation error.

[image: Image] Common Programming Error 7.2

Assigning a value to a constant variable in an executable statement is a compilation error.

In Fig. 7.7, the compilation error produced by Microsoft Visual C++ refers to the int variable x as a “const object.” The C++ standard defines an “object” as any “region of storage.” Like class objects, fundamental-type variables also occupy space in memory, so they’re often referred to as “objects.”

Constant variables can be placed anywhere a constant expression is expected. In Fig. 7.5, constant variable arraySize specifies the size of array s in line 13.

7.4.4. Summing the Elements of an array

Often, the elements of an array represent a series of values to be used in a calculation. For example, if the elements of an array represent exam grades, a professor may wish to total the elements of the array and use that sum to calculate the class average for the exam.

The program in Fig. 7.8 sums the values contained in the four-element integer array a. The program declares, creates and initializes the array in line 10. The for statement (lines 14–15) performs the calculations. The values being supplied as initializers for array a also could be read into the program from the user at the keyboard, or from a file on disk (see Chapter 14, File Processing). For example, the for statement

Click here to view code image

for (size_t j = 0; j < a.size(); ++j)
 cin >> a[j];

reads one value at a time from the keyboard and stores the value in element a[j].

Click here to view code image

 1 // Fig. 7.8: fig07_08.cpp
 2 // Computing the sum of the elements of an array.
 3 #include <iostream>
 4 #include <array>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const size_t arraySize = 4; // specifies size of array
10 array< int, arraySize > a = { 10, 20, 30, 40 };
11 int total = 0;
12
13 // sum contents of array a
14 for (size_t i = 0; i < a.size(); ++i)
15 total += a[i];
16
17 cout << "Total of array elements: " << total << endl;
18 } // end main

Total of array elements: 100

Fig. 7.8. Computing the sum of the elements of an array.

7.4.5. Using Bar Charts to Display array Data Graphically

Many programs present data to users in a graphical manner. For example, numeric values are often displayed as bars in a bar chart. In such a chart, longer bars represent proportionally larger numeric values. One simple way to display numeric data graphically is with a bar chart that shows each numeric value as a bar of asterisks (*).

Professors often like to examine grade distributions on an exam. A professor might graph the number of grades in each of several categories to visualize the grade distribution. Suppose the grades were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87. There was one grade of 100, two grades in the 90s, four grades in the 80s, two grades in the 70s, one grade in the 60s and no grades below 60. Our next program (Fig. 7.9) stores this data in an array of 11 elements, each corresponding to a grade category. For example, n[0] indicates the number of grades in the range 0–9, n[7] indicates the number of grades in the range 70–79 and n[10] indicates the number of grades of 100. The GradeBook versions in Figs. 7.15–7.16 and Figs. 7.22–7.23 contain code that calculates these grade frequencies based on a set of grades. For now, we manually create the array by looking at the set of grades.

Click here to view code image

 1 // Fig. 7.9: fig07_09.cpp
 2 // Bar chart printing program.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const size_t arraySize = 11;
11 array< unsigned int, arraySize > n =
12 { 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1 };
13
14 cout << "Grade distribution:" << endl;
15
16 // for each element of array n, output a bar of the chart
17 for (size_t i = 0; i < n.size(); ++i)
18 {
19 // output bar labels ("0-9:", ..., "90-99:", "100:")
20 if (0 == i)
21 cout << " 0-9: ";
22 else if (10 == i)
23 cout << " 100: ";
24 else
25 cout << i * 10 << "-" << (i * 10) + 9 << ": ";
26
27 // print bar of asterisks
28 for (unsigned int stars = 0; stars < n[i]; ++stars)
29 cout << '*';
30
31 cout << endl; // start a new line of output
32 } // end outer for
33 } // end main

Grade distribution:
 0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
 100: *

Fig. 7.9. Bar chart printing program.

The program reads the numbers from the array and graphs the information as a bar chart, displaying each grade range followed by a bar of asterisks indicating the number of grades in that range. To label each bar, lines 20–25 output a grade range (e.g., "70-79: ") based on the current value of counter variable i. The nested for statement (lines 28–29) outputs the bars. Note the loop-continuation condition in line 28 (stars < n[i]). Each time the program reaches the inner for, the loop counts from 0 up to n[i], thus using a value in array n to determine the number of asterisks to display. In this example, n[0]–n[5] contain zeros because no students received a grade below 60. Thus, the program displays no asterisks next to the first six grade ranges.

7.4.6. Using the Elements of an array as Counters

[image: Image]

Sometimes, programs use counter variables to summarize data, such as the results of a survey. In Fig. 6.8, we used separate counters in our die-rolling program to track the number of occurrences of each side of a die as the program rolled the die 6,000,000 times. An array version of this program is shown in Fig. 7.10. This version also uses the new C++11 random-number generation capabilities that were introduced in Section 6.8.

Click here to view code image

 1 // Fig. 7.10: fig07_10.cpp
 2 // Die-rolling program using an array instead of switch.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 #include <random>
 7 #include <ctime>
 8 using namespace std;
 9
10 int main()
11 {
12 // use the default random-number generation engine to
13 // produce uniformly distributed pseudorandom int values from 1 to 6
14 default_random_engine engine(static_cast< unsigned int >(time(0)));
15 uniform_int_distribution< unsigned int > randomInt(1, 6);
16
17 const size_t arraySize = 7; // ignore element zero
18 array< unsigned int, arraySize > frequency = {}; // initialize to 0s
19
20 // roll die 6,000,000 times; use die value as frequency index
21 for (unsigned int roll = 1; roll <= 6000000; ++roll)
22 ++frequency[randomInt(engine)];
23
24 cout << "Face" << setw(13) << "Frequency" << endl;
25
26 // output each array element's value
27 for (size_t face = 1; face < frequency.size(); ++face)
28 cout << setw(4) << face << setw(13) << frequency[face]
29 << endl;
30 } // end main

Face Frequency
 1 1000167
 2 1000149
 3 1000152
 4 998748
 5 999626
 6 1001158

Fig. 7.10. Die-rolling program using an array instead of switch.

Figure 7.10 uses the array frequency (line 18) to count the occurrences of each side of the die. The single statement in line 22 of this program replaces the switch statement in lines 23–45 of Fig. 6.8. Line 22 uses a random value to determine which frequency element to increment during each iteration of the loop. The calculation in line 22 produces a random subscript from 1 to 6, so array frequency must be large enough to store six counters. However, we use a seven-element array in which we ignore frequency[0]—it’s clearer to have the die face value 1 increment frequency[1] than frequency[0]. Thus, each face value is used directly as a subscript for array frequency. We also replace lines 49–54 of Fig. 6.8 by looping through array frequency to output the results (Fig. 7.10, lines 27–29).

7.4.7. Using arrays to Summarize Survey Results

Our next example uses arrays to summarize the results of data collected in a survey. Consider the following problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses in an integer array and determine the frequency of each rating.

This is a popular type of array-processing application (Fig. 7.11). We wish to summarize the number of responses of each type (that is, 1–5). The array responses (lines 15–16) is a 20-element integer array of the students’ responses to the survey. The array responses is declared const, as its values do not (and should not) change. We use a six-element array frequency (line 19) to count the number of occurrences of each response. Each element of the array is used as a counter for one of the survey responses and is initialized to zero. As in Fig. 7.10, we ignore frequency[0].

Click here to view code image

 1 // Fig. 7.11: fig07_11.cpp
 2 // Poll analysis program.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 using namespace std;
 7
 8 int main()
 9 {
10 // define array sizes
11 const size_t responseSize = 20; // size of array responses
12 const size_t frequencySize = 6; // size of array frequency
13
14 // place survey responses in array responses
15 const array< unsigned int, responseSize > responses =
16 { 1, 2, 5, 4, 3, 5, 2, 1, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 2, 5 };
17
18 // initialize frequency counters to 0
19 array< unsigned int, frequencySize > frequency = {};
20
21 // for each answer, select responses element and use that value
22 // as frequency subscript to determine element to increment
23 for (size_t answer = 0; answer < responses.size(); ++answer)
24 ++frequency[responses[answer]];
25
26 cout << "Rating" << setw(17) << "Frequency" << endl;
27
28 // output each array element's value
29 for (size_t rating = 1; rating < frequency.size(); ++rating)
30 cout << setw(6) << rating << setw(17) << frequency[rating]
31 << endl;
32 } // end main

Rating Frequency
 1 3
 2 5
 3 7
 4 2
 5 3

Fig. 7.11. Poll analysis program.

The first for statement (lines 23–24) takes the responses one at a time from the array responses and increments one of the five counters in the frequency array (frequency[1] to frequency[5]). The key statement in the loop is line 24, which increments the appropriate frequency counter, depending on the value of responses[answer].

Let’s consider several iterations of the for loop. When control variable answer is 0, the value of responses[answer] is the value of responses[0] (i.e., 1 in line 16), so the program interprets ++frequency[responses[answer]] as

++frequency[1]

which increments the value in array element 1. To evaluate the expression, start with the value in the innermost set of square brackets (answer). Once you know answer’s value (which is the value of the loop control variable in line 23), plug it into the expression and evaluate the expression in the next outer set of square brackets (i.e., responses[answer], which is a value selected from the responses array in lines 15–16). Then use the resulting value as the subscript for the frequency array to specify which counter to increment.

When answer is 1, responses[answer] is the value of responses[1], which is 2, so the program interprets ++frequency[responses[answer]] as

++frequency[2]

which increments array element 2.

When answer is 2, responses[answer] is the value of responses[2], which is 5, so the program interprets ++frequency[responses[answer]] as

++frequency[5]

which increments array element 5, and so on. Regardless of the number of responses processed in the survey, the program requires only a six-element array (ignoring element zero) to summarize the results, because all the response values are between 1 and 5 and the subscript values for an six-element array are 0 through 5.

Bounds Checking for array Subscripts

If the data in responses contained an invalid value, such as 13, the program would have attempted to add 1 to frequency[13], which is outside the bounds of the array. When you use the [] operator to access an array element, C++ provides no automatic array bounds checking to prevent you from referring to an element that does not exist. Thus, an executing program can “walk off” either end of an array without warning. In Section 7.10, we demonstrate the class template vector’s at function, which performs bounds checking for you. Class template array also has an at function.

It’s important to ensure that every subscript you use to access an array element is within the array’s bounds—that is, greater than or equal to 0 and less than the number of array elements.

Allowing programs to read from or write to array elements outside the bounds of arrays are common security flaws. Reading from out-of-bounds array elements can cause a program to crash or even appear to execute correctly while using bad data. Writing to an out-of-bounds element (known as a buffer overflow) can corrupt a program’s data in memory, crash a program and allow attackers to exploit the system and execute their own code. For more information on buffer overflows, see en.wikipedia.org/wiki/Buffer_overflow.

[image: Image] Common Programming Error 7.3

Referring to an element outside the array bounds is an execution-time logic error. It isn’t a syntax error.

[image: Image] Error-Prevention Tip 7.1

When looping through an array, the index should never go below 0 and should always be less than the total number of array elements (one less than the size of the array). Make sure that the loop-termination condition prevents accessing elements outside this range. In Chapters 15–16, you’ll learn about iterators, which can help prevent accessing elements outside an array’s (or other container’s) bounds.

7.4.8. Static Local arrays and Automatic Local arrays

Chapter 6 discussed the storage-class specifier static. A static local variable in a function definition exists for the program’s duration but is visible only in the function’s body.

[image: Image] Performance Tip 7.1

We can apply static to a local array declaration so that it’s not created and initialized each time the program calls the function and is not destroyed each time the function terminates. This can improve performance, especially when using large arrays.

A program initializes static local arrays when their declarations are first encountered. If a static array is not initialized explicitly by you, each element of that array is initialized to zero by the compiler when the array is created. Recall that C++ does not perform such default initialization for automatic variables.

Figure 7.12 demonstrates function staticArrayInit (lines 24–40) with a static local array (line 27) and function automaticArrayInit (lines 43–59) with an automatic local array (line 46).

Click here to view code image

 1 // Fig. 7.12: fig07_12.cpp
 2 // static array initialization and automatic array initialization.
 3 #include <iostream>
 4 #include <array>
 5 using namespace std;
 6
 7 void staticArrayInit(); // function prototype
 8 void automaticArrayInit(); // function prototype
 9 const size_t arraySize = 3;
10
11 int main()
12 {
13 cout << "First call to each function:\n";
14 staticArrayInit();
15 automaticArrayInit();
16
17 cout << "\n\nSecond call to each function:\n";
18 staticArrayInit();
19 automaticArrayInit();
20 cout << endl;
21 } // end main
22
23 // function to demonstrate a static local array
24 void staticArrayInit(void)
25 {
26 // initializes elements to 0 first time function is called
27 static array< int, arraySize > array1; // static local array
28
29 cout << "\nValues on entering staticArrayInit:\n";
30
31 // output contents of array1
32 for (size_t i = 0; i < array1.size(); ++i)
33 cout << "array1[" << i << "] = " << array1[i] << " ";
34
35 cout << "\nValues on exiting staticArrayInit:\n";
36
37 // modify and output contents of array1
38 for (size_t j = 0; j < array1.size(); ++j)
39 cout << "array1[" << j << "] = " << (array1[j] += 5) << " ";
40 } // end function staticArrayInit
41
42 // function to demonstrate an automatic local array
43 void automaticArrayInit(void)
44 {
45 // initializes elements each time function is called
46 array< int, arraySize > array2 = { 1, 2, 3 }; // automatic local array
47
48 cout << "\n\nValues on entering automaticArrayInit:\n";
49
50 // output contents of array2
51 for (size_t i = 0; i < array2.size(); ++i)
52 cout << "array2[" << i << "] = " << array2[i] << " ";
53
54 cout << "\nValues on exiting automaticArrayInit:\n";
55
56 // modify and output contents of array2
57 for (size_t j = 0; j < array2.size(); ++j)
58 cout << "array2[" << j << "] = " << (array2[j] += 5) << " ";
59 } // end function automaticArrayInit

First call to each function:

Values on entering staticArrayInit:
array1[0] = 0 array1[1] = 0 array1[2] = 0
Values on exiting staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Second call to each function:

Values on entering staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5
Values on exiting staticArrayInit:
array1[0] = 10 array1[1] = 10 array1[2] = 10

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Fig. 7.12. static array initialization and automatic array initialization.

Function staticArrayInit is called twice (lines 14 and 18). The static local array1 is initialized to zero by the compiler the first time the function is called. The function prints the array, adds 5 to each element and prints the array again. The second time the function is called, the static array contains the modified values stored during the first function call.

Function automaticArrayInit also is called twice (lines 15 and 19). Automatic local array2’s elements are initialized (line 46) with the values 1, 2 and 3. The function prints the array, adds 5 to each element and prints the array again. The second time the function is called, the array elements are reinitialized to 1, 2 and 3. The array has automatic storage duration, so the array is recreated and reinitialized during each call to automaticArrayInit.

7.5. Range-Based for Statement

[image: Image]

As we’ve shown, it’s common to process all the elements of an array. The new C++11 range-based for statement allows you to do this without using a counter, thus avoiding the possibility of “stepping outside” the array and eliminating the need for you to implement your own bounds checking.

[image: Image] Error-Prevention Tip 7.2

When processing all elements of an array, if you don’t need access to an array element’s subscript, use the range-based for statement.

The syntax of a range-based for statement is:

for (rangeVariableDeclaration : expression)
 statement

where rangeVariableDeclaration has a type and an identifier (e.g., int item), and expression is the array through which to iterate. The type in the rangeVariableDeclaration must be consistent with the type of the array’s elements. The identifier represents successive array element values on successive iterations of the loop. You can use the range-based for statement with most of the C++ Standard Library’s prebuilt data structures (commonly called containers), including classes array and vector.

Figure 7.13 uses the range-based for to display an array’s contents (lines 13–14 and 22–23) and to multiply each of the array’s element values by 2 (lines 17–18).

Click here to view code image

 1 // Fig. 7.13: fig07_13.cpp
 2 // Using range-based for to multiply an array's elements by 2.
 3 #include <iostream>
 4 #include <array>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 array< int, 5 > items = { 1, 2, 3, 4, 5 };
10
11 // display items before modification
12 cout << "items before modification: ";
13 for (int item : items)
14 cout << item << " ";
15
16 // multiply the elements of items by 2
17 for (int &itemRef : items)
18 itemRef *= 2;
19
20 // display items after modification
21 cout << "\nitems after modification: ";
22 for (int item : items)
23 cout << item << " ";
24
25 cout << endl;
26 } // end main

items before modification: 1 2 3 4 5
items after modification: 2 4 6 8 10

Fig. 7.13. Using range-based for to multiply an array's elements by 2.

Using the Range-Based for to Display an array’s Contents

The range-based for statement simplifies the code for iterating through an array. Line 13 can be read as “for each iteration, assign the next element of items to int variable item, then execute the following statement.” Thus, for each iteration, identifier item represents one element in items. Lines 13–14 are equivalent to the following counter-controlled repetition:

Click here to view code image

for (int counter = 0; counter < items.size(); ++counter)
 cout << items[counter] << " ";

Using the Range-Based for to Modify an array’s Contents

Lines 17–18 use a range-based for statement to multiply each element of items by 2. In line 17, the rangeVariableDeclaration indicates that itemRef is an int reference (&). Recall that a reference is an alias for another variable in memory—in this case, one of the array’s elements. We use an int reference because items contains int values and we want to modify each element’s value—because itemRef is declared as a reference, any change you make to itemRef changes the corresponding element value in the array.

Using an Element’s Subscript

The range-based for statement can be used in place of the counter-controlled for statement whenever code looping through an array does not require access to the element’s subscript. For example, totaling the integers in an array (as in Fig. 7.8) requires access only to the element values—the elements’ subscripts are irrelevant. However, if a program must use subscripts for some reason other than simply to loop through an array (e.g., to print a subscript number next to each array element value, as in the examples early in this chapter), you should use the counter-controlled for statement.

7.6. Case Study: Class GradeBook Using an array to Store Grades

This section further evolves class GradeBook, introduced in Chapter 3 and expanded in Chapters 4–6. Recall that this class represents a grade book used by a professor to store and analyze student grades. Previous versions of the class process grades entered by the user, but do not maintain the individual grade values in the class’s data members. Thus, repeat calculations require the user to reenter the grades. One way to solve this problem would be to store each grade entered in an individual data member of the class. For example, we could create data members grade1, grade2, ..., grade10 in class GradeBook to store 10 student grades. However, the code to total the grades and determine the class average would be cumbersome. In this section, we solve this problem by storing grades in an array.

Storing Student Grades in an array in Class GradeBook

Figure 7.14 shows the output that summarizes the 10 grades we store in an object of the next version of class GradeBook (Figs. 7.15–7.16), which uses an array of integers to store the grades of 10 students for a single exam. This eliminates the need to repeatedly input the same set of grades. array grades is declared as a data member in line 28 of Fig. 7.15—therefore, each GradeBook object maintains its own set of grades.

Click here to view code image

Welcome to the grade book for
CS101 Introduction to C++ Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
 0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
 100: *

Fig. 7.14. Output of the GradeBook example that stores grades in an array.

Click here to view code image

 1 // Fig. 7.15: GradeBook.h
 2 // Definition of class GradeBook that uses an array to store test grades.
 3 // Member functions are defined in GradeBook.cpp
 4 #include <string>
 5 #include <array>
 6
 7 // GradeBook class definition
 8 class GradeBook
 9 {
10 public:
11 // constant -- number of students who took the test
12 static const size_t students = 10; // note public data
13
14 // constructor initializes course name and array of grades
15 GradeBook(const std::string &, const std::array< int, students > &);
16
17 void setCourseName(const std::string &); // set the course name
18 string getCourseName() const; // retrieve the course name
19 void displayMessage() const; // display a welcome message
20 void processGrades() const; // perform operations on the grade data
21 int getMinimum() const; // find the minimum grade for the test
22 int getMaximum() const; // find the maximum grade for the test
23 double getAverage() const; // determine the average grade for the test
24 void outputBarChart() const; // output bar chart of grade distribution
25 void outputGrades() const; // output the contents of the grades array
26 private:
27 std::string courseName; // course name for this grade book
28 std::array< int, students > grades; // array of student grades
29 }; // end class GradeBook

Fig. 7.15. Definition of class GradeBook that uses an array to store test grades.

Click here to view code image

 1 // Fig. 7.16: GradeBook.cpp
 2 // GradeBook class member functions manipulating
 3 // an array of grades.
 4 #include <iostream>
 5 #include <iomanip>
 6 #include "GradeBook.h" // GradeBook class definition
 7 using namespace std;
 8
 9 // constructor initializes courseName and grades array
10 GradeBook::GradeBook(const string &name,
11 const array< int, students > &gradesArray)
12 : courseName(name), grades(gradesArray)
13 {
14 } // end GradeBook constructor
15
16 // function to set the course name
17 void GradeBook::setCourseName(const string &name)
18 {
19 courseName = name; // store the course name
20 } // end function setCourseName
21
22 // function to retrieve the course name
23 string GradeBook::getCourseName() const
24 {
25 return courseName;
26 } // end function getCourseName
27
28 // display a welcome message to the GradeBook user
29 void GradeBook::displayMessage() const
30 {
31 // this statement calls getCourseName to get the
32 // name of the course this GradeBook represents
33 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
34 << endl;
35 } // end function displayMessage
36
37 // perform various operations on the data
38 void GradeBook::processGrades() const
39 {
40 // output grades array
41 outputGrades();
42
43 // call function getAverage to calculate the average grade
44 cout << setprecision(2) << fixed;
45 cout << "\nClass average is " << getAverage() << endl;
46
47 // call functions getMinimum and getMaximum
48 cout << "Lowest grade is " << getMinimum() << "\nHighest grade is "
49 << getMaximum() << endl;
50
51 // call function outputBarChart to print grade distribution chart
52 outputBarChart();
53 } // end function processGrades
54
55 // find minimum grade
56 int GradeBook::getMinimum() const
57 {
58 int lowGrade = 100; // assume lowest grade is 100
59
60 // loop through grades array
61 for (int grade : grades)
62 {
63 // if current grade lower than lowGrade, assign it to lowGrade
64 if (grade < lowGrade)
65 lowGrade = grade; // new lowest grade
66 } // end for
67
68 return lowGrade; // return lowest grade
69 } // end function getMinimum
70
71 // find maximum grade
72 int GradeBook::getMaximum() const
73 {
74 int highGrade = 0; // assume highest grade is 0
75
76 // loop through grades array
77 for (int grade : grades)
78 {
79 // if current grade higher than highGrade, assign it to highGrade
80 if (grade > highGrade)
81 highGrade = grade; // new highest grade
82 } // end for
83
84 return highGrade; // return highest grade
85 } // end function getMaximum
86
87 // determine average grade for test
88 double GradeBook::getAverage() const
89 {
90 int total = 0; // initialize total
91
92 // sum grades in array
93 for (int grade : grades)
94 total += grade;
95
96 // return average of grades
97 return static_cast< double >(total) / grades.size();
98 } // end function getAverage
99
100 // output bar chart displaying grade distribution
101 void GradeBook::outputBarChart() const
102 {
103 cout << "\nGrade distribution:" << endl;
104
105 // stores frequency of grades in each range of 10 grades
106 const size_t frequencySize = 11;
107 array< unsigned int, frequencySize > frequency = {}; // init to 0s
108
109 // for each grade, increment the appropriate frequency
110 for (int grade : grades)
111 ++frequency[grade / 10];
112
113 // for each grade frequency, print bar in chart
114 for (size_t count = 0; count < frequencySize; ++count)
115 {
116 // output bar labels ("0-9:", ..., "90-99:", "100:")
117 if (0 == count)
118 cout << " 0-9: ";
119 else if (10 == count)
120 cout << " 100: ";
121 else
122 cout << count * 10 << "-" << (count * 10) + 9 << ": ";
123
124 // print bar of asterisks
125 for (unsigned int stars = 0; stars < frequency[count]; ++stars)
126 cout << '*';
127
128 cout << endl; // start a new line of output
129 } // end outer for
130 } // end function outputBarChart
131
132 // output the contents of the grades array
133 void GradeBook::outputGrades() const
134 {
135 cout << "\nThe grades are:\n\n";
136
137 // output each student's grade
138 for (size_t student = 0; student < grades.size(); ++student)
139 cout << "Student " << setw(2) << student + 1 << ": " << setw(3)
140 << grades[student] << endl;
141 } // end function outputGrades

Fig. 7.16. GradeBook class member functions manipulating an array of grades.

The size of the array in line 28 of Fig. 7.15 is specified by public static const data member students (declared in line 12), which is public so that it’s accessible to the class’s clients. We’ll soon see an example of a client program using this constant. Declaring students with the const qualifier indicates that this data member is constant—its value cannot be changed after being initialized.

Keyword static in this variable declaration indicates that the data member is shared by all objects of the class—so in this particular implementation of class GradeBook, all GradeBook objects store grades for the same number of students. Recall from Section 3.4 that when each object of a class maintains its own copy of an attribute, the variable that represents the attribute is known as a data member—each object (instance) of the class has a separate copy of the variable in memory. There are variables for which each object of a class does not have a separate copy. That is the case with static data members, which are also known as class variables. When objects of a class containing static data members are created, all the objects share one copy of the class’s static data members. A static data member can be accessed within the class definition and the member-function definitions like any other data member. As you’ll soon see, a public static data member can also be accessed outside of the class, even when no objects of the class exist, using the class name followed by the scope resolution operator (::) and the name of the data member. You’ll learn more about static data members in Chapter 9.

Constructor

The class’s constructor (declared in line 15 of Fig. 7.15 and defined in lines 10–14 of Fig. 7.16) has two parameters—the course name and a reference to an array of grades. When a program creates a GradeBook object (e.g., line 15 of Fig. 7.17), the program passes an existing int array to the constructor, which copies the array’s values into the data member grades (line 12 of Fig. 7.16). The grade values in the passed array could have been input from a user or read from a file on disk (as we discuss in Chapter 14, File Processing). In our test program, we simply initialize an array with a set of grade values (Fig. 7.17, lines 11–12). Once the grades are stored in data member grades of class GradeBook, all the class’s member functions can access the grades array as needed to perform various calculations. Note that the constructor receives both the string and the array by reference—this is more efficient than receiving copies of the original string and array. The constructor does not need to modify either the original string or array, so we also declared each parameter as const to ensure that the constructor does not accidentally modify the originald data in the caller. We also modified function setCourseName to receive its string argument by reference.

Click here to view code image

 1 // Fig. 7.17: fig07_17.cpp
 2 // Creates GradeBook object using an array of grades.
 3 #include <array>
 4 #include "GradeBook.h" // GradeBook class definition
 5 using namespace std;
 6
 7 // function main begins program execution
 8 int main()
 9 {
10 // array of student grades
11 const array< int, GradeBook::students > grades =
12 { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
13 string courseName = "CS101 Introduction to C++ Programming";
14
15 GradeBook myGradeBook(courseName, grades);
16 myGradeBook.displayMessage();
17 myGradeBook.processGrades();
18 } // end main

Fig. 7.17. Creates a GradeBook object’ using an array of grades, then invokes member function processGrades to analyze them.

Member Function processGrades

Member function processGrades (declared in line 20 of Fig. 7.15 and defined in lines 38–53 of Fig. 7.16) contains a series of member function calls that output a report summarizing the grades. Line 41 of Fig. 7.16 calls member function outputGrades to print the contents of the array grades. Lines 138–140 in member function outputGrades use a for statement to output each student’s grade. Although array indices start at 0, a professor would typically number students starting at 1. Thus, lines 139–140 output student + 1 as the student number to produce grade labels "Student 1: ", "Student 2: ", and so on.

Member Function getAverage

Member function processGrades next calls member function getAverage (line 45) to obtain the average of the grades. Member function getAverage (declared in line 23 of Fig. 7.15 and defined in lines 88–98 of Fig. 7.16) totals the values in array grades before calculating the average. The averaging calculation in line 97 uses grades.size() to determine the number of grades being averaged.

Member Functions getMinimum and getMaximum

Lines 48–49 in processGrades call member functions getMinimum and getMaximum to determine the lowest and highest grades of any student on the exam, respectively. Let’s examine how member function getMinimum finds the lowest grade. Because the highest grade allowed is 100, we begin by assuming that 100 is the lowest grade (line 58). Then, we compare each of the elements in the array to the lowest grade, looking for smaller values. Lines 61–66 in member function getMinimum loop through the array, and line 64 compares each grade to lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. When line 68 executes, lowGrade contains the lowest grade in the array. Member function getMaximum (lines 72–85) works similarly to member function getMinimum.

Member Function outputBarChart

Finally, line 52 in member function processGrades calls member function outputBarChart to print a distribution chart of the grade data using a technique similar to that in Fig. 7.9. In that example, we manually calculated the number of grades in each category (i.e., 0–9, 10–19, ..., 90–99 and 100) by simply looking at a set of grades. In this example, lines 110–111 use a technique similar to that in Fig. 7.10 and Fig. 7.11 to calculate the frequency of grades in each category. Line 107 of Fig. 7.16 declares and creates array frequency of 11 unsigned ints to store the frequency of grades in each grade category. For each grade in array grades, lines 110–111 increment the appropriate element of the frequency array. To determine which element to increment, line 111 divides the current grade by 10 using integer division. For example, if grade is 85, line 111 increments frequency[8] to update the count of grades in the range 80–89. Lines 114–129 next print the bar chart (see Fig. 7.17) based on the values in array frequency. Like lines 28–29 of Fig. 7.9, lines 125–126 of Fig. 7.16 use a value in array frequency to determine the number of asterisks to display in each bar.

Testing Class GradeBook

The program of Fig. 7.17 creates an object of class GradeBook (Figs. 7.15–7.16) using the int array grades (declared and initialized in lines 11–12). The scope resolution operator (::) is used in the expression “GradeBook::students” (line 11) to access class GradeBook’s static constant students. We use this constant here to create an array that’s the same size as the array stored as a data member in class GradeBook. Line 13 declares a string representing the course name. Line 15 passes the course name and the array of grades to the GradeBook constructor. Line 16 displays a welcome message, and line 17 invokes the GradeBook object’s processGrades member function.

7.7. Sorting and Searching arrays

In this section, we use the built-in C++ Standard Library sort function to arrange the elements in an array into ascending order and the built-in binary_search function to determine whether a value is in the array.

Sorting

Sorting data—placing it into ascending or descending order—is one of the most important computing applications. A bank sorts all checks by account number so that it can prepare individual bank statements at the end of each month. Telephone companies sort their phone directories by last name; and within all entries with the same last name, sorting those by first name to make it easy to find phone numbers. Virtually every organization must sort some data and, in many cases, massive amounts of it. Sorting data is an intriguing problem that has attracted some of the most intense research efforts in the field of computer science.

Searching

Often it may be necessary to determine whether an array contains a value that matches a certain key value. The process of finding a particular element of an array is called searching.

Demonstrating Functions sort and binary_search

Figure 7.18 begins by creating an unsorted array of strings (lines 13–14) and displaying the contents of the array (lines 17–19). Next, line 21 uses C++ Standard Library function sort to sort the elements of the array colors into ascending order. The sort function’s arguments specify the range of elements that should be sorted—in this case, the entire array. We’ll discuss the complete details of class template array’s begin and end functions in later chapters. As you’ll see, function sort can be used to sort the elements of several different types of data structures. Lines 24–26 display the contents of the sorted array.

Click here to view code image

 1 // Fig. 7.18: fig07_18.cpp
 2 // Sorting and searching arrays.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <array>
 6 #include <string>
 7 #include <algorithm> // contains sort and binary_search
 8 using namespace std;
 9
10 int main()
11 {
12 const size_t arraySize = 7; // size of array colors
13 array< string, arraySize > colors = { "red", "orange", "yellow",
14 "green", "blue", "indigo", "violet" };
15
16 // output original array
17 cout << "Unsorted array:\n";
18 for (string color : colors)
19 cout << color << " ";
20
21 sort(colors.begin(), colors.end()); // sort contents of colors
22
23 // output sorted array
24 cout << "\nSorted array:\n";
25 for (string item : colors)
26 cout << item << " ";
27
28 // search for "indigo" in colors
29 bool found = binary_search(colors.begin(), colors.end(), "indigo");
30 cout << "\n\n\"indigo\" " << (found ? "was" : "was not")
31 << " found in colors" << endl;
32
33 // search for "cyan" in colors
34 found = binary_search(colors.begin(), colors.end(), "cyan");
35 cout << "\"cyan\" " << (found ? "was" : "was not")
36 << " found in colors" << endl;
37 } // end main

Unsorted array:
red orange yellow green blue indigo violet
Sorted array:
blue green indigo orange red violet yellow

"indigo" was found in colors
"cyan" was not found in colors

Fig. 7.18. Sorting and searching arrays.

Lines 29 and 34 demonstrate use binary_search to determine whether a value is in the array. The sequence of values must be sorted in ascending order first—binary_search does not verify this for you. The function’s first two arguments represent the range of elements to search and the third is the search key—the value to locate in the array. The function returns a bool indicating whether the value was found. In Chapter 16, we’ll use a C++ Standard function find to obtain the location of the search key in an array.

7.8. Multidimensional arrays

You can use arrays with two dimensions (i.e., subscripts) to represent tables of values consisting of information arranged in rows and columns. To identify a particular table element, we must specify two subscripts—by convention, the first identifies the element’s row and the second identifies the element’s column. arrays that require two subscripts to identify a particular element are called two-dimensional arrays or 2-D arrays. arrays with two or more dimensions are known as multidimensional arrays and can have more than two dimensions. Figure 7.19 illustrates a two-dimensional array, a. The array contains three rows and four columns, so it’s said to be a 3-by-4 array. In general, an array with m rows and n columns is called an m-by-n array.

[image: Image]

Fig. 7.19. Two-dimensional array with three rows and four columns.

Every element in array a is identified in Fig. 7.19 by an element name of the form a[i][j], where a is the name of the array, and i and j are the subscripts that uniquely identify each element in a. Notice that the names of the elements in row 0 all have a first subscript of 0; the names of the elements in column 3 all have a second subscript of 3.

[image: Image] Common Programming Error 7.4

Referencing a two-dimensional array element a[x][y] incorrectly as a[x, y] is an error. Actually, a[x, y] is treated as a[y], because C++ evaluates the expression x, y (containing a comma operator) simply as y (the last of the comma-separated expressions).

Figure 7.20 demonstrates initializing two-dimensional arrays in declarations. Lines 13–14 each declare an arrays of arrays with two rows and three columns. Notice the nested array type declaration. In each array, the type of its elements is specified as

array< int, columns >

indicating that each array contains as its elements three-element arrays of int values—the constant columns has the value 3.

Click here to view code image

 1 // Fig. 7.20: fig07_20.cpp
 2 // Initializing multidimensional arrays.
 3 #include <iostream>
 4 #include <array>
 5 using namespace std;
 6
 7 const size_t rows = 2;
 8 const size_t columns = 3;
 9 void printArray(const array< array< int, columns >, rows> &);
10
11 int main()
12 {
13 array< array< int, columns >, rows > array1 = { 1, 2, 3, 4, 5, 6 };
14 array< array< int, columns >, rows > array2 = { 1, 2, 3, 4, 5 };
15
16 cout << "Values in array1 by row are:" << endl;
17 printArray(array1);
18
19 cout << "\nValues in array2 by row are:" << endl;
20 printArray(array2);
21 } // end main
22
23 // output array with two rows and three columns
24 void printArray(const array< array< int, columns >, rows> & a)
25 {
26 // loop through array's rows
27 for (auto const &row : a)
28 {
29 // loop through columns of current row
30 for (auto const &element : row)
31 cout << element << ' ';
32
33 cout << endl; // start new line of output
34 } // end outer for
35 } // end function printArray

Values in array1 by row are:
1 2 3
4 5 6

Values in array2 by row are:
1 2 3
4 5 0

Fig. 7.20. Initializing multidimensional arrays.

The declaration of array1 (line 13) provides six initializers. The compiler initializes the elements of row 0 followed by the elements of row 1. So, the first three values initialize row 0’s elements to 1, 2 and 3, and the last three initialize row 1’s elements to 4, 5 and 6. The declaration of array2 (line 14) provides only five initializers. The initializers are assigned to row 0, then row 1. Any elements that do not have an explicit initializer are initialized to zero, so array2[1][2] is 0.

The program calls function printArray to output each array’s elements. Notice that the function prototype (line 9) and definition (lines 24–35) specify that the function receives a two row and three column array. The parameter receives the array by reference and is declared const because the function does not modify the array’s elements.

Nested Range-Based for Statements

[image: Image]

To process the elements of a two-dimensional array, we use a nested loop in which the outer loop iterates through the rows and the inner loop iterates through the columns of a given row. Function printArray’s nested loop is implemented with range-based for statements. Lines 27 and 30 introduce the C++11 auto keyword, which tells the compiler to infer (determine) a variable’s data type based on the variable’s initializer value. The outer loop’s range variable row is initialized with an element from the parameter a. Looking at the array’s declaration, you can see that the array contains elements of type

array< int, columns >

so the compiler infers that row refers to a three-element array of int values (again, columns is 3). The const & in row’s declaration indicates that the reference cannot be used to modify the rows and prevents each row from being copied into the range variable. The inner loop’s range variable element is initialized with one element of the array represented by row, so the compiler infers that element refers to an int because each row contains three int values. In an IDE, you can typically hover your mouse over a variable declared with auto and the IDE will display the variable’s inferred type. Line 31 displays the value from a given row and column.

Nested Counter-Controlled for Statements

We could have implemented the nested loop with counter-controlled repetition as follows:

Click here to view code image

for (size_t row = 0; row < a.size(); ++row)
{
 for (size_t column = 0; column < a[row].size(); ++column)
 cout << a[row][column] << ' ';
 cout << endl;
} // end outer for

Other Common array Manipulations

Many common array manipulations use for statements. For example, the following for statement sets all the elements in row 2 of array a in Fig. 7.19 to zero:

Click here to view code image

for (size_t column = 0; column < 4; ++column)
 a[2][column] = 0;

The for statement varies only the second subscript (i.e., the column subscript). The preceding for statement is equivalent to the following assignment statements:

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

The following nested counter-controlled for statement determines the total of all the elements in array a in Fig. 7.19:

Click here to view code image

total = 0;
for (size_t row = 0; row < a.size(); ++row)
 for (size_t column = 0; column < a[row].size(); ++column)
 total += a[row][column];

The for statement totals the elements of the array one row at a time. The outer for statement begins by setting row (i.e., the row subscript) to 0, so the elements of row 0 may be totaled by the inner for statement. The outer for statement then increments row to 1, so the elements of row 1 can be totaled. Then, the outer for statement increments row to 2, so the elements of row 2 can be totaled. When the nested for statement terminates, total contains the sum of all the array elements. This nested loop can be implemented with range-based for statements as:

Click here to view code image

total = 0;
for (auto row : a) // for each row
 for (auto column : row) // for each column in row
 total += column;

7.9. Case Study: Class GradeBook Using a Two-Dimensional array

In Section 7.6, we presented class GradeBook (Figs. 7.15–7.16), which used a one-dimensional array to store student grades on a single exam. In most semesters, students take several exams. Professors are likely to want to analyze grades across the entire semester, both for a single student and for the class as a whole.

Storing Student Grades in a Two-Dimensional array in Class GradeBook

Figure 7.21 shows the output that summarizes 10 students grades on three exams. We store the grades as a two-dimensional array in an object of the next version of class GradeBook Figures 7.22–7.23. Each row of the array represents a single student’s grades for the entire course, and each column represents all the grades the students earned for one particular exam. A client program, such as Fig. 7.24, passes the array as an argument to the GradeBook constructor. Since there are 10 students and three exams, we use a ten-by-three array to store the grades.

Click here to view code image

Welcome to the grade book for
CS101 Introduction to C++ Programming!

The grades are:

 Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
 0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: ***
70-79: ******
80-89: ***********
90-99: *******
 100: ***

Fig. 7.21. Output of GradeBook that uses two-dimensional arrays.

Click here to view code image

 1 // Fig. 7.22: GradeBook.h
 2 // Definition of class GradeBook that uses a
 3 // two-dimensional array to store test grades.
 4 // Member functions are defined in GradeBook.cpp
 5 #include <array>
 6 #include <string>
 7
 8 // GradeBook class definition
 9 class GradeBook
10 {
11 public:
12 // constants
13 static const size_t students = 10; // number of students
14 static const size_t tests = 3; // number of tests
15
16 // constructor initializes course name and array of grades
17 GradeBook(const std::string &,
18 std::array< std::array< int, tests >, students > &);
19
20 void setCourseName(const std::string &); // set the course name
21 std::string getCourseName() const; // retrieve the course name
22 void displayMessage() const; // display a welcome message
23 void processGrades() const; // perform operations on the grade data
24 int getMinimum() const; // find the minimum grade in the grade book
25 int getMaximum() const; // find the maximum grade in the grade book
26 double getAverage(const std::array< int, tests > &) const;
27 void outputBarChart() const; // output bar chart of grade distribution
28 void outputGrades() const; // output the contents of the grades array
29 private:
30 std::string courseName; // course name for this grade book
31 std::array< std::array< int, tests >, students > grades; // 2D array
32 }; // end class GradeBook

Fig. 7.22. Definition of class GradeBook that uses a two-dimensional array to store test grades.

Click here to view code image

 1 // Fig. 7.23: GradeBook.cpp
 2 // Member-function definitions for class GradeBook that
 3 // uses a two-dimensional array to store grades.
 4 #include <iostream>
 5 #include <iomanip> // parameterized stream manipulators
 6 using namespace std;
 7
 8 // include definition of class GradeBook from GradeBook.h
 9 #include "GradeBook.h" // GradeBook class definition
10
11 // two-argument constructor initializes courseName and grades array
12 GradeBook::GradeBook(const string &name,
13 std::array< std::array< int, tests >, students > &gradesArray)
14 : courseName(name), grades(gradesArray)
15 {
16 } // end two-argument GradeBook constructor
17
18 // function to set the course name
19 void GradeBook::setCourseName(const string &name)
20 {
21 courseName = name; // store the course name
22 } // end function setCourseName
23
24 // function to retrieve the course name
25 string GradeBook::getCourseName() const
26 {
27 return courseName;
28 } // end function getCourseName
29
30 // display a welcome message to the GradeBook user
31 void GradeBook::displayMessage() const
32 {
33 // this statement calls getCourseName to get the
34 // name of the course this GradeBook represents
35 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
36 << endl;
37 } // end function displayMessage
38
39 // perform various operations on the data
40 void GradeBook::processGrades() const
41 {
42 // output grades array
43 outputGrades();
44
45 // call functions getMinimum and getMaximum
46 cout << "\nLowest grade in the grade book is " << getMinimum()
47 << "\nHighest grade in the grade book is " << getMaximum() << endl;
48
49 // output grade distribution chart of all grades on all tests
50 outputBarChart();
51 } // end function processGrades
52
53 // find minimum grade in the entire gradebook
54 int GradeBook::getMinimum() const
55 {
56 int lowGrade = 100; // assume lowest grade is 100
57
58 // loop through rows of grades array
59 for (auto const &student : grades)
60 {
61 // loop through columns of current row
62 for (auto const &grade : student)
63 {
64 // if current grade less than lowGrade, assign it to lowGrade
65 if (grade < lowGrade)
66 lowGrade = grade; // new lowest grade
67 } // end inner for
68 } // end outer for
69
70 return lowGrade; // return lowest grade
71 } // end function getMinimum
72
73 // find maximum grade in the entire gradebook
74 int GradeBook::getMaximum() const
75 {
76 int highGrade = 0; // assume highest grade is 0
77
78 // loop through rows of grades array
79 for (auto const &student : grades)
80 {
81 // loop through columns of current row
82 for (auto const &grade : student)
83 {
84 // if current grade greater than highGrade, assign to highGrade
85 if (grade > highGrade)
86 highGrade = grade; // new highest grade
87 } // end inner for
88 } // end outer for
89
90 return highGrade; // return highest grade
91 } // end function getMaximum
92
93 // determine average grade for particular set of grades
94 double GradeBook::getAverage(const array<int, tests> &setOfGrades) const
95 {
96 int total = 0; // initialize total
97
98 // sum grades in array
99 for (int grade : setOfGrades)
100 total += grade;
101
102 // return average of grades
103 return static_cast< double >(total) / setOfGrades.size();
104 } // end function getAverage
105
106 // output bar chart displaying grade distribution
107 void GradeBook::outputBarChart() const
108 {
109 cout << "\nOverall grade distribution:" << endl;
110
111 // stores frequency of grades in each range of 10 grades
112 const size_t frequencySize = 11;
113 array< unsigned int, frequencySize > frequency = {}; // init to 0s
114
115 // for each grade, increment the appropriate frequency
116 for (auto const &student : grades)
117 for (auto const &test : student)
118 ++frequency[test / 10];
119
120 // for each grade frequency, print bar in chart
121 for (size_t count = 0; count < frequencySize; ++count)
122 {
123 // output bar label ("0-9:", ..., "90-99:", "100:")
124 if (0 == count)
125 cout << " 0-9: ";
126 else if (10 == count)
127 cout << " 100: ";
128 else
129 cout << count * 10 << "-" << (count * 10) + 9 << ": ";
130
131 // print bar of asterisks
132 for (unsigned int stars = 0; stars < frequency[count]; ++stars)
133 cout << '*';
134
135 cout << endl; // start a new line of output
136 } // end outer for
137 } // end function outputBarChart
138
139 // output the contents of the grades array
140 void GradeBook::outputGrades() const
141 {
142 cout << "\nThe grades are:\n\n";
143 cout << " "; // align column heads
144
145 // create a column heading for each of the tests
146 for (size_t test = 0; test < tests; ++test)
147 cout << "Test " << test + 1 << " ";
148
149 cout << "Average" << endl; // student average column heading
150
151 // create rows/columns of text representing array grades
152 for (size_t student = 0; student < grades.size(); ++student)
153 {
154 cout << "Student " << setw(2) << student + 1;
155
156 // output student's grades
157 for (size_t test = 0; test < grades[student].size(); ++test)
158 cout << setw(8) << grades[student][test];
159
160 // call member function getAverage to calculate student's average;
161 // pass row of grades as the argument
162 double average = getAverage(grades[student]);
163 cout << setw(9) << setprecision(2) << fixed << average << endl;
164 } // end outer for
165 } // end function outputGrades

Fig. 7.23. Member-function definitions for class GradeBook that uses a two-dimensional array to store grades.

Click here to view code image

 1 // Fig. 7.24: fig07_24.cpp
 2 // Creates GradeBook object using a two-dimensional array of grades.
 3 #include <array>
 4 #include "GradeBook.h" // GradeBook class definition
 5 using namespace std;
 6
 7 // function main begins program execution
 8 int main()
 9 {
10 // two-dimensional array of student grades
11 array< array< int, GradeBook::tests >, GradeBook::students > grades =
12 { 87, 96, 70,
13 68, 87, 90,
14 94, 100, 90,
15 100, 81, 82,
16 83, 65, 85,
17 78, 87, 65,
18 85, 75, 83,
19 91, 94, 100,
20 76, 72, 84,
21 87, 93, 73 };
22
23 GradeBook myGradeBook(
24 "CS101 Introduction to C++ Programming", grades);
25 myGradeBook.displayMessage();
26 myGradeBook.processGrades();
27 } // end main

Fig. 7.24. Creates a GradeBook object using a two-dimensional array of grades, then invokes member function processGrades to analyze them.

Overview of Class GradeBook’s Functions

Five member functions (declared in lines 24–28 of Fig. 7.22) perform array manipulations to process the grades. Each of these member functions is similar to its counterpart in the earlier one-dimensional array version of class GradeBook (Figs. 7.15–7.16). Member function getMinimum (defined in lines 54–71 of Fig. 7.23) determines the lowest grade of all students for the semester. Member function getMaximum (defined in lines 74–91 of Fig. 7.23) determines the highest grade of all students for the semester. Member function getAverage (lines 94–104 of Fig. 7.23) determines a particular student’s semester average. Member function outputBarChart (lines 107–137 of Fig. 7.23) outputs a bar chart of the distribution of all student grades for the semester. Member function outputGrades (lines 140–165 of Fig. 7.23) outputs the two-dimensional array in a tabular format, along with each student’s semester average.

Functions getMinimum and getMaximum

Member functions getMinimum, getMaximum, outputBarChart and outputGrades each loop through array grades by using nested range-based for or counter-controlled for statements. For example, consider the nested for statement (lines 59–68) in member function getMinimum. The outer for statement loops through the rows that represent each student and the inner for loops through the grades of a given student. Each grade is compared with variable lowGrade in the body of the inner for statement. If a grade is less than lowGrade, lowGrade is set to that grade. This repeats until all rows and columns of grades have been traversed. When execution of the nested statement is complete, lowGrade contains the smallest grade in the two-dimensional array. Member function getMaximum works similarly to member function getMinimum.

Function outputBarChart

Member function outputBarChart in Fig. 7.23 is nearly identical to the one in Fig. 7.16. However, to output the overall grade distribution for a whole semester, the function uses a nested for statement (lines 116–118) to increment the elements of the one-dimensional array frequency based on all the grades in the two-dimensional array. The rest of the code in each of the two outputBarChart member functions that displays the chart is identical.

Function outputGrades

Member function outputGrades (lines 140–165) uses nested counter-controlled for statements to output values of the array grades, in addition to each student’s semester average. The output in Fig. 7.21 shows the result, which resembles the tabular format of a professor’s physical grade book. Lines 146–147 print the column headings for each test. We use a counter-controlled for statement so that we can identify each test with a number. Similarly, the for statement in lines 152–164 first outputs a row label using a counter variable to identify each student (line 154). Although array indices start at 0, lines 147 and 154 output test + 1 and student + 1, respectively, to produce test and student numbers starting at 1 (see Fig. 7.21). The inner for statement in lines 157–158 uses the outer for statement’s counter variable student to loop through a specific row of array grades and output each student’s test grade. Finally, line 162 obtains each student’s semester average by passing the current row of grades (i.e., grades[student]) to member function getAverage.

Function getAverage

Member function getAverage (lines 94–104) takes as an argument a one-dimensional array of test results for a particular student. When line 162 calls getAverage, the first argument is grades[student], which specifies that a particular row of the two-dimensional array grades should be passed to getAverage. For example, based on the array created in Fig. 7.24, the argument grades[1] represents the three values (a one-dimensional array of grades) stored in row 1 of the two-dimensional array grades. A two-dimensional array’s elements are one-dimensional arrays. Member function getAverage calculates the sum of the array elements, divides the total by the number of test results and returns the floating-point result as a double value (line 103).

Testing Class GradeBook

The program in Fig. 7.24 creates an object of class GradeBook (Figs. 7.22–7.23) using the two-dimensional array of ints named grades (declared and initialized in lines 11–21). Line 11 accesses class GradeBook’s static constants students and tests to indicate the size of each dimension of array grades. Lines 23–24 pass a course name and grades to the GradeBook constructor. Lines 25–26 then invoke myGradeBook’s displayMessage and processGrades member functions to display a welcome message and obtain a report summarizing the students’ grades for the semester, respectively.

7.10. Introduction to C++ Standard Library Class Template vector

We now introduce C++ Standard Library class template vector, which is similar to class template array, but also supports dynamic resizing. Except for the features that modify a vector, the other features shown in Fig. 7.25 also work for arrays. Standard class template vector is defined in header <vector> (line 5) and belongs to namespace std. Chapter 15 discusses the full functionality of vector. At the end of this section, we’ll demonstrate class vector’s bounds checking capabilities and introduce C++’s exception-handling mechanism, which can be used to detect and handle an out-of-bounds vector index.

Click here to view code image

 1 // Fig. 7.25: fig07_25.cpp
 2 // Demonstrating C++ Standard Library class template vector.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <vector>
 6 #include <stdexcept>
 7 using namespace std;
 8
 9 void outputVector(const vector< int > &); // display the vector
10 void inputVector(vector< int > &); // input values into the vector
11
12 int main()
13 {
14 vector< int > integers1(7); // 7-element vector< int >
15 vector< int > integers2(10); // 10-element vector< int >
16
17 // print integers1 size and contents
18 cout << "Size of vector integers1 is " << integers1.size()
19 << "\nvector after initialization:" << endl;
20 outputVector(integers1);
21
22 // print integers2 size and contents
23 cout << "\nSize of vector integers2 is " << integers2.size()
24 << "\nvector after initialization:" << endl;
25 outputVector(integers2);
26
27 // input and print integers1 and integers2
28 cout << "\nEnter 17 integers:" << endl;
29 inputVector(integers1);
30 inputVector(integers2);
31
32 cout << "\nAfter input, the vectors contain:\n"
33 << "integers1:" << endl;
34 outputVector(integers1);
35 cout << "integers2:" << endl;
36 outputVector(integers2);
37
38 // use inequality (!=) operator with vector objects
39 cout << "\nEvaluating: integers1 != integers2" << endl;
40
41 if (integers1 != integers2)
42 cout << "integers1 and integers2 are not equal" << endl;
43
44 // create vector integers3 using integers1 as an
45 // initializer; print size and contents
46 vector< int > integers3(integers1); // copy constructor
47
48 cout << "\nSize of vector integers3 is " << integers3.size()
49 << "\nvector after initialization:" << endl;
50 outputVector(integers3);
51
52 // use overloaded assignment (=) operator
53 cout << "\nAssigning integers2 to integers1:" << endl;
54 integers1 = integers2; // assign integers2 to integers1
55
56 cout << "integers1:" << endl;
57 outputVector(integers1);
58 cout << "integers2:" << endl;
59 outputVector(integers2);
60
61 // use equality (==) operator with vector objects
62 cout << "\nEvaluating: integers1 == integers2" << endl;
63
64 if (integers1 == integers2)
65 cout << "integers1 and integers2 are equal" << endl;
66
67 // use square brackets to use the value at location 5 as an rvalue
68 cout << "\nintegers1[5] is " << integers1[5];
69
70 // use square brackets to create lvalue
71 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
72 integers1[5] = 1000;
73 cout << "integers1:" << endl;
74 outputVector(integers1);
75
76 // attempt to use out-of-range subscript
77 try
78 {
79 cout << "\nAttempt to display integers1.at(15)" << endl;
80 cout << integers1.at(15) << endl; // ERROR: out of range
81 } // end try
82 catch (out_of_range &ex)
83 {
84 cerr << "An exception occurred: " << ex.what() << endl;
85 } // end catch
86
87 // changing the size of a vector
88 cout << "\nCurrent integers3 size is: " << integers3.size() << endl;
89 integers3.push_back(1000); // add 1000 to the end of the vector
90 cout << "New integers3 size is: " << integers3.size() << endl;
91 cout << "integers3 now contains: ";
92 outputVector(integers3);
93 } // end main
94
95 // output vector contents
96 void outputVector(const vector< int > &array)
97 {
98 for (int item : items)
99 cout << item << " ";
100
101 cout << endl;
102 } // end function outputVector
103
104 // input vector contents
105 void inputVector(vector< int > &array)
106 {
107 for (int &item : items)
108 cin >> item;
109 } // end function inputVector

Size of vector integers1 is 7
vector after initialization:
0 0 0 0 0 0 0

Size of vector integers2 is 10
vector after initialization:
0 0 0 0 0 0 0 0 0 0

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

After input, the vectors contain:
integers1:
1 2 3 4 5 6 7
integers2:
8 9 10 11 12 13 14 15 16 17

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of vector integers3 is 7
vector after initialization:
1 2 3 4 5 6 7

Assigning integers2 to integers1:
integers1:
8 9 10 11 12 13 14 15 16 17
integers2:
8 9 10 11 12 13 14 15 16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Assigning 1000 to integers1[5]
integers1:
8 9 10 11 12 1000 14 15 16 17

Attempt to display integers1.at(15)
An exception occurred: invalid vector<T> subscript

Current integers3 size is: 7
New integers3 size is: 8
integers3 now contains: 1 2 3 4 5 6 7 1000

Fig. 7.25. Demonstrating C++ Standard Library class template vector.

Creating vector Objects

Lines 14–15 create two vector objects that store values of type int—integers1 contains seven elements, and integers2 contains 10 elements. By default, all the elements of each vector object are set to 0. Like arrays, vectors can be defined to store most data types, by replacing int in vector<int> with the appropriate type.

vector Member Function size; Function outputVector

Line 18 uses vector member function size to obtain the size (i.e., the number of elements) of integers1. Line 20 passes integers1 to function outputVector (lines 96–102), which uses a range-based for statement to obtain the value in each element of the vector for output. As with class template array, you can also do this using a counter-controlled loop and the subscript ([]) operator. Lines 23 and 25 perform the same tasks for integers2.

Function inputVector

Lines 29–30 pass integers1 and integers2 to function inputVector (lines 105–109) to read values for each vector’s elements from the user. The function uses a range-based for statement with a range variable that is a reference to an int to form lvalues that are used to store the input values in each vector element.

Comparing vector Objects for Inequality

Line 41 demonstrates that vector objects can be compared with one another using the != operator. If the contents of two vectors are not equal, the operator returns true; otherwise, it returns false.

Initializing One vector with the Contents of Another

The C++ Standard Library class template vector allows you to create a new vector object that’s initialized with the contents of an existing vector. Line 46 creates a vector object integers3 and initializes it with a copy of integers1. This invokes vector’s so-called copy constructor to perform the copy operation. You’ll learn about copy constructors in detail in Chapter 10. Lines 48–50 output the size and contents of integers3 to demonstrate that it was initialized correctly.

Assigning vectors and Comparing vectors for Equality

Line 54 assigns integers2 to integers1, demonstrating that the assignment (=) operator can be used with vector objects. Lines 56–59 output the contents of both objects to show that they now contain identical values. Line 64 then compares integers1 to integers2 with the equality (==) operator to determine whether the contents of the two objects are equal after the assignment in line 54 (which they are).

Using the [] Operator to Access and Modify vector Elements

Lines 68 and 70 use square brackets ([]) to obtain a vector element and use it as an rvalue and as an lvalue, respectively. Recall from Section 5.9 that an rvalue cannot be modified, but an lvalue can. As is the case with arrays, C++ is not required to perform bounds checking when vector elements are accessed with square brackets.1 Therefore, you must ensure that operations using [] do not accidentally attempt to manipulate elements outside the bounds of the vector. Standard class template vector does, however, provide bounds checking in its member function at (as does class template array), which we use at line 80 and discuss shortly.

1. Some compilers have options for bounds checking to help prevent buffer overflows.

Exception Handling: Processing an Out-of-Range Subscript

An exception indicates a problem that occurs while a program executes. The name “exception” suggests that the problem occurs infrequently—if the “rule” is that a statement normally executes correctly, then the problem represents the “exception to the rule.” Exception handling enables you to create fault-tolerant programs that can resolve (or handle) exceptions. In many cases, this allows a program to continue executing as if no problems were encountered. For example, Fig. 7.25 still runs to completion, even though an attempt was made to access an out-of-range subscript. More severe problems might prevent a program from continuing normal execution, instead requiring the program to notify the user of the problem, then terminate. When a function detects a problem, such as an invalid array subscript or an invalid argument, it throws an exception—that is, an exception occurs. Here we introduce exception handling briefly. We’ll discuss it in detail in Chapter 17, Exception Handling: A Deeper Look.

The try Statement

To handle an exception, place any code that might throw an exception in a try statement (lines 77–85). The try block (lines 77–81) contains the code that might throw an exception, and the catch block (lines 82–85) contains the code that handles the exception if one occurs. As you’ll see in Chapter 17, you can have many catch blocks to handle different types of exceptions that might be thrown in the corresponding try block. If the code in the try block executes successfully, lines 82–85 are ignored. The braces that delimit try and catch blocks’ bodies are required.

The vector member function at provides bounds checking and throws an exception if its argument is an invalid subscript. By default, this causes a C++ program to terminate. If the subscript is valid, function at returns the element at the specified location as a modifiable lvalue or a nonmodifiable lvalue. A nonmodifiable lvalue is an expression that identifies an object in memory (such as an element in a vector), but cannot be used to modify that object. If at is called on a const array or via a reference that’s declared const, the function returns a nonmodifiable lvalue.

Executing the catch Block

When the program calls vector member function at with the argument 15 (line 80), the function attempts to access the element at location 15, which is outside the vector’s bounds—integers1 has only 10 elements at this point. Because bounds checking is performed at execution time, vector member function at generates an exception—specifically line 80 throws an out_of_range exception (from header <stdexcept>) to notify the program of this problem. At this point, the try block terminates immediately and the catch block begins executing—if you declared any variables in the try block, they’re now out of scope and are not accessible in the catch block.

The catch block declares a type (out_of_range) and an exception parameter (ex) that it receives as a reference. The catch block can handle exceptions of the specified type. Inside the block, you can use the parameter’s identifier to interact with a caught exception object.

what Member Function of the Exception Parameter

When lines 82–85 catch the exception, the program displays a message indicating the problem that occurred. Line 84 calls the exception object’s what member function to get the error message that is stored in the exception object and display it. Once the message is displayed in this example, the exception is considered handled and the program continues with the next statement after the catch block’s closing brace. In this example, lines 88–92 execute next. We use exception handling again in Chapters 9–12 and Chapter 17 presents a deeper look at exception handling.

Changing the Size of a vector

One of the key differences between a vector and an array is that a vector can dynamically grow to accommodate more elements. To demonstrate this, line 88 shows the current size of integers3, line 89 calls the vector’s push_back member function to add a new element containing 1000 to the end of the vector and line 90 shows the new size of integers3. Line 92 then displays integers3’s new contents.

C++11: List Initializing a vector

[image: Image]

Many of the array examples in this chapter used list initializers to specify the initial array element values. C++11 also allows this for vectors (and other C++ Standard Library data structures). At the time of this writing, list initializers were not yet supported for vectors in Visual C++.

7.11. Wrap-Up

This chapter explored the use of C++ Standard Library class templates array and vector to store data in and retrieve data from lists and tables of values. The chapter examples demonstrated how to declare an array, initialize an array and refer to individual elements of an array. We passed arrays to functions by reference and used the const qualifier to prevent the called function from modifying the array’s elements, thus enforcing the principle of least privilege. You learned how to use C++11’s new range-based for statement to manipulate all the elements of an array. We also showed how to use C++ Standard Library functions sort and binary_search to sort and search an array, respectively. You learned how to declare and manipulate multidimensional arrays of arrays. We used nested counter-controlled and nested range-based for statements to iterate through all the rows and columns of a two-dimensional array. We also showed how to use auto to infer a variable’s type based on its initializer value. Finally, we demonstrated the capabilities of C++ Standard Library class template vector. In that example, we discussed how to access array and vector elements with bounds checking and demonstrated basic exception-handling concepts. In later chapters, we’ll continue our coverage of data structures.

We’ve now introduced the basic concepts of classes, objects, control statements, functions and array objects. In Chapter 8, we present one of C++’s most powerful features—the pointer. Pointers keep track of where data and functions are stored in memory, which allows us to manipulate those items in interesting ways. As you’ll see, C++ also provides a language element called an array (different from the class template array) that is closely related to pointers. In contemporary C++ code, its considered better practice to use C++11’s array class template rather than traditional arrays.

8. Pointers

Objectives

In this chapter you’ll:

• Learn what pointers are.

• Learn the similarities and differences between pointers and references.

• Use pointers to pass arguments to functions by reference.

• Understand the close relationships between pointers and built-in arrays.

• Use pointer-based strings.

• Use built-in arrays.

• Use C++11 capabilities, including nullptr and Standard Library functions begin and end.

Outline

8.1 Introduction

8.2 Pointer Variable Declarations and Initialization

8.3 Pointer Operators

8.4 Pass-by-Reference with Pointers

8.5 Built-In Arrays

8.6 Using const with Pointers

8.6.1 Nonconstant Pointer to Nonconstant Data

8.6.2 Nonconstant Pointer to Constant Data

8.6.3 Constant Pointer to Nonconstant Data

8.6.4 Constant Pointer to Constant Data

8.7 sizeof Operator

8.8 Pointer Expressions and Pointer Arithmetic

8.9 Relationship Between Pointers and Built-In Arrays

8.10 Pointer-Based Strings

8.11 Wrap-Up

8.1. Introduction

This chapter discusses pointers—one of the most powerful, yet challenging to use, C++ capabilities. Our goals here are to help you determine when it’s appropriate to use pointers, and show how to use them correctly and responsibly.

In Chapter 6, we saw that references can be used to perform pass-by-reference. Pointers also enable pass-by-reference and can be used to create and manipulate dynamic data structures that can grow and shrink, such as linked lists, queues, stacks and trees. This chapter explains basic pointer concepts.

We also show the intimate relationship among built-in arrays and pointers. C++ inherited built-in arrays from the C programming language. As we saw in Chapter 7, the C++ Standard Library classes array and vector provide implementations of arrays as full-fledged objects—in fact, array and vector each store their elements in built-in arrays. In new software development projects, you should favor array and vector objects to built-in arrays.

Similarly, C++ actually offers two types of strings—string class objects (which we’ve been using since Chapter 3) and C-style, pointer-based strings (C strings). This chapter briefly introduces C strings to deepen your knowledge of pointers and built-in arrays. C strings were widely used in older C and C++ software. We discuss C strings in depth in Appendix F. In new software development projects, you should favor string class objects.

We’ll examine the use of pointers with class objects in Chapter 12, where we’ll see that the so-called “polymorphic processing” associated with object-oriented programming is performed with pointers and references.

8.2. Pointer Variable Declarations and Initialization

Indirection

Pointer variables contain memory addresses as their values. Normally, a variable directly contains a specific value. A pointer contains the memory address of a variable that, in turn, contains a specific value. In this sense, a variable name directly references a value, and a pointer indirectly references a value (Fig. 8.1). Referencing a value through a pointer is called indirection. Diagrams typically represent a pointer as an arrow from the variable that contains an address to the variable located at that address in memory.

[image: Image]

Fig. 8.1. Directly and indirectly referencing a variable.

Declaring Pointers

Pointers, like any other variables, must be declared before they can be used. For example, for the pointer countPtr in Fig. 8.1, the declaration

int *countPtr, count;

declares the variable countPtr to be of type int * (i.e., a pointer to an int value) and is read (right to left), “countPtr is a pointer to int.” Also, variable count in the preceding declaration is declared to be an int, not a pointer to an int. The * in the declaration applies only to countPtr. Each variable being declared as a pointer must be preceded by an asterisk (*). For example, the declaration

double *xPtr, *yPtr;

indicates that both xPtr and yPtr are pointers to double values. When * appears in a declaration, it’s not an operator; rather, it indicates that the variable being declared is a pointer. Pointers can be declared to point to objects of any data type.

[image: Image] Common Programming Error 8.1

Assuming that the * used to declare a pointer distributes to all names in a declaration’s comma-separated list of variables can lead to errors. Each pointer must be declared with the * prefixed to the name (with or without spaces in between). Declaring only one variable per declaration helps avoid these types of errors and improves program readability.

[image: Image] Good Programming Practice 8.1

Although it’s not a requirement, including the letters Ptr in a pointer variable name makes it clear that the variable is a pointer and that it must be handled accordingly.

Initializing Pointers

[image: Image]

Pointers should be initialized to nullptr (new in C++11) or an address of the corresponding type either when they’re declared or in an assignment. A pointer with the value nullptr “points to nothing” and is known as a null pointer. From this point forward, when we refer to a “null pointer” we mean a pointer with the value nullptr.

[image: Image] Error-Prevention Tip 8.1

Initialize all pointers to prevent pointing to unknown or uninitialized areas of memory.

Null Pointers Prior to C++11

In earlier versions of C++, the value specified for a null pointer was 0 or NULL. NULL is defined in several standard library headers to represent the value 0. Initializing a pointer to NULL is equivalent to initializing a pointer to 0, but prior to C++11, 0 was used by convention. The value 0 is the only integer value that can be assigned directly to a pointer variable without first casting the integer to a pointer type.

8.3. Pointer Operators

Address (&) Operator

The address operator (&) is a unary operator that obtains the memory address of its operand. For example, assuming the declarations

Click here to view code image

int y = 5; // declare variable y
int *yPtr = nullptr; // declare pointer variable yPtr

the statement

yPtr = &y; // assign address of y to yPtr

assigns the address of the variable y to pointer variable yPtr. Then variable yPtr is said to “point to” y. Now, yPtr indirectly references variable y’s value. The use of the & in the preceding statement is not the same as the use of the & in a reference variable declaration, which is always preceded by a data-type name. When declaring a reference, the & is part of the type. In an expression like &y, the & is the address operator.

Figure 8.2 shows a representation of memory after the preceding assignment. The “pointing relationship” is indicated by drawing an arrow from the box that represents the pointer yPtr in memory to the box that represents the variable y in memory.

[image: Image]

Fig. 8.2. Graphical representation of a pointer pointing to a variable in memory.

Figure 8.3 shows another pointer representation in memory with integer variable y stored at memory location 600000 and pointer variable yPtr stored at location 500000. The operand of the address operator must be an lvalue—the address operator cannot be applied to constants or to expressions that result in temporary values (like the results of calculations).

[image: Image]

Fig. 8.3. Representation of y and yPtr in memory.

Indirection (*) Operator

The unary * operator—commonly referred to as the indirection operator or dereferencing operator—returns an lvalue representing the object to which its pointer operand points. For example (referring again to Fig. 8.2), the statement

cout << *yPtr << endl;

displays the value of variable y, namely, 5, just as the statement

cout << y << endl;

would. Using * in this manner is called dereferencing a pointer. A dereferenced pointer may also be used on the left side of an assignment statement, as in

*yPtr = 9;

which would assign 9 to y in Fig. 8.3. The dereferenced pointer may also be used to receive an input value as in

cin >> *yPtr;

which places the input value in y.

[image: Image] Common Programming Error 8.2

Dereferencing an uninitialized pointer results in undefined behavior that could cause a fatal execution-time error. This could also lead to accidentally modifying important data, allowing the program to run to completion, possibly with incorrect results.

[image: Image] Error-Prevention Tip 8.2

Dereferencing a null pointer results in undefined behavior and typically is a fatal execution-time error, so you should ensure that a pointer is not null before dereferencing it.

Using the Address (&) and Indirection (*) Operators

The program in Fig. 8.4 demonstrates the & and * pointer operators. Memory locations are output by << in this example as hexadecimal (i.e., base-16) integers. (See Appendix D, Number Systems, for more information on hexadecimal integers.) The memory addresses output by this program are platform dependent, so you may get different results when you run the program. The address of a (line 11) and the value of aPtr (line 12) are identical in the output, confirming that the address of a is indeed assigned to the pointer variable aPtr.

Click here to view code image

 1 // Fig. 8.4: fig08_04.cpp
 2 // Pointer operators & and *.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int a = 7; // assigned 7 to a
 9 int *aPtr = &a; // initialize aPtr with the address of int variable a
10
11 cout << "The address of a is " << &a
12 << "\nThe value of aPtr is " << aPtr;
13 cout << "\n\nThe value of a is " << a
14 << "\nThe value of *aPtr is " << *aPtr << endl;
15 } // end main

The address of a is 002DFD80
The value of aPtr is 002DFD80

The value of a is 7
The value of *aPtr is 7

Fig. 8.4. Pointer operators & and *.

Precedence and Associativity of the Operators Discussed So Far

Figure 8.5 lists the precedence and associativity of the operators introduced to this point. The address (&) and dereferencing operator (*) are unary operators on the fourth level.

[image: Image]

Fig. 8.5. Operator precedence and associativity of the operators discussed so far.

8.4. Pass-by-Reference with Pointers

There are three ways in C++ to pass arguments to a function—pass-by-value, pass-by-reference with reference arguments and pass-by-reference with pointer arguments. Chapter 6 compared and contrasted pass-by-reference with reference arguments and pass-by-value. Here, we explain pass-by-reference with pointer arguments.

Chapter 6 showed that return can return one value from a called function or simply return control. You also learned that arguments can be passed to a function using reference parameters, which enable the called function to modify the original values of the arguments in the caller. Reference parameters also enable programs to pass large data objects to a function and avoid the overhead of passing the objects by value (which, of course, copies the object). Pointers, like references, also can be used to modify one or more variables in the caller or to pass pointers to large data objects to avoid the overhead of passing the objects by value.

You can use pointers and the indirection operator (*) to accomplish pass-by-reference (exactly as pass-by-reference is done in C programs—C does not have references). When calling a function with an argument that should be modified, the address of the argument is passed. This is normally accomplished by applying the address operator (&) to the name of the variable whose value will be modified.

An Example of Pass-By-Value

Figure 8.6 and Fig. 8.7 present two versions of a function that cubes an integer. Figure 8.6 passes variable number by value (line 14) to function cubeByValue (lines 19–22), which cubes its argument and passes the new value back to main using a return statement (line 21). The new value is assigned to number (line 14) in main. The calling function has the opportunity to examine the function call’s result before modifying variable number’s value. For example, we could have stored the result of cubeByValue in another variable, examined its value and assigned the result to number only after determining that the returned value was reasonable.

Click here to view code image

 1 // Fig. 8.6: fig08_06.cpp
 2 // Pass-by-value used to cube a variable's value.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int cubeByValue(int); // prototype
 7
 8 int main()
 9 {
10 int number = 5;
11
12 cout << "The original value of number is " << number;
13
14 number = cubeByValue(number); // pass number by value to cubeByValue
15 cout << "\nThe new value of number is " << number << endl;
16 } // end main
17
18 // calculate and return cube of integer argument
19 int cubeByValue(int n)
20 {
21 return n * n * n; // cube local variable n and return result
22 } // end function cubeByValue

The original value of number is 5
The new value of number is 125

Fig. 8.6. Pass-by-value used to cube a variable’s value.

Click here to view code image

 1 // Fig. 8.7: fig08_07.cpp
 2 // Pass-by-reference with a pointer argument used to cube a
 3 // variable's value.
 4 #include <iostream>
 5 using namespace std;
 6
 7 void cubeByReference(int *); // prototype
 8
 9 int main()
10 {
11 int number = 5;
12
13 cout << "The original value of number is " << number;
14
15 cubeByReference(&number); // pass number address to cubeByReference
16
17 cout << "\nThe new value of number is " << number << endl;
18 } // end main
19
20 // calculate cube of *nPtr; modifies variable number in main
21 void cubeByReference(int *nPtr)
22 {
23 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
24 } // end function cubeByReference

The original value of number is 5
The new value of number is 125

Fig. 8.7. Pass-by-reference with a pointer argument used to cube a variable’s value.

An Example of Pass-By-Reference with Pointers

Figure 8.7 passes the variable number to function cubeByReference using pass-by-reference with a pointer argument (line 15)—the address of number is passed to the function. Function cubeByReference (lines 21–24) specifies parameter nPtr (a pointer to int) to receive its argument. The function uses the dereferenced pointer to cube the value to which nPtr points (line 23). This directly changes the value of number in main (line 11). Line 23 is equivalent to

*nPtr = (*nPtr) * (*nPtr) * (*nPtr); // cube *nPtr

A function receiving an address as an argument must define a pointer parameter to receive the address. For example, the header for function cubeByReference (line 21) specifies that cubeByReference receives the address of an int variable (i.e., a pointer to an int) as an argument, stores the address in nPtr and does not return a value.

Function cubeByReference’s prototype (line 7) contains int * in parentheses. As with other types, it isn’t necessary to include the names of pointer parameters in prototypes. Parameter names included for documentation purposes are ignored by the compiler.

Insight: All Arguments Are Passed By Value

In C++, all arguments are always passed by value. Passing a variable by reference with a pointer does not actually pass anything by reference—a pointer to that variable is passed by value and is copied into the function’s corresponding pointer parameter. The called function can then access that variable in the caller simply by dereferencing the pointer, thus accomplishing pass-by-reference.

Graphical Analysis of Pass-By-Value and Pass-By-Reference

Figures 8.8–8.9 analyze graphically the execution of Fig. 8.6 and Fig. 8.7, respectively. In the diagrams, the values in rectangles above a given expression or variable represent the value of that expression or variable. Each diagram’s right column shows functions cubeByValue (Fig. 8.6) and cubeByReference (Fig. 8.7) only when they’re executing.

[image: Image]

[image: Image]

Fig. 8.8. Pass-by-value analysis of the program of Fig. 8.6.

[image: Image]

[image: Image]

Fig. 8.9. Pass-by-reference analysis of the program of Fig. 8.7.

8.5. Built-In Arrays

In Chapter 7, we used the array class template to represent fixed-size lists and tables of values. We also used the vector class template, which is similar to array, but can also grow (or shrink as you’ll see in Chapter 15) dynamically to accommodate more or fewer elements. Here we present built-in arrays, which are also fixed-size data structures.

Declaring a Built-In Array

To specify the type of the elements and the number of elements required by a built-in array, use a declaration of the form:

type arrayName[arraySize];

The compiler reserves the appropriate amount of memory. The arraySize must be an integer constant greater than zero. For example, to tell the compiler to reserve 12 elements for built-in array of ints named c, use the declaration

int c[12]; // c is a built-in array of 12 integers

Accessing a Built-In Array’s Elements

As with array objects, you use the subscript ([]) operator to access the individual elements of a built-in array. Recall from Chapter 7 that the subscript ([]) operator does not provide bounds checking for array objects—this is also true for built-in arrays.

Initializing Built-In Arrays

You can initialize the elements of a built-in array using an initializer list. For example,

int n[5] = { 50, 20, 30, 10, 40 };

[image: Image]

creates a built-in array of five ints and initializes them to the values in the initializer list. If you provide fewer initializers than the number of elements, the remaining elements are value initialized—fundamental numeric types are set to 0, bools are set to false, pointers are set to nullptr and class objects are initialized by their default constructors. If you provide too many initializers a compilation error occurs. The new C++11 list-initialization syntax that we introduced in Chapter 4 is based on the built-in array initializer-list syntax.

If a built-in array’s size is omitted from a declaration with an initializer list, the compiler sizes the built-in array to the number of elements in the initializer list. For example,

int n[] = { 50, 20, 30, 10, 40 };

creates a five-element array.

[image: Image] Error-Prevention Tip 8.3

Always specify a built-in array’s size, even when providing an initializer list. This enables the compiler to ensure that you do not provide too many initializers.

Passing Built-In Arrays to Functions

The value of a built-in array’s name is implicitly convertible to the address of the built-in array’s first element. So arrayName is implicitly convertible to &arrayName[0]. For this reason, you don’t need to take the address (&) of a built-in array to pass it to a function—you simply pass the built-in array’s name. As you saw in Section 8.4, a function that receives a pointer to a variable in the caller can modify that variable in the caller. For built-in arrays, this means that the called function can modify all the elements of a built-in array in the caller—unless the function precedes the corresponding built-in array parameter with const to indicate that the elements should not be modified.

[image: Image] Software Engineering Observation 8.1

Applying the const type qualifier to a built-in array parameter in a function definition to prevent the original built-in array from being modified in the function body is another example of the principle of least privilege. Functions should not be given the capability to modify a built-in array unless it’s absolutely necessary.

Declaring Built-In Array Parameters

You can declare a built-in array parameter in a function header, as follows:

int sumElements(const int values[], const size_t numberOfElements)

which indicates that the function’s first argument should be a one-dimensional built-in array of ints that should not be modified by the function. Unlike array objects, built-in arrays don’t know their own size, so a function that processes a built-in array should have parameters to receive both the built-in array and its size.

The preceding header can also be written as:

int sumElements(const int *values, const size_t numberOfElements)

The compiler does not differentiate between a function that receives a pointer and a function that receives a built-in array. This, of course, means that the function must “know” when it’s receiving a built-in array or simply a single variable that’s being passed by reference. When the compiler encounters a function parameter for a one-dimensional built-in array of the form const int values[], the compiler converts the parameter to the pointer notation const int *values (that is, “values is a pointer to an integer constant”). These forms of declaring a one-dimensional built-in array parameter are interchangeable—for clarity you should use the [] notation when the function expects a built-in array argument.

C++11: Standard Library Functions begin and end

[image: Image]

In Section 7.7, we showed how to sort an array object with the C++ Standard Library function sort. We sorted an array of strings called colors as follows:

sort(colors.begin(), colors.end()); // sort contents of colors

The array class’s begin and end functions specified that the entire array should be sorted. Function sort (and many other C++ Standard Library functions) can also be applied to built-in arrays. For example, to sort the built-in array n shown earlier in this section, you can write:

sort(begin(n), end(n)); // sort contents of built-in array n

C++11’s new begin and end functions (from header <iterator>) each receive a built-in array as an argument and return a pointer that can be used to represent ranges of elements to process in C++ Standard Library functions like sort.

Built-In Array Limitations

Built-in arrays have several limitations:

• They cannot be compared using the relational and equality operators—you must use a loop to compare two built-in arrays element by element.

• They cannot be assigned to one another.

• They don’t know their own size—a function that processes a built-in array typically receives both the built-in array’s name and its size as arguments.

• They don’t provide automatic bounds checking—you must ensure that array-access expressions use subscripts that are within the built-in array’s bounds.

Objects of class templates array and vector are safer, more robust and provide more capabilities than built-in arrays.

Sometimes Built-In Arrays Are Required

In contemporary C++ code, you should use the more robust array (or vector) objects to represent lists and tables of values. However, there are cases in which built-in arrays must be used, such as processing a program’s command-line arguments. You supply command-line arguments to a program by placing them after the program’s name when executing it from the command line. Such arguments typically pass options to a program. For example, on a Windows computer, the command

dir /p

uses the /p argument to list the contents of the current directory, pausing after each screen of information. Similarly, on Linux or OS X, the following command uses the -la argument to list the contents of the current directory with details about each file and directory:

ls -la

Command-line arguments are passed to main as a built-in array of pointer-based strings (Section 8.10). Appendix F shows how to process command-line arguments.

8.6. Using const with Pointers

Recall that const enables you to inform the compiler that the value of a particular variable should not be modified. Many possibilities exist for using (or not using) const with function parameters, so how do you choose the most appropriate? Let the principle of least privilege be your guide. Always give a function enough access to the data in its parameters to accomplish its specified task, but no more. This section discusses how to combine const with pointer declarations to enforce the principle of least privilege.

Chapter 6 explained that when an argument is passed by value, a copy of the argument is passed to the function. If the copy is modified in the called function, the original value in the caller does not change. In some instances, even the copy of the argument’s value should not be altered in the called function.

Consider a function that takes a pointer to the initial element of a built-in array and the array’s size as arguments and subsequently displays the built-in array’s elements. Such a function should loop through the elements and output each individually. The built-in array’s size is used in the function’s body to determine the highest subscript so the loop can terminate when the displaying completes. The size does not need to change in the function body, so it should be declared const to ensure that it will not change. Because the built-in array is only being displayed, it, too, should be declared const. This is especially important because built-in arrays are always passed by reference and could easily be changed in the called function. An attempt to modify a const value is a compilation error.

[image: Image] Software Engineering Observation 8.2

If a value does not (or should not) change in the body of a function to which it’s passed, the parameter should be declared const.

[image: Image] Error-Prevention Tip 8.4

Before using a function, check its function prototype to determine the parameters that it can and cannot modify.

There are four ways to pass a pointer to a function: a nonconstant pointer to nonconstant data, a nonconstant pointer to constant data (Fig. 8.10), a constant pointer to nonconstant data (Fig. 8.11) and a constant pointer to constant data (Fig. 8.12). Each combination provides a different level of access privilege.

Click here to view code image

 1 // Fig. 8.10: fig08_10.cpp
 2 // Attempting to modify data through a
 3 // nonconstant pointer to constant data.
 4
 5 void f(const int *); // prototype
 6
 7 int main()
 8 {
 9 int y = 0;
10
11 f(&y); // f will attempt an illegal modification
12 } // end main
13
14 // constant variable cannot be modified through xPtr
15 void f(const int *xPtr)
16 {
17 *xPtr = 100; // error: cannot modify a const object
18 } // end function f

GNU C++ compiler error message:

fig08_10.cpp: In function 'void f(const int*)':
fig08_10.cpp:17:12: error: assignment of read-only location '* xPtr'

Fig. 8.10. Attempting to modify data through a nonconstant pointer to const data.

Click here to view code image

 1 // Fig. 8.11: fig08_11.cpp
 2 // Attempting to modify a constant pointer to nonconstant data.
 3
 4 int main()
 5 {
 6 int x, y;
 7
 8 // ptr is a constant pointer to an integer that can
 9 // be modified through ptr, but ptr always points to the
10 // same memory location.
11 int * const ptr = &x; // const pointer must be initialized
12
13 *ptr = 7; // allowed: *ptr is not const
14 ptr = &y; // error: ptr is const; cannot assign to it a new address
15 } // end main

Microsoft Visual C++ compiler error message:

you cannot assign to a variable that is const

Fig. 8.11. Attempting to modify a constant pointer to nonconstant data.

Click here to view code image

 1 // Fig. 8.12: fig08_12.cpp
 2 // Attempting to modify a constant pointer to constant data.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int x = 5, y;
 9
10 // ptr is a constant pointer to a constant integer.
11 // ptr always points to the same location; the integer
12 // at that location cannot be modified.
13 const int *const ptr = &x;
14
15 cout << *ptr << endl;
16
17 *ptr = 7; // error: *ptr is const; cannot assign new value
18 ptr = &y; // error: ptr is const; cannot assign new address
19 } // end main

Xcode LLVM compiler error message:

Read-only variable is not assignable
Read-only variable is not assignable

Fig. 8.12. Attempting to modify a constant pointer to constant data.

8.6.1. Nonconstant Pointer to Nonconstant Data

The highest access is granted by a nonconstant pointer to nonconstant data—the data can be modified through the dereferenced pointer, and the pointer can be modified to point to other data. Such a pointer’s declaration (e.g., int *countPtr) does not include const.

8.6.2. Nonconstant Pointer to Constant Data

A nonconstant pointer to constant data is a pointer that can be modified to point to any data item of the appropriate type, but the data to which it points cannot be modified through that pointer. Such a pointer might be used to receive a built-in array argument to a function that should be allowed to read the elements, but not modify them. Any attempt to modify the data in the function results in a compilation error. The declaration for such a pointer places const to the left of the pointer’s type, as in

 const int *countPtr;

The declaration is read from right to left as “countPtr is a pointer to an integer constant” or more precisely, “countPtr is a non-constant pointer to an integer constant.”

Figure 8.10 demonstrates GNU C++’s compilation error message produced when attempting to compile a function that receives a nonconstant pointer to constant data, then tries to use that pointer to modify the data.

When a function is called with a built-in array as an argument, its contents are effectively passed by reference because the built-in array’s name is implicitly convertible to the address of the built-in array’s first element. However, by default, objects such as arrays and vectors are passed by value—a copy of the entire object is passed. This requires the execution-time overhead of making a copy of each data item in the object and storing it on the function call stack. When a pointer to an object is passed, only a copy of the address of the object must be made—the object itself is not copied.

[image: Image] Performance Tip 8.1

If they do not need to be modified by the called function, pass large objects using pointers to constant data or references to constant data, to obtain the performance benefits of pass-by-reference and avoid the copy overhead of pass-by-value.

[image: Image] Software Engineering Observation 8.3

Passing large objects using pointers to constant data, or references to constant data offers the security of pass-by-value.

[image: Image] Software Engineering Observation 8.4

Use pass-by-value to pass fundamental-type arguments (e.g., ints, doubles, etc.) to a function unless the caller explicitly requires that the called function be able to directly modify the value in the caller. This is another example of the principle of least privilege.

8.6.3. Constant Pointer to Nonconstant Data

A constant pointer to nonconstant data is a pointer that always points to the same memory location, and the data at that location can be modified through the pointer. Pointers that are declared const must be initialized when they’re declared, but if the pointer is a function parameter, it’s initialized with the pointer that’s passed to the function.

The program of Fig. 8.11 attempts to modify a constant pointer. Line 11 declares pointer ptr to be of type int * const. The declaration is read from right to left as “ptr is a constant pointer to a nonconstant integer.” The pointer is initialized with the address of integer variable x. Line 14 attempts to assign the address of y to ptr, but the compiler generates an error message. No error occurs when line 13 assigns the value 7 to *ptr—the nonconstant value to which ptr points can be modified using the dereferenced ptr, even though ptr itself has been declared const.

8.6.4. Constant Pointer to Constant Data

The minimum access privilege is granted by a constant pointer to constant data. Such a pointer always points to the same memory location, and the data at that location cannot be modified via the pointer. This is how a built-in array should be passed to a function that only reads from the built-in array, using array subscript notation, and does not modify the built-in array. The program of Fig. 8.12 declares pointer variable ptr to be of type const int * const (line 13). This declaration is read from right to left as “ptr is a constant pointer to an integer constant.” The figure shows the Xcode LLVM compiler’s error messages that are generated when an attempt is made to modify the data to which ptr points (line 17) and when an attempt is made to modify the address stored in the pointer variable (line 18)—these show up on the lines of code with the errors in the Xcode text editor. In line 15, no errors occur when the program attempts to dereference ptr, or when the program attempts to output the value to which ptr points, because neither the pointer nor the data it points to is being modified in this statement.

8.7. sizeof Operator

The compile time unary operator sizeof determines the size in bytes of a built-in array or of any other data type, variable or constant during program compilation. When applied to a built-in array’s name, as in Fig. 8.13 (line 13), the sizeof operator returns the total number of bytes in the array as a value of type size_t. The computer we used to compile this program stores variables of type double in 8 bytes of memory, and numbers is declared to have 20 elements (line 11), so it uses 160 bytes in memory. When applied to a pointer parameter (line 22) in a function that receives a built-in array as an argument, the sizeof operator returns the size of the pointer in bytes (4 on the system we used)—not the built-in array’s size.

Click here to view code image

 1 // Fig. 8.13: fig08_13.cpp
 2 // Sizeof operator when applied to a built-in array's name
 3 // returns the number of bytes in the built-in array.
 4 #include <iostream>
 5 using namespace std;
 6
 7 size_t getSize(double *); // prototype
 8
 9 int main()
10 {
11 double numbers[20]; // 20 doubles; occupies 160 bytes on our system
12
13 cout << "The number of bytes in the array is " << sizeof(numbers);
14
15 cout << "\nThe number of bytes returned by getSize is "
16 << getSize(numbers) << endl;
17 } // end main
18
19 // return size of ptr
20 size_t getSize(double *ptr)
21 {
22 return sizeof(ptr);
23 } // end function getSize

The number of bytes in the array is 160
The number of bytes returned by getSize is 4

Fig. 8.13. sizeof operator when applied to a built-in array’s name returns the number of bytes in the built-in array.

[image: Image] Common Programming Error 8.3

Using the sizeof operator in a function to find the size in bytes of a built-in array parameter results in the size in bytes of a pointer, not the size in bytes of the built-in array.

The number of elements in a built-in array can be determined using the results of two sizeof operations. For example, to determine the number of elements in the built-in array numbers, use the following expression (which is evaluated at compile time):

sizeof numbers / sizeof(numbers[0])

The expression divides the number of bytes in numbers (160, assuming 8 byte doubles) by the number of bytes in the built-in array’s zeroth element (8)—resulting in the number of elements in numbers (20).

Determining the Sizes of the Fundamental Types, a Built-In Array and a Pointer

Figure 8.14 uses sizeof to calculate the number of bytes used to store many of the standard data types. The output was produced using the default settings in Visual C++ 2012 on a Windows 7 computer. Type sizes are platform dependent. On another system, for example, double and long double may be of different sizes.

Click here to view code image

 1 // Fig. 8.14: fig08_14.cpp
 2 // sizeof operator used to determine standard data type sizes.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char c; // variable of type char
 9 short s; // variable of type short
10 int i; // variable of type int
11 long l; // variable of type long
12 long ll; // variable of type long long
13 float f; // variable of type float
14 double d; // variable of type double
15 long double ld; // variable of type long double
16 int array[20]; // built-in array of int
17 int *ptr = array; // variable of type int *
18
19 cout << "sizeof c = " << sizeof c
20 << "\tsizeof(char) = " << sizeof(char)
21 << "\nsizeof s = " << sizeof s
22 << "\tsizeof(short) = " << sizeof(short)
23 << "\nsizeof i = " << sizeof i
24 << "\tsizeof(int) = " << sizeof(int)
25 << "\nsizeof l = " << sizeof l
26 << "\tsizeof(long) = " << sizeof(long)
27 << "\nsizeof ll = " << sizeof ll
28 << "\tsizeof(long long) = " << sizeof(long long)
29 << "\nsizeof f = " << sizeof f
30 << "\tsizeof(float) = " << sizeof(float)
31 << "\nsizeof d = " << sizeof d
32 << "\tsizeof(double) = " << sizeof(double)
33 << "\nsizeof ld = " << sizeof ld
34 << "\tsizeof(long double) = " << sizeof(long double)
35 << "\nsizeof array = " << sizeof array
36 << "\nsizeof ptr = " << sizeof ptr << endl;
37 } // end main

sizeof c = 1 sizeof(char) = 1
sizeof s = 2 sizeof(short) = 2
sizeof i = 4 sizeof(int) = 4
sizeof l = 4 sizeof(long) = 4
sizeof ll = 8 sizeof(long long) = 8
sizeof f = 4 sizeof(float) = 4
sizeof d = 8 sizeof(double) = 8
sizeof ld = 8 sizeof(long double) = 8
sizeof array = 80
sizeof ptr = 4

Fig. 8.14. sizeof operator used to determine standard data type sizes.

[image: Image] Portability Tip 8.1

The number of bytes used to store a particular data type may vary among systems. When writing programs that depend on data type sizes, always use sizeof to determine the number of bytes used to store the data types.

Operator sizeof can be applied to any expression or type name. When sizeof is applied to a variable name (which is not a built-in array’s name) or other expression, the number of bytes used to store the specific type of the expression is returned. The parentheses used with sizeof are required only if a type name (e.g., int) is supplied as its operand. The parentheses used with sizeof are not required when sizeof’s operand is an expression. Remember that sizeof is a compile-time operator, so sizeof’s operand is not evaluated.

8.8. Pointer Expressions and Pointer Arithmetic

This section describes the operators that can have pointers as operands and how these operators are used with pointers. C++ enables pointer arithmetic—a few arithmetic operations may be performed on pointers. Pointer arithmetic is appropriate only for pointers that point to built-in array elements.

A pointer may be incremented (++) or decremented (--), an integer may be added to a pointer (+ or +=) or subtracted from a pointer (- or -=), or one pointer may be subtracted from another of the same type—this particular operation is appropriate only for two pointers that point to elements of the same built-in array.

[image: Image] Portability Tip 8.2

Most computers today have four-byte or eight-byte integers. Because the results of pointer arithmetic depend on the size of the objects a pointer points to, pointer arithmetic is machine dependent.

Assume that int v[5] has been declared and that its first element is at memory location 3000. Assume that pointer vPtr has been initialized to point to v[0] (i.e., the value of vPtr is 3000). Figure 8.15 diagrams this situation for a machine with four-byte integers. Variable vPtr can be initialized to point to v with either of the following statements (because a built-in array’s name evaluates to the address of its zeroth element):

int *vPtr = v;
int *vPtr = &v[0];

[image: Image]

Fig. 8.15. Built-in array v and a pointer variable int *vPtr that points to v.

Adding Integers to and Subtracting Integers from Pointers

In conventional arithmetic, the addition 3000 + 2 yields the value 3002. This is normally not the case with pointer arithmetic. When an integer is added to, or subtracted from, a pointer, the pointer is not simply incremented or decremented by that integer, but by that integer times the size of the object to which the pointer refers. The number of bytes depends on the object’s data type. For example, the statement

vPtr += 2;

would produce 3008 (from the calculation 3000 + 2 * 4), assuming that an int is stored in four bytes of memory. In the built-in array v, vPtr would now point to v[2] (Fig. 8.16). If an integer is stored in eight bytes of memory, then the preceding calculation would result in memory location 3016 (3000 + 2 * 8).

[image: Image]

Fig. 8.16. Pointer vPtr after pointer arithmetic.

If vPtr had been incremented to 3016, which points to v[4], the statement

vPtr -= 4;

would set vPtr back to 3000—the beginning of the built-in array. If a pointer is being incremented or decremented by one, the increment (++) and decrement (--) operators can be used. Each of the statements

++vPtr;
vPtr++;

increments the pointer to point to the built-in array’s next element. Each of the statements

--vPtr;
vPtr--;

decrements the pointer to point to the built-in array’s previous element.

[image: Image] Error-Prevention Tip 8.5

There’s no bounds checking on pointer arithmetic. You must ensure that every pointer arithmetic operation that adds an integer to or subtracts an integer from a pointer results in a pointer that references an element within the built-in array’s bounds.

Subtracting Pointers

Pointer variables pointing to the same built-in array may be subtracted from one another. For example, if vPtr contains the address 3000 and v2Ptr contains 3008, the statement

x = v2Ptr - vPtr;

would assign to x the number of built-in array elements from vPtr to v2Ptr—in this case, 2. Pointer arithmetic is meaningful only on a pointer that points to a built-in array. We cannot assume that two variables of the same type are stored contiguously in memory unless they’re adjacent elements of a built-in array.

[image: Image] Common Programming Error 8.4

Subtracting or comparing two pointers that do not refer to elements of the same built-in array is a logic error.

Pointer Assignment

A pointer can be assigned to another pointer if both pointers are of the same type. Otherwise, a cast operator (normally a reinterpret_cast; discussed in Section 14.7) must be used to convert the value of the pointer on the right of the assignment to the pointer type on the left of the assignment. The exception to this rule is the pointer to void (i.e., void *), which is a generic pointer capable of representing any pointer type. Any pointer to a fundamental type or class type can be assigned to a pointer of type void * without casting. However, a pointer of type void * cannot be assigned directly to a pointer of another type—the pointer of type void * must first be cast to the proper pointer type.

Cannot Dereference a void *

A void * pointer cannot be dereferenced. For example, the compiler “knows” that a pointer to int refers to four bytes of memory on a machine with four-byte integers, but a pointer to void simply contains a memory address for an unknown data type—the compiler does not know the precise number of bytes to which the pointer refers and the data type. The compiler must know the data type to determine the number of bytes to dereference for a particular pointer—for a pointer to void, this number of bytes cannot be determined.

[image: Image] Common Programming Error 8.5

Assigning a pointer of one type to a pointer of another (other than void *) without using a cast (normally a reinterpret_cast) is a compilation error.

[image: Image] Common Programming Error 8.6

The allowed operations on void * pointers are: comparing void * pointers with other pointers, casting void * pointers to other pointer types and assigning addresses to void * pointers. All other operations on void * pointers are compilation errors.

Comparing Pointers

Pointers can be compared using equality and relational operators. Comparisons using relational operators are meaningless unless the pointers point to elements of the same built-in array. Pointer comparisons compare the addresses stored in the pointers. A comparison of two pointers pointing to the same built-in array could show, for example, that one pointer points to a higher numbered element of the built-in array than the other pointer does. A common use of pointer comparison is determining whether a pointer has the value nullptr, 0 or NULL (i.e., the pointer does not point to anything).

8.9. Relationship Between Pointers and Built-In Arrays

Built-in arrays and pointers are intimately related in C++ and may be used almost interchangeably. Pointers can be used to do any operation involving array subscripting.

Assume the following declarations

Click here to view code image

int b[5]; // create 5-element int array b; b is a const pointer
int *bPtr; // create int pointer bPtr, which isn't a const pointer

We can set bPtr to the address of the first element in the built-in array b with the statement

bPtr = b; // assign address of built-in array b to bPtr

This is equivalent to assigning the address of the first element as follows:

bPtr = &b[0]; // also assigns address of built-in array b to bPtr

Pointer/Offset Notation

Built-in array element b[3] can alternatively be referenced with the pointer expression

*(bPtr + 3)

The 3 in the preceding expression is the offset to the pointer. When the pointer points to the beginning of a built-in array, the offset indicates which built-in array element should be referenced, and the offset value is identical to the subscript. This notation is referred to as pointer/offset notation. The parentheses are necessary, because the precedence of * is higher than that of +. Without the parentheses, the preceding expression would add 3 to a copy of *bPtr’s value (i.e., 3 would be added to b[0], assuming that bPtr points to the beginning of the built-in array).

Just as the built-in array element can be referenced with a pointer expression, the address

&b[3]

can be written with the pointer expression

bPtr + 3

Pointer/Offset Notation with the Built-In Array’s Name as the Pointer

The built-in array name can be treated as a pointer and used in pointer arithmetic. For example, the expression

*(b + 3)

also refers to the element b[3]. In general, all subscripted built-in array expressions can be written with a pointer and an offset. In this case, pointer/offset notation was used with the built-in array’s name as a pointer. The preceding expression does not modify the built-in array’s name; b still points to the built-in array’s first element.

Pointer/Subscript Notation

Pointers can be subscripted exactly as built-in arrays can. For example, the expression

bPtr[1]

refers to b[1]; this expression uses pointer/subscript notation.

The Name of a Built-In Array Is Not Modifiable

The expression

b += 3

causes a compilation error, because it attempts to modify the value of the built-in array’s name with pointer arithmetic.

[image: Image] Good Programming Practice 8.2

For clarity, use built-in array notation instead of pointer notation when manipulating built-in arrays.

Demonstrating the Relationship Between Pointers and Built-In Arrays

Figure 8.17 uses the four notations discussed in this section for referring to built-in array elements—array subscript notation, pointer/offset notation with the built-in array’s name as a pointer, pointer subscript notation and pointer/offset notation with a pointer—to accomplish the same task, namely displaying the four elements of the built-in array of ints named b.

Click here to view code image

 1 // Fig. 8.17: fig08_17.cpp
 2 // Using subscripting and pointer notations with built-in arrays.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int b[] = { 10, 20, 30, 40 }; // create 4-element built-in array b
 9 int *bPtr = b; // set bPtr to point to built-in array b
10
11 // output built-in array b using array subscript notation
12 cout << "Array b displayed with:\n\nArray subscript notation\n";
13
14 for (size_t i = 0; i < 4; ++i)
15 cout << "b[" << i << "] = " << b[i] << '\n';
16
17 // output built-in array b using array name and pointer/offset notation
18 cout << "\nPointer/offset notation where "
19 << "the pointer is the array name\n";
20
21 for (size_t offset1 = 0; offset1 < 4; ++offset1)
22 cout << "*(b + " << offset1 << ") = " << *(b + offset1) << '\n';
23
24 // output built-in array b using bPtr and array subscript notation
25 cout << "\nPointer subscript notation\n";
26
27 for (size_t j = 0; j < 4; ++j)
28 cout << "bPtr[" << j << "] = " << bPtr[j] << '\n';
29
30 cout << "\nPointer/offset notation\n";
31
32 // output built-in array b using bPtr and pointer/offset notation
33 for (size_t offset2 = 0; offset2 < 4; ++offset2)
34 cout << "*(bPtr + " << offset2 << ") = "
35 << *(bPtr + offset2) << '\n';
36 } // end main

Array b displayed with:

Array subscript notation
b[0] = 10
b[1] = 20
b[2] = 30
b[3] = 40

Pointer/offset notation where the pointer is the array name
*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40

Pointer subscript notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10
*(bPtr + 1) = 20
*(bPtr + 2) = 30
*(bPtr + 3) = 40

Fig. 8.17. Using subscripting and pointer notations with built-in arrays.

8.10. Pointer-Based Strings

We’ve already used the C++ Standard Library string class to represent strings as full-fledged objects. For example, the GradeBook class case study in Chapters 3–7 represents a course name using a string object. Chapter 19 presents class string in detail. This section introduces C-style, pointer-based strings (as defined by the C programming language), which we’ll simply call C strings. C++’s string class is preferred for use in new programs, because it eliminates many of the security problems and bugs that can be caused by manipulating C strings. We cover C strings here for a deeper understanding of pointers and built-in arrays. Also, if you work with legacy C and C++ programs, you’re likely to encounter pointer-based strings. We cover C strings in detail in Appendix F.

Characters and Character Constants

Characters are the fundamental building blocks of C++ source programs. Every program is composed of a sequence of characters that—when grouped together meaningfully—is interpreted by the compiler as instructions used to accomplish a task. A program may contain character constants. A character constant is an integer value represented as a character in single quotes. The value of a character constant is the integer value of the character in the machine’s character set. For example, 'z' represents the integer value of z (122 in the ASCII character set; see Appendix B), and '\n' represents the integer value of newline (10 in the ASCII character set).

Strings

A string is a series of characters treated as a single unit. A string may include letters, digits and various special characters such as +, -, *, / and $. String literals, or string constants, in C++ are written in double quotation marks as follows:

Click here to view code image

"John Q. Doe" (a name)
"9999 Main Street" (a street address)
"Maynard, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

Pointer-Based Strings

A pointer-based string is a built-in array of characters ending with a null character ('\0'), which marks where the string terminates in memory. A string is accessed via a pointer to its first character. The sizeof a string literal is the length of the string including the terminating null character. Pointer-based strings are like built-in arrays—a built-in array name is also a pointer to its first element.

String Literals as Initializers

A string literal may be used as an initializer in the declaration of either a built-in array of chars or a variable of type const char *. The declarations

char color[] = "blue";
const char *colorPtr = "blue";

each initialize a variable to the string "blue". The first declaration creates a five-element built-in array color containing the characters 'b', 'l', 'u', 'e' and '\0'. The second declaration creates pointer variable colorPtr that points to the letter b in the string "blue" (which ends in '\0') somewhere in memory. String literals have static storage duration (they exist for the duration of the program) and may or may not be shared if the same string literal is referenced from multiple locations in a program.

[image: Image] Error-Prevention Tip 8.6

If you need to modify the contents of a string literal, store it in a built-in array of chars first.

Character Constants as Initializers

The declaration char color[] = "blue"; could also be written

char color[] = { 'b', 'l', 'u', 'e', '\0' };

which uses character constants in single quotes (') as initializers for each element of the built-in array. When declaring a built-in array of chars to contain a string, the built-in array must be large enough to store the string and its terminating null character. The compiler determines the size of the built-in array in the preceding declaration, based on the number of initializers in the initializer list.

[image: Image] Common Programming Error 8.7

Not allocating sufficient space in a built-in array of chars to store the null character that terminates a string is a logic error.

[image: Image] Common Programming Error 8.8

Creating or using a C string that does not contain a terminating null character can lead to logic errors.

[image: Image] Error-Prevention Tip 8.7

When storing a string of characters in a built-in array of chars, be sure that the built-in array is large enough to hold the largest string that will be stored. C++ allows strings of any length. If a string is longer than the built-in array of chars in which it’s to be stored, characters beyond the end of the built-in array will overwrite data in memory following the built-in array, leading to logic errors and potential security breaches.

Accessing Characters in a C String

Because a C string is a built-in array of characters, we can access individual characters in a string directly with array subscript notation. For example, in the preceding declaration, color[0] is the character 'b', color[2] is 'u' and color[4] is the null character.

Reading Strings into char Built-In Arrays with cin

A string can be read into a built-in array of chars using stream extraction with cin. For example, the following statement reads a string into the built-in 20-element array of chars named word:

cin >> word;

The string entered by the user is stored in word. The preceding statement reads characters until a white-space character or end-of-file indicator is encountered. The string should be no longer than 19 characters to leave room for the terminating null character. The setw stream manipulator can be used to ensure that the string read into word does not exceed the size of the built-in array. For example, the statement

cin >> setw(20) >> word;

specifies that cin should read a maximum of 19 characters into word and save the 20th location to store the terminating null character for the string. The setw stream manipulator is not a sticky setting—it applies only to the next value being input. If more than 19 characters are entered, the remaining characters are not saved in word, but they will be in the input stream and can be read by the next input operation.1 Of course, any input operation can also fail. We show how to detect input failures in Section 13.8.

1. To learn how to ignore extra characters in the input steam, see the article at: www.daniweb.com/software-development/cpp/threads/90228/flushing-the-input-stream.

Reading Lines of Text into char Built-In Arrays with cin.getline

In some cases, it’s desirable to input an entire line of text into a built-in array of chars. For this purpose, the cin object provides the member function getline, which takes three arguments—a built-in array of chars in which the line of text will be stored, a length and a delimiter character. For example, the statements

char sentence[80];
cin.getline(sentence, 80, '\n');

declare sentence as a built-in array of 80 characters and read a line of text from the keyboard into the built-in array. The function stops reading characters when the delimiter character '\n' is encountered, when the end-of-file indicator is entered or when the number of characters read so far is one less than the length specified in the second argument. The last character in the built-in array is reserved for the terminating null character. If the delimiter character is encountered, it’s read and discarded. The third argument to cin.getline has '\n' as a default value, so the preceding function call could have been written as:

cin.getline(sentence, 80);

Chapter 13, Stream Input/Output: A Deeper Look, provides a detailed discussion of cin.getline and other input/output functions.

Displaying C Strings

A built-in array of chars representing a null-terminated string can be output with cout and <<. The statement

cout << sentence;

displays the built-in array sentence. Like cin, cout does not care how large the built-in array of chars is. The characters are output until a terminating null character is encountered; the null character is not displayed. [Note: cin and cout assume that built-in array of chars should be processed as strings terminated by null characters; cin and cout do not provide similar input and output processing capabilities for other built-in array types.]

8.11. Wrap-Up

In this chapter we provided a detailed introduction to pointers—variables that contain memory addresses as their values. We began by demonstrating how to declare and initialize pointers. You saw how to use the address operator (&) to assign the address of a variable to a pointer and the indirection operator (*) to access the data stored in the variable indirectly referenced by a pointer. We discussed passing arguments by reference using pointer arguments.

We discussed how to declare and use built-in arrays, which C++ inherited from the C programming language. You learned how to use const with pointers to enforce the principle of least privilege. We demonstrated using nonconstant pointers to nonconstant data, nonconstant pointers to constant data, constant pointers to nonconstant data, and constant pointers to constant data. We discussed the compile-time sizeof operator, which can be used to determine the sizes of data types and variables in bytes at compile time.

We discussed how to use pointers in arithmetic and comparison expressions. You saw that pointer arithmetic can be used to move from one element of a built-in array to another. We briefly introduced pointer-based strings.

In the next chapter, we begin our deeper treatment of classes. You’ll learn about the scope of a class’s members and how to keep objects in a consistent state. You’ll also learn about using special member functions called constructors and destructors, which execute when an object is created and destroyed, respectively, and we’ll discuss when constructors and destructors are called. In addition, we’ll demonstrate using default arguments with constructors and using default memberwise assignment to assign one object of a class to another object of the same class. We’ll also discuss the danger of returning a reference to a private data member of a class.

9. Classes: A Deeper Look; Throwing Exceptions

Objectives

In this chapter you’ll:

• Use an include guard.

• Access class members via an object’s name, a reference or a pointer.

• Use destructors to perform “termination housekeeping.”

• Learn the order of constructor and destructor calls.

• Learn about the dangers of returning a reference to private data.

• Assign the data members of one object to those of another object.

• Create objects composed of other objects.

• Use friend functions and friend classes.

• Use the this pointer in a member function to access a non-static class member.

Outline

9.1 Introduction

9.2 Time Class Case Study

9.3 Class Scope and Accessing Class Members

9.4 Access Functions and Utility Functions

9.5 Time Class Case Study: Constructors with Default Arguments

9.6 Destructors

9.7 When Constructors and Destructors Are Called

9.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a Pointer to a private Data Member

9.9 Default Memberwise Assignment

9.10 const Objects and const Member Functions

9.11 Composition: Objects as Members of Classes

9.12 friend Functions and friend Classes

9.13 Using the this Pointer

9.14 static Class Members

9.15 Wrap-Up

9.1. Introduction

This chapter takes a deeper look at classes. We use an integrated Time class case study and other examples to demonstrate several class construction capabilities. We begin with a Time class that reviews several of the features presented in preceding chapters. The example also demonstrates using an include guard in headers to prevent header code from being included in the same source code file more than once.

We demonstrate how client code can access a class’s public members via the name of an object, a reference to an object or a pointer to an object. As you’ll see, object names and references can be used with the dot (.) member selection operator to access a public member, and pointers can be used with the arrow (->) member selection operator.

We discuss access functions that can read or write an object’s data members. A common use of access functions is to test the truth or falsity of conditions—such functions are known as predicate functions. We also demonstrate the notion of a utility function (also called a helper function)—a private member function that supports the operation of the class’s public member functions, but is not intended for use by clients of the class.

We show how to pass arguments to constructors and show how default arguments can be used in constructors to enable client code to initialize objects using a variety of arguments. Next, we discuss a special member function called a destructor that’s part of every class and is used to perform “termination housekeeping” on an object before it’s destroyed. We demonstrate the order in which constructors and destructors are called.

We show that returning a reference or pointer to private data breaks the encapsulation of a class, allowing client code to directly access an object’s data. We use default memberwise assignment to assign an object of a class to another object of the same class.

We use const objects and const member functions to prevent modifications of objects and enforce the principle of least privilege. We discuss composition—a form of reuse in which a class can have objects of other classes as members. Next, we use friendship to specify that a nonmember function can also access a class’s non-public members—a technique that’s often used in operator overloading (Chapter 10) for performance reasons. We discuss the this pointer, which is an implicit argument in all calls to a class’s non-static member functions, allowing them to access the correct object’s data members and non-static member functions. We motivate the need for static class members and show how to use them in your own classes.

9.2. Time Class Case Study

Our first example creates class Time and tests the class. We demonstrate an important C++ software engineering concept—using an include guard in headers to prevent the code in the header from being included into the same source code file more than once. Since a class can be defined only once, using such preprocessing directives prevents multiple-definition errors.

Time Class Definition

The class definition (Fig. 9.1) contains prototypes (lines 13–16) for member functions Time, setTime, printUniversal and printStandard, and includes private unsigned int members hour, minute and second (lines 18–20). Class Time’s private data members can be accessed only by its member functions. Chapter 11 introduces a third access specifier, protected, as we study inheritance and the part it plays in object-oriented programming.

Click here to view code image

 1 // Fig. 9.1: Time.h
 2 // Time class definition.
 3 // Member functions are defined in Time.cpp
 4
 5 // prevent multiple inclusions of header
 6 #ifndef TIME_H
 7 #define TIME_H
 8
 9 // Time class definition
10 class Time
11 {
12 public:
13 Time(); // constructor
14 void setTime(int, int, int); // set hour, minute and second
15 void printUniversal() const; // print time in universal-time format
16 void printStandard() const; // print time in standard-time format
17 private:
18 unsigned int hour; // 0 - 23 (24-hour clock format)
19 unsigned int minute; // 0 - 59
20 unsigned int second; // 0 - 59
21 }; // end class Time
22
23 #endif

Fig. 9.1. Time class definition.

[image: Image] Good Programming Practice 9.1

For clarity and readability, use each access specifier only once in a class definition. Place public members first, where they’re easy to locate.

[image: Image] Software Engineering Observation 9.1

Each member of a class should have private visibility unless it can be proven that the element needs public visibility. This is another example of the principle of least privilege.

In Fig. 9.1, the class definition is enclosed in the following include guard (lines 6, 7 and 23):

Click here to view code image

// prevent multiple inclusions of header
#ifndef TIME_H
#define TIME_H
 ...
#endif

When we build larger programs, other definitions and declarations will also be placed in headers. The preceding include guard prevents the code between #ifndef (which means “if not defined”) and #endif from being included if the name TIME_H has been defined. If the header has not been included previously in a file, the name TIME_H is defined by the #define directive and the header statements are included. If the header has been included previously, TIME_H is defined already and the header is not included again. Attempts to include a header multiple times (inadvertently) typically occur in large programs with many headers that may themselves include other headers.

[image: Image] Error-Prevention Tip 9.1

Use #ifndef, #define and #endif preprocessing directives to form an include guard that prevents headers from being included more than once in a source-code file.

[image: Image] Good Programming Practice 9.2

By convention, use the name of the header in uppercase with the period replaced by an underscore in the #ifndef and #define preprocessing directives of a header.

Time Class Member Functions

In Fig. 9.2, the Time constructor (lines 11–14) initializes the data members to 0—the universal-time equivalent of 12 AM. Invalid values cannot be stored in the data members of a Time object, because the constructor is called when the Time object is created, and all subsequent attempts by a client to modify the data members are scrutinized by function setTime (discussed shortly). Finally, it’s important to note that you can define overloaded constructors for a class—we studied overloaded functions in Section 6.17.

Click here to view code image

 1 // Fig. 9.2: Time.cpp
 2 // Time class member-function definitions.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <stdexcept> // for invalid_argument exception class
 6 #include "Time.h" // include definition of class Time from Time.h
 7
 8 using namespace std;
 9
10 // Time constructor initializes each data member to zero.
11 Time::Time()
12 : hour(0), minute(0), second(0)
13 {
14 } // end Time constructor
15
16 // set new Time value using universal time
17 void Time::setTime(int h, int m, int s)
18 {
19 // validate hour, minute and second
20 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
21 (s >= 0 && s < 60))
22 {
23 hour = h;
24 minute = m;
25 second = s;
26 } // end if
27 else
28 throw invalid_argument(
29 "hour, minute and/or second was out of range");
30 } // end function setTime
31
32 // print Time in universal-time format (HH:MM:SS)
33 void Time::printUniversal() const
34 {
35 cout << setfill('0') << setw(2) << hour << ":"
36 << setw(2) << minute << ":" << setw(2) << second;
37 } // end function printUniversal
38
39 // print Time in standard-time format (HH:MM:SS AM or PM)
40 void Time::printStandard() const
41 {
42 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12) << ":"
43 << setfill('0') << setw(2) << minute << ":" << setw(2)
44 << second << (hour < 12 ? " AM" : " PM");
45 } // end function printStandard

Fig. 9.2. Time class member-function definitions.

[image: Image]

Before C++11, only static const int data members (which you saw in Chapter 7) could be initialized where they were declared in the class body. For this reason, data members typically should be initialized by the class’s constructor as there is no default initialization for fundamental-type data members. As of C++11, you can now use an in-class initializer to initialize any data member where it’s declared in the class definition.

Time Class Member Function setTime and Throwing Exceptions

Function setTime (lines 17–30) is a public function that declares three int parameters and uses them to set the time. Lines 20–21 test each argument to determine whether the value is in range, and, if so, lines 23–25 assign the values to the hour, minute and second data members. The hour value must be greater than or equal to 0 and less than 24, because universal-time format represents hours as integers from 0 to 23 (e.g., 1 PM is hour 13 and 11 PM is hour 23; midnight is hour 0 and noon is hour 12). Similarly, both minute and second must be greater than or equal to 0 and less than 60. For values outside these ranges, setTime throws an exception (lines 28–29) of type invalid_argument (from header <stdexcept>), which notifies the client code that an invalid argument was received. As you learned in Section 7.10, you can use try...catch to catch exceptions and attempt to recover from them, which we’ll do in Fig. 9.3. The throw statement (lines 28–29) creates a new object of type invalid_argument. The parentheses following the class name indicate a call to the invalid_argument constructor that allows us to specify a custom error message string. After the exception object is created, the throw statement immediately terminates function setTime and the exception is returned to the code that attempted to set the time.

Click here to view code image

 1 // Fig. 9.3: fig09_03.cpp
 2 // Program to test class Time.
 3 // NOTE: This file must be compiled with Time.cpp.
 4 #include <iostream>
 5 #include <stdexcept> // for invalid_argument exception class
 6 #include "Time.h" // include definition of class Time from Time.h
 7 using namespace std;
 8
 9 int main()
10 {
11 Time t; // instantiate object t of class Time
12
13 // output Time object t's initial values
14 cout << "The initial universal time is ";
15 t.printUniversal(); // 00:00:00
16 cout << "\nThe initial standard time is ";
17 t.printStandard(); // 12:00:00 AM
18
19 t.setTime(13, 27, 6); // change time
20
21 // output Time object t's new values
22 cout << "\n\nUniversal time after setTime is ";
23 t.printUniversal(); // 13:27:06
24 cout << "\nStandard time after setTime is ";
25 t.printStandard(); // 1:27:06 PM
26
27 // attempt to set the time with invalid values
28 try
29 {
30 t.setTime(99, 99, 99); // all values out of range
31 } // end try
32 catch (invalid_argument &e)
33 {
34 cout << "Exception: " << e.what() << endl;
35 } // end catch
36
37 // output t's values after specifying invalid values
38 cout << "\n\nAfter attempting invalid settings:"
39 << "\nUniversal time: ";
40 t.printUniversal(); // 13:27:06
41 cout << "\nStandard time: ";
42 t.printStandard(); // 1:27:06 PM
43 cout << endl;
44 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Fig. 9.3. Program to test class Time.

Time Class Member Function printUniversal

Function printUniversal (lines 33–37 of Fig. 9.2) takes no arguments and outputs the time in universal-time format, consisting of three colon-separated pairs of digits. If the time were 1:30:07 PM, function printUniversal would return 13:30:07. Line 35 uses parameterized stream manipulator setfill to specify the fill character that’s displayed when an integer is output in a field wider than the number of digits in the value. The fill characters appear to the left of the digits in the number, because the number is right aligned by default—for left aligned values, the fill characters would appear to the right. In this example, if the minute value is 2, it will be displayed as 02, because the fill character is set to zero ('0'). If the number being output fills the specified field, the fill character will not be displayed. Once the fill character is specified with setfill, it applies for all subsequent values that are displayed in fields wider than the value being displayed—setfill is a “sticky” setting. This is in contrast to setw, which applies only to the next value displayed—setw is a “nonsticky” setting.

[image: Image] Error-Prevention Tip 9.2

Each sticky setting (such as a fill character or floating-point precision) should be restored to its previous setting when it’s no longer needed. Failure to do so may result in incorrectly formatted output later in a program. Chapter 13, Stream Input/Output: A Deeper Look, discusses how to reset the fill character and precision.

Time Class Member Function printStandard

Function printStandard (lines 40–45) takes no arguments and outputs the date in standard-time format, consisting of the hour, minute and second values separated by colons and followed by an AM or PM indicator (e.g., 1:27:06 PM). Like function printUniversal, function printStandard uses setfill('0') to format the minute and second as two digit values with leading zeros if necessary. Line 42 uses the conditional operator (?:) to determine the value of hour to be displayed—if the hour is 0 or 12 (AM or PM), it appears as 12; otherwise, the hour appears as a value from 1 to 11. The conditional operator in line 44 determines whether AM or PM will be displayed.

Defining Member Functions Outside the Class Definition; Class Scope

Even though a member function declared in a class definition may be defined outside that class definition (and “tied” to the class via the scope resolution operator), that member function is still within that class’s scope—that is, its name is known to other class members referred to via an object of the class, a reference to an object of the class, a pointer to an object of the class or the scope resolution operator. We’ll say more about class scope shortly.

If a member function is defined in a class’s body, the member function is implicitly declared inline. Remember that the compiler reserves the right not to inline any function.

[image: Image] Performance Tip 9.1

Defining a member function inside the class definition inlines the member function (if the compiler chooses to do so). This can improve performance.

[image: Image] Software Engineering Observation 9.2

Only the simplest and most stable member functions (i.e., whose implementations are unlikely to change) should be defined in the class header.

Member Functions vs. Global Functions (Also Called Free Functions)

The printUniversal and printStandard member functions take no arguments, because these member functions implicitly know that they’re to print the data members of the particular Time object on which they’re invoked. This can make member function calls more concise than conventional function calls in procedural programming.

[image: Image] Software Engineering Observation 9.3

Using an object-oriented programming approach often simplifies function calls by reducing the number of parameters. This benefit derives from the fact that encapsulating data members and member functions within a class gives the member functions the right to access the data members.

[image: Image] Software Engineering Observation 9.4

Member functions are usually shorter than functions in non-object-oriented programs, because the data stored in data members have ideally been validated by a constructor or by member functions that store new data. Because the data is already in the object, the member-function calls often have no arguments or fewer arguments than function calls in non-object-oriented languages. Thus, the calls, the function definitions and the function prototypes are shorter. This improves many aspects of program development.

[image: Image] Error-Prevention Tip 9.3

The fact that member function calls generally take either no arguments or substantially fewer arguments than conventional function calls in non-object-oriented languages reduces the likelihood of passing the wrong arguments, the wrong types of arguments or the wrong number of arguments.

Using Class Time

Once defined, Time can be used as a type in declarations as follows:

Click here to view code image

Time sunset; // object of type Time
array< Time, 5 > arrayOfTimes; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

Figure 9.3 uses class Time. Line 11 instantiates a single object of class Time called t. When the object is instantiated, the Time constructor is called to initialize each private data member to 0. Then, lines 15 and 17 print the time in universal and standard formats, respectively, to confirm that the members were initialized properly. Line 19 sets a new time by calling member function setTime, and lines 23 and 25 print the time again in both formats.

Calling setTime with Invalid Values

To illustrate that method setTime validates its arguments, line 30 calls setTime with invalid arguments of 99 for the hour, minute and second. This statement is placed in a try block (lines 28–31) in case setTime throws an invalid_argument exception, which it will do since the arguments are all invalid. When this occurs, the exception is caught at lines 32–35 and line 34 displays the exception’s error message by calling its what member function. Lines 38–42 output the time again in both formats to confirm that setTime did not change the time when invalid arguments were supplied.

Looking Ahead to Composition and Inheritance

Often, classes do not have to be created “from scratch.” Rather, they can include objects of other classes as members or they may be derived from other classes that provide attributes and behaviors the new classes can use. Such software reuse can greatly enhance productivity and simplify code maintenance. Including class objects as members of other classes is called composition (or aggregation) and is discussed in Section 9.11. Deriving new classes from existing classes is called inheritance and is discussed in Chapter 11.

Object Size

People new to object-oriented programming often suppose that objects must be quite large because they contain data members and member functions. Logically, this is true—you may think of objects as containing data and functions (and our discussion has certainly encouraged this view); physically, however, this is not true.

[image: Image] Performance Tip 9.2

Objects contain only data, so objects are much smaller than if they also contained member functions. The compiler creates one copy (only) of the member functions separate from all objects of the class. All objects of the class share this one copy. Each object, of course, needs its own copy of the class’s data, because the data can vary among the objects. The function code is nonmodifiable and, hence, can be shared among all objects of one class.

9.3. Class Scope and Accessing Class Members

A class’s data members and member functions belong to that class’s scope. Nonmember functions are defined at global namespace scope, by default. (We discuss namespaces in more detail in Section 21.4.)

Within a class’s scope, class members are immediately accessible by all of that class’s member functions and can be referenced by name. Outside a class’s scope, public class members are referenced through one of the handles on an object—an object name, a reference to an object or a pointer to an object. The type of the object, reference or pointer specifies the interface (e.g., the member functions) accessible to the client. [We’ll see in Section 9.13 that an implicit handle is inserted by the compiler on every reference to a data member or member function from within an object.]

Class Scope and Block Scope

Variables declared in a member function have block scope and are known only to that function. If a member function defines a variable with the same name as a variable with class scope, the class-scope variable is hidden in the function by the block-scope variable. Such a hidden variable can be accessed by preceding the variable name with the class name followed by the scope resolution operator (::). Hidden global variables can be accessed with the scope resolution operator (see Chapter 6).

Dot (.) and Arrow (->) Member Selection Operators

The dot member selection operator (.) is preceded by an object’s name or with a reference to an object to access the object’s members. The arrow member selection operator (->) is preceded by a pointer to an object to access the object’s members.

Accessing public Class Members Through Objects, References and Pointers

Consider an Account class that has a public setBalance member function. Given the following declarations:

Click here to view code image

Account account; // an Account object
// accountRef refers to an Account object
Account &accountRef = account;
// accountPtr points to an Account object
Account *accountPtr = &account;

You can invoke member function setBalance using the dot (.) and arrow (->) member selection operators as follows:

Click here to view code image

// call setBalance via the Account object
account.setBalance(123.45);
// call setBalance via a reference to the Account object
accountRef.setBalance(123.45);
// call setBalance via a pointer to the Account object
accountPtr->setBalance(123.45);

9.4. Access Functions and Utility Functions

Access Functions

Access functions can read or display data. Another common use for access functions is to test the truth or falsity of conditions—such functions are often called predicate functions. An example of a predicate function would be an isEmpty function for any container class—a class capable of holding many objects, like a vector. A program might test isEmpty before attempting to read another item from the container object. An isFull predicate function might test a container-class object to determine whether it has no additional room. Useful predicate functions for our Time class might be isAM and isPM.

Utility Functions

A utility function (also called a helper function) is a private member function that supports the operation of a class’s other member functions. Utility functions are declared private because they’re not intended for use by the class’s clients. A common use of a utility function would be to place in a function some common code that would otherwise be duplicated in several other member functions.

9.5. Time Class Case Study: Constructors with Default Arguments

The program of Figs. 9.4–9.6 enhances class Time to demonstrate how arguments are implicitly passed to a constructor. The constructor defined in Fig. 9.2 initialized hour, minute and second to 0 (i.e., midnight in universal time). Like other functions, constructors can specify default arguments. Line 13 of Fig. 9.4 declares the Time constructor to include default arguments, specifying a default value of zero for each argument passed to the constructor. The constructor is declared explicit because it can be called with one argument. We discuss explicit constructors in detail in Section 10.13.

Click here to view code image

 1 // Fig. 9.4: Time.h
 2 // Time class containing a constructor with default arguments.
 3 // Member functions defined in Time.cpp.
 4
 5 // prevent multiple inclusions of header
 6 #ifndef TIME_H
 7 #define TIME_H
 8
 9 // Time class definition
10 class Time
11 {
12 public:
13 explicit Time(int = 0, int = 0, int = 0); // default constructor
14
15 // set functions
16 void setTime(int, int, int); // set hour, minute, second
17 void setHour(int); // set hour (after validation)
18 void setMinute(int); // set minute (after validation)
19 void setSecond(int); // set second (after validation)
20
21 // get functions
22 unsigned int getHour() const; // return hour
23 unsigned int getMinute() const; // return minute
24 unsigned int getSecond() const; // return second
25
26 void printUniversal() const; // output time in universal-time format
27 void printStandard() const; // output time in standard-time format
28 private:
29 unsigned int hour; // 0 - 23 (24-hour clock format)
30 unsigned int minute; // 0 - 59
31 unsigned int second; // 0 - 59
32 }; // end class Time
33
34 #endif

Fig. 9.4. Time class containing a constructor with default arguments.

Click here to view code image

 1 // Fig. 9.5: Time.cpp
 2 // Member-function definitions for class Time.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <stdexcept>
 6 #include "Time.h" // include definition of class Time from Time.h
 7 using namespace std;
 8
 9 // Time constructor initializes each data member
10 Time::Time(int hour, int minute, int second)
11 {
12 setTime(hour, minute, second); // validate and set time
13 } // end Time constructor
14
15 // set new Time value using universal time
16 void Time::setTime(int h, int m, int s)
17 {
18 setHour(h); // set private field hour
19 setMinute(m); // set private field minute
20 setSecond(s); // set private field second
21 } // end function setTime
22
23 // set hour value
24 void Time::setHour(int h)
25 {
26 if (h >= 0 && h < 24)
27 hour = h;
28 else
29 throw invalid_argument("hour must be 0-23");
30 } // end function setHour
31
32 // set minute value
33 void Time::setMinute(int m)
34 {
35 if (m >= 0 && m < 60)
36 minute = m;
37 else
38 throw invalid_argument("minute must be 0-59");
39 } // end function setMinute
40
41 // set second value
42 void Time::setSecond(int s)
43 {
44 if (s >= 0 && s < 60)
45 second = s;
46 else
47 throw invalid_argument("second must be 0-59");
48 } // end function setSecond
49
50 // return hour value
51 unsigned int Time::getHour() const
52 {
53 return hour;
54 } // end function getHour
55
56 // return minute value
57 unsigned Time::getMinute() const
58 {
59 return minute;
60 } // end function getMinute
61
62 // return second value
63 unsigned Time::getSecond() const
64 {
65 return second;
66 } // end function getSecond
67
68 // print Time in universal-time format (HH:MM:SS)
69 void Time::printUniversal() const
70 {
71 cout << setfill('0') << setw(2) << getHour() << ":"
72 << setw(2) << getMinute() << ":" << setw(2) << getSecond();
73 } // end function printUniversal
74
75 // print Time in standard-time format (HH:MM:SS AM or PM)
76 void Time::printStandard() const
77 {
78 cout << ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12)
79 << ":" << setfill('0') << setw(2) << getMinute()
80 << ":" << setw(2) << getSecond() << (hour < 12 ? " AM" : " PM");
81 } // end function printStandard

Fig. 9.5. Member-function definitions for class Time.

Click here to view code image

 1 // Fig. 9.6: fig09_06.cpp
 2 // Constructor with default arguments.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "Time.h" // include definition of class Time from Time.h
 6 using namespace std;
 7
 8 int main()
 9 {
10 Time t1; // all arguments defaulted
11 Time t2(2); // hour specified; minute and second defaulted
12 Time t3(21, 34); // hour and minute specified; second defaulted
13 Time t4(12, 25, 42); // hour, minute and second specified
14
15 cout << "Constructed with:\n\nt1: all arguments defaulted\n ";
16 t1.printUniversal(); // 00:00:00
17 cout << "\n ";
18 t1.printStandard(); // 12:00:00 AM
19
20 cout << "\n\nt2: hour specified; minute and second defaulted\n ";
21 t2.printUniversal(); // 02:00:00
22 cout << "\n ";
23 t2.printStandard(); // 2:00:00 AM
24
25 cout << "\n\nt3: hour and minute specified; second defaulted\n ";
26 t3.printUniversal(); // 21:34:00
27 cout << "\n ";
28 t3.printStandard(); // 9:34:00 PM
29
30 cout << "\n\nt4: hour, minute and second specified\n ";
31 t4.printUniversal(); // 12:25:42
32 cout << "\n ";
33 t4.printStandard(); // 12:25:42 PM
34
35 // attempt to initialize t6 with invalid values
36 try
37 {
38 Time t5(27, 74, 99); // all bad values specified
39 } // end try
40 catch (invalid_argument &e)
41 {
42 cerr << "\n\nException while initializing t5: " << e.what() << endl;
43 } // end catch
44 } // end main

Constructed with:

t1: all arguments defaulted
 00:00:00
 12:00:00 AM

t2: hour specified; minute and second defaulted
 02:00:00
 2:00:00 AM

t3: hour and minute specified; second defaulted
 21:34:00
 9:34:00 PM

t4: hour, minute and second specified
 12:25:42
 12:25:42 PM

Exception while initializing t5: hour must be 0-23

Fig. 9.6. Constructor with default arguments.

In Fig. 9.5, lines 10–13 define the new version of the Time constructor that receives values for parameters hour, minute and second that will be used to initialize private data members hour, minute and second, respectively. The default arguments to the constructor ensure that, even if no values are provided in a constructor call, the constructor still initializes the data members. A constructor that defaults all its arguments is also a default constructor—that is, a constructor that can be invoked with no arguments. There can be at most one default constructor per class. The version of class Time in this example provides set and get functions for each data member. The Time constructor now calls setTime, which calls the setHour, setMinute and setSecond functions to validate and assign values to the data members.

[image: Image] Software Engineering Observation 9.5

Any change to the default argument values of a function requires the client code to be recompiled (to ensure that the program still functions correctly).

In Fig. 9.5, line 12 of the constructor calls member function setTime with the values passed to the constructor (or the default values). Function setTime calls setHour to ensure that the value supplied for hour is in the range 0–23, then calls setMinute and setSecond to ensure that the values for minute and second are each in the range 0–59. Functions setHour (lines 24–30), setMinute (lines 33–39) and setSecond (lines 42–48) each throw an exception if an out-of-range argument is received.

Function main in Fig. 9.6 initializes five Time objects—one with all three arguments defaulted in the implicit constructor call (line 10), one with one argument specified (line 11), one with two arguments specified (line 12), one with three arguments specified (line 13) and one with three invalid arguments specified (line 38). The program displays each object in universal-time and standard-time formats. For Time object t5 (line 38), the program displays an error message because the constructor arguments are out of range.

Notes Regarding Class Time’s Set and Get Functions and Constructor

Time’s set and get functions are called throughout the class’s body. In particular, function setTime (lines 16–21 of Fig. 9.5) calls functions setHour, setMinute and setSecond, and functions printUniversal and printStandard call functions getHour, getMinute and getSecond in line 71–72 and lines 78–80. In each case, these functions could have accessed the class’s private data directly. However, consider changing the representation of the time from three int values (requiring 12 bytes of memory on systems with four-byte ints) to a single int value representing the total number of seconds that have elapsed since midnight (requiring only four bytes of memory). If we made such a change, only the bodies of the functions that access the private data directly would need to change—in particular, the individual set and get functions for the hour, minute and second. There would be no need to modify the bodies of functions setTime, printUniversal or printStandard, because they do not access the data directly. Designing the class in this manner reduces the likelihood of programming errors when altering the class’s implementation.

Similarly, the Time constructor could be written to include a copy of the appropriate statements from function setTime. Doing so may be slightly more efficient, because the extra call to setTime is eliminated. However, duplicating statements in multiple functions or constructors makes changing the class’s internal data representation more difficult. Having the Time constructor call setTime and having setTime call setHour, setMinute and setSecond enables us to limit the changes to code that validates the hour, minute or second to the corresponding set function. This reduces the likelihood of errors when altering the class’s implementation.

[image: Image] Software Engineering Observation 9.6

If a member function of a class already provides all or part of the functionality required by a constructor (or other member function) of the class, call that member function from the constructor (or other member function). This simplifies the maintenance of the code and reduces the likelihood of an error if the implementation of the code is modified. As a general rule: Avoid repeating code.

[image: Image] Common Programming Error 9.1

A constructor can call other member functions of the class, such as set or get functions, but because the constructor is initializing the object, the data members may not yet be initialized. Using data members before they have been properly initialized can cause logic errors.

C++11: Using List Initializers to Call Constructors

[image: Image]

Recall from Section 4.8 that C++11 now provides a uniform initialization syntax called list initializers that can be used to initialize any variable. Lines 11–13 of Fig. 9.6 can be written using list initializers as follows:

Click here to view code image

Time t2{ 2 }; // hour specified; minute and second defaulted
Time t3{ 21, 34 }; // hour and minute specified; second defaulted
Time t4{ 12, 25, 42 }; // hour, minute and second specified

or

Click here to view code image

Time t2 = { 2 }; // hour specified; minute and second defaulted
Time t3 = { 21, 34 }; // hour and minute specified; second defaulted
Time t4 = { 12, 25, 42 }; // hour, minute and second specified

The form without the = is preferred.

C++11: Overloaded Constructors and Delegating Constructors

[image: Image]

Section 6.17 showed how to overload functions. A class’s constructors and member functions can also be overloaded. Overloaded constructors typically allow objects to be initialized with different types and/or numbers of arguments. To overload a constructor, provide in the class definition a prototype for each version of the constructor, and provide a separate constructor definition for each overloaded version. This also applies to the class’s member functions.

In Figs. 9.4–9.6, the Time constructor with three parameters had a default argument for each parameter. We could have defined that constructor instead as four overloaded constructors with the following prototypes:

Click here to view code image

Time(); // default hour, minute and second to 0
Time(int); // initialize hour; default minute and second to 0
Time(int, int); // initialize hour and minute; default second to 0
Time(int, int, int); // initialize hour, minute and second

Just as a constructor can call a class’s other member functions to perform tasks, C++11 now allows constructors to call other constructors in the same class. The calling constructor is known as a delegating constructor—it delegates its work to another constructor. This is useful when overloaded constructors have common code that previously would have been defined in a private utility function and called by all the constructors.

The first three of the four Time constructors declared above can delegate work to one with three int arguments, passing 0 as the default value for the extra parameters. To do so, you use a member initializer with the name of the class as follows:

Click here to view code image

Time::Time()
 : Time(0, 0, 0) // delegate to Time(int, int, int)
{
} // end constructor with no arguments
Time::Time(int hour)
 : Time(hour, 0, 0) // delegate to Time(int, int, int)
{
} // end constructor with one argument
Time::Time(int hour, int minute)
 : Time(hour, minute, 0) // delegate to Time(int, int, int)
{
} // end constructor with two arguments

9.6. Destructors

A destructor is another type of special member function. The name of the destructor for a class is the tilde character (~) followed by the class name. This naming convention has intuitive appeal, because as we’ll see in a later chapter, the tilde operator is the bitwise complement operator, and, in a sense, the destructor is the complement of the constructor. A destructor may not specify parameters or a return type.

A class’s destructor is called implicitly when an object is destroyed. This occurs, for example, as an object is destroyed when program execution leaves the scope in which that object was instantiated. The destructor itself does not actually release the object’s memory—it performs termination housekeeping before the object’s memory is reclaimed, so the memory may be reused to hold new objects.

Even though destructors have not been defined for the classes presented so far, every class has one destructor. If you do not explicitly define a destructor, the compiler defines an “empty” destructor. [Note: We’ll see that such an implicitly created destructor does, in fact, perform important operations on class-type objects that are created through composition (Section 9.11) and inheritance (Chapter 11).] In Chapter 10, we’ll build destructors appropriate for classes whose objects contain dynamically allocated memory (e.g., for arrays and strings) or use other system resources (e.g., files on disk, which we study in Chapter 14). We discuss how to dynamically allocate and deallocate memory in Chapter 10.

9.7. When Constructors and Destructors Are Called

Constructors and destructors are called implicitly by the compiler. The order in which these function calls occur depends on the order in which execution enters and leaves the scopes where the objects are instantiated. Generally, destructor calls are made in the reverse order of the corresponding constructor calls, but as we’ll see in Figs. 9.7–9.9, the storage classes of objects can alter the order in which destructors are called.

Click here to view code image

 1 // Fig. 9.7: CreateAndDestroy.h
 2 // CreateAndDestroy class definition.
 3 // Member functions defined in CreateAndDestroy.cpp.
 4 #include <string>
 5 using namespace std;
 6
 7 #ifndef CREATE_H
 8 #define CREATE_H
 9
10 class CreateAndDestroy
11 {
12 public:
13 CreateAndDestroy(int, string); // constructor
14 ~CreateAndDestroy(); // destructor
15 private:
16 int objectID; // ID number for object
17 string message; // message describing object
18 }; // end class CreateAndDestroy
19
20 #endif

Fig. 9.7. CreateAndDestroy class definition.

Click here to view code image

 1 // Fig. 9.8: CreateAndDestroy.cpp
 2 // CreateAndDestroy class member-function definitions.
 3 #include <iostream>
 4 #include "CreateAndDestroy.h"// include CreateAndDestroy class definition
 5 using namespace std;
 6
 7 // constructor sets object's ID number and descriptive message
 8 CreateAndDestroy::CreateAndDestroy(int ID, string messageString)
 9 : objectID(ID), message(messageString)
10 {
11 cout << "Object " << objectID << " constructor runs "
12 << message << endl;
13 } // end CreateAndDestroy constructor
14
15 // destructor
16 CreateAndDestroy::~CreateAndDestroy()
17 {
18 // output newline for certain objects; helps readability
19 cout << (objectID == 1 || objectID == 6 ? "\n" : "");
20
21 cout << "Object " << objectID << " destructor runs "
22 << message << endl;
23 } // end ~CreateAndDestroy destructor

Fig. 9.8. CreateAndDestroy class member-function definitions.

Click here to view code image

 1 // Fig. 9.9: fig09_09.cpp
 2 // Order in which constructors and
 3 // destructors are called.
 4 #include <iostream>
 5 #include "CreateAndDestroy.h" // include CreateAndDestroy class definition
 6 using namespace std;
 7
 8 void create(void); // prototype
 9
10 CreateAndDestroy first(1, "(global before main)"); // global object
11
12 int main()
13 {
14 cout << "\nMAIN FUNCTION: EXECUTION BEGINS" << endl;
15 CreateAndDestroy second(2, "(local automatic in main)");
16 static CreateAndDestroy third(3, "(local static in main)");
17
18 create(); // call function to create objects
19
20 cout << "\nMAIN FUNCTION: EXECUTION RESUMES" << endl;
21 CreateAndDestroy fourth(4, "(local automatic in main)");
22 cout << "\nMAIN FUNCTION: EXECUTION ENDS" << endl;
23 } // end main
24
25 // function to create objects
26 void create(void)
27 {
28 cout << "\nCREATE FUNCTION: EXECUTION BEGINS" << endl;
29 CreateAndDestroy fifth(5, "(local automatic in create)");
30 static CreateAndDestroy sixth(6, "(local static in create)");
31 CreateAndDestroy seventh(7, "(local automatic in create)");
32 cout << "\nCREATE FUNCTION: EXECUTION ENDS" << endl;
33 } // end function create

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS
Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS
Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION: EXECUTION ENDS
Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION: EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS
Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)

Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

Fig. 9.9. Order in which constructors and destructors are called.

Constructors and Destructors for Objects in Global Scope

Constructors are called for objects defined in global scope (also called global namespace scope) before any other function (including main) in that program begins execution (although the order of execution of global object constructors between files is not guaranteed). The corresponding destructors are called when main terminates. Function exit forces a program to terminate immediately and does not execute the destructors of local objects. The exit function often is used to terminate a program when a fatal unrecoverable error occurs. Function abort performs similarly to function exit but forces the program to terminate immediately, without allowing the destructors of any objects to be called. Function abort is usually used to indicate an abnormal termination of the program. (See Appendix F for more information on functions exit and abort.)

Constructors and Destructors for Local Objects

The constructor for an local object is called when execution reaches the point where that object is defined—the corresponding destructor is called when execution leaves the object’s scope (i.e., the block in which that object is defined has finished executing). Constructors and destructors for local objects are called each time execution enters and leaves the scope of the object. Destructors are not called for local objects if the program terminates with a call to function exit or function abort.

Constructors and Destructors for static Local Objects

The constructor for a static local object is called only once, when execution first reaches the point where the object is defined—the corresponding destructor is called when main terminates or the program calls function exit. Global and static objects are destroyed in the reverse order of their creation. Destructors are not called for static objects if the program terminates with a call to function abort.

Demonstrating When Constructors and Destructors Are Called

The program of Figs. 9.7–9.9 demonstrates the order in which constructors and destructors are called for objects of class CreateAndDestroy (Fig. 9.7 and Fig. 9.8) of various storage classes in several scopes. Each object of class CreateAndDestroy contains an integer (objectID) and a string (message) that are used in the program’s output to identify the object (Fig. 9.7, lines 16–17). This mechanical example is purely for pedagogic purposes. For this reason, line 19 of the destructor in Fig. 9.8 determines whether the object being destroyed has an objectID value 1 or 6 (line 19) and, if so, outputs a newline character. This line makes the program’s output easier to follow.

Figure 9.9 defines object first (line 10) in global scope. Its constructor is actually called before any statements in main execute and its destructor is called at program termination after the destructors for all objects with automatic storage duration have run.

Function main (lines 12–23) declares three objects. Objects second (line 15) and fourth (line 21) are local objects, and object third (line 16) is a static local object. The constructor for each of these objects is called when execution reaches the point where that object is declared. The destructors for objects fourth then second are called—in the reverse of the order in which their constructors were called—when execution reaches the end of main. Because object third is static, it exists until program termination. The destructor for object third is called before the destructor for global object first, but after all other objects are destroyed.

Function create (lines 26–33) declares three objects—fifth (line 29) and seventh (line 31) as local automatic objects, and sixth (line 30) as a static local object. The destructors for objects seventh then fifth are called—the reverse of the order in which their constructors were called—when create terminates. Because sixth is static, it exists until program termination. The destructor for sixth is called before the destructors for third and first, but after all other objects are destroyed.

9.8. Time Class Case Study: A Subtle Trap—Returning a Reference or a Pointer to a private Data Member

A reference to an object is an alias for the name of the object and, hence, may be used on the left side of an assignment statement. In this context, the reference makes a perfectly acceptable lvalue that can receive a value. One way to use this capability is to have a public member function of a class return a reference to a private data member of that class. If a function returns a reference that is declared const, the reference is a non-modifiable lvalue and cannot be used to modify the data.

The program of Figs. 9.10–9.12 uses a simplified Time class (Fig. 9.10 and Fig. 9.11) to demonstrate returning a reference to a private data member with member function badSetHour (declared in Fig. 9.10 in line 15 and defined in Fig. 9.11 in lines 37–45). Such a reference return actually makes a call to member function badSetHour an alias for private data member hour! The function call can be used in any way that the private data member can be used, including as an lvalue in an assignment statement, thus enabling clients of the class to clobber the class’s private data at will! A similar problem would occur if a pointer to the private data were to be returned by the function.

Click here to view code image

 1 // Fig. 9.10: Time.h
 2 // Time class declaration.
 3 // Member functions defined in Time.cpp
 4
 5 // prevent multiple inclusions of header
 6 #ifndef TIME_H
 7 #define TIME_H
 8
 9 class Time
10 {
11 public:
12 explicit Time(int = 0, int = 0, int = 0);
13 void setTime(int, int, int);
14 unsigned int getHour() const;
15 unsigned int &badSetHour(int); // dangerous reference return
16 private:
17 unsigned int hour;
18 unsigned int minute;
19 unsigned int second;
20 }; // end class Time
21
22 #endif

Fig. 9.10. Time class declaration.

Click here to view code image

 1 // Fig. 9.11: Time.cpp
 2 // Time class member-function definitions.
 3 #include <stdexcept>
 4 #include "Time.h" // include definition of class Time
 5 using namespace std;
 6
 7 // constructor function to initialize private data; calls member function
 8 // setTime to set variables; default values are 0 (see class definition)
 9 Time::Time(int hr, int min, int sec)
10 {
11 setTime(hr, min, sec);
12 } // end Time constructor
13
14 // set values of hour, minute and second
15 void Time::setTime(int h, int m, int s)
16 {
17 // validate hour, minute and second
18 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
19 (s >= 0 && s < 60))
20 {
21 hour = h;
22 minute = m;
23 second = s;
24 } // end if
25 else
26 throw invalid_argument(
27 "hour, minute and/or second was out of range");
28 } // end function setTime
29
30 // return hour value
31 unsigned int Time::getHour()
32 {
33 return hour;
34 } // end function getHour
35
36 // poor practice: returning a reference to a private data member.
37 unsigned int &Time::badSetHour(int hh)
38 {
39 if (hh >= 0 && hh < 24)
40 hour = hh;
41 else
42 throw invalid_argument("hour must be 0-23");
43
44 return hour; // dangerous reference return
45 } // end function badSetHour

Fig. 9.11. Time class member-function definitions.

Click here to view code image

 1 // Fig. 9.12: fig09_12.cpp
 2 // Demonstrating a public member function that
 3 // returns a reference to a private data member.
 4 #include <iostream>
 5 #include "Time.h" // include definition of class Time
 6 using namespace std;
 7
 8 int main()
 9 {
10 Time t; // create Time object
11
12 // initialize hourRef with the reference returned by badSetHour
13 int &hourRef = t.badSetHour(20); // 20 is a valid hour
14
15 cout << "Valid hour before modification: " << hourRef;
16 hourRef = 30; // use hourRef to set invalid value in Time object t
17 cout << "\nInvalid hour after modification: " << t.getHour();
18
19 // Dangerous: Function call that returns
20 // a reference can be used as an lvalue!
21 t.badSetHour(12) = 74; // assign another invalid value to hour
22
23 cout << "\n\n***\n"
24 << "POOR PROGRAMMING PRACTICE!!!!!!!!\n"
25 << "t.badSetHour(12) as an lvalue, invalid hour: "
26 << t.getHour()
27 << "\n***" << endl;
28 } // end main

Valid hour before modification: 20
Invalid hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!
t.badSetHour(12) as an lvalue, invalid hour: 74

Fig. 9.12. public member function that returns a reference to a private data member.

Figure 9.12 declares Time object t (line 10) and reference hourRef (line 13), which is initialized with the reference returned by the call t.badSetHour(20). Line 15 displays the value of the alias hourRef. This shows how hourRef breaks the encapsulation of the class—statements in main should not have access to the private data of the class. Next, line 16 uses the alias to set the value of hour to 30 (an invalid value) and line 17 displays the value returned by function getHour to show that assigning a value to hourRef actually modifies the private data in the Time object t. Finally, line 21 uses the badSetHour function call itself as an lvalue and assigns 74 (another invalid value) to the reference returned by the function. Line 26 again displays the value returned by function getHour to show that assigning a value to the result of the function call in line 21 modifies the private data in the Time object t.

[image: Image] Software Engineering Observation 9.7

Returning a reference or a pointer to a private data member breaks the encapsulation of the class and makes the client code dependent on the representation of the class’s data. There are cases where doing this is appropriate—we’ll show an example of this when we build our custom Array class in Section 10.10.

9.9. Default Memberwise Assignment

The assignment operator (=) can be used to assign an object to another object of the same class. By default, such assignment is performed by memberwise assignment (also called copy assignment)—each data member of the object on the right of the assignment operator is assigned individually to the same data member in the object on the left of the assignment operator. Figures 9.13–9.14 define a Date class. Line 18 of Fig. 9.15 uses default memberwise assignment to assign the data members of Date object date1 to the corresponding data members of Date object date2. In this case, the month member of date1 is assigned to the month member of date2, the day member of date1 is assigned to the day member of date2 and the year member of date1 is assigned to the year member of date2. [Caution: Memberwise assignment can cause serious problems when used with a class whose data members contain pointers to dynamically allocated memory; we discuss these problems in Chapter 10 and show how to deal with them.]

Click here to view code image

 1 // Fig. 9.13: Date.h
 2 // Date class declaration. Member functions are defined in Date.cpp.
 3
 4 // prevent multiple inclusions of header
 5 #ifndef DATE_H
 6 #define DATE_H
 7
 8 // class Date definition
 9 class Date
10 {
11 public:
12 explicit Date(int = 1, int = 1, int = 2000); // default constructor
13 void print();
14 private:
15 unsigned int month;
16 unsigned int day;
17 unsigned int year;
18 }; // end class Date
19
20 #endif

Fig. 9.13. Date class declaration.

Click here to view code image

 1 // Fig. 9.14: Date.cpp
 2 // Date class member-function definitions.
 3 #include <iostream>
 4 #include "Date.h" // include definition of class Date from Date.h
 5 using namespace std;
 6
 7 // Date constructor (should do range checking)
 8 Date::Date(int m, int d, int y)
 9 : month(m), day(d), year(y)
10 {
11 } // end constructor Date
12
13 // print Date in the format mm/dd/yyyy
14 void Date::print()
15 {
16 cout << month << '/' << day << '/' << year;
17 } // end function print

Fig. 9.14. Date class member-function definitions.

Click here to view code image

 1 // Fig. 9.15: fig09_15.cpp
 2 // Demonstrating that class objects can be assigned
 3 // to each other using default memberwise assignment.
 4 #include <iostream>
 5 #include "Date.h" // include definition of class Date from Date.h
 6 using namespace std;
 7
 8 int main()
 9 {
10 Date date1(7, 4, 2004);
11 Date date2; // date2 defaults to 1/1/2000
12
13 cout << "date1 = ";
14 date1.print();
15 cout << "\ndate2 = ";
16 date2.print();
17
18 date2 = date1; // default memberwise assignment
19
20 cout << "\n\nAfter default memberwise assignment, date2 = ";
21 date2.print();
22 cout << endl;
23 } // end main

date1 = 7/4/2004
date2 = 1/1/2000

After default memberwise assignment, date2 = 7/4/2004

Fig. 9.15. Class objects can be assigned to each other using default memberwise assignment.

Objects may be passed as function arguments and may be returned from functions. Such passing and returning is performed using pass-by-value by default—a copy of the object is passed or returned. In such cases, C++ creates a new object and uses a copy constructor to copy the original object’s values into the new object. For each class, the compiler provides a default copy constructor that copies each member of the original object into the corresponding member of the new object. Like memberwise assignment, copy constructors can cause serious problems when used with a class whose data members contain pointers to dynamically allocated memory. Chapter 10 discusses how to define customized copy constructors that properly copy objects containing pointers to dynamically allocated memory.

9.10. const Objects and const Member Functions

Let’s see how the principle of least privilege applies to objects. Some objects need to be modifiable and some do not. You may use keyword const to specify that an object is not modifiable and that any attempt to modify the object should result in a compilation error. The statement

const Time noon(12, 0, 0);

declares a const object noon of class Time and initializes it to 12 noon. It’s possible to instantiate const and non-const objects of the same class.

[image: Image] Software Engineering Observation 9.8

Attempts to modify a const object are caught at compile time rather than causing execution-time errors.

[image: Image] Performance Tip 9.3

Declaring variables and objects const when appropriate can improve performance—compilers can perform optimizations on constants that cannot be performed on non-const variables.

C++ disallows member function calls for const objects unless the member functions themselves are also declared const. This is true even for get member functions that do not modify the object. This is also a key reason that we’ve declared as const all member-functions that do not modify the objects on which they’re called.

As you saw starting with class GradeBook in Chapter 3, a member function is specified as const both in its prototype by inserting the keyword const after the function’s parameter list and, in the case of the function definition, before the left brace that begins the function body.

[image: Image] Common Programming Error 9.2

Defining as const a member function that modifies a data member of the object is a compilation error.

[image: Image] Common Programming Error 9.3

Defining as const a member function that calls a non-const member function of the class on the same object is a compilation error.

[image: Image] Common Programming Error 9.4

Invoking a non-const member function on a const object is a compilation error.

An interesting problem arises for constructors and destructors, each of which typically modifies objects. A constructor must be allowed to modify an object so that the object can be initialized properly. A destructor must be able to perform its termination housekeeping chores before an object’s memory is reclaimed by the system. Attempting to declare a constructor or destructor const is a compilation error. The “constness” of a const object is enforced from the time the constructor completes initialization of the object until that object’s destructor is called.

Using const and Non-const Member Functions

The program of Fig. 9.16 uses class Time from Figs. 9.4–9.5, but removes const from function printStandard’s prototype and definition so that we can show a compilation error. We instantiate two Time objects—non-const object wakeUp (line 7) and const object noon (line 8). The program attempts to invoke non-const member functions setHour (line 13) and printStandard (line 20) on the const object noon. In each case, the compiler generates an error message. The program also illustrates the three other member-function-call combinations on objects—a non-const member function on a non-const object (line 11), a const member function on a non-const object (line 15) and a const member function on a const object (lines 17–18). The error messages generated for non-const member functions called on a const object are shown in the output window.

Click here to view code image

 1 // Fig. 9.16: fig09_16.cpp
 2 // const objects and const member functions.
 3 #include "Time.h" // include Time class definition
 4
 5 int main()
 6 {
 7 Time wakeUp(6, 45, 0); // non-constant object
 8 const Time noon(12, 0, 0); // constant object
 9
10 // OBJECT MEMBER FUNCTION
11 wakeUp.setHour(18); // non-const non-const
12
13 noon.setHour(12); // const non-const
14
15 wakeUp.getHour(); // non-const const
16
17 noon.getMinute(); // const const
18 noon.printUniversal(); // const const
19
20 noon.printStandard(); // const non-const
21 } // end main

Microsoft Visual C++ compiler error messages:

C:\examples\ch09\Fig09_16_18\fig09_18.cpp(13) : error C2662:
 'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
 'Time &'
 Conversion loses qualifiers
C:\examples\ch09\Fig09_16_18\fig09_18.cpp(20) : error C2662:
 'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
 'Time &'
 Conversion loses qualifiers

Fig. 9.16. const objects and const member functions.

A constructor must be a non-const member function, but it can still be used to initialize a const object (Fig. 9.16, line 8). Recall from Fig. 9.5 that the Time constructor’s definition calls another non-const member function—setTime—to perform the initialization of a Time object. Invoking a non-const member function from the constructor call as part of the initialization of a const object is allowed.

Line 20 in Fig. 9.16 generates a compilation error even though member function printStandard of class Time does not modify the object on which it’s invoked. The fact that a member function does not modify an object is not sufficient—the function must explicitly be declared const.

9.11. Composition: Objects as Members of Classes

An AlarmClock object needs to know when it’s supposed to sound its alarm, so why not include a Time object as a member of the AlarmClock class? Such a capability is called composition and is sometimes referred to as a has-a relationship—a class can have objects of other classes as members.

[image: Image] Software Engineering Observation 9.9

A common form of software reusability is composition, in which a class has objects of other types as members.

Previously, we saw how to pass arguments to the constructor of an object we created in main. Now we show how an class’s constructor can pass arguments to member-object constructors via member initializers.

[image: Image] Software Engineering Observation 9.10

Data members are constructed in the order in which they’re declared in the class definition (not in the order they’re listed in the constructor’s member initializer list) and before their enclosing class objects (sometimes called host objects) are constructed.

The next program uses classes Date (Figs. 9.17–9.18) and Employee (Figs. 9.19–9.20) to demonstrate composition. Class Employee’s definition (Fig. 9.19) contains private data members firstName, lastName, birthDate and hireDate. Members birthDate and hireDate are const objects of class Date, which contains private data members month, day and year. The Employee constructor’s header (Fig. 9.20, lines 10–11) specifies that the constructor has four parameters (first, last, dateOfBirth and dateOfHire). The first two parameters are passed via member initializers to the string class constructor for the firstName and lastName data members. The last two are passed via member initializers to the Date class constructor for the birthDate and hireDate data members.

Click here to view code image

 1 // Fig. 9.17: Date.h
 2 // Date class definition; Member functions defined in Date.cpp
 3 #ifndef DATE_H
 4 #define DATE_H
 5
 6 class Date
 7 {
 8 public:
 9 static const unsigned int monthsPerYear = 12; // months in a year
10 explicit Date(int = 1, int = 1, int = 1900); // default constructor
11 void print() const; // print date in month/day/year format
12 ~Date(); // provided to confirm destruction order
13 private:
14 unsigned int month; // 1-12 (January-December)
15 unsigned int day; // 1-31 based on month
16 unsigned int year; // any year
17
18 // utility function to check if day is proper for month and year
19 unsigned int checkDay(int) const;
20 }; // end class Date
21
22 #endif

Fig. 9.17. Date class definition.

Click here to view code image

 1 // Fig. 9.18: Date.cpp
 2 // Date class member-function definitions.
 3 #include <array>
 4 #include <iostream>
 5 #include <stdexcept>
 6 #include "Date.h" // include Date class definition
 7 using namespace std;
 8
 9 // constructor confirms proper value for month; calls
10 // utility function checkDay to confirm proper value for day
11 Date::Date(int mn, int dy, int yr)
12 {
13 if (mn > 0 && mn <= monthsPerYear) // validate the month
14 month = mn;
15 else
16 throw invalid_argument("month must be 1-12");
17
18 year = yr; // could validate yr
19 day = checkDay(dy); // validate the day
20
21 // output Date object to show when its constructor is called
22 cout << "Date object constructor for date ";
23 print();
24 cout << endl;
25 } // end Date constructor
26
27 // print Date object in form month/day/year
28 void Date::print() const
29 {
30 cout << month << '/' << day << '/' << year;
31 } // end function print
32
33 // output Date object to show when its destructor is called
34 Date::~Date()
35 {
36 cout << "Date object destructor for date ";
37 print();
38 cout << endl;
39 } // end ~Date destructor
40
41 // utility function to confirm proper day value based on
42 // month and year; handles leap years, too
43 unsigned int Date::checkDay(int testDay) const
44 {
45 static const array< int, monthsPerYear + 1 > daysPerMonth =
46 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
47
48 // determine whether testDay is valid for specified month
49 if (testDay > 0 && testDay <= daysPerMonth[month])
50 return testDay;
51
52 // February 29 check for leap year
53 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
54 (year % 4 == 0 && year % 100 != 0)))
55 return testDay;
56
57 throw invalid_argument("Invalid day for current month and year");
58 } // end function checkDay

Fig. 9.18. Date class member-function definitions.

Click here to view code image

 1 // Fig. 9.19: Employee.h
 2 // Employee class definition showing composition.
 3 // Member functions defined in Employee.cpp.
 4 #ifndef EMPLOYEE_H
 5 #define EMPLOYEE_H
 6
 7 #include <string>
 8 #include "Date.h" // include Date class definition
 9
10 class Employee
11 {
12 public:
13 Employee(const std::string &, const std::string &,
14 const Date &, const Date &);
15 void print() const;
16 ~Employee(); // provided to confirm destruction order
17 private:
18 std::string firstName; // composition: member object
19 std::string lastName; // composition: member object
20 const Date birthDate; // composition: member object
21 const Date hireDate; // composition: member object
22 }; // end class Employee
23
24 #endif

Fig. 9.19. Employee class definition showing composition.

Click here to view code image

 1 // Fig. 9.20: Employee.cpp
 2 // Employee class member-function definitions.
 3 #include <iostream>
 4 #include "Employee.h" // Employee class definition
 5 #include "Date.h" // Date class definition
 6 using namespace std;
 7
 8 // constructor uses member initializer list to pass initializer
 9 // values to constructors of member objects
10 Employee::Employee(const string &first, const string &last,
11 const Date &dateOfBirth, const Date &dateOfHire)
12 : firstName(first), // initialize firstName
13 lastName(last), // initialize lastName
14 birthDate(dateOfBirth), // initialize birthDate
15 hireDate(dateOfHire) // initialize hireDate
16 {
17 // output Employee object to show when constructor is called
18 cout << "Employee object constructor: "
19 << firstName << ' ' << lastName << endl;
20 } // end Employee constructor
21
22 // print Employee object
23 void Employee::print() const
24 {
25 cout << lastName << ", " << firstName << " Hired: ";
26 hireDate.print();
27 cout << " Birthday: ";
28 birthDate.print();
29 cout << endl;
30 } // end function print
31
32 // output Employee object to show when its destructor is called
33 Employee::~Employee()
34 {
35 cout << "Employee object destructor: "
36 << lastName << ", " << firstName << endl;
37 } // end ~Employee destructor

Fig. 9.20. Employee class member-function definitions.

Employee Constructor’s Member Initializer List

The colon (:) following the constructor’s header (Fig. 9.20, line 12) begins the member initializer list. The member initializers specify the Employee constructor parameters being passed to the constructors of the string and Date data members. Parameters first, last, dateOfBirth and dateOfHire are passed to the constructors for objects firstName (line 12), lastName (line 13), birthDate (line 14) and hireDate (line 15), respectively. Again, member initializers are separated by commas. The order of the member initializers does not matter. They’re executed in the order that the member objects are declared in class Employee.

[image: Image] Good Programming Practice 9.3

For clarity, list member initializers in the order that the class’s data members are declared.

Date Class’s Default Copy Constructor

As you study class Date (Fig. 9.17), notice that the class does not provide a constructor that receives a parameter of type Date. So, why can the Employee constructor’s member initializer list initialize the birthDate and hireDate objects by passing Date objects to their Date constructors? As we mentioned in Section 9.9, the compiler provides each class with a default copy constructor that copies each data member of the constructor’s argument object into the corresponding member of the object being initialized. Chapter 10 discusses how you can define customized copy constructors.

Testing Classes Date and Employee

Figure 9.21 creates two Date objects (lines 10–11) and passes them as arguments to the constructor of the Employee object created in line 12. Line 15 outputs the Employee object’s data. When each Date object is created in lines 10–11, the Date constructor defined in lines 11–25 of Fig. 9.18 displays a line of output to show that the constructor was called (see the first two lines of the sample output). [Note: Line 12 of Fig. 9.21 causes two additional Date constructor calls that do not appear in the program’s output. When each of the Employee’s Date member objects is initialized in the Employee constructor’s member-initializer list (Fig. 9.20, lines 14–15), the default copy constructor for class Date is called. Since this constructor is defined implicitly by the compiler, it does not contain any output statements to demonstrate when it’s called.]

Click here to view code image

 1 // Fig. 9.21: fig09_21.cpp
 2 // Demonstrating composition--an object with member objects.
 3 #include <iostream>
 4 #include "Date.h" // Date class definition
 5 #include "Employee.h" // Employee class definition
 6 using namespace std;
 7
 8 int main()
 9 {
10 Date birth(7, 24, 1949);
11 Date hire(3, 12, 1988);
12 Employee manager("Bob", "Blue", birth, hire);
13
14 cout << endl;
15 manager.print();
16 } // end main

[image: Image]

Fig. 9.21. Demonstrating composition—an object with member objects.

Class Date and class Employee each include a destructor (lines 34–39 of Fig. 9.18 and lines 33–37 of Fig. 9.20, respectively) that prints a message when an object of its class is destructed. This enables us to confirm in the program output that objects are constructed from the inside out and destroyed in the reverse order, from the outside in (i.e., the Date member objects are destroyed after the Employee object that contains them).

Notice the last four lines in the output of Fig. 9.21. The last two lines are the outputs of the Date destructor running on Date objects hire (Fig. 9.21, line 11) and birth (Fig. 9.21, line 10), respectively. These outputs confirm that the three objects created in main are destructed in the reverse of the order in which they were constructed. The Employee destructor output is five lines from the bottom. The fourth and third lines from the bottom of the output window show the destructors running for the Employee’s member objects hireDate (Fig. 9.19, line 21) and birthDate (Fig. 9.19, line 20). The last two lines of the output correspond to the Date objects created in lines 11and 10 of Fig. 9.21.

These outputs confirm that the Employee object is destructed from the outside in—i.e., the Employee destructor runs first (output shown five lines from the bottom of the output window), then the member objects are destructed in the reverse order from which they were constructed. Class string’s destructor does not contain output statements, so we do not see the firstName and lastName objects being destructed. Again, Fig. 9.21’s output did not show the constructors running for member objects birthDate and hireDate, because these objects were initialized with the default Date class copy constructors provided by the compiler.

What Happens When You Do Not Use the Member Initializer List?

If a member object is not initialized through a member initializer, the member object’s default constructor will be called implicitly. Values, if any, established by the default constructor can be overridden by set functions. However, for complex initialization, this approach may require significant additional work and time.

[image: Image] Common Programming Error 9.5

A compilation error occurs if a member object is not initialized with a member initializer and the member object’s class does not provide a default constructor (i.e., the member object’s class defines one or more constructors, but none is a default constructor).

[image: Image] Performance Tip 9.4

Initialize member objects explicitly through member initializers. This eliminates the overhead of “doubly initializing” member objects—once when the member object’s default constructor is called and again when set functions are called in the constructor body (or later) to initialize the member object.

[image: Image] Software Engineering Observation 9.11

If a data member is an object of another class, making that member object public does not violate the encapsulation and hiding of that member object’s private members. But, it does violate the encapsulation and hiding of the containing class’s implementation, so member objects of class types should still be private.

9.12. friend Functions and friend Classes

A friend function of a class is a non-member function that has the right to access the public and non-public class members. Standalone functions, entire classes or member functions of other classes may be declared to be friends of another class.

This section presents a mechanical example of how a friend function works. In Chapter 10 we’ll show friend functions that overload operators for use with class objects—as you’ll see, sometimes a member function cannot be used for certain overloaded operators.

Declaring a friend

To declare a function as a friend of a class, precede the function prototype in the class definition with keyword friend. To declare all member functions of class ClassTwo as friends of class ClassOne, place a declaration of the form

friend class ClassTwo;

in the definition of class ClassOne.

Friendship is granted, not taken—for class B to be a friend of class A, class A must explicitly declare that class B is its friend. Friendship is not symmetric—if class A is a friend of class B, you cannot infer that class B is a friend of class A. Friendship is not transitive—if class A is a friend of class B and class B is a friend of class C, you cannot infer that class A is a friend of class C.

Modifying a Class’s private Data with a Friend Function

Figure 9.22 is a mechanical example in which we define friend function setX to set the private data member x of class Count. As a convention, we place the friend declaration (line 9) first in the class definition, even before public member functions are declared. Again, this friend declaration can appear anywhere in the class.

Click here to view code image

 1 //Fig. 9.22: fig09_22.cpp
 2 // Friends can access private members of a class.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Count class definition
 7 class Count
 8 {
 9 friend void setX(Count &, int); // friend declaration
10 public:
11 // constructor
12 Count()
13 : x(0) // initialize x to 0
14 {
15 // empty body
16 } // end constructor Count
17
18 // output x
19 void print() const
20 {
21 cout << x << endl;
22 } // end function print
23 private:
24 int x; // data member
25 }; // end class Count
26
27 // function setX can modify private data of Count
28 // because setX is declared as a friend of Count (line 9)
29 void setX(Count &c, int val)
30 {
31 c.x = val; // allowed because setX is a friend of Count
32 } // end function setX
33
34 int main()
35 {
36 Count counter; // create Count object
37
38 cout << "counter.x after instantiation: ";
39 counter.print();
40
41 setX(counter, 8); // set x using a friend function
42 cout << "counter.x after call to setX friend function: ";
43 counter.print();
44 } // end main

counter.x after instantiation: 0
counter.x after call to setX friend function: 8

Fig. 9.22. Friends can access private members of a class.

Function setX (lines 29–32) is a stand-alone (global) function—it isn’t a member function of class Count. For this reason, when setX is invoked for object counter, line 41 passes counter as an argument to setX rather than using a handle (such as the name of the object) to call the function, as in

counter.setX(8); // error: setX not a member function

If you remove the friend declaration in line 9, you’ll receive error messages indicating that function setX cannot modify class Count’s private data member x.

As we mentioned, Fig. 9.22 is a mechanical example of using the friend construct. It would normally be appropriate to define function setX as a member function of class Count. It would also normally be appropriate to separate the program of Fig. 9.22 into three files:

1. A header (e.g., Count.h) containing the Count class definition, which in turn contains the prototype of friend function setX

2. An implementation file (e.g., Count.cpp) containing the definitions of class Count’s member functions and the definition of friend function setX

3. A test program (e.g., fig09_22.cpp) with main.

Overloaded friend Functions

It’s possible to specify overloaded functions as friends of a class. Each function intended to be a friend must be explicitly declared in the class definition as a friend of the class.

[image: Image] Software Engineering Observation 9.12

Even though the prototypes for friend functions appear in the class definition, friends are not member functions.

[image: Image] Software Engineering Observation 9.13

Member access notions of private, protected and public are not relevant to friend declarations, so friend declarations can be placed anywhere in a class definition.

[image: Image] Good Programming Practice 9.4

Place all friendship declarations first inside the class definition’s body and do not precede them with any access specifier.

9.13. Using the this Pointer

We’ve seen that an object’s member functions can manipulate the object’s data. There can be many objects of a class, so how do member functions know which object’s data members to manipulate? Every object has access to its own address through a pointer called this (a C++ keyword). The this pointer is not part of the object itself—i.e., the memory occupied by the this pointer is not reflected in the result of a sizeof operation on the object. Rather, the this pointer is passed (by the compiler) as an implicit argument to each of the object’s non-static member functions. Section 9.14 introduces static class members and explains why the this pointer is not implicitly passed to static member functions.

Using the this Pointer to Avoid Naming Collisions

Member functions use the this pointer implicitly (as we’ve done so far) or explicitly to reference an object’s data members and other member functions. A common explicit use of the this pointer is to avoid naming conflicts between a class’s data members and member-function parameters (or other local variables). Consider the Time class’s hour data member and setHour member function in Figs. 9.4–9.5. We could have defined setHour as:

Click here to view code image

// set hour value
void Time::setHour(int hour)
{
 if (hour >= 0 && hour < 24)
 this->hour = hour; // use this pointer to access data member
 else
 throw invalid_argument("hour must be 0-23");
} // end function setHour

In this function definition, setHour’s parameter has the same name as the data member hour. In setHour’s scope, the parameter hour hides the data member. However, you can still access the data member hour by qualifying its name with this->. So the following statement assigns the hour parameter’s value to the data member hour

this->hour = hour; // use this pointer to access data member

[image: Image] Error-Prevention Tip 9.4

To make your code clearer and more maintainable, and to avoid errors, never hide data members with local variable names.

Type of the this Pointer

The type of the this pointer depends on the type of the object and whether the member function in which this is used is declared const. For example, in a non-const member function of class Employee, the this pointer has the type Employee *. In a const member function, the this pointer has the type const Employee *.

Implicitly and Explicitly Using the this Pointer to Access an Object’s Data Members

Figure 9.23 demonstrates the implicit and explicit use of the this pointer to enable a member function of class Test to print the private data x of a Test object. In the next example and in Chapter 10, we show some substantial and subtle examples of using this.

Click here to view code image

 1 // Fig. 9.23: fig09_23.cpp
 2 // Using the this pointer to refer to object members.
 3 #include <iostream>
 4 using namespace std;
 5
 6 class Test
 7 {
 8 public:
 9 explicit Test(int = 0); // default constructor
10 void print() const;
11 private:
12 int x;
13 }; // end class Test
14
15 // constructor
16 Test::Test(int value)
17 : x(value) // initialize x to value
18 {
19 // empty body
20 } // end constructor Test
21
22 // print x using implicit and explicit this pointers;
23 // the parentheses around *this are required
24 void Test::print() const
25 {
26 // implicitly use the this pointer to access the member x
27 cout << " x = " << x;
28
29 // explicitly use the this pointer and the arrow operator
30 // to access the member x
31 cout << "\n this->x = " << this->x;
32
33 // explicitly use the dereferenced this pointer and
34 // the dot operator to access the member x
35 cout << "\n(*this).x = " << (*this).x << endl;
36 } // end function print
37
38 int main()
39 {
40 Test testObject(12); // instantiate and initialize testObject
41
42 testObject.print();
43 } // end main

 x = 12
 this->x = 12
(*this).x = 12

Fig. 9.23. using the this pointer to refer to object members.

For illustration purposes, member function print (lines 24–36) first prints x by using the this pointer implicitly (line 27)—only the name of the data member is specified. Then print uses two different notations to access x through the this pointer—the arrow operator (->) off the this pointer (line 31) and the dot operator (.) off the dereferenced this pointer (line 35). Note the parentheses around *this (line 35) when used with the dot member selection operator (.). The parentheses are required because the dot operator has higher precedence than the * operator. Without the parentheses, the expression *this.x would be evaluated as if it were parenthesized as *(this.x), which is a compilation error, because the dot operator cannot be used with a pointer.

One interesting use of the this pointer is to prevent an object from being assigned to itself. As we’ll see in Chapter 10, self-assignment can cause serious errors when the object contains pointers to dynamically allocated storage.

Using the this Pointer to Enable Cascaded Function Calls

Another use of the this pointer is to enable cascaded member-function calls—that is, invoking multiple functions in the same statement (as in line 12 of Fig. 9.26). The program of Figs. 9.24–9.26 modifies class Time’s set functions setTime, setHour, setMinute and setSecond such that each returns a reference to a Time object to enable cascaded member-function calls. Notice in Fig. 9.25 that the last statement in the body of each of these member functions returns *this (lines 23, 34, 45 and 56) into a return type of Time &.

Click here to view code image

 1 // Fig. 9.24: Time.h
 2 // Cascading member function calls.
 3
 4 // Time class definition.
 5 // Member functions defined in Time.cpp.
 6 #ifndef TIME_H
 7 #define TIME_H
 8
 9 class Time
10 {
11 public:
12 explicit Time(int = 0, int = 0, int = 0); // default constructor
13
14 // set functions (the Time & return types enable cascading)
15 Time &setTime(int, int, int); // set hour, minute, second
16 Time &setHour(int); // set hour
17 Time &setMinute(int); // set minute
18 Time &setSecond(int); // set second
19
20 // get functions (normally declared const)
21 unsigned int getHour() const; // return hour
22 unsigned int getMinute() const; // return minute
23 unsigned int getSecond() const; // return second
24
25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 unsigned int hour; // 0 - 23 (24-hour clock format)
30 unsigned int minute; // 0 - 59
31 unsigned int second; // 0 - 59
32 }; // end class Time
33
34 #endif

Fig. 9.24. Time class modified to enable cascaded member-function calls.

Click here to view code image

 1 // Fig. 9.25: Time.cpp
 2 // Time class member-function definitions.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <stdexcept>
 6 #include "Time.h" // Time class definition
 7 using namespace std;
 8
 9 // constructor function to initialize private data;
10 // calls member function setTime to set variables;
11 // default values are 0 (see class definition)
12 Time::Time(int hr, int min, int sec)
13 {
14 setTime(hr, min, sec);
15 } // end Time constructor
16
17 // set values of hour, minute, and second
18 Time &Time::setTime(int h, int m, int s) // note Time & return
19 {
20 setHour(h);
21 setMinute(m);
22 setSecond(s);
23 return *this; // enables cascading
24 } // end function setTime
25
26 // set hour value
27 Time &Time::setHour(int h) // note Time & return
28 {
29 if (h >= 0 && h < 24)
30 hour = h;
31 else
32 throw invalid_argument("hour must be 0-23");
33
34 return *this; // enables cascading
35 } // end function setHour
36
37 // set minute value
38 Time &Time::setMinute(int m) // note Time & return
39 {
40 if (m >= 0 && m < 60)
41 minute = m;
42 else
43 throw invalid_argument("minute must be 0-59");
44
45 return *this; // enables cascading
46 } // end function setMinute
47
48 // set second value
49 Time &Time::setSecond(int s) // note Time & return
50 {
51 if (s >= 0 && s < 60)
52 second = s;
53 else
54 throw invalid_argument("second must be 0-59");
55
56 return *this; // enables cascading
57 } // end function setSecond
58
59 // get hour value
60 unsigned int Time::getHour() const
61 {
62 return hour;
63 } // end function getHour
64
65 // get minute value
66 unsigned int Time::getMinute() const
67 {
68 return minute;
69 } // end function getMinute
70
71 // get second value
72 unsigned int Time::getSecond() const
73 {
74 return second;
75 } // end function getSecond
76
77 // print Time in universal-time format (HH:MM:SS)
78 void Time::printUniversal() const
79 {
80 cout << setfill('0') << setw(2) << hour << ":"
81 << setw(2) << minute << ":" << setw(2) << second;
82 } // end function printUniversal
83
84 // print Time in standard-time format (HH:MM:SS AM or PM)
85 void Time::printStandard() const
86 {
87 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
88 << ":" << setfill('0') << setw(2) << minute
89 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
90 } // end function printStandard

Fig. 9.25. Time class member-function definitions modified to enable cascaded member-function calls.

Click here to view code image

 1 // Fig. 9.26: fig09_26.cpp
 2 // Cascading member-function calls with the this pointer.
 3 #include <iostream>
 4 #include "Time.h" // Time class definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 Time t; // create Time object
10
11 // cascaded function calls
12 t.setHour(18).setMinute(30).setSecond(22);
13
14 // output time in universal and standard formats
15 cout << "Universal time: ";
16 t.printUniversal();
17
18 cout << "\nStandard time: ";
19 t.printStandard();
20
21 cout << "\n\nNew standard time: ";
22
23 // cascaded function calls
24 t.setTime(20, 20, 20).printStandard();
25 cout << endl;
26 } // end main

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

Fig. 9.26. Cascading member-function calls with the this pointer.

The program of Fig. 9.26 creates Time object t (line 9), then uses it in cascaded member-function calls (lines 12 and 24). Why does the technique of returning *this as a reference work? The dot operator (.) associates from left to right, so line 12 first evaluates t.setHour(18), then returns a reference to object t as the value of this function call. The remaining expression is then interpreted as

t.setMinute(30).setSecond(22);

The t.setMinute(30) call executes and returns a reference to the object t. The remaining expression is interpreted as

t.setSecond(22);

Line 24 (Fig. 9.26) also uses cascading. Note that we cannot chain another member-function call after printStandard here, because printStandard does not return a reference to t. Placing the call to printStandard before the call to setTime in line 24 results in a compilation error. Chapter 10 presents several practical examples of using cascaded function calls. One such example uses multiple << operators with cout to output multiple values in a single statement.

9.14. static Class Members

There is an important exception to the rule that each object of a class has its own copy of all the data members of the class. In certain cases, only one copy of a variable should be shared by all objects of a class. A static data member is used for these and other reasons. Such a variable represents “class-wide” information, i.e., data that is shared by all instances and is not specific to any one object of the class. Recall, for example, that the versions of class GradeBook in Chapter 7 use static data members to store constants representing the number of grades that all GradeBook objects can hold.

Motivating Class-Wide Data

Let’s further motivate the need for static class-wide data with an example. Suppose that we have a video game with Martians and other space creatures. Each Martian tends to be brave and willing to attack other space creatures when the Martian is aware that there are at least five Martians present. If fewer than five are present, each Martian becomes cowardly. So each Martian needs to know the martianCount. We could endow each instance of class Martian with martianCount as a data member. If we do, every Martian will have a separate copy of the data member. Every time we create a new Martian, we’ll have to update the data member martianCount in all Martian objects. Doing this would require every Martian object to have, or have access to, handles to all other Martian objects in memory. This wastes space with the redundant copies of the martianCount and wastes time in updating the separate copies. Instead, we declare martianCount to be static. This makes martianCount class-wide data. Every Martian can access martianCount as if it were a data member of the Martian, but only one copy of the static variable martianCount is maintained in the program. This saves space. We save time by having the Martian constructor increment static variable martianCount and having the Martian destructor decrement martianCount. Because there’s only one copy, we do not have to increment or decrement separate copies of martianCount for each Martian object.

[image: Image] Performance Tip 9.5

Use static data members to save storage when a single copy of the data for all objects of a class will suffice.

Scope and Initialization of static Data Members

[image: Image]

A class’s static data members have class scope. A static data member must be initialized exactly once. Fundamental-type static data members are initialized by default to 0. Prior to C++11, a static const data member of int or enum type could be initialized in its declaration in the class definition and all other static data members had to be defined and intialized at global namespace scope (i.e., outside the body of the class definition). Again, C++11’s in-class initializers also allow you to initialize these variables where they’re declared in the class definition. If a static data member is an object of a class that provides a default constructor, the static data member need not be initialized because its default constructor will be called.

Accessing static Data Members

A class’s private and protected static members are normally accessed through the class’s public member functions or friends. A class’s static members exist even when no objects of that class exist. To access a public static class member when no objects of the class exist, simply prefix the class name and the scope resolution operator (::) to the name of the data member. For example, if our preceding variable martianCount is public, it can be accessed with the expression Martian::martianCount, even when there are no Martian objects. (Of course, using public data is discouraged.)

To access a private or protected static class member when no objects of the class exist, provide a public static member function and call the function by prefixing its name with the class name and scope resolution operator. A static member function is a service of the class, not of a specific object of the class.

[image: Image] Software Engineering Observation 9.14

A class’s static data members and static member functions exist and can be used even if no objects of that class have been instantiated.

Demonstrating static Data Members

The program of Figs. 9.27–9.29 demonstrates a private static data member called count (Fig. 9.27, line 24) and a public static member function called getCount (Fig. 9.27, line 18). In Fig. 9.28, line 8 defines and initializes the data member count to zero at global namespace scope and lines 12–15 define static member function getCount. Notice that neither line 8 nor line 12 includes keyword static, yet both lines define static class members. The static keyword cannot be applied to a member definition that appears outside the class definition. Data member count maintains a count of the number of objects of class Employee that have been instantiated. When objects of class Employee exist, member count can be referenced through any member function of an Employee object—in Fig. 9.28, count is referenced by both line 22 in the constructor and line 32 in the destructor.

Click here to view code image

 1 // Fig. 9.27: Employee.h
 2 // Employee class definition with a static data member to
 3 // track the number of Employee objects in memory
 4 #ifndef EMPLOYEE_H
 5 #define EMPLOYEE_H
 6
 7 #include <string>
 8
 9 class Employee
10 {
11 public:
12 Employee(const std::string &, const std::string &); // constructor
13 ~Employee(); // destructor
14 std::string getFirstName() const; // return first name
15 std::string getLastName() const; // return last name
16
17 // static member function
18 static unsigned int getCount(); // return # of objects instantiated
19 private:
20 std::string firstName;
21 std::string lastName;
22
23 // static data
24 static unsigned int count; // number of objects instantiated
25 }; // end class Employee
26
27 #endif

Fig. 9.27. Employee class definition with a static data member to track the number of Employee objects in memory.

Click here to view code image

 1 // Fig. 9.28: Employee.cpp
 2 // Employee class member-function definitions.
 3 #include <iostream>
 4 #include "Employee.h" // Employee class definition
 5 using namespace std;
 6
 7 // define and initialize static data member at global namespace scope
 8 unsigned int Employee::count = 0; // cannot include keyword static
 9
10 // define static member function that returns number of
11 // Employee objects instantiated (declared static in Employee.h)
12 unsigned int Employee::getCount()
13 {
14 return count;
15 } // end static function getCount
16
17 // constructor initializes non-static data members and
18 // increments static data member count
19 Employee::Employee(const string &first, const string &last)
20 : firstName(first), lastName(last)
21 {
22 ++count; // increment static count of employees
23 cout << "Employee constructor for " << firstName
24 << ' ' << lastName << " called." << endl;
25 } // end Employee constructor
26
27 // destructor deallocates dynamically allocated memory
28 Employee::~Employee()
29 {
30 cout << "~Employee() called for " << firstName
31 << ' ' << lastName << endl;
32 --count; // decrement static count of employees
33 } // end ~Employee destructor
34
35 // return first name of employee
36 string Employee::getFirstName() const
37 {
38 return firstName; // return copy of first name
39 } // end function getFirstName
40
41 // return last name of employee
42 string Employee::getLastName() const
43 {
44 return lastName; // return copy of last name
45 } // end function getLastName

Fig. 9.28. Employee class member-function definitions.

Click here to view code image

 1 // Fig. 9.29: fig09_29.cpp
 2 // static data member tracking the number of objects of a class.
 3 #include <iostream>
 4 #include "Employee.h" // Employee class definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // no objects exist; use class name and binary scope resolution
10 // operator to access static member function getCount
11 cout << "Number of employees before instantiation of any objects is "
12 << Employee::getCount() << endl; // use class name
13
14 // the following scope creates and destroys
15 // Employee objects before main terminates
16 {
17 Employee e1("Susan", "Baker");
18 Employee e2("Robert", "Jones");
19
20 // two objects exist; call static member function getCount again
21 // using the class name and the scope resolution operator
22 cout << "Number of employees after objects are instantiated is "
23 << Employee::getCount();
24
25 cout << "\n\nEmployee 1: "
26 << e1.getFirstName() << " " << e1.getLastName()
27 << "\nEmployee 2: "
28 << e2.getFirstName() << " " << e2.getLastName() << "\n\n";
29 } // end nested scope in main
30
31 // no objects exist, so call static member function getCount again
32 // using the class name and the scope resolution operator
33 cout << "\nNumber of employees after objects are deleted is "
34 << Employee::getCount() << endl;
35 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Robert Jones
~Employee() called for Susan Baker

Number of employees after objects are deleted is 0

Fig. 9.29. static data member tracking the number of objects of a class.

Figure 9.29 uses static member function getCount to determine the number of Employee objects in memory at various points in the program. The program calls Employee::getCount() before any Employee objects have been created (line 12), after two Employee objects have been created (line 23) and after those Employee objects have been destroyed (line 34). Lines 16–29 in main define a nested scope. Recall that local variables exist until the scope in which they’re defined terminates. In this example, we create two Employee objects in lines 17–18 inside the nested scope. As each constructor executes, it increments class Employee’s static data member count. These Employee objects are destroyed when the program reaches line 29. At that point, each object’s destructor executes and decrements class Employee’s static data member count.

A member function should be declared static if it does not access non-static data members or non-static member functions of the class. Unlike non-static member functions, a static member function does not have a this pointer, because static data members and static member functions exist independently of any objects of a class. The this pointer must refer to a specific object of the class, and when a static member function is called, there might not be any objects of its class in memory.

[image: Image] Common Programming Error 9.6

Using the this pointer in a static member function is a compilation error.

[image: Image] Common Programming Error 9.7

Declaring a static member function const is a compilation error. The const qualifier indicates that a function cannot modify the contents of the object on which it operates, but static member functions exist and operate independently of any objects of the class.

9.15. Wrap-Up

This chapter deepened our coverage of classes, using a Time class case study to introduce several new features. We used an include guard to prevent the code in a header (.h) file from being included multiple times in the same source code (.cpp) file. You learned how to use the arrow operator to access an object’s members via a pointer of the object’s class type. You learned that member functions have class scope—the member function’s name is known only to the class’s other members unless referred to by a client of the class via an object name, a reference to an object of the class, a pointer to an object of the class or the scope resolution operator. We also discussed access functions (commonly used to retrieve the values of data members or to test the truth or falsity of conditions) and utility functions (private member functions that support the operation of the class’s public member functions).

You learned that a constructor can specify default arguments that enable it to be called in a variety of ways. You also learned that any constructor that can be called with no arguments is a default constructor and that there can be at most one default constructor per class. We discussed destructors for performing termination housekeeping on an object of a class before that object is destroyed, and demonstrated the order in which an object’s constructors and destructors are called.

We demonstrated the problems that can occur when a member function returns a reference or a pointer to a private data member, which breaks the encapsulation of the class. We also showed that objects of the same type can be assigned to one another using default memberwise assignment—in Chapter 10, we’ll discuss how this can cause problems when an object contains pointer members.

You learned how to specify const objects and const member functions to prevent modifications to objects, thus enforcing the principle of least privilege. You also learned that, through composition, a class can have objects of other classes as members. We demonstrated how to use friend functions.

You learned that the this pointer is passed as an implicit argument to each of a class’s non-static member functions, allowing them to access the correct object’s data members and other non-static member functions. We used the this pointer explicitly to access the class’s members and to enable cascaded member-function calls. We motivated the notion of static data members and member functions and demonstrated how to declare and use them in your own classes.

In Chapter 10, we continue our study of classes and objects by showing how to enable C++’s operators to work with class-type objects—a process called operator overloading. For example, you’ll see how to overload the << operator so it can be used to output a complete array without explicitly using a repetition statement.

10. Operator Overloading; Class string

Objectives

In this chapter you’ll:

• Learn how operator overloading can help you craft valuable classes.

• Overload unary and binary operators.

• Convert objects from one class to another class.

• Use overloaded operators and additional features of the string class.

• Create PhoneNumber, Date and Array classes that provide overloaded operators.

• Perform dynamic memory allocation with new and delete.

• Use keyword explicit to indicate that a constructor cannot be used for implicit conversions.

• Experience a “light-bulb moment” when you’ll truly appreciate the elegance and beauty of the class concept.

Outline

10.1 Introduction

10.2 Using the Overloaded Operators of Standard Library Class string

10.3 Fundamentals of Operator Overloading

10.4 Overloading Binary Operators

10.5 Overloading the Binary Stream Insertion and Stream Extraction Operators

10.6 Overloading Unary Operators

10.7 Overloading the Unary Prefix and Postfix ++ and -- Operators

10.8 Case Study: A Date Class

10.9 Dynamic Memory Management

10.10 Case Study: Array Class

10.10.1 Using the Array Class

10.10.2 Array Class Definition

10.11 Operators as Member vs. Non-Member Functions

10.12 Converting Between Types

10.13 explicit Constructors and Conversion Operators

10.14 Overloading the Function Call Operator ()

10.15 Wrap-Up

10.1. Introduction

This chapter shows how to enable C++’s operators to work with class objects—a process called operator overloading. One example of an overloaded operator built into C++ is <<, which is used both as the stream insertion operator and as the bitwise left-shift operator (which is discussed in Chapter 20). Similarly, >> also is overloaded; it’s used both as the stream extraction operator and the bitwise right-shift operator. Both of these operators are overloaded in the C++ Standard Library. You’ve been using overloaded operators since early in the book. The overloads are built into the base C++ language itself. For example, C++ overloads the addition operator (+) and the subtraction operator (-) to perform differently, depending on their context in integer, floating-point and pointer arithmetic with data of fundamental types.

You can overload most operators to be used with class objects—the compiler generates the appropriate code based on the types of the operands. The jobs performed by overloaded operators also can be performed by explicit function calls, but operator notation is often more natural.

Our examples start by demonstrating the C++ Standard Library’s class string, which has lots of overloaded operators. This enables you to see overloaded operators in use before implementing your own overloaded operators. Next, we create a PhoneNumber class that enables us to use overloaded operators << and >> to conveniently output and input fully formatted, 10-digit phone numbers. We then present a Date class that overloads the prefix and postfix increment (++) operators to add one day to the value of a Date. The class also overloads the += operator to allow a program to increment a Date by the number of days specified on the right side of the operator.

Next, we present a capstone case study—an Array class that uses overloaded operators and other capabilities to solve various problems with pointer-based arrays. This is one of the most important case studies in the book. Many of our readers have indicated that the Array case study is their “light bulb moment” in truly understanding what classes and object technology are all about. As part of this class, we’ll overload stream insertion, stream extraction, assignment, equality, relational and subscript operators. Once you master this Array class, you’ll indeed understand the essence of object technology—crafting, using and reusing valuable classes.

The chapter concludes with discussions of how you can convert between types (incuding class types), problems with certain implicit conversions and how to prevent those problems.

10.2. Using the Overloaded Operators of Standard Library Class string

Figure 10.1 demonstrates many of class string’s overloaded operators and several other useful member functions, including empty, substr and at. Function empty determines whether a string is empty, function substr returns a string that represents a portion of an existing string and function at returns the character at a specific index in a string (after checking that the index is in range). Chapter 19 presents class string in detail.

Click here to view code image

 1 // Fig. 10.1: fig10_01.cpp
 2 // Standard Library string class test program.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string s1("happy");
10 string s2(" birthday");
11 string s3;
12
13 // test overloaded equality and relational operators
14 cout << "s1 is \"" << s1 << "\"; s2 is \"" << s2
15 << "\"; s3 is \"" << s3 << '\"'
16 << "\n\nThe results of comparing s2 and s1:"
17 << "\ns2 == s1 yields " << (s2 == s1 ? "true" : "false")
18 << "\ns2 != s1 yields " << (s2 != s1 ? "true" : "false")
19 << "\ns2 > s1 yields " << (s2 > s1 ? "true" : "false")
20 << "\ns2 < s1 yields " << (s2 < s1 ? "true" : "false")
21 << "\ns2 >= s1 yields " << (s2 >= s1 ? "true" : "false")
22 << "\ns2 <= s1 yields " << (s2 <= s1 ? "true" : "false");
23
24 // test string member-function empty
25 cout << "\n\nTesting s3.empty():" << endl;
26
27 if (s3.empty())
28 {
29 cout << "s3 is empty; assigning s1 to s3;" << endl;
30 s3 = s1; // assign s1 to s3
31 cout << "s3 is \"" << s3 << "\"";
32 } // end if
33
34 // test overloaded string concatenation operator
35 cout << "\n\ns1 += s2 yields s1 = ";
36 s1 += s2; // test overloaded concatenation
37 cout << s1;
38
39 // test overloaded string concatenation operator with a C string
40 cout << "\n\ns1 += \" to you\" yields" << endl;
41 s1 += " to you";
42 cout << "s1 = " << s1 << "\n\n";
43
44 // test string member function substr
45 cout << "The substring of s1 starting at location 0 for\n"
46 << "14 characters, s1.substr(0, 14), is:\n"
47 << s1.substr(0, 14) << "\n\n";
48
49 // test substr "to-end-of-string" option
50 cout << "The substring of s1 starting at\n"
51 << "location 15, s1.substr(15), is:\n"
52 << s1.substr(15) << endl;
53
54 // test copy constructor
55 string s4(s1);
56 cout << "\ns4 = " << s4 << "\n\n";
57
58 // test overloaded copy assignment (=) operator with self-assignment
59 cout << "assigning s4 to s4" << endl;
60 s4 = s4;
61 cout << "s4 = " << s4 << endl;
62
63 // test using overloaded subscript operator to create lvalue
64 s1[0] = 'H';
65 s1[6] = 'B';
66 cout << "\ns1 after s1[0] = 'H' and s1[6] = 'B' is: "
67 << s1 << "\n\n";
68
69 // test subscript out of range with string member function "at"
70 try
71 {
72 cout << "Attempt to assign 'd' to s1.at(30) yields:" << endl;
73 s1.at(30) = 'd'; // ERROR: subscript out of range
74 } // end try
75 catch (out_of_range &ex)
76 {
77 cout << "An exception occurred: " << ex.what() << endl;
78 } // end catch
79 } // end main

s1 is "happy"; s2 is " birthday"; s3 is ""

The results of comparing s2 and s1:
s2 == s1 yields false
s2 != s1 yields true
s2 > s1 yields false
s2 < s1 yields true
s2 >= s1 yields false
s2 <= s1 yields true

Testing s3.empty():
s3 is empty; assigning s1 to s3;
s3 is "happy"

s1 += s2 yields s1 = happy birthday

s1 += " to you" yields
s1 = happy birthday to you

The substring of s1 starting at location 0 for
14 characters, s1.substr(0, 14), is:
happy birthday

The substring of s1 starting at
location 15, s1.substr(15), is:
to you

s4 = happy birthday to you

assigning s4 to s4
s4 = happy birthday to you

s1 after s1[0] = 'H' and s1[6] = 'B' is: Happy Birthday to you

Attempt to assign 'd' to s1.at(30) yields:
An exception occurred: invalid string position

Fig. 10.1. Standard Library string class test program.

Lines 9–11 create three string objects—s1 is initialized with the literal "happy", s2 is initialized with the literal " birthday" and s3 uses the default string constructor to create an empty string. Lines 14–15 output these three objects, using cout and operator <<, which the string class designers overloaded to handle string objects. Then lines 16–22 show the results of comparing s2 to s1 by using class string’s overloaded equality and relational operators, which perform lexicographical comparisons (i.e., like a dictionary ordering) using the numerical values of the characters (see Appendix B, ASCII Character Set) in each string.

Class string provides member function empty to determine whether a string is empty, which we demonstrate in line 27. Member function empty returns true if the string is empty; otherwise, it returns false.

Line 30 demonstrates class string’s overloaded copy assignment operator by assigning s1 to s3. Line 31 outputs s3 to demonstrate that the assignment worked correctly.

Line 36 demonstrates class string’s overloaded += operator for string concatenation. In this case, the contents of s2 are appended to s1. Then line 37 outputs the resulting string that’s stored in s1. Line 41 demonstrates that a string literal can be appended to a string object by using operator +=. Line 42 displays the result.

Class string provides member function substr (lines 47 and 52) to return a portion of a string as a string object. The call to substr in line 47 obtains a 14-character substring (specified by the second argument) of s1 starting at position 0 (specified by the first argument).The call to substr in line 52 obtains a substring starting from position 15 of s1. When the second argument is not specified, substr returns the remainder of the string on which it’s called.

Line 55 creates string object s4 and initializes it with a copy of s1. This results in a call to class string’s copy constructor. Line 60 uses class string’s overloaded copy assignment (=) operator to demonstrate that it handles self-assignment properly—we’ll see when we build class Array later in the chapter that self-assignment can be dangerous and we’ll show how to deal with the issues.

Lines 64–65 use class string’s overloaded [] operator to create lvalues that enable new characters to replace existing characters in s1. Line 67 outputs the new value of s1. Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you must ensure that operations using standard class string’s overloaded [] operator do not accidentally manipulate elements outside the bounds of the string. Class string does provide bounds checking in its member function at, which throws an exception if its argument is an invalid subscript. If the subscript is valid, function at returns the character at the specified location as a modifiable lvalue or an nonmodifiable lvalue (e.g., a const reference), depending on the context in which the call appears. Line 73 demonstrates a call to function at with an invalid subscript; this throws an out_of_range exception.

10.3. Fundamentals of Operator Overloading

As you saw in Fig. 10.1, operators provide a concise notation for manipulating string objects. You can use operators with your own user-defined types as well. Although C++ does not allow new operators to be created, it does allow most existing operators to be overloaded so that, when they’re used with objects, they have meaning appropriate to those objects.

Operator overloading is not automatic—you must write operator-overloading functions to perform the desired operations. An operator is overloaded by writing a non-static member function definition or non-member function definition as you normally would, except that the function name starts with the keyword operator followed by the symbol for the operator being overloaded. For example, the function name operator+ would be used to overload the addition operator (+) for use with objects of a particular class (or enum). When operators are overloaded as member functions, they must be non-static, because they must be called on an object of the class and operate on that object.

To use an operator on an object of a class, you must define overloaded operator functions for that class—with three exceptions:

• The assignment operator (=) may be used with most classes to perform memberwise assignment of the data members—each data member is assigned from the assignment’s “source” object (on the right) to the “target” object (on the left). Memberwise assignment is dangerous for classes with pointer members, so we’ll explicitly overload the assignment operator for such classes.

• The address (&) operator returns a pointer to the object; this operator also can be overloaded.

• The comma operator evaluates the expression to its left then the expression to its right, and returns the value of the latter expression. This operator also can be overloaded.

Operators That Cannot Be Overloaded

Most of C++’s operators can be overloaded. Figure 10.2 shows the operators that cannot be overloaded.1

[image: Image]

Fig. 10.2. Operators that cannot be overloaded.

1. Although it’s possible to overload the address (&), comma (,), && and || operators, you should avoid doing so to avoid subtle errors. For insights on this, see CERT guideline DCL10-CPP.

Rules and Restrictions on Operator Overloading

As you prepare to overload operators for your own classes, there are several rules and restrictions you should keep in mind:

• The precedence of an operator cannot be changed by overloading. However, parentheses can be used to force the order of evaluation of overloaded operators in an expression.

• The associativity of an operator cannot be changed by overloading—if an operator normally associates from left to right, then so do all of its overloaded versions.

• You cannot change the “arity” of an operator (that is, the number of operands an operator takes)—overloaded unary operators remain unary operators; overloaded binary operators remain binary operators. Operators &, *, + and - all have both unary and binary versions; these unary and binary versions can be separately overloaded.

• You cannot create new operators; only existing operators can be overloaded.

• The meaning of how an operator works on values of fundamental types cannot be changed by operator overloading. For example, you cannot make the + operator subtract two ints. Operator overloading works only with objects of user-defined types or with a mixture of an object of a user-defined type and an object of a fundamental type.

• Related operators, like + and +=, must be overloaded separately.

• When overloading (), [], -> or any of the assignment operators, the operator overloading function must be declared as a class member. For all other overloadable operators, the operator overloading functions can be member functions or non-member functions.

[image: Image] Software Engineering Observation 10.1

Overload operators for class types so they work as closely as possible to the way built-in operators work on fundamental types.

10.4. Overloading Binary Operators

A binary operator can be overloaded as a non-static member function with one parameter or as a non-member function with two parameters (one of those parameters must be either a class object or a reference to a class object). A non-member operator function is often declared as friend of a class for performance reasons.

Binary Overloaded Operators as Member Functions

Consider using < to compare two objects of a String class that you define. When overloading binary operator < as a non-static member function of a String class, if y and z are String-class objects, then y < z is treated as if y.operator<(z) had been written, invoking the operator< member function with one argument declared below:

Click here to view code image

class String
{
public:
 bool operator<(const String &) const;
 ...
}; // end class String

Overloaded operator functions for binary operators can be member functions only when the left operand is an object of the class in which the function is a member.

Binary Overloaded Operators as Non-Member Functions

As a non-member function, binary operator < must take two arguments—one of which must be an object (or a reference to an object) of the class that the overloaded operator is associated with. If y and z are String-class objects or references to String-class objects, then y < z is treated as if the call operator<(y, z) had been written in the program, invoking function operator< which is declared as follows:

bool operator<(const String &, const String &);

10.5. Overloading the Binary Stream Insertion and Stream Extraction Operators

You can input and output fundamental-type data using the stream extraction operator >> and the stream insertion operator <<. The C++ class libraries overload these binary operators for each fundamental type, including pointers and char * strings. You can also overload these operators to perform input and output for your own types. The program of Figs. 10.3–10.5 overloads these operators to input and output PhoneNumber objects in the format “(000) 000-0000.” The program assumes telephone numbers are input correctly.

Click here to view code image

 1 // Fig. 10.3: PhoneNumber.h
 2 // PhoneNumber class definition
 3 #ifndef PHONENUMBER_H
 4 #define PHONENUMBER_H
 5
 6 #include <iostream>
 7 #include <string>
 8
 9 class PhoneNumber
10 {
11 friend std::ostream &operator<<(std::ostream &, const PhoneNumber &);
12 friend std::istream &operator>>(std::istream &, PhoneNumber &);
13 private:
14 std::string areaCode; // 3-digit area code
15 std::string exchange; // 3-digit exchange
16 std::string line; // 4-digit line
17 }; // end class PhoneNumber
18
19 #endif

Fig. 10.3. PhoneNumber class with overloaded stream insertion and stream extraction operators as friend functions.

Click here to view code image

 1 // Fig. 10.4: PhoneNumber.cpp
 2 // Overloaded stream insertion and stream extraction operators
 3 // for class PhoneNumber.
 4 #include <iomanip>
 5 #include "PhoneNumber.h"
 6 using namespace std;
 7
 8 // overloaded stream insertion operator; cannot be
 9 // a member function if we would like to invoke it with
10 // cout << somePhoneNumber;
11 ostream &operator<<(ostream &output, const PhoneNumber &number)
12 {
13 output << "(" << number.areaCode << ") "
14 << number.exchange << "-" << number.line;
15 return output; // enables cout << a << b << c;
16 } // end function operator<<
17
18 // overloaded stream extraction operator; cannot be
19 // a member function if we would like to invoke it with
20 // cin >> somePhoneNumber;
21 istream &operator>>(istream &input, PhoneNumber &number)
22 {
23 input.ignore(); // skip (
24 input >> setw(3) >> number.areaCode; // input area code
25 input.ignore(2); // skip) and space
26 input >> setw(3) >> number.exchange; // input exchange
27 input.ignore(); // skip dash (-)
28 input >> setw(4) >> number.line; // input line
29 return input; // enables cin >> a >> b >> c;
30 } // end function operator>>

Fig. 10.4. Overloaded stream insertion and stream extraction operators for class PhoneNumber.

Click here to view code image

 1 // Fig. 10.5: fig10_05.cpp
 2 // Demonstrating class PhoneNumber's overloaded stream insertion
 3 // and stream extraction operators.
 4 #include <iostream>
 5 #include "PhoneNumber.h"
 6 using namespace std;
 7
 8 int main()
 9 {
10 PhoneNumber phone; // create object phone
11
12 cout << "Enter phone number in the form (123) 456-7890:" << endl;
13
14 // cin >> phone invokes operator>> by implicitly issuing
15 // the non-member function call operator>>(cin, phone)
16 cin >> phone;
17
18 cout << "The phone number entered was: ";
19
20 // cout << phone invokes operator<< by implicitly issuing
21 // the non-member function call operator<<(cout, phone)
22 cout << phone << endl;
23 } // end main

Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212

Fig. 10.5. Overloaded stream insertion and stream extraction operators.

Overloading the Stream Extraction (>>) Operator

The stream extraction operator function operator>> (Fig. 10.4, lines 21–30) takes the istream reference input and the PhoneNumber reference number as arguments and returns an istream reference. Operator function operator>> inputs phone numbers of the form

(800) 555-1212

into objects of class PhoneNumber. When the compiler sees the expression

cin >> phone

in line 16 of Fig. 10.5, the compiler generates the non-member function call

operator>>(cin, phone);

When this call executes, reference parameter input (Fig. 10.4, line 21) becomes an alias for cin and reference parameter number becomes an alias for phone. The operator function reads as strings the three parts of the telephone number into the areaCode (line 24), exchange (line 26) and line (line 28) members of the PhoneNumber object referenced by parameter number. Stream manipulator setw limits the number of characters read into each string. When used with cin and strings, setw restricts the number of characters read to the number of characters specified by its argument (i.e., setw(3) allows three characters to be read). The parentheses, space and dash characters are skipped by calling istream member function ignore (Fig. 10.4, lines 23, 25 and 27), which discards the specified number of characters in the input stream (one character by default). Function operator>> returns istream reference input (i.e., cin). This enables input operations on PhoneNumber objects to be cascaded with input operations on other PhoneNumber objects or other data types. For example, a program can input two PhoneNumber objects in one statement as follows:

cin >> phone1 >> phone2;

First, the expression cin >> phone1 executes by making the non-member function call

operator>>(cin, phone1);

This call then returns a reference to cin as the value of cin >> phone1, so the remaining portion of the expression is interpreted simply as cin >> phone2. This executes by making the non-member function call

operator>>(cin, phone2);

[image: Image] Good Programming Practice 10.1

Overloaded operators should mimic the functionality of their built-in counterparts—e.g., the + operator should perform addition, not subtraction. Avoid excessive or inconsistent use of operator overloading, as this can make a program cryptic and difficult to read.

Overloading the Stream Insertion (<<) Operator

The stream insertion operator function (Fig. 10.4, lines 11–16) takes an ostream reference (output) and a const PhoneNumber reference (number) as arguments and returns an ostream reference. Function operator<< displays objects of type PhoneNumber. When the compiler sees the expression

cout << phone

in line 22 of Fig. 10.5, the compiler generates the non-member function call

operator<<(cout, phone);

Function operator<< displays the parts of the telephone number as strings, because they’re stored as string objects.

Overloaded Operators as Non-Member friend Functions

The functions operator>> and operator<< are declared in PhoneNumber as non-member, friend functions (Fig. 10.3, lines 11–12). They’re non-member functions because the object of class PhoneNumber must be the operator’s right operand. If these were to be PhoneNumber member functions, the following awkward statements would have to be used to output and input a PhoneNumber:

phone << cout;
phone >> cin;

Such statements would be confusing to most C++ programmers, who are familiar with cout and cin appearing as the left operands of << and >>, respectively.

Overloaded operator functions for binary operators can be member functions only when the left operand is an object of the class in which the function is a member. Overloaded input and output operators are declared as friends if they need to access non-public class members directly or because the class may not offer appropriate get functions. Also, the PhoneNumber reference in function operator<<’s parameter list (Fig. 10.4, line 11) is const, because the PhoneNumber will simply be output, and the PhoneNumber reference in function operator>>’s parameter list (line 21) is non-const, because the PhoneNumber object must be modified to store the input telephone number in the object.

[image: Image] Software Engineering Observation 10.2

New input/output capabilities for user-defined types are added to C++ without modifying standard input/output library classes. This is another example of C++’s extensibility.

Why Overloaded Stream Insertion and Stream Extraction Operators Are Overloaded as Non-Member Functions

The overloaded stream insertion operator (<<) is used in an expression in which the left operand has type ostream &, as in cout << classObject. To use the operator in this manner where the right operand is an object of a user-defined class, it must be overloaded as a non-member function. To be a member function, operator << would have to be a member of class ostream. This is not possible for user-defined classes, since we are not allowed to modify C++ Standard Library classes. Similarly, the overloaded stream extraction operator (>>) is used in an expression in which the left operand has the type istream &, as in cin >> classObject, and the right operand is an object of a user-defined class, so it, too, must be a non-member function. Also, each of these overloaded operator functions may require access to the private data members of the class object being output or input, so these overloaded operator functions can be made friend functions of the class for performance reasons.

10.6. Overloading Unary Operators

A unary operator for a class can be overloaded as a non-static member function with no arguments or as a non-member function with one argument that must be an object (or a reference to an object) of the class. Member functions that implement overloaded operators must be non-static so that they can access the non-static data in each object of the class.

Unary Overloaded Operators as Member Functions

Consider overloading unary operator ! to test whether an object of your own String class is empty. Such a function would return a bool result. When a unary operator such as ! is overloaded as a member function with no arguments and the compiler sees the expression !s (in which s is an object of class String), the compiler generates the function call s.operator!(). The operand s is the String object for which the String class member function operator! is being invoked. The function is declared as follows:

class String
{
public:
 bool operator!() const;
 ...
}; // end class String

Unary Overloaded Operators as Non-Member Functions

A unary operator such as ! may be overloaded as a non-member function with one parameter. If s is a String class object (or a reference to a String class object), then !s is treated as if the call operator!(s) had been written, invoking the non-member operator! function that’s declared as follows:

bool operator!(const String &);

10.7. Overloading the Unary Prefix and Postfix ++ and -- Operators

The prefix and postfix versions of the increment and decrement operators can all be overloaded. We’ll see how the compiler distinguishes between the prefix version and the postfix version of an increment or decrement operator.

To overload the prefix and postfix increment operators, each overloaded operator function must have a distinct signature, so that the compiler will be able to determine which version of ++ is intended. The prefix versions are overloaded exactly as any other prefix unary operator would be. Everything stated in this section for overloading prefix and postfix increment operators applies to overloading predecrement and postdecrement operators. In the next section, we examine a Date class with overloaded prefix and postfix increment operators.

Overloading the Prefix Increment Operator

Suppose that we want to add 1 to the day in Date object d1. When the compiler sees the preincrementing expression ++d1, the compiler generates the member-function call

d1.operator++()

The prototype for this operator member function would be

Date &operator++();

If the prefix increment operator is implemented as a non-member function, then, when the compiler sees the expression ++d1, the compiler generates the function call

operator++(d1)

The prototype for this non-member operator function would be declared as

Date &operator++(Date &);

Overloading the Postfix Increment Operator

Overloading the postfix increment operator presents a challenge, because the compiler must be able to distinguish between the signatures of the overloaded prefix and postfix increment operator functions. The convention that has been adopted is that, when the compiler sees the postincrementing expression d1++, it generates the member-function call

d1.operator++(0)

The prototype for this operator member function is

Date operator++(int)

The argument 0 is strictly a dummy value that enables the compiler to distinguish between the prefix and postfix increment operator functions. The same syntax is used to differentiate between the prefix and postfix decrement operator functions.

If the postfix increment is implemented as a non-member function, then, when the compiler sees the expression d1++, the compiler generates the function call

operator++(d1, 0)

The prototype for this function would be

Date operator++(Date &, int);

Once again, the 0 argument is used by the compiler to distinguish between the prefix and postfix increment operators implemented as non-member functions. Note that the postfix increment operator returns Date objects by value, whereas the prefix increment operator returns Date objects by reference—the postfix increment operator typically returns a temporary object that contains the original value of the object before the increment occurred. C++ treats such objects as rvalues, which cannot be used on the left side of an assignment. The prefix increment operator returns the actual incremented object with its new value. Such an object can be used as an lvalue in a continuing expression.

[image: Image] Performance Tip 10.1

The extra object that’s created by the postfix increment (or decrement) operator can result in a performance problem—especially when the operator is used in a loop. For this reason, you should prefer the overloaded prefix increment and decrement operators.

10.8. Case Study: A Date Class

The program of Figs. 10.6–10.8 demonstrates a Date class, which uses overloaded prefix and postfix increment operators to add 1 to the day in a Date object, while causing appropriate increments to the month and year if necessary. The Date header (Fig. 10.6) specifies that Date’s public interface includes an overloaded stream insertion operator (line 11), a default constructor (line 13), a setDate function (line 14), an overloaded prefix increment operator (line 15), an overloaded postfix increment operator (line 16), an overloaded += addition assignment operator (line 17), a function to test for leap years (line 18) and a function to determine whether a day is the last day of the month (line 19).

Click here to view code image

 1 // Fig. 10.6: Date.h
 2 // Date class definition with overloaded increment operators.
 3 #ifndef DATE_H
 4 #define DATE_H
 5
 6 #include <array>
 7 #include <iostream>
 8
 9 class Date
10 {
11 friend std::ostream &operator<<(std::ostream &, const Date &);
12 public:
13 Date(int m = 1, int d = 1, int y = 1900); // default constructor
14 void setDate(int, int, int); // set month, day, year
15 Date &operator++(); // prefix increment operator
16 Date operator++(int); // postfix increment operator
17 Date &operator+=(unsigned int); // add days, modify object
18 static bool leapYear(int); // is date in a leap year?
19 bool endOfMonth(int) const; // is date at the end of month?
20 private:
21 unsigned int month;
22 unsigned int day;
23 unsigned int year;
24
25 static const std::array< unsigned int, 13 > days; // days per month
26 void helpIncrement(); // utility function for incrementing date
27 }; // end class Date
28
29 #endif

Fig. 10.6. Date class definition with overloaded increment operators.

Click here to view code image

 1 // Fig. 10.7: Date.cpp
 2 // Date class member- and friend-function definitions.
 3 #include <iostream>
 4 #include <string>
 5 #include "Date.h"
 6 using namespace std;
 7
 8 // initialize static member; one classwide copy
 9 const array< unsigned int, 13 > Date::days =
10 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
11
12 // Date constructor
13 Date::Date(int month, int day, int year)
14 {
15 setDate(month, day, year);
16 } // end Date constructor
17
18 // set month, day and year
19 void Date::setDate(int mm, int dd, int yy)
20 {
21 if (mm >= 1 && mm <= 12)
22 month = mm;
23 else
24 throw invalid_argument("Month must be 1-12");
25
26 if (yy >= 1900 && yy <= 2100)
27 year = yy;
28 else
29 throw invalid_argument("Year must be >= 1900 and <= 2100");
30
31 // test for a leap year
32 if ((month == 2 && leapYear(year) && dd >= 1 && dd <= 29) ||
33 (dd >= 1 && dd <= days[month]))
34 day = dd;
35 else
36 throw invalid_argument(
37 "Day is out of range for current month and year");
38 } // end function setDate
39
40 // overloaded prefix increment operator
41 Date &Date::operator++()
42 {
43 helpIncrement(); // increment date
44 return *this; // reference return to create an lvalue
45 } // end function operator++
46
47 // overloaded postfix increment operator; note that the
48 // dummy integer parameter does not have a parameter name
49 Date Date::operator++(int)
50 {
51 Date temp = *this; // hold current state of object
52 helpIncrement();
53
54 // return unincremented, saved, temporary object
55 return temp; // value return; not a reference return
56 } // end function operator++
57
58 // add specified number of days to date
59 Date &Date::operator+=(unsigned int additionalDays)
60 {
61 for (int i = 0; i < additionalDays; ++i)
62 helpIncrement();
63
64 return *this; // enables cascading
65 } // end function operator+=
66
67 // if the year is a leap year, return true; otherwise, return false
68 bool Date::leapYear(int testYear)
69 {
70 if (testYear % 400 == 0 ||
71 (testYear % 100 != 0 && testYear % 4 == 0))
72 return true; // a leap year
73 else
74 return false; // not a leap year
75 } // end function leapYear
76
77 // determine whether the day is the last day of the month
78 bool Date::endOfMonth(int testDay) const
79 {
80 if (month == 2 && leapYear(year))
81 return testDay == 29; // last day of Feb. in leap year
82 else
83 return testDay == days[month];
84 } // end function endOfMonth
85
86 // function to help increment the date
87 void Date::helpIncrement()
88 {
89 // day is not end of month
90 if (!endOfMonth(day))
91 ++day; // increment day
92 else
93 if (month < 12) // day is end of month and month < 12
94 {
95 ++month; // increment month
96 day = 1; // first day of new month
97 } // end if
98 else // last day of year
99 {
100 ++year; // increment year
101 month = 1; // first month of new year
102 day = 1; // first day of new month
103 } // end else
104 } // end function helpIncrement
105
106 // overloaded output operator
107 ostream &operator<<(ostream &output, const Date &d)
108 {
109 static string monthName[13] = { "", "January", "February",
110 "March", "April", "May", "June", "July", "August",
111 "September", "October", "November", "December" };
112 output << monthName[d.month] << ' ' << d.day << ", " << d.year;
113 return output; // enables cascading
114 } // end function operator<<

Fig. 10.7. Date class member- and friend-function definitions.

Click here to view code image

 1 // Fig. 10.8: fig10_08.cpp
 2 // Date class test program.
 3 #include <iostream>
 4 #include "Date.h" // Date class definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 Date d1(12, 27, 2010); // December 27, 2010
10 Date d2; // defaults to January 1, 1900
11
12 cout << "d1 is " << d1 << "\nd2 is " << d2;
13 cout << "\n\nd1 += 7 is " << (d1 += 7);
14
15 d2.setDate(2, 28, 2008);
16 cout << "\n\n d2 is " << d2;
17 cout << "\n++d2 is " << ++d2 << " (leap year allows 29th)";
18
19 Date d3(7, 13, 2010);
20
21 cout << "\n\nTesting the prefix increment operator:\n"
22 << " d3 is " << d3 << endl;
23 cout << "++d3 is " << ++d3 << endl;
24 cout << " d3 is " << d3;
25
26 cout << "\n\nTesting the postfix increment operator:\n"
27 << " d3 is " << d3 << endl;
28 cout << "d3++ is " << d3++ << endl;
29 cout << " d3 is " << d3 << endl;
30 } // end main

d1 is December 27, 2010
d2 is January 1, 1900

d1 += 7 is January 3, 2011

 d2 is February 28, 2008
++d2 is February 29, 2008 (leap year allows 29th)

Testing the prefix increment operator:
 d3 is July 13, 2010
++d3 is July 14, 2010
 d3 is July 14, 2010

Testing the postfix increment operator:
 d3 is July 14, 2010
d3++ is July 14, 2010
 d3 is July 15, 2010

Fig. 10.8. Date class test program.

Function main (Fig. 10.8) creates two Date objects (lines 9–10)—d1 is initialized to December 27, 2010 and d2 is initialized by default to January 1, 1900. The Date constructor (defined in Fig. 10.7, lines 13–16) calls setDate (defined in Fig. 10.7, lines 19–38) to validate the month, day and year specified. Invalid values for the month, day or year result in invalid_argument exceptions.

Line 12 of main (Fig. 10.8) outputs each of the Date objects, using the overloaded stream insertion operator (defined in Fig. 10.7, lines 107–114). Line 13 of main uses the overloaded operator += (defined in Fig. 10.7, lines 59–65) to add seven days to d1. Line 15 in Fig. 10.8 uses function setDate to set d2 to February 28, 2008, which is a leap year. Then, line 17 preincrements d2 to show that the date increments properly to February 29. Next, line 19 creates a Date object, d3, which is initialized with the date July 13, 2010. Then line 23 increments d3 by 1 with the overloaded prefix increment operator. Lines 21–24 output d3 before and after the preincrement operation to confirm that it worked correctly. Finally, line 28 increments d3 with the overloaded postfix increment operator. Lines 26–29 output d3 before and after the postincrement operation to confirm that it worked correctly.

Date Class Prefix Increment Operator

Overloading the prefix increment operator is straightforward. The prefix increment operator (defined in Fig. 10.7, lines 41–45) calls utility function helpIncrement (defined in Fig. 10.7, lines 87–104) to increment the date. This function deals with “wraparounds” or “carries” that occur when we increment the last day of the month. These carries require incrementing the month. If the month is already 12, then the year must also be incremented and the month must be set to 1. Function helpIncrement uses function endOfMonth to determine whether the end of a month has been reached and increment the day correctly.

The overloaded prefix increment operator returns a reference to the current Date object (i.e., the one that was just incremented). This occurs because the current object, *this, is returned as a Date &. This enables a preincremented Date object to be used as an lvalue, which is how the built-in prefix increment operator works for fundamental types.

Date Class Postfix Increment Operator

Overloading the postfix increment operator (defined in Fig. 10.7, lines 49–56) is trickier. To emulate the effect of the postincrement, we must return an unincremented copy of the Date object. For example, if int variable x has the value 7, the statement

cout << x++ << endl;

outputs the original value of variable x. So we’d like our postfix increment operator to operate the same way on a Date object. On entry to operator++, we save the current object (*this) in temp (line 51). Next, we call helpIncrement to increment the current Date object. Then, line 55 returns the unincremented copy of the object previously stored in temp. This function cannot return a reference to the local Date object temp, because a local variable is destroyed when the function in which it’s declared exits. Thus, declaring the return type to this function as Date & would return a reference to an object that no longer exists.

[image: Image] Common Programming Error 10.1

Returning a reference (or a pointer) to a local variable is a common error for which most compilers will issue a warning.

10.9. Dynamic Memory Management

You can control the allocation and deallocation of memory in a program for objects and for arrays of any built-in or user-defined type. This is known as dynamic memory management and is performed with the operators new and delete. We’ll use these capabilities to implement our Array class in the next section.

You can use the new operator to dynamically allocate (i.e., reserve) the exact amount of memory required to hold an object or built-in array at execution time. The object or built-in array is created in the free store (also called the heap)—a region of memory assigned to each program for storing dynamically allocated objects.2 Once memory is allocated in the free store, you can access it via the pointer that operator new returns. When you no longer need the memory, you can return it to the free store by using the delete operator to deallocate (i.e., release) the memory, which can then be reused by future new operations.3

2. Operator new could fail to obtain the needed memory, in which case a bad_alloc exception will occur. Chapter 17 shows how to deal with failures when using new.

3. Operators new and delete can be overloaded, but this is beyond the scope of the book. If you do overload new, then you should overload delete in the same scope to avoid subtle dynamic memory management errors.

Obtaining Dynamic Memory with new

Consider the following statement:

Time *timePtr = new Time();

The new operator allocates storage of the proper size for an object of type Time, calls the default constructor to initialize the object and returns a pointer to the type specified to the right of the new operator (i.e., a Time *). If new is unable to find sufficient space in memory for the object, it indicates that an error occurred by throwing an exception.

Releasing Dynamic Memory with delete

To destroy a dynamically allocated object and free the space for the object, use the delete operator as follows:

delete timePtr;

This statement first calls the destructor for the object to which timePtr points, then deallocates the memory associated with the object, returning the memory to the free store.

[image: Image] Common Programming Error 10.2

Not releasing dynamically allocated memory when it’s no longer needed can cause the system to run out of memory prematurely. This is sometimes called a “memory leak.”

[image: Image] Error-Prevention Tip 10.1

Do not delete memory that was not allocated by new. Doing so results in undefined behavior.

[image: Image] Error-Prevention Tip 10.2

After you delete a block of dynamically allocated memory be sure not to delete the same block again. One way to guard against this is to immediately set the pointer to nullptr. Deleting a nullptr has no effect.

Initializing Dynamic Memory

You can provide an initializer for a newly created fundamental-type variable, as in

double *ptr = new double(3.14159);

which initializes a newly created double to 3.14159 and assigns the resulting pointer to ptr. The same syntax can be used to specify a comma-separated list of arguments to the constructor of an object. For example,

Time *timePtr = new Time(12, 45, 0);

initializes a new Time object to 12:45 PM and assigns the resulting pointer to timePtr.

Dynamically Allocating Built-In Arrays with new []

You can also use the new operator to allocate built-in arrays dynamically. For example, a 10-element integer array can be allocated and assigned to gradesArray as follows:

int *gradesArray = new int[10]();

which declares int pointer gradesArray and assigns to it a pointer to the first element of a dynamically allocated 10-element array of ints. The parentheses following new int[10] value initialize the array’s elements—fundamental numeric types are set to 0, bools are set to false, pointers are set to nullptr and class objects are initialized by their default constructors. The size of an array created at compile time must be specified using an integral constant expression; however, a dynamically allocated array’s size can be specified using any non-negative integral expression that can be evaluated at execution time.

C++11: Using a List Initializer with a Dynamically Allocated Built-In Array

[image: Image]

Prior to C++11, when allocating a built-in array of objects dynamically, you could not pass arguments to each object’s constructor—each object was initialized by its default constructor. In C++11, you can use a list initializer to initialize the elements of a dynamically allocated built-in array, as in

int *gradesArray = new int[10]{};

The empty set of braces as shown here indicates that default initialization should be used for each element—for fundamental types each element is set to 0. The braces may also contain a comma-separated list of initializers for the array’s elements.

Releasing Dynamically Allocated Built-In Arrays with delete []

To deallocate the memory to which gradesArray points, use the statement

delete [] gradesArray;

If the pointer points to a built-in array of objects, the statement first calls the destructor for every object in the array, then deallocates the memory. If the preceding statement did not include the square brackets ([]) and gradesArray pointed to a built-in array of objects, the result is undefined—some compilers call the destructor only for the first object in the array. Using delete or delete [] on a nullptr has no effect.

[image: Image] Common Programming Error 10.3

Using delete instead of delete [] for built-in arrays of objects can lead to runtime logic errors. To ensure that every object in the array receives a destructor call, always delete memory allocated as an array with operator delete []. Similarly, always delete memory allocated as an individual element with operator delete—the result of deleting a single object with operator delete [] is undefined.

C++11: Managing Dynamically Allocated Memory with unique_ptr

[image: Image]

C++11’s new unique_ptr is a “smart pointer” for managing dynamically allocated memory. When a unique_ptr goes out of scope, its destructor automatically returns the managed memory to the free store. In Chapter 17, we introduce unique_ptr and show how to use it to manage dynamically allocated objects or a dynamically allocated built-in arrays.

10.10. Case Study: Array Class

We discussed built-in arrays in Chapter 8. Pointer-based arrays have many problems, including:

• A program can easily “walk off” either end of a built-in array, because C++ does not check whether subscripts fall outside the range of the array (though you can still do this explicitly).

• Built-in arrays of size n must number their elements 0, ..., n – 1; alternate subscript ranges are not allowed.

• An entire built-in array cannot be input or output at once; each element must be read or written individually (unless the array is a null-terminated C string).

• Two built-in arrays cannot be meaningfully compared with equality or relational operators (because the array names are simply pointers to where the arrays begin in memory and two arrays will always be at different memory locations).

• When a built-in array is passed to a general-purpose function designed to handle arrays of any size, the array’s size must be passed as an additional argument.

• One built-in array cannot be assigned to another with the assignment operator(s).

Class development is an interesting, creative and intellectually challenging activity—always with the goal of crafting valuable classes. With C++, you can implement more robust array capabilities via classes and operator overloading as has been done with class templates array and vector in the C++ Standard Library. In this section, we’ll develop our own custom array class that’s preferable to built-in arrays. When we refer to “arrays” in this case study, we mean built-in arrays.

In this example, we create a powerful Array class that performs range checking to ensure that subscripts remain within the bounds of the Array. The class allows one Array object to be assigned to another with the assignment operator. Array objects know their size, so the size does not need to be passed separately to functions that receive Array parameters. Entire Arrays can be input or output with the stream extraction and stream insertion operators, respectively. You can compare Arrays with the equality operators == and !=.

10.10.1. Using the Array Class

The program of Figs. 10.9–10.11 demonstrates class Array and its overloaded operators. First we walk through main (Fig. 10.9) and the program’s output, then we consider the class definition (Fig. 10.10) and each of its member-function definitions (Fig. 10.11).

Click here to view code image

 1 // Fig. 10.9: fig10_09.cpp
 2 // Array class test program.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "Array.h"
 6 using namespace std;
 7
 8 int main()
 9 {
10 Array integers1(7); // seven-element Array
11 Array integers2; // 10-element Array by default
12
13 // print integers1 size and contents
14 cout << "Size of Array integers1 is "
15 << integers1.getSize()
16 << "\nArray after initialization:\n" << integers1;
17
18 // print integers2 size and contents
19 cout << "\nSize of Array integers2 is "
20 << integers2.getSize()
21 << "\nArray after initialization:\n" << integers2;
22
23 // input and print integers1 and integers2
24 cout << "\nEnter 17 integers:" << endl;
25 cin >> integers1 >> integers2;
26
27 cout << "\nAfter input, the Arrays contain:\n"
28 << "integers1:\n" << integers1
29 << "integers2:\n" << integers2;
30
31 // use overloaded inequality (!=) operator
32 cout << "\nEvaluating: integers1 != integers2" << endl;
33
34 if (integers1 != integers2)
35 cout << "integers1 and integers2 are not equal" << endl;
36
37 // create Array integers3 using integers1 as an
38 // initializer; print size and contents
39 Array integers3(integers1); // invokes copy constructor
40
41 cout << "\nSize of Array integers3 is "
42 << integers3.getSize()
43 << "\nArray after initialization:\n" << integers3;
44
45 // use overloaded assignment (=) operator
46 cout << "\nAssigning integers2 to integers1:" << endl;
47 integers1 = integers2; // note target Array is smaller
48
49 cout << "integers1:\n" << integers1
50 << "integers2:\n" << integers2;
51
52 // use overloaded equality (==) operator
53 cout << "\nEvaluating: integers1 == integers2" << endl;
54
55 if (integers1 == integers2)
56 cout << "integers1 and integers2 are equal" << endl;
57
58 // use overloaded subscript operator to create rvalue
59 cout << "\nintegers1[5] is " << integers1[5];
60
61 // use overloaded subscript operator to create lvalue
62 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
63 integers1[5] = 1000;
64 cout << "integers1:\n" << integers1;
65
66 // attempt to use out-of-range subscript
67 try
68 {
69 cout << "\nAttempt to assign 1000 to integers1[15]" << endl;
70 integers1[15] = 1000; // ERROR: subscript out of range
71 } // end try
72 catch (out_of_range &ex)
73 {
74 cout << "An exception occurred: " << ex.what() << endl;
75 } // end catch
76 } // end main

Size of Array integers1 is 7
Array after initialization:
 0 0 0 0
 0 0 0

Size of Array integers2 is 10
Array after initialization:
 0 0 0 0
 0 0 0 0
 0 0

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

After input, the Arrays contain:
integers1:
 1 2 3 4
 5 6 7
integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of Array integers3 is 7
Array after initialization:
 1 2 3 4
 5 6 7

Assigning integers2 to integers1:
integers1:
 8 9 10 11
 12 13 14 15
 16 17

integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Assigning 1000 to integers1[5]
integers1:
 8 9 10 11
 12 1000 14 15
 16 17

Attempt to assign 1000 to integers1[15]
An exception occurred: Subscript out of range

Fig. 10.9. Array class test program.

Click here to view code image

 1 // Fig. 10.10: Array.h
 2 // Array class definition with overloaded operators.
 3 #ifndef ARRAY_H
 4 #define ARRAY_H
 5
 6 #include <iostream>
 7
 8 class Array
 9 {
10 friend std::ostream &operator<<(std::ostream &, const Array &);
11 friend std::istream &operator>>(std::istream &, Array &);
12
13 public:
14 explicit Array(int = 10); // default constructor
15 Array(const Array &); // copy constructor
16 ~Array(); // destructor
17 size_t getSize() const; // return size
18
19 const Array &operator=(const Array &); // assignment operator
20 bool operator==(const Array &) const; // equality operator
21
22 // inequality operator; returns opposite of == operator
23 bool operator!=(const Array &right) const
24 {
25 return ! (*this == right); // invokes Array::operator==
26 } // end function operator!=
27
28 // subscript operator for non-const objects returns modifiable lvalue
29 int &operator[](int);
30
31 // subscript operator for const objects returns rvalue
32 int operator[](int) const;
33 private:
34 size_t size; // pointer-based array size
35 int *ptr; // pointer to first element of pointer-based array
36 }; // end class Array
37
38 #endif

Fig. 10.10. Array class definition with overloaded operators.

Click here to view code image

 1 // Fig. 10.11: Array.cpp
 2 // Array class member- and friend-function definitions.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <stdexcept>
 6
 7 #include "Array.h" // Array class definition
 8 using namespace std;
 9
10 // default constructor for class Array (default size 10)
11 Array::Array(int arraySize)
12 : size(arraySize > 0 ? arraySize :
13 throw invalid_argument("Array size must be greater than 0")),
14 ptr(new int[size])
15 {
16 for (size_t i = 0; i < size; ++i)
17 ptr[i] = 0; // set pointer-based array element
18 } // end Array default constructor
19
20 // copy constructor for class Array;
21 // must receive a reference to an Array
22 Array::Array(const Array &arrayToCopy)
23 : size(arrayToCopy.size),
24 ptr(new int[size])
25 {
26 for (size_t i = 0; i < size; ++i)
27 ptr[i] = arrayToCopy.ptr[i]; // copy into object
28 } // end Array copy constructor
29
30 // destructor for class Array
31 Array::~Array()
32 {
33 delete [] ptr; // release pointer-based array space
34 } // end destructor
35
36 // return number of elements of Array
37 size_t Array::getSize() const
38 {
39 return size; // number of elements in Array
40 } // end function getSize
41
42 // overloaded assignment operator;
43 // const return avoids: (a1 = a2) = a3
44 const Array &Array::operator=(const Array &right)
45 {
46 if (&right != this) // avoid self-assignment
47 {
48 // for Arrays of different sizes, deallocate original
49 // left-side Array, then allocate new left-side Array
50 if (size != right.size)
51 {
52 delete [] ptr; // release space
53 size = right.size; // resize this object
54 ptr = new int[size]; // create space for Array copy
55 } // end inner if
56
57 for (size_t i = 0; i < size; ++i)
58 ptr[i] = right.ptr[i]; // copy array into object
59 } // end outer if
60
61 return *this; // enables x = y = z, for example
62 } // end function operator=
63
64 // determine if two Arrays are equal and
65 // return true, otherwise return false
66 bool Array::operator==(const Array &right) const
67 {
68 if (size != right.size)
69 return false; // arrays of different number of elements
70
71 for (size_t i = 0; i < size; ++i)
72 if (ptr[i] != right.ptr[i])
73 return false; // Array contents are not equal
74
75 return true; // Arrays are equal
76 } // end function operator==
77
78 // overloaded subscript operator for non-const Arrays;
79 // reference return creates a modifiable lvalue
80 int &Array::operator[](int subscript)
81 {
82 // check for subscript out-of-range error
83 if (subscript < 0 || subscript >= size)
84 throw out_of_range("Subscript out of range");
85
86 return ptr[subscript]; // reference return
87 } // end function operator[]
88
89 // overloaded subscript operator for const Arrays
90 // const reference return creates an rvalue
91 int Array::operator[](int subscript) const
92 {
93 // check for subscript out-of-range error
94 if (subscript < 0 || subscript >= size)
95 throw out_of_range("Subscript out of range");
96
97 return ptr[subscript]; // returns copy of this element
98 } // end function operator[]
99
100 // overloaded input operator for class Array;
101 // inputs values for entire Array
102 istream &operator>>(istream &input, Array &a)
103 {
104 for (size_t i = 0; i < a.size; ++i)
105 input >> a.ptr[i];
106
107 return input; // enables cin >> x >> y;
108 } // end function
109
110 // overloaded output operator for class Array
111 ostream &operator<<(ostream &output, const Array &a)
112 {
113 // output private ptr-based array
114 for (size_t i = 0; i < a.size; ++i)
115 {
116 output << setw(12) << a.ptr[i];
117
118 if ((i + 1) % 4 == 0) // 4 numbers per row of output
119 output << endl;
120 } // end for
121
122 if (a.size % 4 != 0) // end last line of output
123 output << endl;
124
125 return output; // enables cout << x << y;
126 } // end function operator<<

Fig. 10.11. Array class member- and friend-function definitions.

Creating Arrays, Outputting Their Size and Displaying Their Contents

The program begins by instantiating two objects of class Array—integers1 (Fig. 10.9, line 10) with seven elements, and integers2 (line 11) with the default Array size—10 elements (specified by the Array default constructor’s prototype in Fig. 10.10, line 14). Lines 14–16 in Fig. 10.9 use member function getSize to determine the size of integers1 then output integers1’s contents, using the Array overloaded stream insertion operator. The sample output confirms that the Array elements were set correctly to zeros by the constructor. Next, lines 19–21 output the size of Array integers2 then output integers2’s contents, using the Array overloaded stream insertion operator.

Using the Overloaded Stream Insertion Operator to Fill an Array

Line 24 prompts the user to input 17 integers. Line 25 uses the Array overloaded stream extraction operator to read the first seven values into integers1 and the remaining 10 values into integers2. Lines 27–29 output the two arrays with the overloaded Array stream insertion operator to confirm that the input was performed correctly.

Using the Overloaded Inequality Operator

Line 34 tests the overloaded inequality operator by evaluating the condition

integers1 != integers2

The program output shows that the Arrays are not equal.

Initializing a New Array with a Copy of an Existing Array’s Contents

Line 39 instantiates a third Array called integers3 and initializes it with a copy of Array integers1. This invokes class Array’s copy constructor to copy the elements of integers1 into integers3. We discuss the details of the copy constructor shortly. The copy constructor can also be invoked by writing line 39 as follows:

Array integers3 = integers1;

The equal sign in the preceding statement is not the assignment operator. When an equal sign appears in the declaration of an object, it invokes a constructor for that object. This form can be used to pass only a single argument to a constructor—specifically, the value on the right side of the = symbol.

Lines 41–43 output the size of integers3 then output integers3’s contents, using the Array overloaded stream insertion operator to confirm that integers3’s elements were set correctly by the copy constructor.

Using the Overloaded Assignment Operator

Line 47 tests the overloaded assignment operator (=) by assigning integers2 to integers1. Lines 49–50 display both Array objects’ contents to confirm that the assignment was successful. Array integers1 originally held 7 integers, but was resized to hold a copy of the 10 elements in integers2. As we’ll see, the overloaded assignment operator performs this resizing operation in a manner that’s transparent to the client code.

Using the Overloaded Equality Operator

Line 55 uses the overloaded equality operator (==) to confirm that objects integers1 and integers2 are indeed identical after the assignment in line 47.

Using the Overloaded Subscript Operator

Line 59 uses the overloaded subscript operator to refer to integers1[5]—an in-range element of integers1. This subscripted name is used as an rvalue to print the value stored in integers1[5]. Line 63 uses integers1[5] as a modifiable lvalue on the left side of an assignment statement to assign a new value, 1000, to element 5 of integers1. We’ll see that operator[] returns a reference to use as the modifiable lvalue after the operator confirms that 5 is a valid subscript for integers1.

Line 70 attempts to assign the value 1000 to integers1[15]—an out-of-range element. In this example, operator[] determines that the subscript is out of range and throws an out_of_range exception.

Interestingly, the array subscript operator [] is not restricted for use only with arrays; it also can be used, for example, to select elements from other kinds of container classes, such as strings and dictionaries. Also, when overloaded operator[] functions are defined, subscripts no longer have to be integers—characters, strings or even objects of user-defined classes also could be used. In Chapter 15, we discuss the Standard Library map class that allows string subscripts.

10.10.2. Array Class Definition

Now that we’ve seen how this program operates, let’s walk through the class header (Fig. 10.10). As we refer to each member function in the header, we discuss that function’s implementation in Fig. 10.11. In Fig. 10.10, lines 34–35 represent the private data members of class Array. Each Array object consists of a size member indicating the number of elements in the Array and an int pointer—ptr—that points to the dynamically allocated pointer-based array of integers managed by the Array object.

Overloading the Stream Insertion and Stream Extraction Operators as friends

Lines 10–11 of Fig. 10.10 declare the overloaded stream insertion operator and the overloaded stream extraction operator as friends of class Array. When the compiler sees an expression like cout << arrayObject, it invokes non-member function operator<< with the call

operator<<(cout, arrayObject)

When the compiler sees an expression like cin >> arrayObject, it invokes non-member function operator>> with the call

operator>>(cin, arrayObject)

Again, these stream insertion and stream extraction operator functions cannot be members of class Array, because the Array object is always mentioned on the right side of the stream insertion or stream extraction operator.

Function operator<< (defined in Fig. 10.11, lines 111–126) prints the number of elements indicated by size from the integer array to which ptr points. Function operator>> (defined in Fig. 10.11, lines 102–108) inputs directly into the array to which ptr points. Each of these operator functions returns an appropriate reference to enable cascaded output or input statements, respectively. These functions have access to an Array’s private data because they’re declared as friends of class Array. We could have used class Array’s getSize and operator[] functions in the bodies of operator<< and operator>>, in which case these operator functions would not need to be friends of class Array.

[image: Image]

You might be tempted to replace the counter-controlled for statement in lines 104–105 and many of the other for statements in class Array’s implementation with the C++11 range-based for statement. Unfortunately, range-based for does not work with dynamically allocated built-in arrays.

Array Default Constructor

Line 14 of Fig. 10.10 declares the default constructor for the class and specifies a default size of 10 elements. When the compiler sees a declaration like line 11 in Fig. 10.9, it invokes class Array’s default constructor to set the size of the Array to 10 elements. The default constructor (defined in Fig. 10.11, lines 11–18) validates and assigns the argument to data member size, uses new to obtain the memory for the internal pointer-based representation of this Array and assigns the pointer returned by new to data member ptr. Then the constructor uses a for statement to set all the elements of the array to zero. It’s possible to have an Array class that does not initialize its members if, for example, these members are to be read at some later time; but this is considered to be a poor programming practice. Arrays, and objects in general, should be properly initialized as they’re created.

Array Copy Constructor

Line 15 of Fig. 10.10 declares a copy constructor (defined in Fig. 10.11, lines 22–28) that initializes an Array by making a copy of an existing Array object. Such copying must be done carefully to avoid the pitfall of leaving both Array objects pointing to the same dynamically allocated memory. This is exactly the problem that would occur with default memberwise copying, if the compiler is allowed to define a default copy constructor for this class. Copy constructors are invoked whenever a copy of an object is needed, such as in

• passing an object by value to a function,

• returning an object by value from a function or

• initializing an object with a copy of another object of the same class.

The copy constructor is called in a declaration when an object of class Array is instantiated and initialized with another object of class Array, as in the declaration in line 39 of Fig. 10.9.

The copy constructor for Array copies the size of the initializer Array into data member size, uses new to obtain the memory for the internal pointer-based representation of this Array and assigns the pointer returned by new to data member ptr. Then the copy constructor uses a for statement to copy all the elements of the initializer Array into the new Array object. An object of a class can look at the private data of any other object of that class (using a handle that indicates which object to access).

[image: Image] Software Engineering Observation 10.3

The argument to a copy constructor should be a const reference to allow a const object to be copied.

[image: Image] Common Programming Error 10.4

If the copy constructor simply copied the pointer in the source object to the target object’s pointer, then both would point to the same dynamically allocated memory. The first destructor to execute would delete the dynamically allocated memory, and the other object’s ptr would point to memory that’s no longer allocated, a situation called a dangling pointer—this would likely result in a serious runtime error (such as early program termination) when the pointer was used.

Array Destructor

Line 16 of Fig. 10.10 declares the class’s destructor (defined in Fig. 10.11, lines 31–34). The destructor is invoked when an object of class Array goes out of scope. The destructor uses delete [] to release the memory allocated dynamically by new in the constructor.

[image: Image] Error-Prevention Tip 10.3

If after deleting dynamically allocated memory, the pointer will continue to exist in memory, set the pointer’s value to nullptr to indicate that the pointer no longer points to memory in the free store. By setting the pointer to nullptr, the program loses access to that free-store space, which could be reallocated for a different purpose. If you do not set the pointer to nullptr, your code could inadvertently access the reallocated memory, causing subtle, nonrepeatable logic errors. We did not set ptr to nullptr in line 33 of Fig. 10.11 because after the destructor executes, the Array object no longer exists in memory.

getSize Member Function

Line 17 of Fig. 10.10 declares function getSize (defined in Fig. 10.11, lines 37–40) that returns the number of elements in the Array.

Overloaded Assignment Operator

Line 19 of Fig. 10.10 declares the overloaded assignment operator function for the class. When the compiler sees the expression integers1 = integers2 in line 47 of Fig. 10.9, the compiler invokes member function operator= with the call

integers1.operator=(integers2)

Member function operator=’s implementation (Fig. 10.11, lines 44–62) tests for self-assignment (line 46) in which an Array object is being assigned to itself. When this is equal to the right operand’s address, a self-assignment is being attempted, so the assignment is skipped (i.e., the object already is itself; in a moment we’ll see why self-assignment is dangerous). If it isn’t a self-assignment, then the function determines whether the sizes of the two Arrays are identical (line 50); in that case, the original array of integers in the left-side Array object is not reallocated. Otherwise, operator= uses delete [] (line 52) to release the memory originally allocated to the target Array, copies the size of the source Array to the size of the target Array (line 53), uses new to allocate the memory for the target Array and places the pointer returned by new into the Array’s ptr member. Then the for statement in lines 57–58 copies the elements from the source Array to the target Array. Regardless of whether this is a self-assignment, the member function returns the current object (i.e., *this in line 61) as a constant reference; this enables cascaded Array assignments such as x = y = z, but prevents ones like (x = y) = z because z cannot be assigned to the const Array reference that’s returned by (x = y). If self-assignment occurs, and function operator= did not test for this case, operator= would unnecessarily copy the elements of the Array into itself.

[image: Image] Software Engineering Observation 10.4

[image: Image]

A copy constructor, a destructor and an overloaded assignment operator are usually provided as a group for any class that uses dynamically allocated memory. With the addition of move semantics in C++11, other functions should also be provided, as you’ll see in Chapter 24.

[image: Image] Common Programming Error 10.5

Not providing a copy constructor and overloaded assignment operator for a class when objects of that class contain pointers to dynamically allocated memory is a potential logic error.

C++11: Move Constructor and Move Assignment Operator

[image: Image]

C++11 adds the notions of a move constructor and a move assignment operator. We defer a discussion of these new functions until Chapter 24, C++11: Additional Features. This discussion will affect the two preceding tips.

C++11: Deleting Unwanted Member Functions from Your Class

[image: Image]

Prior to C++11, you could prevent class objects from being copied or assigned by declaring as private the class’s copy constructor and overloaded assignment operator. As of C++11, you can simply delete these functions from your class. To do so in class Array, replace the prototypes in lines 15 and 19 of Fig. 10.10 with:

Click here to view code image

Array(const Array &) = delete;
const Array &operator=(const Array &) = delete;

Though you can delete any member function, it’s most commonly used with member functions that the compiler can auto-generate—the default constructor, copy constructor, assignment operator, and in C++ 11, the move constructor and move assignment operator.

Overloaded Equality and Inequality Operators

Line 20 of Fig. 10.10 declares the overloaded equality operator (==) for the class. When the compiler sees the expression integers1 == integers2 in line 55 of Fig. 10.9, the compiler invokes member function operator== with the call

integers1.operator==(integers2)

Member function operator== (defined in Fig. 10.11, lines 66–76) immediately returns false if the size members of the Arrays are not equal. Otherwise, operator== compares each pair of elements. If they’re all equal, the function returns true. The first pair of elements to differ causes the function to return false immediately.

Lines 23–26 of Fig. 10.9 define the overloaded inequality operator (!=) for the class. Member function operator!= uses the overloaded operator== function to determine whether one Array is equal to another, then returns the opposite of that result. Writing operator!= in this manner enables you to reuse operator==, which reduces the amount of code that must be written in the class. Also, the full function definition for operator!= is in the Array header. This allows the compiler to inline the definition of operator!=.

Overloaded Subscript Operators

Lines 29 and 32 of Fig. 10.10 declare two overloaded subscript operators (defined in Fig. 10.11 in lines 80–87 and 91–98, respectively). When the compiler sees the expression integers1[5] (Fig. 10.9, line 59), it invokes the appropriate overloaded operator[] member function by generating the call

integers1.operator[](5)

The compiler creates a call to the const version of operator[] (Fig. 10.11, lines 91–98) when the subscript operator is used on a const Array object. For example, if you pass an Array to a function that receives the Array as a const Array & named z, then the const version of operator[] is required to execute a statement such as

cout << z[3] << endl;

Remember, a program can invoke only the const member functions of a const object.

Each definition of operator[] determines whether the subscript it receives as an argument is in range and—if not, each throws an out_of_range exception. If the subscript is in range, the non-const version of operator[] returns the appropriate Array element as a reference so that it may be used as a modifiable lvalue (e.g., on the left side of an assignment statement). If the subscript is in range, the const version of operator[] returns a copy of the appropriate element of the Array.

C++11: Managing Dynamically Allocated Memory with unique_ptr

[image: Image]

In this case study, class Array’s destructor used delete [] to return the dynamically allocated built-in array to the free store. As you recall, C++11 enables you to use unique_ptr to ensure that this dynamically allocated memory is deleted when the Array object goes out of scope. In Chapter 17, we introduce unique_ptr and show how to use it to manage a dynamically allocated objects or dynamically allocated built-in arrays.

C++11: Passing a List Initializer to a Constructor

[image: Image]

In Fig. 7.4, we showed how to initialize an array object with a comma-separated list of initializers in braces, as in

array< int, 5 > n = { 32, 27, 64, 18, 95 };

Recall from Section 4.8 that C++11 now allows any object to be initialized with a list initializer and that the preceding statement can also be written without the =, as in

array< int, 5 > n{ 32, 27, 64, 18, 95 };

C++11 also allows you to use list initializers when you declare objects of your own classes. For example, you can now provide an Array constructor that would enabled the following declarations:

Array integers = { 1, 2, 3, 4, 5 };

or

Array integers{ 1, 2, 3, 4, 5 };

each of which creates an Array object with five elements containing the integers from 1 to 5.

To support list initialization, you can define a constructor that receives an object of the class template initializer_list. For class Array, you’d include the <initializer_list> header. Then, you’d define a constructor with the first line:

Array::Array(initializer_list< int > list)

You can determine the number of elements in the list parameter by calling its size member function. To obtain each initializer and copy it into the Array object’s dynamically allocated built-in array, you can use a range-based for as follows:

size_t i = 0;
for (int item : list)
 ptr[i++] = item;

10.11. Operators as Member vs. Non-Member Functions

Whether an operator function is implemented as a member function or as a non-member function, the operator is still used the same way in expressions. So which is best?

When an operator function is implemented as a member function, the leftmost (or only) operand must be an object (or a reference to an object) of the operator’s class. If the left operand must be an object of a different class or a fundamental type, this operator function must be implemented as a non-member function (as we did in Section 10.5 when overloading << and >> as the stream insertion and stream extraction operators, respectively). A non-member operator function can be made a friend of a class if that function must access private or protected members of that class directly.

Operator member functions of a specific class are called (implicitly by the compiler) only when the left operand of a binary operator is specifically an object of that class, or when the single operand of a unary operator is an object of that class.

Commutative Operators

Another reason why you might choose a non-member function to overload an operator is to enable the operator to be commutative. For example, suppose we have a fundamental type variable, number, of type long int, and an object bigInteger1, of class HugeInt (a class in which integers may be arbitrarily large rather than being limited by the machine word size of the underlying hardware). The addition operator (+) produces a temporary HugeInt object as the sum of a HugeInt and a long int (as in the expression bigInteger1 + number), or as the sum of a long int and a HugeInt (as in the expression number + bigInteger1). Thus, we require the addition operator to be commutative (exactly as it is with two fundamental-type operands). The problem is that the class object must appear on the left of the addition operator if that operator is to be overloaded as a member function. So, we also overload the operator as a non-member function to allow the HugeInt to appear on the right of the addition. The operator+ function that deals with the HugeInt on the left can still be a member function. The non-member function can simply swap its arguments and call the member function.

10.12. Converting Between Types

Most programs process information of many types. Sometimes all the operations “stay within a type.” For example, adding an int to an int produces an int. It’s often necessary, however, to convert data of one type to data of another type. This can happen in assignments, in calculations, in passing values to functions and in returning values from functions. The compiler knows how to perform certain conversions among fundamental types. You can use cast operators to force conversions among fundamental types.

But what about user-defined types? The compiler cannot know in advance how to convert among user-defined types, and between user-defined types and fundamental types, so you must specify how to do this. Such conversions can be performed with conversion constructors—constructors that can be called with a single argument (we’ll refer to these as single-argument constructors). Such constructors can turn objects of other types (including fundamental types) into objects of a particular class.

Conversion Operators

A conversion operator (also called a cast operator) can be used to convert an object of one class to another type. Such a conversion operator must be a non-static member function. The function prototype

MyClass::operator char *() const;

declares an overloaded cast operator function for converting an object of class MyClass into a temporary char * object. The operator function is declared const because it does not modify the original object. The return type of an overloaded cast operator function is implicitly the type to which the object is being converted. If s is a class object, when the compiler sees the expression static_cast<char *>(s), the compiler generates the call

s.operator char *()

to convert the operand s to a char *.

Overloaded Cast Operator Functions

Overloaded cast operator functions can be defined to convert objects of user-defined types into fundamental types or into objects of other user-defined types. The prototypes

Click here to view code image

MyClass::operator int() const;
MyClass::operator OtherClass() const;

declare overloaded cast operator functions that can convert an object of user-defined type MyClass into an integer or into an object of user-defined type OtherClass, respectively.

Implicit Calls to Cast Operators and Conversion Constructors

One of the nice features of cast operators and conversion constructors is that, when necessary, the compiler can call these functions implicitly to create temporary objects. For example, if an object s of a user-defined String class appears in a program at a location where an ordinary char * is expected, such as

cout << s;

the compiler can call the overloaded cast-operator function operator char * to convert the object into a char * and use the resulting char * in the expression. With this cast operator provided for a String class, the stream insertion operator does not have to be overloaded to output a String using cout.

[image: Image] Software Engineering Observation 10.5

When a conversion constructor or conversion operator is used to perform an implicit conversion, C++ can apply only one implicit constructor or operator function call (i.e., a single user-defined conversion) to try to match the needs of another overloaded operator. The compiler will not satisfy an overloaded operator’s needs by performing a series of implicit, user-defined conversions.

10.13. explicit Constructors and Conversion Operators

Recall that we’ve been declaring as explicit every constructor that can be called with one argument. With the exception of copy constructors, any constructor that can be called with a single argument and is not declared explicit can be used by the compiler to perform an implicit conversion. The constructor’s argument is converted to an object of the class in which the constructor is defined. The conversion is automatic and you need not use a cast operator. In some situations, implicit conversions are undesirable or error-prone. For example, our Array class in Fig. 10.10 defines a constructor that takes a single int argument. The intent of this constructor is to create an Array object containing the number of elements specified by the int argument. However, if this constructor were not declared explicit it could be misused by the compiler to perform an implicit conversion.

[image: Image] Common Programming Error 10.6

Unfortunately, the compiler might use implicit conversions in cases that you do not expect, resulting in ambiguous expressions that generate compilation errors or result in execution-time logic errors.

Accidentally Using a Single-Argument Constructor as a Conversion Constructor

The program (Fig. 10.12) uses the Array class of Figs. 10.10–10.11 to demonstrate an improper implicit conversion. To allow this implicit conversion, we removed the explicit keyword from line 14 in Array.h (Fig. 10.10).

Click here to view code image

 1 // Fig. 10.12: fig10_12.cpp
 2 // Single-argument constructors and implicit conversions.
 3 #include <iostream>
 4 #include "Array.h"
 5 using namespace std;
 6
 7 void outputArray(const Array &); // prototype
 8
 9 int main()
10 {
11 Array integers1(7); // 7-element Array
12 outputArray(integers1); // output Array integers1
13 outputArray(3); // convert 3 to an Array and output Array's contents
14 } // end main
15
16 // print Array contents
17 void outputArray(const Array &arrayToOutput)
18 {
19 cout << "The Array received has " << arrayToOutput.getSize()
20 << " elements. The contents are:\n" << arrayToOutput << endl;
21 } // end outputArray

The Array received has 7 elements. The contents are:
 0 0 0 0
 0 0 0

The Array received has 3 elements. The contents are:
 0 0 0

Fig. 10.12. Single-argument constructors and implicit conversions.

Line 11 in main (Fig. 10.12) instantiates Array object integers1 and calls the single-argument constructor with the int value 7 to specify the number of elements in the Array. Recall from Fig. 10.11 that the Array constructor that receives an int argument initializes all the Array elements to 0. Line 12 calls function outputArray (defined in lines 17–21), which receives as its argument a const Array & to an Array. The function outputs the number of elements in its Array argument and the contents of the Array. In this case, the size of the Array is 7, so seven 0s are output.

Line 13 calls function outputArray with the int value 3 as an argument. However, this program does not contain a function called outputArray that takes an int argument. So, the compiler determines whether class Array provides a conversion constructor that can convert an int into an Array. Since the Array constructor receives one int argument, the compiler assumes that the constructor is a conversion constructor that can be used to convert the argument 3 into a temporary Array object containing three elements. Then, the compiler passes the temporary Array object to function outputArray to output the Array’s contents. Thus, even though we do not explicitly provide an outputArray function that receives an int argument, the compiler is able to compile line 13. The output shows the contents of the three-element Array containing 0s.

Preventing Implicit Conversions with Single-Argument Constructors

The reason we’ve been declaring every single-argument contructor preceded by the keyword explicit is to suppress implicit conversions via conversion constructors when such conversions should not be allowed. A constructor that’s declared explicit cannot be used in an implicit conversion. In the example of Figure 10.13, we use the original version of Array.h from Fig. 10.10, which included the keyword explicit in the declaration of the single-argument constructor in line 14

explicit Array(int = 10); // default constructor

Figure 10.13 presents a slightly modified version of the program in Fig. 10.12. When this program in Fig. 10.13 is compiled, the compiler produces an error message indicating that the integer value passed to outputArray in line 13 cannot be converted to a const Array &. The compiler error message (from Visual C++) is shown in the output window. Line 14 demonstrates how the explicit constructor can be used to create a temporary Array of 3 elements and pass it to function outputArray.

Click here to view code image

 1 // Fig. 10.13: fig10_13.cpp
 2 // Demonstrating an explicit constructor.
 3 #include <iostream>
 4 #include "Array.h"
 5 using namespace std;
 6
 7 void outputArray(const Array &); // prototype
 8
 9 int main()
10 {
11 Array integers1(7); // 7-element Array
12 outputArray(integers1); // output Array integers1
13 outputArray(3); // convert 3 to an Array and output Array's contents
14 outputArray(Array(3)); // explicit single-argument constructor call
15 } // end main
16
17 // print Array contents
18 void outputArray(const Array &arrayToOutput)
19 {
20 cout << "The Array received has " << arrayToOutput.getSize()
21 << " elements. The contents are:\n" << arrayToOutput << endl;
22 } // end outputArray

c:\books\2012\cpphtp9\examples\ch10\fig10_13\fig10_13.cpp(13): error C2664:
'outputArray' : cannot convert parameter 1 from 'int' to 'const Array &'
 Reason: cannot convert from 'int' to 'const Array'
 Constructor for class 'Array' is declared 'explicit'

Fig. 10.13. Demonstrating an explicit constructor.

[image: Image] Error-Prevention Tip 10.4

Always use the explicit keyword on single-argument constructors unless they’re intended to be used as conversion constructors.

C++11: explicit Conversion Operators

[image: Image]

As of C++11, similar to declaring single-argument constructors explicit, you can declare conversion operators explicit to prevent the compiler from using them to perform implicit conversions. For example, the prototype:

explicit MyClass::operator char *() const;

declares MyClass’s char * cast operator explicit.

10.14. Overloading the Function Call Operator ()

Overloading the function call operator () is powerful, because functions can take an arbitrary number of comma-separated parameters. In a customized String class, for example, you could overload this operator to select a substring from a String—the operator’s two integer parameters could specify the start location and the length of the substring to be selected. The operator() function could check for such errors as a start location out of range or a negative substring length.

The overloaded function call operator must be a non-static member function and could be defined with the first line:

String String::operator()(size_t index, size_t length) const

In this case, it should be a const member function because obtaining a substring should not modify the original String object.

Suppose string1 is a String object containing the string "AEIOU". When the compiler encounters the expression string1(2, 3), it generates the member-function call

string1.operator()(2, 3)

which returns a String containing "IOU".

Another possible use of the function call operator is to enable an alternate Array subscripting notation. Instead of using C++’s double-square-bracket notation, such as in chessBoard[row][column], you might prefer to overload the function call operator to enable the notation chessBoard(row, column), where chessBoard is an object of a modified two-dimensional Array class. The primary use of the function call operator is to define function objects, which we discuss in Chapter 16.

10.15. Wrap-Up

In this chapter, you learned how to overload operators to work with class objects. We demonstrated standard C++ class string, which makes extensive use of overloaded operators to create a robust, reusable class that can replace C strings. Next, we discussed several restrictions that the C++ standard places on overloaded operators. We then presented a PhoneNumber class that overloaded operators << and >> to conveniently output and input phone numbers. You also saw a Date class that overloaded the prefix and postfix increment (++) operators and we showed a special syntax that’s required to differentiate between the prefix and postfix versions of the increment (++) operator.

Next, we introduced the concept of dynamic memory management. You learned that you can create and destroy objects dynamically with the new and delete operators, respectively. Then, we presented a capstone Array class case study that used overloaded operators and other capabilities to solve various problems with pointer-based arrays. This case study helped you truly understand what classes and object technology are all about—crafting, using and reusing valuable classes. As part of this class, you saw overloaded stream insertion, stream extraction, assignment, equality and subscript operators.

You learned reasons for implementing overloaded operators as member functions or as non-member functions. The chapter concluded with discussions of converting between types (including class types), problems with certain implicit conversions defined by single-argument constructors and how to prevent those problems by using explicit constructors.

In the next chapter, we continue our discussion of classes by introducing a form of software reuse called inheritance. We’ll see that when classes share common attributes and behaviors, it’s possible to define those attributes and behaviors in a common “base” class and “inherit” those capabilities into new class definitions, enabling you to create the new classes with a minimal amount of code.

11. Object-Oriented Programming: Inheritance

Objectives

In this chapter you’ll:

• Learn qhat inheritance is and how it promotes software reuse.

• Understand the notions of base classes and derived classes and the relationships between them.

• Use the protected member access specifier.

• Understand the use of constructors and destructors in inheritance hierarchies.

• Learn the order in which constructors and destructors are called in inheritance hierarchies.

• Understand the differences between public, protected and private inheritance.

• Use inheritance to customize existing software.

Outline

11.1 Introduction

11.2 Base Classes and Derived Classes

11.3 Relationship between Base and Derived Classes

11.3.1 Creating and Using a CommissionEmployee Class

11.3.2 Creating a BasePlusCommissionEmployee Class Without Using Inheritance

11.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy

11.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data

11.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data

11.4 Constructors and Destructors in Derived Classes

11.5 public, protected and private Inheritance

11.6 Software Engineering with Inheritance

11.7 Wrap-Up

11.1. Introduction

This chapter continues our discussion of object-oriented programming (OOP) by introducing inheritance—a form of software reuse in which you create a class that absorbs an existing class’s capabilities, then customizes or enhances them. Software reuse saves time during program development by taking advantage of proven, high-quality software.

When creating a class, instead of writing completely new data members and member functions, you can specify that the new class should inherit the members of an existing class. This existing class is called the base class, and the new class is called the derived class. Other programming languages, such as Java and C#, refer to the base class as the superclass and the derived class as the subclass. A derived class represents a more specialized group of objects.

C++ offers public, protected and private inheritance. In this chapter, we concentrate on public inheritance and briefly explain the other two. With public inheritance, every object of a derived class is also an object of that derived class’s base class. However, base-class objects are not objects of their derived classes. For example, if we have Vehicle as a base class and Car as a derived class, then all Cars are Vehicles, but not all Vehicles are Cars—for example, a Vehicle could also be a Truck or a Boat.

We distinguish between the is-a relationship and the has-a relationship. The is-a relationship represents inheritance. In an is-a relationship, an object of a derived class also can be treated as an object of its base class—for example, a Car is a Vehicle, so any attributes and behaviors of a Vehicle are also attributes and behaviors of a Car. By contrast, the has-a relationship represents composition, which was discussed in Chapter 9. In a has-a relationship, an object contains one or more objects of other classes as members. For example, a Car has many components—it has a steering wheel, has a brake pedal, has a transmission, etc.

11.2. Base Classes and Derived Classes

Figure 11.1 lists several simple examples of base classes and derived classes. Base classes tend to be more general and derived classes tend to be more specific.

[image: Image]

Fig. 11.1. Inheritance examples.

Because every derived-class object is an object of its base class, and one base class can have many derived classes, the set of objects represented by a base class typically is larger than the set of objects represented by any of its derived classes. For example, the base class Vehicle represents all vehicles, including cars, trucks, boats, airplanes, bicycles and so on. By contrast, derived class Car represents a smaller, more specific subset of all vehicles.

Inheritance relationships form class hierarchies. A base class exists in a hierarchical relationship with its derived classes. Although classes can exist independently, once they’re employed in inheritance relationships, they become affiliated with other classes. A class becomes either a base class—supplying members to other classes, a derived class—inheriting its members from other classes, or both.

CommunityMember Class Hierarchy

Let’s develop a simple inheritance hierarchy with five levels (represented by the UML class diagram in Fig. 11.2). A university community has thousands of CommunityMembers.

[image: Image]

Fig. 11.2. Inheritance hierarchy for university CommunityMembers.

These CommunityMembers consist of Employees, Students and alumni (each of class Alumnus). Employees are either Faculty or Staff. Faculty are either Administrators or Teachers. Some Administrators, however, are also Teachers. We’ve used multiple inheritance to form class AdministratorTeacher. With single inheritance, a class is derived from one base class. With multiple inheritance, a derived class inherits simultaneously from two or more (possibly unrelated) base classes. We discuss multiple inheritance in Chapter 21, Other Topics, but multiple inheritance is generally discouraged.

Each arrow in the hierarchy (Fig. 11.2) represents an is-a relationship. For example, as we follow the arrows in this class hierarchy, we can state “an Employee is a CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct base class of Employee, Student and Alumnus. In addition, CommunityMember is an indirect base class of all the other classes in the diagram. An indirect base class is inherited from two or more levels up the class hierarchy.

Starting from the bottom of the diagram, you can follow the arrows upwards and apply the is-a relationship to the topmost base class. For example, an AdministratorTeacher is an Administrator, is a Faculty member, is an Employee and is a CommunityMember.

Shape Class Hierarchy

Now consider the Shape inheritance hierarchy in Fig. 11.3. This hierarchy begins with base class Shape. Classes TwoDimensionalShape and ThreeDimensionalShape derive from base class Shape—a Shape is a TwoDimensionalShape or is a ThreeDimensionalShape. The third level of this hierarchy contains more specific types of TwoDimensionalShapes and ThreeDimensionalShapes. As in Fig. 11.2, we can follow the arrows from the bottom of the diagram upwards to the topmost base class in this hierarchy to identify several is-a relationships. For instance, a Triangle is a TwoDimensionalShape and is a Shape, while a Sphere is a ThreeDimensionalShape and is a Shape.

[image: Image]

Fig. 11.3. Inheritance hierarchy for Shapes.

To specify that class TwoDimensionalShape (Fig. 11.3) is derived from (or inherits from) class Shape, class TwoDimensionalShape’s definition could begin as follows:

class TwoDimensionalShape : public Shape

This is an example of public inheritance, the most commonly used form. We’ll also discuss private inheritance and protected inheritance (Section 11.5). With all forms of inheritance, private members of a base class are not accessible directly from that class’s derived classes, but these private base-class members are still inherited (i.e., they’re still considered parts of the derived classes). With public inheritance, all other base-class members retain their original member access when they become members of the derived class (e.g., public members of the base class become public members of the derived class, and, as we’ll soon see, protected members of the base class become protected members of the derived class). Through inherited base-class member functions, the derived class can manipulate private members of the base class (if these inherited member functions provide such functionality in the base class). Note that friend functions are not inherited.

Inheritance is not appropriate for every class relationship. In Chapter 9, we discussed the has-a relationship, in which classes have members that are objects of other classes. Such relationships create classes by composition of existing classes. For example, given the classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an Employee is a BirthDate or that an Employee is a TelephoneNumber. However, it is appropriate to say that an Employee has a BirthDate and that an Employee has a TelephoneNumber.

It’s possible to treat base-class objects and derived-class objects similarly; their commonalities are expressed in the members of the base class. Objects of all classes derived from a common base class can be treated as objects of that base class (i.e., such objects have an is-a relationship with the base class). In Chapter 12, we consider many examples that take advantage of this relationship.

11.3. Relationship between Base and Derived Classes

In this section, we use an inheritance hierarchy containing types of employees in a company’s payroll application to discuss the relationship between a base class and a derived class. Commission employees (who will be represented as objects of a base class) are paid a percentage of their sales, while base-salaried commission employees (who will be represented as objects of a derived class) receive a base salary plus a percentage of their sales. We divide our discussion of the relationship between commission employees and base-salaried commission employees into a carefully paced series of five examples.

11.3.1. Creating and Using a CommissionEmployee Class

Let’s examine CommissionEmployee’s class definition (Figs. 11.4–11.5). The CommissionEmployee header (Fig. 11.4) specifies class CommissionEmployee’s public services, which include a constructor (lines 11–12) and member functions earnings (line 29) and print (line 30). Lines 14–27 declare public get and set functions that manipulate the class’s data members (declared in lines 32–36) firstName, lastName, socialSecurityNumber, grossSales and commissionRate. Member functions setGrossSales (defined in lines 57–63 of Fig. 11.5) and setCommissionRate (defined in lines 72–78 of Fig. 11.5), for example, validate their arguments before assigning the values to data members grossSales and commissionRate, respectively.

Click here to view code image

 1 // Fig. 11.4: CommissionEmployee.h
 2 // CommissionEmployee class definition represents a commission employee.
 3 #ifndef COMMISSION_H
 4 #define COMMISSION_H
 5
 6 #include <string> // C++ standard string class
 7
 8 class CommissionEmployee
 9 {
10 public:
11 CommissionEmployee(const std::string &, const std::string &,
12 const std::string &, double = 0.0, double = 0.0);
13
14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name
16
17 void setLastName(const std::string &); // set last name
18 std::string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22
23 void setGrossSales(double); // set gross sales amount
24 double getGrossSales() const; // return gross sales amount
25
26 void setCommissionRate(double); // set commission rate (percentage)
27 double getCommissionRate() const; // return commission rate
28
29 double earnings() const; // calculate earnings
30 void print() const; // print CommissionEmployee object
31 private:
32 std::string firstName;
33 std::string lastName;
34 std::string socialSecurityNumber;
35 double grossSales; // gross weekly sales
36 double commissionRate; // commission percentage
37 }; // end class CommissionEmployee
38
39 #endif

Fig. 11.4. CommissionEmployee class header.

Click here to view code image

 1 // Fig. 11.5: CommissionEmployee.cpp
 2 // Class CommissionEmployee member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "CommissionEmployee.h" // CommissionEmployee class definition
 6 using namespace std;
 7
 8 // constructor
 9 CommissionEmployee::CommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate)
12 {
13 firstName = first; // should validate
14 lastName = last; // should validate
15 socialSecurityNumber = ssn; // should validate
16 setGrossSales(sales); // validate and store gross sales
17 setCommissionRate(rate); // validate and store commission rate
18 } // end CommissionEmployee constructor
19
20 // set first name
21 void CommissionEmployee::setFirstName(const string &first)
22 {
23 firstName = first; // should validate
24 } // end function setFirstName
25
26 // return first name
27 string CommissionEmployee::getFirstName() const
28 {
29 return firstName;
30 } // end function getFirstName
31
32 // set last name
33 void CommissionEmployee::setLastName(const string &last)
34 {
35 lastName = last; // should validate
36 } // end function setLastName
37
38 // return last name
39 string CommissionEmployee::getLastName() const
40 {
41 return lastName;
42 } // end function getLastName
43
44 // set social security number
45 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
46 {
47 socialSecurityNumber = ssn; // should validate
48 } // end function setSocialSecurityNumber
49
50 // return social security number
51 string CommissionEmployee::getSocialSecurityNumber() const
52 {
53 return socialSecurityNumber;
54 } // end function getSocialSecurityNumber
55
56 // set gross sales amount
57 void CommissionEmployee::setGrossSales(double sales)
58 {
59 if (sales >= 0.0)
60 grossSales = sales;
61 else
62 throw invalid_argument("Gross sales must be >= 0.0");
63 } // end function setGrossSales
64
65 // return gross sales amount
66 double CommissionEmployee::getGrossSales() const
67 {
68 return grossSales;
69 } // end function getGrossSales
70
71 // set commission rate
72 void CommissionEmployee::setCommissionRate(double rate)
73 {
74 if (rate > 0.0 && rate < 1.0)
75 commissionRate = rate;
76 else
77 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
78 } // end function setCommissionRate
79
80 // return commission rate
81 double CommissionEmployee::getCommissionRate() const
82 {
83 return commissionRate;
84 } // end function getCommissionRate
85
86 // calculate earnings
87 double CommissionEmployee::earnings() const
88 {
89 return commissionRate * grossSales;
90 } // end function earnings
91
92 // print CommissionEmployee object
93 void CommissionEmployee::print() const
94 {
95 cout << "commission employee: " << firstName << ' ' << lastName
96 << "\nsocial security number: " << socialSecurityNumber
97 << "\ngross sales: " << grossSales
98 << "\ncommission rate: " << commissionRate;
99 } // end function print

Fig. 11.5. Implementation file for CommissionEmployee class that represents an employee who is paid a percentage of gross sales.

CommissionEmployee Constructor

The CommissionEmployee constructor definition purposely does not use member-initializer syntax in the first several examples of this section, so that we can demonstrate how private and protected specifiers affect member access in derived classes. As shown in Fig. 11.5, lines 13–15, we assign values to data members firstName, lastName and socialSecurityNumber in the constructor body. Later in this section, we’ll return to using member-initializer lists in the constructors.

We do not validate the values of the constructor’s arguments first, last and ssn before assigning them to the corresponding data members. We certainly could validate the first and last names—perhaps by ensuring that they’re of a reasonable length. Similarly, a social security number could be validated to ensure that it contains nine digits, with or without dashes (e.g., 123-45-6789 or 123456789).

CommissionEmployee Member Functions earnings and print

Member function earnings (lines 87–90) calculates a CommissionEmployee’s earnings. Line 89 multiplies the commissionRate by the grossSales and returns the result. Member function print (lines 93–99) displays the values of a CommissionEmployee object’s data members.

Testing Class CommissionEmployee

Figure 11.6 tests class CommissionEmployee. Lines 11–12 instantiate CommissionEmployee object employee and invoke the constructor to initialize the object with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the social security number, 10000 as the gross sales amount and .06 as the commission rate. Lines 19–24 use employee’s get functions to display the values of its data members. Lines 26–27 invoke the object’s member functions setGrossSales and setCommissionRate to change the values of data members grossSales and commissionRate, respectively. Line 31 then calls employee’s print member function to output the updated CommissionEmployee information. Finally, line 34 displays the CommissionEmployee’s earnings, calculated by the object’s earnings member function using the updated values of data members grossSales and commissionRate.

Click here to view code image

 1 // Fig. 11.6: fig11_06.cpp
 2 // CommissionEmployee class test program.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include "CommissionEmployee.h" // CommissionEmployee class definition
 6 using namespace std;
 7
 8 int main()
 9 {
10 // instantiate a CommissionEmployee object
11 CommissionEmployee employee(
12 "Sue", "Jones", "222-22-2222", 10000, .06);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate() << endl;
25
26 employee.setGrossSales(8000); // set gross sales
27 employee.setCommissionRate(.1); // set commission rate
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31 employee.print(); // display the new employee information
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;
35 } // end main

Employee information obtained by get functions:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information output by print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 8000.00
commission rate: 0.10

Employee's earnings: $800.00

Fig. 11.6. CommissionEmployee class test program.

11.3.2. Creating a BasePlusCommissionEmployee Class Without Using Inheritance

We now discuss the second part of our introduction to inheritance by creating and testing (a completely new and independent) class BasePlusCommissionEmployee (Figs. 11.7–11.8), which contains a first name, last name, social security number, gross sales amount, commission rate and base salary.

Click here to view code image

 1 // Fig. 11.7: BasePlusCommissionEmployee.h
 2 // BasePlusCommissionEmployee class definition represents an employee
 3 // that receives a base salary in addition to commission.
 4 #ifndef BASEPLUS_H
 5 #define BASEPLUS_H
 6
 7 #include <string> // C++ standard string class
 8
 9 class BasePlusCommissionEmployee
10 {
11 public:
12 BasePlusCommissionEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0, double = 0.0, double = 0.0);
14
15 void setFirstName(const std::string &); // set first name
16 std::string getFirstName() const; // return first name
17
18 void setLastName(const std::string &); // set last name
19 std::string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const std::string &); // set SSN
22 std::string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 void setBaseSalary(double); // set base salary
31 double getBaseSalary() const; // return base salary
32
33 double earnings() const; // calculate earnings
34 void print() const; // print BasePlusCommissionEmployee object
35 private:
36 std::string firstName;
37 std::string lastName;
38 std::string socialSecurityNumber;
39 double grossSales; // gross weekly sales
40 double commissionRate; // commission percentage
41 double baseSalary; // base salary
42 }; // end class BasePlusCommissionEmployee
43
44 #endif

Fig. 11.7. BasePlusCommissionEmployee class header.

Click here to view code image

 1 // Fig. 11.8: BasePlusCommissionEmployee.cpp
 2 // Class BasePlusCommissionEmployee member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "BasePlusCommissionEmployee.h"
 6 using namespace std;
 7
 8 // constructor
 9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12 {
13 firstName = first; // should validate
14 lastName = last; // should validate
15 socialSecurityNumber = ssn; // should validate
16 setGrossSales(sales); // validate and store gross sales
17 setCommissionRate(rate); // validate and store commission rate
18 setBaseSalary(salary); // validate and store base salary
19 } // end BasePlusCommissionEmployee constructor
20
21 // set first name
22 void BasePlusCommissionEmployee::setFirstName(const string &first)
23 {
24 firstName = first; // should validate
25 } // end function setFirstName
26
27 // return first name
28 string BasePlusCommissionEmployee::getFirstName() const
29 {
30 return firstName;
31 } // end function getFirstName
32
33 // set last name
34 void BasePlusCommissionEmployee::setLastName(const string &last)
35 {
36 lastName = last; // should validate
37 } // end function setLastName
38
39 // return last name
40 string BasePlusCommissionEmployee::getLastName() const
41 {
42 return lastName;
43 } // end function getLastName
44
45 // set social security number
46 void BasePlusCommissionEmployee::setSocialSecurityNumber(
47 const string &ssn)
48 {
49 socialSecurityNumber = ssn; // should validate
50 } // end function setSocialSecurityNumber
51
52 // return social security number
53 string BasePlusCommissionEmployee::getSocialSecurityNumber() const
54 {
55 return socialSecurityNumber;
56 } // end function getSocialSecurityNumber
57
58 // set gross sales amount
59 void BasePlusCommissionEmployee::setGrossSales(double sales)
60 {
61 if (sales >= 0.0)
62 grossSales = sales;
63 else
64 throw invalid_argument("Gross sales must be >= 0.0");
65 } // end function setGrossSales
66
67 // return gross sales amount
68 double BasePlusCommissionEmployee::getGrossSales() const
69 {
70 return grossSales;
71 } // end function getGrossSales
72
73 // set commission rate
74 void BasePlusCommissionEmployee::setCommissionRate(double rate)
75 {
76 if (rate > 0.0 && rate < 1.0)
77 commissionRate = rate;
78 else
79 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
80 } // end function setCommissionRate
81
82 // return commission rate
83 double BasePlusCommissionEmployee::getCommissionRate() const
84 {
85 return commissionRate;
86 } // end function getCommissionRate
87
88 // set base salary
89 void BasePlusCommissionEmployee::setBaseSalary(double salary)
90 {
91 if (salary >= 0.0)
92 baseSalary = salary;
93 else
94 throw invalid_argument("Salary must be >= 0.0");
95 } // end function setBaseSalary
96
97 // return base salary
98 double BasePlusCommissionEmployee::getBaseSalary() const
99 {
100 return baseSalary;
101 } // end function getBaseSalary
102
103 // calculate earnings
104 double BasePlusCommissionEmployee::earnings() const
105 {
106 return baseSalary + (commissionRate * grossSales);
107 } // end function earnings
108
109 // print BasePlusCommissionEmployee object
110 void BasePlusCommissionEmployee::print() const
111 {
112 cout << "base-salaried commission employee: " << firstName << ' '
113 << lastName << "\nsocial security number: " << socialSecurityNumber
114 << "\ngross sales: " << grossSales
115 << "\ncommission rate: " << commissionRate
116 << "\nbase salary: " << baseSalary;
117 } // end function print

Fig. 11.8. BasePlusCommissionEmployee class represents an employee who receives a base salary in addition to a commission.

Defining Class BasePlusCommissionEmployee

The BasePlusCommissionEmployee header (Fig. 11.7) specifies class BasePlusCommissionEmployee’s public services, which include the BasePlusCommissionEmployee constructor (lines 12–13) and member functions earnings (line 33) and print (line 34). Lines 15–31 declare public get and set functions for the class’s private data members (declared in lines 36–41) firstName, lastName, socialSecurityNumber, grossSales, commissionRate and baseSalary. These variables and member functions encapsulate all the necessary features of a base-salaried commission employee. Note the similarity between this class and class CommissionEmployee (Figs. 11.4–11.5)—in this example, we do not yet exploit that similarity.

Class BasePlusCommissionEmployee’s earnings member function (defined in lines 104–107 of Fig. 11.8) computes the earnings of a base-salaried commission employee. Line 106 returns the result of adding the employee’s base salary to the product of the commission rate and the employee’s gross sales.

Testing Class BasePlusCommissionEmployee

Figure 11.9 tests class BasePlusCommissionEmployee. Lines 11–12 instantiate object employee of class BasePlusCommissionEmployee, passing "Bob", "Lewis", "333-33-3333", 5000, .04 and 300 to the constructor as the first name, last name, social security number, gross sales, commission rate and base salary, respectively. Lines 19–25 use BasePlusCommissionEmployee’s get functions to retrieve the values of the object’s data members for output. Line 27 invokes the object’s setBaseSalary member function to change the base salary. Member function setBaseSalary (Fig. 11.8, lines 89–95) ensures that data member baseSalary is not assigned a negative value, because an employee’s base salary cannot be negative. Line 31 of Fig. 11.9 invokes the object’s print member function to output the updated BasePlusCommissionEmployee’s information, and line 34 calls member function earnings to display the BasePlusCommissionEmployee’s earnings.

Click here to view code image

 1 // Fig. 11.9: fig11_09.cpp
 2 // BasePlusCommissionEmployee class test program.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include "BasePlusCommissionEmployee.h"
 6 using namespace std;
 7
 8 int main()
 9 {
10 // instantiate BasePlusCommissionEmployee object
11 BasePlusCommissionEmployee
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04, 300);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate()
25 << "\nBase salary is " << employee.getBaseSalary() << endl;
26
27 employee.setBaseSalary(1000); // set base salary
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31 employee.print(); // display the new employee information
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;
35 } // end main

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 11.9. BasePlusCommissionEmployee class test program.

Exploring the Similarities Between Class BasePlusCommissionEmployee and Class CommissionEmployee

Most of the code for class BasePlusCommissionEmployee (Figs. 11.7–11.8) is similar, if not identical, to the code for class CommissionEmployee (Figs. 11.4–11.5). For example, in class BasePlusCommissionEmployee, private data members firstName and lastName and member functions setFirstName, getFirstName, setLastName and getLastName are identical to those of class CommissionEmployee. Classes CommissionEmployee and BasePlusCommissionEmployee also both contain private data members socialSecurityNumber, commissionRate and grossSales, as well as get and set functions to manipulate these members. In addition, the BasePlusCommissionEmployee constructor is almost identical to that of class CommissionEmployee, except that BasePlusCommissionEmployee’s constructor also sets the baseSalary. The other additions to class BasePlusCommissionEmployee are private data member baseSalary and member functions setBaseSalary and getBaseSalary. Class BasePlusCommissionEmployee’s print member function is nearly identical to that of class CommissionEmployee, except that BasePlusCommissionEmployee’s print also outputs the value of data member baseSalary.

We literally copied code from class CommissionEmployee and pasted it into class BasePlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include a base salary and member functions that manipulate the base salary. This copy-and-paste approach is error prone and time consuming.

[image: Image] Software Engineering Observation 11.1

Copying and pasting code from one class to another can spread many physical copies of the same code and can spread errors throughout a system, creating a code-maintenance nightmare. To avoid duplicating code (and possibly errors), use inheritance, rather than the “copy-and-paste” approach, in situations where you want one class to “absorb” the data members and member functions of another class.

[image: Image] Software Engineering Observation 11.2

With inheritance, the common data members and member functions of all the classes in the hierarchy are declared in a base class. When changes are required for these common features, you need to make the changes only in the base class—derived classes then inherit the changes. Without inheritance, changes would need to be made to all the source code files that contain a copy of the code in question.

11.3.3. Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy

Now we create and test a new BasePlusCommissionEmployee class (Figs. 11.10–11.11) that derives from class CommissionEmployee (Figs. 11.4–11.5). In this example, a BasePlusCommissionEmployee object is a CommissionEmployee (because inheritance passes on the capabilities of class CommissionEmployee), but class BasePlusCommissionEmployee also has data member baseSalary (Fig. 11.10, line 22). The colon (:) in line 10 of the class definition indicates inheritance. Keyword public indicates the type of inheritance. As a derived class (formed with public inheritance), BasePlusCommissionEmployee inherits all the members of class CommissionEmployee, except for the constructor—each class provides its own constructors that are specific to the class. (Destructors, too, are not inherited.) Thus, the public services of BasePlusCommissionEmployee include its constructor (lines 13–14) and the public member functions inherited from class CommissionEmployee—although we cannot see these inherited member functions in BasePlusCommissionEmployee’s source code, they’re nevertheless a part of derived class BasePlusCommissionEmployee. The derived class’s public services also include member functions setBaseSalary, getBaseSalary, earnings and print (lines 16–20).

Click here to view code image

 1 // Fig. 11.10: BasePlusCommissionEmployee.h
 2 // BasePlusCommissionEmployee class derived from class
 3 // CommissionEmployee.
 4 #ifndef BASEPLUS_H
 5 #define BASEPLUS_H
 6
 7 #include <string> // C++ standard string class
 8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
 9
10 class BasePlusCommissionEmployee : public CommissionEmployee
11 {
12 public:
13 BasePlusCommissionEmployee(const std::string &, const std::string &,
14 const std::string &, double = 0.0, double = 0.0, double = 0.0);
15
16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
18
19 double earnings() const; // calculate earnings
20 void print() const; // print BasePlusCommissionEmployee object
21 private:
22 double baseSalary; // base salary
23 }; // end class BasePlusCommissionEmployee
24
25 #endif

Fig. 11.10. BasePlusCommissionEmployee class definition indicating inheritance relationship with class CommissionEmployee.

Click here to view code image

 1 // Fig. 11.11: BasePlusCommissionEmployee.cpp
 2 // Class BasePlusCommissionEmployee member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "BasePlusCommissionEmployee.h"
 6 using namespace std;
 7
 8 // constructor
 9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12 // explicitly call base-class constructor
13 : CommissionEmployee(first, last, ssn, sales, rate)
14 {
15 setBaseSalary(salary); // validate and store base salary
16 } // end BasePlusCommissionEmployee constructor
17
18 // set base salary
19 void BasePlusCommissionEmployee::setBaseSalary(double salary)
20 {
21 if (salary >= 0.0)
22 baseSalary = salary;
23 else
24 throw invalid_argument("Salary must be >= 0.0");
25 } // end function setBaseSalary
26
27 // return base salary
28 double BasePlusCommissionEmployee::getBaseSalary() const
29 {
30 return baseSalary;
31 } // end function getBaseSalary
32
33 // calculate earnings
34 double BasePlusCommissionEmployee::earnings() const
35 {
36 // derived class cannot access the base class's private data
37 return baseSalary + (commissionRate * grossSales);
38 } // end function earnings
39
40 // print BasePlusCommissionEmployee object
41 void BasePlusCommissionEmployee::print() const
42 {
43 // derived class cannot access the base class's private data
44 cout << "base-salaried commission employee: " << firstName << ' '
45 << lastName << "\nsocial security number: " << socialSecurityNumber
46 << "\ngross sales: " << grossSales
47 << "\ncommission rate: " << commissionRate
48 << "\nbase salary: " << baseSalary;
49 } // end function print

Compilation Errors from the LLVM Compiler in Xcode 4.5

BasePlusCommissionEmployee.cpp:37:26:
 'commissionRate' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:37:43:
 'grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:44:53:
 'firstName' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:45:10:
 'lastName' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:45:54:
 'socialSecurityNumber' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:46:31:
 'grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:47:35:
 'commissionRate' is a private member of 'CommissionEmployee'

Fig. 11.11. BasePlusCommissionEmployee implementation file: private base-class data cannot be accessed from derived class.

Figure 11.11 shows BasePlusCommissionEmployee’s member-function implementations. The constructor (lines 9–16) introduces base-class initializer syntax (line 13), which uses a member initializer to pass arguments to the base-class (CommissionEmployee) constructor. C++ requires that a derived-class constructor call its base-class constructor to initialize the base-class data members that are inherited into the derived class. Line 13 does this by explicitly invoking the CommissionEmployee constructor by name, passing the constructor’s parameters first, last, ssn, sales and rate as arguments to initialize the base-class data members firstName, lastName, socialSecurityNumber, grossSales and commissionRate, respectively. If BasePlusCommissionEmployee’s constructor did not invoke class CommissionEmployee’s constructor explicitly, C++ would attempt to invoke class CommissionEmployee’s default constructor implicitly—but the class does not have such a constructor, so the compiler would issue an error. Recall from Chapter 3 that the compiler provides a default constructor with no parameters in any class that does not explicitly include a constructor. However, CommissionEmployee does explicitly include a constructor, so a default constructor is not provided.

[image: Image] Common Programming Error 11.1

When a derived-class constructor calls a base-class constructor, the arguments passed to the base-class constructor must be consistent with the number and types of parameters specified in one of the base-class constructors; otherwise, a compilation error occurs.

[image: Image] Performance Tip 11.1

In a derived-class constructor, invoking base-class constructors and initializing member objects explicitly in the member initializer list prevents duplicate initialization in which a default constructor is called, then data members are modified again in the derived-class constructor’s body.

Compilation Errors from Accessing Base-Class private Members

The compiler generates errors for line 37 of Fig. 11.11 because base class CommissionEmployee’s data members commissionRate and grossSales are private—derived class BasePlusCommissionEmployee’s member functions are not allowed to access base class CommissionEmployee’s private data. The compiler issues additional errors in lines 44–47 of BasePlusCommissionEmployee’s print member function for the same reason. As you can see, C++ rigidly enforces restrictions on accessing private data members, so that even a derived class (which is intimately related to its base class) cannot access the base class’s private data.

Preventing the Errors in BasePlusCommissionEmployee

We purposely included the erroneous code in Fig. 11.11 to emphasize that a derived class’s member functions cannot access its base class’s private data. The errors in BasePlusCommissionEmployee could have been prevented by using the get member functions inherited from class CommissionEmployee. For example, line 37 could have invoked getCommissionRate and getGrossSales to access CommissionEmployee’s private data members commissionRate and grossSales, respectively. Similarly, lines 44–47 could have used appropriate get member functions to retrieve the values of the base class’s data members. In the next example, we show how using protected data also allows us to avoid the errors encountered in this example.

Including the Base-Class Header in the Derived-Class Header with #include

Notice that we #include the base class’s header in the derived class’s header (line 8 of Fig. 11.10). This is necessary for three reasons. First, for the derived class to use the base class’s name in line 10, we must tell the compiler that the base class exists—the class definition in CommissionEmployee.h does exactly that.

The second reason is that the compiler uses a class definition to determine the size of an object of that class (as we discussed in Section 3.6). A client program that creates an object of a class #includes the class definition to enable the compiler to reserve the proper amount of memory for the object. When using inheritance, a derived-class object’s size depends on the data members declared explicitly in its class definition and the data members inherited from its direct and indirect base classes. Including the base class’s definition in line 8 allows the compiler to determine the memory requirements for the base class’s data members that become part of a derived-class object and thus contribute to the total size of the derived-class object.

The last reason for line 8 is to allow the compiler to determine whether the derived class uses the base class’s inherited members properly. For example, in the program of Figs. 11.10–11.11, the compiler uses the base-class header to determine that the data members being accessed by the derived class are private in the base class. Since these are inaccessible to the derived class, the compiler generates errors. The compiler also uses the base class’s function prototypes to validate function calls made by the derived class to the inherited base-class functions.

Linking Process in an Inheritance Hierarchy

In Section 3.7, we discussed the linking process for creating an executable GradeBook application. In that example, you saw that the client’s object code was linked with the object code for class GradeBook, as well as the object code for any C++ Standard Library classes used in either the client code or in class GradeBook.

The linking process is similar for a program that uses classes in an inheritance hierarchy. The process requires the object code for all classes used in the program and the object code for the direct and indirect base classes of any derived classes used by the program. Suppose a client wants to create an application that uses class BasePlusCommissionEmployee, which is a derived class of CommissionEmployee (we’ll see an example of this in Section 11.3.4). When compiling the client application, the client’s object code must be linked with the object code for classes BasePlusCommissionEmployee and CommissionEmployee, because BasePlusCommissionEmployee inherits member functions from its base class CommissionEmployee. The code is also linked with the object code for any C++ Standard Library classes used in class CommissionEmployee, class BasePlusCommissionEmployee or the client code. This provides the program with access to the implementations of all of the functionality that the program may use.

11.3.4. CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data

Chapter 3 introduced access specifiers public and private. A base class’s public members are accessible within its body and anywhere that the program has a handle (i.e., a name, reference or pointer) to an object of that class or one of its derived classes. A base class’s private members are accessible only within its body and to the friends of that base class. In this section, we introduce the access specifier protected.

Using protected access offers an intermediate level of protection between public and private access. To enable class BasePlusCommissionEmployee to directly access CommissionEmployee data members firstName, lastName, socialSecurityNumber, grossSales and commissionRate, we can declare those members as protected in the base class. A base class’s protected members can be accessed within the body of that base class, by members and friends of that base class, and by members and friends of any classes derived from that base class.

Defining Base Class CommissionEmployee with protected Data

Class CommissionEmployee (Fig. 11.12) now declares data members firstName, lastName, socialSecurityNumber, grossSales and commissionRate as protected (lines 31–36) rather than private. The member-function implementations are identical to those in Fig. 11.5, so CommissionEmployee.cpp is not shown here.

Click here to view code image

 1 // Fig. 11.12: CommissionEmployee.h
 2 // CommissionEmployee class definition with protected data.
 3 #ifndef COMMISSION_H
 4 #define COMMISSION_H
 5
 6 #include <string> // C++ standard string class
 7
 8 class CommissionEmployee
 9 {
10 public:
11 CommissionEmployee(const std::string &, const std::string &,
12 const std::string &, double = 0.0, double = 0.0);
13
14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name
16
17 void setLastName(const std::string &); // set last name
18 std::string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22
23 void setGrossSales(double); // set gross sales amount
24 double getGrossSales() const; // return gross sales amount
25
26 void setCommissionRate(double); // set commission rate
27 double getCommissionRate() const; // return commission rate
28
29 double earnings() const; // calculate earnings
30 void print() const; // print CommissionEmployee object
31 protected:
32 std::string firstName;
33 std::string lastName;
34 std::string socialSecurityNumber;
35 double grossSales; // gross weekly sales
36 double commissionRate; // commission percentage
37 }; // end class CommissionEmployee
38
39 #endif

Fig. 11.12. CommissionEmployee class definition that declares protected data to allow access by derived classes.

Class BasePlusCommissionEmployee

The definition of class BasePlusCommissionEmployee from Figs. 11.10–11.11 remains unchanged, so we do not show it again here. Now that BasePlusCommissionEmployee inherits from the updated class CommissionEmployee (Fig. 11.12), BasePlusCommissionEmployee objects can access inherited data members that are declared protected in class CommissionEmployee (i.e., data members firstName, lastName, socialSecurityNumber, grossSales and commissionRate). As a result, the compiler does not generate errors when compiling the BasePlusCommissionEmployee earnings and print member-function definitions in Fig. 11.11 (lines 34–38 and 41–49, respectively). This shows the special privileges that a derived class is granted to access protected base-class data members. Objects of a derived class also can access protected members in any of that derived class’s indirect base classes.

Class BasePlusCommissionEmployee does not inherit class CommissionEmployee’s constructor. However, class BasePlusCommissionEmployee’s constructor (Fig. 11.11, lines 9–16) calls class CommissionEmployee’s constructor explicitly with member initializer syntax (line 13). Recall that BasePlusCommissionEmployee’s constructor must explicitly call the constructor of class CommissionEmployee, because CommissionEmployee does not contain a default constructor that could be invoked implicitly.

Testing the Modified BasePlusCommissionEmployee Class

To test the updated class hierarchy, we reused the test program from Fig. 11.9. As shown in Fig. 11.13, the output is identical to that of Fig. 11.9. We created the first class BasePlusCommissionEmployee without using inheritance and created this version of BasePlusCommissionEmployee using inheritance; however, both classes provide the same functionality. The code for class BasePlusCommissionEmployee (i.e., the header and implementation files), which is 74 lines, is considerably shorter than the code for the noninherited version of the class, which is 161 lines, because the inherited version absorbs part of its functionality from CommissionEmployee, whereas the noninherited version does not absorb any functionality. Also, there is now only one copy of the CommissionEmployee functionality declared and defined in class CommissionEmployee. This makes the source code easier to maintain, modify and debug, because the source code related to a CommissionEmployee exists only in the files CommissionEmployee.h and CommissionEmployee.cpp.

Click here to view code image

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 11.13. protected base-class data can be accessed from derived class.

Notes on Using protected Data

In this example, we declared base-class data members as protected, so derived classes can modify the data directly. Inheriting protected data members slightly improves performance, because we can directly access the members without incurring the overhead of calls to set or get member functions.

[image: Image] Software Engineering Observation 11.3

In most cases, it’s better to use private data members to encourage proper software engineering, and leave code optimization issues to the compiler. Your code will be easier to maintain, modify and debug.

Using protected data members creates two serious problems. First, the derived-class object does not have to use a member function to set the value of the base class’s protected data member. An invalid value can easily be assigned to the protected data member, thus leaving the object in an inconsistent state—e.g., with CommissionEmployee’s data member grossSales declared as protected, a derived-class object can assign a negative value to grossSales. The second problem with using protected data members is that derived-class member functions are more likely to be written so that they depend on the base-class implementation. Derived classes should depend only on the base-class services (i.e., non-private member functions) and not on the base-class implementation. With protected data members in the base class, if the base-class implementation changes, we may need to modify all derived classes of that base class. For example, if for some reason we were to change the names of data members firstName and lastName to first and last, then we’d have to do so for all occurrences in which a derived class references these base-class data members directly. Such software is said to be fragile or brittle, because a small change in the base class can “break” derived-class implementation. You should be able to change the base-class implementation while still providing the same services to derived classes. Of course, if the base-class services change, we must reimplement our derived classes—good object-oriented design attempts to prevent this.

[image: Image] Software Engineering Observation 11.4

It’s appropriate to use the protected access specifier when a base class should provide a service (i.e., a non-private member function) only to its derived classes and friends.

[image: Image] Software Engineering Observation 11.5

Declaring base-class data members private (as opposed to declaring them protected) enables you to change the base-class implementation without having to change derived-class implementations.

11.3.5. CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data

We now reexamine our hierarchy once more, this time using the best software engineering practices. Class CommissionEmployee now declares data members firstName, lastName, socialSecurityNumber, grossSales and commissionRate as private as shown previously in lines 31–36 of Fig. 11.4.

Click here to view code image

 1 // Fig. 11.14: CommissionEmployee.cpp
 2 // Class CommissionEmployee member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "CommissionEmployee.h" // CommissionEmployee class definition
 6 using namespace std;
 7
 8 // constructor
 9 CommissionEmployee::CommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate)
12 : firstName(first), lastName(last), socialSecurityNumber(ssn)
13 {
14 setGrossSales(sales); // validate and store gross sales
15 setCommissionRate(rate); // validate and store commission rate
16 } // end CommissionEmployee constructor
17
18 // set first name
19 void CommissionEmployee::setFirstName(const string &first)
20 {
21 firstName = first; // should validate
22 } // end function setFirstName
23
24 // return first name
25 string CommissionEmployee::getFirstName() const
26 {
27 return firstName;
28 } // end function getFirstName
29
30 // set last name
31 void CommissionEmployee::setLastName(const string &last)
32 {
33 lastName = last; // should validate
34 } // end function setLastName
35
36 // return last name
37 string CommissionEmployee::getLastName() const
38 {
39 return lastName;
40 } // end function getLastName
41
42 // set social security number
43 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end function setSocialSecurityNumber
47
48 // return social security number
49 string CommissionEmployee::getSocialSecurityNumber() const
50 {
51 return socialSecurityNumber;
52 } // end function getSocialSecurityNumber
53
54 // set gross sales amount
55 void CommissionEmployee::setGrossSales(double sales)
56 {
57 if (sales >= 0.0)
58 grossSales = sales;
59 else
60 throw invalid_argument("Gross sales must be >= 0.0");
61 } // end function setGrossSales
62
63 // return gross sales amount
64 double CommissionEmployee::getGrossSales() const
65 {
66 return grossSales;
67 } // end function getGrossSales
68
69 // set commission rate
70 void CommissionEmployee::setCommissionRate(double rate)
71 {
72 if (rate > 0.0 && rate < 1.0)
73 commissionRate = rate;
74 else
75 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
76 } // end function setCommissionRate
77
78 // return commission rate
79 double CommissionEmployee::getCommissionRate() const
80 {
81 return commissionRate;
82 } // end function getCommissionRate
83
84 // calculate earnings
85 double CommissionEmployee::earnings() const
86 {
87 return getCommissionRate() * getGrossSales();
88 } // end function earnings
89
90 // print CommissionEmployee object
91 void CommissionEmployee::print() const
92 {
93 cout << "commission employee: "
94 << getFirstName() << ' ' << getLastName()
95 << "\nsocial security number: " << getSocialSecurityNumber()
96 << "\ngross sales: " << getGrossSales()
97 << "\ncommission rate: " << getCommissionRate();
98 } // end function print

Fig. 11.14. CommissionEmployee class implementation file: CommissionEmployee class uses member functions to manipulate its private data.

Changes to Class CommissionEmployee’s Member Function Definitions

In the CommissionEmployee constructor implementation (Fig. 11.14, lines 9–16), we use member initializers (line 12) to set the values of the members firstName, lastName and socialSecurityNumber. We show how the derived-class BasePlusCommissionEmployee (Fig. 11.15) can invoke non-private base-class member functions (setFirstName, getFirstName, setLastName, getLastName, setSocialSecurityNumber and getSocialSecurityNumber) to manipulate these data members.

Click here to view code image

 1 // Fig. 11.15: BasePlusCommissionEmployee.cpp
 2 // Class BasePlusCommissionEmployee member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "BasePlusCommissionEmployee.h"
 6 using namespace std;
 7
 8 // constructor
 9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12 // explicitly call base-class constructor
13 : CommissionEmployee(first, last, ssn, sales, rate)
14 {
15 setBaseSalary(salary); // validate and store base salary
16 } // end BasePlusCommissionEmployee constructor
17
18 // set base salary
19 void BasePlusCommissionEmployee::setBaseSalary(double salary)
20 {
21 if (salary >= 0.0)
22 baseSalary = salary;
23 else
24 throw invalid_argument("Salary must be >= 0.0");
25 } // end function setBaseSalary
26
27 // return base salary
28 double BasePlusCommissionEmployee::getBaseSalary() const
29 {
30 return baseSalary;
31 } // end function getBaseSalary
32
33 // calculate earnings
34 double BasePlusCommissionEmployee::earnings() const
35 {
36 return getBaseSalary() + CommissionEmployee::earnings();
37 } // end function earnings
38
39 // print BasePlusCommissionEmployee object
40 void BasePlusCommissionEmployee::print() const
41 {
42 cout << "base-salaried ";
43
44 // invoke CommissionEmployee's print function
45 CommissionEmployee::print();
46
47 cout << "\nbase salary: " << getBaseSalary();
48 } // end function print

Fig. 11.15. BasePlusCommissionEmployee class that inherits from class CommissionEmployee but cannot directly access the class’s private data.

In the body of the constructor and in the bodies of member function’s earnings (Fig. 11.14, lines 85–88) and print (lines 91–98), we call the class’s set and get member functions to access the class’s private data members. If we decide to change the data member names, the earnings and print definitions will not require modification—only the definitions of the get and set member functions that directly manipulate the data members will need to change. These changes occur solely within the base class—no changes to the derived class are needed. Localizing the effects of changes like this is a good software engineering practice.

[image: Image] Performance Tip 11.2

Using a member function to access a data member’s value can be slightly slower than accessing the data directly. However, today’s optimizing compilers are carefully designed to perform many optimizations implicitly (such as inlining set and get member-function calls). You should write code that adheres to proper software engineering principles, and leave optimization to the compiler. A good rule is, “Do not second-guess the compiler.”

Changes to Class BasePlusCommissionEmployee’s Member Function Definitions

Class BasePlusCommissionEmployee inherits CommissionEmployee’s public member functions and can access the private base-class members via the inherited member functions. The class’s header remains unchanged from Fig. 11.10. The class has several changes to its member-function implementations (Fig. 11.15) that distinguish it from the previous version of the class (Figs. 11.10–11.11). Member functions earnings (Fig. 11.15, lines 34–37) and print (lines 40–48) each invoke member function getBaseSalary to obtain the base salary value, rather than accessing baseSalary directly. This insulates earnings and print from potential changes to the implementation of data member baseSalary. For example, if we decide to rename data member baseSalary or change its type, only member functions setBaseSalary and getBaseSalary will need to change.

BasePlusCommissionEmployee Member Function earnings

Class BasePlusCommissionEmployee’s earnings function (Fig. 11.15, lines 34–37) redefines class CommissionEmployee’s earnings member function (Fig. 11.14, lines 85–88) to calculate the earnings of a base-salaried commission employee. Class BasePlusCommissionEmployee’s version of earnings obtains the portion of the employee’s earnings based on commission alone by calling base-class CommissionEmployee’s earnings function with the expression CommissionEmployee::earnings() (Fig. 11.15, line 36). BasePlusCommissionEmployee’s earnings function then adds the base salary to this value to calculate the total earnings of the employee. Note the syntax used to invoke a redefined base-class member function from a derived class—place the base-class name and the scope resolution operator (::) before the base-class member-function name. This member-function invocation is a good software engineering practice: Recall from Chapter 9 that, if an object’s member function performs the actions needed by another object, we should call that member function rather than duplicating its code body. By having BasePlusCommissionEmployee’s earnings function invoke CommissionEmployee’s earnings function to calculate part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the code and reduce code-maintenance problems.

[image: Image] Common Programming Error 11.2

When a base-class member function is redefined in a derived class, the derived-class version often calls the base-class version to do additional work. Failure to use the :: operator prefixed with the name of the base class when referencing the base class’s member function causes infinite recursion, because the derived-class member function would then call itself.

BasePlusCommissionEmployee Member Function print

Similarly, BasePlusCommissionEmployee’s print function (Fig. 11.15, lines 40–48) redefines class CommissionEmployee’s print function (Fig. 11.14, lines 91–98) to output the appropriate base-salaried commission employee information. The new version displays part of a BasePlusCommissionEmployee object’s information (i.e., the string "commission employee" and the values of class CommissionEmployee’s private data members) by calling CommissionEmployee’s print member function with the qualified name CommissionEmployee::print() (Fig. 11.15, line 45). BasePlusCommissionEmployee’s print function then outputs the remainder of a BasePlusCommissionEmployee object’s information (i.e., the value of class BasePlusCommissionEmployee’s base salary).

Testing the Modified Class Hierarchy

Once again, this example uses the BasePlusCommissionEmployee test program from Fig. 11.9 and produces the same output. Although each “base-salaried commission employee” class behaves identically, the version in this example is the best engineered. By using inheritance and by calling member functions that hide the data and ensure consistency, we’ve efficiently and effectively constructed a well-engineered class.

Summary of the CommissionEmployee–BasePlusCommissionEmployee Examples

In this section, you saw an evolutionary set of examples that was carefully designed to teach key capabilities for good software engineering with inheritance. You learned how to create a derived class using inheritance, how to use protected base-class members to enable a derived class to access inherited base-class data members and how to redefine base-class functions to provide versions that are more appropriate for derived-class objects. In addition, you learned how to apply software engineering techniques from Chapter 9 and this chapter to create classes that are easy to maintain, modify and debug.

11.4. Constructors and Destructors in Derived Classes

As we explained in the preceding section, instantiating a derived-class object begins a chain of constructor calls in which the derived-class constructor, before performing its own tasks, invokes its direct base class’s constructor either explicitly (via a base-class member initializer) or implicitly (calling the base class’s default constructor). Similarly, if the base class is derived from another class, the base-class constructor is required to invoke the constructor of the next class up in the hierarchy, and so on. The last constructor called in this chain is the one of the class at the base of the hierarchy, whose body actually finishes executing first. The most derived-class constructor’s body finishes executing last. Each base-class constructor initializes the base-class data members that the derived-class object inherits. In the CommissionEmployee/BasePlusCommissionEmployee hierarchy that we’ve been studying, when a program creates a BasePlusCommissionEmployee object, the CommissionEmployee constructor is called. Since class CommissionEmployee is at the base of the hierarchy, its constructor executes, initializing the private CommissionEmployee data members that are part of the BasePlusCommissionEmployee object. When CommissionEmployee’s constructor completes execution, it returns control to BasePlusCommissionEmployee’s constructor, which initializes the BasePlusCommissionEmployee object’s baseSalary.

[image: Image] Software Engineering Observation 11.6

When a program creates a derived-class object, the derived-class constructor immediately calls the base-class constructor, the base-class constructor’s body executes, then the derived class’s member initializers execute and finally the derived-class constructor’s body executes. This process cascades up the hierarchy if it contains more than two levels.

When a derived-class object is destroyed, the program calls that object’s destructor. This begins a chain (or cascade) of destructor calls in which the derived-class destructor and the destructors of the direct and indirect base classes and the classes’ members execute in reverse of the order in which the constructors executed. When a derived-class object’s destructor is called, the destructor performs its task, then invokes the destructor of the next base class up the hierarchy. This process repeats until the destructor of the final base class at the top of the hierarchy is called. Then the object is removed from memory.

[image: Image] Software Engineering Observation 11.7

Suppose that we create an object of a derived class where both the base class and the derived class contain (via composition) objects of other classes. When an object of that derived class is created, first the constructors for the base class’s member objects execute, then the base-class constructor body executes, then the constructors for the derived class’s member objects execute, then the derived class’s constructor body executes. Destructors for derived-class objects are called in the reverse of the order in which their corresponding constructors are called.

Base-class constructors, destructors and overloaded assignment operators (Chapter 10) are not inherited by derived classes. Derived-class constructors, destructors and overloaded assignment operators, however, can call base-class versions.

C++11: Inheriting Base Class Constructors

[image: Image]

Sometimes a derived class’s constructors simply mimic the base class’s constructors. A frequently requested convenience feature for C++11 was the ability to inherit a base class’s constructors. You can now do this by explicitly including a using declaration of the form

using BaseClass::BaseClass;

anywhere in the derived-class definition. In the preceding declaration, BaseClass is the base class’s name. With a few exceptions (listed below), for each constructor in the base class, the compiler generates a derived-class constructor that calls the corresponding base-class constructor. The generated constructors perform only default initialization for the derived class’s additional data members. When you inherit constructors:

• By default, each inherited constructor has the same access level (public, protected or private) as its corresponding base-class constructor.

• The default, copy and move constructors are not inherited.

• If a constructor is deleted in the base class by placing = delete in its prototype, the corresponding constructor in the derived class is also deleted.

• If the derived class does not explicitly define constructors, the compiler generates a default constructor in the derived class—even if it inherits other constructors from its base class.

• If a constructor that you explicitly define in a derived class has the same parameter list as a base-class constructor, then the base-class constructor is not inherited.

• A base-class constructor’s default arguments are not inherited. Instead, the compiler generates overloaded constructors in the derived class. For example, if the base class declares the constructor

 BaseClass(int = 0, double = 0.0);

the compiler generates the following two derived-class constructors without default arguments

 DerivedClass(int);
 DerivedClass(int, double);

These each call the BaseClass constructor that specifies the default arguments.

11.5. public, protected and private Inheritance

When deriving a class from a base class, the base class may be inherited through public, protected or private inheritance. We normally use public inheritance in this book. Use of protected inheritance is rare. Figure 11.16 summarizes for each type of inheritance the accessibility of base-class members in a derived class. The first column contains the base-class access specifiers.

[image: Image]

Fig. 11.16. Summary of base-class member accessibility in a derived class.

When deriving a class with public inheritance, public members of the base class become public members of the derived class, and protected members of the base class become protected members of the derived class. A base class’s private members are never accessible directly from a derived class, but can be accessed through calls to the public and protected members of the base class.

When deriving a class with protected inheritance, public and protected members of the base class become protected members of the derived class. When deriving a class with private inheritance, public and protected members of the base class become private members (e.g., the functions become utility functions) of the derived class. Private and protected inheritance are not is-a relationships.

11.6. Software Engineering with Inheritance

Sometimes it’s difficult to appreciate the scope of problems faced by designers who work on large-scale software projects in industry. People experienced with such projects say that effective software reuse improves the software development process. Object-oriented programming facilitates software reuse, thus shortening development times and enhancing software quality.

When we use inheritance to create a new class from an existing one, the new class inherits the data members and member functions of the existing class, as described in Fig. 11.16. We can customize the new class to meet our needs by redefining base-class members and by including additional members. The derived-class programmer does this in C++ without accessing the base class’s source code (the derived class must be able to link to the base class’s object code). This powerful capability is attractive to software developers. They can develop proprietary classes for sale or license and make these classes available to users in object-code format. Users then can derive new classes from these library classes rapidly and without accessing the proprietary source code. The software developers need to supply the headers along with the object code

The availability of substantial and useful class libraries delivers the maximum benefits of software reuse through inheritance. The standard C++ libraries tend to be general purpose and limited in scope. There is a worldwide commitment to the development of class libraries for a huge variety of application arenas.

[image: Image] Software Engineering Observation 11.8

At the design stage in an object-oriented system, the designer often determines that certain classes are closely related. The designer should “factor out” common attributes and behaviors and place these in a base class, then use inheritance to form derived classes.

[image: Image] Software Engineering Observation 11.9

Creating a derived class does not affect its base class’s source code. Inheritance preserves the integrity of the base class.

11.7. Wrap-Up

This chapter introduced inheritance—the ability to create a class by absorbing an existing class’s data members and member functions and embellishing them with new capabilities. Through a series of examples using an employee inheritance hierarchy, you learned the notions of base classes and derived classes and used public inheritance to create a derived class that inherits members from a base class. The chapter introduced the access specifier protected—derived-class member functions can access protected base-class members. You learned how to access redefined base-class members by qualifying their names with the base-class name and scope resolution operator (::). You also saw the order in which constructors and destructors are called for objects of classes that are part of an inheritance hierarchy. Finally, we explained the three types of inheritance—public, protected and private—and the accessibility of base-class members in a derived class when using each type.

In Chapter 12, Object-Oriented Programming: Polymorphism, we build on our discussion of inheritance by introducing polymorphism—an object-oriented concept that enables us to write programs that handle, in a more general manner, objects of a wide variety of classes related by inheritance. After studying Chapter 12, you’ll be familiar with classes, objects, encapsulation, inheritance and polymorphism—the essential concepts of object-oriented programming.

12. Object-Oriented Programming: Polymorphism

Objectives

In this chapter you’ll:

• Learn how polymorphism makes programming more convenient and systems more extensible.

• Learn the distinction between abstract and concrete classes and how to create abstract classes.

• Use runtime type information (RTTI).

• Learn how C++ implements virtual functions and dynamic binding.

• Understand how virtual destructors ensure that all appropriate destructors run on an object.

Outline

12.1 Introduction

12.2 Introduction to Polymorphism: Polymorphic Video Game

12.3 Relationships Among Objects in an Inheritance Hierarchy

12.3.1 Invoking Base-Class Functions from Derived-Class Objects

12.3.2 Aiming Derived-Class Pointers at Base-Class Objects

12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers

12.3.4 Virtual Functions and Virtual Destructors

12.4 Type Fields and switch Statements

12.5 Abstract Classes and Pure virtual Functions

12.6 Case Study: Payroll System Using Polymorphism

12.6.1 Creating Abstract Base Class Employee

12.6.2 Creating Concrete Derived Class SalariedEmployee

12.6.3 Creating Concrete Derived Class CommissionEmployee

12.6.4 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee

12.6.5 Demonstrating Polymorphic Processing

12.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”

12.8 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info

12.9 Wrap-Up

12.1. Introduction

We now continue our study of OOP by explaining and demonstrating polymorphism with inheritance hierarchies. Polymorphism enables you to “program in the general” rather than “program in the specific.” In particular, polymorphism enables you to write programs that process objects of classes that are part of the same class hierarchy as if they were all objects of the hierarchy’s base class. As we’ll soon see, polymorphism works off base-class pointer handles and base-class reference handles, but not off name handles.

Implementing for Extensibility

With polymorphism, you can design and implement systems that are easily extensible—new classes can be added with little or no modification to the general portions of the program, as long as the new classes are part of the inheritance hierarchy that the program processes generally. The only parts of a program that must be altered to accommodate new classes are those that require direct knowledge of the new classes that you add to the hierarchy. For example, if we create class Tortoise that inherits from class Animal (which might respond to a move message by crawling one inch), we need to write only the Tortoise class and the part of the simulation that instantiates a Tortoise object. The portions of the simulation that process each Animal generally can remain the same.

Optional Discussion of Polymorphism “Under the Hood”

A key feature of this chapter is its (optional) detailed discussion of polymorphism, virtual functions and dynamic binding “under the hood,” which uses a detailed diagram to explain how polymorphism can be implemented in C++.

12.2. Introduction to Polymorphism: Polymorphic Video Game

Suppose that we design a video game that manipulates objects of many different types, including objects of classes Martian, Venutian, Plutonian, SpaceShip and LaserBeam. Imagine that each of these classes inherits from the common base class SpaceObject, which contains the member function draw. Each derived class implements this function in a manner appropriate for that class. A screen-manager program maintains a container (e.g., a vector) that holds SpaceObject pointers to objects of the various classes. To refresh the screen, the screen manager periodically sends each object the same message—namely, draw. Each type of object responds in a unique way. For example, a Martian object might draw itself in red with the appropriate number of antennae, a SpaceShip object might draw itself as a silver flying saucer, and a LaserBeam object might draw itself as a bright red beam across the screen. The same message (in this case, draw) sent to a variety of objects has many forms of results—hence the term polymorphism.

A polymorphic screen manager facilitates adding new classes to a system with minimal modifications to its code. Suppose that we want to add objects of class Mercurian to our video game. To do so, we must build a class Mercurian that inherits from SpaceObject, but provides its own definition of member function draw. Then, when pointers to objects of class Mercurian appear in the container, you do not need to modify the code for the screen manager. The screen manager invokes member function draw on every object in the container, regardless of the object’s type, so the new Mercurian objects simply “plug right in.” Thus, without modifying the system (other than to build and include the classes themselves), you can use polymorphism to accommodate additional classes, including ones that were not even envisioned when the system was created.

[image: Image] Software Engineering Observation 12.1

Polymorphism enables you to deal in generalities and let the execution-time environment concern itself with the specifics. You can direct a variety of objects to behave in manners appropriate to those objects without even knowing their types—as long as those objects belong to the same inheritance hierarchy and are being accessed off a common base-class pointer or a common base-class reference.

[image: Image] Software Engineering Observation 12.2

Polymorphism promotes extensibility: Software written to invoke polymorphic behavior is written independently of the specific types of the objects to which messages are sent. Thus, new types of objects that can respond to existing messages can be incorporated into such a system without modifying the base system. Only client code that instantiates new objects must be modified to accommodate new types.

12.3. Relationships Among Objects in an Inheritance Hierarchy

Section 11.3 created an employee class hierarchy, in which class BasePlusCommissionEmployee inherited from class CommissionEmployee. The Chapter 11 examples manipulated CommissionEmployee and BasePlusCommissionEmployee objects by using the objects’ names to invoke their member functions. We now examine the relationships among classes in a hierarchy more closely. The next several sections present a series of examples that demonstrate how base-class and derived-class pointers can be aimed at base-class and derived-class objects, and how those pointers can be used to invoke member functions that manipulate those objects.

• In Section 12.3.1, we assign the address of a derived-class object to a base-class pointer, then show that invoking a function via the base-class pointer invokes the base-class functionality in the derived-class object—i.e., the type of the handle determines which function is called.

• In Section 12.3.2, we assign the address of a base-class object to a derived-class pointer, which results in a compilation error. We discuss the error message and investigate why the compiler does not allow such an assignment.

• In Section 12.3.3, we assign the address of a derived-class object to a base-class pointer, then examine how the base-class pointer can be used to invoke only the base-class functionality—when we attempt to invoke derived-class member functions through the base-class pointer, compilation errors occur.

• Finally, in Section 12.3.4, we demonstrate how to get polymorphic behavior from base-class pointers aimed at derived-class objects. We introduce virtual functions and polymorphism by declaring a base-class function as virtual. We then assign the address of a derived-class object to the base-class pointer and use that pointer to invoke derived-class functionality—precisely the capability we need to achieve polymorphic behavior.

A key concept in these examples is to demonstrate that with public inheritance an object of a derived class can be treated as an object of its base class. This enables various interesting manipulations. For example, a program can create an array of base-class pointers that point to objects of many derived-class types. Despite the fact that the derived-class objects are of different types, the compiler allows this because each derived-class object is an object of its base class. However, we cannot treat a base-class object as an object of any of its derived classes. For example, a CommissionEmployee is not a BasePlusCommissionEmployee in the hierarchy defined in Chapter 11—a CommissionEmployee does not have a baseSalary data member and does not have member functions setBaseSalary and getBaseSalary. The is-a relationship applies only from a derived class to its direct and indirect base classes.

12.3.1. Invoking Base-Class Functions from Derived-Class Objects

The example in Fig. 12.1 reuses the final versions of classes CommissionEmployee and BasePlusCommissionEmployee from Section 11.3.5. The example demonstrates three ways to aim base- and derived-class pointers at base- and derived-class objects. The first two are natural and straightforward—we aim a base-class pointer at a base-class object and invoke base-class functionality, and we aim a derived-class pointer at a derived-class object and invoke derived-class functionality. Then, we demonstrate the relationship between derived classes and base classes (i.e., the is-a relationship of inheritance) by aiming a base-class pointer at a derived-class object and showing that the base-class functionality is indeed available in the derived-class object.

Click here to view code image

 1 // Fig. 12.1: fig12_01.cpp
 2 // Aiming base-class and derived-class pointers at base-class
 3 // and derived-class objects, respectively.
 4 #include <iostream>
 5 #include <iomanip>
 6 #include "CommissionEmployee.h"
 7 #include "BasePlusCommissionEmployee.h"
 8 using namespace std;
 9
10 int main()
11 {
12 // create base-class object
13 CommissionEmployee commissionEmployee(
14 "Sue", "Jones", "222-22-2222", 10000, .06);
15
16 // create base-class pointer
17 CommissionEmployee *commissionEmployeePtr = nullptr;
18
19 // create derived-class object
20 BasePlusCommissionEmployee basePlusCommissionEmployee(
21 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
22
23 // create derived-class pointer
24 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
25
26 // set floating-point output formatting
27 cout << fixed << setprecision(2);
28
29 // output objects commissionEmployee and basePlusCommissionEmployee
30 cout << "Print base-class and derived-class objects:\n\n";
31 commissionEmployee.print(); // invokes base-class print
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // invokes derived-class print
34
35 // aim base-class pointer at base-class object and print
36 commissionEmployeePtr = &commissionEmployee; // perfectly natural
37 cout << "\n\n\nCalling print with base-class pointer to "
38 << "\nbase-class object invokes base-class print function:\n\n";
39 commissionEmployeePtr->print(); // invokes base-class print
40
41 // aim derived-class pointer at derived-class object and print
42 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural
43 cout << "\n\n\nCalling print with derived-class pointer to "
44 << "\nderived-class object invokes derived-class "
45 << "print function:\n\n";
46 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
47
48 // aim base-class pointer at derived-class object and print
49 commissionEmployeePtr = &basePlusCommissionEmployee;
50 cout << "\n\n\nCalling print with base-class pointer to "
51 << "derived-class object\ninvokes base-class print "
52 << "function on that derived-class object:\n\n";
53 commissionEmployeePtr->print(); // invokes base-class print
54 cout << endl;
55 } // end main

[image: Image]

Fig. 12.1. Assigning addresses of base-class and derived-class objects to base-class and derived-class pointers.

Recall that each BasePlusCommissionEmployee object is a CommissionEmployee that also has a base salary. Class BasePlusCommissionEmployee’s earnings member function (lines 34–37 of Fig. 11.15) redefines class CommissionEmployee’s earnings member function (lines 85–88 of Fig. 11.14) to include the object’s base salary. Class BasePlusCommissionEmployee’s print member function (lines 40–48 of Fig. 11.15) redefines class CommissionEmployee’s version (lines 91–98 of Fig. 11.14) to display the same information plus the employee’s base salary.

Creating Objects and Displaying Their Contents

In Fig. 12.1, lines 13–14 create a CommissionEmployee object and line 17 creates a pointer to a CommissionEmployee object; lines 20–21 create a BasePlusCommissionEmployee object and line 24 creates a pointer to a BasePlusCommissionEmployee object. Lines 31 and 33 use each object’s name to invoke its print member function.

Aiming a Base-Class Pointer at a Base-Class Object

Line 36 assigns the address of base-class object commissionEmployee to base-class pointer commissionEmployeePtr, which line 39 uses to invoke member function print on that CommissionEmployee object. This invokes the version of print defined in base class CommissionEmployee.

Aiming a Derived-Class Pointer at a Derived-Class Object

Similarly, line 42 assigns the address of derived-class object basePlusCommissionEmployee to derived-class pointer basePlusCommissionEmployeePtr, which line 46 uses to invoke member function print on that BasePlusCommissionEmployee object. This invokes the version of print defined in derived class BasePlusCommissionEmployee.

Aiming a Base-Class Pointer at a Derived-Class Object

Line 49 then assigns the address of derived-class object basePlusCommissionEmployee to base-class pointer commissionEmployeePtr, which line 53 uses to invoke member function print. This “crossover” is allowed because an object of a derived class is an object of its base class. Despite the fact that the base class CommissionEmployee pointer points to a derived class BasePlusCommissionEmployee object, the base class CommissionEmployee’s print member function is invoked (rather than BasePlusCommissionEmployee’s print function). The output of each print member-function invocation in this program reveals that the invoked functionality depends on the type of the pointer (or reference) used to invoke the function, not the type of the object for which the member function is called. In Section 12.3.4, when we introduce virtual functions, we demonstrate that it’s possible to invoke the object type’s functionality, rather than invoke the handle type’s functionality. We’ll see that this is crucial to implementing polymorphic behavior—the key topic of this chapter.

12.3.2. Aiming Derived-Class Pointers at Base-Class Objects

In Section 12.3.1, we assigned the address of a derived-class object to a base-class pointer and explained that the C++ compiler allows this assignment, because a derived-class object is a base-class object. We take the opposite approach in Fig. 12.2, as we aim a derived-class pointer at a base-class object. [Note: This program reuses the final versions of classes CommissionEmployee and BasePlusCommissionEmployee from Section 11.3.5.] Lines 8–9 of Fig. 12.2 create a CommissionEmployee object, and line 10 creates a BasePlusCommissionEmployee pointer. Line 14 attempts to assign the address of base-class object commissionEmployee to derived-class pointer basePlusCommissionEmployeePtr, but the compiler generates an error. The compiler prevents this assignment, because a CommissionEmployee is not a BasePlusCommissionEmployee.

Click here to view code image

 1 // Fig. 12.2: fig12_02.cpp
 2 // Aiming a derived-class pointer at a base-class object.
 3 #include "CommissionEmployee.h"
 4 #include "BasePlusCommissionEmployee.h"
 5
 6 int main()
 7 {
 8 CommissionEmployee commissionEmployee(
 9 "Sue", "Jones", "222-22-2222", 10000, .06);
10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
11
12 // aim derived-class pointer at base-class object
13 // Error: a CommissionEmployee is not a BasePlusCommissionEmployee
14 basePlusCommissionEmployeePtr = &commissionEmployee;
15 } // end main

Microsoft Visual C++ compiler error message:

C:\cpphtp8_examples\ch12\Fig12_02\fig12_02.cpp(14): error C2440: '=' :
 cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee
*'
 Cast from base to derived requires dynamic_cast or static_cast

Fig. 12.2. Aiming a derived-class pointer at a base-class object.

Consider the consequences if the compiler were to allow this assignment. Through a BasePlusCommissionEmployee pointer, we can invoke every BasePlusCommissionEmployee member function, including setBaseSalary, for the object to which the pointer points (i.e., the base-class object commissionEmployee). However, the CommissionEmployee object does not provide a setBaseSalary member function, nor does it provide a baseSalary data member to set. This could lead to problems, because member function setBaseSalary would assume that there is a baseSalary data member to set at its “usual location” in a BasePlusCommissionEmployee object. This memory does not belong to the CommissionEmployee object, so member function setBaseSalary might overwrite other important data in memory, possibly data that belongs to a different object.

12.3.3. Derived-Class Member-Function Calls via Base-Class Pointers

Off a base-class pointer, the compiler allows us to invoke only base-class member functions. Thus, if a base-class pointer is aimed at a derived-class object, and an attempt is made to access a derived-class-only member function, a compilation error will occur.

Figure 12.3 shows the consequences of attempting to invoke a derived-class member function off a base-class pointer. [Note: We’re again reusing the versions of classes CommissionEmployee and BasePlusCommissionEmployee from Section 11.3.5.] Line 11 creates commissionEmployeePtr—a pointer to a CommissionEmployee object—and lines 12–13 create a BasePlusCommissionEmployee object. Line 16 aims the base-class commissionEmployeePtr at derived-class object basePlusCommissionEmployee. Recall from Section 12.3.1 that this is allowed, because a BasePlusCommissionEmployee is a CommissionEmployee (in the sense that a BasePlusCommissionEmployee object contains all the functionality of a CommissionEmployee object). Lines 20–24 invoke base-class member functions getFirstName, getLastName, getSocialSecurityNumber, getGrossSales and getCommissionRate off the base-class pointer. All of these calls are allowed, because BasePlusCommissionEmployee inherits these member functions from CommissionEmployee. We know that commissionEmployeePtr is aimed at a BasePlusCommissionEmployee object, so in lines 28–29 we attempt to invoke BasePlusCommissionEmployee member functions getBaseSalary and setBaseSalary. The compiler generates errors on both of these calls, because they’re not made to member functions of base-class CommissionEmployee. The handle can be used to invoke only those functions that are members of that handle’s associated class type. (In this case, off a CommissionEmployee *, we can invoke only CommissionEmployee member functions setFirstName, getFirstName, setLastName, getLastName, setSocialSecurityNumber, getSocialSecurityNumber, setGrossSales, getGrossSales, setCommissionRate, getCommissionRate, earnings and print.)

Click here to view code image

 1 // Fig. 12.3: fig12_03.cpp
 2 // Attempting to invoke derived-class-only member functions
 3 // via a base-class pointer.
 4 #include <string>
 5 #include "CommissionEmployee.h"
 6 #include "BasePlusCommissionEmployee.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 CommissionEmployee *commissionEmployeePtr = nullptr; // base class ptr
12 BasePlusCommissionEmployee basePlusCommissionEmployee(
13 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class
14
15 // aim base-class pointer at derived-class object (allowed)
16 commissionEmployeePtr = &basePlusCommissionEmployee;
17
18 // invoke base-class member functions on derived-class
19 // object through base-class pointer (allowed)
20 string firstName = commissionEmployeePtr->getFirstName();
21 string lastName = commissionEmployeePtr->getLastName();
22 string ssn = commissionEmployeePtr->getSocialSecurityNumber();
23 double grossSales = commissionEmployeePtr->getGrossSales();
24 double commissionRate = commissionEmployeePtr->getCommissionRate();
25
26 // attempt to invoke derived-class-only member functions
27 // on derived-class object through base-class pointer (disallowed)
28 double baseSalary = commissionEmployeePtr->getBaseSalary();
29 commissionEmployeePtr->setBaseSalary(500);
30 } // end main

GNU C++ compiler error messages:

fig12_03.cpp:28:47: error: 'class CommissionEmployee' has no member named
 'getBaseSalary'
fig12_03.cpp:29:27: error: 'class CommissionEmployee' has no member named
 'setBaseSalary'

Fig. 12.3. Attempting to invoke derived-class-only functions via a base-class pointer.

Downcasting

The compiler will allow access to derived-class-only members from a base-class pointer that’s aimed at a derived-class object if we explicitly cast the base-class pointer to a derived-class pointer—this is known as downcasting. As you know, it’s possible to aim a base-class pointer at a derived-class object. However, as we demonstrated in Fig. 12.3, a base-class pointer can be used to invoke only the functions declared in the base class. Downcasting allows a derived-class-specific operation on a derived-class object pointed to by a base-class pointer. After a downcast, the program can invoke derived-class functions that are not in the base class. Downcasting is a potentially dangerous operation. Section 12.8 demonstrates how to safely use downcasting.

[image: Image] Software Engineering Observation 12.3

If the address of a derived-class object has been assigned to a pointer of one of its direct or indirect base classes, it’s acceptable to cast that base-class pointer back to a pointer of the derived-class type. In fact, this must be done to call derived-class member functions that do not appear in the base class.

12.3.4. Virtual Functions and Virtual Destructors

In Section 12.3.1, we aimed a base-class CommissionEmployee pointer at a derived-class BasePlusCommissionEmployee object, then invoked member function print through that pointer. Recall that the type of the handle determined which class’s functionality to invoke. In that case, the CommissionEmployee pointer invoked the CommissionEmployee member function print on the BasePlusCommissionEmployee object, even though the pointer was aimed at a BasePlusCommissionEmployee object that has its own custom print function.

[image: Image] Software Engineering Observation 12.4

With virtual functions, the type of the object, not the type of the handle used to invoke the member function, determines which version of a virtual function to invoke.

Why virtual Functions Are Useful

First, we consider why virtual functions are useful. Suppose that shape classes such as Circle, Triangle, Rectangle and Square are all derived from base class Shape. Each of these classes might be endowed with the ability to draw itself via a member function draw, but the function for each shape is quite different. In a program that draws a set of shapes, it would be useful to be able to treat all the shapes generally as objects of the base class Shape. Then, to draw any shape, we could simply use a base-class Shape pointer to invoke function draw and let the program determine dynamically (i.e., at runtime) which derived-class draw function to use, based on the type of the object to which the base-class Shape pointer points at any given time. This is polymorphic behavior.

Declaring virtual Functions

To enable this behavior, we declare draw in the base class as a virtual function, and we override draw in each of the derived classes to draw the appropriate shape. From an implementation perspective, overriding a function is no different than redefining one (which is the approach we’ve been using until now). An overridden function in a derived class has the same signature and return type (i.e., prototype) as the function it overrides in its base class. If we do not declare the base-class function as virtual, we can redefine that function. By contrast, if we declare the base-class function as virtual, we can override that function to enable polymorphic behavior. We declare a virtual function by preceding the function’s prototype with the keyword virtual in the base class. For example,

virtual void draw() const;

would appear in base class Shape. The preceding prototype declares that function draw is a virtual function that takes no arguments and returns nothing. This function is declared const because a draw function typically would not make changes to the Shape object on which it’s invoked—virtual functions do not have to be const functions.

[image: Image] Software Engineering Observation 12.5

Once a function is declared virtual, it remains virtual all the way down the inheritance hierarchy from that point, even if that function is not explicitly declared virtual when a derived class overrides it.

[image: Image] Good Programming Practice 12.1

Even though certain functions are implicitly virtual because of a declaration made higher in the class hierarchy, explicitly declare these functions virtual at every level of the class hierarchy to promote program clarity.

[image: Image] Software Engineering Observation 12.6

When a derived class chooses not to override a virtual function from its base class, the derived class simply inherits its base class’s virtual function implementation.

Invoking a virtual Function Through a Base-Class Pointer or Reference

If a program invokes a virtual function through a base-class pointer to a derived-class object (e.g., shapePtr->draw()) or a base-class reference to a derived-class object (e.g., shapeRef.draw()), the program will choose the correct derived-class draw function dynamically (i.e., at execution time) based on the object type—not the pointer or reference type. Choosing the appropriate function to call at execution time (rather than at compile time) is known as dynamic binding or late binding.

Invoking a virtual Function Through an Object’s Name

When a virtual function is called by referencing a specific object by name and using the dot member-selection operator (e.g., squareObject.draw()), the function invocation is resolved at compile time (this is called static binding) and the virtual function that’s called is the one defined for (or inherited by) the class of that particular object—this is not polymorphic behavior. Thus, dynamic binding with virtual functions occurs only off pointers (and, as we’ll soon see, references).

virtual Functions in the CommissionEmployee Hierarchy

[image: Image]

Now let’s see how virtual functions can enable polymorphic behavior in our employee hierarchy. Figures 12.4–12.5 are the headers for classes CommissionEmployee and BasePlusCommissionEmployee, respectively. We modified these to declare each class’s earnings and print member functions as virtual (lines 29–30 of Fig. 12.4 and lines 19–20 of Fig. 12.5). Because functions earnings and print are virtual in class CommissionEmployee, class BasePlusCommissionEmployee’s earnings and print functions override class CommissionEmployee’s. In addition, class BasePlusCommissionEmployee’s earnings and print functions are declared override.

Click here to view code image

 1 // Fig. 12.4: CommissionEmployee.h
 2 // CommissionEmployee class header declares earnings and print as virtual.
 3 #ifndef COMMISSION_H
 4 #define COMMISSION_H
 5
 6 #include <string> // C++ standard string class
 7
 8 class CommissionEmployee
 9 {
10 public:
11 CommissionEmployee(const std::string &, const std::string &,
12 const std::string &, double = 0.0, double = 0.0);
13
14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name
16
17 void setLastName(const std::string &); // set last name
18 std::string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22
23 void setGrossSales(double); // set gross sales amount
24 double getGrossSales() const; // return gross sales amount
25
26 void setCommissionRate(double); // set commission rate
27 double getCommissionRate() const; // return commission rate
28
29 virtual double earnings() const; // calculate earnings
30 virtual void print() const; // print object
31 private:
32 std::string firstName;
33 std::string lastName;
34 std::string socialSecurityNumber;
35 double grossSales; // gross weekly sales
36 double commissionRate; // commission percentage
37 }; // end class CommissionEmployee
38
39 #endif

Fig. 12.4. CommissionEmployee class header declares earnings and print as virtual.

Click here to view code image

 1 // Fig. 12.5: BasePlusCommissionEmployee.h
 2 // BasePlusCommissionEmployee class derived from class
 3 // CommissionEmployee.
 4 #ifndef BASEPLUS_H
 5 #define BASEPLUS_H
 6
 7 #include <string> // C++ standard string class
 8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
 9
10 class BasePlusCommissionEmployee : public CommissionEmployee
11 {
12 public:
13 BasePlusCommissionEmployee(const std::string &, const std::string &,
14 const std::string &, double = 0.0, double = 0.0, double = 0.0);
15
16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
18
19 virtual double earnings() const override; // calculate earnings
20 virtual void print() const override; // print object
21 private:
22 double baseSalary; // base salary
23 }; // end class BasePlusCommissionEmployee
24
25 #endif

Fig. 12.5. BasePlusCommissionEmployee class header declares earnings and print functions as virtual and override.

[image: Image] Error-Prevention Tip 12.1

[image: Image]

Apply C++11’s override keyword to every overridden function in a derived-class. This forces the compiler to check whether the base class has a member function with the same name and parameter list (i.e., the same signature). If not, the compiler generates an error.

Now, if we aim a base-class CommissionEmployee pointer at a derived-class BasePlusCommissionEmployee object, and the program uses that pointer to call either function earnings or print, the BasePlusCommissionEmployee object’s corresponding function will be invoked. There were no changes to the member-function implementations of classes CommissionEmployee and BasePlusCommissionEmployee, so we reuse the versions of Figs. 11.14 and 11.15.

We modified Fig. 12.1 to create the program of Fig. 12.6. Lines 40–51 of Fig. 12.6 demonstrate again that a CommissionEmployee pointer aimed at a CommissionEmployee object can be used to invoke CommissionEmployee functionality, and a BasePlusCommissionEmployee pointer aimed at a BasePlusCommissionEmployee object can be used to invoke BasePlusCommissionEmployee functionality. Line 54 aims the base-class pointer commissionEmployeePtr at derived-class object basePlusCommissionEmployee. Note that when line 61 invokes member function print off the base-class pointer, the derived-class BasePlusCommissionEmployee’s print member function is invoked, so line 61 outputs different text than line 53 does in Fig. 12.1 (when member function print was not declared virtual). We see that declaring a member function virtual causes the program to dynamically determine which function to invoke based on the type of object to which the handle points, rather than on the type of the handle. Note again that when commissionEmployeePtr points to a CommissionEmployee object, class CommissionEmployee’s print function is invoked (Fig. 12.6, line 40), and when CommissionEmployeePtr points to a BasePlusCommissionEmployee object, class BasePlusCommissionEmployee’s print function is invoked (line 61). Thus, the same message—print, in this case—sent (off a base-class pointer) to a variety of objects related by inheritance to that base class, takes on many forms—this is polymorphic behavior.

Click here to view code image

 1 // Fig. 12.6: fig12_06.cpp
 2 // Introducing polymorphism, virtual functions and dynamic binding.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include "CommissionEmployee.h"
 6 #include "BasePlusCommissionEmployee.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 // create base-class object
12 CommissionEmployee commissionEmployee(
13 "Sue", "Jones", "222-22-2222", 10000, .06);
14
15 // create base-class pointer
16 CommissionEmployee *commissionEmployeePtr = nullptr;
17
18 // create derived-class object
19 BasePlusCommissionEmployee basePlusCommissionEmployee(
20 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
21
22 // create derived-class pointer
23 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
24
25 // set floating-point output formatting
26 cout << fixed << setprecision(2);
27
28 // output objects using static binding
29 cout << "Invoking print function on base-class and derived-class "
30 << "\nobjects with static binding\n\n";
31 commissionEmployee.print(); // static binding
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // static binding
34
35 // output objects using dynamic binding
36 cout << "\n\n\nInvoking print function on base-class and "
37 << "derived-class \nobjects with dynamic binding";
38
39 // aim base-class pointer at base-class object and print
40 commissionEmployeePtr = &commissionEmployee;
41 cout << "\n\nCalling virtual function print with base-class pointer"
42 << "\nto base-class object invokes base-class "
43 << "print function:\n\n";
44 commissionEmployeePtr->print(); // invokes base-class print
45
46 // aim derived-class pointer at derived-class object and print
47 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;
48 cout << "\n\nCalling virtual function print with derived-class "
49 << "pointer\nto derived-class object invokes derived-class "
50 << "print function:\n\n";
51 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
52
53 // aim base-class pointer at derived-class object and print
54 commissionEmployeePtr = &basePlusCommissionEmployee;
55 cout << "\n\nCalling virtual function print with base-class pointer"
56 << "\nto derived-class object invokes derived-class "
57 << "print function:\n\n";
58
59 // polymorphism; invokes BasePlusCommissionEmployee's print;
60 // base-class pointer to derived-class object
61 commissionEmployeePtr->print();
62 cout << endl;
63 } // end main

[image: Image]

Fig. 12.6. Demonstrating polymorphism by invoking a derived-class virtual function via a base-class pointer to a derived-class object.

virtual Destructors

A problem can occur when using polymorphism to process dynamically allocated objects of a class hierarchy. So far you’ve seen destructors that are not declared with keyword virtual. If a derived-class object with a non-virtual destructor is destroyed by applying the delete operator to a base-class pointer to the object, the C++ standard specifies that the behavior is undefined.

The simple solution to this problem is to create a public virtual destructor in the base class. If a base class destructor is declared virtual, the destructors of any derived classes are also virtual and they override the base class destructor. For example, in class CommissionEmployee’s definition, we can define the virtual destructor as follows:

virtual ~CommissionEmployee() { }

Now, if an object in the hierarchy is destroyed explicitly by applying the delete operator to a base-class pointer, the destructor for the appropriate class is called based on the object to which the base-class pointer points. Remember, when a derived-class object is destroyed, the base-class part of the derived-class object is also destroyed, so it’s important for the destructors of both the derived and base classes to execute. The base-class destructor automatically executes after the derived-class destructor. From this point forward, we’ll include a virtual destructor in every class that contains virtual functions.

[image: Image] Error-Prevention Tip 12.2

If a class has virtual functions, always provide a virtual destructor, even if one is not required for the class. This ensures that a custom derived-class destructor (if there is one) will be invoked when a derived-class object is deleted via a base class pointer.

[image: Image] Common Programming Error 12.1

Constructors cannot be virtual. Declaring a constructor virtual is a compilation error.

C++11: final Member Functions and Classes

[image: Image]

Prior to C++11, a derived class could override any of its base class’s virtual functions. In C++11, a base-class virtual function that’s declared final in its prototype, as in

virtual someFunction(parameters) final;

cannot be overridden in any derived class—this guarantees that the base class’s final member function definition will be used by all base-class objects and by all objects of the base class’s direct and indirect derived classes. Similarly, prior to C++11, any existing class could be used as a base class in a hierarchy. As of C++11, you can declare a class as final to prevent it from being used as a base class, as in

Click here to view code image

class MyClass final // this class cannot be a base class
{
 // class body
};

Attempting to override a final member function or inherit from a final base class results in a compilation error.

12.4. Type Fields and switch Statements

One way to determine the type of an object is to use a switch statement to check the value of a field in the object. This allows us to distinguish among object types, then invoke an appropriate action for a particular object. For example, in a hierarchy of shapes in which each shape object has a shapeType attribute, a switch statement could check the object’s shapeType to determine which print function to call.

Using switch logic exposes programs to a variety of potential problems. For example, you might forget to include a type test when one is warranted, or might forget to test all possible cases in a switch statement. When modifying a switch-based system by adding new types, you might forget to insert the new cases in all relevant switch statements. Every addition or deletion of a class requires the modification of every switch statement in the system; tracking these statements down can be time consuming and error prone.

[image: Image] Software Engineering Observation 12.7

Polymorphic programming can eliminate the need for switch logic. By using the polymorphism mechanism to perform the equivalent logic, you can avoid the kinds of errors typically associated with switch logic.

[image: Image] Software Engineering Observation 12.8

An interesting consequence of using polymorphism is that programs take on a simplified appearance. They contain less branching logic and simpler sequential code.

12.5. Abstract Classes and Pure virtual Functions

When we think of a class as a type, we assume that programs will create objects of that type. However, there are cases in which it’s useful to define classes from which you never intend to instantiate any objects. Such classes are called abstract classes. Because these classes normally are used as base classes in inheritance hierarchies, we refer to them as abstract base classes. These classes cannot be used to instantiate objects, because, as we’ll soon see, abstract classes are incomplete—derived classes must define the “missing pieces” before objects of these classes can be instantiated. We build programs with abstract classes in Section 12.6.

An abstract class is a base class from which other classes can inherit. Classes that can be used to instantiate objects are called concrete classes. Such classes define or inherit implementations for every member function they declare. We could have an abstract base class TwoDimensionalShape and derive such concrete classes as Square, Circle and Triangle. We could also have an abstract base class ThreeDimensionalShape and derive such concrete classes as Cube, Sphere and Cylinder. Abstract base classes are too generic to define real objects; we need to be more specific before we can think of instantiating objects. For example, if someone tells you to “draw the two-dimensional shape,” what shape would you draw? Concrete classes provide the specifics that make it possible to instantiate objects.

An inheritance hierarchy does not need to contain any abstract classes, but many object-oriented systems have class hierarchies headed by abstract base classes. In some cases, abstract classes constitute the top few levels of the hierarchy. A good example of this is the shape hierarchy in Fig. 11.3, which begins with abstract base class Shape. On the next level of the hierarchy we have two more abstract base classes—TwoDimensionalShape and ThreeDimensionalShape. The next level of the hierarchy defines concrete classes for two-dimensional shapes (namely, Circle, Square and Triangle) and for three-dimensional shapes (namely, Sphere, Cube and Tetrahedron).

Pure Virtual Functions

A class is made abstract by declaring one or more of its virtual functions to be “pure.” A pure virtual function is specified by placing “= 0” in its declaration, as in

virtual void draw() const = 0; // pure virtual function

The “= 0” is a pure specifier. Pure virtual functions typically do not provide implementations, though they can. Each concrete derived class must override all base-class pure virtual functions with concrete implementations of those functions; otherwise, the derived class is also abstract. The difference between a virtual function and a pure virtual function is that a virtual function has an implementation and gives the derived class the option of overriding the function; by contrast, a pure virtual function does not have an implementation and requires the derived class to override the function for that derived class to be concrete; otherwise the derived class remains abstract.

Pure virtual functions are used when it does not make sense for the base class to have an implementation of a function, but you want all concrete derived classes to implement the function. Returning to our earlier example of space objects, it does not make sense for the base class SpaceObject to have an implementation for function draw (as there is no way to draw a generic space object without having more information about what type of space object is being drawn). An example of a function that would be defined as virtual (and not pure virtual) would be one that returns a name for the object. We can name a generic SpaceObject (for instance, as "space object"), so a default implementation for this function can be provided, and the function does not need to be pure virtual. The function is still declared virtual, however, because it’s expected that derived classes will override this function to provide more specific names for the derived-class objects.

[image: Image] Software Engineering Observation 12.9

An abstract class defines a common public interface for the various classes in a class hierarchy. An abstract class contains one or more pure virtual functions that concrete derived classes must override.

[image: Image] Common Programming Error 12.2

Failure to override a pure virtual function in a derived class makes that class abstract. Attempting to instantiate an object of an abstract class causes a compilation error.

[image: Image] Software Engineering Observation 12.10

An abstract class has at least one pure virtual function. An abstract class also can have data members and concrete functions (including constructors and destructors), which are subject to the normal rules of inheritance by derived classes.

Although we cannot instantiate objects of an abstract base class, we can use the abstract base class to declare pointers and references that can refer to objects of any concrete classes derived from the abstract class. Programs typically use such pointers and references to manipulate derived-class objects polymorphically.

Device Drivers and Polymorphism

Polymorphism is particularly effective for implementing layered software systems. In operating systems, for example, each type of physical device could operate quite differently from the others. Even so, commands to read or write data from and to devices may have a certain uniformity. The write message sent to a device-driver object needs to be interpreted specifically in the context of that device driver and how that device driver manipulates devices of a specific type. However, the write call itself really is no different from the write to any other device in the system—place some number of bytes from memory onto that device. An object-oriented operating system could use an abstract base class to provide an interface appropriate for all device drivers. Then, through inheritance from that abstract base class, derived classes are formed that all operate similarly. The capabilities (i.e., the public functions) offered by the device drivers are provided as pure virtual functions in the abstract base class. The implementations of these pure virtual functions are provided in the derived classes that correspond to the specific types of device drivers. This architecture also allows new devices to be added to a system easily. The user can just plug in the device and install its new device driver. The operating system “talks” to this new device through its device driver, which has the same public member functions as all other device drivers—those defined in the device driver abstract base class.

12.6. Case Study: Payroll System Using Polymorphism

This section reexamines the CommissionEmployee–BasePlusCommissionEmployee hierarchy that we explored throughout Section 11.3. In this example, we use an abstract class and polymorphism to perform payroll calculations based on the type of employee. We create an enhanced employee hierarchy to solve the following problem:

A company pays its employees weekly. The employees are of three types: Salaried employees are paid a fixed weekly salary regardless of the number of hours worked, commission employees are paid a percentage of their sales and base-salary-plus-commission employees receive a base salary plus a percentage of their sales. For the current pay period, the company has decided to reward base-salary-plus-commission employees by adding 10 percent to their base salaries. The company wants to implement a C++ program that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The classes that derive directly from Employee are SalariedEmployee and CommissionEmployee. Class BasePlusCommissionEmployee—derived from CommissionEmployee—represents the last employee type. The UML class diagram in Fig. 12.7 shows the inheritance hierarchy for our polymorphic employee payroll application. The abstract class name Employee is italicized, as per the convention of the UML.

[image: Image]

Fig. 12.7. Employee hierarchy UML class diagram.

Abstract base class Employee declares the “interface” to the hierarchy—that is, the set of member functions that a program can invoke on all Employee objects. Each employee, regardless of the way his or her earnings are calculated, has a first name, a last name and a social security number, so private data members firstName, lastName and socialSecurityNumber appear in abstract base class Employee.

[image: Image] Software Engineering Observation 12.11

A derived class can inherit interface and/or implementation from a base class. Hierarchies designed for implementation inheritance tend to have their functionality high in the hierarchy—each new derived class inherits one or more member functions that were defined in a base class, and the derived class uses the base-class definitions. Hierarchies designed for interface inheritance tend to have their functionality lower in the hierarchy—a base class specifies one or more functions that should be defined for each class in the hierarchy (i.e., they have the same prototype), but the individual derived classes provide their own implementations of the function(s).

The following sections implement the Employee class hierarchy. The first five each implement one of the abstract or concrete classes. The last section implements a test program that builds objects of all these classes and processes the objects polymorphically.

12.6.1. Creating Abstract Base Class Employee

Class Employee (Figs. 12.9–12.10, discussed in further detail shortly) provides functions earnings and print, in addition to various get and set functions that manipulate Employee’s data members. An earnings function certainly applies generally to all employees, but each earnings calculation depends on the employee’s class. So we declare earnings as pure virtual in base class Employee because a default implementation does not make sense for that function—there is not enough information to determine what amount earnings should return. Each derived class overrides earnings with an appropriate implementation. To calculate an employee’s earnings, the program assigns the address of an employee’s object to a base class Employee pointer, then invokes the earnings function on that object. We maintain a vector of Employee pointers, each of which points to an Employee object. Of course, there cannot be Employee objects, because Employee is an abstract class—because of inheritance, however, all objects of all concrete derived classes of Employee may nevertheless be thought of as Employee objects. The program iterates through the vector and calls function earnings for each Employee object. C++ processes these function calls polymorphically. Including earnings as a pure virtual function in Employee forces every direct derived class of Employee that wishes to be a concrete class to override earnings.

Function print in class Employee displays the first name, last name and social security number of the employee. As we’ll see, each derived class of Employee overrides function print to output the employee’s type (e.g., "salaried employee:") followed by the rest of the employee’s information. Function print in the derived classes could also call earnings, even though earnings is a pure-virtual function in base class Employee.

The diagram in Fig. 12.8 shows each of the four classes in the hierarchy down the left side and functions earnings and print across the top. For each class, the diagram shows the desired results of each function. Italic text represents where the values from a particular object are used in the earnings and print functions. Class Employee specifies “= 0” for function earnings to indicate that this is a pure virtual function and hence has no implementation. Each derived class overrides this function to provide an appropriate implementation. We do not list base class Employee’s get and set functions because they’re not overridden in any of the derived classes—each of these functions is inherited and used “as is” by each of the derived classes.

[image: Image]

Fig. 12.8. Polymorphic interface for the Employee hierarchy classes.

Employee Class Header

Let’s consider class Employee’s header (Fig. 12.9). The public member functions include a constructor that takes the first name, last name and social security number as arguments (lines 11–12); a virtual destructor (line 13); set functions that set the first name, last name and social security number (lines 15, 18 and 21, respectively); get functions that return the first name, last name and social security number (lines 16, 19 and 22, respectively); pure virtual function earnings (line 25) and virtual function print (line 26).

Click here to view code image

 1 // Fig. 12.9: Employee.h
 2 // Employee abstract base class.
 3 #ifndef EMPLOYEE_H
 4 #define EMPLOYEE_H
 5
 6 #include <string> // C++ standard string class
 7
 8 class Employee
 9 {
10 public:
11 Employee(const std::string &, const std::string &,
12 const std::string &);
13 virtual ~Employee() { } // virtual destructor
14
15 void setFirstName(const std::string &); // set first name
16 std::string getFirstName() const; // return first name
17
18 void setLastName(const std::string &); // set last name
19 std::string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const std::string &); // set SSN
22 std::string getSocialSecurityNumber() const; // return SSN
23
24 // pure virtual function makes Employee an abstract base class
25 virtual double earnings() const = 0; // pure virtual
26 virtual void print() const; // virtual
27 private:
28 std::string firstName;
29 std::string lastName;
30 std::string socialSecurityNumber;
31 }; // end class Employee
32
33 #endif // EMPLOYEE_H

Fig. 12.9. Employee abstract base class.

Recall that we declared earnings as a pure virtual function because first we must know the specific Employee type to determine the appropriate earnings calculations. Declaring this function as pure virtual indicates that each concrete derived class must provide an earnings implementation and that a program can use base-class Employee pointers to invoke function earnings polymorphically for any type of Employee.

Employee Class Member-Function Definitions

Figure 12.10 contains the member-function definitions for class Employee. No implementation is provided for virtual function earnings. The Employee constructor (lines 9–14) does not validate the social security number. Normally, such validation should be provided.

Click here to view code image

 1 // Fig. 12.10: Employee.cpp
 2 // Abstract-base-class Employee member-function definitions.
 3 // Note: No definitions are given for pure virtual functions.
 4 #include <iostream>
 5 #include "Employee.h" // Employee class definition
 6 using namespace std;
 7
 8 // constructor
 9 Employee::Employee(const string &first, const string &last,
10 const string &ssn)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)
12 {
13 // empty body
14 } // end Employee constructor
15
16 // set first name
17 void Employee::setFirstName(const string &first)
18 {
19 firstName = first;
20 } // end function setFirstName
21
22 // return first name
23 string Employee::getFirstName() const
24 {
25 return firstName;
26 } // end function getFirstName
27
28 // set last name
29 void Employee::setLastName(const string &last)
30 {
31 lastName = last;
32 } // end function setLastName
33
34 // return last name
35 string Employee::getLastName() const
36 {
37 return lastName;
38 } // end function getLastName
39
40 // set social security number
41 void Employee::setSocialSecurityNumber(const string &ssn)
42 {
43 socialSecurityNumber = ssn; // should validate
44 } // end function setSocialSecurityNumber
45
46 // return social security number
47 string Employee::getSocialSecurityNumber() const
48 {
49 return socialSecurityNumber;
50 } // end function getSocialSecurityNumber
51
52 // print Employee's information (virtual, but not pure virtual)
53 void Employee::print() const
54 {
55 cout << getFirstName() << ' ' << getLastName()
56 << "\nsocial security number: " << getSocialSecurityNumber();
57 } // end function print

Fig. 12.10. Employee class implementation file.

The virtual function print (lines 53–57) provides an implementation that will be overridden in each of the derived classes. Each of these functions will, however, use the abstract class’s version of print to print information common to all classes in the Employee hierarchy.

12.6.2. Creating Concrete Derived Class SalariedEmployee

Class SalariedEmployee (Figs. 12.11–12.12) derives from class Employee (line 9 of Fig. 12.11). The public member functions include a constructor that takes a first name, a last name, a social security number and a weekly salary as arguments (lines 12–13); a virtual destructor (line 14); a set function to assign a new nonnegative value to data member weeklySalary (line 16); a get function to return weeklySalary’s value (line 17); a virtual function earnings that calculates a SalariedEmployee’s earnings (line 20) and a virtual function print (line 21) that outputs the employee’s type, namely, "salaried employee: " followed by employee-specific information produced by base class Employee’s print function and SalariedEmployee’s getWeeklySalary function.

Click here to view code image

 1 // Fig. 12.11: SalariedEmployee.h
 2 // SalariedEmployee class derived from Employee.
 3 #ifndef SALARIED_H
 4 #define SALARIED_H
 5
 6 #include <string> // C++ standard string class
 7 #include "Employee.h" // Employee class definition
 8
 9 class SalariedEmployee : public Employee
10 {
11 public:
12 SalariedEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0);
14 virtual ~SalariedEmployee() { } // virtual destructor
15
16 void setWeeklySalary(double); // set weekly salary
17 double getWeeklySalary() const; // return weekly salary
18
19 // keyword virtual signals intent to override
20 virtual double earnings() const override; // calculate earnings
21 virtual void print() const override; // print object
22 private:
23 double weeklySalary; // salary per week
24 }; // end class SalariedEmployee
25
26 #endif // SALARIED_H

Fig. 12.11. SalariedEmployee class header.

Click here to view code image

 1 // Fig. 12.12: SalariedEmployee.cpp
 2 // SalariedEmployee class member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "SalariedEmployee.h" // SalariedEmployee class definition
 6 using namespace std;
 7
 8 // constructor
 9 SalariedEmployee::SalariedEmployee(const string &first,
10 const string &last, const string &ssn, double salary)
11 : Employee(first, last, ssn)
12 {
13 setWeeklySalary(salary);
14 } // end SalariedEmployee constructor
15
16 // set salary
17 void SalariedEmployee::setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 weeklySalary = salary;
21 else
22 throw invalid_argument("Weekly salary must be >= 0.0");
23 } // end function setWeeklySalary
24
25 // return salary
26 double SalariedEmployee::getWeeklySalary() const
27 {
28 return weeklySalary;
29 } // end function getWeeklySalary
30
31 // calculate earnings;
32 // override pure virtual function earnings in Employee
33 double SalariedEmployee::earnings() const
34 {
35 return getWeeklySalary();
36 } // end function earnings
37
38 // print SalariedEmployee's information
39 void SalariedEmployee::print() const
40 {
41 cout << "salaried employee: ";
42 Employee::print(); // reuse abstract base-class print function
43 cout << "\nweekly salary: " << getWeeklySalary();
44 } // end function print

Fig. 12.12. SalariedEmployee class implementation file.

SalariedEmployee Class Member-Function Definitions

Figure 12.12 contains the member-function definitions for SalariedEmployee. The class’s constructor passes the first name, last name and social security number to the Employee constructor (line 11) to initialize the private data members that are inherited from the base class, but not directly accessible in the derived class. Function earnings (lines 33–36) overrides pure virtual function earnings in Employee to provide a concrete implementation that returns the SalariedEmployee’s weekly salary. If we did not define earnings, class SalariedEmployee would be an abstract class, and any attempt to instantiate a SalariedEmployee object would cause a compilation error. In class SalariedEmployee’s header, we declared member functions earnings and print as virtual (lines 20–21 of Fig. 12.11)—actually, placing the virtual keyword before these member functions is redundant. We defined them as virtual in base class Employee, so they remain virtual functions throughout the class hierarchy. Explicitly declaring such functions virtual at every level of the hierarchy promotes program clarity. Not declaring earnings as pure virtual signals our intent to provide an implementation in this concrete class.

Function print of class SalariedEmployee (lines 39–44 of Fig. 12.12) overrides Employee function print. If class SalariedEmployee did not override print, SalariedEmployee would inherit the Employee version of print. In that case, SalariedEmployee’s print function would simply return the employee’s full name and social security number, which does not adequately represent a SalariedEmployee. To print a SalariedEmployee’s complete information, the derived class’s print function outputs "salaried employee: " followed by the base-class Employee-specific information (i.e., first name, last name and social security number) printed by invoking the base class’s print function using the scope resolution operator (line 42)—this is a nice example of code reuse. Without the scope resolution operator, the print call would cause infinite recursion. The output produced by SalariedEmployee’s print function also contains the employee’s weekly salary obtained by invoking the class’s getWeeklySalary function.

12.6.3. Creating Concrete Derived Class CommissionEmployee

Class CommissionEmployee (Figs. 12.13–12.14) derives from Employee (Fig. 12.13, line 9). The member-function implementations (Fig. 12.14) include a constructor (lines 9–15) that takes a first name, last name, social security number, sales amount and commission rate; set functions (lines 18–24 and 33–39) to assign new values to data members commissionRate and grossSales, respectively; get functions (lines 27–30 and 42–45) that retrieve their values; function earnings (lines 48–51) to calculate a CommissionEmployee’s earnings; and function print (lines 54–60) to output the employee’s type, namely, "commission employee: " and employee-specific information. The constructor passes the first name, last name and social security number to the Employee constructor (line 11) to initialize Employee’s private data members. Function print calls base-class function print (line 57) to display the Employee-specific information.

Click here to view code image

 1 // Fig. 12.13: CommissionEmployee.h
 2 // CommissionEmployee class derived from Employee.
 3 #ifndef COMMISSION_H
 4 #define COMMISSION_H
 5
 6 #include <string> // C++ standard string class
 7 #include "Employee.h" // Employee class definition
 8
 9 class CommissionEmployee : public Employee
10 {
11 public:
12 CommissionEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0, double = 0.0);
14 virtual ~CommissionEmployee() { } // virtual destructor
15
16 void setCommissionRate(double); // set commission rate
17 double getCommissionRate() const; // return commission rate
18
19 void setGrossSales(double); // set gross sales amount
20 double getGrossSales() const; // return gross sales amount
21
22 // keyword virtual signals intent to override
23 virtual double earnings() const override; // calculate earnings
24 virtual void print() const override; // print object
25 private:
26 double grossSales; // gross weekly sales
27 double commissionRate; // commission percentage
28 }; // end class CommissionEmployee
29
30 #endif // COMMISSION_H

Fig. 12.13. CommissionEmployee class header.

Click here to view code image

 1 // Fig. 12.14: CommissionEmployee.cpp
 2 // CommissionEmployee class member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "CommissionEmployee.h" // CommissionEmployee class definition
 6 using namespace std;
 7
 8 // constructor
 9 CommissionEmployee::CommissionEmployee(const string &first,
10 const string &last, const string &ssn, double sales, double rate)
11 : Employee(first, last, ssn)
12 {
13 setGrossSales(sales);
14 setCommissionRate(rate);
15 } // end CommissionEmployee constructor
16
17 // set gross sales amount
18 void CommissionEmployee::setGrossSales(double sales)
19 {
20 if (sales >= 0.0)
21 grossSales = sales;
22 else
23 throw invalid_argument("Gross sales must be >= 0.0");
24 } // end function setGrossSales
25
26 // return gross sales amount
27 double CommissionEmployee::getGrossSales() const
28 {
29 return grossSales;
30 } // end function getGrossSales
31
32 // set commission rate
33 void CommissionEmployee::setCommissionRate(double rate)
34 {
35 if (rate > 0.0 && rate < 1.0)
36 commissionRate = rate;
37 else
38 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
39 } // end function setCommissionRate
40
41 // return commission rate
42 double CommissionEmployee::getCommissionRate() const
43 {
44 return commissionRate;
45 } // end function getCommissionRate
46
47 // calculate earnings; override pure virtual function earnings in Employee
48 double CommissionEmployee::earnings() const
49 {
50 return getCommissionRate() * getGrossSales();
51 } // end function earnings
52
53 // print CommissionEmployee's information
54 void CommissionEmployee::print() const
55 {
56 cout << "commission employee: ";
57 Employee::print(); // code reuse
58 cout << "\ngross sales: " << getGrossSales()
59 << "; commission rate: " << getCommissionRate();
60 } // end function print

Fig. 12.14. CommissionEmployee class implementation file.

12.6.4. Creating Indirect Concrete Derived Class BasePlusCommissionEmployee

Class BasePlusCommissionEmployee (Figs. 12.15–12.16) directly inherits from class CommissionEmployee (line 9 of Fig. 12.15) and therefore is an indirect derived class of class Employee. Class BasePlusCommissionEmployee’s member-function implementations include a constructor (lines 9–15 of Fig. 12.16) that takes as arguments a first name, a last name, a social security number, a sales amount, a commission rate and a base salary. It then passes the first name, last name, social security number, sales amount and commission rate to the CommissionEmployee constructor (line 12) to initialize the inherited members. BasePlusCommissionEmployee also contains a set function (lines 18–24) to assign a new value to data member baseSalary and a get function (lines 27–30) to return baseSalary’s value. Function earnings (lines 34–37) calculates a BasePlusCommissionEmployee’s earnings. Line 36 in function earnings calls base-class CommissionEmployee’s earnings function to calculate the commission-based portion of the employee’s earnings. This is another nice example of code reuse. BasePlusCommissionEmployee’s print function (lines 40–45) outputs "base-salaried", followed by the output of base-class CommissionEmployee’s print function (another example of code reuse), then the base salary. The resulting output begins with "base-salaried commission employee: " followed by the rest of the BasePlusCommissionEmployee’s information. Recall that CommissionEmployee’s print displays the employee’s first name, last name and social security number by invoking the print function of its base class (i.e., Employee)—yet another example of code reuse. BasePlusCommissionEmployee’s print initiates a chain of functions calls that spans all three levels of the Employee hierarchy.

Click here to view code image

 1 // Fig. 12.15: BasePlusCommissionEmployee.h
 2 // BasePlusCommissionEmployee class derived from CommissionEmployee.
 3 #ifndef BASEPLUS_H
 4 #define BASEPLUS_H
 5
 6 #include <string> // C++ standard string class
 7 #include "CommissionEmployee.h" // CommissionEmployee class definition
 8
 9 class BasePlusCommissionEmployee : public CommissionEmployee
10 {
11 public:
12 BasePlusCommissionEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0, double = 0.0, double = 0.0);
14 virtual ~CommissionEmployee() { } // virtual destructor
15
16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
18
19 // keyword virtual signals intent to override
20 virtual double earnings() const override; // calculate earnings
21 virtual void print() const override; // print object
22 private:
23 double baseSalary; // base salary per week
24 }; // end class BasePlusCommissionEmployee
25
26 #endif // BASEPLUS_H

Fig. 12.15. BasePlusCommissionEmployee class header.

Click here to view code image

 1 // Fig. 12.16: BasePlusCommissionEmployee.cpp
 2 // BasePlusCommissionEmployee member-function definitions.
 3 #include <iostream>
 4 #include <stdexcept>
 5 #include "BasePlusCommissionEmployee.h"
 6 using namespace std;
 7
 8 // constructor
 9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12 : CommissionEmployee(first, last, ssn, sales, rate)
13 {
14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 if (salary >= 0.0)
21 baseSalary = salary;
22 else
23 throw invalid_argument("Salary must be >= 0.0");
24 } // end function setBaseSalary
25
26 // return base salary
27 double BasePlusCommissionEmployee::getBaseSalary() const
28 {
29 return baseSalary;
30 } // end function getBaseSalary
31
32 // calculate earnings;
33 // override virtual function earnings in CommissionEmployee
34 double BasePlusCommissionEmployee::earnings() const
35 {
36 return getBaseSalary() + CommissionEmployee::earnings();
37 } // end function earnings
38
39 // print BasePlusCommissionEmployee's information
40 void BasePlusCommissionEmployee::print() const
41 {
42 cout << "base-salaried ";
43 CommissionEmployee::print(); // code reuse
44 cout << "; base salary: " << getBaseSalary();
45 } // end function print

Fig. 12.16. BasePlusCommissionEmployee class implementation file.

12.6.5. Demonstrating Polymorphic Processing

To test our Employee hierarchy, the program in Fig. 12.17 creates an object of each of the three concrete classes SalariedEmployee, CommissionEmployee and BasePlusCommissionEmployee. The program manipulates these objects, first with static binding, then polymorphically, using a vector of Employee pointers. Lines 22–27 create objects of each of the three concrete Employee derived classes. Lines 32–38 output each Employee’s information and earnings. Each member-function invocation in lines 32–37 is an example of static binding—at compile time, because we are using name handles (not pointers or references that could be set at execution time), the compiler can identify each object’s type to determine which print and earnings functions are called.

Click here to view code image

 1 // Fig. 12.17: fig12_17.cpp
 2 // Processing Employee derived-class objects individually
 3 // and polymorphically using dynamic binding.
 4 #include <iostream>
 5 #include <iomanip>
 6 #include <vector>
 7 #include "Employee.h"
 8 #include "SalariedEmployee.h"
 9 #include "CommissionEmployee.h"
10 #include "BasePlusCommissionEmployee.h"
11 using namespace std;
12
13 void virtualViaPointer(const Employee * const); // prototype
14 void virtualViaReference(const Employee &); // prototype
15
16 int main()
17 {
18 // set floating-point output formatting
19 cout << fixed << setprecision(2);
20
21 // create derived-class objects
22 SalariedEmployee salariedEmployee(
23 "John", "Smith", "111-11-1111", 800);
24 CommissionEmployee commissionEmployee(
25 "Sue", "Jones", "333-33-3333", 10000, .06);
26 BasePlusCommissionEmployee basePlusCommissionEmployee(
27 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
28
29 cout << "Employees processed individually using static binding:\n\n";
30
31 // output each Employee's information and earnings using static binding
32 salariedEmployee.print();
33 cout << "\nearned $" << salariedEmployee.earnings() << "\n\n";
34 commissionEmployee.print();
35 cout << "\nearned $" << commissionEmployee.earnings() << "\n\n";
36 basePlusCommissionEmployee.print();
37 cout << "\nearned $" << basePlusCommissionEmployee.earnings()
38 << "\n\n";
39
40 // create vector of three base-class pointers
41 vector< Employee * > employees(3);
42
43 // initialize vector with pointers to Employees
44 employees[0] = &salariedEmployee;
45 employees[1] = &commissionEmployee;
46 employees[2] = &basePlusCommissionEmployee;
47
48 cout << "Employees processed polymorphically via dynamic binding:\n\n";
49
50 // call virtualViaPointer to print each Employee's information
51 // and earnings using dynamic binding
52 cout << "Virtual function calls made off base-class pointers:\n\n";
53
54 for (const Employee *employeePtr : employees)
55 virtualViaPointer(employeePtr);
56
57 // call virtualViaReference to print each Employee's information
58 // and earnings using dynamic binding
59 cout << "Virtual function calls made off base-class references:\n\n";
60
61 for (const Employee *employeePtr : employees)
62 virtualViaReference(*employeePtr); // note dereferencing
63 } // end main
64
65 // call Employee virtual functions print and earnings off a
66 // base-class pointer using dynamic binding
67 void virtualViaPointer(const Employee * const baseClassPtr)
68 {
69 baseClassPtr->print();
70 cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";
71 } // end function virtualViaPointer
72
73 // call Employee virtual functions print and earnings off a
74 // base-class reference using dynamic binding
75 void virtualViaReference(const Employee &baseClassRef)
76 {
77 baseClassRef.print(); '
78 cout << "\nearned $" << baseClassRef.earnings() << "\n\n";
79 } // end function virtualViaReference

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 12.17. Employee class hierarchy driver program.

Line 41 creates the vector employees, which contains three Employee pointers. Line 44 aims employees[0] at object salariedEmployee. Line 45 aims employees[1] at object commissionEmployee. Line 46 aims employee[2] at object basePlusCommissionEmployee. The compiler allows these assignments, because a SalariedEmployee is an Employee, a CommissionEmployee is an Employee and a BasePlusCommissionEmployee is an Employee. Therefore, we can assign the addresses of SalariedEmployee, CommissionEmployee and BasePlusCommissionEmployee objects to base-class Employee pointers, even though Employee is an abstract class.

Lines 54–55 traverse vector employees and invoke function virtualViaPointer (lines 67–71) for each element in employees. Function virtualViaPointer receives in parameter baseClassPtr the address stored in an employees element. Each call to virtualViaPointer uses baseClassPtr to invoke virtual functions print (line 69) and earnings (line 70). Function virtualViaPointer does not contain any SalariedEmployee, CommissionEmployee or BasePlusCommissionEmployee type information. The function knows only about base-class type Employee. Therefore, the compiler cannot know which concrete class’s functions to call through baseClassPtr. Yet at execution time, each virtual-function invocation correctly calls the function on the object to which baseClassPtr currently points. The output illustrates that the appropriate functions for each class are indeed invoked and that each object’s proper information is displayed. For instance, the weekly salary is displayed for the SalariedEmployee, and the gross sales are displayed for the CommissionEmployee and BasePlusCommissionEmployee. Also, obtaining the earnings of each Employee polymorphically in line 70 produces the same results as obtaining these employees’ earnings via static binding in lines 33, 35 and 37. All virtual function calls to print and earnings are resolved at runtime with dynamic binding.

Finally, lines 61–62 traverse employees and invoke function virtualViaReference (lines 75–79) for each vector element. Function virtualViaReference receives in its parameter baseClassRef (of type const Employee &) a reference to the object obtained by dereferencing the pointer stored in each employees element (line 62). Each call to virtualViaReference invokes virtual functions print (line 77) and earnings (line 78) via baseClassRef to demonstrate that polymorphic processing occurs with base-class references as well. Each virtual-function invocation calls the function on the object to which baseClassRef refers at runtime. This is another example of dynamic binding. The output produced using base-class references is identical to the output produced using base-class pointers.

12.7. (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”

C++ makes polymorphism easy to program. It’s certainly possible to program for polymorphism in non-object-oriented languages such as C, but doing so requires complex and potentially dangerous pointer manipulations. This section discusses how C++ can implement polymorphism, virtual functions and dynamic binding internally. This will give you a solid understanding of how these capabilities really work. More importantly, it will help you appreciate the overhead of polymorphism—in terms of additional memory consumption and processor time. This can help you determine when to use polymorphism and when to avoid it. C++ Standard Library classes like array and vector are implemented without polymorphism and virtual functions to avoid the associated execution-time overhead and achieve optimal performance.

First, we’ll explain the data structures that the compiler builds at compile time to support polymorphism at execution time. You’ll see that polymorphism is accomplished through three levels of pointers, i.e., triple indirection. Then we’ll show how an executing program uses these data structures to execute virtual functions and achieve the dynamic binding associated with polymorphism. Our discussion explains one possible implementation; this is not a language requirement.

When C++ compiles a class that has one or more virtual functions, it builds a virtual function table (vtable) for that class. The vtable contains pointers to the class’s virtual functions. Just as the name of a built-in array contains the address in memory of the array’s first element, a pointer to a function contains the starting address in memory of the code that performs the function’s task. An executing program uses the vtable to select the proper function implementation each time a virtual function of that class is called. The leftmost column of Fig. 12.18 illustrates the vtables for the classes Employee, SalariedEmployee, CommissionEmployee and BasePlusCommissionEmployee.

[image: Image]

Fig. 12.18. How virtual function calls work.

Employee Class vtable

In the Employee class vtable, the first function pointer is set to 0 (i.e., nullptr), because function earnings is a pure virtual function and therefore lacks an implementation. The second function pointer points to function print, which displays the employee’s full name and social security number. [Note: We’ve abbreviated the output of each print function in this figure to conserve space.] Any class that has one or more null pointers in its vtable is an abstract class. Classes without any null vtable pointers (such as SalariedEmployee, CommissionEmployee and BasePlusCommissionEmployee) are concrete classes.

SalariedEmployee Class vtable

Class SalariedEmployee overrides function earnings to return the employee’s weekly salary, so the function pointer points to the earnings function of class SalariedEmployee. SalariedEmployee also overrides print, so the corresponding function pointer points to the SalariedEmployee member function that prints "salaried employee: " followed by the employee’s name, social security number and weekly salary.

CommissionEmployee Class vtable

The earnings function pointer in the vtable for class CommissionEmployee points to CommissionEmployee’s earnings function that returns the employee’s gross sales multiplied by the commission rate. The print function pointer points to the CommissionEmployee version of the function, which prints the employee’s type, name, social security number, commission rate and gross sales. As in class HourlyEmployee, both functions override the functions in class Employee.

BasePlusCommissionEmployee Class vtable

The earnings function pointer in the vtable for class BasePlusCommissionEmployee points to the BasePlusCommissionEmployee’s earnings function, which returns the employee’s base salary plus gross sales multiplied by commission rate. The print function pointer points to the BasePlusCommissionEmployee version of the function, which prints the employee’s base salary plus the type, name, social security number, commission rate and gross sales. Both functions override the functions in class CommissionEmployee.

Inheriting Concrete virtual Functions

In our Employee case study, each concrete class provides its own implementation for virtual functions earnings and print. You’ve learned that each class which inherits directly from abstract base class Employee must implement earnings in order to be a concrete class, because earnings is a pure virtual function. These classes do not need to implement function print, however, to be considered concrete—print is not a pure virtual function and derived classes can inherit class Employee’s implementation of print. Furthermore, class BasePlusCommissionEmployee does not have to implement either function print or earnings—both function implementations can be inherited from concrete class CommissionEmployee. If a class in our hierarchy were to inherit function implementations in this manner, the vtable pointers for these functions would simply point to the function implementation that was being inherited. For example, if BasePlusCommissionEmployee did not override earnings, the earnings function pointer in the vtable for class BasePlusCommissionEmployee would point to the same earnings function as the vtable for class CommissionEmployee points to.

Three Levels of Pointers to Implement Polymorphism

Polymorphism is accomplished through an elegant data structure involving three levels of pointers. We’ve discussed one level—the function pointers in the vtable. These point to the actual functions that execute when a virtual function is invoked.

Now we consider the second level of pointers. Whenever an object of a class with one or more virtual functions is instantiated, the compiler attaches to the object a pointer to the vtable for that class. This pointer is normally at the front of the object, but it isn’t required to be implemented that way. In Fig. 12.18, these pointers are associated with the objects created in Fig. 12.17 (one object for each of the types SalariedEmployee, CommissionEmployee and BasePlusCommissionEmployee). The diagram displays each of the object’s data member values. For example, the salariedEmployee object contains a pointer to the SalariedEmployee vtable; the object also contains the values John Smith, 111-11-1111 and $800.00.

The third level of pointers simply contains the handles to the objects that receive the virtual function calls. The handles in this level may also be references. Fig. 12.18 depicts the vector employees that contains Employee pointers.

Now let’s see how a typical virtual function call executes. Consider the call baseClassPtr->print() in function virtualViaPointer (line 69 of Fig. 12.17). Assume that baseClassPtr contains employees[1] (i.e., the address of object commissionEmployee in employees). When the compiler compiles this statement, it determines that the call is indeed being made via a base-class pointer and that print is a virtual function.

The compiler determines that print is the second entry in each of the vtables. To locate this entry, the compiler notes that it will need to skip the first entry. Thus, the compiler compiles an offset or displacement into the table of machine-language object-code pointers to find the code that will execute the virtual function call. The size in bytes of the offset depends on the number of bytes used to represent a function pointer on an individual platform. For example, on a 32-bit platform, a pointer is typically stored in four bytes, whereas on a 64-bit platform, a pointer is typically stored in eight bytes. We assume four bytes for this discussion.

The compiler generates code that performs the following operations [Note: The numbers in the list correspond to the circled numbers in Fig. 12.18]:

1. Select the ith entry of employees (in this case, the address of object commissionEmployee), and pass it as an argument to function virtualViaPointer. This sets parameter baseClassPtr to point to commissionEmployee.

2. Dereference that pointer to get to the commissionEmployee object—which, as you recall, begins with a pointer to the CommissionEmployee vtable.

3. Dereference commissionEmployee’s vtable pointer to get to the CommissionEmployee vtable.

4. Skip the offset of four bytes to select the print function pointer.

5. Dereference the print function pointer to form the “name” of the actual function to execute, and use the function call operator () to execute the appropriate print function, which in this case prints the employee’s type, name, social security number, gross sales and commission rate.

Fig. 12.18’s data structures may appear to be complex, but this complexity is managed by the compiler and hidden from you, making polymorphic programming straightforward. The pointer dereferencing operations and memory accesses that occur on every virtual function call require some additional execution time. The vtables and the vtable pointers added to the objects require some additional memory.

[image: Image] Performance Tip 12.1

Polymorphism, as typically implemented with virtual functions and dynamic binding in C++, is efficient. You can use these capabilities with nominal impact on performance.

[image: Image] Performance Tip 12.2

Virtual functions and dynamic binding enable polymorphic programming as an alternative to switch logic programming. Optimizing compilers normally generate polymorphic code that’s nearly as efficient as hand-coded switch-based logic. Polymorphism’s overhead is acceptable for most applications. In some situations—such as real-time applications with stringent performance requirements—polymorphism’s overhead may be too high.

12.8. Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info

Recall from the problem statement at the beginning of Section 12.6 that, for the current pay period, our fictitious company has decided to reward BasePlusCommissionEmployees by adding 10 percent to their base salaries. When processing Employee objects polymorphically in Section 12.6.5, we did not need to worry about the “specifics.” Now, however, to adjust the base salaries of BasePlusCommissionEmployees, we have to determine the specific type of each Employee object at execution time, then act appropriately. This section demonstrates the powerful capabilities of runtime type information (RTTI) and dynamic casting, which enable a program to determine an object’s type at execution time and act on that object accordingly.1

1. Some compilers require that RTTI be enabled before it can be used in a program. The compilers we used for testing this book’s examples—GNU C++ 4.7, Visual C++ 2012 and Xcode 4.5 LLVM—each enable RTTI by default.

Figure 12.19 uses the Employee hierarchy developed in Section 12.6 and increases by 10 percent the base salary of each BasePlusCommissionEmployee. Line 21 declares three-element vector employees that stores pointers to Employee objects. Lines 24–29 populate the vector with the addresses of dynamically allocated objects of classes SalariedEmployee (Figs. 12.11–12.12), CommissionEmployee (Figs. 12.13–12.14) and BasePlusCommissionEmployee (Figs. 12.15–12.16). Lines 32–52 iterate through the employees vector and display each Employee’s information by invoking member function print (line 34). Recall that because print is declared virtual in base class Employee, the system invokes the appropriate derived-class object’s print function.

Click here to view code image

 1 // Fig. 12.19: fig12_19.cpp
 2 // Demonstrating downcasting and runtime type information.
 3 // NOTE: You may need to enable RTTI on your compiler
 4 // before you can compile this application.
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <vector>
 8 #include <typeinfo>
 9 #include "Employee.h"
10 #include "SalariedEmployee.h"
11 #include "CommissionEmployee.h"
12 #include "BasePlusCommissionEmployee.h"
13 using namespace std;
14
15 int main()
16 {
17 // set floating-point output formatting
18 cout << fixed << setprecision(2);
19
20 // create vector of three base-class pointers
21 vector < Employee * > employees(3);
22
23 // initialize vector with various kinds of Employees
24 employees[0] = new SalariedEmployee(
25 "John", "Smith", "111-11-1111", 800);
26 employees[1] = new CommissionEmployee(
27 "Sue", "Jones", "333-33-3333", 10000, .06);
28 employees[2] = new BasePlusCommissionEmployee(
29 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
30
31 // polymorphically process each element in vector employees
32 for (Employee *employeePtr : employees)
33 {
34 employeePtr->print(); // output employee information
35 cout << endl;
36
37 // attempt to downcast pointer
38 BasePlusCommissionEmployee *derivedPtr =
39 dynamic_cast < BasePlusCommissionEmployee * >(employeePtr);
40
41 // determine whether element points to a BasePlusCommissionEmployee
42 if (derivedPtr != nullptr) // true for "is a" relationship
43 {
44 double oldBaseSalary = derivedPtr->getBaseSalary();
45 cout << "old base salary: $" << oldBaseSalary << endl;
46 derivedPtr->setBaseSalary(1.10 * oldBaseSalary);
47 cout << "new base salary with 10% increase is: $"
48 << derivedPtr->getBaseSalary() << endl;
49 } // end if
50
51 cout << "earned $" << employeePtr->earnings() << "\n\n";
52 } // end for
53
54 // release objects pointed to by vector's elements
55 for (const Employee *employeePtr : employees)
56 {
57 // output class name
58 cout << "deleting object of "
59 << typeid(*employeePtr).name() << endl;
60
61 delete employeePtr;
62 } // end for
63 } // end main

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

deleting object of class SalariedEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

Fig. 12.19. Demonstrating downcasting and runtime type information.

Determining an Object’s Type with dynamic_cast

In this example, as we encounter a BasePlusCommissionEmployee object, we wish to increase its base salary by 10 percent. Since we process the Employees polymorphically, we cannot (with the techniques you’ve learned so far) be certain as to which type of Employee is being manipulated at any given time. This creates a problem, because BasePlusCommissionEmployee employees must be identified when we encounter them so they can receive the 10 percent salary increase. To accomplish this, we use operator dynamic_cast (line 39) to determine whether the current Employee’s type is BasePlusCommissionEmployee. This is the downcast operation we referred to in Section 12.3.3. Lines 38–39 dynamically downcast employeePtr from type Employee * to type BasePlusCommissionEmployee *. If employeePtr points to an object that is a BasePlusCommissionEmployee object, then that object’s address is assigned to derived-class pointer derivedPtr; otherwise, nullptr is assigned to derivedPtr. Note that dynamic_cast rather than static_cast is required here to perform type checking on the underlying object—a static_cast would simply cast the Employee * to a BasePlusCommissionEmployee * regardless of the underlying object’s type. With a static_cast, the program would attempt to increase every Employee’s base salary, resulting in undefined behavior for each object that is not a BasePlusCommissionEmployee.

If the value returned by the dynamic_cast operator in lines 38–39 is not nullptr, the object is the correct type, and the if statement (lines 42–49) performs the special processing required for the BasePlusCommissionEmployee object. Lines 44, 46 and 48 invoke BasePlusCommissionEmployee functions getBaseSalary and setBaseSalary to retrieve and update the employee’s salary.

Calculating the Current Employee’s Earnings

Line 51 invokes member function earnings on the object to which employeePtr points. Recall that earnings is declared virtual in the base class, so the program invokes the derived-class object’s earnings function—another example of dynamic binding.

Displaying an Employee’s Type

Lines 55–62 display each employee’s object type and uses the delete operator to deallocate the dynamic memory to which each vector element points. Operator typeid (line 59) returns a reference to an object of class type_info that contains the information about the type of its operand, including the name of that type. When invoked, type_info member function name (line 59) returns a pointer-based string containing the typeid argument’s type name (e.g., "class BasePlusCommissionEmployee"). To use typeid, the program must include header <typeinfo> (line 8).

[image: Image] Portability Tip 12.1

The string returned by type_info member function name may vary by compiler.

Compilation Errors That We Avoided By Using dynamic_cast

We avoid several compilation errors in this example by downcasting an Employee pointer to a BasePlusCommissionEmployee pointer (lines 38–39). If we remove the dynamic_cast from line 39 and attempt to assign the current Employee pointer directly to BasePlusCommissionEmployee pointer derivedPtr, we’ll receive a compilation error. C++ does not allow a program to assign a base-class pointer to a derived-class pointer because the is-a relationship does not apply—a CommissionEmployee is not a BasePlusCommissionEmployee. The is-a relationship applies only between the derived class and its base classes, not vice versa.

Similarly, if lines 44, 46 and 48 used the current base-class pointer from employees, rather than derived-class pointer derivedPtr, to invoke derived-class-only functions getBaseSalary and setBaseSalary, we would receive a compilation error at each of these lines. As you learned in Section 12.3.3, attempting to invoke derived-class-only functions through a base-class pointer is not allowed. Although lines 44, 46 and 48 execute only if commissionPtr is not nullptr (i.e., if the cast can be performed), we cannot attempt to invoke derived-class BasePlusCommissionEmployee functions getBaseSalary and setBaseSalary on the base-class Employee pointer. Recall that, using a base class Employee pointer, we can invoke only functions found in base class Employee—earnings, print and Employee’s get and set functions.

12.9. Wrap-Up

In this chapter we discussed polymorphism, which enables us to “program in the general” rather than “program in the specific,” and we showed how this makes programs more extensible. We began with an example of how polymorphism would allow a screen manager to display several “space” objects. We then demonstrated how base-class and derived-class pointers can be aimed at base-class and derived-class objects. We said that aiming base-class pointers at base-class objects is natural, as is aiming derived-class pointers at derived-class objects. Aiming base-class pointers at derived-class objects is also natural because a derived-class object is an object of its base class. You learned why aiming derived-class pointers at base-class objects is dangerous and why the compiler disallows such assignments. We introduced virtual functions, which enable the proper functions to be called when objects at various levels of an inheritance hierarchy are referenced (at execution time) via base-class pointers or references. This is known as dynamic binding or late binding. We discussed virtual destructors, and how they ensure that all appropriate destructors in an inheritance hierarchy run on a derived-class object when that object is deleted via a base-class pointer or reference. We then discussed pure virtual functions and abstract classes (classes with one or more pure virtual functions). You learned that abstract classes cannot be used to instantiate objects, while concrete classes can. We then demonstrated using abstract classes in an inheritance hierarchy. You learned how polymorphism works “under the hood” with vtables that are created by the compiler. We used runtime type information (RTTI) and dynamic casting to determine the type of an object at execution time and act on that object accordingly. We also used the typeid operator to get a type_info object containing a given object’s type information.

In the next chapter, we discuss many of C++’s I/O capabilities and demonstrate several stream manipulators that perform various formatting tasks.

13. Stream Input/Output: A Deeper Look

Objectives

In this chapter you’ll:

• Use C++ object-oriented stream input/output.

• Format input and output.

• Learn about the stream-I/O class hierarchy.

• Use stream manipulators.

• Control justification and padding.

• Determine the success or failure of input/output operations.

• Learn to tie output streams to input streams.

Outline

13.1 Introduction

13.2 Streams

13.2.1 Classic Streams vs. Standard Streams

13.2.2 iostream Library Headers

13.2.3 Stream Input/Output Classes and Objects

13.3 Stream Output

13.3.1 Output of char * Variables

13.3.2 Character Output Using Member Function put

13.4 Stream Input

13.4.1 get and getline Member Functions

13.4.2 istream Member Functions peek, putback and ignore

13.4.3 Type-Safe I/O

13.5 Unformatted I/O Using read, write and gcount

13.6 Introduction to Stream Manipulators

13.6.1 Integral Stream Base: dec, oct, hex and setbase

13.6.2 Floating-Point Precision (precision, setprecision)

13.6.3 Field Width (width, setw)

13.6.4 User-Defined Output Stream Manipulators

13.7 Stream Format States and Stream Manipulators

13.7.1 Trailing Zeros and Decimal Points (showpoint)

13.7.2 Justification (left, right and internal)

13.7.3 Padding (fill, setfill)

13.7.4 Integral Stream Base (dec, oct, hex, showbase)

13.7.5 Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed)

13.7.6 Uppercase/Lowercase Control (uppercase)

13.7.7 Specifying Boolean Format (boolalpha)

13.7.8 Setting and Resetting the Format State via Member Function flags

13.8 Stream Error States

13.9 Tying an Output Stream to an Input Stream

13.10 Wrap-Up

13.1. Introduction

This chapter discusses a range of capabilities sufficient for performing most common I/O operations and overviews the remaining capabilities. We discussed some of these features earlier in the text; now we provide a more complete treatment. Many of the I/O features that we’ll discuss are object oriented. This style of I/O makes use of other C++ features, such as references, function overloading and operator overloading.

C++ uses type-safe I/O. Each I/O operation is executed in a manner sensitive to the data type. If an I/O function has been defined to handle a particular data type, then that member function is called to handle that data type. If there is no match between the type of the actual data and a function for handling that data type, the compiler generates an error. Thus, improper data cannot “sneak” through the system (as can occur in C, allowing for some subtle and bizarre errors).

Users can specify how to perform I/O for objects of user-defined types by overloading the stream insertion operator (<<) and the stream extraction operator (>>). This extensibility is one of C++’s most valuable features.

[image: Image] Software Engineering Observation 13.1

Use the C++-style I/O exclusively in C++ programs, even though C-style I/O is available to C++ programmers.

[image: Image] Error-Prevention Tip 13.1

C++ I/O is type safe.

[image: Image] Software Engineering Observation 13.2

C++ enables a common treatment of I/O for predefined types and user-defined types. This commonality facilitates software development and reuse.

13.2. Streams

C++ I/O occurs in streams, which are sequences of bytes. In input operations, the bytes flow from a device (e.g., a keyboard, a disk drive, a network connection, etc.) to main memory. In output operations, bytes flow from main memory to a device (e.g., a display screen, a printer, a disk drive, a network connection, etc.).

An application associates meaning with bytes. The bytes could represent characters, raw data, graphics images, digital speech, digital video or any other information an application may require. The system I/O mechanisms should transfer bytes from devices to memory (and vice versa) consistently and reliably. Such transfers often involve some mechanical motion, such as the rotation of a disk or a tape, or the typing of keystrokes at a keyboard. The time these transfers take typically is far greater than the time the processor requires to manipulate data internally. Thus, I/O operations require careful planning and tuning to ensure optimal performance.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-level I/O capabilities (i.e., unformatted I/O) specify that some number of bytes should be transferred device-to-memory or memory-to-device. In such transfers, the individual byte is the item of interest. Such low-level capabilities provide high-speed, high-volume transfers but are not particularly convenient.

Programmers generally prefer a higher-level view of I/O (i.e., formatted I/O), in which bytes are grouped into meaningful units, such as integers, floating-point numbers, characters, strings and user-defined types. These type-oriented capabilities are satisfactory for most I/O other than high-volume file processing.

[image: Image] Performance Tip 13.1

Use unformatted I/O for the best performance in high-volume file processing.

[image: Image] Portability Tip 13.1

Unformatted I/O is not portable across all platforms.

13.2.1. Classic Streams vs. Standard Streams

In the past, the C++ classic stream libraries enabled input and output of chars. Because a char normally occupies one byte, it can represent only a limited set of characters (such as those in the ASCII character set used by most readers of this book, or other popular character sets). However, many languages use alphabets that contain more characters than a single-byte char can represent. The ASCII character set does not provide these characters; the Unicode® character set does. Unicode is an extensive international character set that represents the majority of the world’s “commercially viable” languages, mathematical symbols and much more. For more information on Unicode, visit www.unicode.org.

[image: Image]

C++ includes the standard stream libraries, which enable developers to build systems capable of performing I/O operations with Unicode characters. For this purpose, C++ includes the type wchar_t, which among other uses can store Unicode characters. The C++ standard also redesigned the classic C++ stream classes, which processed only chars, as class templates with specializations for processing characters of types char and wchar_t, respectively. We use the char specializations. The size of type wchar_t is not specified by the standard. C++11’s new char16_t and char32_t types for representing Unicode characters were added to provide character types with explicitly specified sizes.

13.2.2. iostream Library Headers

The C++ iostream library provides hundreds of I/O capabilities. Several headers contain portions of the library interface.

Most C++ programs include the <iostream> header, which declares basic services required for all stream-I/O operations. The <iostream> header defines the cin, cout, cerr and clog objects, which correspond to the standard input stream, the standard output stream, the unbuffered standard error stream and the buffered standard error stream, respectively. (cerr and clog are discussed in Section 13.2.3.) Both unformatted and formatted-I/O services are provided.

The <iomanip> header declares services useful for performing formatted I/O with so-called parameterized stream manipulators, such as setw and setprecision.

The <fstream> header declares services for file processing. We use this header in the file-processing programs of Chapter 14.

13.2.3. Stream Input/Output Classes and Objects

The iostream library provides many templates for handling common I/O operations. For example, class template basic_istream supports stream-input operations, class template basic_ostream supports stream-output operations, and class template basic_iostream supports both stream-input and stream-output operations. Each template has a predefined template specialization that enables char I/O. In addition, the iostream library provides a set of typedefs that provide aliases for these template specializations. The typedef specifier declares synonyms (aliases) for data types. You’ll sometimes use typedef to create shorter or more readable type names. For example, the statement

typedef Card *CardPtr;

defines an additional type name, CardPtr, as a synonym for type Card *. Creating a name using typedef does not create a data type; it creates only a new type name. Section 20.3 discusses typedef in detail. The typedef istream represents a basic_istream<char> that enables char input. Similarly, the typedef ostream represents a basic_ostream<char> that enables char output. Also, the typedef iostream represents a basic_iostream<char> that enables both char input and output. We use these typedefs throughout this chapter.

Stream-I/O Template Hierarchy and Operator Overloading

Templates basic_istream and basic_ostream both derive through single inheritance from base template basic_ios.1 Template basic_iostream derives through multiple inheritance2 from templates basic_istream and basic_ostream. The UML class diagram of Fig. 13.1 summarizes these inheritance relationships.

[image: Image]

Fig. 13.1. Stream-I/O template hierarchy portion.

1. This chapter discusses templates only in the context of the template specializations for char I/O.

2. Multiple inheritance is discussed in Chapter 21, Other Topics.

Operator overloading provides a convenient notation for performing input/output. The left-shift operator (<<) is overloaded to designate stream output and is referred to as the stream insertion operator. The right-shift operator (>>) is overloaded to designate stream input and is referred to as the stream extraction operator. These operators are used with the standard stream objects cin, cout, cerr and clog and, commonly, with stream objects you create in your own code.

Standard Stream Objects cin, cout, cerr and clog

Predefined object cin is an istream instance and is said to be “connected to” (or attached to) the standard input device, which usually is the keyboard. The stream extraction operator (>>) as used in the following statement causes a value for integer variable grade (assuming that grade has been declared as an int variable) to be input from cin to memory:

cin >> grade; // data "flows" in the direction of the arrows

The compiler determines the data type of grade and selects the appropriate overloaded stream extraction operator. Assuming that grade has been declared properly, the stream extraction operator does not require additional type information (as is the case, for example, in C-style I/O). The >> operator is overloaded to input data items of fundamental types, strings and pointer values.

The predefined object cout is an ostream instance and is said to be “connected to” the standard output device, which usually is the display screen. The stream insertion operator (<<), as used in the following statement, causes the value of variable grade to be output from memory to the standard output device:

cout << grade; // data "flows" in the direction of the arrows

The compiler determines the data type of grade (assuming grade has been declared properly) and selects the appropriate stream insertion operator. The << operator is overloaded to output data items of fundamental types, strings and pointer values.

The predefined object cerr is an ostream instance and is said to be “connected to” the standard error device, normally the screen. Outputs to object cerr are unbuffered, implying that each stream insertion to cerr causes its output to appear immediately—this is appropriate for notifying a user promptly about errors.

The predefined object clog is an instance of the ostream class and is said to be “connected to” the standard error device. Outputs to clog are buffered. This means that each insertion to clog could cause its output to be held in a buffer (that is, an area in memory) until the buffer is filled or until the buffer is flushed. Buffering is an I/O performance-enhancement technique discussed in operating-systems courses.

File-Processing Templates

C++ file processing uses class templates basic_ifstream (for file input), basic_ofstream (for file output) and basic_fstream (for file input and output). As with the standard streams, C++ provides typedefs for working with these class templates. For example, the typedef ifstream represents a basic_ifstream<char> that enables char input from a file. Similarly, typedef ofstream represents a basic_ofstream<char> that enables char output to a file. Also, typedef fstream represents a basic_fstream<char> that enables char input from, and output to, a file. Template basic_ifstream inherits from basic_istream, basic_ofstream inherits from basic_ostream and basic_fstream inherits from basic_iostream. The UML class diagram of Fig. 13.2 summarizes the various inheritance relationships of the I/O-related classes. The full stream-I/O class hierarchy provides most of the capabilities that you need. Consult the class-library reference for your C++ system for additional file-processing information.

[image: Image]

Fig. 13.2. Stream-I/O template hierarchy portion showing the main file-processing templates.

13.3. Stream Output

Formatted and unformatted output capabilities are provided by ostream. Capabilities include output of standard data types with the stream insertion operator (<<); output of characters via the put member function; unformatted output via the write member function; output of integers in decimal, octal and hexadecimal formats; output of floating-point values with various precision, with forced decimal points, in scientific notation and in fixed notation; output of data justified in fields of designated widths; output of data in fields padded with specified characters; and output of uppercase letters in scientific notation and hexadecimal notation.

13.3.1. Output of char * Variables

C++ determines data types automatically—an improvement over C, but this feature sometimes “gets in the way.” For example, suppose we want to print the address stored in a char * pointer. The << operator has been overloaded to output a char * as a null-terminated C-style string. To output the address, you can cast the char * to a void * (this can be done to any pointer variable). Figure 13.3 demonstrates printing a char * variable in both string and address formats. The address prints here as a hexadecimal (base-16) number—in general, the way addresses print is implementation dependent. To learn more about hexadecimal numbers, see Appendix D. We say more about controlling the bases of numbers in Section 13.6.1 and Section 13.7.4.

Click here to view code image

 1 // Fig. 13.3: fig13_03.cpp
 2 // Printing the address stored in a char * variable.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const char *const word = "again";
 9
10 // display value of char *, then display value of char *
11 // after a static_cast to void *
12 cout << "Value of word is: " << word << endl
13 << "Value of static_cast< const void * >(word) is: "
14 << static_cast< const void * >(word) << endl;
15 } // end main

Value of word is: again
Value of static_cast< const void * >(word) is: 0135CC70

Fig. 13.3. Printing the address stored in a char * variable.

13.3.2. Character Output Using Member Function put

We can use the put member function to output characters. For example, the statement

cout.put('A');

displays a single character A. Calls to put may be cascaded, as in the statement

cout.put('A').put('\n');

which outputs the letter A followed by a newline character. As with <<, the preceding statement executes in this manner, because the dot operator (.) associates from left to right, and the put member function returns a reference to the ostream object (cout) that received the put call. The put function also may be called with a numeric expression that represents an ASCII value, as in the following statement, which also outputs A:

cout.put(65);

13.4. Stream Input

Now let’s consider stream input. Formatted and unformatted input capabilities are provided by istream. The stream extraction operator (>>) normally skips white-space characters (such as blanks, tabs and newlines) in the input stream; later we’ll see how to change this behavior. After each input, the stream extraction operator returns a reference to the stream object that received the extraction message (e.g., cin in the expression cin >> grade). If that reference is used as a condition (e.g., in a while statement’s loop-continuation condition), the stream’s overloaded void * cast operator function is implicitly invoked to convert the reference into a non-null pointer value or the null pointer based on the success or failure, respectively, of the last input operation. A non-null pointer converts to the bool value true to indicate success and the null pointer converts to the bool value false to indicate failure. When an attempt is made to read past the end of a stream, the stream’s overloaded void * cast operator returns the null pointer to indicate end-of-file.

Each stream object contains a set of state bits used to control the stream’s state (i.e., formatting, setting error states, etc.). These bits are used by the stream’s overloaded void * cast operator to determine whether to return a non-null pointer or the null pointer. Stream extraction causes the stream’s failbit to be set if data of the wrong type is input and causes the stream’s badbit to be set if the operation fails. Sections 13.7–13.8 discuss stream state bits in detail, then show how to test these bits after an I/O operation.

13.4.1. get and getline Member Functions

The get member function with no arguments inputs one character from the designated stream (including white-space characters and other nongraphic characters, such as the key sequence that represents end-of-file) and returns it as the value of the function call. This version of get returns EOF when end-of-file is encountered on the stream.

Using Member Functions eof, get and put

Figure 13.4 demonstrates the use of member functions eof and get on input stream cin and member function put on output stream cout. Recall from Chapter 5 that EOF is represented as an int. This program reads characters into the int variable character, so that we can test each character entered to see if it’s EOF. The program first prints the value of cin.eof()—i.e., false (0 on the output)—to show that end-of-file has not occurred on cin. The user enters a line of text and presses Enter followed by end-of-file (<Ctrl> z on Microsoft Windows systems, <Ctrl> d on Linux and Mac systems). Line 15 reads each character, which line 16 outputs to cout using member function put. When end-of-file is encountered, the while statement ends, and line 20 displays the value of cin.eof(), which is now true (1 on the output), to show that end-of-file has been set on cin. This program uses the version of istream member function get that takes no arguments and returns the character being input (line 15). Function eof returns true only after the program attempts to read past the last character in the stream.

Click here to view code image

 1 // Fig. 13.4: fig13_04.cpp
 2 // get, put and eof member functions.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int character; // use int, because char cannot represent EOF
 9
10 // prompt user to enter line of text
11 cout << "Before input, cin.eof() is " << cin.eof() << endl
12 << "Enter a sentence followed by end-of-file:" << endl;
13
14 // use get to read each character; use put to display it
15 while ((character = cin.get()) != EOF)
16 cout.put(character);
17
18 // display end-of-file character
19 cout << "\nEOF in this system is: " << character << endl;
20 cout << "After input of EOF, cin.eof() is " << cin.eof() << endl;
21 } // end main

Before input, cin.eof() is 0
Enter a sentence followed by end-of-file:
Testing the get and put member functions
Testing the get and put member functions
^Z

EOF in this system is: -1
After input of EOF, cin.eof() is 1

Fig. 13.4. get, put and eof member functions.

The get member function with a character-reference argument inputs the next character from the input stream (even if this is a white-space character) and stores it in the character argument. This version of get returns a reference to the istream object for which the get member function is being invoked.

A third version of get takes three arguments—a built-in array of chars, a size limit and a delimiter (with default value '\n'). This version reads characters from the input stream. It either reads one fewer than the specified maximum number of characters and terminates or terminates as soon as the delimiter is read. A null character is inserted to terminate the input string in the character array used as a buffer by the program. The delimiter is not placed in the character array but does remain in the input stream (the delimiter will be the next character read). Thus, the result of a second consecutive get is an empty line, unless the delimiter character is removed from the input stream (possibly with cin.ignore()).

Comparing cin and cin.get

Figure 13.5 compares input using stream extraction with cin (which reads characters until a white-space character is encountered) and input using cin.get. The call to cin.get (line 22) does not specify a delimiter, so the default '\n' character is used.

Click here to view code image

 1 // Fig. 13.5: fig13_05.cpp
 2 // Contrasting input of a string via cin and cin.get.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // create two char arrays, each with 80 elements
 9 const int SIZE = 80;
10 char buffer1[SIZE];
11 char buffer2[SIZE];
12
13 // use cin to input characters into buffer1
14 cout << "Enter a sentence:" << endl;
15 cin >> buffer1;
16
17 // display buffer1 contents
18 cout << "\nThe string read with cin was:" << endl
19 << buffer1 << endl << endl;
20
21 // use cin.get to input characters into buffer2
22 cin.get(buffer2, SIZE);
23
24 // display buffer2 contents
25 cout << "The string read with cin.get was:" << endl
26 << buffer2 << endl;
27 } // end main

Enter a sentence:
Contrasting string input with cin and cin.get

The string read with cin was:
Contrasting

The string read with cin.get was:
 string input with cin and cin.get

Fig. 13.5. Contrasting input of a string via cin and cin.get.

Using Member Function getline

Member function getline operates similarly to the third version of the get member function and inserts a null character after the line in the built-in array of chars. The getline function removes the delimiter from the stream (i.e., reads the character and discards it), but does not store it in the character array. The program of Fig. 13.6 demonstrates the use of the getline member function to input a line of text (line 13).

Click here to view code image

 1 // Fig. 13.6: fig13_06.cpp
 2 // Inputting characters using cin member function getline.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 80;
 9 char buffer[SIZE]; // create array of 80 characters
10
11 // input characters in buffer via cin function getline
12 cout << "Enter a sentence:" << endl;
13 cin.getline(buffer, SIZE);
14
15 // display buffer contents
16 cout << "\nThe sentence entered is:" << endl << buffer << endl;
17 } // end main

Enter a sentence:
Using the getline member function

The sentence entered is:
Using the getline member function

Fig. 13.6. Inputting characters using cin member function getline.

13.4.2. istream Member Functions peek, putback and ignore

The ignore member function of istream reads and discards a designated number of characters (the default is one) or terminates upon encountering a designated delimiter (the default is EOF, which causes ignore to skip to the end of the file when reading from a file).

The putback member function places the previous character obtained by a get from an input stream back into that stream. This function is useful for applications that scan an input stream looking for a field beginning with a specific character. When that character is input, the application returns the character to the stream, so the character can be included in the input data.

The peek member function returns the next character from an input stream but does not remove the character from the stream.

13.4.3. Type-Safe I/O

C++ offers type-safe I/O. The << and >> operators are overloaded to accept data items of specific types. If unexpected data is processed, various error bits are set, which the user may test to determine whether an I/O operation succeeded or failed. If operators << and >> have not been overloaded for a user-defined type and you attempt to input into or output the contents of an object of that user-defined type, the compiler reports an error. This enables the program to “stay in control.” We discuss these error states in Section 13.8.

13.5. Unformatted I/O Using read, write and gcount

Unformatted input/output is performed using the read and write member functions of istream and ostream, respectively. Member function read inputs bytes to a built-in array of chars in memory; member function write outputs bytes from a built-in array of chars. These bytes are not formatted in any way. They’re input or output as raw bytes. For example, the call

char buffer[] = "HAPPY BIRTHDAY";
cout.write(buffer, 10);

outputs the first 10 bytes of buffer (including null characters, if any, that would cause output with cout and << to terminate). The call

cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 10);

displays the first 10 characters of the alphabet.

The read member function inputs a designated number of characters into a built-in array of chars. If fewer than the designated number of characters are read, failbit is set. Section 13.8 shows how to determine whether failbit has been set. Member function gcount reports the number of characters read by the last input operation.

Figure 13.7 demonstrates istream member functions read and gcount, and ostream member function write. The program inputs 20 characters (from a longer input sequence) into the array buffer with read (line 13), determines the number of characters input with gcount (line 17) and outputs the characters in buffer with write (line 17).

Click here to view code image

 1 // Fig. 13.7: fig13_07.cpp
 2 // Unformatted I/O using read, gcount and write.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 80;
 9 char buffer[SIZE]; // create array of 80 characters
10
11 // use function read to input characters into buffer
12 cout << "Enter a sentence:" << endl;
13 cin.read(buffer, 20);
14
15 // use functions write and gcount to display buffer characters
16 cout << endl << "The sentence entered was:" << endl;
17 cout.write(buffer, cin.gcount());
18 cout << endl;
19 } // end main

Enter a sentence:
Using the read, write, and gcount member functions
The sentence entered was:
Using the read, writ

Fig. 13.7. Unformatted I/O using read, gcount and write.

13.6. Introduction to Stream Manipulators

C++ provides various stream manipulators that perform formatting tasks. The stream manipulators provide capabilities such as setting field widths, setting precision, setting and unsetting format state, setting the fill character in fields, flushing streams, inserting a newline into the output stream (and flushing the stream), inserting a null character into the output stream and skipping white space in the input stream. These features are described in the following sections.

13.6.1. Integral Stream Base: dec, oct, hex and setbase

Integers are interpreted normally as decimal (base-10) values. To change the base in which integers are interpreted on a stream, insert the hex manipulator to set the base to hexadecimal (base 16) or insert the oct manipulator to set the base to octal (base 8). Insert the dec manipulator to reset the stream base to decimal. These are all sticky manipulators.

A stream’s base also may be changed by the setbase stream manipulator, which takes an int argument of 10, 8, or 16 to set the base to decimal, octal or hexadecimal, respectively. Because setbase takes an argument, it’s called a parameterized stream manipulator. Parameterized stream manipulators like setbase require the header <iomanip>. The stream base value remains the same until changed explicitly; setbase settings are sticky. Figure 13.8 demonstrates stream manipulators hex, oct, dec and setbase. For more information on decimal, octal and hexadecimal numbers, see Appendix D.

Click here to view code image

 1 // Fig. 13.8: fig13_08.cpp
 2 // Using stream manipulators hex, oct, dec and setbase.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int number;
10
11 cout << "Enter a decimal number: ";
12 cin >> number; // input number
13
14 // use hex stream manipulator to show hexadecimal number
15 cout << number << " in hexadecimal is: " << hex
16 << number << endl;
17
18 // use oct stream manipulator to show octal number
19 cout << dec << number << " in octal is: "
20 << oct << number << endl;
21
22 // use setbase stream manipulator to show decimal number
23 cout << setbase(10) << number << " in decimal is: "
24 << number << endl;
25 } // end main

Enter a decimal number: 20
20 in hexadecimal is: 14
20 in octal is: 24
20 in decimal is: 20

Fig. 13.8. Using stream manipulators hex, oct, dec and setbase.

13.6.2. Floating-Point Precision (precision, setprecision)

We can control the precision of floating-point numbers (i.e., the number of digits to the right of the decimal point) by using either the setprecision stream manipulator or the precision member function of ios_base. A call to either of these sets the precision for all subsequent output operations until the next precision-setting call. A call to member function precision with no argument returns the current precision setting (this is what you need to use so that you can restore the original precision eventually after a sticky setting is no longer needed). The program of Fig. 13.9 uses both member function precision (line 22) and the setprecision manipulator (line 31) to print a table that shows the square root of 2, with precision varying from 0 to 9.

Click here to view code image

 1 // Fig. 13.9: fig13_09.cpp
 2 // Controlling precision of floating-point values.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cmath>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double root2 = sqrt(2.0); // calculate square root of 2
11 int places; // precision, vary from 0-9
12
13 cout << "Square root of 2 with precisions 0-9." << endl
14 << "Precision set by ios_base member function "
15 << "precision:" << endl;
16
17 cout << fixed; // use fixed-point notation
18
19 // display square root using ios_base function precision
20 for (places = 0; places <= 9; ++places)
21 {
22 cout.precision(places);
23 cout << root2 << endl;
24 } // end for
25
26 cout << "\nPrecision set by stream manipulator "
27 << "setprecision:" << endl;
28
29 // set precision for each digit, then display square root
30 for (places = 0; places <= 9; ++places)
31 cout << setprecision(places) << root2 << endl;
32 } // end main

Square root of 2 with precisions 0-9.
Precision set by ios_base member function precision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Precision set by stream manipulator setprecision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Fig. 13.9. Controlling precision of floating-point values.

13.6.3. Field Width (width, setw)

The width member function (of base class ios_base) sets the field width (i.e., the number of character positions in which a value should be output or the maximum number of characters that should be input) and returns the previous width. If values output are narrower than the field width, fill characters are inserted as padding. A value wider than the designated width will not be truncated—the full number will be printed. The width function with no argument returns the current setting.

[image: Image] Common Programming Error 13.1

The width setting applies only for the next insertion or extraction (i.e., the width setting is not sticky); afterward, the width is set implicitly to 0 (that is, input and output will be performed with default settings). Assuming that the width setting applies to all subsequent outputs is a logic error.

[image: Image] Common Programming Error 13.2

When a field is not sufficiently wide to handle outputs, the outputs print as wide as necessary, which can yield confusing outputs.

Figure 13.10 demonstrates the use of the width member function on both input and output. On input into a char array, a maximum of one fewer characters than the width will be read, because provision is made for the null character to be placed in the input string. Remember that stream extraction terminates when nonleading white space is encountered. The setw stream manipulator also may be used to set the field width. [Note: When prompted for input in Fig. 13.10, the user should enter a line of text and press Enter followed by end-of-file (<Ctrl> z on Microsoft Windows systems and <Ctrl> d on Linux and OS X systems).]

Click here to view code image

 1 // Fig. 13.10: fig13_10.cpp
 2 // width member function of class ios_base.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int widthValue = 4;
 9 char sentence[10];
10
11 cout << "Enter a sentence:" << endl;
12 cin.width(5); // input only 5 characters from sentence
13
14 // set field width, then display characters based on that width
15 while (cin >> sentence)
16 {
17 cout.width(widthValue++);
18 cout << sentence << endl;
19 cin.width(5); // input 5 more characters from sentence
20 } // end while
21 } // end main

Enter a sentence:
This is a test of the width member function
This
 is
 a
 test
 of
 the
 widt
 h
 memb
 er
 func
 tion

Fig. 13.10. width member function of class ios_base.

13.6.4. User-Defined Output Stream Manipulators

You can create your own stream manipulators. Figure 13.11 shows how to create and use new nonparameterized stream manipulators bell (lines 8–11), carriageReturn (lines 14–17), tab (lines 20–23) and endLine (lines 27–30). For output stream manipulators, the return type and parameter must be of type ostream &. When line 35 inserts the endLine manipulator in the output stream, function endLine is called and line 29 outputs the escape sequence \n and the flush manipulator (which flushes the output buffer) to the standard output stream cout. Similarly, when lines 35–44 insert the manipulators tab, bell and carriageReturn in the output stream, their corresponding functions—tab (line 20), bell (line 8) and carriageReturn (line 14) are called, which in turn output various escape sequences.

Click here to view code image

 1 // Fig. 13.11: fig13_11.cpp
 2 // Creating and testing user-defined, nonparameterized
 3 // stream manipulators.
 4 #include <iostream>
 5 using namespace std;
 6
 7 // bell manipulator (using escape sequence \a)
 8 ostream& bell(ostream& output)
 9 {
10 return output << '\a'; // issue system beep
11 } // end bell manipulator
12
13 // carriageReturn manipulator (using escape sequence \r)
14 ostream& carriageReturn(ostream& output)
15 {
16 return output << '\r'; // issue carriage return
17 } // end carriageReturn manipulator
18
19 // tab manipulator (using escape sequence \t)
20 ostream& tab(ostream& output)
21 {
22 return output << '\t'; // issue tab
23 } // end tab manipulator
24
25 // endLine manipulator (using escape sequence \n and flush stream
26 // manipulator to simulate endl)
27 ostream& endLine(ostream& output)
28 {
29 return output << '\n' << flush; // issue endl-like end of line
30 } // end endLine manipulator
31
32 int main()
33 {
34 // use tab and endLine manipulators
35 cout << "Testing the tab manipulator:" << endLine
36 << 'a' << tab << 'b' << tab << 'c' << endLine;
37
38 cout << "Testing the carriageReturn and bell manipulators:"
39 << endLine << "..........";
40
41 cout << bell; // use bell manipulator
42
43 // use carriageReturn and endLine manipulators
44 cout << carriageReturn << "-----" << endLine;
45 } // end main

Testing the tab manipulator:
a b c
Testing the carriageReturn and bell manipulators:
-----.....

Fig. 13.11. User-defined, nonparameterized stream manipulators.

13.7. Stream Format States and Stream Manipulators

Various stream manipulators can be used to specify the kinds of formatting to be performed during stream-I/O operations. Stream manipulators control the output’s format settings. Figure 13.12 lists each stream manipulator that controls a given stream’s format state. All these manipulators belong to class ios_base. We show examples of most of these stream manipulators in the next several sections.

[image: Image]

[image: Image]

Fig. 13.12. Format state stream manipulators from <iostream>.

13.7.1. Trailing Zeros and Decimal Points (showpoint)

Stream manipulator showpoint is a sticky setting that forces a floating-point number to be output with its decimal point and trailing zeros. For example, the floating-point value 79.0 prints as 79 without using showpoint and prints as 79.000000 (or as many trailing zeros as are specified by the current precision) using showpoint. To reset the showpoint setting, output the stream manipulator noshowpoint. The program in Fig. 13.13 shows how to use stream manipulator showpoint to control the printing of trailing zeros and decimal points for floating-point values. Recall that the default precision of a floating-point number is 6. When neither the fixed nor the scientific stream manipulator is used, the precision represents the number of significant digits to display (i.e., the total number of digits to display), not the number of digits to display after decimal point.

Click here to view code image

 1 // Fig. 13.13: fig13_13.cpp
 2 // Controlling the printing of trailing zeros and
 3 // decimal points in floating-point values.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // display double values with default stream format
10 cout << "Before using showpoint" << endl
11 << "9.9900 prints as: " << 9.9900 << endl
12 << "9.9000 prints as: " << 9.9000 << endl
13 << "9.0000 prints as: " << 9.0000 << endl << endl;
14
15 // display double value after showpoint
16 cout << showpoint
17 << "After using showpoint" << endl
18 << "9.9900 prints as: " << 9.9900 << endl
19 << "9.9000 prints as: " << 9.9000 << endl
20 << "9.0000 prints as: " << 9.0000 << endl;
21 } // end main

Before using showpoint
9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

After using showpoint
9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

Fig. 13.13. Controlling the printing of trailing zeros and decimal points in floating-point values.

13.7.2. Justification (left, right and internal)

Stream manipulators left and right enable fields to be left justified with padding characters to the right or right justified with padding characters to the left, respectively. The padding character is specified by the fill member function or the setfill parameterized stream manipulator (which we discuss in Section 13.7.3). Figure 13.14 uses the setw, left and right manipulators to left justify and right justify integer data in a field.

Click here to view code image

 1 // Fig. 13.14: fig13_14.cpp
 2 // Left and right justification with stream manipulators left and right.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int x = 12345;
10
11 // display x right justified (default)
12 cout << "Default is right justified:" << endl
13 << setw(10) << x;
14
15 // use left manipulator to display x left justified
16 cout << "\n\nUse std::left to left justify x:\n"
17 << left << setw(10) << x;
18
19 // use right manipulator to display x right justified
20 cout << "\n\nUse std::right to right justify x:\n"
21 << right << setw(10) << x << endl;
22 } // end main

Default is right justified:
 12345

Use std::left to left justify x:
12345

Use std::right to right justify x:
 12345

Fig. 13.14. Left and right justification with stream manipulators left and right.

Stream manipulator internal indicates that a number’s sign (or base when using stream manipulator showbase) should be left justified within a field, that the number’s magnitude should be right justified and that intervening spaces should be padded with the fill character. Figure 13.15 shows the internal stream manipulator specifying internal spacing (line 10). Note that showpos forces the plus sign to print (line 10). To reset the showpos setting, output the stream manipulator noshowpos.

Click here to view code image

 1 // Fig. 13.15: fig13_15.cpp
 2 // Printing an integer with internal spacing and plus sign.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // display value with internal spacing and plus sign
10 cout << internal << showpos << setw(10) << 123 << endl;
11 } // end main

+ 123

Fig. 13.15. Printing an integer with internal spacing and plus sign.

13.7.3. Padding (fill, setfill)

The fill member function specifies the fill character to be used with justified fields; spaces are used for padding by default. The function returns the prior padding character. The setfill manipulator also sets the padding character. Figure 13.16 demonstrates function fill (line 30) and stream manipulator setfill (lines 34 and 37) to set the fill character.

Click here to view code image

 1 // Fig. 13.16: fig13_16.cpp
 2 // Using member function fill and stream manipulator setfill to change
 3 // the padding character for fields larger than the printed value.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int x = 10000;
11
12 // display x
13 cout << x << " printed as int right and left justified\n"
14 << "and as hex with internal justification.\n"
15 << "Using the default pad character (space):" << endl;
16
17 // display x with base
18 cout << showbase << setw(10) << x << endl;
19
20 // display x with left justification
21 cout << left << setw(10) << x << endl;
22
23 // display x as hex with internal justification
24 cout << internal << setw(10) << hex << x << endl << endl;
25
26 cout << "Using various padding characters:" << endl;
27
28 // display x using padded characters (right justification)
29 cout << right;
30 cout.fill('*');
31 cout << setw(10) << dec << x << endl;
32
33 // display x using padded characters (left justification)
34 cout << left << setw(10) << setfill('%') << x << endl;
35
36 // display x using padded characters (internal justification)
37 cout << internal << setw(10) << setfill('^') << hex
38 << x << endl;
39 } // end main

10000 printed as int right and left justified
and as hex with internal justification.
Using the default pad character (space):
 10000
10000
0x 2710

Using various padding characters:
*****10000
10000%%%%%
0x^^^^2710

Fig. 13.16. Using member function fill and stream manipulator setfill to change the padding character for fields larger than the printed values.

13.7.4. Integral Stream Base (dec, oct, hex, showbase)

C++ provides stream manipulators dec, hex and oct to specify that integers are to be displayed as decimal, hexadecimal and octal values, respectively. Stream insertions default to decimal if none of these manipulators is used. With stream extraction, integers prefixed with 0 (zero) are treated as octal values, integers prefixed with 0x or 0X are treated as hexadecimal values, and all other integers are treated as decimal values. Once a particular base is specified for a stream, all integers on that stream are processed using that base until a different base is specified or until the program terminates.

Stream manipulator showbase forces the base of an integral value to be output. Decimal numbers are output by default, octal numbers are output with a leading 0, and hexadecimal numbers are output with either a leading 0x or a leading 0X (as we discuss in Section 13.7.6, stream manipulator uppercase determines which option is chosen). Figure 13.17 demonstrates the use of stream manipulator showbase to force an integer to print in decimal, octal and hexadecimal formats. To reset the showbase setting, output the stream manipulator noshowbase.

Click here to view code image

 1 // Fig. 13.17: fig13_17.cpp
 2 // Stream manipulator showbase.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int x = 100;
 9
10 // use showbase to show number base
11 cout << "Printing integers preceded by their base:" << endl
12 << showbase;
13
14 cout << x << endl; // print decimal value
15 cout << oct << x << endl; // print octal value
16 cout << hex << x << endl; // print hexadecimal value
17 } // end main

Printing integers preceded by their base:
100
0144
0x64

Fig. 13.17. Stream manipulator showbase.

13.7.5. Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed)

The sticky stream manipulators scientific and fixed control the output format of floating-point numbers. Stream manipulator scientific forces the output of a floating-point number to display in scientific format. Stream manipulator fixed forces a floating-point number to display a specific number of digits (as specified by member function precision or stream manipulator setprecision) to the right of the decimal point. Without using another manipulator, the floating-point-number value determines the output format.

Figure 13.18 demonstrates displaying floating-point numbers in fixed and scientific formats using stream manipulators scientific (line 18) and fixed (line 22). The exponent format in scientific notation might differ across different compilers.

Click here to view code image

 1 // Fig. 13.18: fig13_18.cpp
 2 // Floating-point values displayed in system default,
 3 // scientific and fixed formats.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double x = 0.001234567;
10 double y = 1.946e9;
11
12 // display x and y in default format
13 cout << "Displayed in default format:" << endl
14 << x << '\t' << y << endl;
15
16 // display x and y in scientific format
17 cout << "\nDisplayed in scientific format:" << endl
18 << scientific << x << '\t' << y << endl;
19
20 // display x and y in fixed format
21 cout << "\nDisplayed in fixed format:" << endl
22 << fixed << x << '\t' << y << endl;
23 } // end main

Displayed in default format:
0.00123457 1.946e+009

Displayed in scientific format:
1.234567e-003 1.946000e+009

Displayed in fixed format:
0.001235 1946000000.000000

Fig. 13.18. Floating-point values displayed in default, scientific and fixed formats.

13.7.6. Uppercase/Lowercase Control (uppercase)

Stream manipulator uppercase outputs an uppercase X or E with hexadecimal-integer values or with scientific notation floating-point values, respectively (Fig. 13.19). Using stream manipulator uppercase also causes all letters in a hexadecimal value to be uppercase. By default, the letters for hexadecimal values and the exponents in scientific notation floating-point values appear in lowercase. To reset the uppercase setting, output the stream manipulator nouppercase.

Click here to view code image

 1 // Fig. 13.19: fig13_19.cpp
 2 // Stream manipulator uppercase.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 cout << "Printing uppercase letters in scientific" << endl
 9 << "notation exponents and hexadecimal values:" << endl;
10
11 // use std:uppercase to display uppercase letters; use std::hex and
12 // std::showbase to display hexadecimal value and its base
13 cout << uppercase << 4.345e10 << endl
14 << hex << showbase << 123456789 << endl;
15 } // end main

Printing uppercase letters in scientific
notation exponents and hexadecimal values:
4.345E+010
0X75BCD15

Fig. 13.19. Stream manipulator uppercase.

13.7.7. Specifying Boolean Format (boolalpha)

C++ provides data type bool, whose values may be false or true, as a preferred alternative to the old style of using 0 to indicate false and nonzero to indicate true. A bool variable outputs as 0 or 1 by default. However, we can use stream manipulator boolalpha to set the output stream to display bool values as the strings "true" and "false". Use stream manipulator noboolalpha to set the output stream to display bool values as integers (i.e., the default setting). The program of Fig. 13.20 demonstrates these stream manipulators. Line 11 displays the bool value, which line 8 sets to true, as an integer. Line 15 uses manipulator boolalpha to display the bool value as a string. Lines 18–19 then change the bool’s value and use manipulator noboolalpha, so line 22 can display the bool value as an integer. Line 26 uses manipulator boolalpha to display the bool value as a string. Both boolalpha and noboolalpha are sticky settings.

Click here to view code image

 1 // Fig. 13.20: fig13_20.cpp
 2 // Stream manipulators boolalpha and noboolalpha.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 bool booleanValue = true;
 9
10 // display default true booleanValue
11 cout << "booleanValue is " << booleanValue << endl;
12
13 // display booleanValue after using boolalpha
14 cout << "booleanValue (after using boolalpha) is "
15 << boolalpha << booleanValue << endl << endl;
16
17 cout << "switch booleanValue and use noboolalpha" << endl;
18 booleanValue = false; // change booleanValue
19 cout << noboolalpha << endl; // use noboolalpha
20
21 // display default false booleanValue after using noboolalpha
22 cout << "booleanValue is " << booleanValue << endl;
23
24 // display booleanValue after using boolalpha again
25 cout << "booleanValue (after using boolalpha) is "
26 << boolalpha << booleanValue << endl;
27 } // end main

booleanValue is 1
booleanValue (after using boolalpha) is true

switch booleanValue and use noboolalpha

booleanValue is 0
booleanValue (after using boolalpha) is false

Fig. 13.20. Stream manipulators boolalpha and noboolalpha.

[image: Image] Good Programming Practice 13.1

Displaying bool values as true or false, rather than nonzero or 0, respectively, makes program outputs clearer.

13.7.8. Setting and Resetting the Format State via Member Function flags

Throughout Section 13.7, we’ve been using stream manipulators to change output format characteristics. We now discuss how to return an output stream’s format to its default state after having applied several manipulations. Member function flags without an argument returns the current format settings as an fmtflags data type (of class ios_base), which represents the format state. Member function flags with an fmtflags argument sets the format state as specified by the argument and returns the prior state settings. The initial settings of the value that flags returns might differ across several systems. The program of Fig. 13.21 uses member function flags to save the stream’s original format state (line 17), then restore the original format settings (line 25).

Click here to view code image

 1 // Fig. 13.21: fig13_21.cpp
 2 // flags member function.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int integerValue = 1000;
 9 double doubleValue = 0.0947628;
10
11 // display flags value, int and double values (original format)
12 cout << "The value of the flags variable is: " << cout.flags()
13 << "\nPrint int and double in original format:\n"
14 << integerValue << '\t' << doubleValue << endl << endl;
15
16 // use cout flags function to save original format
17 ios_base::fmtflags originalFormat = cout.flags();
18 cout << showbase << oct << scientific; // change format
19
20 // display flags value, int and double values (new format)
21 cout << "The value of the flags variable is: " << cout.flags()
22 << "\nPrint int and double in a new format:\n"
23 << integerValue << '\t' << doubleValue << endl << endl;
24
25 cout.flags(originalFormat); // restore format
26
27 // display flags value, int and double values (original format)
28 cout << "The restored value of the flags variable is: "
29 << cout.flags()
30 << "\nPrint values in original format again:\n"
31 << integerValue << '\t' << doubleValue << endl;
32 } // end main

The value of the flags variable is: 513
Print int and double in original format:
1000 0.0947628

The value of the flags variable is: 012011
Print int and double in a new format:
01750 9.476280e-002

The restored value of the flags variable is: 513
Print values in original format again:
1000 0.0947628

Fig. 13.21. flags member function.

13.8. Stream Error States

The state of a stream may be tested through bits in class ios_base. Earlier in the book, we indicated that you can test, for example, whether an input was successful. Figure 13.22 shows how to test these state bits. In industrial-strength code, you’ll want to perform similar tests on your I/O operations.

Click here to view code image

 1 // Fig. 13.22: fig13_22.cpp
 2 // Testing error states.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int integerValue;
 9
10 // display results of cin functions
11 cout << "Before a bad input operation:"
12 << "\ncin.rdstate(): " << cin.rdstate()
13 << "\n cin.eof(): " << cin.eof()
14 << "\n cin.fail(): " << cin.fail()
15 << "\n cin.bad(): " << cin.bad()
16 << "\n cin.good(): " << cin.good()
17 << "\n\nExpects an integer, but enter a character: ";
18
19 cin >> integerValue; // enter character value
20 cout << endl;
21
22 // display results of cin functions after bad input
23 cout << "After a bad input operation:"
24 << "\ncin.rdstate(): " << cin.rdstate()
25 << "\n cin.eof(): " << cin.eof()
26 << "\n cin.fail(): " << cin.fail()
27 << "\n cin.bad(): " << cin.bad()
28 << "\n cin.good(): " << cin.good() << endl << endl;
29
30 cin.clear(); // clear stream
31
32 // display results of cin functions after clearing cin
33 cout << "After cin.clear()" << "\ncin.fail(): " << cin.fail()
34 << "\ncin.good(): " << cin.good() << endl;
35 } // end main

Before a bad input operation:
cin.rdstate(): 0
 cin.eof(): 0
 cin.fail(): 0
 cin.bad(): 0
 cin.good(): 1

Expects an integer, but enter a character: A

After a bad input operation:
cin.rdstate(): 2
 cin.eof(): 0
 cin.fail(): 1

 cin.bad(): 0
 cin.good(): 0

After cin.clear()
cin.fail(): 0
cin.good(): 1

Fig. 13.22. Testing error states.

The eofbit is set for an input stream after end-of-file is encountered. A program can use member function eof to determine whether end-of-file has been encountered on a stream after an attempt to extract data beyond the end of the stream. The call

cin.eof()

returns true if end-of-file has been encountered on cin and false otherwise.

The failbit is set for a stream when a format error occurs on the stream and no characters are input (e.g., when you attempt to read a number and the user enters a string). When such an error occurs, the characters are not lost. The fail member function reports whether a stream operation has failed. Usually, recovering from such errors is possible.

The badbit is set for a stream when an error occurs that results in the loss of data. The bad member function reports whether a stream operation failed. Generally, such serious failures are nonrecoverable.

The goodbit is set for a stream if none of the bits eofbit, failbit or badbit is set for the stream.

The good member function returns true if the bad, fail and eof functions would all return false. I/O operations should be performed only on “good” streams.

The rdstate member function returns the stream’s error state. Calling cout.rdstate, for example, would return the stream’s state, which then could be tested by a switch statement that examines eofbit, badbit, failbit and goodbit. The preferred means of testing the state of a stream is to use member functions eof, bad, fail and good—using these functions does not require you to be familiar with particular status bits.

The clear member function is used to restore a stream’s state to “good,” so that I/O may proceed on that stream. The default argument for clear is goodbit, so the statement

cin.clear();

clears cin and sets goodbit for the stream. The statement

cin.clear(ios::failbit)

sets the failbit. You might want to do this when performing input on cin with a user-defined type and encountering a problem. The name clear might seem inappropriate in this context, but it’s correct.

The program of Fig. 13.22 demonstrates member functions rdstate, eof, fail, bad, good and clear. The actual values output may differ across different compilers.

The operator! member function of basic_ios returns true if the badbit is set, the failbit is set or both are set. The operator void * member function returns false (0) if the badbit is set, the failbit is set or both are set. These functions are useful in file processing when a true/false condition is being tested under the control of a selection statement or repetition statement.

13.9. Tying an Output Stream to an Input Stream

Interactive applications generally involve an istream for input and an ostream for output. When a prompting message appears on the screen, the user responds by entering the appropriate data. Obviously, the prompt needs to appear before the input operation proceeds. With output buffering, outputs appear only when the buffer fills, when outputs are flushed explicitly by the program or automatically at the end of the program. C++ provides member function tie to synchronize (i.e., “tie together”) the operation of an istream and an ostream to ensure that outputs appear before their subsequent inputs. The call

cin.tie(&cout);

ties cout (an ostream) to cin (an istream). Actually, this particular call is redundant, because C++ performs this operation automatically to create a user’s standard input/output environment. However, the user would tie other istream/ostream pairs explicitly. To untie an input stream, inputStream, from an output stream, use the call

inputStream.tie(0);

13.10. Wrap-Up

This chapter summarized how C++ performs input/output using streams. You learned about the stream-I/O classes and objects, as well as the stream I/O template class hierarchy. We discussed ostream’s formatted and unformatted output capabilities performed by the put and write functions. You learned about istream’s formatted and unformatted input capabilities performed by the eof, get, getline, peek, putback, ignore and read functions. We discussed stream manipulators and member functions that perform formatting tasks—dec, oct, hex and setbase for displaying integers; precision and setprecision for controlling floating-point precision; and width and setw for setting field width. You also learned additional formatting iostream manipulators and member functions—showpoint for displaying decimal point and trailing zeros; left, right and internal for justification; fill and setfill for padding; scientific and fixed for displaying floating-point numbers in scientific and fixed notation; uppercase for uppercase/lowercase control; boolalpha for specifying boolean format; and flags and fmtflags for resetting the format state.

In the next chapter, you’ll learn about file processing, including how persistent data is stored and how to manipulate it.

14. File Processing

Objectives

In this chapter you’ll:

• Create, read, write and update files.

• Use sequential file processing.

• Use random-access file processing.

• Use high-performance unformatted I/O operations.

• Learn the differences between formatted-data and raw-data file processing.

• Build a transaction-processing program using random-access file processing.

• Understand the concept of object serialization.

Outline

14.1 Introduction

14.2 Files and Streams

14.3 Creating a Sequential File

14.4 Reading Data from a Sequential File

14.5 Updating Sequential Files

14.6 Random-Access Files

14.7 Creating a Random-Access File

14.8 Writing Data Randomly to a Random-Access File

14.9 Reading from a Random-Access File Sequentially

14.10 Case Study: A Transaction-Processing Program

14.11 Object Serialization

14.12 Wrap-Up

14.1. Introduction

Storage of data in memory is temporary. Files are used for data persistence—permanent retention of data. Computers store files on secondary storage devices, such as hard disks, CDs, DVDs, flash drives and tapes. In this chapter, we explain how to build C++ programs that create, update and process data files. We consider both sequential files and random-access files. We compare formatted-data file processing and raw-data file processing. We examine techniques for input of data from, and output of data to, string streams rather than files in Chapter 19.

14.2. Files and Streams

C++ views each file simply as a sequence of bytes (Fig. 14.1). Each file ends either with an end-of-file marker or at a specific byte number recorded in an operating-system-maintained, administrative data structure. When a file is opened, an object is created, and a stream is associated with the object. In Chapter 13, we saw that objects cin, cout, cerr and clog are created when <iostream> is included. The streams associated with these objects provide communication channels between a program and a particular file or device. For example, the cin object (standard input stream object) enables a program to input data from the keyboard or from other devices, the cout object (standard output stream object) enables a program to output data to the screen or other devices, and the cerr and clog objects (standard error stream objects) enable a program to output error messages to the screen or other devices.

[image: Image]

Fig. 14.1. C++’s simple view of a file of n bytes.

File-Processing Class Templates

To perform file processing in C++, headers <iostream> and <fstream> must be included. Header <fstream> includes the definitions for the stream class templates basic_ifstream (for file input), basic_ofstream (for file output) and basic_fstream (for file input and output). Each class template has a predefined template specialization that enables char I/O. In addition, the <fstream> library provides typedef aliases for these template specializations. For example, the typedef ifstream represents a specialization of basic_ifstream that enables char input from a file. Similarly, typedef ofstream represents a specialization of basic_ofstream that enables char output to files. Also, typedef fstream represents a specialization of basic_fstream that enables char input from, and output to, files.

These templates derive from the class templates basic_istream, basic_ostream and basic_iostream, respectively. Thus, all member functions, operators and manipulators that belong to these templates (which we described in Chapter 13) also can be applied to file streams. Figure 14.2 summarizes the inheritance relationships of the I/O classes that we’ve discussed to this point.

[image: Image]

Fig. 14.2. Portion of stream I/O template hierarchy.

14.3. Creating a Sequential File

C++ imposes no structure on a file. Thus, a concept like that of a “record” does not exist in a C++ file. You must structure files to meet the application’s requirements. The following example shows how you can impose a simple record structure on a file.

Figure 14.3 creates a sequential file that might be used in an accounts-receivable system to help manage the money owed to a company by its credit clients. For each client, the program obtains the client’s account number, name and balance (i.e., the amount the client owes the company for goods and services received in the past). The data obtained for each client constitutes a record for that client. The account number serves as the record key; that is, the program creates and maintains the records of the file in account number order. This program assumes the user enters the records in account number order. In a comprehensive accounts receivable system, a sorting capability would be provided for the user to enter records in any order—the records then would be sorted and written to the file.

Click here to view code image

 1 // Fig. 14.3: Fig14_03.cpp
 2 // Create a sequential file.
 3 #include <iostream>
 4 #include <string>
 5 #include <fstream> // contains file stream processing types
 6 #include <cstdlib> // exit function prototype
 7 using namespace std;
 8
 9 int main()
10 {
11 // ofstream constructor opens file
12 ofstream outClientFile("clients.txt", ios::out);
13
14 // exit program if unable to create file
15 if (!outClientFile) // overloaded ! operator
16 {
17 cerr << "File could not be opened" << endl;
18 exit(EXIT_FAILURE);
19 } // end if
20
21 cout << "Enter the account, name, and balance." << endl
22 << "Enter end-of-file to end input.\n? ";
23
24 int account; // the account number
25 string name; // the account owner's name
26 double balance; // the account balance
27
28 // read account, name and balance from cin, then place in file
29 while (cin >> account >> name >> balance)
30 {
31 outClientFile << account << ' ' << name << ' ' << balance << endl;
32 cout << "? ";
33 } // end while
34 } // end main

Enter the account, name, and balance.
Enter end-of-file to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

Fig. 14.3. Create a sequential file.

Opening a File

Figure 14.3 writes data to a file, so we open the file for output by creating an ofstream object. Two arguments are passed to the object’s constructor—the filename and the file-open mode (line 12). For an ofstream object, the file-open mode can be either ios::out (the default) to output data to a file or ios::app to append data to the end of a file (without modifying any data already in the file). Since ios::out is the default, the second constructor argument in line 12 is not required. Existing files opened with mode ios::out are truncated—all data in the file is discarded. If the specified file does not yet exist, then the ofstream object creates the file, using that filename. Prior to C++11, the filename was specified as a pointer-based string—as of C++11, it can also be specified as a string object.

[image: Image] Error-Prevention Tip 14.1

Use caution when opening an existing file for output (ios::out), especially when you want to preserve the file’s contents, which will be discarded without warning.

Line 12 creates an ofstream object named outClientFile associated with the file clients.txt that’s opened for output. The arguments "clients.txt" and ios::out are passed to the ofstream constructor, which opens the file—this establishes a “line of communication” with the file. By default, ofstream objects are opened for output, so line 12 could have used the alternate statement

ofstream outClientFile("clients.txt");

to open clients.txt for output. Figure 14.4 lists the file-open modes. These modes can also be combined, as we discuss in Section 14.8.

[image: Image]

Fig. 14.4. File open modes.

Opening a File via the open Member Function

You can create an ofstream object without opening a specific file—in this case, a file can be attached to the object later. For example, the statement

ofstream outClientFile;

creates an ofstream object that’s not yet associated with a file. The ofstream member function open opens a file and attaches it to an existing ofstream object as follows:

outClientFile.open("clients.txt", ios::out);

[image: Image] Error-Prevention Tip 14.2

Some operating systems allow you to open the same file multiple times simultaneously. Avoid doing this because it can lead to subtle problems.

Testing Whether a File Was Opened Successfully

After creating an ofstream object and attempting to open it, the program tests whether the open operation was successful. The if statement in lines 15–19 uses the overloaded ios member function operator! to determine whether the open operation succeeded. The condition returns a true value if either the failbit or the badbit (see Chapter 13) is set for the stream on the open operation. Some possible errors are attempting to open a nonexistent file for reading, attempting to open a file for reading or writing from a directory that you don’t have permission to access, and opening a file for writing when no disk space is available.

If the condition indicates an unsuccessful attempt to open the file, line 17 outputs the error message "File could not be opened", and line 18 invokes function exit to terminate the program. The argument to exit is returned to the environment from which the program was invoked. Passing EXIT_SUCCESS (also defined in <cstdlib>) to exit indicates that the program terminated normally; passing any other value (in this case EXIT_FAILURE) indicates that the program terminated due to an error.

The Overloaded void * Operator

Another overloaded ios member function—operator void *—converts the stream to a pointer, so it can be tested as 0 (i.e., the null pointer) or nonzero (i.e., any other pointer value). When a pointer value is used as a condition, C++ interprets a null pointer in a condition as the bool value false and interprets a non-null pointer as the bool value true. If the failbit or badbit has been set for the stream, 0 (false) is returned. The condition in the while statement of lines 29–33 invokes the operator void * member function on cin implicitly. The condition remains true as long as neither the failbit nor the badbit has been set for cin. Entering the end-of-file indicator sets the failbit for cin. The operator void * function can be used to test an input object for end-of-file, but you can also call member function eof on the input object.

Processing Data

If line 12 opens the file successfully, the program begins processing data. Lines 21–22 prompt the user to enter either the various fields for each record or the end-of-file indicator when data entry is complete. Figure 14.5 lists the keyboard combinations for entering end-of-file for various computer systems.

[image: Image]

Fig. 14.5. End-of-file key combinations.

Line 29 extracts each set of data and determines whether end-of-file has been entered. When end-of-file is encountered or bad data is entered, operator void * returns the null pointer (which converts to the bool value false) and the while statement terminates. The user enters end-of-file to inform the program to process no additional data. The end-of-file indicator is set when the user enters the end-of-file key combination. The while statement loops until the end-of-file indicator is set (or bad data is entered).

Line 31 writes a set of data to the file clients.txt, using the stream insertion operator << and the outClientFile object associated with the file at the beginning of the program. The data may be retrieved by a program designed to read the file (see Section 14.4). The file created in Fig. 14.3 is simply a text file, so it can be viewed by any text editor.

Closing a File

Once the user enters the end-of-file indicator, main terminates. This implicitly invokes outClientFile’s destructor, which closes the clients.txt file. You also can close the ofstream object explicitly, using member function close as follows:

outClientFile.close();

[image: Image] Error-Prevention Tip 14.3

Always close a file as soon as it’s no longer needed in a program

The Sample Execution

In the sample execution for the program of Fig. 14.3, the user enters information for five accounts, then signals that data entry is complete by entering end-of-file (^Z is displayed for Microsoft Windows). This dialog window does not show how the data records appear in the file. To verify that the program created the file successfully, the next section shows how to create a program that reads this file and prints its contents.

14.4. Reading Data from a Sequential File

Files store data so it may be retrieved for processing when needed. The previous section demonstrated how to create a file for sequential access. We now discuss how to read data sequentially from a file. Figure 14.6 reads and displays the records from the clients.txt file that we created using the program of Fig. 14.3. Creating an ifstream object opens a file for input. The ifstream constructor can receive the filename and the file open mode as arguments. Line 15 creates an ifstream object called inClientFile and associates it with the clients.txt file. The arguments in parentheses are passed to the ifstream constructor, which opens the file and establishes a “line of communication” with the file.

Click here to view code image

 1 // Fig. 14.6: Fig14_06.cpp
 2 // Reading and printing a sequential file.
 3 #include <iostream>
 4 #include <fstream> // file stream
 5 #include <iomanip>
 6 #include <string>
 7 #include <cstdlib>
 8 using namespace std;
 9
10 void outputLine(int, const string &, double); // prototype
11
12 int main()
13 {
14 // ifstream constructor opens the file
15 ifstream inClientFile("clients.txt", ios::in);
16
17 // exit program if ifstream could not open file
18 if (!inClientFile)
19 {
20 cerr << "File could not be opened" << endl;
21 exit(EXIT_FAILURE);
22 } // end if
23
24 int account; // the account number
25 string name; // the account owner's name
26 double balance; // the account balance
27
28 cout << left << setw(10) << "Account" << setw(13)
29 << "Name" << "Balance" << endl << fixed << showpoint;
30
31 // display each record in file
32 while (inClientFile >> account >> name >> balance)
33 outputLine(account, name, balance);
34 } // end main
35
36 // display single record from file
37 void outputLine(int account, const string &name, double balance)
38 {
39 cout << left << setw(10) << account << setw(13) << name
40 << setw(7) << setprecision(2) << right << balance << endl;
41 } // end function outputLine

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

Fig. 14.6. Reading and printing a sequential file.

[image: Image] Good Programming Practice 14.1

If a file’s contents should not be modified, use ios::in to open it only for input. This prevents unintentional modification of the file’s contents and is another example of the principle of least privilege.

Opening a File for Input

Objects of class ifstream are opened for input by default, so the statement

ifstream inClientFile("clients.txt");

opens clients.txt for input. Just as with an ofstream object, an ifstream object can be created without opening a specific file, because a file can be attached to it later.

Ensuring That the File Was Opened

Before attempting to retrieve data from the file, the program uses the condition !inClientFile to determine whether the file was opened successfully.

Reading from the File

Line 32 reads a set of data (i.e., a record) from the file. After line 32 executes the first time, account has the value 100, name has the value "Jones" and balance has the value 24.98. Each time line 32 executes, it reads another record from the file into the variables account, name and balance. Line 33 displays the records, using function outputLine (lines 37–41), which uses parameterized stream manipulators to format the data for display. When the end of file has been reached, the implicit call to operator void * in the while condition returns the null pointer (which converts to the bool value false), the ifstream destructor closes the file and the program terminates.

File Position Pointers

To retrieve data sequentially from a file, programs normally start reading from the beginning of the file and read all the data consecutively until the desired data is found. It might be necessary to process the file sequentially several times (from the beginning of the file) during the execution of a program. Both istream and ostream provide member functions for repositioning the file-position pointer (the byte number of the next byte in the file to be read or written). These member functions are seekg (“seek get”) for istream and seekp (“seek put”) for ostream. Each istream object has a get pointer, which indicates the byte number in the file from which the next input is to occur, and each ostream object has a put pointer, which indicates the byte number in the file at which the next output should be placed. The statement

inClientFile.seekg(0);

repositions the file-position pointer to the beginning of the file (location 0) attached to inClientFile. The argument to seekg is a long integer. A second argument can be specified to indicate the seek direction, which can be ios::beg (the default) for positioning relative to the beginning of a stream, ios::cur for positioning relative to the current position in a stream or ios::end for positioning relative to the end of a stream. The file-position pointer is an integer value that specifies the location in the file as a number of bytes from the file’s starting location (this is also referred to as the offset from the beginning of the file). Some examples of positioning the get file-position pointer are

Click here to view code image

// position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg(n);

// position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

// position at end of fileObject
fileObject.seekg(0, ios::end);

The same operations can be performed using ostream member function seekp. Member functions tellg and tellp are provided to return the current locations of the get and put pointers, respectively. The following statement assigns the get file-position pointer value to variable location of type long:

location = fileObject.tellg();

Credit Inquiry Program

Figure 14.7 enables a credit manager to display the account information for those customers with zero balances (i.e., customers who do not owe the company any money), credit (negative) balances (i.e., customers to whom the company owes money), and debit (positive) balances (i.e., customers who owe the company money for goods and services received in the past). The program displays a menu and allows the credit manager to enter one of three options to obtain credit information. Option 1 produces a list of accounts with zero balances. Option 2 produces a list of accounts with credit balances. Option 3 produces a list of accounts with debit balances. Option 4 terminates program execution. Entering an invalid option displays the prompt to enter another choice. Lines 64–65 enable the program to read from the beginning of the file after end-of-file has been read.

Click here to view code image

 1 // Fig. 14.7: Fig14_07.cpp
 2 // Credit inquiry program.
 3 #include <iostream>
 4 #include <fstream>
 5 #include <iomanip>
 6 #include <string>
 7 #include <cstdlib>
 8 using namespace std;
 9
10 enum RequestType { ZERO_BALANCE = 1, CREDIT_BALANCE, DEBIT_BALANCE, END };
11 int getRequest();
12 bool shouldDisplay(int, double);
13 void outputLine(int, const string &, double);
14
15 int main()
16 {
17 // ifstream constructor opens the file
18 ifstream inClientFile("clients.txt", ios::in);
19
20 // exit program if ifstream could not open file
21 if (!inClientFile)
22 {
23 cerr << "File could not be opened" << endl;
24 exit(EXIT_FAILURE);
25 } // end if
26
27 int account; // the account number
28 string name; // the account owner's name
29 double balance; // the account balance
30
31 // get user's request (e.g., zero, credit or debit balance)
32 int request = getRequest();
33
34 // process user's request
35 while (request != END)
36 {
37 switch (request)
38 {
39 case ZERO_BALANCE:
40 cout << "\nAccounts with zero balances:\n";
41 break;
42 case CREDIT_BALANCE:
43 cout << "\nAccounts with credit balances:\n";
44 break;
45 case DEBIT_BALANCE:
46 cout << "\nAccounts with debit balances:\n";
47 break;
48 } // end switch
49
50 // read account, name and balance from file
51 inClientFile >> account >> name >> balance;
52
53 // display file contents (until eof)
54 while (!inClientFile.eof())
55 {
56 // display record
57 if (shouldDisplay(request, balance))
58 outputLine(account, name, balance);
59
60 // read account, name and balance from file
61 inClientFile >> account >> name >> balance;
62 } // end inner while
63
64 inClientFile.clear(); // reset eof for next input
65 inClientFile.seekg(0); // reposition to beginning of file
66 request = getRequest(); // get additional request from user
67 } // end outer while
68
69 cout << "End of run." << endl;
70 } // end main
71
72 // obtain request from user
73 int getRequest()
74 {
75 int request; // request from user
76
77 // display request options
78 cout << "\nEnter request" << endl
79 << " 1 - List accounts with zero balances" << endl
80 << " 2 - List accounts with credit balances" << endl
81 << " 3 - List accounts with debit balances" << endl
82 << " 4 - End of run" << fixed << showpoint;
83
84 do // input user request
85 {
86 cout << "\n? ";
87 cin >> request;
88 } while (request < ZERO_BALANCE && request > END);
89
90 return request;
91 } // end function getRequest
92
93 // determine whether to display given record
94 bool shouldDisplay(int type, double balance)
95 {
96 // determine whether to display zero balances
97 if (type == ZERO_BALANCE && balance == 0)
98 return true;
99
100 // determine whether to display credit balances
101 if (type == CREDIT_BALANCE && balance < 0)
102 return true;
103
104 // determine whether to display debit balances
105 if (type == DEBIT_BALANCE && balance > 0)
106 return true;
107
108 return false;
109 } // end function shouldDisplay
110
111 // display single record from file
112 void outputLine(int account, const string &name, double balance)
113 {
114 cout << left << setw(10) << account << setw(13) << name
115 << setw(7) << setprecision(2) << right << balance << endl;
116 } // end function outputLine

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 1

Accounts with zero balances:
300 White 0.00

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 2

Accounts with credit balances:
400 Stone -42.16

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 3

Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 4
End of run.

Fig. 14.7. Credit inquiry program.

14.5. Updating Sequential Files

Data that is formatted and written to a sequential file as shown in Section 14.3 cannot be modified without the risk of destroying other data in the file. For example, if the name “White” needs to be changed to “Worthington,” the old name cannot be overwritten without corrupting the file. The record for White was written to the file as

300 White 0.00

If this record were rewritten beginning at the same location in the file using the longer name, the record would be

300 Worthington 0.00

The new record contains six more characters than the original one. Therefore, the characters beyond the second “o” in “Worthington” would overwrite the beginning of the next sequential record in the file. The problem is that, in the formatted input/output model using the stream insertion operator << and the stream extraction operator >>, fields—and hence records—can vary in size. For example, values 7, 14, –117, 2074, and 27383 are all ints, which store the same number of “raw data” bytes internally (typically four bytes on 32-bit machines and eight bytes on 64-bit machines). However, these integers become different-sized fields, depending on their actual values, when output as formatted text (character sequences). So, the formatted input/output model usually is not used to update records in place. Sections 14.6–14.10 show how to perform inplace updates with fixed-length records.

Such updating can be done awkwardly. For example, to make the preceding name change, the records before 300 White 0.00 in a sequential file could be copied to a new file, the updated record then written to the new file, and the records after 300 White 0.00 copied to the new file. Then the old file could be deleted and the new file renamed. This requires processing every record in the file to update one record. If many records are being updated in one pass of the file, though, this technique can be acceptable.

14.6. Random-Access Files

So far, we’ve seen how to create sequential files and search them to locate information. Sequential files are inappropriate for instant-access applications, in which a particular record must be located immediately. Common instant-access applications are airline reservation systems, banking systems, point-of-sale systems, automated teller machines and other kinds of transaction-processing systems that require rapid access to specific data. A bank might have hundreds of thousands (or even millions) of other customers, yet, when a customer uses an automated teller machine, the program checks that customer’s account in a few seconds or less for sufficient funds. This kind of instant access is made possible with random-access files. Individual records of a random-access file can be accessed directly (and quickly) without having to search other records.

As we’ve said, C++ does not impose structure on a file. So the application that wants to use random-access files must create them. A variety of techniques can be used. Perhaps the easiest method is to require that all records in a file be of the same fixed length. Using same-size, fixed-length records makes it easy for a program to quickly calculate (as a function of the record size and the record key) the exact location of any record relative to the beginning of the file. We’ll soon see how this facilitates immediate access to specific records, even in large files.

Figure 14.8 illustrates C++’s view of a random-access file composed of fixed-length records (each record, in this case, is 100 bytes long). A random-access file is like a railroad train with many same-size cars—some empty and some with contents.

[image: Image]

Fig. 14.8. C++ view of a random-access file.

Data can be inserted into a random-access file without destroying other data in the file. Data stored previously also can be updated or deleted without rewriting the entire file. In the following sections, we explain how to create a random-access file, enter data into the file, read the data both sequentially and randomly, update the data and delete data that is no longer needed.

14.7. Creating a Random-Access File

The ostream member function write outputs to the specified stream a fixed number of bytes, beginning at a specific location in memory. When the stream is associated with a file, function write writes the data at the location in the file specified by the put file-position pointer. The istream member function read inputs a fixed number of bytes from the specified stream to an area in memory beginning at a specified address. If the stream is associated with a file, function read inputs bytes at the location in the file specified by the “get” file-position pointer.

Writing Bytes with ostream Member Function write

When writing the integer number to a file, instead of using the statement

outFile << number;

which for a four-byte integer could print as few digits as one or as many as 11 (10 digits plus a sign, each requiring a single byte of storage), we can use the statement

Click here to view code image

outFile.write(reinterpret_cast< const char * >(&number),
 sizeof(number));

which always writes the binary version of the integer number’s four bytes (on a machine with four-byte integers). Function write treats its first argument as a group of bytes by viewing the object in memory as a const char *, which is a pointer to a byte. Starting from that location, function write outputs the number of bytes specified by its second argument—an integer of type size_t. As we’ll see, istream function read can subsequently be used to read the four bytes back into integer variable number.

Converting Between Pointer Types with the reinterpret_cast Operator

Unfortunately, most pointers that we pass to function write as the first argument are not of type const char *. To output objects of other types, we must convert the pointers to those objects to type const char *; otherwise, the compiler will not compile calls to function write. C++ provides the reinterpret_cast operator for cases like this in which a pointer of one type must be cast to an unrelated pointer type. Without a reinterpret_cast, the write statement that outputs the integer number will not compile because the compiler does not allow a pointer of type int * (the type returned by the expression &number) to be passed to a function that expects an argument of type const char *—as far as the compiler is concerned, these types are inconsistent.

A reinterpret_cast is performed at compile time and does not change the value of the object to which its operand points. Instead, it requests that the compiler reinterpret the operand as the target type (specified in the angle brackets following the keyword reinterpret_cast). In Fig. 14.11, we use reinterpret_cast to convert a ClientData pointer to a const char *, which reinterprets a ClientData object as bytes to be output to a file. Random-access file-processing programs rarely write a single field to a file. Typically, they write one object of a class at a time, as we show in the following examples.

[image: Image] Error-Prevention Tip 14.4

It’s easy to use reinterpret_cast to perform dangerous manipulations that could lead to serious execution-time errors.

[image: Image] Portability Tip 14.1

reinterpret_cast is compiler dependent and can cause programs to behave differently on different platforms. Use this operator only if it’s absolutely necessary.

[image: Image] Portability Tip 14.2

A program that reads unformatted data (written by write) must be compiled and executed on a system compatible with the program that wrote the data, because different systems may represent internal data differently.

Credit Processing Program

Consider the following problem statement:

Create a credit-processing program capable of storing at most 100 fixed-length records for a company that can have up to 100 customers. Each record should consist of an account number that acts as the record key, a last name, a first name and a balance. The program should be able to update an account, insert a new account, delete an account and insert all the account records into a formatted text file for printing.

The next few sections create this credit-processing program. Figure 14.11 illustrates opening a random-access file, defining the record format using an object of class ClientData (Figs. 14.9–14.10) and writing data to the disk in binary format. This program initializes all 100 records of the file credit.dat with empty objects, using function write. Each empty object contains the account number 0, emptylast and first name strings and the balance 0.0. Each record is initialized with the space in which the account data will be stored.

Click here to view code image

 1 // Fig. 14.9: ClientData.h
 2 // Class ClientData definition used in Fig. 14.11–Fig. 14.14.
 3 #ifndef CLIENTDATA_H
 4 #define CLIENTDATA_H
 5
 6 #include <string>
 7
 8 class ClientData
 9 {
10 public:
11 // default ClientData constructor
12 ClientData(int = 0, const std::string & = "",
13 const std::string & = "", double = 0.0);
14
15 // accessor functions for accountNumber
16 void setAccountNumber(int);
17 int getAccountNumber() const;
18
19 // accessor functions for lastName
20 void setLastName(const std::string &);
21 std::string getLastName() const;
22
23 // accessor functions for firstName
24 void setFirstName(const std::string &);
25 std::string getFirstName() const;
26
27 // accessor functions for balance
28 void setBalance(double);
29 double getBalance() const;
30 private:
31 int accountNumber;
32 char lastName[15];
33 char firstName[10];
34 double balance;
35 }; // end class ClientData
36
37 #endif

Fig. 14.9. ClientData class header.

Click here to view code image

 1 // Fig. 14.10: ClientData.cpp
 2 // Class ClientData stores customer's credit information.
 3 #include <string>
 4 #include "ClientData.h"
 5 using namespace std;
 6
 7 // default ClientData constructor
 8 ClientData::ClientData(int accountNumberValue, const string &lastName,
 9 const string &firstName, double balanceValue)
10 : accountNumber(accountNumberValue), balance(balanceValue)
11 {
12 setLastName(lastNameValue);
13 setFirstName(firstNameValue);
14 } // end ClientData constructor
15
16 // get account-number value
17 int ClientData::getAccountNumber() const
18 {
19 return accountNumber;
20 } // end function getAccountNumber
21
22 // set account-number value
23 void ClientData::setAccountNumber(int accountNumberValue)
24 {
25 accountNumber = accountNumberValue; // should validate
26 } // end function setAccountNumber
27
28 // get last-name value
29 string ClientData::getLastName() const
30 {
31 return lastName;
32 } // end function getLastName
33
34 // set last-name value
35 void ClientData::setLastName(const string &lastNameString)
36 {
37 // copy at most 15 characters from string to lastName
38 int length = lastNameString.size();
39 length = (length < 15 ? length : 14);
40 lastNameString.copy(lastName, length);
41 lastName[length] = '\0'; // append null character to lastName
42 } // end function setLastName
43
44 // get first-name value
45 string ClientData::getFirstName() const
46 {
47 return firstName;
48 } // end function getFirstName
49
50 // set first-name value
51 void ClientData::setFirstName(const string &firstNameString)
52 {
53 // copy at most 10 characters from string to firstName
54 int length = firstNameString.size();
55 length = (length < 10 ? length : 9);
56 firstNameString.copy(firstName, length);
57 firstName[length] = '\0'; // append null character to firstName
58 } // end function setFirstName
59
60 // get balance value
61 double ClientData::getBalance() const
62 {
63 return balance;
64 } // end function getBalance
65
66 // set balance value
67 void ClientData::setBalance(double balanceValue)
68 {
69 balance = balanceValue;
70 } // end function setBalance

Fig. 14.10. ClientData class represents a customer’s credit information.

Objects of class string do not have uniform size, rather they use dynamically allocated memory to accommodate strings of various lengths. We must maintain fixed-length records, so class ClientData stores the client’s first and last name in fixed-length char arrays (declared in Fig. 14.9, lines 32–33). Member functions setLastName (Fig. 14.10, lines 35–42) and setFirstName (Fig. 14.10, lines 51–58) each copy the characters of a string object into the corresponding char array. Consider function setLastName. Line 38 invokes string member function size to get the length of lastNameString. Line 39 ensures that length is fewer than 15 characters, then line 40 copies length characters from lastNameString into the char array lastName using string member function copy. Member function setFirstName performs the same steps for the first name.

Opening a File for Output in Binary Mode

In Fig. 14.11, line 11 creates an ofstream object for the file credit.dat. The second argument to the constructor—ios::out | ios::binary—indicates that we are opening the file for output in binary mode, which is required if we are to write fixed-length records. Multiple file-open modes are combined by separating each open mode from the next with the | operator, which is known as the bitwise inclusive OR operator. (Chapter 20 discusses this operator in detail.) Lines 24–25 cause the blankClient (which was constructed with default arguments at line 20) to be written to the credit.dat file associated with ofstream object outCredit. Remember that operator sizeof returns the size in bytes of the object contained in parentheses (see Chapter 8). The first argument to function write at line 24 must be of type const char *. However, the data type of &blankClient is ClientData *. To convert &blankClient to const char *, line 24 uses the cast operator reinterpret_cast, so the call to write compiles without issuing a compilation error.

Click here to view code image

 1 // Fig. 14.11: Fig14_11.cpp
 2 // Creating a randomly accessed file.
 3 #include <iostream>
 4 #include <fstream>
 5 #include <cstdlib>
 6 #include "ClientData.h" // ClientData class definition
 7 using namespace std;
 8
 9 int main()
10 {
11 ofstream outCredit("credit.dat", ios::out | ios::binary);
12
13 // exit program if ofstream could not open file
14 if (!outCredit)
15 {
16 cerr << "File could not be opened." << endl;
17 exit(EXIT_FAILURE);
18 } // end if
19
20 ClientData blankClient; // constructor zeros out each data member
21
22 // output 100 blank records to file
23 for (int i = 0; i < 100; ++i)
24 outCredit.write(reinterpret_cast< const char * >(&blankClient),
25 sizeof(ClientData));
26 } // end main

Fig. 14.11. Creating a random-access file with 100 blank records sequentially.

14.8. Writing Data Randomly to a Random-Access File

Figure 14.12 writes data to the file credit.dat and uses the combination of fstream functions seekp and write to store data at exact locations in the file. Function seekp sets the put file-position pointer to a specific position in the file, then function write outputs the data. Line 6 includes the header ClientData.h defined in Fig. 14.9, so the program can use ClientData objects.

Click here to view code image

 1 // Fig. 14.12: Fig14_12.cpp
 2 // Writing to a random-access file.
 3 #include <iostream>
 4 #include <fstream>
 5 #include <cstdlib>
 6 #include "ClientData.h" // ClientData class definition
 7 using namespace std;
 8
 9 int main()
10 {
11 int accountNumber;
12 string lastName;
13 string firstName;
14 double balance;
15
16 fstream outCredit("credit.dat", ios::in | ios::out | ios::binary);
17
18 // exit program if fstream cannot open file
19 if (!outCredit)
20 {
21 cerr << "File could not be opened." << endl;
22 exit(EXIT_FAILURE);
23 } // end if
24
25 cout << "Enter account number (1 to 100, 0 to end input)\n? ";
26
27 // require user to specify account number
28 ClientData client;
29 cin >> accountNumber;
30
31 // user enters information, which is copied into file
32 while (accountNumber > 0 && accountNumber <= 100)
33 {
34 // user enters last name, first name and balance
35 cout << "Enter lastname, firstname, balance\n? ";
36 cin >> lastName;
37 cin >> firstName;
38 cin >> balance;
39
40 // set record accountNumber, lastName, firstName and balance values
41 client.setAccountNumber(accountNumber);
42 client.setLastName(lastName);
43 client.setFirstName(firstName);
44 client.setBalance(balance);
45
46 // seek position in file of user-specified record
47 outCredit.seekp((client.getAccountNumber() - 1) *
48 sizeof(ClientData));
49
50 // write user-specified information in file
51 outCredit.write(reinterpret_cast< const char * >(&client),
52 sizeof(ClientData));
53
54 // enable user to enter another account
55 cout << "Enter account number\n? ";
56 cin >> accountNumber;
57 } // end while
58 } // end main

Enter account number (1 to 100, 0 to end input)
? 37
Enter lastname, firstname, balance
? Barker Doug 0.00
Enter account number
? 29
Enter lastname, firstname, balance
? Brown Nancy -24.54
Enter account number
? 96

Enter lastname, firstname, balance
? Stone Sam 34.98
Enter account number
? 88
Enter lastname, firstname, balance
? Smith Dave 258.34
Enter account number
? 33
Enter lastname, firstname, balance
? Dunn Stacey 314.33
Enter account number
? 0

Fig. 14.12. Writing to a random-access file.

Opening a File for Input and Output in Binary Mode

Line 16 uses the fstream object outCredit to open the existing credit.dat file. The file is opened for input and output in binary mode by combining the file-open modes ios::in, ios::out and ios::binary. Opening the existing credit.dat file in this manner ensures that this program can manipulate the records written to the file by the program of Fig. 14.11, rather than creating the file from scratch.

Positioning the File Position Pointer

Lines 47–48 position the put file-position pointer for object outCredit to the byte location calculated by

(client.getAccountNumber() - 1) * sizeof(ClientData)

Because the account number is between 1 and 100, 1 is subtracted from the account number when calculating the byte location of the record. Thus, for record 1, the file-position pointer is set to byte 0 of the file.

14.9. Reading from a Random-Access File Sequentially

In the previous sections, we created a random-access file and wrote data to that file. In this section, we develop a program that reads the file sequentially and prints only those records that contain data. These programs produce an additional benefit. See if you can determine what it is; we’ll reveal it at the end of this section.

The istream function read inputs a specified number of bytes from the current position in the specified stream into an object. For example, lines 31–32 from Fig. 14.13 read the number of bytes specified by sizeof(ClientData) from the file associated with ifstream object inCredit and store the data in the client record. Function read requires a first argument of type char *. Since &client is of type ClientData *, &client must be cast to char * using the cast operator reinterpret_cast.

Click here to view code image

 1 // Fig. 14.13: Fig14_13.cpp
 2 // Reading a random-access file sequentially.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <fstream>
 6 #include <cstdlib>
 7 #include "ClientData.h" // ClientData class definition
 8 using namespace std;
 9
10 void outputLine(ostream&, const ClientData &); // prototype
11
12 int main()
13 {
14 ifstream inCredit("credit.dat", ios::in | ios::binary);
15
16 // exit program if ifstream cannot open file
17 if (!inCredit)
18 {
19 cerr << "File could not be opened." << endl;
20 exit(EXIT_FAILURE);
21 } // end if
22
23 // output column heads
24 cout << left << setw(10) << "Account" << setw(16)
25 << "Last Name" << setw(11) << "First Name" << left
26 << setw(10) << right << "Balance" << endl;
27
28 ClientData client; // create record
29
30 // read first record from file
31 inCredit.read(reinterpret_cast< char * >(&client),
32 sizeof(ClientData));
33
34 // read all records from file
35 while (inCredit && !inCredit.eof())
36 {
37 // display record
38 if (client.getAccountNumber() != 0)
39 outputLine(cout, client);
40
41 // read next from file
42 inCredit.read(reinterpret_cast< char * >(&client),
43 sizeof(ClientData));
44 } // end while
45 } // end main
46
47 // display single record
48 void outputLine(ostream &output, const ClientData &record)
49 {
50 output << left << setw(10) << record.getAccountNumber()
51 << setw(16) << record.getLastName()
52 << setw(11) << record.getFirstName()
53 << setw(10) << setprecision(2) << right << fixed
54 << showpoint << record.getBalance() << endl;
55 } // end function outputLine

Account Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Fig. 14.13. Reading a random-access file sequentially.

Figure 14.13 reads every record in the credit.dat file sequentially, checks each record to determine whether it contains data, and displays formatted outputs for records containing data. The condition in line 35 uses the ios member function eof to determine when the end of file is reached and causes execution of the while statement to terminate. Also, if an error occurs when reading from the file, the loop terminates, because inCredit evaluates to false. The data input from the file is output by function outputLine (lines 48–55), which takes two arguments—an ostream object and a clientData structure to be output. The ostream parameter type is interesting, because any ostream object (such as cout) or any object of a derived class of ostream (such as an object of type ofstream) can be supplied as the argument. This means that the same function can be used, for example, to perform output to the standard-output stream and to a file stream without writing separate functions.

What about that additional benefit we promised? If you examine the output window, you’ll notice that the records are listed in sorted order (by account number). This is a consequence of how we stored these records in the file, using direct-access techniques. Sorting using direct-access techniques is relatively fast. The speed is achieved by making the file large enough to hold every possible record that might be created. This, of course, means that the file could be occupied sparsely most of the time, resulting in a waste of storage. This is an example of the space-time trade-off: By using large amounts of space, we can develop a much faster sorting algorithm. Fortunately, the continuous reduction in price of storage units has made this less of an issue.

14.10. Case Study: A Transaction-Processing Program

We now present a substantial transaction-processing program (Fig. 14.14) using a random-access file to achieve instant-access processing. The program maintains a bank’s account information. It updates existing accounts, adds new accounts, deletes accounts and stores a formatted listing of all current accounts in a text file. We assume that the program of Fig. 14.11 has been executed to create the file credit.dat and that the program of Fig. 14.12 has been executed to insert the initial data. Line 25 opens the credit.dat file by creating an fstream object for both reading and writing in binary format.

Click here to view code image

 1 // Fig. 14.14: Fig14_14.cpp
 2 // This program reads a random-access file sequentially, updates
 3 // data previously written to the file, creates data to be placed
 4 // in the file, and deletes data previously stored in the file.
 5 #include <iostream>
 6 #include <fstream>
 7 #include <iomanip>
 8 #include <cstdlib>
 9 #include "ClientData.h" // ClientData class definition
10 using namespace std;
11
12 int enterChoice();
13 void createTextFile(fstream&);
14 void updateRecord(fstream&);
15 void newRecord(fstream&);
16 void deleteRecord(fstream&);
17 void outputLine(ostream&, const ClientData &);
18 int getAccount(const char * const);
19
20 enum Choices { PRINT = 1, UPDATE, NEW, DELETE, END };
21
22 int main()
23 {
24 // open file for reading and writing
25 fstream inOutCredit("credit.dat", ios::in | ios::out | ios::binary);
26
27 // exit program if fstream cannot open file
28 if (!inOutCredit)
29 {
30 cerr << "File could not be opened." << endl;
31 exit (EXIT_FAILURE);
32 } // end if
33
34 int choice; // store user choice
35
36 // enable user to specify action
37 while ((choice = enterChoice()) != END)
38 {
39 switch (choice)
40 {
41 case PRINT: // create text file from record file
42 createTextFile(inOutCredit);
43 break;
44 case UPDATE: // update record
45 updateRecord(inOutCredit);
46 break;
47 case NEW: // create record
48 newRecord(inOutCredit);
49 break;
50 case DELETE: // delete existing record
51 deleteRecord(inOutCredit);
52 break;
53 default: // display error if user does not select valid choice
54 cerr << "Incorrect choice" << endl;
55 break;
56 } // end switch
57
58 inOutCredit.clear(); // reset end-of-file indicator
59 } // end while
60 } // end main
61
62 // enable user to input menu choice
63 int enterChoice()
64 {
65 // display available options
66 cout << "\nEnter your choice" << endl
67 << "1 - store a formatted text file of accounts" << endl
68 << " called \"print.txt\" for printing" << endl
69 << "2 - update an account" << endl
70 << "3 - add a new account" << endl
71 << "4 - delete an account" << endl
72 << "5 - end program\n? ";
73
74 int menuChoice;
75 cin >> menuChoice; // input menu selection from user
76 return menuChoice;
77 } // end function enterChoice
78
79 // create formatted text file for printing
80 void createTextFile(fstream &readFromFile)
81 {
82 // create text file
83 ofstream outPrintFile("print.txt", ios::out);
84
85 // exit program if ofstream cannot create file
86 if (!outPrintFile)
87 {
88 cerr << "File could not be created." << endl;
89 exit(EXIT_FAILURE);
90 } // end if
91
92 // output column heads
93 outPrintFile << left << setw(10) << "Account" << setw(16)
94 << "Last Name" << setw(11) << "First Name" << right
95 << setw(10) << "Balance" << endl;
96
97 // set file-position pointer to beginning of readFromFile
98 readFromFile.seekg(0);
99
100 // read first record from record file
101 ClientData client;
102 readFromFile.read(reinterpret_cast< char * >(&client),
103 sizeof(ClientData));
104
105 // copy all records from record file into text file
106 while (!readFromFile.eof())
107 {
108 // write single record to text file
109 if (client.getAccountNumber() != 0) // skip empty records
110 outputLine(outPrintFile, client);
111
112 // read next record from record file
113 readFromFile.read(reinterpret_cast< char * >(&client),
114 sizeof(ClientData));
115 } // end while
116 } // end function createTextFile
117
118 // update balance in record
119 void updateRecord(fstream &updateFile)
120 {
121 // obtain number of account to update
122 int accountNumber = getAccount("Enter account to update");
123
124 // move file-position pointer to correct record in file
125 updateFile.seekg((accountNumber - 1) * sizeof(ClientData));
126
127 // read first record from file
128 ClientData client;
129 updateFile.read(reinterpret_cast< char * >(&client),
130 sizeof(ClientData));
131
132 // update record
133 if (client.getAccountNumber() != 0)
134 {
135 outputLine(cout, client); // display the record
136
137 // request user to specify transaction
138 cout << "\nEnter charge (+) or payment (-): ";
139 double transaction; // charge or payment
140 cin >> transaction;
141
142 // update record balance
143 double oldBalance = client.getBalance();
144 client.setBalance(oldBalance + transaction);
145 outputLine(cout, client); // display the record
146
147 // move file-position pointer to correct record in file
148 updateFile.seekp((accountNumber - 1) * sizeof(ClientData));
149
150 // write updated record over old record in file
151 updateFile.write(reinterpret_cast< const char * >(&client),
152 sizeof(ClientData));
153 } // end if
154 else // display error if account does not exist
155 cerr << "Account #" << accountNumber
156 << " has no information." << endl;
157 } // end function updateRecord
158
159 // create and insert record
160 void newRecord(fstream &insertInFile)
161 {
162 // obtain number of account to create
163 int accountNumber = getAccount("Enter new account number");
164
165 // move file-position pointer to correct record in file
166 insertInFile.seekg((accountNumber - 1) * sizeof(ClientData));
167
168 // read record from file
169 ClientData client;
170 insertInFile.read(reinterpret_cast< char * >(&client),
171 sizeof(ClientData));
172
173 // create record, if record does not previously exist
174 if (client.getAccountNumber() == 0)
175 {
176 string lastName;
177 string firstName;
178 double balance;
179
180 // user enters last name, first name and balance
181 cout << "Enter lastname, firstname, balance\n? ";
182 cin >> setw(15) >> lastName;
183 cin >> setw(10) >> firstName;
184 cin >> balance;
185
186 // use values to populate account values
187 client.setLastName(lastName);
188 client.setFirstName(firstName);
189 client.setBalance(balance);
190 client.setAccountNumber(accountNumber);
191
192 // move file-position pointer to correct record in file
193 insertInFile.seekp((accountNumber - 1) * sizeof(ClientData));
194
195 // insert record in file
196 insertInFile.write(reinterpret_cast< const char * >(&client),
197 sizeof(ClientData));
198 } // end if
199 else // display error if account already exists
200 cerr << "Account #" << accountNumber
201 << " already contains information." << endl;
202 } // end function newRecord
203
204 // delete an existing record
205 void deleteRecord(fstream &deleteFromFile)
206 {
207 // obtain number of account to delete
208 int accountNumber = getAccount("Enter account to delete");
209
210 // move file-position pointer to correct record in file
211 deleteFromFile.seekg((accountNumber - 1) * sizeof(ClientData));
212
213 // read record from file
214 ClientData client;
215 deleteFromFile.read(reinterpret_cast< char * >(&client),
216 sizeof(ClientData));
217
218 // delete record, if record exists in file
219 if (client.getAccountNumber() != 0)
220 {
221 ClientData blankClient; // create blank record
222
223 // move file-position pointer to correct record in file
224 deleteFromFile.seekp((accountNumber - 1) *
225 sizeof(ClientData));
226
227 // replace existing record with blank record
228 deleteFromFile.write(
229 reinterpret_cast< const char * >(&blankClient),
230 sizeof(ClientData));
231
232 cout << "Account #" << accountNumber << " deleted.\n";
233 } // end if
234 else // display error if record does not exist
235 cerr << "Account #" << accountNumber << " is empty.\n";
236 } // end deleteRecord
237
238 // display single record
239 void outputLine(ostream &output, const ClientData &record)
240 {
241 output << left << setw(10) << record.getAccountNumber()
242 << setw(16) << record.getLastName()
243 << setw(11) << record.getFirstName()
244 << setw(10) << setprecision(2) << right << fixed
245 << showpoint << record.getBalance() << endl;
246 } // end function outputLine
247
248 // obtain account-number value from user
249 int getAccount(const char * const prompt)
250 {
251 int accountNumber;
252
253 // obtain account-number value
254 do
255 {
256 cout << prompt << " (1 - 100): ";
257 cin >> accountNumber;
258 } while (accountNumber < 1 || accountNumber > 100);
259
260 return accountNumber;
261 } // end function getAccount

Fig. 14.14. Bank account program.

The program has five options (Option 5 is for terminating the program). Option 1 calls function createTextFile to store a formatted list of all the account information in a text file called print.txt that may be printed. Function createTextFile (lines 80–116) takes an fstream object as an argument to be used to input data from the credit.dat file. Function createTextFile invokes istream member function read (lines 102–103) and uses the sequential-file-access techniques of Fig. 14.13 to input data from credit.dat. Function outputLine, discussed in Section 14.9, outputs the data to file print.txt. Note that function createTextFile uses istream member function seekg (line 98) to ensure that the file-position pointer is at the beginning of the file. After choosing Option 1, the print.txt file contains

Click here to view code image

Account Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Option 2 calls updateRecord (lines 119–157) to update an account. This function updates only an existing record, so the function first determines whether the specified record is empty. Lines 129–130 read data into object client, using istream member function read. Then line 133 compares the value returned by getAccountNumber of the client object to zero to determine whether the record contains information. If this value is zero, lines 155–156 print an error message indicating that the record is empty. If the record contains information, line 135 displays the record, using function outputLine, line 140 inputs the transaction amount and lines 143–152 calculate the new balance and rewrite the record to the file. A typical execution for Option 2 is

Click here to view code image

Enter account to update (1 - 100): 37
37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99
37 Barker Doug 87.99

Option 3 calls function newRecord (lines 160–202) to add a new account to the file. If the user enters an account number for an existing account, newRecord displays an error message indicating that the account exists (lines 200–201). This function adds a new account in the same manner as the program of Fig. 14.12. A typical execution for Option 3 is

Click here to view code image

Enter new account number (1 - 100): 22
Enter lastname, firstname, balance
? Johnston Sarah 247.45

Option 4 calls function deleteRecord (lines 205–236) to delete a record from the file. Line 208 prompts the user to enter the account number. Only an existing record may be deleted, so, if the specified account is empty, line 235 displays an error message. If the account exists, lines 221–230 reinitialize that account by copying an empty record (blankClient) to the file. Line 232 displays a message to inform the user that the record has been deleted. A typical execution for Option 4 is

Click here to view code image

Enter account to delete (1 - 100): 29
Account #29 deleted.

14.11. Object Serialization

This chapter and Chapter 13 introduced the object-oriented style of input/output. However, our examples concentrated on I/O of fundamental types rather than objects of user-defined types. In Chapter 10, we showed how to input and output objects using operator overloading. We accomplished object input by overloading the stream extraction operator, >>, for the appropriate istream. We accomplished object output by overloading the stream insertion operator, <<, for the appropriate ostream. In both cases, only an object’s data members were input or output, and, in each case, they were in a format meaningful only for objects of that particular type. An object’s member functions are not input or output with the object’s data; rather, one copy of the class’s member functions remains available internally and is shared by all objects of the class.

When object data members are output to a disk file, we lose the object’s type information. We store only the values of the object’s attributes, not type information, on the disk. If the program that reads this data knows the object type to which the data corresponds, the program can read the data into an object of that type as we did in our random-access file examples.

An interesting problem occurs when we store objects of different types in the same file. How can we distinguish them (or their collections of data members) as we read them into a program? The problem is that objects typically do not have type fields (we discussed this issue in Chapter 12).

One approach used by several programming languages is called object serialization. A so-called serialized object is an object represented as a sequence of bytes that includes the object’s data as well as information about the object’s type and the types of data stored in the object. After a serialized object has been written to a file, it can be read from the file and deserialized—that is, the type information and bytes that represent the object and its data can be used to recreate the object in memory. C++ does not provide a built-in serialization mechanism; however, there are third party and open source C++ libraries that support object serialization. The open source Boost C++ Libraries (www.boost.org) provide support for serializing objects in text, binary and extensible markup language (XML) formats (www.boost.org/libs/serialization/doc/index.html).

14.12. Wrap-Up

In this chapter, we presented various file-processing techniques to manipulate persistent data. You were introduced to the differences between character-based and byte-based streams, and to several file-processing class templates in header <fstream>. Then, you learned how to use sequential file processing to manipulate records stored in order, by a record-key field. You also learned how to use random-access files to “instantly” retrieve and manipulate fixed-length records. We presented a substantial transaction-processing program using a random-access file to achieve “instant-access” processing. Finally, we discussed the basic concepts of object serialization. We introduced the Standard Library array and vector classes in Chapter 7. In the next chapter, you’ll learn about the Standard Library’s other predefined data structures (known as containers) as well as the basics of iterators, which are used to manipulate container elements.

15. Standard Library Containers and Iterators

Objectives

In this chapter you’ll:

• Introduce the Standard Library containers, iterators and algorithms.

• Use the vector, list and deque sequence containers.

• Use the set, multiset, map and multimap associative containers.

• Use the stack, queue and priority_queue container adapters.

• Use iterators to access container elements.

• Use the copy algorithm and ostream_iterators to output a container.

• Use the bitset “near container” to implement the Sieve of Eratosthenes for determining prime numbers.

Outline

15.1 Introduction

15.2 Introduction to Containers

15.3 Introduction to Iterators

15.4 Introduction to Algorithms

15.5 Sequence Containers

15.5.1 vector Sequence Container

15.5.2 list Sequence Container

15.5.3 deque Sequence Container

15.6 Associative Containers

15.6.1 multiset Associative Container

15.6.2 set Associative Container

15.6.3 multimap Associative Container

15.6.4 map Associative Container

15.7 Container Adapters

15.7.1 stack Adapter

15.7.2 queue Adapter

15.7.3 priority_queue Adapter

15.8 Class bitset

15.9 Wrap-Up

Recommended Reading

15.1. Introduction

The Standard Library defines powerful, template-based, reusable components that implement many common data structures and algorithms used to process those data structures. We began introducing templates in Chapters 6–7 and use them extensively here and in Chapter 16. Historically, the features presented in this chapter were often referred to as the Standard Template Library or STL.1 We’ll occasionally refer to these features as the STL. In the C++ standard document, these features are simply referred to as part of the C++ Standard Library.

1. The STL was developed by Alexander Stepanov and Meng Lee at Hewlett-Packard and is based on their generic programming research, with significant contributions from David Musser.

Containers, Iterators and Algorithms

This chapter introduces three key components of the Standard Library—containers (templatized data structures), iterators and algorithms. Containers are data structures capable of storing objects of almost any data type (there are some restrictions). We’ll see that there are three styles of container classes—first-class containers, container adapters and near containers.

Common Member Functions Among Containers

Each container has associated member functions—a subset of these is defined in all containers. We illustrate most of this common functionality in our examples of array (which was introduced in Chapter 7), vector (which was introduced in Chapter 7 and we cover in more depth here), list (Section 15.5.2) and deque (Section 15.5.3).

Iterators

Iterators, which have properties similar to those of pointers, are used to manipulate container elements. Built-in arrays also can be manipulated by Standard Library algorithms, using pointers as iterators. We’ll see that manipulating containers with iterators is convenient and provides tremendous expressive power when combined with Standard Library algorithms—in some cases, reducing many lines of code to a single statement.

Algorithms

Standard Library algorithms are function templates that perform such common data manipulations as searching, sorting and comparing elements or entire containers. The Standard Library provides many algorithms. Most of them use iterators to access container elements. Each algorithm has minimum requirements for the types of iterators that can be used with it. We’ll see that containers support specific iterator types, some more powerful than others. A container’s supported iterator type determines whether the container can be used with a specific algorithm. Iterators encapsulate the mechanisms used to access container elements. This encapsulation enables many of the algorithms to be applied to various containers independently of the underlying container implementation. This also enables you to create new algorithms that can process the elements of multiple container types.

Custom Templatized Data Structures

It’s possible to build your own custom templatized data structures, including linked lists, queues, stacks and trees. Typically these are implemented with objects that are linked together via pointers. Such code is complex and error-prone—the slightest omissions or oversights can lead to serious memory-access violations and memory-leak errors with no forewarning from the compiler. If many programmers on a large project implement custom containers and algorithms for different tasks, the code becomes difficult to modify, maintain and debug.

[image: Image] Software Engineering Observation 15.1

Avoid reinventing the wheel; program with the components of the C++ Standard Library.

[image: Image] Error-Prevention Tip 15.1

The prepackaged, templatized Standard Library containers are sufficient for most applications. Using the Standard Library helps you reduce testing and debugging time.

[image: Image] Performance Tip 15.1

The Standard Library was conceived and designed for performance and flexibility.

15.2. Introduction to Containers

The Standard Library container types are shown in Fig. 15.1. The containers are divided into four major categories—sequence containers, ordered associative containers, unordered associative containers and container adapters.

[image: Image]

[image: Image]

Fig. 15.1. Standard Library container classes and container adapters.

Containers Overview

[image: Image]

The sequence containers represent linear data structures (i.e., all of their elements are conceptually “lined up in a row”), such as arrays, vectors and linked lists. Associative containers are nonlinear data structures that typically can locate elements stored in the containers quickly. Such containers can store sets of values or key–value pairs. As of C++11, the keys in associative containers are immutable (they cannot be modified). The sequence containers and associative containers are collectively referred to as the first-class containers. Stacks and queues are typically constrained versions of sequence containers. For this reason, the Standard Library implements class templates stack, queue and priority_queue as container adapters that enable a program to view a sequence container in a constrained manner. Class string supports the same functionality as a sequence container, but stores only character data.

Near Containers

There are other container types that are considered near containers—built-in arrays, bitsets for maintaining sets of flag values and valarrays for performing high-speed mathematical vector (not to be confused with the vector container) operations. These types are considered near containers because they exhibit some, but not all, capabilities of the first-class containers.

Common Container Functions

Most containers provide similar functionality. Many operations apply to all containers, and other operations apply to subsets of similar containers. Figure 15.2 describes the many functions that are commonly available in most Standard Library containers. Overloaded operators <, <=, >, >=, == and != are not provided for priority_queues. Overloaded operators <, <=, > and >= are not provided for the unordered associative containers. Member functions rbegin, rend, crbegin and crend are not available in a forward_list. Before using any container, you should study its capabilities.

[image: Image]

[image: Image]

[image: Image]

Fig. 15.2. Common member functions for most Standard Library containers.

First-Class Container Common Nested Types

Figure 15.3 shows the common first-class container nested types (types defined inside each container class definition). These are used in template-based declarations of variables, parameters to functions and return values from functions (as you’ll see in this chapter and Chapter 16). For example, value_type in each container always represents the type of elements stored in the container. The types reverse_iterator and const_reverse_iterator are not provided by class forward_list.

[image: Image]

Fig. 15.3. Nested types found in first-class containers.

Requirements for Container Elements

[image: Image]

Before using a Standard Library container, it’s important to ensure that the type of objects being stored in the container supports a minimum set of functionality. When an object is inserted into a container, a copy of the object is made. For this reason, the object type should provide a copy constructor and copy assignment operator (custom or default versions, depending on whether the class uses dynamic memory). Also, the ordered associative containers and many algorithms require elements to be compared—for this reason, the object type should provide less-than (<) and equality (==) operators. As of C++11, objects can also be moved into container elements, in which case the object type needs a move constructor and move assignment operator—Chapter 24 discusses move semantics.

15.3. Introduction to Iterators

Iterators have many similarities to pointers and are used to point to first-class container elements and for other purposes. Iterators hold state information sensitive to the particular containers on which they operate; thus, iterators are implemented for each type of container. Certain iterator operations are uniform across containers. For example, the dereferencing operator (*) dereferences an iterator so that you can use the element to which it points. The ++ operation on an iterator moves it to the container’s next element (much as incrementing a pointer into a built-in array aims the pointer at the next array element).

First-class containers provide member functions begin and end. Function begin returns an iterator pointing to the first element of the container. Function end returns an iterator pointing to the first element past the end of the container (one past the end)—a non-existent element that’s frequently used to determine when the end of a container is reached. If iterator i points to a particular element, then ++i points to the “next” element and *i refers to the element pointed to by i. The iterator resulting from end is typically used in an equality or inequality comparison to determine whether the “moving iterator” (i in this case) has reached the end of the container.

An object of a container’s iterator type refers to a container element that can be modified. An object of a container’s const_iterator type refers to a container element that cannot be modified.

Using istream_iterator for Input and ostream_iterator for Output

We use iterators with sequences (also called ranges). These sequences can be in containers, or they can be input sequences or output sequences. The program of Fig. 15.4 demonstrates input from the standard input (a sequence of data for input into a program), using an istream_iterator, and output to the standard output (a sequence of data for output from a program), using an ostream_iterator. The program inputs two integers from the user at the keyboard and displays the sum of the integers. As you’ll see later in this chapter, istream_iterators and ostream_iterators can be used with the Standard Library algorithms to create powerful statements. For example, you can use an ostream_iterator with the copy algorithm to copy a container’s entire contents to the standard output stream with a single statement.

Click here to view code image

 1 // Fig. 15.4: fig15_04.cpp
 2 // Demonstrating input and output with iterators.
 3 #include <iostream>
 4 #include <iterator> // ostream_iterator and istream_iterator
 5 using namespace std;
 6
 7 int main()
 8 {
 9 cout << "Enter two integers: ";
10
11 // create istream_iterator for reading int values from cin
12 istream_iterator< int > inputInt(cin);
13
14 int number1 = *inputInt; // read int from standard input
15 ++inputInt; // move iterator to next input value
16 int number2 = *inputInt; // read int from standard input
17
18 // create ostream_iterator for writing int values to cout
19 ostream_iterator< int > outputInt(cout);
20
21 cout << "The sum is: ";
22 *outputInt = number1 + number2; // output result to cout
23 cout << endl;
24 } // end main

Enter two integers: 12 25
The sum is: 37

Fig. 15.4. Demonstrating input and output with iterators.

istream_iterator

Line 12 creates an istream_iterator that’s capable of extracting (inputting) int values from the standard input object cin. Line 14 dereferences iterator inputInt to read the first integer from cin and assigns that integer to number1. The dereferencing operator * applied to iterator inputInt gets the value from the stream associated with inputInt; this is similar to dereferencing a pointer. Line 15 positions iterator inputInt to the next value in the input stream. Line 16 inputs the next integer from inputInt and assigns it to number2.

ostream_iterator

Line 19 creates an ostream_iterator that’s capable of inserting (outputting) int values in the standard output object cout. Line 22 outputs an integer to cout by assigning to *outputInt the sum of number1 and number2. Notice that we use the dereferenced outputInt iterator as an lvalue in the assignment statement. If you want to output another value using outputInt, the iterator must be incremented with ++ first. Either the prefix or postfix increment can be used—we use the prefix form for performance reasons because it does not create a temporary object.

[image: Image] Error-Prevention Tip 15.2

The * (dereferencing) operator when applied to a const iterator returns a reference to const for the container element, disallowing the use of non-const member functions.

Iterator Categories and Iterator Category Hierarchy

Figure 15.5 shows the iterator categories. Each category provides a specific set of functionality. Figure 15.6 illustrates the hierarchy of iterator categories. As you follow the hierarchy from bottom to top, each iterator category supports all the functionality of the categories below it in the figure. Thus the “weakest” iterator types are at the bottom and the most powerful one is at the top. Note that this is not an inheritance hierarchy.

[image: Image]

Fig. 15.5. Iterator categories.

[image: Image]

Fig. 15.6. Iterator category hierarchy.

Container Support for Iterators

The iterator category that each container supports determines whether that container can be used with specific algorithms. Containers that support random-access iterators can be used with all Standard Library algorithms—with the exception that if an algorithm requires changes to a container’s size, the algorithm can’t be used on built-in arrays or array objects. Pointers into built-in arrays can be used in place of iterators with most algorithms. Figure 15.7 shows the iterator category of each container. The first-class containers, strings and built-in arrays are all traversable with iterators.

[image: Image]

Fig. 15.7. Iterator types supported by each container.

Predefined Iterator typedefs

Figure 15.8 shows the predefined iterator typedefs that are found in the Standard Library container class definitions. Not every typedef is defined for every container. We use const versions of the iterators for traversing const containers or non-const containers that should not be modified. We use reverse iterators to traverse containers in the reverse direction.

[image: Image]

Fig. 15.8. Iterator typedefs.

[image: Image] Error-Prevention Tip 15.3

Operations performed on a const_iterator return references to const to prevent modification to elements of the container being manipulated. Using const_iterators where appropriate is another example of the principle of least privilege.

Iterator Operations

Figure 15.9 shows operations that can be performed on each iterator type. In addition to the operators shown for all iterators, iterators must provide default constructors, copy constructors and copy assignment operators. A forward iterator supports ++ and all of the input and output iterator capabilities. A bidirectional iterator supports -- and all the capabilities of forward iterators. A random access iterator supports all of the operations shown in the table. For input iterators and output iterators, it’s not possible to save the iterator then use the saved value later.

[image: Image]

[image: Image]

Fig. 15.9. Iterator operations for each type of iterator.

15.4. Introduction to Algorithms

The Standard Library provides scores of algorithms you’ll use frequently to manipulate a variety of containers. Inserting, deleting, searching, sorting and others are appropriate for some or all of the sequence and associative containers. The algorithms operate on container elements only indirectly through iterators. Many algorithms operate on sequences of elements defined by iterators pointing to the first element of the sequence and to one element past the last element. It’s also possible to create your own new algorithms that operate in a similar fashion so they can be used with the Standard Library containers and iterators. In this chapter, we’ll use the copy algorithm in many examples to copy a container’s contents to the standard output. We discuss many Standard Library algorithms in Chapter 16.

15.5. Sequence Containers

The C++ Standard Template Library provides five sequence containers—array, vector, deque, list and forward_list. Class templates array, vector and deque are based on built-in arrays. Class templates list and forward_list implement linked-list data structures. We’ve already discussed and used class template array extensively, so we do not cover it again here.

Performance and Choosing the Appropriate Container

Figure 15.2 presented the operations common to most of the Standard Library containers. Beyond these operations, each container typically provides a variety of other capabilities. Many of these are common to several containers, but they’re not always equally efficient for each container.

[image: Image] Software Engineering Observation 15.2

It’s usually preferable to reuse Standard Library containers rather than developing customized templatized data structures. For novices, vector is typically satisfactory for most applications.

[image: Image] Performance Tip 15.2

Insertion at the back of a vector is efficient. The vector simply grows, if necessary, to accommodate the new item. It’s expensive to insert (or delete) an element in the middle of a vector—the entire portion of the vector after the insertion (or deletion) point must be moved, because vector elements occupy contiguous cells in memory.

[image: Image] Performance Tip 15.3

Applications that require frequent insertions and deletions at both ends of a container normally use a deque rather than a vector. Although we can insert and delete elements at the front and back of both a vector and a deque, class deque is more efficient than vector for doing insertions and deletions at the front.

[image: Image] Performance Tip 15.4

Applications with frequent insertions and deletions in the middle and/or at the extremes of a container normally use a list, due to its efficient implementation of insertion and deletion anywhere in the data structure.

15.5.1. vector Sequence Container

[image: Image]

Class template vector, which we introduced in Section 7.10, provides a data structure with contiguous memory locations. This enables efficient, direct access to any element of a vector via the subscript operator [], exactly as with a built-in array. Like class template array, template vector is most commonly used when the data in the container must be easily accessible via a subscript or will be sorted, and when the number of elements may need to grow. When a vector’s memory is exhausted, the vector allocates a larger built-in array, copies (or moves; Chapter 24) the original elements into the new built-in array and deallocates the old built-in array. .

[image: Image] Performance Tip 15.5

Choose the vector container for the best random-access performance in a container that can grow.

[image: Image] Performance Tip 15.6

Objects of class template vector provide rapid indexed access with the overloaded subscript operator [] because they’re stored in contiguous memory like a built-in array or an array object.

Using vectors and Iterators

Figure 15.10 illustrates several functions of the vector class template. Many of these functions are available in every first-class container. You must include header <vector> to use class template vector.

Click here to view code image

 1 // Fig. 15.10: Fig15_10.cpp
 2 // Standard Library vector class template.
 3 #include <iostream>
 4 #include <vector> // vector class-template definition
 5 using namespace std;
 6
 7 // prototype for function template printVector
 8 template < typename T > void printVector(const vector< T > &integers2);
 9
10 int main()
11 {
12 const size_t SIZE = 6; // define array size
13 int values[SIZE] = { 1, 2, 3, 4, 5, 6 }; // initialize values
14 vector< int > integers; // create vector of ints
15
16 cout << "The initial size of integers is: " << integers.size()
17 << "\nThe initial capacity of integers is: " << integers.capacity();
18
19 // function push_back is in vector, deque and list
20 integers.push_back(2);
21 integers.push_back(3);
22 integers.push_back(4);
23
24 cout << "\nThe size of integers is: " << integers.size()
25 << "\nThe capacity of integers is: " << integers.capacity();
26 cout << "\n\nOutput built-in array using pointer notation: ";
27
28 // display array using pointer notation
29 for (const int *ptr = begin(values); ptr != end(values); ++ptr)
30 cout << *ptr << ' ';
31
32 cout << "\nOutput vector using iterator notation: ";
33 printVector(integers);
34 cout << "\nReversed contents of vector integers: ";
35
36 // display vector in reverse order using const_reverse_iterator
37 for (auto reverseIterator = integers.crbegin();
38 reverseIterator!= integers.crend(); ++reverseIterator)
39 cout << *reverseIterator << ' ';
40
41 cout << endl;
42 } // end main
43
44 // function template for outputting vector elements
45 template < typename T > void printVector(const vector< T > &integers2)
46 {
47 // display vector elements using const_iterator
48 for (auto constIterator = integers2.cbegin();
49 constIterator != integers2.cend(); ++constIterator)
50 cout << *constIterator << ' ';
51 } // end function printVector

The initial size of integers is: 0
The initial capacity of integers is: 0
The size of integers is: 3
The capacity of integers is: 4

Output built-in array using pointer notation: 1 2 3 4 5 6
Output vector using iterator notation: 2 3 4
Reversed contents of vector integers: 4 3 2

Fig. 15.10. Standard Library vector class template.

Creating a vector

Line 14 defines an instance called integers of class template vector that stores int values. When this object is instantiated, an empty vector is created with size 0 (i.e., the number of elements stored in the vector) and capacity 0 (i.e., the number of elements that can be stored without allocating more memory to the vector).

vector Member Functions size and capacity

Lines 16 and 17 demonstrate the size and capacity functions; each initially returns 0 for vector v in this example. Function size—available in every container except forward_List—returns the number of elements currently stored in the container. Function capacity (specific to vector and deque) returns the number of elements that can be stored in the vector before the vector needs to dynamically resize itself to accommodate more elements.

vector Member Function push_back

Lines 20–22 use function push_back—available in sequence containers other than array and forward_list—to add an element to the end of the vector. If an element is added to a full vector, the vector increases its size—some implementations have the vector double its capacity. Sequence containers other than array and vector also provide a push_front function.

[image: Image] Performance Tip 15.7

It can be wasteful to double a vector’s size when more space is needed. For example, a full vector of 1,000,000 elements resizes to accommodate 2,000,000 elements when a new element is added. This leaves 999,999 unused elements. You can use resize and reserve to control space usage better.

Updated size and capacity After Modifying a vector

Lines 24 and 25 use size and capacity to illustrate the new size and capacity of the vector after the three push_back operations. Function size returns 3—the number of elements added to the vector. Function capacity returns 4 (though this could vary by compiler), indicating that we can add one more element before the vector needs to add more memory. When we added the first element, the vector allocated space for one element, and the size became 1 to indicate that the vector contained only one element. When we added the second element, the capacity doubled to 2 and the size became 2 as well. When we added the third element, the capacity doubled again to 4. So we can actually add another element before the vector needs to allocate more space. When the vector eventually fills its allocated capacity and the program attempts to add one more element to the vector, the vector will double its capacity to eight elements.

vector Growth

The manner in which a vector grows to accommodate more elements—a time consuming operation—is not specified by the C++ Standard. C++ library implementers use various clever schemes to minimize the overhead of resizing a vector. Hence, the output of this program may vary, depending on the version of vector that comes with your compiler. Some library implementers allocate a large initial capacity. If a vector stores a small number of elements, such capacity may be a waste of space. However, it can greatly improve performance if a program adds many elements to a vector and does not have to reallocate memory to accommodate those elements. This is a classic space–time trade-off. Library implementors must balance the amount of memory used against the amount of time required to perform various vector operations.

Outputting Built-in Array Contents with Pointers

[image: Image]

Lines 29–30 demonstrate how to output the contents of the built-in array values using pointers and pointer arithmetic. Pointers into a built-in array can be used as iterators. Recall from Section 8.5 that C++11 functions begin and end (line 29) from the <iterator> header each take a built-in array as an argument. Function begin returns an iterator pointing to the built-in array’s first element and function end returns an iterator representing the position one element after the end of the built-in array. Functions begin and end may also receive container objects as arguments. Note that we use the != operator in the loop-continuation condition. When iterating using pointers to built-in array elements, it’s common for the loop-continuation condition to test whether the pointer has reached the end of the built-in array. This technique is commonly used by the standard library algorithms.

Outputting vector Contents with Iterators

[image: Image]

Line 33 calls function printVector (defined in lines 45–51) to output the contents of a vector using iterators. The function receives a reference to a const vector. The for statement in lines 48–50 initializes control variable constIterator using vector member function cbegin (new in C++11), which returns a const_iterator to the vector’s first element. We infer the control variable’s type (vector<int>::const_iterator) using the auto keyword. Prior to C++11, you would have used the overloaded begin member function to get the const_iterator—when called on a const container, begin returns a const_iterator. The other version of begin returns an iterator that can be used for non-const containers.

[image: Image]

The loop continues as long as constIterator has not reached the end of the vector. This is determined by comparing constIterator to the result of calling the vector’s cend member function (also new in C++11), which returns a const_iterator indicating the location past the last element of the vector. If constIterator is equal to this value, the end of the vector has been reached. Prior to C++11, you would have used the overloaded end member function to get the const_iterator. Functions cbegin, begin, cend and end are available for all first-class containers.

The body of the loop dereferences constIterator to get the current element’s value. Remember that the iterator acts like a pointer to the element and that operator * is overloaded to return a reference to the element. The expression ++constIterator (line 49) positions the iterator to the vector’s next element. Note that lines 48–50 could have been replaced with the following range-based for statement:

Click here to view code image

for (auto const &item : integers2)
 cout << item << ' ';

[image: Image] Common Programming Error 15.1

Attempting to dereference an iterator positioned outside its container is a runtime logic error. In particular, the iterator returned by end should not be dereferenced or incremented.

Displaying the vector’s Contents in Reverse with const_reverse_iterators

[image: Image]

Lines 37–39 use a for statement (similar to the one in printVector) to iterate through the vector in reverse. C++11 now includes vector member function crbegin and crend which return const_reverse_iterators that represent the starting and ending points when iterating through a container in reverse. Most first-class containers support this type of iterator. As with functions cbegin and cend, prior to C++11 you would have used the overloaded member functions rbegin and rend to obtain const_reverse_iterators or reverse_iterators, based on whether the container is const.

C++11: shrink_to_fit

[image: Image]

As of C++11, you can ask a vector or deque to return unneeded memory to the system by calling member function shrink_to_fit. This requests that the container reduce its capacity to the number of elements in the container. According to the C++ standard, implementations can ignore this request so that they can perform implementation-specific optimizations.

vector Element-Manipulation Functions

[image: Image]

Figure 15.11 illustrates functions for retrieving and manipulating vector elements. Line 16 uses an overloaded vector constructor that takes two iterators as arguments to initialize integers. Line 16 initializes integers with the contents of the array values from beginning of values up to—but not including—values.cend() (which points to the element after the end of values). In C++11, you can use list initializers to initialize vectors as in

vector< int > integers{ 1, 2, 3, 4, 5, 6 };

or

vector< int > integers = { 1, 2, 3, 4, 5, 6 };

However, these are not fully supported across compilers yet. For this reason, this chapter’s examples frequently initialize other containers with array contents as in line 16.

Click here to view code image

 1 // Fig. 15.11: fig15_15.cpp
 2 // Testing Standard Library vector class template
 3 // element-manipulation functions.
 4 #include <iostream>
 5 #include <array> // array class-template definition
 6 #include <vector> // vector class-template definition
 7 #include <algorithm> // copy algorithm
 8 #include <iterator> // ostream_iterator iterator
 9 #include <stdexcept> // out_of_range exception
10 using namespace std;
11
12 int main()
13 {
14 const size_t SIZE = 6;
15 array< int, SIZE > values = { 1, 2, 3, 4, 5, 6 };
16 vector< int > integers(values.cbegin(), values.cend());
17 ostream_iterator< int > output(cout, " ");
18
19 cout << "Vector integers contains: ";
20 copy(integers.cbegin(), integers.cend(), output);
21
22 cout << "\nFirst element of integers: " << integers.front()
23 << "\nLast element of integers: " << integers.back();
24
25 integers[0] = 7; // set first element to 7
26 integers.at(2) = 10; // set element at position 2 to 10
27
28 // insert 22 as 2nd element
29 integers.insert(integers.cbegin() + 1, 22);
30
31 cout << "\n\nContents of vector integers after changes: ";
32 copy(integers.cbegin(), integers.cend(), output);
33
34 // access out-of-range element
35 try
36 {
37 integers.at(100) = 777;
38 } // end try
39 catch (out_of_range &outOfRange) // out_of_range exception
40 {
41 cout << "\n\nException: " << outOfRange.what();
42 } // end catch
43
44 // erase first element
45 integers.erase(integers.cbegin());
46 cout << "\n\nVector integers after erasing first element: ";
47 copy(integers.cbegin(), integers.cend(), output);
48
49 // erase remaining elements
50 integers.erase(integers.cbegin(), integers.cend());
51 cout << "\nAfter erasing all elements, vector integers "
52 << (integers.empty() ? "is" : "is not") << " empty";
53
54 // insert elements from the array values
55 integers.insert(integers.cbegin(), values.cbegin(), values.cend());
56 cout << "\n\nContents of vector integers before clear: ";
57 copy(integers.cbegin(), integers.cend(), output);
58
59 // empty integers; clear calls erase to empty a collection
60 integers.clear();
61 cout << "\nAfter clear, vector integers "
62 << (integers.empty() ? "is" : "is not") << " empty" << endl;
63 } // end main

Vector integers contains: 1 2 3 4 5 6
First element of integers: 1
Last element of integers: 6

Contents of vector integers after changes: 7 22 2 10 4 5 6

Exception: invalid vector<T> subscript

Vector integers after erasing first element: 22 2 10 4 5 6
After erasing all elements, vector integers is empty

Contents of vector integers before clear: 1 2 3 4 5 6
After clear, vector integers is empty

Fig. 15.11. vector class template element-manipulation functions.

ostream_iterator

Line 17 defines an ostream_iterator called output that can be used to output integers separated by single spaces via cout. An ostream_iterator<int> outputs only values of type int or a compatible type. The first argument to the constructor specifies the output stream, and the second argument is a string specifying the separator for the values output—in this case, the string contains a space character. We use the ostream_iterator (defined in header <iterator>) to output the contents of the vector in this example.

copy Algorithm

Line 20 uses Standard Library algorithm copy (from header <algorithm>) to output the entire contents of integers to the standard output. The algorithm copies each element in a range from the location specified by the iterator in its first argument and up to, but not including, the location specified by the iterator in its second argument. These two arguments must satisfy input iterator requirements—they must be iterators through which values can be read from a container, such as const_iterators. They must also represent a range of elements—applying ++ to the first iterator must eventually cause it to reach the second iterator argument in the range. The elements are copied to the location specified by the output iterator (i.e., an iterator through which a value can be stored or output) specified as the last argument. In this case, the output iterator is an ostream_iterator that’s attached to cout, so the elements are copied to the standard output.

vector Member Functions front and back

Lines 22–23 use functions front and back (available for most sequence containers) to determine the vector’s first and last elements, respectively. Notice the difference between functions front and begin. Function front returns a reference to the first element in the vector, while function begin returns a random access iterator pointing to the first element in the vector. Also notice the difference between functions back and end. Function back returns a reference to the vector’s last element, whereas function end returns a random access iterator pointing to the location after the last element.

[image: Image] Common Programming Error 15.2

The vector must not be empty; otherwise, the results of front and back are undefined.

Accessing vector Elements

Lines 25–26 illustrate two ways to access vector elements. These can also be used with deque containers. Line 25 uses the subscript operator that’s overloaded to return either a reference to the value at the specified location or a reference to that const value, depending on whether the container is const. Function at (line 26) performs the same operation, but with bounds checking. Function at first checks the value supplied as an argument and determines whether it’s in the vector’s bounds. If not, function at throws an out_of_range exception (as demonstrated in lines 35–42). Figure 15.12 shows some of the Standard Library exception types. (The Standard Library exception types are discussed in Chapter 17.)

[image: Image]

Fig. 15.12. Some exception types in header <stdexcept>.

vector Member Function insert

[image: Image]

Line 29 uses one of the several overloaded insert functions provided by each sequence container (except array, which has a fixed size, and forward_list, which has the function insert_after instead). Line 29 inserts the value 22 before the element at the location specified by the iterator in the first argument. In this example, the iterator is pointing to the vector’s second element, so 22 is inserted as the second element and the original second element becomes the third element. Other versions of insert allow inserting multiple copies of the same value starting at a particular position, or inserting a range of values from another container, starting at a particular position. As of C++11, this version of member function insert returns an iterator pointing to the item that was inserted.

vector Member Function erase

Lines 45 and 50 use the two erase functions that are available in all first-class containers (except array, which has a fixed size, and forward_list, which has the function erase_after instead). Line 45 erases the element at the location specified by the iterator argument (in this example, the first element). Line 50 specifies that all elements in the range specified by the two iterator arguments should be erased. In this example, all the elements are erased. Line 52 uses function empty (available for all containers and adapters) to confirm that the vector is empty.

[image: Image] Common Programming Error 15.3

Normally erase destroys the objects that are erased from a container. However, erasing an element that contains a pointer to a dynamically allocated object does not delete the dynamically allocated memory—this can lead to a memory leak. If the element is a unique_ptr, the unique_ptr would be destroyed and the dynamically allocated memory would be deleted. If the element is a shared_ptr, the reference count to the dynamically allocated object would be decremented and the memory would be deleted only if the reference count reached 0.

vector Member Function insert with Three Arguments (Range insert)

[image: Image]

Line 55 demonstrates the version of function insert that uses the second and third arguments to specify the starting location and ending location in a sequence of values (in this case, from the array values) that should be inserted into the vector. Remember that the ending location specifies the position in the sequence after the last element to be inserted; copying occurs up to, but not including, this location. As of C++11, this version of member function insert returns an iterator pointing to the first item that was inserted—if nothing was inserted, the function returns its first argument.

vector Member Function clear

Finally, line 60 uses function clear (found in all first-class containers except array) to empty the vector—this does not necessarily return any of the vector’s memory to the system. [Note: We’ll cover many common container member functions in the next few sections. We’ll also cover many functions that are specific to each container.]

15.5.2. list Sequence Container

The list sequence container (from header <list>) allows insertion and deletion operations at any location in the container. If most of the insertions and deletions occur at the ends of the container, the deque data structure (Section 15.5.3) provides a more efficient implementation. Class template list is implemented as a doubly linked list—every node in the list contains a pointer to the previous node in the list and to the next node in the list. This enables class template list to support bidirectional iterators that allow the container to be traversed both forward and backward. Any algorithm that requires input, output, forward or bidirectional iterators can operate on a list. Many list member functions manipulate the elements of the container as an ordered set of elements.

C++11: forward_list Container

[image: Image]

C++11 now includes the new forward_list sequence container (header <forward_list>), which is implemented as a singly linked list—every node in the list contains a pointer to the next node in the list. This enables class template list to support forward iterators that allow the container to be traversed in the forward direction. Any algorithm that requires input, output or forward iterators can operate on a forward_list.

list Member Functions

In addition to the member functions in Fig. 15.2 and the common member functions of all sequence containers discussed in Section 15.5, class template list provides other member functions, including splice, push_front, pop_front, remove, remove_if, unique, merge, reverse and sort. Several of these member functions are list-optimized implementations of the Standard Library algorithms presented in Chapter 16. Both push_front and pop_front are also supported by forward_list and deque. Figure 15.13 demonstrates several features of class list. Remember that many of the functions presented in Figs. 15.10–15.11 can be used with class list, so we focus on the new features in this example’s discussion.

Click here to view code image

 1 // Fig. 15.13: fig15_13.cpp
 2 // Standard library list class template.
 3 #include <iostream>
 4 #include <array>
 5 #include <list> // list class-template definition
 6 #include <algorithm> // copy algorithm
 7 #include <iterator> // ostream_iterator
 8 using namespace std;
 9
10 // prototype for function template printList
11 template < typename T > void printList(const list< T > &listRef);
12
13 int main()
14 {
15 const size_t SIZE = 4;
16 array< int, SIZE > ints = { 2, 6, 4, 8 };
17 list< int > values; // create list of ints
18 list< int > otherValues; // create list of ints
19
20 // insert items in values
21 values.push_front(1);
22 values.push_front(2);
23 values.push_back(4);
24 values.push_back(3);
25
26 cout << "values contains: ";
27 printList(values);
28
29 values.sort(); // sort values
30 cout << "\nvalues after sorting contains: ";
31 printList(values);
32
33 // insert elements of ints into otherValues
34 otherValues.insert(otherValues.cbegin(), ints.cbegin(), ints.cend());
35 cout << "\nAfter insert, otherValues contains: ";
36 printList(otherValues);
37
38 // remove otherValues elements and insert at end of values
39 values.splice(values.cend(), otherValues);
40 cout << "\nAfter splice, values contains: ";
41 printList(values);
42
43 values.sort(); // sort values
44 cout << "\nAfter sort, values contains: ";
45 printList(values);
46
47 // insert elements of ints into otherValues
48 otherValues.insert(otherValues.cbegin(), ints.cbegin(), ints.cend());
49 otherValues.sort(); // sort the list
50 cout << "\nAfter insert and sort, otherValues contains: ";
51 printList(otherValues);
52
53 // remove otherValues elements and insert into values in sorted order
54 values.merge(otherValues);
55 cout << "\nAfter merge:\n values contains: ";
56 printList(values);
57 cout << "\n otherValues contains: ";
58 printList(otherValues);
59
60 values.pop_front(); // remove element from front
61 values.pop_back(); // remove element from back
62 cout << "\nAfter pop_front and pop_back:\n values contains: "
63 printList(values);
64
65 values.unique(); // remove duplicate elements
66 cout << "\nAfter unique, values contains: ";
67 printList(values);
68
69 // swap elements of values and otherValues
70 values.swap(otherValues);
71 cout << "\nAfter swap:\n values contains: ";
72 printList(values);
73 cout << "\n otherValues contains: ";
74 printList(otherValues);
75
76 // replace contents of values with elements of otherValues
77 values.assign(otherValues.cbegin(), otherValues.cend());
78 cout << "\nAfter assign, values contains: ";
79 printList(values);
80
81 // remove otherValues elements and insert into values in sorted order
82 values.merge(otherValues);
83 cout << "\nAfter merge, values contains: ";
84 printList(values);
85
86 values.remove(4); // remove all 4s
87 cout << "\nAfter remove(4), values contains: ";
88 printList(values);
89 cout << endl;
90 } // end main
91
92 // printList function template definition; uses
93 // ostream_iterator and copy algorithm to output list elements
94 template < typename T > void printList(const list< T > &listRef)
95 {
96 if (listRef.empty()) // list is empty
97 cout << "List is empty";
98 else
99 {
100 ostream_iterator< T > output(cout, " ");
101 copy(listRef.cbegin(), listRef.cend(), output);
102 } // end else
103 } // end function printList

values contains: 2 1 4 3
values after sorting contains: 1 2 3 4
After insert, otherValues contains: 2 6 4 8
After splice, values contains: 1 2 3 4 2 6 4 8
After sort, values contains: 1 2 2 3 4 4 6 8
After insert and sort, otherValues contains: 2 4 6 8
After merge:
 values contains: 1 2 2 2 3 4 4 4 6 6 8 8
 otherValues contains: List is empty
After pop_front and pop_back:
 values contains: 2 2 2 3 4 4 4 6 6 8r
After unique, values contains: 2 3 4 6 8
After swap:
 values contains: List is empty
 otherValues contains: 2 3 4 6 8
After assign, values contains: 2 3 4 6 8
After merge, values contains: 2 2 3 3 4 4 6 6 8 8
After remove(4), values contains: 2 2 3 3 6 6 8 8

Fig. 15.13. Standard Library list class template.

Creating list Objects

Lines 17–18 instantiate two list objects capable of storing ints. Lines 21–22 use function push_front to insert integers at the beginning of values. Function push_front is specific to classes forward_list, list and deque. Lines 23–24 use function push_back to insert integers at the end of values. Function push_back is common to all sequence containers, except array and forward_list.

list Member Function sort

Line 29 uses list member function sort to arrange the elements in the list in ascending order. [Note: This is different from the sort in the Standard Library algorithms.] A second version of function sort allows you to supply a binary predicate function that takes two arguments (values in the list), performs a comparison and returns a bool value indicating whether the first argument should come before the second in the sorted contents. This function determines the order in which the elements of the list are sorted. This version could be particularly useful for a list that stores pointers rather than values. [Note: We demonstrate a unary predicate function in Fig. 16.3. A unary predicate function takes a single argument, performs a comparison using that argument and returns a bool value indicating the result.]

list Member Function splice

Line 39 uses list function splice to remove the elements in otherValues and insert them into values before the iterator position specified as the first argument. There are two other versions of this function. Function splice with three arguments allows one element to be removed from the container specified as the second argument from the location specified by the iterator in the third argument. Function splice with four arguments uses the last two arguments to specify a range of locations that should be removed from the container in the second argument and placed at the location specified in the first argument. Class template forward_list provides a similar member function named splice_after.

list Member Function merge

After inserting more elements in otherValues and sorting both values and otherValues, line 54 uses list member function merge to remove all elements of otherValues and insert them in sorted order into values. Both lists must be sorted in the same order before this operation is performed. A second version of merge enables you to supply a binary predicate function that takes two arguments (values in the list) and returns a bool value. The predicate function specifies the sorting order used by merge.

list Member Function pop_front

Line 60 uses list function pop_front to remove the first element in the list. Line 60 uses function pop_back (available for sequence containers other than array and forward_list) to remove the last element in the list.

list Member Function unique

Line 65 uses list function unique to remove duplicate elements in the list. The list should be in sorted order (so that all duplicates are side by side) before this operation is performed, to guarantee that all duplicates are eliminated. A second version of unique enables you to supply a predicate function that takes two arguments (values in the list) and returns a bool value specifying whether two elements are equal.

list Member Function swap

Line 70 uses function swap (available to all first-class containers) to exchange the contents of values with the contents of otherValues.

list Member Functions assign and remove

Line 77 uses list function assign (available to all sequence containers) to replace the contents of values with the contents of otherValues in the range specified by the two iterator arguments. A second version of assign replaces the original contents with copies of the value specified in the second argument. The first argument of the function specifies the number of copies. Line 86 uses list function remove to delete all copies of the value 4 from the list.

15.5.3. deque Sequence Container

Class deque provides many of the benefits of a vector and a list in one container. The term deque is short for “double-ended queue.” Class deque is implemented to provide efficient indexed access (using subscripting) for reading and modifying its elements, much like a vector. Class deque is also implemented for efficient insertion and deletion operations at its front and back, much like a list (although a list is also capable of efficient insertions and deletions in the middle of the list). Class deque provides support for random-access iterators, so deques can be used with all Standard Library algorithms. One of the most common uses of a deque is to maintain a first-in, first-out queue of elements. In fact, a deque is the default underlying implementation for the queue adaptor (Section 15.7.2).

Additional storage for a deque can be allocated at either end of the deque in blocks of memory that are typically maintained as a built-in array of pointers to those blocks.2 Due to the noncontiguous memory layout of a deque, a deque iterator must be more “intelligent” than the pointers that are used to iterate through vectors, arrays or built-in arrays.

2. This is an implementation-specific detail, not a requirement of the C++ standard.

[image: Image] Performance Tip 15.8

In general, deque has higher overhead than vector.

[image: Image] Performance Tip 15.9

Insertions and deletions in the middle of a deque are optimized to minimize the number of elements copied, so it’s more efficient than a vector but less efficient than a list for this kind of modification.

Class deque provides the same basic operations as class vector, but like list adds member functions push_front and pop_front to allow insertion and deletion at the beginning of the deque, respectively.

Figure 15.14 demonstrates features of class deque. Remember that many of the functions presented in Fig. 15.10, Fig. 15.11 and Fig. 15.13 also can be used with class deque. Header <deque> must be included to use class deque.

Click here to view code image

 1 // Fig. 15.14: fig15_14.cpp
 2 // Standard Library deque class template.
 3 #include <iostream>
 4 #include <deque> // deque class-template definition
 5 #include <algorithm> // copy algorithm
 6 #include <iterator> // ostream_iterator
 7 using namespace std;
 8
 9 int main()
10 {
11 deque< double > values; // create deque of doubles
12 ostream_iterator< double > output(cout, " ");
13
14 // insert elements in values
15 values.push_front(2.2);
16 values.push_front(3.5);
17 values.push_back(1.1);
18
19 cout << "values contains: ";
20
21 // use subscript operator to obtain elements of values
22 for (size_t i = 0; i < values.size(); ++i)
23 cout << values[i] << ' ';
24
25 values.pop_front(); // remove first element
26 cout << "\nAfter pop_front, values contains: ";
27 copy(values.cbegin(), values.cend(), output);
28
29 // use subscript operator to modify element at location 1
30 values[1] = 5.4;
31 cout << "\nAfter values[1] = 5.4, values contains: ";
32 copy(values.cbegin(), values.cend(), output);
33 cout << endl;
34 } // end main

values contains: 3.5 2.2 1.1
After pop_front, values contains: 2.2 1.1
After values[1] = 5.4, values contains: 2.2 5.4

Fig. 15.14. Standard Library deque class template.

Line 11 instantiates a deque that can store double values. Lines 15–17 use functions push_front and push_back to insert elements at the beginning and end of the deque.

The for statement in lines 22–23 uses the subscript operator to retrieve the value in each element of the deque for output. The condition uses function size to ensure that we do not attempt to access an element outside the bounds of the deque.

Line 25 uses function pop_front to demonstrate removing the first element of the deque. Line 30 uses the subscript operator to obtain an lvalue. This enables values to be assigned directly to any element of the deque.

15.6. Associative Containers

The associative containers provide direct access to store and retrieve elements via keys (often called search keys). The four ordered associative containers are multiset, set, multimap and map. Each of these maintains its keys in sorted order. There are also four corresponding unordered associative containers—unordered_multiset, unordered_set, unordered_multimap and unordered_map—that offer the most of the same capabilities as their ordered counterparts. The primary difference between the ordered and unordered associative containers is that the unordered ones do not maintain their keys in sorted order. In this section, we focus on the ordered associative containers.

[image: Image] Performance Tip 15.10

The unordered associative containers might offer better performance for cases in which it’s not necessary to maintain keys in sorted order.

Iterating through an ordered associative container traverses it in the sort order for that container. Classes multiset and set provide operations for manipulating sets of values where the values are the keys—there is not a separate value associated with each key. The primary difference between a multiset and a set is that a multiset allows duplicate keys and a set does not. Classes multimap and map provide operations for manipulating values associated with keys (these values are sometimes referred to as mapped values). The primary difference between a multimap and a map is that a multimap allows duplicate keys with associated values to be stored and a map allows only unique keys with associated values. In addition to the common container member functions, ordered associative containers also support several other member functions that are specific to associative containers. Examples of each of the ordered associative containers and their common member functions are presented in the next several subsections.

15.6.1. multiset Associative Container

The multiset ordered associative container (from header <set>) provides fast storage and retrieval of keys and allows duplicate keys. The elements’ ordering is determined by a so-called comparator function object. For example, in an integer multiset, elements can be sorted in ascending order by ordering the keys with comparator function object less<int>. We discuss function objects in detail in Section 16.4. For this chapter, we’ll simply show how to use less<int> when declaring ordered associative containers. The data type of the keys in all ordered associative containers must support comparison based on the comparator function object—keys sorted with less<T> must support comparison with operator<. If the keys used in the ordered associative containers are of user-defined data types, those types must supply the appropriate comparison operators. A multiset supports bidirectional iterators (but not random-access iterators). In if the order of the keys is not important, you can use unordered_multiset (header <unordered_set>) instead.

Figure 15.15 demonstrates the multiset ordered associative container for a multiset of ints with keys that are sorted in ascending order. Containers multiset and set (Section 15.6.2) provide the same basic functionality.

Click here to view code image

 1 // Fig. 15.15: fig15_15.cpp
 2 // Standard Library multiset class template
 3 #include <array>
 4 #include <iostream>
 5 #include <set> // multiset class-template definition
 6 #include <algorithm> // copy algorithm
 7 #include <iterator> // ostream_iterator
 8 using namespace std;
 9
10 int main()
11 {
12 const size_t SIZE = 10;
13 array< int, SIZE > a = { 7, 22, 9, 1, 18, 30, 100, 22, 85, 13 };
14 multiset< int, less< int > > intMultiset; // multiset of ints
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "There are currently " << intMultiset.count(15)
18 << " values of 15 in the multiset\n";
19
20 intMultiset.insert(15); // insert 15 in intMultiset
21 intMultiset.insert(15); // insert 15 in intMultiset
22 cout << "After inserts, there are " << intMultiset.count(15)
23 << " values of 15 in the multiset\n\n";
24
25 // find 15 in intMultiset; find returns iterator
26 auto result = intMultiset.find(15);
27
28 if (result != intMultiset.end()) // if iterator not at end
29 cout << "Found value 15\n"; // found search value 15
30
31 // find 20 in intMultiset; find returns iterator
32 result = intMultiset.find(20);
33
34 if (result == intMultiset.end()) // will be true hence
35 cout << "Did not find value 20\n"; // did not find 20
36
37 // insert elements of array a into intMultiset
38 intMultiset.insert(a.cbegin(), a.cend());
39 cout << "\nAfter insert, intMultiset contains:\n";
40 copy(intMultiset.begin(), intMultiset.end(), output);
41
42 // determine lower and upper bound of 22 in intMultiset
43 cout << "\n\nLower bound of 22: "
44 << *(intMultiset.lower_bound(22));
45 cout << "\nUpper bound of 22: " << *(intMultiset.upper_bound(22));
46
47 // use equal_range to determine lower and upper bound
48 // of 22 in intMultiset
49 auto p = intMultiset.equal_range(22);
50
51 cout << "\n\nequal_range of 22:" << "\n Lower bound: "
52 << *(p.first) << "\n Upper bound: " << *(p.second);
53 cout << endl;
54 } // end main

There are currently 0 values of 15 in the multiset
After inserts, there are 2 values of 15 in the multiset

Found value 15
Did not find value 20

After insert, intMultiset contains:
1 7 9 13 15 15 18 22 22 30 85 100

Lower bound of 22: 22
Upper bound of 22: 30

equal_range of 22:
 Lower bound: 22
 Upper bound: 30

Fig. 15.15. Standard Library multiset class template.

Creating a multiset

[image: Image]

Line 14 creates a multiset of ints ordered in ascending order, using the function object less<int>. Ascending order is the default for a multiset, so less<int> can be omitted. C++11 fixes a compiler issue with spacing between the closing > of less<int> and the closing > of the multiset type. Before C++11, if you specified this multiset’s type as

multiset<int, less<int>> intMultiset;

the compiler would treat >> at the end of the type as the >> operator and generate a compilation error. For this reason, you were required to put a space between the closing > of less<int> and the closing > of the multiset type (or any other similar template type, such as vector<vector<int>>). As of C++11, the preceding declaration compiles correctly.

multiset Member Function count

Line 17 uses function count (available to all associative containers) to count the number of occurrences of the value 15 currently in the multiset.

multiset Member Function insert

Lines 20–21 use one of the several overloaded versions of function insert to add the value 15 to the multiset twice. A second version of insert takes an iterator and a value as arguments and begins the search for the insertion point from the iterator position specified. A third version of insert takes two iterators as arguments that specify a range of values to add to the multiset from another container.

multiset Member Function find

Line 26 uses function find (available to all associative containers) to locate the value 15 in the multiset. Function find returns an iterator or a const_iterator pointing to the location at which the value is found. If the value is not found, find returns an iterator or a const_iterator equal to the value returned by calling end on the container. Line 32 demonstrates this case.

Inserting Elements of Another Container into a multiset

Line 38 uses function insert to insert the elements of array a into the multiset. In line 40, the copy algorithm copies the elements of the multiset to the standard output in ascending order.

multiset Member Functions lower_bound and upper_bound

Lines 44 and 45 use functions lower_bound and upper_bound (available in all associative containers) to locate the earliest occurrence of the value 22 in the multiset and the element after the last occurrence of the value 22 in the multiset. Both functions return iterators or const_iterators pointing to the appropriate location or the iterator returned by end if the value is not in the multiset.

pair Objects and multiset Member Function equal_range

[image: Image]

Line 49 creates and intializes a pair object called p. Once again, we use C++11’s auto keyword to infer the variable’s type from its initializer—in this case, the return value of multiset member function equal_range, which is a pair object. Such objects associate pairs of values. The contents of a p will be two const_iterators for our multiset of ints. The multiset function equal_range returns a pair containing the results of calling both lower_bound and upper_bound. Type pair contains two public data members called first and second. Line 49 uses function equal_range to determine the lower_bound and upper_bound of 22 in the multiset. Line 52 uses p.first and p.second to access the lower_bound and upper_bound. We dereferenced the iterators to output the values at the locations returned from equal_range. Though we did not do so here, you should always ensure that the iterators returned by lower_bound, upper_bound and equal_range are not equal to the container’s end iterator before dereferencing the iterators.

C++11: Variadic Class Template tuple

[image: Image]

C++ also includes class template tuple, which is similar to pair, but can hold any number of items of various types. As of C++11, class template tuple has been reimplemented using variadic templates—templates that can receive a variable number of arguments. We discuss tuple and variadic templates in Chapter 24, C++11: Additional Features.

15.6.2. set Associative Container

The set associative container (from header <set>) is used for fast storage and retrieval of unique keys. The implementation of a set is identical to that of a multiset, except that a set must have unique keys. Therefore, if an attempt is made to insert a duplicate key into a set, the duplicate is ignored; because this is the intended mathematical behavior of a set, we do not identify it as a common programming error. A set supports bidirectional iterators (but not random-access iterators). If the order of the keys is not important, you can use unordered_set (header <unordered_set>) instead. Figure 15.16 demonstrates a set of doubles.

Click here to view code image

 1 // Fig. 15.16: fig15_16.cpp
 2 // Standard Library set class template.
 3 #include <iostream>
 4 #include <array>
 5 #include <set>
 6 #include <algorithm>
 7 #include <iterator> // ostream_iterator
 8 using namespace std;
 9
10 int main()
11 {
12 const size_t SIZE = 5;
13 array< double, SIZE > a = { 2.1, 4.2, 9.5, 2.1, 3.7 };
14 set< double, less< double > > doubleSet(a.begin(), a.end());
15 ostream_iterator< double > output(cout, " ");
16
17 cout << "doubleSet contains: ";
18 copy(doubleSet.begin(), doubleSet.end(), output);
19
20 // insert 13.8 in doubleSet; insert returns pair in which
21 // p.first represents location of 13.8 in doubleSet and
22 // p.second represents whether 13.8 was inserted
23 auto p = doubleSet.insert(13.8); // value not in set
24 cout << "\n\n" << *(p.first)
25 << (p.second ? " was" : " was not") << " inserted";
26 cout << "\ndoubleSet contains: ";
27 copy(doubleSet.begin(), doubleSet.end(), output);
28
29 // insert 9.5 in doubleSet
30 p = doubleSet.insert(9.5); // value already in set
31 cout << "\n\n" << *(p.first)
32 << (p.second ? " was" : " was not") << " inserted";
33 cout << "\ndoubleSet contains: ";
34 copy(doubleSet.begin(), doubleSet.end(), output);
35 cout << endl;
36 } // end main

doubleSet contains: 2.1 3.7 4.2 9.5

13.8 was inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

9.5 was not inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

Fig. 15.16. Standard Library set class template.

Line 14 creates a set of doubles ordered in ascending order, using the function object less<double>. The constructor call takes all the elements in array a and inserts them into the set. Line 18 uses algorithm copy to output the contents of the set. Notice that the value 2.1—which appeared twice in array—appears only once in doubleSet. This is because container set does not allow duplicates.

Line 23 defines and initializes a pair to store the result of a call to set function insert. The pair returned consists of a const_iterator pointing to the item in the set inserted and a bool value indicating whether the item was inserted—true if the item was not in the set; false if it was.

Line 23 uses function insert to place the value 13.8 in the set. The returned pair, p, contains an iterator p.first pointing to the value 13.8 in the set and a bool value that’s true because the value was inserted. Line 30 attempts to insert 9.5, which is already in the set. The output shows that 9.5 was not inserted again because sets don’t allow duplicate keys. In this case, p.first in the returned pair points to the existing 9.5 in the set.

15.6.3. multimap Associative Container

The multimap associative container is used for fast storage and retrieval of keys and associated values (often called key–value pairs). Many of the functions used with multisets and sets are also used with multimaps and maps. The elements of multimaps and maps are pairs of keys and values instead of individual values. When inserting into a multimap or map, a pair object that contains the key and the value is used. The ordering of the keys is determined by a comparator function object. For example, in a multimap that uses integers as the key type, keys can be sorted in ascending order by ordering them with comparator function object less<int>. Duplicate keys are allowed in a multimap, so multiple values can be associated with a single key. This is called a one-to-many relationship. For example, in a credit-card transaction-processing system, one credit-card account can have many associated transactions; in a university, one student can take many courses, and one professor can teach many students; in the military, one rank (like “private”) has many people. A multimap supports bidirectional iterators, but not random-access iterators. Figure 15.17 demonstrates the multimap associative container. Header <map> must be included to use class multimap. If the order of the keys is not important, you can use unordered_multimap (header <unordered_map>) instead.

[image: Image] Performance Tip 15.11

A multimap is implemented to efficiently locate all values paired with a given key.

Click here to view code image

 1 // Fig. 15.17: fig15_17.cpp
 2 // Standard Library multimap class template.
 3 #include <iostream>
 4 #include <map> // multimap class-template definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 multimap< int, double, less< int > > pairs; // create multimap
10
11 cout << "There are currently " << pairs.count(15)
12 << " pairs with key 15 in the multimap\n";
13
14 // insert two value_type objects in pairs
15 pairs.insert(make_pair(15, 2.7));
16 pairs.insert(make_pair(15, 99.3));
17
18 cout << "After inserts, there are " << pairs.count(15)
19 << " pairs with key 15\n\n";
20
21 // insert five value_type objects in pairs
22 pairs.insert(make_pair(30, 111.11));
23 pairs.insert(make_pair(10, 22.22));
24 pairs.insert(make_pair(25, 33.333));
25 pairs.insert(make_pair(20, 9.345));
26 pairs.insert(make_pair(5, 77.54));
27
28 cout << "Multimap pairs contains:\nKey\tValue\n";
29
30 // walk through elements of pairs
31 for (auto mapItem : pairs)
32 cout << mapItem.first << '\t' << mapItem.second << '\n';
33
34 cout << endl;
35 } // end main

There are currently 0 pairs with key 15 in the multimap
After inserts, there are 2 pairs with key 15

Multimap pairs contains:
Key Value
5 77.54
10 22.22
15 2.7
15 99.3
20 9.345
25 33.333
30 111.11

Fig. 15.17. Standard Library multimap class template.

Line 9 creates a multimap in which the key type is int, the type of a key’s associated value is double and the elements are ordered in ascending order. Line 11 uses function count to determine the number of key–value pairs with a key of 15 (none yet, since the container is currently empty).

[image: Image]

Line 15 uses function insert to add a new key–value pair to the multimap. The expression make_pair(15, 2.7) creates a pair object in which first is the key (15) of type int and second is the value (2.7) of type double. Function make_pair automatically uses the types that you specified for the keys and values in the multimap’s declaration (line 9). Line 16 inserts another pair object with the key 15 and the value 99.3. Then lines 18–19 output the number of pairs with key 15. As of C++11, you can use list initalization for pair objects, so line 15 can be simplified as

pairs.insert({ 15, 2.7 });

[image: Image]

Similarly, C++11 enables you to use list initialization to initialize an object being returned from a function. For example, if a function returns a pair containing an int and a double, you could write:

return { 15, 2.7 };

Lines 22–26 insert five additional pairs into the multimap. The range-based for statement in lines 31–32 outputs the contents of the multimap, including both keys and values. We infer the type of the loop’s control variable (a pair containing an int key and a double value) with keyword auto. Line 32 accesses the members of the current pair in each element of the multimap. Notice in the output that the keys appear in ascending order.

C++11: List Initializing a Key–Value Pair Container

[image: Image]

In this example, we used separate calls to member function insert to place key–value pairs in a multimap. If you know the key–value pairs in advance, you can use list initialization when you create the multimap. For example, the following statement initializes a multimap with three key–value pairs that are represented by the sublists in the main intializer list:

Click here to view code image

multimap< int, double, less< int > > pairs =
 { { 10, 22.22 }, { 20, 9.345 }, { 5, 77.54 } };

15.6.4. map Associative Container

The map associative container (from header <map>) performs fast storage and retrieval of unique keys and associated values. Duplicate keys are not allowed—a single value can be associated with each key. This is called a one-to-one mapping. For example, a company that uses unique employee numbers, such as 100, 200 and 300, might have a map that associates employee numbers with their telephone extensions—4321, 4115 and 5217, respectively. With a map you specify the key and get back the associated data quickly. Providing the key in a map’s subscript operator [] locates the value associated with that key in the map. Insertions and deletions can be made anywhere in a map. If the order of the keys is not important, you can use unordered_map (header <unordered_map>) instead.

Figure 15.18 demonstrates a map and uses the same features as Fig. 15.17 to demonstrate the subscript operator. Lines 27–28 use the subscript operator of class map. When the subscript is a key that’s already in the map (line 27), the operator returns a reference to the associated value. When the subscript is a key that’s not in the map (line 18), the operator inserts the key in the map and returns a reference that can be used to associate a value with that key. Line 27 replaces the value for the key 25 (previously 33.333 as specified in line 16) with a new value, 9999.99. Line 28 inserts a new key–value pair in the map (called creating an association).

Click here to view code image

 1 // Fig. 15.18: fig15_18.cpp
 2 // Standard Library class map class template.
 3 #include <iostream>
 4 #include <map> // map class-template definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 map< int, double, less< int > > pairs;
10
11 // insert eight value_type objects in pairs
12 pairs.insert(make_pair(15, 2.7));
13 pairs.insert(make_pair(30, 111.11));
14 pairs.insert(make_pair(5, 1010.1));
15 pairs.insert(make_pair(10, 22.22));
16 pairs.insert(make_pair(25, 33.333));
17 pairs.insert(make_pair(5, 77.54)); // dup ignored
18 pairs.insert(make_pair(20, 9.345));
19 pairs.insert(make_pair(15, 99.3)); // dup ignored
20
21 cout << "pairs contains:\nKey\tValue\n";
22
23 // walk through elements of pairs
24 for (auto mapItem : pairs)
25 cout << mapItem.first << '\t' << mapItem.second << '\n';
26
27 pairs[25] = 9999.99; // use subscripting to change value for key 25
28 pairs[40] = 8765.43; // use subscripting to insert value for key 40
29
30 cout << "\nAfter subscript operations, pairs contains:\nKey\tValue\n";
31
32 // use const_iterator to walk through elements of pairs
33 for (auto mapItem : pairs)
34 cout << mapItem.first << '\t' << mapItem.second << '\n';
35
36 cout << endl;
37 } // end main

pairs contains:
Key Value
5 1010.1
10 22.22
15 2.7
20 9.345
25 33.333
30 111.11

After subscript operations, pairs contains:
Key Value
5 1010.1
10 22.22
15 2.7
20 9.345
25 9999.99
30 111.11
40 8765.43

Fig. 15.18. Standard Library map class template.

15.7. Container Adapters

The three container adapters are stack, queue and priority_queue. Container adapters are not first-class containers, because they do not provide the actual data-structure implementation in which elements can be stored and because adapters do not support iterators. The benefit of an adapter class is that you can choose an appropriate underlying data structure. All three adapter classes provide member functions push and pop that properly insert an element into each adapter data structure and properly remove an element from each adapter data structure. The next several subsections provide examples of the adapter classes.

15.7.1. stack Adapter

Class stack (from header <stack>) enables insertions into and deletions from the underlying container at one end called the top, so a stack is commonly referred to as a last-in, first-out data structure. We introduced stacks in our discussion of the function-call stack in Section 6.11. A stack can be implemented with vector, list or deque. This example creates three integer stacks, using vector, list and deque as the underlying data structure to represent the stack. By default, a stack is implemented with a deque. The stack operations are push to insert an element at the top of the stack (implemented by calling function push_back of the underlying container), pop to remove the top element of the stack (implemented by calling function pop_back of the underlying container), top to get a reference to the top element of the stack (implemented by calling function back of the underlying container), empty to determine whether the stack is empty (implemented by calling function empty of the underlying container) and size to get the number of elements in the stack (implemented by calling function size of the underlying container).

Figure 15.19 demonstrates the stack adapter class. Lines 18, 21 and 24 instantiate three integer stacks. Line 18 specifies a stack of integers that uses the default deque container as its underlying data structure. Line 21 specifies a stack of integers that uses a vector of integers as its underlying data structure. Line 24 specifies a stack of integers that uses a list of integers as its underlying data structure.

Click here to view code image

 1 // Fig. 15.19: fig15_19.cpp
 2 // Standard Library stack adapter class.
 3 #include <iostream>
 4 #include <stack> // stack adapter definition
 5 #include <vector> // vector class-template definition
 6 #include <list> // list class-template definition
 7 using namespace std;
 8
 9 // pushElements function-template prototype
10 template< typename T > void pushElements(T &stackRef);
11
12 // popElements function-template prototype
13 template< typename T > void popElements(T &stackRef);
14
15 int main()
16 {
17 // stack with default underlying deque
18 stack< int > intDequeStack;
19
20 // stack with underlying vector
21 stack< int, vector< int > > intVectorStack;
22
23 // stack with underlying list
24 stack< int, list< int > > intListStack;
25
26 // push the values 0-9 onto each stack
27 cout << "Pushing onto intDequeStack: ";
28 pushElements(intDequeStack);
29 cout << "\nPushing onto intVectorStack: ";
30 pushElements(intVectorStack);
31 cout << "\nPushing onto intListStack: ";
32 pushElements(intListStack);
33 cout << endl << endl;
34
35 // display and remove elements from each stack
36 cout << "Popping from intDequeStack: ";
37 popElements(intDequeStack);
38 cout << "\nPopping from intVectorStack: ";
39 popElements(intVectorStack);
40 cout << "\nPopping from intListStack: ";
41 popElements(intListStack);
42 cout << endl;
43 } // end main
44
45 // push elements onto stack object to which stackRef refers
46 template< typename T > void pushElements(T &stackRef)
47 {
48 for (int i = 0; i < 10; ++i)
49 {
50 stackRef.push(i); // push element onto stack
51 cout << stackRef.top() << ' '; // view (and display) top element
52 } // end for
53 } // end function pushElements
54
55 // pop elements from stack object to which stackRef refers
56 template< typename T > void popElements(T &stackRef)
57 {
58 while (!stackRef.empty())
59 {
60 cout << stackRef.top() << ' '; // view (and display) top element
61 stackRef.pop(); // remove top element
62 } // end while
63 } // end function popElements

Pushing onto intDequeStack: 0 1 2 3 4 5 6 7 8 9
Pushing onto intVectorStack: 0 1 2 3 4 5 6 7 8 9
Pushing onto intListStack: 0 1 2 3 4 5 6 7 8 9

Popping from intDequeStack: 9 8 7 6 5 4 3 2 1 0
Popping from intVectorStack: 9 8 7 6 5 4 3 2 1 0
Popping from intListStack: 9 8 7 6 5 4 3 2 1 0

Fig. 15.19. Standard Library stack adapter class.

Function pushElements (lines 46–53) pushes the elements onto each stack. Line 50 uses function push (available in each adapter class) to place an integer on top of the stack. Line 51 uses stack function top to retrieve the top element of the stack for output. Function top does not remove the top element.

Function popElements (lines 56–63) pops the elements off each stack. Line 60 uses stack function top to retrieve the top element of the stack for output. Line 61 uses function pop (available in each adapter class) to remove the top element of the stack. Function pop does not return a value.

15.7.2. queue Adapter

A queue is similar to a waiting line. The item that has been in the queue the longest is the next one removed—so a queue is referred to as a first-in, first-out (FIFO) data structure. Class queue (from header <queue>) enables insertions at the back of the underlying data structure and deletions from the front. A queue can store its elements in objects of the Standard Library’s list or deque containers. By default, a queue is implemented with a deque. The common queue operations are push to insert an element at the back of the queue (implemented by calling function push_back of the underlying container), pop to remove the element at the front of the queue (implemented by calling function pop_front of the underlying container), front to get a reference to the first element in the queue (implemented by calling function front of the underlying container), back to get a reference to the last element in the queue (implemented by calling function back of the underlying container), empty to determine whether the queue is empty (implemented by calling function empty of the underlying container) and size to get the number of elements in the queue (implemented by calling function size of the underlying container).

Figure 15.20 demonstrates the queue adapter class. Line 9 instantiates a queue of doubles. Lines 12–14 use function push to add elements to the queue. The while statement in lines 19–23 uses function empty (available in all containers) to determine whether the queue is empty (line 19). While there are more elements in the queue, line 21 uses queue function front to read (but not remove) the first element in the queue for output. Line 22 removes the first element in the queue with function pop (available in all adapter classes).

Click here to view code image

 1 // Fig. 15.20: fig15_20.cpp
 2 // Standard Library queue adapter class template.
 3 #include <iostream>
 4 #include <queue> // queue adapter definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 queue< double > values; // queue with doubles
10
11 // push elements onto queue values
12 values.push(3.2);
13 values.push(9.8);
14 values.push(5.4);
15
16 cout << "Popping from values: ";
17
18 // pop elements from queue
19 while (!values.empty())
20 {
21 cout << values.front() << ' '; // view front element
22 values.pop(); // remove element
23 } // end while
24
25 cout << endl;
26 } // end main

Popping from values: 3.2 9.8 5.4

Fig. 15.20. Standard Library queue adapter class templates.

15.7.3. priority_queue Adapter

Class priority_queue (from header <queue>) provides functionality that enables insertions in sorted order into the underlying data structure and deletions from the front of the underlying data structure. By default, a priority_queue’s elements are stored in a vector. When elements are added to a priority_queue, they’re inserted in priority order, such that the highest-priority element (i.e., the largest value) will be the first element removed from the priority_queue. This is usually accomplished by arranging the elements in a data structure called a heap (not to be confused with the heap for dynamically allocated memory) that always maintains the largest value (i.e., highest-priority element) at the front of the data structure. We use the Standard Library’s heap algorithms in Section 16.3.12. The comparison of elements is performed with comparator function object less<T> by default, but you can supply a different comparator.

There are several common priority_queue operations. Function push inserts an element at the appropriate location based on priority order of the priority_queue (implemented by calling function push_back of the underlying container, which then reorders the elements in priority order. Function pop removes the highest-priority element of the priority_queue (implemented by calling function pop_back of the underlying container after removing the top element of the heap). top gets a reference to the top element of the priority_queue (implemented by calling function front of the underlying container). empty determines whether the priority_queue is empty (implemented by calling function empty of the underlying container). size gets the number of elements in the priority_queue (implemented by calling function size of the underlying container).

Figure 15.21 demonstrates the priority_queue adapter class. Line 9 instantiates a priority_queue that stores double values and uses a vector as the underlying data structure. Lines 12–14 use function push to add elements to the priority_queue. The while statement in lines 19–23 uses function empty (available in all containers) to determine whether the priority_queue is empty (line 19). While there are more elements, line 21 uses priority_queue function top to retrieve the highest-priority element (i.e., the largest value) in the priority_queue for output. Line 22 removes the highest-priority element in the priority_queue with function pop (available in all adapter classes).

Click here to view code image

 1 // Fig. 15.21: fig15_21.cpp
 2 // Standard Library priority_queue adapter class.
 3 #include <iostream>
 4 #include <queue> // priority_queue adapter definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 priority_queue< double > priorities; // create priority_queue
10
11 // push elements onto priorities
12 priorities.push(3.2);
13 priorities.push(9.8);
14 priorities.push(5.4);
15
16 cout << "Popping from priorities: ";
17
18 // pop element from priority_queue
19 while (!priorities.empty())
20 {
21 cout << priorities.top() << ' '; // view top element
22 priorities.pop(); // remove top element
23 } // end while
24
25 cout << endl;
26 } // end main

Popping from priorities: 9.8 5.4 3.2

Fig. 15.21. Standard Library priority_queue adapter class.

15.8. Class bitset

Class bitset makes it easy to create and manipulate bit sets, which are useful for representing a set of bit flags. bitsets are fixed in size at compile time. Class bitset is an alternate tool for bit manipulation, discussed in Chapter 20.

The declaration

bitset< size > b;

creates bitset b, in which every on of the size bits is initially 0 (“off”).

The statement

b.set(bitNumber);

sets bit bitNumber of bitset b “on.” The expression b.set() sets all bits in b “on.”

The statement

b.reset(bitNumber);

sets bit bitNumber of bitset b “off.” The expression b.reset() sets all bits in b “off.”

The statement

b.flip(bitNumber);

“flips” bit bitNumber of bitset b (e.g., if the bit is “on”, flip sets it “off”). The expression b.flip() flips all bits in b.

The statement

b[bitNumber];

returns a reference to the bit bitNumber of bitset b. Similarly,

b.at(bitNumber);

performs range checking on bitNumber first. Then, if bitNumber is in range, at returns a reference to the bit. Otherwise, at throws an out_of_range exception.

The statement

b.test(bitNumber);

performs range checking on bitNumber first. If bitNumber is in range, test returns true if the bit is on, false it’s off. Otherwise, test throws an out_of_range exception.

The expression

b.size()

returns the number of bits in bitset b.

The expression

b.count()

returns the number of bits that are set in bitset b.

The expression

b.any()

returns true if any bit is set in bitset b.

The expression

[image: Image]

b.all()

returns true if all of the bits are set in bitset b.

The expression

b.none()

returns true if none of the bits is set in bitset b.

The expressions

b == b1
b != b1

compare the two bitsets for equality and inequality, respectively.

Each of the bitwise assignment operators &=, |= and ^= (discussed in detail in Section 20.5) can be used to combine bitsets. For example,

b &= b1;

performs a bit-by-bit logical AND between bitsets b and b1. The result is stored in b. Bitwise logical OR and bitwise logical XOR are performed by

b |= b1;
b ^= b2;

The expression

b >>= n;

shifts the bits in bitset b right by n positions.

The expression

b <<= n;

shifts the bits in bitset b left by n positions.

The expressions

b.to_string()
b.to_ulong()

convert bitset b to a string and an unsigned long, respectively.

15.9. Wrap-Up

In this chapter, we introduced three key components of the Standard Library—containers, iterators and algorithms. You learned about the linear sequence containers, array (Chapter 7), vector, deque, forward_list and list, which all represent linear data structures. We discussed the nonlinear associative containers, set, multiset, map and multimap and their unordered versions. You also saw that the container adapters stack, queue and priority_queue can be used to restrict the operations of the sequence containers vector, deque and list for the purpose of implementing the specialized data structures represented by the container adapters. You learned the categories of iterators and that each algorithm can be used with any container that supports the minimum iterator functionality that the algorithm requires. You also learned class bitset, which makes it easy to create and manipulate bit sets as a container.

The next chapter continues our discussion of the Standard Library’s containers, iterators and algorithms with a detailed treatment of algorithms. You’ll also learn about function pointers, function objects and C++11’s new lambda expressions.

Recommended Reading

Abrahams, D., and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond. Boston: Addison-Wesley Professional, 2004.

Ammeraal, L. STL for C++ Programmers. New York: John Wiley & Sons, 1997.

Austern, M. H. Generic Programming and the STL: Using and Extending the C++ Standard Template Library. Boston: Addison-Wesley, 2000.

Becker, P. The C++ Standard Library Extensions: A Tutorial and Reference. Boston: Addison-Wesley Professional, 2006.

Glass, G., and B. Schuchert. The STL <Primer>. Upper Saddle River, NJ: Prentice Hall PTR, 1995.

Heller, S., and Chrysalis Software Corp., C++: A Dialog: Programming with the C++ Standard Library. New York, Prentice Hall PTR, 2002.

Josuttis, N. The C++ Standard Library: A Tutorial and Reference (2nd edition). Boston: Addison-Wesley Professional, 2012.

Josuttis, N. The C++ Standard Library: A Tutorial and Handbook. Boston: Addison-Wesley, 2000.

Karlsson, B. Beyond the C++ Standard Library: An Introduction to Boost. Boston: Addison-Wesley Professional, 2005.

Koenig, A., and B. Moo. Ruminations on C++. Boston: Addison-Wesley, 1997.

Lippman, S., J. Lajoie, and B. Moo. C++ Primer (Fifth Edition). Boston: Addison-Wesley Professional, 2012.

Meyers, S. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Boston: Addison-Wesley, 2001.

Musser, D. R., G. Derge and A. Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library, Second Edition. Boston: Addison-Wesley, 2010.

Musser, D. R., and A. A. Stepanov. “Algorithm-Oriented Generic Libraries,” Software Practice and Experience, Vol. 24, No. 7, July 1994.

Nelson, M. C++ Programmer’s Guide to the Standard Template Library. Foster City, CA: Programmer’s Press, 1995.

Pohl, I. C++ Distilled: A Concise ANSI/ISO Reference and Style Guide. Boston: Addison-Wesley, 1997.

Reese, G. C++ Standard Library Practical Tips. Hingham, MA: Charles River Media, 2005.

Robson, R. Using the STL: The C++ Standard Template Library, Second Edition. New York: Springer, 2000.

Schildt, H. STL Programming from the Ground Up, Third Edition. New York: McGraw-Hill Osborne Media, 2003.

Schildt, H. STL Programming from the Ground Up. New York: Osborne McGraw-Hill, 1999.

Stepanov, A., and M. Lee. “The Standard Template Library,” Internet Distribution 31 October 1995 <www.cs.rpi.edu/~musser/doc.ps>.

Stroustrup, B. “C++11—the New ISO C++ Standard” <www.stroustrup.com/C++11FAQ.html>.

Stroustrup, B. “Making a vector Fit for a Standard,” The C++ Report, October 1994.

Stroustrup, B. The Design and Evolution of C++. Boston: Addison-Wesley, 1994.

Stroustrup, B. The C++ Programming Language, Fourth Edition. Boston: Addison-Wesley Professional, 2013.

Stroustrup, B. The C++ Programming Language, Third Edition. Boston: Addison-Wesley, 2000.

Vandevoorde, D., and N. Josuttis. C++ Templates: The Complete Guide. Boston: Addison-Wesley, 2003.

Vilot, M. J., “An Introduction to the Standard Template Library,” The C++ Report, Vol. 6, No. 8, October 1994.

Wilson, M. Extended STL, Volume 1: Collections and Iterators. Boston: Addison-Wesley, 2007.

16. Standard Library Algorithms

Objectives

In this chapter you’ll:

• Program with many of the dozens of Standard Library algorithms.

• Use iterators with algorithms to access and manipulate the elements of Standard Library containers.

• Pass function pointers, function objects and lambda expressions into Standard Library algorithms.

Outline

16.1 Introduction

16.2 Minimum Iterator Requirements

16.3 Algorithms

16.3.1 fill, fill_n, generate and generate_n

16.3.2 equal, mismatch and lexicographical_compare

16.3.3 remove, remove_if, remove_copy and remove_copy_if

16.3.4 replace, replace_if, replace_copy and replace_copy_if

16.3.5 Mathematical Algorithms

16.3.6 Basic Searching and Sorting Algorithms

16.3.7 swap, iter_swap and swap_ranges

16.3.8 copy_backward, merge, unique and reverse

16.3.9 inplace_merge, unique_copy and reverse_copy

16.3.10 Set Operations

16.3.11 lower_bound, upper_bound and equal_range

16.3.12 Heapsort

16.3.13 min, max, minmax and minmax_element

16.4 Function Objects

16.5 Lambda Expressions

16.6 Standard Library Algorithm Summary

16.7 Wrap-Up

16.1. Introduction

This chapter continues our discussion of the Standard Library’s containers, iterators and algorithms by focusing on algorithms that perform common data manipulations such as searching, sorting and comparing elements or entire containers. The Standard Library provides over 90 algorithms, many of which are new in C++11. The complete list can be found in Sections 25 and 26.7 of the C++ standard document and there are various online references where you can learn about each algorithm, such as en.cppreference.com/w/cpp/algorithm. Most of them use iterators to access container elements. As you’ll see, various algorithms can receive a function pointer (a pointer to a function’s code) as an argument. Such algorithms use the pointer to call the function—typically with one or two container elements as arguments. We’ll introduce function pointers in more detail in this chapter. Later in the chapter we’ll present the concept of a function object, which is similar to a function pointer but is implemented as an object of a class that has an overloaded function-call operator (operator()) so that the object can be used like a function name. Finally, we’ll introduce lambda expressions—C++11’s new shorthand mechanism for creating anonymous function objects (that is, function objects that do not have names).

16.2. Minimum Iterator Requirements

With few exceptions, the Standard Library separates algorithms from containers. This makes it much easier to add new algorithms. An important part of every container is the type of iterator it supports (Fig. 15.7). This determines which algorithms can be applied to the container. For example, both vectors and arrays support random-access iterators that provide all of the iterator operations shown in Fig. 15.9. All Standard Library algorithms can operate on vectors and the ones that do not modify a container’s size can also operate on arrays. Each Standard Library algorithm that takes iterator arguments requires those iterators to provide a minimum level of functionality. If an algorithm requires a forward iterator, for example, that algorithm can operate on any container that supports forward iterators, bidirectional iterators or random-access iterators.

[image: Image] Software Engineering Observation 16.1

Standard Library algorithms do not depend on the implementation details of the containers on which they operate. As long as a container’s (or built-in array’s) iterators satisfy the requirements of an algorithm, the algorithm can work on the container.

[image: Image] Portability Tip 16.1

Because Standard Library algorithms process containers only indirectly through iterators, one algorithm can often be used with many different containers.

[image: Image] Software Engineering Observation 16.2

The Standard Library containers are implemented concisely. The algorithms are separated from the containers and operate on elements of the containers only indirectly through iterators. This separation makes it easier to write generic algorithms applicable to a variety of container classes.

[image: Image] Software Engineering Observation 16.3

Using the “weakest iterator” that yields acceptable performance helps produce maximally reusable components. For example, if an algorithm requires only forward iterators, it can be used with any container that supports forward iterators, bidirectional iterators or random-access iterators. However, an algorithm that requires random-access iterators can be used only with containers that have random-access iterators.

Iterator Invalidation

Iterators simply point to container elements, so it’s possible for iterators to become invalid when certain container modifications occur. For example, if you invoke clear on a vector, all of its elements are removed. If a program had any iterators that pointed to that vector’s elements before clear was called, those iterators would now be invalid. Section 23 of the C++ standard discusses all the cases in which iterators (and pointers and references) are invalidated for each Standard Library container. Here we summarize when iterators are invalidated during insert and erase operations.

When inserting into a:

• vector—If the vector is reallocated, all iterators pointing to that vector are invalidated. Otherwise, iterators from the insertion point to the end of the vector are invalidated.

• deque—All iterators are invalidated.

• list or forward_list—All iterators remain valid.

• Ordered associative container—All iterators remain valid.

• Unordered associative container—All iterators are invalidated if the containers need to be reallocated.

When erasing from a container, iterators to the erased elements are invalidated. In addition:

• vector—Iterators from the erased element to the end of the vector are invalidated.

• deque—If an element in the middle of the deque is erased, all iterators are invalidated.

16.3. Algorithms

Sections 16.3.1–16.3.13 demonstrate many of the Standard Library algorithms.

16.3.1. fill, fill_n, generate and generate_n

Figure 16.1 demonstrates algorithms fill, fill_n, generate and generate_n. Algorithms fill and fill_n set every element in a range of container elements to a specific value. Algorithms generate and generate_n use a generator function to create values for every element in a range of container elements. The generator function takes no arguments and returns a value that can be placed in an element of the container.

Click here to view code image

 1 // Fig. 16.1: fig16_01.cpp
 2 // Algorithms fill, fill_n, generate and generate_n.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <array> // array class-template definition
 6 #include <iterator> // ostream_iterator
 7 using namespace std;
 8
 9 char nextLetter(); // prototype of generator function
10
11 int main()
12 {
13 array< char, 10 > chars;
14 ostream_iterator< char > output(cout, " ");
15 fill(chars.begin(), chars.end(), '5'); // fill chars with 5s
16
17 cout << "chars after filling with 5s:\n";
18 copy(chars.cbegin(), chars.cend(), output);
19
20 // fill first five elements of chars with As
21 fill_n(chars.begin(), 5, 'A');
22
23 cout << "\n\nchars after filling five elements with As:\n";
24 copy(chars.cbegin(), chars.cend(), output);
25
26 // generate values for all elements of chars with nextLetter
27 generate(chars.begin(), chars.end(), nextLetter);
28
29 cout << "\n\nchars after generating letters A-J:\n";
30 copy(chars.cbegin(), chars.cend(), output);
31
32 // generate values for first five elements of chars with nextLetter
33 generate_n(chars.begin(), 5, nextLetter);
34
35 cout << "\n\nchars after generating K-O for the"
36 << " first five elements:\n";
37 copy(chars.cbegin(), chars.cend(), output);
38 cout << endl;
39 } // end main
40
41 // generator function returns next letter (starts with A)
42 char nextLetter()
43 {
44 static char letter = 'A';
45 return letter++;
46 } // end function nextLetter

chars after filling with 5s:
5 5 5 5 5 5 5 5 5 5

chars after filling five elements with As:
A A A A A 5 5 5 5 5

chars after generating letters A-J:
A B C D E F G H I J

chars after generating K-O for the first five elements:
K L M N O F G H I J

Fig. 16.1. Algorithms fill, fill_n, generate and generate_n.

fill Algorithm

Line 13 defines a 10-element array of char values. Line 15 uses the fill algorithm to place the character '5' in every element of chars from chars.begin() up to, but not including, chars.end(). The iterators supplied as the first and second argument must be at least forward iterators (i.e., they can be used for both input from a container and output to a container in the forward direction).

fill_n Algorithm

Line 21 uses the fill_n algorithm to place the character 'A' in the first five elements of chars. The iterator supplied as the first argument must be at least an output iterator (i.e., it can be used to write into a container in the forward direction). The second argument specifies the number of elements to fill. The third argument specifies the value to place in each element.

generate Algorithm

Line 27 uses the generate algorithm to place the result of a call to generator function nextLetter in every element of chars from chars.begin() up to, but not including, chars.end(). The iterators supplied as the first and second arguments must be at least forward iterators. Function nextLetter (lines 42–46) begins with the character 'A' maintained in a static local variable. The statement in line 45 postincrements the value of letter and returns the old value of letter each time nextLetter is called.

generate_n Algorithm

Line 33 uses the generate_n algorithm to place the result of a call to generator function nextLetter in five elements of chars, starting from chars.begin(). The iterator supplied as the first argument must be at least an output iterator.

A Note About Reading Standard Library Algorithm Documentation

When you look at the Standard Library algorithms documentation for algorithms that can receive function pointers as arguments, you’ll notice in the documentation that the corresponding parameters do not show pointer declarations. Such parameters can actually receive as arguments function pointers, function objects (Section 16.4) or lambda expressions (Section 16.5). For this reason, the Standard Library declares such parameters using more generic names.

For example, the generate algorithm’s prototype is listed in the C++ standard document as:

Click here to view code image

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,
 Generator gen);

indicating that generate expects as arguments ForwardIterators representing the range of elements to process and a Generator function. The standard explains that the algorithm calls the Generator function to obtain a value for each element in the range specified by the ForwardIterators. The standard also specifies that the Generator must take no arguments and return a value of the element type.

Similar documentation is provided for each algorithm that can receive a function pointer, function object or lambda expression. In most of this chapter’s examples, as we present each algorithm, we specify the requirements for such parameters. We typically do so in the context of functions, and pass function pointers into the algorithms. In Sections 16.4–16.5, we discuss how to create and use function objects and lambda expressions that you can pass to algorithms.

16.3.2. equal, mismatch and lexicographical_compare

Figure 16.2 demonstrates comparing sequences of values for equality using algorithms equal, mismatch and lexicographical_compare.

Click here to view code image

 1 // Fig. 16.2: fig16_02.cpp
 2 // Algorithms equal, mismatch and lexicographical_compare.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <array> // array class-template definition
 6 #include <iterator> // ostream_iterator
 7 using namespace std;
 8
 9 int main()
10 {
11 const size_t SIZE = 10;
12 array< int, SIZE > a1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13 array< int, SIZE > a2(a1); // initializes a2 with copy of a1
14 array< int, SIZE > a3 = { 1, 2, 3, 4, 1000, 6, 7, 8, 9, 10 };
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "a1 contains: ";
18 copy(a1.cbegin(), a1.cend(), output);
19 cout << "\na2 contains: ";
20 copy(a2.cbegin(), a2.cend(), output);
21 cout << "\na3 contains: ";
22 copy(a3.cbegin(), a3.cend(), output);
23
24 // compare a1 and a2 for equality
25 bool result = equal(a1.cbegin(), a1.cend(), a2.cbegin());
26 cout << "\n\a1 " << (result ? "is" : "is not")
27 << " equal to a2.\n";
28
29 // compare a1 and a3 for equality
30 result = equal(a1.cbegin(), a1.cend(), a3.cbegin());
31 cout << "a1 " << (result ? "is" : "is not") << " equal to a3.\n";
32
33 // check for mismatch between a1 and a3
34 auto location = mismatch(a1.cbegin(), a1.cend(), a3.cbegin());
35 cout << "\nThere is a mismatch between a1 and a3 at location "
36 << (location.first - a1.begin()) << "\nwhere a1 contains "
37 << *location.first << " and a3 contains " << *location.second
38 << "\n\n";
39
40 char c1[SIZE] = "HELLO";
41 char c2[SIZE] = "BYE BYE";
42
43 // perform lexicographical comparison of c1 and c2
44 result = lexicographical_compare(
45 begin(c1), end(c1), begin(c2), end(c2));
46 cout << c1 << (result ? " is less than " :
47 " is greater than or equal to ") << c2 << endl;
48 } // end main

a1 contains: 1 2 3 4 5 6 7 8 9 10
a2 contains: 1 2 3 4 5 6 7 8 9 10
a3 contains: 1 2 3 4 1000 6 7 8 9 10

a1 is equal to a2.
a1 is not equal to a3.

There is a mismatch between a1 and a3 at location 4
where a1 contains 5 and a3 contains 1000

HELLO is greater than or equal to BYE BYE

Fig. 16.2. Algorithms equal, mismatch and lexicographical_compare.

equal Algorithm

Line 25 uses the equal algorithm to compare two sequences of values for equality. The second sequence must contain at least as many elements as the first—equal returns false if the sequences are not of the same length. The == operator (whether built-in or overloaded) performs the element comparisons. In this example, the elements in a1 from a1.cbegin() up to, but not including, a1.cend() are compared to the elements in a2 starting from a2.cbegin(). In this example, a1 and a2 are equal. The three iterator arguments must be at least input iterators (i.e., they can be used for input from a sequence in the forward direction). Line 30 uses function equal to compare a1 and a3, which are not equal.

equal Algorithm with Binary Predicate Function

Another version of equal takes a binary predicate function as a fourth parameter. The binary predicate function receives the two elements being compared and returns a bool value indicating whether the elements are equal. This can be useful in sequences that store objects or pointers to values rather than actual values, because you can define one or more comparisons. For example, you can compare Employee objects for age, social security number, or location rather than comparing entire objects. You can compare what pointers refer to rather than comparing the pointer values (i.e., the addresses stored in the pointers).

mismatch Algorithm

[image: Image]

Lines 34 calls the mismatch algorithm to compare two sequences of values. The algorithm returns a pair of iterators indicating the location in each sequence of the mismatched elements. If all the elements match, the two iterators in the pair are equal to the end iterator for each sequence. The three iterator arguments must be at least input iterators. We infer the type of the pair object location with C++11’s auto keyword (line 34). Line 36 determines the actual location of the mismatch in the arrays with the expression location.first - a1.begin(), which evaluates to the number of elements between the iterators (this is analogous to pointer arithmetic; Chapter 8). This corresponds to the element number in this example, because the comparison is performed from the beginning of each array. As with equal, there is another version of mismatch that takes a binary predicate function as a fourth parameter.

lexicographical_compare Algorithm

[image: Image]

Lines 44–45 use the lexicographical_compare algorithm to compare the contents of two char built-in arrays. This algorithm’s four iterator arguments must be at least input iterators. As you know, pointers into built-in arrays are random-access iterators. The first two iterator arguments specify the range of locations in the first sequence. The last two specify the range of locations in the second sequence. Once again, we use the C++11 begin and end functions to determine the range of elements for each built-in array. While iterating through the sequences, the lexicographical_compare checks if the element in the first sequence is less than the corresponding element in the second sequence. If so, the algorithm returns true. If the element in the first sequence is greater than or equal to the element in the second sequence, the algorithm returns false. This algorithm can be used to arrange sequences lexicographically. Typically, such sequences contain strings.

16.3.3. remove, remove_if, remove_copy and remove_copy_if

Figure 16.3 demonstrates removing values from a sequence with algorithms remove, remove_if, remove_copy and remove_copy_if.

Click here to view code image

 1 // Fig. 16.3: fig16_03.cpp
 2 // Algorithms remove, remove_if, remove_copy and remove_copy_if.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <array> // array class-template definition
 6 #include <iterator> // ostream_iterator
 7 using namespace std;
 8
 9 bool greater9(int); // prototype
10
11 int main()
12 {
13 const size_t SIZE = 10;
14 array< int, SIZE > init = { 10, 2, 10, 4, 16, 6, 14, 8, 12, 10 };
15 ostream_iterator< int > output(cout, " ");
16
17 array< int, SIZE > a1(init); // initialize with copy of init
18 cout << "a1 before removing all 10s:\n ";
19 copy(a1.cbegin(), a1.cend(), output);
20
21 // remove all 10s from a1
22 auto newLastElement = remove(a1.begin(), a1.end(), 10);
23 cout << "\a1 after removing all 10s:\n ";
24 copy(a1.begin(), newLastElement, output);
25
26 array< int, SIZE > a2(init); // initialize with copy of init
27 array< int, SIZE > c = { 0 }; // initialize to 0s
28 cout << "\n\a2 before removing all 10s and copying:\n ";
29 copy(a2.cbegin(), a2.cend(), output);
30
31 // copy from a2 to c, removing 10s in the process
32 remove_copy(a2.cbegin(), a2.cend(), c.begin(), 10);
33 cout << "\nc after removing all 10s from a2:\n ";
34 copy(c.cbegin(), c.cend(), output);
35
36 array< int, SIZE > a3(init); // initialize with copy of init
37 cout << "\n\na3 before removing all elements greater than 9:\n ";
38 copy(a3.cbegin(), a3.cend(), output);
39
40 // remove elements greater than 9 from a3
41 newLastElement = remove_if(a3.begin(), a3.end(), greater9);
42 cout << "\na3 after removing all elements greater than 9:\n ";
43 copy(a3.begin(), newLastElement, output);
44
45 array< int, SIZE > a4(init); // initialize with copy of init
46 array< int, SIZE > c2 = { 0 }; // initialize to 0s
47 cout << "\n\na4 before removing all elements"
48 << "\ngreater than 9 and copying:\n ";
49 copy(a4.cbegin(), a4.cend(), output);
50
51 // copy elements from a4 to c2, removing elements greater
52 // than 9 in the process
53 remove_copy_if(a4.cbegin(), a4.cend(), c2.begin(), greater9);
54 cout << "\nc2 after removing all elements"
55 << "\ngreater than 9 from a4:\n ";
56 copy(c2.cbegin(), c2.cend(), output);
57 cout << endl;
58 } // end main
59
60 // determine whether argument is greater than 9
61 bool greater9(int x)
62 {
63 return x > 9;
64 } // end function greater9

a1 before removing all 10s:
 10 2 10 4 16 6 14 8 12 10
a1 after removing all 10s:
 2 4 16 6 14 8 12

a2 before removing all 10s and copying:
 10 2 10 4 16 6 14 8 12 10
c after removing all 10s from a2:
 2 4 16 6 14 8 12 0 0 0

a3 before removing all elements greater than 9:
 10 2 10 4 16 6 14 8 12 10
a3 after removing all elements greater than 9:
 2 4 6 8

a4 before removing all elements
greater than 9 and copying:
 10 2 10 4 16 6 14 8 12 10
c2 after removing all elements
greater than 9 from a4:
 2 4 6 8 0 0 0 0 0 0

Fig. 16.3. Algorithms remove, remove_if, remove_copy and remove_copy_if.

remove Algorithm

Line 22 uses the remove algorithm to eliminate from a1 all elements with the value 10 in the range from a1.begin() up to, but not including, a1.end(). The first two iterator arguments must be forward iterators. This algorithm does not modify the number of elements in the container or destroy the eliminated elements, but it does move all elements that are not eliminated toward the beginning of the container. The algorithm returns an iterator positioned after the last element that was not removed. Elements from the iterator position to the end of the container have unspecified values.

remove_copy Algorithm

Line 32 uses the remove_copy algorithm to copy all elements from a2 that do not have the value 10 in the range from a2.cbegin() up to, but not including, a2.cend(). The elements are placed in c, starting at position c.begin(). The iterators supplied as the first two arguments must be input iterators. The iterator supplied as the third argument must be an output iterator so that the element being copied can be inserted into the copy location. This algorithm returns an iterator positioned after the last element copied into vector c.

remove_if Algorithm

Line 41 uses the remove_if algorithm to delete from a3 all those elements in the range from a3.begin() up to, but not including, a3.end() for which our user-defined unary predicate function greater9 returns true. Function greater9 (defined in lines 61–64) returns true if the value passed to it is greater than 9; otherwise, it returns false. The iterators supplied as the first two arguments must be forward iterators. This algorithm does not modify the number of elements in the container, but it does move to the beginning of the container all elements that are not removed. This algorithm returns an iterator positioned after the last element that was not removed. All elements from the iterator position to the end of the container have undefined values.

remove_copy_if Algorithm

Line 53 uses the remove_copy_if algorithm to copy all those elements from a4 in the range from a4.cbegin() up to, but not including, a4.cend() for which the unary predicate function greater9 returns true. The elements are placed in c2, starting at c2.begin(). The iterators supplied as the first two arguments must be input iterators. The iterator supplied as the third argument must be an output iterator so that the element being copied can be assigned to the copy location. This algorithm returns an iterator positioned after the last element copied into c2.

16.3.4. replace, replace_if, replace_copy and replace_copy_if

Figure 16.4 demonstrates replacing values from a sequence using algorithms replace, replace_if, replace_copy and replace_copy_if.

Click here to view code image

 1 // Fig. 16.4: fig16_04.cpp
 2 // Algorithms replace, replace_if, replace_copy and replace_copy_if.
 3 #include <iostream>
 4 #include <algorithm>
 5 #include <array>
 6 #include <iterator> // ostream_iterator
 7 using namespace std;
 8
 9 bool greater9(int); // predicate function prototype
10
11 int main()
12 {
13 const size_t SIZE = 10;
14 array< int, SIZE > init = = { 10, 2, 10, 4, 16, 6, 14, 8, 12, 10 };
15 ostream_iterator< int > output(cout, " ");
16
17 array< int, SIZE > a1(init); // initialize with copy of init
18 cout << "a1 before replacing all 10s:\n ";
19 copy(a1.cbegin(), a1.cend(), output);
20
21 // replace all 10s in a1 with 100
22 replace(a1.begin(), a1.end(), 10, 100);
23 cout << "\na1 after replacing 10s with 100s:\n ";
24 copy(a1.cbegin(), a1.cend(), output);
25
26 array< int, SIZE > a2(init); // initialize with copy of init
27 array< int, SIZE > c1; // instantiate c1
28 cout << "\n\na2 before replacing all 10s and copying:\n ";
29 copy(a2.cbegin(), a2.cend(), output);
30
31 // copy from a2 to c1, replacing 10s with 100s
32 replace_copy(a2.cbegin(), a2.cend(), c1.begin(), 10, 100);
33 cout << "\nc1 after replacing all 10s in a2:\n ";
34 copy(c1.cbegin(), c1.cend(), output);
35
36 array< int, SIZE > a3(init); // initialize with copy of init
37 cout << "\n\na3 before replacing values greater than 9:\n ";
38 copy(a3.cbegin(), a3.cend(), output);
39
40 // replace values greater than 9 in a3 with 100
41 replace_if(a3.begin(), a3.end(), greater9, 100);
42 cout << "\na3 after replacing all values greater"
43 << "\nthan 9 with 100s:\n ";
44 copy(a3.cbegin(), a3.cend(), output);
45
46 array< int, SIZE > a4(init); // initialize with copy of init
47 array< int, SIZE > c2; // instantiate c2'
48 cout << "\n\na4 before replacing all values greater "
49 << "than 9 and copying:\n ";
50 copy(a4.cbegin(), a4.cend(), output);
51
52 // copy a4 to c2, replacing elements greater than 9 with 100
53 replace_copy_if(a4.cbegin(), a4.cend(), c2.begin(), greater9, 100);
54 cout << "\nc2 after replacing all values greater than 9 in v4:\n ";
55 copy(c2.begin(), c2.end(), output);
56 cout << endl;
57 } // end main
58
59 // determine whether argument is greater than 9
60 bool greater9(int x)
61 {
62 return x > 9;
63 } // end function greater9

a1 before replacing all 10s:
 10 2 10 4 16 6 14 8 12 10
a1 after replacing 10s with 100s:
 100 2 100 4 16 6 14 8 12 100

a2 before replacing all 10s and copying:
 10 2 10 4 16 6 14 8 12 10
c1 after replacing all 10s in a2:
 100 2 100 4 16 6 14 8 12 100

a3 before replacing values greater than 9:
 10 2 10 4 16 6 14 8 12 10
a3 after replacing all values greater
than 9 with 100s:
 100 2 100 4 100 6 100 8 100 100

a4 before replacing all values greater than 9 and copying:
 10 2 10 4 16 6 14 8 12 10
c2 after replacing all values greater than 9 in a4:
 100 2 100 4 100 6 100 8 100 100

Fig. 16.4. Algorithms replace, replace_if, replace_copy and replace_copy_if.

replace Algorithm

Line 22 uses the replace algorithm to replace all elements with the value 10 in the range a1.begin() up to, but not including, a1.end() with the new value 100. The iterators supplied as the first two arguments must be forward iterators so that the algorithm can modify the elements in the sequence.

replace_copy Algorithm

Line 32 uses the replace_copy algorithm to copy all elements in the range a2.cbegin() up to, but not including, a2.cend(), replacing all elements with the value 10 with the new value 100. The elements are copied into c1, starting at position c1.begin(). The iterators supplied as the first two arguments must be input iterators. The iterator supplied as the third argument must be an output iterator so that the element being copied can be assigned to the copy location. This function returns an iterator positioned after the last element copied into c1.

replace_if Algorithm

Line 41 uses the replace_if algorithm to replace all those elements from a3.begin() up to, but not including, a3.end() for which the unary predicate function greater9 returns true. Function greater9 (defined in lines 60–63) returns true if the value passed to it is greater than 9; otherwise, it returns false. The value 100 replaces each value greater than 9. The iterators supplied as the first two arguments must be forward iterators.

replace_copy_if Algorithm

Line 53 uses the replace_copy_if algorithm to copy all elements from a4.cbegin() up to, but not including, a4.cend(). Elements for which the unary predicate function greater9 returns true are replaced with the value 100. The elements are placed in c2, starting at position c2.begin(). The iterators supplied as the first two arguments must be input iterators. The iterator supplied as the third argument must be an output iterator so that the element being copied can be assigned to the copy location. This algorithm returns an iterator positioned after the last element copied into c2.

16.3.5. Mathematical Algorithms

Figure 16.5 demonstrates several common mathematical algorithms, including random_shuffle, count, count_if, min_element, max_element, minmax_element, accumulate, for_each and transform.

Click here to view code image

 1 // Fig. 16.5: fig16_05.cpp
 2 // Mathematical algorithms of the Standard Library.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <numeric> // accumulate is defined here
 6 #include <array>
 7 #include <iterator>
 8 using namespace std;
 9
10 bool greater9(int); // predicate function prototype
11 void outputSquare(int); // output square of a value
12 int calculateCube(int); // calculate cube of a value
13
14 int main()
15 {
16 const size_t SIZE = 10;
17 array< int, SIZE > a1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
18 ostream_iterator< int > output(cout, " ");
19
20 cout << "a1 before random_shuffle: ";
21 copy(a1.cbegin(), a1.cend(), output);
22
23 random_shuffle(a1.begin(), a1.end()); // shuffle elements of a1
24 cout << "\na1 after random_shuffle: ";
25 copy(a1.cbegin(), a1.cend(), output);
26
27 array< int, SIZE > a2 = { 100, 2, 8, 1, 50, 3, 8, 8, 9, 10 };
28 cout << "\n\na2 contains: ";
29 copy(a2.cbegin(), a2.cend(), output);
30
31 // count number of elements in a2 with value 8
32 int result = count(a2.cbegin(), a2.cend(), 8);
33 cout << "\nNumber of elements matching 8: " << result;
34
35 // count number of elements in a2 that are greater than 9
36 result = count_if(a2.cbegin(), a2.cend(), greater9);
37 cout << "\nNumber of elements greater than 9: " << result;
38
39 // locate minimum element in a2
40 cout << "\n\nMinimum element in a2 is: "
41 << *(min_element(a2.cbegin(), a2.cend()));
42
43 // locate maximum element in a2
44 cout << "\nMaximum element in a2 is: "
45 << *(max_element(a2.cbegin(), a2.cend()));
46
47 // locate minimum and maximum elements in a2
48 auto minAndMax = minmax_element(a2.cbegin(), a2.cend());
49 cout << "\nThe minimum and maximum elements in a2 are "
50 << *minAndMax.first << " and " << *minAndMax.second
51 << ", respectively";
52
53 // calculate sum of elements in a1
54 cout << "\n\nThe total of the elements in a1 is: "
55 << accumulate(a1.cbegin(), a1.cend(), 0);
56
57 // output square of every element in a1
58 cout << "\n\nThe square of every integer in a1 is:\n";
59 for_each(a1.cbegin(), a1.cend(), outputSquare);
60
61 array< int, SIZE > cubes; // instantiate cubes
62
63 // calculate cube of each element in a1; place results in cubes
64 transform(a1.cbegin(), a1.cend(), cubes.begin(), calculateCube);
65 cout << "\n\nThe cube of every integer in a1 is:\n";
66 copy(cubes.cbegin(), cubes.cend(), output);
67 cout << endl;
68 } // end main
69
70 // determine whether argument is greater than 9
71 bool greater9(int value)
72 {
73 return value > 9;
74 } // end function greater9
75
76 // output square of argument
77 void outputSquare(int value)
78 {
79 cout << value * value << ' ';
80 } // end function outputSquare
81
82 // return cube of argument
83 int calculateCube(int value)
84 {
85 return value * value * value;
86 } // end function calculateCube

a1 before random_shuffle: 1 2 3 4 5 6 7 8 9 10
a1 after random_shuffle: 9 2 10 3 1 6 8 4 5 7

a2 contains: 100 2 8 1 50 3 8 8 9 10
Number of elements matching 8: 3
Number of elements greater than 9: 3

Minimum element in a2 is: 1
Maximum element in a2 is: 100
The minimum and maximum elements in a2 are 1 and 100, respectively

The total of the elements in a1 is: 55

The square of every integer in a1 is:
81 4 100 9 1 36 64 16 25 49

The cube of every integer in a1 is:
729 8 1000 27 1 216 512 64 125 343

Fig. 16.5. Mathematical algorithms of the Standard Library.

random_shuffle Algorithm

[image: Image]

Line 23 uses the random_shuffle algorithm to reorder randomly the elements in the range a1.begin() up to, but not including, a1.end(). This algorithm takes two random-access iterator arguments. This version of random_shuffle uses rand for randomization and produces the same results each time you run the program unless you seed the random-number generator with srand. Another version of random_shuffle receives as its third argument a C++11 uniform random-number generator.

count Algorithm

Line 32 uses the count algorithm to count the elements with the value 8 in the range a2.cbegin() up to, but not including, a2.cend(). This algorithm requires its two iterator arguments to be at least input iterators.

count_if Algorithm

Line 36 uses the count_if algorithm to count elements in the range from a2.cbegin() up to, but not including, a2.cend() for which the predicate function greater9 returns true. Algorithm count_if requires its two iterator arguments to be at least input iterators.

min_element Algorithm

Line 41 uses the min_element algorithm to locate the smallest element in the range from a2.cbegin() up to, but not including, a2.cend(). The algorithm returns a forward iterator located at the first smallest element, or a2.end() if the range is empty. The algorithm’s two iterator arguments must be at least forward iterators. A second version of this algorithm takes as its third argument a binary function that compares two elements in the sequence. This algorithm returns the bool value true if the first argument is less than the second.

[image: Image] Error-Prevention Tip 16.1

It’s a good practice to check that the range specified in a call to min_element is not empty and that the return value is not the “past the end” iterator.

max_element Algorithm

Line 45 uses the max_element algorithm to locate the largest element in the range from a2.cbegin() up to, but not including, a2.cend(). The algorithm returns a forward iterator located at the first largest element. The algorithm’s two iterator arguments must be at least forward iterators. A second version of this algorithm takes as its third argument a binary predicate function that compares the elements in the sequence. The binary function takes two arguments and returns the bool value true if the first argument is less than the second.

C++11: minmax_element Algorithm

[image: Image]

Line 48 uses the new C++11 minmax_element algorithm to locate both the smallest and largest elements in the range from a2.cbegin() up to, but not including, a2.cend(). The algorithm returns a pair of forward iterators located at the smallest and largest elements, respectively. If there are duplicate smallest or largest elements, the iterators are located at the first smallest and last largest values. The algorithm’s two iterator arguments must be at least forward iterators. A second version of this algorithm takes as its third argument a binary predicate function that compares the elements in the sequence. The binary function takes two arguments and returns the bool value true if the first argument is less than the second.

accumulate Algorithm

Line 55 uses the accumulate algorithm (the template of which is in header <numeric>) to sum the values in the range from a1.cbegin() up to, but not including, a1.cend(). The algorithm’s two iterator arguments must be at least input iterators and its third argument represents the initial value of the total. A second version of this algorithm takes as its fourth argument a general function that determines how elements are accumulated. The general function must take two arguments and return a result. The first argument to this function is the current value of the accumulation. The second argument is the value of the current element in the sequence being accumulated.

for_each Algorithm

Line 59 uses the for_each algorithm to apply a general function to every element in the range from a1.cbegin() up to, but not including, a1.cend(). The general function takes the current element as an argument and may modify that element (if it’s received by reference and is not const). Algorithm for_each requires its two iterator arguments to be at least input iterators.

transform Algorithm

Line 63 uses the transform algorithm to apply a general function to every element in the range from a1.cbegin() up to, but not including, a1.cend(). The general function (the fourth argument) should take the current element as an argument, must not modify the element and should return the transformed value. Algorithm transform requires its first two iterator arguments to be at least input iterators and its third argument to be at least an output iterator. The third argument specifies where the transformed values should be placed. Note that the third argument can equal the first. Another version of transform accepts five arguments—the first two arguments are input iterators that specify a range of elements from one source container, the third argument is an input iterator that specifies the first element in another source container, the fourth argument is an output iterator that specifies where the transformed values should be placed and the last argument is a general function that takes two arguments. This version of transform takes one element from each of the two input sources and applies the general function to that pair of elements, then places the transformed value at the location specified by the fourth argument.

16.3.6. Basic Searching and Sorting Algorithms

Figure 16.6 demonstrates some basic searching and sorting Standard Library algorithms, including find, find_if, sort, binary_search, all_of, any_of, none_of and find_if_not.

Click here to view code image

 1 // Fig. 16.6: fig16_06.cpp
 2 // Standard Library search and sort algorithms.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <array> // array class-template definition
 6 #include <iterator>
 7 using namespace std;
 8
 9 bool greater10(int value); // predicate function prototype
10
11 int main()
12 {
13 const size_t SIZE = 10;
14 array< int, SIZE > a = { 10, 2, 17, 5, 16, 8, 13, 11, 20, 7 };
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "array a contains: ";
18 copy(a.cbegin(), a.cend(), output); // display output vector
19
20 // locate first occurrence of 16 in a
21 auto location = find(a.cbegin(), a.cend(), 16);
22
23 if (location != a.cend()) // found 16
24 cout << "\n\nFound 16 at location " << (location - a.cbegin());
25 else // 16 not found
26 cout << "\n\n16 not found";
27
28 // locate first occurrence of 100 in a
29 location = find(a.cbegin(), a.cend(), 100);
30
31 if (location != a.cend()) // found 100
32 cout << "\nFound 100 at location " << (location - a.cbegin());
33 else // 100 not found
34 cout << "\n100 not found";
35
36 // locate first occurrence of value greater than 10 in a
37 location = find_if(a.cbegin(), a.cend(), greater10);
38
39 if (location != a.cend()) // found value greater than 10
40 cout << "\n\nThe first value greater than 10 is " << *location
41 << "\nfound at location " << (location - a.cbegin());
42 else // value greater than 10 not found
43 cout << "\n\nNo values greater than 10 were found";
44
45 // sort elements of a
46 sort(a.begin(), a.end());
47 cout << "\n\narray a after sort: ";
48 copy(a.cbegin(), a.cend(), output);
49
50 // use binary_search to locate 13 in a
51 if (binary_search(a.cbegin(), a.cend(), 13))
52 cout << "\n\n13 was found in a";
53 else
54 cout << "\n\n13 was not found in a";
55
56 // use binary_search to locate 100 in a
57 if (binary_search(a.cbegin(), a.cend(), 100))
58 cout << "\n100 was found in a";
59 else
60 cout << "\n100 was not found in a";
61
62 // determine whether all of the elements of a are greater than 10
63 if (all_of(a.cbegin(), a.cend(), greater10))
64 cout << "\n\nAll the elements in a are greater than 10";
65 else
66 cout << "\n\nSome elements in a are not greater than 10";
67
68 // determine whether any of the elements of a are greater than 10
69 if (any_of(a.cbegin(), a.cend(), greater10))
70 cout << "\n\nSome of the elements in a are greater than 10";
71 else
72 cout << "\n\nNone of the elements in a are greater than 10";
73
74 // determine whether none of the elements of a are greater than 10
75 if (none_of(a.cbegin(), a.cend(), greater10))
76 cout << "\n\nNone of the elements in a are greater than 10";
77 else
78 cout << "\n\nSome of the elements in a are greater than 10";
79
80 // locate first occurrence of value that's not greater than 10 in a
81 location = find_if_not(a.cbegin(), a.cend(), greater10);
82
83 if (location != a.cend()) // found a value less than or eqaul to 10
84 cout << "\n\nThe first value not greater than 10 is " << *location
85 << "\nfound at location " << (location - a.cbegin());
86 else // no values less than or equal to 10 were found
87 cout << "\n\nOnly values greater than 10 were found";
88
89 cout << endl;
90 } // end main
91
92 // determine whether argument is greater than 10
93 bool greater10(int value)
94 {
95 return value > 10;
96 } // end function greater10

array a contains: 10 2 17 5 16 8 13 11 20 7

Found 16 at location 4
100 not found

The first value greater than 10 is 17
found at location 2

array a after sort: 2 5 7 8 10 11 13 16 17 20

13 was found in a
100 was not found in a

Some elements in a are not greater than 10

Some of the elements in a are greater than 10

Some of the elements in a are greater than 10

The first value not greater than 10 is 2
found at location 0

Fig. 16.6. Standard Library search and sort algorithms.

find Algorithm

Line 21 uses the find algorithm to locate the value 16 in the range from a.cbegin() up to, but not including, a.cend(). The algorithm requires its two iterator arguments to be at least input iterators and returns an input iterator that either is positioned at the first element containing the value or indicates the end of the sequence (as is the case in line 29).

find_if Algorithm

Line 37 uses the find_if algorithm (a linear search) to locate the first value in the range from a.cbegin() up to, but not including, a.cend() for which the unary predicate function greater10 returns true. Function greater10 (defined in lines 93–96) takes an integer and returns a bool value indicating whether the integer argument is greater than 10. Algorithm find_if requires its two iterator arguments to be at least input iterators. The algorithm returns an input iterator that either is positioned at the first element containing a value for which the predicate function returns true or indicates the end of the sequence.

sort Algorithm

Line 46 uses sort algorithm to arrange the elements in the range from a.begin() up to, but not including, a.end() in ascending order. The algorithm requires its two iterator arguments to be random-access iterators. A second version of this algorithm takes a third argument that’s a binary predicate function taking two arguments that are values in the sequence and returning a bool indicating the sorting order—if the return value is true, the two elements being compared are in sorted order.

binary_search Algorithm

Line 51 uses the binary_search algorithm to determine whether the value 13 is in the range from a.cbegin() up to, but not including, a.cend(). The values must be sorted in ascending order. Algorithm binary_search requires its two iterator arguments to be at least forward iterators. The algorithm returns a bool indicating whether the value was found in the sequence. Line 57 demonstrates a call to binary_search in which the value is not found. A second version of this algorithm takes a fourth argument that’s a binary predicate function taking two arguments that are values in the sequence and returning a bool. The predicate function returns true if the two elements being compared are in sorted order. To obtain the location of the search key in the container, use the lower_bound or find algorithms.

C++11: all_of Algorithm

[image: Image]

Line 63 uses the all_of algorithm to determine whether the unary predicate function greater10 returns true for all of the elements in the range from a.cbegin() up to, but not including, a.cend(). Algorithm all_of requires its two iterator arguments to be at least input iterators.

C++11: any_of Algorithm

[image: Image]

Line 69 uses the any_of algorithm to determine whether the unary predicate function greater10 returns true for at least one of the elements in the range from a.cbegin() up to, but not including, a.cend(). Algorithm any_of requires its two iterator arguments to be at least input iterators.

C++11: none_of Algorithm

[image: Image]

Line 75 uses the none_of algorithm to determine whether the unary predicate function greater10 returns false for all of the elements in the range from a.cbegin() up to, but not including, a.cend(). Algorithm none_of requires its two iterator arguments to be at least input iterators.

C++11: find_if_not Algorithm

[image: Image]

Line 81 uses the find_if_not algorithm to locate the first value in the range from a.cbegin() up to, but not including, a.cend() for which the unary predicate function greater10 returns false. Algorithm find_if requires its two iterator arguments to be at least input iterators. The algorithm returns an input iterator that either is positioned at the first element containing a value for which the predicate function returns false or indicates the end of the sequence.

16.3.7. swap, iter_swap and swap_ranges

Figure 16.7 demonstrates algorithms swap, iter_swap and swap_ranges for swapping elements.

Click here to view code image

 1 // Fig. 16.7: fig16_07.cpp
 2 // Algorithms iter_swap, swap and swap_ranges.
 3 #include <iostream>
 4 #include <array>
 5 #include <algorithm> // algorithm definitions
 6 #include <iterator>
 7 using namespace std;
 8
 9 int main()
10 {
11 const size_t SIZE = 10;
12 array< int, SIZE > a = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13 ostream_iterator< int > output(cout, " ");
14
15 cout << "Array a contains:\n ";
16 copy(a.cbegin(), a.cend(), output); // display array a
17
18 swap(a[0], a[1]); // swap elements at locations 0 and 1 of a
19
20 cout << "\nArray a after swapping a[0] and a[1] using swap:\n ";
21 copy(a.cbegin(), a.cend(), output); // display array a
22
23 // use iterators to swap elements at locations 0 and 1 of array a
24 iter_swap(a.begin(), a.begin() + 1); // swap with iterators
25 cout << "\nArray a after swapping a[0] and a[1] using iter_swap:\n ";
26 copy(a.cbegin(), a.cend(), output);
27
28 // swap elements in first five elements of array a with
29 // elements in last five elements of array a
30 swap_ranges(a.begin(), a.begin() + 5, a.begin() + 5);
31
32 cout << "\nArray a after swapping the first five elements\n"
33 << "with the last five elements:\n ";
34 copy(a.cbegin(), a.cend(), output);
35 cout << endl;
36 } // end main

Array a contains:
 1 2 3 4 5 6 7 8 9 10
Array a after swapping a[0] and a[1] using swap:
 2 1 3 4 5 6 7 8 9 10
Array a after swapping a[0] and a[1] using iter_swap:
 1 2 3 4 5 6 7 8 9 10
Array a after swapping the first five elements
with the last five elements:
 6 7 8 9 10 1 2 3 4 5

Fig. 16.7. Algorithms iter_swap, swap and swap_ranges.

swap Algorithm

Line 18 uses the swap algorithm to exchange two values. In this example, the first and second elements of array a are exchanged. The function takes as arguments references to the two values being exchanged.

iter_swap Algorithm

Line 24 uses function iter_swap to exchange the two elements. The function takes two forward iterator arguments (in this case, iterators to elements of an array) and exchanges the values in the elements to which the iterators refer.

swap_ranges Algorithm

Line 30 uses function swap_ranges to exchange the elements from a.begin() up to, but not including, a.begin() + 5 with the elements beginning at position a.begin() + 5. The function requires three forward iterator arguments. The first two arguments specify the range of elements in the first sequence that will be exchanged with the elements in the second sequence starting from the iterator in the third argument. In this example, the two sequences of values are in the same array, but the sequences can be from different arrays or containers. The sequences must not overlap. The destination sequence must be large enough to contain all the elements of the ranges being swapped.

16.3.8. copy_backward, merge, unique and reverse

Figure 16.8 demonstrates algorithms copy_backward, merge, unique and reverse.

Click here to view code image

 1 // Fig. 16.8: fig16_08.cpp
 2 // Algorithms copy_backward, merge, unique and reverse.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <array> // array class-template definition
 6 #include <iterator> // ostream_iterator
 7 using namespace std;
 8
 9 int main()
10 {
11 const size_t SIZE = 5;
12 array< int, SIZE > a1 = { 1, 3, 5, 7, 9 };
13 array< int, SIZE > a2 = { 2, 4, 5, 7, 9 };
14 ostream_iterator< int > output(cout, " ");
15
16 cout << "array a1 contains: ";
17 copy(a1.cbegin(), a1.cend(), output); // display a1
18 cout << "\narray a2 contains: ";
19 copy(a2.cbegin(), a2.cend(), output); // display a2
20
21 array< int, SIZE > results;
22
23 // place elements of a1 into results in reverse order
24 copy_backward(a1.cbegin(), a1.cend(), results.end());
25 cout << "\n\nAfter copy_backward, results contains: ";
26 copy(results.cbegin(), results.cend(), output);
27
28 array< int, SIZE + SIZE > results2;
29
30 // merge elements of a1 and a2 into results2 in sorted order
31 merge(a1.cbegin(), a1.cend(), a2.cbegin(), a2.cend(),
32 results2.begin());
33
34 cout << "\n\nAfter merge of a1 and a2 results2 contains: ";
35 copy(results2.cbegin(), results2.cend(), output);
36
37 // eliminate duplicate values from results2
38 auto endLocation = unique(results2.begin(), results2.end());
39
40 cout << "\n\nAfter unique results2 contains: ";
41 copy(results2.begin(), endLocation, output);
42
43 cout << "\n\narray a1 after reverse: ";
44 reverse(a1.begin(), a1.end()); // reverse elements of a1
45 copy(a1.cbegin(), a1.cend(), output);
46 cout << endl;
47 } // end main

array a1 contains: 1 3 5 7 9
array a2 contains: 2 4 5 7 9

After copy_backward, results contains: 1 3 5 7 9

After merge of a1 and a2 results2 contains: 1 2 3 4 5 5 7 7 9 9

After unique results2 contains: 1 2 3 4 5 7 9

array a1 after reverse: 9 7 5 3 1

Fig. 16.8. Algorithms copy_backward, merge, unique and reverse.

copy_backward Algorithm

Line 24 uses the copy_backward algorithm to copy elements in the range from a1.cbegin() up to, but not including, a1.cend(), placing the elements in results by starting from the element before results.end() and working toward the beginning of the array. The algorithm returns an iterator positioned at the last element copied into the results (i.e., the beginning of results, because of the backward copy). The elements are placed in results in the same order as a1. This algorithm requires three bidirectional iterator arguments (iterators that can be incremented and decremented to iterate forward and backward through a sequence, respectively). One difference between copy_backward and copy is that the iterator returned from copy is positioned after the last element copied and the one returned from copy_backward is positioned at the last element copied (i.e., the first element in the sequence). Also, copy_backward can manipulate overlapping ranges of elements in a container as long as the first element to copy is not in the destination range of elements.

[image: Image]

In addition to the copy and copy_backward algorithms, C++11 now includes the move and move_backward algorithms. These use C++11’s new move semantics (discussed in Chapter 24, C++11: Additional Features) to move, rather than copy, objects from one container to another.

merge Algorithm

Lines 31–32 use the merge algorithm to combine two sorted ascending sequences of values into a third sorted ascending sequence. The algorithm requires five iterator arguments. The first four must be at least input iterators and the last must be at least an output iterator. The first two arguments specify the range of elements in the first sorted sequence (a1), the second two arguments specify the range of elements in the second sorted sequence (a2) and the last argument specifies the starting location in the third sequence (results2) where the elements will be merged. A second version of this algorithm takes as its sixth argument a binary predicate function that specifies the sorting order.

back_inserter, front_inserter and inserter Iterator Adapters

Line 28 creates the array results2 with the number of elements in a1 and a2. Using the merge algorithm requires that the sequence where the results are stored be at least the size of the sequences being merged. If you do not want to allocate the number of elements for the resulting sequence before the merge operation, you can use the following statements:

Click here to view code image

vector< int > results2;
merge(a1.begin(), a1.end(), a2.begin(), a2.end(),
 back_inserter(results2));

The argument back_inserter(results2) uses function template back_inserter (header <iterator>) for the vector results2. A back_inserter calls the container’s default push_back function to insert an element at the end of the container. If an element is inserted into a container that has no more space available, the container grows in size—which is why we used a vector in the preceding statements, because arrays are fixed size. Thus, the number of elements in the container does not have to be known in advance. There are two other inserters—front_inserter (uses push_front to insert an element at the beginning of a container specified as its argument) and inserter (uses insert to insert an element at the iterator supplied as its second argument in the container supplied as its first argument).

unique Algorithm

Line 38 uses the unique algorithm on the sorted sequence of elements in the range from results2.begin() up to, but not including, results2.end(). After this algorithm is applied to a sorted sequence with duplicate values, only a single copy of each value remains in the sequence. The algorithm takes two arguments that must be at least forward iterators. The algorithm returns an iterator positioned after the last element in the sequence of unique values. The values of all elements in the container after the last unique value are undefined. A second version of this algorithm takes as a third argument a binary predicate function specifying how to compare two elements for equality.

reverse Algorithm

Line 44 uses the reverse algorithm to reverse all the elements in the range from a1.begin() up to, but not including, a1.end(). The algorithm takes two arguments that must be at least bidirectional iterators.

C++11: copy_if and copy_n Algorithms

[image: Image]

C++11 now includes the new copy algorithms copy_if and copy_n. The copy_if algorithm copies each element from a range if the unary predicate function in its fourth argument returns true for that element. The iterators supplied as the first two arguments must be input iterators. The iterator supplied as the third argument must be an output iterator so that the element being copied can be assigned to the copy location. This algorithm returns an iterator positioned after the last element copied.

[image: Image]

The copy_n algorithm copies the number of elements specified by its second argument from the location specified by its first argument (an input iterator). The elements are output to the location specified by its third argument (an output iterator).

16.3.9. inplace_merge, unique_copy and reverse_copy

Figure 16.9 demonstrates algorithms inplace_merge, unique_copy and reverse_copy.

Click here to view code image

 1 // Fig. 16.9: fig16_09.cpp
 2 // Algorithms inplace_merge, reverse_copy and unique_copy.
 3 #include <iostream>
 4 #include <algorithm> // algorithm definitions
 5 #include <array> // array class-template definition
 6 #include <vector> // vector class-template definition
 7 #include <iterator> // back_inserter definition
 8 using namespace std;
 9
10 int main()
11 {
12 const int SIZE = 10;
13 array< int, SIZE > a1 = { 1, 3, 5, 7, 9, 1, 3, 5, 7, 9 };
14 ostream_iterator< int > output(cout, " ");
15
16 cout << "array a1 contains: ";
17 copy(a1.cbegin(), a1.cend(), output);
18
19 // merge first half of a1 with second half of a1 such that
20 // a1 contains sorted set of elements after merge
21 inplace_merge(a1.begin(), a1.begin() + 5, a1.end());
22
23 cout << "\nAfter inplace_merge, a1 contains: ";
24 copy(a1.cbegin(), a1.cend(), output);
25
26 vector< int > results1;
27
28 // copy only unique elements of a1 into results1
29 unique_copy(a1.cbegin(), a1.cend(), back_inserter(results1));
30 cout << "\nAfter unique_copy results1 contains: ";
31 copy(results1.cbegin(), results1.cend(), output);
32
33 vector< int > results2;
34
35 // copy elements of a1 into results2 in reverse order
36 reverse_copy(a1.cbegin(), a1.cend(), back_inserter(results2));
37 cout << "\nAfter reverse_copy, results2 contains: ";
38 copy(results2.cbegin(), results2.cend(), output);
39 cout << endl;
40 } // end main

array a1 contains: 1 3 5 7 9 1 3 5 7 9
After inplace_merge, a1 contains: 1 1 3 3 5 5 7 7 9 9
After unique_copy results1 contains: 1 3 5 7 9
After reverse_copy, results2 contains: 9 9 7 7 5 5 3 3 1 1

Fig. 16.9. Algorithms inplace_merge, reverse_copy and unique_copy.

inplace_merge Algorithm

Line 21 uses the inplace_merge algorithm to merge two sorted sequences of elements in the same container. In this example, the elements from a1.begin() up to, but not including, a1.begin() + 5 are merged with the elements from a1.begin() + 5 up to, but not including, a1.end(). This algorithm requires its three iterator arguments to be at least bidirectional iterators. A second version of this algorithm takes as a fourth argument a binary predicate function for comparing elements in the two sequences.

unique_copy Algorithm

Line 29 uses the unique_copy algorithm to make a copy of all the unique elements in the sorted sequence of values from a1.cbegin() up to, but not including, a1.cend(). The copied elements are placed into vector results1. The first two arguments must be at least input iterators and the last must be at least an output iterator. In this example, we did not preallocate enough elements in results1 to store all the elements copied from a1. Instead, we use function back_inserter (defined in header <iterator>) to add elements to the end of results1. The back_inserter uses vector’s push_back member function to insert elements at the end of the vector. Because the back_inserter inserts an element rather than replacing an existing element’s value, the vector is able to grow to accommodate additional elements. A second version of the unique_copy algorithm takes as a fourth argument a binary predicate function for comparing elements for equality.

reverse_copy Algorithm

Line 36 uses the reverse_copy algorithm to make a reversed copy of the elements in the range from a1.cbegin() up to, but not including, a1.cend(). The copied elements are inserted into results2 using a back_inserter object to ensure that the vector can grow to accommodate the appropriate number of elements copied. Algorithm reverse_copy requires its first two iterator arguments to be at least bidirectional iterators and its third to be at least an output iterator.

16.3.10. Set Operations

Figure 16.10 demonstrates algorithms includes, set_difference, set_intersection, set_symmetric_difference and set_union for manipulating sets of sorted values.

Click here to view code image

 1 // Fig. 16.10: fig16_10.cpp
 2 // Algorithms includes, set_difference, set_intersection,
 3 // set_symmetric_difference and set_union.
 4 #include <iostream>
 5 #include <array>
 6 #include <algorithm> // algorithm definitions
 7 #include <iterator> // ostream_iterator
 8 using namespace std;
 9
10 int main()
11 {
12 const size_t SIZE1 = 10, SIZE2 = 5, SIZE3 = 20;
13 array< int, SIZE1 > a1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
14 array< int, SIZE2 > a2 = { 4, 5, 6, 7, 8 };
15 array< int, SIZE2 > a3 = { 4, 5, 6, 11, 15 };
16 ostream_iterator< int > output(cout, " ");
17
18 cout << "a1 contains: ";
19 copy(a1.cbegin(), a1.cend(), output); // display array a1
20 cout << "\na2 contains: ";
21 copy(a2.cbegin(), a2.cend(), output); // display array a2
22 cout << "\na3 contains: ";
23 copy(a3.cbegin(), a3.cend(), output); // display array a3
24
25 // determine whether a2 is completely contained in a1
26 if (includes(a1.cbegin(), a1.cend(), a2.cbegin(), a2.cend()))
27 cout << "\n\na1 includes a2";
28 else
29 cout << "\n\na1 does not include a2";
30
31 // determine whether a3 is completely contained in a1
32 if (includes(a1.cbegin(), a1.cend(), a3.cbegin(), a3.cend()))
33 cout << "\na1 includes a3";
34 else
35 cout << "\na1 does not include a3";
36
37 array< int, SIZE1 > difference;
38
39 // determine elements of a1 not in a2
40 auto result1 = set_difference(a1.cbegin(), a1.cend(),
41 a2.cbegin(), a2.cend(), difference.begin());
42 cout << "\n\nset_difference of a1 and a2 is: ";
43 copy(difference.begin(), result1, output);
44
45 array< int, SIZE1 > intersection;
46
47 // determine elements in both a1 and a2
48 auto result2 = set_intersection(a1.cbegin(), a1.cend(),
49 a2.cbegin(), a2.cend(), intersection.begin());
50 cout << "\n\nset_intersection of a1 and a2 is: ";
51 copy(intersection.begin(), result2, output);
52
53 array< int, SIZE1 + SIZE2 > symmetric_difference;
54
55 // determine elements of a1 that are not in a2 and
56 // elements of a2 that are not in a1
57 auto result3 = set_symmetric_difference(a1.cbegin(), a1.cend(),
58 a3.cbegin(), a3.cend(), symmetric_difference.begin());
59 cout << "\n\nset_symmetric_difference of a1 and a3 is: ";
60 copy(symmetric_difference.begin(), result3, output);
61
62 array< int, SIZE3 > unionSet;
63
64 // determine elements that are in either or both sets
65 auto result4 = set_union(a1.cbegin(), a1.cend(),
66 a3.cbegin(), a3.cend(), unionSet.begin());
67 cout << "\n\nset_union of a1 and a3 is: ";
68 copy(unionSet.begin(), result4, output);
69 cout << endl;
70 } // end main

a1 contains: 1 2 3 4 5 6 7 8 9 10
a2 contains: 4 5 6 7 8
a3 contains: 4 5 6 11 15

a1 includes a2
a1 does not include a3

set_difference of a1 and a2 is: 1 2 3 9 10

set_intersection of a1 and a2 is: 4 5 6 7 8

set_symmetric_difference of a1 and a3 is: 1 2 3 7 8 9 10 11 15

set_union of a1 and a3 is: 1 2 3 4 5 6 7 8 9 10 11 15

Fig. 16.10. Algorithms includes, set_difference, set_intersection, set_symmetric_difference and set_union.

includes Algorithm

Lines 26 and 32 call the includes algorithm, which compares two sets of sorted values to determine whether every element of the second set is in the first set. If so, includes returns true; otherwise, it returns false. The first two iterator arguments must be at least input iterators and must describe the first set of values. In line 26, the first set consists of the elements from a1.cbegin() up to, but not including, a1.cend(). The last two iterator arguments must be at least input iterators and must describe the second set of values. In this example, the second set consists of the elements from a2.cbegin() up to, but not including, a2.cend(). A second version of algorithm includes takes a fifth argument that’s a binary predicate function indicating the order in which the elements were originally sorted. The two sequences must be sorted using the same comparison function.

set_difference Algorithm

Lines 40–41 use the set_difference algorithm to find the elements from the first set of sorted values that are not in the second set of sorted values (both sets of values must be in ascending order). The elements that are different are copied into the fifth argument (in this case, the array difference). The first two iterator arguments must be at least input iterators for the first set of values. The next two iterator arguments must be at least input iterators for the second set of values. The fifth argument must be at least an output iterator indicating where to store a copy of the values that are different. The algorithm returns an output iterator positioned immediately after the last value copied into the set to which the fifth argument points. A second version of set_difference takes a sixth argument that’s a binary predicate function indicating the order in which the elements were originally sorted. The two sequences must be sorted using the same comparison function.

set_intersection Algorithm

Lines 48–49 use the set_intersection algorithm to determine the elements from the first set of sorted values that are in the second set of sorted values (both sets of values must be in ascending order). The elements common to both sets are copied into the fifth argument (in this case, array intersection). The first two iterator arguments must be at least input iterators for the first set of values. The next two iterator arguments must be at least input iterators for the second set of values. The fifth argument must be at least an output iterator indicating where to store a copy of the values that are the same. The algorithm returns an output iterator positioned immediately after the last value copied into the set to which the fifth argument points. A second version of set_intersection takes a sixth argument that’s a binary predicate function indicating the order in which the elements were originally sorted. The two sequences must be sorted using the same comparison function.

set_symmetric_difference Algorithm

Lines 57–58 use the set_symmetric_difference algorithm to determine the elements in the first set that are not in the second set and the elements in the second set that are not in the first set (both sets must be in ascending order). The elements that are different are copied from both sets into the fifth argument (the array symmetric_difference). The first two iterator arguments must be at least input iterators for the first set of values. The next two iterator arguments must be at least input iterators for the second set of values. The fifth argument must be at least an output iterator indicating where to store a copy of the values that are different. The algorithm returns an output iterator positioned immediately after the last value copied into the set to which the fifth argument points. A second version of set_symmetric_difference takes a sixth argument that’s a binary predicate function indicating the order in which the elements were originally sorted. The two sequences must be sorted using the same comparison function.

set_union Algorithm

Lines 65–66 use the set_union algorithm to create a set of all the elements that are in either or both of the two sorted sets (both sets of values must be in ascending order). The elements are copied from both sets into the fifth argument (in this case the array unionSet). Elements that appear in both sets are only copied from the first set. The first two iterator arguments must be at least input iterators for the first set of values. The next two iterator arguments must be at least input iterators for the second set of values. The fifth argument must be at least an output iterator indicating where to store the copied elements. The algorithm returns an output iterator positioned immediately after the last value copied into the set to which the fifth argument points. A second version of set_union takes a sixth argument that’s a binary predicate function indicating the order in which the elements were originally sorted. The two sequences must be sorted using the same comparison function.

16.3.11. lower_bound, upper_bound and equal_range

Figure 16.11 demonstrates algorithms lower_bound, upper_bound and equal_range.

Click here to view code image

 1 // Fig. 16.11: fig16_11.cpp
 2 // Algorithms lower_bound, upper_bound and
 3 // equal_range for a sorted sequence of values.
 4 #include <iostream>
 5 #include <algorithm> // algorithm definitions
 6 #include <array> // aray class-template definition
 7 #include <iterator> // ostream_iterator
 8 using namespace std;
 9
10 int main()
11 {
12 const size_t SIZE = 10;
13 array< int, SIZE > a = { 2, 2, 4, 4, 4, 6, 6, 6, 6, 8 };
14 ostream_iterator< int > output(cout, " ");
15
16 cout << "array a contains:\n";
17 copy(a.cbegin(), a.cend(), output);
18
19 // determine lower-bound insertion point for 6 in a
20 auto lower = lower_bound(a.cbegin(), a.cend(), 6);
21 cout << "\n\nLower bound of 6 is element "
22 << (lower - a.cbegin()) << " of array a";
23
24 // determine upper-bound insertion point for 6 in a
25 auto upper = upper_bound(a.cbegin(), a.cend(), 6);
26 cout << "\nUpper bound of 6 is element "
27 << (upper - a.cbegin()) << " of array a";
28
29 // use equal_range to determine both the lower- and
30 // upper-bound insertion points for 6
31 auto eq = equal_range(a.cbegin(), a.cend(), 6);
32 cout << "\nUsing equal_range:\n Lower bound of 6 is element "
33 << (eq.first - a.cbegin()) << " of array a";
34 cout << "\n Upper bound of 6 is element "
35 << (eq.second - a.cbegin()) << " of array a";
36 cout << "\n\nUse lower_bound to locate the first point\n"
37 << "at which 5 can be inserted in order";
38
39 // determine lower-bound insertion point for 5 in a
40 lower = lower_bound(a.cbegin(), a.cend(), 5);
41 cout << "\n Lower bound of 5 is element "
42 << (lower - a.cbegin()) << " of array a";
43 cout << "\n\nUse upper_bound to locate the last point\n"
44 << "at which 7 can be inserted in order";
45
46 // determine upper-bound insertion point for 7 in a
47 upper = upper_bound(a.cbegin(), a.cend(), 7);
48 cout << "\n Upper bound of 7 is element "
49 << (upper - a.cbegin()) << " of array a";
50 cout << "\n\nUse equal_range to locate the first and\n"
51 << "last point at which 5 can be inserted in order";
52
53 // use equal_range to determine both the lower- and
54 // upper-bound insertion points for 5
55 eq = equal_range(a.cbegin(), a.cend(), 5);
56 cout << "\n Lower bound of 5 is element "
57 << (eq.first - a.cbegin()) << " of array a";
58 cout << "\n Upper bound of 5 is element "
59 << (eq.second - a.cbegin()) << " of array a" << endl;
60 } // end main

Array a contains:
2 2 4 4 4 6 6 6 6 8

Lower bound of 6 is element 5 of array a
Upper bound of 6 is element 9 of array a
Using equal_range:
 Lower bound of 6 is element 5 of array a
 Upper bound of 6 is element 9 of array a

Use lower_bound to locate the first point
at which 5 can be inserted in order
 Lower bound of 5 is element 5 of array a

Use upper_bound to locate the last point
at which 7 can be inserted in order
 Upper bound of 7 is element 9 of array a

Use equal_range to locate the first and
last point at which 5 can be inserted in order
 Lower bound of 5 is element 5 of array a
 Upper bound of 5 is element 5 of array a

Fig. 16.11. Algorithms lower_bound, upper_bound and equal_range for a sorted sequence of values.

lower_bound Algorithm

Line 20 uses the lower_bound algorithm to find the first location in a sorted sequence of values at which the third argument could be inserted in the sequence such that the sequence would still be sorted in ascending order. The first two iterator arguments must be at least forward iterators. The third argument is the value for which to determine the lower bound. The algorithm returns a forward iterator pointing to the position at which the insert can occur. A second version of lower_bound takes as a fourth argument a binary predicate function indicating the order in which the elements were originally sorted.

upper_bound Algorithm

Line 25 uses the upper_bound algorithm to find the last location in a sorted sequence of values at which the third argument could be inserted in the sequence such that the sequence would still be sorted in ascending order. The first two iterator arguments must be at least forward iterators. The third argument is the value for which to determine the upper bound. The algorithm returns a forward iterator pointing to the position at which the insert can occur. A second version of upper_bound takes as a fourth argument a binary predicate function indicating the order in which the elements were originally sorted.

equal_range Algorithm

Line 31 uses the equal_range algorithm to return a pair of forward iterators containing the results of performing both a lower_bound and an upper_bound operation. The first two arguments must be at least forward iterators. The third is the value for which to locate the equal range. The algorithm returns a pair of forward iterators for the lower bound (eq.first) and upper bound (eq.second), respectively.

Locating Insertion Points in Sorted Sequences

Algorithms lower_bound, upper_bound and equal_range are often used to locate insertion points in sorted sequences. Line 40 uses lower_bound to locate the first point at which 5 can be inserted in order in a. Line 47 uses upper_bound to locate the last point at which 7 can be inserted in order in a. Line 55 uses equal_range to locate the first and last points at which 5 can be inserted in order in a.

16.3.12. Heapsort

Figure 16.12 demonstrates the Standard Library algorithms for performing the heapsort sorting algorithm, in which an array of elements is arranged into a data structure called a heap. For more information on Heapsort and for additional resources, see:

en.wikipedia.org/wiki/Heapsort

Click here to view code image

 1 // Fig. 16.12: fig16_12.cpp
 2 // Algorithms push_heap, pop_heap, make_heap and sort_heap.
 3 #include <iostream>
 4 #include <algorithm>
 5 #include <array>
 6 #include <vector>
 7 #include <iterator>
 8 using namespace std;
 9
10 int main()
11 {
12 const size_t SIZE = 10;
13 array< int, SIZE > init = { 3, 100, 52, 77, 22, 31, 1, 98, 13, 40 };
14 array< int, SIZE > a(init); // copy of init
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "Array a before make_heap:\n";
18 copy(a.cbegin(), a.cend(), output);
19
20 make_heap(a.begin(), a.end()); // create heap from array a
21 cout << "\Array a after make_heap:\n";
22 copy(a.cbegin(), a.cend(), output);
23
24 sort_heap(a.begin(), a.end()); // sort elements with sort_heap
25 cout << "\Array a after sort_heap:\n";
26 copy(a.cbegin(), a.cend(), output);
27
28 // perform the heapsort with push_heap and pop_heap
29 cout << "\n\nArray init contains: ";
30 copy(init.cbegin(), init.cend(), output); // display array init
31 cout << endl;
32
33 vector< int > v;
34
35 // place elements of array init into v and
36 // maintain elements of v in heap
37 for (size_t i = 0; i < SIZE; ++i)
38 {
39 v.push_back(init[i]);
40 push_heap(v.begin(), v.end());
41 cout << "\nv after push_heap(init[" << i << "]): ";
42 copy(v.cbegin(), v.cend(), output);
43 } // end for
44
45 cout << endl;
46
47 // remove elements from heap in sorted order
48 for (size_t j = 0; j < v.size(); ++j)
49 {
50 cout << "\nv after " << v[0] << " popped from heap\n";
51 pop_heap(v.begin(), v.end() - j);
52 copy(v.cbegin(), v.cend(), output);
53 } // end for
54
55 cout << endl;
56 } // end main

Array a before make_heap:
3 100 52 77 22 31 1 98 13 40
Array a after make_heap:
100 98 52 77 40 31 1 3 13 22
Array a after sort_heap:
1 3 13 22 31 40 52 77 98 100

Array init contains: 3 100 52 77 22 31 1 98 13 40

v after push_heap(init[0]): 3
v after push_heap(init[1]): 100 3
v after push_heap(init[2]): 100 3 52
v after push_heap(init[3]): 100 77 52 3
v after push_heap(init[4]): 100 77 52 3 22
v after push_heap(init[5]): 100 77 52 3 22 31
v after push_heap(init[6]): 100 77 52 3 22 31 1
v after push_heap(init[7]): 100 98 52 77 22 31 1 3
v after push_heap(init[8]): 100 98 52 77 22 31 1 3 13
v after push_heap(init[9]): 100 98 52 77 40 31 1 3 13 22

v after 100 popped from heap
98 77 52 22 40 31 1 3 13 100
v after 98 popped from heap
77 40 52 22 13 31 1 3 98 100
v after 77 popped from heap
52 40 31 22 13 3 1 77 98 100
v after 52 popped from heap
40 22 31 1 13 3 52 77 98 100
v after 40 popped from heap
31 22 3 1 13 40 52 77 98 100
v after 31 popped from heap
22 13 3 1 31 40 52 77 98 100
v after 22 popped from heap
13 1 3 22 31 40 52 77 98 100
v after 13 popped from heap
3 1 13 22 31 40 52 77 98 100
v after 3 popped from heap
1 3 13 22 31 40 52 77 98 100
v after 1 popped from heap
1 3 13 22 31 40 52 77 98 100

Fig. 16.12. Algorithms push_heap, pop_heap, make_heap and sort_heap.

make_heap Algorithm

Line 20 uses the make_heap algorithm to take a sequence of values in the range from a.begin() up to, but not including, a.end() and create a heap that can be used to produce a sorted sequence. The two iterator arguments must be random-access iterators, so this algorithm will work only with arrays, vectors and deques. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

sort_heap Algorithm

Line 24 uses the sort_heap algorithm to sort a sequence of values in the range from a.begin() up to, but not including, a.end() that are already arranged in a heap. The two iterator arguments must be random-access iterators. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

push_heap Algorithm

Line 40 uses the push_heap algorithm to add a new value into a heap. We take one element of array init at a time, append it to the end of vector v and perform the push_heap operation. If the appended element is the only element in the vector, the vector is already a heap. Otherwise, push_heap rearranges the vector elements into a heap. Each time push_heap is called, it assumes that the last element currently in the vector (i.e., the one that’s appended before the push_heap call) is the element being added to the heap and that all other elements in the vector are already arranged as a heap. The two iterator arguments to push_heap must be random-access iterators. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

pop_heap Algorithm

Line 51 uses pop_heap to remove the top heap element. This algorithm assumes that the elements in the range specified by its two random-access iterator arguments are already a heap. Repeatedly removing the top heap element results in a sorted sequence of values. Algorithm pop_heap swaps the first heap element (v.begin()) with the last heap element (the element before v.end() - j), then ensures that the elements up to, but not including, the last element still form a heap. Notice in the output that, after the pop_heap operations, the vector is sorted in ascending order. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

C++11: is_heap and is_heap_until Algorithms

[image: Image]

In addition to the make_heap, sort_heap, push_heap and pop_heap algorithms presented in Fig. 16.12, C++11 now includes the new algorithms is_heap and is_heap_until. The is_heap algorithm returns true if the elements in the specified range represent a heap. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

[image: Image]

The is_heap_until algorithm checks the specified range of values and returns an iterator pointing to the last item in the range for which the elements up to, but not including, that iterator represent a heap.

16.3.13. min, max, minmax and minmax_element

Figure 16.13 demonstrates algorithms min, max, minmax and minmax_element.

Click here to view code image

 1 // Fig. 16.13: fig16_13.cpp
 2 // Algorithms min, max, minmax and minmax_element.
 3 #include <iostream>
 4 #include <array>
 5 #include <algorithm>
 6 using namespace std;
 7
 8 int main()
 9 {
10 cout << "The minimum of 12 and 7 is: " << min(12, 7);
11 cout << "\nThe maximum of 12 and 7 is: " << max(12, 7);
12 cout << "\nThe minimum of 'G' and 'Z' is: " << min('G', 'Z');
13 cout << "\nThe maximum of 'G' and 'Z' is: " << max('G', 'Z');
14
15 // determine which argument is the min and which is the max
16 auto result1 = minmax(12, 7);
17 cout << "\n\nThe minimum of 12 and 7 is: " << result1.first
18 << "\nThe maximum of 12 and 7 is: " << result1.second;
19
20 array< int, 10 > items = { 3, 100, 52, 77, 22, 31, 1, 98, 13, 40 };
21 ostream_iterator< int > output(cout, " ");
22
23 cout << "\n\nArray items contains: ";
24 copy(items.cbegin(), items.cend(), output);
25
26 auto result2 = minmax_element(items.cbegin(), items.cend());
27 cout << "\nThe minimum element in items is: " << *result2.first
28 << "\nThe maximum element in items is: " << *result2.second
29 << endl;
30 } // end main

The minimum of 12 and 7 is: 7
The maximum of 12 and 7 is: 12
The minimum of 'G' and 'Z' is: G
The maximum of 'G' and 'Z' is: Z

The minimum of 12 and 7 is: 7
The maximum of 12 and 7 is: 12

Array items contains: 3 100 52 77 22 31 1 98 13 40
The minimum element in items is: 1
The maximum element in items is: 100

Fig. 16.13. Algorithms min, max, minmax and minmax_element.

Algorithms min and max with Two Parameters

Algorithms min and max (demonstrated in lines 10–13) determine the minimum and the maximum of two elements, respectively.

[image: Image]

C++11: min and max Algorithms with initializer_list Parameters

C++11 now includes overloaded versions of the algorithms min and max that each receive an initializer_list parameter and return the smallest or largest item in the list initializer that’s passed as an argument. For example, the following statement returns 7:

int minumum = min({ 10, 7, 14, 21, 17 });

Each of these new min and max algorithms is overloaded with a version that takes as a second argument a binary predicate function for comparing values.

C++11: minmax Algorithm

C++11 now includes the minmax algorithm (line 16) that receives two items and returns a pair in which the smaller item is stored in first and the larger item is stored in second. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

[image: Image]

C++11: minmax_element Algorithm

C++11 now includes the minmax_element algorithm (line 26) that receives two input iterators representing a range of elements and returns a pair of iterators in which first points to the smallest element in the range and second points to the largest. A second version of this algorithm takes as a third argument a binary predicate function for comparing values.

16.4. Function Objects

Many Standard Library algorithms allow you to pass a function pointer into the algorithm to help the algorithm perform its task. For example, the binary_search algorithm that we discussed in Section 16.3.6 is overloaded with a version that requires as its fourth parameter a function pointer that takes two arguments and returns a bool value. The algorithm uses this function to compare the search key to an element in the collection. The function returns true if the search key and element being compared are equal; otherwise, the function returns false. This enables binary_search to search a collection of elements for which the element type does not provide an overloaded equality < operator.

Any algorithm that can receive a function pointer can also receive an object of a class that overloads the function-call operator (parentheses) with a function named operator(), provided that the overloaded operator meets the requirements of the algorithm—in the case of binary_search, it must receive two arguments and return a bool. An object of such a class is known as a function object and can be used syntactically and semantically like a function or function pointer—the overloaded parentheses operator is invoked by using a function object’s name followed by parentheses containing the arguments to the function. Most algorithms can use function objects and functions interchangeably. As you’ll learn in Section 16.5, C++11’s lambda expressions can also be used where function pointers and function objects are used.

Advantages of Function Objects Over Function Pointers

Function objects provide several advantages over function pointers. The compiler can inline a function object’s overloaded operator() to improve performance. Also, since they’re objects of classes, function objects can have data members that operator() can use to perform its task.

Predefined Function Objects of the Standard Template Library

Many predefined function objects can be found in the header <functional>. Figure 16.14 lists several of the dozens of Standard Library function objects, which are all implemented as class templates. Section 20.8 of the C++ standard contains the complete list of function objects. We used the function object less<T> in the set, multiset and priority_queue examples, to specify the sorting order for elements in a container.

[image: Image]

Fig. 16.14. Function objects in the Standard Library.

Using the accumulate Algorithm

Figure 16.15 uses the accumulate numeric algorithm (introduced in Fig. 16.5) to calculate the sum of the squares of the elements in an array. The fourth argument to accumulate is a binary function object (that is, a function object for which operator() takes two arguments) or a function pointer to a binary function (that is, a function that takes two arguments). Function accumulate is demonstrated twice—once with a function pointer and once with a function object.

Click here to view code image

 1 // Fig. 16.15: fig16_15.cpp
 2 // Demonstrating function objects.
 3 #include <iostream>
 4 #include <array> // array class-template definition
 5 #include <algorithm> // copy algorithm
 6 #include <numeric> // accumulate algorithm
 7 #include <functional> // binary_function definition
 8 #include <iterator> // ostream_iterator
 9 using namespace std;
10
11 // binary function adds square of its second argument and the
12 // running total in its first argument, then returns the sum
13 int sumSquares(int total, int value)
14 {
15 return total + value * value;
16 } // end function sumSquares
17
18 // Class template SumSquaresClass defines overloaded operator()
19 // that adds the square of its second argument and running
20 // total in its first argument, then returns sum
21 template< typename T >
22 class SumSquaresClass
23 {
24 public:
25 // add square of value to total and return result
26 T operator()(const T &total, const T &value)
27 {
28 return total + value * value;
29 } // end function operator()
30 }; // end class SumSquaresClass
31
32 int main()
33 {
34 const size_t SIZE = 10;
35 array< int, SIZE > integers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
36 ostream_iterator< int > output(cout, " ");
37
38 cout << "array integers contains:\n";
39 copy(integers.cbegin(), integers.cend(), output);
40
41 // calculate sum of squares of elements of array integers
42 // using binary function sumSquares
43 int result = accumulate(integers.cbegin(), integers.cend(),
44 0, sumSquares);
45
46 cout << "\n\nSum of squares of elements in integers using "
47 << "binary\nfunction sumSquares: " << result;
48
49 // calculate sum of squares of elements of array integers
50 // using binary function object
51 result = accumulate(integers.cbegin(), integers.cend(),
52 0, SumSquaresClass< int >());
53
54 cout << "\n\nSum of squares of elements in integers using "
55 << "binary\nfunction object of type "
56 << "SumSquaresClass< int >: " << result << endl;
57 } // end main

array integers contains:
1 2 3 4 5 6 7 8 9 10

Sum of squares of elements in integers using binary
function sumSquares: 385

Sum of squares of elements in integers using binary
function object of type SumSquaresClass< int >: 385

Fig. 16.15. Binary function object.

Function sumSquares

Lines 13–16 define a function sumSquares that squares its second argument value, adds that square and its first argument total and returns the sum. Function accumulate will pass each of the elements of the sequence over which it iterates as the second argument to sumSquares in the example. On the first call to sumSquares, the first argument will be the initial value of the total (which is supplied as the third argument to accumulate; 0 in this program). All subsequent calls to sumSquares receive as the first argument the running sum returned by the previous call to sumSquares. When accumulate completes, it returns the sum of the squares of all the elements in the sequence.

Class SumSquaresClass

Lines 21–30 define the class template SumSquaresClass with an overloaded operator() that has two parameters and returns a value—the requirements for a binary function object. On the first call to the function object, the first argument will be the initial value of the total (which is supplied as the third argument to accumulate; 0 in this program) and the second argument will be the first element in array integers. All subsequent calls to operator receive as the first argument the result returned by the previous call to the function object, and the second argument will be the next element in the array. When accumulate completes, it returns the sum of the squares of all the elements in the array.

Passing Function Pointers and Function Objects to Algorithm accumulate

Lines 43–44 call function accumulate with a pointer to function sumSquares as its last argument. Similarly, the statement in lines 51–52 calls accumulate with an object of class SumSquaresClass as the last argument. The expression SumSquaresClass<int>() creates (and calls the default constructor for) an instance of class SumSquaresClass (a function object) that’s passed to accumulate, which invokes the function operator(). Lines 51–52 could be written as two separate statements, as follows:

Click here to view code image

SumSquaresClass< int > sumSquaresObject;
result = accumulate(integers.cbegin(), integers.cend(),
 0, sumSquaresObject);

The first line defines an object of class SumSquaresClass. That object is then passed to accumulate.

16.5. Lambda Expressions

As you’ve seen in this chapter, many algorithms can receive function pointers or function objects as parameters. Before you can pass a function pointer or function object to an algorithm, the corresponding function or class must have been declared.

[image: Image]

C++11’s Lambda expressions (or lambda functions) enable you to define anonymous function objects where they’re passed to a function. They’re defined locally inside functions and can “capture” (by value or by reference) the local variables of the enclosing function then manipulate these variables in the lambda’s body. Figure 16.16 demonstrates a simple lambda expression example that doubles the value of each element in an int array.

Click here to view code image

 1 // Fig. 16.16: fig16_16.cpp
 2 // Lambda expressions.
 3 #include <iostream>
 4 #include <array>
 5 #include <algorithm>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const size_t SIZE = 4; // size of array values
11 array< int, SIZE > values = { 1, 2, 3, 4 }; // initialize values
12
13 // output each element multiplied by two
14 for_each(values.cbegin(), values.cend(),
15 [](int i) { cout << i * 2 << endl; });
16
17 int sum = 0; // initialize sum to zero
18
19 // add each element to sum
20 for_each(values.cbegin(), values.cend(),
21 [&sum](int i) { sum += i; });
22
23 cout << "sum is " << sum << endl; // output sum
24 } // end main

2
4
6
8
sum is 10

Fig. 16.16. Lambda expressions.

Lines 10 and 11 declare and initialize a small array of ints named values. Lines 14–15 call the for_each algorithm on the elements of values. The third argument (line 15) to for_each is a lambda expression. Lambdas begin with lambda introducer ([]), followed by a parameter list and function body. Return types can be inferred automatically if the body is a single statement of the form return expression;—otherwise, the return type is void by default or you can explicitly use a trailing return type (introduced in Section 6.18). The compiler converts the lambda expression into a function object. The lambda expression in line 15 receives an int, multiplies it by 2 and displays the result. The for_each algorithm passes each element of the array to the lambda.

The second call to the for_each algorithm (lines 20–21) calculates the sum of the array elements. The lambda introducer [&sum] indicates that this lambda expression captures the local variable sum by reference (note the use of the ampersand), so that the lambda can modify sum’s value. Without the ampersand, sum would be captured by value and the local variable outside the lambda expression would not be updated. The for_each algorithm passes each element of values to the lambda, which adds the value to the sum. Line 23 then displays the value of sum.

You can assign lambda expressions to variables, which can then be used to invoke the lambda expression or pass it to other functions. For example, you can assign the lambda expression in line 15 to a variable as follows:

auto myLambda = [](int i) { cout << i * 2 << endl; };

You can then use the variable name as a function name to invoke the lambda as in:

myLambda(10); // outputs 20

16.6. Standard Library Algorithm Summary

The C++ standard specifies over 90 algorithms—many overloaded with two or more versions. The standard separates the algorithms into several categories—mutating sequence algorithms, nonmodifying sequence algorithms, sorting and related algorithms and generalized numeric operations. To learn about the algorithms that we did not present in this chapter, see your compiler’s documentation or visit sites such as

Click here to view code image

en.cppreference.com/w/cpp/algorithm
msdn.microsoft.com/en-us/library/yah1y2x8.aspx

Mutating Sequence Algorithms

Figure 16.17 shows many of the mutating-sequence algorithms—i.e., algorithms that modify the containers they operate on. Algorithms new in C++11 are marked with an * in Figs. 16.17–16.20. Algorithms presented in this chapter are shown in bold.

[image: Image]

[image: Image]

Fig. 16.17. Mutating-sequence algorithms from header <algorithm>.

Nonmodifying Sequence Algorithms

Figure 16.18 shows the nonmodifying sequence algorithms—i.e., algorithms that do not modify the containers they operate on.

[image: Image]

Fig. 16.18. Nonmodifying sequence algorithms from header <algorithm>.

Sorting and Related Algorithms

Figure 16.19 shows the sorting and related algorithms.

[image: Image]

Fig. 16.19. Sorting and related algorithms from header <algorithm>.

Numerical Algorithms

Figure 16.20 shows the numerical algorithms of the header <numeric>.

[image: Image]

Fig. 16.20. Numerical algorithms from header <numeric>.

16.7. Wrap-Up

In this chapter, we demonstrated many of the Standard Library algorithms, including mathematical algorithms, basic searching and sorting algorithms and set operations. You learned the types of iterators each algorithm requires and that each algorithm can be used with any container that supports the minimum iterator functionality the algorithm requires. We introduced function objects that work syntactically and semantically like ordinary functions, but offer advantages such as performance and the ability to store data. Finally, you used lambda expressions to create function objects inline then passed them to Standard Library algorithms.

We introduced exception handling earlier in the book in our discussion of arrays. In the next chapter, we take a deeper look at C++’s rich set of exception handling capabilities.

17. Exception Handling: A Deeper Look

Objectives

In this chapter you’ll:

• Use try, catch and throw to detect, handle and indicate exceptions, respectively.

• Declare new exception classes.

• Understand how stack unwinding enables exceptions not caught in one scope to be caught in another.

• Handle new failures.

• Use unique_ptr to prevent memory leaks.

• Understand the standard exception hierarchy.

Outline

17.1 Introduction

17.2 Example: Handling an Attempt to Divide by Zero

17.3 Rethrowing an Exception

17.4 Stack Unwinding

17.5 When to Use Exception Handling

17.6 Constructors, Destructors and Exception Handling

17.7 Exceptions and Inheritance

17.8 Processing new Failures

17.9 Class unique_ptr and Dynamic Memory Allocation

17.10 Standard Library Exception Hierarchy

17.11 Wrap-Up

17.1. Introduction

As you know from Section 7.10, an exception is an indication of a problem that occurs during a program’s execution. Exception handling enables you to create applications that can resolve (or handle) exceptions. In many cases, this allows a program to continue executing as if no problem had been encountered. The features presented in this chapter enable you to write robust and fault-tolerant programs that can deal with problems and continue executing or terminate gracefully.

We begin with a review of exception-handling concepts via an example that demonstrates handling an exception that occurs when a function attempts to divide by zero. We show how to handle exceptions that occur in a constructor or destructor and exceptions that occur if operator new fails to allocate memory for an object. We introduce several C++ Standard Library exception handling classes and show you how to create your own.

[image: Image] Software Engineering Observation 17.1

Exception handling provides a standard mechanism for processing errors. This is especially important when working on a project with a large team of programmers.

[image: Image] Software Engineering Observation 17.2

Incorporate your exception-handling strategy into your system from its inception. Including effective exception handling after a system has been implemented can be difficult.

[image: Image] Error-Prevention Tip 17.1

Without exception handling, it’s common for a function to calculate and return a value on success or return an error indicator on failure. A common problem with this achitecture is using the return value in a subsequent calculation without first checking whether the value is the error indicator. Exception handling eliminates this problem.

17.2. Example: Handling an Attempt to Divide by Zero

Let’s consider a simple example of exception handling (Figs. 17.1–17.2). We show how to deal with a common arithmetic problem—division by zero. Division by zero using integer arithmetic typically causes a program to terminate prematurely. In floating-point arithmetic, many C++ implementations allow division by zero, in which case a result of positive or negative infinity is displayed as INF or -INF, respectively.

Click here to view code image

 1 // Fig. 17.1: DivideByZeroException.h
 2 // Class DivideByZeroException definition.
 3 #include <stdexcept> // stdexcept header contains runtime_error
 4
 5 // DivideByZeroException objects should be thrown by functions
 6 // upon detecting division-by-zero exceptions
 7 class DivideByZeroException : public std::runtime_error
 8 {
 9 public:
10 // constructor specifies default error message
11 DivideByZeroException()
12 : std::runtime_error("attempted to divide by zero") {}
13 }; // end class DivideByZeroException

Fig. 17.1. Class DivideByZeroException definition.

Click here to view code image

 1 // Fig. 17.2: fig17_02.cpp
 2 // Example that throws exceptions on
 3 // attempts to divide by zero.
 4 #include <iostream>
 5 #include "DivideByZeroException.h" // DivideByZeroException class
 6 using namespace std;
 7
 8 // perform division and throw DivideByZeroException object if
 9 // divide-by-zero exception occurs
10 double quotient(int numerator, int denominator)
11 {
12 // throw DivideByZeroException if trying to divide by zero
13 if (denominator == 0)
14 throw DivideByZeroException(); // terminate function
15
16 // return division result
17 return static_cast< double >(numerator) / denominator;
18 } // end function quotient
19
20 int main()
21 {
22 int number1; // user-specified numerator
23 int number2; // user-specified denominator
24
25 cout << "Enter two integers (end-of-file to end): ";
26
27 // enable user to enter two integers to divide
28 while (cin >> number1 >> number2)
29 {
30 // try block contains code that might throw exception
31 // and code that will not execute if an exception occurs
32 try
33 {
34 double result = quotient(number1, number2);
35 cout << "The quotient is: " << result << endl;
36 } // end try
37 catch (DivideByZeroException ÷ByZeroException)
38 {
39 cout << "Exception occurred: "
40 << divideByZeroException.what() << endl;
41 } // end catch
42
43 cout << "\nEnter two integers (end-of-file to end): ";
44 } // end while
45
46 cout << endl;
47 } // end main

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): ^Z

Fig. 17.2. Example that throws exceptions on attempts to divide by zero.

In this example, we define a function named quotient that receives two integers input by the user and divides its first int parameter by its second int parameter. Before performing the division, the function casts the first int parameter’s value to type double. Then, the second int parameter’s value is (implicitly) promoted to type double for the calculation. So function quotient actually performs the division using two double values and returns a double result.

Although division by zero is often allowed in floating-point arithmetic, for the purpose of this example we treat any attempt to divide by zero as an error. Thus, function quotient tests its second parameter to ensure that it isn’t zero before allowing the division to proceed. If the second parameter is zero, the function throws an exception to indicate to the caller that a problem occurred. The caller (main in this example) can then process the exception and allow the user to type two new values before calling function quotient again. In this way, the program can continue executing even after an improper value is entered, thus making the program more robust.

The example consists of two files. DivideByZeroException.h (Fig. 17.1) defines an exception class that represents the type of the problem that might occur in the example, and fig17_02.cpp (Fig. 17.2) defines the quotient function and the main function that calls it. Function main contains the code that demonstrates exception handling.

Defining an Exception Class to Represent the Type of Problem That Might Occur

Figure 17.1 defines class DivideByZeroException as a derived class of Standard Library class runtime_error (from header <stdexcept>). Class runtime_error—a derived class of exception (from header <exception>)—is the C++ standard base class for representing runtime errors. Class exception is the standard C++ base class for exception in the C++ Standard Library. (Section 17.10 discusses class exception and its derived classes in detail.) A typical exception class that derives from the runtime_error class defines only a constructor (e.g., lines 11–12) that passes an error-message string to the base-class runtime_error constructor. Every exception class that derives directly or indirectly from exception contains the virtual function what, which returns an exception object’s error message. You’re not required to derive a custom exception class, such as DivideByZeroException, from the standard exception classes provided by C++. However, doing so allows you to use the virtual function what to obtain an appropriate error message. We use an object of this DivideByZeroException class in Fig. 17.2 to indicate when an attempt is made to divide by zero.

Demonstrating Exception Handling

Figure 17.2 uses exception handling to wrap code that might throw a DivideByZeroException and to handle that exception, should one occur. The user enters two integers, which are passed as arguments to function quotient (lines 10–18). This function divides its first parameter (numerator) by its second parameter (denominator). Assuming that the user does not specify 0 as the denominator for the division, function quotient returns the division result. If the user inputs 0 for the denominator, quotient throws an exception. In the sample output, the first two lines show a successful calculation, and the next two show a failure due to an attempt to divide by zero. When the exception occurs, the program informs the user of the mistake and prompts the user to input two new integers. After we discuss the code, we’ll consider the user inputs and flow of program control that yield these outputs.

Enclosing Code in a try Block

The program begins by prompting the user to enter two integers. The integers are input in the condition of the while loop (line 28). Line 34 passes the values to function quotient (lines 10–18), which either divides the integers and returns a result, or throws an exception (i.e., indicates that an error occurred) on an attempt to divide by zero. Exception handling is geared to situations in which the function that detects an error is unable to handle it.

As you learned in Section 7.10, try blocks enable exception handling, enclosing statements that might cause exceptions and statements that should be skipped if an exception occurs. The try block in lines 32–36 encloses the invocation of function quotient and the statement that displays the division result. In this example, because the invocation of function quotient (line 34) can throw an exception, we enclose this function invocation in a try block. Enclosing the output statement (line 35) in the try block ensures that the output will occur only if function quotient returns a result.

[image: Image] Software Engineering Observation 17.3

Exceptions may surface through explicitly mentioned code in a try block, through calls to other functions and through deeply nested function calls initiated by code in a try block.

Defining a catch Handler to Process a DivideByZeroException

You saw in Section 7.10 that exceptions are processed by catch handlers. At least one catch handler (lines 37–41) must immediately follow each try block. An exception parameter should always be declared as a reference to the type of exception the catch handler can process (DivideByZeroException in this case)—this prevents copying the exception object when it’s caught and allows a catch handler to properly catch derived-class exceptions as well. When an exception occurs in a try block, the catch handler that executes is the first one whose type matches the type of the exception that occurred (i.e., the type in the catch block matches the thrown exception type exactly or is a direct or indirect base class of it). If an exception parameter includes an optional parameter name, the catch handler can use that parameter name to interact with the caught exception in the body of the catch handler, which is delimited by braces ({ and }). A catch handler typically reports the error to the user, logs it to a file, terminates the program gracefully or tries an alternate strategy to accomplish the failed task. In this example, the catch handler simply reports that the user attempted to divide by zero. Then the program prompts the user to enter two new integer values.

[image: Image] Common Programming Error 17.1

It’s a syntax error to place code between a try block and its corresponding catch handlers or between its catch handlers.

[image: Image] Common Programming Error 17.2

Each catch handler can have only a single parameter—specifying a comma-separated list of exception parameters is a syntax error.

[image: Image] Common Programming Error 17.3

It’s a compilation error to catch the same type in multiple catch handlers following a single try block.

Termination Model of Exception Handling

If an exception occurs as the result of a statement in a try block, the try block expires (i.e., terminates immediately). Next, the program searches for the first catch handler that can process the type of exception that occurred. The program locates the matching catch by comparing the thrown exception’s type to each catch’s exception-parameter type until the program finds a match. A match occurs if the types are identical or if the thrown exception’s type is a derived class of the exception-parameter type. When a match occurs, the code in the matching catch handler executes. When a catch handler finishes processing by reaching its closing right brace (}), the exception is considered handled and the local variables defined within the catch handler (including the catch parameter) go out of scope. Program control does not return to the point at which the exception occurred (known as the throw point), because the try block has expired. Rather, control resumes with the first statement (line 43) after the last catch handler following the try block. This is known as the termination model of exception handling. Some languages use the resumption model of exception handling, in which, after an exception is handled, control resumes just after the throw point. As with any other block of code, when a try block terminates, local variables defined in the block go out of scope.

[image: Image] Common Programming Error 17.4

Logic errors can occur if you assume that after an exception is handled, control will return to the first statement after the throw point.

[image: Image] Error-Prevention Tip 17.2

With exception handling, a program can continue executing (rather than terminating) after dealing with a problem. This helps ensure the kind of robust applications that contribute to what’s called mission-critical computing or business-critical computing.

If the try block completes its execution successfully (i.e., no exceptions occur in the try block), then the program ignores the catch handlers and program control continues with the first statement after the last catch following that try block.

If an exception that occurs in a try block has no matching catch handler, or if an exception occurs in a statement that is not in a try block, the function that contains the statement terminates immediately, and the program attempts to locate an enclosing try block in the calling function. This process is called stack unwinding and is discussed in Section 17.4.

Flow of Program Control When the User Enters a Nonzero Denominator

Consider the flow of control when the user inputs the numerator 100 and the denominator 7. In line 13, function quotient determines that the denominator is not zero, so line 17 performs the division and returns the result (14.2857) to line 34 as a double. Program control then continues sequentially from line 34, so line 35 displays the division result—line 36 ends the try block. Because the try block completed successfully and did not throw an exception, the program does not execute the statements contained in the catch handler (lines 37–41), and control continues to line 43 (the first line of code after the catch handler), which prompts the user to enter two more integers.

Flow of Program Control When the User Enters a Denominator of Zero

Now consider the case in which the user inputs the numerator 100 and the denominator 0. In line 13, quotient determines that the denominator is zero, which indicates an attempt to divide by zero. Line 14 throws an exception, which we represent as an object of class DivideByZeroException (Fig. 17.1).

To throw an exception, line 14 in Fig. 17.2 uses keyword throw followed by an operand of the type of exception to throw. Normally, a throw statement specifies one operand. (In Section 17.3, we discuss how to use a throw statement with no operand.) The operand of a throw can be of any type (but it must be copy constructable). If the operand is an object, we call it an exception object—in this example, the exception object is of type DivideByZeroException. However, a throw operand also can assume other values, such as the value of an expression that does not result in an object of a class (e.g., throw x > 5) or the value of an int (e.g., throw 5). The examples in this chapter focus exclusively on throwing objects of exception classes.

[image: Image] Error-Prevention Tip 17.3

In general, you should throw only objects of exception class types.

As part of throwing an exception, the throw operand is created and used to initialize the parameter in the catch handler, which we discuss momentarily. The throw statement in line 14 creates a DivideByZeroException object. When line 14 throws the exception, function quotient exits immediately. So, line 14 throws the exception before function quotient can perform the division in line 17. This is a central characteristic of exception handling: If your program explicitly throws an exception, it should do so before the error has an opportunity to occur.

Because we enclosed the call to quotient (line 34) in a try block, program control enters the catch handler (lines 37–41) that immediately follows the try block. This catch handler serves as the exception handler for the divide-by-zero exception. In general, when an exception is thrown within a try block, the exception is caught by a catch handler that specifies the type matching the thrown exception. In this program, the catch handler specifies that it catches DivideByZeroException objects—this type matches the object type thrown in function quotient. Actually, the catch handler catches a reference to the DivideByZeroException object created by function quotient’s throw statement (line 14), so that the catch handler does not make a copy of the exception object.

The catch’s body (lines 39–40) prints the error message returned by function what of base-class runtime_error—i.e., the string that the DivideByZeroException constructor (lines 11–12 in Fig. 17.1) passed to the runtime_error base-class constructor.

[image: Image] Good Programming Practice 17.1

Associating each type of runtime error with an appropriately named exception type improves program clarity.

17.3. Rethrowing an Exception

A function might use a resource—like a file—and might want to release the resource (i.e., close the file) if an exception occurs. An exception handler, upon receiving an exception, can release the resource then notify its caller than an exception occurred by rethrowing the exception via the statement

throw;

Regardless of whether a handler can process an exception, the handler can rethrow the exception for further processing outside the handler. The next enclosing try block detects the rethrown exception, which a catch handler listed after that enclosing try block attempts to handle.

[image: Image] Common Programming Error 17.5

Executing an empty throw statement outside a catch handler abandons exception processing and terminates the program immediately.

The program of Fig. 17.3 demonstrates rethrowing an exception. In main’s try block (lines 29–34), line 32 calls function throwException (lines 8–24). The throwException function also contains a try block (lines 11–15), from which the throw statement in line 14 throws an instance of standard-library-class exception. Function throwException’s catch handler (lines 16–21) catches this exception, prints an error message (lines 18–19) and rethrows the exception (line 20). This terminates function throwException and returns control to line 32 in the try...catch block in main. The try block terminates (so line 33 does not execute), and the catch handler in main (lines 35–38) catches this exception and prints an error message (line 37). Since we do not use the exception parameters in the catch handlers of this example, we omit the exception parameter names and specify only the type of exception to catch (lines 16 and 35).

Click here to view code image

 1 // Fig. 17.3: fig17_03.cpp
 2 // Rethrowing an exception.
 3 #include <iostream>
 4 #include <exception>
 5 using namespace std;
 6
 7 // throw, catch and rethrow exception
 8 void throwException()
 9 {
10 // throw exception and catch it immediately
11 try
12 {
13 cout << " Function throwException throws an exception\n";
14 throw exception(); // generate exception
15 } // end try
16 catch (exception &) // handle exception
17 {
18 cout << " Exception handled in function throwException"
19 << "\n Function throwException rethrows exception";
20 throw; // rethrow exception for further processing
21 } // end catch
22
23 cout << "This also should not print\n";
24 } // end function throwException
25
26 int main()
27 {
28 // throw exception
29 try
30 {
31 cout << "\nmain invokes function throwException\n";
32 throwException();
33 cout << "This should not print\n";
34 } // end try
35 catch (exception &) // handle exception
36 {
37 cout << "\n\nException handled in main\n";
38 } // end catch
39
40 cout << "Program control continues after catch in main\n";
41 } // end main

main invokes function throwException
 Function throwException throws an exception
 Exception handled in function throwException
 Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

Fig. 17.3. Rethrowing an exception.

17.4. Stack Unwinding

When an exception is thrown but not caught in a particular scope, the function call stack is “unwound,” and an attempt is made to catch the exception in the next outer try...catch block. Unwinding the function call stack means that the function in which the exception was not caught terminates, all local variables that have completed intitialization in that function are destroyed and control returns to the statement that originally invoked that function. If a try block encloses that statement, an attempt is made to catch the exception. If a try block does not enclose that statement, stack unwinding occurs again. If no catch handler ever catches this exception, the program terminates. The program of Fig. 17.4 demonstrates stack unwinding.

Click here to view code image

 1 // Fig. 17.4: fig17_04.cpp
 2 // Demonstrating stack unwinding.
 3 #include <iostream>
 4 #include <stdexcept>
 5 using namespace std;
 6
 7 // function3 throws runtime error
 8 void function3()
 9 {
10 cout << "In function 3" << endl;
11
12 // no try block, stack unwinding occurs, return control to function2
13 throw runtime_error("runtime_error in function3"); // no print
14 } // end function3
15
16 // function2 invokes function3
17 void function2()
18 {
19 cout << "function3 is called inside function2" << endl;
20 function3(); // stack unwinding occurs, return control to function1
21 } // end function2
22
23 // function1 invokes function2
24 void function1()
25 {
26 cout << "function2 is called inside function1" << endl;
27 function2(); // stack unwinding occurs, return control to main
28 } // end function1
29
30 // demonstrate stack unwinding
31 int main()
32 {
33 // invoke function1
34 try
35 {
36 cout << "function1 is called inside main" << endl;
37 function1(); // call function1 which throws runtime_error
38 } // end try
39 catch (runtime_error &error) // handle runtime error
40 {
41 cout << "Exception occurred: " << error.what() << endl;
42 cout << "Exception handled in main" << endl;
43 } // end catch
44 } // end main

function1 is called inside main
function2 is called inside function1
function3 is called inside function2
In function 3
Exception occurred: runtime_error in function3
Exception handled in main

Fig. 17.4. Stack unwinding.

In main, the try block (lines 34–38) calls function1 (lines 24–28). Next, function1 calls function2 (lines 17–21), which in turn calls function3 (lines 8–14). Line 13 of function3 throws a runtime_error object. However, because no try block encloses the throw statement in line 13, stack unwinding occurs—function3 terminates at line 13, then returns control to the statement in function2 that invoked function3 (i.e., line 20). Because no try block encloses line 20, stack unwinding occurs again—function2 terminates at line 20 and returns control to the statement in function1 that invoked function2 (i.e., line 27). Because no try block encloses line 27, stack unwinding occurs one more time—function1 terminates at line 27 and returns control to the statement in main that invoked function1 (i.e., line 37). The try block of lines 34–38 encloses this statement, so the first matching catch handler located after this try block (line 39–43) catches and processes the exception. Line 41 uses function what to display the exception message.

17.5. When to Use Exception Handling

Exception handling is designed to process synchronous errors, which occur when a statement executes, such as out-of-range array subscripts, arithmetic overflow (i.e., a value outside the representable range of values), division by zero, invalid function parameters and unsuccessful memory allocation (due to lack of memory). Exception handling is not designed to process errors associated with asynchronous events (e.g., disk I/O completions, network message arrivals, mouse clicks and keystrokes), which occur in parallel with, and independent of, the program’s flow of control.

[image: Image] Software Engineering Observation 17.4

Exception handling provides a single, uniform technique for processing problems. This helps programmers on large projects understand each other’s error-processing code.

[image: Image] Software Engineering Observation 17.5

Exception handling enables predefined software components to communicate problems to application-specific components, which can then process the problems in an application-specific manner.

Exception handling also is useful for processing problems that occur when a program interacts with software elements, such as member functions, constructors, destructors and classes. Such software elements often use exceptions to notify programs when problems occur. This enables you to implement customized error handling for each application.

[image: Image] Software Engineering Observation 17.6

Functions with common error conditions should return nullptr, 0 or other appropriate values, such as bools, rather than throw exceptions. A program calling such a function can check the return value to determine success or failure of the function call.

Complex applications normally consist of predefined software components and application-specific components that use the predefined components. When a predefined component encounters a problem, that component needs a mechanism to communicate the problem to the application-specific component—the predefined component cannot know in advance how each application processes a problem that occurs.

C++11: Declaring Functions That Do Not Throw Exceptions

[image: Image]

As of C++11, if a function does not throw any exceptions and does not call any functions that throw exceptions, you should explicitly state that a function does not throw exceptions. This indicates to client-code programmers that there’s no need to place calls to the function in a try block. Simply add noexcept to the right of the function’s parameter list in both the prototype and the definition. For a const member function, place noexcept after const. If a function that’s declared noexcept calls another function that throws an exception or executes a throw statement, the program terminates. We’ll say more about noexcept in Chapter 24.

17.6. Constructors, Destructors and Exception Handling

First, let’s discuss an issue that we’ve mentioned but not yet resolved satisfactorily: What happens when an error is detected in a constructor? For example, how should an object’s constructor respond when it receives invalid data? Because the constructor cannot return a value to indicate an error, we must choose an alternative means of indicating that the object has not been constructed properly. One scheme is to return the improperly constructed object and hope that anyone using it would make appropriate tests to determine that it’s in an inconsistent state. Another scheme is to set some variable outside the constructor. The preferred alternative is to require the constructor to throw an exception that contains the error information, thus offering an opportunity for the program to handle the failure.

Before an exception is thrown by a constructor, destructors are called for any member objects whose constructors have run to completion as part of the object being constructed. Destructors are called for every automatic object constructed in a try block before the exception is caught. Stack unwinding is guaranteed to have been completed at the point that an exception handler begins executing. If a destructor invoked as a result of stack unwinding throws an exception, the program terminates. This has been linked to various security attacks.

[image: Image] Error-Prevention Tip 17.4

Destructors should catch exceptions to prevent program termination.

[image: Image] Error-Prevention Tip 17.5

Do not throw exceptions from the constructor of an object with static storage duration. Such exceptions cannot be caught.

If an object has member objects, and if an exception is thrown before the outer object is fully constructed, then destructors will be executed for the member objects that have been constructed prior to the occurrence of the exception. If an array of objects has been partially constructed when an exception occurs, only the destructors for the constructed objects in the array will be called.

[image: Image] Error-Prevention Tip 17.6

When an exception is thrown from the constructor for an object that’s created in a new expression, the dynamically allocated memory for that object is released.

[image: Image] Error-Prevention Tip 17.7

A constructor should throw an exception if a problem occurs while initializing an object. Before doing so, the constructor should release any memory that it dynamically allocated.

Initializing Local Objects to Acquire Resources

An exception could preclude the operation of code that would normally release a resource (such as memory or a file), thus causing a resource leak that prevents other programs from acquiring the resource. One technique to resolve this problem is to initialize a local object to acquire the resource. When an exception occurs, the destructor for that object will be invoked and can free the resource.

17.7. Exceptions and Inheritance

Various exception classes can be derived from a common base class, as we discussed in Section 17.2, when we created class DivideByZeroException as a derived class of class exception. If a catch handler catches a reference to an exception object of a base-class type, it also can catch a reference to all objects of classes publicly derived from that base class—this allows for polymorphic processing of related exceptions.

[image: Image] Error-Prevention Tip 17.8

Using inheritance with exceptions enables an exception handler to catch related errors with concise notation. One approach is to catch each type of reference to a derived-class exception object individually, but a more concise approach is to catch pointers or references to base-class exception objects instead. Also, catching pointers or references to derived-class exception objects individually is error prone, especially if you forget to test explicitly for one or more of the derived-class reference types.

17.8. Processing new Failures

When operator new fails, it throws a bad_alloc exception (defined in header <new>). In this section, we present two examples of new failing. The first uses the version of new that throws a bad_alloc exception when new fails. The second uses function set_new_handler to handle new failures. [Note: The examples in Figs. 17.5–17.6 allocate large amounts of dynamic memory, which could cause your computer to become sluggish.]

Click here to view code image

 1 // Fig. 17.5: fig17_05.cpp
 2 // Demonstrating standard new throwing bad_alloc when memory
 3 // cannot be allocated.
 4 #include <iostream>
 5 #include <new> // bad_alloc class is defined here
 6 using namespace std;
 7
 8 int main()
 9 {
10 double *ptr[50];
11
12 // aim each ptr[i] at a big block of memory
13 try
14 {
15 // allocate memory for ptr[i]; new throws bad_alloc on failure
16 for (size_t i = 0; i < 50; ++i)
17 {
18 ptr[i] = new double[50000000]; // may throw exception
19 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
20 } // end for
21 } // end try
22 catch (bad_alloc &memoryAllocationException)
23 {
24 cerr << "Exception occurred: "
25 << memoryAllocationException.what() << endl;
26 } // end catch
27 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
Exception occurred: bad allocation

Fig. 17.5. new throwing bad_alloc on failure.

Click here to view code image

 1 // Fig. 17.6: fig17_06.cpp
 2 // Demonstrating set_new_handler.
 3 #include <iostream>
 4 #include <new> // set_new_handler function prototype
 5 #include <cstdlib> // abort function prototype
 6 using namespace std;
 7
 8 // handle memory allocation failure
 9 void customNewHandler()
10 {
11 cerr << "customNewHandler was called";
12 abort();
13 } // end function customNewHandler
14
15 // using set_new_handler to handle failed memory allocation
16 int main()
17 {
18 double *ptr[50];
19
20 // specify that customNewHandler should be called on
21 // memory allocation failure
22 set_new_handler(customNewHandler);
23
24 // aim each ptr[i] at a big block of memory; customNewHandler will be
25 // called on failed memory allocation
26 for (size_t i = 0; i < 50; ++i)
27 {
28 ptr[i] = new double[50000000]; // may throw exception
29 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
30 } // end for
31 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
customNewHandler was called

Fig. 17.6. set_new_handler specifying the function to call when new fails.

new Throwing bad_alloc on Failure

Figure 17.5 demonstrates new implicitly throwing bad_alloc on failure to allocate the requested memory. The for statement (lines 16–20) inside the try block should loop 50 times and, on each pass, allocate an array of 50,000,000 double values. If new fails and throws a bad_alloc exception, the loop terminates, and the program continues in line 22, where the catch handler catches and processes the exception. Lines 24–25 print the message "Exception occurred:" followed by the message returned from the base-class-exception version of function what (i.e., an implementation-defined exception-specific message, such as "bad allocation" in Microsoft Visual C++). The output shows that the program performed only four iterations of the loop before new failed and threw the bad_alloc exception. Your output might differ based on the physical memory, disk space available for virtual memory on your system and the compiler you’re using.

new Returning nullptr on Failure

The C++ standard specifies that programmers can use an older version of new that returns nullptr upon failure. For this purpose, header <new> defines object nothrow (of type nothrow_t), which is used as follows:

double *ptr = new(nothrow) double[50000000];

The preceding statement uses the version of new that does not throw bad_alloc exceptions (i.e., nothrow) to allocate an array of 50,000,000 doubles.

[image: Image] Software Engineering Observation 17.7

To make programs more robust, use the version of new that throws bad_alloc exceptions on failure.

Handling new Failures Using Function set_new_handler

An additional feature for handling new failures is function set_new_handler (prototyped in standard header <new>). This function takes as its argument a pointer to a function that takes no arguments and returns void. This pointer points to the function that will be called if new fails. This provides you with a uniform approach to handling all new failures, regardless of where a failure occurs in the program. Once set_new_handler registers a new handler in the program, operator new does not throw bad_alloc on failure; rather, it defers the error handling to the new-handler function.

If new allocates memory successfully, it returns a pointer to that memory. If new fails to allocate memory and set_new_handler did not register a new-handler function, new throws a bad_alloc exception. If new fails to allocate memory and a new-handler function has been registered, the new-handler function is called. The new-handler function should perform one of the following tasks:

1. Make more memory available by deleting other dynamically allocated memory (or telling the user to close other applications) and return to operator new to attempt to allocate memory again.

2. Throw an exception of type bad_alloc.

3. Call function abort or exit (both found in header <cstdlib>) to terminate the program. These were introduced in Section 9.7.

Figure 17.6 demonstrates set_new_handler. Function customNewHandler (lines 9–13) prints an error message (line 11), then calls abort (line 12) to terminate the program. The output shows that the loop iterated four times before new failed and invoked function customNewHandler. Your output might differ based on the physical memory, disk space available for virtual memory on your system and your compiler.

17.9. Class unique_ptr and Dynamic Memory Allocation

[image: Image]

A common programming practice is to allocate dynamic memory, assign the address of that memory to a pointer, use the pointer to manipulate the memory and deallocate the memory with delete when the memory is no longer needed. If an exception occurs after successful memory allocation but before the delete statement executes, a memory leak could occur. C++11 provides class template unique_ptr in header <memory> to deal with this situation.

An object of class unique_ptr maintains a pointer to dynamically allocated memory. When a unique_ptr object destructor is called (for example, when a unique_ptr object goes out of scope), it performs a delete operation on its pointer data member. Class template unique_ptr provides overloaded operators * and -> so that a unique_ptr object can be used just as a regular pointer variable is. Figure 17.9 demonstrates a unique_ptr object that points to a dynamically allocated object of class Integer (Figs. 17.7–17.8).

Click here to view code image

 1 // Fig. 17.7: Integer.h
 2 // Integer class definition.
 3
 4 class Integer
 5 {
 6 public:
 7 Integer(int i = 0); // Integer default constructor
 8 ~Integer(); // Integer destructor
 9 void setInteger(int i); // set Integer value
10 int getInteger() const; // return Integer value
11 private:
12 int value;
13 }; // end class Integer

Fig. 17.7. Integer class definition.

Click here to view code image

 1 // Fig. 17.8: Integer.cpp
 2 // Integer member function definitions.
 3 #include <iostream>
 4 #include "Integer.h"
 5 using namespace std;
 6
 7 // Integer default constructor
 8 Integer::Integer(int i)
 9 : value(i)
10 {
11 cout << "Constructor for Integer " << value << endl;
12 } // end Integer constructor
13
14 // Integer destructor
15 Integer::~Integer()
16 {
17 cout << "Destructor for Integer " << value << endl;
18 } // end Integer destructor
19
20 // set Integer value
21 void Integer::setInteger(int i)
22 {
23 value = i;
24 } // end function setInteger
25
26 // return Integer value
27 int Integer::getInteger() const
28 {
29 return value;
30 } // end function getInteger

Fig. 17.8. Member function definitions of class Integer.

Line 15 of Fig. 17.9 creates unique_ptr object ptrToInteger and initializes it with a pointer to a dynamically allocated Integer object that contains the value 7. Line 18 uses the unique_ptr overloaded -> operator to invoke function setInteger on the Integer object that ptrToInteger manages. Line 21 uses the unique_ptr overloaded * operator to dereference ptrToInteger, then uses the dot (.) operator to invoke function getInteger on the Integer object. Like a regular pointer, a unique_ptr’s -> and * overloaded operators can be used to access the object to which the unique_ptr points.

Click here to view code image

 1 // Fig. 17.9: fig17_09.cpp
 2 // Demonstrating unique_ptr.
 3 #include <iostream>
 4 #include <memory>
 5 using namespace std;
 6
 7 #include "Integer.h"
 8
 9 // use unique_ptr to manipulate Integer object
10 int main()
11 {
12 cout << "Creating a unique_ptr object that points to an Integer\n";
13
14 // "aim" unique_ptr at Integer object
15 unique_ptr< Integer > ptrToInteger(new Integer(7));
16
17 cout << "\nUsing the unique_ptr to manipulate the Integer\n";
18 ptrToInteger->setInteger(99); // use unique_ptr to set Integer value
19
20 // use unique_ptr to get Integer value
21 cout << "Integer after setInteger: " << (*ptrToInteger).getInteger()
22 << "\n\nTerminating program" << endl;
23 } // end main

Creating a unique_ptr object that points to an Integer
Constructor for Integer 7

Using the unique_ptr to manipulate the Integer
Integer after setInteger: 99

Terminating program
Destructor for Integer 99

Fig. 17.9. unique_ptr object manages dynamically allocated memory.

Because ptrToInteger is a local automatic variable in main, ptrToInteger is destroyed when main terminates. The unique_ptr destructor forces a delete of the Integer object pointed to by ptrToInteger, which in turn calls the Integer class destructor. The memory that Integer occupies is released, regardless of how control leaves the block (e.g., by a return statement or by an exception). Most importantly, using this technique can prevent memory leaks. For example, suppose a function returns a pointer aimed at some object. Unfortunately, the function caller that receives this pointer might not delete the object, thus resulting in a memory leak. However, if the function returns a unique_ptr to the object, the object will be deleted automatically when the unique_ptr object’s destructor gets called.

unique_ptr Notes

The class is called unique_ptr because only one unique_ptr at a time can own a dynamically allocated object. By using its overloaded assignment operator or copy constructor, a unique_ptr can transfer ownership of the dynamic memory it manages. The last unique_ptr object that maintains the pointer to the dynamic memory will delete the memory. This makes unique_ptr an ideal mechanism for returning dynamically allocated memory to client code. When the unique_ptr goes out of scope in the client code, the unique_ptr’s destructor destroys the dynamically allocated object and deletes its memory.

unique_ptr to a Built-In Array

You can also use a unique_ptr to manage a dynamically allocated built-in array. For example, consider the statement

unique_ptr< string[] > ptr(new string[10]);

which dynamically allocates an array of 10 strings managed by ptr. The type string[] indicates that the managed memory is a built-in array containing strings. When a unique_ptr that manages an array goes out of scope it deletes the memory with delete [] so that every element of the array receives a destructor call.

A unique_ptr that manages an array provides an overloaded [] operator for accessing the array’s elements. For example, the statement

ptr[2] = "hello";

assigns "hello" to the string at ptr[2] and the statement

cout << ptr[2] << endl;

displays that string.

17.10. Standard Library Exception Hierarchy

Experience has shown that exceptions fall nicely into a number of categories. The C++ Standard Library includes a hierarchy of exception classes, some of which are shown in Fig. 17.10. As we first discussed in Section 17.2, this hierarchy is headed by base-class exception (defined in header <exception>), which contains virtual function what that derived classes can override to issue appropriate error messages.

[image: Image]

Fig. 17.10. Some of the Standard Library exception classes.

Immediate derived classes of base-class exception include runtime_error and logic_error (both defined in header <stdexcept>), each of which has several derived classes. Also derived from exception are the exceptions thrown by C++ operators—for example, bad_alloc is thrown by new (Section 17.8), bad_cast is thrown by dynamic_cast (Chapter 12) and bad_typeid is thrown by typeid (Chapter 12).

[image: Image] Common Programming Error 17.6

Placing a catch handler that catches a base-class object before a catch that catches an object of a class derived from that base class is a logic error. The base-class catch catches all objects of classes derived from that base class, so the derived-class catch will never execute.

Class logic_error is the base class of several standard exception classes that indicate errors in program logic. For example, class invalid_argument indicates that a function received an invalid argument. (Proper coding can, of course, prevent invalid arguments from reaching a function.) Class length_error indicates that a length larger than the maximum size allowed for the object being manipulated was used for that object. Class out_of_range indicates that a value, such as a subscript into an array, exceeded its allowed range of values.

Class runtime_error, which we used briefly in Section 17.4, is the base class of several other standard exception classes that indicate execution-time errors. For example, class overflow_error describes an arithmetic overflow error (i.e., the result of an arithmetic operation is larger than the largest number that can be stored in the computer) and class underflow_error describes an arithmetic underflow error (i.e., the result of an arithmetic operation is smaller than the smallest number that can be stored in the computer).

[image: Image] Common Programming Error 17.7

Exception classes need not be derived from class exception, so catching type exception is not guaranteed to catch all exceptions a program could encounter.

[image: Image] Error-Prevention Tip 17.9

To catch all exceptions potentially thrown in a try block, use catch(...). One weakness with catching exceptions in this way is that the type of the caught exception is unknown. Another weakness is that, without a named parameter, there’s no way to refer to the exception object inside the exception handler.

[image: Image] Software Engineering Observation 17.8

The standard exception hierarchy is a good starting point for creating exceptions. You can build programs that can throw standard exceptions, throw exceptions derived from the standard exceptions or throw your own exceptions not derived from the standard exceptions.

[image: Image] Software Engineering Observation 17.9

Use catch(...) to perform recovery that does not depend on the exception type (e.g., releasing common resources). The exception can be rethrown to alert more specific enclosing catch handlers.

17.11. Wrap-Up

In this chapter, you learned how to use exception handling to deal with errors in a program. You learned that exception handling enables you to remove error-handling code from the “main line” of the program’s execution. We demonstrated exception handling in the context of a divide-by-zero example. We reviewed how to use try blocks to enclose code that may throw an exception, and how to use catch handlers to deal with exceptions that may arise. You learned how to throw and rethrow exceptions, and how to handle the exceptions that occur in constructors. The chapter continued with discussions of processing new failures, dynamic memory allocation with class unique_ptr and the standard library exception hierarchy. In the next chapter, you’ll learn how to build your own custom class templates.

18. Introduction to Custom Templates

Objectives

In this chapter you’ll:

• Use class templates to create groups of related classes.

• Distinguish between class templates and class-template specializations.

• Learn about nontype template parameters.

• Learn about default template arguments.

• Learn about overloading function templates.

Outline

18.1 Introduction

18.2 Class Templates

18.3 Function Template to Manipulate a Class-Template Specialization Object

18.4 Nontype Parameters

18.5 Default Arguments for Template Type Parameters

18.6 Overloading Function Templates

18.7 Wrap-Up

18.1. Introduction

In Chapters 7, 15 and 16, you used many of the Standard Library’s prepackaged templatized containers and algorithms. Function templates (which were introduced in Chapter 6) and class templates enable you to conveniently specify a variety of related (overloaded) functions—called function-template specializations—or a variety of related classes—called class-template specializations, respectively. This is called generic programming. Function templates and class templates are like stencils out of which we trace shapes; function-template specializations and class-template specializations are like the separate tracings that all have the same shape, but could, for example, be drawn in different colors and textures. In this chapter, we demonstrate how to create a custom class template and a function template that manipulates objects of our class-template specializations.

18.2. Class Templates

It’s possible to understand the concept of a stack (a data structure into which we insert items only at the top and retrieve those items only from the top in last-in, first-out order) independent of the type of the items being placed in the stack. However, to instantiate a stack, a data type must be specified. This creates a nice opportunity for software reusability—as you already saw with the stack container adapter in Section 15.7.1. Here, we define a stack generically then use type-specific versions of this generic stack class.

[image: Image] Software Engineering Observation 18.1

Class templates encourage software reusability by enabling a variety of type-specific class-template specializations to be instantiated from a single class template.

Class templates are called parameterized types, because they require one or more type parameters to specify how to customize a generic class template to form a class-template specialization. To produce many specializations you write only one class-template definition (as we’ll do shortly). When a particular specialization is needed, you use a concise, simple notation, and the compiler writes the specialization source code. One Stack class template, for example, could thus become the basis for creating many Stack class-template specializations (such as “Stack of doubles,” “Stack of ints,” “Stack of Employees,” “Stack of Bills,” etc.) used in a program.

[image: Image] Common Programming Error 18.1

To create a template specialization with a user-defined type, the user-defined type must meet the template’s requirements. For example, the template might compare objects of the user-defined type with < to determine sorting order, or the template might call a specific member function on an object of the user-defined type. If the user-defined type does not overload the required operator or provide the required functions, compilation errors occur.

Creating Class Template Stack<T>

The Stack class-template definition in Fig. 18.1 looks like a conventional class definition, with a few key differences. First, it’s preceded by line 7

template< typename T >

Click here to view code image

 1 // Fig. 18.1: Stack.h
 2 // Stack class template.
 3 #ifndef STACK_H
 4 #define STACK_H
 5 #include <deque>
 6
 7 template< typename T >
 8 class Stack
 9 {
10 public:
11 // return the top element of the Stack
12 T& top()
13 {
14 return stack.front();
15 } // end function template top
16
17 // push an element onto the Stack
18 void push(const T &pushValue)
19 {
20 stack.push_front(pushValue);
21 } // end function template push
22
23 // pop an element from the stack
24 void pop()
25 {
26 stack.pop_front();
27 } // end function template pop
28
29 // determine whether Stack is empty
30 bool isEmpty() const
31 {
32 return stack.empty();
33 } // end function template isEmpty
34
35 // return size of Stack
36 size_t size() const
37 {
38 return stack.size();
39 } // end function template size
40
41 private:
42 std::deque< T > stack; // internal representation of the Stack
43 }; // end class template Stack
44
45 #endif

Fig. 18.1. Stack class template.

All class templates begin with keyword template followed by a list of template parameters enclosed in angle brackets (< and >); each template parameter that represents a type must be preceded by either of the interchangeable keywords typename or class. The type parameter T acts as a placeholder for the Stack’s element type. The names of type parameters must be unique inside a template definition. You need not specifically use identifier T—any valid identifier can be used. The element type is mentioned generically throughout the Stack class-template definition as T (lines 12, 18 and 42). The type parameter becomes associated with a specific type when you create an object using the class template—at that point, the compiler generates a copy of the class template in which all occurrences of the type parameter are replaced with the specified type. Another key difference is that we did not separate the class template’s interface from its implementation.

[image: Image] Software Engineering Observation 18.2

Templates are typically defined in headers, which are then #included in the appropriate client source-code files. For class templates, this means that the member functions are also defined in the header—typically inside the class definition’s body, as we do in Fig. 18.1.

Class Template Stack<T>’s Data Representation

Section 15.7.1 showed that the Standard Library’s stack adapter class can use various containers to store its elements. Of course, a stack requires insertions and deletions only at its top. So, for example, a vector or a deque could be used to store the stack’s elements. A vector supports fast insertions and deletions at its back. A deque supports fast insertions and deletions at its front and its back. A deque is the default representation for the Standard Library’s stack adapter because a deque grows more efficiently than a vector. A vector is maintained as a contiguous block of memory—when that block is full and a new element is added, the vector allocates a larger contiguous block of memory and copies the old elements into that new block. A deque, on the other hand, is typically implemented as list of fixed-size, built-in arrays—new fixed-size built-in arrays are added as necessary and none of the existing elements are copied when new items are added to the front or back. For these reasons, we use a deque (line 42) as the underlying container for our Stack class.

Class Template Stack<T>’s Member Functions

The member-function definitions of a class template are function templates, but are not preceded with the template keyword and template parameters in angle brackets (< and >) when they’re defined within the class template’s body. As you can see, however, they do use the class template’s template parameter T to represent the element type. Our Stack class template does not define it’s own constructors—the default constructor provided by the compiler will invoke the deque’s default constructor. We also provide the following member functions in Fig. 18.1:

• top (lines 12–15) returns a reference to the Stack’s top element.

• push (lines 18–21) places a new element on the top of the Stack.

• pop (lines 24–27) removes the Stack’s top element.

• isEmpty (lines 30–33) returns a bool value—true if the Stack is empty and false otherwise.

• size (lines 36–39) returns the number if elements in the Stack.

Each of these member functions delegates its responsibility to the appropriate member function of class template deque.

Declaring a Class Template’s Member Functions Outside the Class Template Definition

Though we did not do so in our Stack class template, member-function definitions can appear outside a class template definition. If you do this, each must begin with the template keyword followed by the same set of template parameters as the class template. In addition, the member functions must be qualified with the class name and scope resolution operator. For example, you can define the pop function outside the class-template definition as follows:

template< typename T >
inline void Stack<T>::pop()
{
 stack.pop_front();
} // end function template pop

Stack<T>:: indicates that pop is in the scope of class Stack<T>. The Standard Library’s container classes tend to define all their member functions inside their class definitions.

Testing Class Template Stack<T>

Now, let’s consider the driver (Fig. 18.2) that exercises the Stack class template. The driver begins by instantiating object doubleStack (line 9). This object is declared as a Stack<double> (pronounced “Stack of double”). The compiler associates type double with type parameter T in the class template to produce the source code for a Stack class with elements of type double that actually stores its elements in a deque<double>.

Click here to view code image

 1 // Fig. 18.2: fig18_02.cpp
 2 // Stack class template test program.
 3 #include <iostream>
 4 #include "Stack.h" // Stack class template definition
 5 using namespace std;
 6
 7 int main()
 8 {
 9 Stack< double > doubleStack; // create a Stack of double
10 const size_t doubleStackSize = 5; // stack size
11 double doubleValue = 1.1; // first value to push
12
13 cout << "Pushing elements onto doubleStack\n";
14
15 // push 5 doubles onto doubleStack
16 for (size_t i = 0; i < doubleStackSize; ++i)
17 {
18 doubleStack.push(doubleValue);
19 cout << doubleValue << ' ';
20 doubleValue += 1.1;
21 } // end while
22
23 cout << "\n\nPopping elements from doubleStack\n";
24
25 // pop elements from doubleStack
26 while (!doubleStack.isEmpty()) // loop while Stack is not empty
27 {
28 cout << doubleStack.top() << ' '; // display top element
29 doubleStack.pop(); // remove top element
30 } // end while
31
32 cout << "\nStack is empty, cannot pop.\n";
33
34 Stack< int > intStack; // create a Stack of int
35 const size_t intStackSize = 10; // stack size
36 int intValue = 1; // first value to push
37
38 cout << "\nPushing elements onto intStack\n";
39
40 // push 10 integers onto intStack
41 for (size_t i = 0; i < intStackSize; ++i)
42 {
43 intStack.push(intValue);
44 cout << intValue++ << ' ';
45 } // end while
46
47 cout << "\n\nPopping elements from intStack\n";
48
49 // pop elements from intStack
50 while (!intStack.isEmpty()) // loop while Stack is not empty
51 {
52 cout << intStack.top() << ' '; // display top element
53 intStack.pop(); // remove top element
54 } // end while
55
56 cout << "\nStack is empty, cannot pop." << endl;
57 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty, cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty, cannot pop

Fig. 18.2. Stack class template test program.

Lines 16–21 invoke push (line 18) to place the double values 1.1, 2.2, 3.3, 4.4 and 5.5 onto doubleStack. Next, lines 26–30 invoke top and pop in a while loop to remove the five values from the stack. Notice in the output of Fig. 18.2, that the values do pop off in last-in, first-out order. When doubleStack is empty, the pop loop terminates.

Line 34 instantiates int stack intStack with the declaration

Stack< int > intStack;

(pronounced “intStack is a Stack of int”). Lines 41–45 repeatedly invoke push (line 43) to place values onto intStack, then lines 50–54 repeatedly invoke top and pop to remove values from intStack until it’s empty. Once again, notice in the output that the values pop off in last-in, first-out order.

18.3. Function Template to Manipulate a Class-Template Specialization Object

Notice that the code in function main of Fig. 18.2 is almost identical for both the doubleStack manipulations in lines 9–32 and the intStack manipulations in lines 34–56. This presents another opportunity to use a function template. Figure 18.3 defines function template testStack (lines 10–39) to perform the same tasks as main in Fig. 18.2—push a series of values onto a Stack<T> and pop the values off a Stack<T>.

Click here to view code image

 1 // Fig. 18.3: fig18_03.cpp
 2 // Passing a Stack template object
 3 // to a function template.
 4 #include <iostream>
 5 #include <string>
 6 #include "Stack.h" // Stack class template definition
 7 using namespace std;
 8
 9 // function template to manipulate Stack< T >
10 template< typename T >
11 void testStack(
12 Stack< T > &theStack, // reference to Stack< T >
13 const T &value, // initial value to push
14 const T &increment, // increment for subsequent values
15 size_t size, // number of items to push
16 const string &stackName) // name of the Stack< T > object
17 {
18 cout << "\nPushing elements onto " << stackName << '\n';
19 T pushValue = value;
20
21 // push element onto Stack
22 for (size_t i = 0; i < size; ++i)
23 {
24 theStack.push(pushValue); // push element onto Stack
25 cout << pushValue << ' ';
26 pushValue += increment;
27 } // end while
28
29 cout << "\n\nPopping elements from " << stackName << '\n';
30
31 // pop elements from Stack
32 while (!theStack.isEmpty()) // loop while Stack is not empty
33 {
34 cout << theStack.top() << ' ';
35 theStack.pop(); // remove top element
36 } // end while
37
38 cout << "\nStack is empty. Cannot pop." << endl;
39 } // end function template testStack
40
41 int main()
42 {
43 Stack< double > doubleStack;
44 const size_t doubleStackSize = 5;
45 testStack(doubleStack, 1.1, 1.1, doubleStackSize, "doubleStack");
46
47 Stack< int > intStack;
48 const size_t intStackSize = 10;
49 testStack(intStack, 1, 1, intStackSize, "intStack");
50 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty, cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty, cannot pop

Fig. 18.3. Passing a Stack template object to a function template.

Function template testStack uses T (specified at line 10) to represent the data type stored in the Stack<T>. The function template takes five arguments (lines 12–16):

• the Stack<T> to manipulate

• a value of type T that will be the first value pushed onto the Stack<T>

• a value of type T used to increment the values pushed onto the Stack<T>

• the number of elements to push onto the Stack<T>

• a string that represents the name of the Stack<T> object for output purposes

Function main (lines 41–50) instantiates an object of type Stack<double> called doubleStack (line 43) and an object of type Stack<int> called intStack (line 47) and uses these objects in lines 45 and 49. The compiler infers the type of T for testStack from the type used to instantiate the function’s first argument (i.e., the type used to instantiate doubleStack or intStack).

18.4. Nontype Parameters

Class template Stack of Section 18.2 used only a type parameter (Fig. 18.1, line 7) in its template declaration. It’s also possible to use nontype template parameters, which can have default arguments and are treated as constants. For example, the C++ standard’s array class template begins with the template declaration:

template < class T, size_t N >

(Recall that keywords class and typename are interchangeable in template declarations.) So, a declaration such as

array< double, 100 > salesFigures;

creates a 100-element array of doubles class-template specialization, then uses it to instantiate the object salesFigures. The array class template encapsulates a built-in array. When you create an array class-template specialization, the array’s built-in array data member has the type and size specified in the declaration—in the preceding example, it would be a built-in array of double values with 100 elements.

18.5. Default Arguments for Template Type Parameters

In addition, a type parameter can specify a default type argument. For example, the C++ standard’s stack container adapter class template begins with:

template < class T, class Container = deque< T > >

which specifies that a stack uses a deque by default to store the stack’s elements of type T. The declaration

stack< int > values;

creates a stack of ints class-template specialization (behind the scenes) and uses it to instantiate the object named values. The stack’s elements are stored in a deque<int>.

Default type parameters must be the rightmost (trailing) parameters in a template’s type-parameter list. When you instantiate a template with two or more default arguments, if an omitted argument is not the rightmost, then all type parameters to the right of it also must be omitted. As of C++11, you can now use default type arguments for template type parameters in function templates.

[image: Image]

18.6. Overloading Function Templates

Function templates and overloading are intimately related. In Section 6.18, you learned that when overloaded functions perform identical operations on different types of data, they can be expressed more compactly and conveniently using function templates. You can then write function calls with different types of arguments and let the compiler generate separate function-template specializations to handle each function call appropriately. The function-template specializations generated from a given function template all have the same name, so the compiler uses overload resolution to invoke the proper function.

You may also overload function templates. For example, you can provide other function templates that specify the same function name but different function parameters. A function template also can be overloaded by providing nontemplate functions with the same function name but different function parameters.

Matching Process for Overloaded Functions

The compiler performs a matching process to determine what function to call when a function is invoked. It looks at both existing functions and function templates to locate a function or generate a function-template specialization whose function name and argument types are consistent with those of the function call. If there are no matches, the compiler issues an error message. If there are multiple matches for the function call, the compiler attempts to determine the best match. If there’s more than one best match, the call is ambiguous and the compiler issues an error message.1

1. The compiler’s process for resolving function calls is complex. The complete details are discussed in Section 13.3.3 of the C++ standard.

18.7. Wrap-Up

This chapter discussed class templates and class-template specializations. We used a class template to create a group of related class-template specializations that each perform identical processing on different data types. We discussed nontype template parameters. We also discussed how to overload a function template to create a customized version that handles a particular data type’s processing in a manner that differs from the other function-template specializations. In the next chapter, we present the features of C++’s string class and introduce string stream processing.

19. Class string and String Stream Processing: A Deeper Look

Objectives

In this chapter you’ll:

• Manipulate string objects.

• Determine string characteristics.

• Find, replace and insert characters in strings.

• Convert string objects to pointer-based strings and vice versa.

• Use string iterators.

• Perform input from and output to strings in memory.

• Use C++11 numeric conversion functions.

Outline

19.1 Introduction

19.2 string Assignment and Concatenation

19.3 Comparing strings

19.4 Substrings

19.5 Swapping strings

19.6 string Characteristics

19.7 Finding Substrings and Characters in a string

19.8 Replacing Characters in a string

19.9 Inserting Characters into atring

19.10 Conversion to Pointer-Based char * Strings

19.11 Iterators

19.12 String Stream Processing

19.13 C++11 Numeric Conversion Functions

19.14 Wrap-Up

19.1. Introduction

The class template basic_string provides typical string-manipulation operations such as copying, searching, etc. The template definition and all support facilities are defined in namespace std; these include the typedef statement

typedef basic_string< char > string;

that creates the alias type string for basic_string<char>. A typedef is also provided for the wchar_t type (wstring). Type wchar_t1 stores characters (e.g., two-byte characters, four-byte characters, etc.) for supporting other character sets. We use string exclusively throughout this chapter. To use strings, include header <string>.

1. Type wchar_t commonly is used to represent Unicode®, but wchar_t’s size is not specified by the standard. C++11 also has types char16_t and char32_t for Unicode support. The Unicode Standard outlines a specification to produce consistent encoding of the world’s characters and symbols. To learn more about the Unicode Standard, visit www.unicode.org.

Initializing a string Object

A string object can be initialized with a constructor argument as in

string text("Hello"); // creates a string from a const char *

which creates a string containing the characters in "Hello", or with two constructor arguments as in

string name(8, 'x'); // string of 8 'x' characters

which creates a string containing eight 'x' characters. Class string also provides a default constructor (which creates an empty string) and a copy constructor. A string also can be initialized in its definition as in

string month = "March"; // same as: string month("March");

Remember that = in the preceding declaration is not an assignment; rather it’s an implicit call to the string class constructor, which does the conversion.

strings Are Not Necessarily Null Terminated

Unlike pointer-based char * strings, string objects are not necessarily null terminated. [Note: The C++ standard document provides only a description of the capabilities of class string—implementation is platform dependent.]

Length of a string

The length of a string can be retrieved with member function size and with member function length . The subscript operator, [] (which does not perform bounds checking), can be used with strings to access and modify individual characters. A string object has a first subscript of 0 and a last subscript of size() – 1.

Processing strings

Most string member functions take as arguments a starting subscript location and the number of characters on which to operate.

string I/O

The stream extraction operator (>>) is overloaded to support strings. The statements

string stringObject;
cin >> stringObject;

declare a string object and read a string from cin. Input is delimited by whitespace characters. When a delimiter is encountered, the input operation is terminated. Function getline also is overloaded for strings. Assuming string1 is a string, the statement

getline(cin, string1);

reads a string from the keyboard into string1. Input is delimited by a newline ('\n'), so getLine can read a line of text into a string object. You can specify an alternate delimiter as the optional third argument to getline.

Validating Input

In earlier chapters, we mentioned the importance of validating user input in industrial-strength code. The capabilities presented in this chapter—and the regular-expression capabilities shown in Section 24.5—are frequently used to perform validation.

[image: Image]

19.2. string Assignment and Concatenation

Figure 19.1 demonstrates string assignment and concatenation. Line 4 includes header <string> for class string. The strings string1, string2 and string3 are created in lines 9–11. Line 13 assigns the value of string1 to string2. After the assignment takes place, string2 is a copy of string1. Line 14 uses member function assign to copy string1 into string3. A separate copy is made (i.e., string1 and string3 are independent objects). Class string also provides an overloaded version of member function assign that copies a specified number of characters, as in

targetString.assign(sourceString, start, numberOfCharacters);

where sourceString is the string to be copied, start is the starting subscript and numberOfCharacters is the number of characters to copy.

Click here to view code image

 1 // Fig. 19.1: Fig19_01.cpp
 2 // Demonstrating string assignment and concatenation.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("cat");
10 string string2; // initialized to the empty string
11 string string3; // initialized to the empty string
12
13 string2 = string1; // assign string1 to string2
14 string3.assign(string1); // assign string1 to string3
15 cout << "string1: " << string1 << "\nstring2: " << string2
16 << "\nstring3: " << string3 << "\n\n";
17
18 // modify string2 and string3
19 string2[0] = string3[2] = 'r';
20
21 cout << "After modification of string2 and string3:\n" << "string1: "
22 << string1 << "\nstring2: " << string2 << "\nstring3: ";
23
24 // demonstrating member function at
25 for (size_t i = 0; i < string3.size(); ++i)
26 cout << string3.at(i); // can throw out_of_range exception
27
28 // declare string4 and string5
29 string string4(string1 + "apult"); // concatenation
30 string string5; // initialized to the empty string
31
32 // overloaded +=
33 string3 += "pet"; // create "carpet"
34 string1.append("acomb"); // create "catacomb"
35
36 // append subscript locations 4 through end of string1 to
37 // create string "comb" (string5 was initially empty)
38 string5.append(string1, 4, string1.size() - 4);
39
40 cout << "\n\nAfter concatenation:\nstring1: " << string1
41 << "\nstring2: " << string2 << "\nstring3: " << string3
42 << "\nstring4: " << string4 << "\nstring5: " << string5 << endl;
43 } // end main

string1: cat
string2: cat
string3: cat

After modification of string2 and string3:
string1: cat
string2: rat
string3: car

After concatenation:
string1: catacomb
string2: rat
string3: carpet
string4: catapult
string5: comb

Fig. 19.1. Demonstrating string assignment and concatenation.

Line 19 uses the subscript operator to assign 'r' to string3[2] (forming "car") and to assign 'r' to string2[0] (forming "rat"). The strings are then output.

Lines 25–26 output the contents of string3 one character at a time using member function at. Member function at provides checked access (or range checking); i.e., going past the end of the string throws an out_of_range exception. The subscript operator, [], does not provide checked access. This is consistent with its use on arrays. Note that you can also iterate through the characters in a string using C++11’s range-based for as in

for (char c : string3)
 cout << c;

[image: Image]

which ensures that you do not access any elements outside the string’s bounds.

[image: Image] Common Programming Error 19.1

Accessing an element beyond the size of the string using the subscript operator is an unreported logic error.

String string4 is declared (line 29) and initialized to the result of concatenating string1 and "apult" using the overloaded + operator, which for class string denotes concatenation. Line 33 uses the overloaded addition assignment operator, +=, to concatenate string3 and "pet". Line 34 uses member function append to concatenate string1 and "acomb".

Line 38 appends the string "comb" to empty string string5. This member function is passed the string (string1) to retrieve characters from, the starting subscript in the string (4) and the number of characters to append (the value returned by string1.size() - 4).

19.3. Comparing strings

Class string provides member functions for comparing strings. Figure 19.2 demonstrates class string’s comparison capabilities.

Click here to view code image

 1 // Fig. 19.2: Fig19_02.cpp
 2 // Comparing strings.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("Testing the comparison functions.");
10 string string2("Hello");
11 string string3("stinger");
12 string string4(string2); // "Hello"
13
14 cout << "string1: " << string1 << "\nstring2: " << string2
15 << "\nstring3: " << string3 << "\nstring4: " << string4 << "\n\n";
16
17 // comparing string1 and string4
18 if (string1 == string4)
19 cout << "string1 == string4\n";
20 else if (string1 > string4)
21 cout << "string1 > string4\n";
22 else // string1 < string4
23 cout << "string1 < string4\n";
24
25 // comparing string1 and string2
26 int result = string1.compare(string2);
27
28 if (result == 0)
29 cout << "string1.compare(string2) == 0\n";
30 else if (result > 0)
31 cout << "string1.compare(string2) > 0\n";
32 else // result < 0
33 cout << "string1.compare(string2) < 0\n";
34
35 // comparing string1 (elements 2-5) and string3 (elements 0-5)
36 result = string1.compare(2, 5, string3, 0, 5);
37
38 if (result == 0)
39 cout << "string1.compare(2, 5, string3, 0, 5) == 0\n";
40 else if (result > 0)
41 cout << "string1.compare(2, 5, string3, 0, 5) > 0\n";
42 else // result < 0
43 cout << "string1.compare(2, 5, string3, 0, 5) < 0\n";
44
45 // comparing string2 and string4
46 result = string4.compare(0, string2.size(), string2);
47
48 if (result == 0)
49 cout << "string4.compare(0, string2.size(), "
50 << "string2) == 0" << endl;
51 else if (result > 0)
52 cout << "string4.compare(0, string2.size(), "
53 << "string2) > 0" << endl;
54 else // result < 0
55 cout << "string4.compare(0, string2.size(), "
56 << "string2) < 0" << endl;
57
58 // comparing string2 and string4
59 result = string2.compare(0, 3, string4);
60
61 if (result == 0)
62 cout << "string2.compare(0, 3, string4) == 0" << endl;
63 else if (result > 0)
64 cout << "string2.compare(0, 3, string4) > 0" << endl;
65 else // result < 0
66 cout << "string2.compare(0, 3, string4) < 0" << endl;
67 } // end main

string1: Testing the comparison functions.
string2: Hello
string3: stinger
string4: Hello

string1 > string4
string1.compare(string2) > 0
string1.compare(2, 5, string3, 0, 5) == 0
string4.compare(0, string2.size(), string2) == 0
string2.compare(0, 3, string4) < 0

Fig. 19.2. Comparing strings.

The program declares four strings (lines 9–12) and outputs each (lines 14–15). Line 18 tests string1 against string4 for equality using the overloaded equality operator. If the condition is true, "string1 == string4" is output. If the condition is false, the condition in line 20 is tested. All the string class overloaded relational and equality operator functions return bool values.

Line 26 uses string member function compare to compare string1 to string2. Variable result is assigned 0 if the strings are equivalent, a positive number if string1 is lexicographically greater than string2 or a negative number if string1 is lexicographically less than string2. When we say that a string is lexicographically less than another, we mean that the compare method uses the numerical values of the characters (see Appendix B, ASCII Character Set) in each string to determine that the first string is less than the second. Because a string starting with 'T' is considered lexicographically greater than a string starting with 'H', result is assigned a value greater than 0, as confirmed by the output. A lexicon is a dictionary.

Line 36 compares portions of string1 and string3 using an overloaded version of member function compare. The first two arguments (2 and 5) specify the starting subscript and length of the portion of string1 ("sting") to compare with string3. The third argument is the comparison string. The last two arguments (0 and 5) are the starting subscript and length of the portion of the comparison string being compared (also "sting"). The value assigned to result is 0 for equality, a positive number if string1 is lexicographically greater than string3 or a negative number if string1 is lexicographically less than string3. The two pieces being compared here are identical, so result is assigned 0.

Line 46 uses another overloaded version of function compare to compare string4 and string2. The first two arguments are the same—the starting subscript and length. The last argument is the comparison string. The value returned is also the same—0 for equality, a positive number if string4 is lexicographically greater than string2 or a negative number if string4 is lexicographically less than string2. Because the two pieces of strings being compared here are identical, result is assigned 0.

Line 59 calls member function compare to compare the first 3 characters in string2 to string4. Because "Hel" is less than "Hello", a value less than zero is returned.

19.4. Substrings

Class string provides member function substr for retrieving a substring from a string. The result is a new string object that’s copied from the source string. Figure 19.3 demonstrates substr. The program declares and initializes a string at line 9. Line 13 uses member function substr to retrieve a substring from string1. The first argument specifies the beginning subscript of the desired substring; the second argument specifies the substring’s length.

Click here to view code image

 1 // Fig. 19.3: Fig19_03.cpp
 2 // Demonstrating string member function substr.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("The airplane landed on time.");
10
11 // retrieve substring "plane" which
12 // begins at subscript 7 and consists of 5 characters
13 cout << string1.substr(7, 5) << endl;
14 } // end main

plane

Fig. 19.3. Demonstrating string member function substr.

19.5. Swapping strings

Class string provides member function swap for swapping strings. Figure 19.4 swaps two strings. Lines 9–10 declare and initialize strings first and second. Each string is then output. Line 15 uses string member function swap to swap the values of first and second. The two strings are printed again to confirm that they were indeed swapped. The string member function swap is useful for implementing programs that sort strings.

Click here to view code image

 1 // Fig. 19.4: Fig19_04.cpp
 2 // Using the swap function to swap two strings.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string first("one");
10 string second("two");
11
12 // output strings
13 cout << "Before swap:\n first: " << first << "\nsecond: " << second;
14
15 first.swap(second); // swap strings
16
17 cout << "\n\nAfter swap:\n first: " << first
18 << "\nsecond: " << second << endl;
19 } // end main

Before swap:
 first: one
second: two

After swap:
 first: two
second: one

Fig. 19.4. Using the swap function to swap two strings.

19.6. string Characteristics

Class string provides member functions for gathering information about a string’s size, length, capacity, maximum length and other characteristics. A string’s size or length is the number of characters currently stored in the string. A string’s capacity is the number of characters that can be stored in the string without allocating more memory. The capacity of a string must be at least equal to the current size of the string, though it can be greater. The exact capacity of a string depends on the implementation. The maximum size is the largest possible size a string can have. If this value is exceeded, a length_error exception is thrown. Figure 19.5 demonstrates string class member functions for determining various characteristics of strings.

Click here to view code image

 1 // Fig. 19.5: Fig19_05.cpp
 2 // Printing string characteristics.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 void printStatistics(const string &);
 8
 9 int main()
10 {
11 string string1; // empty string
12
13 cout << "Statistics before input:\n" << boolalpha;
14 printStatistics(string1);
15
16 // read in only "tomato" from "tomato soup"
17 cout << "\n\nEnter a string: ";
18 cin >> string1; // delimited by whitespace
19 cout << "The string entered was: " << string1;
20
21 cout << "\nStatistics after input:\n";
22 printStatistics(string1);
23
24 // read in "soup"
25 cin >> string1; // delimited by whitespace
26 cout << "\n\nThe remaining string is: " << string1 << endl;
27 printStatistics(string1);
28
29 // append 46 characters to string1
30 string1 += "1234567890abcdefghijklmnopqrstuvwxyz1234567890";
31 cout << "\n\nstring1 is now: " << string1 << endl;
32 printStatistics(string1);
33
34 // add 10 elements to string1
35 string1.resize(string1.size() + 10);
36 cout << "\n\nStats after resizing by (length + 10):\n";
37 printStatistics(string1);
38 cout << endl;
39 } // end main
40
41 // display string statistics
42 void printStatistics(const string &stringRef)
43 {
44 cout << "capacity: " << stringRef.capacity() << "\nmax size: "
45 << stringRef.max_size() << "\nsize: " << stringRef.size()
46 << "\nlength: " << stringRef.size()
47 << "\nempty: " << stringRef.empty();
48 } // end printStatistics

Statistics before input:
capacity: 15
max size: 4294967294
size: 0
length: 0
empty: true

Enter a string: tomato soup
The string entered was: tomato
Statistics after input:
capacity: 15
max size: 4294967294
size: 6
length: 6
empty: false

The remaining string is: soup
capacity: 15
max size: 4294967294
size: 4
length: 4
empty: false

string1 is now: soup1234567890abcdefghijklmnopqrstuvwxyz1234567890
capacity: 63
max size: 4294967294
size: 50
length: 50
empty: false

Stats after resizing by (length + 10):
capacity: 63
max size: 4294967294
size: 60
length: 60
empty: false

Fig. 19.5. Printing string characteristics.

The program declares empty string string1 (line 11) and passes it to function printStatistics (line 14). Function printStatistics (lines 42–48) takes a reference to a const string as an argument and outputs the capacity (using member function capacity), maximum size (using member function max_size), size (using member function size), length (using member function size) and whether the string is empty (using member function empty). The initial call to printStatistics indicates that the initial values for the size and length of string1 are 0.

The size and length of 0 indicate that there are no characters stored in string. Recall that the size and length are always identical. In this implementation, the maximum size is 4,294,967,294. Object string1 is an empty string, so function empty returns true.

Line 18 inputs a string. In this example, "tomato soup" is input. Because a space character is a delimiter, only "tomato" is stored in string1; however, "soup" remains in the input buffer. Line 22 calls function printStatistics to output statistics for string1. Notice in the output that the length is 6 and the capacity is 15.

Line 25 reads "soup" from the input buffer and stores it in string1, thereby replacing "tomato". Line 27 passes string1 to printStatistics.

Line 30 uses the overloaded += operator to concatenate a 46-character-long string to string1. Line 32 passes string1 to printStatistics. The capacity has increased to 63 elements and the length is now 50.

Line 35 uses member function resize to increase the length of string1 by 10 characters. The additional elements are set to null characters. The output shows that the capacity has not changed and the length is now 60.

19.7. Finding Substrings and Characters in a string

Class string provides const member functions for finding substrings and characters in a string. Figure 19.6 demonstrates the find functions.

Click here to view code image

 1 // Fig. 19.6: Fig19_06.cpp
 2 // Demonstrating the string find member functions.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("noon is 12 pm; midnight is not.");
10 int location;
11
12 // find "is" at location 5 and 24
13 cout << "Original string:\n" << string1
14 << "\n\n(find) \"is\" was found at: " << string1.find("is")
15 << "\n(rfind) \"is\" was found at: " << string1.rfind("is");
16
17 // find 'o' at location 1
18 location = string1.find_first_of("misop");
19 cout << "\n\n(find_first_of) found '" << string1[location]
20 << "' from the group \"misop\" at: " << location;
21
22 // find 'o' at location 28
23 location = string1.find_last_of("misop");
24 cout << "\n\n(find_last_of) found '" << string1[location]
25 << "' from the group \"misop\" at: " << location;
26
27 // find '1' at location 8
28 location = string1.find_first_not_of("noi spm");
29 cout << "\n\n(find_first_not_of) '" << string1[location]
30 << "' is not contained in \"noi spm\" and was found at: "
31 << location;
32
33 // find '.' at location 13
34 location = string1.find_first_not_of("12noi spm");
35 cout << "\n\n(find_first_not_of) '" << string1[location]
36 << "' is not contained in \"12noi spm\" and was "
37 << "found at: " << location << endl;
38
39 // search for characters not in string1
40 location = string1.find_first_not_of(
41 "noon is 12 pm; midnight is not.");
42 cout << "\nfind_first_not_of(\"noon is 12 pm; midnight is not.\")"
43 << " returned: " << location << endl;
44 } // end main

Original string:
noon is 12 pm; midnight is not.

(find) "is" was found at: 5
(rfind) "is" was found at: 24

(find_first_of) found 'o' from the group "misop" at: 1

(find_last_of) found 'o' from the group "misop" at: 28

(find_first_not_of) '1' is not contained in "noi spm" and was found at: 8

(find_first_not_of) '.' is not contained in "12noi spm" and was found at: 13

find_first_not_of("noon is 12 pm; midnight is not.") returned: -1

Fig. 19.6. Demonstrating the string find member functions.

String string1 is declared and initialized in line 9. Line 14 attempts to find "is" in string1 using function find. If "is" is found, the subscript of the starting location of that string is returned. If the string is not found, the value string::npos (a public static constant defined in class string) is returned. This value is returned by the string find-related functions to indicate that a substring or character was not found in the string.

Line 15 uses member function rfind to search string1 backward (i.e., right-to-left). If "is" is found, the subscript location is returned. If the string is not found, string::npos is returned. [Note: The rest of the find functions presented in this section return the same type unless otherwise noted.]

Line 18 uses member function find_first_of to locate the first occurrence in string1 of any character in "misop". The searching is done from the beginning of string1. The character 'o' is found in element 1.

Line 23 uses member function find_last_of to find the last occurrence in string1 of any character in "misop". The searching is done from the end of string1. The character 'o' is found in element 28.

Line 28 uses member function find_first_not_of to find the first character in string1 not contained in "noi spm". The character '1' is found in element 8. Searching is done from the beginning of string1.

Line 34 uses member function find_first_not_of to find the first character not contained in "12noi spm". The character '.' is found in element 13. Searching is done from the beginning of string1.

Lines 40–41 use member function find_first_not_of to find the first character not contained in "noon is 12 pm; midnight is not.". In this case, the string being searched contains every character specified in the string argument. Because a character was not found, string::npos (which has the value –1 in this case) is returned.

19.8. Replacing Characters in a string

Figure 19.7 demonstrates string member functions for replacing and erasing characters. Lines 10–14 declare and initialize string string1. Line 20 uses string member function erase to erase everything from (and including) the character in position 62 to the end of string1. [Note: Each newline character occupies one character in the string.]

Click here to view code image

 1 // Fig. 19.7: Fig19_07.cpp
 2 // Demonstrating string member functions erase and replace.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // compiler concatenates all parts into one string
10 string string1("The values in any left subtree"
11 "\nare less than the value in the"
12 "\nparent node and the values in"
13 "\nany right subtree are greater"
14 "\nthan the value in the parent node");
15
16 cout << "Original string:\n" << string1 << endl << endl;
17
18 // remove all characters from (and including) location 62
19 // through the end of string1
20 string1.erase(62);
21
22 // output new string
23 cout << "Original string after erase:\n" << string1
24 << "\nAfter first replacement:\n";
25
26 size_t position = string1.find(" "); // find first space
27
28 // replace all spaces with period
29 while (position != string::npos)
30 {
31 string1.replace(position, 1, ".");
32 position = string1.find(" ", position + 1);
33 } // end while
34
35 cout << string1 << "\nAfter second replacement:\n";
36
37 position = string1.find("."); // find first period
38
39 // replace all periods with two semicolons
40 // NOTE: this will overwrite characters
41 while (position != string::npos)
42 {
43 string1.replace(position, 2, "xxxxx;;yyy", 5, 2);
44 position = string1.find(".", position + 1);
45 } // end while
46
47 cout << string1 << endl;
48 } // end main

Original string:
The values in any left subtree
are less than the value in the
parent node and the values in
any right subtree are greater
than the value in the parent node

Original string after erase:
The values in any left subtree
are less than the value in the

After first replacement:
The.values.in.any.left.subtree
are.less.than.the.value.in.the

After second replacement:
The;;alues;;n;;ny;;eft;;ubtree
are;;ess;;han;;he;;alue;;n;;he

Fig. 19.7. Demonstrating string member functions erase and replace.

Lines 26–33 use find to locate each occurrence of the space character. Each space is then replaced with a period by a call to string member function replace. Function replace takes three arguments: the subscript of the character in the string at which replacement should begin, the number of characters to replace and the replacement string. Member function find returns string::npos when the search character is not found. In line 32, 1 is added to position to continue searching at the location of the next character.

Lines 37–45 use function find to find every period and another overloaded function replace to replace every period and its following character with two semicolons. The arguments passed to this version of replace are the subscript of the element where the replace operation begins, the number of characters to replace, a replacement character string from which a substring is selected to use as replacement characters, the element in the character string where the replacement substring begins and the number of characters in the replacement character string to use.

19.9. Inserting Characters into a string

Class string provides member functions for inserting characters into a string. Figure 19.8 demonstrates the string insert capabilities.

Click here to view code image

 1 // Fig. 19.8: Fig19_08.cpp
 2 // Demonstrating class string insert member functions.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("beginning end");
10 string string2("middle ");
11 string string3("12345678");
12 string string4("xx");
13
14 cout << "Initial strings:\nstring1: " << string1
15 << "\nstring2: " << string2 << "\nstring3: " << string3
16 << "\nstring4: " << string4 << "\n\n";
17
18 // insert "middle" at location 10 in string1
19 string1.insert(10, string2);
20
21 // insert "xx" at location 3 in string3
22 string3.insert(3, string4, 0, string::npos);
23
24 cout << "Strings after insert:\nstring1: " << string1
25 << "\nstring2: " << string2 << "\nstring3: " << string3
26 << "\nstring4: " << string4 << endl;
27 } // end main

Initial strings:
string1: beginning end
string2: middle
string3: 12345678
string4: xx

Strings after insert:
string1: beginning middle end
string2: middle
string3: 123xx45678
string4: xx

Fig. 19.8. Demonstrating class string insert member functions.

The program declares, initializes then outputs strings string1, string2, string3 and string4. Line 19 uses string member function insert to insert string2’s content before element 10 of string1.

Line 22 uses insert to insert string4 before string3’s element 3. The last two arguments specify the starting and last element of string4 that should be inserted. Using string::npos causes the entire string to be inserted.

19.10. Conversion to Pointer-Based char * Strings

You can convert string class objects to pointer-based strings. As mentioned earlier, unlike pointer-based strings, strings are not necessarily null terminated. These conversion functions are useful when a given function takes a pointer-based string as an argument. Figure 19.9 demonstrates conversion of strings to pointer-based strings.

Click here to view code image

 1 // Fig. 19.9: Fig19_09.cpp
 2 // Converting strings to pointer-based strings and character arrays.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("STRINGS"); // string constructor with char * arg
10 const char *ptr1 = nullptr; // initialize *ptr1
11 size_t length = string1.size();
12 char *ptr2 = new char[length + 1]; // including null
13
14 // copy characters from string1 into allocated memory
15 string1.copy(ptr2, length, 0); // copy string1 to ptr2 char *
16 ptr2[length] = '\0'; // add null terminator
17
18 cout << "string string1 is " << string1
19 << "\nstring1 converted to a pointer-based string is "
20 << string1.c_str() << "\nptr1 is ";
21
22 // Assign to pointer ptr1 the const char * returned by
23 // function data(). NOTE: this is a potentially dangerous
24 // assignment. If string1 is modified, pointer ptr1 can
25 // become invalid.
26 ptr1 = string1.data(); // non-null terminated char array
27
28 // output each character using pointer
29 for (size_t i = 0; i < length; ++i)
30 cout << *(ptr1 + i); // use pointer arithmetic
31
32 cout << "\nptr2 is " << ptr2 << endl;
33 delete [] ptr2; // reclaim dynamically allocated memory
34 } // end main

string string1 is STRINGS
string1 converted to a pointer-based string is STRINGS
ptr1 is STRINGS
ptr2 is STRINGS

Fig. 19.9. Converting strings to pointer-based strings and character arrays.

The program declares a string, a size_t and two char pointers (lines 9–12). The string string1 is initialized to "STRINGS", ptr1 is initialized to nullptr and length is initialized to the length of string1. Memory of sufficient size to hold a pointer-based string equivalent of string string1 is allocated dynamically and attached to char pointer ptr2.

Line 15 uses string member function copy to copy object string1 into the char array pointed to by ptr2. Line 16 places a terminating null character in the array pointed to by ptr2.

Line 20 uses function c_str to obtain a const char * that points to a null terminated pointer-based string with the same content as string1. The pointer is passed to the stream insertion operator for output.

Line 26 assigns the const char * ptr1 a pointer returned by class string member function data. This member function returns a non-null-terminated built-in character array. We do not modify string string1 in this example. If string1 were to be modified (e.g., the string’s dynamic memory changes its address due to a member function call such as string1.insert(0, "abcd");), ptr1 could become invalid—which could lead to unpredictable results.

Lines 29–30 use pointer arithmetic to output the character array pointed to by ptr1. In lines 32–33, the pointer-based string ptr2 is output and the memory allocated for ptr2 is deleted to avoid a memory leak.

[image: Image] Common Programming Error 19.2

Not terminating the character array returned by data with a null character can lead to execution-time errors.

19.11. Iterators

Class string provides iterators (introduced in Chapter 15) for forward and backward traversal of strings. Iterators provide access to individual characters with a syntax that’s similar to pointer operations. Iterators are not range checked. Figure 19.10 demonstrates iterators.

Click here to view code image

 1 // Fig. 19.10: Fig19_10.cpp
 2 // Using an iterator to output a string.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string string1("Testing iterators");
10 string::const_iterator iterator1 = string1.begin();
11
12 cout << "string1 = " << string1
13 << "\n(Using iterator iterator1) string1 is: ";
14
15 // iterate through string
16 while (iterator1 != string1.end())
17 {
18 cout << *iterator1; // dereference iterator to get char
19 ++iterator1; // advance iterator to next char
20 } // end while
21
22 cout << endl;
23 } // end main

string1 = Testing iterators
(Using iterator iterator1) string1 is: Testing iterators

Fig. 19.10. Using an iterator to output a string.

Lines 9–10 declare string string1 and string::const_iterator iterator1. Recall that a const_iterator cannot be used to modify the data that you’re iterating through—in this case the string. Iterator iterator1 is initialized to the beginning of string1 with the string class member function begin. Two versions of begin exist—one that returns an iterator for iterating through a non-const string and a const version that returns a const_iterator for iterating through a const string. Line 12 outputs string1.

Lines 16–20 use iterator iterator1 to “walk through” string1. Class string member function end returns an iterator (or a const_iterator) for the position past the last element of string1. Each element is printed by dereferencing the iterator much as you’d dereference a pointer, and the iterator is advanced one position using operator ++. In C++11, lines 10 and 16–20 can be replaced with a range-based for, as in

for (char c : string1)
 cout << c;

[image: Image]

Class string provides member functions rend and rbegin for accessing individual string characters in reverse from the end of a string toward the beginning. Member functions rend and rbegin return reverse_iterators or const_reverse_iterators (based on whether the string is non-const or const).

[image: Image] Good Programming Practice 19.1

When the operations involving the iterator should not modify the data being processed, use a const_iterator. This is another example of employing the principle of least privilege.

19.12. String Stream Processing

In addition to standard stream I/O and file stream I/O, C++ stream I/O includes capabilities for inputting from, and outputting to, strings in memory. These capabilities often are referred to as in-memory I/O or string stream processing.

Input from a string is supported by class istringstream. Output to a string is supported by class ostringstream. The class names istringstream and ostringstream are actually aliases defined by the typedefs

Click here to view code image

typedef basic_istringstream< char > istringstream;
typedef basic_ostringstream< char > ostringstream;

Class templates basic_istringstream and basic_ostringstream provide the same functionality as classes istream and ostream plus other member functions specific to in-memory formatting. Programs that use in-memory formatting must include the <sstream> and <iostream> headers.

[image: Image] Error-Prevention Tip 19.1

One application of these techniques is data validation. A program can read an entire line at a time from the input stream into a string. Next, a validation routine can scrutinize the contents of the string and correct (or repair) the data, if necessary. Then the program can proceed to input from the string, knowing that the input data is in the proper format.

[image: Image] Error-Prevention Tip 19.2

To assist with data validation, C++11 provides powerful regular-expression capabilities. For example, if a program requires a user to enter a U.S. format telephone number (e.g., (800) 555-1212), you can use a regular-expression pattern to confirm that the user’s input matches the expected format. Many websites provide regular expressions for validating email addresses, URLs, phone numbers, addresses and other popular kinds of data. We introduce regular expressions and provide several examples in Chapter 24.

[image: Image] Software Engineering Observation 19.1

Outputting to a string is a nice way to take advantage of the powerful output formatting capabilities of C++ streams. Data can be prepared in a string to mimic the edited screen format. That string could be written to a disk file to preserve the screen image.

[image: Image]

An ostringstream object uses a string object to store the output data. The str member function of class ostringstream returns a copy of that string.

Demonstrating ostringstream

Figure 19.11 demonstrates an ostringstream object. The program creates ostringstream object outputString (line 10) and uses the stream insertion operator to output a series of strings and numerical values to the object.

Click here to view code image

 1 // Fig. 19.11: Fig19_11.cpp
 2 // Using an ostringstream object.
 3 #include <iostream>
 4 #include <string>
 5 #include <sstream> // header for string stream processing
 6 using namespace std;
 7
 8 int main()
 9 {
10 ostringstream outputString; // create ostringstream instance
11
12 string string1("Output of several data types ");
13 string string2("to an ostringstream object:");
14 string string3("\n double: ");
15 string string4("\n int: ");
16 string string5("\naddress of int: ");
17
18 double double1 = 123.4567;
19 int integer = 22;
20
21 // output strings, double and int to ostringstream outputString
22 outputString << string1 << string2 << string3 << double1
23 << string4 << integer << string5 << &integer;
24
25 // call str to obtain string contents of the ostringstream
26 cout << "outputString contains:\n" << outputString.str();
27
28 // add additional characters and call str to output string
29 outputString << "\nmore characters added";
30 cout << "\n\nafter additional stream insertions,\n"
31 << "outputString contains:\n" << outputString.str() << endl;
32 } // end main

outputString contains:
Output of several data types to an ostringstream object:
 double: 123.457
 int: 22
address of int: 0012F540

after additional stream insertions,
outputString contains:
Output of several data types to an ostringstream object:
 double: 123.457
 int: 22
address of int: 0012F540
more characters added

Fig. 19.11. Using an ostringstream object.

Lines 22–23 output string string1, string string2, string string3, double double1, string string4, int integer, string string5 and the address of int integer—all to outputString in memory. Line 26 uses the stream insertion operator and the call outputString.str() to display a copy of the string created in lines 22–23. Line 29 demonstrates that more data can be appended to the string in memory by simply issuing another stream insertion operation to outputString. Lines 30–31 display string outputString after appending additional characters.

An istringstream object inputs data from a string in memory to program variables. Data is stored in an istringstream object as characters. Input from the istringstream object works identically to input from any file. The end of the string is interpreted by the istringstream object as end-of-file.

Demonstrating istringstream

Figure 19.12 demonstrates input from an istringstream object. Lines 10–11 create string input containing the data and istringstream object inputString constructed to contain the data in string input. The string input contains the data

Input test 123 4.7 A

which, when read as input to the program, consist of two strings ("Input" and "test"), an int (123), a double (4.7) and a char ('A'). These characters are extracted to variables string1, string2, integer, double1 and character in line 18.

Click here to view code image

 1 // Fig. 19.12: Fig19_12.cpp
 2 // Demonstrating input from an istringstream object.
 3 #include <iostream>
 4 #include <string>
 5 #include <sstream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 string input("Input test 123 4.7 A");
11 istringstream inputString(input);
12 string string1;
13 string string2;
14 int integer;
15 double double1;
16 char character;
17
18 inputString >> string1 >> string2 >> integer >> double1 >> character;
19
20 cout << "The following items were extracted\n"
21 << "from the istringstream object:" << "\nstring: " << string1
22 << "\nstring: " << string2 << "\n int: " << integer
23 << "\ndouble: " << double1 << "\n char: " << character;
24
25 // attempt to read from empty stream
26 long value;
27 inputString >> value;
28
29 // test stream results
30 if (inputString.good())
31 cout << "\n\nlong value is: " << value << endl;
32 else
33 cout << "\n\ninputString is empty" << endl;
34 } // end main

The following items were extracted
from the istringstream object:
string: Input
string: test
 int: 123
double: 4.7
 char: A

inputString is empty

Fig. 19.12. Demonstrating input from an istringstream object.

The data is then output in lines 20–23. The program attempts to read from inputString again in line 27. The if condition in line 30 uses function good (Section 13.8) to test if any data remains. Because no data remains, the function returns false and the else part of the if...else statement is executed.

[image: Image]

19.13. C++11 Numeric Conversion Functions

C++11 now contains functions for converting from numeric values to strings and from strings to numeric values. Though you could previously perform such conversions using other techniques, the functions presented in this section were added for convenience.

Converting Numeric Values to string Objects

C++11’s to_string function (from the <string> header) returns the string representation of its numeric argument. The function is overloaded for types int, unsigned int, long, unsigned long, long long, unsigned long long, float, double and long double.

Converting string Objects to Numeric Values

C++11 provides eight functions (Fig. 19.13; from the <string> header) for converting string objects to numeric values. Each function attempts to convert the beginning of its string argument to a numeric value. If no conversion can be performed, each function throws an invalid_argument exception. If the result of the conversion is out of range for the function’s return type, each function throws an out_of_range exception.

[image: Image]

Fig. 19.13. C++11 functions that convert from strings to numeric types.

Functions That Convert strings to Integral Types

Consider an example of converting a string to an integral value. Assuming the string:

string s("100hello");

the following statement converts the beginning of the string to the int value 100 and stores that value in convertedInt:

int convertedInt = stoi(s);

Each function that converts a string to an integral type actually receives three parameters—the last two have default arguments. The parameters are:

• A string containing the characters to convert.

• A pointer to a size_t variable. The function uses this pointer to store the index of the first character that was not converted. The default argument is a null pointer, in which case the function does not store the index.

• An int from 2 to 36 representing the number’s base—the default is base 10.

So, the preceding statement is equivalent to

int convertedInt = stoi(s, nullptr, 10);

Given a size_t variable named index, the statement:

int convertedInt = stoi(s, &index, 2);

converts the binary number "100" (base 2) to an int (100 in binary is the int value 4) and stores in index the location of the string’s letter "h" (the first character that was not converted).

Functions That Convert strings to Floating-Point Types

The functions that convert strings to floating-point types each receive two parameters:

• A string containing the characters to convert.

• A pointer to a size_t variable where the function stores the index of the first character that was not converted. The default argument is a null pointer, in which case the function does not store the index.

Consider an example of converting a string to an floating-point value. Assuming the string:

string s("123.45hello");

the following statement converts the beginning of the string to the double value 123.45 and stores that value in convertedDouble:

double convertedDouble = stod(s);

Again, the second argument is a null pointer by default.

19.14. Wrap-Up

This chapter discussed the details of C++ Standard Library class string. We discussed assigning, concatenating, comparing, searching and swapping strings. We also introduced a number of methods to determine string characteristics, to find, replace and insert characters in a string, and to convert strings to pointer-based strings and vice versa. You learned about string iterators and performing input from and output to strings in memory. Finally, we introduced C++11’s new functions for converting numeric values to strings and for converting strings to numeric values. In the next chapter, we introduce structs, which are similar to classes, and discuss the manipulation of bits, characters and C strings.

20. Bits, Characters, C Strings and structs

Objectives

In this chapter you’ll:

• Create and use structs and to understand their near equivalence with classes.

• Use typedef to create aliases for data types.

• Manipulate data with the bitwise operators and to create bit fields for storing data compactly.

• Use the functions of the character-handling library <cctype>.

• Use the string-conversion functions of the general-utilities library <cstdlib>.

• Use the string-processing functions of the string-handling library <cstring>.

Outline

20.1 Introduction

20.2 Structure Definitions

20.3 typedef

20.4 Example: Card Shuffling and Dealing Simulation

20.5 Bitwise Operators

20.6 Bit Fields

20.7 Character-Handling Library

20.8 C String-Manipulation Functions

20.9 C String-Conversion Functions

20.10 Search Functions of the C String-Handling Library

20.11 Memory Functions of the C String-Handling Library

20.12 Wrap-Up

20.1. Introduction

We now discuss structures, their near equivalence with classes, and the manipulation of bits, characters and C strings. Many of the techniques we present here are included for the benefit of those who will work with legacy C and C++ code.

Like classes, C++ structures may contain access specifiers, member functions, constructors and destructors. In fact, the only differences between structures and classes in C++ is that structure members default to public access and class members default to private access when no access specifiers are used, and that structures default to public inheritance, whereas classes default to private inheritance. Our presentation of structures here is typical of the legacy C code and early C++ code you’ll see in industry.

We present a high-performance card shuffling and dealing simulation in which we use structure objects containing C++ string objects to represent the cards. We discuss the bitwise operators that allow you to access and manipulate the individual bits in bytes of data. We also present bitfields—special structures that can be used to specify the exact number of bits a variable occupies in memory. These bit-manipulation techniques are common in programs that interact directly with hardware devices that have limited memory. The chapter finishes with examples of many character and C string-manipulation functions—some of which are designed to process blocks of memory as arrays of bytes. The detailed C string treatment in this chapter is mostly for reasons of legacy code support and because there are still remnants of C string use in C++, such as command-line arguments (Appendix F). New development should use C++ string objects rather than C strings.

20.2. Structure Definitions

Consider the following structure definition:

struct Card
{
 string face;
 string suit;
}; // end struct Card

Keyword struct introduces the definition for structure Card. The identifier Card is the structure name and is used in C++ to declare variables of the structure type (in C, the type name of the preceding structure is struct Card). Card’s definition contains two string members—face and suit.

The following declarations

Card oneCard;
Card deck[52];
Card *cardPtr;

declare oneCard to be a structure variable of type Card, deck to be an array with 52 elements of type Card and cardPtr to be a pointer to a Card structure. Variables of a given structure type can also be declared by placing a comma-separated list of the variable names between the closing brace of the structure definition and the semicolon that ends the structure definition. For example, the preceding declarations could have been incorporated into the Card structure definition as follows:

struct Card
{
 string face;
 string suit;
} oneCard, deck[52], *cardPtr;

As with classes, structure members are not necessarily stored in consecutive bytes of memory. Sometimes there are “holes” in a structure, because some computers store specific data types only on certain memory boundaries for performance reasons, such as half-word, word or double-word boundaries. A word is a standard memory unit used to store data in a computer—usually two, four or eight bytes and typically eight bytes on today’s popular 64-bit systems. Consider the following structure definition in which structure objects sample1 and sample2 of type Example are declared:

struct Example
{
 char c;
 int i;
} sample1, sample2;

A computer with two-byte words might require that each of the members of Example be aligned on a word boundary (i.e., at the beginning of a word—this is machine dependent). Figure 20.1 shows a sample storage alignment for an object of type Example that’s been assigned the character 'a' and the integer 97 (the bit representations of the values are shown). If the members are stored beginning at word boundaries, there is a one-byte hole (byte 1 in the figure) in the storage for objects of type Example. The value in the one-byte hole is undefined. If the values in sample1 and sample2 are in fact equal, the structure objects might not be equal, because the undefined one-byte holes are not likely to contain identical values.

[image: Image]

Fig. 20.1. Possible storage alignment for an Example object, showing an undefined byte.

[image: Image] Common Programming Error 20.1

Comparing variables of structure types is a compilation error.

[image: Image] Portability Tip 20.1

Because the size of data items of a particular type is machine dependent, and because storage alignment considerations are machine dependent, so too is the representation of a structure.

20.3. typedef

Keyword typedef provides a mechanism for creating synonyms (or aliases) for previously defined data types. Names for structure types are often defined with typedef to more readable type names. For example, the statement

typedef Card *CardPtr;

defines the new type name CardPtr as a synonym for type Card *.

Creating a new name with typedef does not create a new type; typedef simply creates a new type name that can then be used in the program as an alias for an existing type name.

20.4. Example: Card Shuffling and Dealing Simulation

The card shuffling and dealing program in Figs. 20.2–20.4 represents the deck of cards as an array of structures.

Click here to view code image

 1 // Fig. 20.2: DeckOfCards.h
 2 // Definition of class DeckOfCards that
 3 // represents a deck of playing cards.
 4 #include <string>
 5 #include <array>
 6
 7 // Card structure definition
 8 struct Card
 9 {
10 std::string face;
11 std::string suit;
12 }; // end structure Card
13
14 // DeckOfCards class definition
15 class DeckOfCards
16 {
17 public:
18 static const int numberOfCards = 52;
19 static const int faces = 13;
20 static const int suits = 4;
21
22 DeckOfCards(); // constructor initializes deck
23 void shuffle(); // shuffles cards in deck
24 void deal() const; // deals cards in deck
25
26 private:
27 std::array< Card, numberOfCards > deck; // represents deck of cards
28 }; // end class DeckOfCards

Fig. 20.2. Definition of class DeckOfCards that represents a deck of playing cards.

Click here to view code image

 1 // Fig. 20.3: DeckOfCards.cpp
 2 // Member-function definitions for class DeckOfCards that simulates
 3 // the shuffling and dealing of a deck of playing cards.
 4 #include <iostream>
 5 #include <iomanip>
 6 #include <cstdlib> // prototypes for rand and srand
 7 #include <ctime> // prototype for time
 8 #include "DeckOfCards.h" // DeckOfCards class definition
 9 using namespace std;
10
11 // no-argument DeckOfCards constructor intializes deck
12 DeckOfCards::DeckOfCards()
13 {
14 // initialize suit array
15 static string suit[suits] =
16 { "Hearts", "Diamonds", "Clubs", "Spades" };
17
18 // initialize face array
19 static string face[faces] =
20 { "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",
21 "Eight", "Nine", "Ten", "Jack", "Queen", "King" };
22
23 // set values for deck of 52 Cards
24 for (size_t i = 0; i < deck.size(); ++i)
25 {
26 deck[i].face = face[i % faces];
27 deck[i].suit = suit[i / faces];
28 } // end for
29
30 srand(static_cast< size_t >(time(nullptr))); // seed
31 } // end no-argument DeckOfCards constructor
32
33 // shuffle cards in deck
34 void DeckOfCards::shuffle()
35 {
36 // shuffle cards randomly
37 for (size_t i = 0; i < deck.size(); ++i)
38 {
39 int j = rand() % numberOfCards;
40 Card temp = deck[i];
41 deck[i] = deck[j];
42 deck[j] = temp;
43 } // end for
44 } // end function shuffle
45
46 // deal cards in deck
47 void DeckOfCards::deal() const
48 {
49 // display each card's face and suit
50 for (size_t i = 0; i < deck.size(); ++i)
51 cout << right << setw(5) << deck[i].face << " of "
52 << left << setw(8) << deck[i].suit
53 << ((i + 1) % 2 ? '\t' : '\n');
54 } // end function deal

Fig. 20.3. Member-function definitions for class DeckOfCards.

Click here to view code image

 1 // Fig. 20.4: fig20_04.cpp
 2 // Card shuffling and dealing program.
 3 #include "DeckOfCards.h" // DeckOfCards class definition
 4
 5 int main()
 6 {
 7 DeckOfCards deckOfCards; // create DeckOfCards object
 8 deckOfCards.shuffle(); // shuffle the cards in the deck
 9 deckOfCards.deal(); // deal the cards in the deck
10 } // end main

 King of Clubs Ten of Diamonds
 Five of Diamonds Jack of Clubs
Seven of Spades Five of Clubs
Three of Spades King of Hearts
 Ten of Clubs Eight of Spades
Eight of Hearts Six of Hearts
 Nine of Diamonds Nine of Clubs
Three of Diamonds Queen of Hearts
 Six of Clubs Seven of Hearts
Seven of Diamonds Jack of Diamonds
 Jack of Spades King of Diamonds
Deuce of Diamonds Four of Clubs
Three of Clubs Five of Hearts
Eight of Clubs Ace of Hearts
Deuce of Spades Ace of Clubs
 Ten of Spades Eight of Diamonds
 Ten of Hearts Six of Spades
Queen of Diamonds Nine of Hearts
Seven of Clubs Queen of Clubs
Deuce of Clubs Queen of Spades
Three of Hearts Five of Spades
Deuce of Hearts Jack of Hearts
 Four of Hearts Ace of Diamonds
 Nine of Spades Four of Diamonds
 Ace of Spades Six of Diamonds
 Four of Spades King of Spades

Fig. 20.4. Card shuffling and dealing program.

The constructor (lines 12–31 of Fig. 20.3) initializes the array in order with character strings representing Ace through King of each suit. Function shuffle implements the shuffling algorithm. The function loops through all 52 cards (subscripts 0 to 51). For each card, a number between 0 and 51 is picked randomly. Next, the current Card and the randomly selected Card are swapped in the array. A total of 52 swaps are made in a single pass of the entire array, and the array is shuffled. Because the Card structures were swapped in place in the array, the dealing algorithm implemented in function deal requires only one pass of the array to deal the shuffled cards.

20.5. Bitwise Operators

C++ provides extensive bit-manipulation capabilities for getting down to the so-called “bits-and-bytes” level. Operating systems, test-equipment software, networking software and many other kinds of software require that you communicate “directly with the hardware.” We introduce each of the bitwise operators, and we discuss how to save memory by using bit fields.

All data is represented internally by computers as sequences of bits. Each bit can assume the value 0 or the value 1. On most systems, a sequence of eight bits, each of which forms a byte—the standard storage unit for a variable of type char. Other data types are stored in larger numbers of bytes. Bitwise operators are used to manipulate the bits of integral operands (char, short, int and long; both signed and unsigned). Normally the bitwise operators are used with unsigned integers.

[image: Image] Portability Tip 20.2

Bitwise data manipulations are machine dependent.

The bitwise operator discussions in this section show the binary representations of the integer operands. For a detailed explanation of the binary (also called base-2) number system, see Appendix D. Because of the machine-dependent nature of bitwise manipulations, some of these programs might not work on your system without modification.

The bitwise operators are: bitwise AND (&), bitwise inclusive OR (|), bitwise exclusive OR (^), left shift (<<), right shift (>>) and bitwise complement (~)—also known as the one’s complement. We’ve been using &, << and >> for other purposes—this is a classic example of operator overloading. The bitwise AND, bitwise inclusive OR and bitwise exclusive OR operators compare their two operands bit by bit. The bitwise AND operator sets each bit in the result to 1 if the corresponding bit in both operands is 1. The bitwise inclusive OR operator sets each bit in the result to 1 if the corresponding bit in either (or both) operand(s) is 1. The bitwise exclusive OR operator sets each bit in the result to 1 if the corresponding bit in either operand—but not both—is 1. The left-shift operator shifts the bits of its left operand to the left by the number of bits specified in its right operand. The right-shift operator shifts the bits in its left operand to the right by the number of bits specified in its right operand. The bitwise complement operator sets all 0 bits in its operand to 1 in the result and sets all 1 bits in its operand to 0 in the result. Detailed discussions of each bitwise operator appear in the following examples. The bitwise operators are summarized in Fig. 20.5.

[image: Image]

Fig. 20.5. Bitwise operators.

Printing a Binary Representation of an Integral Value

When using the bitwise operators, it’s useful to illustrate their precise effects by printing values in their binary representation. The program of Fig. 20.6 prints an unsigned integer in its binary representation in groups of eight bits each.

Click here to view code image

 1 // Fig. 20.6: fig20_06.cpp
 2 // Printing an unsigned integer in bits.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 void displayBits(unsigned); // prototype
 8
 9 int main()
10 {
11 unsigned inputValue = 0; // integral value to print in binary
12
13 cout << "Enter an unsigned integer: ";
14 cin >> inputValue;
15 displayBits(inputValue);
16 } // end main
17
18 // display bits of an unsigned integer value
19 void displayBits(unsigned value)
20 {
21 const int SHIFT = 8 * sizeof(unsigned) - 1;
22 const unsigned MASK = 1 << SHIFT;
23
24 cout << setw(10) << value << " = ";
25
26 // display bits
27 for (unsigned i = 1; i <= SHIFT + 1; ++i)
28 {
29 cout << (value & MASK ? '1' : '0');
30 value <<= 1; // shift value left by 1
31
32 if (i % 8 == 0) // output a space after 8 bits
33 cout << ' ';
34 } // end for
35
36 cout << endl;
37 } // end function displayBits

Enter an unsigned integer: 65000
 65000 = 00000000 00000000 11111101 11101000

Enter an unsigned integer: 29
 29 = 00000000 00000000 00000000 00011101

Fig. 20.6. Printing an unsigned integer in bits.

Function displayBits (lines 19–37) uses the bitwise AND operator to combine variable value with constant MASK. Often, the bitwise AND operator is used with an operand called a mask—an integer value with specific bits set to 1. Masks are used to hide some bits in a value while selecting other bits. In displayBits, line 22 assigns constant MASK the value 1 << SHIFT. The value of constant SHIFT was calculated in line 21 with the expression

8 * sizeof(unsigned) - 1

which multiplies the number of bytes an unsigned object requires in memory by 8 (the number of bits in a byte) to get the total number of bits required to store an unsigned object, then subtracts 1. The bit representation of 1 << SHIFT on a computer that represents unsigned objects in four bytes of memory is

10000000 00000000 00000000 00000000

The left-shift operator shifts the value 1 from the low-order (rightmost) bit to the high-order (leftmost) bit in MASK, and fills in 0 bits from the right. Line 29 prints a 1 or a 0 for the current leftmost bit of variable value. Assume that variable value contains 65000 (00000000 00000000 11111101 11101000). When value and MASK are combined using &, all the bits except the high-order bit in variable value are “masked off” (hidden), because any bit “ANDed” with 0 yields 0. If the leftmost bit is 1, value & MASK evaluates to

Click here to view code image

00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

which is interpreted as false, and 0 is printed. Then line 30 shifts variable value left by one bit with the expression value <<= 1 (i.e., value = value << 1). These steps are repeated for each bit variable value. Eventually, a bit with a value of 1 is shifted into the leftmost bit position, and the bit manipulation is as follows:

Click here to view code image

11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value & MASK)

Because both left bits are 1s, the expression’s result is nonzero (true) and 1 is printed. Figure 20.7 summarizes the results of combining two bits with the bitwise AND operator.

[image: Image]

Fig. 20.7. Results of combining two bits with the bitwise AND operator (&).

[image: Image] Common Programming Error 20.2

Using the logical AND operator (&&) for the bitwise AND operator (&) and vice versa is a logic error.

The program of Fig. 20.8 demonstrates the bitwise AND operator, the bitwise inclusive OR operator, the bitwise exclusive OR operator and the bitwise complement operator. Function displayBits (lines 48–66) prints the unsigned integer values.

Click here to view code image

 1 // Fig. 20.8: fig20_08.cpp
 2 // Bitwise AND, inclusive OR,
 3 // exclusive OR and complement operators.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 void displayBits(unsigned); // prototype
 9
10 int main()
11 {
12 // demonstrate bitwise &
13 unsigned number1 = 2179876355;
14 unsigned mask = 1;
15 cout << "The result of combining the following\n";
16 displayBits(number1);
17 displayBits(mask);
18 cout << "using the bitwise AND operator & is\n";
19 displayBits(number1 & mask);
20
21 // demonstrate bitwise |
22 number1 = 15;
23 unsigned setBits = 241;
24 cout << "\nThe result of combining the following\n";
25 displayBits(number1);
26 displayBits(setBits);
27 cout << "using the bitwise inclusive OR operator | is\n";
28 displayBits(number1 | setBits);
29
30 // demonstrate bitwise exclusive OR
31 number1 = 139;
32 unsigned number2 = 199;
33 cout << "\nThe result of combining the following\n";
34 displayBits(number1);
35 displayBits(number2);
36 cout << "using the bitwise exclusive OR operator ^ is\n";
37 displayBits(number1 ^ number2);
38
39 // demonstrate bitwise complement
40 number1 = 21845;
41 cout << "\nThe one's complement of\n";
42 displayBits(number1);
43 cout << "is" << endl;
44 displayBits(~number1);
45 } // end main
46
47 // display bits of an unsigned integer value
48 void displayBits(unsigned value)
49 {
50 const int SHIFT = 8 * sizeof(unsigned) - 1;
51 const unsigned MASK = 1 << SHIFT;
52
53 cout << setw(10) << value << " = ";
54
55 // display bits
56 for (unsigned i = 1; i <= SHIFT + 1; ++i)
57 {
58 cout << (value & MASK ? '1' : '0');
59 value <<= 1; // shift value left by 1
60
61 if (i % 8 == 0) // output a space after 8 bits
62 cout << ' ';
63 } // end for
64
65 cout << endl;
66 } // end function displayBits

The result of combining the following
2179876355 = 10000001 11101110 01000110 00000011
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

Fig. 20.8. Bitwise AND, inclusive OR, exclusive OR and complement operators.

Bitwise AND Operator (&)

In Fig. 20.8, line 13 assigns 2179876355 (10000001 11101110 01000110 00000011) to variable number1, and line 14 assigns 1 (00000000 00000000 00000000 00000001) to variable mask. When mask and number1 are combined using the bitwise AND operator (&) in the expression number1 & mask (line 19), the result is 00000000 00000000 00000000 00000001. All the bits except the low-order bit in variable number1 are “masked off” (hidden) by “ANDing” with constant MASK.

Bitwise Inclusive OR Operator (|)

The bitwise inclusive OR operator is used to set specific bits to 1 in an operand. In Fig. 20.8, line 22 assigns 15 (00000000 00000000 00000000 00001111) to variable number1, and line 23 assigns 241 (00000000 00000000 00000000 11110001) to variable setBits. When number1 and setBits are combined using the bitwise inclusive OR operator in the expression number1 | setBits (line 28), the result is 255 (00000000 00000000 00000000 11111111). Figure 20.9 summarizes the results of combining two bits with the bitwise inclusive-OR operator.

[image: Image]

Fig. 20.9. Combining two bits with the bitwise inclusive-OR operator (|).

[image: Image] Common Programming Error 20.3

Using the logical OR operator (||) for the bitwise OR operator (|) and vice versa is a logic error.

Bitwise Exclusive OR (^)

The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of the corresponding bits in its two operands is 1. In Fig. 20.8, lines 31–32 assign variables number1 and number2 the values 139 (00000000 00000000 00000000 10001011) and 199 (00000000 00000000 00000000 11000111), respectively. When these variables are combined with the bitwise exclusive OR operator in the expression number1 ^ number2 (line 37), the result is 00000000 00000000 00000000 01001100. Figure 20.10 summarizes the results of combining two bits with the bitwise exclusive OR operator.

[image: Image]

Fig. 20.10. Combining two bits with the bitwise exclusive OR operator (^).

Bitwise Complement (~)

The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result and sets all 0 bits to 1 in the result—otherwise referred to as “taking the one’s complement of the value.” In Fig. 20.8, line 40 assigns variable number1 the value 21845 (00000000 00000000 01010101 01010101). When the expression ~number1 evaluates, the result is (11111111 11111111 10101010 10101010).

Bitwise Shift Operators

Figure 20.11 demonstrates the left-shift operator (<<) and the right-shift operator (>>). Function displayBits (lines 27–45) prints the unsigned integer values.

Click here to view code image

 1 // Fig. 20.11: fig20_11.cpp
 2 // Using the bitwise shift operators.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 void displayBits(unsigned); // prototype
 8
 9 int main()
10 {
11 unsigned number1 = 960;
12
13 // demonstrate bitwise left shift
14 cout << "The result of left shifting\n";
15 displayBits(number1);
16 cout << "8 bit positions using the left-shift operator is\n";
17 displayBits(number1 << 8);
18
19 // demonstrate bitwise right shift
20 cout << "\nThe result of right shifting\n";
21 displayBits(number1);
22 cout << "8 bit positions using the right-shift operator is\n";
23 displayBits(number1 >> 8);
24 } // end main
25
26 // display bits of an unsigned integer value
27 void displayBits(unsigned value)
28 {
29 const int SHIFT = 8 * sizeof(unsigned) - 1;
30 const unsigned MASK = 1 << SHIFT;
31
32 cout << setw(10) << value << " = ";
33
34 // display bits
35 for (unsigned i = 1; i <= SHIFT + 1; ++i)
36 {
37 cout << (value & MASK ? '1' : '0');
38 value <<= 1; // shift value left by 1
39
40 if (i % 8 == 0) // output a space after 8 bits
41 cout << ' ';
42 } // end for
43
44 cout << endl;
45 } // end function displayBits

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left-shift operator is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right-shift operator is
 3 = 00000000 00000000 00000000 00000011

Fig. 20.11. Bitwise shift operators.

Left-Shift Operator

The left-shift operator (<<) shifts the bits of its left operand to the left by the number of bits specified in its right operand. Bits vacated to the right are replaced with 0s; bits shifted off the left are lost. In Fig. 20.11, line 11 assigns variable number1 the value 960 (00000000 00000000 00000011 11000000). The result of left-shifting variable number1 eight bits in the expression number1 << 8 (line 17) is 245760 (00000000 00000011 11000000 00000000).

Right-Shift Operator

The right-shift operator (>>) shifts the bits of its left operand to the right by the number of bits specified in its right operand. Performing a right shift on an unsigned integer causes the vacated bits at the left to be replaced by 0s; bits shifted off the right are lost. In the program of Fig. 20.11, the result of right-shifting number1 in the expression number1 >> 8 (line 23) is 3 (00000000 00000000 00000000 00000011).

[image: Image] Common Programming Error 20.4

The result of shifting a value is undefined if the right operand is negative or if the right operand is greater than or equal to the number of bits in which the left operand is stored.

[image: Image] Portability Tip 20.3

The result of right-shifting a signed value is machine dependent. Some machines fill with zeros and others use the sign bit.

Bitwise Assignment Operators

Each bitwise operator (except the bitwise complement operator) has a corresponding assignment operator. These bitwise assignment operators are shown in Fig. 20.12; they’re used in a similar manner to the arithmetic assignment operators introduced in Chapter 4.

[image: Image]

Fig. 20.12. Bitwise assignment operators.

Figure 20.13 shows the precedence and associativity of the operators introduced up to this point in the text. They’re shown top to bottom in decreasing order of precedence.

[image: Image]

Fig. 20.13. Operator precedence and associativity.

20.6. Bit Fields

C++ provides the ability to specify the number of bits in which an integral type or enum type member of a class or a structure is stored. Such a member is referred to as a bit field. Bit fields enable better memory utilization by storing data in the minimum number of bits required. Bit field members must be declared as an integral or enum type.

[image: Image] Performance Tip 20.1

Bit fields help conserve storage.

Consider the following structure definition:

struct BitCard
{
 unsigned face : 4;
 unsigned suit : 2;
 unsigned color : 1;
}; // end struct BitCard

The definition contains three unsigned bit fields—face, suit and color—used to represent a card from a deck of 52 cards. A bit field is declared by following an integral type or enum type member with a colon (:) and an integer constant representing the width of the bit field (i.e., the number of bits in which the member is stored). The width must be an integer constant.

The preceding structure definition indicates that member face is stored in four bits, member suit in 2 bits and member color in one bit. The number of bits is based on the desired range of values for each structure member. Member face stores values between 0 (Ace) and 12 (King)—four bits can store a value between 0 and 15. Member suit stores values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—two bits can store a value between 0 and 3. Finally, member color stores either 0 (Red) or 1 (Black)—one bit can store either 0 or 1.

The program in Figs. 20.14–20.16 creates array deck containing BitCard structures (line 25 of Fig. 20.14). The constructor inserts the 52 cards in the deck array, and function deal prints the 52 cards. Notice that bit fields are accessed exactly as any other structure member is (lines 14–16 and 25–30 of Fig. 20.15). The member color is included as a means of indicating the card color.

Click here to view code image

 1 // Fig. 20.14: DeckOfCards.h
 2 // Definition of class DeckOfCards that
 3 // represents a deck of playing cards.
 4 #include <array>
 5
 6 // BitCard structure definition with bit fields
 7 struct BitCard
 8 {
 9 unsigned face : 4; // 4 bits; 0-15
10 unsigned suit : 2; // 2 bits; 0-3
11 unsigned color : 1; // 1 bit; 0-1
12 }; // end struct BitCard
13
14 // DeckOfCards class definition
15 class DeckOfCards
16 {
17 public:
18 static const int faces = 13;
19 static const int colors = 2; // black and red
20 static const int numberOfCards = 52;
21
22 DeckOfCards(); // constructor initializes deck
23 void deal() const; // deals cards in deck
24 private:
25 std::array< BitCard, numberOfCards > deck; // represents deck of cards
26 }; // end class DeckOfCards

Fig. 20.14. Definition of class DeckOfCards that represents a deck of playing cards.

Click here to view code image

 1 // Fig. 20.15: DeckOfCards.cpp
 2 // Member-function definitions for class DeckOfCards that simulates
 3 // the shuffling and dealing of a deck of playing cards.
 4 #include <iostream>
 5 #include <iomanip>
 6 #include "DeckOfCards.h" // DeckOfCards class definition
 7 using namespace std;
 8
 9 // no-argument DeckOfCards constructor intializes deck
10 DeckOfCards::DeckOfCards()
11 {
12 for (size_t i = 0; i < deck.size(); ++i)
13 {
14 deck[i].face = i % faces; // faces in order
15 deck[i].suit = i / faces; // suits in order
16 deck[i].color = i / (faces * colors); // colors in order
17 } // end for
18 } // end no-argument DeckOfCards constructor
19
20 // deal cards in deck
21 void DeckOfCards::deal() const
22 {
23 for (size_t k1 = 0, k2 = k1 + deck.size() / 2;
24 k1 < deck.size() / 2 - 1; ++k1, ++k2)
25 cout << "Card:" << setw(3) << deck[k1].face
26 << " Suit:" << setw(2) << deck[k1].suit
27 << " Color:" << setw(2) << deck[k1].color
28 << " " << "Card:" << setw(3) << deck[k2].face
29 << " Suit:" << setw(2) << deck[k2].suit
30 << " Color:" << setw(2) << deck[k2].color << endl;
31 } // end function deal

Fig. 20.15. Member-function definitions for class DeckOfCards.

Click here to view code image

 1 // Fig. 20.16: fig20_16.cpp
 2 // Card shuffling and dealing program.
 3 #include "DeckOfCards.h" // DeckOfCards class definition
 4
 5 int main()
 6 {
 7 DeckOfCards deckOfCards; // create DeckOfCards object
 8 deckOfCards.deal(); // deal the cards in the deck
 9 } // end main

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

Fig. 20.16. Bit fields used to store a deck of cards.

It’s possible to specify an unnamed bit field, in which case the field is used as padding in the structure. For example, the structure definition uses an unnamed three-bit field as padding—nothing can be stored in those three bits. Member b is stored in another storage unit.

Click here to view code image

struct Example
{
 unsigned a : 13;
 unsigned : 3; // align to next storage-unit boundary
 unsigned b : 4;
}; // end struct Example

An unnamed bit field with a zero width is used to align the next bit field on a new storage-unit boundary. For example, the structure definition

Click here to view code image

struct Example
{
 unsigned a : 13;
 unsigned : 0; // align to next storage-unit boundary
 unsigned b : 4;
}; // end struct Example

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the storage unit in which a is stored and align b on the next storage-unit boundary.

[image: Image] Portability Tip 20.4

Bit-field manipulations are machine dependent. For example, some computers allow bit fields to cross word boundaries, whereas others do not.

[image: Image] Common Programming Error 20.5

Attempting to access individual bits of a bit field with subscripting as if they were elements of an array is a compilation error. Bit fields are not “arrays of bits.”

[image: Image] Common Programming Error 20.6

Attempting to take the address of a bit field (the & operator may not be used with bit fields because a pointer can designate only a particular byte in memory and bit fields can start in the middle of a byte) is a compilation error.

[image: Image] Performance Tip 20.2

Although bit fields save space, using them can cause the compiler to generate slower-executing machine-language code. This occurs because it takes extra machine-language operations to access only portions of an addressable storage unit. This is one of many examples of the space–time trade-offs that occur in computer science.

20.7. Character-Handling Library

Most data is entered into computers as characters—including letters, digits and various special symbols. In this section, we discuss C++’s capabilities for examining and manipulating individual characters. In the remainder of the chapter, we continue the discussion of character-string manipulation that we began in Chapter 8.

The character-handling library includes several functions that perform useful tests and manipulations of character data. Each function receives a character—represented as an int—or EOF as an argument. Characters are often manipulated as integers. Remember that EOF normally has the value –1 and that some hardware architectures do not allow negative values to be stored in char variables. Therefore, the character-handling functions manipulate characters as integers. Figure 20.17 summarizes the functions of the character-handling library. When using functions from the character-handling library, include the <cctype> header.

[image: Image]

Fig. 20.17. Character-handling library functions.

Figure 20.18 demonstrates functions isdigit, isalpha, isalnum and isxdigit. Function isdigit determines whether its argument is a digit (0–9). Function isalpha determines whether its argument is an uppercase letter (A-Z) or a lowercase letter (a–z). Function isalnum determines whether its argument is an uppercase letter, a lowercase letter or a digit. Function isxdigit determines whether its argument is a hexadecimal digit (A–F, a–f, 0–9).

Click here to view code image

 1 // Fig. 20.18: fig20_18.cpp
 2 // Character-handling functions isdigit, isalpha, isalnum and isxdigit.
 3 #include <iostream>
 4 #include <cctype> // character-handling function prototypes
 5 using namespace std;
 6
 7 int main()
 8 {
 9 cout << "According to isdigit:\n"
10 << (isdigit('8') ? "8 is a" : "8 is not a") << " digit\n"
11 << (isdigit('#') ? "# is a" : "# is not a") << " digit\n";
12
13 cout << "\nAccording to isalpha:\n"
14 << (isalpha('A') ? "A is a" : "A is not a") << " letter\n"
15 << (isalpha('b') ? "b is a" : "b is not a") << " letter\n"
16 << (isalpha('&') ? "& is a" : "& is not a") << " letter\n"
17 << (isalpha('4') ? "4 is a" : "4 is not a") << " letter\n";
18
19 cout << "\nAccording to isalnum:\n"
20 << (isalnum('A') ? "A is a" : "A is not a")
21 << " digit or a letter\n"
22 << (isalnum('8') ? "8 is a" : "8 is not a")
23 << " digit or a letter\n"
24 << (isalnum('#') ? "# is a" : "# is not a")
25 << " digit or a letter\n";
26
27 cout << "\nAccording to isxdigit:\n"
28 << (isxdigit('F') ? "F is a" : "F is not a")
29 << " hexadecimal digit\n"
30 << (isxdigit('J') ? "J is a" : "J is not a")
31 << " hexadecimal digit\n"
32 << (isxdigit('7') ? "7 is a" : "7 is not a")
33 << " hexadecimal digit\n"
34 << (isxdigit('$') ? "$ is a" : "$ is not a")
35 << " hexadecimal digit\n"
36 << (isxdigit('f') ? "f is a" : "f is not a")
37 << " hexadecimal digit" << endl;
38 } // end main

According to isdigit:
8 is a digit
is not a digi

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

Fig. 20.18. Character-handling functions isdigit, isalpha, isalnum and isxdigit.

Figure 20.18 uses the conditional operator (?:) with each function to determine whether the string " is a " or the string " is not a " should be printed in the output for each character tested. For example, line 10 indicates that if '8' is a digit—i.e., if isdigit returns a true (nonzero) value—the string "8 is a " is printed. If '8' is not a digit (i.e., if isdigit returns 0), the string "8 is not a " is printed.

Figure 20.19 demonstrates functions islower, isupper, tolower and toupper. Function islower determines whether its argument is a lowercase letter (a–z). Function isupper determines whether its argument is an uppercase letter (A–Z). Function tolower converts an uppercase letter to lowercase and returns the lowercase letter—if the argument is not an uppercase letter, tolower returns the argument value unchanged. Function toupper converts a lowercase letter to uppercase and returns the uppercase letter—if the argument is not a lowercase letter, toupper returns the argument value unchanged.

Click here to view code image

 1 // Fig. 20.19: fig20_19.cpp
 2 // Character-handling functions islower, isupper, tolower and toupper.
 3 #include <iostream>
 4 #include <cctype> // character-handling function prototypes
 5 using namespace std;
 6
 7 int main()
 8 {
 9 cout << "According to islower:\n"
10 << (islower('p') ? "p is a" : "p is not a")
11 << " lowercase letter\n"
12 << (islower('P') ? "P is a" : "P is not a")
13 << " lowercase letter\n"
14 << (islower('5') ? "5 is a" : "5 is not a")
15 << " lowercase letter\n"
16 << (islower('!') ? "! is a" : "! is not a")
17 << " lowercase letter\n";
18
19 cout << "\nAccording to isupper:\n"
20 << (isupper('D') ? "D is an" : "D is not an")
21 << " uppercase letter\n"
22 << (isupper('d') ? "d is an" : "d is not an")
23 << " uppercase letter\n"
24 << (isupper('8') ? "8 is an" : "8 is not an")
25 << " uppercase letter\n"
26 << (isupper('$') ? "$ is an" : "$ is not an")
27 << " uppercase letter\n";
28
29 cout << "\nu converted to uppercase is "
30 << static_cast< char >(toupper('u'))
31 << "\n7 converted to uppercase is "
32 << static_cast< char >(toupper('7'))
33 << "\n$ converted to uppercase is "
34 << static_cast< char >(toupper('$'))
35 << "\nL converted to lowercase is "
36 << static_cast< char >(tolower('L')) << endl;
37 } // end main

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

Fig. 20.19. Character-handling functions islower, isupper, tolower and toupper.

Figure 20.20 demonstrates functions isspace, iscntrl, ispunct, isprint and isgraph. Function isspace determines whether its argument is a whitespace character, such as space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab ('\t') or vertical tab ('\v'). Function iscntrl determines whether its argument is a control character such as horizontal tab ('\t'), vertical tab ('\v'), form feed ('\f'), alert ('\a'), backspace ('\b'), carriage return ('\r') or newline ('\n'). Function ispunct determines whether its argument is a printing character other than a space, digit or letter, such as $, #, (,), [,], {, }, ;, : or %. Function isprint determines whether its argument is a character that can be displayed on the screen (including the space character). Function isgraph tests for the same characters as isprint, but the space character is not included.

Click here to view code image

 1 // Fig. 20.20: fig20_20.cpp
 2 // Using functions isspace, iscntrl, ispunct, isprint and isgraph.
 3 #include <iostream>
 4 #include <cctype> // character-handling function prototypes
 5 using namespace std;
 6
 7 int main()
 8 {
 9 cout << "According to isspace:\nNewline "
10 << (isspace('\n') ? "is a" : "is not a")
11 << " whitespace character\nHorizontal tab "
12 << (isspace('\t') ? "is a" : "is not a")
13 << " whitespace character\n"
14 << (isspace('%') ? "% is a" : "% is not a")
15 << " whitespace character\n";
16
17 cout << "\nAccording to iscntrl:\nNewline "
18 << (iscntrl('\n') ? "is a" : "is not a")
19 << " control character\n"
20 << (iscntrl('$') ? "$ is a" : "$ is not a")
21 << " control character\n";
22
23 cout << "\nAccording to ispunct:\n"
24 << (ispunct(';') ? "; is a" : "; is not a")
25 << " punctuation character\n"
26 << (ispunct('Y') ? "Y is a" : "Y is not a")
27 << " punctuation character\n"
28 << (ispunct('#') ? "# is a" : "# is not a")
29 << " punctuation character\n";
30
31 cout << "\nAccording to isprint:\n"
32 << (isprint('$') ? "$ is a" : "$ is not a")
33 << " printing character\nAlert "
34 << (isprint('\a') ? "is a" : "is not a")
35 << " printing character\nSpace "
36 << (isprint(' ') ? "is a" : "is not a")
37 << " printing character\n";
38
39 cout << "\nAccording to isgraph:\n"
40 << (isgraph('Q') ? "Q is a" : "Q is not a")
41 << " printing character other than a space\nSpace "
42 << (isgraph(' ') ? "is a" : "is not a")
43 << " printing character other than a space" << endl;
44 } // end main

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character
Space is a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Fig. 20.20. Character-handling functions isspace, iscntrl, ispunct, isprint and isgraph.

20.8. C String-Manipulation Functions

The string-handling library provides any useful functions for manipulating string data, comparing strings, searching strings for characters and other strings, tokenizing strings (separating strings into logical pieces such as the separate words in a sentence) and determining the length of strings. This section presents some common string-manipulation functions of the string-handling library (from the C++ standard library). The functions are summarized in Fig. 20.21; then each is used in a live-code example. The prototypes for these functions are located in header <cstring>.

[image: Image]

[image: Image]

Fig. 20.21. String-manipulation functions of the string-handling library.

Several functions in Fig. 20.21 contain parameters with data type size_t. This type is defined in the header <cstring> to be an unsigned integral type such as unsigned int or unsigned long.

[image: Image] Common Programming Error 20.7

Forgetting to include the <cstring> header when using functions from the string-handling library causes compilation errors.

Copying Strings with strcpy and strncpy

Function strcpy copies its second argument—a string—into its first argument—a character array that must be large enough to store the string and its terminating null character, (which is also copied). Function strncpy is much like strcpy, except that strncpy specifies the number of characters to be copied from the string into the array. Function strncpy does not necessarily copy the terminating null character of its second argument—a terminating null character is written only if the number of characters to be copied is at least one more than the length of the string. For example, if "test" is the second argument, a terminating null character is written only if the third argument to strncpy is at least 5 (four characters in "test" plus one terminating null character). If the third argument is larger than 5, null characters are appended to the array until the total number of characters specified by the third argument is written.

[image: Image] Common Programming Error 20.8

When using strncpy, the terminating null character of the second argument (a char * string) will not be copied if the number of characters specified by strncpy’s third argument is not greater than the second argument’s length. In that case, a fatal error may occur if you do not manually terminate the resulting char * string with a null character.

Figure 20.22 uses strcpy (line 13) to copy the entire string in array x into array y and uses strncpy (line 19) to copy the first 14 characters of array x into array z. Line 20 appends a null character ('\0') to array z, because the call to strncpy in the program does not write a terminating null character. (The third argument is less than the string length of the second argument plus one.)

Click here to view code image

 1 // Fig. 20.22: fig20_22.cpp
 2 // Using strcpy and strncpy.
 3 #include <iostream>
 4 #include <cstring> // prototypes for strcpy and strncpy
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char x[] = "Happy Birthday to You"; // string length 21
10 char y[25];
11 char z[15];
12
13 strcpy(y, x); // copy contents of x into y
14
15 cout << "The string in array x is: " << x
16 << "\nThe string in array y is: " << y << '\n';
17
18 // copy first 14 characters of x into z
19 strncpy(z, x, 14); // does not copy null character
20 z[14] = '\0'; // append '\0' to z's contents
21
22 cout << "The string in array z is: " << z << endl;
23 } // end main

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Fig. 20.22. strcpy and strncpy.

Concatenating Strings with strcat and strncat

Function strcat appends its second argument (a string) to its first argument (a character array containing a string). The first character of the second argument replaces the null character ('\0') that terminates the string in the first argument. You must ensure that the array used to store the first string is large enough to store the combination of the first string, the second string and the terminating null character (copied from the second string). Function strncat appends a specified number of characters from the second string to the first string and appends a terminating null character to the result. The program of Fig. 20.23 demonstrates function strcat (lines 15 and 25) and function strncat (line 20).

Click here to view code image

 1 // Fig. 20.23: fig20_23.cpp
 2 // Using strcat and strncat.
 3 #include <iostream>
 4 #include <cstring> // prototypes for strcat and strncat
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char s1[20] = "Happy "; // length 6
10 char s2[] = "New Year "; // length 9
11 char s3[40] = "";
12
13 cout << "s1 = " << s1 << "\ns2 = " << s2;
14
15 strcat(s1, s2); // concatenate s2 to s1 (length 15)
16
17 cout << "\n\nAfter strcat(s1, s2):\ns1 = " << s1 << "\ns2 = " << s2;
18
19 // concatenate first 6 characters of s1 to s3
20 strncat(s3, s1, 6); // places '\0' after last character
21
22 cout << "\n\nAfter strncat(s3, s1, 6):\ns1 = " << s1
23 << "\ns3 = " << s3;
24
25 strcat(s3, s1); // concatenate s1 to s3
26 cout << "\n\nAfter strcat(s3, s1):\ns1 = " << s1
27 << "\ns3 = " << s3 << endl;
28 } // end main

s1 = Happy
s2 = New Year

After strcat(s1, s2):
s1 = Happy New Year
s2 = New Year

After strncat(s3, s1, 6):
s1 = Happy New Year
s3 = Happy

After strcat(s3, s1):
s1 = Happy New Year
s3 = Happy Happy New Year

Fig. 20.23. strcat and strncat.

Comparing Strings with strcmp and strncmp

Figure 20.24 compares three strings using strcmp (lines 15–17) and strncmp (lines 20–22). Function strcmp compares its first string argument with its second string argument character by character. The function returns zero if the strings are equal, a negative value if the first string is less than the second string and a positive value if the first string is greater than the second string. Function strncmp is equivalent to strcmp, except that strncmp compares up to a specified number of characters. Function strncmp stops comparing characters if it reaches the null character in one of its string arguments. The program prints the integer value returned by each function call.

Click here to view code image

 1 // Fig. 20.24: fig20_24.cpp
 2 // Using strcmp and strncmp.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cstring> // prototypes for strcmp and strncmp
 6 using namespace std;
 7
 8 int main()
 9 {
10 const char *s1 = "Happy New Year";
11 const char *s2 = "Happy New Year";
12 const char *s3 = "Happy Holidays";
13
14 cout << "s1 = " << s1 << "\ns2 = " << s2 << "\ns3 = " << s3
15 << "\n\nstrcmp(s1, s2) = " << setw(2) << strcmp(s1, s2)
16 << "\nstrcmp(s1, s3) = " << setw(2) << strcmp(s1, s3)
17 << "\nstrcmp(s3, s1) = " << setw(2) << strcmp(s3, s1);
18
19 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)
20 << strncmp(s1, s3, 6) << "\nstrncmp(s1, s3, 7) = " << setw(2)
21 << strncmp(s1, s3, 7) << "\nstrncmp(s3, s1, 7) = " << setw(2)
22 << strncmp(s3, s1, 7) << endl;
23 } // end main

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Fig. 20.24. strcmp and strncmp.

[image: Image] Common Programming Error 20.9

Assuming that strcmp and strncmp return one (a true value) when their arguments are equal is a logic error. Both functions return zero (C++’s false value) for equality. Therefore, when testing two strings for equality, the result of the strcmp or strncmp function should be compared with zero to determine whether the strings are equal.

To understand what it means for one string to be “greater than” or “less than” another, consider the process of alphabetizing last names. You’d, no doubt, place “Jones” before “Smith,” because the first letter of “Jones” comes before the first letter of “Smith” in the alphabet. But the alphabet is more than just a list of 26 letters—it’s an ordered list of characters. Each letter occurs in a specific position within the list. “Z” is more than just a letter of the alphabet; “Z” is specifically the 26th letter of the alphabet.

How does the computer know that one letter “comes before” another? All characters are represented inside the computer as numeric codes; when the computer compares two strings, it actually compares the numeric codes of the characters in the strings.

[Note: With some compilers, functions strcmp and strncmp always return -1, 0 or 1, as in the sample output of Fig. 20.24. With other compilers, these functions return 0 or the difference between the numeric codes of the first characters that differ in the strings being compared. For example, when s1 and s3 are compared, the first characters that differ between them are the first character of the second word in each string—N (numeric code 78) in s1 and H (numeric code 72) in s3, respectively. In this case, the return value will be 6 (or -6 if s3 is compared to s1).]

Tokenizing a String with strtok

Function strtok breaks a string into a series of tokens. A token is a sequence of characters separated by delimiting characters (usually spaces or punctuation marks). For example, in a line of text, each word can be considered a token, and the spaces separating the words can be considered delimiters. Multiple calls to strtok are required to break a string into tokens (assuming that the string contains more than one token). The first call to strtok contains two arguments, a string to be tokenized and a string containing characters that separate the tokens (i.e., delimiters). Line 15 in Fig. 20.25 assigns to tokenPtr a pointer to the first token in sentence. The second argument, " ", indicates that tokens in sentence are separated by spaces. Function strtok searches for the first character in sentence that’s not a delimiting character (space). This begins the first token. The function then finds the next delimiting character in the string and replaces it with a null ('\0') character. This terminates the current token. Function strtok saves (in a static variable) a pointer to the next character following the token in sentence and returns a pointer to the current token.

Click here to view code image

 1 // Fig. 20.25: fig20_25.cpp
 2 // Using strtok to tokenize a string.
 3 #include <iostream>
 4 #include <cstring> // prototype for strtok
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char sentence[] = "This is a sentence with 7 tokens";
10
11 cout << "The string to be tokenized is:\n" << sentence
12 << "\n\nThe tokens are:\n\n";
13
14 // begin tokenization of sentence
15 char *tokenPtr = strtok(sentence, " ");
16
17 // continue tokenizing sentence until tokenPtr becomes NULL
18 while (tokenPtr != NULL)
19 {
20 cout << tokenPtr << '\n';
21 tokenPtr = strtok(NULL, " "); // get next token
22 } // end while
23
24 cout << "\nAfter strtok, sentence = " << sentence << endl;
25 } // end main

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:

This
is
a
sentence
with
7
tokens

After strtok, sentence = This

Fig. 20.25. Using strtok to tokenize a string.

Subsequent calls to strtok to continue tokenizing sentence contain NULL as the first argument (line 21). The NULL argument indicates that the call to strtok should continue tokenizing from the location in sentence saved by the last call to strtok. Function strtok maintains this saved information in a manner that’s not visible to you. If no tokens remain when strtok is called, strtok returns NULL. The program of Fig. 20.25 uses strtok to tokenize the string "This is a sentence with 7 tokens". The program prints each token on a separate line. Line 24 outputs sentence after tokenization. Note that strtok modifies the input string; therefore, a copy of the string should be made if the program requires the original after the calls to strtok. When sentence is output after tokenization, only the word “This” prints, because strtok replaced each blank in sentence with a null character ('\0') during the tokenization process.

[image: Image] Common Programming Error 20.10

Not realizing that strtok modifies the string being tokenized, then attempting to use that string as if it were the original unmodified string is a logic error.

Determining String Lengths

Function strlen takes a string as an argument and returns the number of characters in the string—the terminating null character is not included in the length. The length is also the index of the null character. The program of Fig. 20.26 demonstrates function strlen.

Click here to view code image

 1 // Fig. 20.26: fig20_26.cpp
 2 // Using strlen.
 3 #include <iostream>
 4 #include <cstring> // prototype for strlen
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "abcdefghijklmnopqrstuvwxyz";
10 const char *string2 = "four";
11 const char *string3 = "Boston";
12
13 cout << "The length of \"" << string1 << "\" is " << strlen(string1)
14 << "\nThe length of \"" << string2 << "\" is " << strlen(string2)
15 << "\nThe length of \"" << string3 << "\" is " << strlen(string3)
16 << endl;
17 } // end main

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Fig. 20.26. strlen returns the length of a char * string.

20.9. C String-Conversion Functions

In Section 20.8, we discussed several of C++’s most popular C string-manipulation functions. In the next several sections, we cover the remaining functions, including functions for converting strings to numeric values, functions for searching strings and functions for manipulating, comparing and searching blocks of memory.

This section presents the C string-conversion functions from the general-utilities library <cstdlib>. These functions convert C strings to integer and floating-point values. In new code, C++ programmers typically use the string stream processing capabilities (Chapter 19) to perform such conversions. Figure 20.27 summarizes the C string-conversion functions. When using functions from the general-utilities library, include the <cstdlib> header.

[image: Image]

Fig. 20.27. C string-conversion functions of the general-utilities library.

Function atof (Fig. 20.28, line 9) converts its argument—a string that represents a floating-point number—to a double value. The function returns the double value. If the string cannot be converted—for example, if the first character of the string is not a digit—function atof returns zero.

Click here to view code image

 1 // Fig. 20.28: fig20_28.cpp
 2 // Using atof.
 3 #include <iostream>
 4 #include <cstdlib> // atof prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double d = atof("99.0"); // convert string to double
10
11 cout << "The string \"99.0\" converted to double is " << d
12 << "\nThe converted value divided by 2 is " << d / 2.0 << endl;
13 } // end main

The string "99.0" converted to double is 99
The converted value divided by 2 is 49.5

Fig. 20.28. String-conversion function atof.

Function atoi (Fig. 20.29, line 9) converts its argument—a string of digits that represents an integer—to an int value. The function returns the int value. If the string cannot be converted, function atoi returns zero.

Click here to view code image

 1 // Fig. 20.29: fig20_29.cpp
 2 // Using atoi.
 3 #include <iostream>
 4 #include <cstdlib> // atoi prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int i = atoi("2593"); // convert string to int
10
11 cout << "The string \"2593\" converted to int is " << i
12 << "\nThe converted value minus 593 is " << i - 593 << endl;
13 } // end main

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

Fig. 20.29. String-conversion function atoi.

Function atol (Fig. 20.30, line 9) converts its argument—a string of digits representing a long integer—to a long value. The function returns the long value. If the string cannot be converted, function atol returns zero. If int and long are both stored in four bytes, function atoi and function atol work identically.

Click here to view code image

 1 // Fig. 20.30: fig20_30.cpp
 2 // Using atol.
 3 #include <iostream>
 4 #include <cstdlib> // atol prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 long x = atol("1000000"); // convert string to long
10
11 cout << "The string \"1000000\" converted to long is " << x
12 << "\nThe converted value divided by 2 is " << x / 2 << endl;
13 } // end main

The string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

Fig. 20.30. String-conversion function atol.

Function strtod (Fig. 20.31) converts a sequence of characters representing a floating-point value to double. Function strtod receives two arguments—a string (char *) and the address of a char * pointer (i.e., a char **). The string contains the character sequence to be converted to double. The second argument enables strtod to modify a char * pointer in the calling function, such that the pointer points to the location of the first character after the converted portion of the string. Line 12 indicates that d is assigned the double value converted from string and that stringPtr is assigned the location of the first character after the converted value (51.2) in string.

Click here to view code image

 1 // Fig. 20.31: fig20_31.cpp
 2 // Using strtod.
 3 #include <iostream>
 4 #include <cstdlib> // strtod prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "51.2% are admitted";
10 char *stringPtr = nullptr;
11
12 double d = strtod(string1, &stringPtr); // convert to double
13
14 cout << "The string \"" << string1
15 << "\" is converted to the\ndouble value " << d
16 << " and the string \"" << stringPtr << "\"" << endl;
17 } // end main

The string "51.2% are admitted" is converted to the
double value 51.2 and the string "% are admitted"

Fig. 20.31. String-conversion function strtod.

Function strtol (Fig. 20.32) converts to long a sequence of characters representing an integer. The function receives a string (char *), the address of a char * pointer and an integer. The string contains the character sequence to convert. The second argument is assigned the location of the first character after the converted portion of the string. The integer specifies the base of the value being converted. Line 12 indicates that x is assigned the long value converted from string and that remainderPtr is assigned the location of the first character after the converted value (-1234567) in string1. Using a null pointer for the second argument causes the remainder of the string to be ignored. The third argument, 0, indicates that the value to be converted can be in octal (base 8), decimal (base 10) or hexadecimal (base 16). This is determined by the initial characters in the string—0 indicates an octal number, 0x indicates hexadecimal and a number from 1 to 9 indicates decimal.

Click here to view code image

 1 // Fig. 20.32: fig20_32.cpp
 2 // Using strtol.
 3 #include <iostream>
 4 #include <cstdlib> // strtol prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "-1234567abc";
10 char *remainderPtr = nullptr;
11
12 long x = strtol(string1, &remainderPtr, 0); // convert to long
13
14 cout << "The original string is \"" << string1
15 << "\"\nThe converted value is " << x
16 << "\nThe remainder of the original string is \"" << remainderPtr
17 << "\"\nThe converted value plus 567 is " << x + 567 << endl;
18 } // end main

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

Fig. 20.32. String-conversion function strtol.

In a call to function strtol, the base can be specified as zero or as any value between 2 and 36. (See Appendix D for a detailed explanation of the octal, decimal, hexadecimal and binary number systems.) Numeric representations of integers from base 11 to base 36 use the characters A–Z to represent the values 10 to 35. For example, hexadecimal values can consist of the digits 0–9 and the characters A–F. A base-11 integer can consist of the digits 0–9 and the character A. A base-24 integer can consist of the digits 0–9 and the characters A–N. A base-36 integer can consist of the digits 0–9 and the characters A–Z. [Note: The case of the letter used is ignored.]

Function strtoul (Fig. 20.33) converts to unsigned long a sequence of characters representing an unsigned long integer. The function works identically to strtol. Line 13 indicates that x is assigned the unsigned long value converted from string and that remainderPtr is assigned the location of the first character after the converted value (1234567) in string1. The third argument, 0, indicates that the value to be converted can be in octal, decimal or hexadecimal format, depending on the initial characters.

Click here to view code image

 1 // Fig. 20.33: fig20_33.cpp
 2 // Using strtoul.
 3 #include <iostream>
 4 #include <cstdlib> // strtoul prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "1234567abc";
10 char *remainderPtr = nullptr;
11
12 // convert a sequence of characters to unsigned long
13 unsigned long x = strtoul(string1, &remainderPtr, 0);
14
15 cout << "The original string is \"" << string1
16 << "\"\nThe converted value is " << x
17 << "\nThe remainder of the original string is \"" << remainderPtr
18 << "\"\nThe converted value minus 567 is " << x - 567 << endl;
19 } // end main

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Fig. 20.33. String-conversion function strtoul.

20.10. Search Functions of the C String-Handling Library

This section presents the functions of the string-handling library used to search strings for characters and other strings. The functions are summarized in Fig. 20.34. Functions strcspn and strspn specify return type size_t. Type size_t is a type defined by the standard as the integral type of the value returned by operator sizeof.

[image: Image]

Fig. 20.34. Search functions of the C string-handling library.

Function strchr searches for the first occurrence of a character in a string. If the character is found, strchr returns a pointer to the character in the string; otherwise, strchr returns a null pointer. The program of Fig. 20.35 uses strchr (lines 14 and 22) to search for the first occurrences of 'a' and 'z' in the string "This is a test".

Click here to view code image

 1 // Fig. 20.35: fig20_35.cpp
 2 // Using strchr.
 3 #include <iostream>
 4 #include <cstring> // strchr prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "This is a test";
10 char character1 = 'a';
11 char character2 = 'z';
12
13 // search for character1 in string1
14 if (strchr(string1, character1) != NULL)
15 cout << '\'' << character1 << "' was found in \""
16 << string1 << "\".\n";
17 else
18 cout << '\'' << character1 << "' was not found in \""
19 << string1 << "\".\n";
20
21 // search for character2 in string1
22 if (strchr(string1, character2) != NULL)
23 cout << '\'' << character2 << "' was found in \""
24 << string1 << "\".\n";
25 else
26 cout << '\'' << character2 << "' was not found in \""
27 << string1 << "\"." << endl;
28 } // end main

'a' was found in "This is a test".
'z' was not found in "This is a test".

Fig. 20.35. String-search function strchr.

Function strcspn (Fig. 20.36, line 15) determines the length of the initial part of the string in its first argument that does not contain any characters from the string in its second argument. The function returns the length of the segment.

Click here to view code image

 1 // Fig. 20.36: fig20_36.cpp
 2 // Using strcspn.
 3 #include <iostream>
 4 #include <cstring> // strcspn prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "The value is 3.14159";
10 const char *string2 = "1234567890";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1"
14 << "\ncontaining no characters from string2 = "
15 << strcspn(string1, string2) << endl;
16 } // end main

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Fig. 20.36. String-search function strcspn.

Function strpbrk searches for the first occurrence in its first string argument of any character in its second string argument. If a character from the second argument is found, strpbrk returns a pointer to the character in the first argument; otherwise, strpbrk returns a null pointer. Line 13 of Fig. 20.37 locates the first occurrence in string1 of any character from string2.

Click here to view code image

 1 // Fig. 20.37: fig20_37.cpp
 2 // Using strpbrk.
 3 #include <iostream>
 4 #include <cstring> // strpbrk prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "This is a test";
10 const char *string2 = "beware";
11
12 cout << "Of the characters in \"" << string2 << "\"\n'"
13 << *strpbrk(string1, string2) << "\' is the first character "
14 << "to appear in\n\"" << string1 << '\"' << endl;
15 } // end main

Of the characters in "beware"
'a' is the first character to appear in
"This is a test"

Fig. 20.37. String-search function strpbrk.

Function strrchr searches for the last occurrence of the specified character in a string. If the character is found, strrchr returns a pointer to the character in the string; otherwise, strrchr returns 0. Line 15 of Fig. 20.38 searches for the last occurrence of the character 'z' in the string "A zoo has many animals including zebras".

Click here to view code image

 1 // Fig. 20.38: fig20_38.cpp
 2 // Using strrchr.
 3 #include <iostream>
 4 #include <cstring> // strrchr prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "A zoo has many animals including zebras";
10 char c = 'z';
11
12 cout << "string1 = " << string1 << "\n" << endl;
13 cout << "The remainder of string1 beginning with the\n"
14 << "last occurrence of character '"
15 << c << "' is: \"" << strrchr(string1, c) << '\"' << endl;
16 } // end main

string1 = A zoo has many animals including zebras

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

Fig. 20.38. String-search function strrchr.

Function strspn (Fig. 20.39, line 15) determines the length of the initial part of the string in its first argument that contains only characters from the string in its second argument. The function returns the length of the segment.

Click here to view code image

 1 // Fig. 20.39: fig20_39.cpp
 2 // Using strspn.
 3 #include <iostream>
 4 #include <cstring> // strspn prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "The value is 3.14159";
10 const char *string2 = "aehils Tuv";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1\n"
14 << "containing only characters from string2 = "
15 << strspn(string1, string2) << endl;
16 } // end main

string1 = The value is 3.14159
string2 = aehils Tuv

The length of the initial segment of string1
containing only characters from string2 = 13

Fig. 20.39. String-search function strspn.

Function strstr searches for the first occurrence of its second string argument in its first string argument. If the second string is found in the first string, a pointer to the location of the string in the first argument is returned; otherwise, it returns 0. Line 15 of Fig. 20.40 uses strstr to find the string "def" in the string "abcdefabcdef".

Click here to view code image

 1 // Fig. 20.40: fig20_40.cpp
 2 // Using strstr.
 3 #include <iostream>
 4 #include <cstring> // strstr prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const char *string1 = "abcdefabcdef";
10 const char *string2 = "def";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe remainder of string1 beginning with the\n"
14 << "first occurrence of string2 is: "
15 << strstr(string1, string2) << endl;
16 } // end main

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Fig. 20.40. String-search function strstr.

20.11. Memory Functions of the C String-Handling Library

The string-handling library functions presented in this section facilitate manipulating, comparing and searching blocks of memory. The functions treat blocks of memory as arrays of bytes. These functions can manipulate any block of data. Figure 20.41 summarizes the memory functions of the string-handling library. In the function discussions, “object” refers to a block of data. [Note: The string-processing functions in prior sections operate on null-terminated strings. The functions in this section operate on arrays of bytes. The null-character value (i.e., a byte containing 0) has no significance with the functions in this section.]

[image: Image]

Fig. 20.41. Memory functions of the string-handling library.

The pointer parameters to these functions are declared void *. In Chapter 8, we saw that a pointer to any data type can be assigned directly to a pointer of type void *. For this reason, these functions can receive pointers to any data type. Remember that a pointer of type void * cannot be assigned directly to a pointer of any other data type. Because a void * pointer cannot be dereferenced, each function receives a size argument that specifies the number of characters (bytes) the function will process. For simplicity, the examples in this section manipulate character arrays (blocks of characters).

Function memcpy copies a specified number of characters (bytes) from the object pointed to by its second argument into the object pointed to by its first argument. The function can receive a pointer to any type of object. The result of this function is undefined if the two objects overlap in memory (i.e., are parts of the same object). The program of Fig. 20.42 uses memcpy (line 14) to copy the string in array s2 to array s1.

Click here to view code image

 1 // Fig. 20.42: fig20_42.cpp
 2 // Using memcpy.
 3 #include <iostream>
 4 #include <cstring> // memcpy prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char s1[17] = {};
10
11 // 17 total characters (includes terminating null)
12 char s2[] = "Copy this string";
13
14 memcpy(s1, s2, 17); // copy 17 characters from s2 to s1
15
16 cout << "After s2 is copied into s1 with memcpy,\n"
17 << "s1 contains \"" << s1 << '\"' << endl;
18 } // end main

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

Fig. 20.42. Memory-handling function memcpy.

Function memmove, like memcpy, copies a specified number of bytes from the object pointed to by its second argument into the object pointed to by its first argument. Copying is performed as if the bytes were copied from the second argument to a temporary array of characters, then copied from the temporary array to the first argument. This allows characters from one part of a string to be copied into another part of the same string.

[image: Image] Common Programming Error 20.11

String-manipulation functions other than memmove that copy characters have undefined results when copying takes place between parts of the same string.

The program in Fig. 20.43 uses memmove (line 13) to copy the last 10 bytes of array x into the first 10 bytes of array x.

Click here to view code image

 1 // Fig. 20.43: fig20_43.cpp
 2 // Using memmove.
 3 #include <iostream>
 4 #include <cstring> // memmove prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char x[] = "Home Sweet Home";
10
11 cout << "The string in array x before memmove is: " << x;
12 cout << "\nThe string in array x after memmove is: "
13 << static_cast< char * >(memmove(x, &x[5], 10)) << endl;
14 } // end main

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

Fig. 20.43. Memory-handling function memmove.

Function memcmp (Fig. 20.44, lines 14–16) compares the specified number of characters of its first argument with the corresponding characters of its second argument. The function returns a value greater than zero if the first argument is greater than the second argument, zero if the arguments are equal, and a value less than zero if the first argument is less than the second argument. [Note: With some compilers, function memcmp returns -1, 0 or 1, as in the sample output of Fig. 20.44. With other compilers, this function returns 0 or the difference between the numeric codes of the first characters that differ in the strings being compared. For example, when s1 and s2 are compared, the first character that differs between them is the fifth character of each string—E (numeric code 69) for s1 and X (numeric code 72) for s2. In this case, the return value will be 19 (or -19 when s2 is compared to s1).]

Click here to view code image

 1 // Fig. 20.44: fig20_44.cpp
 2 // Using memcmp.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cstring> // memcmp prototype
 6 using namespace std;
 7
 8 int main()
 9 {
10 char s1[] = "ABCDEFG";
11 char s2[] = "ABCDXYZ";
12
13 cout << "s1 = " << s1 << "\ns2 = " << s2 << endl
14 << "\nmemcmp(s1, s2, 4) = " << setw(3) << memcmp(s1, s2, 4)
15 << "\nmemcmp(s1, s2, 7) = " << setw(3) << memcmp(s1, s2, 7)
16 << "\nmemcmp(s2, s1, 7) = " << setw(3) << memcmp(s2, s1, 7)
17 << endl;
18 } // end main

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

Fig. 20.44. Memory-handling function memcmp.

Function memchr searches for the first occurrence of a byte, represented as unsigned char, in the specified number of bytes of an object. If the byte is found in the object, a pointer to it is returned; otherwise, the function returns a null pointer. Line 13 of Fig. 20.45 searches for the character (byte) 'r' in the string "This is a string".

Click here to view code image

 1 // Fig. 20.45: fig20_45.cpp
 2 // Using memchr.
 3 #include <iostream>
 4 #include <cstring> // memchr prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char s[] = "This is a string";
10
11 cout << "s = " << s << "\n" << endl;
12 cout << "The remainder of s after character 'r' is found is \""
13 << static_cast< char * >(memchr(s, 'r', 16)) << '\"' << endl;
14 } // end main

s = This is a string

The remainder of s after character 'r' is found is "ring"

Fig. 20.45. Memory-handling function memchr.

Function memset copies the value of the byte in its second argument into a specified number of bytes of the object pointed to by its first argument. Line 13 in Fig. 20.46 uses memset to copy 'b' into the first 7 bytes of string1.

Click here to view code image

 1 // Fig. 20.46: fig20_46.cpp
 2 // Using memset.
 3 #include <iostream>
 4 #include <cstring> // memset prototype
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char string1[15] = "BBBBBBBBBBBBBB";
10
11 cout << "string1 = " << string1 << endl;
12 cout << "string1 after memset = "
13 << static_cast< char * >(memset(string1, 'b', 7)) << endl;
14 } // end main

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Fig. 20.46. Memory-handling function memset.

20.12. Wrap-Up

This chapter introduced struct definitions, initializing structs and using them with functions. We discussed typedef, using it to create aliases to help promote portability. We also introduced bitwise operators to manipulate data and bit fields for storing data compactly. You learned about the string-conversion functions in <cstlib> and the string-processing functions in <cstring>. The next chapter covers various additional C++ topics.

21. Other Topics

Objectives

In this chapter you’ll:

• Use const_cast to temporarily treat a const object as a non-const object.

• Use namespaces

• Use operator keywords.

• Use mutable members in const objects.

• Use class-member pointer operators .* and ->*.

• Use multiple inheritance.

• Understand the role of virtual base classes in multiple inheritance.

Outline

21.1 Introduction

21.2 const_cast Operator

21.3 mutable Class Members

21.4 namespaces

21.5 Operator Keywords

21.6 Pointers to Class Members (.* and ->*)

21.7 Multiple Inheritance

21.8 Multiple Inheritance and virtual Base Classes

21.9 Wrap-Up

21.1. Introduction

We now consider additional C++ features. First, we discuss the const_cast operator, which allows you to add or remove the const qualification of a variable. Next, we discuss namespaces, which can be used to ensure that every identifier in a program has a unique name and can help resolve naming conflicts caused by using libraries that have the same variable, function or class names. We then present several operator keywords that are useful for programmers who have keyboards that do not support certain characters used in operator symbols, such as !, &, ^, ~ and |. We continue our discussion with the mutable storage-class specifier, which enables you to indicate that a data member should always be modifiable, even when it appears in an object that’s currently being treated as a const object by the program. Next we introduce two special operators that you can use with pointers to class members to access a data member or member function without knowing its name in advance. Finally, we introduce multiple inheritance, which enables a derived class to inherit the members of several base classes. As part of this introduction, we discuss potential problems with multiple inheritance and how virtual inheritance can be used to solve them.

21.2. const_cast Operator

C++ provides the const_cast operator for casting away const or volatile qualification. You declare a variable with the volatile qualifier when you expect the variable to be modified by hardware or other programs not known to the compiler. Declaring a variable volatile indicates that the compiler should not optimize the use of that variable because doing so could affect the ability of those other programs to access and modify the volatile variable.

In general, it’s dangerous to use the const_cast operator, because it allows a program to modify a variable that was declared const. There are cases in which it’s desirable, or even necessary, to cast away const-ness. For example, older C and C++ libraries might provide functions that have non-const parameters and that do not modify their parameters—if you wish to pass const data to such a function, you’d need to cast away the data’s const-ness; otherwise, the compiler would report error messages.

Similarly, you could pass non-const data to a function that treats the data as if it were constant, then returns that data as a constant. In such cases, you might need to cast away the const-ness of the returned data, as we demonstrate in Fig. 21.1.

Click here to view code image

 1 // Fig. 21.1: fig21_01.cpp
 2 // Demonstrating const_cast.
 3 #include <iostream>
 4 #include <cstring> // contains prototypes for functions strcmp and strlen
 5 #include <cctype> // contains prototype for function toupper
 6 using namespace std;
 7
 8 // returns the larger of two C strings
 9 const char *maximum(const char *first, const char *second)
10 {
11 return (strcmp(first, second) >= 0 ? first : second);
12 } // end function maximum
13
14 int main()
15 {
16 char s1[] = "hello"; // modifiable array of characters
17 char s2[] = "goodbye"; // modifiable array of characters
18
19 // const_cast required to allow the const char * returned by maximum
20 // to be assigned to the char * variable maxPtr
21 char *maxPtr = const_cast< char * >(maximum(s1, s2));
22
23 cout << "The larger string is: " << maxPtr << endl;
24
25 for (size_t i = 0; i < strlen(maxPtr); ++i)
26 maxPtr[i] = toupper(maxPtr[i]);
27
28 cout << "The larger string capitalized is: " << maxPtr << endl;
29 } // end main

The larger string is: hello
The larger string capitalized is: HELLO

Fig. 21.1. Demonstrating operator const_cast.

In this program, function maximum (lines 9–12) receives two C strings as const char * parameters and returns a const char * that points to the larger of the two strings. Function main declares the two C strings as non-const char arrays (lines 16–17); thus, these arrays are modifiable. In main, we wish to output the larger of the two C strings, then modify that C string by converting it to uppercase letters.

Function maximum’s two parameters are of type const char *, so the function’s return type also must be declared as const char *. If the return type is specified as only char *, the compiler issues an error message indicating that the value being returned cannot be converted from const char * to char *—a dangerous conversion, because it attempts to treat data that the function believes to be const as if it were non-const data.

Even though function maximum believes the data to be constant, we know that the original arrays in main do not contain constant data. Therefore, main should be able to modify the contents of those arrays as necessary. Since we know these arrays are modifiable, we use const_cast (line 21) to cast away the const-ness of the pointer returned by maximum, so we can then modify the data in the array representing the larger of the two C strings. We can then use the pointer as the name of a character array in the for statement (lines 25–26) to convert the contents of the larger string to uppercase letters. Without the const_cast in line 21, this program will not compile, because you are not allowed to assign a pointer of type const char * to a pointer of type char *.

[image: Image] Error-Prevention Tip 21.1

In general, a const_cast should be used only when it is known in advance that the original data is not constant. Otherwise, unexpected results may occur.

21.3. mutable Class Members

In Section 21.2, we introduced the const_cast operator, which allowed us to remove the “const-ness” of a type. A const_cast operation can also be applied to a data member of a const object from the body of a const member function of that object’s class. This enables the const member function to modify the data member, even though the object is considered to be const in the body of that function. Such an operation might be performed when most of an object’s data members should be considered const, but a particular data member still needs to be modified.

As an example, consider a linked list that maintains its contents in sorted order. Searching through the linked list does not require modifications to the data of the linked list, so the search function could be a const member function of the linked-list class. However, it’s conceivable that a linked-list object, in an effort to make future searches more efficient, might keep track of the location of the last successful match. If the next search operation attempts to locate an item that appears later in the list, the search could begin from the location of the last successful match, rather than from the beginning of the list. To do this, the const member function that performs the search must be able to modify the data member that keeps track of the last successful search.

If a data member such as the one described above should always be modifiable, C++ provides the storage-class specifier mutable as an alternative to const_cast. A mutable data member is always modifiable, even in a const member function or const object.

[image: Image] Portability Tip 21.1

The effect of attempting to modify an object that was defined as constant, regardless of whether that modification was made possible by a const_cast or C-style cast, varies among compilers.

mutable and const_cast are used in different contexts. For a const object with no mutable data members, operator const_cast must be used every time a member is to be modified. This greatly reduces the chance of a member being accidentally modified because the member is not permanently modifiable. Operations involving const_cast are typically hidden in a member function’s implementation. The user of a class might not be aware that a member is being modified.

[image: Image] Software Engineering Observation 21.1

mutable members are useful in classes that have “secret” implementation details that do not contribute to a client’s use of an object of the class.

Mechanical Demonstration of a mutable Data Member

Figure 21.2 demonstrates using a mutable member. The program defines class TestMutable (lines 7–21), which contains a constructor, function getValue and a private data member value that’s declared mutable. Lines 15–18 define function getValue as a const member function that returns a copy of value. Notice that the function increments mutable data member value in the return statement. Normally, a const member function cannot modify data members unless the object on which the function operates—i.e., the one to which this points—is cast (using const_cast) to a non-const type. Because value is mutable, this const function can modify the data.

Click here to view code image

 1 // Fig. 21.2: fig21_02.cpp
 2 // Demonstrating storage-class specifier mutable.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // class TestMutable definition
 7 class TestMutable
 8 {
 9 public:
10 TestMutable(int v = 0)
11 {
12 value = v;
13 } // end TestMutable constructor
14
15 int getValue() const
16 {
17 return ++value; // increments value
18 } // end function getValue
19 private:
20 mutable int value; // mutable member
21 }; // end class TestMutable
22
23 int main()
24 {
25 const TestMutable test(99);
26
27 cout << "Initial value: " << test.getValue();
28 cout << "\nModified value: " << test.getValue() << endl;
29 } // end main

Initial value: 99
Modified value: 100

Fig. 21.2. Demonstrating a mutable data member.

Line 25 declares const TestMutable object test and initializes it to 99. Line 27 calls the const member function getValue, which adds one to value and returns its previous contents. Notice that the compiler allows the call to member function getValue on the object test because it’s a const object and getValue is a const member function. However, getValue modifies variable value. Thus, when line 28 invokes getValue again, the new value (100) is output to prove that the mutable data member was indeed modified.

21.4. namespaces

A program may include many identifiers defined in different scopes. Sometimes a variable of one scope will “overlap” (i.e., collide) with a variable of the same name in a different scope, possibly creating a naming conflict. Such overlapping can occur at many levels. Identifier overlapping occurs frequently in third-party libraries that happen to use the same names for global identifiers (such as functions). This can cause compilation errors.

C++ solves this problem with namespaces. Each namespace defines a scope in which identifiers and variables are placed. To use a namespace member, either the member’s name must be qualified with the namespace name and the scope resolution operator (::), as in

MyNameSpace::member

or a using directive must appear before the name is used in the program. Typically, such using statements are placed at the beginning of the file in which members of the namespace are used. For example, placing the following using directive at the beginning of a source-code file

using namespace MyNameSpace;

specifies that members of namespace MyNameSpace can be used in the file without preceding each member with MyNameSpace and the scope resolution operator (::).

A using directive of the form

using std::cout;

brings one name into the scope where the directive appears. A using directive of the form

using namespace std;

brings all the names from the specified namespace (std) into the scope where the directive appears.

[image: Image] Error-Prevention Tip 21.2

Precede a member with its namespace name and the scope resolution operator (::) if the possibility exists of a naming conflict.

Not all namespaces are guaranteed to be unique. Two third-party vendors might inadvertently use the same identifiers for their namespace names. Figure 21.3 demonstrates the use of namespaces.

Click here to view code image

 1 // Fig. 21.3: fig21_03.cpp
 2 // Demonstrating namespaces.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int integer1 = 98; // global variable
 7
 8 // create namespace Example
 9 namespace Example
10 {
11 // declare two constants and one variable
12 const double PI = 3.14159;
13 const double E = 2.71828;
14 int integer1 = 8;
15
16 void printValues(); // prototype
17
18 // nested namespace
19 namespace Inner
20 {
21 // define enumeration
22 enum Years { FISCAL1 = 1990, FISCAL2, FISCAL3 };
23 } // end Inner namespace
24 } // end Example namespace
25
26 // create unnamed namespace
27 namespace
28 {
29 double doubleInUnnamed = 88.22; // declare variable
30 } // end unnamed namespace
31
32 int main()
33 {
34 // output value doubleInUnnamed of unnamed namespace
35 cout << "doubleInUnnamed = " << doubleInUnnamed;
36
37 // output global variable
38 cout << "\n(global) integer1 = " << integer1;
39
40 // output values of Example namespace
41 cout << "\nPI = " << Example::PI << "\nE = " << Example::E
42 << "\ninteger1 = " << Example::integer1 << "\nFISCAL3 = "
43 << Example::Inner::FISCAL3 << endl;
44
45 Example::printValues(); // invoke printValues function
46 } // end main
47
48 // display variable and constant values
49 void Example::printValues()
50 {
51 cout << "\nIn printValues:\ninteger1 = " << integer1 << "\nPI = "
52 << PI << "\nE = " << E << "\ndoubleInUnnamed = "
53 << doubleInUnnamed << "\n(global) integer1 = " << ::integer1
54 << "\nFISCAL3 = " << Inner::FISCAL3 << endl;
55 } // end printValues

doubleInUnnamed = 88.22
(global) integer1 = 98
PI = 3.14159
E = 2.71828
integer1 = 8
FISCAL3 = 1992
In printValues:
integer1 = 8
PI = 3.14159
E = 2.71828
doubleInUnnamed = 88.22
(global) integer1 = 98
FISCAL3 = 1992

Fig. 21.3. Demonstrating the use of namespaces.

Defining namespaces

Lines 9–24 use the keyword namespace to define namespace Example. The body of a namespace is delimited by braces ({}). The namespace Example’s members consist of two constants (PI and E in lines 12–13), an int (integer1 in line 14), a function (printValues in line 16) and a nested namespace (Inner in lines 19–23). Notice that member integer1 has the same name as global variable integer1 (line 6). Variables that have the same name must have different scopes—otherwise compilation errors occur. A namespace can contain constants, data, classes, nested namespaces, functions, etc. Definitions of namespaces must occupy the global scope or be nested within other namespaces. Unlike classes, different namespace members can be defined in separate namespace blocks—each standard library header has a namespace block placing its contents in namespace std.

Lines 27–30 create an unnamed namespace containing the member doubleInUnnamed. Variables, classes and functions in an unnamed namespace are accessible only in the current translation unit (a .cpp file and the files it includes). However, unlike variables, classes or functions with static linkage, those in the unnamed namespace may be used as template arguments. The unnamed namespace has an implicit using directive, so its members appear to occupy the global namespace, are accessible directly and do not have to be qualified with a namespace name. Global variables are also part of the global namespace and are accessible in all scopes following the declaration in the file.

[image: Image] Software Engineering Observation 21.2

Each separate compilation unit has its own unique unnamed namespace; i.e., the unnamed namespace replaces the static linkage specifier.

Accessing namespace Members with Qualified Names

Line 35 outputs the value of variable doubleInUnnamed, which is directly accessible as part of the unnamed namespace. Line 38 outputs the value of global variable integer1. For both of these variables, the compiler first attempts to locate a local declaration of the variables in main. Since there are no local declarations, the compiler assumes those variables are in the global namespace.

Lines 41–43 output the values of PI, E, integer1 and FISCAL3 from namespace Example. Notice that each must be qualified with Example:: because the program does not provide any using directive or declarations indicating that it will use members of namespace Example. In addition, member integer1 must be qualified, because a global variable has the same name. Otherwise, the global variable’s value is output. FISCAL3 is a member of nested namespace Inner, so it must be qualified with Example::Inner::.

Function printValues (defined in lines 49–55) is a member of Example, so it can access other members of the Example namespace directly without using a namespace qualifier. The output statement in lines 51–54 outputs integer1, PI, E, doubleInUnnamed, global variable integer1 and FISCAL3. Notice that PI and E are not qualified with Example. Variable doubleInUnnamed is still accessible, because it’s in the unnamed namespace and the variable name does not conflict with any other members of namespace Example. The global version of integer1 must be qualified with the scope resolution operator (::), because its name conflicts with a member of namespace Example. Also, FISCAL3 must be qualified with Inner::. When accessing members of a nested namespace, the members must be qualified with the namespace name (unless the member is being used inside the nested namespace).

[image: Image] Common Programming Error 21.1

Placing main in a namespace is a compilation error.

using Directives Should Not Be Placed in Headers

namespaces are particularly useful in large-scale applications that use many class libraries. In such cases, there’s a higher likelihood of naming conflicts. When working on such projects, there should never be a using directive in a header. Having one brings the corresponding names into any file that includes the header. This could result in name collisions and subtle, hard-to-find errors. Instead, use only fully qualified names in headers (for example, std::cout or std::string).

Aliases for namespace Names

namespaces can be aliased. For example the statement

namespace CPPHTP = CPlusPlusHowToProgram;

creates the namespace alias CPPHTP for CPlusPlusHowToProgram.

21.5. Operator Keywords

The C++ standard provides operator keywords (Fig. 21.4) that can be used in place of several C++ operators. You can use operator keywords if you have keyboards that do not support certain characters such as !, &, ^, ~, |, etc.

[image: Image]

Fig. 21.4. Operator keyword alternatives to operator symbols.

Figure 21.5 demonstrates the operator keywords. Microsoft Visual C++ 2010 requires the header <ciso646> (line 4) to use the operator keywords. In GNU C++ and LLVM, the operator keywords are always defined and this header is not required.

Click here to view code image

 1 // Fig. 21.5: fig21_05.cpp
 2 // Demonstrating operator keywords.
 3 #include <iostream>
 4 #include <ciso646> // enables operator keywords in Microsoft Visual C++
 5 using namespace std;
 6
 7 int main()
 8 {
 9 bool a = true;
10 bool b = false;
11 int c = 2;
12 int d = 3;
13
14 // sticky setting that causes bool values to display as true or false
15 cout << boolalpha;
16
17 cout << "a = " << a << "; b = " << b
18 << "; c = " << c << "; d = " << d;
19
20 cout << "\n\nLogical operator keywords:";
21 cout << "\n a and a: " << (a and a);
22 cout << "\n a and b: " << (a and b);
23 cout << "\n a or a: " << (a or a);
24 cout << "\n a or b: " << (a or b);
25 cout << "\n not a: " << (not a);
26 cout << "\n not b: " << (not b);
27 cout << "\na not_eq b: " << (a not_eq b);
28
29 cout << "\n\nBitwise operator keywords:";
30 cout << "\nc bitand d: " << (c bitand d);
31 cout << "\n c bitor d: " << (c bitor d);
32 cout << "\n c xor d: " << (c xor d);
33 cout << "\n compl c: " << (compl c);
34 cout << "\nc and_eq d: " << (c and_eq d);
35 cout << "\n c or_eq d: " << (c or_eq d);
36 cout << "\nc xor_eq d: " << (c xor_eq d) << endl;
37 } // end main

a = true; b = false; c = 2; d = 3

Logical operator keywords:
 a and a: true
 a and b: false
 a or a: true
 a or b: true
 not a: false
 not b: true
a not_eq b: true

Bitwise operator keywords:
c bitand d: 2
 c bitor d: 3
 c xor d: 1
 compl c: -3
c and_eq d: 2
 c or_eq d: 3
c xor_eq d: 0

Fig. 21.5. Demonstrating operator keywords.

The program declares and initializes two bool variables and two integer variables (lines 9–12). Logical operations (lines 21–27) are performed with bool variables a and b using the various logical operator keywords. Bitwise operations (lines 30–36) are performed with the int variables c and d using the various bitwise operator keywords. The result of each operation is output.

21.6. Pointers to Class Members (.* and ->*)

C++ provides the .* and ->* operators for accessing class members via pointers. This is a rarely used capability, primarily for advanced C++ programmers. We provide only a mechanical example of using pointers to class members here. Figure 21.6 demonstrates the pointer-to-class-member operators.

Click here to view code image

 1 // Fig. 21.6: fig21_06.cpp
 2 // Demonstrating operators .* and ->*.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // class Test definition
 7 class Test
 8 {
 9 public:
10 void func()
11 {
12 cout << "In func\n";
13 } // end function func
14
15 int value; // public data member
16 }; // end class Test
17
18 void arrowStar(Test *); // prototype
19 void dotStar(Test *); // prototype
20
21 int main()
22 {
23 Test test;
24 test.value = 8; // assign value 8
25 arrowStar(&test); // pass address to arrowStar
26 dotStar(&test); // pass address to dotStar
27 } // end main
28
29 // access member function of Test object using ->*
30 void arrowStar(Test *testPtr)
31 {
32 void (Test::*memberPtr)() = &Test::func; // declare function pointer
33 (testPtr->*memberPtr)(); // invoke function indirectly
34 } // end arrowStar
35
36 // access members of Test object data member using .*
37 void dotStar(Test *testPtr2)
38 {
39 int Test::*vPtr = &Test::value; // declare pointer
40 cout << (*testPtr2).*vPtr << endl; // access value
41 } // end dotStar

In test function
8

Fig. 21.6. Demonstrating operators .* and ->*.

The program declares class Test (lines 7–16), which provides public member function test and public data member value. Lines 18–19 provide prototypes for the functions arrowStar (defined in lines 30–34) and dotStar (defined in lines 37–41), which demonstrate the ->* and .* operators, respectively. Line 23 creates object test, and line 24 assigns 8 to its data member value. Lines 25–26 call functions arrowStar and dotStar with the address of the object test.

Line 32 in function arrowStar declares and initializes variable memPtr as a pointer to a member function. In this declaration, Test::* indicates that the variable memPtr is a pointer to a member of class Test. To declare a pointer to a function, enclose the pointer name preceded by * in parentheses, as in (Test::*memPtr). A pointer to a function must specify, as part of its type, both the return type of the function it points to and the parameter list of that function. The function’s return type appears to the left of the left parenthesis and the parameter list appears in a separate set of parentheses to the right of the pointer declaration. In this case, the function has a void return type and no parameters. The pointer memPtr is initialized with the address of class Test’s member function named test. The header of the function must match the function pointer’s declaration—i.e., function test must have a void return type and no parameters. Notice that the right side of the assignment uses the address operator (&) to get the address of the member function test. Also, notice that neither the left side nor the right side of the assignment in line 32 refers to a specific object of class Test. Only the class name is used with the scope resolution operator (::). Line 33 invokes the member function stored in memPtr (i.e., test), using the ->* operator. Because memPtr is a pointer to a member of a class, the ->* operator must be used rather than the -> operator to invoke the function.

Line 39 declares and initializes vPtr as a pointer to an int data member of class Test. The right side of the assignment specifies the address of the data member value. Line 40 dereferences the pointer testPtr2, then uses the .* operator to access the member to which vPtr points. The client code can create pointers to class members for only those class members that are accessible to the client code. In this example, both member function test and data member value are publicly accessible.

[image: Image] Common Programming Error 21.2

Declaring a member-function pointer without enclosing the pointer name in parentheses is a syntax error.

[image: Image] Common Programming Error 21.3

Declaring a member-function pointer without preceding the pointer name with a class name followed by the scope resolution operator (::) is a syntax error.

[image: Image] Common Programming Error 21.4

Attempting to use the -> or * operator with a pointer to a class member generates syntax errors.

21.7. Multiple Inheritance

In Chapters 11 and 12, we discussed single inheritance, in which each class is derived from exactly one base class. In C++, a class may be derived from more than one base class—a technique known as multiple inheritance in which a derived class inherits the members of two or more base classes. This powerful capability encourages interesting forms of software reuse but can cause a variety of ambiguity problems. Multiple inheritance is a difficult concept that should be used only by experienced programmers. In fact, some of the problems associated with multiple inheritance are so subtle that newer programming languages, such as Java and C#, do not enable a class to derive from more than one base class.

[image: Image] Software Engineering Observation 21.3

Great care is required in the design of a system to use multiple inheritance properly; it should not be used when single inheritance and/or composition will do the job.

A common problem with multiple inheritance is that each of the base classes might contain data members or member functions that have the same name. This can lead to ambiguity problems when you attempt to compile. Consider the multiple-inheritance example (Figs. 21.7–21.11). Class Base1 (Fig. 21.7) contains one protected int data member—value (line 20), a constructor (lines 10–13) that sets value and public member function getData (lines 15–18) that returns value.

Click here to view code image

 1 // Fig. 21.7: Base1.h
 2 // Definition of class Base1
 3 #ifndef BASE1_H
 4 #define BASE1_H
 5
 6 // class Base1 definition
 7 class Base1
 8 {
 9 public:
10 Base1(int parameterValue)
11 : value(parameterValue)
12 {
13 } // end Base1 constructor
14
15 int getData() const
16 {
17 return value;
18 } // end function getData
19 protected: // accessible to derived classes
20 int value; // inherited by derived class
21 }; // end class Base1
22
23 #endif // BASE1_H

Fig. 21.7. Demonstrating multiple inheritance—Base1.h.

Class Base2 (Fig. 21.8) is similar to class Base1, except that its protected data is a char named letter (line 20). Like class Base1, Base2 has a public member function getData, but this function returns the value of char data member letter.

Click here to view code image

 1 // Fig. 21.8: Base2.h
 2 // Definition of class Base2
 3 #ifndef BASE2_H
 4 #define BASE2_H
 5
 6 // class Base2 definition
 7 class Base2
 8 {
 9 public:
10 Base2(char characterData)
11 : letter(characterData)
12 {
13 } // end Base2 constructor
14
15 char getData() const
16 {
17 return letter;
18 } // end function getData
19 protected: // accessible to derived classes
20 char letter; // inherited by derived class
21 }; // end class Base2
22
23 #endif // BASE2_H

Fig. 21.8. Demonstrating multiple inheritance—Base2.h.

Class Derived (Figs. 21.9–21.10) inherits from both class Base1 and class Base2 through multiple inheritance. Class Derived has a private data member of type double named real (Fig. 21.9, line 20), a constructor to initialize all the data of class Derived and a public member function getReal that returns the value of double variable real.

Click here to view code image

 1 // Fig. 21.9: Derived.h
 2 // Definition of class Derived which inherits
 3 // multiple base classes (Base1 and Base2).
 4 #ifndef DERIVED_H
 5 #define DERIVED_H
 6
 7 #include <iostream>
 8 #include "Base1.h"
 9 #include "Base2.h"
10 using namespace std;
11
12 // class Derived definition
13 class Derived : public Base1, public Base2
14 {
15 friend ostream &operator<<(ostream &, const Derived &);
16 public:
17 Derived(int, char, double);
18 double getReal() const;
19 private:
20 double real; // derived class's private data
21 }; // end class Derived
22
23 #endif // DERIVED_H

Fig. 21.9. Demonstrating multiple inheritance—Derived.h.

Click here to view code image

 1 // Fig. 21.10: Derived.cpp
 2 // Member-function definitions for class Derived
 3 #include "Derived.h"
 4
 5 // constructor for Derived calls constructors for
 6 // class Base1 and class Base2.
 7 // use member initializers to call base-class constructors
 8 Derived::Derived(int integer, char character, double double1)
 9 : Base1(integer), Base2(character), real(double1) { }
10
11 // return real
12 double Derived::getReal() const
13 {
14 return real;
15 } // end function getReal
16
17 // display all data members of Derived
18 ostream &operator<<(ostream &output, const Derived &derived)
19 {
20 output << " Integer: " << derived.value << "\n Character: "
21 << derived.letter << "\nReal number: " << derived.real;
22 return output; // enables cascaded calls
23 } // end operator<<

Fig. 21.10. Demonstrating multiple inheritance—Derived.cpp.

To indicate multiple inheritance (in Fig. 21.9) we follow the colon (:) after class Derived with a comma-separated list of base classes (line 13). In Fig. 21.10, notice that constructor Derived explicitly calls base-class constructors for each of its base classes—Base1 and Base2—using the member-initializer syntax (line 9). The base-class constructors are called in the order that the inheritance is specified, not in the order in which their constructors are mentioned. Also, if the base-class constructors are not explicitly called in the member-initializer list, their default constructors will be called implicitly.

The overloaded stream insertion operator (Fig. 21.10, lines 18–23) uses its second parameter—a reference to a Derived object—to display a Derived object’s data. This operator function is a friend of Derived, so operator<< can directly access all of class Derived’s protected and private members, including the protected data member value (inherited from class Base1), protected data member letter (inherited from class Base2) and private data member real (declared in class Derived).

Now let’s examine the main function (Fig. 21.11) that tests the classes in Figs. 21.7–21.10. Line 11 creates Base1 object base1 and initializes it to the int value 10. Line 12 creates Base2 object base2 and initializes it to the char value 'Z'. Line 13 creates Derived object derived and initializes it to contain the int value 7, the char value 'A' and the double value 3.5.

Click here to view code image

 1 // Fig. 21.11: fig21_11.cpp
 2 // Driver for multiple-inheritance example.
 3 #include <iostream>
 4 #include "Base1.h"
 5 #include "Base2.h"
 6 #include "Derived.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 Base1 base1(10); // create Base1 object
12 Base2 base2('Z'); // create Base2 object
13 Derived derived(7, 'A', 3.5); // create Derived object
14
15 // print data members of base-class objects
16 cout << "Object base1 contains integer " << base1.getData()
17 << "\nObject base2 contains character " << base2.getData()
18 << "\nObject derived contains:\n" << derived << "\n\n";
19
20 // print data members of derived-class object
21 // scope resolution operator resolves getData ambiguity
22 cout << "Data members of Derived can be accessed individually:"
23 << "\n Integer: " << derived.Base1::getData()
24 << "\n Character: " << derived.Base2::getData()
25 << "\nReal number: " << derived.getReal() << "\n\n";
26 cout << "Derived can be treated as an object of either base class:\n";
27
28 // treat Derived as a Base1 object
29 Base1 *base1Ptr = &derived;
30 cout << "base1Ptr->getData() yields " << base1Ptr->getData() << '\n';
31
32 // treat Derived as a Base2 object
33 Base2 *base2Ptr = &derived;
34 cout << "base2Ptr->getData() yields " << base2Ptr->getData() << endl;
35 } // end main

Object base1 contains integer 10
Object base2 contains character Z
Object derived contains:
 Integer: 7
 Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
 Integer: 7
 Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

Fig. 21.11. Demonstrating multiple inheritance.

Lines 16–18 display each object’s data values. For objects base1 and base2, we invoke each object’s getData member function. Even though there are two getData functions in this example, the calls are not ambiguous. In line 16, the compiler knows that base1 is an object of class Base1, so class Base1’s getData is called. In line 17, the compiler knows that base2 is an object of class Base2, so class Base2’s getData is called. Line 18 displays the contents of object derived using the overloaded stream insertion operator.

Resolving Ambiguity Issues That Arise When a Derived Class Inherits Member Functions of the Same Name from Multiple Base Classes

Lines 22–25 output the contents of object derived again by using the get member functions of class Derived. However, there is an ambiguity problem, because this object contains two getData functions, one inherited from class Base1 and one inherited from class Base2. This problem is easy to solve by using the scope resolution operator. The expression derived.Base1::getData() gets the value of the variable inherited from class Base1 (i.e., the int variable named value) and derived.Base2::getData() gets the value of the variable inherited from class Base2 (i.e., the char variable named letter). The double value in real is printed without ambiguity with the call derived.getReal()—there are no other member functions with that name in the hierarchy.

Demonstrating the Is-A Relationships in Multiple Inheritance

The is-a relationships of single inheritance also apply in multiple-inheritance relationships. To demonstrate this, line 29 assigns the address of object derived to the Base1 pointer base1Ptr. This is allowed because an object of class Derived is an object of class Base1. Line 30 invokes Base1 member function getData via base1Ptr to obtain the value of only the Base1 part of the object derived. Line 33 assigns the address of object derived to the Base2 pointer base2Ptr. This is allowed because an object of class Derived is an object of class Base2. Line 34 invokes Base2 member function getData via base2Ptr to obtain the value of only the Base2 part of the object derived.

21.8. Multiple Inheritance and virtual Base Classes

In Section 21.7, we discussed multiple inheritance, the process by which one class inherits from two or more classes. Multiple inheritance is used, for example, in the C++ standard library to form class basic_iostream (Fig. 21.12).

[image: Image]

Fig. 21.12. Multiple inheritance to form class basic_iostream.

Class basic_ios is the base class for both basic_istream and basic_ostream, each of which is formed with single inheritance. Class basic_iostream inherits from both basic_istream and basic_ostream. This enables class basic_iostream objects to provide the functionality of basic_istreams and basic_ostreams. In multiple-inheritance hierarchies, the inheritance described in Fig. 21.12 is referred to as diamond inheritance

Because classes basic_istream and basic_ostream each inherit from basic_ios, a potential problem exists for basic_iostream. Class basic_iostream could contain two copies of the members of class basic_ios—one inherited via class basic_istream and one inherited via class basic_ostream). Such a situation would be ambiguous and would result in a compilation error, because the compiler would not know which version of the members from class basic_ios to use. In this section, you’ll see how using virtual base classes solves the problem of inheriting duplicate copies of an indirect base class.

Compilation Errors Produced When Ambiguity Arises in Diamond Inheritance

Figure 21.13 demonstrates the ambiguity that can occur in diamond inheritance. Class Base (lines 8–12) contains pure virtual function print (line 11). Classes DerivedOne (lines 15–23) and DerivedTwo (lines 26–34) each publicly inherit from Base and override function print. Class DerivedOne and class DerivedTwo each contain a base-class subobject—i.e., the members of class Base in this example.

Click here to view code image

 1 // Fig. 21.13: fig21_13.cpp
 2 // Attempting to polymorphically call a function that is
 3 // multiply inherited from two base classes.
 4 #include <iostream>
 5 using namespace std;
 6
 7 // class Base definition
 8 class Base
 9 {
10 public:
11 virtual void print() const = 0; // pure virtual
12 }; // end class Base
13
14 // class DerivedOne definition
15 class DerivedOne : public Base
16 {
17 public:
18 // override print function
19 void print() const
20 {
21 cout << "DerivedOne\n";
22 } // end function print
23 }; // end class DerivedOne
24
25 // class DerivedTwo definition
26 class DerivedTwo : public Base
27 {
28 public:
29 // override print function
30 void print() const
31 {
32 cout << "DerivedTwo\n";
33 } // end function print
34 }; // end class DerivedTwo
35
36 // class Multiple definition
37 class Multiple : public DerivedOne, public DerivedTwo
38 {
39 public:
40 // qualify which version of function print
41 void print() const
42 {
43 DerivedTwo::print();
44 } // end function print
45 }; // end class Multiple
46
47 int main()
48 {
49 Multiple both; // instantiate Multiple object
50 DerivedOne one; // instantiate DerivedOne object
51 DerivedTwo two; // instantiate DerivedTwo object
52 Base *array[3]; // create array of base-class pointers
53
54 array[0] = &both; // ERROR--ambiguous
55 array[1] = &one;
56 array[2] = &two;
57
58 // polymorphically invoke print
59 for (int i = 0; i < 3; ++i)
60 array[i] -> print();
61 } // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp9_examples\ch23\fig21_13\fig21_13.cpp(54) : error C2594: '=' :
 ambiguous conversions from 'Multiple *' to 'Base *'

Fig. 21.13. Attempting to call a multiply inherited function polymorphically.

Class Multiple (lines 37–45) inherits from both class DerivedOne and class DerivedTwo. In class Multiple, function print is overridden to call DerivedTwo’s print (line 43). Notice that we must qualify the print call with the class name DerivedTwo to specify which version of print to call.

Function main (lines 47–61) declares objects of classes Multiple (line 49), DerivedOne (line 50) and DerivedTwo (line 51). Line 52 declares an array of Base * pointers. Each array element is initialized with the address of an object (lines 54–56). An error occurs when the address of both—an object of class Multiple—is assigned to array[0]. The object both actually contains two subobjects of type Base, so the compiler does not know which subobject the pointer array[0] should point to, and it generates a compilation error indicating an ambiguous conversion.

Eliminating Duplicate Subobjects with virtual Base-Class Inheritance

The problem of duplicate subobjects is resolved with virtual inheritance. When a base class is inherited as virtual, only one subobject will appear in the derived class—a process called virtual base-class inheritance. Figure 21.14 revises the program of Fig. 21.13 to use a virtual base class.

Click here to view code image

 1 // Fig. 21.14: fig21_14.cpp
 2 // Using virtual base classes.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // class Base definition
 7 class Base
 8 {
 9 public:
10 virtual void print() const = 0; // pure virtual
11 }; // end class Base
12
13 // class DerivedOne definition
14 class DerivedOne : virtual public Base
15 {
16 public:
17 // override print function
18 void print() const
19 {
20 cout << "DerivedOne\n";
21 } // end function print
22 }; // end DerivedOne class
23
24 // class DerivedTwo definition
25 class DerivedTwo : virtual public Base
26 {
27 public:
28 // override print function
29 void print() const
30 {
31 cout << "DerivedTwo\n";
32 } // end function print
33 }; // end DerivedTwo class
34
35 // class Multiple definition
36 class Multiple : public DerivedOne, public DerivedTwo
37 {
38 public:
39 // qualify which version of function print
40 void print() const
41 {
42 DerivedTwo::print();
43 } // end function print
44 }; // end Multiple class
45
46 int main()
47 {
48 Multiple both; // instantiate Multiple object
49 DerivedOne one; // instantiate DerivedOne object
50 DerivedTwo two; // instantiate DerivedTwo object
51
52 // declare array of base-class pointers and initialize
53 // each element to a derived-class type
54 Base *array[3];
55 array[0] = &both;
56 array[1] = &one;
57 array[2] = &two;
58
59 // polymorphically invoke function print
60 for (int i = 0; i < 3; ++i)
61 array[i]->print();
62 } // end main

DerivedTwo
DerivedOne
DerivedTwo

Fig. 21.14. Using virtual base classes.

The key change is that classes DerivedOne (line 14) and DerivedTwo (line 25) each inherit from Base by specifying virtual public Base. Since both classes inherit from Base, they each contain a Base subobject. The benefit of virtual inheritance is not clear until class Multiple inherits from DerivedOne and DerivedTwo (line 36). Since each of the base classes used virtual inheritance to inherit class Base’s members, the compiler ensures that only one Base subobject is inherited into class Multiple. This eliminates the ambiguity error generated by the compiler in Fig. 21.13. The compiler now allows the implicit conversion of the derived-class pointer (&both) to the base-class pointer array[0] in line 55 in main. The for statement in lines 60–61 polymorphically calls print for each object.

Constructors in Multiple-Inheritance Hierarchies with virtual Base Classes

Implementing hierarchies with virtual base classes is simpler if default constructors are used for the base classes. Figures 21.13 and 21.14 use compiler-generated default constructors. If a virtual base class provides a constructor that requires arguments, the derived-class implementations become more complicated, because the most derived class must explicitly invoke the virtual base class’s constructor. Providing a default constructor for virtual base classes simplifies hierarchy design.

21.9. Wrap-Up

In this chapter, you learned how to use the const_cast operator to remove the const qualification of a variable. We showed how to use namespaces to ensure that every identifier in a program has a unique name and explained how namespaces can help resolve naming conflicts. You saw several operator keywords to use if your keyboards do not support certain characters used in operator symbols, such as !, &, ^, ~ and |. We showed how the mutable storage-class specifier enables you to indicate that a data member should always be modifiable, even when it appears in an object that’s currently being treated as a const. We also showed the mechanics of using pointers to class members and the ->* and .* operators. Finally, we introduced multiple inheritance and discussed problems associated with allowing a derived class to inherit the members of several base classes. As part of this discussion, we demonstrated how virtual inheritance can be used to solve those problems. In the next chapter, we begin our object-oriented design and implementation case study.

22. ATM Case Study, Part 1: Object-Oriented Design with the UML

Objectives

In this chapter you’ll:

• Learn a simple object-oriented design methodology.

• Learn what a requirements document is.

• Identify classes and class attributes from a requirements document.

• Identify objects’ states, activities and operations from a requirements document.

• Determine the collaborations among objects in a system.

• Work with the UML’s use case, class, state, activity, communication and sequence diagrams to graphically model an object-oriented system.

Outline

22.1 Introduction

22.2 Introduction to Object-Oriented Analysis and Design

22.3 Examining the ATM Requirements Document

22.4 Identifying the Classes in the ATM Requirements Document

22.5 Identifying Class Attributes

22.6 Identifying Objects’ States and Activities

22.7 Identifying Class Operations

22.8 Indicating Collaboration Among Objects

22.9 Wrap-Up

22.1. Introduction

Now we begin the optional portion of our object-oriented design and implementation case study. In this chapter and Chapter 23, you’ll design and implement an object-oriented automated teller machine (ATM) software system. The case study provides you with a concise, carefully paced, complete design and implementation experience. You’ll perform the steps of an object-oriented design (OOD) process using the UML while relating them to the object-oriented concepts discussed in Chapters 2–12. In this chapter, you’ll work with six popular types of UML diagrams to graphically represent the design. In Chapter 23, you’ll tune the design with inheritance and polymorphism, then fully implement the ATM in an 850-line C++ application (Section 23.4).

This is not an exercise; rather, it’s an end-to-end learning experience that concludes with a detailed walkthrough of the complete C++ code that implements our design.

22.2. Introduction to Object-Oriented Analysis and Design

What if you were asked to create a software system to control thousands of automated teller machines for a major bank? Or suppose you were asked to work on a team of 1000 software developers building the next U.S. air traffic control system. For projects so large and complex, you cannot simply sit down and start writing programs.

To create the best solutions, you should follow a process for analyzing your project’s requirements (i.e., determining what the system should do) and developing a design that satisfies them (i.e., deciding how the system should do it). Ideally, you’d go through this process and carefully review the design (or have your design reviewed by other software professionals) before writing any code. If this process involves analyzing and designing your system from an object-oriented point of view, it’s called an object-oriented analysis and design (OOAD) process. Analysis and design can save many hours by helping you to avoid an ill-planned system-development approach that has to be abandoned part of the way through its implementation, possibly wasting considerable time, money and effort. Small problems do not require an exhaustive OOAD process. It may be sufficient to write pseudocode before you begin writing C++ code.

As problems and the groups of people solving them increase in size, the methods of OOAD become more appropriate than pseudocode. Ideally, members of a group should agree on a strictly defined process for solving their problem and a uniform way of communicating the results of that process to one another. Although many different OOAD processes exist, a single graphical language for communicating the results of any OOAD process has come into wide use. This language, known as the Unified Modeling Language (UML), was developed in the mid-1990s under the initial direction of three software methodologists—Grady Booch, James Rumbaugh and Ivar Jacobson.

22.3. Examining the ATM Requirements Document

We begin our design process by presenting a requirements document that specifies the ATM system’s overall purpose and what it must do. Throughout the case study, we refer to the requirements document to determine what functionality the system must include.

Requirements Document

A local bank intends to install a new automated teller machine (ATM) to allow users (i.e., bank customers) to perform basic financial transactions (Fig. 22.1). Each user can have only one account at the bank. ATM users should be able to view their account balance, withdraw cash (i.e., take money out of an account) and deposit funds (i.e., place money into an account).

[image: Image]

Fig. 22.1. Automated teller machine user interface.

The user interface of the automated teller machine contains the following hardware components:

• a screen that displays messages to the user

• a keypad that receives numeric input from the user

• a cash dispenser that dispenses cash to the user and

• a deposit slot that receives deposit envelopes from the user.

The cash dispenser begins each day loaded with 500 $20 bills. [Note: Owing to the limited scope of this case study, certain elements of the ATM described here do not accurately mimic those of a real ATM. For example, a real ATM typically contains a device that reads a user’s account number from an ATM card, whereas this ATM asks the user to type an account number using the keypad. A real ATM also usually prints a receipt at the end of a session, but all output from this ATM appears on the screen.]

The bank wants you to develop software to perform the financial transactions initiated by bank customers through the ATM. The bank will integrate the software with the ATM’s hardware at a later time. The software should encapsulate the functionality of the hardware devices (e.g., cash dispenser, deposit slot) within software components, but it need not concern itself with how these devices perform their duties. The ATM hardware has not been developed yet, so instead of writing your software to run on the ATM, you should develop a first version of the software to run on a personal computer. This version should use the computer’s monitor to simulate the ATM’s screen, and the computer’s keyboard to simulate the ATM’s keypad.

An ATM session consists of authenticating a user (i.e., proving the user’s identity) based on an account number and personal identification number (PIN), followed by creating and executing financial transactions. To authenticate a user and perform transactions, the ATM must interact with the bank’s account information database. [Note: A database is an organized collection of data stored on a computer.] For each bank account, the database stores an account number, a PIN and a balance indicating the amount of money in the account. [Note: For simplicity, we assume that the bank plans to build only one ATM, so we do not need to worry about multiple ATMs accessing this database at the same time. Furthermore, we assume that the bank does not make any changes to the information in the database while a user is accessing the ATM. Also, any business system like an ATM faces reasonably complicated security issues that go well beyond the scope of this book. We make the simplifying assumption, however, that the bank trusts the ATM to access and manipulate the information in the database without significant security measures.]

Upon first approaching the ATM, the user should experience the following sequence of events (shown in Fig. 22.1):

1. The screen displays a welcome message and prompts the user to enter an account number.

2. The user enters a five-digit account number, using the keypad.

3. The screen prompts the user to enter the PIN (personal identification number) associated with the specified account number.

4. The user enters a five-digit PIN, using the keypad.

5. If the user enters a valid account number and the correct PIN for that account, the screen displays the main menu (Fig. 22.2). If the user enters an invalid account number or an incorrect PIN, the screen displays an appropriate message, then the ATM returns to Step 1 to restart the authentication process.

[image: Image]

Fig. 22.2. ATM main menu.

After the ATM authenticates the user, the main menu (Fig. 22.2) displays a numbered option for each of the three types of transactions: balance inquiry (option 1), withdrawal (option 2) and deposit (option 3). The main menu also displays an option that allows the user to exit the system (option 4). The user then chooses either to perform a transaction (by entering 1, 2 or 3) or to exit the system (by entering 4). If the user enters an invalid option, the screen displays an error message, then redisplays to the main menu.

If the user enters 1 to make a balance inquiry, the screen displays the user’s account balance. To do so, the ATM must retrieve the balance from the bank’s database.

The following actions occur when the user enters 2 to make a withdrawal:

1. The screen displays a menu (shown in Fig. 22.3) containing standard withdrawal amounts: $20 (option 1), $40 (option 2), $60 (option 3), $100 (option 4) and $200 (option 5). The menu also contains an option to allow the user to cancel the transaction (option 6).

[image: Image]

Fig. 22.3. ATM withdrawal menu.

2. The user enters a menu selection (1–6) using the keypad.

3. If the withdrawal amount chosen is greater than the user’s account balance, the screen displays a message stating this and telling the user to choose a smaller amount. The ATM then returns to Step 1. If the withdrawal amount chosen is less than or equal to the user’s account balance (i.e., an acceptable withdrawal amount), the ATM proceeds to Step 4. If the user chooses to cancel the transaction (option 6), the ATM displays the main menu (Fig. 22.2) and waits for user input.

4. If the cash dispenser contains enough cash to satisfy the request, the ATM proceeds to Step 5. Otherwise, the screen displays a message indicating the problem and telling the user to choose a smaller withdrawal amount. The ATM then returns to Step 1.

5. The ATM debits (i.e., subtracts) the withdrawal amount from the user’s account balance in the bank’s database.

6. The cash dispenser dispenses the desired amount of money to the user.

7. The screen displays a message reminding the user to take the money.

The following actions occur when the user enters 3 (while the main menu is displayed) to make a deposit:

1. The screen prompts the user to enter a deposit amount or to type 0 (zero) to cancel the transaction.

2. The user enters a deposit amount or 0, using the keypad. [Note: The keypad does not contain a decimal point or a dollar sign, so the user cannot type a real dollar amount (e.g., $1.25). Instead, the user must enter a deposit amount as a number of cents (e.g., 125). The ATM then divides this number by 100 to obtain a number representing a dollar amount (e.g., 125 ÷ 100 = 1.25).]

3. If the user specifies a deposit amount, the ATM proceeds to Step 4. If the user chooses to cancel the transaction (by entering 0), the ATM displays the main menu (Fig. 22.2) and waits for user input.

4. The screen displays a message telling the user to insert a deposit envelope into the deposit slot.

5. If the deposit slot receives a deposit envelope within two minutes, the ATM credits (i.e., adds) the deposit amount to the user’s account balance in the bank’s database. This money is not immediately available for withdrawal. The bank first must physically verify the amount of cash in the deposit envelope, and any checks in the envelope must clear (i.e., money must be transferred from the check writer’s account to the check recipient’s account). When either of these events occurs, the bank appropriately updates the user’s balance stored in its database. This occurs independently of the ATM system. If the deposit slot does not receive a deposit envelope within this time period, the screen displays a message that the system has canceled the transaction due to inactivity. The ATM then displays the main menu and waits for user input.

After the system successfully executes a transaction, the system should redisplay the main menu (Fig. 22.2) so that the user can perform additional transactions. If the user chooses to exit the system (option 4), the screen should display a thank you message, then display the welcome message for the next user.

Analyzing the ATM System

The preceding statement is a simplified example of a requirements document. Typically, such a document is the result of a detailed requirements gathering process that might include interviews with potential users of the system and specialists in fields related to the system. For example, a systems analyst who is hired to prepare a requirements document for banking software (e.g., the ATM system described here) might interview financial experts to gain a better understanding of what the software must do. The analyst would use the information gained to compile a list of system requirements to guide systems designers.

The process of requirements gathering is a key task of the first stage of the software life cycle. The software life cycle specifies the stages through which software evolves from the time it’s first conceived to the time it’s retired from use. These stages typically include: analysis, design, implementation, testing and debugging, deployment, maintenance and retirement. Several software life-cycle models exist, each with its own preferences and specifications for when and how often software engineers should perform each of these stages. Waterfall models perform each stage once in succession, whereas iterative models may repeat one or more stages several times throughout a product’s life cycle.

The analysis stage of the software life cycle focuses on defining the problem to be solved. When designing any system, one must certainly solve the problem right, but of equal importance, one must solve the right problem. Systems analysts collect the requirements that indicate the specific problem to solve. Our requirements document describes our ATM system in sufficient detail that you do not need to go through an extensive analysis stage—it has been done for you.

To capture what a proposed system should do, developers often employ a technique known as use case modeling. This process identifies the use cases of the system, each of which represents a different capability that the system provides to its clients. For example, ATMs typically have several use cases, such as “View Account Balance,” “Withdraw Cash,” “Deposit Funds,” “Transfer Funds Between Accounts” and “Buy Postage Stamps.” The simplified ATM system we build in this case study allows only the first three of these use cases (Fig. 22.4).

[image: Image]

Fig. 22.4. Use case diagram for the ATM system from the User’s perspective.

Each use case describes a typical scenario in which the user uses the system. You’ve already read descriptions of the ATM system’s use cases in the requirements document; the lists of steps required to perform each type of transaction (i.e., balance inquiry, withdrawal and deposit) actually described the three use cases of our ATM—“View Account Balance,” “Withdraw Cash” and “Deposit Funds.”

Use Case Diagrams

We now introduce the first of several UML diagrams in our ATM case study. We create a use case diagram to model the interactions between a system’s clients (in this case study, bank customers) and the system. The goal is to show the kinds of interactions users have with a system without providing the details—these are provided in other UML diagrams (which we present throughout the case study). Use case diagrams are often accompanied by informal text that describes the use cases in more detail—like the text that appears in the requirements document. Use case diagrams are produced during the analysis stage of the software life cycle. In larger systems, use case diagrams are simple but indispensable tools that help system designers remain focused on satisfying the users’ needs.

Figure 22.4 shows the use case diagram for our ATM system. The stick figure represents an actor, which defines the roles that an external entity—such as a person or another system—plays when interacting with the system. For our automated teller machine, the actor is a User who can view an account balance, withdraw cash and deposit funds from the ATM. The User is not an actual person, but instead comprises the roles that a real person—when playing the part of a User—can play while interacting with the ATM. Note that a use case diagram can include multiple actors. For example, the use case diagram for a real bank’s ATM system might also include an actor named Administrator who refills the cash dispenser each day.

We identify the actor in our system by examining the requirements document, which states, “ATM users should be able to view their account balance, withdraw cash and deposit funds.” So, the actor in each of the three use cases is the User who interacts with the ATM. An external entity—a real person—plays the part of the User to perform financial transactions. Figure 22.4 shows one actor, whose name, User, appears below the actor in the diagram. The UML models each use case as an oval connected to an actor with a solid line.

Software engineers (more precisely, systems analysts) must analyze the requirements document or a set of use cases and design the system before programmers implement it. During the analysis stage, systems analysts focus on understanding the requirements document to produce a high-level specification that describes what the system is supposed to do. The output of the design stage—a design specification—should specify clearly how the system should be constructed to satisfy these requirements. In the next several sections, we perform the steps of a simple object-oriented design (OOD) process on the ATM system to produce a design specification containing a collection of UML diagrams and supporting text. Recall that the UML is designed for use with any OOD process. Many such processes exist, the best known of which is the Rational Unified Process™ (RUP) developed by Rational Software Corporation (now a division of IBM). RUP is a rich process intended for designing “industrial strength” applications. For this case study, we present our own simplified design process.

Designing the ATM System

We now begin the ATM system’s design. A system is a set of components that interact to solve a problem. To perform the ATM system’s designated tasks, our ATM system has a user interface (Fig. 22.1), contains software that executes financial transactions and interacts with a database of bank account information. System structure describes the system’s objects and their interrelationships. System behavior describes how the system changes as its objects interact with one another. Every system has both structure and behavior—designers must specify both. There are several distinct types of system structures and behaviors. For example, the interactions among objects in the system differ from those between the user and the system, yet both constitute a portion of the system behavior.

The UML 2 specifies 13 diagram types for documenting the models of systems. Each models a distinct characteristic of a system’s structure or behavior—six diagrams relate to system structure; the remaining seven relate to system behavior. We list here only the six types of diagrams used in our case study—one of these (class diagrams) models system structure—the remaining five model system behavior. We overview the remaining seven UML diagram types in Appendix G, UML 2: Additional Diagram Types.

1. Use case diagrams, such as the one in Fig. 22.4, model the interactions between a system and its external entities (actors) in terms of use cases (system capabilities, such as “View Account Balance,” “Withdraw Cash” and “Deposit Funds”).

2. Class diagrams, which you’ll study in Section 22.4, model the classes, or “building blocks,” used in a system. Each noun or “thing” described in the requirements document is a candidate to be a class in the system (e.g., “account,” “keypad”). Class diagrams help us specify the structural relationships between parts of the system. For example, the ATM system class diagram will specify that the ATM is physically composed of a screen, a keypad, a cash dispenser and a deposit slot.

3. State machine diagrams, which you’ll study in Section 22.6, model the ways in which an object changes state. An object’s state is indicated by the values of all the object’s attributes at a given time. When an object changes state, that object may behave differently in the system. For example, after validating a user’s PIN, the ATM transitions from the “user not authenticated” state to the “user authenticated” state, at which point the ATM allows the user to perform financial transactions (e.g., view account balance, withdraw cash, deposit funds).

4. Activity diagrams, which you’ll also study in Section 22.6, model an object’s activity—the object’s workflow (sequence of events) during program execution. An activity diagram models the actions the object performs and specifies the order in which it performs these actions. For example, an activity diagram shows that the ATM must obtain the balance of the user’s account (from the bank’s account information database) before the screen can display the balance to the user.

5. Communication diagrams (called collaboration diagrams in earlier versions of the UML) model the interactions among objects in a system, with an emphasis on what interactions occur. You’ll learn in Section 22.8 that these diagrams show which objects must interact to perform an ATM transaction. For example, the ATM must communicate with the bank’s account information database to retrieve an account balance.

6. Sequence diagrams also model the interactions among the objects in a system, but unlike communication diagrams, they emphasize when interactions occur. You’ll learn in Section 22.8 that these diagrams help show the order in which interactions occur in executing a financial transaction. For example, the screen prompts the user to enter a withdrawal amount before cash is dispensed.

In Section 22.4, we continue designing our ATM system by identifying the classes from the requirements document. We accomplish this by extracting key nouns and noun phrases from the requirements document. Using these classes, we develop our first draft of the class diagram that models the structure of our ATM system.

Web Resources

We’ve created an extensive UML Resource Center (www.deitel.com/UML/) that contains many links to additional information, including introductions, tutorials, blogs, books, certification, conferences, developer tools, documentation, e-books, FAQs, forums, groups, UML in C++, podcasts, security, tools, downloads, training courses, videos and more.

Self-Review Exercises for Section 22.3

22.1 Suppose we enabled a user of our ATM system to transfer money between two bank accounts. Modify the use case diagram of Fig. 22.4 to reflect this change.

22.2 __________ model the interactions among objects in a system with an emphasis on when these interactions occur.

a) Class diagrams

b) Sequence diagrams

c) Communication diagrams

d) Activity diagrams

22.3 Which of the following choices lists stages of a typical software life cycle in sequential order?

a) design, analysis, implementation, testing

b) design, analysis, testing, implementation

c) analysis, design, testing, implementation

d) analysis, design, implementation, testing

22.4. Identifying the Classes in the ATM Requirements Document

Now we begin designing the ATM system that we introduced in Section 22.3. In this section, we identify the classes that are needed to build the ATM system by analyzing the nouns and noun phrases that appear in the requirements document. We introduce UML class diagrams to model the relationships between these classes. This is an important first step in defining the structure of our system.

Identifying the Classes in a System

We begin our OOD process by identifying the classes required to build the ATM system. We’ll eventually describe these classes using UML class diagrams and implement these classes in C++. First, we review the requirements document of Section 22.3 and find key nouns and noun phrases to help us identify classes that comprise the ATM system. We may decide that some of these nouns and noun phrases are attributes of other classes in the system. We may also conclude that some of the nouns do not correspond to parts of the system and thus should not be modeled at all. Additional classes may become apparent to us as we proceed through the design process.

Figure 22.5 lists the nouns and noun phrases in the requirements document. We list them from left to right in the order in which they appear in the requirements document. We list only the singular form of each noun or noun phrase.

[image: Image]

Fig. 22.5. Nouns and noun phrases in the requirements document.

We create classes only for the nouns and noun phrases that have significance in the ATM system. We don’t need to model “bank” as a class, because it’is not a part of the ATM system—the bank simply wants us to build the ATM. “Customer” and “user” also represent outside entities—they are important because they interact with our ATM system, but we do not need to model them as classes in the ATM software. Recall that we modeled an ATM user (i.e., a bank customer) as the actor in the use case diagram of Fig. 22.4.

We do not model “$20 bill” or “deposit envelope” as classes. These are physical objects in the real world, but they are not part of what’s being automated. We can adequately represent the presence of bills in the system using an attribute of the class that models the cash dispenser. (We assign attributes to classes in Section 22.5.) For example, the cash dispenser maintains a count of the number of bills it contains. The requirements document doesn’t say anything about what the system should do with deposit envelopes after it receives them. We can assume that acknowledging the receipt of an envelope—an operation performed by the class that models the deposit slot—is sufficient to represent the presence of an envelope in the system. (We assign operations to classes in Section 22.7.)

In our simplified ATM system, representing various amounts of “money,” including an account’s “balance,” as attributes of other classes seems most appropriate. Likewise, the nouns “account number” and “PIN” represent significant information in the ATM system. They are important attributes of a bank account. They do not, however, exhibit behaviors. Thus, we can most appropriately model them as attributes of an account class.

Though the requirements document frequently describes a “transaction” in a general sense, we do not model the broad notion of a financial transaction at this time. Instead, we model the three types of transactions (i.e., “balance inquiry,” “withdrawal” and “deposit”) as individual classes. These classes possess specific attributes needed for executing the transactions they represent. For example, a withdrawal needs to know the amount of money the user wants to withdraw. A balance inquiry, however, does not require any additional data. Furthermore, the three transaction classes exhibit unique behaviors. A withdrawal includes dispensing cash to the user, whereas a deposit involves receiving deposit envelopes from the user. In Section 23.3, we “factor out” common features of all transactions into a general “transaction” class using the object-oriented concepts of abstract classes and inheritance.

We determine the classes for our system based on the remaining nouns and noun phrases from Fig. 22.5. Each of these refers to one or more of the following:

• ATM

• screen

• keypad

• cash dispenser

• deposit slot

• account

• bank database

• balance inquiry

• withdrawal

• deposit

The elements of this list are likely to be classes we’ll need to implement our system.

We can now model the classes in our system based on the list we’ve created. We capitalize class names in the design process—a UML convention—as we’ll do when we write the actual C++ code that implements our design. If the name of a class contains more than one word, we run the words together and capitalize the first letter of each word (e.g., MultipleWordName). Using this convention, we create classes ATM, Screen, Keypad, CashDispenser, DepositSlot, Account, BankDatabase, BalanceInquiry, Withdrawal and Deposit. We construct our system using all of these classes as building blocks. Before we begin building the system, however, we must gain a better understanding of how the classes relate to one another.

Modeling Classes

The UML enables us to model, via class diagrams, the ATM system’s classes and their interrelationships. Figure 22.6 represents class ATM. Each class is modeled as a rectangle with three compartments. The top compartment contains the name of the class, centered horizontally and in boldface. The middle compartment contains the class’s attributes. (We discuss attributes in Section 22.5 and Section 22.6.) The bottom compartment contains the class’s operations (discussed in Section 22.7). In Fig. 22.6 the middle and bottom compartments are empty, because we’ve not yet determined this class’s attributes and operations.

[image: Image]

Fig. 22.6. Representing a class in the UML using a class diagram.

Class diagrams also show the relationships among the classes of the system. Figure 22.7 shows how our classes ATM and Withdrawal relate to one another. For the moment, we choose to model only this subset of classes for simplicity; we present a more complete class diagram later in this section. Notice that the rectangles representing classes in this diagram are not subdivided into compartments. The UML allows the suppression of class attributes and operations in this manner, when appropriate, to create more readable diagrams. Such a diagram is said to be an elided diagram—one in which some information, such as the contents of the second and third compartments, is not modeled. We’ll place information in these compartments in Section 22.5 and Section 22.7.

[image: Image]

Fig. 22.7. Class diagram showing an association among classes.

In Fig. 22.7, the solid line that connects the two classes represents an association—a relationship between classes. The numbers near each end of the line are multiplicity values, which indicate how many objects of each class participate in the association. In this case, following the line from one end to the other reveals that, at any given moment, one ATM object participates in an association with either zero or one Withdrawal objects—zero if the current user is not currently performing a transaction or has requested a different type of transaction, and one if the user has requested a withdrawal. The UML can model many types of multiplicity. Figure 22.8 lists and explains the multiplicity types.

[image: Image]

Fig. 22.8. Multiplicity types.

An association can be named. For example, the word Executes above the line connecting classes ATM and Withdrawal in Fig. 22.7 indicates the name of that association. This part of the diagram reads “one object of class ATM executes zero or one objects of class Withdrawal.” Association names are directional, as indicated by the filled arrowhead—so it would be improper, for example, to read the preceding association from right to left as “zero or one objects of class Withdrawal execute one object of class ATM.”

The word currentTransaction at the Withdrawal end of the association line in Fig. 22.7 is a role name, which identifies the role the Withdrawal object plays in its relationship with the ATM. A role name adds meaning to an association between classes by identifying the role a class plays in the context of an association. A class can play several roles in the same system. For example, in a school personnel system, a person may play the role of “professor” when relating to students. The same person may take on the role of “colleague” when participating in a relationship with another professor, and “coach” when coaching student athletes. In Fig. 22.7, the role name currentTransaction indicates that the Withdrawal object participating in the Executes association with an object of class ATM represents the transaction currently being processed by the ATM. In other contexts, a Withdrawal object may take on other roles (e.g., the previous transaction). Notice that we do not specify a role name for the ATM end of the Executes association. Role names in class diagrams are often omitted when the meaning of an association is clear without them.

In addition to indicating simple relationships, associations can specify more complex relationships, such as objects of one class being composed of objects of other classes. Consider a real-world automated teller machine. What “pieces” does a manufacturer put together to build a working ATM? Our requirements document tells us that the ATM is composed of a screen, a keypad, a cash dispenser and a deposit slot.

In Fig. 22.9, the solid diamonds attached to the association lines of class ATM indicate that class ATM has a composition relationship with classes Screen, Keypad, CashDispenser and DepositSlot. Composition implies a whole/part relationship. The class that has the composition symbol (the solid diamond) on its end of the association line is the whole (in this case, ATM), and the classes on the other end of the association lines are the parts—in this case, classes Screen, Keypad, CashDispenser and DepositSlot. The compositions in Fig. 22.9 indicate that an object of class ATM is formed from one object of class Screen, one object of class CashDispenser, one object of class Keypad and one object of class DepositSlot. The ATM has a screen, a keypad, a cash dispenser and a deposit slot. The has-a relationship defines composition. (We’ll see in Section 23.3 that the is-a relationship defines inheritance.)

[image: Image]

Fig. 22.9. Class diagram showing composition relationships.

According to the UML specification, composition relationships have the following properties:

1. Only one class in the relationship can represent the whole (i.e., the diamond can be placed on only one end of the association line). For example, either the screen is part of the ATM or the ATM is part of the screen, but the screen and the ATM cannot both represent the whole in the relationship.

2. The parts in a composition relationship exist only as long as the whole, and the whole is responsible for creating and destroying its parts. For example, the act of constructing an ATM includes manufacturing its parts. Furthermore, if the ATM is destroyed, its screen, keypad, cash dispenser and deposit slot are also destroyed.

3. A part may belong to only one whole at a time, although the part may be removed and attached to another whole, which then assumes responsibility for the part.

The solid diamonds in our class diagrams indicate composition relationships that fulfill these three properties. If a has-a relationship does not satisfy one or more of these criteria, the UML specifies that hollow diamonds be attached to the ends of association lines to indicate aggregation—a weaker form of composition. For example, a personal computer and a computer monitor participate in an aggregation relationship—the computer has a monitor, but the two parts can exist independently, and the same monitor can be attached to multiple computers at once, thus violating the second and third properties of composition.

Figure 22.10 shows a class diagram for the ATM system. This diagram models most of the classes that we identified earlier in this section, as well as the associations between them that we can infer from the requirements document. [Note: Classes BalanceInquiry and Deposit participate in associations similar to those of class Withdrawal, so we’ve chosen to omit them from this diagram to keep it simple. In Section 23.3, we expand our class diagram to include all the classes in the ATM system.]

[image: Image]

Fig. 22.10. Class diagram for the ATM system model.

Figure 22.10 presents a graphical model of the structure of the ATM system. This class diagram includes classes BankDatabase and Account and several associations that were not present in either Fig. 22.7 or Fig. 22.9. The class diagram shows that class ATM has a one-to-one relationship with class BankDatabase—one ATM object authenticates users against one BankDatabase object. In Fig. 22.10, we also model the fact that the bank’s database contains information about many accounts—one object of class BankDatabase participates in a composition relationship with zero or more objects of class Account. Recall from Fig. 22.8 that the multiplicity value 0..* at the Account end of the association between class BankDatabase and class Account indicates that zero or more objects of class Account take part in the association. Class BankDatabase has a one-to-many relationship with class Account—the BankDatabase contains many Accounts. Similarly, class Account has a many-to-one relationship with class BankDatabase—there can be many Accounts contained in the BankDatabase. [Note: Recall from Fig. 22.8 that the multiplicity value * is identical to 0..*. We include 0..* in our class diagrams for clarity.]

Figure 22.10 also indicates that if the user is performing a withdrawal, “one object of class Withdrawal accesses/modifies an account balance through one object of class BankDatabase.” We could have created an association directly between class Withdrawal and class Account. The requirements document, however, states that the “ATM must interact with the bank’s account information database” to perform transactions. A bank account contains sensitive information, and systems engineers must always consider the security of personal data when designing a system. Thus, only the BankDatabase can access and manipulate an account directly. All other parts of the system must interact with the database to retrieve or update account information (e.g., an account balance).

The class diagram in Fig. 22.10 also models associations between class Withdrawal and classes Screen, CashDispenser and Keypad. A withdrawal transaction includes prompting the user to choose a withdrawal amount and receiving numeric input. These actions require the use of the screen and the keypad, respectively. Furthermore, dispensing cash to the user requires access to the cash dispenser.

Classes BalanceInquiry and Deposit, though not shown in Fig. 22.10, take part in several associations with the other classes of the ATM system. Like class Withdrawal, each of these classes associates with classes ATM and BankDatabase. An object of class BalanceInquiry also associates with an object of class Screen to display the balance of an account to the user. Class Deposit associates with classes Screen, Keypad and DepositSlot. Like withdrawals, deposit transactions require use of the screen and the keypad to display prompts and receive input, respectively. To receive deposit envelopes, an object of class Deposit accesses the deposit slot.

We’ve now identified the classes in our ATM system (although we may discover others as we proceed with the design and implementation). In Section 22.5, we determine the attributes for each of these classes, and in Section 22.6, we use these attributes to examine how the system changes over time. In Section 22.7, we determine the operations of the classes in our system.

Self-Review Exercises for Section 22.4

22.4 Suppose we have a class Car that represents a car. Think of some of the different pieces that a manufacturer would put together to produce a whole car. Create a class diagram (similar to Fig. 22.9) that models some of the composition relationships of class Car.

22.5 Suppose we have a class File that represents an electronic document in a stand-alone, non-networked computer represented by class Computer. What sort of association exists between class Computer and class File?

a) Class Computer has a one-to-one relationship with class File.

b) Class Computer has a many-to-one relationship with class File.

c) Class Computer has a one-to-many relationship with class File.

d) Class Computer has a many-to-many relationship with class File.

22.6 State whether the following statement is true or false, and if false, explain why: A UML diagram in which a class’s second and third compartments are not modeled is said to be an elided diagram.

22.7 Modify the class diagram of Fig. 22.10 to include class Deposit instead of class Withdrawal.

22.5. Identifying Class Attributes

In Section 22.4, we began the first stage of an object-oriented design (OOD) for our ATM system—analyzing the requirements document and identifying the classes needed to implement the system. We listed the nouns and noun phrases in the requirements document and identified a separate class for each one that plays a significant role in the ATM system. We then modeled the classes and their relationships in a UML class diagram (Fig. 22.10).

Classes have attributes (data) and operations (behaviors). Class attributes are implemented in C++ programs as data members, and class operations are implemented as member functions. In this section, we determine many of the attributes needed in the ATM system. In Section 22.6, we examine how these attributes represent an object’s state. In Section 22.7, we determine class operations.

Identifying Attributes

Consider the attributes of some real-world objects: A person’s attributes include height, weight and whether the person is left-handed, right-handed or ambidextrous. A radio’s attributes include its station setting, its volume setting and its AM or FM setting. A car’s attributes include its speedometer and odometer readings, the amount of gas in its tank and what gear it’s in. A personal computer’s attributes include its manufacturer (e.g., Dell, HP, Apple or IBM), type of screen (e.g., LCD or CRT), main memory size and hard disk size.

We can identify many attributes of the classes in our system by looking for descriptive words and phrases in the requirements document. For each one we find that plays a significant role in the ATM system, we create an attribute and assign it to one or more of the classes identified in Section 22.4. We also create attributes to represent any additional data that a class may need, as such needs become apparent throughout the design process.

Figure 22.11 lists the words or phrases from the requirements document that describe each class. We formed this list by reading the requirements document and identifying any words or phrases that refer to characteristics of the classes in the system. For example, the requirements document describes the steps taken to obtain a “withdrawal amount,” so we list “amount” next to class Withdrawal.

[image: Image]

Fig. 22.11. Descriptive words and phrases from the ATM requirements.

Figure 22.11 leads us to create one attribute of class ATM. Class ATM maintains information about the state of the ATM. The phrase “user is authenticated” describes a state of the ATM (we introduce states in Section 22.6), so we include userAuthenticated as a Boolean attribute (i.e., an attribute that has a value of either true or false). The UML Boolean type is equivalent to the bool type in C++. This attribute indicates whether the ATM has successfully authenticated the current user—userAuthenticated must be true for the system to allow the user to perform transactions and access account information. This attribute helps ensure the security of the data in the system.

Classes BalanceInquiry, Withdrawal and Deposit share one attribute. Each transaction involves an “account number” that corresponds to the account of the user making the transaction. We assign an integer attribute accountNumber to each transaction class to identify the account to which an object of the class applies.

Descriptive words and phrases in the requirements document also suggest some differences in the attributes required by each transaction class. The requirements document indicates that to withdraw cash or deposit funds, users must enter a specific “amount” of money to be withdrawn or deposited, respectively. Thus, we assign to classes Withdrawal and Deposit an attribute amount to store the value supplied by the user. The amounts of money related to a withdrawal and a deposit are defining characteristics of these transactions that the system requires for them to take place. Class BalanceInquiry, however, needs no additional data to perform its task—it requires only an account number to indicate the account whose balance should be retrieved.

Class Account has several attributes. The requirements document states that each bank account has an “account number” and “PIN,” which the system uses for identifying accounts and authenticating users. We assign to class Account two integer attributes: accountNumber and pin. The requirements document also specifies that an account maintains a “balance” of the amount of money in the account and that money the user deposits does not become available for a withdrawal until the bank verifies the amount of cash in the deposit envelope, and any checks in the envelope clear. An account must still record the amount of money that a user deposits, however. Therefore, we decide that an account should represent a balance using two attributes of UML type Double: availableBalance and totalBalance. Attribute availableBalance tracks the amount of money that a user can withdraw from the account. Attribute totalBalance refers to the total amount of money that the user has “on deposit” (i.e., the amount of money available, plus the amount waiting to be verified or cleared). For example, suppose an ATM user deposits $50.00 into an empty account. The totalBalance attribute would increase to $50.00 to record the deposit, but the availableBalance would remain at $0. [Note: We assume that the bank updates the availableBalance attribute of an Account soon after the ATM transaction occurs, in response to confirming that $50 worth of cash or checks was found in the deposit envelope. We assume that this update occurs through a transaction that a bank employee performs using some piece of bank software other than the ATM. Thus, we do not discuss this transaction in our case study.]

Class CashDispenser has one attribute. The requirements document states that the cash dispenser “begins each day loaded with 500 $20 bills.” The cash dispenser must keep track of the number of bills it contains to determine whether enough cash is on hand to satisfy withdrawal requests. We assign to class CashDispenser an integer attribute count, which is initially set to 500.

For real problems in industry, there is no guarantee that requirements specifications will be rich enough and precise enough for the object-oriented systems designer to determine all the attributes or even all the classes. The need for additional (or fewer) classes, attributes and behaviors may become clear as the design process proceeds. As we progress through this case study, we too will continue to add, modify and delete information about the classes in our system.

Modeling Attributes

The class diagram in Fig. 22.12 lists some of the attributes for the classes in our system—the descriptive words and phrases in Fig. 22.11 helped us identify these attributes. For simplicity, Fig. 22.12 does not show the associations among classes—we showed these in Fig. 22.10. This is a common practice of systems designers when designs are being developed. Recall from Section 22.4 that in the UML, a class’s attributes are placed in the middle compartment of the class’s rectangle. We list each attribute’s name and type separated by a colon (:), followed in some cases by an equal sign (=) and an initial value.

[image: Image]

Fig. 22.12. Classes with attributes.

Consider the userAuthenticated attribute of class ATM:

userAuthenticated : Boolean = false

This attribute declaration contains three pieces of information about the attribute. The attribute name is userAuthenticated. The attribute type is Boolean. In C++, an attribute can be represented by a fundamental type, such as bool, int or double, or a class type. We’ve chosen to model only primitive-type attributes in Fig. 22.12—we discuss the reasoning behind this decision shortly. [Note: Figure 22.12 lists UML data types for the attributes. When we implement the system, we’ll associate the UML types Boolean, Integer and Double with the C++ fundamental types bool, int and double, respectively.]

We can also indicate an initial value for an attribute. The userAuthenticated attribute in class ATM has an initial value of false. This indicates that the system initially does not consider the user to be authenticated. If an attribute has no initial value specified, only its name and type (separated by a colon) are shown. For example, the accountNumber attribute of class BalanceInquiry is an Integer. Here we show no initial value, because the value of this attribute is a number that we do not yet know—it will be determined at execution time based on the account number entered by the current ATM user.

Figure 22.12 does not include any attributes for classes Screen, Keypad and DepositSlot. These are important components of our system, for which our design process simply has not yet revealed any attributes. We may still discover some, however, in the remaining design phases or when we implement these classes in C++. This is perfectly normal for the iterative process of software engineering.

[image: Image] Software Engineering Observation 22.1

At the early stages in the design process, classes often lack attributes (and operations). Such classes should not be eliminated, however, because attributes (and operations) may become evident in the later phases of design and implementation.

Figure 22.12 also does not include attributes for class BankDatabase. Recall that attributes can be represented by either fundamental types or class types. We’ve chosen to include only fundamental-type attributes in the class diagram in Fig. 22.12 (and in similar class diagrams throughout the case study). A class-type attribute is modeled more clearly as an association (in particular, a composition) between the class with the attribute and the class of the object of which the attribute is an instance. For example, the class diagram in Fig. 22.10 indicates that class BankDatabase participates in a composition relationship with zero or more Account objects. From this composition, we can determine that when we implement the ATM system in C++, we’ll be required to create an attribute of class BankDatabase to hold zero or more Account objects. Similarly, we’ll assign attributes to class ATM that correspond to its composition relationships with classes Screen, Keypad, CashDispenser and DepositSlot. These composition-based attributes would be redundant if modeled in Fig. 22.12, because the compositions modeled in Fig. 22.10 already convey the fact that the database contains information about zero or more accounts and that an ATM is composed of a screen, keypad, cash dispenser and deposit slot. Software developers typically model these whole/part relationships as compositions rather than as attributes required to implement the relationships.

The class diagram in Fig. 22.12 provides a solid basis for the structure of our model, but the diagram is not complete. In Section 22.6, we identify the states and activities of the objects in the model, and in Section 22.7 we identify the operations that the objects perform. As we present more of the UML and object-oriented design, we’ll continue to strengthen the structure of our model.

Self-Review Exercises for Section 22.5

22.8 We typically identify the attributes of the classes in our system by analyzing the __________ in the requirements document.

a) nouns and noun phrases

b) descriptive words and phrases

c) verbs and verb phrases

d) All of the above.

22.9 Which of the following is not an attribute of an airplane?

a) length

b) wingspan

c) fly

d) number of seats

22.10 Describe the meaning of the following attribute declaration of class CashDispenser in the class diagram in Fig. 22.12:

count : Integer = 500

22.6. Identifying Objects’ States and Activities

In Section 22.5, we identified many of the class attributes needed to implement the ATM system and added them to the class diagram in Fig. 22.12. In this section, we show how these attributes represent an object’s state. We identify some key states that our objects may occupy and discuss how objects change state in response to various events occurring in the system. We also discuss the workflow, or activities, that objects perform in the ATM system. We present the activities of BalanceInquiry and Withdrawal transaction objects in this section, as they represent two of the key activities in the ATM system.

State Machine Diagrams

Each object in a system goes through a series of discrete states. An object’s current state is indicated by the values of the object’s attributes at a given time. State machine diagrams (commonly called state diagrams) model key states of an object and show under what circumstances the object changes state. Unlike the class diagrams presented in earlier case study sections, which focused primarily on the structure of the system, state diagrams model some of the behavior of the system.

Figure 22.13 is a simple state diagram that models some of the states of an object of class ATM. The UML represents each state in a state diagram as a rounded rectangle with the name of the state placed inside it. A solid circle with an attached stick arrowhead designates the initial state. Recall that we modeled this state information as the Boolean attribute userAuthenticated in the class diagram of Fig. 22.12. This attribute is initialized to false, or the “User not authenticated” state, according to the state diagram.

[image: Image]

Fig. 22.13. State diagram for the ATM object.

The arrows with stick arrowheads indicate transitions between states. An object can transition from one state to another in response to various events that occur in the system. The name or description of the event that causes a transition is written near the line that corresponds to the transition. For example, the ATM object changes from the “User not authenticated” state to the “User authenticated” state after the database authenticates the user. Recall from the requirements document that the database authenticates a user by comparing the account number and PIN entered by the user with those of the corresponding account in the database. If the database indicates that the user has entered a valid account number and the correct PIN, the ATM object transitions to the “User authenticated” state and changes its userAuthenticated attribute to a value of true. When the user exits the system by choosing the “exit” option from the main menu, the ATM object returns to the “User not authenticated” state in preparation for the next ATM user.

[image: Image] Software Engineering Observation 22.2

Software designers do not generally create state diagrams showing every possible state and state transition for all attributes—there are simply too many of them. State diagrams typically show only the most important or complex states and state transitions.

Activity Diagrams

Like a state diagram, an activity diagram models aspects of system behavior. Unlike a state diagram, an activity diagram models an object’s workflow (sequence of events) during program execution. An activity diagram models the actions the object will perform and in what order. Recall that we used UML activity diagrams to illustrate the flow of control for the control statements presented in Chapters 4 and 5.

Figure 22.14 models the actions involved in executing a BalanceInquiry transaction. We assume that a BalanceInquiry object has been initialized and assigned a valid account number (that of the current user), so the object knows which balance to retrieve. The diagram includes the actions that occur after the user selects a balance inquiry from the main menu and before the ATM returns the user to the main menu—a BalanceInquiry object does not perform or initiate these actions, so we do not model them here. The diagram begins with retrieving the available balance of the user’s account from the database. Next, the BalanceInquiry retrieves the total balance of the account. Finally, the transaction displays the balances on the screen. This action completes the execution of the transaction.

[image: Image]

Fig. 22.14. Activity diagram for a BalanceInquiry transaction.

The UML represents an action in an activity diagram as an action state modeled by a rectangle with its left and right sides replaced by arcs curving outward. Each action state contains an action expression—for example, “get available balance of user’s account from database”—that specifies an action to be performed. An arrow with a stick arrowhead connects two action states, indicating the order in which the actions represented by the action states occur. The solid circle (at the top of Fig. 22.14) represents the activity’s initial state—the beginning of the workflow before the object performs the modeled actions. In this case, the transaction first executes the “get available balance of user’s account from database” action expression. Second, the transaction retrieves the total balance. Finally, the transaction displays both balances on the screen. The solid circle enclosed in an open circle (at the bottom of Fig. 22.14) represents the final state—the end of the workflow after the object performs the modeled actions.

Figure 22.15 shows an activity diagram for a Withdrawal transaction. We assume that a Withdrawal object has been assigned a valid account number. We do not model the user selecting a withdrawal from the main menu or the ATM returning the user to the main menu because these are not actions performed by a Withdrawal object. The transaction first displays a menu of standard withdrawal amounts (Fig. 22.3) and an option to cancel the transaction. The transaction then inputs a menu selection from the user. The activity flow now arrives at a decision symbol. This point determines the next action based on the associated guard conditions. If the user cancels the transaction, the system displays an appropriate message. Next, the cancellation flow reaches a merge symbol, where this activity flow joins the transaction’s other possible activity flows (which we discuss shortly). A merge can have any number of incoming transition arrows, but only one outgoing transition arrow. The decision at the bottom of the diagram determines whether the transaction should repeat from the beginning. When the user has canceled the transaction, the guard condition “cash dispensed or user canceled transaction” is true, so control transitions to the activity’s final state.

[image: Image]

Fig. 22.15. Activity diagram for a Withdrawal transaction.

If the user selects a withdrawal amount from the menu, the transaction sets amount (an attribute of class Withdrawal originally modeled in Fig. 22.12) to the value chosen by the user. The transaction next gets the available balance of the user’s account (i.e., the availableBalance attribute of the user’s Account object) from the database. The activity flow then arrives at another decision. If the requested withdrawal amount exceeds the user’s available balance, the system displays an appropriate error message informing the user of the problem. Control then merges with the other activity flows before reaching the decision at the bottom of the diagram. The guard decision “cash not dispensed and user did not cancel” is true, so the activity flow returns to the top of the diagram, and the transaction prompts the user to input a new amount.

If the requested withdrawal amount is less than or equal to the user’s available balance, the transaction tests whether the cash dispenser has enough cash to satisfy the withdrawal request. If it does not, the transaction displays an appropriate error message and passes through the merge before reaching the final decision. Cash was not dispensed, so the activity flow returns to the beginning of the activity diagram, and the transaction prompts the user to choose a new amount. If sufficient cash is available, the transaction interacts with the database to debit the withdrawal amount from the user’s account (i.e., subtract the amount from both the availableBalance and totalBalance attributes of the user’s Account object). The transaction then dispenses the desired amount of cash and instructs the user to take the cash that is dispensed. The main flow of activity next merges with the two error flows and the cancellation flow. In this case, cash was dispensed, so the activity flow reaches the final state.

We’ve taken the first steps in modeling the ATM system’s behavior and have shown how an object’s attributes participate in the object’s activities. In Section 22.7, we investigate the operations of our classes to create a more complete model of the system’s behavior.

Self-Review Exercises for Section 22.6

22.11 State whether the following statement is true or false, and if false, explain why: State diagrams model structural aspects of a system.

22.12 An activity diagram models the __________ that an object performs and the order in which it performs them.

a) actions

b) attributes

c) states

d) state transitions

22.13 Based on the requirements document, create an activity diagram for a deposit transaction.

22.7. Identifying Class Operations

In Sections 22.4––22.6, we performed the first few steps in the object-oriented design of our ATM system. In Section 22.4, we identified the classes that we’ll need to implement and we created our first class diagram. In Section 22.5, we described some attributes of our classes. In Section 22.6, we examined object states and modeled object state transitions and activities. Now, we determine some of the class operations (or behaviors) needed to implement the ATM system.

Identifying Operations

An operation is a service that objects of a class provide to clients of the class. Consider the operations of some real-world objects. A radio’s operations include setting its station and volume (typically invoked by a person adjusting the radio’s controls). A car’s operations include accelerating (invoked by the driver pressing the accelerator pedal), decelerating (invoked by the driver pressing the brake pedal or releasing the gas pedal), turning and shifting gears. Software objects can offer operations as well—for example, a software graphics object might offer operations for drawing a circle, drawing a line, drawing a square and the like. A spreadsheet software object might offer operations like printing the spreadsheet, totaling the elements in a row or column and graphing information in the spreadsheet as a bar chart or pie chart.

We can derive many of the operations of each class by examining the key verbs and verb phrases in the requirements document. We then relate each of these to particular classes in our system (Fig. 22.16). The verb phrases in Fig. 22.16 help us determine the operations of each class.

[image: Image]

Fig. 22.16. Verbs and verb phrases for each class in the ATM system.

Modeling Operations

To identify operations, we examine the verb phrases listed for each class in Fig. 22.16. The “executes financial transactions” phrase associated with class ATM implies that class ATM instructs transactions to execute. Therefore, classes BalanceInquiry, Withdrawal and Deposit each need an operation to provide this service to the ATM. We place this operation (which we’ve named execute) in the third compartment of the three transaction classes in the updated class diagram of Fig. 22.17. During an ATM session, the ATM object will invoke the execute operation of each transaction object to tell it to execute.

[image: Image]

Fig. 22.17. Classes in the ATM system with attributes and operations.

The UML represents operations (which are implemented as member functions in C++) by listing the operation name, followed by a comma-separated list of parameters in parentheses, a colon and the return type:

operationName(parameter1, parameter2, ..., parameterN) : return type

Each parameter in the comma-separated parameter list consists of a parameter name, followed by a colon and the parameter type:

parameterName : parameterType

For the moment, we do not list the operations’ parameters—we’ll identify and model the parameters of some of the operations shortly. For some, we do not yet know the return types, so we also omit them from the diagram. These omissions are perfectly normal at this point. As our design and implementation proceed, we’ll add the remaining return types.

Operations of Class BankDatabase and Class Account

Figure 22.16 lists the phrase “authenticates a user” next to class BankDatabase—the database is the object that contains the account information necessary to determine whether the account number and PIN entered by a user match those of an account held at the bank. Therefore, class BankDatabase needs an operation that provides an authentication service to the ATM. We place the operation authenticateUser in the third compartment of class BankDatabase (Fig. 22.17). However, an object of class Account, not class BankDatabase, stores the account number and PIN that must be accessed to authenticate a user, so class Account must provide a service to validate a PIN obtained through user input against a PIN stored in an Account object. Therefore, we add a validatePIN operation to class Account. We specify return type Boolean for the authenticateUser and validatePIN operations. Each operation returns a value indicating either that the operation was successful in performing its task (i.e., a return value of true) or that it was not (i.e., a return value of false).

Figure 22.16 lists several additional verb phrases for class BankDatabase: “retrieves an account balance,” “credits a deposit amount to an account” and “debits a withdrawal amount from an account.” Like “authenticates a user,” these remaining phrases refer to services that the database must provide to the ATM, because the database holds all the account data used to authenticate a user and perform ATM transactions. However, objects of class Account actually perform the operations to which these phrases refer. Thus, we assign an operation to both class BankDatabase and class Account to correspond to each of these phrases. Recall from Section 22.4 that, because a bank account contains sensitive information, we do not allow the ATM to access accounts directly. The database acts as an intermediary between the ATM and the account data, thus preventing unauthorized access. As we’ll see in Section 22.8, class ATM invokes the operations of class BankDatabase, each of which in turn invokes the operation with the same name in class Account.

The phrase “retrieves an account balance” suggests that classes BankDatabase and Account each need a getBalance operation. However, recall that we created two attributes in class Account to represent a balance—availableBalance and totalBalance. A balance inquiry requires access to both balance attributes so that it can display them to the user, but a withdrawal needs to check only the value of availableBalance. To allow objects in the system to obtain each balance attribute individually, we add operations getAvailableBalance and getTotalBalance to the third compartment of classes BankDatabase and Account (Fig. 22.17). We specify a return type of Double for each of these operations, because the balance attributes which they retrieve are of type Double.

The phrases “credits a deposit amount to an account” and “debits a withdrawal amount from an account” indicate that classes BankDatabase and Account must perform operations to update an account during a deposit and withdrawal, respectively. We therefore assign credit and debit operations to classes BankDatabase and Account. You may recall that crediting an account (as in a deposit) adds an amount only to the totalBalance attribute. Debiting an account (as in a withdrawal), on the other hand, subtracts the amount from both balance attributes. We hide these implementation details inside class Account. This is a good example of encapsulation and information hiding.

If this were a real ATM system, classes BankDatabase and Account would also provide a set of operations to allow another banking system to update a user’s account balance after either confirming or rejecting all or part of a deposit. Operation confirmDepositAmount, for example, would add an amount to the availableBalance attribute, thus making deposited funds available for withdrawal. Operation rejectDepositAmount would subtract an amount from the totalBalance attribute to indicate that a specified amount, which had recently been deposited through the ATM and added to the totalBalance, was not found in the deposit envelope. The bank would invoke this operation after determining either that the user failed to include the correct amount of cash or that any checks did not clear (i.e, they “bounced”). While adding these operations would make our system more complete, we do not include them in our class diagrams or our implementation because they are beyond the scope of the case study.

Operations of Class Screen

Class Screen “displays a message to the user” at various times in an ATM session. All visual output occurs through the screen of the ATM. The requirements document describes many types of messages (e.g., a welcome message, an error message, a thank you message) that the screen displays to the user. The requirements document also indicates that the screen displays prompts and menus to the user. However, a prompt is really just a message describing what the user should input next, and a menu is essentially a type of prompt consisting of a series of messages (i.e., menu options) displayed consecutively. Therefore, rather than assign class Screen an individual operation to display each type of message, prompt and menu, we simply create one operation that can display any message specified by a parameter. We place this operation (displayMessage) in the third compartment of class Screen in our class diagram (Fig. 22.17). We do not worry about the parameter of this operation at this time—we model the parameter later in this section.

Operations of Class Keypad

From the phrase “receives numeric input from the user” listed by class Keypad in Fig. 22.16, we conclude that class Keypad should perform a getInput operation. Because the ATM’s keypad, unlike a computer keyboard, contains only the numbers 0–9, we specify that this operation returns an integer value. Recall from the requirements document that in different situations the user may be required to enter a different type of number (e.g., an account number, a PIN, the number of a menu option, a deposit amount as a number of cents). Class Keypad simply obtains a numeric value for a client of the class—it does not determine whether the value meets any specific criteria. Any class that uses this operation must verify that the user enters appropriate numbers, and if not, display error messages via class Screen). [Note: When we implement the system, we simulate the ATM’s keypad with a computer keyboard, and for simplicity we assume that the user does not enter nonnumeric input using keys on the computer keyboard that do not appear on the ATM’s keypad.]

Operations of Class CashDispenser and Class DepositSlot

Figure 22.16 lists “dispenses cash” for class CashDispenser. Therefore, we create operation dispenseCash and list it under class CashDispenser in Fig. 22.17. Class CashDispenser also “indicates whether it contains enough cash to satisfy a withdrawal request.” Thus, we include isSufficientCashAvailable, an operation that returns a value of UML type Boolean, in class CashDispenser. Figure 22.16 also lists “receives a deposit envelope” for class DepositSlot. The deposit slot must indicate whether it received an envelope, so we place an operation isEnvelopeReceived, which returns a Boolean value, in the third compartment of class DepositSlot. [Note: A real hardware deposit slot would most likely send the ATM a signal to indicate that an envelope was received. We simulate this behavior, however, with an operation in class DepositSlot that class ATM can invoke to find out whether the deposit slot received an envelope.]

Operations of Class ATM

We do not list any operations for class ATM at this time. We are not yet aware of any services that class ATM provides to other classes in the system. When we implement the system with C++ code, however, operations of this class, and additional operations of the other classes in the system, may emerge.

Identifying and Modeling Operation Parameters

So far, we’ve not been concerned with the parameters of our operations—we’ve attempted to gain only a basic understanding of the operations of each class. Let’s now take a closer look at some operation parameters. We identify an operation’s parameters by examining what data the operation requires to perform its assigned task.

Consider the authenticateUser operation of class BankDatabase. To authenticate a user, this operation must know the account number and PIN supplied by the user. Thus we specify that operation authenticateUser takes integer parameters userAccountNumber and userPIN, which the operation must compare to the account number and PIN of an Account object in the database. We prefix these parameter names with “user” to avoid confusion between the operation’s parameter names and the attribute names that belong to class Account. We list these parameters in the class diagram in Fig. 22.18 that models only class BankDatabase. [Note: It’s perfectly normal to model only one class in a class diagram. In this case, we are most concerned with examining the parameters of this one class in particular, so we omit the other classes. In class diagrams later in the case study, in which parameters are no longer the focus of our attention, we omit the parameters to save space. Remember, however, that the operations listed in these diagrams still have parameters.]

[image: Image]

Fig. 22.18. Class BankDatabase with operation parameters.

Recall that the UML models each parameter in an operation’s comma-separated parameter list by listing the parameter name, followed by a colon and the parameter type (in UML notation). Figure 22.18 thus specifies that operation authenticateUser takes two parameters—userAccountNumber and userPIN, both of type Integer. When we implement the system in C++, we’ll represent these parameters with int values.

Class BankDatabase operations getAvailableBalance, getTotalBalance, credit and debit also each require a userAccountNumber parameter to identify the account to which the database must apply the operations, so we include these parameters in the class diagram of Fig. 22.18. In addition, operations credit and debit each require a Double parameter amount to specify the amount of money to be credited or debited, respectively.

The class diagram in Fig. 22.19 models the parameters of class Account’s operations. Operation validatePIN requires only a userPIN parameter, which contains the user-specified PIN to be compared with the PIN associated with the account. Like their counterparts in class BankDatabase, operations credit and debit in class Account each require a Double parameter amount that indicates the amount of money involved in the operation. Operations getAvailableBalance and getTotalBalance in class Account require no additional data to perform their tasks. Class Account’s operations do not require an account number parameter—each of these operations can be invoked only on a specific Account object, so including a parameter to specify an Account is unnecessary.

[image: Image]

Fig. 22.19. Class Account with operation parameters.

Figure 22.20 models class Screen with a parameter specified for operation displayMessage. This operation requires only a String parameter message that indicates the text to be displayed. Recall that the parameter types listed in our class diagrams are in UML notation, so the String type listed in Fig. 22.20 refers to the UML type. When we implement the system in C++, we’ll in fact use a C++ string object to represent this parameter.

[image: Image]

Fig. 22.20. Class Screen with operation parameters.

The class diagram in Fig. 22.21 specifies that operation dispenseCash of class CashDispenser takes a Double parameter amount to indicate the amount of cash (in dollars) to be dispensed. Operation isSufficientCashAvailable also takes a Double parameter amount to indicate the amount of cash in question.

[image: Image]

Fig. 22.21. Class CashDispenser with operation parameters.

We do not discuss parameters for operation execute of classes BalanceInquiry, Withdrawal and Deposit, operation getInput of class Keypad and operation isEnvelopeReceived of class DepositSlot. At this point in our design process, we cannot determine whether these operations require additional data to perform their tasks, so we leave their parameter lists empty. As we progress through the case study, we may decide to add parameters to these operations.

In this section, we’ve determined many of the operations performed by the classes in the ATM system. We’ve identified the parameters and return types of some of the operations. As we continue our design process, the number of operations belonging to each class may vary—we might find that new operations are needed or that some current operations are unnecessary—and we might determine that some of our class operations need additional parameters and different return types.

Self-Review Exercises for Section 22.7

22.14 Which of the following is not a behavior?

a) reading data from a file

b) printing output

c) text output

d) obtaining input from the user

22.15 If you were to add to the ATM system an operation that returns the amount attribute of class Withdrawal, how and where would you specify this operation in the class diagram of Fig. 22.17?

22.16 Describe the meaning of the following operation listing that might appear in a class diagram for an object-oriented design of a calculator:

add(x : Integer, y : Integer) : Integer

22.8. Indicating Collaboration Among Objects

In this section, we concentrate on the collaborations (interactions) among objects in our ATM system. When two objects communicate with each other to accomplish a task, they are said to collaborate—they do this by invoking one another’s operations. A collaboration consists of an object of one class sending a message to an object of another class. Messages are sent in C++ via member-function calls.

In Section 22.7, we determined many of the operations of the system’s classes. Next, we concentrate on the messages that invoke these operations. To identify the collaborations, we return to the requirements document in Section 22.3. Recall that this document specifies the range of activities that occur during an ATM session (e.g., authenticating a user, performing transactions). The steps used to describe how the system must perform each of these tasks are our first indication of the collaborations in our system. As we proceed through this and the remaining sections, we may discover additional collaborations.

Identifying the Collaborations in a System

We identify the collaborations in the system by carefully reading the requirements document sections that specify what the ATM should do to authenticate a user and to perform each transaction type. For each action or step described, we decide which objects in our system must interact to achieve the desired result. We identify one object as the sending object (i.e., the object that sends the message) and another as the receiving object (i.e., the object that offers that operation to clients of the class). We then select one of the receiving object’s operations (identified in Section 22.7) that must be invoked by the sending object to produce the proper behavior. For example, the ATM displays a welcome message when idle. We know that an object of class Screen displays a message to the user via its displayMessage operation. Thus, we decide that the system can display a welcome message by employing a collaboration between the ATM and the Screen in which the ATM sends a displayMessage message to the Screen by invoking the displayMessage operation of class Screen. [Note: To avoid repeating the phrase “an object of class...,” we refer to each object simply by using its class name preceded by an article (“a,” “an” or “the”)—for example, “the ATM” refers to an object of class ATM.]

Figure 22.22 lists the collaborations that can be derived from the requirements document. For each sending object, we list the collaborations in the order in which they are discussed in the requirements document. We list each collaboration involving a unique sender, message and recipient only once, even though the collaboration may occur several times during an ATM session. For example, the first row in Fig. 22.22 indicates that the ATM collaborates with the Screen whenever the ATM needs to display a message to the user.

[image: Image]

Fig. 22.22. Collaborations in the ATM system.

Let’s consider the collaborations in Fig. 22.22. Before allowing a user to perform any transactions, the ATM must prompt the user to enter an account number, then to enter a PIN. It accomplishes each of these tasks by sending a displayMessage message to the Screen. Both of these actions refer to the same collaboration between the ATM and the Screen, which is already listed in Fig. 22.22. The ATM obtains input in response to a prompt by sending a getInput message to the Keypad. Next, the ATM must determine whether the user-specified account number and PIN match those of an account in the database. It does so by sending an authenticateUser message to the BankDatabase. Recall that the BankDatabase cannot authenticate a user directly—only the user’s Account (i.e., the Account that contains the account number specified by the user) can access the user’s PIN to authenticate the user. Figure 22.22 therefore lists a collaboration in which the BankDatabase sends a validatePIN message to an Account.

After the user is authenticated, the ATM displays the main menu by sending a series of displayMessage messages to the Screen and obtains input containing a menu selection by sending a getInput message to the Keypad. We’ve already accounted for these collaborations. After the user chooses a type of transaction to perform, the ATM executes the transaction by sending an execute message to an object of the appropriate transaction class (i.e., a BalanceInquiry, a Withdrawal or a Deposit). For example, if the user chooses to perform a balance inquiry, the ATM sends an execute message to a BalanceInquiry.

Further examination of the requirements document reveals the collaborations involved in executing each transaction type. A BalanceInquiry retrieves the amount of money available in the user’s account by sending a getAvailableBalance message to the BankDatabase, which responds by sending a getAvailableBalance message to the user’s Account. Similarly, the BalanceInquiry retrieves the amount of money on deposit by sending a getTotalBalance message to the BankDatabase, which sends the same message to the user’s Account. To display both measures of the user’s balance at the same time, the BalanceInquiry sends a displayMessage message to the Screen.

A Withdrawal sends the Screen several displayMessage messages to display a menu of standard withdrawal amounts (i.e., $20, $40, $60, $100, $200). The Withdrawal sends the Keypad a getInput message to obtain the user’s menu selection, then determines whether the requested withdrawal amount is less than or equal to the user’s account balance. The Withdrawal can obtain the amount of money available in the account by sending the BankDatabase a getAvailableBalance message. The Withdrawal then tests whether the cash dispenser contains enough cash by sending the CashDispenser an isSufficientCashAvailable message. A Withdrawal sends the BankDatabase a debit message to decrease the user’s account balance. The BankDatabase sends the same message to the appropriate Account. Recall that debiting funds from an Account decreases both the totalBalance and the availableBalance. To dispense the requested amount of cash, the Withdrawal sends the CashDispenser a dispenseCash message. Finally, the Withdrawal sends a displayMessage message to the Screen, instructing the user to take the cash.

A Deposit responds to an execute message first by sending a displayMessage message to the Screen to prompt the user for a deposit amount. The Deposit sends a getInput message to the Keypad to obtain the user’s input. The Deposit then sends a displayMessage message to the Screen to tell the user to insert a deposit envelope. To determine whether the deposit slot received an incoming deposit envelope, the Deposit sends an isEnvelopeReceived message to the DepositSlot. The Deposit updates the user’s account by sending a credit message to the BankDatabase, which subsequently sends a credit message to the user’s Account. Recall that crediting funds to an Account increases the totalBalance but not the availableBalance.

Interaction Diagrams

Now that we’ve identified possible collaborations between the objects in our ATM system, let’s graphically model these interactions using the UML. Several types of interaction diagrams model the behavior of a system by showing how objects interact with one another. The communication diagram emphasizes which objects participate in collaborations. [Note: Communication diagrams were called collaboration diagrams in earlier versions of the UML.] Like the communication diagram, the sequence diagram shows collaborations among objects, but it emphasizes when messages are sent between objects over time.

Communication Diagrams

Figure 22.23 shows a communication diagram that models the ATM executing a BalanceInquiry. Objects are modeled in the UML as rectangles containing names in the form objectName : ClassName. In this example, which involves only one object of each type, we disregard the object name and list only a colon followed by the class name. [Note: Specifying the name of each object in a communication diagram is recommended when modeling multiple objects of the same type.] Communicating objects are connected with solid lines, and messages are passed between objects along these lines in the direction shown by arrows. The name of the message, which appears next to the arrow, is the name of an operation (i.e., a member function) belonging to the receiving object—think of the name as a service that the receiving object provides to sending objects (its “clients”).

[image: Image]

Fig. 22.23. Communication diagram of the ATM executing a balance inquiry.

The solid filled arrow in Fig. 22.23 represents a message—or synchronous call—in the UML and a function call in C++. This arrow indicates that the flow of control is from the sending object (the ATM) to the receiving object (a BalanceInquiry). Since this is a synchronous call, the sending object may not send another message, or do anything at all, until the receiving object processes the message and returns control to the sending object—the sender just waits. For example, in Fig. 22.23, the ATM calls member function execute of a BalanceInquiry and may not send another message until execute has finished and returns control to the ATM. [Note: If this were an asynchronous call, represented by a stick arrowhead, the sending object would not have to wait for the receiving object to return control—it would continue sending additional messages immediately following the asynchronous call. Asynchronous calls often can be implemented in C++ using platform-specific libraries provided with your compiler. Such techniques are beyond the scope of this book.]

Sequence of Messages in a Communication Diagram

Figure 22.24 shows a communication diagram that models the interactions among objects in the system when an object of class BalanceInquiry executes. We assume that the object’s accountNumber attribute contains the account number of the current user. The collaborations in Fig. 22.24 begin after the ATM sends an execute message to a BalanceInquiry (i.e., the interaction modeled in Fig. 22.23). The number to the left of a message name indicates the order in which the message is passed. The sequence of messages in a communication diagram progresses in numerical order from least to greatest. In this diagram, the numbering starts with message 1 and ends with message 3. The BalanceInquiry first sends a getAvailableBalance message to the BankDatabase (message 1), then sends a getTotalBalance message to the BankDatabase (message 2). Within the parentheses following a message name, we can specify a comma-separated list of the names of the parameters sent with the message (i.e., arguments in a C++ function call)—the BalanceInquiry passes attribute accountNumber with its messages to the BankDatabase to indicate which Account’s balance information to retrieve. Recall from Fig. 22.18 that operations getAvailableBalance and getTotalBalance of class BankDatabase each require a parameter to identify an account. The BalanceInquiry next displays the availableBalance and the totalBalance to the user by passing a displayMessage message to the Screen (message 3) that includes a parameter indicating the message to be displayed.

[image: Image]

Fig. 22.24. Communication diagram for executing a balance inquiry.

Figure 22.24 models two additional messages passing from the BankDatabase to an Account (message 1.1 and message 2.1). To provide the ATM with the two balances of the user’s Account (as requested by messages 1 and 2), the BankDatabase must pass a getAvailableBalance and a getTotalBalance message to the user’s Account. Messages passed within the handling of another message are called nested messages. The UML recommends using a decimal numbering scheme to indicate nested messages. For example, message 1.1 is the first message nested in message 1—the BankDatabase passes a getAvailableBalance message while processing BankDatabase’s message of the same name. [Note: If the BankDatabase needed to pass a second nested message while processing message 1, the second message would be numbered 1.2.] A message may be passed only when all the nested messages from the previous message have been passed—e.g., the BalanceInquiry passes message 3 only after messages 2 and 2.1 have been passed, in that order.

The nested numbering scheme used in communication diagrams helps clarify precisely when and in what context each message is passed. For example, if we numbered the messages in Fig. 22.24 using a flat numbering scheme (i.e., 1, 2, 3, 4, 5), someone looking at the diagram might not be able to determine that BankDatabase passes the getAvailableBalance message (message 1.1) to an Account during the BankDatabase’s processing of message 1, as opposed to after completing the processing of message 1. The nested decimal numbers make it clear that the second getAvailableBalance message (message 1.1) is passed to an Account within the handling of the first getAvailableBalance message (message 1) by the BankDatabase.

Sequence Diagrams

Communication diagrams emphasize the participants in collaborations but model their timing a bit awkwardly. A sequence diagram helps model the timing of collaborations more clearly. Figure 22.25 shows a sequence diagram modeling the sequence of interactions that occur when a Withdrawal executes. The dotted line extending down from an object’s rectangle is that object’s lifeline, which represents the progression of time. Actions typically occur along an object’s lifeline in chronological order from top to bottom—an action near the top typically happens before one near the bottom.

[image: Image]

Fig. 22.25. Sequence diagram that models a Withdrawal executing.

Message passing in sequence diagrams is similar to message passing in communication diagrams. A solid arrow with a filled arrowhead extending from the sending object to the receiving object represents a message between two objects. The arrowhead points to an activation on the receiving object’s lifeline. An activation, shown as a thin vertical rectangle, indicates that an object is executing. When an object returns control, a return message, represented as a dashed line with a stick arrowhead, extends from the activation of the object returning control to the activation of the object that initially sent the message. To eliminate clutter, we omit the return-message arrows—the UML allows this practice to make diagrams more readable. Like communication diagrams, sequence diagrams can indicate message parameters between the parentheses following a message name.

The sequence of messages in Fig. 22.25 begins when a Withdrawal prompts the user to choose a withdrawal amount by sending a displayMessage message to the Screen. The Withdrawal then sends a getInput message to the Keypad, which obtains input from the user. We’ve already modeled the control logic involved in a Withdrawal in the activity diagram of Fig. 22.15, so we do not show this logic in the sequence diagram of Fig. 22.25. Instead, we model the best-case scenario in which the balance of the user’s account is greater than or equal to the chosen withdrawal amount, and the cash dispenser contains a sufficient amount of cash to satisfy the request. For information on how to model control logic in a sequence diagram, please refer to the web resources at the end of Section 22.3.

After obtaining a withdrawal amount, the Withdrawal sends a getAvailableBalance message to the BankDatabase, which in turn sends a getAvailableBalance message to the user’s Account. Assuming that the user’s account has enough money available to permit the transaction, the Withdrawal next sends an isSufficientCashAvailable message to the CashDispenser. Assuming that there is enough cash available, the Withdrawal decreases the balance of the user’s account (i.e., both the totalBalance and the availableBalance) by sending a debit message to the BankDatabase. The BankDatabase responds by sending a debit message to the user’s Account. Finally, the Withdrawal sends a dispenseCash message to the CashDispenser and a displayMessage message to the Screen, telling the user to remove the cash from the machine.

We’ve identified the collaborations among the ATM system’s objects and modeled some of them using UML interaction diagrams—both communication diagrams and sequence diagrams. In Section 23.2, we enhance the structure of our model to complete a preliminary object-oriented design, then we implement the ATM system in C++.

Self-Review Exercises for Section 22.8

22.17 A(n) __________ consists of an object of one class sending a message to an object of another class.

a) association

b) aggregation

c) collaboration

d) composition

22.18 Which form of interaction diagram emphasizes what collaborations occur? Which form emphasizes when collaborations occur?

22.19 Create a sequence diagram that models the interactions among objects in the ATM system that occur when a Deposit executes successfully, and explain the sequence of messages modeled by the diagram.

22.9. Wrap-Up

In this chapter, you learned how to work from a detailed requirements document to develop an object-oriented design. You worked with six popular types of UML diagrams to graphically model an object-oriented automated teller machine software system. In Section 23.3, we tune the design using inheritance, then in Section 23.4, we completely implement the design in an 850-line C++ application.

Answers to Self-Review Exercises

22.1 Figure 22.26 shows a use case diagram for a modified version of our ATM system that also allows users to transfer money between accounts.

[image: Image]

Fig. 22.26. Use case diagram for a modified version of our ATM system that also allows users to transfer money between accounts.

22.2 b.

22.3 d.

22.4 [Note: Answers may vary.] Figure 22.27 presents a class diagram that shows some of the composition relationships of a class Car.

[image: Image]

Fig. 22.27. Class diagram showing composition relationships of a class Car.

22.5 c. [Note: In a computer network, this relationship could be many-to-many.]

22.6 True.

22.7 Figure 22.28 presents an ATM class diagram including class Deposit instead of class Withdrawal. Note that Deposit does not access CashDispenser, but does access DepositSlot.

[image: Image]

Fig. 22.28. Class diagram for the ATM system model including class Deposit.

22.8 b.

22.9 c. Fly is an operation or behavior of an airplane, not an attribute.

22.10 This indicates that count is an Integer with an initial value of 500. This attribute keeps track of the number of bills available in the CashDispenser at any given time.

22.11 False. State diagrams model some of the behavior of a system.

22.12 a.

22.13 Figure 22.29’s activity diagram models the actions that occur after the user chooses the deposit option from the main menu and before the ATM returns the user to the main menu. Recall that part of receiving a deposit amount from the user involves converting an integer number of cents to a dollar amount. Also recall that crediting a deposit amount to an account involves increasing only the totalBalance attribute of the user’s Account object. The bank updates the availableBalance attribute of the user’s Account object only after confirming the amount of cash in the deposit envelope and after the enclosed checks clear—this occurs independently of the ATM system.

[image: Image]

Fig. 22.29. Activity diagram for a Deposit transaction.

22.14 c.

22.15 To specify an operation that retrieves the amount attribute of class Withdrawal, the following operation would be placed in the operation (i.e., third) compartment of class Withdrawal:

getAmount() : Double

22.16 This is an operation named add that takes integers x and y as parameters and returns an integer value.

22.17 c.

22.18 Communication diagrams emphasize what collaborations occur. Sequence diagrams emphasize when collaborations occur.

22.19 Figure 22.30 presents a sequence diagram that models the interactions between objects that occur when a Deposit executes successfully. A Deposit first sends a displayMessage message to the Screen to ask the user to enter a deposit amount. Next, it sends a getInput message to the Keypad to receive input from the user. Then, it instructs the user to insert a deposit envelope by sending a displayMessage message to the Screen. It then sends an isEnvelopeReceived message to the DepositSlot to confirm that the deposit envelope has been received. Finally, it increases the totalBalance attribute (but not the availableBalance attribute) of the user’s Account by sending a credit message to the BankDatabase. The BankDatabase responds by sending the same message to the user’s Account.

[image: Image]

Fig. 22.30. Sequence diagram that models a Deposit executing.

23. ATM Case Study, Part 2: Implementing an Object-Oriented Design

Objectives

In this chapter you’ll:

• Incorporate inheritance into the design of the ATM.

• Incorporate polymorphism into the design of the ATM.

• Fully implement in C++ the UML-based object-oriented design of the ATM software.

• Study a detailed code walkthrough of the ATM software system that explains the implementation issues.

Outline

23.1 Introduction

23.2 Starting to Program the Classes of the ATM System

23.3 Incorporating Inheritance into the ATM System

23.4 ATM Case Study Implementation

23.4.1 Class ATM

23.4.2 Class Screen

23.4.3 Class Keypad

23.4.4 Class CashDispenser

23.4.5 Class DepositSlot

23.4.6 Class Account

23.4.7 Class BankDatabase

23.4.8 Class Transaction

23.4.9 Class BalanceInquiry

23.4.10 Class Withdrawal

23.4.11 Class Deposit

23.4.12 Test Program ATMCaseStudy.cpp

23.5 Wrap-Up

23.1. Introduction

In Chapter 22, we developed an object-oriented design for our ATM system. We now begin implementing our object-oriented design in C++. In Section 23.2, we show how to convert class diagrams to C++ code. In Section 23.3, we tune the design with inheritance and polymorphism. Then we present a full C++ code implementation of the ATM software in Section 23.4. The code is carefully commented and the discussions of the implementation are thorough and precise. Studying this application provides the opportunity for you to see a more substantial application of the kind you’re likely to encounter in industry.

23.2. Starting to Program the Classes of the ATM System

Visibility

We now apply access specifiers to the members of our classes. Access specifiers public and private determine the visibility or accessibility of an object’s attributes and operations to other objects. Before we can begin implementing our design, we must consider which attributes and operations of our classes should be public and which should be private.

Previously, we observed that data members normally should be private and that member functions invoked by clients of a given class should be public. Member functions that are called only by other member functions of the class as “utility functions,” however, normally should be private. The UML employs visibility markers for modeling the visibility of attributes and operations. Public visibility is indicated by placing a plus sign (+) before an operation or an attribute; a minus sign (–) indicates private visibility. Figure 23.1 shows our updated class diagram with visibility markers included. [Note: We do not include any operation parameters in Fig. 23.1. This is perfectly normal. Adding visibility markers does not affect the parameters already modeled in the class diagrams of Figs. 22.18–22.21.]

[image: Image]

Fig. 23.1. Class diagram with visibility markers.

Navigability

Before we begin implementing our design in C++, we introduce an additional UML notation. The class diagram in Fig. 23.2 further refines the relationships among classes in the ATM system by adding navigability arrows to the association lines. Navigability arrows (represented as arrows with stick arrowheads in the class diagram) indicate in which direction an association can be traversed and are based on the collaborations modeled in communication and sequence diagrams (see Section 22.8). When implementing a system designed using the UML, you use navigability arrows to help determine which objects need references or pointers to other objects. For example, the navigability arrow pointing from class ATM to class BankDatabase indicates that we can navigate from the former to the latter, thereby enabling the ATM to invoke the BankDatabase’s operations. However, since Fig. 23.2 does not contain a navigability arrow pointing from class BankDatabase to class ATM, the BankDatabase cannot access the ATM’s operations. Associations in a class diagram that have navigability arrows at both ends or do not have navigability arrows at all indicate bidirectional navigability—navigation can proceed in either direction across the association.

[image: Image]

Fig. 23.2. Class diagram with navigability arrows.

Like the class diagram of Fig. 22.10, the class diagram of Fig. 23.2 omits classes BalanceInquiry and Deposit to keep the diagram simple. The navigability of the associations in which these classes participate closely parallels the navigability of class Withdrawal’s associations. Recall from Section 22.4 that BalanceInquiry has an association with class Screen. We can navigate from class BalanceInquiry to class Screen along this association, but we cannot navigate from class Screen to class BalanceInquiry. Thus, if we were to model class BalanceInquiry in Fig. 23.2, we would place a navigability arrow at class Screen’s end of this association. Also recall that class Deposit associates with classes Screen, Keypad and DepositSlot. We can navigate from class Deposit to each of these classes, but not vice versa. We therefore would place navigability arrows at the Screen, Keypad and DepositSlot ends of these associations. [Note: We model these additional classes and associations in our final class diagram in Section 23.3, after we have simplified the structure of our system by incorporating the object-oriented concept of inheritance.]

Implementing the ATM System from Its UML Design

We are now ready to begin implementing the ATM system. We first convert the classes in the diagrams of Fig. 23.1 and Fig. 23.2 into C++ header files. This code will represent the “skeleton” of the system. In Section 23.3, we modify the header files to incorporate the object-oriented concept of inheritance. In Section 23.4, we present the complete working C++ code for our model.

As an example, we begin to develop the header file for class Withdrawal from our design of class Withdrawal in Fig. 23.1. We use this figure to determine the attributes and operations of the class. We use the UML model in Fig. 23.2 to determine the associations among classes. We follow the following five guidelines for each class:

1. Use the name in the first compartment of a class in a class diagram to define the class in a header file (Fig. 23.3). Use #ifndef, #define and #endif preprocessor directives to prevent the header from being included more than once in a program.

Click here to view code image

 1 // Fig. 23.3: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 class Withdrawal
 7 {
 8 }; // end class Withdrawal
 9
10 #endif // WITHDRAWAL_H

Fig. 23.3. Definition of class Withdrawal enclosed in preprocessor wrappers.

2. Use the attributes located in the class’s second compartment to declare the data members. For example, the private attributes accountNumber and amount of class Withdrawal yield the code in Fig. 23.4.

Click here to view code image

 1 // Fig. 23.4: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 class Withdrawal
 7 {
 8 private:
 9 // attributes
10 int accountNumber; // account to withdraw funds from
11 double amount; // amount to withdraw
12 }; // end class Withdrawal
13
14 #endif // WITHDRAWAL_H

Fig. 23.4. Adding attributes to the Withdrawal class header file.

3. Use the associations described in the class diagram to declare references (or pointers, where appropriate) to other objects. For example, according to Fig. 23.2, Withdrawal can access one object of class Screen, one object of class Keypad, one object of class CashDispenser and one object of class BankDatabase. Class Withdrawal must maintain handles on these objects to send messages to them, so lines 19–22 of Fig. 23.5 declare four references as private data members. In the implementation of class Withdrawal in Section 23.4, a constructor initializes these data members with references to actual objects. Lines 6–9 #include the header files containing the definitions of classes Screen, Keypad, CashDispenser and BankDatabase so that we can declare references to objects of these classes in lines 19–22.

Click here to view code image

 1 // Fig. 23.5: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 #include "Screen.h" // include definition of class Screen
 7 #include "Keypad.h" // include definition of class Keypad
 8 #include "CashDispenser.h" // include definition of class CashDispenser
 9 #include "BankDatabase.h" // include definition of class BankDatabase
10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18 // references to associated objects
19 Screen &screen; // reference to ATM's screen
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 BankDatabase &bankDatabase; // reference to the account info database
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Fig. 23.5. Declaring references to objects associated with class Withdrawal.

4. It turns out that including the header files for classes Screen, Keypad, CashDispenser and BankDatabase in Fig. 23.5 does more than is necessary. Class Withdrawal contains references to objects of these classes—it does not contain actual objects—and the amount of information required by the compiler to create a reference differs from that which is required to create an object. Recall that creating an object requires that you provide the compiler with a definition of the class that introduces the name of the class as a new user-defined type and indicates the data members that determine how much memory is required to store the object. Declaring a reference (or pointer) to an object, however, requires only that the compiler knows that the object’s class exists—it does not need to know the size of the object. Any reference (or pointer), regardless of the class of the object to which it refers, contains only the memory address of the actual object. The amount of memory required to store an address is a physical characteristic of the computer’s hardware. The compiler thus knows the size of any reference (or pointer). As a result, including a class’s full header file when declaring only a reference to an object of that class is unnecessary—we need to introduce the name of the class, but we do not need to provide the data layout of the object, because the compiler already knows the size of all references. C++ provides a statement called a forward declaration that signifies that a header file contains references or pointers to a class, but that the class definition lies outside the header file. We can replace the #includes in the Withdrawal class definition of Fig. 23.5 with forward declarations of classes Screen, Keypad, CashDispenser and BankDatabase (lines 6–9 in Fig. 23.6). Rather than #include the entire header file for each of these classes, we place only a forward declaration of each class in the header file for class Withdrawal. If class Withdrawal contained actual objects instead of references (i.e., if the ampersands in lines 19–22 were omitted), then we’d need to #include the full header files.

Click here to view code image

 1 // Fig. 23.6: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 class Screen; // forward declaration of class Screen
 7 class Keypad; // forward declaration of class Keypad
 8 class CashDispenser; // forward declaration of class CashDispenser
 9 class BankDatabase; // forward declaration of class BankDatabase
10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18 // references to associated objects
19 Screen &screen; // reference to ATM's screen
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 BankDatabase &bankDatabase; // reference to the account info database
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Fig. 23.6. Using forward declarations in place of #include directives.

Using a forward declaration (where possible) instead of including a full header file helps avoid a preprocessor problem called a circular include. This problem occurs when the header file for a class A #includes the header file for a class B and vice versa. Some preprocessors are not be able to resolve such #include directives, causing a compilation error. If class A, for example, uses only a reference to an object of class B, then the #include in class A’s header file can be replaced by a forward declaration of class B to prevent the circular include.

5. Use the operations located in the third compartment of Fig. 23.1 to write the function prototypes of the class’s member functions. If we’ve not yet specified a return type for an operation, we declare the member function with return type void. Refer to the class diagrams of Figs. 6.20–6.23 to declare any necessary parameters. For example, adding the public operation execute in class Withdrawal, which has an empty parameter list, yields the prototype in line 15 of Fig. 23.7. [Note: We code the definitions of member functions in .cpp files when we implement the complete ATM system in Section 23.4.]

Click here to view code image

 1 // Fig. 23.7: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 class Screen; // forward declaration of class Screen
 7 class Keypad; // forward declaration of class Keypad
 8 class CashDispenser; // forward declaration of class CashDispenser
 9 class BankDatabase; // forward declaration of class BankDatabase
10
11 class Withdrawal
12 {
13 public:
14 // operations
15 void execute(); // perform the transaction
16 private:
17 // attributes
18 int accountNumber; // account to withdraw funds from
19 double amount; // amount to withdraw
20
21 // references to associated objects
22 Screen &screen; // reference to ATM's screen
23 Keypad &keypad; // reference to ATM's keypad
24 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
25 BankDatabase &bankDatabase; // reference to the account info database
26 }; // end class Withdrawal
27
28 #endif // WITHDRAWAL_H

Fig. 23.7. Adding operations to the Withdrawal class header file.

[image: Image] Software Engineering Observation 23.1

Several UML modeling tools can convert UML-based designs into C++ code, considerably speeding the implementation process. For more information on these “automatic” code generators, refer to our UML Resource Center at www.deitel.com/UML/.

This concludes our discussion of the basics of generating class header files from UML diagrams. In Section 23.3, we demonstrate how to modify the header files to incorporate the object-oriented concept of inheritance.

Self-Review Exercises for Section 23.2

23.1 State whether the following statement is true or false, and if false, explain why: If an attribute of a class is marked with a minus sign (-) in a class diagram, the attribute is not directly accessible outside of the class.

23.2 In Fig. 23.2, the association between the ATM and the Screen indicates that:

a) we can navigate from the Screen to the ATM

b) we can navigate from the ATM to the Screen

c) Both a and b; the association is bidirectional

d) None of the above

23.3 Write C++ code to begin implementing the design for class Account.

23.3. Incorporating Inheritance into the ATM System

We now revisit our ATM system design to see how it might benefit from inheritance. To apply inheritance, we first look for commonality among classes in the system. We create an inheritance hierarchy to model similar (yet not identical) classes in a more efficient and elegant manner that enables us to process objects of these classes polymorphically. We then modify our class diagram to incorporate the new inheritance relationships. Finally, we demonstrate how our updated design is translated into C++ header files.

In Section 22.4, we encountered the problem of representing a financial transaction in the system. Rather than create one class to represent all transaction types, we decided to create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—to represent the transactions that the ATM system can perform. Figure 23.8 shows the attributes and operations of these classes, which have one attribute (accountNumber) and one operation (execute) in common. Each class requires attribute accountNumber to specify the account to which the transaction applies. Each class contains operation execute, which the ATM invokes to perform the transaction. Clearly, BalanceInquiry, Withdrawal and Deposit represent types of transactions. Figure 23.8 reveals commonality among the transaction classes, so using inheritance to factor out the common features seems appropriate for designing these classes. We place the common functionality in base class Transaction and derive classes BalanceInquiry, Withdrawal and Deposit from Transaction (Fig. 23.9).

[image: Image]

Fig. 23.8. Attributes and operations of classes BalanceInquiry, Withdrawal and Deposit.

[image: Image]

Fig. 23.9. Class diagram modeling generalization relations\hip between base class Transaction and derived classes BalanceInquiry, Withdrawal and Deposit.

The UML specifies a relationship called a generalization to model inheritance. Figure 23.9 is the class diagram that models the inheritance relationship between base class Transaction and its three derived classes. The arrows with triangular hollow arrowheads indicate that classes BalanceInquiry, Withdrawal and Deposit are derived from class Transaction. Class Transaction is said to be a generalization of its derived classes. The derived classes are said to be specializations of class Transaction.

Classes BalanceInquiry, Withdrawal and Deposit share integer attribute accountNumber, so we factor out this common attribute and place it in base class Transaction. We no longer list accountNumber in the second compartment of each derived class, because the three derived classes inherit this attribute from Transaction. Recall, however, that derived classes cannot access private attributes of a base class. We therefore include public member function getAccountNumber in class Transaction. Each derived class inherits this member function, enabling the derived class to access its accountNumber as needed to execute a transaction.

According to Fig. 23.8, classes BalanceInquiry, Withdrawal and Deposit also share operation execute, so base class Transaction should contain public member function execute. However, it does not make sense to implement execute in class Transaction, because the functionality that this member function provides depends on the specific type of the actual transaction. We therefore declare member function execute as a pure virtual function in base class Transaction. This makes Transaction an abstract class and forces any class derived from Transaction that must be a concrete class (i.e., BalanceInquiry, Withdrawal and Deposit) to implement pure virtual member function execute to make the derived class concrete. The UML requires that we place abstract class names (and pure virtual functions—abstract operations in the UML) in italics, so Transaction and its member function execute appear in italics in Fig. 23.9. Operation execute is not italicized in derived classes BalanceInquiry, Withdrawal and Deposit. Each derived class overrides base class Transaction’s execute member function with an appropriate implementation. Figure 23.9 includes operation execute in the third compartment of classes BalanceInquiry, Withdrawal and Deposit, because each class has a different concrete implementation of the overridden member function.

Processing Transactions Polymorphically

A derived class can inherit interface and/or implementation from a base class. Compared to a hierarchy designed for implementation inheritance, one designed for interface inheritance tends to have its functionality lower in the hierarchy—a base class signifies one or more functions that should be defined by each class in the hierarchy, but the individual derived classes provide their own implementations of the function(s). The inheritance hierarchy designed for the ATM system takes advantage of this type of inheritance, which provides the ATM with an elegant way to execute all transactions “in the general.” Each class derived from Transaction inherits some implementation details (e.g., data member accountNumber), but the primary benefit of incorporating inheritance into our system is that the derived classes share a common interface (e.g., pure virtual member function execute). The ATM can aim a Transaction pointer at any transaction, and when the ATM invokes execute through this pointer, the version of execute appropriate to that transaction (i.e., the version implemented in that derived class’s .cpp file) runs automatically. For example, suppose a user chooses to perform a balance inquiry. The ATM aims a Transaction pointer at a new object of class BalanceInquiry; the compiler allows this because a BalanceInquiry is a Transaction. When the ATM uses this pointer to invoke execute, BalanceInquiry’s version of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish to create a new transaction type (e.g., funds transfer or bill payment), we would just create an additional Transaction derived class that overrides the execute member function with a version appropriate for the new transaction type. We would need to make only minimal changes to the system code to allow users to choose the new transaction type from the main menu and for the ATM to instantiate and execute objects of the new derived class. The ATM could execute transactions of the new type using the current code, because it executes all transactions identically.

As you learned earlier in the chapter, an abstract class like Transaction is one for which you never intend to instantiate objects. An abstract class simply declares common attributes and behaviors for its derived classes in an inheritance hierarchy. Class Transaction defines the concept of what it means to be a transaction that has an account number and executes. You may wonder why we bother to include pure virtual member function execute in class Transaction if execute lacks a concrete implementation. Conceptually, we include this member function because it’s the defining behavior of all transactions—executing. Technically, we must include member function execute in base class Transaction so that the ATM (or any other class) can polymorphically invoke each derived class’s overridden version of this function through a Transaction pointer or reference.

Additional Attribute of Classes Withdrawal and Deposit

Derived classes BalanceInquiry, Withdrawal and Deposit inherit attribute accountNumber from base class Transaction, but classes Withdrawal and Deposit contain the additional attribute amount that distinguishes them from class BalanceInquiry. Classes Withdrawal and Deposit require this additional attribute to store the amount of money that the user wishes to withdraw or deposit. Class BalanceInquiry has no need for such an attribute and requires only an account number to execute. Even though two of the three Transaction derived classes share this attribute, we do not place it in base class Transaction—we place only features common to all the derived classes in the base class, so derived classes do not inherit unnecessary attributes (and operations).

Class Diagram with Transaction Hierarchy Incorporated

Figure 23.10 presents an updated class diagram of our model that incorporates inheritance and introduces class Transaction. We model an association between class ATM and class Transaction to show that the ATM, at any given moment, either is executing a transaction or is not (i.e., zero or one objects of type Transaction exist in the system at a time). Because a Withdrawal is a type of Transaction, we no longer draw an association line directly between class ATM and class Withdrawal—derived class Withdrawal inherits base class Transaction’s association with class ATM. Derived classes BalanceInquiry and Deposit also inherit this association, which replaces the previously omitted associations between classes BalanceInquiry and Deposit and class ATM. Note again the use of triangular hollow arrowheads to indicate the specializations of class Transaction, as indicated in Fig. 23.9.

[image: Image]

Fig. 23.10. Class diagram of the ATM system (incorporating inheritance). Note that abstract class name Transaction appears in italics.

We also add an association between class Transaction and the BankDatabase (Fig. 23.10). All Transactions require a reference to the BankDatabase so they can access and modify account information. Each Transaction derived class inherits this reference, so we no longer model the association between class Withdrawal and the BankDatabase. The association between class Transaction and the BankDatabase replaces the previously omitted associations between classes BalanceInquiry and Deposit and the BankDatabase.

We include an association between class Transaction and the Screen because all Transactions display output to the user via the Screen. Each derived class inherits this association. Therefore, we no longer include the association previously modeled between Withdrawal and the Screen. Class Withdrawal still participates in associations with the CashDispenser and the Keypad. We do not move these associations to base class Transaction, because the association with the Keypad applies only to classes Withdrawal and Deposit, and the association with the CashDispenser applies only to class Withdrawal.

Our class diagram incorporating inheritance (Fig. 23.10) also models Deposit and BalanceInquiry. We show associations between Deposit and both the DepositSlot and the Keypad. BalanceInquiry takes part in no associations other than those inherited from class Transaction—a BalanceInquiry interacts only with the BankDatabase and the Screen.

Figure 23.1 showed attributes and operations with visibility markers. Now we present a modified class diagram in Fig. 23.11 that includes abstract base class Transaction. This abbreviated diagram does not show inheritance relationships (these appear in Fig. 23.10), but instead shows the attributes and operations after we’ve employed inheritance in our system. Abstract class name Transaction and abstract operation name execute in class Transaction appear in italics. To save space, we do not include those attributes shown by associations in Fig. 23.10—we do, however, include them in the C++ implementation. We also omit all operation parameters, as we did in Fig. 23.1—incorporating inheritance does not affect the parameters already modeled in Figs. 22.18–22.21.

[image: Image]

Fig. 23.11. Class diagram after incorporating inheritance into the system.

[image: Image] Software Engineering Observation 23.2

A complete class diagram shows all the associations among classes and all the attributes and operations for each class. When the number of class attributes, operations and associations is substantial (as in Fig. 23.10 and Fig. 23.11), a good practice that promotes readability is to divide this information between two class diagrams—one focusing on associations and the other on attributes and operations. However, when examining classes modeled in this fashion, it’s crucial to consider both class diagrams to get a complete view of the classes. For example, one must refer to Fig. 23.10 to observe the inheritance relationship between Transaction and its derived classes that is omitted from Fig. 23.11.

Implementing the ATM System Design Incorporating Inheritance

We now modify our implementation to incorporate inheritance, using class Withdrawal as an example.

1. If a class A is a generalization of class B, then class B is derived from (and is a specialization of) class A. For example, abstract base class Transaction is a generalization of class Withdrawal. Thus, class Withdrawal is derived from (and is a specialization of) class Transaction. Figure 23.12 contains a portion of class Withdrawal’s header file, in which the class definition indicates the inheritance relationship between Withdrawal and Transaction (line 9).

Click here to view code image

 1 // Fig. 23.12: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 #include "Transaction.h" // Transaction class definition
 7
 8 // class Withdrawal derives from base class Transaction
 9 class Withdrawal : public Transaction
10 {
11 }; // end class Withdrawal
12
13 #endif // WITHDRAWAL_H

Fig. 23.12. Withdrawal class definition that derives from Transaction.

2. If class A is an abstract class and class B is derived from class A, then class B must implement the pure virtual functions of class A if class B is to be a concrete class. For example, class Transaction contains pure virtual function execute, so class Withdrawal must implement this member function if we want to instantiate a Withdrawal object. Figure 23.13 contains the C++ header file for class Withdrawal from Fig. 23.10 and Fig. 23.11. Class Withdrawal inherits data member accountNumber from base class Transaction, so Withdrawal does not declare this data member. Class Withdrawal also inherits references to the Screen and the BankDatabase from its base class Transaction, so we do not include these references in our code. Figure 23.11 specifies attribute amount and operation execute for class Withdrawal. Line 19 of Fig. 23.13 declares a data member for attribute amount. Line 16 contains the function prototype for operation execute. Recall that, to be a concrete class, derived class Withdrawal must provide a concrete implementation of the pure virtual function execute in base class Transaction. The prototype in line 16 signals your intent to override the base class pure virtual function. You must provide this prototype if you’ll provide an implementation in the .cpp file. We present this implementation in Section 23.4. The keypad and cashDispenser references (lines 20–21) are data members derived from Withdrawal’s associations in Fig. 23.10. In the implementation of this class in Section 23.4, a constructor initializes these references to actual objects. Once again, to be able to compile the declarations of the references in lines 20–21, we include the forward declarations in lines 8–9.

Click here to view code image

 1 // Fig. 23.13: Withdrawal.h
 2 // Definition of class Withdrawal that represents a withdrawal transaction
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 #include "Transaction.h" // Transaction class definition
 7
 8 class Keypad; // forward declaration of class Keypad
 9 class CashDispenser; // forward declaration of class CashDispenser
10
11 // class Withdrawal derives from base class Transaction
12 class Withdrawal : public Transaction
13 {
14 public:
15 // member function overriding execute in base class Transaction
16 virtual void execute(); // perform the transaction
17 private:
18 // attributes
19 double amount; // amount to withdraw
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 }; // end class Withdrawal
23
24 #endif // WITHDRAWAL_H

Fig. 23.13. Withdrawal class header file based on Figs. 23.10 and 23.11.

ATM Case Study Wrap-Up

This concludes our object-oriented design of the ATM system. A complete C++ implementation of the ATM system in 850 lines of code appears in Section 23.4. This working implementation uses key programming notions, including classes, objects, encapsulation, visibility, composition, inheritance and polymorphism. The code is abundantly commented and conforms to the coding practices you’ve learned. Mastering this code is a wonderful capstone experience.

Self-Review Exercises for Section 23.3

23.4 The UML uses an arrow with a __________ to indicate a generalization relationship.

a) solid filled arrowhead

b) triangular hollow arrowhead

c) diamond-shaped hollow arrowhead

d) stick arrowhead

23.5 State whether the following statement is true or false, and if false, explain why: The UML requires that we underline abstract class names and operation names.

23.6 Write a C++ header file to begin implementing the design for class Transaction specified in Fig. 23.10 and Fig. 23.11. Be sure to include private references based on class Transaction’s associations. Also be sure to include public get functions for any of the private data members that the derived classes must access to perform their tasks.

23.4. ATM Case Study Implementation

This section contains the complete working implementation of the ATM system that we designed in Chapter 22 and this chapter. We consider the classes in the order in which we identified them in Section 22.4:

• ATM

• Screen

• Keypad

• CashDispenser

• DepositSlot

• Account

• BankDatabase

• Transaction

• BalanceInquiry

• Withdrawal

• Deposit

We apply the guidelines discussed in Sections 23.2– and 23.3 to code these classes based on how we modeled them in the UML class diagrams of Figs. 23.10 and 23.11. To develop the definitions of classes’ member functions, we refer to the activity diagrams presented in Section 22.6 and the communication and sequence diagrams presented in Section 22.8. Note that our ATM design does not specify all the program logic and may not specify all the attributes and operations required to complete the ATM implementation. This is a normal part of the object-oriented design process. As we implement the system, we complete the program logic and add attributes and behaviors as necessary to construct the ATM system specified by the requirements specification in Section 22.3.

We conclude the discussion by presenting a C++ program (ATMCaseStudy.cpp) that starts the ATM and puts the other classes in the system in use. Recall that we’re developing a first version of the ATM system that runs on a personal computer and uses the computer’s keyboard and monitor to approximate the ATM’s keypad and screen. We also only simulate the actions of the ATM’s cash dispenser and deposit slot. We attempt to implement the system, however, so that real hardware versions of these devices could be integrated without significant changes in the code.

23.4.1. Class ATM

Class ATM (Figs. 23.14–23.15) represents the ATM as a whole. Figure 23.14 contains the ATM class definition, enclosed in #ifndef, #define and #endif preprocessor directives to ensure that this definition gets included only once in a program. We discuss lines 6–11 shortly. Lines 16–17 contain the function prototypes for the class’s public member functions. The class diagram of Fig. 23.11 does not list any operations for class ATM, but we now declare a public member function run (line 17) in class ATM that allows an external client of the class (i.e., ATMCaseStudy.cpp) to tell the ATM to run. We also include a function prototype for a default constructor (line 16), which we discuss shortly.

Click here to view code image

 1 // ATM.h
 2 // ATM class definition. Represents an automated teller machine.
 3 #ifndef ATM_H
 4 #define ATM_H
 5
 6 #include "Screen.h" // Screen class definition
 7 #include "Keypad.h" // Keypad class definition
 8 #include "CashDispenser.h" // CashDispenser class definition
 9 #include "DepositSlot.h" // DepositSlot class definition
10 #include "BankDatabase.h" // BankDatabase class definition
11 class Transaction; // forward declaration of class Transaction
12
13 class ATM
14 {
15 public:
16 ATM(); // constructor initializes data members
17 void run(); // start the ATM
18 private:
19 bool userAuthenticated; // whether user is authenticated
20 int currentAccountNumber; // current user's account number
21 Screen screen; // ATM's screen
22 Keypad keypad; // ATM's keypad
23 CashDispenser cashDispenser; // ATM's cash dispenser
24 DepositSlot depositSlot; // ATM's deposit slot
25 BankDatabase bankDatabase; // account information database
26
27 // private utility functions
28 void authenticateUser(); // attempts to authenticate user
29 void performTransactions(); // performs transactions
30 int displayMainMenu() const; // displays main menu
31
32 // return object of specified Transaction derived class
33 Transaction *createTransaction(int);
34 }; // end class ATM
35
36 #endif // ATM_H

Fig. 23.14. Definition of class ATM, which represents the ATM.

Lines 19–25 of Fig. 23.14 implement the class’s attributes as private data members. We determine all but one of these attributes from the class diagrams of Figs. 23.10–23.11. We implement the UML Boolean attribute userAuthenticated in Fig. 23.11 as a bool data member in C++ (line 19). Line 20 declares a data member not found in our UML design—an int data member currentAccountNumber that keeps track of the account number of the current authenticated user. We’ll soon see how the class uses this data member.

Lines 21–24 create objects to represent the parts of the ATM. Recall from the class diagram of Fig. 23.10 that class ATM has composition relationships with classes Screen, Keypad, CashDispenser and DepositSlot, so class ATM is responsible for their creation. Line 25 creates a BankDatabase, with which the ATM interacts to access and manipulate bank account information. [Note: If this were a real ATM system, the ATM class would receive a reference to an existing database object created by the bank. However, in this implementation we are only simulating the bank’s database, so class ATM creates the BankDatabase object with which it interacts.] Lines 6–10 #include the class definitions of Screen, Keypad, CashDispenser, DepositSlot and BankDatabase so that the ATM can store objects of these classes.

Lines 28–30 and 33 contain function prototypes for private utility functions that the class uses to perform its tasks. We’ll see how these functions serve the class shortly. Member function createTransaction (line 33) returns a Transaction pointer. To include the class name Transaction in this file, we must at least include a forward declaration of class Transaction (line 11). Recall that a forward declaration tells the compiler that a class exists, but that the class is defined elsewhere. A forward declaration is sufficient here, as we are using a Transaction pointer as a return type—if we were creating or returning an actual Transaction object, we would need to #include the full Transaction header file.

ATM Class Member-Function Definitions

Figure 23.15 contains the member-function definitions for class ATM. Lines 3–7 #include the header files required by the implementation file ATM.cpp. Including the ATM header file allows the compiler to ensure that the class’s member functions are defined correctly. This also allows the member functions to use the class’s data members.

Click here to view code image

 1 // ATM.cpp
 2 // Member-function definitions for class ATM.
 3 #include "ATM.h" // ATM class definition
 4 #include "Transaction.h" // Transaction class definition
 5 #include "BalanceInquiry.h" // BalanceInquiry class definition
 6 #include "Withdrawal.h" // Withdrawal class definition
 7 #include "Deposit.h" // Deposit class definition
 8
 9 // enumeration constants represent main menu options
10 enum MenuOption { BALANCE_INQUIRY = 1, WITHDRAWAL, DEPOSIT, EXIT };
11
12 // ATM default constructor initializes data members
13 ATM::ATM()
14 : userAuthenticated (false), // user is not authenticated to start
15 currentAccountNumber(0) // no current account number to start
16 {
17 // empty body
18 } // end ATM default constructor
19
20 // start ATM
21 void ATM::run()
22 {
23 // welcome and authenticate user; perform transactions
24 while (true)
25 {
26 // loop while user is not yet authenticated
27 while (!userAuthenticated)
28 {
29 screen.displayMessageLine("\nWelcome!");
30 authenticateUser(); // authenticate user
31 } // end while
32
33 performTransactions(); // user is now authenticated
34 userAuthenticated = false; // reset before next ATM session
35 currentAccountNumber = 0; // reset before next ATM session
36 screen.displayMessageLine("\nThank you! Goodbye!");
37 } // end while
38 } // end function run
39
40 // attempt to authenticate user against database
41 void ATM::authenticateUser()
42 {
43 screen.displayMessage("\nPlease enter your account number: ");
44 int accountNumber = keypad.getInput(); // input account number
45 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
46 int pin = keypad.getInput(); // input PIN
47
48 // set userAuthenticated to bool value returned by database
49 userAuthenticated =
50 bankDatabase.authenticateUser(accountNumber, pin);
51
52 // check whether authentication succeeded
53 if (userAuthenticated)
54 {
55 currentAccountNumber = accountNumber; // save user's account #
56 } // end if
57 else
58 screen.displayMessageLine(
59 "Invalid account number or PIN. Please try again.");
60 } // end function authenticateUser
61
62 // display the main menu and perform transactions
63 void ATM::performTransactions()
64 {
65 // local pointer to store transaction currently being processed
66 Transaction *currentTransactionPtr;
67
68 bool userExited = false; // user has not chosen to exit
69
70 // loop while user has not chosen option to exit system
71 while (!userExited)
72 {
73 // show main menu and get user selection
74 int mainMenuSelection = displayMainMenu();
75
76 // decide how to proceed based on user's menu selection
77 switch (mainMenuSelection)
78 {
79 // user chose to perform one of three transaction types
80 case BALANCE_INQUIRY:
81 case WITHDRAWAL:
82 case DEPOSIT:
83 // initialize as new object of chosen type
84 currentTransactionPtr =
85 createTransaction(mainMenuSelection);
86
87 currentTransactionPtr->execute(); // execute transaction
88
89 // free the space for the dynamically allocated Transaction
90 delete currentTransactionPtr;
91
92 break;
93 case EXIT: // user chose to terminate session
94 screen.displayMessageLine("\nExiting the system...");
95 userExited = true; // this ATM session should end
96 break;
97 default: // user did not enter an integer from 1-4
98 screen.displayMessageLine(
99 "\nYou did not enter a valid selection. Try again.");
100 break;
101 } // end switch
102 } // end while
103 } // end function performTransactions
104
105 // display the main menu and return an input selection
106 int ATM::displayMainMenu() const
107 {
108 screen.displayMessageLine("\nMain menu:");
109 screen.displayMessageLine("1 - View my balance");
110 screen.displayMessageLine("2 - Withdraw cash");
111 screen.displayMessageLine("3 - Deposit funds");
112 screen.displayMessageLine("4 - Exit\n");
113 screen.displayMessage("Enter a choice: ");
114 return keypad.getInput(); // return user's selection
115 } // end function displayMainMenu
116
117 // return object of specified Transaction derived class
118 Transaction *ATM::createTransaction(int type)
119 {
120 Transaction *tempPtr; // temporary Transaction pointer
121
122 // determine which type of Transaction to create
123 switch (type)
124 {
125 case BALANCE_INQUIRY: // create new BalanceInquiry transaction
126 tempPtr = new BalanceInquiry(
127 currentAccountNumber, screen, bankDatabase);
128 break;
129 case WITHDRAWAL: // create new Withdrawal transaction
130 tempPtr = new Withdrawal(currentAccountNumber, screen,
131 bankDatabase, keypad, cashDispenser);
132 break;
133 case DEPOSIT: // create new Deposit transaction
134 tempPtr = new Deposit(currentAccountNumber, screen,
135 bankDatabase, keypad, depositSlot);
136 break;
137 } // end switch
138
139 return tempPtr; // return the newly created object
140 } // end function createTransaction

Fig. 23.15. ATM class member-function definitions.

Line 10 declares an enum named MenuOption that contains constants corresponding to the four options in the ATM’s main menu (i.e., balance inquiry, withdrawal, deposit and exit). Note that setting BALANCE_INQUIRY to 1 causes the subsequent enumeration constants to be assigned the values 2, 3 and 4, as enumeration constant values increment by 1.

Lines 13–18 define class ATM’s constructor, which initializes the class’s data members. When an ATM object is first created, no user is authenticated, so line 14 uses a member initializer to set userAuthenticated to false. Likewise, line 15 initializes currentAccountNumber to 0 because there is no current user yet.

ATM Member Function run

ATM member function run (lines 21–38) uses an infinite loop (lines 24–37) to repeatedly welcome a user, attempt to authenticate the user and, if authentication succeeds, allow the user to perform transactions. After an authenticated user performs the desired transactions and chooses to exit, the ATM resets itself, displays a goodbye message to the user and restarts the process. We use an infinite loop here to simulate the fact that an ATM appears to run continuously until the bank turns it off (an action beyond the user’s control). An ATM user has the option to exit the system, but does not have the ability to turn off the ATM completely.

Authenticating a User

Inside member function run’s infinite loop, lines 27–31 cause the ATM to repeatedly welcome and attempt to authenticate the user as long as the user has not been authenticated (i.e., !userAuthenticated is true). Line 29 invokes member function displayMessageLine of the ATM’s screen to display a welcome message. Like Screen member function displayMessage designed in the case study, member function displayMessageLine (declared in line 13 of Fig. 23.16 and defined in lines 20–23 of Fig. 23.17) displays a message to the user, but this member function also outputs a newline after displaying the message. We’ve added this member function during implementation to give class Screen’s clients more control over the placement of displayed messages. Line 30 of Fig. 23.15 invokes class ATM’s private utility function authenticateUser (lines 41–60) to attempt to authenticate the user.

Click here to view code image

 1 // Screen.h
 2 // Screen class definition. Represents the screen of the ATM.
 3 #ifndef SCREEN_H
 4 #define SCREEN_H
 5
 6 #include <string>
 7 using namespace std;
 8
 9 class Screen
10 {
11 public:
12 void displayMessage(string) const; // output a message
13 void displayMessageLine(string) const; // output message with newline
14 void displayDollarAmount(double) const; // output a dollar amount
15 }; // end class Screen
16
17 #endif // SCREEN_H

Fig. 23.16. Screen class definition.

Click here to view code image

 1 // Screen.cpp
 2 // Member-function definitions for class Screen.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include "Screen.h" // Screen class definition
 6 using namespace std;
 7
 8 // output a message without a newline
 9 void Screen::displayMessage(string message) const
10 {
11 cout << message;
12 } // end function displayMessage
13
14 // output a message with a newline
15 void Screen::displayMessageLine(string message) const
16 {
17 cout << message << endl;
18 } // end function displayMessageLine
19
20 // output a dollar amount
21 void Screen::displayDollarAmount(double amount) const
22 {
23 cout << fixed << setprecision(2) << "$" << amount;
24 } // end function displayDollarAmount

Fig. 23.17. Screen class member-function definitions.

We refer to the requirements specification to determine the steps necessary to authenticate the user before allowing transactions to occur. Line 43 of member function authenticateUser invokes member function displayMessage of the ATM’s screen to prompt the user to enter an account number. Line 44 invokes member function getInput of the ATM’s keypad to obtain the user’s input, then stores the integer value entered by the user in a local variable accountNumber. Member function authenticateUser next prompts the user to enter a PIN (line 45), and stores the PIN input by the user in a local variable pin (line 46). Next, lines 49–50 attempt to authenticate the user by passing the accountNumber and pin entered by the user to the bankDatabase’s authenticateUser member function. Class ATM sets its userAuthenticated data member to the bool value returned by this function—userAuthenticated becomes true if authentication succeeds (i.e., accountNumber and pin match those of an existing Account in bankDatabase) and remains false otherwise. If userAuthenticated is true, line 55 saves the account number entered by the user (i.e., accountNumber) in the ATM data member currentAccountNumber. The other member functions of class ATM use this variable whenever an ATM session requires access to the user’s account number. If userAuthenticated is false, lines 58–59 use the screen’s displayMessageLine member function to indicate that an invalid account number and/or PIN was entered and the user must try again. Note that we set currentAccountNumber only after authenticating the user’s account number and the associated PIN—if the database could not authenticate the user, currentAccountNumber remains 0.

After member function run attempts to authenticate the user (line 30), if userAuthenticated is still false, the while loop in lines 27–31 executes again. If userAuthenticated is now true, the loop terminates and control continues with line 33, which calls class ATM’s utility function performTransactions.

Performing Transactions

Member function performTransactions (lines 63–103) carries out an ATM session for an authenticated user. Line 66 declares a local Transaction pointer, which we aim at a BalanceInquiry, Withdrawal or Deposit object representing the ATM transaction currently being processed. We use a Transaction pointer here to allow us to take advantage of polymorphism. Also, we use the role name included in the class diagram of Fig. 22.7—currentTransaction—in naming this pointer. As per our pointer-naming convention, we append “Ptr” to the role name to form the variable name currentTransactionPtr. Line 68 declares another local variable—a bool called userExited that keeps track of whether the user has chosen to exit. This variable controls a while loop (lines 71–102) that allows the user to execute an unlimited number of transactions before choosing to exit. Within this loop, line 74 displays the main menu and obtains the user’s menu selection by calling an ATM utility function displayMainMenu (defined in lines 106–115). This member function displays the main menu by invoking member functions of the ATM’s screen and returns a menu selection obtained from the user through the ATM’s keypad. Note that this member function is const because it does not modify the contents of the object. Line 74 stores the user’s selection returned by displayMainMenu in local variable mainMenuSelection.

After obtaining a main menu selection, member function performTransactions uses a switch statement (lines 77–101) to respond to the selection appropriately. If mainMenuSelection is equal to any of the three enumeration constants representing transaction types (i.e., if the user chose to perform a transaction), lines 84–85 call utility function createTransaction (defined in lines 118–140) to return a pointer to a newly instantiated object of the type that corresponds to the selected transaction. Pointer currentTransactionPtr is assigned the pointer returned by createTransaction. Line 87 then uses currentTransactionPtr to invoke the new object’s execute member function to execute the transaction. We’ll discuss Transaction member function execute and the three Transaction derived classes shortly. Finally, when the Transaction derived class object is no longer needed, line 90 releases the memory dynamically allocated for it.

We aim the Transaction pointer currentTransactionPtr at an object of one of the three Transaction derived classes so that we can execute transactions polymorphically. For example, if the user chooses to perform a balance inquiry, mainMenuSelection equals BALANCE_INQUIRY, leading createTransaction to return a pointer to a BalanceInquiry object. Thus, currentTransactionPtr points to a BalanceInquiry, and invoking currentTransactionPtr->execute() results in BalanceInquiry’s version of execute being called.

Creating a Transaction

Member function createTransaction (lines 118–140) uses a switch statement (lines 123–137) to instantiate a new Transaction derived class object of the type indicated by the parameter type. Recall that member function performTransactions passes mainMenuSelection to this member function only when mainMenuSelection contains a value corresponding to one of the three transaction types. Therefore type equals either BALANCE_INQUIRY, WITHDRAWAL or DEPOSIT. Each case in the switch statement aims the temporary pointer tempPtr at a newly created object of the appropriate Transaction derived class. Each constructor has a unique parameter list, based on the specific data required to initialize the derived class object. A BalanceInquiry requires only the account number of the current user and references to the ATM’s screen and the bankDatabase. In addition to these parameters, a Withdrawal requires references to the ATM’s keypad and cashDispenser, and a Deposit requires references to the ATM’s keypad and depositSlot. As you’ll soon see, the BalanceInquiry, Withdrawal and Deposit constructors each specify reference parameters to receive the objects representing the required parts of the ATM. Thus, when member function createTransaction passes objects in the ATM (e.g., screen and keypad) to the initializer for each newly created Transaction derived class object, the new object actually receives references to the ATM’s composite objects. We discuss the transaction classes in more detail in Sections 23.4.8––23.4.11.

Exiting the Main Menu and Processing Invalid Selections

After executing a transaction (line 87 in performTransactions), userExited remains false and the while loop in lines 71–102 repeats, returning the user to the main menu. However, if a user does not perform a transaction and instead selects the main menu option to exit, line 95 sets userExited to true, causing the condition of the while loop (!userExited) to become false. This while is the final statement of member function performTransactions, so control returns to the calling function run. If the user enters an invalid main menu selection (i.e., not an integer from 1–4), lines 98–99 display an appropriate error message, userExited remains false and the user returns to the main menu to try again.

Awaiting the Next ATM User

When performTransactions returns control to member function run, the user has chosen to exit the system, so lines 34–35 reset the ATM’s data members userAuthenticated and currentAccountNumber to prepare for the next ATM user. Line 36 displays a goodbye message before the ATM starts over and welcomes the next user.

23.4.2. Class Screen

Class Screen (Figs. 23.16–23.17) represents the screen of the ATM and encapsulates all aspects of displaying output to the user. Class Screen approximates a real ATM’s screen with a computer monitor and outputs text messages using cout and the stream insertion operator (<<). In this case study, we designed class Screen to have one operation—displayMessage. For greater flexibility in displaying messages to the Screen, we now declare three Screen member functions—displayMessage, displayMessageLine and displayDollarAmount. The prototypes for these member functions appear in lines 12–14 of Fig. 23.16.

Screen Class Member-Function Definitions

Figure 23.17 contains the member-function definitions for class Screen. Line 5 #includes the Screen class definition. Member function displayMessage (lines 9–12) takes a string as an argument and prints it to the console using cout and the stream insertion operator (<<). The cursor stays on the same line, making this member function appropriate for displaying prompts to the user. Member function displayMessageLine (lines 15–18) also prints a string, but outputs a newline to move the cursor to the next line. Finally, member function displayDollarAmount (lines 21–24) outputs a properly formatted dollar amount (e.g., $123.45). Line 23 uses stream manipulators fixed and setprecision to output a value formatted with two decimal places.

23.4.3. Class Keypad

Class Keypad (Figs. 23.18–23.19) represents the keypad of the ATM and is responsible for receiving all user input. Recall that we are simulating this hardware, so we use the computer’s keyboard to approximate the keypad. A computer keyboard contains many keys not found on the ATM’s keypad. However, we assume that the user presses only the keys on the computer keyboard that also appear on the keypad—the keys numbered 0–9 and the Enter key. Line 9 of Fig. 23.18 contains the function prototype for class Keypad’s one member function getInput. This member function is declared const because it does not change the object.

Click here to view code image

 1 // Keypad.h
 2 // Keypad class definition. Represents the keypad of the ATM.
 3 #ifndef KEYPAD_H
 4 #define KEYPAD_H
 5
 6 class Keypad
 7 {
 8 public:
 9 int getInput() const; // return an integer value entered by user
10 }; // end class Keypad
11
12 #endif // KEYPAD_H

Fig. 23.18. Keypad class definition.

Keypad Class Member-Function Definition

In the Keypad implementation file (Fig. 23.19), member function getInput (defined in lines 9–14) uses the standard input stream cin and the stream extraction operator (>>) to obtain input from the user. Line 11 declares a local variable to store the user’s input. Line 12 reads input into local variable input, then line 13 returns this value. Recall that getInput obtains all the input used by the ATM. Keypad’s getInput member function simply returns the integer input by the user. If a client of class Keypad requires input that satisfies some particular criteria (i.e., a number corresponding to a valid menu option), the client must perform the appropriate error checking. [Note: Using the standard input stream cin and the stream extraction operator (>>) allows noninteger input to be read from the user. Because the real ATM’s keypad permits only integer input, however, we assume that the user enters an integer and do not attempt to fix problems caused by noninteger input.]

Click here to view code image

 1 // Keypad.cpp
 2 // Member-function definition for class Keypad (the ATM's keypad).
 3 #include <iostream>
 4 using namespace std;
 5
 6 #include "Keypad.h" // Keypad class definition
 7
 8 // return an integer value entered by user
 9 int Keypad::getInput() const
10 {
11 int input; // variable to store the input
12 cin >> input; // we assume that user enters an integer
13 return input; // return the value entered by user
14 } // end function getInput

Fig. 23.19. Keypad class member-function definition.

23.4.4. Class CashDispenser

Class CashDispenser (Figs. 23.20–23.21) represents the cash dispenser. Figure 23.20 contains the function prototype for a default constructor (line 9). Class CashDispenser declares two additional public member functions—dispenseCash (line 12) and isSufficientCashAvailable (line 15). The class trusts that a client (i.e., Withdrawal) calls dispenseCash only after establishing that sufficient cash is available by calling isSufficientCashAvailable. Thus, dispenseCash simply simulates dispensing the requested amount without checking whether sufficient cash is available. Line 17 declares private constant INITIAL_COUNT, which indicates the initial count of bills in the cash dispenser when the ATM starts (i.e., 500). Line 18 implements attribute count (modeled in Fig. 23.11), which keeps track of the number of bills remaining in the CashDispenser at any time.

Click here to view code image

 1 // CashDispenser.h
 2 // CashDispenser class definition. Represents the ATM's cash dispenser.
 3 #ifndef CASH_DISPENSER_H
 4 #define CASH_DISPENSER_H
 5
 6 class CashDispenser
 7 {
 8 public:
 9 CashDispenser(); // constructor initializes bill count to 500
10
11 // simulates dispensing of specified amount of cash
12 void dispenseCash(int);
13
14 // indicates whether cash dispenser can dispense desired amount
15 bool isSufficientCashAvailable(int) const;
16 private:
17 static const int INITIAL_COUNT = 500;
18 int count; // number of $20 bills remaining
19 }; // end class CashDispenser
20
21 #endif // CASH_DISPENSER_H

Fig. 23.20. CashDispenser class definition.

CashDispenser Class Member-Function Definitions

Figure 23.21 contains the definitions of class CashDispenser’s member functions. The constructor (lines 6–9) sets count to the initial count (i.e., 500). Member function dispenseCash (lines 13–17) simulates cash dispensing. If our system were hooked up to a real hardware cash dispenser, this member function would interact with the hardware device to physically dispense cash. Our simulated version of the member function simply decreases the count of bills remaining by the number required to dispense the specified amount (line 16). Line 15 calculates the number of $20 bills required to dispense the specified amount. The ATM allows the user to choose only withdrawal amounts that are multiples of $20, so we divide amount by 20 to obtain the number of billsRequired. Also, it’s the responsibility of the class’s client (i.e., Withdrawal) to inform the user that cash has been dispensed—CashDispenser cannot interact directly with Screen.

Click here to view code image

 1 // CashDispenser.cpp
 2 // Member-function definitions for class CashDispenser.
 3 #include "CashDispenser.h" // CashDispenser class definition
 4
 5 // CashDispenser default constructor initializes count to default
 6 CashDispenser::CashDispenser()
 7 {
 8 count = INITIAL_COUNT; // set count attribute to default
 9 } // end CashDispenser default constructor
10
11 // simulates dispensing of specified amount of cash; assumes enough cash
12 // is available (previous call to isSufficientCashAvailable returned true)
13 void CashDispenser::dispenseCash(int amount)
14 {
15 int billsRequired = amount / 20; // number of $20 bills required
16 count -= billsRequired; // update the count of bills
17 } // end function dispenseCash
18
19 // indicates whether cash dispenser can dispense desired amount
20 bool CashDispenser::isSufficientCashAvailable(int amount) const
21 {
22 int billsRequired = amount / 20; // number of $20 bills required
23
24 if (count >= billsRequired)
25 return true; // enough bills are available
26 else
27 return false; // not enough bills are available
28 } // end function isSufficientCashAvailable

Fig. 23.21. CashDispenser class member-function definitions.

Member function isSufficientCashAvailable (lines 20–28) has a parameter amount that specifies the amount of cash in question. Lines 24–27 return true if the CashDispenser’s count is greater than or equal to billsRequired (i.e., enough bills are available) and false otherwise (i.e., not enough bills). For example, if a user wishes to withdraw $80 (i.e., billsRequired is 4), but only three bills remain (i.e., count is 3), the member function returns false.

23.4.5. Class DepositSlot

Class DepositSlot (Figs. 23.22–23.23) represents the deposit slot of the ATM. Like the version of class CashDispenser presented here, this version of class DepositSlot merely simulates the functionality of a real hardware deposit slot. DepositSlot has no data members and only one member function—isEnvelopeReceived (declared in line 9 of Fig. 23.22 and defined in lines 7–10 of Fig. 23.23)—that indicates whether a deposit envelope was received.

Click here to view code image

 1 // DepositSlot.h
 2 // DepositSlot class definition. Represents the ATM's deposit slot.
 3 #ifndef DEPOSIT_SLOT_H
 4 #define DEPOSIT_SLOT_H
 5
 6 class DepositSlot
 7 {
 8 public:
 9 bool isEnvelopeReceived() const; // tells whether envelope was received
10 }; // end class DepositSlot
11
12 #endif // DEPOSIT_SLOT_H

Fig. 23.22. DepositSlot class definition.

Click here to view code image

 1 // DepositSlot.cpp
 2 // Member-function definition for class DepositSlot.
 3 #include "DepositSlot.h" // DepositSlot class definiton
 4
 5 // indicates whether envelope was received (always returns true,
 6 // because this is only a software simulation of a real deposit slot)
 7 bool DepositSlot::isEnvelopeReceived() const
 8 {
 9 return true; // deposit envelope was received
10 } // end function isEnvelopeReceived

Fig. 23.23. DepositSlot class member-function definition.

Recall from the requirements specification that the ATM allows the user up to two minutes to insert an envelope. The current version of member function isEnvelopeReceived simply returns true immediately (line 9 of Fig. 23.23), because this is only a software simulation, and we assume that the user has inserted an envelope within the required time frame. If an actual hardware deposit slot were connected to our system, member function isEnvelopeReceived might be implemented to wait for a maximum of two minutes to receive a signal from the hardware deposit slot indicating that the user has indeed inserted a deposit envelope. If isEnvelopeReceived were to receive such a signal within two minutes, the member function would return true. If two minutes elapsed and the member function still had not received a signal, then the member function would return false.

23.4.6. Class Account

Class Account (Figs. 23.24–23.25) represents a bank account. Lines 9–15 in the class definition (Fig. 23.24) contain function prototypes for the class’s constructor and six member functions, which we discuss shortly. Each Account has four attributes (modeled in Fig. 23.11)—accountNumber, pin, availableBalance and totalBalance. Lines 17–20 implement these attributes as private data members. Data member availableBalance represents the amount of funds available for withdrawal. Data member totalBalance represents the amount of funds available, plus the amount of deposited funds still pending confirmation or clearance.

Click here to view code image

 1 // Account.h
 2 // Account class definition. Represents a bank account.
 3 #ifndef ACCOUNT_H
 4 #define ACCOUNT_H
 5
 6 class Account
 7 {
 8 public:
 9 Account(int, int, double, double); // constructor sets attributes
10 bool validatePIN(int) const; // is user-specified PIN correct?
11 double getAvailableBalance() const; // returns available balance
12 double getTotalBalance() const; // returns total balance
13 void credit(double); // adds an amount to the Account balance
14 void debit(double); // subtracts an amount from the Account balance
15 int getAccountNumber() const; // returns account number
16 private:
17 int accountNumber; // account number
18 int pin; // PIN for authentication
19 double availableBalance; // funds available for withdrawal
20 double totalBalance; // funds available + funds waiting to clear
21 }; // end class Account
22
23 #endif // ACCOUNT_H

Fig. 23.24. Account class definition.

Click here to view code image

 1 // Account.cpp
 2 // Member-function definitions for class Account.
 3 #include "Account.h" // Account class definition
 4
 5 // Account constructor initializes attributes
 6 Account::Account(int theAccountNumber, int thePIN,
 7 double theAvailableBalance, double theTotalBalance)
 8 : accountNumber(theAccountNumber),
 9 pin(thePIN),
10 availableBalance(theAvailableBalance),
11 totalBalance(theTotalBalance)
12 {
13 // empty body
14 } // end Account constructor
15
16 // determines whether a user-specified PIN matches PIN in Account
17 bool Account::validatePIN(int userPIN) const
18 {
19 if (userPIN == pin)
20 return true;
21 else
22 return false;
23 } // end function validatePIN
24
25 // returns available balance
26 double Account::getAvailableBalance() const
27 {
28 return availableBalance;
29 } // end function getAvailableBalance
30
31 // returns the total balance
32 double Account::getTotalBalance() const
33 {
34 return totalBalance;
35 } // end function getTotalBalance
36
37 // credits an amount to the account
38 void Account::credit(double amount)
39 {
40 totalBalance += amount; // add to total balance
41 } // end function credit
42
43 // debits an amount from the account
44 void Account::debit(double amount)
45 {
46 availableBalance -= amount; // subtract from available balance
47 totalBalance -= amount; // subtract from total balance
48 } // end function debit
49
50 // returns account number
51 int Account::getAccountNumber() const
52 {
53 return accountNumber;
54 } // end function getAccountNumber

Fig. 23.25. Account class member-function definitions.

Account Class Member-Function Definitions

Figure 23.25 presents the definitions of class Account’s member functions. The class’s constructor (lines 6–14) takes an account number, the PIN established for the account, the initial available balance and the initial total balance as arguments. Lines 8–11 assign these values to the class’s data members using member initializers.

Member function validatePIN (lines 17–23) determines whether a user-specified PIN (i.e., parameter userPIN) matches the PIN associated with the account (i.e., data member pin). Recall that we modeled this member function’s parameter userPIN in the UML class diagram of Fig. 22.19. If the two PINs match, the member function returns true (line 20); otherwise, it returns false (line 22).

Member functions getAvailableBalance (lines 26–29) and getTotalBalance (lines 32–35) are get functions that return the values of double data members availableBalance and totalBalance, respectively.

Member function credit (lines 38–41) adds an amount of money (i.e., parameter amount) to an Account as part of a deposit transaction. Note that this member function adds the amount only to data member totalBalance (line 40). The money credited to an account during a deposit does not become available immediately, so we modify only the total balance. We assume that the bank updates the available balance appropriately at a later time. Our implementation of class Account includes only member functions required for carrying out ATM transactions. Therefore, we omit the member functions that some other bank system would invoke to add to data member availableBalance (to confirm a deposit) or subtract from data member totalBalance (to reject a deposit).

Member function debit (lines 44–48) subtracts an amount of money (i.e., parameter amount) from an Account as part of a withdrawal transaction. This member function subtracts the amount from both data member availableBalance (line 46) and data member totalBalance (line 47), because a withdrawal affects both measures of an account balance.

Member function getAccountNumber (lines 51–54) provides access to an Account’s accountNumber. We include this member function in our implementation so that a client of the class (i.e., BankDatabase) can identify a particular Account. For example, BankDatabase contains many Account objects, and it can invoke this member function on each of its Account objects to locate the one with a specific account number.

23.4.7. Class BankDatabase

Class BankDatabase (Figs. 23.26–23.27) models the bank’s database with which the ATM interacts to access and modify a user’s account information. The class definition (Fig. 23.26) declares function prototypes for the class’s constructor and several member functions. We discuss these momentarily. The class definition also declares the BankDatabase’s data members. We determine one data member for class BankDatabase based on its composition relationship with class Account. Recall from Fig. 23.10 that a BankDatabase is composed of zero or more objects of class Account. Line 24 of Fig. 23.26 implements data member accounts—a vector of Account objects—to implement this composition relationship. Lines 6–7 allow us to use vector in this file. Line 27 contains the function prototype for a private utility function getAccount that allows the member functions of the class to obtain a pointer to a specific Account in the accounts vector.

Click here to view code image

 1 // BankDatabase.h
 2 // BankDatabase class definition. Represents the bank's database.
 3 #ifndef BANK_DATABASE_H
 4 #define BANK_DATABASE_H
 5
 6 #include <vector> // class uses vector to store Account objects
 7 using namespace std;
 8
 9 #include "Account.h" // Account class definition
10
11 class BankDatabase
12 {
13 public:
14 BankDatabase(); // constructor initializes accounts
15
16 // determine whether account number and PIN match those of an Account
17 bool authenticateUser(int, int); // returns true if Account authentic
18
19 double getAvailableBalance(int); // get an available balance
20 double getTotalBalance(int); // get an Account's total balance
21 void credit(int, double); // add amount to Account balance
22 void debit(int, double); // subtract amount from Account balance
23 private:
24 vector< Account > accounts; // vector of the bank's Accounts
25
26 // private utility function
27 Account * getAccount(int); // get pointer to Account object
28 }; // end class BankDatabase
29
30 #endif // BANK_DATABASE_H

Fig. 23.26. BankDatabase class definition.

Click here to view code image

 1 // BankDatabase.cpp
 2 // Member-function definitions for class BankDatabase.
 3 #include "BankDatabase.h" // BankDatabase class definition
 4
 5 // BankDatabase default constructor initializes accounts
 6 BankDatabase::BankDatabase()
 7 {
 8 // create two Account objects for testing
 9 Account account1(12345, 54321, 1000.0, 1200.0);
10 Account account2(98765, 56789, 200.0, 200.0);
11
12 // add the Account objects to the vector accounts
13 accounts.push_back(account1); // add account1 to end of vector
14 accounts.push_back(account2); // add account2 to end of vector
15 } // end BankDatabase default constructor
16
17 // retrieve Account object containing specified account number
18 Account * BankDatabase::getAccount(int accountNumber)
19 {
20 // loop through accounts searching for matching account number
21 for (size_t i = 0; i < accounts.size(); i++)
22 {
23 // return current account if match found
24 if (accounts[i].getAccountNumber() == accountNumber)
25 return &accounts[i];
26 } // end for
27
28 return NULL; // if no matching account was found, return NULL
29 } // end function getAccount
30
31 // determine whether user-specified account number and PIN match
32 // those of an account in the database
33 bool BankDatabase::authenticateUser(int userAccountNumber,
34 int userPIN)
35 {
36 // attempt to retrieve the account with the account number
37 Account * const userAccountPtr = getAccount(userAccountNumber);
38
39 // if account exists, return result of Account function validatePIN
40 if (userAccountPtr != NULL)
41 return userAccountPtr->validatePIN(userPIN);
42 else
43 return false; // account number not found, so return false
44 } // end function authenticateUser
45
46 // return available balance of Account with specified account number
47 double BankDatabase::getAvailableBalance(int userAccountNumber)
48 {
49 Account * const userAccountPtr = getAccount(userAccountNumber);
50 return userAccountPtr->getAvailableBalance();
51 } // end function getAvailableBalance
52
53 // return total balance of Account with specified account number
54 double BankDatabase::getTotalBalance(int userAccountNumber)
55 {
56 Account * const userAccountPtr = getAccount(userAccountNumber);
57 return userAccountPtr->getTotalBalance();
58 } // end function getTotalBalance
59
60 // credit an amount to Account with specified account number
61 void BankDatabase::credit(int userAccountNumber, double amount)
62 {
63 Account * const userAccountPtr = getAccount(userAccountNumber);
64 userAccountPtr->credit(amount);
65 } // end function credit
66
67 // debit an amount from Account with specified account number
68 void BankDatabase::debit(int userAccountNumber, double amount)
69 {
70 Account * const userAccountPtr = getAccount(userAccountNumber);
71 userAccountPtr->debit(amount);
72 } // end function debit

Fig. 23.27. BankDatabase class member-function definitions.

BankDatabase Class Member-Function Definitions

Figure 23.27 contains the member-function definitions for class BankDatabase. We implement the class with a default constructor (lines 6–15) that adds Account objects to data member accounts. For the sake of testing the system, we create two new Account objects with test data (lines 9–10), then add them to the end of the vector (lines 13–14). The Account constructor has four parameters—the account number, the PIN assigned to the account, the initial available balance and the initial total balance.

Recall that class BankDatabase serves as an intermediary between class ATM and the actual Account objects that contain users’ account information. Thus, the member functions of class BankDatabase do nothing more than invoke the corresponding member functions of the Account object belonging to the current ATM user.

We include private utility function getAccount (lines 18–29) to allow the BankDatabase to obtain a pointer to a particular Account within vector accounts. To locate the user’s Account, the BankDatabase compares the value returned by member function getAccountNumber for each element of accounts to a specified account number until it finds a match. Lines 21–26 traverse the accounts vector. If the account number of the current Account (i.e., accounts[i]) equals the value of parameter accountNumber, the member function immediately returns the address of the current Account (i.e., a pointer to the current Account). If no account has the given account number, then line 28 returns NULL. Note that this member function must return a pointer, as opposed to a reference, because there is the possibility that the return value could be NULL—a reference cannot be NULL, but a pointer can.

Note that vector function size (invoked in the loop-continuation condition in line 21) returns the number of elements in a vector as a value of type size_t (which is usually unsigned int). As a result, we declare the control variable i to be of type size_t, too. On some compilers, declaring i as an int would cause the compiler to issue a warning message, because the loop-continuation condition would compare a signed value (i.e., an int) and an unsigned value (i.e., a value of type size_t).

Member function authenticateUser (lines 33–44) proves or disproves the an ATM user’s identity. This function takes a user-specified account number and user-specified PIN as arguments and indicates whether they match the account number and PIN of an Account in the database. Line 37 calls utility function getAccount, which returns either a pointer to an Account with userAccountNumber as its account number or NULL to indicate that userAccountNumber is invalid. We declare userAccountPtr to be a const pointer because, once the member function aims this pointer at the user’s Account, the pointer should not change. If getAccount returns a pointer to an Account object, line 41 returns the bool value returned by that object’s validatePIN member function. BankDatabase’s authenticateUser member function does not perform the PIN comparison itself—rather, it forwards userPIN to the Account object’s validatePIN member function to do so. The value returned by Account member function validatePIN indicates whether the user-specified PIN matches the PIN of the user’s Account, so member function authenticateUser simply returns this value to the client of the class (i.e., ATM).

BankDatabase trusts the ATM to invoke member function authenticateUser and receive a return value of true before allowing the user to perform transactions. BankDatabase also trusts that each Transaction object created by the ATM contains the valid account number of the current authenticated user and that this is the account number passed to the remaining BankDatabase member functions as argument userAccountNumber. Member functions getAvailableBalance (lines 47–51), getTotalBalance (lines 54–58), credit (lines 61–65) and debit (lines 68–72) therefore simply retrieve a pointer to the user’s Account object with utility function getAccount, then use this pointer to invoke the appropriate Account member function on the user’s Account object. We know that the calls to getAccount within these member functions will never return NULL, because userAccountNumber must refer to an existing Account. Note that getAvailableBalance and getTotalBalance return the values returned by the corresponding Account member functions. Also, credit and debit simply redirect parameter amount to the Account member functions they invoke.

23.4.8. Class Transaction

Class Transaction (Figs. 23.28–23.29) is an abstract base class that represents the notion of an ATM transaction. It contains the common features of derived classes BalanceInquiry, Withdrawal and Deposit. Figure 23.28 expands upon the Transaction header file first developed in Section 23.3. Lines 13, 17–19 and 22 contain function prototypes for the class’s constructor and four member functions, which we discuss shortly. Line 15 defines a virtual destructor with an empty body—this makes all derived-class destructors virtual (even those defined implicitly by the compiler) and ensures that dynamically allocated derived-class objects get destroyed properly when they are deleted via a base-class pointer. Lines 24–26 declare the class’s private data members. Recall from the class diagram of Fig. 23.11 that class Transaction contains an attribute accountNumber (implemented in line 24) that indicates the account involved in the Transaction. We derive data members screen (line 25) and bankDatabase (line 26) from class Transaction’s associations modeled in Fig. 23.10—all transactions require access to the ATM’s screen and the bank’s database, so we include references to a Screen and a BankDatabase as data members of class Transaction. As you’ll soon see, Transaction’s constructor initializes these references. The forward declarations in lines 6–7 signify that the header file contains references to objects of classes Screen and BankDatabase, but that the definitions of these classes lie outside the header file.

Click here to view code image

 1 // Transaction.h
 2 // Transaction abstract base class definition.
 3 #ifndef TRANSACTION_H
 4 #define TRANSACTION_H
 5
 6 class Screen; // forward declaration of class Screen
 7 class BankDatabase; // forward declaration of class BankDatabase
 8
 9 class Transaction
10 {
11 public:
12 // constructor initializes common features of all Transactions
13 Transaction(int, Screen &, BankDatabase &);
14
15 virtual ~Transaction() { } // virtual destructor with empty body
16
17 int getAccountNumber() const; // return account number
18 Screen &getScreen() const; // return reference to screen
19 BankDatabase &getBankDatabase() const; // return reference to database
20
21 // pure virtual function to perform the transaction
22 virtual void execute() = 0; // overridden in derived classes
23 private:
24 int accountNumber; // indicates account involved
25 Screen &screen; // reference to the screen of the ATM
26 BankDatabase &bankDatabase; // reference to the account info database
27 }; // end class Transaction
28
29 #endif // TRANSACTION_H

Fig. 23.28. Transaction class definition.

Click here to view code image

 1 // Transaction.cpp
 2 // Member-function definitions for class Transaction.
 3 #include "Transaction.h" // Transaction class definition
 4 #include "Screen.h" // Screen class definition
 5 #include "BankDatabase.h" // BankDatabase class definition
 6
 7 // constructor initializes common features of all Transactions
 8 Transaction::Transaction(int userAccountNumber, Screen &atmScreen,
 9 BankDatabase &atmBankDatabase)
10 : accountNumber(userAccountNumber),
11 screen(atmScreen),
12 bankDatabase(atmBankDatabase)
13 {
14 // empty body
15 } // end Transaction constructor
16
17 // return account number
18 int Transaction::getAccountNumber() const
19 {
20 return accountNumber;
21 } // end function getAccountNumber
22
23 // return reference to screen
24 Screen &Transaction::getScreen() const
25 {
26 return screen;
27 } // end function getScreen
28
29 // return reference to bank database
30 BankDatabase &Transaction::getBankDatabase() const
31 {
32 return bankDatabase;
33 } // end function getBankDatabase

Fig. 23.29. Transaction class member-function definitions.

Class Transaction has a constructor (declared in line 13 of Fig. 23.28 and defined in lines 8–15 of Fig. 23.29) that takes the current user’s account number and references to the ATM’s screen and the bank’s database as arguments. Because Transaction is an abstract class, this constructor will never be called directly to instantiate Transaction objects. Instead, the constructors of the Transaction derived classes will use base-class initializer syntax to invoke this constructor.

Class Transaction has three public get functions—getAccountNumber (declared in line 17 of Fig. 23.28 and defined in lines 18–21 of Fig. 23.29), getScreen (declared in line 18 of Fig. 23.28 and defined in lines 24–27 of Fig. 23.29) and getBankDatabase (declared in line 19 of Fig. 23.28 and defined in lines 30–33 of Fig. 23.29). Transaction derived classes inherit these member functions from Transaction and use them to gain access to class Transaction’s private data members.

Class Transaction also declares a pure virtual function execute (line 22 of Fig. 23.28). It does not make sense to provide an implementation for this member function, because a generic transaction cannot be executed. Thus, we declare this member function to be a pure virtual function and force each Transaction derived class to provide its own concrete implementation that executes that particular type of transaction.

23.4.9. Class BalanceInquiry

Class BalanceInquiry (Figs. 23.30–23.31) derives from abstract base class Transaction and represents a balanceinquiry ATM transaction. BalanceInquiry does not have any data members of its own, but it inherits Transaction data members accountNumber, screen and bankDatabase, which are accessible through Transaction’s public get functions. Line 6 #includes the definition of base class Transaction. The BalanceInquiry constructor (declared in line 11 of Fig. 23.30 and defined in lines 8–13 of Fig. 23.31) takes arguments corresponding to the Transaction data members and simply forwards them to Transaction’s constructor, using base-class initializer syntax (line 10 of Fig. 23.31). Line 12 of Fig. 23.30 contains the function prototype for member function execute, which is required to indicate the intention to override the base class’s pure virtual function of the same name.

Click here to view code image

 1 // BalanceInquiry.h
 2 // BalanceInquiry class definition. Represents a balance inquiry.
 3 #ifndef BALANCE_INQUIRY_H
 4 #define BALANCE_INQUIRY_H
 5
 6 #include "Transaction.h" // Transaction class definition
 7
 8 class BalanceInquiry : public Transaction
 9 {
10 public:
11 BalanceInquiry(int, Screen &, BankDatabase &); // constructor
12 virtual void execute(); // perform the transaction
13 }; // end class BalanceInquiry
14
15 #endif // BALANCE_INQUIRY_H

Fig. 23.30. BalanceInquiry class definition.

Click here to view code image

 1 // BalanceInquiry.cpp
 2 // Member-function definitions for class BalanceInquiry.
 3 #include "BalanceInquiry.h" // BalanceInquiry class definition
 4 #include "Screen.h" // Screen class definition
 5 #include "BankDatabase.h" // BankDatabase class definition
 6
 7 // BalanceInquiry constructor initializes base-class data members
 8 BalanceInquiry:: BalanceInquiry(int userAccountNumber, Screen &atmScreen,
 9 BankDatabase &atmBankDatabase)
10 : Transaction(userAccountNumber, atmScreen, atmBankDatabase)
11 {
12 // empty body
13 } // end BalanceInquiry constructor
14
15 // performs transaction; overrides Transaction's pure virtual function
16 void BalanceInquiry::execute()
17 {
18 // get references to bank database and screen
19 BankDatabase &bankDatabase = getBankDatabase();
20 Screen &screen = getScreen();
21
22 // get the available balance for the current user's Account
23 double availableBalance =
24 bankDatabase.getAvailableBalance(getAccountNumber());
25
26 // get the total balance for the current user's Account
27 double totalBalance =
28 bankDatabase.getTotalBalance(getAccountNumber());
29
30 // display the balance information on the screen
31 screen.displayMessageLine("\nBalance Information:");
32 screen.displayMessage(" - Available balance: ");
33 screen.displayDollarAmount(availableBalance);
34 screen.displayMessage("\n - Total balance: ");
35 screen.displayDollarAmount(totalBalance);
36 screen.displayMessageLine("");
37 } // end function execute

Fig. 23.31. BalanceInquiry class member-function definitions.

Class BalanceInquiry overrides Transaction’s pure virtual function execute to provide a concrete implementation (lines 16–37 of Fig. 23.31) that performs the steps involved in a balance inquiry. Lines 19–20 get references to the bank database and the ATM’s screen by invoking member functions inherited from base class Transaction. Lines 23–24 retrieve the available balance of the account involved by invoking member function getAvailableBalance of bankDatabase. Line 24 uses inherited member function getAccountNumber to get the account number of the current user, which it then passes to getAvailableBalance. Lines 27–28 retrieve the total balance of the current user’s account. Lines 31–36 display the balance information on the ATM’s screen. Recall that displayDollarAmount takes a double argument and outputs it to the screen formatted as a dollar amount. For example, if a user’s availableBalance is 700.5, line 33 outputs $700.50. Line 36 inserts a blank line of output to separate the balance information from subsequent output (i.e., the main menu repeated by class ATM after executing the BalanceInquiry).

23.4.10. Class Withdrawal

Class Withdrawal (Figs. 23.32–23.33) derives from Transaction and represents a withdrawal ATM transaction. Figure 23.32 expands upon the header file for this class developed in Fig. 23.13. Class Withdrawal has a constructor and one member function execute, which we discuss shortly. Recall from the class diagram of Fig. 23.11 that class Withdrawal has one attribute, amount, which line 16 implements as an int data member. Figure 23.10 models associations between class Withdrawal and classes Keypad and CashDispenser, for which lines 17–18 implement references keypad and cashDispenser, respectively. Line 19 is the function prototype of a private utility function that we soon discuss.

Click here to view code image

 1 // Withdrawal.h
 2 // Withdrawal class definition. Represents a withdrawal transaction.
 3 #ifndef WITHDRAWAL_H
 4 #define WITHDRAWAL_H
 5
 6 #include "Transaction.h" // Transaction class definition
 7 class Keypad; // forward declaration of class Keypad
 8 class CashDispenser; // forward declaration of class CashDispenser
 9
10 class Withdrawal : public Transaction
11 {
12 public:
13 Withdrawal(int, Screen &, BankDatabase &, Keypad &, CashDispenser &);
14 virtual void execute(); // perform the transaction
15 private:
16 int amount; // amount to withdraw
17 Keypad &keypad; // reference to ATM's keypad
18 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
19 int displayMenuOfAmounts() const; // display the withdrawal menu
20 }; // end class Withdrawal
21
22 #endif // WITHDRAWAL_H

Fig. 23.32. Withdrawal class definition.

Click here to view code image

 1 // Withdrawal.cpp
 2 // Member-function definitions for class Withdrawal.
 3 #include "Withdrawal.h" // Withdrawal class definition
 4 #include "Screen.h" // Screen class definition
 5 #include "BankDatabase.h" // BankDatabase class definition
 6 #include "Keypad.h" // Keypad class definition
 7 #include "CashDispenser.h" // CashDispenser class definition
 8
 9 // global constant that corresponds to menu option to cancel
10 static const int CANCELED = 6;
11
12 // Withdrawal constructor initialize class's data members
13 Withdrawal::Withdrawal(int userAccountNumber, Screen &atmScreen,
14 BankDatabase &atmBankDatabase, Keypad &atmKeypad,
15 CashDispenser &atmCashDispenser)
16 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
17 keypad(atmKeypad), cashDispenser(atmCashDispenser)
18 {
19 // empty body
20 } // end Withdrawal constructor
21
22 // perform transaction; overrides Transaction's pure virtual function
23 void Withdrawal::execute()
24 {
25 bool cashDispensed = false; // cash was not dispensed yet
26 bool transactionCanceled = false; // transaction was not canceled yet
27
28 // get references to bank database and screen
29 BankDatabase &bankDatabase = getBankDatabase();
30 Screen &screen = getScreen();
31
32 // loop until cash is dispensed or the user cancels
33 do
34 {
35 // obtain the chosen withdrawal amount from the user
36 int selection = displayMenuOfAmounts();
37
38 // check whether user chose a withdrawal amount or canceled
39 if (selection != CANCELED)
40 {
41 amount = selection; // set amount to the selected dollar amount
42
43 // get available balance of account involved
44 double availableBalance =
45 bankDatabase.getAvailableBalance(getAccountNumber());
46
47 // check whether the user has enough money in the account
48 if (amount <= availableBalance)
49 {
50 // check whether the cash dispenser has enough money
51 if (cashDispenser.isSufficientCashAvailable(amount))
52 {
53 // update the account involved to reflect withdrawal
54 bankDatabase.debit(getAccountNumber(), amount);
55
56 cashDispenser.dispenseCash(amount); // dispense cash
57 cashDispensed = true; // cash was dispensed
58
59 // instruct user to take cash
60 screen.displayMessageLine(
61 "\nPlease take your cash from the cash dispenser.");
62 } // end if
63 else // cash dispenser does not have enough cash
64 screen.displayMessageLine(
65 "\nInsufficient cash available in the ATM."
66 "\n\nPlease choose a smaller amount.");
67 } // end if
68 else // not enough money available in user's account
69 {
70 screen.displayMessageLine(
71 "\nInsufficient funds in your account."
72 "\n\nPlease choose a smaller amount.");
73 } // end else
74 } // end if
75 else // user chose cancel menu option
76 {
77 screen.displayMessageLine("\nCanceling transaction...");
78 transactionCanceled = true; // user canceled the transaction
79 } // end else
80 } while (!cashDispensed && !transactionCanceled); // end do...while
81 } // end function execute
82
83 // display a menu of withdrawal amounts and the option to cancel;
84 // return the chosen amount or 0 if the user chooses to cancel
85 int Withdrawal::displayMenuOfAmounts() const
86 {
87 int userChoice = 0; // local variable to store return value
88
89 Screen &screen = getScreen(); // get screen reference
90
91 // array of amounts to correspond to menu numbers
92 int amounts[] = { 0, 20, 40, 60, 100, 200 };
93
94 // loop while no valid choice has been made
95 while (userChoice == 0)
96 {
97 // display the menu
98 screen.displayMessageLine("\nWithdrawal options:");
99 screen.displayMessageLine("1 - $20");
100 screen.displayMessageLine("2 - $40");
101 screen.displayMessageLine("3 - $60");
102 screen.displayMessageLine("4 - $100");
103 screen.displayMessageLine("5 - $200");
104 screen.displayMessageLine("6 - Cancel transaction");
105 screen.displayMessage("\nChoose a withdrawal option (1-6): ");
106
107 int input = keypad.getInput(); // get user input through keypad
108
109 // determine how to proceed based on the input value
110 switch (input)
111 {
112 case 1: // if the user chose a withdrawal amount
113 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
114 case 3: // corresponding amount from amounts array
115 case 4:
116 case 5:
117 userChoice = amounts[input]; // save user's choice
118 break;
119 case CANCELED: // the user chose to cancel
120 userChoice = CANCELED; // save user's choice
121 break;
122 default: // the user did not enter a value from 1-6
123 screen.displayMessageLine(
124 "\nIvalid selection. Try again.");
125 } // end switch
126 } // end while
127
128 return userChoice; // return withdrawal amount or CANCELED
129 } // end function displayMenuOfAmounts

Fig. 23.33. Withdrawal class member-function definitions.

Withdrawal Class Member-Function Definitions

Figure 23.33 contains the member-function definitions for class Withdrawal. Line 3 #includes the class’s definition, and lines 4–7 #include the definitions of the other classes used in Withdrawal’s member functions. Line 11 declares a global constant corresponding to the cancel option on the withdrawal menu. We’ll soon discuss how the class uses this constant.

Class Withdrawal’s constructor (defined in lines 13–20 of Fig. 23.33) has five parameters. It uses a base-class initializer in line 16 to pass parameters userAccountNumber, atmScreen and atmBankDatabase to base class Transaction’s constructor to set the data members that Withdrawal inherits from Transaction. The constructor also takes references atmKeypad and atmCashDispenser as parameters and assigns them to reference data members keypad and cashDispenser using member initializers (line 17).

Class Withdrawal overrides Transaction’s pure virtual function execute with a concrete implementation (lines 23–81) that performs the steps involved in a withdrawal. Line 25 declares and initializes a local bool variable cashDispensed. This variable indicates whether cash has been dispensed (i.e., whether the transaction has completed successfully) and is initially false. Line 26 declares and initializes to false a bool variable transactionCanceled that indicates whether the transaction has been canceled by the user. Lines 29–30 get references to the bank database and the ATM’s screen by invoking member functions inherited from base class Transaction.

Lines 33–80 contain a do...while statement that executes its body until cash is dispensed (i.e., until cashDispensed becomes true) or until the user chooses to cancel (i.e., until transactionCanceled becomes true). This loop continuously returns the user to the start of the transaction if an error occurs (i.e., the requested withdrawal amount is greater than the user’s available balance or greater than the amount of cash in the cash dispenser). Line 36 displays a menu of withdrawal amounts and obtains a user selection by calling private utility function displayMenuOfAmounts (defined in lines 85–129). This function displays the menu of amounts and returns either an int withdrawal amount or the int constant CANCELED to indicate that the user has chosen to cancel the transaction.

Member function displayMenuOfAmounts (lines 85–129) first declares local variable userChoice (initially 0) to store the value that the member function will return (line 87). Line 89 gets a reference to the screen by calling member function getScreen inherited from base class Transaction. Line 92 declares an integer array of withdrawal amounts that correspond to the amounts displayed in the withdrawal menu. We ignore the first element in the array (index 0) because the menu has no option 0. The while statement in lines 95–126 repeats until userChoice takes on a value other than 0. We’ll see shortly that this occurs when the user makes a valid selection from the menu. Lines 98–105 display the withdrawal menu on the screen and prompt the user to enter a choice. Line 107 obtains integer input through the keypad. The switch statement in lines 110–125 determines how to proceed based on the user’s input. If the user selects a number between 1 and 5, line 117 sets userChoice to the value of the element in amounts at index input. For example, if the user enters 3 to withdraw $60, line 117 sets userChoice to the value of amounts[3] (i.e., 60). Line 118 terminates the switch. Variable userChoice no longer equals 0, so the while in lines 95–126 terminates and line 128 returns userChoice. If the user selects the cancel menu option, lines 120–121 execute, setting userChoice to CANCELED and causing the member function to return this value. If the user does not enter a valid menu selection, lines 123–124 display an error message and the user is returned to the withdrawal menu.

The if statement in line 39 in member function execute determines whether the user has selected a withdrawal amount or chosen to cancel. If the user cancels, lines 77–78 execute to display an appropriate message to the user and set transactionCanceled to true. This causes the loop-continuation test in line 80 to fail and control to return to the calling member function (i.e., ATM member function performTransactions). If the user has chosen a withdrawal amount, line 41 assigns local variable selection to data member amount. Lines 44–45 retrieve the available balance of the current user’s Account and store it in a local double variable availableBalance. Next, the if statement in line 48 determines whether the selected amount is less than or equal to the user’s available balance. If it isn’t, lines 70–72 display an appropriate error message. Control then continues to the end of the do...while, and the loop repeats because both cashDispensed and transactionCanceled are still false. If the user’s balance is high enough, the if statement in line 51 determines whether the cash dispenser has enough money to satisfy the withdrawal request by invoking the cashDispenser’s isSufficientCashAvailable member function. If this member function returns false, lines 64–66 display an appropriate error message and the do...while repeats. If sufficient cash is available, then the requirements for the withdrawal are satisfied, and line 54 debits amount from the user’s account in the database. Lines 56–57 then instruct the cash dispenser to dispense the cash to the user and set cashDispensed to true. Finally, lines 60–61 display a message to the user that cash has been dispensed. Because cashDispensed is now true, control continues after the do...while. No additional statements appear below the loop, so the member function returns control to class ATM.

In the function calls in lines 64–66 and lines 70–72, we divide the argument to Screen member function displayMessageLine into two string literals, each placed on a separate line in the program. We do so because each argument is too long to fit on a single line. C++ concatenates (i.e., combines) string literals adjacent to each other, even if they are on separate lines. For example, if you write "Happy" "Birthday" in a program, C++ will view these two adjacent string literals as the single string literal "Happy Birthday". As a result, when lines 64–66 execute, displayMessageLine receives a single string as a parameter, even though the argument in the function call appears as two string literals.

23.4.11. Class Deposit

Class Deposit (Figs. 23.34–23.35) derives from Transaction and represents a deposit ATM transaction. Figure 23.34 contains the Deposit class definition. Like derived classes BalanceInquiry and Withdrawal, Deposit declares a constructor (line 13) and member function execute (line 14)—we discuss these momentarily. Recall from the class diagram of Fig. 23.11 that class Deposit has one attribute amount, which line 16 implements as an int data member. Lines 17–18 create reference data members keypad and depositSlot that implement the associations between class Deposit and classes Keypad and DepositSlot modeled in Fig. 23.10. Line 19 contains the function prototype for a private utility function promptForDepositAmount that we’ll discuss shortly.

Click here to view code image

 1 // Deposit.h
 2 // Deposit class definition. Represents a deposit transaction.
 3 #ifndef DEPOSIT_H
 4 #define DEPOSIT_H
 5
 6 #include "Transaction.h" // Transaction class definition
 7 class Keypad; // forward declaration of class Keypad
 8 class DepositSlot; // forward declaration of class DepositSlot
 9
10 class Deposit : public Transaction
11 {
12 public:
13 Deposit(int, Screen &, BankDatabase &, Keypad &, DepositSlot &);
14 virtual void execute(); // perform the transaction
15 private:
16 double amount; // amount to deposit
17 Keypad &keypad; // reference to ATM's keypad
18 DepositSlot &depositSlot; // reference to ATM's deposit slot
19 double promptForDepositAmount() const; // get deposit amount from user
20 }; // end class Deposit
21
22 #endif // DEPOSIT_H

Fig. 23.34. Deposit class definition.

Click here to view code image

 1 // Deposit.cpp
 2 // Member-function definitions for class Deposit.
 3 #include "Deposit.h" // Deposit class definition
 4 #include "Screen.h" // Screen class definition
 5 #include "BankDatabase.h" // BankDatabase class definition
 6 #include "Keypad.h" // Keypad class definition
 7 #include "DepositSlot.h" // DepositSlot class definition
 8
 9 static const int CANCELED = 0; // constant representing cancel option
10
11 // Deposit constructor initializes class's data members
12 Deposit::Deposit(int userAccountNumber, Screen &atmScreen,
13 BankDatabase &atmBankDatabase, Keypad &atmKeypad,
14 DepositSlot &atmDepositSlot)
15 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
16 keypad(atmKeypad), depositSlot(atmDepositSlot)
17 {
18 // empty body
19 } // end Deposit constructor
20
21 // performs transaction; overrides Transaction's pure virtual function
22 void Deposit::execute()
23 {
24 BankDatabase &bankDatabase = getBankDatabase(); // get reference
25 Screen &screen = getScreen(); // get reference
26
27 amount = promptForDepositAmount(); // get deposit amount from user
28
29 // check whether user entered a deposit amount or canceled
30 if (amount != CANCELED)
31 {
32 // request deposit envelope containing specified amount
33 screen.displayMessage(
34 "\nPlease insert a deposit envelope containing ");
35 screen.displayDollarAmount(amount);
36 screen.displayMessageLine(" in the deposit slot.");
37
38 // receive deposit envelope
39 bool envelopeReceived = depositSlot.isEnvelopeReceived();
40
41 // check whether deposit envelope was received
42 if (envelopeReceived)
43 {
44 screen.displayMessageLine("\nYour envelope has been received."
45 "\nNOTE: The money deposited will not be available until we"
46 "\nverify the amount of any enclosed cash, and any enclosed "
47 "checks clear.");
48
49 // credit account to reflect the deposit
50 bankDatabase.credit(getAccountNumber(), amount);
51 } // end if
52 else // deposit envelope not received
53 {
54 screen.displayMessageLine("\nYou did not insert an "
55 "envelope, so the ATM has canceled your transaction.");
56 } // end else
57 } // end if
58 else // user canceled instead of entering amount
59 {
60 screen.displayMessageLine("\nCanceling transaction...");
61 } // end else
62 } // end function execute
63
64 // prompt user to enter a deposit amount in cents
65 double Deposit::promptForDepositAmount() const
66 {
67 Screen &screen = getScreen(); // get reference to screen
68
69 // display the prompt and receive input
70 screen.displayMessage("\nPlease enter a deposit amount in "
71 "CENTS (or 0 to cancel): ");
72 int input = keypad.getInput(); // receive input of deposit amount
73
74 // check whether the user canceled or entered a valid amount
75 if (input == CANCELED)
76 return CANCELED;
77 else
78 {
79 return static_cast< double >(input) / 100; // return dollar amount
80 } // end else
81 } // end function promptForDepositAmount

Fig. 23.35. Deposit class member-function definitions.

Deposit Class Member-Function Definitions

Figure 23.35 presents the Deposit class implementation. Line 3 #includes the Deposit class definition, and lines 4–7 #include the class definitions of the other classes used in Deposit’s member functions. Line 9 declares a constant CANCELED that corresponds to the value a user enters to cancel a deposit. We’ll soon discuss how the class uses this constant.

Like class Withdrawal, class Deposit contains a constructor (lines 12–19) that passes three parameters to base class Transaction’s constructor using a base-class initializer (line 15). The constructor also has parameters atmKeypad and atmDepositSlot, which it assigns to its corresponding data members (line 16).

Member function execute (lines 22–62) overrides pure virtual function execute in base class Transaction with a concrete implementation that performs the steps required in a deposit transaction. Lines 24–25 get references to the database and the screen. Line 27 prompts the user to enter a deposit amount by invoking private utility function promptForDepositAmount (defined in lines 65–81) and sets data member amount to the value returned. Member function promptForDepositAmount asks the user to enter a deposit amount as an integer number of cents (because the ATM’s keypad does not contain a decimal point; this is consistent with many real ATMs) and returns the double value representing the dollar amount to be deposited.

Line 67 in member function promptForDepositAmount gets a reference to the ATM’s screen. Lines 70–71 display a message on the screen asking the user to input a deposit amount as a number of cents or “0” to cancel the transaction. Line 72 receives the user’s input from the keypad. The if statement in lines 75–80 determines whether the user has entered a real deposit amount or chosen to cancel. If the user chooses to cancel, line 76 returns the constant CANCELED. Otherwise, line 79 returns the deposit amount after converting from the number of cents to a dollar amount by casting input to a double, then dividing by 100. For example, if the user enters 125 as the number of cents, line 79 returns 125.0 divided by 100, or 1.25—125 cents is $1.25.

The if statement in lines 30–61 in member function execute determines whether the user has chosen to cancel the transaction instead of entering a deposit amount. If the user cancels, line 60 displays an appropriate message, and the member function returns. If the user enters a deposit amount, lines 33–36 instruct the user to insert a deposit envelope with the correct amount. Recall that Screen member function displayDollarAmount outputs a double formatted as a dollar amount.

Line 39 sets a local bool variable to the value returned by depositSlot’s isEnvelopeReceived member function, indicating whether a deposit envelope has been received. Recall that we coded isEnvelopeReceived (lines 7–10 of Fig. 23.23) to always return true, because we are simulating the functionality of the deposit slot and assume that the user always inserts an envelope. However, we code member function execute of class Deposit to test for the possibility that the user does not insert an envelope—good software engineering demands that programs account for all possible return values. Thus, class Deposit is prepared for future versions of isEnvelopeReceived that could return false. Lines 44–50 execute if the deposit slot receives an envelope. Lines 44–47 display an appropriate message to the user. Line 50 then credits the deposit amount to the user’s account in the database. Lines 54–55 will execute if the deposit slot does not receive a deposit envelope. In this case, we display a message to the user stating that the ATM has canceled the transaction. The member function then returns without modifying the user’s account.

23.4.12. Test Program ATMCaseStudy.cpp

ATMCaseStudy.cpp (Fig. 23.36) is a simple C++ program that allows us to start, or “turn on,” the ATM and test the implementation of our ATM system model. The program’s main function (lines 6–11) does nothing more than instantiate a new ATM object named atm (line 8) and invoke its run member function (line 9) to start the ATM.

Click here to view code image

 1 // ATMCaseStudy.cpp
 2 // Driver program for the ATM case study.
 3 #include "ATM.h" // ATM class definition
 4
 5 // main function creates and runs the ATM
 6 int main()
 7 {
 8 ATM atm; // create an ATM object
 9 atm.run(); // tell the ATM to start
10 } // end main

Fig. 23.36. ATMCaseStudy.cpp starts the ATM system.

23.5. Wrap-Up

In this chapter, you used inheritance to tune the design of the ATM software system, and you fully implemented the ATM in C++. Congratulations on completing the entire ATM case study! We hope you found this experience to be valuable and that it reinforced many of the object-oriented programming concepts that you’ve learned.

Answers to Self-Review Exercises

23.1 True. The minus sign (–) indicates private visibility. We’ve mentioned “friendship” as an exception to private visibility. Friendship is discussed in Chapter 9.

23.2 b.

23.3 The design for class Account yields the header file in Fig. 23.37.

Click here to view code image

 1 // Fig. 23.37: Account.h
 2 // Account class definition. Represents a bank account.
 3 #ifndef ACCOUNT_H
 4 #define ACCOUNT_H
 5
 6 class Account
 7 {
 8 public:
 9 bool validatePIN(int); // is user-specified PIN correct?
10 double getAvailableBalance(); // returns available balance
11 double getTotalBalance(); // returns total balance
12 void credit(double); // adds an amount to the Account
13 void debit(double); // subtracts an amount from the Account
14 private:
15 int accountNumber; // account number
16 int pin; // PIN for authentication
17 double availableBalance; // funds available for withdrawal
18 double totalBalance; // funds available + funds waiting to clear
19 }; // end class Account
20
21 #endif // ACCOUNT_H

Fig. 23.37. Account class header file based on Figs. 23.1 and 23.2.

23.4 b.

23.5 False. The UML requires that we italicize abstract class names and operation names.

23.6 The design for class Transaction yields the header file in Fig. 23.38. In the implementation, a constructor initializes private reference attributes screen and bankDatabase to actual objects, and member functions getScreen and getBankDatabase access these attributes. These member functions allow classes derived from Transaction to access the ATM’s screen and interact with the bank’s database.

Click here to view code image

 1 // Fig. 36.38: Transaction.h
 2 // Transaction abstract base class definition.
 3 #ifndef TRANSACTION_H
 4 #define TRANSACTION_H
 5
 6 class Screen; // forward declaration of class Screen
 7 class BankDatabase; // forward declaration of class BankDatabase
 8
 9 class Transaction
10 {
11 public:
12 int getAccountNumber(); // return account number
13 Screen &getScreen(); // return reference to screen
14 BankDatabase &getBankDatabase(); // return reference to bank database
15
16 // pure virtual function to perform the transaction
17 virtual void execute() = 0; // overridden in derived classes
18 private:
19 int accountNumber; // indicates account involved
20 Screen &screen; // reference to the screen of the ATM
21 BankDatabase &bankDatabase; // reference to the account info database
22 }; // end class Transaction
23
24 #endif // TRANSACTION_H

Fig. 23.38. Transaction class header file based on Figs. 23.10 and 23.11.

A. Operator Precedence and Associativity

Operators are shown in decreasing order of precedence from top to bottom (Fig. A.1).

[image: Image]

[image: Image]

[image: Image]

Fig. A.1. Operator precedence and associativity chart.

B. ASCII Character Set

[image: Image]

Fig. B.1. ASCII character set.

The digits at the left of the table are the left digits of the decimal equivalents (0–127) of the character codes, and the digits at the top of the table are the right digits of the character codes. For example, the character code for “F” is 70, and the character code for “&” is 38.

C. Fundamental Types

Figure C.1 lists C++’s fundamental types. The C++ Standard Document does not provide the exact number of bytes required to store variables of these types in memory. However, the C++ Standard Document does indicate how the memory requirements for fundamental types relate to one another. By order of increasing memory requirements, the signed integer types are signed char, short int, int, long int and long long int. This means that a short int must provide at least as much storage as a signed char; an int must provide at least as much storage as a short int; a long int must provide at least as much storage as an int; and a long long int must provide at least as much storage as a long int. Each signed integer type has a corresponding unsigned integer type that has the same memory requirements. Unsigned types cannot represent negative values, but can represent approximately twice as many positive values as their associated signed types. By order of increasing memory requirements, the floating-point types are float, double and long double. Like integer types, a double must provide at least as much storage as a float and a long double must provide at least as much storage as a double.

[image: Image]

Fig. C.1. C++ fundamental types.

The exact sizes and ranges of values for the fundamental types are implementation dependent. The header files <climits> (for the integral types) and <cfloat> (for the floating-point types) specify the ranges of values supported on your system.

The range of values a type supports depends on the number of bytes that are used to represent that type. For example, consider a system with 4 byte (32 bit) ints. For the signed int type, the nonnegative values are in the range 0 to 2,147,483,647 (231 – 1). The negative values are in the range –1 to –2,147,483,647 (–231 – 1). This is a total of 232 possible values. An unsigned int on the same system would use the same number of bits to represent data, but would not represent any negative values. This results in values in the range 0 to 4,294,967,295 (232 – 1). On the same system, a short int could not use more than 32 bits to represent its data and a long int must use at least 32 bits.

C++ provides the data type bool for variables that can hold only the values true and false. C++11 introduced the types long long int and unsigned long long int—typically for 64-bit integer values (though this is not required by the standard). C++11 also introduced the new character types char16_t and char32_t for representing Unicode characters.

D. Number Systems

Objectives

In this chapter you’ll:

• Understand basic number systems concepts, such as base, positional value and symbol value.

• Work with numbers in the binary, octal and hexadecimal number systems.

• Abbreviate binary numbers as octal numbers or hexadecimal numbers.

• Convert octal numbers and hexadecimal numbers to binary numbers.

• Convert back and forth between decimal numbers and their binary, octal and hexadecimal equivalents.

• Understand binary arithmetic and how negative binary numbers are represented using two’s complement notation.

Outline

D.1 Introduction

D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers

D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers

D.4 Converting from Binary, Octal or Hexadecimal to Decimal

D.5 Converting from Decimal to Binary, Octal or Hexadecimal

D.6 Negative Binary Numbers: Two’s Complement Notation

D.1. Introduction

In this appendix, we introduce the key number systems that C++ programmers use, especially when they are working on software projects that require close interaction with machine-level hardware. Projects like this include operating systems, computer networking software, compilers, database systems and applications requiring high performance.

When we write an integer such as 227 or –63 in a C++ program, the number is assumed to be in the decimal (base 10) number system. The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest digit is 0 and the highest is 9—one less than the base of 10. Internally, computers use the binary (base 2) number system. The binary number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its highest is 1—one less than the base of 2.

As we’ll see, binary numbers tend to be much longer than their decimal equivalents. Programmers who work in assembly languages, and in high-level languages like C++ that enable them to reach down to the machine level, find it cumbersome to work with binary numbers. So two other number systems—the octal number system (base 8) and the hexadecimal number system (base 16)—are popular, primarily because they make it convenient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary and the octal number systems have fewer digits than the decimal number system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires 16 digits—a lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By convention, we use the letters A through F to represent the hexadecimal digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting of digits and letters and numbers like FFE consisting solely of letters. Occasionally, a hexadecimal number spells a common word such as FACE or FEED—this can appear strange to programmers accustomed to working with numbers. The digits of the binary, octal, decimal and hexadecimal number systems are summarized in Figs. D.1–D.2.

[image: Image]

Fig. D.1. Digits of the binary, octal, decimal and hexadecimal number systems.

[image: Image]

Fig. D.2. Comparing the binary, octal, decimal and hexadecimal number systems.

Each of these number systems uses positional notation—each position in which a digit is written has a different positional value. For example, in the decimal number 937 (the 9, the 3 and the 7 are referred to as symbol values), we say that the 7 is written in the ones position, the 3 is written in the tens position and the 9 is written in the hundreds position. Note that each of these positions is a power of the base (base 10) and that these powers begin at 0 and increase by 1 as we move left in the number (Fig. D.3).

[image: Image]

Fig. D.3. Positional values in the decimal number system.

For longer decimal numbers, the next positions to the left would be the thousands position (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hundred-thousands position (10 to the 5th power), the millions position (10 to the 6th power), the ten-millions position (10 to the 7th power) and so on.

In the binary number 101, the rightmost 1 is written in the ones position, the 0 is written in the twos position and the leftmost 1 is written in the fours position. Note that each position is a power of the base (base 2) and that these powers begin at 0 and increase by 1 as we move left in the number (Fig. D.4). So, 101 = 22 + 20 = 4 + 1 = 5.

[image: Image]

Fig. D.4. Positional values in the binary number system.

For longer binary numbers, the next positions to the left would be the eights position (2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position (2 to the 5th power), the sixty-fours position (2 to the 6th power) and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is written in the eights position and the 4 is written in the sixty-fours position. Note that each of these positions is a power of the base (base 8) and that these powers begin at 0 and increase by 1 as we move left in the number (Fig. D.5).

[image: Image]

Fig. D.5. Positional values in the octal number system.

For longer octal numbers, the next positions to the left would be the five-hundred-and-twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8 to the 4th power), the thirty-two-thousand-seven-hundred-and-sixty-eights position (8 to the 5th power) and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position, the D is written in the sixteens position and the 3 is written in the two-hundred-and-fifty-sixes position. Note that each of these positions is a power of the base (base 16) and that these powers begin at 0 and increase by 1 as we move left in the number (Fig. D.6).

[image: Image]

Fig. D.6. Positional values in the hexadecimal number system.

For longer hexadecimal numbers, the next positions to the left would be the four-thousand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-hundred-and-thirty-sixes position (16 to the 4th power) and so on.

D.2. Abbreviating Binary Numbers as Octal and Hexadecimal Numbers

The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy binary representations. Figure D.7 highlights the fact that lengthy binary numbers can be expressed concisely in number systems with higher bases than the binary number system.

[image: Image]

Fig. D.7. Decimal, binary, octal and hexadecimal equivalents.

A particularly important relationship that both the octal number system and the hexadecimal number system have to the binary system is that the bases of octal and hexadecimal (8 and 16 respectively) are powers of the base of the binary number system (base 2). Consider the following 12-digit binary number and its octal and hexadecimal equivalents. See if you can determine how this relationship makes it convenient to abbreviate binary numbers in octal or hexadecimal. The answers follow the numbers.

Click here to view code image

Binary number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

To see how the binary number converts easily to octal, simply break the 12-digit binary number into groups of three consecutive bits each, starting from the right, and write those groups over the corresponding digits of the octal number as follows:

100 011 010 001
4 3 2 1

Note that the octal digit you’ve written under each group of three bits corresponds precisely to the octal equivalent of that 3-digit binary number, as shown in Fig. D.7.

The same kind of relationship can be observed in converting from binary to hexadecimal. Break the 12-digit binary number into groups of four consecutive bits each, starting from the right, and write those groups over the corresponding digits of the hexadecimal number as follows:

1000 1101 0001
8 D 1

Notice that the hexadecimal digit you wrote under each group of four bits corresponds precisely to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. D.7.

D.3. Converting Octal and Hexadecimal Numbers to Binary Numbers

In the previous section, we saw how to convert binary numbers to their octal and hexadecimal equivalents by forming groups of binary digits and simply rewriting them as their equivalent octal digit values or hexadecimal digit values. This process may be used in reverse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as its 3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101 and the 3 as its 3-digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its 4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-digit binary equivalent 1101 and the 5 as its 4-digit binary equivalent 0101 to form the 16-digit 1111101011010101.

D.4. Converting from Binary, Octal or Hexadecimal to Decimal

We are accustomed to working in decimal, and therefore it is often convenient to convert a binary, octal, or hexadecimal number to decimal to get a sense of what the number is “really” worth. Our diagrams in Section D.1 express the positional values in decimal. To convert a number to decimal from another base, multiply the decimal equivalent of each digit by its positional value and sum these products. For example, the binary number 110101 is converted to decimal 53 as shown in Fig. D.8.

[image: Image]

Fig. D.8. Converting a binary number to decimal.

To convert octal 7614 to decimal 3980, we use the same technique, this time using appropriate octal positional values, as shown in Fig. D.9.

[image: Image]

Fig. D.9. Converting an octal number to decimal.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this time using appropriate hexadecimal positional values, as shown in Fig. D.10.

[image: Image]

Fig. D.10. Converting a hexadecimal number to decimal.

D.5. Converting from Decimal to Binary, Octal or Hexadecimal

The conversions in Section D.4 follow naturally from the positional notation conventions. Converting from decimal to binary, octal, or hexadecimal also follows these conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional values of the columns right to left until we reach a column whose positional value is greater than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Positional values: 64 32 16 8 4 2 1

Then we discard the column with positional value 64, leaving:

Positional values: 32 16 8 4 2 1

Next we work from the leftmost column to the right. We divide 32 into 57 and observe that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column. We divide 16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and write 1 in the 16 column. We divide 8 into 9 and observe that there is one 8 in 9 with a remainder of 1. The next two columns each produce quotients of 0 when their positional values are divided into 1, so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1, so we write 1 in the 1 column. This yields:

Click here to view code image

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

and thus decimal 57 is equivalent to binary 111001.

To convert decimal 103 to octal, we begin by writing the positional values of the columns until we reach a column whose positional value is greater than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Positional values: 512 64 8 1

Then we discard the column with positional value 512, yielding:

Positional values: 64 8 1

Next we work from the leftmost column to the right. We divide 64 into 103 and observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column. We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and write 4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

Click here to view code image

Positional values: 64 8 1
Symbol values: 1 4 7

and thus decimal 103 is equivalent to octal 147.

To convert decimal 375 to hexadecimal, we begin by writing the positional values of the columns until we reach a column whose positional value is greater than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Positional values: 4096 256 16 1

Then we discard the column with positional value 4096, yielding:

Positional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 into 375 and observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256 column. We divide 16 into 119 and observe that there are seven 16s in 119 with a remainder of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that there are seven 1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

Click here to view code image

Positional values: 256 16 1
Symbol values: 1 7 7

and thus decimal 375 is equivalent to hexadecimal 177.

D.6. Negative Binary Numbers: Two’s Complement Notation

The discussion so far in this appendix has focused on positive numbers. In this section, we explain how computers represent negative numbers using two’s complement notation. First we explain how the two’s complement of a binary number is formed, then we show why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

int value = 13;

The 32-bit representation of value is

00000000 00000000 00000000 00001101

To form the negative of value we first form its one’s complement by applying C++’s bitwise complement operator (~):

onesComplementOfValue = ~value;

Internally, ~value is now value with each of its bits reversed—ones become zeros and zeros become ones, as follows:

Click here to view code image

value:
00000000 00000000 00000000 00001101

~value (i.e., value's one's complement):
11111111 11111111 11111111 11110010

To form the two’s complement of value, we simply add 1 to value’s one’s complement. Thus

Click here to view code image

Two's complement of value:
11111111 11111111 11111111 11110011

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a result of 0. Let’s try this:

Click here to view code image

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded and we indeed get 0 as a result. If we add the one’s complement of a number to the number, the result will be all 1s. The key to getting a result of all zeros is that the two’s complement is one more than the one’s complement. The addition of 1 causes each column to add to 0 with a carry of 1. The carry keeps moving leftward until it is discarded from the leftmost bit, and thus the resulting number is all zeros.

Computers actually perform a subtraction, such as

x = a - value;

by adding the two’s complement of value to a, as follows:

x = a + (~value + 1);

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually the negative of value, then adding the two’s complement of value to a should produce the result 14. Let’s try this:

Click here to view code image

a (i.e., 27) 00000000 00000000 00000000 00011011
+(~value + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

which is indeed equal to 14.

E. Preprocessor

Objectives

In this chapter you’ll:

• Use #include for developing large programs.

• Use #define to create macros and macros with arguments.

• Understand conditional compilation.

• Display error messages during conditional compilation.

• Use assertions to test if the values of expressions are correct.

Outline

E.1 Introduction

E.2 #include Preprocessing Directive

E.3 #define Preprocessing Directive: Symbolic Constants

E.4 #define Preprocessing Directive: Macros

E.5 Conditional Compilation

E.6 #error and #pragma Preprocessing Directives

E.7 Operators # and ##

E.8 Predefined Symbolic Constants

E.9 Assertions

E.10 Wrap-Up

E.1. Introduction

This chapter introduces the preprocessor. Preprocessing occurs before a program is compiled. Some possible actions are inclusion of other files in the file being compiled, definition of symbolic constants and macros, conditional compilation of program code and conditional execution of preprocessing directives. All preprocessing directives begin with #, and only whitespace characters may appear before a preprocessing directive on a line. Preprocessing directives are not C++ statements, so they do not end in a semicolon (;). Preprocessing directives are processed fully before compilation begins.

[image: Image] Common Programming Error E.1

Placing a semicolon at the end of a preprocessing directive can lead to a variety of errors, depending on the type of preprocessing directive.

[image: Image] Software Engineering Observation E.1

Many preprocessor features (especially macros) are more appropriate for C programmers than for C++ programmers. C++ programmers should familiarize themselves with the preprocessor, because they might need to work with C legacy code.

E.2. #include Preprocessing Directive

The #include preprocessing directive has been used throughout this text. The #include directive causes a copy of a specified file to be included in place of the directive. The two forms of the #include directive are

#include <filename>
#include "filename"

The difference between these is the location the preprocessor searches for the file to be included. If the filename is enclosed in angle brackets (< and >)—used for standard library header files—the preprocessor searches for the specified file in an implementation-dependent manner, normally through predesignated directories. If the file name is enclosed in quotes, the preprocessor searches first in the same directory as the file being compiled, then in the same implementation-dependent manner as for a file name enclosed in angle brackets. This method is normally used to include programmer-defined header files.

The #include directive is used to include standard header files such as <iostream> and <iomanip>. The #include directive is also used with programs consisting of several source files that are to be compiled together. A header file containing declarations and definitions common to the separate program files is often created and included in the file. Examples of such declarations and definitions are classes, structures, unions, enumerations, function prototypes, constants and stream objects (e.g., cin).

E.3. #define Preprocessing Directive: Symbolic Constants

The #define preprocessing directive creates symbolic constants—constants represented as symbols—and macros—operations defined as symbols. The #define preprocessing directive format is

#define identifier replacement-text

When this line appears in a file, all subsequent occurrences (except those inside a string) of identifier in that file will be replaced by replacement-text before the program is compiled. For example,

#define PI 3.14159

replaces all subsequent occurrences of the symbolic constant PI with the numeric constant 3.14159. Symbolic constants enable you to create a name for a constant and use the name throughout the program. Later, if the constant needs to be modified throughout the program, it can be modified once in the #define preprocessing directive—and when the program is recompiled, all occurrences of the constant in the program will be modified. [Note: Everything to the right of the symbolic constant name replaces the symbolic constant. For example, #define PI = 3.14159 causes the preprocessor to replace every occurrence of PI with = 3.14159. Such replacement is the cause of many subtle logic and syntax errors.] Redefining a symbolic constant with a new value without first undefining it is also an error. Note that const variables in C++ are preferred over symbolic constants. Constant variables have a specific data type and are visible by name to a debugger. Once a symbolic constant is replaced with its replacement text, only the replacement text is visible to a debugger. A disadvantage of const variables is that they might require a memory location of their data type size—symbolic constants do not require any additional memory.

[image: Image] Common Programming Error E.2

Using symbolic constants in a file other than the file in which the symbolic constants are defined is a compilation error (unless they are #included from a header file).

[image: Image] Good Programming Practice E.1

Using meaningful names for symbolic constants makes programs more self-documenting.

E.4. #define Preprocessing Directive: Macros

[Note: This section is included for the benefit of C++ programmers who will need to work with C legacy code. In C++, macros can often be replaced by templates and inline functions.] A macro is an operation defined in a #define preprocessing directive. As with symbolic constants, the macro-identifier is replaced with the replacement-text before the program is compiled. Macros may be defined with or without arguments. A macro without arguments is processed like a symbolic constant. In a macro with arguments, the arguments are substituted in the replacement-text, then the macro is expanded—i.e., the replacement-text replaces the macro-identifier and argument list in the program. There is no data type checking for macro arguments. A macro is used simply for text substitution.

Consider the following macro definition with one argument for the area of a circle:

#define CIRCLE_AREA(x) (PI * (x) * (x))

Wherever CIRCLE_AREA(y) appears in the file, the value of y is substituted for x in the replacement text, the symbolic constant PI is replaced by its value (defined previously) and the macro is expanded in the program. For example, the statement

area = CIRCLE_AREA(4);

is expanded to

area = (3.14159 * (4) * (4));

Because the expression consists only of constants, at compile time the value of the expression can be evaluated, and the result is assigned to area at runtime. The parentheses around each x in the replacement text and around the entire expression force the proper order of evaluation when the macro argument is an expression. For example, the statement

area = CIRCLE_AREA(c + 2);

is expanded to

area = (3.14159 * (c + 2) * (c + 2));

which evaluates correctly, because the parentheses force the proper order of evaluation. If the parentheses are omitted, the macro expansion is

area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly as

area = (3.14159 * c) + (2 * c) + 2;

because of the rules of operator precedence.

[image: Image] Common Programming Error E.3

Forgetting to enclose macro arguments in parentheses in the replacement text is an error.

Macro CIRCLE_AREA could be defined as a function. Function circleArea, as in

double circleArea(double x) { return 3.14159 * x * x; }

performs the same calculation as CIRCLE_AREA, but the overhead of a function call is associated with function circleArea. The advantages of CIRCLE_AREA are that macros insert code directly in the program—avoiding function overhead—and the program remains readable because CIRCLE_AREA is defined separately and named meaningfully. A disadvantage is that its argument is evaluated twice. Also, every time a macro appears in a program, the macro is expanded. If the macro is large, this produces an increase in program size. Thus, there is a trade-off between execution speed and program size (if disk space is low). Note that inline functions (see Chapter 6) are preferred to obtain the performance of macros and the software engineering benefits of functions.

[image: Image] Performance Tip E.1

Macros can sometimes be used to replace a function call with inline code prior to execution time. This eliminates the overhead of a function call. Inline functions are preferable to macros because they offer the type-checking services of functions.

The following is a macro definition with two arguments for the area of a rectangle:

#define RECTANGLE_AREA(x, y) ((x) * (y))

Wherever RECTANGLE_AREA(a, b) appears in the program, the values of a and b are substituted in the macro replacement text, and the macro is expanded in place of the macro name. For example, the statement

rectArea = RECTANGLE_AREA(a + 4, b + 7);

is expanded to

rectArea = ((a + 4) * (b + 7));

The value of the expression is evaluated and assigned to variable rectArea.

The replacement text for a macro or symbolic constant is normally any text on the line after the identifier in the #define directive. If the replacement text for a macro or symbolic constant is longer than the remainder of the line, a backslash (\) must be placed at the end of each line of the macro (except the last line), indicating that the replacement text continues on the next line.

Symbolic constants and macros can be discarded using the #undef preprocessing directive. Directive #undef “undefines” a symbolic constant or macro name. The scope of a symbolic constant or macro is from its definition until it is either undefined with #undef or the end of the file is reached. Once undefined, a name can be redefined with #define.

Note that expressions with side effects (e.g., variable values are modified) should not be passed to a macro, because macro arguments may be evaluated more than once.

[image: Image] Common Programming Error E.4

Macros often replace a name that wasn’t intended to be a use of the macro but just happened to be spelled the same. This can lead to exceptionally mysterious compilation and syntax errors.

E.5. Conditional Compilation

Conditional compilation enables you to control the execution of preprocessing directives and the compilation of program code. Each of the conditional preprocessing directives evaluates a constant integer expression that will determine whether the code will be compiled. Cast expressions, sizeof expressions and enumeration constants cannot be evaluated in preprocessing directives because these are all determined by the compiler and preprocessing happens before compilation.

The conditional preprocessor construct is much like the if selection structure. Consider the following preprocessor code:

#ifndef NULL
 #define NULL 0
#endif

which determines whether the symbolic constant NULL is already defined. The expression #ifndef NULL includes the code up to #endif if NULL is not defined, and skips the code if NULL is defined. Every #if construct ends with #endif. Directives #ifdef and #ifndef are shorthand for #if defined(name) and #if !defined(name). A multiple-part conditional preprocessor construct may be tested using the #elif (the equivalent of else if in an if structure) and the #else (the equivalent of else in an if structure) directives.

During program development, programmers often find it helpful to “comment out” large portions of code to prevent it from being compiled. If the code contains C-style comments, /* and */ cannot be used to accomplish this task, because the first */ encountered would terminate the comment. Instead, you can use the following preprocessor construct:

#if 0
 code prevented from compiling
#endif

To enable the code to be compiled, simply replace the value 0 in the preceding construct with the value 1.

Conditional compilation is commonly used as a debugging aid. Output statements are often used to print variable values and to confirm the flow of control. These output statements can be enclosed in conditional preprocessing directives so that the statements are compiled only until the debugging process is completed. For example,

Click here to view code image

#ifdef DEBUG
 cerr << "Variable x = " << x << endl;
#endif

causes the cerr statement to be compiled in the program if the symbolic constant DEBUG has been defined before directive #ifdef DEBUG. This symbolic constant is normally set by a command-line compiler or by settings in the IDE (e.g., Visual Studio) and not by an explicit #define definition. When debugging is completed, the #define directive is removed from the source file, and the output statements inserted for debugging purposes are ignored during compilation. In larger programs, it might be desirable to define several different symbolic constants that control the conditional compilation in separate sections of the source file.

[image: Image] Common Programming Error E.5

Inserting conditionally compiled output statements for debugging purposes in locations where C++ currently expects a single statement can lead to syntax errors and logic errors. In this case, the conditionally compiled statement should be enclosed in a compound statement. Thus, when the program is compiled with debugging statements, the flow of control of the program is not altered.

E.6. #error and #pragma Preprocessing Directives

The #error directive

#error tokens

prints an implementation-dependent message including the tokens specified in the directive. The tokens are sequences of characters separated by spaces. For example,

#error 1 - Out of range error

contains six tokens. In one popular C++ compiler, for example, when a #error directive is processed, the tokens in the directive are displayed as an error message, preprocessing stops and the program does not compile.

The #pragma directive

#pragma tokens

causes an implementation-defined action. A pragma not recognized by the implementation is ignored. A particular C++ compiler, for example, might recognize pragmas that enable you to take advantage of that compiler’s specific capabilities. For more information on #error and #pragma, see the documentation for your C++ implementation.

E.7. Operators # and ##

The # and ## preprocessor operators are available in C++ and ANSI/ISO C. The # operator causes a replacement-text token to be converted to a string surrounded by quotes. Consider the following macro definition:

#define HELLO(x) cout << "Hello, " #x << endl;

When HELLO(John) appears in a program file, it is expanded to

cout << "Hello, " "John" << endl;

The string "John" replaces #x in the replacement text. Strings separated by white space are concatenated during preprocessing, so the above statement is equivalent to

cout << "Hello, John" << endl;

The # operator must be used in a macro with arguments, because the operand of # refers to an argument of the macro.

The ## operator concatenates two tokens. Consider the following macro definition:

Click here to view code image

cout << "Hello, John" << endl;
#define TOKENCONCAT(x, y) x ## y

When TOKENCONCAT appears in the program, its arguments are concatenated and used to replace the macro, so TOKENCONCAT(O, K) is replaced by OK in the program. The ## operator must have two operands.

E.8. Predefined Symbolic Constants

There are six predefined symbolic constants (Fig. E.1). The identifiers for each of these begin and (except for __cplusplus) end with two underscores. These identifiers and preprocessor operator defined (Section E.5) cannot be used in #define or #undef directives.

[image: Image]

Fig. E.1. The predefined symbolic constants.

E.9. Assertions

The assert macro—defined in the <cassert> header file—tests the value of an expression. If the value of the expression is 0 (false), then assert prints an error message and calls function abort (of the general utilities library—<cstdlib>) to terminate program execution. This is a useful debugging tool for testing whether a variable has a correct value. For example, suppose variable x should never be larger than 10 in a program. An assertion may be used to test the value of x and print an error message if the value of x is incorrect. The statement would be

assert(x <= 10);

If x is greater than 10 when the preceding statement is encountered in a program, an error message containing the line number and file name is printed, and the program terminates. You may then concentrate on this area of the code to find the error. If the symbolic constant NDEBUG is defined, subsequent assertions will be ignored. Thus, when assertions are no longer needed (i.e., when debugging is complete), we insert the line

#define NDEBUG

in the program file rather than deleting each assertion manually. As with the DEBUG symbolic constant, NDEBUG is often set by compiler command-line options or through a setting in the IDE.

Most C++ compilers now include exception handling. C++ programmers prefer using exceptions rather than assertions. But assertions are still valuable for C++ programmers who work with C legacy code.

E.10. Wrap-Up

This appendix discussed the #include directive, which is used to develop larger programs. You also learned about the #define directive, which is used to create macros. We introduced conditional compilation, displaying error messages and using assertions.

Index

Symbols

-- postfix decrement operator 96

-- prefix decrement operator 96

^ (bitwise exclusive OR operator) 621, 669

^= (bitwise exclusive OR assignment operator) 515, 629, 669

, (comma operator) 104

:: (binary scope resolution operator) 298

:: (scope resolution operator) 60

:: (unary scope resolution operator) 668, 672

:: unary scope resolution operator 169

! (logical NOT operator) 123, 124, 668

truth table 125

!= (inequality operator) 32, 668

?: (ternary conditional operator) 75, 181

.* (pointer-to-member operator) 670, 672

.* and ->* operators 670

'\0', null character 253

'\n', newline character 252

[] (operator for map) 507

* (multiplication operator) 29

* (pointer dereference or indirection operator) 232, 232

*= (multiplication assignment operator) 96

/ (division operator) 29

/* */ (C-style multiline comment) 21

// (single-line comment) 20

/= (division assignment operator) 96

\' (single-quote-character) escape sequence 23

\" (double-quote-character) escape sequence 23

\\ (backslash-character) escape sequence 23

\a (alert) escape sequence 23

\n (newline) escape sequence 23

\r (carriage-return) escape sequence 23

\t (tab) escape sequence 23

& (address operator) 669

& (bitwise AND) 621

& in a parameter list 166

& to declare reference 165

&, address operator 231, 232

&& (logical AND operator) 123, 181, 668

truth table 123

&= (bitwise AND assignment operator) 515, 629, 669

preprocessor operator 791, 796

preprocessor operator 796

#pragma preprocessing directive 796

#undef preprocessing directive 794

% (modulus operator) 29

%= (modulus assignment operator) 96

+ (addition operator) 27, 29

++ (postfix increment operator) 96

on an iterator 480

++ (prefix increment operator) 96

on an iterator 480

+= (addition assignment operator) 95

string concatenation 595

< (less-than operator) 32

<< (left-shift operator) 621

<< (stream insertion operator) 22, 28

<<= (left-shift assignment operator) 629

<= (less-than-or-equal-to operator) 32

<algorithm> header 558

<algorithm> header 558

<forward_list> header 494

<unordered_map> header 505, 507

<unordered_set> header 501, 504

= 27, 35, 279, 308, 480

= (assignment operator) 27, 29, 125

-= (subtraction assignment operator) 96

== (equality operator) 32, 125

> (greater-than operator) 32

-> (member selection via pointer) 672

->* (pointer-to-member operator) 670

>= (greater-than-or-equal-to operator) 32

>> (right shift operator) 621

>>= (right shift with sign extension assignment operator) 629

| (bitwise inclusive OR operator) 621, 669

|= (bitwise inclusive OR assignment operator) 515, 629, 669

|| (logical OR operator) 123, 124, 668

truth table 124

|| logical OR operator 181

~ (bitwise complement operator) 621, 669

Numerics

0X 432

0x 432

2-D array 211

A

abbreviating assignment expressions 95

abort 797

abort function 272, 574

absolute value 131

abstract base class 390, 391, 738

abstract class 390, 391, 392, 407

abstract operation in the UML 734

access a global variable 169

access function 265

access non-static class data members and member functions 301

access private member of a class 47

access privileges 241, 243

access specifier 39, 47, 291, 726

private 47

protected 258

public 47

access the caller’s data 164

access violation 476

accessor 49

Account class (ATM case study) 690, 693, 697, 699, 700, 708, 715, 716, 718, 720, 732, 772

accounts-receivable system 446

accumulate algorithm 529, 532, 553, 555, 559

accumulated outputs 28

action 74, 75

action expression 71

action expression in the UML 705

action of an object 704

action state 71

action state in the UML 705

action state symbol 71

activation in a UML sequence diagram 720

activation record 159

activity diagram 70, 71, 78, 105

do...while statement 111

for statement 106

if statement 74

if...else statement 75

in the UML 690, 704, 706, 723

sequence statement 71

switch statement 120

while statement 79

activity in the UML 690, 703, 707

activity of a portion of a software system 71

actor in use case in the UML 689

adapter 509

add a new account to a file 472

add an integer to a pointer 247

addition 29

addition assignment operator (+=) 95

addition program that displays the sum of two numbers 24

address of a bit field 633

address operator (&) 231, 232, 234, 308, 672

addressable storage unit 633

adjacent_difference algorithm 559

adjacent_find algorithm 558

aggregation 264, 696

aiming a derived-class pointer at a base-class object 381

airline reservation system 456

alert escape sequence ('\a') 23, 637

algebraic expression 29

<algorithm> header 141, 492

algorithms 476, 485

accumulate 529, 532

all_of 533, 536

any_of 533, 536

binary_search 209, 533, 536

copy_backward 539

copy_n 541

count 529, 532

count_if 529, 532

equal 523

equal_range 546, 548

fill 520, 521

fill_n 520, 521

find 533, 535

find_if 533, 536

find_if_not 533, 537

for_each 529, 533

generate 520, 521

generate_n 520, 521

includes 544

inplace_merge 541, 542

is_heap 551

is_heap_until 551

iter_swap 537, 538

lexicographical_compare 524

lower_bound 548

make_heap 550

max 552

max_element 529, 532

merge 538, 540

min 552

min_element 529, 532

minmax 552

minmax_element 529, 532, 553

mismatch 522, 524

move 540

move_backward 540

none_of 533, 536

pop_heap 551

push_heap 551

random_shuffle 529, 531

remove 524, 526

remove_copy 526

remove_copy_if 524, 527, 541

remove_if 524, 526

replace 529

replace_copy 527, 529

replace_copy_if 527, 529

replace_if 527, 529

reverse 538, 541

reverse_copy 541, 542

separated from container 519

set_difference 543, 545

set_intersection 543, 545

set_symmetric_difference 543, 545

set_union 543, 546

sort 209, 533, 536

sort_heap 550

swap 537, 538

swap_ranges 537, 538

transform 529, 533

unique 538, 540

unique_copy 541, 542

upper_bound 548

alias 166, 167, 609

for the name of an object 276

alignment 617

all 514

all_of algorithm 533, 536, 558

allocate 321

allocate dynamic memory 575

allocate memory 140, 321

allocator 493

allocator_type 479

alphabetizing strings 643

alter the flow of control 121

ambiguity problem 672, 677

American National Standards Institute (ANSI) 2

American Standard Code for Information Interchange (ASCII) 116

analysis stage of the software life cycle 688

analyzing a project’s requirements 683

and operator keyword 668

and_eq operator keyword 669

“ANDed” 623

Android 16

operating system 16

smartphone 16

angle brackets (< and >) 173, 791

angle brackets (< and >) in templates 583

anonymous function objects 518

ANSI (American National Standards Institute) 2

ANSI/ISO 9899: 1990 2

any 514

any_of algorithm 533, 536, 558

Apache Software Foundation 15

append 595

append data to a file 447, 448

Apple Inc. 16

Apple Macintosh 16

argument coercion 138

argument for a macro 792

argument to a function 41

arguments in correct order 136

arguments passed to member-object constructors 283

arithmetic assignment operators 95, 96

arithmetic calculations 28

arithmetic mean 30

arithmetic operator 28

arithmetic overflow 84, 570

arithmetic overflow error 579

arithmetic underflow error 579

“arity” of an operator 309

<array> header 140

array

built-in 229, 238

name 250

notation for accessing elements 251

subscripting 251

array 187

bounds checking 198

Array class 324

Array class definition with overloaded operators 328

Array class member-function and friend function definitions 329

array class template 186

Array class test program 324

array subscript operator ([]) 328

arrow 71

arrow member selection operator (->) 265

arrow operator (->) 293

arrowhead in a UML sequence diagram 720

ASCII (American Standard Code for Information Interchange)

Character Set 116, 252, 422

assert 797

assign member function of class string 593

assign member function of list 498

assign one iterator to another 484

assigning addresses of base-class and derived-class objects to base-class and derived-class pointers 378

assigning class objects 279

assignment operator functions 333

assignment operators 27, 35, 95, 279, 308, 480

*= multiplication assignment operator 96

/= division assignment operator 96

%= modulus assignment operator 96

+= addition assignment operator 95

-= subtraction assignment operator 96

assignment statement 27, 97

associate from left to right 35, 98

associate from right to left 35, 98, 116

association 508

association (in the UML) 694, 695, 696, 728, 729

name 695

associative container 480, 483, 500, 503

ordered 476, 500

unordered 476, 500

associative container functions

count 503

equal_range 503

find 503

insert 503, 507

lower_bound 503

upper_bound 503

associativity 124, 126

associativity chart 35

associativity not changed by overloading 309

associativity of operators 29, 35

asterisk (*) 28

asynchronous call 717

asynchronous event 570

at member function 493, 514

class string 308, 595

class vector 226

ATM (automated teller machine) case study 683, 688

ATM class (ATM case study) 693, 694, 695, 699, 702, 703, 708, 714, 715, 716, 717, 718, 727

ATM system 689, 690, 691, 692, 693, 698, 703, 707, 726

atof 647

atoi 647

atol 648

attribute 45, 728, 729

compartment in a class diagram 701

declaration in the UML 701, 703

in the UML 5, 41, 693, 698, 700, 701, 703, 707, 736

name in the UML 701

of a class 4

of an object 5

attributes of a variable 152

auto keyword 213

auto_ptr object manages dynamically allocated memory 577

automated teller machine 456

automated teller machine (ATM) 683, 684, 688

user interface 684

automatic array 188

automatic array initialization 199

automatic local array 199

automatic local variable 153, 156, 167

automatic object 571

automatic storage class 152, 200

automatic storage duration 153

automatically destroyed 156

average 30

average calculation 79, 85

avoid naming conflicts 291

avoid repeating code 270

B

back member function of queue 511

back member function of sequence containers 492

back_inserter function template 540, 542

backslash (\) 22, 794

backslash escape sequence (\\) 23

backward traversal 607

bad member function 442

bad_alloc exception 493, 572, 574, 578

bad_cast exception 578

bad_typeid exception 578

badbit 449

badbit of stream 422, 442

BalanceInquiry class (ATM case study) 693, 696, 699, 700, 702, 704, 708, 715, 716, 717, 718, 727, 733, 734, 735

Bank account program 466

BankDatabase class (ATM case study) 693, 697, 699, 708, 715, 716, 717, 718, 720, 727, 729

banking system 456

bar chart 193, 194

bar chart printing program 194

bar of asterisks 193, 194

base 2 621

base case(s) 175, 179, 182

base class 343, 345, 733

base-class catch 578

base-class constructor 370

base-class exception 578

base-class member accessibility in derived class 371

base-class pointer to a derived-class object 389

base-class private member 361

base-class subobject 678

base e 132

base specified for a stream 436

base-10 number system 132, 432

base-16 number system 432

base-8 number system 432

base-class initializer syntax 359

base-class member function redefined in a derived class 368

BasePlusCommissionEmployee class header 402

BasePlusCommissionEmployee class implementation file 402

BasePlusCommissionEmployee class represents an employee who receives a base salary in addition to a commission 352

BasePlusCommissionEmployee class test program 355

BasePlusCommissionEmployee class that inherits from class CommissionEmployee, which does not provide protected data 367

basic searching and sorting algorithms of the Standard Library 533

basic_fstream class template 420, 446

basic_ifstream class template 420, 445

basic_ios class template 418, 677

basic_iostream class template 418, 420, 446, 677

basic_istream class template 418, 446, 677

basic_istringstream class template 609

basic_ofstream class template 446

basic_ostream class template 420, 446, 677

basic_ostringstream class template 609

basic_string class template 592

begin function 240

begin iterator 608

begin member function of class string 608

begin member function of containers 479

begin member function of first-class containers 480

beginning of a file 452

beginning of a stream 452

behavior 707

of a class 4

behavior of the system 703, 704, 707, 716

bell 23

Bell Laboratories 2

bidirectional iterator 482, 483, 494, 501, 504, 505, 518, 540, 541, 542

bidirectional iterator operations 484

bidirectional navigability in the UML 727

binary (base 2) number system 781

binary arithmetic operator 90

binary function 553

binary function object 553

binary number 634

binary number system 650

binary operator 27, 28

binary predicate function 497, 523, 532, 536, 540, 545, 550

binary_search algorithm 209, 533, 536, 558

bit 616

bit field 621, 630, 633

bit-field manipulation 633

bit-field member of structure 631

bit fields save space 633

bit manipulation 621

bitand operator keyword 669

bitor operator keyword 669

“bits-and-bytes” level 621

bitset 477, 513, 514, 515

<bitset> header 140

bitwise AND assignment 669

bitwise AND assignment operator (&=) 629

bitwise AND operator (&) 621, 621, 624, 626

bitwise AND, bitwise inclusive-OR, bitwise exclusive-OR and bitwise complement operators 624

bitwise assignment operator keywords 669

bitwise assignment operators 515, 629

bitwise complement 622, 669

bitwise complement operator (~) 621, 624, 627, 629, 788

bitwise exclusive OR 669

bitwise exclusive OR assignment operator (^=) 629

bitwise exclusive OR operator (^) 621, 624, 627

bitwise inclusive OR 669

bitwise inclusive OR assignment operator (|=) 629

bitwise inclusive OR operator (|) 461, 621, 624, 626

bitwise left-shift operator (<<) 304, 627

bitwise logical OR 515

bitwise operator keywords 669

bitwise operators 621, 622, 629

bitwise right-shift operator (>>) 304

bitwise shift operator 627

BlackBerry OS 15

block 34, 44, 66, 77, 89, 153, 155, 156

block is active 153

block is exited 153

block of data 655

block of memory 498, 655

block scope 155, 265

variable 265

body of a class definition 39

body of a function 21, 22, 40

body of a loop 102, 105

Booch, Grady 684

bool data type 74

bool value false 74

bool value true 74

boolalpha stream manipulator 125, 432, 438

Boolean attribute in the UML 699

Boost C++ Libraries 17

boundary of a storage unit 633

bounds checking 198

braces ({}) 22, 34, 66, 77, 89, 117

braces in a do...while statement 112

bracket ([]) 187

break statement 118, 121

break statement exiting a for statement 121

brittle software 364

buffer is filled 420

buffer is flushed 420

buffer overflow 198

buffered output 420

buffered standard error stream 418

buffering 443

building-block approach 3

built-in array 229, 238

business-critical computing 565

byte 621

C

.C extension 6

C legacy code 791, 792, 797

C-like pointer-based array 477

C string 252

c_str member function of class string 607

C++ 2

C++ compiler 7

C++ development environment 7, 8

C++ preprocessor 7, 21

C++ Standard Library 3

<string> file 43

class template vector 221

header location 57

headers 139

string class 43

C++11 17, 178

all_of algorithm 536

anonymous function objects 518

any_of algorithm 536

associative container keys are immutable 477

auto keyword 213, 503

begin function 240, 489

cbegin container member function 489

cend container member function 489

compiler fix for types ending in >> 502

copy_n algorithm 541

crbegin container member function 490

crend container member function 490

default type arguments for function template type parameters 589

delegating constructor 271

end function 240, 489

find_if_not algorithm 537

forward_list class template 476, 494

in-class initializer 120, 260

insert container member function (now returns an iterator) 493, 494

iota algorithm 559

is_heap algorithm 551

is_heap_until algorithm 551

list initialization 94, 507

list initialization of a return type 507

list initialization of associative container 507

list initializer 271

list initializers 490

minmax algorithm 552

minmax_element algorithm 532, 553

move algorithm 540

move assignment operator 478

move constructor 478

move_backward algorithm 540

noexcept 571

none_of algorithm 536

non-member container swap function 478

nullptr constant 230

override 384

random-number generation 195

scoped enum 150

shrink_to_fit container member function for vector and deque 490

specifying an enum’s integral type 150

stod function 612

stof function 612

stoi function 612

stol function 612

stold function 612

stoll function 612

stoul function 612

stoull function 612

to_string function 612

trailing return types for functions 175

unique_ptr class template 575, 575, 578

unordered_multimap class template 477

unordered_multiset class template 477

unordered_set class template 477

calculations 28, 70

call a function 41

call stack 242

calling function (caller) 40, 47

calling functions by reference 233

camel case 39

capacity member function

of string 601

of vector 488

capacity of a string 599

Card Shuffling and Dealing

simulation 616, 618, 620

carriage return ('\r') escape sequence 23, 634, 637

carry bit 788

cascading member function calls 293, 294, 296

cascading stream insertion operations 28

case label 117, 118

case sensitive 26

CashDispenser class (ATM case study) 693, 695, 699, 700, 708, 720

casino 146

<cassert> header 141, 797

cast 249

downcast 383

cast away const-ness 662

cast expression 794

cast operator 85, 90, 139, 337, 338

cast operator function 337

cast variable visible in debugger 792

catch a base class object 578

catch all exceptions 579

catch block 226

catch clause (or handler) 566, 570

catch handler 564

catch related errors 572

catch(...) 579

cbegin member function of containers 479

cbegin member function of vector 489

<cctype> header 140, 634

CD 445

ceil function 131

cend member function of containers 479

cend member function of vector 489

cerr (standard error stream) 9, 66, 418, 419, 445

<cfloat> header 141

chaining stream insertion operations 28

char ** 648

char data type 26, 116, 139, 606, 621

char16_t 418

char32_t 418

character 616

character array 253, 606

character constant 252

character-handling functions 634

isdigit, isalpha, isalnum and isxdigit 635

islower, isupper, tolower and toupper 636

isspace, iscntrl, ispunct, isprint and isgraph 637

character presentation 141

character sequences 456

character set 120

character string 22, 188

character’s numerical representation 116

characters represented as numeric codes 644

character-string manipulation 633

checked access 595

cin (standard input stream) 9, 27, 418, 419, 445, 449

function getline 254

cin.clear 442

cin.eof 422, 442

cin.get function 115, 116, 423

cin.tie function 443

circular include 730

class 4, 701, 707, 711, 726, 792

attribute 45

client-code programmer 62

constructor 50

data member 5, 45

default constructor 51, 53

define a constructor 52

define a member function 38

implementation programmer 62

instance of 46

interface 58

interface described by function prototypes 58

member function 38

member-function implementations in a separate source-code file 59

name 728

naming convention 39

object of 46

public services 58

services 49

class average on a quiz 79

class average problem 79

class definition 39

class development 324

class diagram

for the ATM system model 697, 722

in the UML 690, 693, 696, 698, 701, 708, 726, 729, 735, 736, 737

class diagram (UML) 41

class hierarchy 344, 389, 391

class-implementation programmer 62

class keyword 173, 583

class libraries 109

class library 372

class members default to private access 616

class scope 155, 261, 264

class-scope variable is hidden 265

class template 186, 582, 592

auto_ptr 575

definition 582

scope 585

specialization 582

Stack 583, 585

class variable 207

Classes 3

Array 324

bitset 477, 513, 514, 515

deque 485, 498

exception 562

forward_list 485, 494

invalid_argument 578

list 485, 494

multimap 505

out_of_range exception class 226

priority_queue 512

queue 511, 511

runtime_error 562, 570

set 504

stack 509

string 43

unique_ptr 575

vector 221

classic stream libraries 417

clear function of ios_base 442

clear member function of containers 479

clear member function of first-class containers 494

client code 376

client-code programmer 62

client of a class 707, 717

client of an object 48

<climits> header 141

clog (standard error buffered) 418, 419, 445

close member function of ofstream 450

<cmath> header 109, 140

code 5

CodeLite 7

coin tossing 141

collaboration 714, 715, 717

collaboration diagram in the UML 691, 716

collaboration in the UML 714

colon (:) 155, 286, 675

column 211

column headings 189

column subscript 211

comma operator (,) 104, 181

comma-separated list

of parameters 136 25, 35, 104, 230

command-line argument 240

comma-separated list of base classes 675

comment 20

CommissionEmployee class header 399

CommissionEmployee class implementation file 400

CommissionEmployee class represents an employee paid a percentage of gross sales 347

CommissionEmployee class test program 350

CommissionEmployee class uses member functions to manipulate its private data 365

Common Programming Errors overview xxiii

communication diagram in the UML 691, 716, 717

commutative 336

commutative operation 336

comparator function object 501, 505

comparator function object less 501, 512

compare iterators 484

compare member function of class string 597

comparing

strings 639, 642

comparing blocks of memory 655

comparing strings 595

compilation error 95

compilation unit 667

compile 7

compiler 21, 90

compiling

multiple-source-file program 63

compl operator keyword 669

complement operator (~) 621

complex conditions 123

component 3

composition 264, 283, 287, 343, 346, 695, 696, 721

compound interest 108

calculation with for 108

compound statement 34

computing the sum of the elements of an array 193

concatenate 595

stream insertion operations 28

strings 641

concrete class 390

concrete derived class 395

condition 32, 73, 75, 111, 122

conditional compilation 791, 794

conditional execution of preprocessing directives 791

conditional expression 75

conditional operator (?:) 75

conditional preprocessing directives 794

conditionally compiled output statement 795

confusing equality (==) and assignment (=) operators 32, 127

conserving memory 153

consistent state 65

const 281, 313, 792

const keyword 163

const member function 40, 281

const member function on a const object 282

const member function on a non-const object 282

const object 192, 282

const object must be initialized 192

const objects and const member functions 282

const qualifier 191, 240, 661

const qualifier before type specifier in parameter declaration 166

const variables must be initialized 192

const version of operator[] 335

const with function parameters 240

const_cast

cast away const-ness 662

const_cast demonstration 662

const_cast operator 661, 662, 663

const_iterator 479, 480, 481, 483, 484, 503, 505, 608

const_pointer 479

const_reference 479

const_reverse_iterator 479, 480, 484, 490, 608

constant integral expression 119

constant pointer

to an integer constant 243

to constant data 241, 243, 244

to nonconstant data 241, 243

constant reference 334

constant reference parameter 166

constant variable 191

“const-ness” 663

constructed inside out 288

constructor 50

cannot be virtual 389

cannot specify a return type 50

conversion 337, 339

copy 332

default 53

default arguments 269

defining 52

explicit 339

function prototype 59

in a UML class diagram 54

inherit 370

inherit from base class 370

naming 52

parameter list 52

single argument 339, 340

constructors and destructors called automatically 272

container 140, 475, 476

container adapter 476, 477, 483, 509

priority_queue 512

queue 511

stack 509

container adapter functions

pop 509

push 509

container class 265, 328, 476

containers

begin function 479

cbegin function 479

cend function 479

clear function 479

crbegin function 479

crend function 479

empty function 478

end function 479

erase function 479

insert function 478

max_size function 478

rbegin function 479

rend function 479

size function 478

swap function 478

continue statement 121

continue statement terminating a single iteration of a for statement 122

control characters 637

control statement 70, 73, 74

nesting 73

stacking 73

control statements 73

do...while 110, 111

do...while repetition statement 72

for 102, 104

for repetition statement 72

if 32

if single-selection statement 71

if...else double-selection statement 72

nested if...else 77

nesting 92

repetition statement 73

selection statement 73

sequence statement 73

switch 112, 119

while 102, 110

while repetition statement 72

control variable 102

control-variable name 104

controlling expression 117

converge on the base case 182

conversion constructor 337, 339

conversion operator 337

explicit 340

conversions among fundamental types

by cast 337

convert a binary number to decimal 786

convert a hexadecimal number to decimal 786

convert among user-defined types and built-in types 337

convert an octal number to decimal 786

convert between types 337

convert lowercase letters 140

convert strings to floating-point types 612

convert strings to integral types 612

converting strings to C-style strings and character arrays 606

copy algorithm 492, 558

copy assignment 279

copy constructor 280, 287, 327, 332, 334, 370, 478, 480

copy member function of class string 461, 607

copy of the argument 241

copy_backward algorithm 539, 558

copy_if algorithm 558

copy_n algorithm 541, 558

copy-and-paste approach 356

copying strings 640

correct number of arguments 136

correct order of arguments 136

correctly initializing and using a constant variable 191

cos function 131

cosine 131

count algorithm 529, 532, 558

count function of associative container 503

count_if algorithm 529, 532, 558

counter 154

counter-controlled repetition 79, 88, 92, 101, 182

counter-controlled repetition with the for statement 103

counter variable 82

counting loop 102

cout (<<) (the standard output stream) 418, 419, 445

cout (standard output stream) 9

cout (the standard output stream) 21, 24, 27

cout.put 421

cout.write 426

__cplusplus predefined symbolic constant 797

.cpp extension 6

CPU (central processing unit) 8

craps simulation 146, 147, 150

crbegin member function of containers 479

crbegin member function of vector 490

create an object (instance) 40

create your own data types 28

CreateAndDestroy class

definition 273

member-function definitions 274

creating a random access file 457

Creating a random-access file with 100 blank records sequentially 461

Creating a sequential file 447

creating an association 508

Credit inquiry program 453

credit processing program 458

crend member function of containers 479

crend member function of vector 490

<cstdio> header 141

<csdtlib> header 574

<cstdlib> header 140, 141, 646

<cstring> header 140, 640

<ctime> header 140, 146

<Ctrl>-d 116, 429, 449

Ctrl key 116

<Ctrl>-z 116, 429, 449

<cstdlib> header 142

current position in a stream 452

cursor 22

.cxx extension 6

D

dangerous pointer manipulation 407

dangling-else problem 77

dangling pointer 333

dangling reference 167

data hiding 47, 49

data member 5, 45, 46, 726

data member function of class string 607

data members 38

data persistence 445

data structures 475

data types

bool 74

char 116, 139

double 85, 108

float 85, 138

int 25

long 120

long double 138

long int 120, 139

long long 120, 138

long long int 138

short 120

short int 120

unsigned 145

unsigned char 139

unsigned int 139, 145

unsigned long 138

unsigned long int 138

unsigned long long 138

unsigned long long int 138

unsigned short 139

unsigned short int 139

data types in the UML 44

Date class 283, 316

Date class definition 283

Date class definition with overloaded increment operators 316

Date class member function definitions 284

Date class member-function and friend-function definitions 317

Date class test program 319

__DATE__ predefined symbolic constant 797

date source file is compiled 797

deallocate 321

deallocate memory 321, 575

debugger 792

debugging 144

debugging aid 795

debugging tool 797

dec stream manipulator 427, 432, 436

decimal (base 10) number system 649, 650, 781

decimal (base-10) number system 432

decimal numbers 436, 634

decimal point 85, 90, 91, 109, 421, 432

decision 74

decision in the UML 705

decision symbol 74

declaration 25

declaration of a function 59

declaring a static member function const 301

decrement

a pointer 247

decrement a control variable 101

decrement operator (--) 96

decrement operators 315

default access mode for class is private 47

default argument 167, 266

default arguments with constructors 266

default case 117, 118, 144

default constructor 51, 53, 267, 288, 316, 327, 332, 370, 478

provided by the compiler 53

provided by the programmer 53

default copy constructor 287

default delimiter 425

default memberwise assignment 279

default memberwise copy 332

default precision 90

default to decimal 436

default to public access 616

default type argument for a type parameter 589

default type arguments for function template type parameters 589

default_random_engine 151

#define 794, 796

define a constructor 52

define a member function of a class 38

Define class GradeBook with a member function displayMessage, create a GradeBook object, and call its displayMessage function 38

Define class GradeBook with a member function that takes a parameter, create a GradeBook object and call its displayMessage function 42

#define NDEBUG 797

#define PI 3.14159 792

#define preprocessing directive 792

#define preprocessor directive 259

defining occurrence 9

definition 101

Deitel Buzz Online newsletter 18

delegating constructor 271

delete 333, 575, 577

delete [] (dynamic array deallocation) 323

delete a record from a file 472

delete operator 321, 389

deleting dynamically allocated memory 333

delimiter 254, 644

delimiter (with default value '\n') 423

delimiting characters 644

Deposit class (ATM case study) 693, 696, 699, 700, 708, 715, 716, 724, 727, 733, 734

DepositSlot class (ATM case study) 693, 695, 699, 708, 716, 728

<deque> header 140, 499

deque class template 485, 498

push_front function 499

shrink_to_fit member function 490

dereference

a const iterator 482

a null pointer 232

a pointer 232, 235, 241

an iterator 480, 481, 484

an iterator positioned outside its container 490

dereferencing operator (*) 232

derive one class from another 264

derived class 343, 345, 372, 733, 734

indirect 401

derived-class catch 578

descriptive words and phrases 699, 701

deserialized object 473

design process 5, 683, 689, 708, 713

design specification 689

destructor 272, 357, 478

called in reverse order of constructors 272

destructor in a derived class 370

destructors called in reverse order 370

Dev C++ 7

diagnostics that aid program debugging 141

diamond inheritance 677

diamond symbol 71, 74

dice game 146

die rolling

using an array instead of switch 195

difference_type 480

digit 26, 253, 781

direct base class 345

directly reference a value 229

disk 8, 9

disk drive 417

disk I/O completion 570

disk space 449, 573, 574

displacement 410

display screen 417, 419

divide by zero 9

DivideByZeroException 566

divides function object 554

division 29

do...while repetition statement 72, 110, 111

dollar amount 109

dot (.) operator 40

dot operator (.) 265, 293, 384, 576

dotted line 71

double 26

double data type 85, 108, 138

double-ended queue 498

double-precision floating-point number 89

double quote 22, 23

double-selection statement 72

double-word boundary 617

“doubly initializing” member objects 288

doubly linked list 494, 477

downcasting 383

driver program 55

dummy value 85

duplicate keys 500, 505

DVD 445

dynamic binding 384, 406, 407, 410

dynamic casting 411

dynamic data structure 229

dynamic memory 575

dynamic memory management 321

dynamic storage duration 153

dynamic_cast 413, 578

dynamically allocate array of integers 328

dynamically allocated memory 279, 280, 333, 389, 575

allocate and deallocate storage 272

dynamically allocated storage 332

dynamically determine function to execute 383

E

Eclipse 7

Eclipse Foundation 15

edit 6

edit a program 6

editor 6

element of an array 186

elided UML diagram 694

#elif 795

emacs 6

embedded parentheses 29

embedded system 15

Employee class 283

definition showing composition 285

definition with a static data member to track the number of Employee objects in memory 299

header 394

implementation file 395

member-function definitions 286, 299

empty member function

of containers 478

of priority_queue 513

of queue 511

of sequence container 493

of stack 509

of string 307, 601

empty parentheses 40, 41, 43

empty statement 78

empty string 48, 601

encapsulate 47

encapsulation 5, 49, 262, 278, 288

end function 240

end line 28

end member function of class string 608

end member function of containers 479

end member function of first-class container 480

end of a sequence 536

end of a stream 452

“end of data entry” 85

end-of-file 116, 117, 254, 442

#endif preprocessing directive 795

#endif preprocessor directive 259

endl 28, 90

end-of-file 449

end-of-file indicator 449

end-of-file key combination 449

end-of-file marker 445

Enter key 27

enter key 117, 118

enum

scoped 150

specifying underlying integral type 150

unscoped 150

enum class 150

enum keyword 149

enum struct 150

enumeration 149, 792

enumeration constant 149, 794

EOF 116, 422, 425, 634

eof member function 422, 442

eofbit of stream 442

equal algorithm 523, 558

equal to 32

equal_range algorithm 546, 548, 558

equal_range function of associative container 503

equal_to function object 554

equality and relational operators 33

equality operator (==) 324, 480

equality operators 32, 33

equality operators (== and !=) 74, 123

equation of straight line 30

erase 603

erase member function of class string 603

erase member function of containers 479

erase member function of first-class containers 493

e-reader device 16

#error preprocessing directive 795

error

off-by-one 104

error bits 425

error detected in a constructor 571

error state of a stream 422, 440, 441

escape character 22

escape early from a loop 121

escape sequence 22, 24

escape sequences

\' (single-quote character) 23

\" (double-quote character) 23

\\ (backslash character) 23

\a (alert) 23

\n (newline) 23

\r (carriage return) 23

\t (tab) 23, 118

event 703

<exception> header 140

exception 225, 561

handler 225

handling 221

parameter 226

exception class 562, 578

what virtual function 562

exception classes derived from common base class 572

exception handling 140, 561

out_of_range exception class 226

what member function of an exception object 226

<exception> header 562, 578

exception object 566

exception parameter 564

exceptional condition 118

Exceptions 226

bad_alloc 572

bad_cast 578

bad_typeid 578

length_error 578

logic_error 578

out_of_range 226, 578

overflow_error 578

underflow_error 579

executable image 8

executable program 7

execute a program 6, 8

execution-time error 9

execution-time overhead 407

exit 449

exit a function 23

exit function 272, 273, 574

EXIT_FAILURE 449

EXIT_SUCCESS 449

exp function 131

expand a macro 793

explicit constructor 339

explicit conversion 90

explicit keyword 52, 339

conversion operators 340

exponential “explosion” of calls 182

exponential complexity 182

exponential function 131

exponentiation 31, 108

expression 74, 75, 90, 104

extensibility 376

extensibility of C++ 314

extensible language 179

extensible markup language (XML) 473

extensible programming language 40

extern keyword 154

extern storage-class specifier 152

F

fabs function 131

Facebook 15

factorial 176, 177, 179

fail member function 442

failbit 449

failbit of stream 422, 426, 442

false 32

false 74, 75, 182, 438

fatal logic error 32

fatal runtime error 9

fault-tolerant programs 225, 561

Fibonacci series 179, 182

field width 110, 189, 426, 429

fields larger than values being printed 435

FIFO 477, 498

FIFO (first-in, first-out) 511

file 445, 451

file of n bytes 445

file open mode 447, 450

file open modes

ios::app 447

ios::ate 448

ios::binary 448, 461, 464

ios::in 448, 450

ios::out 447

ios::trunc 448

__FILE__ predefined symbolic constant 796

file processing 417, 420

file scope 155, 264

filename 447, 450

filename extensions 6

file-position pointer 452, 464, 472

file-processing classes 420

fill algorithm 520, 521, 558

fill character 261, 426, 429, 434, 435

fill member function 433, 435

fill member function of basic_ios 442

fill_n algorithm 520, 521, 558

final

class 389

member function 389

final state 71

final state in the UML 705

final value of a control variable 101, 105

find algorithm 533, 535, 558

find function of associative container 503

find member function of class string 601, 603

find_end algorithm 558

find_first_not_of member function of class string 603

find_first_of algorithm 558

find_first_of member function of class string 603

find_if algorithm 533, 536, 558

find_if_not algorithm 533, 537, 558

find_last_of member function of class string 603

finding strings and characters in a string 601

first data member of pair 503

first-in, first-out (FIFO) data structure 511

first-class container 477, 479, 480, 483, 489, 494

begin member function 480

clear function 494

end member function 480

erase function 493

first-in, first-out (FIFO) 477, 498

fixed notation 421, 432, 437

fixed-point format 91

fixed-point value 110

fixed stream manipulator 91, 432, 433, 437

fixed-size data structure 238

flag value 85

flags member function of ios_base 439

flash drive 445

float data type 85, 138

floating point 432, 437

floating-point arithmetic 304

floating-point division 90

floating-point literal 89

double by default 89

floating-point number 85, 90

double data type 85

double precision 89

float data type 85

single precision 89

floating-point size limits 141

floating-point number in scientific format 437

floor function 131

flow of control 78, 88

flow of control in the if...else statement 75

flow of control of a virtual function call 408

flush buffer 443

flush output buffer 28

flushing stream 426

fmod function 131

fmtflags data type 439

for repetition statement 72, 102, 104

for repetition statement examples 105

for_each algorithm 529, 533, 558

force a decimal point 421

forcing a plus sign 434

form feed ('\f') 634, 637

formal parameter 136

formal type parameter 173

format error 442

format of floating-point numbers in scientific format 437

format state 426, 439

format-state stream manipulators 432

formatted data file processing 445

formatted I/O 417

formatted input/output 456

formatted text 456

forward declaration 730

forward iterator 482, 518, 521, 529, 536, 538, 540

forward iterator operations 484

forward iterators 494

<forward_list> header 140

forward_list class template 476, 485, 494

splice_after member function 498

fractional parts 90

fragile software 364

free function (global function) 262

free store 321

friend function 289, 346

friend of a derived class 675

friends are not member functions 291

Friends can access private members of class 289

friendship granted, not taken 289

front member function of queue 511

front member function of sequence containers 492

front_inserter function template 540

<fstream> header 140

fstream 446, 462, 466, 471

<fstream> header 445

function 3, 9, 21, 137

argument 41

call 136

call overhead 163

call stack 159

declaration 137

definition 136, 156

empty parentheses 40, 41, 43

header 40

local variable 44

multiple parameters 44

name 154

overloading 170

parameter 41, 43

parameter list 43

prototype 58, 136, 137, 156, 165, 235

return a result 47

signature 137, 171

that takes no arguments 162

trailing return type 175

function body 40

function call 41

function call operator () 340, 410

function call stack 242

function object 501, 505, 518, 553

binary 553

divides 554

equal_to 554

greater 554

greater_equal 554

less 554

less_equal 554

logical_end 554

logical_not 554

logical_or 554

minus 554

modulus 554

multiplies 554

negate 554

not_equal_to 554

plus 554

predefined in the STL 553

function object less< int > 501

function object less< T > 505, 512

function overhead 793

function overloading 416

function pointer 407, 410, 518, 553

function prototype 58, 109, 289, 792

parameter names optional 59

function prototype scope 155, 156

function scope 155, 155

function template 173, 582, 589

function template specialization 173

<functional> header 141, 553

functional structure of a program 22

functions 3

functions for manipulating data in the standard library containers 141

functions with empty parameter lists 162

function-template specialization 582

fundamental type 26

fundamental types

unsigned int 82

G

game of chance 146

game of craps 147

game playing 141

gcount function of istream 426

general class average problem 85

general utilities library <cstdlib> 797

generalities 376

generalization in the UML 733

generalized numeric operations 557

general-utilities library <cstdlib> 646

generate algorithm 520, 521, 558

generate_n algorithm 520, 521, 558

generating values to be placed into elements of an array 191

generator function 520

generic algorithms 519

generic programming 582

get a value 49

get and set functions 48

get member function 422, 423

get pointer 452

getline function for use with class string 593

getline function of cin 424

getline function of the string header 43, 48

gets the value of 32

global 60

global function 130

global identifier 665

global namespace 667

global namespace scope 155, 156, 272, 298

global object constructors 272

global scope 272, 274, 667

global variable 154, 156, 158, 169, 667

golden mean 179

golden ratio 179

good function of ios_base 442

Good Programming Practices overview xxiii

goodbit of stream 442

goto elimination 70

goto statement 70

GradeBook.cpp 80, 86

GradeBook.h 80, 85

graph information 194

Graphical User Interface (GUI) 16

greater function object 554

greater_equal function object 554

greater-than operator 32

greater-than-or-equal-to operator 32

guard condition 74

guard condition in the UML 705

GUI (Grahical User Interface) 16

guillemets (« and ») in the UML 54

H

.h filename extension 54

half-word 617

handle on an object 264

hard disk 445

hardcopy printer 9

hardware platform 2

has-a relationship 343, 695, 283

header 54, 62, 139, 259, 372, 791

Headers

<algorithm> 492, 558

<cmath> 109

<deque> 499

<exception> 562

<forward_list> 494

<fstream> 445

<functional> 553

<iomanip.h> 90

<iostream> 21, 116

<list> 494

<map> 505, 507

<memory> 575

<numeric> 559

<queue> 511, 512

<set> 501

<stack> 509

<stdexcept> 562, 578

<string> 43

<typeinfo> 413

<unordered_map> 505, 507

<unordered_set> 501, 504

<vector> 221

how they are located 57

name enclosed in angle brackets (< >) 57

name enclosed in quotes (" ") 57

heap 321, 512, 548, 551

heapsort sorting algorithm 548

helper function 265

hex stream manipulator 427, 432, 436

hexadecimal 650

integer 232

hexadecimal (base-16) number 421, 427, 432, 436, 649, 781

hexadecimal notation 421

hexadecimal number system 634

hide implementation details 288

hide names in outer scopes 155

hierarchy of exception classes 578

hierarchy of shapes 390

“highest” type 138

high-level I/O 417

horizontal tab ('\t') 23, 634, 637

host object 283

I

IDE (integrated development environment) 6

identifier 26, 72, 156

identifiers for variable names 152

IEC (International Electrotechnical Commission) 2

#if 795

#if preprocessing directive 795

if single-selection statement 71, 74

if statement 32, 74

if statement activity diagram 74

if...else double-selection statement 72, 74, 75

if...else statement activity diagram 75

#ifdef preprocessing directive 795

#ifndef preprocessor directive 259

#ifndef preprocessing directive 795

ifstream 446, 450, 451, 464

ifstream constructor function 450

ignore 312

ignore function of istream 425

implementation inheritance 393

implementation of a member function changes 270

implementation phase 737

implementation process 708, 726

implicit conversion 90, 338, 339

via conversion constructors 339

implicit first argument 291

implicit handle 264

implicit, user-defined conversions 338

implicitly virtual 384

improper implicit conversion 338

in-class initializers 260

in-memory formatting 609

in-memory I/O 609

in-class initializer (C++11) 120

#include 791, 791

#include "filename" 791

include guard 257, 259

#include <iomanip> 90

#include <iostream> 21

#include preprocessing directive 791

#include preprocessor directive 137

includes algorithm 543, 544, 559

including a header multiple times 259

increment

a pointer 247

increment a control variable 101, 104, 105

increment an iterator 484

increment operator 315

increment operator (++) 96

indentation 73, 76

independent software vendor (ISV) 3

index 186

indexed access 498

indirect base class 345

indirect derived class 401

indirection 229, 407

indirection operator (*) 232, 234

indirectly reference a value 229

inequality 668

inequality operator (!=) 324

inequality operator keywords 668

infinite loop 89, 104, 176

information hiding 5

inherit constructors 370

inherit constructors from base class 370

inherit interface 390

inherit members of an existing class 343

Inheritance

hierarchy for university CommunityMembers 344

inheritance 5, 258, 264, 343, 345, 732, 733, 736, 737

examples 344

hierarchy 384

implementation vs. interface inheritance 393

multiple 672

relationships of the I/O-related classes 420, 446

virtual base class 679

initial state 71

initial state in the UML 703, 705

initial value of a control variable 101, 103

initial value of an attribute 702

initialize a pointer 230

initializer 189

initializer list 189, 253

initializer_list 552

initializer_list class template 336

initializing an array’s elements to zeros and printing the array 189

initializing multidimensional arrays 212

initializing the elements of an array with a declaration 190

inline 164, 335, 794

inline function 163

inline function 792, 793

inline function to calculate the volume of a cube 164

inline keyword 163

inner block 155

inner_product algorithm 559

innermost pair of parentheses 29

inplace_merge algorithm 542, 559

input a line of text 424

Input and output stream iterators 481

input from string in memory 140

input iterator 482, 484, 523, 526, 529, 532, 540, 545

input line of text into an array 254

input/output library functions 141

input/output of objects 473

input/output operations 71

input/output stream header <iostream> 21

input sequence 481

input stream 422, 423

input stream iterator 481

input stream object (cin) 27

inputting from strings in memory 609

insert function of associative container 503, 507

insert member function of class string 605

insert member function of containers 478

insert member function of sequence container 493

inserter function template 540

insertion at back of vector 486

instance 4

instance of a class 46

instant access processing 466

instant-access application 456

instruction 8

int 21, 26, 138

int & 165

int operands promoted to double 90

integer 21, 25

integer arithmetic 304

Integer class definition 575

integer division 28, 90

integer promotion 90

integers prefixed with 0 (octal) 436

integers prefixed with 0x or 0X (hexadecimal) 436

integral constant expression 112

integral size limits 141

integrated development environment (IDE) 6

interaction diagram in the UML 716

interactions among objects 714, 717

interest rate 108

interface 58

Interface Builder 16

interface inheritance 393

interface of a class 58

internal spacing 434

internal stream manipulator 432, 434

International Electrotechnical Commission (IEC) 2

International Standards Organization (ISO) 2

invalid_argument class 578

invalid_argument exception 493

invalid_argument exception class 260

invoking a non-const member function on a const object 281

<iomanip> header 140, 791, 418, 427

<iomanip.h> header 90

iOS 15

ios_base base class 440

ios_base class

precision function 427

width member function 429

ios::app file open mode 447

ios::ate file open mode 448

ios::beg seek direction 452

ios::binary file open mode 448, 461, 464

ios::cur seek direction 452

ios::end seek direction 452

ios::in file open mode 448, 450

ios::out file open mode 447

ios::trunc file open mode 448

<iostream> header 21, 139, 418, 419, 791, 116, 445

iota algorithm 559

iPod Touch 16

is a 675

is-a relationship (inheritance) 343, 372

is_heap algorithm 551, 559

is_heap_until algorithm 551, 559

is_partitioned algorithm 558

is_permutation algorithm 558

is_sorted algorithm 558

is_sorted_until algorithm 558

isalnum 634

isalpha 634

iscntrl 634, 637

isdigit 634, 636

isgraph 634, 637

islower 634, 636

ISO 2

isprint 634, 637

ispunct 634, 637

isspace 634, 637

istream 420

istream class 452, 457, 464, 471, 473, 609

peek function 425

seekg function 452

tellg function 452

istream member function ignore 312

istream_iterator 481

istringstream 611

istringstream class 609, 611

isupper 634, 636

isxdigit 634, 634

iter_swap algorithm 537, 538, 558

iterating 82

iteration 182, 184

Iterative factorial solution 183

iterative model 688

iterative solution 176, 184

<iterator> header 141, 540, 542

iterator 198, 475, 607, 608

iterator 479, 480, 481, 484, 503, 608

iterator invalidation 519

iterator operations 484

iterator pointing to first element past the end of container 480

iterator pointing to the first element of the container 480

iterator typedef 483

iterator-category hierarchy 483

J

Jacobson, Ivar 684

Jacopini, G. 70

Java programming language 16

Jobs, Steve 16

justified field 435

K

key 500

keyboard 9, 27, 115, 417, 419, 445

Keypad class (ATM case study) 690, 693, 695, 708, 715, 716, 720, 728

key–value pair 477, 505, 507, 508

keywords 72

and 668

and_eq 669

auto 213

bitand 669

bitor 669

class 173, 583

compl 669

const 163

enum 149

enum class 150

enum struct 150

explicit 52, 339

extern 154

inline 163

mutable 663

namespace 665, 667

not 668

not_eq 668

or 668

or_eq 669

private 47

public 39

static 154

table of keywords 72

template 583

throw 566

typedef 418

typename 173, 583

void 40

xor 669

xor_eq 669

L

label 155

labels in a switch structure 155

lambda expression 518, 556

lambda function 556

lambda introducer 557

large object 166

last-in, first-out (LIFO) 158

data structure 477, 509

order 582, 587

late binding 384

leading 0 436

leading 0x and leading 0X 432, 436

left brace ({) 21, 24

left justification 110, 434

left-shift operator (<<) 304, 621, 621, 627, 628

left side of an assignment 128, 187, 276, 328

left stream manipulator 110, 432, 433, 433

left-to-right associativity 98

left value 128

left-shift assignment operator (<<=) 629

left-shift operator (<<) 419

left-to-right associativity 35

left-to-right evaluation 29, 30

legacy C code 792

legacy code 797

length member function of class string 593

length of a string 254

length of a substring 340

length_error exception 493, 578, 599

less function object 554

less_equal function object 554

less< double > 505

less< int > 501, 505

less-than operator 32, 480

less-than-or-equal-to operator 32

lexicographical 597

lexicographical_compare algorithm 522, 524, 559

lifeline of an object in a UML sequence diagram 719

LIFO (last-in, first-out) 158, 477, 509

order 582, 587

<limits> header 141

line 30

line number 796

line of communication with a file 448, 450

line of text 424

__LINE__ predefined symbolic constant 796

link 6

linkage 152, 667

linker 7

Linux 15

shell prompt 9

Linux operating system 15

<list> header 140

list class 485, 494

list functions

assign 498

merge 498

pop_back 498

pop_front 498

push_front 497

remove 498

sort 497

splice 497

swap 498

unique 498

<list> header 494

list initialization 94

list initializer 227, 271

dynamically allocated array 322

vector 490

literal

floating point 89

live-code approach xxiii

load 6

loader 8, 8

local automatic object 275

local variable 44, 154, 156

<locale> header 141

log function 132

log10 function 132

logarithm 132

logic error 6, 32

logic_error exception 578

logical AND 668

logical AND (&&) 123

logical negation 123, 124

logical NOT (!) 123, 124, 668

logical operator keywords 668

logical operators 123

logical OR (||) 123, 124, 626, 668

logical_and function object 554

logical_not function object 554

logical_or function object 554

long data type 120

long double data type 138

long int 177

long int data type 120, 139

long long data type 120, 138

long long int data type 138

loop 72, 79

loop-continuation condition 72, 101, 102, 104, 105, 110, 111

loop counter 101

loop-continuation condition fails 182

looping statement 72

loss of data 442

lower_bound algorithm 548, 558

lower_bound function of associative container 503

lowercase letter 634, 636

lowercase letters 26, 140

“lowest type” 138

low-level I/O capabilities 417

lvalue (“left value”) 128, 167, 187, 231, 232, 276, 328, 335, 500

lvalues as rvalues 128

M

m-by-n array 211

Mac OS X 15, 16

machine code 110

machine dependent 247

machine language 153

Macintosh 16

macro 139

macro argument 793

macro definition 796

macro expansion 793

macro-identifier 792

macros 791

magnitude 434

magnitude right justified 432

main 21, 24

“make your point” 146

make_heap algorithm 550, 559

make_pair 507

mandatory function prototypes 137

mangled function name 171

manipulating individual characters 633

manipulator 109

manipulators 446

many-to-one relationship 697

<map> header 140, 505, 507

mapped values 500

mask 623

“masked off” 623

matching catch block 564

math library 140

math library functions 109, 131

ceil 131

cos 131

exp 131

fabs 131

floor 131

fmod 131

log 132

log10 132

pow 132

sin 132

sqrt 132

tan 132

mathematical algorithms 529

mathematical algorithms of the Standard Library 529

max algorithm 552, 559

max_element algorithm 529, 532, 559

max_size member function of a string 601

max_size member function of containers 478

maximum function 132

maximum length of a string 601

maximum size of a string 599

mean 30

member function 4, 38, 39, 726

argument 41

implementation in a separate source-code file 59

parameter 41

member function automatically inlined 261

member function call 5

member function calls for const objects 281

member function calls often concise 262

member function defined in a class definition 261

member function definitions of class Integer 576

member functions that take no arguments 262

member-initializer list 52, 283, 286, 675

member object

default constructor 288

initializer 287

member selection operator (.) 265, 293, 384, 576

memberwise assignment 279, 308

memberwise copy 332

memchr 656, 658

memcmp 656, 657

memcpy 655, 656

memmove 656, 657

<memory> header 140

memory 153

memory address 229

memory consumption 407

memory functions of the string-handling library 655

memory handling

function memchr 658

function memcmp 658

function memcpy 656

function memmove 657

function memset 659

<memory> header 575

memory leak 322, 476, 575, 577, 607

prevent 577

memory-access violation 476

memset 656, 659

merge algorithm 538, 540, 558

merge in the UML 705

merge member function of list 498

merge symbol 79

message in the UML 714, 716, 717, 720

message passing in the UML 719

Microsoft

Visual C++ 6

Microsoft Visual C++ 669

Microsoft Windows 116

min algorithm 552, 559

min_element algorithm 529, 532, 559

minmax algorithm 552, 559

minmax_element algorithm 529, 532, 553, 559

minus function object 554

minus sign (-) indicating private visibility in the UML 726

minus sign, – (UML) 50

mismatch algorithm 522, 524, 558

mission-critical computing 565

mixed-type expression 138

model of a software system 694, 702, 735

modifiable lvalue 308, 328, 335

modify a constant pointer 243

modify address stored in pointer variable 243

modulus function object 554

modulus operator (%) 28, 29, 142, 146

monetary formats 141

most derived class 681

move algorithm 540, 558

move assignment operator 334, 480

move constructor 334, 370, 478, 480

move semantics 334, 480

move_backward algorithm 540, 558

Mozilla Foundation 15

multidimensional array 211

multimap associative container 505

multiple 28

multiple inheritance 345, 418, 672, 673, 674, 675, 677

multiple inheritance demonstration 673

multiple parameters to a function 44

multiple-selection statement 72, 112

multiple-source-file program

compilation and linking process 62

multiple-statement body 34

multiplication 28, 29

multiplicative operators (*, /, %) 90

multiplicity 694

multiplies function object 554

mutable

data member 663, 663, 664

demonstration 664

keyword 152, 663

mutable data member 664

mutating sequence algorithms 558

mutator 49

N

name decoration 171

name function of class type_info 413

name handle 264

on an object 264

name mangling 171

name mangling to enable type-safe linkage 172

name of a control variable 101

name of a source file 796

name of a user-defined class 39

name of a variable 152

name of an array 187

named constant 191

namespace 22

alias 668

global 667

nested 667

qualifier 668

unnamed 667

namespace 665

namespace alias 668

namespace keyword 665, 667

namespace member 665

namespace scope 155

namespaces 665

naming conflict 291, 665

narrowing conversion 95

natural logarithm 132

navigability arrow in the UML 726

NDEBUG 797

near container 477

negate function object 554

nested blocks 155

nested control statement 92

nested for statement 194, 214, 219

nested if...else statement 76, 77

nested message in the UML 718

nested namespace 667

nested namespace 667

nested parentheses 29

NetBeans 7

network connection 417

network message arrival 570

new 332

new calls the constructor 321

new failure handler 574

<new> header 572

new operator 321

new returning 0 on failure 573

new stream manipulators 430

new throwing bad_alloc on failure 572, 573

newline ('\n') escape sequence 22, 28, 35, 118, 252, 421, 637

next_permutation algorithm 559

NeXTSTEP operating system 16

noboolalpha stream manipulator 438

noexcept keyword 571

non-const member function 282

non-const member function called on a const object 282

non-const member function on a non-const object 282

nonconstant pointer to constant data 241

nonconstant pointer to nonconstant data 241

noncontiguous memory layout of a deque 499

nondeterministic random numbers 144

none_of algorithm 533, 536, 558

nonfatal logic error 32

nonfatal runtime error 9

non-member, friend function 313

non-member function to overload an operator 336

nonmodifiable function code 264

nonmodifiable lvalue 226, 308

nonmodifying sequence algorithms 557, 558

nonparameterized stream manipulator 90

nonrecoverable failures 442

non-static member function 291, 301, 337

nontype template parameter 589

nonzero treated as true 127

noshowbase stream manipulator 432, 436

noshowpoint stream manipulator 432

noshowpos stream manipulator 432, 434

noskipws stream manipulator 432

NOT (!; logical NOT) 123

not equal 32

not operator keyword 668

not_eq operator keyword 668

not_equal_to function object 554

note 71

nothrow object 573

nothrow_t type 573

noun phrase in requirements specification 692, 698

nouppercase stream manipulator 432, 438

nth_element algorithm 558

NULL 231

null character ('\0') 253, 254, 426, 640, 645

null pointer (0) 230, 232, 449, 639

null statement 78

null terminated 606

null-terminated string 255, 421

nullptr constant 230

number of arguments 136

number of elements in an array 245

<numeric> 532

numeric algorithms 553, 559

<numeric> header 559

numerical data type limits 141

O

object 2, 3

object (or instance) 5, 717

object code 7, 62

object leaves scope 272

object of a derived class 377, 380

object of a derived class is instantiated 369

object-oriented analysis and design (OOAD) 6, 683

object-oriented design (OOD) 683, 690, 692, 698, 702, 707, 726

object-oriented language 6

object-oriented programming (OOP) 2, 6, 16, 258, 343, 2

object serialization 473

object’s vtable pointer 410

Objective-C 16

objects contain only data 264

oct stream manipulator 427, 432, 436

octal (base-8) number system 427, 432, 649

octal number 421, 436, 634, 650

octal number system (base 8) 781

off-by-one error 104

offset 410

offset from the beginning of a file 452

offset to a pointer 250

ofstream 446, 448, 450, 451, 461, 464, 466

constructor 448

open function 448

one’s complement 627, 788

one’s complement operator (~) 621

one-pass algorithm 482

ones position 781

one-to-many mapping 477

one-to-many relationship 505, 697

one-to-one mapping 477, 507

one-to-one relationship 697

OOAD (object-oriented analysis and design) 6, 683

OOD (object-oriented design) 683, 690, 692, 698, 702, 707

OOP (object-oriented programming) 2, 6, 343

open a file for input 448

open a file for output 448

open a nonexistent file 449

open function of ofstream 448

Open Handset Alliance 16

open source 15, 16

opened 445

operand 22, 27, 28, 75

operating system 15, 16

operation (UML) 41

operation compartment in a class diagram 708

operation in the UML 41, 694, 707, 708, 711, 728, 731, 736

operation parameter in the UML 44, 708, 711, 712

operator

associativity 126

overloading 28, 173, 304, 416, 621

precedence 29, 98, 126, 629

precedence and associativity chart 35

operator keywords 669

operator keywords 308, 668, 669

operator keywords demonstration 669

operator overloading

decrement operators 315

increment operators 315

operator void* 452

operator void* member function 442

operator void* member function of ios 449

operator! member function 314, 442, 449

operator!= 335

operator() overloaded operator 553

operator[]

const version 335

non-const version 335

operator+ 308

operator++ 315, 321

operator++(int) 315

operator<< 313, 331

operator= 333, 478

operator== 334, 523

operator>> 312, 331

operators

! (logical NOT operator) 123, 124

!= (inequality operator) 32

.* and ->* 670

() (parentheses operator) 29

* (multiplication operator) 29

* (pointer dereference or indirection) 232, 232

*= multiplication assignment 96

/ (division operator) 29

/= division assignment 96

&& (logical AND operator) 123

% (modulus operator) 29

%= modulus assignment 96

+ (addition operator) 27, 29

+= 595

+= addition assignment 95

< (less-than operator) 32

<< (stream insertion operator) 22, 28

<= (less-than-or-equal-to operator) 32

= (assignment operator) 27, 29, 125

-= subtraction assignment 96

== (equality operator) 32, 125

> (greater-than operator) 32

>= (greater-than-or-equal-to operator) 32

|| (logical OR operator) 123, 124

addition assignment (+=) 95

address (&) 232

arithmetic 95

arrow member selection (->) 265

assignment 95

conditional (?:) 75

const_cast 661

decrement (--) 96, 97

delete 321

dot (.) 40

increment (++) 96

member selection (.) 265

multiplicative (*, /, %) 90

new 321

parentheses (()) 90

postfix decrement 96

postfix increment 96, 98

prefix decrement 96

prefix increment 96, 98

scope resolution (::) 60

sizeof 244, 245

static_cast 90

ternary 75

typeid 413

unary minus (-) 90

unary plus (+) 90

unary scope resolution (::) 169

optimizations on constants 281

optimizing compiler 110, 154

OR (||; logical OR) 123

or operator keyword 668

or_eq operator keyword 669

order in which constructors and destructors are called 274

order in which destructors are called 272

order in which operators are applied to their operands 180

order of evaluation 181

ordered associative containers 476, 500

original format settings 440

OS X 16

ostream 452, 457, 466, 473

ostream class 418

seekp function 452

tellp function 452

ostream_iterator 481

ostringstream class 609

other character sets 592

out-of-range array subscript 570

out-of-range element 328

out of scope 158

out_of_bounds exception 493

out_of_range class 335

out_of_range exception 493, 514, 578, 595

out_of_range exception class 226

outer block 155

outer for structure 214

out-of-bounds array elements 198

output a floating-point value 432

output buffering 443

output data items of built-in type 419

output format of floating-point numbers 437

output iterator 482, 484, 521, 529, 542, 545

output of char * variables 421

output of characters 420

output of floating-point values 421

output of integers 421

output of standard data types 420

output of uppercase letters 421

output sequence 481

output stream 492

output to string in memory 140

outputting to strings in memory 609

overflow 570

overflow_error exception 578

overhead of a function call 793

overload the addition operator (+) 308

overload unary operator ! 314

overloaded [] operator 328

overloaded << operator 314

overloaded addition assignment operator (+=) 316

overloaded assignment (=) operator 327, 333

overloaded binary operators 309

overloaded cast operator function 337

overloaded constructors 371

overloaded equality operator (==) 327, 334

overloaded function 171, 589

overloaded function call operator () 340

overloaded function definitions 170

overloaded increment operator 316

overloaded inequality operator 327, 335

overloaded operator

() 553

overloaded operator += 320

overloaded operator[] member function 335

overloaded postfix increment operator 316, 320

overloaded prefix increment operator 316, 320

overloaded stream insertion and stream extraction operators 311

overloaded stream insertion operator 675

overloaded subscript operator 328, 335

overloading 28, 170

constructor 271

overloading + 309

overloading << and >> 173

overloading binary operator < 310

overloading binary operators 309

overloading function call operator () 340

overloading operators 173

overloading postfix increment operator 315, 321

overloading prefix and postfix decrement operators 315

overloading prefix and postfix increment operators 315

overloading resolution 589

overloading stream insertion and stream extraction operators 310, 316, 320, 327, 331

overloading template functions 589

overloading the stream insertion operator 473

override a function 383

override keyword 384

P

pad with specified characters 421

padding 633

padding characters 429, 432, 433, 435

padding in a structure 633

pair 503

pair of braces {} 34, 66

parameter 41, 43

parameter in the UML 44, 708, 711, 712

parameter list 43, 52

parameterized stream manipulator 90, 109, 418, 427, 452

parameterized type 582

parentheses operator (()) 29, 90

parentheses to force order of evaluation 35

partial_sort algorithm 558

partial_sort_copy algorithm 558

partial_sum algorithm 559

partition algorithm 558

partition_copy algorithm 558

partition_point algorithm 558

Pascal case 39

pass-by-reference 164, 229, 235, 237

with a pointer parameter used to cube a variable’s value 235

with pointer parameters 233

with reference parameters 165, 233

pass-by-reference with pointers 166

pass-by-value 164, 165, 233, 234, 236, 243

used to cube a variable’s value 234

passing arguments by value and by reference 165

passing large objects 166

passing options to a program 240

“past the end” iterator 532

peek function of istream 425

percent sign (%) (modulus operator) 28

perform a task 40

perform an action 22

performance 3

PI 792, 793

plus function object 554

plus sign 434

plus sign (+) indicating public visibility in the UML 726

plus sign, + (UML) 41

pointer 247

pointer 479

pointer arithmetic 247, 248, 250, 489

machine dependent 247

pointer assignment 249

pointer-based strings 252

pointer comparison 249

pointer dereference (*) operator 232

pointer expression 247, 250

pointer handle 264

pointer manipulation 407

pointer notation 251

pointer operators & and * 232

pointer to a function 407

pointer to an object 242

pointer to void (void *) 249

pointer variable 575

pointer/offset notation 250

pointer/subscript notation 250

pointer-based string 606

pointers and array subscripting 249, 250

pointers and arrays 249

pointers declared const 243

pointers to dynamically allocated storage 293, 334

pointer-to-member operators

.* 670

->* 670

point-of-sale system 456

poll analysis program 196

polymorphic exception processing 572

polymorphic programming 390, 410

polymorphic screen manager 376

polymorphically invoking functions in a derived class 678

polymorphism 373, 375

polymorphism and references 407

polynomial 31

pop 587

pop function of container adapters 509

pop member function of priority_queue 512

pop member function of queue 511

pop member function of stack 509

pop_back member function of list 498

pop_front 494, 495, 500, 511

pop_heap algorithm 551, 559

Portability Tips overview xxiv

portable 2

position number 186

positional notation 781

positional value 781, 782

positional values in the decimal number system 782

postdecrement 96, 98

postfix decrement operator 96

postfix increment operator 96, 98

postincrement 96, 320

postincrement an iterator 484

pow function 108, 110, 132

power 132

precedence 29, 31, 35, 98, 104, 124, 180

precedence chart 35

precedence not changed by overloading 309

precedence of the conditional operator 75

precision 90, 421, 426

format of a floating-point number 91

precision function of ios_base 427

precision of a floating-point value 85

precision of floating-point numbers 427

precision setting 428

predecrement 96, 98

predefined function objects 553

predefined symbolic constants 796

predicate function 265, 497, 523, 526, 529, 532, 536, 537, 540, 545, 550

prefix decrement operator 96, 97

prefix increment operator 96, 98

preincrement 96, 320

preprocessing directives 7, 21

preprocessor 6, 7, 137, 791

preprocessor directives

#ifndef 259

#define 259

#endif 259

prev_permutation algorithm 559

prevent memory leak 577

preventing headers from being included more than once 259

primary memory 8

primitive data type promotion 90

principal 108

principle of least privilege 153, 239, 240, 243, 281, 450, 483

print a line of text 20

printer 9, 417

printing

line of text with multiple statements 23

multiple lines of text with a single statement 24

unsigned integer in bits 622

priority_queue adapter class 512

empty function 513

pop function 512

push function 512

size function 513

top function 513

private

access specifier 47, 726

base class 372

base-class data cannot be accessed from derived class 358

inheritance 345

members of a base class 345

static data member 298

private libraries 7

probability 141

program development environment 6

program execution stack 159

program in the general 375

program in the specific 375

program termination 275, 276

programmer-defined function

maximum 132

promotion 90

promotion hierarchy for built-in data types 138

promotion rules 138

prompt 27, 88

prompting message 443

proprietary classes 372

protected 361

protected access specifier 258

protected base class 372

protected base-class data can be accessed from derived class 363

protected inheritance 345, 372

pseudorandom numbers 144

public

keyword 726, 731

method 260

public access specifier 39

public base class 372

public inheritance 343, 345

public keyword 39

public member of a derived class 346

public services of a class 58

public static class member 298

public static member function 298

punctuation mark 644

pure specifier 391

pure virtual function 391, 407

push 587

push function of container adapters 509

push member function of priority_queue 512

push member function of queue 511

push member function of stack 509

push_back member function of class template vector 227

push_back member function of vector 488

push_front member function of deque 499

push_front member function of list 497

push_heap algorithm 551, 559

put file-position pointer 457, 462

put member function 421, 422

put pointer 452

putback function of istream 425

Q

qualified name 369

<queue> header 140

queue adapter class 511

back function 511

empty function 511

front function 511

pop function 511

push function 511

size function 511

<queue> header 511, 512

quotation marks 22

R

radians 131

raise to a power 132

rand function 141, 142

RAND_MAX symbolic constant 141

random integers in range 1 to 6 142

random number 144

random_shuffle algorithm 529, 531, 558

random-access file 445, 457, 458, 464, 466

random-access iterator 482, 483, 498, 501, 518, 524, 531, 536, 550, 551

random-access iterator operations 484

randomizing 144

randomizing the die-rolling program 145

range 481, 532

range checking 324, 595

range-based for 595, 608

range-based for statement 200

Rational Software Corporation 690

Rational Unified Process™ 690

raw data 456

raw data processing 445

rbegin member function of class string 608

rbegin member function of containers 479

rbegin member function of vector 490

rdstate function of ios_base 442

read 457, 464

read a line of text 43

read characters with getline 43

read data sequentially from a file 450

read function of istream 425

read member function 426

read member function of istream 457, 471

read-only variable 191

Reading a random-access file sequentially 464

Reading and printing a sequential file 450

real number 85

record 446, 466

record format 459

recover from errors 442

recursion 175, 182, 183

recursion step 176, 179

recursive call 176, 179

recursive function 175

recursive function factorial 178

recursive solution 184

redundant parentheses 31, 123

reference 229, 416, 479

reference argument 233

reference parameter 164, 165, 165

reference to a constant 166

reference to a private data member 276

reference to an automatic variable 167

reference to an int 165

referencing array elements 251

referencing array elements with the array name and with pointers 251

register declaration 154

register storage-class specifier 152

regular expression 17, 609

reinterpret_cast operator 249, 458, 461, 464

reinventing the wheel 3

relational operator 32, 33

relational operators >, <, >=, and <= 122

release dynamically allocated memory 333

remainder after integer division 28

remove algorithm 526, 558

remove member function of list 498

remove_copy algorithm 524, 526, 558

remove_copy_if algorithm 524, 527, 541, 558

remove_if algorithm 524, 526, 558

rend member function of class string 608

rend member function of containers 479

rend member function of vector 490

repetition

counter controlled 79, 88

repetition statement 70, 73

do...while 110, 111

for 102, 104

while 78, 102, 110

repetition terminates 78

replace 603

replace == operator with = 127

replace algorithm 527, 529, 558

replace member function of class string 603, 605

replace_copy algorithm 527, 529, 558

replace_copy_if algorithm 527, 529, 558

replace_if algorithm 527, 529, 558

replacement text 793, 796

for a macro or symbolic constant 792, 794

requirements 5, 683, 688

requirements document 688, 689

requirements gathering 688

requirements specification 684

reset 514

resize member function of class string 601

resource leak 572

restore a stream’s state to “good” 442

resumption model of exception handling 565

rethrow an exception 567

return a result 137

Return key 27

return message in the UML 720

return statement 23, 47, 137, 176

return type 40

void 40, 48

return type in a function header 137

return type in the UML 708, 713

returning a reference from a function 167

returning a reference to a private data member 276

reusability 582

reusable software components 3

reuse 4, 54, 264

reverse algorithm 538, 541, 558

reverse_copy algorithm 541, 542, 558

reverse_iterator 479, 480, 484, 490, 608

rfind member function of class string 603

right brace (}) 21, 23, 89

right justification 110, 432, 433

right operand 22

right shift (>>) 621

right shift operator (>>) 304

right shift with sign extension assignment operator (>>=) 629

right stream manipulator 110, 432, 433

right-to-left associativity 98

right value 128

rightmost (trailing) arguments 167

right-shift operator (>>) 419, 621, 622, 628

right-shifting a signed value is machine dependent 629

right-to-left associativity 35

Ritchie, Dennis 2

robust application 561, 565

role in the UML 695

role name in the UML 695

rolling a die 142

rolling a six-sided die 6000 times 143

rolling two dice 146, 147

rotate algorithm 558

rotate_copy algorithm 558

round a floating-point number for display purposes 91

rounded rectangle (for representing a state in a UML state diagram) 703

rounding numbers 91, 131

row subscript 211

rows 211

RTTI (runtime type information) 411, 414

rules of operator precedence 29

Rumbaugh, James 684

runtime error 9

runtime type information (RTTI) 411, 414

runtime_error class 562, 570, 578

what function 567

rvalue (“right value”) 128, 167, 328

S

SalariedEmployee class header 397

SalariedEmployee class implementation file 398

savings account 108

scaling 142

scaling factor 142, 146

scientific notation 91, 421, 437

scientific notation floating-point value 438

scientific stream manipulator 432, 437

scope 104, 155, 665

scope of a symbolic constant or macro 794

scope of an identifier 152, 154

scope resolution operator (::) 60, 298, 585, 665, 668, 672, 677

scoped enum 150

scope-resolution operator (::) 150

scopes

class 155

file 155

function 155

function prototype 155

namespace 155

scoping example 156

screen 9, 21

Screen class (ATM case study) 693, 695, 708, 714, 715, 716, 718, 720, 728

screen-manager program 376

scrutinize data 259

search algorithm 558

search functions of the string-handling library 651

search key 500

search_n algorithm 558

searching 533

searching arrays 209

searching blocks of memory 655

searching strings 639, 646

second data member of pair 503

second-degree polynomial 31

secondary storage device 445

secondary storage devices

CD 445

DVD 445

flash drive 445

hard disk 445

tape 445

second-degree polynomial 31

“secret” implementation details 663

security flaws 198

seed 146

seed function rand 144

seek direction 452

seek get 452

seek put 452

seekg function of istream 452, 472

seekp function of ostream 452, 462

select a substring 340

selection statement 70, 73

self assignment 333

self-assignment 293

self-documenting 26

semicolon (;) 22, 34, 78, 791

semicolon that terminates a structure definition 617

send a message to an object 5

sentinel value 85, 89, 116

separate interface from implementation 58

sequence 210, 481, 538, 540

sequence container 476, 483, 485, 493, 497

back function 492

empty function 493

front function 492

insert function 493

sequence diagram in the UML 691, 716

sequence of messages in the UML 717

sequence of random numbers 144

sequence statement 70, 71, 73

sequence-statement activity diagram 71

sequential execution 70

sequential file 445, 446, 447, 450, 456

serialized object 473

services of a class 49

<set> header 140

set a value 49

set and get functions 48

set associative container 504

set function 288

<set> header 501, 504

set_intersection 545

set_new_handler function 572, 574

set of recursive calls to method Fibonacci 181

set operations of the Standard Library 543

set_difference algorithm 543, 545, 559

set_intersection algorithm 543, 545, 559

set_new_handler specifying the function to call when new fails 574

set_symmetric_difference algorithm 543, 545, 559

set_union algorithm 543, 546, 559

setbase stream manipulator 427

setfill stream manipulator 261, 433, 435

setprecision stream manipulator 90, 109, 427

setw 189, 312

setw parameterized stream manipulator 109

setw stream manipulator 254, 429, 433

Shape class hierarchy 345

shell prompt on Linux 9

shift a range of numbers 142

shifted, scaled integers 142

shifted, scaled integers produced by 1 + rand() % 6 142

shiftingValue 146

short-circuit evaluation 124

short data type 120

short int data type 120

showbase stream manipulator 432, 436

showpoint stream manipulator 91, 432

showpos stream manipulator 432, 434

shrink_to_fit member function of classes vector and deque 490

shuffle algorithm 558

shuffling algorithm 619

side effect 164

side effect of an expression 154, 164, 181

sign extension 622

sign left justified 432

signal value 85

signature 137, 171, 315

signatures of overloaded prefix and postfix increment operators 315

significant digits 433

simple condition 122, 124

sin function 132

sine 132

single-argument constructor 339, 340

single-entry/single-exit control statement 73, 74

single inheritance 345, 677

single-line comment 21

single-precision floating-point number 89

single quote 23

single quote (') 252

single-selection if statement 72, 76

singly linked list 476, 494

six-sided die 142

size function of string 461

size member function of array 187

size member function of class string 64, 593

size member function of containers 478

size member function of priority_queue 513

size member function of queue 511

size member function of stack 509

size member function of vector 224

size of a string 599

size of a variable 152

size of an array 244

size_t 189, 458

size_t type 244

size_type 480

sizeof 464, 651, 794

sizeof operator 244, 245, 291

used to determine standard data type sizes 245

sizeof operator when applied to an array name returns the number of bytes in the array 245

skip remainder of switch statement 121

skip remaining code in loop 122

skipping whitespace 426, 432

skipws stream manipulator 432

small circle symbol 71

smart pointer xxi, 18

smartphone 16

software engineering 58

data hiding 47, 49

encapsulation 49

reuse 54, 57

separate interface from implementation 58

set and get functions 48

Software Engineering Observations overview xxiv

software life cycle 688

software reuse 3, 343, 582, 672

solid circle (for representing an initial state in a UML diagram) in the UML 703, 705

solid circle enclosed in an open circle (for representing the end of a UML activity diagram) 705

solid circle symbol 71

solid diamonds (representing composition) in the UML 695

sort algorithm 209, 533, 536, 558

sort member function of list 497

sort_heap algorithm 550, 559

sorting 446, 533

sorting and related algorithms 557

sorting arrays 209

sorting order 536, 540

sorting strings 141

source code 6, 372

source-code file 54

SourceForge 15

spaces for padding 435

space-time trade-off 466

special character 253

special characters 26

specialization in the UML 734

spiral 179

splice member function of list 497

splice_after member function of class template forward_list 498

sqrt function of <cmath> header 132

square function 139

square root 132, 428

srand function 144

srand(time(0)) 146

<sstream> header 140, 609, 609

stable_partition algorithm 558

stable_sort algorithm 558

<stack> header 140

stack 158, 582

stack adapter class 509

empty function 509

pop function 509

push function 509

size function 509

top function 509

Stack class template 582, 589

stack frame 159

<stack> header 509

stack overflow 159, 176

stack unwinding 566, 569, 571

Stack< double > 585, 588

stack<int> 588

Stack<T> 587

standard data type sizes 245

standard error stream (cerr) 9

standard exception classes 578

standard input object (cin) 27

standard input stream (cin) 9, 418

standard input stream object (cin) 445

Standard Library

class string 305

container classes 476

deque class template 499

exception classes 579

exception hierarchy 578

headers 141, 791

list class template 495

map class template 508

multimap class template 506

multiset class template 501

priority_queue adapter class 513

queue adapter class templates 512

set class template 504

stack adapter class 509

vector class template 487

standard output object (cout) 22, 418

standard output stream (cout) 9

standard output stream object (cout) 445

standard stream libraries 418

Standard Template Library 475

state 690

state bits 422

state diagram for the ATM object 703

state diagram in the UML 703

state in the UML 690, 705

state machine diagram in the UML 690, 703

state of an object 698, 703

statement 22, 40

statement spread over several lines 35

statement terminator (;) 22

statements

break 118, 121

continue 121

do...while 110, 111

for 102, 104

if 32

return 23

switch 112, 119

throw 261

try 226

while 102, 110

static array initialization 198, 199

static array initialization and automatic array initialization 199

static binding 384

static_cast<int> 116

static data member 207, 297, 298

static data member tracking the number of objects of a class 300

static data members save storage 298

static keyword 154

static linkage specifier 667

static local object 273, 275

static local variable 156, 158, 198, 521

static member 298

static member function 298

static storage class 152

static storage duration 153, 154, 155

static storage-class specifier 152

static_cast 98, 126

static_cast (compile-time type-checked cast) 188

static_cast operator 90

status bits 442

std namespace 592

std::cin 27

std::cout 21

std::endl stream manipulator 28

__STDC__ predefined symbolic constant 797

<stdexcept> header 140, 562, 578

StepStone 16

“sticky” setting 261

sticky setting 110, 125

STL 475

STL algorithms

accumulate 553

STL exception types 493

stod function 612

stof function 612

stoi function 612

stol function 612

stold function 612

stoll function 612

storage alignment 617

storage duration 152

automatic 153

dynamic 153

static 153

thread 153

storage unit 633

storage-class specifiers 152

extern 152

mutable 152

register 152

static 152

storage-unit boundary 633

stoul function 612

stoull function 612

str member function 610

str member function of class ostringstream 609

straight-line form 29, 30

strcat function of header <cstring> 639, 641

strchr 651

strcmp function of header <cstring> 639, 642

strcpy function of header <cstring> 639, 640

strcspn 651, 652

stream base 427

stream extraction operator 419

stream extraction operator >> (“get from”) 27, 34, 173, 304, 310, 332, 419, 422, 473

stream I/O class hierarchy 446

stream input 419, 422

stream input/output 21

stream insertion operator << (“put to”) 22, 23, 28, 173, 304, 310, 332, 419, 420, 449, 675

stream manipulator 28, 109, 426, 434, 452

stream manipulators 90

boolalpha 125, 438

dec 427

fixed 91, 437

hex 427

internal 434

left 110, 433

noboolalpha 438

noshowbase 436

noshowpoint 432

noshowpos 432, 434

nouppercase 432, 438

oct 427

right 110, 433

scientific 437

setbase 427

setfill 261, 435

setprecision 90, 109, 427

setw 109, 254, 429

showbase 436

showpoint 91, 432

showpos 434

std::endl (end line) 28

stream of bytes 417

stream of characters 22

stream operation failed 442

stream output 419

<string> header 140

string 477

size function 461

string assignment 593, 594

string assignment and concatenation 594

string being tokenized 645

string class 43, 304, 307, 593

at member function 308

size member function 64

substr member function 66, 307

string class copy constructor 592

string class from the Standard Library 140

string comparison 595

string concatenation 593

string constant 253

string-conversion function 646

atof 647

atoi 648

atol 648

strtod 649

strtol 649

strtoul 650

string find member function 601

string find member functions 601

<string> header 43, 592, 56

string insert functions 605

string insert member function 605

string length 645

string literal 22, 253

string object

empty string 48

initial value 48

string of characters 22

string-search function

strchr 652

strcspn 652

strpbrk 653

strrchr 653

strspn 654

strstr 655

string stream processing 609

string::npos 603

strings as full-fledged objects 252

strlen function 640, 645

strncat function 639, 641

strncmp function 640, 642

strncpy function 639, 640

Stroustrup, B. 2

strpbrk 651, 653

strrchr 651, 653

strspn 651, 654

strstr 651, 654

strtod 646, 648

strtok function 640, 644

strtol 647, 649, 649

strtoul 647, 650

struct 616

structure 616, 792

structure definition 616, 630

structure members default to private access 616

structure name 616

structure of a system 702, 703

structure type 616

structured programming 70

student-poll-analysis program 196

subclass 343

subobject of a base class 678

subproblem 176

subscript 186

subscript 0 (zero) 186

subscript operator 500

subscript operator [] 595

subscript operator [] used with strings 593

subscript operator for map 507

subscript out of range 493

subscript through a vector 493

subscripted name used as an rvalue 328

subscripting 498

subscripting with a pointer and an offset 251

substr 598

substr member function of class string 66, 598

substr member function of string 307

substring 340

substring length 340

substring of a string 598

subtract one pointer from another 247

subtraction 29

sum of the elements of an array 193

summing integers with the for statement 107

superclass 343

survey 196, 198

swap algorithm 538, 558

swap member function of class string 598

swap member function of containers 478

swap member function of list 498

swap_ranges algorithm 537, 538, 558

swapping strings 598

swapping two strings 598

switch logic 390

switch multiple-selection statement 112, 119

switch multiple-selection statement activity diagram with break statements 120

symbol 592

symbol values 781

symbolic constant 791, 792, 794, 796

symbolic constant NDEBUG 797

symbolic constant PI 793

synchronize operation of an istream and an ostream 443

synchronous call 717

synchronous error 570

system 690

system behavior 690

system requirements 688

system structure 690

T

tab 35

tab escape sequence \t 118

Tab key 22

tab stop 23

table of values 211

tablet computer 16

tabular format 189

tails 142

tan function 132

tangent 132

tape 445

tellg function of istream 452

tellp function of ostream 452

template 792

default type argument for a type parameter 589

template definition 174

template function 173

template keyword 173, 583

template parameter 583

template parameter list 173

temporary object 337

temporary value 90, 139

terminate a program 574

terminate normally 449

terminate successfully 23

terminating condition 177

terminating null character 253, 254, 607, 640, 645

terminating right brace (}) of a block 155

termination condition 198

termination housekeeping 272

termination model of exception handling 565

termination test 182

ternary conditional operator (?:) 181

ternary operator 75

test 514

test characters 140

test state bits after an I/O operation 422

text editor 450

text file 466

text-printing program 20

text substitution 793

this pointer 291, 293, 301, 334

this pointer used explicitly 291

this pointer used implicitly and explicitly to access members of an object 292

thread storage duration 153

throw an exception 226, 260, 261, 564

throw exceptions derived from standard exceptions 579

throw exceptions not derived from standard exceptions 579

throw keyword 566

throw point 565

throw standard exceptions 579

tie an input stream to an output stream 443

tilde character (~) 272

Time class containing a constructor with default arguments 266

Time class definition 258

Time class definition modified to enable cascaded member-function calls 294

Time class member-function definitions 259

Time class member-function definitions, including a constructor that takes arguments 267

time function 146

__TIME__ predefined symbolic constant 797

time source file is compiled 797

to_string function 612

token 640, 644

tokenizing strings 639, 644

tolower 634, 636

top member function of priority_queue 513

top member function of stack 509

total 154

toupper 634, 636

trailing return type 557

trailing return type (function) 175

trailing return types 175

trailing zeros 432

Transaction class (ATM case study) 733, 734, 735, 738, 772

transaction processing 505

transaction-processing program 466

transaction-processing system 456

transfer of control 70

transform algorithm 529, 533, 558

transition 71

transition arrow 71, 74, 78, 79

transition between states in the UML 703

translation 7

translation unit 667

traversal 607

trigonometric cosine 131

trigonometric sine 132

trigonometric tangent 132

true 32

true 73, 74, 75

truncate 28, 83, 90, 448

truncate fractional part of a double 138

truth table 123

! (logical NOT) operator 125

&& (logical AND) operator 123

|| (logical OR) operator 124

try block 226, 564, 567, 570, 571

try block expires 565

try statement 226

Turing Machine 70

two-dimensional array 211, 215

two-dimensional array manipulations 215

two’s complement 788

notation 788

twos position 783

tying an output stream to an input stream 443

type checking 793, 794

type field 473

type information 473

type name (enumerations) 149

type of a variable 152

type of the this pointer 292

type parameter 173, 583, 589

type-safe linkage 171

type_info class 413

typedef 418, 592, 609, 618

fstream 420

ifstream 420

in first-class containers 479

iostream 418

istream 418

ofstream 420

ostream 418

typeid 413, 578

<typeinfo> header 140, 413

typename keyword 173, 583

type-safe I/O 425

U

UML (Unified Modeling Language) 6, 41, 683, 684, 690, 694, 701, 702, 733

action expression 71

action state 71

activity diagram 70, 71, 78

arrow 71

attribute 41

class diagram 41

constructor in a class diagram 54

data types 44

decision symbol 74

diagram 690

diamond symbol 71, 74

dotted line 71

final state 71

guard condition 74

guillemets (« and ») 54

initial state 71

merge symbol 79

minus sign (–) 50

note 71

plus sign (+) 41

public operation 41

Resource Center (www.deitel.com/UML/) 691

small circle symbol 71

solid circle symbol 71

String type 44

transition 71

transition arrow 71, 74, 78, 79

UML activity diagram 105

solid circle (for representing an initial state) in the UML 705

solid circle enclosed in an open circle (for representing the end of an activity) in the UML 705

UML class diagram

attribute compartment 701

constructor 54

operation compartment 708

UML sequence diagram

activation 720

arrowhead 720

lifeline 719

UML state diagram

rounded rectangle (for representing a state) in the UML 703

solid circle (for representing an initial state) in the UML 703

UML use case diagram

actor 689

use case 689

unary decrement operator (--) 96

unary increment operator (++) 96

unary minus (-) operator 90

unary operator 90, 124, 231

unary operator overload 309, 314

unary plus (+) operator 90

unary predicate function 497, 526, 529

unary scope resolution operator (::) 169

unbuffered output 420

unbuffered standard error stream 418

#undef preprocessing directive 794, 796

undefined area in memory 618

underflow_error exception 579

underlying container 509

underlying data structure 512

underscore (_) 26

unformatted I/O 417, 418, 425

unformatted output 420, 422

Unicode 592

Unicode character set 417

Unified Modeling Language (UML) 6, 683, 684, 690, 694, 701, 702, 733

uniform initialization 94

uniform_int_distribution 151

unincremented copy of an object 321

unique algorithm 538, 540, 558

unique keys 500, 504, 507

unique member function of list 498

unique_copy algorithm 541, 542, 558

unique_ptr class 575

built-in array 578

universal-time format 260

UNIX 449

unnamed bit field 633

unnamed bit field with a zero width 633

unnamed namespace 667

unordered associative containers 476, 477, 500

<unordered_map> header 140

unordered_map class template 477, 507

unordered_multimap class template 477, 505

unordered_multiset class template 477, 501

<unordered_set> header 140

unordered_set class template 477, 504

unscoped enum 150

unsigned char data type 139

unsigned data type 139, 145

unsigned int 91

unsigned int data type 139, 145

unsigned int fundamental type 82

unsigned integer in bits 622

unsigned long 178, 650

unsigned long data type 138

unsigned long int 177, 178

unsigned long int data type 138

unsigned long long data type 138

unsigned long long int 178

unsigned long long int data type 138

unsigned short data type 139

unsigned short int data type 139

untie an input stream from an output stream 443

unwinding the function call stack 568

update records in place 456

upper_bound algorithm 548, 558

upper_bound function of associative container 503

uppercase letter 26, 140, 634, 636

uppercase stream manipulator 432, 436, 438

use case diagram in the UML 689, 690

use case in the UML 688, 689

use case modeling 688

user-defined class name 39

user-defined function 132

user-defined type 40, 149, 337

using a dynamically allocated ostringstream object 610

using a function template 173

Using a static data member to maintain a count of the number of objects of a class 299

using an iterator to output a string 608

using arrays instead of switch 195

using declaration 34

in headers 56

using directive 34, 665

in headers 56

using function swap to swap two strings 598

using Standard Library functions to perform a heapsort 548

Using virtual base classes 680

<utility> header 141

utility function 265

V

validation 64

validity checking 64

value 27

value initialize 238

value of a variable 152

value of an array element 187

value_type 479

variable 25

variable name

argument 44

parameter 44

variadic template 504

<vector> header 140

vector class 221

capacity function 488, 488

crbegin function 490

crend function 490

push_back function 488

push_front function 488

rbegin function 490

rend function 490

vector class template 186, 486

push_back member function 227

shrink_to_fit member function 490

vector class template element-manipulation functions 490

<vector> header 221

verb phrase in requirements specification 707

vertical spacing 102

vertical tab ('v') 634, 637

vi 6

virtual base class 661, 678, 679, 680, 681

virtual destructor 389

virtual function 375, 383, 407, 409, 678

call 409

call illustrated 408

table (vtable) 407

virtual inheritance 679

virtual memory 573, 574

visibility in the UML 726

visibility marker in the UML 726

Visual Studio 2012 Express Edition 7

void * 249, 655

void keyword 40, 48

void return type 138

volatile qualifier 661

volume of a cube 164

vtable 407, 409, 410

vtable pointer 410

W

“walk off” either end of an array 323

warning message 66

waterfall model 688

wchar_t 592

wchar_t character type 418

“weakest” iterator type 482, 519

what member function of an exception object 226

what virtual function of class exception 562, 567, 573

while repetition statement 72, 78, 102, 110

while statement activity diagram 79

whitespace characters 21, 22, 35, 422, 423, 426, 634, 637, 791, 796

whole/part relationship 695

width implicitly set to 0 429

width member function of class ios_base 429

width of a bit field 630

width of random number range 146

width setting 429

Windows 15, 116

Windows operating system 15

Windows Phone 7 15

Withdrawal class (ATM case study) 693, 694, 695, 696, 699, 700, 705, 708, 715, 716, 719, 720, 728, 729, 731, 733, 734, 735, 737, 738, 739

word 617

word boundary 617

workflow of a portion of a software system 71

workflow of an object in the UML 704

Wozniak, Steve 16

wraparound 320

write 457, 462

write function of ostream 421, 425

writing data randomly to a random-access file 462

X

Xcode 7

Xerox PARC (Palo Alto Research Center) 16

XML (extensible markup language) 473

xor operator keyword 669

xor_eq operator keyword 669

Z

zeroth element 186

zero-width bit field 633

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

images/00503.jpeg
1
2
3
4
5
6
7
8
9

10

1"

12

13

14

15

// Fig. 12.2: Figl2_02.cpp

// Aiming a derived-class pointer at a base-class object.
#include "CommissionEmployee.h"

#include "BasePlusCommissionEnployee.h"

int mainQ)

{

CommissionEmployee commissionEmployee(
"Sue", "Jones", "222-22-2222", 10000, .06);
BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;

// aim derived-class pointer at base-class object
// Error: a CommissionEmployee is not a BasePTusCommissionEmployee
basePusCommissionEmployeePtr = &commissionEmployee;

} // end main

Microsoft Visual Cs+ compiler error message:

C:\cpphtp8_examples\ch12\Fig12_02\figl2_02.cpp(14): error C244 :
cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee

.

Cast from base to derived requires dynamic_cast or static_cast

images/00745.jpeg
28 } // end main

sl
s2

Happy
New Year

After strcat(sl, s2):
s1 = Happy New Year
s2 = New Year

After strncat(s3, s1, 6):
s1 = Happy New Year
s3 = Happy

After strcat(s3, s1):
s1 = Happy New Year
s3 = Happy Happy New Year

images/00502.jpeg
Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04 Notice that the base salary is not displayed
o

images/00744.jpeg
// Fig. 20.23: fig20_23.cpp

// Using strcat and strncat.

#include <iostream>

#include <cstring> // prototypes for strcat and strncat
using namespace std;

int main()

{

char s1[20] = "Happy "; // length 6
char s2[] = "New Year // length 9
char s3[40] =

cout << "sl =" << sl << "\ns2 = " << s2;

strcat(s1, s2); // concatenate s2 to sl (length 15)

cout << "\n\nAfter strcat(sl, s2):\nsl = " << sl << "\ns2 =

// concatenate first 6 characters of sl to s3
strncat(s3, s1, 6); // places '\0' after last character

cout << "\n\nAfter strncat(s3, sl, 6):\nsl = " << sl
<< "\ns3 = " << s3;

strcat(s3, sl); // concatenate sl to s3
cout << "\n\nAfter strcat(s3, s1):\nsl =
<< "\ns3 = " << s3 << endl;

<< sl

<< 523

images/00505.jpeg
23 double grossSales = commissionEmployeePtr->getGrossSales();

2% double commissionRate = commissionEmployeePtr->getCommissionRate() ;
25

26 // attempt to invoke derived-class-only member functions

27 // on derived-class object through base-class pointer (disallowed)
28 double baseSalary = commissionEmployeePtr->getBaseSalary(;

29 commissionEmployeePtr->setBaseSalary(500);

30 } // end main

GNU Ci+ compiler error messages:

fig12_03.cpp:28:47: error: ‘class CommissionEmployee’ has no member named
‘getBaseSalary’

£ig12_03.cpp:29:27: error: ‘class CommissionEmployee’ has no member named
‘setBaseSalary’

images/00747.jpeg
23 } // end main

sl
s2
s3

Happy New Year
Happy New Year
Happy Holidays

stremp(sl, s2)
stremp(sl, s3)

strcmp(s3, s1) = -1

strncmp(sl, s3, 6) =
strncmp(sl, s3, 7) =
strncmp(s3, s1, 7) =

o

images/00504.jpeg
// Fig. 12.3: figl2_03.cpp

// Attempting to invoke derived-class-only member functions
// via a base-class pointer.

#include <string>

#include “CommissionEmployee.h”

#include "BasePlusCommissionEmployee.h"

using namespace std;

int mainQ

{

CommissionEmployee *commissionEmployeePtr = nullptr; // base class ptr
BasePlusCommissionEmployee basePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class

// aim base-class pointer at derived-class object (allowed)
commissionEmployeePtr = &basePlusCommissionEmployee;

// invoke base-class member functions on derived-class
// object through base-class pointer (allowed)

string firstName = commissionEmployeePtr->getFirstName();
string lastName = commissionEmployeePtr->getLastName();

string ssn = commissionEmployeePtr->getSocialSecurityNumber();

images/00746.jpeg
B T o ST
Bea 5o nEtN-con~ausuN -

22

// Fig. 20.24: fig20_24.cpp

// Using strcmp and strncmp.

#include <iostream>

#include <iomanip>

#include <cstring> // prototypes for strcmp and strncmp
using namespace std;

int mainQ)

{

const char *s1
const char #s2 =
const char *s3

"Happy New Year";
lappy New Year";
appy Holidays";

<< 51 << "\ns2 = " << 52 << "\ns3 = " << s3
<< setw(2) << stremp(s1, s2)
" << setw(2) << strcmp(sl, s3)
" << setw(2) << stremp(s3, s1);

cout << "sl =
<< "\m\nstremp(sl, s2)
<< "\nstrcmp(sl, s3)
<< "\nstrcmp(s3, s1)

cout << "\n\nstracmp(sl, s3, 6) = " << setw(2)
<< strnemp(s1, s3, 6) << "\nstrncmp(sl, 3, 7)
<< strncmp(s1, s3, 7) << "\nstrncmp(s3, s1, 7) =
<< strncmp(s3, s1, 7) << endl;

<< setw(2)
<< setw(2)

images/00741.jpeg
33 << " printing character\nAlert

34 << (isprint("\a') 7 "is a" is not a")

35 << " printing character\nSpace "

36 << (disprint(' ') ? "is a" : "is not a")

37 << " printing character\n";

38

39 cout << "\nAccording to isgraph:\n"

20 << (isgraph('Q') ? "Q is a" : "Q is not a")

41 << " printing character other than a space\nSpace "
a2 << (isgraphC ' ') ? "is a" : "is not a")

43 << " printing character other than a space" << endl;

44} // end main

images/00740.jpeg
// Fig. 20.
// Using functions isspace, iscntrl, ispunct, isprint and isgraph.

20: £1920_20.cpp

#include <iostream>

#include <cctype> // character-handling function prototypes

using namespace std;

int mainQ)
{

cout << "According to isspace:\nNewline "
<< (isspace("\n') ? "is a" : "is not a"
<< " whitespace character\nHorizontal tab "
<< (isspace('\t') ? "is a" : "is not a"
<< " whitespace character\n"
<< (isspace('%') ? "% is a" : "% is not
<< " whitespace character\n";

cout << "\nAccording to iscntrl:\nNewline "
<< (iscntrl("\n') ? "is a" : "is not a"
<< " control character\n"
<< (iscntrl('$') ? "$ ds a" : "$ is not
<< " control character\n";

cout << "\nAccording to ispunc
<< Cispunct(';') 7 " s not
<< " punctuation character\n"
<< (ispunct('Y') ? "Y is a" : "Y is not
<< " punctuation character\n"
<< (ispunct('#') ? "# is a" not
<< " punctuation character\n";

cout << "\nAccording to isprint:
<< (isprint('$') ? "$ is a' not

)
bl

an

images/00501.jpeg
Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

images/00743.jpeg
// Fig. 20.22: ig20_22.cpp

// Using strcpy and strncpy.

#include <iostream>

#include <cstring> // prototypes for strcpy and strncpy
using namespace std;

int mainQ)

<
char x[] = "Happy Birthday to You"; // string length 21
char y[25 1;
char z[15];

strepyC y, x); // copy contents of x into y

"<< x

<<y << \n';

cout << "The string in array x is:
<< "\nThe string in array y is: "
// copy first 14 characters of x into z

1
2
3
4
5
6
7
8
9
10
1"
12
13
14
15
16
1”7
18
19 strncpy(z, x, 14); // does not copy null character

20 z[14 1 = "\0'; // append '\0' to z's contents
21
22 cout << "The string in array z is: " << z << endl;

23} // end main

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

images/00500.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55

basePlusCommissionEmployee.print(); // invokes derived-class print

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &ommissionEmployee; // perfectly natural
cout << "\n\n\nCalling print with base-class pointer to "

<< "\nbase-class object invokes base-class print function:\n\n";
commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural
cout << "\n\n\nCalling print with derived-class pointer to "

<< "\nderived-class object invokes derived-class "

<< "print function:\n\n";
basePTusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;
cout << "\n\n\nCalling print with base-class pointer to

<< "derived-class object\ninvokes base-class print "

<< "function on that derived-class object:\n\n!
commissionEmployeePtr->print(); // invokes base-class print
cout << endl;

} // end main

images/00742.jpeg
According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:

$ is a printing character

Alert is not a printing character
Space is a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

images/00738.jpeg
// Fig. 20.19: fig20_19.cpp

// Character-handling functions islower, isupper, tolower and toupper.

#include <iostream>

#include <cctype> // character-handling function prototypes

using namespace std;

int mainQ)

{

cout <<

<<
<<
<<
<<
<<
<<
<<
<<

C

C

C

(islower(1") 7 "

cout <<

{¢

<<
<<
<<
<<
<<
<<
<<
<<

"According to islower:\n"
islower('p') ? "p is a"
Towercase letter\n"
isToner('P') ? "P is a
lowercase letter\n"

islower('5') ? "5 is a" :

Towercase Tetter\n"

Towercase letter\n";

"\nAccording to isupper:\s
isupper('D') ? "D is an
uppercase Tetter\n"
isupper('d') ? "d is an
uppercase letter\n"
isupper('8') ? "8 is an
uppercase letter\n"

(isupper('$') ? "$ is an

cout <<
<< static_cast< char >(toupper('u'))

uppercase letter\n";

"\nu converted to uppercase is

is a"

: "P is not a")

"5 is not a")

! is not a")

is not an"
"d is not an"
"8 is not an"

"$ is not an"

images/00737.jpeg
33 << " hexadecimal digit\n"

34 << (isxdigit('$') ? "$ is a" :
35 << " hexadecimal digit\n"

36 << (isxdigit('f') ? "f is a"
37 << " hexadecimal digit" << endl;

38 } // end main

“$ is not a")

: "f is not a")

According to isdigit:
8 is a digit

is not a digi
According to isalpha:
A is a letter

b is a letter

& is not a letter

4 is not a Tetter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

images/00739.jpeg
31
32
33
34
35
36
37

<<
<<
<<
<<
<<
<<

} // end

"\n7 converted to
static_cast< char
"\n$ converted to
static_cast< char
"\nL converted to
static_cast< char
main

uppercase is "

>(toupper('7'
uppercase is "
>(toupper('$"
Towercase is "
>(tolower('L"

L))
3] D)
)) << endl;

According to islower:
p is a lowercase letter

P is not a lowercase letter
5 is not a lowercase letter
! is not a Towercase letter

According to isupper:

is
is
is
is

wmao

co
co
co
co

FuNc

an uppe
not an
not an
not an

nverted
nverted
nverted
nverted

rcase letter

uppercase letter
uppercase letter
uppercase letter

to uppercase
to uppercase
to uppercase
to Towercase

ey
—w~c

images/00734.jpeg
struct Example

U
unsigned a : 13;
unsigned : 3; // align to next storage-unit boundary
unsigned b : 4;

}; // end struct Example

images/00733.jpeg
Suit:

Suit
suit

Suit:
Suit:

Suit
Suit
Suit
Suit
Suit
Suit
Suit

Suit:

Suit
Suit
Suit
Suit
Suit
Suit
Suit
Suit
Suit
Suit
Suit
Suit

Suit:

HEHRHERRRHHEHEHEHHOO00000000000

Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:

0000000000000 0000000000000

Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:
Card:

CeNONAWN RO

=
153

B .
ESvm~vaunswnroib

Suit:

W W W W N I NN I I I N N N

Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:
Color:

I

images/00736.jpeg
// Fig. 20.
// Character-handling functions isdigit, isalpha, isalnum and isxdigit.

18: ig20_18.cpp

#include <iostream>

#include <cctype> // character-handling function prototypes

using namespace std;

int mainQ)
{

cout <<

<< (

<« (

cout <<
<« (
<< (
<< (
<< (
cout <<
<< (
o
<< (
Bk
<< (

iz

cout <<
<<
<< "
<< C
g
<< (

"According to isdigit:\n"
isdigit('8') ? "8 is a"

isdigit('#') 7 "# is a" :
"\nAccording to isalpha:\n"

" :
p i

isalpha(‘A")
isalpha('b')
isalpha('&')
isalpha('4')

?
?
7
?

"\nAccording to isalnum:\n"
isalnum('A') 7 "A is a" :

digit or
isalnum(
digit or a letter\n"

Tetter\n"

isalnum('#') ? "# is a" :

digit or a letter\n";

"\nAccording to isxdigit:\n"
is a" :

isxdigit('F') ? "F
hexadecimal digit\n"
isxdigit('3') 2 "3
hexadecimal digit\n"
isxdigit('7') ? "7

v i

)?"8 is a”

is

is

al

a

not a
not a"

not
not
not
not

"A is not a")
"8 is not a")

"# is not a")

“F is not a")

: "3 is not a")

"7 is not a")

<<
<<

<<
<<
<<
<<

digit\n"
digit\n’

Tetter\n"
Tetter\n"
Tetter\s
Tetter\n";

images/00735.jpeg
struct Example

{
unsigned a : 13;
unsigned : 0; // align to next storage-unit boundary
unsigned b : 4;

}; // end struct Example

images/00730.jpeg
e
85N anEuNTSorNausuNn -

22
23
24
25
26

// Fig. 20.14: Deck0fCards.h
// Definition of class DeckOfCards that
// represents a deck of playing cards.
#include <array>

// BitCard structure definition with bit fields
struct BitCard
{
unsigned face : 4; // 4 bits; 0-15
unsigned suit : 2; // 2 bits; 0-3
unsigned color : 1; // 1 bit; 0-1
}; // end struct BitCard

// DeckOfCards class definition

class DeckOfCards

&

public:
static const int faces = 13;
static const int colors = 2; // black and red
static const int numberOfCards = 52;

Deck0fCards); // constructor initializes deck
void deal() const; // deals cards in deck
private:

std::array< BitCard, numberOfCards > deck; // represents deck of cards

}; // end class DeckOfCards

images/00732.jpeg
CENOUEWN=

// Fig. 20.16: fig20_16.cpp
// Card shuffling and dealing program.
#include "DeckOfCards.h" // Deck0fCards class definition

int main()

{
DeckOfCards deckOfCards; // create DeckOfCards object
deckOfCards.deal(); // deal the cards in the deck

} // end main

images/00731.jpeg
I // Fig. 20.15: DeckOfCards.cpp

2 // Member-function definitions for class DeckOfCards that simulates
3 // the shuffling and dealing of a deck of playing cards.

4 #include <iostream>

5 #include <iomanip>

6 #include "DeckOfCards.h" // DeckOfCards class definition

7 using namespace std;

8

9

10

// no-argument DeckOfCards constructor intializes deck
Deck0fCards: :Deck0fCards)

1 A

12 for (size_t i = 0; i < deck.size(); ++i)

3 {

14 deck[i].face = i % faces; // faces in order

15 deck[i].suit = i / faces; // suits in order

16 deck[i].color = i / (faces * colors); // colors in order
17 } // end for

18} // end no-argument DeckOfCards constructor

19

20 // deal cards in deck
21 void DeckOfCards::deal() const

22 {

23 for (size_t k1 = 0, k2 = k1 + deck.size() / 2;

24 k1 < deck.size() / 2 - 1; ++kl, ++k2)

25 cout << "Car << setw(3) << deck[k1].face

26 << " Swit:" << setw(2) << deck[k1].suit

27 << " Color:" << setw(2) << deck[k1 J.color

28 << " " << "Card:" << setw(3) << deck[k2].face

29 << " Swit:" << setw(2) << deck[k2].suit

30 << " Color:" << setw(2) << deck[k2].color << endl;

31} // end function deal

images/00727.jpeg
64
65 cout << endl;
66 1} // end function displayBits

The result of combining the following
2179876355 = 10000001 11101110 01000110
1 = 00000000 00000000 00000000
using the bitwise AND operator & is
1 = 00000000 00000000 00000000

The result of combining the following
5 = 00000000 00000000 00000000
241 = 00000000 00000000 00000000
using the bitwise inclusive OR operator
255 = 00000000 00000000 00000000

The result of combining the following
139 = 00000000 00000000 00000000
199 = 00000000 00000000 00000000

using the bitwise exclusive OR operator
76 = 00000000 00000000 00000000

The one's complement of

21845 = 00000000 00000000 01010101
is
4294945450 = 11111111 11111111 10101010

00000011
00000001

00000001

00001111
11110001
| is

11111111

10001011
11000111
A s

01001100

01010101

10101010

images/00726.jpeg
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48
49
50
H
52
53
54
55
56
57
58
59
60
61
62
63

cout << "\nThe result of combining the following\n";
displayBits(numberl);
displayBits(number2);

cout << "using the bitwise exclusive OR operator A is\n"

displayBits(numberl A number2);

// demonstrate bitwise complement

numberl = 21845;
cout << "\nThe one's complement of\n";
sC numberl);

displayBi
cout << "is"

<< endl;
displayBits(~numberl);
} // end main

// display bits of an unsigned integer value
void displayBits(unsigned value)

{

const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

cout << setw(10) << value << " = ";

// display bits

for (unsigned i = 1; i <= SHIFT + 1; ++i)

{

cout << (value & MASK ? '1' : '0');
value <<= 1; // shift value Teft by 1

if (%8
cout <<
} // end for

0 // output a space after 8 bits

images/00729.jpeg
32 cout << setw(10) << value << " =
33

34 // display bits

35 for (unsigned i = 1; i <= SHIFT + 1; ++i)
36 {

37 cout << (value & MASK ? '1' : '0');
38 value <<= 1; // shift value left by 1
39

40 if (i%8 0) // output a space after 8 bits
41 cout << ' '3

42 } // end for

43

44 cout << endl;

45 '} // end function displayBits

The result of left shifting
960 = 00000000 00000000 00000011 11000000
8 bit positions using the left-shift operator is
245760 = 00000000 00000011 11000000 00000000

The result of right shifting
960 = 00000000 00000000 00000011 11000000

8 bit positions using the right-shift operator is
3 = 00000000 00000000 00000000 00000011

images/00728.jpeg
// Fig. 20.11: fig20_11.cpp

// Using the bitwise shift operators.
#include <iostream>

#include <iomanip>

using namespace std;

void displayBits(unsigned); // prototype

int main()

1

unsigned numberl = 960;

// demonstrate bitwise Teft shift
cout << "The result of left shifting\n";

displayBits(numberl);

cout << "8 bit positions using the left-shift operator is\n";
displayBits(numberl << 8);

// demonstrate bitwise right shift
cout << "\nThe result of right shifting\n";
displayBits(numberl);
cout << "8 bit positions using the right-shift operator is\n";
displayBits(numberl >> 8);
} // end main

// display bits of an unsigned integer value
void displayBits(unsigned value)

{
const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

images/00723.jpeg
00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

images/00722.jpeg
28 {

29 cout << (value & MASK ? '1' : '0');

30 value <<= 1; // shift value Teft by 1

31

32 if (i %8 ==10) // output a space after 8 bits
33 cout << ' ';

34 } // end for

35

36 cout << endl;

37 '} // end function displayBits

Enter an unsigned integer: 65000
65000 = 00000000 00000000 11111101 11101000

Enter an unsigned integer: 29
9 = 00000000 00000000 00000000 00011101

images/00011.jpeg

images/00725.jpeg
// Fig. 20.8: fig20_08.cpp
// Bitwise AND, inclusive OR,

// exclusive OR and complement operators.
#include <iostream>

#include <iomanip>

using namespace std;

void displayBits(unsigned); // prototype

int mainQO
{
// demonstrate bitwise &
unsigned numberl = 2179876355;
unsigned mask = 1;
cout << "The result of combining the following\n";
displayBits(numberl);
displayBits(mask);
cout << "using the bitwise AND operator & is\n";
displayBits(numberl & mask);

// demonstrate bitwise |

numberl = 15

unsigned setBits = 241;

cout << "\nThe result of combining the following\n";
displayBits(numberl);

displayBits(setBits);

cout << "using the bitwise inclusive OR operator | is\n";
displayBits(numberl | setBits);

// demonstrate bitwise exclusive OR
numberl = 139;
unsigned number2 = 199;

images/00010.jpeg
C++11 features in C++1 1 for Programmers

al1_of algorithm

any_of algorithm

array container

auto for type inference

begin/end functions

cbegin/cend container member
functions

Compiler fix for >> in template
types

copy_if algorithm

copy_n algorithm

crbegin/crend container mem-
ber functions

decltype

Default type arguments in func-
tion templates

defaulted member functions

Delegating constructors

deleted member functions

explicit conversion operators

final classes

final member functions

find_if_not algorithm

forward_11st container

Immutable keys in associative
containers

In-class initializers

Inheriting base-class constructors

insert container member func-
tions return iterators

is_heap algorithm

is_heap_unti1 algorithm

Keywords new in Ci+11

Lambda expressions

List initialization of key-value
pairs

List initialization of pair objects

List initialization of return values

List initializing a dynamically
allocated array

List initializing a vector

List initializers in constructor
calls

Tong Tong int type

min and max algorithms with
initializer_list parameters

minmax algotithm

minmax_element algorithm

nove algorithm

Move assignment operators

move_backward algorithm

Move constructors

noexcept.

Non-deterministic random
number generation

none_of algorithm

Numeric conversion
functions

nullptr

override keyword

Range-based for statement

Regular expressions

Rvalue references

Scoped enums

shared_ptr smart pointer

shrink_to_fitvector/deque
member function

Specifying the type of an
enuns constants.

static_assert objects for
file names

string objects for file names

swap non-member function

Trailing return types for
functions

tuple variadic template

unique_ptr smart pointer

Unsigned Tong Tong int

weak_ptr smart poiner

images/00724.jpeg
11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value & MASK)

images/00013.jpeg

images/00012.jpeg

images/00015.jpeg

images/00721.jpeg
T . 7
B sNaRitN-Cor~NauaswNn -

22
23
24
25
26
27

// Fig. 20.6: Fig20_06.cpp
// Printing an unsigned integer in bits.
#include <iostreams

#include <iomanip>

using namespace std;

void displayBits(unsigned); // prototype

int mainQ)

{

unsigned inputValue = 0; // integral value to print in binary
cout << "Enter an unsigned integer: ";
cin >> inputValue;

displayBits(inputvValue);

} // end main

// display bits of an unsigned integer value
void displayBits(unsigned value)

{

const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

cout << setw(10) << value << " = ";

// display bits
for (unsigned i = 1; i <= SHIFT + 1; ++i)

images/00014.jpeg

images/00720.jpeg
King
Five
Seven
Three
Ten
Eight
Nine
Three
Six
Seven
Jack
Deuce
Three
Eight
Deuce
Ten
Ten
Queen
Seven
Deuce
Three
Deuce
Four
Nine
Ace
Four

Clubs
Diamonds
Spades
Spades
Clubs
Hearts
Diamonds
Diamonds
Clubs
Diamonds
Spades
Diamonds
Clubs
Clubs
Spades
Spades
Hearts
Diamonds
Clubs
Clubs
Hearts
Hearts
Hearts
Spades
Spades
Spades

Ten
Jack
Five
King

Eight

Six

Nine
Queen
Seven

Jack

King

Four

Five

Ace

Ace

Eight

Six

Nine
Queen
Queen

Five

Jack

Ace
Four

Six
King

Diamonds
Clubs
Clubs
Hearts
Spades
Hearts
Clubs
Hearts
Hearts
Diamonds
Diamonds
Clubs
Hearts
Hearts
Clubs
Diamonds
Spades
Hearts
Clubs
Spades
Spades
Hearts
Diamonds
Diamonds
Diamonds
Spades

images/00719.jpeg
SomNoUusUN=

// Fig. 20.4: fig20_04.cpp
// Card shuffling and dealing program.
#include "DeckOfCards.h" // DeckOfCards class definition

int mainQ)

{
DeckOfCards deckOfCards; // create DeckOfCards object
deckOfCards.shuffle(); // shuffle the cards in the deck
deck0ofCards.deal(); // deal the cards in the deck

} // end main

images/00716.jpeg
// Fig. 20.2: DeckOfCards.h

// Definition of class DeckOfCards that
// represents a deck of playing cards.
#include <string>

#include <array>

// Card structure definition
struct Card

tring suit;
}; // end structure Card

// DeckOfCards class definition
class DeckOfCards

{
public:
static const int numberOfCards = 52;
static const int faces = 13;
static const int suits = 4;
Deck0fCards(); // constructor initializes deck
void shuffle(; // shuffles cards in deck
void deal() const; // deals cards in deck
private:

std::array< Card, numberOfCards > deck; // represents deck of cards

}; // end class DeckOfCards

images/00715.jpeg
29
30
31
32
33

// test stream results
if (inputString.good())
cout << "\n\nlong value is:
else
cout << "\n\ninputString is empty" << endl;

<< value << endl;

34 } // end main

The following items were extracted
from the istringstream object:

string:
string:
int:
double:
char:

TInput
test
123
4.7
A

inputString is empty

images/00718.jpeg
32
33 // shuffle cards in deck
34 void DeckOfCards: :shuffle()

35 {

36 // shuffle cards randomly

37 for (size_t i = 0; i < deck.size(); ++i)
38 {

39 int j = randQ) % numberOfCards;
40 Card temp = deck[i 1;

41 deck[i] = deck[j 1;

42 deck[j] = temp;

43 } // end for

44} // end function shuffle

45

46 // deal cards in deck
47 void DeckOfCards::deal() const

48 {

49 // display each card’s face and suit

50 for (size_t i = 0; i < deck.sizeQ); ++i)

51 cout << right << setw(5) << deck[i].face << " of "
52 << Teft << setw(8) << deck[i].suit

53 < (Ci+1)%27 "\t : "\n');

54 } // end function deal

images/00717.jpeg
30
31

// Fig. 20.3: DeckOfCards.cpp

// Member-function definitions for class DeckOfCards that simulates
// the shuffling and dealing of a deck of playing cards.

#include <iostream>

#include <iomanip>

#include <cstdlib> // prototypes for rand and srand

#include <ctime> // prototype for time

#include "DeckOfCards.h" // DeckOfCards class definition

using namespace std;

// no-argument DeckOfCards constructor intializes deck
DeckOfCards : :Deck0fCards ()
{
// initialize suit array
static string suit[suits] =
{ "Hearts", "Diamonds", "Clubs", "Spades” };

// initialize face array
static string face[faces] =
{ "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",
“Eight", "Nine", "Ten", "Jack", "Queen", “King" };

// set values for deck of 52 Cards
for (size_t i 5 1 < deck.size(Q); ++i)
{

deck[i].face = face[i % faces];
deck[i].suit = suit[i / faces 1;
} // end for

srand(static_cast< size_t >(time(nullptr))); // seed
} // end no-argument DeckOfCards constructor

images/00712.jpeg
// Fig. 19.11: Figl9_1l.cpp
// Using an ostringstream object.

#include <iostream>

#include <string>

#include <sstream> // header for string stream processing
using namespace std;

int mainQ)

{

ostringstream outputString; // create ostringstream instance

b

string stringl("Output of several data types
string string2("to an ostringstream object:
string string3(“\n double: ");
string string4("\n ine: ");
string string5("\naddress of int: ");

double doublel = 123.4567;
int integer = 22;

// output strings, double and int to ostringstream outputString
outputString << stringl << string2 << string3 << doublel
<< string4 << integer << string5 << &integer;

// call str to obtain string contents of the ostringstream
cout << "outputString contains:\n" << outputString.strQ;

// add additional characters and call str to output string
outputString << "\nmore characters added";
cout << "\n\nafter additional stream insertions,\n"

images/00711.jpeg
typedef basic_istringstream< char > istringstream;
typedef basic_ostringstream< char > ostringstream;

images/00714.jpeg
// Fig. 19.12: Figl9_12.cpp

// Demonstrating input from an istringstream object.
#include <iostream>

#include <string>

#include <sstream>

using namespace std;

int main0O
{
string input("Input test 123 4.7 A");
istringstream inputString(input);
string stringl;
string string2;
int integer;
double doublel;
char character;

inputString >> stringl >> string2 >> integer >> doublel >> character;

cout << "The following items were extracted\n"
<< "from the istringstream object:" << "\nstring: " << stringl
<< "\nstring: " << string2 << "\n int: " << integer
<< "\ndouble: " << doublel << "\n char: " << character;

// attempt to read from empty stream
Tong value;
inputString >> value;

images/00713.jpeg
31 << "outputString contains:\n" << outputString.str() << endl;

32} // end main

outputString contains:
Output of several data types to an ostringstream object:
double: 123.457
int: 22
address of int: 0012F540

after additional stream insertions,
outputString contains:
Output of several data types to an ostringstream object:
double: 123.457
int: 22
address of int: 0012F540
more characters added

images/00710.jpeg
// Fig. 19.10: Fig19_10.cpp

// Using an iterator to output a string.
#include <iostream>

#include <string>

using namespace std;

int mainQ)

{
string stringl("Testing iterators");
string::const_iterator iteratorl = stringl.begin();

cout << "stringl = " << stringl
<< "\n(Using iterator iteratorl) stringl is: ";

1
2
3
4
5
6
7
8
9
10
1"
12
13
14
15 // iterate through string
16 while (iteratorl != stringl.end())

17 {

18 cout << *iteratorl; // dereference iterator to get char
19 ++iteratorl; // advance iterator to next char

20 } // end while

22 cout << endl;

23} // end main

stringl = Testing iterators
(Using iterator iteratorl) stringl is: Testing iterators

images/00709.jpeg
28 // output each character using pointer

29 for (size_t i = 0; i < length; ++i)
30 cout << *(ptrl + i); // use pointer arithmetic
31

32 cout << "\nptr2 is " << ptr2 << endl;

33 delete [] ptr2; // reclaim dynamically allocated memory
34 } // end main

string stringl is STRINGS
stringl converted to a pointer-based string is STRINGS
ptrl is STRINGS

ptr2 is STRINGS

images/00708.jpeg
e
B sNaRitN-Cor~NauaswNn -

22
23

25
26
27

// Fig. 19.9: Figl9_09.cpp
// Converting strings to pointer-based strings and character arrays.
#include <iostreams

#include <string>

using namespace std;

int mainQ)

{

string stringl("STRINGS"); // string constructor with char
const char *ptrl = nullptr; // initialize *ptrl

size_t length = stringl.sizeQ);

char *ptr2 = new char[length + 1 1; // including null

arg

// copy characters from stringl into allocated memory
stringl.copy(ptr2, length, 0); // copy stringl to ptr2 char *
ptr2[length 1 = "\0'; // add null terminator

cout << "string stringl is " << stringl

<< "\nstringl converted to a pointer-based string is
<< stringl.c_strQ << "\nptrl is

// Assign to pointer ptrl the const char * returned by
// function data(). NOTE: this is a potentially dangerous
// assignment. If stringl is modified, pointer ptrl can
// become invalid.

ptrl = stringl.data); // non-null terminated char array

images/00705.jpeg
Original string:
The values in any left subtree
are less than the value in the
parent node and the values in
any right subtree are greater
than the value in the parent node

Original string after erase:
The values in any left subtree
are less than the value in the

After first replacement:
The.values.in.any.left.subtree
are.less. than.the.value.in.the

After second replacement:
The;;alues;;n;;ny;;eft;;ubtree
are;jess;;han; ;he;;alue;;n;;he

images/00704.jpeg
33
34
35
36
37
38
39
40
41
2
43

45
46
a7
48

} // end while

cout << stringl << "\nAfter second replacement:\n";
position = stringl.find("."); // find first period
// replace all periods with two semicolons

// NOTE: this will overwrite characters

while (position != string::npos)
i

stringl.replace(position, 2, "xxox:iyyy", 5, 2);
position = stringl.find(".", position + 1);
} // end while

cout << stringl << endl;
} // end main

images/00707.jpeg
25 << "\nstring2:
26 << "\nstring4:
27} // end main

<< string2 << "\nstring3:
<< stringd << endl;

<< string3

Initial strings:
stringl: beginning end
string2: middle
string3: 12345678
stringd: xx

Strings after insert:
stringl: beginning middle end
string2: middle

string3: 123xx45678

stringd: xx

images/00706.jpeg
// Fig. 19.8: Figl9_08.cpp

// Demonstrating class string insert member functions.
#include <iostream>

#include <string>

using namespace std;

int main()

{
string stringl("beginning end");
string string2("middle ")
string string3("12345678");
string stringd("xx");

cout << "Initial strings:\nstringl: " << stringl

<< "\nstring2: " << string2 << "\nstring3: " << string3
<< "\nstringd: " << stringd << "\n\n'
// insert "middle" at location 10 in stringl
stringl.insert(10, string2);
// insert "xx" at location 3 in string3
string3.insert(3, string4, 0, string::npos);
cout << "Strings after insert:\nstringl: " << stringl

images/00031.jpeg
Escape
sequence

\n
\t
\r

\a
N\
\
\"

Description

Newline. Position the screen cursor to the beginning of the next line.
Horizontal tab. Move the screen cursor to the next tab stop.

Carriage return. Position the screen cursor o the beginning of the
current lings do not advance to the nexc line.

Alere. Sound the system bell.
Backslash. Used to print a backslash character.

Single quore. Used to print a single quore character.
Double quote. Used to print a double quote character.

images/00701.jpeg
// Fig. 19.6: Figl9_06.cpp
// Demonstrating the string find member functions.
#include <iostream>

#include <string>

using namespace std;

int mainQ

{
string stringl("noon is 12 pm; midnight is not.");
int Tocation;

// find "is" at location 5 and 24
cout << "Original string:\n" << stringl
<< "\n\n(Find) \"is\" was found at: " << stringl.find("
<< "\n(rfind) \"is\" was found at: " << stringl.rfind("

// find 'o' at Tlocation 1

Tocation = stringl.find_first_of(“misop");

cout << "\n\n(find_first of) found '" << stringl[Tlocation]
<< "' from the group \"misop\" at: " << location;

// find "o at Tocation 28

Tocation = stringl.find_Tast_of("misop");

cout << "\m\n(find_last_of) found '" << stringl[Tlocation]
<< "' from the group \"misop\" at: " << location;

// find '1' at location 8

Tocation = stringl.find_first_not_of("noi spm");

cout << "\n\n(find_first_not of) '" << stringl[location]
<< "' is not contained in \"noi spm\" and was found at:
<< location;

images/00030.jpeg
C++ Compiler URL of C++11 feature descriptions

Ci+11 features implemented in wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport
each of the major C++ compil-
ers.

Microsoft® Visual C+ msdn.microsoft. com/en-us/1ibrary/hh567368.aspx
GNU Compiler Collection (g++) gcc.gnu.org/projects/cxx0x. html
Intel® C++ Compiler software. intel.com/en-us/articles/cOx-features-

supported-by-intel-c-compiler/

IBM® XL C/C+ wii. bm. com/developerworks /mydeveloperworks/
blogs /5894415 -be62-4bc0-81c5-3956e822763/
entry/x1c_compiler_s_c_11_support50?1ang=en

Clang clang.11vm.org/cxx_status. htm]
EDG ecpp www.edg . con/docs /edg_cpp. pdf

images/00700.jpeg
stringl is now: soupl234567890abcdefghijkimnopgrstuvwxyz1234567890
capacity: 63

max size: 4294967294

size: 50

Tength: 50

empty: false

Stats after resizing by (length + 10):
capacity: 63

max size: 4294967294

size: 60

Tength: 60

empty: false

images/00033.jpeg

images/00703.jpeg
// Fig. 19.7: Figl9_07.cpp

// Demonstrating string member functions erase and replace.
#include <iostream>

#include <string>

using namespace std;

int mainQ)

{
// compiler concatenates all parts into one string
string stringl("The values in any Teft subtree"

nare less than the value in the"

nparent node and the values in

nany right subtree are greater”

"\nthan the value in the parent node");

cout << "Original string:\n" << stringl << end] << endl;

// remove all characters from (and including) Tlocation 62
// through the end of stringl
stringl.erase(62);

// output new string
cout << "Original string after erase:\n" << stringl
<< "\nAfter first replacement:\n";

size_t position = stringl.find(" "); // find first space
// replace all spaces with period

while (position != string::npos)

{

bH

stringl.replace(position, 1 .
position + 1);

position = stringl.find("

images/00032.jpeg
C++ arithmetic Algebraic C++

C++ operation operator expression expression
Addition " fr7 5
Subtraction - p-c p-c
Multiplication ~ * bmoth - m b*m

/ x/yor;orzé-y x/y

% rmods r%s

images/00702.jpeg
33 // find '." at location 13

34 Tocation = stringl.find_first_not_of("12noi spm");

35 cout << "\n\n(find_first_not of) '" << stringl[location]
36 << "' is not contained in \"12noi spm\" and was "

37 << "found at: " << location << endl;

38

39 // search for characters not in stringl

40 Tocation = stringl.find_first_not_of(

41 "noon is 12 pm; midnight is not.");

42 cout << "\nfind_first_not of(\"noon is 12 pm; midnight is not.\")"
43 << " returned: " << location << endl;

44 '} // end main

Original string:
noon is 12 pm; midnight is not.

(find) "is" was found at: 5
(rfind) "is" was found at: 24

(Find_first_of) found 'o' from the group "misop" at: 1

(Find_last_of) found 'o' from the group "misop" at: 28

(find_first_not_of) '1' is not contained in "noi spm" and was found at: 8
(Find_first_not_of) '.' is not contained in “12noi spm" and was found at: 13
find_first_not_of("noon is 12 pm; midnight is not.") returned: -1

images/00035.jpeg
a+brcvdse

5
C4: m=(Ca+b+c+d+e) /5;

Algebra: m=

images/00034.jpeg
Operator(s)

)

=~ #

+

Operation(s) Order of evaluation (precedence)

Parentheses Evaluated first. If the parentheses are nested, such as in the expres-
siona* (b+c/ d+e)), the expression in the innermost pair is
evaluated first. [Caution: If you have an expression such as (a + b) *
(c - d) in which two sets of parentheses are not nested, bur appear
“on the same level,” the C++ Standard does not specify the order in
which these parenthesized subexpressions will be evaluated.]

Multiplication Evaluated second. If there are several, they're evaluated left to right.
Division
Modulus

Addition Evaluaed last. If there are several, they're evaluated left to right.
Subtraction

images/00037.jpeg
Algebra: 2= pro%q + wh—y

Cii: z = p r% aq+w / x -y

6 1 2 4 3 5

images/00036.jpeg
Algebra:
C++:

images/00028.jpeg
I have a number between 1 and 1000.
an you guess my number?
Tease type your first guess.

images/00027.jpeg
gh. Try again.

? 125

00 low. Try again.
. Try again.
. Try again.
. Try again.

. Try again.

00 low. Try again.
? 130
00_low. Try again.

images/00029.jpeg
[Excellent! You guessed the number!
ould you like to play again (y or m)? n

:\examples\ch01\GuessNumber \Windows>

images/00020.jpeg
Phase 4:

Linker links the object

code with the libraries,
creates an executable file and
stores it on disk

Linker

images/00022.jpeg
CPU

Primary
Memory

Phase 6:

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes

images/00021.jpeg
Primary
Memory

——

Phase 5:
Loader puts program
in memory

images/00024.jpeg
:\examples\ch01\GuessNumber \Windows>Guesshunber

I have a number between 1 and 1000.
an you guess my number?

Please type your First guess.

°

images/00023.jpeg
:\>cd C:\examples\ch01\GuessNumber\Windows

:\examp]es\ch01\GuessNumber \Windows>

images/00026.jpeg
*\exanpTes\ch01\GuessNunber \Windows>GuessNunber
[L have a number between 1 and 1000.

an you guess my number?

Please type your first guess.

? 500
00 high. Try again.
? 250
00 high. Try again.

images/00025.jpeg
examp Tes\chOT\Gues sNumber \windows>GuessNunber
[T have a number between 1 and 1000.
an you guess my number?

Please type your first guess.
? 500
00 high. Try again.

images/00017.jpeg
Phase I:
Programmer creates program

in the editor and stores it on
disk

images/00016.jpeg

images/00019.jpeg
Phase 3:

Compiler creates
object code and stores
it on disk

images/00018.jpeg
Phase 2:
Preprocessor program
processes the code

images/00051.jpeg
S [product <= 100]

triple product value

[product > 100] By

Corresponding C++ statement:
product = 3 * product;

images/00050.jpeg
e [grade < 60] [grade >= 60] . .
print “Failed = print “Passed

images/00053.jpeg
Operator

Sample
expression

Explanation

-+

preincrement
postincrement
predecrement

postdecrement

+ra

art

Increment a by 1, then use the new value
of ain the expression in which a resides.
Use the current value of a in the expression
in which a resides, then increment a by 1.
Decrement b by 1, then use the new value
of bin the expression in which b resides.

Use the current value of b in the expression
in which b resides, then decrement b by 1.

images/00052.jpeg
Assignment operator Sample expression Explanation Assigns

=c+7 Wwoc
-d-4 1tod
—lcies Wwe
=f/3 2t0f

9%9 309

images/00055.jpeg
Required Final value of control - Required

for semicolon variable for which semicolon

eyword separator the condition is true separator
for (unsigned int counter = 1; counter <= 10; ++counter)
Control Initial value of Increment of

Loop-continuation

control variable
condition

variable name control variable

images/00054.jpeg
perators Associativity

o lefi to right primary
[See caution in Fig. 2.7 regard-
ing grouping parentheses.|
4+ - static_cast<ppe-() left to right postfix
I right to lefe unary (prefix)
/% lefe o right muliiplicative
- Lefe to right additive
<< > lefi o right insertion/extraction
- Ieft to right relational
- Lefe to righe equality
c: right o lefe conditional
= 4= = = /= % righcrolefe assignment

images/00057.jpeg
v

Display the
counter value

cout << counter << o .

v

Increment the

++counter ----- i
control variable

[counter <= 10]

Determine whether _ _ _ _ _ _ _ __ _
looping should
continue [counter > 0]

®

images/00056.jpeg
Initialize
control variable

unsigned int counter = |

X

[counter <= 10]

counter > 10] [

Determine whether
looping should
continue

Display the Increment the
counter value control variable

F————>

cout << counter << 5 ++counter

images/00059.jpeg
expression| expression2 expression| && expression2

false false false
false true false
true false false

true true true

images/00058.jpeg
[true] .
casea S case aactions(s) —= break —

[false]

b [true]
case ---- ——= case bactions(s) —= break 9<

[false]

[true] .
casez - case zactions(s) —= break

[false]

default actions(s)

images/00049.jpeg
Igrade;>=60) print “Passed”

grade < 60]

images/00040.jpeg
Algebraic relational C++ relational or SampleC++

or equality operator equality operator condition Meaning of C++ condition
Relational operators

e > x>y x is greater than y

< < X<y X is less than y

> >= X >=y X is greater than or equal to y
< <= X <=y x is less than or equal o y
Equality operators

= = X ==y xisequaltoy

* 1= X l=y x is not equal to y

images/00042.jpeg
GradeBook

+ displayMessage()

images/00041.jpeg
Operators
(0]

* /
- -
< >
< <«

Associativity

[See caution in Fig. 2.7]
left to right
left to right
left to right
lefe to right
left to right
right to lefe

Type

grouping parentheses
multiplicative

additive

stream insertion/extraction
relational

equality

assignment

images/00044.jpeg
GradeBook

- courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

images/00043.jpeg
GradeBook

-+ displayMessage(courseName : String)

images/00046.jpeg
Client Code

Programmer
GradeBook

Application User

Class Implementation
Programmer

images/00045.jpeg
GradeBook

- courseName : String
«constructors + GradeBook(name : String)
+ setCourseName(name : String)

+ getCourseName() : String

+ displayMessage()

images/00048.jpeg
C++ Keywords

Keywords comman to the C and C+ programming languages

auto break
continue default
enum extern
if int
short signed
switch typedef
volatile while

Cs +-only heywords

and and_eq
bool catch
delete dynamic_cast
friend inline

not not_eq
private protected
template this

typeid ‘typename

xor xor_eq
Cus11 keywords

alignas alignof

decltype noexcept

case
do
float
Tong
sizeof
union

asm
class
explicit
nutable
operator
public
throw
using

charl6_t
nullptr

char
double
for
register
static
unsigned

bitand

compl

export
namespace

or
reinterpret_cast
true

virtual

char32_t

static_assert

const
else
goto
return
struct
void

bitor
const_cast
false

new

or_eq
static_cast
try
wehar_t

constexpr

thread_local

images/00047.jpeg
v

add grade to total - - - - - - - - - -

v

add | tocounter ~---------

Corresponding Ci+ statement
total = total + grade;

Corresponding C++ statement
counter = counter + 1;

images/00039.jpeg
Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

2¥RFE5 LA RTAL N
2 *54s 10

,_.
5

+

w

*547;
10 * 5 is 50

1

50 +3%*54+7;
3*5 is|8

1

50 + 15 + 7;
50 + 15 is 65

|

65 + 7;
65 + 7 is 72

1

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 iny)

images/00038.jpeg

images/00071.jpeg
Step 3: square returns its result tomain

main()
square(X)
il
int a = 10; {
cout << a << " squared: return x * x;
Return location R2 << square(a) << endl; 3

b

Function call stack after Step 3

Top of stack ———»=
Return location: R1
Activation record Automatic variables:

for function main
a 10

images/00070.jpeg
Step 2: main invokes function square to perform calculation

main()
— square(X)
{
int a = 10; {
cout << a << " squared: " return x ¥ x;
Return location R2 << square(a) << endl; }
} e 1 |

Function call stack after Step 2

Top of stack ——»=
Return location: R2

Activation record for Automatic variables:

function square
X 10

Return location: R1

Activation record Automatic variables:

for function main
a 10

images/00073.jpeg
fibonacci(3)

!

return fibonacci(2) + fibonacci(1)

i Y

return fibonacci(1) + fibonacci(0) return 1

i '

return 1 return 0

images/00072.jpeg
(a) Procession of recursive calls

(b) Values returned from each recursive call

Final value = 120

5!'=5*24=120is returned

41 =4 * 6=24is returned

31=3*2=6is returned

2!=2*1=2is returned

I returned

images/00075.jpeg
rators Associ

Type

o left to right primary
[See caution in Fig. 2.7 regard-
ing grouping parentheses.]

O 0 + - static_castepe(operand) lefi to right postfix
e right o lefc unary (prefix)
LA lefe to right multiplicative
5o leff to right additive

« » lef to right insertion/extraction
G e e left to right relational
il lefe to right cquality

& lef to right logical AND
" lef to right logical OR

? right o lefc conditional

= e = % right o lefc assignment

; left to right comma

images/00074.jpeg
’—$ Name of the array is c

Position number of the cl
element within the array o[
cl

cl

Name of an individual ——= c[
array element o[
cl

cl

cl

cl

cf 10

c[11

© o N O WV A WwN R O

-45

6

0

72
1543 «+—— Value

-89

0

62

=3

1

6453

78

images/00077.jpeg
count

count directly references a
variable that contains the value 7

countPtr count "
Pointer countPtr indirectly

—» 7 references a variable that
contains the value 7

images/00076.jpeg
Column 0 Column | Column 2 Column 3

Row0 a[0J[0] af0]1[1]1 af01]1[2]1 a[o01]1[3]
Row | a[11[01 a[11011 al11[2]1 al[11[3]
Row 2 |[faf 28 JE 0| af 2 12 1| af 2 JE2 1| al 2 1E 3'1

T— Column subscript
Row subscript

array name

images/00079.jpeg
yPtr

location Jocation
500000 500000 600000

images/00078.jpeg
yPtr

images/00060.jpeg
expression| expression2 expression| || expression2

false false false
false true true
true false true

true true true

images/00062.jpeg
Operato Associativity Type

[¢) left to right primary

[See caution in Fig. 2.7 regard-
ing grouping parentheses.]

4+ - static_cast< fpe >0 lefi to right postfix

o om0 right to lefi unary (prefix)

- /% left to right multiplicative

. left o right additive

« = left to right insertion/extraction

4 & B e left to right relational

— left to right equality

& lefi o right logical AND

" left to right logical OR

2 right to lefe conditional

s e = o e % right to left assignment

] left to right comma

images/00061.jpeg
expression Iexpression

false true
true false

images/00064.jpeg
Tog(x)

10g10(x)

pow(x, y)

sinC x)

sqre(x)

tan(x)

natural logarithm of x (base ¢)
logarithm of x (base 10)
x raised to power y ()

trigonometric sine of
(xin radians)

square root of x (where xis a
nonnegative value)
trigonomerric tangent of x
(xin radians)

Tog(2.718282) is 1.0
Tog(7.389056) is 2.0

10g10(10.0) is 1.0
10g10(100.0) is 2.0

pow(2, 7) is 128
pow(9, .5) is 3
sin(0.0) is 0

sqrt(9.0) is 3.0

tan(0.0) is 0

images/00063.jpeg
unction

ceil(x)

cos(x)

exp(x)

fabs(x)

floor(x)

fnod(x, y)

Description

rounds x to the smallest inte-
ger not less than x

trigonometric cosine of x
(xin radians)

exponential function ¢

absolute value of x

rounds x to the largest integer
not greater than x

remainder of ¥/y as a floating-
point number

Example

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(0.0) is 1.0

exp(1.0) is 2.718282
exp(2.0) is 7.389056

fabs(5.1) is 5.1
fabs(0.0) is 0.0
fabs(-8.76) is 8.76

floor(9.2) is 9.0
floor(-9.8) is -10.0

fmod(2.6, 1.2) is 0.2

images/00066.jpeg
Explanation

<iostream>

<iomanip>

<cmath>

<cstdlib>

<ctime>

<array>,
<vectors, <list>,
<forward_1ist>,
<deques, <queue>,
<stacks, <map>,
<unordered_map>,
<unordered_set>,
<sets, <bitset>

Contains funcrion prototypes for the C++ standard input and output
functions, introduced in Chapter 2, and is covered in more detail in
Chaprer 13, Stream Input/Output: A Decper Look.

Contains function prototypes for stream manipulators that format
screams of data. This header is first used in Section 4.7 and is discussed
in more detail in Chapter 13, Stream Input/Output: A Decper Look.

Contains function prototypes for math library functions (Section 6.2).

Contains function prototypes for conversions of numbers to text, text
to numbers, memory allocation, random numbers and various other
wility funcrions. Portions of the header are covered in Section 6.6;
Chapter 10, Operator Overloading; Class string; Chapter 17, Excep-
tion Handling: A Deeper Look; Chapter 20, Bits, Characters, C Strings
and structs; and Appendix E C Legacy Code Topics.

Contains function prototypes and types for manipulating the time and
date. This header is used in Section 6.6.

These headers contain classes that implement the C+ Standard Library
containers. Containers store data during a programs cxecution. The
<vector> header is first introduced in Chapter 7, Class Templates array
and vector; Catching Exceptions. We discuss all these headers in
Chapter 15, Standard Library Containers and Irerators.

images/00065.jpeg
ata types

Tong double
double

float

unsigned Tong Tong int
Tong Tong int
unsigned Tong int
Tong int

unsigned int

int

unsigned short int
short int

unsigned char

char and signed char
bool

(synonymous with unsigned Tong Tong)
(synonymous with 1ong Tong)
(synonymous with unsigned Tong)
(synonymous with Tong)

(synonymous with unsigned)

(synonymous with unsigned short)
(synonymous with short)

images/00068.jpeg
<iterator>

<algorithm>

<cassert>

<cfloat>
<climits>

<cstdio>

<locale>

<limits>

<utility>

Contains classes for accessing data in the C++ Standard Library contain-
ers. This header is used in Chapter 15.

Contains functions for manipulating data in C++ Standard Library con-
tainers. This header is used in Chapeer 15.

Contains macros for adding diagnosics that aid program debugging.
This header is used in Appendix E, Preprocessor.

Contains the floating-point size limits of the system.
Contains the integral size limits of the sysem.

Contains function prototypes for the C-style standard input/output
library functions.

Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formars, sorting strings, character presentation, ctc.).

Contains classes for defining the numerical data type limits on each
computer platform.

Contains classes and functions that are sed by many C++ Standard
Library headers.

images/00067.jpeg
<cctype>

<cstring>

<typeinfo>
<exceptions,

<stdexcept>

<memory>

<fstream>

<string>

<sstream>

<functional>

Contains function prototypes for functions thar test characters for cer-
tain propertics (such as whether the character s a digit or a puncrua-
tion), and function prototypes for functions that can be used to convert
lowercase letcers to uppercase leters and vice versa. These topics are di
cussed in Chapter 20, Bits, Characters, C Strings and structs.

Contains function prototypes for C-style string-processing functions.
This header is used in Chapter 10, Operator Overloading; Class
string.

Contains classes for runtime type identification (determining daa types
at exccution time). This header is discussed in Section 12.8.

These headers contain classes that are used for exception handling (dis-
cussed in Chaprer 17, Exception Handling: A Deeper Look).

Contains classes and functions used by the C++ Standard Library o
allocate memory to the C+ Standard Library containers. This header is
used in Chaprer 17, Exception Handling: A Decper Look.

Contains function prototypes for functions that perform input from
and output o files on disk (discussed in Chapter 14, File Processing).
Contains the definition of class string from the C++ Standard Library
(discussed in Chapter 19, Class string and String Strcam Processing).

Contains function prototypes for functions that perform input from
serings in memory and output to strings in memory (discussed in
Chapter 19, Class string and String Stream Processing).

Contains classes and functions used by C+ Standard Library algo-
rithms. This header is used in Chapeer 15.

images/00069.jpeg
Step 1: Operating system invokes main to execute application

— main()
{
Operating system
£ £ int a = 10;
— cout << a << " squared: "
<< square(a) << endl;
Return location RI. ~ ——— ¥

Function call stack after Step |

Top of stack ———»

Return location: R1

Activation record
for function main

Automatic variables:

a 10

Key

Lines that represent the operating

system executing instructions

images/00091.jpeg
Shape

R

TwoDimensionalShape ThreeDimensionalShape

g A VA BN

Circle Square Triangle Sphere Cube Tetrahedron

images/00090.jpeg
CommunityMember

A N

Employee Student Alumnus
Single
Facul! ff
22U Stz inheritance
Administrator Teacher §\ng\e
inheritance

X/

AdministratorTeacher Multiple

inheritance

Single
inheritance

images/00093.jpeg
Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04 Notice that the base salary is not displayed
o

images/00092.jpeg
Base-class
member-
access
specifier

public

protected

private

public
inheritance

pubTic in derived class.

Can be accessed directly
by member functions,
friend functions and
nonmember functions.

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through pubTic
or protected member
functions of the base class.

Type of inheritance

protected
inheritance

protected in derived class.

Can be accessed directly
by member functions and
friend functions

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through publ1ic
or protected member
functions of the base class

private
inheritance

private in derived class.

Can be accessed directly
by member functions and
friend functions.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

images/00095.jpeg
Employee - ------ Employee class is abstract;

/ \ displayed in italics

SalariedEmployee CommissionEmployee

‘f

BasePlusCommissionEmployee

images/00094.jpeg
Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00—— Notice that the base salary is now displayed

images/00097.jpeg
(abstract class)
Employee vtable

earnings 0 (0 indicates pure virtual function)

first Tast priat
ssn:
SalariedEmployee salariedEmployee
vtable
-~ o
earnings
weeklySalar ;
yoatary John Smith vector < Employee * >
i 111-11-1111
rint ;
salaried P $800.00 EpToyEEs (4
employee:
&salaried-
fo] Employee
CommissionEmployee 3 commissionEmployee [1] &commission-
vtable Employee ™™
earnings
grossSales 9 dbasePus-
* commissionRate Sue Jones Commission-
print 4 333-33-3333 Employee
commission < —————— $10,000.00
employee:06
5

. basePTusCommissionEmployee
BasePTusCommissionEmployee

vtable
-_—

baseSalary + earnings
(grossSales

Scid Bob Lewis
* commissionRate) — A44-44-4424
base- w-+———————o $5,000.00
salaried .04
commission $300.00

employee:

baseClassPtr

Flow of Virtual Function Call baseClassPtr->print()
When baseClassPtr Points to Object commissionEmployee

pass &commissionEmployee 3 get to commissionEmployee execute print for
to baseClassPtr vtable commissionEmployee

getto commissionEmployee 4 | gettoprint pointer

z object in vtable

images/00096.jpeg
Employee

Salaried-
Employee

Commission-
Employee

BasePTus-
Commission-
Employee

earnings

weeklySalary

commissionRate * grossSales

(commissionRate *
grossSales) + baseSalary

print

firstName lastName
social security number: SSN

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

commission employee: firstName lastName
social security number: SSN

gross sales: grossSales;

commission rate: commissionRate

base-salaried commission employee:
firstName lastName

social security number: SSN

gross sales: grossSales;

commission rate: commissionRate;

base salary: baseSalary

images/00099.jpeg
basic_ios

N

basic_istream basic_ostream

SN N

basic_ifstream basic_iostream basic_ofstream

f

basic_fstream

images/00098.jpeg
basic_ios

SN

basic_istream basic_ostream

N/

basic_iostream

images/00080.jpeg
perators Associativity Type

o left to right primary
[Sec caution in Fig. 2.7 regar-
ing grouping parentheses.]
O [1 + -- static_cast<types(operand) left to right postfix
L T B T right to left unary (prefix)
/0% left to right multiplicative
- left to right additive
<« left to right insertion/extraction
< = > > left to right relational
left to right equality
left to right logical AND
i left to right logical OR
7 right to left conditional
RS T 7 right to left assignment

. left to right comma

images/00082.jpeg
Step 4: After cubeByValue returns to main and before assigning the result to number:

int mainQ) number

{
5

int number = 5;

125
number = cubeByValue(number);

Step 5: Alter main completes the assignment o number.

int mainQ) number

{

int number = e
125

number = cubeByValue(number

images/00081.jpeg
Step 1: Belore man calls cubeByValue:

int main()

number
{
int number = 5; 5
number = cubeByValue(number);
}
Step 2: After cubeByValue receives the call:
int main() nunber int cubeByValue(int n)
{ {
int number = 5; 2 return n % n % n;

number = cubeByValue(number

Step 3: After cubeByValue cubes parameter n and before cubeByValue returns to main:

int mainQ)
{

int number

number

5

number = cubeByValue(number

int cubeByValue(int n)
{ 125
return n * n * n;

images/00084.jpeg
Step 4: After *nPtr is assigned 125 and before program control retums to main:

int mainQ)
{
int number = 5; 125

number

AN

cubeByReference(&number);

void cubeByReference(int *nPtr)
{125

*nPtr = *nPtr * *nPtr * *nPtr;
nPtr

called function modifes caller’s
variable

Step 5: After cubeByReference returs to main:

int main(Q)
{

int number =

number

125

cubeByReference(&number);

images/00083.jpeg
Step I: Before main calls cubeByReference

int mainQ)

{

int number = 5;

number

cubeByReference(&number);

Step 2: After cubeByReference receives the call and before

*nPtr is cubed:

int mainQ)
{

int number

number

5

AN

cubeByReference(&number);

void cubeByReference(int *nPtr)

{
nptr

i

#nPtr ¥ #nPtr * *nPtr;

nPtr

call establishes this pointer

5%5

4
Step 3: Before*nPtr i assigned the result of the calculation 5
;m: main() —
int number = 5; 5

N

cubeByReference(&number);

void cubeByReference(int *nPtr)
{ 125
nPtr = *nPtr * *nPtr * *nPtr;

nPtr

—

images/00086.jpeg
location
3000 3004 3008 3012 3016

v[0]l wv[1] wv[2] v[3] v[4]

. |

pointer variable vPtr

images/00085.jpeg
location
3000 3004 3008 3012 3016

v[0]l wv[1] wv[2] v[3] v[4]

pointer variable vPtr

images/00088.jpeg
Operators that cannot be overloaded

* (pointer to member)

images/00087.jpeg
Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949
Employee object destructor: Blue, Bob

Date object destructor for date 3/12/1988

Date object destructor for date 7/24/1949

Date object destructor for date 3/12/1988

Date object destructor for date 7/24/1949

There are actually five constructor
calls when an Employee is
constructed—two calls to the
string class's constructor (lines
12-13 of g, 9.20), two calls to the
Date class's default copy
constructor (lines 14-15 of

fig. 9.20) and the call to the
Employee class’s constructor.

images/00089.jpeg
Base class

Derived classes

Student
Shape
Loan
Employee
Account

GraduateStudent, UndergraduateStudent
Circle, Triangle, Rectangle, Sphere, Cube
CarLoan, HomeImprovementLoan, MortgagelLoan
Faculty, Staff

CheckingAccount, SavingsAccount

images/00187.jpeg
Positional values in the hexadecimal number system

Decimal digic 3 D A

Position name Two-hundred- Sixteens Ones
and-fifty-sixes

Positional value 256 16 1

Positional value as a 167 16t 160

power of the base (16)

images/00186.jpeg
Positional values in the octal number system

Decimal digit 4 2 5
Position name Sixty-fours Eights Ones
Positional value 64 8 1
Positional value as a 8 8t 8

power of the base (8)

images/00189.jpeg
Converting a binary number to decimal

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 0 1 0 1
Products: 1%32=32 1*16=16 0%8=0 1*4=4 0%2=0 1r1=1

Sum: =32+416+0+4+0s+1=53

images/00188.jpeg
CeNO U s wN RO

10
1
12
13
14
15
16

Binary

representation

101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000

Octal
representation

NouwawNneo

10
i,
12
13
14
15
16
17
20

Hexadecimal
representation

TmMOA®m> O e NN s WwN RO

10

images/00183.jpeg
Attribute Binary Octal ecimal Hexadecimal

Base 2 8 10 16
Lowest digit 0 0 0 0
Highest digit & 7 o B

images/00182.jpeg
Octal digit

0
i
2
3
4
5
6
7

CeNO L EWwN RO

Hexadecimal digit

I

9

A (decimal value of 10)
8 (decimal value of 11)
€ (decimal value of 12)
D (decimal value of 13)
£ (decimal value of 14)
F (decimal value of 15)

images/00185.jpeg
Positional values binary number system

Binary digit 1 [1
Position name Fours “Twos Ones
Positional value 4 2 1
Positional value as a & o 20

power of the base (2)

images/00184.jpeg
Positional value: al number syste

Decimal digit 9 3 7
Position name Hundreds Tens. Ones
Positional value 100 10 1
Positional value as a 10 10t 10°

power of the base (10)

images/00181.jpeg
Integral types

bool
char

signed char

unsigned char

short int

unsigned short int
int

unsigned int

Tong int

unsigned Tong int
Tong Tong int
unsigned Tong long int
char16_t

char32_t

wchar_t

float
double
Tong double

images/00180.jpeg
ASCII Character Set

dc3

9s

bs

dcz
s

bel
dcl
esc

del

ack
de
sub

enq
5

em

eot

S0
can

etx
cr

eth

Stx

F
Syn

sp

Soh
vt

nak
us

nul
nl

dca
s

10
1
12

images/00176.jpeg
ATM

- userAuthenticated : Boolean = false

Transaction

— accountNumber : Integer

+ getAccountNumber()
+ execute()

Balancelnquiry

+ execute()

Withdrawal

~amount : Double

+ execute()

Deposit
~ amount : Double

+ execute()

BankDatabase

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double

+ credit()

+ debit()

Account

- accountNumber : Integer
- pin : Integer

— availableBalance : Double
~ totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double

+ credit()
+ debit()
Screen
+ displayMessage()
Keypad

+ getinput() : Integer

CashDispenser

- count : Integer = 500

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

DepositSlot

+ isEnvelopeReceived() : Boolean

images/00175.jpeg
v

|
Keypad CashDispenser
| 0.1 |0.1
DepositSlot Screen
i i Withdrawal
| | |
l 0.1 J7 o.1| |o.l
ATM

Executes B 3 "
————— = Transaction <I—— Deposit
| 0.1
| 0.1
Authenticates user against
Yy
| Balancelnquiry
BankDatabase
~a Accesses/modifies an
account balance through
|
Contains
Vo

Account

images/00178.jpeg
delete

dynamic memory deallocation

delete[] dynamic array deallocation
Coped Costyle unary cast right to lefc
* pointer to member via object left to right
—>* pointer to member via pointer
= multiplication left o right
7 division
% modulus
+ addition left to right
- subtraction
<< bitwise lcfe shift left o right
>> bitwise right shift
< relational less than left to right
<= relational less than opr cqual to
> relational greater than
= relational greater than or equal to
relational is equal to left to right
relational is not cqual
e bitwise AND left o right
A bitwise exclusive OR

left o right

bitwise inclusive OR

left o right

images/00177.jpeg
Operator Type Associ

binary scope resolution left to right
unary scope resolution
[¢) grouping parentheses [See caution in
Fig. 2.7 regarding grouping parentheses.]
(€] function call left to right
5} array subscript
member selection via object
= member selection via pointer
+ unary postfix increment
e unary postfix decrement
typeid runtime type information
dynamic_cast < fype > runtime type-checked cast
static_cast< fpe > compile-time type-checked cast
reinterpret_cast< fpe > cast for nonstandard conversions
const_cast< fpe > cast away const-ness
++ unary prefix increment right to lefe
- unary prefix decrement
+ unary plus
- unary minus
! unary logical negation
~ unary bitwise complement
sizeof determine size in bytes
& address
i dereference
new dynamic memory allocation

new[] dynamic array allocation

images/00172.jpeg
y

|
Keypad
DepositSlot
't
L &
ATM

|
Authenticates user against

Yy

BankDatabase
|
Contains
Vyo.r

Account

CashDispenser -
|
Screen
1\ I
0.1 0.1
E tes B
= Withdrawal
0.1
0.1
|

< Accesses/modifies an
account balance through

0.1

images/00171.jpeg
ATM

- userAuthenticated : Boolean = false

Balancelnquiry

~ accountNumber : Integer
+ execute()

Withdrawal

- accountNumber : Integer
~ amount : Double

+ execute()

Deposit

- accountNumber : Integer
- amount : Double

+ execute()

BankDatabase

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double

+ credit()

+ debit()

Account

- accountNumber : Integer
- pin : Integer

- availableBalance : Double
~ totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double

+ credit()
+ debit()
Screen
+ displayMessage()
Keypad

+ getinput() : Integer

CashDispenser

- count : Integer = 500

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

DepositSlot

+ isEnvelopeReceived() : Boolean

images/00174.jpeg
Transaction

- accountNumber : Integer

+ getAccountNumber()
+ execute()

Balancelnquiry Withdrawal Deposit
- amount : Double - amount : Double

+ execute() + execute() + execute()

images/00173.jpeg
Balancelnquiry

- accountNumber : Integer
+ execute()

Withdrawal Deposit
- accountNumber : Integer - accountNumber : Integer
- amount : Double - amount : Double

+ execute() + execute()

images/00179.jpeg
logical AND

lefi to right

logical OR

left to right

ternary conditional

assignment

addition assignment

subtraction assignment
muliplication assignment
division assignment

modaulus assignment

bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise lefe-shift assignment
bitwise right-shift assignment

right o lef
right to lefe

comma

Tefr to right

images/00170.jpeg
: Deposit : Keypad : BankDatabase

: DepositSlot : Account

%
H
s

1
!
|
;

displayMessage(message) |

e, |

|
)
|
|
)
|
.

getinput()
—

H
H J
h |
displayMessage(message) 1
— ™ 1
I
. |
1 |

:
)
'
-
}
'
-
}
'
-
}
'
-
}
'
-
}
'
-
}
-

isEnvelopeReceived() :

-

tcredit(accountNumber, amount)

credit(amount)

I

i
i I
i T
i I
] ! —
i I
i I
i I
i I
i I
H i

images/00165.jpeg
: Withdrawal : Keypad

: BankDatabase

;
|
! : CashDispenser
|

' getAvailableBalance()
—

‘
i

I

I

i

I

I

i

I

I

i

I

I

i

I

1 I

| I

getAvailableBalance(accountNumber) I
: h I

T I

I I

| I

| I

I I

| I

' I

I
|

isSufficientCashAvailable(amount)
. | :
! T T ! >
| i i h
\ | I
. | i i
debit(accountNumber, amount) i h i
- » ! debit(amount) !
' > |
I I
| |
1 1 i 1 i
: ‘ |
dispenseCash(amount) I
>

) i
i i

) i
displayMessage(message) 1 i
R) '
| :
) i
| i
! 5

images/00164.jpeg
 Screen
3: displayMessage(message)

: Balancelnquiry

11 getAvailableBalance(accountNumber)
2: getTotalBalance(accountNumber)

: BankDatabase : Account

—

1.1: getAvailableBalance()
2.1 getTotalBalance()

images/00167.jpeg
Wheel

SteeringWheel @ car &> seathelt

2

‘Windshield

images/00166.jpeg
View Account Balance

e Withdraw Cash

Deposit Funds

User

Transfer Funds
Between Accounts

images/00161.jpeg
CashDispenser
count : Integer = 500

dispenseCash(amount ; Double)
isSufficientCashAvailable(amount : Double) : Boolean

images/00160.jpeg
Screen

displayMessage(message - String)

images/00163.jpeg
execute()

—
:ATM ————— :Balancelnquiry

images/00162.jpeg
to an object

An object of class... sends the message... of class...

ATH displayMessage Screen
getInput Keypad
authenticateUser BankDatabase
execute BalanceInquiry
execute Withdrawal
execute Deposit

BalanceInquiry getAvailableBalance BankDatabase
getTotalBalance BankDatabase
displayMessage Screen

Wi thdrawal displayMessage Screen
getInput Keypad
getAvailableBalance BankDatabase
issufficientCashAvailable CashDispenser
debit BankDatabase
dispenseCash Cashbispenser

Deposit displayMessage Screen
getInput Keypad
isEnvelopeReceived Depositslot
credit BankDatabase

BankDatabase validatePIN Account.
getAvailableBalance Account.
getTotalBalance Account
debit Account
credit Account.

images/00169.jpeg
prompt user to enter a deposit amount or cancel

receive input from user

user canceled transaction]

[user entered an amount]

display cancel message set amount attribute

instruct user to insert deposit envelope

attempt to receive deposit envelope

[deposit envelope not received] X_[deposit envelope received]

i

interact with database
display error message to credit amount
to user's account

images/00168.jpeg
CashDispenser

Screen

.4

ATM

Authenticates user against

A\
BankDatabase

Contains

Yo~

Account

Executes

& Accesses/madifies an
account balance through

0.1

osit

0.1

images/00154.jpeg
get available balance of user's account from database

!

get total balance of user's account from database

y

display balances on screen

images/00396.jpeg
33 void Time::setMinute(int m)

34 {

35 if (m>= 08 m<60)

36 minute = m;

37 else

38 throw invalid_argument("minute must be 0-59"
39} // end function setMinute

40

41 // set second value
42 void Time::setSecond(int s)

43 {

44 if (5 >= 08 s <60)

45 second = s;

46 else

a7 throw invalid_argument("second must be 0-59");
48} // end function setSecond

49

50 // return hour value
51 unsigned int Time::getHour() const

52 {

53 return hour;

54 } // end function getHour
55

56 // return minute value
57 unsigned Time::getMinute() const

58 {

59 return minute;

60 3 // end function getMinute
61

62 // return second value

63 unsigned Time::getSecond() const
64 {

65 return second;

images/00153.jpeg
bank database authenticates user

> =
@ = User not authenticated User authenticated

user exits system

images/00395.jpeg
// Fig. 9.5: Time.cpp
// Member-function definitions for class Time.

#include <iostream>

#include <iomanip>

#include <stdexcept>

#include "Time.h" // include definition of class Time from Time.h
using namespace std;

// Time constructor initializes each data member
Time::Time(int hour, int minute, int second)

{

setTime(hour, minute, second); // validate and set time
} // end Time constructor

// set new Time value using universal time
void Time::setTime(int h, int m, int s)
{
setHour(h); // set private field hour
setMinute(m); // set private field minute
setSecond(s); // set private field second
} // end function setTime

// set hour value
void Time::setHour(int h)

{
if (h>=08& h<24)
hour = h;
else

throw invalid_argument("hour must be 0-23");
} // end function setHour

// set minute value

images/00156.jpeg
Verbs and verb phrases

ATM
BalanceInquiry
Withdrawal
Deposit
BankDatabase

Account

Screen
Keypad
CashDispenser

DepositSlot

executes financial transactions
[none in the requirements document]
[none in the requirements document]
[none in the requirements document]

authenticates a user, retrieves an account balance, credits a deposic
amount o an account, debits a withdrawal amount from an account

retrieves an account balance, credits a deposit amount to an account,
debits a withdrawal amount from an account

displays a message to the user
receives numeric input from the user

dispenses cash, indicates whether it contains enough cash to satisfy a
withdrawal request

receives a deposit envelope

images/00398.jpeg
// Fig. 9.6: ig09_06.cpp

// Constructor with default arguments.

#include <iostream>

#include <stdexcept>

#include "Time.h" // include definition of class Time from Time.h
using namespace std;

int main()

{

Time t1; // all arguments defaulted

Time t2(2); // hour specified; minute and second defaulted
Time t3(21, 34); // hour and minute specified; second defaulted
Time t4(12, 25, 42); // hour, minute and second specified

cout << "Constructed with:\n\ntl: all arguments defaulted\n
tl.printUniversal(); // 00:00:00

cout << "\n "

t1.printStandard(); // 12:00:00 AM

cout << "\n\nt2: hour specified; minute and second defaulted\n “;
t2.printUniversal(); // 02:00:00

cout << "\n ";

t2.printStandard(); // 2:00:00 AM

cout << "\n\nt3: hour and minute specified; second defaulted\n ";
t3.printUniversalQ); // 21:34:00

cout << "\n "

t3.printStandard(; // 9:34:00 PM

cout << "\n\nt4: hour, minute and second specified\n ";
t4.printUniversalQ); // 12:25:42

cout << "\n ";

images/00155.jpeg
—display menu of withdrawal amounts and option to cancel

input the menu selection

[user canceled transaction]

{user selected an amount]

set amount attribute

get available balance of user's account from database

{amount > available balance]
{amount <= available balance]
test whether sufficient cash is available in cash dispenser
finsufficient cash available]
[sufficient cash available]

interact with database to debit amount from user's account

dispense cash

instruct user to take cash

display cancel message

display error message

display error message

[cash not dispensed
and user did not cancel]

[cash dispensed o
user canceled transaction]

images/00397.jpeg
66
67
68
69
70
n

72
3
74
75
76
7
78
79
80
81

} // end function getSecond

// print Time in universal-time format (HH:MM:SS)
void Time::printUniversal() const

{

cout << setfill('0') << setw(2) << getHour() << ":"
<< setw(2) << getMinute() << ":" << setw(2) << getSecond();
} // end function printUniversal

// print Time in standard-time format (HH:MM:SS AM or PM)
void Time::printStandard() const

{

cout << ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12)
<< i << setfill('0') << setw(2) << getMinute()
<< ":" << setw(2) << getSecond() << (hour < 12 7 " AM" : " PM");
3} // end function printStandard

images/00150.jpeg
|
Keypad
DepositSlot
I
| | |
ATM

Authenticates user against

A\

BankDatabase |

Contains

Yo

Account

CashDispenser

= Accesses/modifies an
account balance through

Screen
I
0.1 0.1
E tes B
LO‘ Withdrawal
0.1

0.

images/00392.jpeg
// call setBalance via the Account object
account.setBalance(123.45);

// call setBalance via a reference to the Account object
accountRef.setBalance(123.45);

// call setBalance via a pointer to the Account object
accountPtr->setBalance(123.45);

images/00391.jpeg
Account account; // an Account object

// accountRef refers to an Account object
Account &accountRef = account;

// accountPtr points to an Account object
Account *accountPtr = &account;

images/00152.jpeg
ATM Account

userAuthenticated : Boolean = false | accountNumber : Integer
pin : Integer
availableBalance : Double

totalBalance : Double
Balancelnquiry

accountNumber : Integer

Screen
Withdrawal
accountNumber : Integer
amount : Double
Keypad
Deposit
N I
accountNumber : Integer CashDispenser

amount : Double
count : Integer = 500

BankDatabase
DepositSlot

images/00394.jpeg
24
25
26
27
28
29
30
31
32
33
34

unsigned int getSecond() const; // return second

void printUniversal() const; // output time in universal-time format
void printStandard() const; // output time in standard-time format
private:
unsigned int hour; // 0 - 23 (24-hour clock format)
unsigned int minute; // 0 - 59
unsigned int second; // 0 - 59
}; // end class Time

#endif

images/00151.jpeg
Class Descriptive words and phrases.

ATM user is authenticated
BalanceInquiry account number
Withdrawal account number
amount
Deposit account number
amount
BankDatabase [no descriptive words or phrases]
Account account number
PIN
balance
Screen [no descriptive words or phrases]
Keypad [no descriptive words or phrases]
Cashbispenser begins cach day loaded with 500
$20 bills

DepositSlot [no descriptive words or phrases]

images/00393.jpeg
// Fig. 9.4: Time.h
// Time class containing a constructor with default arguments.
// Member functions defined in Time.cpp.

// prevent multiple inclusions of header
#ifndef TIME_H
#define TIME H

// Time class definition
class Time
{
public:
explicit Time(int = 0, int = 0, int = 0); // default constructor

// set functions

void setTime(int, int, int); // set hour, minute, second
void setHour(int); // set hour (after validation)

void setMinute(int); // set minute (after validation)
void setSecond(int); // set second (after validation)

// get functions
unsigned int getHour() const; // return hour
unsigned int getMinute() const; // return minute

images/00158.jpeg
BankDatabase

authenticateUser(userAccountNumber : Integer, userPIN - Integer) : Boolean
getAvailableBalance(userAccountNumber : Integer) : Double
getTotalBalance(userAccountNumber : Integer) : Double

credit(userAccountNumber : Integer, amount : Double)

debit(userAccountNumber : Integer, amount : Double)

images/00157.jpeg
ATM

userAuthenticated : Boolean = false

Balancelnquiry

accountNumber : Integer
execute()

Withdrawal

accountNumber : Integer
amount : Double

execute()

Deposit

accountNumber : Integer
amount : Double

exccute()

BankDatabase

authenticateUser() : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit()

debit()

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

validatePIN() : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit()

debit()

Screen

displayMessage()

Keypad

getlnput() : Integer

CashDispenser

count : Integer = 500
dispenseCash()

issufficientCashAvailable() : Boolean

DepositSlot

isEnvelopeReceived() - Boolean

images/00399.jpeg
33 t4.printStandard(); // 12:25:42 PM

34

35 // attempt to initialize t6 with invalid values

36 try

37 {

38 Time t5(27, 74, 99); // all bad values specified

39 } // end try

40 catch (invalid_argument &)

41 {

42 cerr << "\n\nException while initializing t5: " << e.what() << endl;
43 } // end catch

44 '} // end main

Constructed with:

t1: all arguments defaulted

t2: hour specified; minute and second defaulted
02:00:00
2:00:00 AM

t3: hour and minute specified; second defaulted
2 00
9:34:00 PM

t4: hour, minute and second specified
i 42
12:25:42 PM

Exception while initializing tS5: hour must be 0-23

images/00159.jpeg
Account

accountNumber - Integer
pin : Integer
availableBalance : Double
totalBalance : Double

validatePIN(userPIN: Integer) : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double

credit(amount : Double)

debit(amount : Double)

images/00390.jpeg
Time sunset; // object of type Time

array< Time, 5 > arrayOfTimes; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

images/00143.jpeg
Withdrawal options:
1 - %20 4 - $100
2 - %40 5 - $200

3 - $60 6 - Cancel transaction
Choose a withdrawal option (1-6):

Take cash here

Insert deposit envelope here

images/00385.jpeg
// prevent multiple inclusions of header
#ifndef TIME_H
#define TIME H

#endif

images/00142.jpeg
Main menu:
1 - View my balance
2 - Withdraw cash

3 - Deposit funds
4 - Exit
Enter a choice:

Take cash here

Insert deposit envelope here

images/00384.jpeg
// Fig. 9.1: Time.h
// Time class definition.
// Member functions are defined in Time.cpp

// prevent multiple inclusions of header
#ifndef TIME_H
#define TIME H

// Time class definition
class Time
{
public:
TimeQ; // constructor
void setTime(int, int, int); // set hour, minute and second
void printUniversal() const; // print time in universal-time format
void printStandard() const; // print time in standard-time format
private:
unsigned int hour; // 0 - 23 (24-hour clock format)
unsigned int minute; // 0 - 59
unsigned int second; // 0 - 59
}; // end class Time

#endif

images/00145.jpeg
Nouns and noun phrases in the requirements documen

bank money / fund account number ATM
screen PIN user keypad
bank database customer cash dispenser balance inquiry
transaction $20 bill / cash withdrawal account

deposit sloc deposit balance deposit cnvelope

images/00387.jpeg
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45

// print Time in universal-time format (HH:MM:SS)
void Time::printUniversal() const
&

cout << setfill('0') << setw(2) << hour <<
<< setw(2) << minute << ":" << setw(2) << second;
} // end function printUniversal

// print Time in standard-time format (HH:MM:SS AM or PM)

void Time::printStandard() const
{
cout << ((hour == 0 || hour == 12) ? 12 : hour % 12) <<
<< setfill('0') << setw(2) << minute << ":" << setw(2)
<< second << (hour < 12 7 " AM" : " PM");

} // end function printStandard

images/00144.jpeg
View Account Balance

Withdraw Cash

User
Deposit Funds

images/00386.jpeg
// Fig. 9.2: Time.cpp

// Time class member-function definitions

#include <iostream>

#include <iomanip>

#include <stdexcept> // for invalid_argument exception class
#include "Time.h" // include definition of class Time from Time.h

using namespace std;

// Time constructor initializes each data member to zero
Time::Time()
: hour(0), minute(0), second(0)
{
} // end Time constructor

// set new Time value using universal time
void Time::setTime(int h, int m, int s)
{

// validate hour, minute and second

if (Ch 0& h <24) & (m>=02& m< 60) &
(s>>08&& s <60))

{
hour

minute
second
} // end if
else
throw invalid_argument(
“"hour, minute and/or second was out of range");
} // end function setTime

s;

images/00381.jpeg
// Fig. 8.17: fig08_17.cpp
// Using subscripting and pointer notations with built-in arrays.
#include <iostream>
using namespace std;

int mainQ)

{
int b[] = { 10, 20, 30, 40 }; // create 4-element built-in array b
int *bPtr = b; // set bPtr to point to built-in array b

// output built-in array b using array subscript notation
cout << "Array b displayed with:\n\nArray subscript notation\n";

for (size_t i =0; i < 4; 441)
cout << "b[" << i << "] =" << b1 << \n';

// output built-in array b using array name and pointer/offset notation
cout << "\nPointer/offset notation where "
<< "the pointer is the array name\n";

offsetl = 0; offsetl < 4; ++offsetl)
b + " << offsetl << ™) =" << *(b + offsetl) << "\n';

for (size
cout <<

// output built-in array b using bPtr and array subscript notation
cout << "\nPointer subscript notation\n'

for (size_t j Jo< 4 4
cout << "bPtr[" << j << "1'= " << bPr[§ 1 << "\n';

cout << "\nPointer/offset notation\n";

// output built-in array b using bPtr and pointer/offset notation

images/00380.jpeg
int b[5 1; // create 5-element int array b; b is a const pointer
int *bPtr; // create int pointer bPtr, which isn't a const pointer

images/00141.jpeg
Welcome!

Please enter your account number: 12345

Screen
Enter your PIN: 54321

Take cash here ~——— Cash Dispenser

Keypad

Insert deposit envelope here ¥ Deposit Slot

images/00383.jpeg
“John Q. Doe" (a name)
9999 Main Street" (a street address)
"Maynard, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

images/00140.jpeg
basic_ios

Z i

basic_istream basic_ostream

A\ A

basic_iostream

images/00382.jpeg
33 for (size_t offset2 = 0; offset2 < 4; ++offset2)
34 cout << "#(bPtr + " << offset2 << ") = "

35 << *(bPtr + offset2) << "\n';

36} // end main

Array b displayed with:

Array subscript notation

b[0] = 10

b[1] = 20

b[2] = 30

b[3] = 40

Pointer/offset notation where the pointer is the array name
*(b + 0) = 10

*(b + 1) = 20

*(b + 2) = 30

#(b +3) = 40

Pointer subscript notation
bPtr[0] = 10

bPtr[1] = 20

bPtr[2] = 30

bPtr[3] = 40
Pointer/offset notation
*(bPtr + 0) = 10

*(bPtr + 1) = 20

i
*(bPtr + 2) = 30
*(bPtr + 3) = 40

images/00147.jpeg
1 Executes 0.
ATM —TEEEE___ withdrawal
currentTransaction

images/00389.jpeg
33
34
35
36
37
38
39
40
a4
42
3
4

{

cout << “Exception: << e.what() << endl;

} // end catch

// output t's values after specifying invalid values
cout << "\n\nAfter attempting invalid settings:"

<< "\nUniversal time:
t.printUniversal(Q; // 13
cout << "\nStandard time
t.printStandardQ; // 1:
cout << endl;

} // end main

7:06

PM

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

images/00146.jpeg
ATM

images/00388.jpeg
// Fig. 9.3: fig09_03.cpp

// Program to test class Time.

// NOTE: This file must be compiled with Time.cpp.

#include <iostream>

#include <stdexcept> // for invalid_argument exception class
#include "Time.h" // include definition of class Time from Time.h
using namespace std;

int mainQ

{

Time t; // instantiate object t of class Time

// output Time object t's initial values
cout << "The initial universal time is ";
t.printUniversal(Q; // 00:00:00

cout << "\nThe initial standard time is ";

t.printStandard(); // 12:00:00 AM
t.setTime(13, 27, 6); // change time

// output Time object t's new values

cout << "\n\nUniversal time after setTime is
t.printUniversal); // 13:27:06

cout << "\nStandard time after setTime is ";
t.printStandard(); // 1:27:06 PM

// attempt to set the time with invalid values
try

{
t.setTime(99, 99, 99); // all values out of range

} // end try
catch (invalid_argument &e)

images/00149.jpeg
Screen

| |
DepositSlot — ATM @——— CashDispenser

Keypad

images/00148.jpeg
0..1
mn

m.n

B
1

Meaning

None
One

An ineger value

Zero or one

morn

Ac least 7, but not more than 7

Any nonnegative integer (z¢ro or more)
Zero or more (identical to *)

One or more

images/00132.jpeg
Operators

(unaty; right to lefo)
¢ (binarys left to right)
O (grouping parentheses)

O [0 . - + -- static_cast<peO
4+ —- o+ - 1 delete sizeof
* o~ & new
/%
i
«< >
< = s =

B <= >>=

Associati Type

left to right primary

[See caution in Fig. 2.7 regarding

grouping parentheses.]

lefi o right posthix

right to lefe prefix

left to right multiplicative
left to right additive

lefi o right shifting

left o right relational

left to right equality

lefi to right bitwise AND.
left to right bitwise XOR
lefi to right bitwise OR
left to right logical AND
left o right logical OR
right o lefe conditional
right to lefe assignment

left to right comma

images/00374.jpeg
// Fig. 8.10: Fig08_10.cpp

1
2 // Attempting to modify data through a

3 // nonconstant pointer to constant data.

4

5 void f(const int *); // prototype

6

7 dint mainQ)

8 {

9 int y = 0;

10

1" f(&); // f will attempt an illegal modification
12} // end main

3

14 // constant variable cannot be modified through xPtr
15 void f(const int *xPtr)

16 {

17 #xPtr = 100; // error: cannot modify a const object
18} // end function f

GNU Ct+ compiler error message:

£ig08_10.cpp: In function ‘void f(const int*)’:
£ig08_10.cpp:17:12: error: assignment of read-only location ‘*

xpr’

images/00131.jpeg
Bitwise assignment operators

Bitwise AND assignment operator.
|- Birwise inclusive OR assignment operator.
A= Bitwisc exclusive OR assignment operator.
<= Lefeeshife assignment operacor.
>>= Right-shift with s

ign extension assignment operator.

images/00373.jpeg
GNoUAWN=

9
0
1
12
13
14
15
16
1”7
18
19
20
21
22
23
24

// Fig. 8.7: fig08_07.cpp

// Pass-by-reference with a pointer argument used to cube a
// variable’s value.

#include <iostream>

using namespace std;

void cubeByReference(int *); // prototype

int main()

{

int number = §;

cout << "The original value of number is " << number;

cubeByReference(&number); // pass number address to cubeByReference

cout << "\nThe new value of number is " << number << endl;
} // end main

// calculate cube of *nPtr; modifies variable number in main
void cubeByReference(int *nPtr)

{
#nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
} // end function cubeByReference

The original value of number is 5
The new value of number is 125

images/00134.jpeg
Function prototype Function description

char *strcpy(char *s1, const char ¥s2

Copies the string s2 into the characrer array s1. The value of s1 is
returned.

char *strncpy(char *s1, const char *s2, size_t n);
Copies at most n characters of the string s2 into the character array
s1. The value of s1 is returned.

char *strcat(char *sl, const char *s2);

Appends the string s2 to s1. The first character of s2 overwrites the
terminating null character of s1. The value of s1 is returned.

char *strncat(char *sl, const char *s2, size_t n);
Appends at most n characters of string s2 to string s1. The first char-
acter of 52 overwrites the terminating null character of s1. The value
of s1 s returned.

int stramp(const char *s1, const char *s2);
Compares the string s1 with the string s2. The function returns a
value of zero, less than zero or greater than zero if 51 is equal to, less
than or greater than s2, respectively.

int strncmp(const char *s1, const char *s2, size_t n);
Compares up to n characters of the string s1 with the string s2. The
function returns z¢ro, less than zero or greater than zero if the n-
character portion of 51 is equal to, less than or greater than the cor-
responding n-character portion of s2, respectively.

images/00376.jpeg
19

// Fig. 8.12: fig08_12.cpp

// Attempting to modify a constant pointer to constant data.
#include <iostream>

using namespace std;

int mainQ)
{
int x =5, y;

// ptr is a constant pointer to a constant integer.

// ptr always points to the same location; the integer
// at that location cannot be modified.

const int *const ptr = &x;

cout << *ptr << endl;
*ptr = 7; // error: *ptr is const; cannot assign new value

ptr = &y; // error: ptr is const; cannot assign new address
} // end main

Xeode LLVM compiler error message:

Read-only variable is not assignable
Read-only variable is not assignable

images/00133.jpeg
Prototype Description

int isdigit(int c) Returns 1 if ¢ is a digit and 0 otherwise.

int isalpha(int ¢) Returns 1 if ¢ is a lester and 0 otherwise.

int isalnum(int c) Returns 1 if ¢ is a digit or a letter and 0 otherwise.

int isxdigit(int ¢) Returns 1 if ¢ is a hexadecimal digit character and 0 otherwise.

(See Appendix D for a detailed explanation of binary, octal, dec-
imal and hexadecimal numbers.)

int islower(int ¢) Returns 1 if ¢ is a lowercase letter and 0 otherwise.

int isupper(int ¢) Returns 1 if ¢ is an uppercase letter; 0 otherwise.

int tolower(int c) If c is an uppercase letter, tolower returns c as a lowercase letter.
Otherwise, tolower returns the argument unchanged.

int toupper(int ¢) If ¢ is a lowercase letter, toupper returns c as an uppercase lester.
Otherwise, toupper returns the argument unchanged.

int isspace(int ¢) Returns 1 if ¢ is a whitespace character—newline (*\n"), space

(" '), form feed (*\f"), carriage return (*\r"), horizontal tab
(*\t"), or vertical tab (*\v')—and 0 otherwise.
int iscntrl(dint c) Returns 1 if ¢ is a control character, such as newline (*\n"), form
feed ('\F"), carriage return (*\r"), hotizontal tab (*\t"), vertical
tab (*\v'), alert (*\a'), or backspace (*\b')—and 0 otherwise.
int ispunct(int c) Returns 1 if ¢ is a printing character other than a space, a digit, or
a letter and 0 otherwise.

int isprint(int ¢) Returns 1 if ¢ is a printing character including space (*) and 0
otherwise.
int isgraph(int c) Returns 1 if ¢ is a printing character other than space (* *) and 0

otherwise.

images/00375.jpeg
I // Fig. 8.11: fig08_11.cpp

2 // Attempting to modify a constant pointer to nonconstant data.
3

4 dint mainQ

5 {

6 int x, y;

7

8 // ptr is a constant pointer to an integer that can

9 // be modified through ptr, but ptr always points to the

10 // same memory location.

1 int * const ptr = &; // const pointer must be initialized
12

13 *ptr = 7; // allowed: *ptr is not const

14 ptr = &y; // error: ptr is const; cannot assign to it a new address

15} // end main

Microsoft Visual s+ compiler error message:

you cannot assign to a variable that is const

images/00370.jpeg
int y = 5; // declare variable y
int *yPtr = nullptr; // declare pointer variable yPtr

images/00130.jpeg
it 2

Bif

o m o

Bit 2

oo -~

it |

o m o~

images/00372.jpeg
1
2
3
4
5
6
7
8
9

10

1"

12

13

14

15

16

17

8

19

20
21
22

// Fig. 8.6: Fig08_06.cpp
// Pass-by-value used to cube a variable’s value.
#include <iostream>
using namespace std;

int cubeByValue(int); // prototype

int mainQ)

{

int number = 5;

cout << "The original value of number is " << number;

number = cubeByValue(number); // pass number by value to cubeByValue
cout << "\nThe new value of number is " << number << endl;
} // end main

// calculate and return cube of integer argument
int cubeByvalue(int n)

i

return n * n * n; // cube Tocal variable n and return result
} // end function cubeByValue

The original value of number is 5
The new value of number is 125

images/00371.jpeg
// Fig. 8.4: fig08_04.cpp

// Pointer operators & and *.
#include <iostream>

using namespace std;

int mainQ
{

int a = 7; // assigned 7 to a

int *aPtr = &; // initialize aPtr with the address of int variable a
"The address of a is " << &
nThe value of aPtr is " << aPtr;
S
<< *aPtr << endl;

cout <:

<<

cout << "\n\nThe value of a is
<< "\nThe value of *aPtr is
} // end main

GEGNZSom~ouawn-—

The address of a is 002DFD80
The value of aPtr is 002DFD80

The value of a is 7
The value of *aPtr is 7

images/00139.jpeg
Operator Operator keyword
Logical aperator keywords

& and

1 or

! not

Inequality operator keyword

not_eq
Binwise operator keywords

& bitand

| bitor

A xor

= compl

Bitwise assignment operator keywords
& and_eq

1= or_eq

= xor_eq

logical AND
logical OR
logical NOT

inequality

bitwise AND
bitwise inclusive OR
bitwise exclusive OR

bitwise complement

bitwise AND assignment
bitwise inclusive OR assignment
bitwise exclusive OR assignment

images/00136.jpeg
Description

double atof(const char *nPtr) Converts the string nPtr to double. If the string can-
not be converted, 0 is returned.

int atoi(const char *nPtr) Converts the string nPtr to int. If the string cannot
be converted, 0 is returned.

Tong atol(const char “nPtr) Converts the string nPtr to Tong int. If the string can-
not be converted, 0 is returned.

double strtod(const char *nPtr, char **endPtr)

Converts the string nPtr to double. endPtr is the
address of a pointer to the rest of the string after the
double. If the string cannot be converted, 0 is
returned.

Tong strtol(const char *nPtr, char *+endPtr, int base)

Converts the string nPtr to Tong. endptr is the
address of a pointer to the rest of the string after the
Tong. If the string cannot be converted, 0 is returned.
The base parameter indicates the base of the number
to convert (e.g., 8 for octal, 10 for decimal or 16 for
hexadecimal). The default is decimal.

unsigned Tong strtoul(const char “nPtr, char **endPtr, int base)
Converts the string nPtr to unsigned Tong. endPtr is
the address of a pointer to the rest of the string after
the unsigned Tong. If the string cannot be converted,
0is returned. The base parameter indicates the base
of the number to convert (e.g., 8 for octal, 10 for dec-
imal or 16 for hexadecimal). The default is decimal.

images/00378.jpeg
SNaGEGNCSoem~ouswN -

// Fig. 8.14: fig08_14.cpp

// sizeof operator used to determine standard data type sizes.

#include <iostream>
using namespace std;

int mainQ)

{

char c; // variable of type char

short s; // variable of type short

int i; // variable of type int

Tong 1; // variable of type long

Tong 11; // variable of type long long

float f; // variable of type float

double d; // variable of type double

Tong double 1d; // variable of type long double
int array[20]; // built-in array of int

int *ptr = array; // variable of type int *

images/00135.jpeg
char *strtok(char *s1, const char *s2);

A sequence of calls to strtok breaks string s1 into fokens—logical
picces such as words in a line of text. The string is broken up based
on the characters contained in string 2. For instance, if we were to
break the string "this:is:a:string” into tokens based on the
character ': ", the resulting tokens would be "this", "is", "a" and
“string". Function strtok returns only one token at a time—the
first call contains s1 as the first argument, and subsequent calls to
continue tokenizing the same string contain NULL as the first
argument. A pointer to the current token is recurned by each call. If
there are no more tokens when the function is called, NULL is
returned.

size_t strien(const char *s);

Determines the length of string . The number of characters preced-
ing the terminating null character is reurned.

images/00377.jpeg
// Fig. 8.13: fig08_13.cpp

1
2 // Sizeof operator when applied to a built-in array's name

3 // returns the number of bytes in the built-in array.

4 #include <iostream>

5 using namespace std;

6

7 size_t getSize(double *); // prototype

8

9 dint mainQ

0 {

1" double numbers[20 1; // 20 doubles; occupies 160 bytes on our system
12

13 cout << "The number of bytes in the array is " << sizeof(numbers);
14

15 cout << "\nThe number of bytes returned by getSize is "

16 << getSize(numbers) << endl;

17} // end main

18

19 // return size of ptr
20 size_t getSize(double *ptr)
21 {

22 return sizeof(ptr);
23} // end function getSize

The number of bytes in the array is 160
The number of bytes returned by getSize is 4

images/00138.jpeg
Prototype Description

void *memcpy(void *sl, const void *s2, size_t n)
Copies n characters from the object pointed to by s2 into the object pointed
to by s1. A pointer to the resulting object is returned. The area from which
characters are copied is no allowed to overlap the area to which characters are
copied.

void *memmove(void *s1, const void *s2, size_t n)
Copies n characters from the object pointed to by s2 into the object pointed
to by s1. The copy is performed as if the characters were first copied from the
object pointed to by s2 into a temporary array, then copied from the tempo-
rary array into the object pointed to by s1. A pointer to the resulting object is
returned. The area from which characters are copied is allowed to overlap the
area to which characters are copied.

int mememp(const void *s1, const void *s2, size_t n)
Compares the first n characters of the objects pointed to by s1and s2. The
function returns 0, less than 0, or greater than 0 if s1 is equal to, less than or
greater than s2, respectively.

void *memchr(const void *s, int c, size_t n)
Locates the first occurrence of ¢ (converted to unsigned char) in the first n
characters of the object pointed to by s. If ¢ is found, a pointer to ¢ in the
object is returned. Otherwise, 0 is returned.

void *memset(void *s, int c, size_t n)

Copics ¢ (converted to unsigned char) into the first n characters of the object
pointed to by 5. A pointer to the result i recurned.

images/00137.jpeg
Prototype Description

char *strchr(const char *s, int c)

Locates the first occurrence of character ¢ in string s. If ¢ is found, a pointer
to cin s is returned. Otherwise, a null pointer is returnd.

char *strrchr(const char *s, int c)

Scarches from the end of string s and locates the last occurrence of character ¢
in string s. If c is found, a pointer o in string s is rerurned. Otherwise,
null pointer is rerurned.

size_t strspn(const char *sl, const char *s2)

Determines and returns the lengeh of the initial scgment of string s1 consist-
ing only of characters contained in string s2.

char *strpbrk(const char *sl, const char *s2)

Locates the first occurrence in string s1 of any character in string s2. Ifa char-
acter from string s2 is found, a pointer to the character in string s1 is
returned. Otherwise, a null pointer is returncd.

size_t strcspn(const char *s1, const char #s2)

Determines and returns the lengeh of the initial segment of string s1 consist-
ing of characters not contained in string s2.

char *strstr(const char *sl, const char *s2)

Locares the first occurrence in string s1 of string s2. If the string is found, a
pointer to the string in s1.is returned. Otherwise, a null pointer is returned.

images/00379.jpeg
19 cout << "sizeof c = " << sizeof c

20 << "\tsizeof(char) = " << sizeof(char)

21 << "\nsizeof s = " << sizeof s

22 << "\tsizeof(shor << sizeof(short)

23 << "\nsizeof i = " << sizeof i

24 << "\tsizeof(int) " << sizeof(int)

25 << "\nsizeof 1 = " << sizeof 1

26 << "\tsizeof(long) = " << sizeof(long)

27 << "\nsizeof 11 = " << sizeof 11

28 << "\tsizeof(long Tong) = " << sizeof(long long)
29 << "\nsizeof f = " << sizeof f

30 << "\tsizeof(float) = " << sizeof(float)

31 << "\nsizeof d = " << sizeof d

32 << "\tsizeof(double) = " << sizeof(double)

33 << "\nsizeof 1d = " << sizeof 1d

34 << "\tsizeof(long double) = " << sizeof(Tong double)
35 << "\nsizeof array = " << sizeof array

36 << "\nsizeof ptr << sizeof ptr << endl;

37 } // end main

sizeof sizeof(char) = 1
sizeof sizeof (short) = 2
sizeof i sizeof(int) = 4

sizeof sizeof(long) = 4
sizeof sizeof(long long) = 8
sizeof sizeof(float) = 4
sizeof d sizeof (double) = 8
sizeof sizeof(long double) = &

sizeof 80

sizeof

images/00121.jpeg
Nonmodifying sequence algorithms from header <algori thm>
all_of" any_of none_of " for_each
Find Find_if Find_if_not’ find_end
find_first_of adjacent_find count count_if
mismatch equal is_permutation’ search

search_n

images/00363.jpeg
vCENoUAWLN=

10
1

13
14
15
16
1”7
18
19
20
21
22
23
24
25
26
27

// Fig. 7.24: fig07_24.cpp

// Creates GradeBook object using a two-dimensional array of grades.
#include <array>

#include "GradeBook.h" // GradeBook class definition

using namespace std;

// function main begins program execution
int mainQ)
{
// two-dimensional array of student grades
array< array< int, GradeBook::tests >, GradeBook::students > grades

{ 87, 9, 70,
68, 87, 90,
94, 100, 90,
100, 81, 82,
83, 65, 85,
78, 87, 65,
85, 75, 83,
91, 94, 100,
76, 72, 84,
87, 93, 3 1

GradeBook myGradeBook (
"CS101 Introduction to C++ Programming”, grades);
myGradeBook . displayMessage() ;
myGradeBook . processGrades () ;
} // end main

images/00120.jpeg
Mutating sequence algorithms from header <algori thm>

copy

move”
iter_swap
replace_copy
generate
remove_copy
reverse
randon_shuffle

stable_partition

copy_n’
move_backward”
transform
replace_copy_if
generate_n
remove_copy_if
reverse_copy
shuffle’

partition_copy”

copy_if’

swap

replace

Fill

remove

unique

rotate
is_partitioned”

partition_point’

copy_backward
swap_ranges
replace_if
Filln
remove_if
unique_copy
rotate_copy
partition

images/00362.jpeg
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

// create rows/columns of text representing array grades
for (size_t student = 0; student < grades.size(); ++student)

{
cout << "Student " << setw(2) << student + 1;

// output student's grades
for (size_t test = 0; test < grades[student].size(); ++test)
cout << setw(8) << grades[student][test];

// call member function getAverage to calculate student's average;
// pass row of grades as the argument
double average = getAverage(grades[student]);
cout << setw(9) << setprecision(2) << fixed << average << endl;
} // end outer for
} // end function outputGrades

images/00123.jpeg
Numerical algorithms from header <numeric>

accumulate partial_sum dota”

inner_product adjacent_difference

images/00365.jpeg
33
34
35
36
37
38
39
40
41
42
43

a5
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

<< "integersl:" << endl;
outputVector(integersl);
cout << "integers2:" << endl;
outputVector(integers2);

// use inequality (!=) operator with vector objects
cout << "\nEvaluating: integersl != integers2” << endl;

if (integersl != integers2)
cout << "integersl and integers2 are not equal” << endl;

// create vector integers3 using integersl as an

// initializer; print size and contents

vector< int > integers3(integersl); // copy constructor

cout << "\nSize of vector integers3 is " << integers3.size()
<< "\nvector after initialization:" << endl;

outputVector(integers3);

// use overloaded assignment (=) operator
cout << "\nAssigning integers2 to integers << endl;
integersl = integers2; // assign integers2 to integersl

cout << "integersl:" << endl;
outputVector(integersl);
cout << "integers2:" << endl;
outputVector(integers2 J;

operator with vector objects
integers2” << endl;

// use equality (
cout << "\nEvaluating: integersl

if (integersl == integers2)
cout << "integersl and integers2 are equal" << endl;

images/00122.jpeg
Sorting and related algorithms from header <algori thm>

sort stable_sort partial_sort partial_sort_copy
is_sorted” is_sorted_until’ nth_element Tower_bound

upper_bound equal_range binary_search merge

inplace_merge includes set_union set_intersection
set_difference set_symnetric_difference push_heap

pop_heap make_heap sort_heap is_heap’

1is_heap_until” min max minmax”

min_element max_element minmax_element” Tlexicographical_compare

next_permutation prev_permutation

images/00364.jpeg
// Fig. 7.25: fig07_25.cpp

// Demonstrating C++ Standard Library class template vector.
#include <iostream>

#include <iomanip>

#include <vector>

#include <stdexcept>

using namespace std;

void outputVector(const vector< int > &); // display the vector
void inputVector(vector< int > &); // input values into the vector

int mainQ)

{
vector< int > integersl(7); // 7-element vector< int >
vector< int > integers2(10); // 10-element vector< int >

// print integersl size and contents
cout << "Size of vector integersl is " << integersl.size()

<< "\nvector after initialization:" << endl;
outputVector(integersl);

// print integers2 size and contents
cout << "\nSize of vector integers2 is " << integers2.size()

<< "\nvector after initialization:" << endl;
outputVector(integers2);

// input and print integersl and integers2
cout << "\nEnter 17 integers:" << endl;
inputVector(integersl);

inputVector(integers2);

cout << "\nAfter input, the vectors contai

images/00361.jpeg
130

131 // print bar of asterisks

132 for (unsigned int stars = 0; stars < frequency[count 1; ++stars)
133 cout << '*';

134

135 cout << endl; // start a new line of output

136 } // end outer for

137 } // end function outputBarChart

138

139 // output the contents of the grades array
140 void GradeBook: :outputGrades() const

141 {

142 cout << "\nThe grades are:\n\n";

143 cout << " // align column heads

144

145 // create a column heading for each of the tests

146 for (size_t test = 0; test < tests; ++test)

147 cout << "Test " << test + 1 << " "

148

149 cout << "Average" << endl; // student average column heading

150

images/00360.jpeg
// sum grades in array
for (int grade : setOfGrades)
total += grade;

// return average of grades
return static_cast< double >(total) / setOfGrades.size(Q;
} // end function getAverage

// output bar chart displaying grade distribution
void GradeBook: :outputBarChart() const
{

cout << "\nOverall grade distribution:" << endl;

// stores frequency of grades in each range of 10 grades
const size_t frequencySize = 11;

array< unsigned int, frequencySize > frequency = {}; // init to Os

// for each grade, increment the appropriate frequency
for (auto const &student : grades)
for (auto const &test : student)
++frequency[test / 10 1;

// for each grade frequency, print bar in chart
for (size_t count = 0; count < frequencySize; ++count)
{
// output bar label ("0-9:", ..., "90-99:", "100:")
if (0 == count)
cout << " 0-9: ";
else if (10 count)
cout << " 100: ";
else
cout << count * 10 << "-" << (count * 10) + 9 <<

images/00129.jpeg
=

=

o H o= o=

o o = =

oo =

images/00128.jpeg
~

o oo

~
=

o o =

oo

images/00125.jpeg
Function Return type Function Return type

Functions that convert to integral types | Functions that convert to floating-point types

stoi int stof float

stol Tong stod double
stoul unsigned long stold Tong double
stoll Tong Tong

stoull unsigned Tong Tong

images/00367.jpeg
91
92
93
9%
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

cout << "integers3 now contain.
outputvVector(integers3);
} // end main

// output vector contents
void outputVector(const vector< int > &rray)
{
for (int item : items)
cout << item << " ";

cout << endl;
} // end function outputVector

// input vector contents
void inputVector(vector< int > &array)
{
for (int &item : items)
cin >> item;
} // end function inputVector

images/00124.jpeg
exception

A

runtime_error

——

overflow_error underflow_error

logic_error

invalid_argument

length_error

bad_alloc bad_cast

bad_type_id

bad_exception

out_of_range

images/00366.jpeg
67
68
69
70
n
72
3
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
920

// use square brackets to use the value at location 5 as an rvalue
cout << "\nintegers1[5] is " << integersi[5 1;

// use square brackets to create Ivalue
cout << "\n\nAssigning 1000 to integersl[5]" << endl;
integersi[5] = 1000;

cout << "integersl:" << endl;

outputVector(integersl);

// attempt to use out-of-range subscript
try
{
cout << "\nAttempt to display integersl.at(15)" << endl;
cout << integersl.at(15) << endl; // ERROR: out of range
} // end try
catch (out_of_range &ex)
{
cerr << "An exception occurred: "

} // end catch

<< ex.what() << endl;

// changing the size of a vector

cout << "\nCurrent integers3 size is: " << integers3.size() << endl;
integers3.push_back(1000); // add 1000 to the end of the vector
cout << "New integers3 size is: " << integers3.size() << endl;

images/00127.jpeg
Operator Name Description

& bitwise AND The bits in the result are set to 1if the corresponding
bits in the two operands are borh 1.

1 bitwise inclusive The bits in the result are sct to 1 if ore or both of the

OR corresponding bits in the two operands is 1.
A bitwise exclusive The bits in the result are sct to 1 if exactly one of the
OR corresponding bits in the two operands is 1.

« left shifc Shifes the bits of the first operand left by the number
of bits specificd by the second operand; fill from right
with 0 bits.

> right shift with sign Shifes the bits of the first operand right by the number

extension of bits specificd by the second operand; the method of

filling from the lefe is machine dependent.
~ bitwise complement All 0 bits are set to 1 and all 1 bits are set to 0.

images/00369.jpeg
Evaluating: integersl integers2
integersl and integers2 are equal

integersi[s] is 13

Assigning 1000 to integersi[5]
integersl:
8 9 10 11 12 1000 14 15 16 17

Attempt to display integersl.at(15)
An exception occurred: invalid vector<T> subscript

Current integers3 size is: 7
New integers3 size is: 8
integers3 now contains: 12 3 4 5 6 7 1000

images/00126.jpeg
Byte 0 1 2 3
01100001 00000000 01100001

images/00368.jpeg
Size of vector integersl is 7
vector after initialization:
0000000

Size of vector integers2 is 10
vector after initialization:
0000000000

Enter 17 integers:
1234567891011 1213 14 15 16 17

After input, the vectors contain:
integersl:

1234567

integers2:

8910 11 12 13 14 15 16 17

Evaluating: integersl != integers2
integersl and integers2 are not equal

Size of vector integers3 is 7
vector after initialization:
1234567

Assigning integers2 to integersi:
integersl:
8910 11 12 13 14 15 16 17
integers2:

8910 11 12 13 14 15 16 17

images/00110.jpeg
rbegin

rend

crbegin (Cr+11)

crend (Cr+11)

erase

clear

‘The two versions of this function return either a reverse_iterator ora
const_reverse_iterator that refers to the last element of the container.

“The two versions of this function return cither a reverse_iterator ora
const_reverse_iterator that refers to the posiion before the firs ele-
ment of the container.

Returns a const_reverse_iterator that refers to the last element of the
container.

Returns a const_reverse_iterator that refcrs to the posirion before the
Sfrst element of the container.

Removes one or more elements from the container.

Removes a/l clements from the container.

images/00352.jpeg
for (size_t column = 0; column < 4; ++column)
a[2 J[column] -

images/00594.jpeg
Account
29
33
37
88
96

Last Name
Brown
Dunn
Barker
Smith
Stone

First Name
Nancy
Stacey
Doug

Dave

Sam

Balance
-24.54
314.33

0.00
258.34
34.98

images/00351.jpeg
for (size_t row = 0; row < a.size(); ++row)

{
for (size_t column = 0; column < a[row].size(); ++column)
cout << a[row J[column] << '
cout << endl;
} // end outer for

images/00593.jpeg
254
255
256
257
258
259
260
261

do
{

cout << prompt << " (1 - 100): ";

cin >> accountNumber;
} while (accountNumber < 1 ||

return accountNumber;
} // end function getAccount

accountNumber > 100);

images/00112.jpeg
Category

Description

random access

bidirectional

Sforward

output

input

Combines the capabilitics of a bidirectional iterator with the ability o directly
access any clement of the container, i.¢., to jump forward or backward by an
arbitrary number of elements. These can also be compared with relational
operators.

Combines the capabilities of a forward iterator with the ability to move in the
backward dircction (i.c., from the end of the container toward the beginning).
Bidirectional iterators support multipass algorithms.

Combines the capabilities of input and ousput iterators and recains their posi-
tion in the conainer (as stae information). Such iterators can be used to pass
through a sequence more than once (for so-called multipass algorithms).
Used to write an element to a container. An output iterator can move only in
the forward dircction one element at a time. Outpu itcrators supporc only
one-pass algorithms—the same output iterator cannor be used o pass through
a sequence twice.

Used o read an element from a container. An input iterator can move only in
the forward ditection (i.c., from the beginning of the container to the end)
one clement at a time. Input itcrators support on/y one-pass algorithms—the
same input iterator cannat be used to pass through a sequence twice.

images/00354.jpeg
total = 0;

for (auto row : a) // for each row
for (auto column : row) // for each column in row
total column;

images/00596.jpeg
Enter new account number (1 - 100): 22
Enter lastname, firstname, balance
? Johnston Sarah 247.45

images/00111.jpeg
Description

allocator_type

value_type
reference

const_reference

pointer

const_pointer

iterator

const_iterator

reverse_iterator

const_reverse_iterator

difference_type

size_type

The type of the object used to allocate the container’s memory—
not included in class remplate array.

The type of clement stored in the container.

A reference for the container's clement type.

A reference for the container’s element type that can be used only to
read clements in the container and to perform const operations.

A pointer for the container’s clement type.

A pointer for the conainer’s clement type that can be used only to
read elements and to perform const operations.

An iterator that points to an clement of the container’s clement type.

Aniterator that points to an element of the container's element type.
Used only only to 7ead clements and to perform const operaions.
A reverse iteraror that points to an element of the container’s ele-
ment type. Used o iterate through a container in reverse.

A reverse iteraror that points to an clement of the conainer’s cle-
ment type and can be used only to read elements and to perform
const operations. Used to iterate through a containcr in reverse.
The type of the result of subtracting two itcrators that refer to the
same container (operator- is not defined for itcrators of 11sts and
associative containers).

The type used to count items in a container and index through a
sequence container (cannot index through a 14s).

images/00353.jpeg
total = 0;

for (size_t row = 0; row < a.size(); ++row)
for (size_t column = 0; column < a[row].size(); ++column)
total al row][column J;

images/00595.jpeg
Enter account to update (1 - 100): 37
37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99
37 Barker Doug 87.99

images/00590.jpeg
157 } // end function updateRecord

158

159 // create and insert record

160 void newRecord(fstream &insertInFile)

161 {

162 // obtain number of account to create

163 int accountNumber = getAccount("Enter new account number");
164

165 // move file-position pointer to correct record in file
166 insertInFile.seekg((accountNumber - 1) * sizeof(ClientData));
167

168 // read record from file

169 ClientData client;

170 insertInFile.read(reinterpret_cast< char * >(&client),
1 sizeof(ClientData));

172

173 // create record, if record does not previously exist
174 if (client.getAccountNumber() == 0)

175 i

176 string lastName;

177 string firstName;

178 double balance;

179

180 // user enters last name, first name and balance

181 cout << "Enter lastname, firstname, balance\n? ";

182 cin >> setw(15) >> TlastName;

183 cin >> setw(10) >> firstName;

184 cin >> balance;

185

186 // use values to populate account values

187 client.setLastName(lastName);

188 client.setFirstName(firstName);

189 client.setBalance(balance

images/00350.jpeg
23 // output array with two rows and three columns
24 void printArray(const array< array< int, columns >, rows> & a)
25 {

26 // loop through array's rows

27 for (auto const &row : a)

28 ft

29 // Toop through columns of current row
30 for (auto const &element : row)

31 cout << element << ' ';

32

33 cout << endl; // start new line of output
34 } // end outer for

35} // end function printArray

Values in arrayl by row are:
123
456

Values in array2 by row are:
123
450

images/00592.jpeg
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

ClientData blankClient; // create blank record

// move file-position pointer to correct record in file
deleteFromFile.seekp((accountNumber - 1) *

/1

sizeof(ClientData));

replace existing record with blank record

deleteFromFile.write(

reinterpret_cast< const char * >(&blankClient),
sizeof(ClientData));

cout << "Account #" << accountNumber << " deleted.\n";
} // end if
else // display error if record does not exist

cerr << "Account #" << accountNumber <<

} // end

is empty.\n";
deleteRecord

// display single record
void outputLine(ostream &output, const ClientData &record)

output << Teft << setw(10) << record.getAccountNumber()

{
<<
<<
<<
<<
} // end

setw(16) << record.getLastName()

setw(11) << record.getFirstName()

setw(10) << setprecision(2) << right << fixed
showpoint << record.getBalance() << endl;
function outputLine

// obtain account-number value from user
int getAccount(const char * const prompt)

{

int accountNumber;

// obtain account-number value

images/00591.jpeg
190
191

192
193

194
195

196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220

client.setAccountNumber(accountNumber);

// move file-position pointer to correct record in file
insertInFile.seekp((accountNumber - 1) * sizeof(ClientData));

// insert record in file
insertInFile.write(reinterpret_cast< const char * >(&lient),
sizeof(ClientData));
} // end if
else // display error if account already exists
cerr << "Account #' << accountNumber

<< " already contains information."” << endl;

} // end function newRecord

// delete an existing record
void deleteRecord(fstream &eleteFromFile)

{

// obtain number of account to delete
int accountNumber = getAccount("Enter account to delete”);

// move file-position pointer to correct record in file
deleteFromFile.seekg((accountNumber - 1) * sizeof(ClientData));

// read record from file

ClientData client;

deleteFromFile.read(reinterpret cast< char * >(&client),
sizeof(ClientData));

// delete record, if record exists in file
if (client.getAccountNumber() != 0)
{

images/00118.jpeg
Exception type

Description

out_of_range

invalid_argument
Tength_error
bad_alloc

Indicates when subscript is out of range—c.g., when an invalid
subscript is specified to vector member function at.

Indicates an invalid argument was passed to a function.
Indicates an attempt o create too long a container, string, ctc.

Indicates that an attempt to allocate memory with new (or with
an allocator) failed because not enough memory was available.

images/00117.jpeg
p+iori+p

B
p-pl
pli]
p<pl
ol
p>pl
Pl

Increment the iterator p by 1 positions.
Decrement the iterator p by i positions.

Expression value is an iterator positioned at p incremented by 1 positions.

Expression value
tions.

an iterator pos

tioned at p decremented by 1 posi-

Expression value is an integer representing the distance between two ele-
ments in the same container.

Return a reference to the clement offsce from p by i positions

Return true if iterator p is

less than iterator p1 (i.c., iterator p is before
erator p1 in the container); otherwise, return false.

Recurn true if iterator p is less than or equal 1o iterator p1. (i.c., iterator p
is before iterator p1 or at the same location as iterator p1 in the container);
otherwise, return false.

Return true if iterator p is greater than iterator pl (i.c., iterator p is affer
iterator p1 in the container); otherwise, return false.

Return true if iterator p is greater than or equal o iterator p1 (i.e., itera-
tor p is affer iterator pl or at the same location as iterator p1. in the con-
tainer); otherwise, return false.

images/00359.jpeg
65 if (grade < TowGrade)

66 TowGrade = grade; // new lowest grade
67 } // end inner for

68 } // end outer for

69

70 return lowGrade; // return lowest grade

71} // end function getMinimum

72

73 // find maximum grade in the entire gradebook
74 int GradeBook::getMaximum() const

5 {

76 int highGrade = 0; // assume highest grade is 0
77

78 // loop through rows of grades array

79 for (auto const &student : grades)

80 {

81 // Toop through columns of current row

82 for (auto const &grade : student)

83 {

84 // if current grade greater than highGrade, assign to highGrade
85 if (grade > highGrade)

86 highGrade = grade; // new highest grade
87 } // end inner for

88 } // end outer for

89

90 return highGrade; // return highest grade

91 '} // end function getMaximum

92

93 // determine average grade for particular set of grades

94 double GradeBook: :getAverage(const array<int, tests> &setOfGrades) const
95 {

96 int total

// initialize total

images/00119.jpeg
Function object

Function object

divides< T >
equal_to< T >
greater< T >
greater_equal< T >
less< T >
less_equal< T >
Togical_and< T >
Togical_not< T >

arithmetic
relational
relational
relational
relational
relational
logical
logical

Togical_or< T >
minus< T >
modulus< T >
negate< T >
not_equal_to< T >
plus< T >

multiplies< T >

logical
arithmetic
arithmeric
arithmetic
relational

arithmetic
arithmeric

images/00114.jpeg
Container Iterator type

Container Iterator type

Sequence containers (first class)

vector, random access
array random access
deque random access
Tist bidirectional
forward_Tist forward

Ordered associative consainers (frst class)

set bidirectional
multiset bidirectional
map bidirectional

multinap bidirectional

Unordered associative containers (first class)

unordered_set bidirectional
unordered_multiset bidirectional
unordered_map bidirectional
unordered_multimap bidirectional
Container adapters

stack none

queue none
priority_queue none

images/00356.jpeg
// Fig. 7.22: GradeBook.h

// Definition of class GradeBook that uses a

// two-dimensional array to store test grades.
// Member functions are defined in GradeBook.cpp
#include <array>

#include <string>

// GradeBook class definition
class GradeBook

{
public:
// constants
static const size_t students = 10; // number of students
static const size_t tests = 3; // number of tests
// constructor initializes course name and array of grades
GradeBook(const std::string &,
std::array< std::array< int, tests >, students > &);
void setCourseName(const std::string &); // set the course name
std::string getCourseName() const; // retrieve the course name
void displayMessage() const; // display a welcome message
void processGrades() const; // perform operations on the grade data
int getMinimum() const; // find the minimum grade in the grade book
int getMaximum() const; // find the maximum grade in the grade book
double getAverage(const std::array< int, tests > &) const;
void outputBarChart() const; // output bar chart of grade distribution
void outputGrades() const; // output the contents of the grades array
private:

std::string courseName; // course name for this grade book
std::array< std::array< int, tests >, students > grades; // 2D array
}; // end class GradeBook

images/00598.jpeg
// Fig. 15.4: figl5_04.cpp

// Demonstrating input and output with iterators.

#include <iostream>

#include <iterator> // ostream_iterator and istream_iterator
using namespace std;

int main()

{

cout << "Enter two integers: ";

// create istream_iterator for reading int values from cin
istream_iterator< int > inputInt(cin);

int numberl = *inputInt; // read int from standard input
++inputInt; // move iterator to next input value
int number2 = *inputlnt; // read int from standard input

// create ostream_iterator for writing int values to cout
ostream_iterator< int > outputInt(cout);

cout << "The sum is: ";
*outputInt = numberl + number2; // output result to cout
cout << endl;

} // end main

Enter two integers: 12 25
The sum is: 37

images/00113.jpeg
random access

bidirectional

forward

input output

images/00355.jpeg
Welcome to the grade book for
5101 Introduction to Ci+ Programming!

The grades are:

Test 1 Test 2 Test 3 Average

Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 920 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
0-9:

10-19:

20-29:

30-39:

40-49:

50-59:

60-69: *¢x

70-79: Hrwwrn

80-89: *#x

00-09: wwisii
100: *++

images/00597.jpeg
Enter account to delete (1 - 100): 29
Account #29 deleted.

images/00116.jpeg
Iterator operation Description

All irerators
+p Preincrement an iterator.
pre Postincrement an iterator.
p=pl Assign onc iterator to another.

Input iterators

“» Dercference an iterator as an rualue.
posm Use the irerator to read the clement m.
p == pl Compare iterators for cquality.

[

p1 Compare itcrators for incquality:

Output iterators

» Dereference an iterator as an lualue.

p=pl Assign one iterator to another.

Forward iterators Forward iterators provide all the functionality of both input iterarors
and output iterators.

Bidirectional iterators

-p Predecrement an iterator.

p-- Postdecrement an iterator.

Random-access iterators

images/00358.jpeg
33
34
35
36
37
38
39
40
a
42
43
44
45
46
a7
48
49
50
H
52
53
54
55
56
57
58
59
60
61
62
63

// this statement calls getCourseName to get the
// name of the course this GradeBook represents
cout << "Welcome to the grade book for\n" << getCourseName() << “!"
<< endl;
} // end function displayMessage

// perform various operations on the data
void GradeBook: :processGrades() const
{

// output grades array

outputGrades ()

// call functions getMinimum and getMaximum
cout << "\nLowest grade in the grade book is
<< "\nHighest grade in the grade book is

<< getMinimum()
<< getMaximum() << endl;

// output grade distribution chart of all grades on all tests
outputBarChart();
} // end function processGrades

// find minimun grade in the entire gradebook
int GradeBook: :getMinimum() const

{

int TowGrade = 100; // assume lowest grade is 100

// Toop through rows of grades array
for (auto const &student : grades)
{
// Toop through columns of current row
for (auto const &grade : student)
{
// if current grade less than lowGrade, assign it to lowGrade

images/00115.jpeg
Predefined typedefs for iterator types Direction of ++

Capability

iterator forward
const_iterator forward
reverse_iterator backward

const_reverse_iterator backward

read/write
read
read/write

read

images/00357.jpeg
N -
8EsNanitN-Cor~Nausun -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 7.23: GradeBook.cpp
// Member-function definitions for class GradeBook that
// uses a two-dimensional array to store grades.
#include <iostream>

#include <iomanip> // parameterized stream manipulators
using namespace std;

// include definition of class GradeBook from GradeBook.h
#include "GradeBook.h" // GradeBook class definition

// two-argument constructor initializes courseName and grades array
GradeBook: : GradeBook(const string &name,
std::array< std::array< int, tests >, students > &gradesArray)
: courseName(name), grades(gradesArray)
{

} // end two-argument GradeBook constructor

// function to set the course name
void GradeBook: :setCourseName(const string &name)
{

courseName = name; // store the course name
} // end function setCourseName

// function to retrieve the course name
string GradeBook: :getCourseName() const
{

return courseName;
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const

£

images/00599.jpeg
// Fig. 15.10: Figl5_10.cpp

// Standard Library vector class template.

#include <iostream>

#include <vector> // vector class-template definition
using namespace std;

// prototype for function template printVector
template < typename T > void printVector(const vector< T > &integers2);

int mainQ
{
const size_t SIZE = 6; // define array size
int values[SIZE] = { 1, 2, 3, 4, 5, 6 }; // initialize values
vector< int > integers; // create vector of ints
cout << "The initial size of integers is: "
<< "\nThe initial capacity of integers is:

<< integers.size()
" << integers.capacityQ;

// function push_back is in vector, deque and list
integers.push_back(2);
integers.push_back(3);
integers.push_back(4);

cout << "\nThe size of integers i << integers.size()
<< "\nThe capacity of integers is: " << integers.capacity();

cout << "\n\nOutput built-in array using pointer notation: “;

// display array using pointer notation
for (const int *ptr = begin(values); ptr != end(values); ++ptr)
cout << *ptr << '

cout << "\nOutput vector using iterator notation

images/00341.jpeg
| // Fig. 7.16: GradeBook.cpp

2 // GradeBook class member functions manipulating

3 // an array of grades.

4 #include <iostream>

5 #include <iomanip>

6 #include "GradeBook.h" // GradeBook class definition
7 using namespace std;

8

9

10

// constructor initializes courseName and grades array
GradeBook: : GradeBook (const string &name,

1" const array< int, students > &gradesArray)
12 : courseName(name), grades(gradesArray)
13 {

14} // end GradeBook constructor

15

16 // function to set the course name
17 void GradeBook: :setCourseName(const string &name)
(L

19 courseName = name; // store the course name
20 } // end function setCourseName
21

22 // function to retrieve the course name
23 string GradeBook: :getCourseName() const

24 {

25 return courseName;

26} // end function getCourseName
27

28 // display a welcome message to the GradeBook user
29 void GradeBook: :displayMessage() const

30 {

31 // this statement calls getCourseName to get the
32 // name of the course this GradeBook represents

images/00583.jpeg
// Fig. 14.13: Figl4_13.cpp
// Reading a random-access file sequentially.

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

#include "ClientData.h” // ClientData class definition
using namespace std;

void outputLine(ostream&, const ClientData &); // prototype
int mainQ)
{

ifstream inCredit("credit.dat", ios::in | ios::binary);

// exit program if ifstream cannot open file
if (linCredit)

{
cerr << "File could not be opened.” << endl;
exit(EXIT_FAILURE);

} // end if

// output column heads

cout << Teft << setw(10) << "Account” << setw(16)
<< "Last Name" << setw(11) << "First Name" << left
<< setw(10) << right << "Balance” << endl;

ClientData client; // create record
// read first record from file

inCredit.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));

images/00340.jpeg
CNERNNBEGEEISGREGNCCSva~aunaun=

26
27
28
29

// Fig. 7.15: GradeBook.h

// Definition of class GradeBook that uses an array to store test grades.
// Member functions are defined in GradeBook.cpp

#include <string>

#include <array>

// GradeBook class definition

class GradeBook

&

public:
// constant -- number of students who took the test
static const size_t students = 10; // note public data

// constructor initializes course name and array of grades
GradeBook(const std::string &, const std::array< int, students > &);

void setCourseName(const std::string &); // set the course name
string getCourseName() const; // retrieve the course name
void displayMessage() const; // display a welcome message
void processGrades() const; // perform operations on the grade data
int getMinimumQ const; // find the minimum grade for the test
int getMaximum() const; // find the maximum grade for the test
double getAverage() const; // determine the average grade for the test
void outputBarChart() const; // output bar chart of grade distribution
void outputGrades() const; // output the contents of the grades array
private:
std::string courseName; // course name for this grade book
std::array< int, students > grades; // array of student grades
}; // end class GradeBook

images/00582.jpeg
Enter account number (1 to
237

Enter lastname, firstname,
? Barker Doug 0.00

Enter account number

? 29

Enter lastname, firstname,
7 Brown Nancy -24.54
Enter account number

296

Enter lastname, firstname,
? Stone Sam 34.98

Enter account number

? 88

Enter lastname, firstname,
? Smith Dave 258.34

Enter account number

33

Enter lastname, firstname,
? Dunn Stacey 314.33
Enter account number

70

100, 0 to end input)

balance

balance

balance

balance

balance

images/00101.jpeg
showpoint

uppercase

showpos

scientific
fixed

Specity that floating-point numbers should be output with a decimal point.
This is used normally with fixed to guaranteea certain number of digits to the
right of the decimal point, even if they're zeros. This setting is reset with
stream manipulator noshowpoint.

Specify that uppercase letters (i.c., X and A through F) should be used in a hexa-
decimal integer and that uppercase E should be used when representing a float-
ing-point value in scientific notation. This setting s reset with stream
‘manipulator nouppercase.

Specify that psitive numbers should be preceded by a plus sign (+). This set-
ting is reset with stream manipulator noshowpos.

Specify output of a floating-point value in scientific notation.

Specify output of a floating-point value in fixed-point noation with a specific
number of digts to the right of the decimal point.

images/00343.jpeg
66 } // end for

67

68 return lowGrade; // return lowest grade
69 '} // end function getMinimum

70

71 // find maximum grade
72 int GradeBook: :getMaximum() const

3 {

74 int highGrade = 0; // assume highest grade is 0
75

76 // loop through grades array

77 for (int grade : grades)

78 {

79 // if current grade higher than highGrade, assign it to highGrade
80 if (grade > highGrade)

81 highGrade = grade; // new highest grade
82 } // end for

83

84 return highGrade; // return highest grade

85 } // end function getMaximum

86

87 // determine average grade for test
88 double GradeBook: :getAverage() const

89 {

90 int total = 0; // initialize total
91

92 // sum grades in array

93 for (int grade : grades)

9% total += grade;

95

9 // return average of grades

97 return static_cast< double >(total) / grades.size();

images/00585.jpeg
// Fig. 14.14: Figld_14.cpp

// This program reads a random-access file sequentially, updates
// data previously written to the file, creates data to be placed
// in the file, and deletes data previously stored in the file.

#include
#include
#include
#include
#include

<iostream>
<fstream>
<iomanip>
<cstdlib>
"ClientData.h" // ClientData class definition

using namespace std;

int enterChoice();

void createTextFile(fstream&);

void updateRecord(fstream&);

void newRecord(fstream&);

void deleteRecord(fstream&);

void outputLine(ostream&, const ClientData &);
int getAccount(const char * const);

enum Choices { PRINT = 1, UPDATE, NEW, DELETE, END };

int mainQ)

{

// open file for reading and writing

fstream inOutCredit("credit.dat", ios::in | ios::out | jos::binary);

// exit program if fstream cannot open file
if (!inOutCredit)

{

cerr << "File could not be opened." << endl;
exit (EXIT _FAILURE);

images/00100.jpeg
Manipulator scription

skipus

Teft
right
internal

boolalpha

dec
oct
hex

showbase

Skip white-space characters on an input stream. This setting is reset with stream
‘manipulator noskipws.

Left justify ourput in a field. Padding characters appear to the right if necessary.
Right justify output in a field. Padding characters appear to the eff if necessary.

Indicate that a number’s sign should be lef justified in a field and a numbers
magnitude should be right justified in that same field (i.c., padding characters
appear berween the sign and the number).

Specify that boo? values should be displayed as the word true or false. The
manipulator noboolalpha sets the strcam back to displaying bool values as 1
(true) and 0 (false).

Specify that integers should be treated as decimal (base 10) values.
Specify that integers should be treated as octal (base 8) values.
Specify that integers should be treated as hevadecimal (base 16) values.

Specify that the base of a number is to be output ahead of the number (a lead-
ing 0 for octals; a leading 0x or O for hexadecimals). This seteing i reset with
stream manipulator noshowbase.

images/00342.jpeg
33
34
35
36
37
38
39
40
41
2
43

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65

cout << "Welcome to the grade book for\n" << getCourseName() <<
<< endl;
} // end function displayMessage

// perform various operations on the data
void GradeBook: :processGrades() const
{

// output grades array

outputGrades();

// call function getAverage to calculate the average grade
cout << setprecision(2) << fixed;
cout << "\nClass average is " << getAverage() << endl;

// call functions getMinimum and getMaximum
cout << "Lowest grade is " << getMinimum() << "\nHighest grade is
<< getMaximum() << endl;

// call function outputBarChart to print grade distribution chart
outputBarChart();
} // end function processGrades

// find minimum grade
int GradeBook::getMinimum() const
{

int TowGrade = 100; // assume lowest grade is 100

// Toop through grades array
for (int grade : grades)
{
// if current grade Tower than lowGrade, assign it to lowGrade
if (grade < lowGrade)
TowGrade = grade; // new lowest grade

images/00584.jpeg
33

34 // read all records from file

35 while (inCredit & !inCredit.eof())
36 {

37 // display record

38 if (client.getAccountNumber() 0)
39 outputline(cout, client);

40

41 // read next from file

42 inCredit.read(reinterpret_cast< char * >(&client),
43 sizeof(ClientData));

44 } // end while

45 '} // end main

46

47 // display single record
48 void outputLine(ostream &output, const ClientData &record)
49 {

50 output << left << setw(10) << record.getAccountNumber()
51 << setw(16) << record.getLastName()

52 << setw(11) << record.getFirstName()

53 << setw(10) << setprecision(2) << right << fixed
54 << showpoint << record.getBalance() << endl;

55 } // end function outputlLine

Account Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34

96 Stone Sam 34.98

images/00581.jpeg
33
34
35
36
37
38
39
40
a1
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58

// user
cout <<
cin >>
cin >>
cin >>

// set
client
client
client.
client

// seek
outCred

enters last name, first name and balanc
“Enter lastname, firstname, balance\n? ";
TastName;

firstName;

balance;

record accountNumber, lastName, firstName and balance values

-setAccountNumber(accountNumber);
-setlastName(TastName);

setFirstName(firstName);

.setBalance(balance);

position in file of user-specified record
[it.seekp((client.getAccountNumber() - 1) *

sizeof(ClientData));

// writ
outCred

e user-specified information in file
[it.write(reinterpret_cast< const char * >(&client),

sizeof(ClientData));

// enab

cout <<

cin >>

} // end wi

} // end main

le user to enter another account
“Enter account number\n?
accountNumber;

hile

images/00580.jpeg
// Fig. 14.12: Figld_12.cpp

// Writing to a random-access file.

#include <iostream>

#include <fstream>

#include <cstdlib>

#include "ClientData.h” // ClientData class definition
using namespace std;

int main()

1
int accountNumber;
string lastName;
string firstName;
double balance;

fstream outCredit("credit.dat", ios::in | dos::out | ios::binary);
// exit program if fstream cannot open file
if (loutCredit)
i
cerr << "File could not be opened.” << endl;

exit(EXIT_FAILURE);
} // end if

cout << "Enter account number (1 to 100, 0 to end input)\n? ";
// require user to specify account number
ClientData client;

cin >> accountNumber;

// user enters information, which is copied into file
while (accountNumber > 0 & accountNumber <= 100)

images/00107.jpeg
Container class Description

Sequence containers

array Fixed size. Direct access to any element.

deque Rapid insertions and deletions at front or back. Direct access to any
element.

forward_list Singly linked list, rapid insertion and deletion anywhere. New in C++11.

Tise Doubly linked list, rapid insertion and deleion anywhere.

vector Rapid insertions and deletions at back. Direct access to any element.

Ordered associative containers—keys are maintained in sorted order

set Rapid lookup, no duplicates allowed.
multiset Rapid lookup, duplicates allowed.

map One-to-one mapping, no duplicates allowed, rapid key-based lookup.
nultinap One-to-many mapping, duplicates allowed, rapid key-based lookup.

Unordered associative containers

unordered_set Rapid lookup, no duplicates allowed.

unordered_multiset Rapid lookup, duplicates allowed.

unordered_map One-to-one mapping, no duplicates allowed, rapid key-based lookup.
unordered_nultimap One-to-many mapping, duplicates allowed, rapid key-based lookup.

Container adapters
stack Last-in, first-out (LIFO).
aueue First-in, first-out (FIFO).

priority_queve Highest-priority clement is always the first clement out.

images/00349.jpeg
T Vo
8 E eI RitN-CvaeNausuNn~—

21

// Fig. 7.20: fig07_20.cpp

// Initializing multidimensional arrays.
#include <iostream>

#include <array>

using namespace std;

const size_t rows = 2;
const size_t columns = 3;

void printArray(const array< array< int, columns >, rows> &);

int mainQ)
{
array< array< int, columns >, rows > arrayl
array< array< int, colums >, rows > array2 =

"
ol

cout << "Values in arrayl by row are:" << endl;
printArray(arrayl);

cout << "\nValues in array2 by row are:" << endl;
printArray(array2);
} // end main

images/00106.jpeg
100 200 300 400 500

I S R S N

100 100 100 100 100 100
bytes bytes bytes bytes bytes bytes

images/00348.jpeg
28 // search for "indigo" in colors

29 bool found = binary_search(colors.begin(), colors.end(), “indigo");
30 cout << "\m\n\"indigo\" " << (found ? "was" : "was not")

31 << " found in colors" << endl;

32

33 // search for "cyan" in colors

34 found = binary_search(colors.begin(), colors.end(), "cyan");

35 cout << "\"cyan\" " << (found ? "was" : "was not")

36 << " found in colors" << endl;
37 '} // end main

Unsorted array:
red orange yellow green blue indigo violet
Sorted array:

blue green indigo orange red violet yellow

"indigo" was found in colors
"cyan" was not found in colors

images/00109.jpeg
operator:

operator:

operator

swap

max_size

begin
end

cbegin (C++11)
cend (C++11)

Returns true if the contents of the first container are greater than or
equal to the second; otherwise, returns false.
Returns true if the contents of the first container are equal to the con-
tents of the second; otherwise, returns false.

Returns true if the contents of the first container are not equal to the
contents of the sccond; otherwise, returns false.

Swaps the elements of two containers. As of C++11, there is now a
non-member fanction version of swap that swaps the contents of its
two arguments (which must be of the same container type) using move
operations rather than copy operations.

Returns the masimum number of elements for a container.

Ovetloaded to return cither an iterator or a const_iterator that
refers to the first element of the container.

Ovetloaded to return cither an iterator or a const_iterator that
refers to the rext position afier the end of the container.

Returns a const_iterator that refers to the containers first element.

Returns a const_iterator that refers to the next pasition affer the end of
the container.

I'FF

images/00108.jpeg
Member function

Description

default constructor

copy constructor

move constructor

destructor
empty

insert
size

copy operator=

move operatof

operator<

operator-

operator>

A constructor that iniializes an empty container. Normally, cach con-
tainer has several constructors that provide different ways to initialize
the container.

A constructor that initializes the container to be a copy of an existing
container of the same type.

A move constructor (new in Cr+11 and discussed in Chapter 24)
moves the contents of an existing container of the same type inco a new
container. This avoids the overhead of copying cach clement of the
argument containcr.

Destructor function for cleanup after a container is no longer needed.

Returns true if there are 710 elements in the container; otherwise,
returns false.

Inserts an item in the container.

Returns the number of elements currently in the container.

Copics the clements of one conainer into another.

The move assignment operator (new in C++11 and discussed in
Chapter 24) moves the clements of one container into another. This
avoids the overhead of copying each element of the argument container.
Returns true if the contents of the first container are less than the sec-
ond; otherwise, returns false.

Returns true if the contents of the first container are less than or equal
to the second; otherwise, returns false.

Returns true if the contents of the first container are greater than the
second; otherwise, returns false.

images/00103.jpeg
basic_ios

N

basic_istream basic_ostream

SN N

basic_ifstream basic_iostream basic_ofstream

f

basic_fstream

images/00345.jpeg
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

// print bar of asterisks

for (unsigned int stars = 0; stars < frequency[count]; ++stars)

cout <<

cout << endl; // start a new line of output
} // end outer for
} // end function outputBarChart

// output the contents of the grades array
void GradeBook: :outputGrades() const

{

cout << "\nThe grades are:\n\n";

// output each student's grade

for (size_t student = 0; student < grades.size(); ++student)

cout << "Student " << setw(2) << student + 1 <<
<< grades[student] << endl;
} // end function outputGrades

<< setw(3)

images/00587.jpeg
65 // display available options
66 cout << "\nEnter your choice" << endl

67 << store a formatted text file of accounts" << endl
68 << called \"print.txt\" for printing" << endl
69 << "2 - update an account” << endl

70 << "3 - add a new account” << endl

7 << "4 - delete an account” << endl

72 << "5 - end program\n? ";

73

74 int menuChoice;

75 cin >> menuChoice; // input menu selection from user
76 return menuChoice;

77} // end function enterChoice

78

79 // create formatted text file for printing
80 void createTextFile(fstream &readFromFile)

81 {

82 // create text file

83 ofstream outPrintFile("print.txt", jos::out);

84

85 // exit program if ofstream cannot create file

86 if (loutPrintFile)

87 1

88 cerr << "File could not be created." << endl;

89 exit(EXIT_FAILURE);

90 } // end if

91

92 // output column heads

93 outPrintFile << left << setw(10) << "Account" << setw(16)
94 << "Last Name" << setw(11) << "First Name" << right

95 << setw(10) << "Balance" << endl;

images/00102.jpeg

images/00344.jpeg
98 } // end function getAverage

929

100 // output bar chart displaying grade distribution
101 void GradeBook: :outputBarChart() const

cout << "\nGrade distributiol << endl;

// stores frequency of grades in each range of 10 grades
const size_t frequencySize = 11;

array< unsigned int, frequencySize > frequency = {}; // init to 0s

// for each grade, increment the appropriate frequency
for (int grade : grades)
++frequency[grade / 10 1;

// for each grade frequency, print bar in chart
for (size_t count = 0; count < frequencySize; ++count)

// output bar labels ("0-9:", ..., "90-99:", "100
if (0 == count)

cout << " 0-9: "
else if (10 == count)

cout << " 100: ";
else

cout << count * 10 <<

<< (count * 10) + 9 << "1 "3

images/00586.jpeg
32
33
34
35
36
37
38
39
40
a
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

} // end if
int choice; // store user choice

// enable user to specify action
while ((choice = enterChoice()) != END)
{

switch (choice)

{

case PRINT: // create text file from record file

createTextFile(inOutCredit);
break;

case UPDATE: // update record
updateRecord(inOutCredit);
break;

case NEW: // create record
newRecord(inQutCredit);
break;

case DELETE: // delete existing record
deleteRecord(inOutCredit);
break;

default: // display error if user does
cerr << "Incorrect choice” << endl;
break;

} // end switch

inOutCredit.clear(); // reset end-of-file
} // end while
} // end main

// enable user to input menu choice
int enterChoice()

{

not select valid choice

indicator

images/00105.jpeg
mputer system Keyboard combination

UNIX/Linux/Mac OS X <Ctrl-d> (on a line by itself)
Microsofe Windows <Cirl-z> (sometimes followed by pressing Enter)

images/00347.jpeg
// Fig. 7.18: fig07_18.cpp
// Sorting and searching arrays.

#include <iostream>

#include <iomanip>

#include <array>

#include <string>

#include <algorithm> // contains sort and binary_search
using namespace std;

int mainQ)

{

const size_t arraySize = 7; // size of array colors

array< string, arraySize > colors = { "red”, “orange", "yellow",

"green", "blue", "indigo", "violet" };

// output original array
cout << "Unsorted array:\n";
for (string color : colors)

cout << color << " "

sort(colors.begin(), colors.end()); // sort contents of colors

// output sorted array
cout << "\nSorted array:\n";
for (string item : colors)

cout << item << " ";

images/00589.jpeg
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143

146
147
148
149
150
151
152
153
154

156

ClientData client;
updateFile.read(reinterpret_cast< char * >(&lient),
sizeof(ClientData));

// update record
if (client.getAccountNumber() != 0)
{

outputLine(cout, client); // display the record

// request user to specify transaction
cout << "\nEnter charge (+) or payment (-): ";
double transaction; // charge or payment

cin >> transaction;

// update record balance
double oldBalance = client.getBalance();
client.setBalance(oldBalance + transaction);
outputLine(cout, client); // display the record

// move file-position pointer to correct record in file
updateFile.seekp((accountNumber - 1) * sizeof(ClientData));

// write updated record over old record in file
updateFile.write(reinterpret_cast< const char * >(&client),
sizeof(ClientData));
} // end if
else // display error if account does not exist
cerr << "Account #" << accountNumber
<< " has no information." << endl;

images/00104.jpeg
Mode scription

jos::

jos::

dos::

ios::

Appendall output to the end of the file.

Open a file for output and move to the end of the file (normally used to
append data to a file). Data can be written anywhere in the file.

Open a file for input.

Open a file for outpur.

Discard the file’s contents (this also is the default action for ios: :out).
Open afile for binary, i.c., nontext, input or output.

images/00346.jpeg
// Fig. 7.17: fig07_17.cpp

// Creates GradeBook object using an array of grades.
#include <array>

#include "GradeBook.h" // GradeBook class definition
using namespace std;

// function main begins program execution
int mainQ)
{
// array of student grades
const array< int, GradeBook::students > grades =
{ 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
string courseName = "CS101 Introduction to C++ Programming";

GradeBook myGradeBook(courseName, grades);
myGradeBook.displayMessage() ;
myGradeBook . processGrades () ;

} // end main

images/00588.jpeg
// set file-position pointer to beginning of readFromFile
readFronFile.seekg(0);

// read first record from record file

ClientData client;

readFromFile.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));

// copy all records from record file into text file
while (!readFromFile.eof())
{
// write single record to text file
if (client.getAccountNumber() != 0) // skip empty records
outputLine(outPrintFile, client);

// read next record from record file
readFromFile.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));
} // end while
} // end function createTextFile

// update balance in record
void updateRecord(fstream &updateFile)
{

// obtain number of account to update
int accountNumber = getAccount("Enter account to update");

// move file-position pointer to correct record in file
updateFile.seekg((accountNumber - 1) * sizeof(ClientData));

// read first record from file

images/00330.jpeg
// Fig. 7.10: fig07_10.cpp

// Die-rolling program using an array instead of switch.
#include <iostream>

#include <iomanip>

#include <array>

#include <random>

#include <ctime>

using namespace std;

int main()

{

// use the default random-number generation engine to
// produce uniformly distributed pseudorandom int values from 1 to 6
default_random_engine engine(static_cast< unsigned int >(time(0)));
uniform_int_distribution< unsigned int > randomInt(1, 6);

const size_t arraySize = 7; // ignore element zero
array< unsigned int, arraySize > frequency = {}; // initialize to 0s

// roll die 6,000,000 times; use die value as frequency index
for (unsigned int roll = 1; roll <= 6000000; ++roll)
++frequency[randomInt(engine)

images/00572.jpeg
Accounts with debit balance:

100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

Enter request

1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

74

End of run.

images/00571.jpeg
Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

71
Accounts with zero balances:
300 White 0.00

Enter request

1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

<2
Accounts with credit balances:
400 Stone -42.16

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

23

images/00332.jpeg
// Fig. 7.11: fig07_11.cpp
// Poll analysis program.
#include <iostream>
#include <iomanip>
#include <array>

using namespace std;

int mainQ)

{
// define array sizes
const size_t responseSize = 20; // size of array responses
const size_t frequencySize = 6; // size of array frequency

// place survey responses in array responses
const array< unsigned int, responseSize > responses =
£1.2, 5.4, 3,5, 2, 1,3, 1, 4,3, 3,03, 2,8, 3.2, 2.5 %

// initialize frequency counters to 0
array< unsigned int, frequencySize > frequency = {};

// for each answer, select responses element and use that value

// as frequency subscript to determine element to increment

for (size_t answer = 0; answer < responses.size(); ++answer)
++frequency[responses[answer 1 1;

images/00574.jpeg
// Fig. 14.9: ClientData.h

// Qlass ClientData definition used in Fig. 14.11-Fig. 14.14.

#ifndef CLIENTDATA_H
#define CLIENTDATA H

#include <string>

class ClientData
{
public:
// default ClientData constructor
ClientData(int = 0, const std::string & i
const std::string & = "", double = 0.0

// accessor functions for accountNumber
void setAccountNumber(int);
int getAccountNumber() const;

// accessor functions for lastName
void setlLastName(const std::string &);
std::string getlastName() cons

images/00331.jpeg
24 cout << "Face" << setw(13) << "Frequency" << endl;
25
26 // output each array element's value
27 for (size_t face = 1; face < frequency.size(); ++face)
28 cout << setw(4) << face << setw(13) << frequency[face]
29 << endl;
30} // end main
Face Frequency
i 1000167
2 1000149
3 1000152
4 998748
5 999626
6 1001158

images/00573.jpeg
outFile.write(reinterpret_cast< const char * >(&number),
sizeof (number));

images/00570.jpeg
9%
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

bool shouldDisplay(int type, double balance)
{
// determine whether to display zero balances

if (type == ZERO_BALANCE & balance == 0)
return true;

// determine whether to display credit balances
if (type == CREDIT BALANCE && balance < 0)
return true;

// determine whether to display debit balances
if (type == DEBIT BALANCE & balance > 0)
return true;

return false;
} // end function shouldDisplay

// display single record from file
void outputLine(int account, const string &name, double balance)
&
cout << left << setw(10) << account << setw(13) << name
<< setw(7) << setprecision(2) << right << balance << endl;
} // end function outputLine

images/00338.jpeg
for (int counter = 0; counter < items.size(); ++counter)
cout << items[counter] << " ";

images/00337.jpeg
| // Fig. 7.13: fig07_13.cpp
2 // Using range-based for to multiply an array's elements by 2.
3 #include <iostreams

4 #include <array>

5 using namespace std;

6

7

8

int mainQ)
{
9 array< int, 5 > items = { 1, 2, 3, 4, 5 };

" // display items before modification

12 cout << "items before modification:

13 for (int item : items)

14 cout << item << " ";

15

16 // multiply the elements of items by 2
17 for (int &itemRef : items)

8 itemRef *= 2;

19

20 // display items after modification
21 cout << "\nitems after modification: ";
22 for (int item : items)

23 cout << item << " ;

24

25 cout << endl;

26 } // end main

12345
246810

items before modification:
items after modification:

images/00579.jpeg
CENAUEWN =

10
1"

13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Fig. 14.11: Figl4_11.cpp
// Creating a randomly accessed file.

#include <iostream>

#include <fstream>

#include <cstdlib>

#include "ClientData.h" // ClientData class definition
using namespace std;

int mainQ)

{

ofstream outCredit(“credit.dat", ios::out | ios::binary);

// exit program if ofstream could not open file
if (loutCredit)

{
cerr << "File could not be opened.” << endl;
exit(EXIT_FAILURE);

} // end if

ClientData blankClient; // constructor zeros out each data member

// output 100 blank records to file
for (dint i = 0; 1 < 100; ++1)
outCredit.write(reinterpret_cast< const char * >(&blankClient),
sizeof(ClientData));
} // end main

images/00339.jpeg
Welcome to the grade book for
5101 Introduction to Ci+ Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
0-9:

10-19:

20-29:

30=-30:

40-49:

50-59:

60-69: *

70-79: **

BO-A0: £xxs

90-99
100:

images/00334.jpeg
e
85N anEuNTSorNausuNn -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 7.12: fig07_12.cpp

// static array initialization and automatic array initialization.

#include <iostream>
#include <array>
using namespace std;

void staticArrayInit(); // function prototype
void automaticArrayInit(); // function prototype
const size_t arraySize = 3;

int mainQ

4
cout << "First call to each function:\n";
staticArrayInitQ;

automaticArrayInit();

cout << "\n\nSecond call to each function:\n";
staticArrayInitQ;
automaticArrayInit();
cout << endl;
} // end main

// function to demonstrate a static local array
void staticArrayInit(void)

{
// initializes elements to 0 first time function
static array< int, arraySize > arrayl; // static

cout << "\nValues on entering staticArrayInit:\n'

// output contents of arrayl
for (size_t i 0; i < arrayl.size(); ++i)

is called
Tocal array

images/00576.jpeg
// Fig. 14.10: ClientData.cpp

// Qlass ClientData stores customer's credit information.
#include <string>

#include "ClientData.h”

using namespace std;

// default ClientData constructor

ClientData::ClientData(int accountNumberValue, const string &lastName,
const string &firstName, double balanceValue)
: accountNumber(accountNumberValue), balance(balancevalue)

setlLastName(TastNameValue);
setFirstName(firstNameValue);
} // end ClientData constructor

// get account-number value
int ClientData::getAccountNumber() const
{

return accountNumber;
} // end function getAccountNumber

// set account-number value
void ClientData::setAccountNumber(int accountNumberValue)
{

accountNumber = accountNumberValue; // should validate
} // end function setAccountNumber

// get last-name value
string ClientData::getlastName() const
{

return TastName;
} // end function getLastName

images/00333.jpeg
26
27
28
29
30
31

cout << "Rating” << setw(17) << "Frequency" << endl;

// output each array element's value
for (size_t rating = 1; rating < frequency.size(); ++rating)
cout << setw(6) << rating << setw(17) << frequency[rating
<< endl;

32} // end main

Rating

[EFSWENT

Frequency

wnNnw

images/00575.jpeg
23

25
26
27
28
29
30
31
32
33
34
35
36
37

// accessor functions for firstName
void setFirstName(const std::string &);
std::string getFirstName() const;

// accessor functions for balance

void setBalance(double);

double getBalance() const;
private:

int accountNumber;

char lastName[15 1;

char firstName[10 1;

double balance;
}; // end class ClientData

#endif

images/00336.jpeg
First call to each function:

Values on entering staticArrayInit:
arrayl[0] = 0 arrayl[1] = 0 arrayl[2]
Values on exiting staticArrayInit:
arrayl[0] = 5 arrayl[1] = 5 arrayl[2]

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2]
Values on exiting automaticArrayInit:

array2[0] = 6 array2[1] = 7 array2[2]

Second call to each function:
Values on entering staticArrayInit:

arrayl[0] = 5 arrayl[1] = 5 arrayl[2]
Values on exiting staticArrayInit:

arrayl[0] = 10 arrayl[1] = 10 arrayl[2]

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2]
Values on exiting automaticArrayInit:

array2[0] = 6 array2[1] = 7 array2[2]

10

images/00578.jpeg
58
59
60
61
62
63
64
65
66
67
68
69
70

} // end function setFirstName

// get balance value
double ClientData::getBalance() const

{
return balance;
} // end function getBalance

// set balance value
void ClientData::setBalance(double balanceValue)

{

balance = balancevalue;
} // end function setBalance

images/00335.jpeg
33 cout << "arrayl[" << i << "] =" << arrayl[i] <<
34

35 cout << "\nValues on exiting staticArrayInit:\n";
36

37 // modify and output contents of arrayl

38 for (size_t j = 0; ize(); ++j)

39 cout << "arrayl|
40 } // end function staticArrayIni
41

42 // function to demonstrate an automatic local array
43 void automaticArrayInit(void)

<< Carrayl[§ 1 4= 5) <<

4 {

45 // initializes elements each time function is called

46 array< int, arraySize > array2 = { 1, 2, 3 }; // automatic local array
47

48 cout << "\n\nValues on entering automaticArrayInit:\n";

49

50 // output contents of array2

51 for (size_t i = 0; i < array2.size(); ++i)

52 cout << "array2[" << i << "] = " << array2[i] << "

53

54 cout << "\nValues on exiting automaticArrayInit:\n";

55

56 // modify and output contents of array2

57 for (size_t j = 0; j < array2.sizeQ; ++j)

58 cout << "array2[" << j << "] =" << Carray2[j] +=5) << " "}

59 } // end function automaticArrayInit

images/00577.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57

// set last-name value
void ClientData::setlLastName(const string &lastNameString)
&
// copy at most 15 characters from string to lastName
int length = lastNameString.size();
Tength = (length < 15 ? Tength : 14);
TastNameString.copy(lastName, length);
TastName[length] = '\0'; // append null character to lastName
} // end function setLastName

// get first-name value
string ClientData::getFirstName() const

{

return firstName;
} // end function getFirstName

// set first-name value
void ClientData::setFirstName(const string &firstNameString)
{
// copy at most 10 characters from string to firstName
int Tength = firstNameString.size();
Tength = (Tength < 10 ? Tlength : 9);
firstNameString.copy(firstName, length);
firstName[length] "\0'; // append null character to firstName

images/00561.jpeg
32 // display results of cin functions after clearing cin
33 cout << "After cin.clear(Q" << "\ncin.failQ:

34 << "\ncin.good() :
35 } // end main

<< cin.good() << endl;

" << cin.failQ)

Before a bad input operation:

cin.rdstate():
cin.eof):
cin.fail0:
cin.badQ):
cin.goodQ:

Hoooo

Expects an integer, but enter a character: A

After a bad input operation:
cin.rdstate():
cin.eof O
cin.fail0:
cin.badQ):
cin.good(:

After cin.clearQ

cin.failQ: 0
cin.good(): 1

2
0
i

0
0

images/00560.jpeg
// Fig. 13.22: figl3_22.cpp
// Testing error states.
#include <iostream>

using namespace std;

int mainQ)

{

int integerValue;

// display results of cin functions
cout << "Before a bad input operation:"

<< "\ncin.rdstateQ):
<< ™n cin.eof(:
<< ™n cin.failQ
<< ™n cin.badQ
<< ™\n cin.goodQ:

<< "\n\nExpects an integer, but enter a character: ";

<<
<<
<<
<<
<<

cin.rdstate()
cin.eof O
cin.failO
cin.badO)
cin.good)

cin >> integerValue; // enter character value

cout << endT;

// display results of cin functions after bad input
cout << "After a bad input operation:"

<< "\ncin.rdstate(Q)
<< "\n cin.eof O
<< "\n cin.failQ
<< "\n cin.badQ)
<< "™\n cin.good()

<<
<<
<<
<<
<<

cin.clear(); // clear stream

cin.rdstate)

cin.eof)

cin.failQ

cin.bad()

cin.good() << endl << endl;

images/00321.jpeg
// Fig. 7.3: fig07_03.cpp
// Initializing an array's elements to zeros and printing the array.
#include <iostream>

#include <iomanip>

#include <array>

using namespace std;

int mainQ

{

array< int, 5> n; // n is an array of 5 int values

1

2

3

4

5

6

7

8

9

10

1"

12 // initialize elements of array n to 0
13 for (size t i =0; i < n.sizeQ; ++i)
14

15

16

17

18

19

20

n[i1 =0; // set element at location i to O
cout << "Element” << setw(13) << "Value" << endl;

// output each array element's value
for (size t j = 0; j < n.sizeQ; ++j)
cout << setw(7) << j << setw(13) << n[j] << endl;
21} // end main

Element Value

swnHo
cocooo

images/00563.jpeg
24 int account; // the account number

25 string name; // the account owner's name

26 double balance; // the account balance

27

28 // read account, name and balance from cin, then place in file

29 while (cin >> account >> name >> balance)

30 {

31 outClientFile << account << ' ' << name << ' ' << balance << endl;
32 cout << "2 "}

33 } // end while

34 } // end main

Enter the account, name, and balance.
Enter end-of-file to end input.

7 100 Jones 24.98

? 200 Doe 345.67

? 300 White 0.00

7 400 Stone -42.16

? 500 Rich 224.62

? Az

images/00320.jpeg
0! 1
=1

21 2

3! 6

41 =24

5! =120

6! 720

7! 5040
8! = 40320
9! 362880

10! - 3628800

images/00562.jpeg
// Fig. 14.3: Figld_03.cpp

// Create a sequential file.

#include <iostream>

#include <string>

#include <fstream> // contains file stream processing types
#include <cstdlib> // exit function prototype

using namespace std;

int mainQ)
{
// ofstream constructor opens file
ofstream outClientFile("clients.txt", ios::out);

// exit program if unable to create file
if (loutClientFile) // overloaded ! operator
{
cerr << "File could not be opened" << endl;
exit(EXIT_FAILURE);
} // end if

cout << "Enter the account, name, and balance." << endl
<< "Enter end-of-file to end input.\n? ";

images/00327.jpeg
17
18

// Fig. 7.8: fig07_08.cpp
// Computing the sum of the elements of an array.
#include <iostream>

#include <array>

using namespace std;

int mainQ)

{
const size_t arraySize = 4; // specifies size of array
array< int, arraySize > a = { 10, 20, 30, 40 };
int total = 0;

// sum contents of array a
for (size_t i=0; i <a.sizeQ; ++i)
total += al[i 1;

cout << "Total of array elements: "

} // end main

<< total << endl;

Total of array elements: 100

images/00569.jpeg
63

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

inClientF
inClientF
request =
} // end out

cout << "End
} // end main

// obtain reque:
int getRequest(

{

int request;

// display r
cout << "\nEi

<«<"1-

Lt

<< "3 -

<" 4 -
do // input
{

cout <<

cin >> re

} while (re

return reque:
} // end functi

// determine wh

ile.clear(); // reset eof for next input

ile.seekg(0); // reposition to beginning of file
getRequest(); // get additional request from user

er while

of run." << endl;

st from user
D

// request from user

equest options

nter request” << endl

List accounts with zero balances" << endl
List accounts with credit balances” << endl
List accounts with debit balances" << endl
End of run" << fixed << showpoint;

user request
\n? "
quest;
quest < ZERO_BALANCE && request > END);

st;
on getRequest

ether to display given record

images/00326.jpeg
for (size_t j = 0; j < a.sizeQ; ++j)
cin > al j 1;

images/00568.jpeg
34
35
36
37
38
39
40
a1
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// process user's request
while (request != END)
{
switch (request)
:
case ZERO_BALANCE:
cout << "\nAccounts with zero balances:\n";
break;
case CREDIT_BALANCE:
cout << "\nAccounts with credit balances:\n";
break;
case DEBIT BALANCE:
cout << "\nAccounts with debit balances:\n";
break;
} // end switch

// read account, name and balance from file
inClientFile >> account >> name >> balance;

// display file contents (until eof)
while (linClientFile.eof())
{
// display record
if (shouldDisplay(request, balance))
outputLine(account, name, balance);

// read account, name and balance from file
inClientFile >> account >> name >> balance;
} // end inner while

images/00329.jpeg
25 cout << i * 10 << "-" << (1 * 10) + 9 <<
26

27 // print bar of asterisks

28 for (unsigned int stars = 0; stars < n[i 1; ++stars)
29 cout << '¥';

30

31 cout << endl; // start a new line of output

32 } // end outer for

33 } // end main

Grade distribution:
0-9;
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79; &%
S0=84: =dxx
850-95: *=
100: *

images/00328.jpeg
// Fig. 7.9: fig07_09.cpp
// Bar chart printing program.
#include <iostream>

#include <iomanip>

#include <array>

using namespace std;

int mainQ)

{
const size_t arraySize = 11;
array< unsigned int, arraySize > n =
{0,0,0,00,0,1,2,4,2 1}

cout << "Grade distribution:" << endl;

// for each element of array n, output a bar of the chart

for (size_t i = 0; i < n.sizeQ; ++i)

{

// output bar labels ("0-9:", 5 "90-99:";

if (o 1.0
cout << " 0-9: ";
else if (10)
cout << " 100: ";

else

"100:")

images/00323.jpeg
1 // Fig. 7.5: fig07_05.cpp
2 // Set array s to the even integers from 2 to 10.
3 #include <iostream>
4 #include <iomanip>
5 #include <array>
6 using namespace std;
7
8 dint mainQ)
9 {
10 // constant variable can be used to specify array size
1" const size_t arraySize = 5; // must initialize in declaration
12
13 array< int, arraySize > s; // array s has 5 elements
14
15 for (size t i = 0; i < s.sizeQ; ++i) // set the values
16 slil=2+2+1;
17
18 cout << "Element” << setw(13) << "Value" << endl;
19
20 // output contents of array s in tabular format
21 for (sizet j = 0; j < s.sizeQ; ++j)
22 cout << setw(7) << j << setw(13) << s[j 1 << endl;
23} // end main
Element Value
0 2
1 4
2 6
3 8
4 10

images/00565.jpeg
29 << "Name" << "Balance" << endl << fixed << showpoint;
30

31 // display each record in file

32 while (inClientFile >> account >> name >> balance)
33 outputline(account, name, balance);

34 } // end main

35

36 // display single record from file

37 void outputLine(int account, const string &name, double balance)
38 {

39 cout << Teft << setw(10) << account << setw(13) << name

40 << setw(7) << setprecision(2) << right << balance << endl;
41} // end function outputlLine

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16

500 Rich 224.62

images/00322.jpeg
I // Fig. 7.4: fig07_04.cpp

2 // Initializing an array in a declaration.
3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 using namespace std;
T

8

9
10

int mainQ)
{
// use list initializer to initialize array n

1" array< int, 5 > n = { 32, 27, 64, 18, 95 };
12
3 cout << "Element" << setw(13) << "Value" << endl;
14
15 // output each array element's value
16 for (size_t i =0; i < n.sizeQ; ++i)
17 cout << setw(7) << i << setw(13) << n[i] << endl;

18} // end main

Element Value
0 32
1 27
2 64
3 18
4 95

images/00564.jpeg
e ST i
85N aniEtNTSomNousun~—

22
23
24
25
26
27
28

// Fig. 14.6: Figl4_06.cpp
// Reading and printing a sequential file.
#include <iostream>

#include <fstream> // file stream
#include <iomanip>

#include <string>

#include <cstd1ib>

using namespace std;

void outputLine(int, const string &, double); // prototype

int mainQ)

{
// ifstream constructor opens the file
ifstream inClientFile("clients.txt", ios

in);

// exit program if ifstream could not open file
if (!inClientFile)

{
cerr << "File could not be opened" << endl;
exit(EXIT_FAILURE);

} // end if

int account; // the account number
string name; // the account owner's name
double balance; // the account balance

cout << left << setw(10) << "Account" << setw(13)

images/00325.jpeg
// Fig. 7.7: £ig07_07.cpp

// A const variable must be initialized.
int mainQ)
{

const int x; // Error: x must be initialized

X = 7; // Error: cannot modify a const variable
} // end main

CoNOUSWN =

Microsoft Visual C+ compiler error message:

error (2734: 'x'
error (3892: 'x'

const object must be initialized if not extern
: you cannot assign to a variable that is const

GNU Ci+ compiler error message:

: error: uninitialized const ‘x’ [-fpermissive]
error: assignment of read-only variable ‘x’

LLVM compiler error message:

Default initialization of an object of const type 'const int'

images/00567.jpeg
// Fig. 14.7: Figla_07.cpp
// Credit inquiry program.
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <cstdlib>

using namespace std;

enum RequestType { ZERO BALANCE = 1, CREDIT BALANCE, DEBIT BALANCE, END };

int getRequest();
bool shouldDisplay(int, double);
void outputLine(int, const string &, double);

int mainQ)

{
// ifstream constructor opens the file
ifstream inClientFile("clients.txt", fos::in);

// exit program if ifstream could not open file
if (linClientFile)

{
cerr << "File could not be opened” << endl;
exit(EXIT_FATLURE);

} // end if

int account; // the account number
string name; // the account owner's name
double balance; // the account balance

// get user's request (e.
int request = getRequest(

zero, credit or debit balance)

images/00324.jpeg
// Fig. 7.6: fig07_06.cpp

// Using a properly initialized constant variable.
#include <iostream>

using namespace std;

int main()
{
const int x = 7; // initialized constant variable

cout << "The value of constant variable x is: " << x << endl;
} // end main

“CoeNoubuN=

The value of constant variable x i

images/00566.jpeg
// position to the nth byte of fileObject (assumes ios
fileObject.seekg(n);

// position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);
// position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

// position at end of fileObject
fileObject.seekg(0, ios::end);

::beg)

images/00319.jpeg
// Fig. 6.30: fig06_30.cpp

// Tterative function factorial.
#include <iostream>

#include <iomanip>

using namespace std;

unsigned Tong factorial(unsigned int); // function prototype

int mainQ)

1
// calculate the factorials of 0 through 10

for (unsigned int counter = 0; counter <= 10; ++counter)
cout << setw(2) << counter << "! =" << factorial(counter)
<< endl;
} // end main

// iterative function factorial
unsigned Tong factorial(unsigned int number)

{
unsigned Tong result = 1;

// iterative factorial calculation
for (unsigned int i = number; i
result *= i;

return result;
} // end function factorial

images/00550.jpeg
ZSoe~auasuNn~—

// Fig. 13.15: figl3_15.cpp

// Printing an integer with internal spacing and plus sign.
#include <iostream>

#include <iomanip>

using namespace std;

int mainQ)
<
// display value with internal spacing and plus sign
cout << internal << showpos << setw(10) << 123 << endl;
} // end main

+

123

images/00792.jpeg
// Fig. 23.4: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction
#ifndef WITHDRAWAL_H

#define WITHDRAWAL_H

class Withdrawal

{

private:
// attributes
int accountNumber; // account to withdraw funds from
double amount; // amount to withdraw

}; // end class Withdrawal

#endif // WITHDRAWAL_H

images/00791.jpeg
Som~NousLN=

// Fig. 23.3: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction
#ifndef WITHDRAWAL H

#define WITHDRAWAL H

class Withdrawal
{
}: // end class Withdrawal

#endif // WITHDRAWAL_H

images/00310.jpeg
// Fig. 6.25: fig06_25.cpp

// Function template maximum test program.

#include <iostream>

#include "maximum.h" // include definition of function template maximum
using namespace std;

int mainQ)

<
// demonstrate maximum with int values
int intl, int2, int3;

cout << "Input three integer values:
cin >> intl >> int2 >> int3;

// invoke int version of maximum
cout << "The maximum integer value is:
<< maximum(intl, int2, int3);

// demonstrate maximum with double values
double doublel, double2, double3;

cout << "\n\nInput three double values:
cin >> doublel >> double2 >> double3;

// invoke double version of maximum
cout << "The maximum double value is:
<< maximum(doublel, double2, double3);

// demonstrate maximum with char values
char charl, char2, char3;

images/00552.jpeg
29 cout << right;

30 cout. fi11('

31 cout << setw(10) << dec << x << endl;

32

33 // display x using padded characters (left justification)

34 cout << left << setw(10) << setfill('%') << x << endl;

35

36 // display x using padded characters (internal justification)
37 cout << internal << setw(10) << setfill('A') << hex

38 << x << endl;

39 } // end main

10000 printed as int right and Teft justified

and as hex with internal justification.

Using the default pad character (space):
10000

10000

ox 2710

Using various padding characters:
##k%%10000
10000%3%%3%%
OXAAAA2710

images/00794.jpeg
// Fig. 23.6: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction
#ifndef WITHDRAWAL_H

#define WITHDRAWAL H

class Screen; // forward declaration of class Screen

class Keypad; // forward declaration of class Keypad

class CashDispenser; // forward declaration of class CashDispenser
class BankDatabase; // forward declaration of class BankDatabase

class Withdrawal

o]t

private:
// attributes
int accountNumber; // account to withdraw funds from
double amount; // amount to withdraw

// references to associated objects

Screen &screen; // reference to ATM’s screen

Keypad &keypad; // reference to ATM's keypad

CashDispenser &cashDispenser; // reference to ATM's cash dispenser

BankDatabase &bankDatabase; // reference to the account info database
}; // end class Withdrawal

#endif // WITHDRAWAL_H

images/00551.jpeg
// Fig. 13.16: figl3_16.cpp

// Using member function fill and stream manipulator setfill to change
// the padding character for fields larger than the printed value.
#include <iostream>

#include <iomanip>

using namespace std;

int mainQ)
{
int x = 10000;

// display x
cout << X << " printed as int right and Teft justified\n"
<< "and as hex with internal justification.
<< "Using the default pad character (space)

<< endl;

// display x with base
cout << showbase << setw(10) << x << endl;

// display x with left justification
cout << Teft << setw(10) << x << endl;

// display x as hex with internal justification
cout << internal << setw(10) << hex << x << end] << endl;

cout << "Using various padding characters:" << endl;

// display x using padded characters (right justification)

images/00793.jpeg
// Fig. 23.5: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction

#ifndef WITHDRAWAL_H
#define WITHDRAWAL_H

#include "Screen.h" // include definition of class Screen

#include "Keypad.h" // include definition of class Keypad

#include "CashDispenser.h" // include definition of class CashDispenser
#include "BankDatabase.h" // include definition of class BankDatabase

class Withdrawal

L

private:
// attributes
int accountNumber; // account to withdraw funds from
double amount; // amount to withdraw

// references to associated objects
Screen &screen; // reference to ATM’s screen
Keypad &keypad; // reference to ATM's keypad
CashDispenser &cashDispenser; // reference to ATH's cash dispenser
BankDatabase &bankDatabase; // reference to the account info database
}: // end class Withdrawal

#endif // WITHDRAWAL_H

images/00790.jpeg
59 // polymorphically invoke function print
60 for (dnt i =05 1 <3; ++i)

61 array[i 1->printQ);

62} // end main

DerivedTwo
DerivedOne
DerivedTwo

images/00316.jpeg
fibonacci(0) = 0
fibonaccil
fibonacci(n)

ibonacci(n — 1) + fibonacci(n — 2)

images/00558.jpeg
// Fig. 13.21: figl3_21.cpp
// flags member function.
#include <iostream>

using namespace std;

int main()

{

int integerValue = 1000;
double doublevalue = 0.0947628;

// display flags value, int and double values (original format)
cout << "The value of the flags variable is: " << cout.flagsQ
<< "\nPrint int and double in original format:\n"
<< integerValue << '\t' << doubleValue << endl << endl;

// use cout flags function to save original format
ios_base: :fmtflags originalFormat = cout.flags();
cout << showbase << oct << scientific; // change format

// display flags value, int and double values (new format)
cout << "The value of the flags variable is: " << cout.flagsQ)
<< "\nPrint int and double in a new format:\n"
<< integerValue << '\t' << doubleValue << endl << endl;

images/00315.jpeg
91

! 362880
10!

3628800

images/00557.jpeg
21 // display default false booleanValue after using noboolalpha

22 cout << "booleanValue is " << booleanValue << endl;
23

24 // display booleanValue after using boolalpha again
25 cout << "booleanValue (after using boolalpha) is "
26 << boolalpha << booleanValue << end1;

27 } // end main

booleanvalue is 1
booleanValue (after using boolalpha) is true

switch booleanvValue and use noboolalpha

booleanvalue is 0
booleanValue (after using boolalpha) is false

images/00799.jpeg
22 Keypad keypad; // ATM's keypad

23 CashDispenser cashDispenser; // ATM's cash dispenser

24 DepositSlot depositSlot; // ATM's deposit slot

25 BankDatabase bankDatabase; // account information database
26

- § // private utility functions

28 void authenticateUser(); // attempts to authenticate user
29 void performTransactions(); // performs transactions

30 int displayMainMenu() const; // displays main menu

31

32 // return object of specified Transaction derived class
33 Transaction *createTransaction(int);

34 }; // end class ATM

35

36 #endif // ATM_H

images/00318.jpeg
fibonacci (
Fibonacci (
Fibonacci (
fibonacci (
fibonacci (
Fibonacci (
fibonacci (
fibonacci
Fibonacci (
Fibonacci (

fibonacci (55
fibonacci 765
fibonacci (32040
fibonacci (227465

images/00317.jpeg
// Fig. 6.28: fig06_28.cpp

// Recursive function fibonacci.
#include <iostream>

using namespace std;

unsigned Tong fibonacci(unsigned Tong); // function prototype

int mainQO
{
// calculate the fibonacci values of 0 through 10
for (unsigned int counter = 0; counter <= 10; ++counter)
cout << "fibonacci(" << counter << ") ="
<< fibonacci(counter) << endl;

// display higher fibonacci values

cout << "\nfibonacci(20) = " << fibonacci(20) << endl;

cout << "fibonacci(30) = " << fibonacci(30) << endl;

cout << "fibonacci(35) = " << fibonacci(35) << endl;
} // end main

// recursive function fibonacci
unsigned Tong fibonacci(unsigned long number)
{
if ((0 == number) || (1
return number;
else // recursion step
return fibonacci(number - 1) + fibonacci(number - 2);
} // end function fibonacci

number)) // base cases

images/00559.jpeg
24

25 cout.flags(originalFormat); // restore format

26

27 // display flags value, int and double values (original format)
28 cout << "The restored value of the flags variable is: "

29 << cout.flags()

30 << "\nPrint values in original format again:\n"

31 << integerValue << '\t' << doubleValue << endl;

32} // end main

The value of the flags variable is: 513
Print int and double in original format:
1000 0.0947628

The value of the flags variable is: 012011
Print int and double in a new format:
01750 9.476280e-002

The restored value of the flags variable is: 513
Print values in original format again:
1000 0.0947628

images/00312.jpeg
int maximum(int valuel, int value2, int value3)
1

int maximumValue = valuel; // assume valuel is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumValue)
maximumValue = value2;

// determine whether value3 is greater than maximumValue
if (value3 > maximumvValue)
maximumValue = value3;

return maximunValue;
} // end function template maximum

images/00554.jpeg
// Fig. 13.18:
// Floating-point values displayed in system default,
// scientific and fixed formats.

#include <iostream>

using namespace std;

fig13_18.cpp

int mainQ
<
double x
double y = 1.946e9;

0.001234567;

1

2

3

4

5

6

7

8

9

10

1]

12 // display x and y in default format
13 cout << "Displayed in default format:" << endl
14 << x << \t' <<y << endl;

15

16

17

18

19

20

// display x and y in scientific format
cout << "\nDisplayed in scientific format:
<< scientific << x << "\t' << y << endl;

<< endl

// display x and y in fixed format
21 cout << "\nDisplayed in fixed format:" << endl
22 << fixed << x << '\t' <<y << endl;
23} // end main

Displayed in default format:
0.00123457 1.946e+009

Displayed in scientific format:
1.234567e-003 1.946000e+009

Displayed in fixed format:
0.001235 1946000000.000000

images/00796.jpeg
GR-Com~oausuN=

// Fig. 23.12: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction
#ifndef WITHDRAWAL H

#define WITHDRAWAL H

#include "Transaction.h" // Transaction class definition

// class Withdrawal derives from base class Transaction
class Withdrawal : public Transaction

{
}; // end class Withdrawal

#endif // WITHDRAWAL_H

images/00311.jpeg
32 cout << "\n\nInput three characters: ";

33 cin >> charl >> char2 >> char3;

34

35 // invoke char version of maximum

36 cout << “The maximum character value is: "
37 << maximum(charl, char2, char3) << endl;

38 } // end main

Input three integer values: 12 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3

Input three characters: A C B
The maximum character value is: C

images/00553.jpeg
// Fig. 13.17: figl3_17.cpp

// Stream manipulator showbase.
#include <iostream>

using namespace std;

1
2
3
4
5
6 dint mainQ)
7
8
9
10

{

int x = 1005

// use showbase to show number base
1" cout << "Printing integers preceded by their base:" << endl
12 << showbase;
13
14 cout << x << endl; // print decimal value
15 cout << oct << x << endl; // print octal value
16 cout << hex << x << endl; // print hexadecimal value

17} // end main

Printing integers preceded by their base:
100
0144
0x64

images/00795.jpeg
// Fig. 23.7: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction
#ifndef WITHDRAWAL_H

#define WITHDRAWAL_H

class Screen; // forward declaration of class Screen

class Keypad; // forward declaration of class Keypad

class CashDispenser; // forward declaration of class CashDispenser
class BankDatabase; // forward declaration of class BankDatabase

class Withdrawal
{
public:
// operations
void execute(); // perform the transaction
private:
// attributes
int accountNumber; // account to withdraw funds from
double amount; // amount to withdraw

// references to associated objects

Screen &screen; // reference to ATM's screen

Keypad &keypad; // reference to ATM's keypad

CashDispenser &cashDispenser; // reference to ATM's cash dispenser

BankDatabase &bankDatabase; // reference to the account info database
}; // end class Withdrawal

#endif // WITHDRAWAL_H

images/00314.jpeg
24

// Fig. 6.27: fig06_27.cpp

// Recursive function factorial.
#include <iostream>

#include <iomanip>

using namespace std;

unsigned Tong factorial(unsigned Tong); // function prototype

int mainQ)
{
// calculate the factorials of 0 through 10
for (unsigned int counter = 0; counter <= 10; ++counter)
cout << setw(2) << counter << "! = " << factorial(counter)
<< endl;
} // end main

// recursive definition of function factorial
unsigned Tong factorial(unsigned long number)
{
if (number <= 1) // test for base case
return 1; // base cases: 0! = 1 and 1! = 1
else // recursion step
return number * factorial(number - 1);
} // end function factorial

images/00556.jpeg
// Fig. 13.20: figl3_20.cpp

// Stream manipulators boolalpha and noboolalpha.
#include <iostream>

using namespace std;

int main()

{

bool booleanValue = true;

// display default true booleanValue
cout << "booleanValue is " << booleanValue << endl;

// display booleanValue after using boolalpha
cout << "booleanvValue (after using boolalpha) is "
<< boolalpha << booleanValue << endl << endl;

cout << "switch booleanValue and use noboolalpha” << endl;
booleanValue = false; // change booleanValue
cout << noboolalpha << end1; // use noboolalpha

images/00798.jpeg
// ATM.h

// ATM class definition. Represents an automated teller machine.
#ifndef ATM H
#define ATM_H

#include
#include
#include
#include
#include

"Screen.h" // Screen class definition

"Keypad.h" // Keypad class definition
"CashDispenser.h" // CashDispenser class definition
"DepositSlot.h" // DepositSlot class definition
"BankDatabase.h" // BankDatabase class definition

class Transaction; // forward declaration of class Transaction

class ATM

{
public:

ATMO 5

// constructor initializes data members

void run(); // start the ATM

private:

bool userAuthenticated; // whether user is authenticated
int currentAccountNumber; // current user's account number
Screen screen; // ATM's screen

images/00313.jpeg
factorial = 1;

for (unsigned int counter = number; counter >= 1; --counter)
factorial *= counter;

images/00555.jpeg
1 // Fig. 13.19: figl3_19.cpp

2 // Stream manipulator uppercase.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 cout << "Printing uppercase letters in scientific” << endl
9 << "notation exponents and hexadecimal values:" << endl;
10

1" // use std:uppercase to display uppercase letters; use std::hex and
12 // std::showbase to display hexadecimal value and its base
13 cout << uppercase << 4.345e10 << endl

14 << hex << showbase << 123456789 << endl;

15 } // end main

Printing uppercase letters in scientific
notation exponents and hexadecimal values:
4.345E+010

0X75BCD15S

images/00797.jpeg
// Fig. 23.13: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction

#ifndef WITHDRAWAL_H
#define WITHDRAWAL_H

#include "Transaction.h" // Transaction class definition

class Keypad; // forward declaration of class Keypad
class CashDispenser; // forward declaration of class CashDispenser

// class Withdrawal derives from base class Transaction
class Withdrawal : public Transaction
{
public:
// member function overriding execute in base class Transaction
virtual void execute(); // perform the transaction
private:
// attributes
double amount; // amount to withdraw
Keypad &keypad; // reference to ATM's keypad
CashDispenser &cashDispenser; // reference to ATM's cash dispenser
}; // end class Withdrawal

#endif // WITHDRAWAL_H

images/00309.jpeg
CENoOUBWN =

// Fig. 6.24: maximum.h

// Function template maximum header.

template < typename T > // or template< class T >
T maximum(T valuel, T value2, T value3)

{

T maximumvValue = valuel; // assume valuel is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumvalue)
maximumValue = value2;

// determine whether value3 is greater than maximumValue
if (value3 > maximumvalue)
maximumValue = value3;

return maximumValue;
} // end function template maximum

images/00308.jpeg
27 return 0;

28} // end function nothing2
29

30 dint mainQ

31 {

32} // end main

_ z6squarei
“Zésquared
~Z8nothinglifcRi
_Z8nothing2ciRfRd
main

images/00781.jpeg
// Fig. 21.9: Derived.h

// Definition of class Derived which inherits
// multiple base classes (Basel and Base2).
#ifndef DERIVED_H

#define DERIVED_H

#include <iostream>
#include "Basel.h"
#include "Base2.h
using namespace std;

// class Derived definition
class Derived : public Basel, public Base2
{
friend ostream &operator<<(ostream &, const Derived &);
public:
Derived(int, char, double);
double getReal() const;
private:
double real; // derived class's private data
}: // end class Derived

#endif // DERIVED_H

images/00780.jpeg
SNoGAUN-Som~NoUusWN -

19

21
22
23

// Fig. 21.8: Base2.h
// Definition of class Base2

#ifndef BASE2_H
#define BASE2_H

// class Base2 definition
class Base2
{
public:
Base2(char characterData)
: Tletter(characterData)

{
} // end Base2 constructor

char getData() const

{
return Tletter;
} // end function getData
protected: // accessible to derived classes
char Tetter; // inherited by derived class
}: // end class Base2

#endif // BASE2_H

images/00541.jpeg
CENoRAEGN-CSom~ouswN~—

20
21
22
23
24
25

// Fig. 13.8: fig13_08.cpp

// Using stream manipulators hex, oct, dec and setbase.
#include <iostream>

#include <iomanip>

using namespace std;

int mainQ)

{

int number;

cout << "Enter a decimal number: ";
cin >> number; // input number

// use hex stream manipulator to show hexadecimal number
cout << number << " in hexadecimal is: " << hex
<< number << endl;

// use oct stream manipulator to show octal number
cout << dec << number << " in octal is: "
<< oct << number << endl;

// use setbase stream manipulator to show decimal number
cout << setbase(10) << number << " in decimal is: "
<< number << end1;
} // end main

Enter a decimal number: 20

20 in hexadecimal i

14

20 in octal is: 24
20 in decimal is: 20

images/00783.jpeg
// Fig. 21.11: fig21_11.cpp
// Driver for multiple-inheritance example.
#include <iostream>

#include "Basel.h"
#include "Base2.h'

#include "Derived.h"
using namespace std;

int mainQ)

{

Basel basel(10); // create Basel object
Base2 base2('Z'); // create Base2 object
Derived derived(7, 'A', 3.5); // create Derived object

// print data members of base-class objects

cout << "Object basel contains integer " << basel.getData()
<< "\nObject base2 contains character " << base2.getData()
<< "\nObject derived contains:\n" << derived << "\n\n";

// print data members of derived-class object
// scope resolution operator resolves getData ambiguity
cout << "Data members of Derived can be accessed individually:"
<< "™\ Integer: " << derived.Basel::getData()
<< "\n Character: " << derived.Base2::getData()
<< "\nReal number: " << derived.getReal() << "\n\n";
cout << "Derived can be treated as an object of either base class:\n";

// treat Derived as a Basel object
Basel *baselPtr = &derived;
cout << "baselPtr->getData() yields " << baselPtr->getData() << '\n';

images/00540.jpeg
18
19

// Fig. 13.7: figl3_07.cpp

// Unformatted I/0 using read, gcount and write.
#include <iostream

using namespace std;

int mainQ)

{

const int SIZE = 80;
char buffer[SIZE]; // create array of 80 characters

// use function read to input characters into buffer
cout << "Enter a sentence:" << endl;
cin.read(buffer, 20);

// use functions write and gcount to display buffer characters
cout << end] << "The sentence entered was:" << endl;
cout.write(buffer, cin.gcount());

cout << endl;

} // end main

Enter a sentence:

Using the read, write, and gcount member functions
The sentence entered was:

Using the read, writ

images/00782.jpeg
// Fig. 21.10: Derived.cpp
// Member-function definitions for class Derived
#include "Derived.h"

// constructor for Derived calls constructors for

// class Basel and class Base2.

// use member initializers to call base-class constructors

Derived: :Derived(int integer, char character, double doublel)
: Basel(integer), Base2(character), real(doublel) { }

// return real
double Derived::getReal() const
{
return real;
} // end function getReal

// display all data members of Derived
ostream &operator<<(ostream &output, const Derived &derived)
{
output << " Integer: " << derived.value << "\n Character:
<< derived.Tetter << "\nReal number: " << derived.real;
return output; // enables cascaded calls
} // end operator<<

images/00305.jpeg
vCENOUEWLN=

0
1
12
13
14
15

// Fig. 6.21: Fig06_21.cpp

// Unary scope resolution operator.
#include <iostream>

using namespace std;

int number = 7; // global variable named number

int mainQ)

{

double number = 10.5; // Tocal variable named number

// display values of Tocal and global variables
cout << "Local double value of number = " << number
<< "\nGlobal int value of number = " << ::number << endl;
} // end main

Local double value of number
Global int value of number =

=10.5
7

images/00547.jpeg
32 int mainQ

33 {

34 // use tab and endLine manipulators

35 cout << "Testing the tab manipulator:" << endLine
36 << 'a' << tab << 'b' << tab << 'c' << endLine;
37

38 cout << "Testing the carriageReturn and bell manipulators:"
39 << endLine << " :

40

41 cout << bell; // use bell manipulator

42

43 // use carriageReturn and endLine manipulators
44 cout << carriageReturn << "-----" << endLine;

45} // end main

Testing the tab manipulator:
a b o
Testing the carriageReturn and bell manipulators:

images/00789.jpeg
33
34
35
36
37
38
39
40
a4
42
3
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58

1

// end DerivedTwo class

// class Multiple definition
class Multiple : public Derivedone, public DerivedTwo

{
public:
// qualify which version of function print
void print() const
i
DerivedTwo::print();
} // end function print
}; // end Multiple class
dint mainQ)
{

Multiple both; // instantiate Multiple object
DerivedOne one; // instantiate DerivedOne object
DerivedTwo two; // instantiate DerivedTwo object

// declare array of base-class pointers and initialize
// each element to a derived-class type
Base *array[3 1;

array[0] = &both;
array[1] = &one;
array[2 1 = &two;

images/00304.jpeg
29 // function boxVolume calculates the volume of a box
30 unsigned int boxVolume(unsigned int length, unsigned int width,

31 unsigned int height)
32 {
33 return Tength * width * height;

34 } // end function boxVolume

The default box volume is: 1

The volume of a box with Tength 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

images/00546.jpeg
// Fig. 13.11: figl3_1l.cpp
// Creating and testing user-defined, nonparameterized

// stream manipulators.
#include <iostream>

using namespace std;

// bell manipulator (using escape sequence \a)
ostrean& bell(ostream& output)

{
return output << '\a'; // issue system beep
} // end bell manipulator

// carriageReturn manipulator (using escape sequence \r)
ostream& carriageReturn(ostrean& output)

{

return output << '\r'; // issue carriage return
} // end carriageReturn manipulator

// tab manipulator (using escape sequence \t)
ostream& tab(ostream& output)

{

return output << '\t'; // issue tab
} // end tab manipulator

// endLine manipulator (using escape sequence \n and flush stream
// manipulator to simulate end1)
ostream& endLine(ostream& output)

{

return output << '\n' << flush; // issue endl-like end of Tine
} // end endLine manipulator

images/00788.jpeg
32

// Fig. 21.14: fig21 14.cpp
// Using virtual base classes.
#include <iostream>

using namespace std;

// class Base definition
class Base
{
public:

virtual void printQ) const = 0; // pure virtual
}; // end class Base

// class DerivedOne definition
class DerivedOne : virtual public Base
i
public:

// override print function

void print() const

{

cout << "DerivedOne\n";

} // end function print

}; // end DerivedOne class

// class DerivedTwo definition
class DerivedTwo : virtual public Base
ot
public:

// override print function

void print() const

{

cout << "DerivedTwo\n";
} // end function print

images/00307.jpeg
// Fig. 6.23: ig06_23.cpp
// Name mangling to enable type-safe linkage.

// function square for int values
int square(int x)
{
return x * x;
} // end function square

// function square for double values
double square(double y)
{
return y * y;
} // end function square

// function that receives arguments of types
// int, float, char and int &
void nothingl(int a, float b, char c, int &)
{

// empty function body
} // end function nothingl

// function that receives arguments of types
// char, int, float & and double &

int nothing2(char a, int b, float &c, double &)
{

images/00549.jpeg
| // Fig. 13.14: figl3_14.cpp
2 // Left and right justification with stream manipulators left and right.
3 #include <iostream>

4 #include <iomanip>

5 using namespace std;
6

7

8

int mainQ)
{
9 int x = 12345;
10
1" // display x right justified (default)
12 cout << "Default is right justified:" << endl
13 << setw(10) << x;
14
15 // use left manipulator to display x left justified
16 cout << "\n\nUse std::left to left justify x:\n"
17 << Teft << setw(10) << x;
18
19 // use right manipulator to display x right justified
20 cout << "\n\nUse std::right to right justify x:\n"
21 << right << setw(10) << x << endl;

22} // end main

Default is right justified:
12345

Use std::left to left justify x:
12345

Use std::right to right justify x:
12345

images/00306.jpeg
T . 4
B sNanitN-Coe~NauauNn~—

22
23
24
25
26

// Fig. 6.22: fig06_22.cpp

// Overloaded square functions.
#include <iostream>

using namespace std;

// function square for int values
int square(dnt x)

{

cout << "square of integer " s 0
return x * x;

} // end function square with int argument

<< X <<

// function square for double values
double square(double y)
{

cout << "square of double is
return y * y;

} // end function square with double argument

<y <<

int mainQ)

{
cout << square(7); // calls int version
cout << endl;
cout << square(7.5); // calls double version

cout << endl;
} // end main

square of integer 7 is 49
square of double 7.5 is 56.25

images/00548.jpeg
1
2
3
4
5
6
7
8
9

10

1]
12
13
14
15
16
17
18
19
20

21

// Fig. 13.13: figl3_13.cpp

// Controlling the printing of trailing zeros and
// decimal points in floating-point values.

#include <iostream>
using namespace std;

int mainQ)

{
// display double values with

default stream format

cout << "Before using showpoint" << endl

<< "9.9900 prints as:
<< "9.9000 prints as
<< "9.0000 prints as

<<
<<
<<

// display double value after
cout << showpoint
<< "After using showpoint"
<< "9.9900 prints as: " <<
<< "9.9000 prints as
<< "9.0000 prints as
} // end main

<<

9.9900 << end1
9.9000 << endl
9.0000 << end] << endl;

showpoint

<< endl

9.9900 << endl
9.9000 << endl
9.0000 << endl;

Before using showpoint
9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

After using showpoint
9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

images/00301.jpeg
32

33 // squareByReference multiplies numberRef by itself and stores the result
34 // in the variable to which numberRef refers in function main

35 void squareByReference(int &numberRef)

36 {

37 numberRef *= numberRef; // caller's argument modified

38 } // end function squareByReference

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference

16 after squareByReference

images/00543.jpeg
30 for (places = 0; places <= 9; ++places)
31 cout << setprecision(places) << root2 << endl;
32} // end main

Square root of 2 with precisions 0-9.
Precision set by ios_base member function precision:

.4

.41

.414

.4142
.41421
.414214
.4142136
41421356
.414213562

recision set by stream manipulator setprecision:

.4

.41

.414

.4142
.41421
.414214
.4142136
41421356
.414213562

RPREHEERERRRRD BRRRp R R R R

images/00785.jpeg
// Fig. 21.13: fig21 13.cpp

// Attempting to polymorphically call a function that is

// multiply inherited from two base classes.
#include <iostream>
using namespace std;

// class Base definition
class Base
{
public:

virtual void printQ) const = 0; // pure virtual
}: // end class Base

// class DerivedOne definition
Class Derivedone : public Base
{
public:
// override print function
void printQ const
{
cout << "DerivedOne\n";
} // end function print
}; // end class DerivedOne

// class DerivedTwo definition
class DerivedTwo : public Base

{
public:

images/00300.jpeg
30
31

// Fig. 6.19: fig06_19.cpp
// Passing arguments by value and by reference.
#include <iostream>
using namespace std;

int squareByValue(int); // function prototype (value pass)
void squareByReference(int &); // function prototype (reference pass)

int mainQ
{

int x = 2; // value to square using squareByValue
int z = 4; // value to square using squareByReference

// demonstrate squareByValue
cout << "x = " << x << " before squareByValue\n";
cout << "Value returned by squareByValue: "

<< squareByValue(x) << endl;

cout << "x = " << x << " after squareByValue\n" << endl;

// demonstrate squareByReference
cout << "z = " << z << " before squareByReference" << endl;
squareByReference(z);
cout << "z = " << z <<

} // end main

after squareByReference” << endl;

// squareByValue multiplies number by itself, stores the
// result in number and returns the new value of number
int squareByValue(int number)

{

return number *= number; // caller's argument not modified
} // end function squareByValue

images/00542.jpeg
N -
85I onitN-Cor~Nausun—

22
23
24
25
26
27
28
29

// Fig. 13.9: figl3_09.cpp

// Controlling precision of floating-point values.
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int mainQ)

{

double root2 = sqrt(2.0); // calculate square root of 2
int places; // precision, vary from 0-9

cout << "Square root of 2 with precisions 0-9." << endl
"Precision set by ios_base member function "

<<
<< "precision:" << endl;

cout << fixed; // use fixed-point notation

// display square root using os_base function precision
for (places = 0; places <= 9; ++places)

{
cout.precision(places);
cout << root2 << endl;
} // end for
cout << "\nPrecision set by stream manipulator "

<< "setprecision:" << endl;

// set precision for each digit, then display square root

images/00784.jpeg
32 // treat Derived as a Base2 object

33 Base2 *base2Ptr = &derived;

34 cout << "base2Ptr->getData() yields " << base2Ptr->getData() << endl;
35} // end main

Object basel contains integer 10
Object base2 contains character Z
Object derived contains:
Integer: 7
Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
Integer: 7
Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
baselPtr->getData() yields 7
base2Ptr->getData() yields A

images/00303.jpeg
// Fig. 6.20: Fig06_20.cpp
// Using default arguments.
#include <iostream>
using namespace std;

// function prototype that specifies default arguments
unsigned int boxVolume(unsigned int length = 1, unsigned int width = 1,
unsigned int height = 1);

int mainQ

{
// no arguments--use default values for all dimensions
cout << "The default box volume is: " << boxVolume();

// specify length; default width and height
cout << "\n\nThe volume of a box with Tength 10,\n"
<< "width 1 and height 1 is: " << boxVolume(10);

// specify length and width; default height
cout << "\n\nThe volume of a box with Tength 10,\n"
<< "width 5 and height 1 is: " << boxVolume(10, 5);

// specify all arguments
cout << "\n\nThe volume of a box with length 10,\n"
<< "width 5 and height 2 is: " << boxVolume(10, 5, 2)
<< endl;
} // end main

images/00545.jpeg
Enter a sentence:
This is a test of the width member function
This
is
a
test
of
the
widt
h
memb.
er
func
tion

images/00787.jpeg
52 Base *array[3]; // create array of base-class pointers
53

54 array[0] = &both; // ERROR--ambiguous
55 array[1] = &one;

56 array[2] = &two;

57

58 // polymorphically invoke print

59 for (int i =0; 1 <3; ++1)

60 array[1 1 -> printQ;

61} // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp9_examples\ch23\fig21 13\fig21_13.cpp(54) : error C2594: '=
ambiguous conversions from 'Multiple *' to 'Base *'

images/00302.jpeg
int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
++cRef; // increment count (using its alias cRef)

images/00544.jpeg
20
21

// Fig. 13.10: figl3_10.cpp
// width member function of class jos_base.
#include <iostream>
using namespace std;

int mainQ

{
int widthvalue = 4;
char sentence[10];

cout << "Enter a sentence:" << endl;
cin.width(5); // input only 5 characters from sentence

// set field width, then display characters based on that width
while (cin >> sentence)
{
cout.width(widthValue++);
cout << sentence << endl;
cin.width(5); // input 5 more characters from sentence
} // end while
} // end main

images/00786.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51

// override print function
void printQ const
{
cout << "DerivedTwo\n";
} // end function print
}; // end class DerivedTwo

// class Multiple definition
class Multiple : public DerivedOne, public DerivedTwo
{
public:

// qualify which version of function print

void print() const

{

DerivedTwo: :print();

} // end function print

}; // end class Multiple

int mainQ)

{
Multiple both; // instantiate Multiple object
DerivedOne one; // instantiate DerivedOne object
DerivedTwo two; // instantiate DerivedTwo object

images/00539.jpeg
// Fig. 13.6: figl3_06.cpp

// Inputting characters using cin member function getline.
#include <iostream>

using namespace std;

int main()

{

const int SIZE = 80
char buffer[SIZE]; // create array of 80 characters

// input characters in buffer via cin function getline
cout << "Enter a sentence:" << endl;
cin.getline(buffer, SIZE);

// display buffer contents
cout << "\nThe sentence entered is:" << endl << buffer << endl;
17} // end main

1
2
3
4
5
6
7
8
9

0

1"

12

13

14

15

16

Enter a sentence:
Using the getline member function

The sentence entered is:
Using the getline member function

images/00770.jpeg
CENOUEWN =

10
1"

13
14
15
16
17
18
19
20
21
22

// Fig. 21.2: fig21.02.cpp

// Demonstrating storage-class specifier mutable.
#include <iostream>

using namespace std;

// class TestMutable definition
class TestMutable

{
public:
TestMutable(int v = 0)
£
value = v;

} // end TestMutable constructor

int getvalue() const
{
return ++value; // increments value
} // end function getvalue
private:
mutable int value; // mutable member
}; // end class TestMutable

images/00530.jpeg
Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:
Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

images/00772.jpeg
// Fig. 21.3: fig21_03.cpp
// Demonstrating namespaces.
#include <iostream>

using namespace std;

int integerl = 98; // global variable

// create namespace Example
namespace Example

{

// declare two constants and one variable
const double PI = 3.14159;
const double E = 2.71828;
int integerl =

void printValues(); // prototype

// nested namespace
namespace Inner

{
// define enumeration
enum Years { FISCAL = 1990, FISCAL2, FISCAL3 };
} // end Inner namespace
} // end Example namespace

// create unnamed namespace
namespace

{
double doubleInUnnamed = 88.22; // declare variable

} // end unnamed namespace

int main()

images/00771.jpeg
23 int mainQ
24 {

25 const TestMutable test(99);

26

27 cout << "Initial value: " << test.getValueQ;

28 cout << "\nModified value: " << test.getValue() << endl;

29 '} // end main

Initial value:
Modified value:

929
100

images/00536.jpeg
// Fig. 13.4: fig13_04.cpp

// get, put and eof member functions.
#include <iostream>

using namespace std;

1
2

3

4

5

6 int mainQO
L

8 int character; // use int, because char cannot represent EOF
9

10 // prompt user to enter line of text
1" cout << "Before input, cin.eof() is

<< cin.eof) << endl

12 << "Enter a sentence followed by end-of-file:" << endl;

13

14 // use get to read each character; use put to display it

15 while ((character = cin.get()) != EOF)

16 cout.put(character);

17

18 // display end-of-file character

19 cout << "\nEOF in this system is: " << character << endl;

20 cout << "After input of EOF, cin.eof() is " << cin.eof() << endl;

21} // end main

Before input, cin.eof() is 0

Enter a sentence followed by end-of-file:
Testing the get and put member functions
Testing the get and put member functions
AZ

EOF in this system is: -1
After input of EOF, cin.eof() is 1

images/00778.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
4

// access member function of Test object using -
void arrowStar(Test *testPtr)
ot

void (Test::*memberPtr)() = &Test::func; // declare function pointer
(testPtr->*memberPtr)(); // invoke function indirectly
} // end arrowStar

// access members of Test object data member using .*
void dotStar(Test *testPtr2)
4
int Test::*vPtr = &Test::value; // declare pointer
cout << (*testPtr2).*vPtr << endl; // access value
} // end dotStar

In test function

8

images/00535.jpeg
// Fig. 13.3: figl3_03.cpp

// Printing the address stored in a char * variable.
#include <iostream>

using namespace std;

{

const char *const word

again’

1
2
3
4
H
6 dint main()
7
8
9
10

// display value of char *, then display value of char *
1 // after a static_cast to void *

12 cout << "Value of word is: " << word << endl

3 << "Value of static_cast< const void * >(word) is: "
14 << static_cast< const void * >(word) << endl;

15} // end main

Value of word is: again
Value of static_cast< const void * >(word) is: 0135CC70

images/00777.jpeg
// Fig. 21.6: fig21 06.cpp

// Demonstrating operators .*

#include <iostream>
using namespace std;

// class Test definition
class Test

f

public:
void funcO
{

cout << "In func\n";
} // end function func

and ->*.

int value; // public data member

}; // end class Test

void arrowStar(Test *); // prototype
void dotStar(Test *); // prototype

int mainQ)

{
Test test;

test.value = 8; // assign value 8
arrowStar(&test); // pass address to arrowStar
dotStar(&test); // pass address to dotStar

} // end main

images/00538.jpeg
20

21 // use cin.get to input characters into buffer2
22 cin.get(buffer2, SIZE);

23

2 // display buffer2 contents

25 cout << “The string read with cin.get was:" << endl
26 << buffer2 << endl;

21} // end main

Enter a sentence:
Contrasting string input with cin and cin.get

The string read with cin was:
Contrasting

The string read with cin.get was:
string input with cin and cin.get

images/00537.jpeg
// Fig. 13.5: figl3_05.cpp

// Contrasting input of a string via cin and cin.get.
#include <iostream>

using namespace std;

int mainQ)
{
// create two char arrays, each with 80 elements
const int SIZE = 80;
char bufferl[SIZE];
char buffer2[SIZE];

// use cin to input characters into bufferl
cout << "Enter a sentence:" << endl;
cin >> bufferl;

// display bufferl contents
cout << "\nThe string read with cin was:
<< bufferl << endl << endl;

" << endl

images/00779.jpeg
ETNanEUN-Som~NouswN =

19
20
21
22
23

// Fig. 21.7: Basel.h
// Definition of class Basel
#ifndef BASEI_H
#define BASELH

// class Basel definition
class Basel
{
public:
Basel(int parameterValue)
: value(parameterValue)
{

} // end Basel constructor

int getData() const
{
return value;
} // end function getData
protected: // accessible to derived classes
int value; // inherited by derived class
}; // end class Basel

#endif // BASELH

images/00532.jpeg
// Fig. 12.19: figl2_19.cpp
// Demonstrating downcasting and runtime type information.
// NOTE: You may need to enable RTTI on your compiler
// before you can compile this application.

#include <iostream>

#include <iomanip>

#include <vector>

#include <typeinfo>

#include "Employee.h”

#include "SalariedEnployee.h"

#include "CommissionEmployee.h"

#include "BasePlusCommissionEnployee.h"

using namespace std;

int mainQ)

{
// set floating-point output formatting
cout << fixed << setprecision(2);

// create vector of three base-class pointers
vector < Employee * > employees(3);

// initialize vector with various kinds of Employees
employees[0] = new SalariedEmployee(

"John", "Smith", "111-11-1111", 800);
employees[1] = new CommissionEmployee(

"Sue", "Jones", "333-33-3333", 10000, .06);
employees[2] = new BasePlusCommissionEmployee(

"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

// polymorphically process each element in vector employees

for (Employee *employeePtr : employees)

images/00774.jpeg
doubleInUnnamed =
(global) integerl
T = 3.14159

E = 2.71828
integerl = 8
FISCAL3 = 1992

In printValues:
integerl = 8

T = 3.14159

E = 2.71828
doubleInUnnamed =
(global) integerl
FISCAL3 = 1992

88.22
=98

88.22

images/00531.jpeg
base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

images/00773.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55

// output value doubleInUnnamed of unnamed namespace
cout << "doubleInUnnamed = " << doubleInUnnamed;

// output global variable
cout << "\n(global) integerl =

<< integerl;

// output values of Example namespace

cout << "\nPI = " << Example::PI << "\nE = " << Example::E
<< "\nintegerl = " << Example::integerl << "\nFISCAL3 = "
<< Example: :Inner::FISCAL3 << endl;

Example: :printValues(); // invoke printValues function
} // end main

// display variable and constant values
void Example: :printvalues()

{

cout << "\nIn printValues:\nintegerl = " << integerl << "\nPI = "

<< PI << "\nE = " << E << "\ndoubleInUnnamed = "
<< doubleInUnnamed << "\n(global) integerl = " << ::integerl
<< "\nFISCAL3 = " << Inner::FISCAL3 << endl;

} // end printvalues

images/00534.jpeg
salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00

new base salary with 10% increase is: $330.00

earned $530.00

deleting object of class SalariedEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

images/00776.jpeg
29 cout << "\n\nBitwise operator keywords:";

30 cout << "\nc bitand d: " << (c bitand d);

31 cout << "\n c bitor d: " << (c bitor d);

32 cout << "\n c xor d: " << (cxord);

33 cout << "\n compl c: " << (compl c);

34 cout << "\nc and eq d: " << (c and_eq d);

35 cout << "\n c or eq d: " << (c or_eqd);

36 cout << "\nc xor_eq d: " << (c xor_eq d) << endl;
37 } // end main

a = true; b = false; ¢ =3

Logical operator keywords:

a

a and
a and
aor
aor
not
not
not_eq

copopow

tr
fa
tr
tr
fa
tr
tr

ue
1se
ue
ue
1se
ue
ue

Bitwise opegacy keywords:

c

¢ bitor

c

c or_eq

c

bitand

 xor
comp1
and_eq

asanaoa

xor_eq

cwNn I RWwN

images/00533.jpeg
33
34
35
36
37
38
39
40
a1
42
43
4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

employeePtr->print(); // output employee information
cout << endl;

// attempt to downcast pointer
BasePlusCommissionEmployee *derivedPtr =
dynamic_cast < BasePlusCommissionEmployee * >(employeePtr);

// determine whether element points to a BasePlusCommissionEmployee
if (derivedPtr != nullptr) // true for "is a" relationship
{
double oldBaseSalary = derivedPtr->getBaseSalary();
cout << "old base salary: §" << oldBaseSalary << endl;
derivedPtr->setBaseSalary(1.10 * oldBaseSalary);
cout << "new base salary with 10% increase is: $"
<< derivedPtr->getBaseSalary() << endl;
} // end if

cout << "earned $" << employeePtr->earnings() << "\m\n";
} // end for

// release objects pointed to by vector’s elements
for (const Employee *employeePtr : employees)
{
// output class name
cout << "deleting object of "
<< typeid(*employeePtr).name() << endl;

delete employeePtr;
} // end for
} /7 end main

images/00775.jpeg
& Ru: 2L.5:

Fig21.05.cpp

// Demonstrating operator keywords.
#include <iostream>

#include <ciso646> // enables operator keywords in Microsoft Visual Ci+

using namespace std;

int mainQ)

{

bool a = true;

bool
int ¢
int d

// sticky setting that causes bool values to display as true or false

b.=

false;
2;
3

cout << boolalpha;

cout
cout
cout
cout
cout
cout
cout
cout

"\n\nLogical operator keywords:

“\n a and
"\n a and

“\n aor
"\n a or
“\n not
"\n not
"\na not_eq

a
by

cov o

<< a <<
<< € <<

B -

d

<<
<<
<<
<<
<<
<<
<<

(aanda

(anoteqb);

images/00529.jpeg
64
65
66
67
68
69
70
n
2
3
74
75
76
17
78
79

// call Employee virtual functions print and earnings off a
// base-class pointer using dynamic binding
void virtualViaPointer(const Employee * const baseClassPtr)
{

baseClassPtr->print(;

cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";
} // end function virtualViaPointer

// call Employee virtual functions print and earnings off a
// base-class reference using dynamic binding
void virtualViaReference(const Employee &baseClassRef)
{
baseClassRef.print(); ‘
cout << "\nearned §" << baseClassRef.earnings() << "\n\n";
} // end function virtualViaReference

images/00528.jpeg
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

salariedEmployee.print();

cout << "\nearned §" << salariedEmployee.earnings() << "\n\n";

commissionEmployee.print();

cout << "\nearned §" << commissionEmployee.earningsO) << "\m\n";

basePlusCommissionEmployee.print(;

cout << "\nearned §" << basePlusCommissionEmployee.earnings()
<< "\m\n";

// create vector of three base-class pointers
vector< Employee * > employees(3);

// initialize vector with pointers to Employees
employees[0] = &salariedEmployee;

employees[1] = &commissionEmployee;
employees[2] = &basePlusCommissionEmployee;

cout << "Employees processed polymorphically via dynamic binding:\n\n";

// call virtualViaPointer to print each Employee's information
// and earnings using dynamic binding
cout << "Virtual function calls made off base-class pointers:\n\n";

for (const Employee *employeePtr : employees)
virtualViaPointer(employeePtr);

// call virtualViaReference to print each Employee's information
// and earnings using dynamic binding
cout << "Virtual function calls made off base-class references:\n\n";

for (const Employee *employeePtr : employees)
virtualViaReference(*employeePtr); // note dereferencing

} // end main

images/00761.jpeg
| // Fig. 20.39: fig20_39.cpp
2 // Using strspn.

3 #include <iostream

4 #include <cstring> // strspn prototype
5 using namespace std;
6

7

8

int mainQ)

{

9 const char *stringl = "The value is 3.14159";

10 const char *string2 = "achils Tuv";

1"

12 cout << "stringl = " << stringl << "\nstring2 = " << string2
13 << "\n\nThe Tength of the initial segment of stringl\n"
14 << "containing only characters from string2 = "

15 << strspn(stringl, string2) << endl;

16} // end main

The value is 3.14159
aehils Tuv

stringl
string2

The Tength of the initial segment of stringl
containing only characters from string2 = 13

images/00760.jpeg
// Fig. 20.38: fig20_38.cpp

1

2 // Using strrchr.

3 #include <iostream>

4 #include <cstring> // strrchr prototype

5 using namespace std;

6

7 dint mainQO

8 {

9 const char *stringl = "A zoo has many animals including zebras";
10 char c = 'z';

1"

12 cout << "stringl = " << stringl << "\n" << endl;

13 cout << "The remainder of stringl beginning with the\n"

14 << "last occurrence of character '"

15 << € << ""ds: \"" << strrchr(stringl, ¢) << "\"' << endl;

16} // end main

stringl = A zoo has many animals including zebras

The remainder of stringl beginning with the
last occurrence of character 'z' i “zebras"

images/00525.jpeg
// Fig. 12.16: BasePlusCommissionEmployee.cpp

// BasePlusCommissionEmployee member-function definitions.
#include <iostream>

#include <stdexcept>

#include "BasePlusCommissionEmployee.h"

using namespace std;

// constructor
BasePTusCommissionEmployee: : BasePTusCommissionEmpTloyee
const string &first, const string &last, const string &ssn,
double sales, double rate, double salary)
: CommissionEmployee(first, last, ssn, sales, rate)
{
setBaseSalary(salary); // validate and store base salary
} // end BasePlusCommissionEmployee constructor

// set base salary
void BasePlusCommissionEmployee: :setBaseSalary(double salary)

{

if (salary
basesalary
else
throw invalid_argument("Salary must be >= 0.0"
} // end function setBaseSalary

// return base salary
double BasePlusCommissionEmployee

g

etBaseSalary() const

images/00767.jpeg
// Fig. 20.46: fig20_46.cpp

1
2 // Using memset.

3 #include <iostream>

4 #include <cstring> // memset prototype

5 using namespace std;

6

7 dint mainQ)

8 {

9 char stringl[15] = "BBBBBBBBBBBBBB";

10

1" cout << "stringl = " << stringl << endl;

12 cout << "stringl after memset = "

13 << static_cast< char * >(memset(stringl, 'b', 7)) << endl;

14} // end main

stringl = BBBBBBBBBBBBBB
stringl after memset = bbbbbbbBBBBBBB

images/00524.jpeg
CENoREUN-Svm~ouswN~—

20
21
22
23
24
25
26

// Fig. 12.15: BasePlusCommissionEmployee.h
// BasePlusCommissionEmployee class derived from CommissionEmployee.
#ifndef BASEPLUS_H
#define BASEPLUS H

#include <string> // Ci+ standard string class
#include "CommissionEmployee.h" // CommissionEmployee class definition

class BasePlusCommissionEmployee : public CommissionEmployee
{
public:
BasePTusCommissionEmployee(const std::string &, const st
const std::string &, double = 0.0, double = 0.0, double
virtual ~CommissionEmployee() { } // virtual destructor

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

// keyword virtual signals intent to override
virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

private:
double baseSalary; // base salary per week

}; // end class BasePlusCommissionEmployee

#endif // BASEPLUS_H

images/00766.jpeg
| // Fig. 20.45: fig20_45.cpp
2 // Using memchr.

3 #include <iostream

4 #include <cstring> // memchr prototype
5 using namespace std;
6

7

8

int main()

{

9 char s[] = "This is a strin

1" cout << "s = " << s << "\n" << endl;

12 cout << "The remainder of s after character 'r' is found is \""

13 << static_cast< char * >(memchr(s, 'r', 16)) << "\"' << endl;
14} // end main

This is a string

The remainder of s after character 'r' is found is "ring"

images/00527.jpeg
// Fig. 12.17: figl2_17.cpp
// Processing Employee derived-class objects individually
// and polymorphically using dynamic binding.

#include <iostream>

#include <iomanip>

#include <vector>

#include "Employee.h”

#include "SalariedEmployee.h"

#include "CommissionEmployee.h"

#include "BasePlusCommissionEmployee.h”

using namespace std;

void virtualViaPointer(const Employee * const); // prototype
void virtualViaReference(const Employee &); // prototype

int main(Q)

{
// set floating-point output formatting
cout << fixed << setprecision(2);

// create derived-class objects
SalariedEmployee salariedEmployee(

“John", "Smith", "111-11-1111", 800);
CommissionEmployee commissionEmployee(

"Sue", "Jones", "333-33-3333", 10000, .06);
BasePTusCommissionEmployee basePTusCommissionEmployee(

"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

cout << “Employees processed individually using static binding:\n\n";

/7 output each Employeeis:inFormation and earnings using static binding

images/00769.jpeg
23 cout << "The larger string is: " << maxPtr << endl;

24

25 for (size_t i =0; i < strlen(maxPtr); ++i)

26 maxPtr[i 1 = toupper(maxPtr[i 1);

27

28 cout << "The larger string capitalized is: " << maxPtr << endl;

29 } // end main

The larger string is: hello
The larger string capitalized is: HELLO

images/00526.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
4
45

} // end function getBaseSalary

// caleulate earnings;
// override virtual function earnings in CommissionEmployee
double BasePlusCommissionEmployee: :earnings() const
{

return getBaseSalary() + CommissionEmployee::earnings():
} // end function earnings

// print BasePlusCommissionEmployee's information
void BasePlusCommissionEmployee: :print() const
{
cout << "base-salaried ";
CommissionEmployee: :print(); // code reuse
cout << "; base salary: " << getBaseSalary();
} // end function print

images/00768.jpeg
// Fig. 21.1: fig21_01.cpp

// Demonstrating const_cast.

#include <iostream>

#include <cstring> // contains prototypes for functions strcmp and strlen
#include <cctype> // contains prototype for function toupper

using namespace std;

// returns the larger of two C strings
const char *maximum(const char *first, const char *second)
{

return (stremp(first, second) >= 0 ? first : second);
} // end function maximum

int mainQ

<
char s1[] = "hello"; // modifiable array of characters
char s2[] = "goodbye"; // modifiable array of characters

// const_cast required to allow the const char
// to be assigned to the char * variable maxPtr
char *maxPtr = const_cast< char * >(maximum(s1, s2));

returned by maximum

images/00521.jpeg
// Fig. 12.13: CommissionEmpTloyee.h

// CommissionEmployee class derived from Employee.
#ifndef COMMISSION_H

#define COMMISSION H

#include <string> // C++ standard string class
#include "Employee.h" // Employee class definition

class CommissionEmployee : public Employee
{
public:
CommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0);
virtual ~CommissionEmployee() { } // virtual destructor

void setCommissionRate(double); // set commission rate
double getCommissionRate() const; // return commission rate

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

// keyword virtual signals intent to override
virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object
private:
double grossSales; // gross weekly sales
double commissionRate; // commission percentage
}; // end class CommissionEmployee

#endif // COMMISSION_H

images/00763.jpeg
| // Fig. 20.42: fig20_42.cpp

2 // Using memcpy.

3 #include <iostream>

4 #include <cstring> // memcpy prototype
5 using namespace std;
6

7

8

9

int mainQ)
<
char s1[17] = {};

10
1" // 17 total characters (includes terminating null)
12 char s2[] = "Copy this string";
13
14 memcpy(s, s2, 17); // copy 17 characters from s2 to sl
15
16 cout << "After s2 is copied into s1 with memcpy,\n"
17 << "s1 contains \"" << sl << "\"' << endl;

18} // end main

After s2 is copied into sl with memcpy,
s1 contains "Copy this string”

images/00520.jpeg
28 return weeklySalary;
29 '} // end function getieeklySalary

30

31 // calculate earnings;

32 // override pure virtual function earnings in Employee
33 double SalariedEmployee::earnings() const

34 {

35 return getiieeklySalary();
36} // end function earnings
37

38 // print SalariedEmployee's information
39 void SalariedEmployee::print() const
40 {

a1 cout << "salaried employee:
42 Employee::print(); // reuse abstract base-class print function
43 cout << "\nweekly salary: " << getWeeklySalaryQ;

44} // end function print

images/00762.jpeg
// Fig. 20.40: fig20_40.cpp

// Using strstr.

#include <iostream>

#include <cstring> // strstr prototype
using namespace std;

1

2

3

4

H

6

7 int mainO
8 {

9 const char *stringl
10

1

12

13

14

15

"abcdefabcdef";
"def";

const char *string2

<< stringl << "\nstring2 = " << string2
<< "\n\nThe remainder of stringl beginning with the\n"
<< "first occurrence of string2 i
<< strstr(stringl, string2) << end
16 } // end main

cout << "stringl

stringl = abcdefabcdef
string2 = def

The remainder of stringl beginning with the
first occurrence of string2 is: defabcdef

images/00523.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

void CommissionEmpTloyee::

{

etCommissionRate(double rate)

if (rate > 0.0 & rate < 1.0)
commissionRate = rate;
else
throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
} // end function setCommissionRate

// return commission rate
double CommissionEmpToyee: :getCommissionRate() const
f
return commissionRate;
} // end function getCommissionRate

// caleulate earnings; override pure virtual function earnings in Employee
double CommissionEmployee::earnings() const
{
return getCommissionRate() * getGrossSales(;
} // end function earnings

// print CommissionEmployee's information
void ComnissionEmployee: :print() const
{
cout << "commission employee: ";
Employee: :print(); // code reuse
cout << "\ngross sales: " << getGrossSales()
<< "; commission rate: " << getCommissionRate();

} // end function print

images/00765.jpeg
/)
/

/ Fig. 20.44: fig20_44.cpp
/ Using memcmp.

=" << 82 <<
<< setw(3)
<< setw(3)
<< setw(3)

end

<< mememp(s1, s2, 4)
<< mememp(s1, s2, 7)
<< mememp(s2, s1, 7)

1
2
3 #include <iostream>
4 #include <iomanip>
5 #include <cstring> // memcmp prototype
6 using namespace std;
7
& int mainO
9 {
10 char s1[] = "ABCDEFG";
1" char s2[] = “ABCDXYZ";
12
13 cout << "sl =" << sl << "\ns2
14 << "\nmemcmp(s1, s2, 4) = "
15 << "\nmemcmp(sl, s2, 7) ="
16 << "\nmemcmp(s2, s1, 7) = "
17 << endl;
18} // end main
= ABCDEFG
= ABCDXYZ
memcmp(sl, s2, 4) = 0
mememp(sl, s2, 7) = -1
memcmp(s2, s1, 7) = 1

images/00522.jpeg
R T e
85N aRitNSor~NausuNn -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 12.14: CommissionEmployee.cpp
// CommissionEmployee class member-function definitions.

#include <iostream>

#include <stdexcept>

#include "CommissionEmployee.h" // CommissionEmployee class definition
using namespace std;

// constructor

CommissionEmployee: : CommissionEmployee(const string &First,
const string &last, const string &ssn, double sales, double rate)
: Employee(first, last, ssn)

setGrossSales(sales);
setCommissionRate(rate);
} // end CommissionEmployee constructor

// set gross sales amount
void CommissionEmployee: :setGrossSales(double sales)
4
if (sales >= 0.0)
grossSales = sales;
else
throw invalid_argument("Gross sales must be >= 0.0");
} // end function setGrossSales

// return gross sales amount
double CommissionEmployee::getGrossSales() const

{
return grossSales;
} // end function getGrossSales

// set commission rate

images/00764.jpeg
// Fig. 20.43: fig20_43.cpp

1
2 // Using memmove.

3 #include <iostream>

4 #include <cstring> // memmove prototype

5 using namespace std;

6

7 dint mainQ)

8 {

9 char x[] = "Home Sweet Home";

10

1" cout << “The string in array x before memmove is: " << x;

12 cout << "\nThe string in array x after memmove i "

3 << static_cast< char * >(memmove(x, &[5 1, 10)) << endl;

14} // end main

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

images/00518.jpeg
CENoRiEGN-Svo~ouswN~—

20
21
22
23
24
25
26

// Fig. 12.11: SalariedEmployee.h
// SalariedEmployee class derived from Employee.
#ifndef SALARIED_H
#define SALARIED H

#include <string> // C++ standard string class
#include "Employee.h" // Employee class definition

class SalariedEmployee : public Employee
{
public:
SalariedEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0);
virtual ~SalariedEmployee() { } // virtual destructor

void setWeeklySalary(double); // set weekly salary
double getiieeklySalary() const; // return weekly salary

// keyword virtual signals intent to override
virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

private:
double weeklySalary; // salary per week

}; // end class SalariedEmployee

#endif // SALARTED_H

images/00517.jpeg
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57

// return last name
string Employee::getLastName() const
{
return lastName;
} // end function getlLastName

// set social security number
void Employee: :setSocialSecurityNumber(const string &ssn)
{
socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string Employee::getSocialSecurityNumber() const
<
return socialSecurityNumber;
} // end function getSocialSecurityNumber

// print Employee's information (virtual, but not pure virtual)
void Employee::print() const
{

cout << getFirstName() << ' '
<< "\nsocial security number:

} // end function print

<< getlastName()
" << getSocialSecurityNumber () ;

images/00759.jpeg
| // Fig. 20.37: fig20_37.cpp

2 // Using strpbrk.

3 #include <iostream

4 #include <cstring> // strpbrk prototype

5 using namespace std;

6

7 dint mainQ)

8 {

9 const char *stringl = "This is a test";

10 const char *string2 = "beware";

1

12 cout << "OF the characters in \"" << string2 << "\"\n'"
13 << *strpbrk(stringl, string2) << "\' is the first character "
14 << "to appear in\n\"" << stringl << "\"' << endl;

15} // end main

Of the characters in "beware"
'a' is the first character to appear in
“This is a test"

images/00519.jpeg
// Fig. 12.12: SalariedEmployee.cpp
// SalariedEmployee class member-function definitions.

#include <iostream>

#include <stdexcept>

#include "SalariedEmployee.h" // SalariedEmployee class definition
using namespace std;

// constructor
SalariedEmployee::SalariedEmployee(const string &first,
const string &last, const string &ssn, double salary)
Employee(first, last, ssn)
{
setheeklySalary(salary);
} // end SalariedEmployee constructor

// set salary
void SalariedEmployee::setWeeklySalary(double salary)
{
if (salary >= 0.0)
weeklySalary = salary;
else
throw invalid_argument("Weekly salary must be >= 0.0");
} // end function setWeeklySalary

// return salary
double SalariedEmployee::getWeeklySalary() const

f

images/00750.jpeg
// Fig. 20.26: fig20_26.cpp

// Using strlen.

#include <iostream>

#include <cstring> // prototype for strlen
using namespace std;

int mainQ
{

1

2

3

4

5

6

{ 2

8

9 const char *stringl = “abcdefghijkimnopqrstuvixyz";
10 const char *string2 four";

"
12
13
14
15
16
17

Boston";

const char #string3

cout << "The Tength of \"" << stringl << "\" is " << strlen(stringl)
<< "\nThe length of \"" << string2 << "\" is " << strlen(string2)
<< "\nThe Tength of \"" << string3 << "\" is " << strlen(string3)

<< endl;

} // end main

The Tength of “abcdefghijkimnoparstuvwxyz" is 26
The Tlength of "four" is 4
The Tength of "Boston" is 6

images/00514.jpeg
R e
CeBNo RGN -Com~NOUdLN—

// Fig. 12.9: Employee.h

// Employee abstract base class.
#ifndef EMPLOYEE H

#define EMPLOYEE H

#include <string> // C++ standard string class

class Employee
{
public:
Employee(const std::string & const std::string &,
const std::string &);
virtual ~Employee() { } // virtual destructor

void setFirstName(const std::string &); // set first name
std::string getFirstName() const; // return first name

void setLastName(const std::string &); // set last name
std::string getLastName() const; // return last name

images/00756.jpeg
// Fig. 20.33: fig20_33.cpp

1

2 // Using strtoul.

3 #include <iostream>

4 #include <cstd1ib> // strtoul prototype

5 using namespace std;

6

7 dint mainQ)

8 {

9 const char *stringl = "1234567abc";

10 char *remainderPtr = nullptr;

1

12 // convert a sequence of characters to unsigned Tong
13 unsigned long x = strtoul(stringl, &remainderPtr, 0);
14

15 cout << "The original string is \"" << stringl

16 \nThe converted value is " << x

17 << "\nThe remainder of the original string is \"" << remainderPtr
18 << "\"\nThe converted value minus 567 is " << x - 567 << endl;
19} // end main

The original string is "1234567abc”

The converted value is 1234567

The remainder of the original string is "abc"

The

converted value minus 567 is 1234000

images/00513.jpeg
class MyClass final // this class cannot be a base class

{
// class body

¥3

images/00755.jpeg
| // Fig. 20.32: fig20_32.cpp

2 // Using strtol.

3 #include <iostream>

4 #include <cstdlib> // strtol prototype
5 using namespace std;
6

7

8

9

int mainQ

{
const char *stringl -1234567abc";

10 char *remainderPtr = nullptr;
"
12 Tong x = strtol(stringl, &remainderPtr, 0); // convert to long
13
14 cout << "The original string is \"" << stringl
15 << "\"\nThe converted value is " << x
16 << "\nThe remainder of the original string is \"" << remainderPtr
17 << "\"\nThe converted value plus 567 is " << x + 567 << endl;

18} // end main

The original string is "-1234567abc"

The converted value is -1234567

The remainder of the original string is "abc"
The converted value plus 567 is -1234000

images/00516.jpeg
// Fig. 12.10: Employee.cpp
// Abstract-base-class Employee member-function definitions.
// Note: No definitions are given for pure virtual functions.
#include <iostream>

#include "Employee.h” // Employee class definition

using namespace std;

// constructor
Employee: :Employee(const string &first, const string &last,
const string &ssn)
: firstName(first), lastName(last), socialSecurityNumber(ssn)
{
// empty body
} // end Employee constructor

// set first name
void Employee::setFirstName(const string &first)

{

firstName = first;
} // end function setFirstName

// return first name
string Employee: :getFirstName() const
{
return firstName;
} // end function getFirstName

// set last name
void Employee::setLastName(const string &last)
4
TastName = Tast;
} // end function setlastName

images/00758.jpeg
| // Fig. 20.36: fig20_36.cpp
2 // Using strcspn.

3 #include <iostream>

4 #include <cstring> // strcspn prototype
5 using namespace std;
6

7

8

int main()
{
9 const char *stringl = "The value is 3.14159";
10 const char *string2 = "1234567890
1
12 cout << "stringl = " << stringl << "\nstring2 = "
13 << "\n\nThe Tength of the initial segment of stringl"
14 << "\ncontaining no characters from string2 = "
15 << strespn(stringl, string2) << endl;

16 } // end main

stringl = The value is 3.14159
string2 = 1234567890

The Tength of the initial segment of stringl
containing no characters from string2 = 13

<< string2

images/00515.jpeg
21
22
23
24
25
26
27
28
29
30
31
32
33

void setSocialSecurityNumber(const std::string &); // set SSN
std::string getSocialSecurityNumber() const; // return SSN

// pure virtual function makes Employee an abstract base class
virtual double earnings() const = 0; // pure virtual
virtual void print() const; // virtual
private:
i:string firstName;
tring TastName;
tring socialSecurityNumber;
}; // end class Employee

#endif // EMPLOYEE_H

images/00757.jpeg
1 // Fig. 20.35: fig20_35.cpp

2 // Using strchr.

3 #include <iostream>

4 #include <cstring> // strchr prototype

5 using namespace std;

6

7 dint mainQ

8 {

9 const char *stringl = "This is a test";

10 char characterl = 'a';

1 char character2 = 'z';

12

13 // search for characterl in stringl

14 if (strchr(stringl, characterl) != NULL)

15 cout << "\'' << characterl << "' was found in \""
16 << stringl << "\".\n";

17 else

18 cout << '\'' << characterl << "' was not found in \""
19 << stringl << "\".\n";

20

21 // search for character2 in stringl

22 if (strchr(stringl, character2) NULL)

23 cout << '\'' << character2 << was found in \""
2 << stringl << "\".\n";

25 else

26 cout << "\'' << character2 << "' was not found in \""
27 << stringl << "\"." << endl;

28 '} // end main

'a' was found in "This is a test".
'z' was not found in "This is a test".

images/00510.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

basePlusCommissionEmployee.print(); // static binding

// output objects using dynamic binding
cout << "\n\n\nInvoking print function on base-class and "
<< "derived-class \nobjects with dynamic binding'

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmploye
cout << "\n\nCalling virtual function print with base-class pointer"
<< "\nto base-class object invokes base-class "
"print function:\n\n";
commissionEmployeePtr->print(); // invokes base-class print

<<

// ain derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;
cout << "\n\nCalling virtual function print with derived-class
<< "pointer\nto derived-class object invokes derived-class
<< "print function:\n\n";
basePlusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePTusCommissionEmployee;
cout << "\n\nCalling virtual function print with base-class pointer"
<< "\nto derived-class object invokes derived-class "
<< "print function:\n\n";

// polymorphism; invokes BasePlusCommissionEmployee's print;
// base-class pointer to derived-class object

commi ssionEmpTloyeePtr->print();

cout << endl;

} // end main

images/00752.jpeg
// Fig. 20.2

£1920_29.cpp

1

2 // Using atoi.

3 #include <iostream>

4 #include <cstdlib> // atoi prototype

5 using namespace std;

6

7 int mainO

8 {

9 int i = atoi("2593"); // convert string to int

10

1" cout << "The string \"2593\" converted to int is " << i
12 << "\nThe converted value minus 593 is " << i - 593 << endl;

13} // end main

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

images/00751.jpeg
// Fig. 20.28: fig20_28.cpp

// Using atof.

#include <iostream>

#include <cstdlib> // atof prototype
using namespace std;

1
2

3

4

5

6

7 dint mainQ)

8 {

9 double d = atof("99.0"); // convert string to double

10

" cout << "The string \"99.0\" converted to double is " << d
12
3

<< "\nThe converted value divided by 2 is " << d / 2.0 << endl;
} // end main

The string "99.0" converted to double is 99
The converted value divided by 2 is 49.5

images/00512.jpeg
Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00—— Noice that the base salary is now displayed

images/00754.jpeg
// Fig. 20.31: fig20_31.cpp

1
2 // Using strtod.

3 #include <iostream>

4 #include <cstdlib> // strtod prototype

5 using namespace std;

6

7 dint mainQ

8 {

9 const char *stringl = "51.2% are admitted";

10 char *stringPtr = nullptr;

1"

12 double d = strtod(stringl, &tringPtr); // convert to double
3

14 cout << "The string \"" << stringl

15 << is converted to the\ndouble value " << d

16 << " and the string \"" << stringPtr << "\"" << endl;

17} // end main

The string "51.2% are admitted" is converted to the
double value 51.2 and the string "% are admitted"

images/00511.jpeg
Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

images/00753.jpeg
| // Fig. 20.30:
2 // Using atol.

3 #include <iostream>

4 #include <cstdlib> // atol prototype
5 using namespace std;
6

7

8

£1920_30.cpp

int main()

{
9 Tong x = atol("1000000"); // convert string to long

1 cout << "The string \"1000000\" converted to long is " << x
12 << "\nThe converted value divided by 2 is " << x / 2 << endl;
13} // end main

The string "1000000" converted to Tong int is 1000000
The converted value divided by 2 is 500000

images/00507.jpeg
26
27
28
29
30
31
32
33
34
35
36
37
38
39

void setCommissionRate(double); // set commission rate
double getCommissionRate() const; // return commission rate

virtual double earnings() const; // calculate earnings
virtual void printQ) const; // print object

private:
std::string firstName;
std::string lastName;

std::string socialSecurityNumber;

double grossSales; // gross weekly sales

double commissionRate; // commission percentage
}; // end class CommissionEmployee

#endif

images/00749.jpeg
25 } // end main

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:

This

is

a
sentence
with

7

tokens

After strtok, sentence = This

images/00506.jpeg
CENaREGN-Som~ouswN~—

20
21
22
23
24
25

// Fig. 12.4: CommissionEmployee.h
// CommissionEmployee class header declares earnings and print as virtual.
#ifndef COMMISSION H
#define COMMISSION H

#include <string> // C++ standard string class

class CommissionEmployee
{
public:
CommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0);

void setFirstName(const std::string &); // set first name
std::string getFirstName() const; // return first name

void setlLastName(const std::string &); // set last name
std::string getLastName() const; // return last name

void setSocialSecurityNumber(const std::string &); // set SSN
std::string getSocialSecurityNumber() const; // return SSN

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

images/00748.jpeg
// Fig. 20.25: fig20_25.cpp

// Using strtok to tokenize a string.
#include <iostream>

#include <cstring> // prototype for strtok
using namespace std;

int main()

{
char sentence[] = "This is a sentence with 7 tokens";

cout << "The string to be tokenized is:\n" << sentence
<< "\n\nThe tokens are:\n\n";

// begin tokenization of sentence
char *tokenPtr = strtok(sentence, " "

// continue tokenizing sentence until tokenPtr becomes NULL
while (tokenPtr != NULL)
{

cout << tokenPtr << '\n';
tokenPtr = strtok(NULL, ™ "); // get next token
} // end while

cout << "\nAfter strtok, sentence << sentence << endl;

images/00509.jpeg
// Fig. 12.6: Figl2_06.cpp

// Introducing polymorphism, virtual functions and dynamic binding.

#include <iostream>

#include <iomanip>

#include "CommissionEmployee.h"
#include "BasePlusCommissionEmployee.h"
using namespace std;

int mainQ)
{
// create base-class object
CommissionEmployee commissionEmployee(
"Sue", "Jones", "222-22-2222", 10000, .06);

// create base-class pointer
CommissionEmployee *commissionEmployeePtr = nullptr;

// create derived-class object
BasePTusCommissionEmployee basePTusComnissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300);

// create derived-class pointer
BasePlusCommissionEmployee *basePlusCommissionEmployeePtr

// set floating-point output formatting
cout << fixed << setprecision(2);

// output objects using static binding

cout << "Invoking print function on base-class and derived-class

<< "\nobjects with static binding\n\n";
commissionEmployee.print(); // static binding
cout << "\n\n"

nullptr;

images/00508.jpeg
// Fig. 12.5: BasePlusCommissionEmployee.h
// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#ifndef BASEPLUS_H

#define BASEPLUS H

#include <string> // C++ standard string class
#include "CommissionEmployee.h” // CommissionEmployee class declaration

class BasePlusConmissionEmployee : public CommissionEmployee
{
public:
BasePTusCommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0, double = 0.0);

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

private:
double baseSalary; // base salary
}; // end class BasePlusCommissionEmployee

#endif

images/00624.jpeg
// Fig. 15.2
// Standard Library queue adapter class template.
#include <iostream>

#include <queue> // queue adapter definition
using namespace std;

ig15_20.cpp

int mainQ)
{
queue< double > values; // queue with doubles

1

2

3

4

5

6

7

8

9

10

" // push elements onto queue values
12 values.push(3.2);

13 values.push(9.8
14

15

16

1”7

18

19

20

values.push(5.4);

cout << "Popping from values: ";

// pop elements from queue
while (!values.empty())

{
21 cout << values.front() << ' '; // view front element
22 values.pop(); // remove element
23 } // end while
24
25 cout << endl;

26} // end main

Popping from values: 3.2 9.8 5.4

images/00623.jpeg
59 {

60 cout << stackRef.top() << ' '; // view (and display) top element
61 stackRef.pop(); // remove top element
62 } // end while

63 1} // end function popElements

Pushing onto intDequeStack: 0 123 4 567 8 9
Pushing onto intVectorStack: 0 1

23 9
Pushing onto intListStack: 0 1 2 3 4

P
oun
~o
o~
©ow

Popping from intDequeStack: 9 8 7 6 54 3 2 10
Popping from intVectorStack: 5

7 0
Popping from intListStack: 9 8 7 6 5 4

wa
~w
[
o

images/00626.jpeg
// Fig. 16.1: figl6_01.cpp

// Algorithms £i1l, fill_n, generate and generate_n.
#include <iostream>

#include <algorithm> // algorithm definitions
#include <array> // array class-template definition
#include <iterator> // ostream_iterator

using namespace std;

char nextLetter(); // prototype of generator function

int main()
{
array< char, 10 > chars;
ostream_iterator< char > output(cout, " ");
fi11(chars.begin(), chars.endQ, 'S'); // fill chars with 5s

cout << "chars after filling with 5s:\n"
copy(chars.cbegin(), chars.cend(), output);

// fi11 first five elements of chars with As
fi11_n(chars.beginQ, 5, 'A');

cout << "\n\nchars after filling five elements with As:\n";
copy(chars.cbegin(), chars.cend(), output);

// generate values for all elements of chars with nextlLetter
generate(chars.begin(), chars.end(), nextlLetter);

cout << "\n\nchars after generating letters A-J:\n";
copy(chars.cbegin(), chars.cend(), output);

images/00625.jpeg
26

// Fig. 15.21: figl5_21.cpp
// Standard Library priority_queue adapter class.
#include <iostream>

#include <queue> // priority_queue adapter definition
using namespace std;

int main(Q)
{
priority_queue< double > priorities; // create priority_queue

// push elements onto priorities
priorities.push(3.2);
priorities.push(9.8);
priorities.push(5.4);

cout << "Popping from priorities: ";

// pop element from priority_queue
while (!priorities.empty())

{

cout << priorities.top() << ' '; // view top element
priorities.pop(); // remove top element
} // end while

cout << endl;
} // end main

Popping from priorities: 9.8 5.4 3.2

images/00620.jpeg
32 // use const_iterator to walk through elements of pairs

33 for (auto mapItem : pairs)

34 cout << mapItem.first << '\t' << mapItem.second << '\n';
35

36 cout << endl;

37 '} // end main

pairs contains:

Key Value
5 1010.1
10 22.22
15 2.7

20 9.345
25 33.333
30 111.11

After subscript operations, pairs contains:
Key Value

4 1010.1
10 22 02
15 2.7

20 9.345
25 9999.99
30 111,11

40 8765.43

images/00622.jpeg
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58

cout << "\nPushing onto intListStack: ";
pushElements(intListStack);
cout << endl << endl;

// display and remove elements from each stack
cout << "Popping from intDequeStack: ";
popElements(intDequeStack);

cout << "\nPopping from intVectorStack: ";
popElements(intVectorStack);

cout << "\nPopping from intListStack: ";
popElements(intListStack);

cout << endl;

} // end main

// push elements onto stack object to which stackRef refers
template< typename T > void pushElements(T &stackRef)

{

for (dint i =05 i < 10; ++1)

{

stackRef.push(i); // push element onto stack

cout << stackRef.top() << ' '; // view (and display) top element
} // end for

} // end function pushElements

// pop elements from stack object to which stackRef refers
template< typename T > void popElements(T &stackRef)

{

while (!stackRef.empty())

images/00621.jpeg
// Fig. 15.19: figl5_19.cpp
// Standard Library stack adapter class.

#include <iostream>

#include <stack> // stack adapter definition
#include <vector> // vector class-template definition
#include <1ist> // list class-template definition
using namespace std;

// pushElements function-template prototype
template< typename T > void pushElements(T &stackRef);

// popElements function-template prototype
template< typename T > void popElements(T &stackRef);

int mainQ

{
// stack with default underlying deque
stack< int > intDequeStack;

// stack with underlying vector
stack< int, vector< int > > intVectorStack;

// stack with underlying Tist
stack< int, list< int > > intlistStack;

// push the values 0-9 onto each stack
cout << "Pushing onto intDequeStack: ";
pushElements(intDequeStack);

cout << "\nPushing onto intVectorStack: ";

pushElements(intVectorStack);

images/00617.jpeg
28 cout << "Multimap pairs contains:\nKey\tValue\n";
29

30 // walk through elements of pairs

31 for (auto mapItem : pairs)

32 cout << mapItem.first << '\t' << mapItem.second << '\n';
33

34 cout << endl;

35 } // end main

There are currently 0 pairs with key 15 in the multimap
After inserts, there are 2 pairs with key 15

Multimap pairs contains:

Key Value
5 77.54
10 22.22
15 ot 4

15 99.3

20 9.345
25 33.333

30 111.11

images/00616.jpeg
// Fig. 15.17: figl5_17.cpp
// Standard Library multimap class template.
#include <iostream>

#include <map> // multimap class-template definition
using namespace std;

int mainQ)
{
multimap< int, double, Tess< int > > pairs; // create multimap

cout << "There are currently " << pairs.count(15)
<< " pairs with key 15 in the multimap\n";

// insert two value_type objects in pairs
pairs.insert(make_pair(15, 2.7));
pairs.insert(make_pair(15, 99.3));

cout << "After inserts, there are " << pairs.count(15)
<< " pairs with key 15\n\n";

// insert five value_type objects in pairs
pairs.insert(make_pair(30, 111.11));
pairs.insert(make_pair(10, 22.22));
pairs.insert(make_pair(25, 33.333));
pairs.insert(make_pair(20, 9.345));
pairs.insert(make_pair(5, 77.54));

images/00619.jpeg
// Fig. 15.18: figl5_18.cpp

// Standard Library class map class template.
#include <iostream>

#include <map> // map class-template definition
using namespace std;

int main()

{

map< int, double, less< int > > pairs;

// insert eight value_type objects in pairs
pairs.insert(make_pair(15, 2.7));

pairs.insert(make_pair(30, 111.11));
pairs.insert(make_pair(5, 1010.1));

pairs.insert(make_pair(10, 22.22));

pairs.insert(make pair(25, 33.333));
pairs.insert(make_pair(5, 77.54)); // dup ignored
pairs.insert(make_pair(20, 9.345));

pairs.insert(make_pair(15, 99.3)); // dup ignored

cout << "pairs contains:\nKey\tValue\n";
// walk through elements of pairs
for (auto mapItem : pairs)

cout << mapItem.first << '\t' << mapItem.second << '\n';

pairs[25]
pairs[40]

9999.99; // use subscripting to change value for key 25
8765.43; // use subscripting to insert value for key 40

cout << "\nAfter subscript operations, pairs contains:\nKey\tvValue\n";

images/00618.jpeg
multimap< int, double, less< int > > pairs =
{{10, 22.22}, { 20, 9.345}, {5, 77.54 } };

images/00613.jpeg
There are currently 0 values of 15 in the multiset
After inserts, there are 2 values of 15 in the multiset

Found value 15
Did not find value 20

After insert, intMultiset contains:
179131515 18 22 22 30 85 100

22
30

Lower bound of 2,
Upper bound of 22:

equal_range of 22:
Lower bound: 22
Upper bound: 30

images/00612.jpeg
33

34 if (result intMultiset.end()) // will be true hence

35 cout << "Did not find value 20\n"; // did not find 20

36

37 // insert elements of array a into intMultiset

38 intMultiset.insert(a.cbegin(), a.cend()

39 cout << "\nAfter insert, intMultiset contains:\n";

40 copy(intMultiset.begin(), intMultiset.end(), output);

41

42 // determine lower and upper bound of 22 in intMultiset

43 cout << "\n\nLower bound of 22: "

4 << *(intMultiset.lower_bound(22));

45 cout << "\nUpper bound of 22: " << *(intMultiset.upper_bound(22));
46

47 // use equal_range to determine lower and upper bound

48 // of 22 in intMultiset

49 auto p = intMultiset.equal_range(22);

50

51 cout << "\n\nequal range of 22:" << "\n Lower bound: "

52 << *(p.first) << "\n Upper bound: " << *(p.second);
53 cout << endl;

54 } // end main

images/00615.jpeg
27
28
29
30
31
32
33
34
35
36

copy(doubleSet.begin(), doubleSet.end(), output);

// insert 9.5 in doubleSet

p = doubleSet.insert(9.5); // value already in set

cout << "\m\n" << *(p.first)
<< (p.second ? " was" : "

cout << "\ndoubleSet contains:

copy(doubleSet.begin(), doubleSet.end(), output);

cout << endl;

was not") << " inserted";

} // end main

doubleSet contains: 2.1 3.7 4.2 9.5

13.8 was inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

9.5 was not inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

images/00614.jpeg
CENoRiEGN-Svo~ouswN~—

20
21
22
23
24
25
26

// Fig. 15.16: figl5_16.cpp
// Standard Library set class tem
#include <iostream>

#include <array>

#include <set>

#include <algorithm>

#include <iterator> // ostream_ it
using namespace std;

int mainQ)

{

const size_t SIZE = §5;

plate.

erator

array< double, SIZE > a = { 2.1, 4.2, 9.5, 2.1, 3.7 };

set< double, Tess< double > > doubleSet(a.begin(), a.end());

ostream_iterator< double > output(cout, " ");

cout << "doubleSet contains:

copy(doubleSet.begin(), doubleSet.end(), output);

// insert 13.8 in doubleSet; insert returns pair in which

// p.first represents location of 13.8 in doubleSet and
// p.second represents whether 13.8 was inserted
auto p = doubleSet.insert(13.8); // value not in set

cout << "\n\n" << *(p.first)
<< (p.second ? " was "
cout << "\ndoubleSet contains

was not") <<

inserted'

images/00611.jpeg
BN UsWN=

©

1
12
13
14
15
16
1”7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// Fig. 15.15: figl5_15.cpp

// Standard Library multiset class template
#include <array>

#include <iostream>

#include <set> // multiset class-template definition
#include <algorithm> // copy algorithm

#include <iterator> // ostream_iterator

using namespace std;

int mainQ

{

const size_t SIZE = 10;
array< int, SIZE > a = { 7, 22, 9, 1, 18, 30, 100, 22, 85, 13 };
multiset< int, less< int > > intMultiset; // multiset of ints

ostream_iterator< int > output(cout, " "

cout << "There are currently " << intMultiset.count(15)
<< " values of 15 in the multiset\n";

intMultiset.insert(15); // insert 15 in intMultiset

intMultiset.insert(15); // insert 15 in intMultiset

cout << "After inserts, there are " << intMultiset.count(15)
<< " values of 15 in the multiset\n\n";

// Find 15 in intMultiset; find returns iterator
auto result = intMultiset.find(15);

if (result intMultiset.end()) // if iterator not at end
cout << "Found value 15\n"; // found search value 15

// find 20 in intMultiset; find returns iterator
result = intMultiset.find(20);

images/00610.jpeg
25 values.pop_front(); // remove first element

26 cout << "\nAfter pop_front, values contains: ";

27 copy(values.cbegin(), values.cend(), output);

28

29 // use subscript operator to modify element at location 1
30 values[1] = 5.4;

31 cout << "\nAfter values[1] = 5.4, values contains:

32 copy(values.cbegin(), values.cend(), output);

33 cout << endl;

34 } // end main

values contains: 3.5 2.2 1.1
After pop_front, values contains: 2.2 1.1
After values[1] = 5.4, values contains: 2.2 5.4

images/00609.jpeg
// Fig. 15.14: figl5_14.cpp

// Standard Library deque class template.

#include <iostream>

#include <deque> // deque class-template definition
#include <algorithm> // copy algorithm

#include <iterator> // ostream_iterator

using namespace std;

int mainQ
&
deque< double > values; // create deque of doubles
ostream_iterator< double > output(cout, " "

// insert elements in values
values.push_front(2.2);
values.push_front(3.5);
values.push_back(1.1);

cout << "values contains: ";

// use subscript operator to obtain elements of values
for (size_t i = 0; i < values.sizeQ); ++i)

cout << values[i] << ' ';

images/00606.jpeg
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// insert elements of ints into otherValues

otherValues.insert(otherValues.cbegin(), ints.cbegin(), ints.cend());
cout << "\nAfter insert, otherValues contains: ";

printList(otherValues);

// remove otherValues elements and insert at end of values
values.splice(values.cend(), otherValues
cout << "\nAfter splice, values contains:
printList(values);

values.sortQ; // sort values
cout << "\nAfter sort, values contains:
printList(values);

// insert elements of ints into otherValues

otherValues.insert(otherValues.cbegin(), ints.cbegin(), ints.cend());
otherValues.sort(); // sort the list

cout << "\nAfter insert and sort, otherValues contains:
printList(othervValues);

// remove otherValues elements and insert into values in sorted order
values.merge(otherValues);

cout << "\nAfter merge:\n values contains:
printList(values);

cout << "\n otherValues contains:
printList(otherValues);

values.pop_front(); // remove element from front
values.pop_back(); // remove element from back

cout << "\nAfter pop_front and pop_back:\n values contains:
printList(values);

images/00605.jpeg
CENoREUN-Svm~ouswN~—

20
21
22
23
24
25
26
27
28
29
30
31
32

// Fig. 15.13: figl5_13.cpp
// Standard library Tist class template.

#include <iostream>

#include <array>

#include <1ist> // list class-template definition
#include <algorithm> // copy algorithm

#include <iterator> // ostream_iterator

using namespace std;

// prototype for function template printlList
template < typename T > void printList(const Tist< T > &listRef);

int mainQ)

{
const size_t SIZE = 4;
array< int, SIZE > ints = { 2, 6, 4, 8
Tist< dnt > values; // create Tist of ints
Tist< int > otherValues; // create Tist of ints

// dinsert items in values
values.push_front(1);
values.push_front(2);
values.push_back(4);
values.push_back(3);

cout << "values contains: ";
printList(values);

values.sort(); // sort values
cout << "\nvalues after sorting contains:
printList(values);

images/00847.jpeg
cout << "Hello, John" << endl;
#define TOKENCONCAT(x, y) x ## y

images/00608.jpeg
95 {

9 if (listRef.empty(Q) // list is empty

97 cout << "List is empty";

98 else

99 {

100 ostream_iterator< T > output(cout, " ");

101 copy(TistRef.cbegin(), TistRef.cend(), output);
102 } // end else

103 } // end function printlList

values contains: 2 14 3
values after sorting contains: 12 3 4
After insert, otherValues contains: 2 6 4 8
After splice, values contains: 123426438
After sort, values contains: 122344638
After insert and sort, otherValues contains: 2 4 6 8
After merge:
values contains: 122234446688
otherValues contains: List is empty
After pop_front and pop_back:
values contains: 222344466 8r
After unique, values contains: 2 3 4 6 8
After swap:
values contains: List is empty
othervValues contains: 2 3 4 6 8
After assign, values contains: 2 3 4 6 8
After merge, values contains: 2233446688
After remove(4), values contains: 2 2 3 3

images/00607.jpeg
65
66
67
68
69
70
41
2
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

values.unique(); // remove duplicate elemel
cout << "\nAfter unique, values contains:
printlist(values);

// swap elements of values and otherValues
values.swap(otherValues);

cout << "\nAfter swap:\n values contains: ";
printList(values);

cout << "\n otherValues contains:
printList(otherValues);

// replace contents of values with elements of otherValues
values.assign(otherValues.cbegin(), otherValues.cend());
cout << "\nAfter assign, values contains: ";
printList(values);

// remove otherValues elements and insert into values in sorted order
values.merge(otherValues);

cout << "\nAfter merge, values contains: ";
printList(values);

values.remove(4); // remove all 4s
cout << "\nAfter remove(4), values contains:
printList(values);
cout << endl;
} // end main

// printList function template definition; uses
// ostream_iterator and copy algorithm to output list elements
template < typename T > void printList(const list< T > &listRef)

images/00602.jpeg
// Fig. 15.11: figl5_15.cpp

// Testing Standard Library vector class template

// element-manipulation functions.

#include <iostream>

#include <array> // array class-template definition
#include <vector> // vector class-template definition
#include <algorithm> // copy algorithm

#include <iterator> // ostream_iterator iterator
#include <stdexcept> // out_of_range exception

using namespace std;

int mainQ)

{

const size_t SIZE = 6;

array< int, SIZE > values = { 1, 2, 3, 4, 5, 6 };
vector< int > integers(values.cbegin(), values.cend());
ostream_iterator< int > output(cout, L 7

cout << "Vector integers contains: ";
copy(integers.cbegin(), integers.cend(), output);

cout << "\nFirst element of integers:
<< "\nLast element of integers: "

<< integers.front()
<< integers.back();

integers[0 1 = 7; // set first element to 7
integers.at(2) = 10; // set element at position 2 to 10

// insert 22 as 2nd element
integers. insert(integers.cbegin® + 1, 22);

cout << "\n\nContents of vector integers after changes:
copy(integers.cbegin(), integers.cend(), output);

images/00844.jpeg
00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

00000000 00000000 00000000 00000000

images/00601.jpeg
for (auto const &item : integers2)
cout << item << ' ';

images/00843.jpeg
Two’s complement of value:
11111111 11111111 11111111 11110011

images/00604.jpeg
Vector integers contains: 123456

First element of integers: 1

Last element of integers: 6

Contents of vector integers after changes: 7 22 2 10 4 5 6
Exception: invalid vector<T> subscript

Vector integers after erasing first element: 22 2 10 4 5 6
After erasing all elements, vector integers is empty

Contents of vector integers before clear: 12 3456
After clear, vector integers is empty

images/00846.jpeg
#ifdef DEBUG
cerr << "Variable x =
#endif

" << x << endl;

images/00603.jpeg
34 // access out-of-range element
35 try

36 {

37 integers.at(100) = 777;

38 } // end try

39 catch (out_of_range &outOfRange) // out_of_range exception

40 {

41 cout << "\n\nException: " << outOfRange.what();

42 } // end catch

43

44 // erase first element

45 integers.erase(integers.cbegin());

46 cout << "\m\nVector integers after erasing first element: ";

41 copy(integers.cbegin(), integers.cend(), output);

48

49 // erase remaining elements

50 integers.erase(integers.cbegin(), integers.cend());

51 cout << "\nAfter erasing all elements, vector integers "

52 << (integers.empty() ? "is" : "is not") << " empty";

53

54 // insert elements from the array values

55 integers.insert(integers.cbegin(), values.cbegin(), values.cend(J;
56 cout << "\n\nContents of vector integers before clear: ";

57 copy(integers.cbegin(), integers.cend(), output);

58

59 // empty integers; clear calls erase to empty a collection

60 integers.clear();

61 cout << "\nAfter clear, vector integers "

62 << (integers.empty() ? "is" : "is not") << " empty" << endl;

63 } // end main

images/00845.jpeg
00000000 00000000 00000000 00011011

a(ie, 27)
+(~value + 1) +11111111 11111111 11111111 11110011

00000000 00000000 00000000 00001110

images/00840.jpeg
Positional values: 64
Saabalalicel

images/00600.jpeg
33 printVector(integers);

34 cout << "\nReversed contents of vector integers: ";

35

36 // display vector in reverse order using const_reverse_iterator
37 for (auto reverselterator = integers.crbegin();

38 reverselterator!= integers.crend(); ++reverselterator)

39 cout << *reverselterator << '

40

41 cout << endl;

42} // end main

43

44 // function template for outputting vector elements
45 template < typename T > void printVector(const vector< T > &integers2)
46 {

47 // display vector elements using const_iterator
48 for (auto constIterator = integers2.cbegin(;
49 constIterator != integers2.cend(); ++constIterator)

50 cout << *constIterator << ' ';
51} // end function printVector

The initial size of integers is: 0

The initial capacity of integers is: 0

The size of integers is: 3

The capacity of integers is: 4

Output built-in array using pointer notation: 12 3 4 5 6
Output vector using iterator notation: 2 3 4

Reversed contents of vector integers: 4 3 2

images/00842.jpeg
value:
00000000 00000000 00000000 00001101

~value (ie., value’s one’s complement):
11111111 11111111 11111111 11110010

images/00841.jpeg
Positional values: 256 16
Symbol values: 1 7

images/00837.jpeg
// Fig. 36.38: Transaction.h

// Transaction abstract base class definition.
#ifndef TRANSACTION H

#define TRANSACTION H

class Screen; // forward declaration of class Screen
class BankDatabase; // forward declaration of class BankDatabase

class Transaction
{
public:
int getAccountNumber(); // return account number
Screen &getScreen(); // return reference to screen
BankDatabase &getBankDatabase(); // return reference to bank database

// pure virtual function to perform the transaction
virtual void execute() = 0; // overridden in derived classes
private:
int accountNumber; // indicates account involved
Screen &screen; // reference to the screen of the ATM
BankDatabase &bankDatabase; // reference to the account info database
}; // end class Transaction

#endif // TRANSACTION_H

images/00836.jpeg
G e 4
SEEIonitN-Coe~NausuN~—

// Fig. 23.37: Account.h

// Account class definition. Represents a bank account.
#ifndef ACCOUNT H

#define ACCOUNT_H

class Account
{
public:
bool validatePIN(int); // is user-specified PIN correct?
double getAvailableBalance(); // returns available balance
double getTotalBalance(); // returns total balance
void credit(double); // adds an amount to the Account
void debit(double); // subtracts an amount from the Account
private:
int accountNumber; // account number
int pin; // PIN for authentication
double availableBalance; // funds available for withdrawal
double totalBalance; // funds available + funds waiting to clear
}; // end class Account

#endif // ACCOUNT_H

images/00839.jpeg
Positional values:
Sl

32

16

images/00838.jpeg
Binary number Octal equivalent Hexadecimal equivalent
100011010001 4321 801

images/00833.jpeg
34
35
36
37
38
39
40
41
42
43

a5
46
a7
48
49
50
H
52
53
54
55
56
57
58
59
60
61

screen.displayMessage(

"\nPlease insert a deposit envelope containing "
screen.displayDollarAmount(amount);
screen.displayMessageLine(" in the deposit slot.");

// receive deposit envelope
bool envelopeReceived = depositSTot.isEnvelopeReceived();

// check whether deposit envelope was received
if (envelopeReceived)
{
screen.displayMessageLine("\nYour envelope has been received."
"\nNOTE: The money deposited will not be available until we"
"\nverify the amount of any enclosed cash, and any enclosed "
“checks clear.");

// credit account to reflect the deposit
bankDatabase. credit(getAccountNumber(), amount);
} // end if
else // deposit envelope not received

{

screen.displayMessageLine("\nYou did not insert an
“envelope, so the ATM has canceled your transaction
} // end else

} // end if
else // user canceled instead of entering amount
{

screen.displayMessageline(“\nCanceling transaction...");

} // end else

images/00832.jpeg
I // Deposit.cpp
2 // Member-function definitions for class Deposit.

3 #include "Deposit.h" // Deposit class definition

4 #include "Screen.h" // Screen class definition

5 #include "BankDatabase.h” // BankDatabase class definition
6 #include "Keypad.h" // Keypad class definition

7

8

#include "DepositSlot.h" // DepositSlot class definition
9 static const int CANCELED = 0; // constant representing cancel option

11 // Deposit constructor initializes class's data members

12 Deposit::Deposit(int userAccountNumber, Screen &atmScreen,

3 BankDatabase &atmBankDatabase, Keypad &tmKeypad,

14 DepositSlot &atmDepositSlot)

15 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
16 keypad(atmKeypad), depositSlot(atmDepositSlot)

17 {

18 // empty body

19} // end Deposit constructor

20

21 // performs transaction; overrides Transaction's pure virtual function
22 void Deposit::execute()

23 {

24 BankDatabase &bankDatabase = getBankDatabase(); // get reference
25 Screen &screen = getScreen(); // get reference

26

27 amount = promptForDepositAmount(); // get deposit amount from user
28

29 // check whether user entered a deposit amount or canceled

30 if (amount != CANCELED)

31 {

32 // request deposit envelope containing specified amount

images/00835.jpeg
Som~ouswN=

// ATMCaseStudy.cpp
// Driver program for the ATM case study.
#include "ATM.h" // ATM class definition

// main function creates and runs the ATM
int mainQ
{
ATM atm; // create an ATM object
atm.run(); // tell the ATM to start
} // end main

images/00834.jpeg
62
63
64
65
66
67
68
69
70
n
72
3
74
75
76
77
78
79
80
81

} // end function execute

// prompt user to enter a deposit amount in cents
double Deposit: :promptForDepositAmount() const

{

Screen &screen = getScreen(); // get reference to screen

// display the prompt and receive input

screen.displayMessage("\nPlease enter a deposit amount in "
"CENTS (or 0 to cancel): ");

int input = keypad.getInput(); // receive input of deposit amount

// check whether the user canceled or entered a valid amount
if (input == CANCELED)
return CANCELED;
else
i
return static_cast< double >(input) / 100; // return dollar amount
} // end else

} // end function promptForDepositAmount

images/00831.jpeg
N -
85I onitN-Cor~NauauN~—

22

// Deposit.h
// Deposit class definition. Represents a deposit transaction.
#ifndef DEPOSIT H
#define DEPOSIT H

#include "Transaction.h” // Transaction class definition
class Keypad; // forward declaration of class Keypad
class DepositSlot; // forward declaration of class DepositSlot

class Deposit : public Transaction
{
public:
Deposit(int, Screen &, BankDatabase &, Keypad &, DepositSlot &);
virtual void execute(); // perform the transaction
private:
double amount; // amount to deposit
Keypad &keypad; // reference to ATM's keypad
DepositSlot &depositSlot; // reference to ATM's deposit slot
double promptForDepositAmount() const; // get deposit amount from user
}; // end class Deposit

#endif // DEPOSIT_H

images/00830.jpeg
screen.displayMessagelLine("1 - $20");

screen.displayMessageLine("2 - $40");
screen.displayMessageLine("3 - $60");
screen.displayMessageLine("4 - $100"

screen.displayMessageLine("5 - $200"
screen.displayMessageLine("6 - Cancel transaction”);
screen.displayMessage("\nChoose a withdrawal option (1-6):

int input = keypad.getInput(); // get user input through keypad

// determine how to proceed based on the input value
switch (input)
{
case 1: // if the user chose a withdrawal amount
case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
case 3: // corresponding amount from amounts array
case 4:
case 5:
userChoice = amounts[input]; // save user's choice
break;
case CANCELED: // the user chose to cancel
userChoice = CANCELED; // save user's choice
break;
default: // the user did not enter a value from 1-6
screen. displayMessageLine(
"\nIvalid selection. Try again.");
} // end switch
} // end while

128 return userChoice; // return withdrawal amount or CANCELED
129 } // end function displayMenuOfAmounts

images/00829.jpeg
66 "\n\nPlease choose a smaller amount.");

67 } // end if

68 else // not enough money available in user's account

69 {

70 screen. displayMessagel ine(

71 "\nInsufficient funds in your account."

72 "\n\nPlease choose a smaller amount.")

3 } // end else

74 } // end if

75 else // user chose cancel menu option

76 {

77 screen.displayMessageline("\nCanceling transaction...”);
78 transactionCanceled = true; // user canceled the transaction
79 } // end else

80 } while (IcashDispensed && !transactionCanceled); // end do...while
81 } // end function execute

82

83 // display a menu of withdrawal amounts and the option to cancel;
84 // return the chosen amount or 0 if the user chooses to cancel
85 int Withdrawal::displayMenuOfAmounts() const

86 {

87 int userChoice = 0; // local variable to store return value
88

89 Screen &screen = getScreen(); // get screen reference
90

91 // array of amounts to correspond to menu numbers

92 int amounts[] = { 0, 20, 40, 60, 100, 200 };

93

9% // 1oop while no valid choice has been made

95 while (userChoice == 0)

96 {

o7 // display the menu

98 screen.displayMessageline("\nWithdrawal options

images/00826.jpeg
// Withdrawal.h

// Withdrawal class definition. Represents a withdrawal transaction.
#ifndef WITHDRAWAL_H

#define WITHDRAWAL H

#include "Transaction.h" // Transaction class definition
class Keypad; // forward declaration of class Keypad
class CashDispenser; // forward declaration of class CashDispenser

class Withdrawal : public Transaction
{
public:
Withdrawal(int, Screen &, BankDatabase &, Keypad &, CashDispenser &);
virtual void execute(); // perform the transaction
private:
int amount; // amount to withdraw
Keypad &keypad; // reference to ATM's keypad
CashDispenser &cashDispenser; // reference to ATM's cash dispenser
int displayMenuOfAmounts() const; // display the withdrawal menu
}: // end class Withdrawal

#endif // WITHDRAWAL_H

images/00825.jpeg
24
25
26
27
28
29
30
31
32
33
34
35
36
37

bankDatabase.getAvailableBalance(getAccountNumber()

// get
double

the total balance for the current user's Account
totalBalance =

bankDatabase.getTotalBalance(getAccountNumber());

// display the balance information on the screen

screen
screen
screen
screen
screen
screen

.displayMessageLine("\nBalance Information:");
.displayMessage(" - Available balance: ");
.displayDoTlarAmount(availableBalance);
.displayMessage("\n - Total balanc
.displayDolTarAmount(totalBalance
.displayMessageLine(");

")s

} // end function execute

images/00828.jpeg
33
34
35
36
37
38
39
40
41
a2
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

do

// obtain the chosen withdrawal amount from the user
int selection = displayMenuOfAmounts();

// check whether user chose a withdrawal amount or canceled
if (selection != CANCELED)

{

amount = selection; // set amount to the selected dollar amount

// get available balance of account involved
double availableBalance =
bankDatabase.getAvailableBalance(getAccountNumber());

// check whether the user has enough money in the account
if (amount <= availableBalance)

{
// check whether the cash dispenser has enough money

if (cashDispenser.isSufficientCashAvailable(amount))

{

// update the account involved to reflect withdrawal
bankDatabase.debit(getAccountNumber(), amount);

cashDispenser.dispenseCash(amount); // dispense cash
cashDispensed = true; // cash was dispensed

// instruct user to take cash
screen. displayMessageLine(
"\nPlease take your cash from the cash dispenser.”);
} // end if
else // cash dispenser does not have enough cash
screen. displayMessageLine(
"\nInsufficient cash available in the ATM."

images/00827.jpeg
// Withdrawal.cpp
// Member-function definitions for class Withdrawal.
#include "Withdrawal.h" // Withdrawal class definition
#include "Screen.h" // Screen class definition

#include "BankDatabase.h™ // BankDatabase class definition
#include “Keypad.h" // Keypad class definition

#include "CashDispenser.h" // CashDispenser class definition

// global constant that corresponds to menu option to cancel
static const int CANCELED =

// Withdrawal constructor initialize class's data members
Withdrawal: :Withdrawal(int userAccountNumber, Screen &atmScreen,
BankDatabase &atmBankDatabase, Keypad &atmKeypad,
CashDispenser &tmCashDispenser)
: Transaction(userAccountNumber, atmScreen, atmBankDatabase),
keypad(atmKeypad), cashDispenser(atmCashDispenser)
{
// empty body
} // end Withdrawal constructor

// perform transaction; overrides Transaction's pure virtual function
void Withdrawal::execute()

{

bool cashDispensed = false; // cash was not dispensed yet
bool transactionCanceled = false; // transaction was not canceled yet

// get references to bank database and screen
BankDatabase &bankDatabase = getBankDatabase():
Screen &screen = getScreen();

// loop until cash is dispensed or the user cancels

images/00822.jpeg
23
2
25
26
27
28
29
30
31
32
33

// return reference to screen
Screen &Transaction::getScreen() const
{
return screen;
} // end function getScreen

// return reference to bank database
BankDatabase &Transaction::getBankDatabase() const

{
return bankDatabase;
} // end function getBankDatabase

images/00821.jpeg
CEIohAuGN-Com~NouawN~—

20
21
22

// Transaction.cpp

// Member-function definitions for class Transaction.
#include "Transaction.h" // Transaction class definition
#include "Screen.h” // Screen class definition

#include "BankDatabase.h" // BankDatabase class definition

// constructor initializes common features of all Transactions
Transaction: :Transaction(int userAccountNumber, Screen &atmScreen,
BankDatabase &atmBankDatabase)
: accountNumber(userAccountNumber),
screen(atmScreen),
bankDatabase(atmBankDatabase)
{
// empty body
} // end Transaction constructor

// return account number
int Transaction::getAccountNumber() const
{
return accountNumber;
} // end function getAccountNumber

images/00824.jpeg
// BalanceInquiry.cpp
// Member-function definitions for class BalanceInquir:
#include “BalanceInquiry.h" // Balancelnquiry class definition
#include "Screen.h" // Screen class definition

#include "BankDatabase.h" // BankDatabase class definition

// BalanceInquiry constructor initializes base-class data members
BalanceInquiry:: BalanceInquiry(int userAccountNumber, Screen &atmScreen,
BankDatabase &atmBankDatabase)
+ Transaction(userAccountNumber, atmScreen, atmBankDatabase)
{
// empty body
} // end BalanceInquiry constructor

// performs transaction; overrides Transaction's pure virtual function
void BalanceInquiry::execute()
{

// get references to bank database and screen

BankDatabase &bankDatabase = getBankDatabase();

Screen &screen = getScreen();

// get the available balance for the current user's Account
double availableBalance

images/00823.jpeg
GEGR-CSvm~ousuwN-=

// BalanceInguiry.h
// BalanceInquiry class definition. Represents a balance inquiry.
#ifndef BALANCE INQUIRY H
#define BALANCE INQUIRY H

#include "Transaction.h" // Transaction class definition

class BalanceInquiry : public Transaction

&

public:
BalanceInquiry(int, Screen &, BankDatabase &); // constructor
virtual void execute(); // perform the transaction

}: // end class BalanceInquiry

#endif // BALANCE_INQUIRY_H

images/00820.jpeg
// Transaction.h
// Transaction abstract base class definition.
#ifndef TRANSACTION_H
#define TRANSACTION H

class Screen; // forward declaration of class Screen
class BankDatabase; // forward declaration of class BankDatabase

class Transaction

{

public:
// constructor initializes common features of all Transactions
Transaction(int, Screen &, BankDatabase &);

virtual ~Transaction() { } // virtual destructor with empty body

int getAccountNumber() const; // return account number
Screen &getScreen() const; // return reference to screen
BankDatabase &getBankDatabase() const; // return reference to database

// pure virtual function to perform the transaction

virtual void execute() = 0; // overridden in derived classes
private:

int accountNumber; // indicates account involved

Screen &screen; // reference to the screen of the ATM

BankDatabase &bankDatabase; // reference to the account info database
}; // end class Transaction

#endif // TRANSACTION_H

images/00819.jpeg
58
59
60
61
62
63
64
65
66
67
68
69
70
71
2

} // end function getTotalBalance

// credit an amount to Account with

specified account number

void BankDatabase::credit(int userAccountNumber, double amount)

{
Account * const userAccountPtr =
userAccountPtr->credit(amount);
} // end function credit

getAccount (userAccountNumber);

// debit an amount from Account with specified account number
void BankDatabase::debit(int userAccountNumber, double amount)

{
Account * const userAccountPtr =
userAccountPtr->debit(amount);
} // end function debit

getAccount(userAccountNumber);

images/00818.jpeg
33
34
35
36
37
38
39
40
4
42
43
4
45
46
a7
48
49
50
51
52
53
54
55
56
57

bool BankDatabase:
int userPIN)

:authenticateUser(int userAccountNumber,

{
// attempt to retrieve the account with the account number
Account * const userAccountPtr = getAccount(userAccountNumber);

// if account exists, return result of Account function validatePIN
if (userAccountPtr != NULL)
return userAccountPtr->validatePIN(userPIN);
else
return false; // account number not found, so return false
} // end function authenticateUser

// return available balance of Account with specified account number
double BankDatabase::getAvailableBalance(int userAccountNumber)

{

Account * const userAccountPtr getAccount(userAccountNumber);
return userAccountPtr->getAvailableBalance();
} // end function getAvailableBalance

// return total balance of Account with specified account number
double BankDatabase::getTotalBalance(int userAccountNumber)

{
Account * const userAccountPtr = getAccount(userAccountNumber);
return userAccountPtr->getTotalBalance(

images/00815.jpeg
34
35
36
37
38
39
40
41
42
43
4
45
46
a7
48
49
50
51
52
53
54

return totalBalance;
} // end function getTotalBalance

// credits an amount to the account
void Account::credit(double amount)
{
totalBalance += amount; // add to total balance
} // end function credit

// debits an amount from the account

void Account::debit(double amount)

{
availableBalance -= amount; // subtract from available balance
totalBalance -= amount; // subtract from total balance

} // end function debit

// returns account number
int Account::getAccountNumber() const
{
return accountNumber;
} // end function getAccountNumber

images/00814.jpeg
// Account.cpp
// Member-function definitions for class Account.
#include "Account.h" // Account class definition

// Account constructor initializes attributes
Account: :Account(int theAccountNumber, int thePIN,
double theAvailableBalance, double theTotalBalance)
: accountNumber(theAccountNumber),
pin(thePIN),
availableBalance(theAvailableBalance),
totalBalance(theTotalBalance)
4
// empty body
} // end Account constructor

// determines whether a user-specified PIN matches PIN in Account
bool Account: :validatePIN(int userPIN) const
{
if (userPIN
return true;
else
return false;
} // end function validatePIN

pin)

// returns available balance
double Account::getAvailableBalance() const
{
return availableBalance;
} // end function getAvailableBalance

// returns the total balance
double Account::getTotalBalance() const

g

images/00817.jpeg
26
27
28
29
30
31
5 5

// Bankbatabase. cpp
// Member-function definitions for class BankDatabase.
#include “BankDatabase.h” // BankDatabase class definition

// BankDatabase default constructor initializes accounts
BankDatabase: : BankDatabase ()
{
// create two Account objects for testing
Account account1(12345, 54321, 1000.0, 1200.0);
Account account2(98765, 56789, 200.0, 200.0);

// add the Account objects to the vector accounts

accounts. push_back(accountl); // add accountl to end of vector

accounts. push_back(account2); // add account2 to end of vector
} // end BankDatabase default constructor

// retrieve Account object containing specified account number
Account * BankDatabase: :getAccount(int accountNumber)

{

// 1oop through accounts searching for matching account number
for (size_t i = 0; i < accounts.size(); i++)

4,
// return current account if match found
if (accounts[i].getAccountNumber() == accountNumber)
return &accounts[i 1;
} // end for

return NULL; // if no matching account was found, return NULL
} // end function getAccount

// determine whether user-specified account number and PIN match
// those of an account in the database

images/00816.jpeg
30

// BankDatabase.h
// BankbDatabase class definition. Represents the bank's database.

#ifndef BANK_DATABASE_H
#define BANK DATABASE H

#include <vector> // class uses vector to store Account objects
using namespace std;

#include "Account.h™ // Account class definition

class BankDatabase
{
public:
BankDatabase(); // constructor initializes accounts

// determine whether account number and PIN match those of an Account
bool authenticateUser(int, int); // returns true if Account authentic

double getAvailableBalance(int); // get an available balance

double getTotalBalance(int); // get an Account's total balance

void credit(int, double); // add amount to Account balance

void debit(int, double); // subtract amount from Account balance
private:

vector< Account > accounts; // vector of the bank's Accounts

// private utility function

Account * getAccount(int); // get pointer to Account object
}; // end class BankDatabase

#endif // BANK_DATABASE_H

images/00811.jpeg
N-Svom~ousun=—

// Depositslot.h
// Depositslot class definition. Represents the ATM's deposit slot.
#ifndef DEPOSIT_SLOT_H
#define DEPOSIT SLOT H

class DepositSlot

{
public:

bool isEnvelopeReceived() const; // tells whether envelope was received
}; // end class DepositSlot

#endif // DEPOSIT_SLOT_H

images/00810.jpeg
24
25
26
27
28

// CashDispenser.cpp
// Member-function definitions for class CashDispenser.
#include "CashDispenser.h" // CashDispenser class definition

// CashDispenser default constructor initializes count to default
CashDispenser: :CashDispenser()
{

count = INITIAL COUNT; // set count attribute to default
} // end CashDispenser default constructor

// sinulates dispensing of specified amount of cash; assumes enough cash
// is available (previous call to isSufficientCashAvailable returned true)
void CashDispenser: :dispenseCash(int amount)
{

int billsRequired = amount / 20; // number of $20 bills required

count -= billsRequired; // update the count of bills
} // end function dispenseCash

// indicates whether cash dispenser can dispense desired amount
bool CashDispenser::isSufficientCashAvailable(int amount) const

{
int billsRequired = amount / 20; // number of $20 bills required

if (count >= billsRequired)
return true; // enough bills are available
else
return false; // not enough bills are available
} // end function isSufficientCashAvailable

images/00813.jpeg
// Account.h

// Account class definition. Represents a bank account.
#ifndef ACCOUNT_H

#define ACCOUNT H

class Account

{

public:
Account(int, int, double, double); // constructor sets attributes
bool validatePIN(int) const; // is user-specified PIN correct?
double getAvailableBalance() const; // returns available balance
double getTotalBalance() const; // returns total balance
void credit(double); // adds an amount to the Account balance
void debit(double); // subtracts an amount from the Account balance
int getAccountNumber() const; // returns account number

private:
int accountNumber; // account number
int pin; // PIN for authentication
double availableBalance; // funds available for withdrawal
double totalBalance; // funds available + funds waiting to clear

}; // end class Account

#endif // ACCOUNT_H

images/00812.jpeg
SCom~NoUusWLN=

// DepositSlot.cpp
// Member-function definition for class DepositSlot.
#include "DepositSlot.h" // DepositSlot class definiton

// indicates whether envelope was received (always returns true,
// because this is only a software simulation of a real deposit slot)
bool DepositSlot: :isEnvelopeReceived() const
{
return true; // deposit envelope was received
} // end function isEnvelopeReceived

images/00808.jpeg
EGRCSem~ousun~—

// Keypad.cpp

// Member-function definition for class Keypad (the ATM's keypad).
#include <iostream>

using namespace std;

#include “Keypad.h" // Keypad class definition

// return an integer value entered by user

int Keypad::getInput() const

{
int input; // variable to store the input
cin >> input; // we assume that user enters an integer
return input; // return the value entered by user

} // end function getInput

images/00807.jpeg
// Keypad.h
// Keypad class definition. Represents the keypad of the ATM.
#ifndef KEYPAD_H
#define KEYPAD H

class Keypad

{
public:

int getInput() const; // return an integer value entered by user
}; // end class Keypad

#endif // KEYPAD_H

images/00809.jpeg
N -
8 CEIonituN-Cvae~Nauasun=—

// CashDispenser.h
// CashDispenser class definition. Represents the ATM's cash dispenser.

#ifndef CASH_DISPENSER _H
#define CASH_DISPENSER H

class CashDispenser

{
public:
CashDispenser(); // constructor initializes bill count to 500

// simulates dispensing of specified amount of cash
void dispenseCash(int);

// indicates whether cash dispenser can dispense desired amount
bool isSufficientCashAvailable(int) const;
private:
static const int INITIAL_COUNT = 500;
int count; // number of $20 bills remaining
}: // end class CashDispenser

#endif // CASH_DISPENSER_H

images/00804.jpeg
128
129
130
131
132
133
134
135
136
137
138
139
140

break;
case WITHDRAWAL: // create new Withdrawal transaction
tempPtr = new Withdrawal(currentAccountNumber, screen,
bankDatabase, keypad, cashDispenser);
break;
case DEPOSIT: // create new Deposit transaction
tempPtr = new Deposit(currentAccountNumber, screen,
bankDatabase, keypad, depositSlot);
break;
} // end switch

return tempPtr; // return the newly created object
} // end function createTransaction

images/00803.jpeg
"\nYou did not enter a valid selection. Try again.");
break;
} // end switch
} // end while
} // end function performTransactions

// display the main menu and return an input selection
int ATM: :displayMainMenu() const
{
screen.displayMessageLine("\nMain menu:");
screen.displayMessageLine("1 - View my balance”);
screen.displayMessageLine("2 - Withdraw cash”);
screen.displayMessageLine("3 - Deposit funds");
screen.displayMessageLine("4 - Exit\n");
screen.displayMessage("Enter a choice: "
return keypad.getInput(); // return user's selection
} // end function displayMainMenu

// return object of specified Transaction derived class
Transaction *ATM::createTransaction(int type)

{

Transaction *tempPtr; // temporary Transaction pointer

// determine which type of Transaction to create
switch (type)
{
case BALANCE INQUIRY: // create new BalanceInquiry transaction
tempPtr = new BalanceInquiry(
currentAccountNumber, screen, bankDatabase);

images/00806.jpeg
R T e
85N aRitNSor~NausuNn -

22
23
24

// Screen.cpp

// Member-function definitions for class Screen.
#include <iostream>

#include <iomanip>

#include "Screen.h” // Screen class definition
using namespace std;

// output a message without a newline
void Screen: :displayMessage(string message) const
&

cout << message;
} // end function displayMessage

// output a message with a newline
void Screen: :displayMessageLine(string message) const
&

cout << message << endl;
} // end function displayMessageLine

// output a dollar amount
void Screen::displayDollarAmount(double amount) const
{

cout << fixed << setprecision(2) << "$" << amount;
} // end function displayDollarAmount

images/00805.jpeg
// Screen.h
// Screen class definition. Represents the screen of the ATM.
#ifndef SCREEN H
#define SCREEN_H

#include <string>
using namespace std;

class Screen

{

public:
void displayMessage(string) const; // output a message
void displayMessageLine(string) const; // output message with newline
void displayDollarAmount(double) const; // output a dollar amount

}; // end class Screen

#endif // SCREEN_H

images/00800.jpeg
// ATM.cpp
// Member-function definitions for class ATM.

#include "ATM.h" // ATM class definition
#include "Transaction.h" // Transaction class definition
#include "BalanceInquiry.h" // Balancelnquiry class definition
#include "Withdrawal.h" // Withdrawal class definition

#include "Deposit.h" // Deposit class definition

// enumeration constants represent main menu options
enum MenuOption { BALANCE INQUIRY = 1, WITHDRAWAL, DEPOSIT, EXIT };

// ATM default constructor initializes data members
ATM: :ATMO
: userAuthenticated (false), // user is not authenticated to start
currentAccountNumber(0) // no current account number to start
{
// empty body
} // end ATM default constructor

// start ATM
void ATM::run()
{
// welcome and authenticate user; perform transactions
while (true)
{
// Toop while user is not yet authenticated
while (!userAuthenticated)
{
screen.displayMessageLine("\nWelcome!");
authenticateUser(); // authenticate user
} // end while

images/00802.jpeg
66
67
68
69
70
7
2
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96
97
98

Transaction *currentTransactionPtr;

bool userExited = false; // user has not chosen to exit

// loop while user has not chosen option to exit system
while (!userExited)

{

// show main menu and get user selection
int mainMenuSelection = displayMainMenuQ);

// decide how to proceed based on user's menu selection
switch (mainMenuSelection)
{
// user chose to perform one of three transaction types
case BALANCE_INQUIRY:
case WITHDRAWAL:
case DEPOSIT:
// initialize as new object of chosen type
currentTransactionPtr =
createTransaction(mainMenuSelection);

currentTransactionPtr->execute(); // execute transaction

// free the space for the dynamically allocated Transaction
delete currentTransactionPtr;

break;
case EXIT: // user chose to terminate session
screen.displayMessageLine("\nExiting the system
userExited = true; // this ATM session should end
break;
default: // user did not enter an integer from 1-4
screen.displayMessageline(

images/00801.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

performTransactions(); // user is now authenticated
userAuthenticated = false; // reset before next ATM session
currentAccountNumber = 0; // reset before next ATM session
screen.displayMessageLine("\nThank you! Goodbye!");

} // end while

} // end function run

// attempt to authenticate user against database
void ATM: :authenticateUser()

{

screen.displayMessage("\nPlease enter your account number: ");
int accountNumber = keypad.getInput(); // input account number
screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
int pin = keypad.getInputQO; // input PIN

// set userAuthenticated to bool value returned by database
userAuthenticated =
bankDatabase.authenticateUser(accountNumber, pin);

// check whether authentication succeeded
if (userAuthenticated)

{
currentAccountNumber = accountNumber; // save user's account #
} // end if
else
screen.displayMessageLine(
"Invalid account number or PIN. Please try again."

} // end function authenticateUser

// display the main menu and perform transactions
void ATM: :performTransactions()

{

// local pointer to store transaction currently being processed

images/00198.jpeg
~/examples/ch01/GuessNumber/GNU_Linux$. /GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

2 500

Too high. Try again.

? 250

Too Tow. Try again.

i

images/00197.jpeg
~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

?

images/00199.jpeg
Too Tow. Try again.

? 375
Too Tow. Try again.
? 437
Too high. Try again.
? 406
Too high. Try again.
? 391
Too high. Try again.
? 383
Too low. Try again.
? 387
Too high. Try again.
? 385
Too high. Try again.
? 384

Excellent! You guessed the number.
Would you Tike to play again (y or n)?

images/00194.jpeg
~$ cd examples/ch01/GuessNumber/GNU_Linux
~/examples/ch01/GuessNumber/GNU_Linux$

images/00193.jpeg
comments appear like this

keywords appear like this

constants and Titeral values appear like this
all other code appears in black

images/00196.jpeg
~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

5

images/00195.jpeg
~/examples/ch01/GuessNumber/GNU_Linux$ g++ GuessNumber.cpp -o GuessNumber
~/examples/ch01/GuessNumber/GNU_Linux$

images/00190.jpeg
Converting an octal number to decimal

Positional values: 512 64 8 1
Symbol values: 7 6 1 4
Products 7%512-3584 6%64-384 1+8-8 4%1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

images/00192.jpeg
Symbolic constant Description

LINE The line number of the current source-code line (an integer constant).

SSFILES The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the form "Mmm dd
yyyy" such as "Aug 19 2002").

—STDC__. Indicates whether the program conforms to the ANSI/ISO C standard.
Contains value 1 if there is full conformance and is undefined other-
wise.

_TIME__ The time the source file is compiled (a string literal of the form
"hh:mm:ss").

—cplusplus. Contains the value 1997111 (the date the ISO C++ standard was

approved) if the file is being compiled by a Ci+ compiler, undcfined
otherwise. Allows a file to be set up to be compiled as cither C or C-+.

images/00191.jpeg
Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1
Symbol values: A) 3 B
Products A*4096=40960 D*256=3328 3¥16=48 B¥1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

images/00848.jpeg
7tk » // :; v
r Pragranigner

X

C++11 Standard *

images/00297.jpeg
// Fig. 6.13: fig06_13.cpp

// square function used to demonstrate the function
// call stack and activation records.

#include <iostream>

using namespace std;

int square(int); // prototype for function square

int mainQ)
{

int a = 10; // value to square (Tocal automatic variable in main)

cout << a <<
} // end main

squared: " << square(a) << endl; // display a squared

// returns the square of an integer
int square(int x) // x is a local variable
{
return x * x; // calculate square and return result
} // end function square

10 squared: 100

images/00296.jpeg
65 cout << "\nglobal x is " << x << " on entering useGlobal" << endl;
66 X *= 10;
67 cout << "global x is " << x << " on exiting useGlobal" << endl;

68 } // end function useGlobal

global x in main is 1
Tocal x in main's outer scope is §
Tocal x in main's inner scope is 7
Tocal x in main's outer scope is 5

Tocal x is 25 on entering useLocal
Tocal x is 26 on exiting uselocal

Tocal static x is 50 on entering useStaticLocal
Jocal static x is 51 on exiting useStaticlLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

Tocal x is 25 on entering useLocal
Tocal x is 26 on exiting uselocal

Jocal static x is 51 on entering useStaticlLocal
Tocal static x is 52 on exiting useStaticlocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

Tocal x in main is 5

images/00299.jpeg
// Fig. 6.18: fig06_18.cpp

// inline function that calculates the volume of a cube.
#include <iostream>

using namespace std;

// Definition of inline function cube. Definition of function appears
// before function is called, so a function prototype is not required.
// First line of function definition acts as the prototype.

inline double cube(const double side)

{

return side * side * side; // calculate cube
} // end function cube

int mainQ)

<
double sidevalue; // stores value entered by user
cout << "Enter the side length of your cube: ";
cin >> sidevalue; // read value from user

// calculate cube of sideValue and display result
cout << "Volume of cube with side "
<< sidevalue << " is " << cube(sidevalue) << endl;
} // end main

Enter the side Tength of your cube: 3.5
Volume of cube with side 3.5 is 42.875

images/00298.jpeg
// Fig. 6.17: fig06_17.cpp

// Functions that take no arguments.
#include <iostream>

using namespace std;

void functionl(Q); // function that takes no arguments
void function2(void); // function that takes no arguments

int mainQ)
£
functionl(); // call functionl with no arguments
function2(); // call function2 with no arguments
} // end main

// functionl uses an empty parameter 1ist to specify that
// the function receives no arguments
void functionlO
{
cout << "functionl takes no arguments” << endl;
} // end functionl

// function2 uses a void parameter 1ist to specify that
// the function receives no arguments
void function2(void)
{

cout << "function2 also takes no arguments" << endl;
} // end function2

functionl takes no arguments
function2 also takes no arguments

images/00293.jpeg
26
27

// Fig. 6.11: Fig06_11.cpp

// Using a C++11 random-number generation engine and distribution

// to roll a six-sided die.

#include <iostream>

#include <iomanip>

#include <random> // contains C++11 random number generation features
#include <ctime>

using namespace std;

int mainQ

{
// use the default random-number generation engine to
// produce uniformly distributed pseudorandom int values from 1 to 6
default_random_engine engine(static_cast<unsigned int>(time(0)));
uniform_int_distribution<unsigned int> randomInt(1, 6);

// Toop 10 times
for (unsigned int counter = 1; counter <= 10; ++counter)

{

// pick random number from 1 to 6 and output it
cout << setw(10) << randomInt(engine);

// if counter is divisible by 5, start a new line of output
if (counter % 5 == 0)
cout << endl;
} // end for
} // end main

aw

images/00292.jpeg
enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC };

images/00295.jpeg
33 useGlobal(); // global x also retains its prior value
34

35 cout << "\nlocal x in main is " << x << endl;
36 } // end main
37

38 // uselocal reinitializes local variable x during each call
39 void uselocal()

40 {

a int x = 25; // initialized each time uselocal is called

a2

a3 cout << "\nlocal x is " << x << " on entering uselocal” << endl;
a4 +x;

45 cout << "local x is " << x << " on exiting uselocal” << endl;
46} // end function uselocal

a7

48 // useStaticlocal initializes static local variable x only the
49 // first time the function is called; value of x is saved

50 // between calls to this function

51 void useStaticlocal()

52 {

53 static int x = 50; // initialized first time useStaticLocal is called
54

55 cout << "\nlocal static x is " << x << " on entering useStaticlocal"
56 << endl;

57 X

58 cout << "local static x is " << x << " on exiting useStaticLocal"

59 << endl;

60 } // end function useStaticlocal

61

62 // useGlobal modifies global variable x during each call
63 void useGlobal()
64 {

images/00294.jpeg
// Fig. 6.12: fig06_12.cpp
// Scoping example.
#include <iostream>
using namespace std;

void uselocal(); // function prototype
void useStaticlocal(); // function prototype
void useGlobal); // function prototype

int x = 1; // global variable

int mainQ)

{

cout << "global x in main is " << x << endl;

int x = 5; // local variable to main

cout << "Tocal x in main's outer scope is " << x << endl;

{ // start new scope
int x = 7; // hides both x in outer scope and global x

cout << "local x in main's inner scope is " << x << endl;

} // end new scope

cout << "local x in main's outer scope is " << x << endl;
uselocal(); // uselocal has local x

useStaticlocal(); // useStaticlLocal has static local x
useGlobal(); // useGlobal uses global x

uselocal(); // uselocal reinitializes its local x
useStaticlocal(); // static local x retains its prior value

images/00291.jpeg
Player

rolled

Point is 4

Player
Player
Player
Player
Player
Player
Player
Player
Player
Player

rolled
rolled
rolled
rolled
rolled
rolled
rolled
rolled
Toses

rolled

Point is 6

Player
Player
Player
Player
Player

rolled
rolled
rolled
rolled
wins

AsmNNO NS

w
s

IV

<

B

EE

3-4
6
4
4
3
4
1
4
3
3-6
3
5
1
5

images/00290.jpeg
66 unsigned int die2
67

1+ randQ % // second die roll

68 unsigned int sum = diel + die2; // compute sum of die values
69

70 // display results of this roll

7 cout << "Player rolled " << diel << " + " << die2

2 <« << sum << endl;
73 return sum; // end function rollDice
74 } // end function rollDice

Player rolled 2 + 5 = 7
Player wins
Player rolled 6 + 6 = 12

Player Toses

images/00286.jpeg
// Fig. 6.9: fig06_09.cpp

// Randomizing the die-rolling program.

#include <iostreams

#include <iomanip>

#include <cstd1ib> // contains prototypes for functions srand and rand

using namespace std;

int main(Q)
{
unsigned int seed = 0; // stores the seed entered by the user

cout << "Enter seed: ";
cin >> seed;
srand(seed); // seed random number generator

// 1oop 10 times
for (unsigned int counter = 1; counter <= 10; ++counter)
{

// pick random number from 1 to 6 and output it

cout << setw(10) << (1 + randQ % 6);

// if counter is divisible by 5, start a new line of output
if (counter % 5 0)
cout << end

images/00285.jpeg
©omne

nine s

nHam

oHon

vmnoo

images/00288.jpeg
// Fig. 6.10: fig06_10.cpp
// Craps simulation.

#include <iostream>

#include <cstdlib> // contains prototypes for functions srand and rand
#include <ctime> // contains prototype for function time

using namespace std;

unsigned int rollDice(); // rolls dice, calculates and displays sum

int mainQ)

{
// enumeration with constants that represent the game status
enum Status { CONTINUE, WON, LOST }; // all caps in constants

// randomize random number generator using current time
srand(static_cast<unsigned int>(time(0)));

unsigned int myPoint = 0; // point if no win or loss on first roll
Status gameStatus = CONTINUE; // can contain CONTINUE, WON or LOST
unsigned int sumOfbice = rol1DiceQ); // first roll of the dice

// determine game status and point (if needed) based on first roll
switch (sumOfDice)
{
case 7: // win with 7 on first roll
case 11: // win with 11 on first roll
gameStatus = WON;
break;
case 2: // lose with 2 on first roll
case 3: // lose with 3 on first roll
case 12: // Tose with 12 on first roll
gameStatus = LOST;

images/00287.jpeg
25 } // end for

26} // end main

Enter seed: 67
6 1l 4 6
1 6 1 6
Enter seed: 432
4 6 3 1
3 1l 5 4
Enter seed: 67
6 1 4 6
1 6 1 6

images/00282.jpeg
19
20

// Fig. 6.7: fig06_07.cpp

// Shifted, scaled integers produced by 1 + rand() % 6.
#include <iostream>

#include <iomanip>

#include <cstdlib> // contains function prototype for rand
using namespace std;

int mainQ)
{
// loop 20 times
for (unsigned int counter = 1; counter <= 20; ++counter)
{
// pick random number from 1 to 6 and output it
cout << setw(10) << (1 + randQ % 6);

// if counter is divisible by 5, start a new line of output
if (counter % 5 == 0)
cout << endl;
} // end for
} // end main

aauna
No o
W s
Qv
FNwo

images/00281.jpeg
Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 86 67 75
Maximum of grades entered: 86

Welcome to the grade book for
C€S101 C++ Programming!

Enter three integer grades: 67 86 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 75 86
Maximum of grades entered: 86

images/00284.jpeg
33 break;
34 case 4:
35 ++frequencyd; // increment the 4s counter
36 break;
37 case 5:
38 ++frequency5; // increment the 5s counter
39 break;
40 case 6:
41 ++frequency6; // increment the 6s counter
42 break;
43 default: // invalid value
44 cout << "Program should never get here!";
45 } // end switch
46 } // end for
47
48 cout << "Face" << setw(13) << "Frequency" << endl; // output headers
49 cout << " 1" << setw(13) << frequencyl
50 << "\n 2" << setw(13) << frequency2
51 << "\n 3" << setw(13) << frequency3
52 << "\n 4" << setw(13) << frequency4
53 << "™\n 5" << setw(13) << frequency5
54 << ™\n 6" << setw(13) << frequency6 << endl;
55 } // end main
Face Frequency
1 999702
2 1000823
) 999378
4 998898
5 1000777
6 1000422

images/00283.jpeg
// Fig. 6.8: fig06_08.cpp

// Rolling a six-sided die 6,000,000 times.

#include <iostream>
#include <iomanip>

#include <cstdlib> // contains function prototype for rand

using namespace std;

int mainQ)

{

unsigned int frequencyl =
unsigned int frequency2 =

unsigned int frequency3
unsigned int frequency4

unsigned int frequencys =

unsigned int frequency6

// summarize results of

for (unsigned int roll =

{
unsigned int face =

// determine roll value 1-6 and increment appropriate counter

switch (face)
{
case 1:

of 1s
of 2s
of 3s
of 4s
of S5s
of 6s

rolled
rolled
rolled
rolled
rolled
rolled

000,000 rolls of a die
; roll <= 6000000; ++roll)

1 + randQ) % 6; // random number from 1 to 6

++frequencyl; // increment the 1s counter

break;
case 2:

++frequency2; // increment the 2s counter

break;
case 3:

++frequency3; // increment the 3s counter

images/00289.jpeg
33 break;

34 default: // did not win or lose, so remember point
35 gameStatus = CONTINUE; // game is not over

36 myPoint = sumOfDice; // remember the point

37 cout << "Point is " << myPoint << endl;

38 break; // optional at end of switch

39 } // end switch

40

41 // while game is not complete

42 while (CONTINUE == gameStatus) // not WON or LOST
43 {

44 sumOfDice = rol1Dice(); // roll dice again

45

46 // determine game status

a1 if (sumOfDice == myPoint) // win by making point
48 gameStatus = WON;

49 else

50 if (sumOfDice == 7) // lose by rolling 7 before point
51 gameStatus = LOST;

52 } // end while

53

54 // display won or lost message

55 if (WON == gameStatus)

56 cout << "Player wins" << endl;

57 else

58 cout << "Player Toses" << endl;

59 '} // end main

60

61 // roll dice, calculate sum and display results
62 unsigned int rollDiceQ)

63 {

64 // pick random die values

65 unsigned int diel = 1 + randQ %

// first die roll

images/00280.jpeg
GRN-ZSvm~ousuwun=—

// Fig. 6.4: fig06_04.cpp
// Create GradeBook object, input grades and display grade report.
#include "GradeBook.h" // include definition of class GradeBook

int mainQ)
{
// create GradeBook object
GradeBook myGradeBook("CS101 C++ Programming”);

myGradeBook.displayMessage(); // display welcome message
myGradeBook . inputGrades); // read grades from user
myGradeBook .displayGradeReport(); // display report based on grades
} // end main

images/00275.jpeg
if (payCode = 4) // bad
cout << "You get a bonus!" << endl;

images/00274.jpeg
if (payCode
cout << "

4) // good
You get a bonus!" << endl;

images/00277.jpeg
// Fig. 6.3: GradeBook.cpp
// Member-function definitions for class GradeBook that
// determines the maximum of three grades.

#include <iostream>

using namespace std;

#include “GradeBook.h™ // include definition of class GradeBook

// constructor initializes courseName with string supplied as argument;
// initializes maximunGrade to 0
GradeBook: :GradeBook (_string name)

: maximumGrade(0) // this value will be replaced by the maximum grade
f

setCourseName(name); // validate and store courseName
} // end GradeBook constructor

// function to set the course name; limits name to 25 or fewer characters
void GradeBook: :setCourseName(string name)
{
if (name.size() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ // set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << end
} // end if...else
} // end function setCourseName

// function to retrieve the course name
string GradeBook::getCourseName() const
{

images/00276.jpeg
T
BCsionitN-CoenaunauNn~—

// Fig. 6.2: GradeBook.h

// Definition of class GradeBook that finds the maximum of three grades.
// Member functions are defined in GradeBook.cpp

#include <string> // program uses C++ standard string class

// GradeBook class definition
class GradeBook
{
public:
explicit GradeBook(std::string); // initializes course name
void setCourseName(std::string); // set the course name
std::string getCourseName() const; //retrieve the course name
void displayMessage() const; // display a welcome message
void inputGrades; // input three grades from user
void displayGradeReport() const; // display report based on the grades
int maximum(int, int, int) const; // determine max of 3 values
private:
std::string courseName; // course name for this GradeBook
int maximumGrade; // maximum of three grades
}; // end class GradeBook

images/00271.jpeg
if (grade != sentinelvalue)

cout << "The next grade is "

<< grade << endl;

images/00270.jpeg
if (1(grade =
cout << "The next grade is

sentinelvalue))
" << grade << endl;

images/00273.jpeg
26 } // end main

Logical AND (8&)
false & false: false
false & true: false
true & false: false
true && true: true

Logical OR (| 1)
false || false: false
false || true: true
true || false: true
true || true: true

Logical NOT (1)
Ifalse: true
true: false

images/00272.jpeg
// Fig. 5.18: fig05_18.cpp
// Logical operators.
#include <iostream>

using namespace std;

int main()

{

// create truth table for & (logical AND) operator
cout << boolalpha << "Logical AND (&&)"

<< "\nfalse & false: " << (false & false)

<< "\nfalse & true << (false & true)

<< "\ntrue & false << (true & false)

<< "\ntrue & true: " << (true & true) << "\n\n";

// create truth table for || (logical OR) operator
cout << "Logical OR (|[)"
<< "\nfalse || false
<< "\nfalse || true
<< "\ntrue || false
<< "\ntrue || true:

<< (false || false)

<< (false || true)

<< (true || false)

<< (true || true) << "\n\n";

AR

A

A

// create truth table for ! (logical negation) operator
cout << "Logical NOT ()"

<< "\n!false: " << (!false)

<< "\nltrue: " << (!true) << endl;

images/00279.jpeg
59
60
61
62
63
64
65
66
67
68
69
70
71
2
73
74
75
76
7
78
79
80

// returns the maximum of its three integer parameters
int GradeBook::maximum(int x, int y, int z) const
{

int maximumValue = x; // assume x is the largest to start

// determine whether y is greater than maximumValue
if (y > maximunValue)
maximumValue = y; // make y the new maximumValue

// determine whether z is greater than maximumValue
if (z > maximumValue)

maximumvalue = z; // make z the new maximumValue

return maximumValue;
} // end function maximum

// display a report based on the grades entered by user
void GradeBook: :displayGradeReport() const
{

// output maximum of grades entered
cout << "Maximum of grades entered:
} // end function displayGradeReport

<< maximumGrade << endl;

images/00278.jpeg
33
34
35
36
37
38
39
40
a1
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58

return courseName;
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
ot

// this statement calls getCourseName to get the

// name of the course this GradeBook represents

cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"

<< endl;

} // end function displayMessage

// input three grades from user; determine maximum
void GradeBook: : inputGrades ()
{
int gradel; // first grade entered by user
int grade2; // second grade entered by user
int grade3; // third grade entered by user

cout << "Enter three integer grades: ";
cin >> gradel >> grade2 >> grade3;

// store maximum in member maximumGrade
maximunGrade = maximum(gradel, grade2, grade3);
} // end function inputGrades

images/00008.jpeg
D;%T;L’

PRENTICE
HALL.

images/00009.jpeg

images/00264.jpeg
Welcome to the grade book for
CS101 C++ Programming!

Enter the Tetter grades.
Enter the EOF character to end input.

ncorrect letter grade entered. Enter a new grade.

>sTroRmMAme>AN @Y

Number of students who received each letter grade:
A: 3

images/00263.jpeg
GRN-ZSom~ousuNn-—

// Fig. 5.11: fig05_11.cpp
// Creating a GradeBook object and calling its member functions.
#include “GradeBook.h™ // include definition of class GradeBook

int mainQ
{
// create GradeBook object
GradeBook myGradeBook("CS101 C++ Programming”);

myGradeBook.displayMessage(); // display welcome message
myGradeBook . inputGrades); // read grades from user
myGradeBook .displayGradeReport(); // display report based on grades
} // end main

images/00266.jpeg
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int

aCount
bCount
cCount
dCount
fCount

count
count
count
count
count

of A grades
of B grades
of C grades
of D grades
of F grades

images/00265.jpeg
cout << "The character (" << 'a' << ") has the value
<< static_cast< int > ('a') << endl;

images/00260.jpeg
33
34
35
36
37
38
39
40
4
42
43

45
46
a7
48
49
50
51
52
53
54
55
56
57
58

// function to retrieve the course name
string GradeBook: :getCourseName() const
{

return courseName;
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
{
// this statement calls getCourseName to get the
// name of the course this GradeBook represents
cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
<< end
} // end function displayMessage

// input arbitrary number of grades from user; update grade counter
void GradeBook: :inputGrades()

{

int grade; // grade entered by user

cout << "Enter the letter grades." << endl
<< "Enter the EOF character to end input." << endl;

// loop until user types end-of-file key sequence
while ((grade = cin.get()) != EOF)
{

images/00262.jpeg
922
93
%
95
9%
o7
98
99
100
101
102
103
104
105
106
107
108
109
1o
i

} // end

default: // catch all other characters
cout << "Incorrect letter grade entered.”

<< " Enter a new grade."

<< endl;

break; // optional; will exit switch anyway
} // end switch
} // end while

function inputGrades

// display a report based on the grades entered
void GradeBook: :displayGradeReport() const

{

// output summary of results
cout << "\n\nNumber of students who received

} // end

aCount // display
bCount // display
cCount // display
dCount // display
fCount // display

function displayGradeReport

number
number
number
number
number

of

by user

each Tetter grade
A grades
B grades
C grades
D grades
F grades

images/00261.jpeg
59
60
61
62
63
64
65
66
67
68
69
70
7
2
3
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

// determine which grade was entered

switch (grade) // switch statement nested in while

{

case 'A': //
case 'a': //
++aCount;
break; //

case 'B': //
case 'b': //
++bCount;
break; //

case 'C': //
case 'c': //
++cCount;
break; //

case 'D': //
case 'd': //
++dCount;
break; //

case 'F': //
case 'f': //
++fCount;
break; //

grade was uppercase A
or lowercase a

// increment aCount
necessary to exit switch

grade was uppercase B
or Towercase b

// increment bCount
exit switch

grade was uppercase C
or Towercase c

// increment cCount
exit switch

grade was uppercase D
or lowercase d

// increment dCount
exit switch

grade was uppercase F
or Towercase f

// increment fCount
exit switch

case '\n': // ignore newlines,
case '\t': // tabs,

case ' ': //
break; //

and spaces in input
exit switch

images/00268.jpeg
// Fig. 5.14: fig05_14.cpp

// continue statement terminating an iteration of a for statement.
#include <iostream>

using namespace std;

1
2
3
4
H
6 dint main()
7
8
9
10

{
for (unsigned int count = 1; count <= 10; ++count) // Toop 10 times
{
if (count == 5) // if count is 5,

1" continue; // skip remaining code in loop
12
3 cout << count << " "
14 } // end for
15
16 cout << "\nUsed continue to skip printing 5" << endl;

17} // end main

1234678910
Used continue to skip printing 5

images/00267.jpeg
// Fig. 5.13: fig05_13.cpp

// break statement exiting a for statement.
#include <iostream>

using namespace std;

int mainQ
{

unsigned int count; // control variable also used after loop terminates

1
2
3
4
s
6
7
8
9
10 for (count = 1; count <= 10; ++count) // loop 10 times
1" {
12
13
14
15
16
17
18

if (count = 5)
break; // break loop only if count is 5
cout << count << " ";
} // end for
cout << "\nBroke out of loop at count = " << count << endl;
19} // end main

1234
Broke out of loop at count = §

images/00269.jpeg
if ((semesterAverage >= 90) || (finalExam >= 90))
cout << "Student grade is A" << endl;

images/00253.jpeg
// Fig. 5.5: ig05_05.cpp

1

2 // Summing integers with the for statement.

3 #include <iostream>

4 using namespace std;

5

6 int mainQ

7 {

8 unsigned int total = 0; // initialize total
9

10 // total even integers from 2 through 20

1 for (unsigned int number = 2; number <= 20; number += 2)
12 total += number;

13

14 cout << "Sum is " << total << endl; // display results
15} // end main

Sum is 110

images/00495.jpeg
66
67
68
69
70
71
2
3
74
75
76
7
78
79
80
81
82
83
84

return grossSales;
} // end function getGrossSales

// set commission rate
void CommissionEmployee: : setCommissionRate(double rate)
{
if (rate > 0.0 8& rate < 1.0)
commissionRate = rate;
else
throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
} // end function setCommissionRate

// return commission rate
double CommissionEmpTloyee: : getCommissionRate() const
4
return commissionRate;
} // end function getCommissionRate

// calculate earnings

images/00252.jpeg
// Fig. 5.2: fig05_02.cpp

// Counter-controlled repetition with the for statement.
#include <iostream>

using namespace std;

{
// for statement header includes initialization,
// loop-continuation condition and increment.
for (unsigned int counter = 1; counter <= 10; ++counter)

1 cout << counter << 5

1
2
3
4
5
6 dint mainQ)
7
8
9
0

13 cout << endl; // output a newline
14} // end main

12345678910

images/00494.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

lastName = Tast; // should validate
} // end function setLastName

// return last name
string CommissionEmployee: :getlastName() const
{
return lastName;
} // end function getlastName

// set social security number
void CommissionEmployee: :setSocialSecurityNumber(const string &ssn)
{
socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string CommissionEmpTloyee: :getSocialSecurityNumber() const
{
return socialSecurityNumber;
} // end function getSocialSecurityNumber

// set gross sales amount
void CommissionEmployee: :setGrossSales(double sales)
{
if (sales >= 0.0)
grossSales = sales;
else
throw invalid_argument("Gross sales must be >= 0.0");
} // end function setGrossSales

// return gross sales amount
double CommissionEmployee::getGrossSales() const

{

images/00255.jpeg
// Fig. 5.6: fig05_06.cpp

// Compound interest calculations with for.
#include <iostream>

#include <iomanip>

#include <cmath> // standard math Tibrary
using namespace std;

int mainQ)

{
double amount; // amount on deposit at end of each year
double principal = 1000.0; // initial amount before interest
double rate = .05; // annual interest rate

// display headers
cout << "Year" << setw(21) << "Amount on deposit" << endl;

// set floating-point number format
cout << fixed << setprecision(2);

images/00497.jpeg
// Fig. 11.15: BasePlusCommissionEmployee.cpp

// Class BasePlusCommissionEmployee member-function definitions.
#include <iostream>

#include <stdexcept>

#include "BasePlusCommissionEmployee.h”

using namespace std;

// constructor
BasePlusCommissionEmployee: : BasePTusCommissionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate, double salary)
// explicitly call base-class constructor
: CommissionEmployee(first, last, ssn, sales, rate)
{
setBaseSalary(salary); // validate and store base salary
} // end BasePlusCommissionEmployee constructor

// set base salary
void BasePlusCommissionEmployee::setBaseSalary(double salary)
{
if (salary >= 0.0)
baseSalary = salary;
else
throw invalid_argument("Salary must be = 0.0");
} // end function setBaseSalary

// return base salary
double BasePTusCommissionEmployee::getBaseSalary() const
{

images/00254.jpeg
for (unsigned int number = 2; // initialization
number <= 20; // loop continuation condition
total += number, number += 2) // total and increment
3 // empty body

images/00496.jpeg
85
86
87
88
89
90
91
92
93
9%
95
96
97
98

double CommissionEmployee::earnings() const
{

return getCommissionRate() * getGrossSales();
} // end function earnings

// print CommissionEmployee object
void CommissionEmployee::print() const
{
cout << "commission employee: "

<< getFirstName() << ' ' << getLastName()

<< "\nsocial security number: " << getSocialSecurityNumber()

<< "\ngross sales: " << getGrossSales()

<< "\ncommission rate: " << getCommissionRate();
} // end function print

images/00491.jpeg
26
27
28
29
30
31
32
33
34
35
36
37
38
39

void setCommissionRate(double); // set commission rate
double getCommissionRate() const; // return commission rate

double earnings() const; // calculate earnings

void print() const; // print CommissionEmployee object
protected:

std::string firstName;

std::string lastName;

std::string socialSecurityNumber;

double grossSales; // gross weekly sales

double commissionRate; // commission percentage
}; // end class CommissionEmployee

#endif

images/00490.jpeg
// Fig. 11.12: CommissionEmployee.h
// CommissionEmployee class definition with protected data.
#ifndef COMMISSION H
#define COMMISSION H

#include <string> // C++ standard string class

class CommissionEmployee
{
public:
CommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0);

void setFirstName(const std::string &); // set first name
std::string getFirstName() const; // return first name

void setlLastName(const std::string &); // set last name
std::string getlastName() const; // return last name

void setSocialSecurityNumber(const std::string &); // set SSN
std::string getSocialSecurityNumber() const; // return SSN

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

images/00251.jpeg
counter = 0;

while (++counter <= 10) // loop-continuation condition
cout << counter << " ";

images/00493.jpeg
T . 5
85N anitNCorNausun-~—

22
23
24
25
26
27
28
29
30
31
32

// Fig. 11.14: CommissionEmployee.cpp
// Class CommissionEmployee member-function definitions.

#include <iostream>

#include <stdexcept>

#include "CommissionEmployee.h" // CommissionEmployee class definition
using namespace std;

// constructor
CommissionEmployee: : CommissionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate)
: firstName(first), lastName(last), socialSecurityNumber(ssn)

setGrossSales(sales); // validate and store gross sales
setCommissionRate(rate); // validate and store commission rate
} // end CommissionEmployee constructor

// set first name
void CommissionEmployee::setFirstName(const string &first)

{
firstName = first; // should validate

} // end function setFirstName

// return first name
string CommissionEmployee: :getFirstName() const

{

return firstName;
} // end function getFirstName

// set last name
void CommissionEmployee: :setLastName(const string &last)
£

images/00250.jpeg
// Fig. 5.1: fig05_01.cpp

1

2 // Counter-controlled repetition.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 unsigned int counter = 1; // declare and initialize control variable
9

10 while (counter <= 10) // Toop-continuation condition
1 {
2 cout << counter << " ";

3 ++counter; // increment control variable by 1
14 } // end while

15
16 cout << endl; // output a newline

17} // end main

12345678910

images/00492.jpeg
Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

images/00257.jpeg
1
2
3
4
5
6
7
8
9
0
1
12
13
14
15
16

17

// Fig. 5.7: fig05_07.cpp

// do...while repetition statement.
#include <iostream>

using namespace std;

int mainQ)

{

unsigned int counter = 1; // initialize counter

do

{

cout << counter << " "; // display counter
++counter; // increment counter

} while (counter <= 10); // end do...while

cout << endl; // output a newline

} // end main

12345678910

images/00499.jpeg
// Fig. 12.1: figl2_01.cpp
// Aiming base-class and derived-class pointers at base-class

// and derived-class objects, respectively.

#include <iostream>
#include <iomanip>

#include "CommissionEmployee.h"
#include "BasePlusCommissionEmployee.h"
using namespace std;

int mainQ

{

// create base-class object
CommissionEmployee commissionEmployee(
"Sue", "Jones", "222-22-2222", 10000, .06);

// create base-class pointer
CommissionEmployee *commissionEmployeePtr = nullptr;

// create derived-class object
BasePTusCommissionEmployee basePTusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300);

// create derived-class pointer

BasePTusCommissionEmployee *basePlusCommissionEmployeePtr

// set floating-point output formatting
cout << fixed << setprecision(2);

// output objects commissionEmployee and basePlusCommissionEmployee
cout << "Print base-class and derived-class objects:\n\n";

commissionEmployee.print(); // invokes base-class print
cout << "\n\n"

nullptr;

images/00256.jpeg
20 // calculate amount on deposit for each of ten years
21 for (unsigned int year = 1; year <= 10; ++year)
22 {
23 // calculate new amount for specified year
24 amount = principal * pow(1.0 + rate, year);
25
26 // display the year and the amount
27 cout << setw(4) << year << setw(21) << amount << endl;
28 } // end for
29 } // end main
Year Amount on deposit

i 1050.00

2 1102.50

3 1157.63

4 1215.51

5 1276.28

6 1340.10

7 1407.10

8 1477.46

9 1551.33

10 1628.89

images/00498.jpeg
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48

return baseSalary;
} // end function getBaseSalary

// calculate earnings
double BasePlusCommissionEmployee
oL

arnings() const

return getBaseSalary() + CommissionEmployee: :earnings();
} // end function earnings

// print BasePlusCommissionEmployee object
void BasePlusCommissionEmployee::print() const

{

cout << "base-salaried ";

// invoke CommissionEmployee's print function
CommissionEmployee: :print();

cout << "\nbase salary: << getBaseSalary();

} // end function print

images/00259.jpeg
// Fig. 5.10: GradeBook.cpp

// Member-function definitions for class GradeBook that
// uses a switch statement to count A, B, C, D and F grades.

#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook

using namespace std;

// constructor initializes courseName with string
// initializes counter data members to O
GradeBook: : GradeBook(string name)

: aCount(0), // initialize
bCount(0), // initialize
cCount(0), // initialize
dCount(0), // initialize
flount(0) // initialize

{

setCourseName (name);

} // end GradeBook constructor

// function to set the course name;

count
count
count
count
count

of A grades
of B grades
of C grades
of D grades
of F grades

void GradeBook: :setCourseName(string name)

{

supplied as argument;

to
to
to
to
to

ococooo

Tlimits name to 25 or fewer characters

if (name.size() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ // set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;

} // end if...else
} // end function setCourseName

images/00258.jpeg
// Fig. 5.9: GradeBook.h
// GradeBook class definition that counts letter grades.

// Member functions are defined in GradeBook.cpp

#include <string> // program uses Ci+ standard string class

// GradeBook class definition
class GradeBook
{
public:
explicit GradeBook(std::string); // initialize course name
void setCourseName(std::string); // set the course name
std::string getCourseName() const; // retrieve the course name
void displayMessage() const; // display a welcome message
void inputGrades(); // input arbitrary number of grades from user
void displayGradeReport() const; // display report based on user input
private:
std::string courseName; // course name for this GradeBook
unsigned int aCount; // count of A grades
unsigned int bCount; // count of B grades
unsigned int cCount; // count of C grades
unsigned int dCount; // count of D grades
unsigned int fCount; // count of F grades
}; // end class GradeBook

images/00242.jpeg
33
34
35
36
37
38
39
40
a1

42
43
44
45
46
a7
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63

} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const

{

cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"

<< endl;

} // end function displayMessage

// determine class average based on 10 grades entered by user

void GradeBook: :determineClassAverage() const

{

// initialization phase

int total
unsigned int gradeCounter = 0; // number of grades entered

// sum of grades entered by user

// processing phase

// prompt for input and read grade from user
cout << "Enter grade or -1 to quit: ";

int grade = 0; // grade value

cin >> grade; // input grade or sentinel value

// loop until sentinel value read from user
while (grade != -1) // while grade is not -1

{

total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade; // input grade or sentinel value

images/00484.jpeg
// Fig. 11.9: figll_09.cpp
// BasePlusCommissionEmployee class test program.
#include <iostream>

#include <iomanip>

#include "BasePlusCommissionEnployee.h"

using namespace std;

int main()
{
// instantiate BasePlusCommissionEmployee object
BasePTusCommissionEmployee
employee("Bob", “Lewis", "333-33-3333", 5000, .04, 300);

// set floating-point output formatting
cout << fixed << setprecision(2);

// get commission employee data
cout << "Employee information obtained by get functions: \n"
<< "\nFirst name is " << employee.getFirstName()
<< "\nLast name is " << employee.getLastName()
<< "\nSocial security number is "
<< employee.getSocialSecurityNumber()
<< "\nGross sales is " << employee.getGrossSales()
<< "\nCommission rate is " << employee.getCommissionRate()
<< "\nBase salary is " << employee.getBaseSalary() << endl;

employee. setBaseSalary(1000); // set base salary

cout << "\nUpdated employee information output by print function:

\n"

images/00241.jpeg
32

// Fig. 4.10: GradeBook.cpp

// Member-function definitions for class GradeBook that solves the
// class average program with sentinel-controlled repetition.
#include <iostream>

#include <iomanip> // parameterized stream manipulators

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook(string name)
{
setCourseName(name); // validate and store courseName
} // end GradeBook constructor

// function to set the course name;
// ensures that the course name has at most 25 characters
void GradeBook: :setCourseName(string name)
{
if (name.size() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is Tonger than 25 characters
{ // set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << end
} // end if...else
} // end function setCourseName

// function to retrieve the course name
string GradeBook: :getCourseName() const
{

return courseName;

images/00483.jpeg
// return base salary
double BasePlusCommissionEmployee

{

getBaseSalary() const

return baseSalary;
} // end function getBaseSalary

// calculate earnings
double BasePTusCommissionEmployee
{

return baseSalary + (commissionRate * grossSales);
3} // end function earnings

arnings() const

// print BasePlusCommissionEmployee object
void BasePlusCommissionEmployee: :print() const
{

<< firstName <<
<< socialSecurityNumber

cout << "base-salaried commission employee
<< TastName << "\nsocial security numbe
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate
<< "\nbase salary: " << baseSalary;

} // end function print

images/00244.jpeg
// Fig. 4.11: fig04_11.cpp
// Create GradeBook object and invoke its determineClassAverage function.
#include "GradeBook.h" // include definition of class GradeBook

1
2
3
4
5 it mainQ

6 {

7 // create GradeBook object myGradeBook and

8 // pass course name to constructor

9 GradeBook myGradeBook(“CS101 C++ Programming”);
10

1"

12

13

myGradeBook . displayMessage); // display welcome message
myGradeBook . determineClassAverage(); // find average of 10 grades
} // end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to qui -1

Total of all 3 grades entered is 257
Class average is 85.67

images/00486.jpeg
// Fig. 11.10: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#ifndef BASEPLUS_H

#define BASEPLUS H

#include <string> // C++ standard string class
#include "CommissionEmployee.h" // CommissionEmployee class declaration

class BasePlusConmissionEmployee : public CommissionEmployee
{
public:
BasePTusCommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0, double = 0.0);

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

double earnings() const; // calculate earnings
void print() const; // print BasePlusCommissionEmployee object

private:
double baseSalary; // base salary
}; // end class BasePlusCommissionEmployee

#endif

images/00243.jpeg
64
65
66
67
68
69
70
n
72
3
74
75
76
7
78
79
80

} // end while

// termination phase
if (gradeCounter != 0) // if user entered at Teast one grade...

{

// calculate average of all grades entered
double average = static_cast< double >(total) / gradeCounter;

// display total and average (with two digits of precision)

cout << "\nTotal of all " << gradeCounter << " grades entered is
<< total << endl;

cout << setprecision(2) << fixed;

cout << "Class average is " << average << endl;

Y // end if
else // no grades were entered, so output appropriate message

cout << "No grades were entered" << endl;

} // end function determineClassAverage

images/00485.jpeg
30 << endl;

31 employee.print(); // display the new employee information
32

33 // display the employee's earnings

34 cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;

35 1} // end main

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

images/00480.jpeg
N -
85N niuN-Come~Nausun-—

22
23
24
25
26
27
28
29
30
31
32

// Fig. 11.8: BasePlusCommissionEmployee.cpp
// Class BasePlusCommissionEmployee member-function definitions.
#include <iostream>

#include <stdexcept>

#include "BasePlusCommissionEnployee.h"

using namespace std;

// constructor

BasePlusCommissionEmployee: : BasePTusCommissionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate, double salary)

firstName = first; // should validate
lastName = last; // should validate
socialSecurityNumber = ssn; // should validate
setGrossSales(sales); // validate and store gross sales
setCommissionRate(rate); // validate and store commission rate
setBaseSalary(salary); // validate and store base salary

} // end BasePlusCommissionEmployee constructor

// set first name
void BasePlusCommissionEmployee: :setFirstName(const string &First)
{
firstName = first; // should validate
} // end function setFirstName

// return first name
string BasePTusCommissionEmployee: :getFirstName() const
{
return firstName;
} // end function getFirstName

images/00240.jpeg
// Fig. 4.9: GradeBook.h

// Definition of class GradeBook that determines a class average.
// Member functions are defined in GradeBook.cpp

#include <string> // program uses Ci+ standard string class

// GradeBook class definition

class GradeBook

{

public:
explicit GradeBook(std::string); // initializes course name
void setCourseName(std::string); // set the course name
std::string getCourseName() const; // retrieve the course name
void displayMessage() const; // display a welcome message
void determineClassAverage() const; // averages user-entered grades

private:
std::string courseName; // course name for this GradeBook

}; // end class GradeBook

images/00482.jpeg
66
67
68
69
70
7
2
3
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96

// return gross sales amount
double BasePlusCommissionEmployee: :getGrossSales() const
{
return grossSales;
} // end function getGrossSales

// set commission rate
void BasePlusCommissionEmployee:
{

setCommissionRate(double rate)

if (rate > 0.0 & rate < 1.0)
commissionRate = rate;
else
throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
} // end function setCommissionRate

// return commission rate
double BasePlusCommissionEmployee: :getCommissionRate() const

{

return commissionRate;
} // end function getCommissionRate

// set base salary
void BasePlusCommissionEmployee: :setBaseSalary(double salary)

baseSalary
else
throw invalid_argument("Salary must be >= 0.0"
} // end function setBaseSalary

images/00481.jpeg
33 // set last name
34 void BasePlusCommissionEmployee: :setlastName(const string &last)
35 {

36 lastName = last; // should validate
37 } // end function setLastName
38

39 // return last name
40 string BasePlusCommissionEmployee::getLastName() const

4

42 return lastName;

43} // end function getlastName
4

45 // set social security number
46 void BasePlusCommissionEmployee: :setSocialSecuri tyNumber(

a7 const string &ssn)
3 {

49 socialSecurityNumber = ssn; // should validate
50 } // end function setSocialSecurityNumber

51

52 // return social security number
53 string BasePlusCommissionEmployee: :getSocialSecurityNumber() const
54 {

55 return socialSecurityNumber;
56} // end function getSocialSecurityNumber
57

58 // set gross sales amount
59 void BasePlusCommissionEmployee: :setGrossSales(double sales)

60 {
61 if (sales >= 0.0)

62 grossSales = sales;

63 else

64 throw invalid_argument("Gross sales must be >= 0.0");

65 1} // end function setGrossSales

images/00249.jpeg
T Vo
8 e eI RituN-Cvae~Nausun~—

21

// Fig. 4.15: fig04_15.cpp
// Preincrementing and postincrementing.
#include <iostream>
using namespace std;

int main()
{
// demonstrate postincrement
int ¢ = 5; // assign 5 to ¢
cout << ¢ << endl; // print 5
cout << c++ << endl; // print 5 then postincrement
cout << ¢ << endl; // print 6

cout << endl; // skip a line

// demonstrate preincrement
c=5; // assign 5 to ¢
cout << ¢ << endl; // print §
cout << ++c << endl; // preincrement then print 6
cout << ¢ << endl; // print 6

} // end main

aunn

images/00246.jpeg
// Fig. 4.12: fig04_12.cpp
// Examination-results problem: Nested control statements.
#include <iostream>

using namespace std;

{
// initializing variables in declarations
unsigned int passes = 0; // number of passes

1
2
3
4
5
6 dint mainO
7
8
9
10 unsigned int failures = 0; // number of failures

1" unsigned int studentCounter = 1; // student counter

12

13 // process 10 students using counter-controlled loop

14 while (studentCounter <= 10)

15 {

16 // prompt user for input and obtain value from user

17 cout << "Enter result (1 = pass, 2 = fail)

18 int result = 0; // one exam result (1 = pass, 2 = fail)
19 cin >> result; // input result

20

21 // if...else nested in while

22 if (result 1) // if result is 1,

23 passes = passes + 1; // increment passes;

24 else // else result is not 1, so
25 failures = failures + 1; // increment failures

26

27 // increment studentCounter so loop eventually terminates
28 studentCounter = studentCounter + 1;

29 } // end while

30

31 // termination phase; display number of passes and failures

32 cout << "Passed " << passes << "\nFailed " << failures << endl;

images/00488.jpeg
33
34
35
36
37
38
39
40
a

42
43
44
45
46
a7
48
49

// calculate earnings
double BasePlusCommissionEmployee

{

// derived class cannot access the base class’s private data
return baseSalary + (commissionRate * grossSales);
} // end function earnings

arnings() const

// print BasePlusCommissionEmployee object
void BasePlusCommissionEmployee::print() const
f
// derived class cannot access the base class’s private data
cout << "base-salaried commission employee: " << firstName <<
<< lastName << "\nsocial security number: " << socialSecurityNumber
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate
<< "\nbase salary: " << baseSalary;
} // end function print

images/00245.jpeg
// Toop until sentinel value read from user
while (grade != -1)

total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade;

images/00487.jpeg
// Fig. 11.11: BasePlusCommissionEmployee.cpp
// Class BasePlusCommissionEmployee member-function definitions.
#include <iostream>

#include <stdexcept>

#include "BasePlusCommissionEmployee.h"

using namespace std;

// constructor
BasePlusCommissionEmployee: : BaseP1usCommissionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate, double salary)
// explicitly call base-class constructor
: CommissionEmployee(first, last, ssn, sales, rate)
{
setBaseSalary(salary); // validate and store base salary
} // end BasePlusCommissionEmployee constructor

// set base salary
void BasePlusCommissionEmployee: : setBaseSalary(double salary)
{
if (salary 0.0)
baseSalary = salary;
else
throw invalid_argument(“Salary must be >= 0.0");
} // end function setBaseSalary

// return base salary
double BasePlusCommissionEmployee: :getBaseSalary() const

{
return baseSalary;
} // end function getBaseSalary

images/00248.jpeg
Employee employeel{ "Bob", "Blue", 1234.56 };
Employee employee2 = { "Sue", "Green", 2143.65 };

images/00247.jpeg
34 // determine whether more than eight students passed
35 if (passes > 8)
36 cout << "Bonus to instructor!" << endl;

37} // end main

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Passed 6

Failed 4

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail 1
Enter result (1 = pass, 2 = fail): 1
Passed 9

Failed 1

Bonus to instructor!

images/00489.jpeg
Compilation Errors from the LLVM Compiler in Xcode 4.5

BasePlusCommissionEmployee.cpp:37:26:

'commissionRate' is a private member of 'CommissionEmployee’
BasePTusCommissionEmployee.cpp:37:43:

"grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:44:53:

"firstName' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee. cpp:45:10:

*lastName' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:45:54:

"socialSecurityNumber' is a private member of 'CommissionEmployee’
BasePlusCommissionEmployee.cpp:46:31:

"grossSales' is a private member of 'CommissionEmployee
BasePlusCommissionEmployee.cpp:47:35:

'commissionRate' is a private member of 'CommissionEmployee’

images/00231.jpeg
// Fig. 3.17: fig03_17.cpp

// Create and manipulate a GradeBook object; illustrate validation.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// function main begins program execution
int mainQ)
{
// create two GradeBook objects;
// initial course name of gradeBookl is too long
GradeBook gradeBook1("CS101 Introduction to Programming in C++");
GradeBook gradeBook2("CS102 C++ Data Structures”);

// display each GradeBook's courseName
cout << "gradeBookl's initial course name is:
<< gradeBookl.getCourseName ()
<< "\ngradeBook2's initial course name is: "
<< gradeBook2.getCourseName() << end1;

// modify gradeBookl's courseName (with a valid-Tength string)
gradeBook1.setCourseName("CS101 C++ Programming”);

images/00473.jpeg
33
34
35
36
37
38
39
40
4
42
43
4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

void CommissionEmployee::setlLastName(const string &last)
{

TastName = last; // should validate
} // end function setLastName

// return last name
string CommissionEmployee::getLastName() const
4
return TastName;
} // end function getlLastName

// set social security number
void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
{
socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string CommissionEmployee: :getSocialSecurityNumber() const
f

return socialSecurityNumber;
} // end function getSocialSecurityNumber

// set gross sales amount
void CommissionEmployee: :setGrossSales(double sales)
{
if (sales >= 0.0)
grossSales = sales;
else
throw invalid_argument("Gross sales must be >= 0.0");
} // end function setGrossSales

// return gross sales amount

images/00230.jpeg
cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
"Limiting courseName to first 25 characters.\n" << endl;

images/00472.jpeg
// Fig. 11.5: CommissionEmployee.cpp
// Class CommissionEmployee member-function definitions.

#include <iostream>

#include <stdexcept>

#include "CommissionEmployee.h" // CommissionEmployee class definition
using namespace std;

// constructor

Commi ssionEmpToyee: : Commi ssionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate)

firstName = first; // should validate

lastName = Tlast; // should validate

socialSecurityNumber = ssn; // should validate

setGrossSales(sales); // validate and store gross sales

setCommissionRate(rate); // validate and store commission rate
} // end CommissionEmployee constructor

// set first name
void CommissionEmployee::setFirstName(const string &first)
ot
firstName = first; // should validate
} // end function setFirstName

// return first name
string CommissionEmpTloyee: :getFirstName() const

{

return firstName;
} // end function getFirstName

// set last name

images/00233.jpeg
if (studentGrade >= 90) // 90 and above gets "A"
cout << "A";

else
if (studentGrade >= 80) // 80-89 gets "B"
cout << "B";
else
if (studentGrade >= 70) // 70-79 gets "
cout << “C";
else

if (studentGrade >= 60) // 60-69 gets "D"
cout << "D";

else // less than 60 gets "F"
cout << "F

images/00475.jpeg
85
86
87
88
89
90
91
92
93
9%
95
96
97
98
99

// calculate earnings

double CommissionEmployee::earnings() const

{

return commissionRate * grossSales;

} // end function earnings

// print CommissionEmployee object
void CommissionEmployee::print() const

{

cout << "commission employee:
nsocial security number:
<< grossSales

i
<< "\ngross sales:
<< "\ncommission rate:

} // end function print

<< firstName << ' ' << TastName
" << socialSecurityNumber

<< commissionRate;

images/00232.jpeg
24
25
26
27
28
29

// display each GradeBook's courseName
cout << "\ngradeBookl's course name is:
<< gradeBookl.getCourseName ()
<< "\ngradeBook2's course name is:
<< gradeBook2.getCourseName() << endl;
} // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length
Limiting courseName to first 25 characters.

gradeBookl's initial course name i
gradeBook2's initial course name i

gradeBookl's course name is
gradeBook2's course name is:

CS101 Introduction to Pro
1 €S102 C++ Data Structures

CS101 C++ Programming
5102 C++ Data Structures

@5).

images/00474.jpeg
66
67
68
69
70
n
2
6]
74
75
76
7
78
79
80
81
82
83
84

double CommissionEmployee::getGrossSales() const
{

return grossSales;
} // end function getGrossSales

// set commission rate
void CommissionEmployee::setCommissionRate(double rate)
{
if (rate > 0.0 & rate < 1.0)
commissionRate = rate;
else
throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
} // end function setCommissionRate

// return commission rate
double CommissionEmployee: :getCommissionRate() const
{
return commissionRate;
} // end function getCommissionRate

images/00471.jpeg
26
27
28
29
30
31
32
33
34
35
36
37
38
39

void setCommissionRate(double); // set commission rate (percentage)
double getCommissionRate() const; // return commission rate

double earnings() const; // calculate earnings
void print() const; // print CommissionEmployee object
private:
std::string firstName;
std::string lastName;
std::string socialSecurityNumber;
double grossSales; // gross weekly sales
double commissionRate; // commission percentage
}: // end class CommissionEmployee

#endif

images/00470.jpeg
// Fig. 11.4: CommissionEmployee.h

// CommissionEmployee class definition represents a commission employee.
#ifndef COMMISSION H

#define COMMISSION H

#include <string> // Ci+ standard string class

class CommissionEmployee
{
public:
CommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0);

void setFirstName(const std::string &); // set first name
std::string getFirstName() const; // return first name

void setlLastName(const std::string &); // set last name
std::string getlastName() const; // return last name

void setSocialSecurityNumber(const std::string &); // set SSN
std::string getSocialSecurityNumber() const; // return SSN

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

images/00239.jpeg
// Fig. 4.8: fig04_08.cpp

1

2 // Create GradeBook object and invoke its determineClassAverage function.
3 #include "GradeBook.h" // include definition of class GradeBook

4

5 dint mainQ)

6 {

7 // create GradeBook object myGradeBook and

8 // pass course name to constructor

9 GradeBook myGradeBook("CS101 C++ Programming”);

10

1" myGradeBook.displayMessage(); // display welcome message

12 myGradeBook . determineClassAverage(); // find average of 10 grades
13} // end main

Welcome to the grade book for
€S101 C++ Programming
Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

images/00238.jpeg
34
35
36
37
38
39
40
41
a2
43

45
46
41
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
{

cout << "Welcome to the grade book for\n" << getCourseName() << "!\n
<< end

} // end function displayMessage

// determine class average based on 10 grades entered by user
void GradeBook: :determineClassAverage() const
{

// initialization phase

int total = 0; // sum of grades entered by user

unsigned int gradeCounter = 1; // number of grade to be entered next

// processing phase
while (gradeCounter <= 10) // loop 10 times
{

cout << "Enter grade // prompt for input

int grade = 0; // grade value entered by user

cin >> grade; // input next grade

total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter by 1
} // end while

// termination phase
int average = total / 10; // ok to mix declaration and calculation

// display total and average of grades
cout << "\nTotal of all 10 grades is " << total << endl;
cout << "Class average is " << average << endl;

} // end function determineClassAverage

images/00235.jpeg
if (studentGrade >= 60)
cout << "Passed.\n";

else

{
cout << "Failed.\n";
cout << "You must take this course again.\n";

}

images/00477.jpeg
29 cout << "\nUpdated employee information output by print function: \n"
30 << end

31 employee.print(); // display the new employee information
32

33 // display the employee's earnings

34 cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;

35} // end main

Employee information obtained by get functions:

First name is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales is 10000.00

Commission rate is 0.06

Updated employee information output by print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 8000.00
commission rate: 0.10

Employee's earnings: $800.00

images/00234.jpeg
if (studentGrade >= 90) // 90 and above gets "A"
cout << "A";

else if (studentGrade >= 80) // 80-89 gets "B"
cout << "

else if (studentGrade >= 70) // 70-79 gets "C"
cout << "C";

else if (studentGrade >= 60) // 60-69 gets "D"
cout << "

else // Tess than 60 gets "F"
cout << "F'

images/00476.jpeg
// Fig. 11.6: figll 06.cpp

// CommissionEmployee class test program.

#include <iostream>

#include <iomanip>

#include "CommissionEmployee.h" // CommissionEmployee class definition
using namespace std;

int mainQ)

{

// instantiate a CommissionEmployee object
CommissionEmployee employee(
"Sue", "Jones", "222-22-2222", 10000, .06);

// set floating-point output formatting
cout << fixed << setprecision(2);

// get commission employee data
cout << “Employee information obtained by get functions: \n"
<< "\nFirst name is " << employee.getFirstName()
<< "\nLast name is " << employee.getlLastName()
<< "\nSocial security number is "
<< employee.getSocialSecurityNumber()
<< "\nGross sales is " << employee.getGrossSales()
<< "\nCommission rate is " << employee.getCommissionRate() << endl;

employee.setGrossSales(8000); // set gross sales
employee.setCommissionRate(.1); // set commission rate

images/00237.jpeg
// Fig. 4.7: GradeBook.cpp

// Member-function definitions for class GradeBook that solves the
// class average program with counter-controlled repetition.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook radeBook(string name)

{

setCourseName(name); // validate and store courseName
} // end GradeBook constructor

// function to set the course name;
// ensures that the course name has at most 25 characters
void GradeBook: : setCourseName(string name)
{
if (name.size() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ // set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cerr << "Name \"" << name << "\" exceeds maximun Tength (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;
} // end if...else
} // end function setCourseName

// function to retrieve the course name
string GradeBook: :getCourseName() const
{

return courseName;
} // end function getCourseName

images/00479.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
4

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

double earnings() const; // calculate earnings

void print() const; // print BasePlusCommissionEmployee object
private:

std::string firstName;

std::string lastName;

std::string socialSecurityNumber;

double grossSales; // gross weekly sales

double commissionRate; // commission percentage

double baseSalary; // base salary
}; // end class BasePlusCommissionEmployee

#endif

images/00236.jpeg
// Fig. 4.6: GradeBook.h

// Definition of class GradeBook that determines a class average.
// Member functions are defined in GradeBook.cpp

#include <string> // program uses Ci+ standard string class

// GradeBook class definition

class GradeBook

{

public:
explicit GradeBook(std::string); // initializes course name
void setCourseName(std::string); // set the course name
std::string getCourseName() const; // retrieve the course name
void displayMessage() const; // display a welcome message
void determineClassAverage() const; // averages user-entered grades

private:
std::string courseName; // course name for this GradeBook

}; // end class GradeBook

images/00478.jpeg
CENoRiEUN-CSom~ouswN~—

20

22
23
24
25
26
27
28

// Fig. 11.7: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class definition represents an employee

// that receives a base salary in addition to commission.
#ifndef BASEPLUS H
#define BASEPLUS_H

#include <string> // Ce+ standard string class
class BasePlusConmissionEmployee

{
public:

BasePTusCommissionEmployee(const std::string &, const std::string &,
const std::string &, double = 0.0, double = 0.0, double = 0.0);

void setFirstName(const std::string &); // set first name
std::string getFirstName() const; // return first name

void setlastName(const std
std::string getlastName() cons

tring &); // set last name
3 // return last name

void setSocialSecurityNumber(const std::string &); // set SSN
std::string getSocialSecurityNumber() const; // return SSN

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

void setCommissionRate(double); // set commission rate
double getCommissionRate() const; // return commission rate

images/00220.jpeg
// Fig. 3.9: GradeBook.h

// GradeBook class definition in a separate file from main.
#include <iostream>

#include <string> // class GradeBook uses C++ standard string class

// GradeBook class definition
class GradeBook
{
public:
// constructor initializes courseName with string supplied as argument
explicit GradeBook(std::string name)
: courseName(name) // member initializer to initialize courseName
{
// empty body
} // end GradeBook constructor

// function to set the course name
void setCourseName(std::string name)

{

courseName = name; // store the course name in the object
} // end function setCourseName

// function to get the course name
std::string getCourseName() const

{

images/00462.jpeg
// Fig. 10.11: Array.cpp

// Array class member- and friend-function definitions.
#include <iostream>

#include <iomanip>

#include <stdexcept>

#include "Array.h" // Array class definition
using namespace std;

// default constructor for class Array (default size 10)
Array::Array(int arraySize)
: size(arraySize > 0 ? arraySize :
throw invalid_argument("Array size must be greater than 0")),
ptr(new int[size 1)
{
for (size_t i =0; i < size; ++i)
ptr[4 1 = 0; // set pointer-based array element
} // end Array default constructor

// copy constructor for class Array;
// must receive a reference to an Array
Array::Array(const Array &rrayToCopy)
: size(arrayToCopy.size),
ptr(new int[size 1)

for (size_t i = 0; i < size; ++i)
ptr[i 1 = arrayToCopy.ptr[i 1; // copy into object
} // end Array copy constructor

// destructor for class Array

images/00461.jpeg
28
29
30
31
32
33
34
35
36
37
38

// subscript operator for non-const objects returns modifiable Tvalue
int &operator[](int);

// subscript operator for const objects returns rvalue
int operator[](int) const;
private:
size_t size; // pointer-based array size
int *ptr; // pointer to first element of pointer-based array
}; // end class Array

#endif

images/00222.jpeg
// Fig. 3.10: ig03_10.cpp

1

2 // Including class GradeBook from file GradeBook.h for use in main.

3 #include <iostream>

4 #include "GradeBook.h" // include definition of class GradeBook

5 using namespace std;

6

7 // function main begins program execution

8 dint mainQ)

9 {

10 // create two GradeBook objects

1" GradeBook gradeBook1("CS101 Introduction to C++ Programming”):

12 GradeBook gradeBook2("CS102 Data Structures in Ci+");

13

14 // display initial value of courseName for each GradeBook

15 cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
16 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
17 << endl;

18} // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in Ci+

images/00464.jpeg
66
67
68
69
70
7
2
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96
97
98

bool Array::operator-
{

const Array &right) const

if (size != right.size)

return false; // arrays of different number of elements

for (size_t i i < size; ++1)
i Cperl 1 1 right.ptr[i 1)
return false; // Array contents are not equal

return true; // Arrays are equal
} // end function operator:

// overloaded subscript operator for non-const Arrays;
// reference return creates a modifiable Tvalue
int &Array::operator[](int subscript)
{
// check for subscript out-of-range error
if (subscript < 0 || subscript >= size)
throw out_of_range("Subscript out of range");

return ptr[subscript 1; // reference return
} // end function operator[]

// overloaded subscript operator for const Arrays
// const reference return creates an rvalue
int Array::operator[](int subscript) const
{
// check for subscript out-of-range error
if (subscript < 0 || subscript >= size)
throw out_of_range("Subscript out of range”);

return ptr[subscript 1; // returns copy of this element

} // end function operator[]

images/00221.jpeg
26 return courseName; // return object's courseName

27 } // end function getCourseName
28

29 // display a welcome message to the GradeBook user

30 void displayMessage() const

31 {

32 // call getCourseName to get the courseName

33 std::cout << "Welcome to the grade book for\n" << getCourseName()
34 << "I" << std::endl;

35 } // end function displayMessage

36 private:

37 std::string courseName; // course name for this GradeBook

38 }; // end class GradeBook

images/00463.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

delete [] ptr; // release pointer-based array space
} // end destructor

// return number of elements of Array
size_t Array::getSize() const
{

return size; // number of elements in Array
3} // end function getSize

// overloaded assignment operator;
// const return avoids: (al = a2) = a3
const Array &Array::operator=(const Array &right)
&
if (&right 1= this) // avoid self-assignment
{
// for Arrays of different sizes, deallocate original
// left-side Array, then allocate new left-side Array
if (size 1= right.size)
X
delete [] ptr; // release space
size = right.size; // resize this object
ptr = new int[size]; // create space for Array copy
} // end inner if

for (size_t i = 0; i < size; ++i)
ptr[i] right.ptr[i 1; // copy array into object
} // end outer if

return *this; // enables x =y
} // end function operator=

z, for example

// determine if two Arrays are equal and
// return true, otherwise return false

images/00460.jpeg
// Fig. 10.10: Array.h
// Array class definition with overloaded operators.
#ifndef ARRAY H
#define ARRAY H

#include <iostream>

class Array

{
friend std::ostream &operator<<(std::ostream &, const Array &);
friend std::istream operator>>(std::istream &, Array &);
public:

explicit Array(int = 10); // default constructor
Array(const Array &); // copy constructor
~Array(Q); // destructor

size_t getSize() const; // return size

const Array &operator=(const Array &); // assignment operator
bool operator==(const Array &) const; // equality operator

// inequality operator; returns opposite of == operator
bool operator!=(const Array &right) const

{

return ! (*this = right); // invokes Array
} // end function operator!

perator==

images/00228.jpeg
// Fig. 3.16: GradeBook.cpp

// Implementations of the GradeBook member-function definitions.
// The setCourseName function performs validation.

#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: : GradeBook(string name)

{
setCourseName(name); // validate and store courseName

} // end GradeBook constructor

// function that sets the course name;
// ensures that the course name has at most 25 characters
void GradeBook: :setCourseName(string name)

{
if (name.size() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object

if (name.size() > 25) // if name has more than 25 characters

{
// set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // start at 0, length of 25

cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;
} // end if
} // end function setCourseName

images/00227.jpeg
SREUN-Com~NoausLN=

// Fig. 3.15: GradeBook.h
// GradeBook class definition presents the public interface of

// the class. Member-function definitions appear in GradeBook.cpp.
#include <string> // program uses C++ standard string class

// GradeBook class definition
class GradeBook
{
public:
explicit GradeBook(std::string); // constructor initialize courseName
void setCourseName(std::string); // sets the course name
std: :string getCourseName() const; // gets the course name
void displayMessage() const; // displays a welcome message
private:
std::string courseName; // course name for this GradeBook
}; // end class GradeBook

images/00469.jpeg
I // Fig. 10.13: figl0_13.cpp

2 // Demonstrating an explicit constructor.

3 #include <iostream>

4 #include "Array.h"

5 using namespace std;

6

7 void outputArray(const Array &); // prototype

8

9 int mainQ

0 {

1" Array integersl(7); // 7-element Array

12 outputArray(integersl); // output Array integersl

13 outputArray(3); // convert 3 to an Array and output Array’s contents
14 outputArray(Array(3)); // explicit single-argument constructor call
15 } // end main

16

17 // print Array contents

18 void outputArray(const Array &rrayToOutput)

19 {

20 cout << "The Array received has " << arrayToOutput.getSize()

21 << " elements. The contents are:\n" << arrayToOutput << endl;
22} // end outputArray

books\2012\cpphtp9\examples\ch10\fig10_13\fig10_13.cpp(13): error C2664:
'outputArray' : cannot convert parameter 1 from 'int' to 'const Array &'
Reason: cannot convert from 'int' to 'const Array’

Constructor for class 'Array' is declared 'explicit'

images/00229.jpeg
31
32
33
34
35
36
37
38
39
40
a
42
43

// function to get the course name
string GradeBook: :getCourseName() const
{
return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
{
// call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<< "1" << endl;
} // end function displayMessage

images/00224.jpeg
// Fig. 3.12: GradeBook.cpp
// GradeBook member-function definitions. This file contains

// implementations of the member functions prototyped in GradeBook.h.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook (string name)

: courseName(name) // member initializer to initialize courseName
{

// empty body
} // end GradeBook constructor

// function to set the course name
Void GradeBook: :setCourseName(string name)

&
courseName = name; // store the course name in the object
} // end function setCourseName

// function to get the course name
string GradeBook: :getCourseName() const
{

images/00466.jpeg
Array(const Array &) = delete;
const Array &operator=(const Array &) = delete;

images/00223.jpeg
// Fig. 3.11: GradeBook.h

// GradeBook class definition. This file presents GradeBook's public

// interface without revealing the implementations of GradeBook's member
// functions, which are defined in GradeBook.cpp.

#include <string> // class GradeBook uses C++ standard string class

// GradeBook class definition
class GradeBook
{
public:
explicit GradeBook(std::string); // constructor initialize courseName
void setCourseName(std::string); // sets the course name
std::string getCourseName() const; // gets the course name
void displayMessage() const; // displays a welcome message
private:
std::string courseName; // course name for this GradeBook
}; // end class GradeBook

images/00465.jpeg
// overloaded input operator for class Array;
// inputs values for entire Array
istream &operator>>(istream &input, Array &)
{
for (sizet i =0; i <a.size; ++i)
input >> a.ptr[i]1;

return input; // enables cin >> x >> y;
} // end function

// overloaded output operator for class Array
ostream &operator<<(ostream &output, const Array &)

{

// output private ptr-based array
for (size_t i = 0; i < a.size; ++i)

e
output << setw(12) << a.ptr[i I;
i ((i +1)%4==0) // 4 numbers per row of output
output << endl;
} // end for

if (a.size % 4 !
output << endl;

0 // end last line of output

return output; // enables cout << x << y;
} // end function operator<<

images/00226.jpeg
// Fig. 3.13: fig03_13.cpp

1

2 // GradeBook class demonstration after separating

3 // its interface from its implementation.

4 #include <iostream>

5 #include "GradeBook.h" // include definition of class GradeBook

6 using namespace std;

7

8 // function main begins program execution

9 it mainQ

0 {

1" // create two GradeBook objects

12 GradeBook gradeBook1("CS101 Introduction to C++ Programming”);

3 GradeBook gradeBook2("CS102 Data Structures in C++");

14

15 // display initial value of courseName for each GradeBook

16 cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
1”7 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
8 << endl;

19 '} // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in Ci+

images/00468.jpeg
// Fig. 10.12: figlo_12.cpp

1
2 // Single-argument constructors and implicit conversions.

3 #include <iostream>

4 #include "Array.h"

5 using namespace std;

6

7 void outputArray(const Array &); // prototype

8

9 dint mainQ)

10 {

1" Array integersi(7); // 7-element Array

12 outputArray(integersl); // output Array integersl

13 outputArray(3); // convert 3 to an Array and output Array’s contents
14} // end main

15

16 // print Array contents

17 void outputArray(const Array &arrayToOutput)

18 {

19 cout << "The Array received has " << arrayToOutput.getSize()

20 << " elements. The contents are:\n" << arrayToOutput << endl;

21} // end outputArray

The Array received has 7 elements. The contents are:
0 0 0 0
0 0 0

The Array received has 3 elements. The contents are:
0 0 0

images/00225.jpeg
24
25
26
27
28
29
30
31
32
33

return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
£
// call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<< "I" << endl;

} // end function displayMessage

images/00467.jpeg
perator int() const;
perator OtherClass() const;

images/00451.jpeg
66
67
68
69
70
71
2
3
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96

// if the year is a leap year, return true; otherwise, return false

bool Date::leapYear(int testYear)
{
if (testYear % 400 == 0 ||
(testYear % 100 != 0 &% testYear % 4
return true; // a leap year
else
return false; // not a leap year
} // end function leapYear

// determine whether the day is the last day of the month
bool Date::endOfMonth(int testDay) const
{
if (month == 2 && TeapYear(year))
return testDay == 29; // last day of Feb. in leap year
else
return testDay == days[month J;
} // end function endOfMonth

// function to help increment the date
void Date::helpIncrement()
{
// day is not end of month
if (!endOfMonth(day))
++day; // increment day
else
if (month < 12) // day is end of month and month < 12
{
++month; // increment month
day = 1; // first day of new month

images/00693.jpeg
33
34
35
36
37
38
39
40
a4
42
3
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60

cout << "stringl.compare(string2) < O\n";

// comparing stringl (elements 2-5) and string3 (elements 0-5)
result = stringl.compare(2, 5, string3, 0, 5);

if (result =0)

cout << "stringl.compare(2, 5, string3, 0, 5)
else if (result > 0)

cout << "stringl.compare(2, 5, string3, 0, 5) > O\n";
else // result < 0

cout << "stringl.compare(2, 5, string3, 0, 5) < O\n";

O0\n";

// comparing string2 and stringd
result = stringd.compare(0, string2.size(), string2);

if (result 0)
cout << "string4.compare(0, string2.size(), "
<< "string2) == 0" << endl;
else if (result > 0)
cout << "string4.compare(0, string2.sizeQ), "
<< "string2) > 0" << endl;
else // result <0
cout << "string4.compare(0, string2.size(), "
<< "string2) < 0" << endl;

// comparing string2 and string4
result = string2.compare(0, 3, stringd);

images/00450.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(dd >= 1 & dd <= days[month]))
day = dd;
else
throw invalid_argument(
"Day is out of range for current month and year");
} // end function setDate

// overloaded prefix increment operator
Date &Date: :operator++()
{

helpIncrement(); // increment date

return *this; // reference return to create an lvalue
} // end function operator++

// overloaded postfix increment operator; note that the
// dummy integer parameter does not have a parameter name
Date Date::operator++(int)
{
Date temp = *this; // hold current state of object
helpIncrement();

// return unincremented, saved, temporary object
return temp; // value return; not a reference return
} // end function operator++

// add specified number of days to date
Date &Date: :operator+=(unsigned int additionalDays)

{
for (int i = 0; i < additionalDays; ++i)
helpIncrement();

return *this; // enables cascading
} // end function operator

images/00692.jpeg
// Fig. 19.2: Figl9_02.cpp
// Comparing strings.
#include <iostream>
#include <string>

using namespace std;

int mainQ)

{

string stringl("Testing the comparison functions.");

string string2("Hello");
string string3("stinger”);
string stringd(string2); // "Hello"

cout << "stringl:
<< "\nstring3:

<< stringl << "\nstring2:
<< string3 << "\nstring4

// comparing stringl and stringd
if (stringl == stringd)
cout << "stringl == stringd\n";
else if (stringl > stringd)
cout << "stringl > stringd\n";
else // stringl < string4
cout << "stringl < stringd\n";

// comparing stringl and string2
int result = stringl.compare(string2);

if (result 0)

cout << "stringl.compare(string2) == O\n";
else if (result > 0)

cout << "stringl.compare(string2) > O\n";
else // result < 0

<< string2
<< stringd << "\n\n";

images/00211.jpeg
int numberl = 0; // first integer to compare (initialized to 0)
int number2 = 0; // second integer to compare (initialized to 0)

images/00453.jpeg
// Fig. 10.8: figl0_08.cpp
// Date class test program.

#include <iostream

#include "Date.h" // Date class definition
using namespace std;

int mainQ)

{
Date d1(12, 27, 2010); // December 27, 2010
Date d2; // defaults to January 1, 1900

cout << "dl s " << dl << "\nd2 is " << d2;
cout << "\n\ndl += 7 is " << (dl += 7);

d2.setDate(2, 28, 2008);
cout << "\n\n d2 is " << d2;
cout << "\n++d2 is " << ++d2 << " (leap year allows 29th)";

Date d3(7, 13, 2010);

cout << "\n\nTesting the prefix increment operator:
<< d3 is " << d3 << endl;

cout << "++d3 is " << ++d3 << endl;

cout << " d3 is " << d3;

images/00695.jpeg
CENOUE LN =

0
1"
12
13
14

// Fig. 19.3: Figl9_03.cpp

// Demonstrating string member function substr.
#include <iostream>

#include <string>

using namespace std;

int mainQ
{
string stringl("The airplane Tanded on time.");

// retrieve substring "plane" which
// begins at subscript 7 and consists of 5 characters
cout << stringl.substr(7, 5) << endl;

} // end main

plane

images/00210.jpeg
out; // program uses cout
in; // program uses cin
using std::endl; // program uses endl

images/00452.jpeg
} // end if

else // last day of year

&
++year; // increment year
month = 1; // first month of new year
day = 1; // first day of new month

} // end else

} // end function helpIncrement

// overloaded output operator
ostream &operator<<(ostream &output, const Date &d)

{

static string monthName[13] = { "
"March", "April", "May", "June",
"September”, "October", "November", "December” };
output << monthName[d.month 1 << ' ' << d.day << ", " << d.year;
return output; // enables cascading
} // end function operator<<

“January", "February",
uly", "August”,

images/00694.jpeg
61 if (result 0)

62 cout << "string2.compare(0, 3, stringd) == 0" << endl;
63 else if (result > 0)

64 cout << "string2.compare(0, 3, stringd) > 0" << endl;
65 else // result < 0

66 cout << "string2.compare(0, 3, stringd) < 0" << endl;

67 '} // end main

stringl: Testing the comparison functions.
string2: Hello

string3: stinger

stringd: Hello

stringl > string4

stringl.compare(string2) > 0
stringl.compare(2, 5, string3, 0, 5) == 0
stringd.compare(0, string2.sizeQ), string2)
string2.compare(0, 3, stringd) < 0

images/00691.jpeg
32 // overloaded

33 string3 += "pet"; // create "carpet”

34 stringl.append("acomb"); // create "catacomb"

35

36 // append subscript Tocations 4 through end of stringl to

37 // create string "comb" (string5 was initially empty)

38 stringS.append(stringl, 4, stringl.sizeQ) - 4);

39

40 cout << "\n\nAfter concatenation:\nstringl << stringl

41 << "\nstring2: " << string2 << "\nstring3: " << string3

42 << "\nstring4: " << string4 << "\nstring5: " << strings << endl;

43} // end main

stringl:
string2:
string3:

cat
cat
cat

After modification of string2 and string3:

stringl:
string2:
string3:

cat
rat
car

After concatenation:

stringl:
string2:
string3:
stringd:
string5:

catacomb
rat
carpet
catapult
comb

images/00690.jpeg
// Fig. 19.1: Figl9_0l.cpp

// Demonstrating string assignment and concatenation.
#include <iostream>

#include <string>

using namespace std;

int main()

string stringl("cat");
string string2; // initialized to the empty string
string string3; // initialized to the empty string

string2 = stringl; // assign stringl to string2

string3.assign(stringl); // assign stringl to string3

cout << "stringl: " << stringl << "\nstring2: " << string2
<< "\nstring3: " << string3 << "\n\n";

// modify string2 and string3
string2[0] = string3[2] =

cout << "After modification of string2 and string3:\n" << “stringl:
<< stringl << "\nstring2: " << string2 << "\nstring3:

// demonstrating member function at
for (size_t i = 0; i < string3.sizeQ; ++i)
cout << string3.at(i); // can throw out_of_range exception

// declare string4 and strings
string string4(stringl + "apult"); // concatenation
string stringS; // initialized to the empty string

images/00217.jpeg
33
34
35
36
37
38
39
40
a
42
43
4
45
46
a7
48
49
50
51
52
53
54

private:
string courseName; // course name for this GradeBook
}; // end class GradeBook

// function main begins program execution
int mainQ
{
string nameOfCourse; // string of characters to store the course name
GradeBook myGradeBook; // create a GradeBook object named myGradeBook

// display initial value of courseName
cout << "Initial course name is: " << myGradeBook.getCourseName()
<< endl;

// prompt for, input and set course name

cout << "\nPlease enter the course name:" << endl;

getline(cin, nameOfCourse); // read a course name with blanks
myGradeBook. setCourseName(nameOfCourse); // set the course name

cout << endl; // outputs a blank line
myGradeBook.. displayMessage(); // display message with new course name
} // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
5101 Introduction to Ci+ Programming!

images/00459.jpeg
Assigning integers2 to integersl:

integersl:
8 9 10
12 13 14
16 17
integers2:
8 9 10
12 13 14
16 17

Evaluating: integersl == integers2
integersl and integers2 are equal

integers1[s] is 13

Assigning 1000 to integers1[5]

integersl:
8 9 10
12 1000 14
16 17

Attempt to assign 1000 to integers1[15]
An exception occurred: Subscript out of range

11
15

11
15

bl
15

images/00216.jpeg
N e T R T
8CEIoRituN-Cva~NausuNn=—

22
23
24
25
26
27
28
29
30
31
32

// Fig. 3.5: fig03_05.cpp

// Define class GradeBook that contains a courseName data member
// and member functions to set and get its value;

// Create and manipulate a GradeBook object with these functions.
#include <iostream>

#include <string> // program uses Ci+ standard string class
using namespace std;

// GradeBook class definition
class GradeBook
{
public:
// function that sets the course name
void setCourseName(string name)
{
courseName = name; // store the course name in the object
} // end function setCourseName

// function that gets the course name
string getCourseName() const

{

return courseName; // return the object's courseName
} // end function getCourseName

// function that displays a welcome message
void displayMessage() const
{
// this statement calls getCourseName to get the
// name of the course this GradeBook represents

cout << "Welcome to the grade book for\n" << getCourseName() << "!"

<< endl;
} // end function displayMessage

images/00458.jpeg
Size of Array integersl is 7
Array after initialization:
[[0
0 0 0

Size of Array integers2 is 10
Array after initialization:

0 0 0
0 0 0
0 0

Enter 17 integers:
1234567891011 1213 14 15 16 17

After input, the Arrays contain:
integersl:

1 2 3
5 6 7
integers2:
8 9 10
12 13 14
16 17

Evaluating: integersl != integers2
integersl and integers2 are not equal

Size of Array integers3 is 7
Array after initialization:
1 2
5 6

~w

11
15

images/00219.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54

void displayMessage() const

{
// call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<< "1" << endl;
} // end function displayMessage
private:

string courseName; // course name for this GradeBook
}: // end class GradeBook

// function main begins program execution
int mainQ)
{
// create two GradeBook objects
GradeBook gradeBook1("CS101 Introduction to C++ Programming”);
GradeBook gradeBook2("CS102 Data Structures in Cs+");

// display initial value of courseName for each GradeBook
cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
<< "\ngradeBook2 created for course: " << gradeBook2.getCourseName()

<< endl;

} // end main

gradeBookl created for course: CS101 Introduction to Ci+ Programming
gradeBook2 created for course: CS102 Data Structures in C++

images/00218.jpeg
// Fig. 3.7: fig03_07.cpp

// Instantiating multiple objects of the GradeBook class and using
// the GradeBook constructor to specify the course name

// when each GradeBook object is created.

#include <iostream>

#include <string> // program uses Ci+ standard string class

using namespace std;

// GradeBook class definition

class GradeBook

{

public:
// constructor initializes courseName with string supplied as argument
explicit GradeBook(string name)

: courseName(name) // member initializer to initialize courseName

{

// empty body
} // end GradeBook constructor

// function to set the course name
void setCourseName(string name)

{

courseName = name; // store the course name in the object
} // end function setCourseName

// function to get the course name
string getCourseName() const
{

return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user

images/00213.jpeg
// Fig. 3.1: fig03_01.cpp

// Define class GradeBook with a member function displayMessage,
// create a GradeBook object, and call its displayMessage function.
#include <iostream>

using namespace std;

// GradeBook class definition
class GradeBook
{
public:
// function that displays a welcome message to the GradeBook user
void displayMessage() const
{
cout << "Welcome to the Grade Book!" << endl;
} // end function displayMessage
}; // end class GradeBook

// function main begins program execution
int mainQ)
<
GradeBook myGradeBook; // create a GradeBook object named myGradeBook
myGradeBook . displayMessage(); // call object's displayMessage function
} // end main

Welcome to the Grade Book!

images/00455.jpeg
// Fig. 10.9: figlo_09.cpp
// Array class test program.
#include <iostream>
#include <stdexcept>
#include "Array.h"

using namespace std;

int mainQ)

{

Array integersl(7); // seven-element Array
Array integers2; // 10-element Array by default

// print integersl size and contents
cout << "Size of Array integersl is
<< integersl.getSize()
<< "\nArray after initialization:\n" << integersl;

// print integers2 size and contents
cout << "\nSize of Array integers2 is
<< integers2.getSize()
<< "\nArray after initialization:\n" << integers2;

// input and print integersl and integers2
cout << "\nEnter 17 integers:" << endl;
cin >> integersl >> integers2;

cout << "\nAfter input, the Arrays contain:\n"
<< "integersl:\n" << integersl
<< "integers2:\n" << integers2;

// use overloaded inequality (!=) operator
cout << "\nEvaluating: integersl != integers2" << endl;

images/00697.jpeg
// Fig. 19.5: Figl9_05.cpp
// Printing string characteristics.
#include <iostreams

#include <string>

using namespace std;

void printStatistics(const string &);
int mainQ)

{

string stringl; // empty string

cout << "Statistics before input:\n" << boolalpha;

printStatistics(stringl);

// read in only "tomato" from “tomato soup"

cout << "\n\nEnter a string: ";

cin >> stringl; // delimited by whitespace
cout << "The string entered was: " << stringl;

cout << "\nStatistics after input:\n";
printStatistics(stringl);

// read in “soup"

cin >> stringl; // delimited by whitespace

cout << "\n\nThe remaining string is:
printStatistics(stringl);

// append 46 characters to stringl
stringl +
cout << "\n\nstringl is now:
printStatistics(stringl);

<< stringl << endl;

"'1234567890abcdefghi jk1mnoparstuvwxyz1234567890" ;
<< stringl << endl;

images/00212.jpeg
if (numberl
cout << numberl <<

number2)

<< number2 << endl;

images/00454.jpeg
26 cout << "\n\nTesting the postfix increment operator:\n"

27 << " d3 is " << d3 << endl;
28 cout << "d3++ is " << d3++ << endl;
29 cout << " d3 is " << d3 << endl;

30} // end main

dl is December 27, 2010
d2 is January 1, 1900

dl 4= 7 is January 3, 2011

d2 is February 28, 2008
++d2 is February 29, 2008 (leap year allows 29th)

Testing the prefix increment operator:
d3 is July 13, 2010

++d3 is July 14, 2010
d3 is July 14, 2010

Testing the postfix increment operator:
d3 is July 14, 2010

d3++ is July 14, 2010
d3 is July 15, 2010

images/00696.jpeg
| // Fig. 19.4: Figl9_04.cpp
2 // Using the swap function to swap two strings.

3 #include <iostream>

4 #include <string>

5 using namespace std;

6

7 int mainO

8 {

9 string first("one");

10 string second("two");

1

12 // output strings

13 cout << "Before swap:\n first: " << first << "\nsecond: " << second;
14

15 first.swap(second); // swap strings

16

17 cout << "\n\nAfter swap:\n first: " << first

18 << "\nsecond: " << second << endl;

19} // end main

Before swap:
first: one
second: two

After swap:
first: two
second: one

images/00215.jpeg
26 // prompt for and input course name

27 cout << "Please enter the course name:" << endl;
28 getline(cin, nameOfCourse); // read a course name with blanks
29 cout << endl; // output a blank Tine

30

31 // call myGradeBook's displayMessage function

32 // and pass nameOfCourse as an argument

33 myGradeBook . displayMessage(nameOfCourse);

34 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

images/00457.jpeg
66 // attempt to use out-of-range subscript

67 try

68 1

69 cout << "\nAttempt to assign 1000 to integers1[15]" << endl;
70 integersl[15] = 1000; // ERROR: subscript out of range

7 } // end try

72 catch (out_of_range &ex)

73 {

4 cout << "An exception occurred: " << ex.what() << endl;

75 } // end catch

76 } // end main

images/00699.jpeg
Statistics before input:
capacity: 15

max size: 4294967294
size: 0

Tength: 0

empty: true

Enter a string: tomato soup
The string entered was: tomato
Statistics after input:
capacity: 15

max size: 4294967294

size: 6

Tength: 6

empty: false

The remaining string is: soup
capacity: 15

max size: 4294967294

size: 4

Tength: 4

empty: false

images/00214.jpeg
// Fig. 3.3: fig03_03.cpp

// Define class GradeBook with a member function that takes a parameter,
// create a GradeBook object and call its displayMessage function.
#include <iostream>

#include <string> // program uses C++ standard string class

using namespace std;

// GradeBook class definition
class GradeBook
4
public:
// function that displays a welcome message to the GradeBook user
void displayMessage(string courseName) const
i

cout << "Welcome to the grade book for\n" << courseName <<
<< endl;
} // end function displayMessage
}; // end class GradeBook

// function main begins program execution
int mainQ)

{

string nameOfCourse; // string of characters to store the course name
GradeBook myGradeBook; // create a GradeBook object named myGradeBook

images/00456.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

if (integersl = integers2)
cout << "integersl and integers2 are not equal” << endl;

// create Array integers3 using integersl as an

// initializer; print size and contents

Array integers3(integersl); // invokes copy constructor
cout << "\nSize of Array integers3 is "
<< integers3.getSize()

<< "\nArray after initialization:\n" << integers3;

// use overloaded assignment (=) operator
cout << "\nAssigning integers2 to integersl:" << endl;
integersl = integers2; // note target Array is smaller

cout <

integersl:\n" << integersl
ntegers2:\n" << integers2;

<<

// use overloaded equality (==) operator
cout << "\nEvaluating: integersl == integers2" << endl;

if (integersl integers2)
cout << "integersl and integers2 are equal"” << endl;

// use overloaded subscript operator to create rvalue
cout << "\nintegersl[5] is " << integersi[5 1;

// use overloaded subscript operator to create lvalue
cout << "\n\nAssigning 1000 to integers1[5]" << endl;
integersi[5] = 1000;

cout << "integersl:\n" << integersl;

images/00698.jpeg
33

34 // add 10 elements to stringl
35 stringl.resize(stringl.size() + 10);

36 cout << "\n\nStats after resizing by (length + 10):\n";
37 printStatistics(stringl);

38 cout << endl;

39 } // end main

40

41 // display string statistics
42 void printStatistics(const string &stringRef)

43 {

4 cout << "capacity: " << stringRef.capacity() << "\nmax size: "
45 << stringRef.max_size() << "\nsize: " << stringRef.size()
46 << "\nlength: " << stringRef.size()

47 << "\nempty: " << stringRef.empty();

48 } // end printStatistics

images/00209.jpeg
31 if (numberl <= number2)

32 cout << numberl << " <= " << number2 << endl;
33

34 if (numberl >= number2)

35 cout << numberl << " >= " << number2 << endl;

36 } // end function main

Enter two integers to compare: 3 7
31=7
347
3 <=7

Enter two integers to compare: 22 12

22 =12
22 > 12
22 >=12

Enter two integers to compare: 7 7

images/00440.jpeg
// Fig. 10.1: figlo_0l.cpp
// Standard Library string class test program.
#include <iostream>

#include <string>

using namespace std;

int mainQ)

{

string s1("happy");
string s2(" birthday");
string s3;

// test overloaded equality and relational operators
cout << "sl is \"" << s1 << "\"; 52 is \"" << s2

<< "\"; s3 ds \"" << 83 << "\""

<< "\n\nThe results of comparing s2 and s1:"

<< "\ns2 == sl yields " << (52 == s1 ? "true" alse”)
<< "\ns2 != sl yields " << (s2 != sl ? "true" : "false")
<< "\ns2 > sl yields " << (52 > s1 ? "true" : "false")
<< "\ns2 sl yields " << (52 < s1 ? "true" “false")
<< "\ns2 >= s1 yields " << (52 >= s1 ? "true" : "false")
<< "\ns2 <= sl yields " << (s2 <= s1 ? "true false");

// test string member-function empty
cout << "\n\nTesting s3.empty():" << endl;

if (s3.emptyO)

{
cout << "s3 is empty; assigning sl to s3;" << endl;
s3 = s1; // assign sl to s3
cout << "s3 is \"" << §3 << "\"";

} // end if

images/00682.jpeg
// Fig. 17.9: figl7_09.cpp

1
2 // Demonstrating unique_ptr.

3 #include <iostream>

4 #include <memory>

5 using namespace std;

6

7 #include "Integer.h"

8

9 // use unique_ptr to manipulate Integer object

10 dint mainQO

no{

12 cout << "Creating a unique_ptr object that points to an Integer\n";

3

14 // "aim" unique_ptr at Integer object

15 unique_ptr< Integer > ptrToInteger(new Integer(7));

16

17 cout << "\nUsing the unique ptr to manipulate the Integer\n";

18 ptrToInteger->setInteger(99); // use unique_ptr to set Integer value
19

20 // use unique_ptr to get Integer value

21 cout << "Integer after setInteger: " << (*ptrToInteger).getInteger()
22 << "\n\nTerminating program” << endl;

23} // end main

Creating a unique_ptr object that points to an Integer
Constructor for Integer 7

Using the unique_ptr to manipulate the Integer
Integer after setInteger: 99

Terminating program
Destructor for Integer 99

images/00681.jpeg
// Fig. 17.8: Integer.cpp

// Integer member function definitions.
#include <iostream>

#include "Integer.h"

using namespace std;

// Integer default constructor
Integer::Integer(int i)

: value(i)
{

cout << "Constructor for Integer
} // end Integer constructor

" << value << endl;

// Integer destructor
Integer::~Integer()
{

cout << "Destructor for Integer
} // end Integer destructor

<< value << endl;

// set Integer value
void Integer::setInteger(int i)
{
value = i;
} // end function setInteger

// return Integer value
int Integer::getInteger() const
{

return value;
} // end function getInteger

images/00200.jpeg
Excellent! You guessed the number.
Would you Tike to play again (y or m)? y

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

T

images/00442.jpeg
66
67
68
69
70
71
2
73
74
75
76
7
78
79

cout << "\nsl after s1[0]
<< s1 << "\m\n";

and s1[6]

// test subscript out of range with string member function "at"
try
{

cout << "Attempt to assign to sl.at(30) yields:" << endl;
sl.at(30) = 'd'; // ERROR: subscript out of range

} // end try

catch (out_of_range &ex)

{
cout << "An exception occurred: " << ex.what() << endl;
} // end catch
} // end main

images/00684.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
4
45

// determine whether Stack is empty
bool isEmpty() const
i
return stack.empty();
} // end function template isEmpty

// return size of Stack
size_t size() const
{
return stack.sizeQ;
} // end function template size

private:
std::deque< T > stack; // internal representation of the Stack
}; // end class template Stack

#endif

images/00441.jpeg
33
34
35
36
37
38
39
40
a
a2
43

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

// test overloaded string concatenation operator
cout << "\n\nsl += s2 yields sl = ";
sl += s2; // test overloaded concatenation

cout << s1;

// test overloaded
cout << "\n\nsl +=
to you";

cout << "s1

sl +

// test string member function substr

cout << "The substring of sl starting at location 0 for\n"
<< "14 characters, sl.substr(0, 14), is:\n"
<< sl.substr(0, 14) << "\n\n";

// test substr "to-end-of-string" option
cout << "The substring of sl starting at\n"
<< "location 15, sl.substr(15), is:\n"

<< sl.substr(15) << endl;

// test copy constructor
string s4(s1);

cout << "\ns4 =

// test overloaded copy assignment (=) operator with self-assignment
cout << "assigning s4 to s4" << endl;

s4 = s4;

cout << "s4 =" << s4 << endl;

// test using overloaded subscript operator to create lvalue

s1[0] =
si[6]

H';
B

string concatenation operator with a C string
\" to you\" yields" << endl;

s1 << "\n\n";

<< s4 << "\n\n";

images/00683.jpeg
// Fig. 18.1: Stack.h
// Stack class template.
#ifndef STACK_H
#define STACK_H
#include <deque>

template< typename T >
class Stack

{

public:
// return the top element of the Stack
T& top()
i

return stack.front();
} // end function template top

// push an element onto the Stack
void push(const T &pushvValue)

{
stack.push_front(pushValue);
} // end function template push

// pop an element from the stack
void popQ
{
stack.pop_front();
} // end function template pop

images/00680.jpeg
GR-Com~ousuN=

// Fig. 17.7: Integer.h
// Integer class definition.

class Integer

1
public:
Integer(int i = 0); // Integer default constructor
~Integer(); // Integer destructor
void setInteger(int i); // set Integer value
int getInteger() const; // return Integer value
private:

int value;
}; // end class Integer

images/00206.jpeg
int numberl = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of numberl and number2 (initialized to 0)

images/00448.jpeg
// Fig. 10.6: Date.h

// Date class definition with overloaded increment operators.
#ifndef DATE H

#define DATE_H

#include <array>
#include <iostream>

class Date

{

friend std::ostream &operator<<(std::ostream &, const Date &);
public:

Date(int m = 1, int d = 1, int y = 1900); // default constructor

void setDate(int, int, int); // set month, day, year

Date &operator++(); // prefix increment operator

Date operator++(int); // postfix increment operator

Date &operator+=(unsigned int); // add days, modify object

static bool TeapYear(int); // is date in a leap year?

bool endOfMonth(int) const; // is date at the end of month?
private:

unsigned int month;

unsigned int day;

unsigned int year;

static const std::array< unsigned int, 13 > days; // days per month
void helpIncrement(; // utility function for incrementing date
}; // end class Date

#endif

images/00205.jpeg
// Fig. 2.5: fig02_05.cpp
// Addition program that displays the sum of two integers.
#include <iostreams // allows program to perform input and output

// function main begins program execution

int mainQ)

&
// variable declarations
int numberl = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of numberl and number2 (initialized to 0)

std::cout << "Enter first integer: "; // prompt user for data
std::cin >> numberl; // read first integer from user into numberl
std::cout << "Enter second integer: // prompt user for data

std::cin >> number2; // read second integer from user into number2

sum = numberl + number2; // add the numbers; store result in sum

std::cout << "Sum is " << sum << std

} // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

ndl; // display sum; end line

images/00447.jpeg
// Fig. 10.5: figl0_05.cpp
// Demonstrating class PhoneNumber's overloaded stream insertion
// and stream extraction operators.

#include <iostream>

#include "PhoneNunber.h"

using namespace std;

int mainQ)

{

PhoneNumber phone; // create object phone
cout << "Enter phone number in the form (123) 456-7890:" << endl;

// cin >> phone invokes operator>> by implicitly issuing
// the non-member function call operators>(cin, phone)
cin >> phone;

cout << "The phone number entered was: ";

// cout << phone invokes operator<< by implicitly issuing
21 // the non-member function call operator<<(cout, phone)
22 cout << phone << endl;

23} // end main

Enter phone number in the form (123) 456-7890:

(800) 555-1212
The phone number entered was: (800) 555-1212

images/00689.jpeg
33 {

34 cout << theStack.top() << ' ';

35 theStack.pop(); // remove top element

36 } // end while

37

38 cout << "\nStack is empty. Cannot pop." << endl;
39} // end function template testStack

40

41 dint mainQ

a2 {

43 Stack< double > doubleStack;

44 const size_t doubleStackSize = 5;

45 testStack(doubleStack, 1.1, 1.1, doubleStackSize, "doubleStack");
46

47 Stack< int > intStack;

48 const size_t intStackSize = 10;

49 testStack(intStack, 1, 1, intStackSize, "intStack");

50 } // end main

Pushing elements onto doubleStack
1,12.23.3445.5

Popping elements from doubleStack
5.504.0:3 80 0 1K
Stack is empty, cannot pop

Pushing elements onto intStack
12345678910

Popping elements from intStack
10987654321

Stack is empty, cannot pop

images/00208.jpeg
// Fig. 2.13: fig02_13.cpp
// Comparing integers using if statements, relational operators

// and equality operators.
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

// function main begins program execution

int mainQ)

{

int numberl = 0; // first integer to compare (initialized to 0)
int number2 = 0; // second integer to compare (initialized to 0)

cout << "Enter two integers to compare: "; // prompt user for data
cin >> numberl >> number2; // read two integers from user

if (numberl number2)
cout << numberl <<

" << number2 << endl;

if (numberl != number2)
cout << numberl << "

<< number2 << endl;

if (numberl < number2)

cout << numberl << " < " << number2 << endl;

if (numberl > number2)
cout << numberl << " > "

> " << number2 << endl;

images/00207.jpeg
std::cout << "Sum is
Tine

<< sum << std::end1; // display sum; end

images/00449.jpeg
ey —
85N anitNSve~Nausun -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 10.7: Date.cpp
// Date class member- and friend-function definitions.
#include <iostream>

#include <string>

#include "Date.h"

using namespace std;

// initialize static member; one classwide copy
const array< unsigned int, 13 > Date::days =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

// Date constructor
Date::Date(int month, int day, int year)
{

setDate(month, day, year);
} // end Date constructor

// set month, day and year
void Date::setDate(int mm, int dd, int yy)

{
if (mm>=1 & mm <= 12)
month = mm;
else

throw invalid_argument("Month must be 1-12");

if (yy >= 1900 && yy <= 2100)
year = yy;
else
throw invalid_argument("Year must be >= 1900 and <= 2100");

// test for a leap year

if ((month 2 && leapYear(year) && dd 1 && dd 29) |1

images/00202.jpeg
// Fig. 2.1: fig02_01.cpp

1

2 // Text-printing program.

3 #include <iostream> // allows program to output data to the screen
4

5 // function main begins program execution

6 int mainO

7 &

8 std::cout << "Welcome to C++!\n"; // display message
9

0 return 0; // indicate that program ended successfully
11} // end function main

Welcome to C++!

images/00444.jpeg
class String

{
public:
bool operator<(const String &) const;

}; // end class String

images/00686.jpeg
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48
49
50
H
52
53
54
55
56
57

Stack< int > intStack; // create a Stack of int
const size_t intStackSize = 10; // stack size
int intvalue = 1; // first value to push

cout << "\nPushing elements onto intStack\n";

// push 10 integers onto intStack
for (size_t i = 0; i < intStackSize; ++i)
{

intStack.push(intvValue);
cout << intValue++ << ' ';

} // end while
cout << "\n\nPopping elements from intStack\n";

// pop elements from intStack
while (!intStack.isEmpty()) // loop while Stack is not empty
{
cout << intStack.top() << ' '; // display top element
intStack.pop(); // remove top element
} // end while

cout << "\nStack is empty, cannot pop." << endl;
} // end main

images/00201.jpeg
Excellent! You guessed the number.
Would you Tike to play again (y or m)? n

~/examples/ch01/GuessNumber/GNU_Linux$

images/00443.jpeg
sl is "happy"; s2 is " birthday"; s3 is
The results of comparing s2 and sl:

s2 == sl yields false

s2 1= sl yields true

s2 > sl yields false

s2 < slyields true

s2 >= sl yields false

s2 <= sl yields true

Testing s3.empty():

s3 is empty; assigning sl to s3;

s3 is "happy"

s1 += s2 yields s1 = happy birthday
sl += " to you" yields

s1 = happy birthday to you

The substring of sl starting at Tocation 0 for
14 characters, sl.substr(0, 14), is:
happy birthday

The substring of sl starting at
Tocation 15, sl.substr(15), is:
to you

s4 = happy birthday to you

assigning s4 to s4
s4 = happy birthday to you

s1 after s1[0]

Attempt to assign 'd’ to sl.at(30) yields:
An exception occurred: invalid string position

'H' and s1[6] = 'B' is: Happy Birthday to you

images/00685.jpeg
// Fig. 18.2: figl8_02.cpp

// Stack class template test program.

#include <iostream>

#include “Stack.h" // Stack class template definition
using namespace std;

int mainQ)

{
Stack< double > doubleStack; // create a Stack of double
const size_t doubleStackSize = 5; // stack size
double doublevalue = 1.1; // first value to push

cout << "Pushing elements onto doubleStack\n";

// push 5 doubles onto doubleStack
for (size_t i = 0; i < doubleStackSize; ++i)
{
doubleStack.push(doublevalue);
cout << doubleValue << ' ';
doublevalue += 1.1;
} // end while

cout << "\n\nPopping elements from doubleStack\n";

// pop elements from doubleStack
while (!doubleStack.isEmpty()) // Toop while Stack is not empty
{
cout << doubleStack.top() << ' '; // display top element
doubleStack.pop(); // remove top element
} // end while

cout << "\nStack is empty, cannot pop.\n";

images/00204.jpeg
// Fig. 2.4: fig02_04.cpp

1

2 // Printing multiple Tines of text with a single statement.
3 #include <iostream> // allows program to output data to the screen
4

5 // function main begins program execution

6 dint main()

T o

8 std::cout << "Welcome\nto\n\nC++!\n";

9 } // end function main

Welcome

to

Ci+!

images/00446.jpeg
N
BesNaniGN-CconNaubwN -

22
23
24
25
26
27
28
29
30

// Fig. 10.4: PhoneNumber.cpp
// Overloaded stream insertion and stream extraction operators
// for class PhoneNumber.

#include <iomanip>

#include "PhoneNumber.h"

using namespace std;

// overloaded stream insertion operator; cannot be
// a member function if we would Tike to invoke it with
// cout << somePhoneNumber;
ostream &operator<<(ostream &output, const PhoneNumber &number)
{

output << "(" << number.areaCode << ") "

<< number.exchange << "-" << number.line;

return output; // enables cout << a << b << ¢;

} // end function operator<<

// overloaded stream extraction operator; cannot be
// a member function if we would like to invoke it with
// cin >> somePhoneNumber;
istream &operator>>(istream &input, PhoneNumber &number)
{
input.ignore); // skip (
input >> setw(3) >> number.areaCode; // input area code
input.ignore(2); // skip) and space
input >> setw(3) >> number.exchange; // input exchange
input.ignore(; // skip dash (-)
input >> setw(4) >> number.line; // input line
return input; // enables cin >> a >> b >> c;
} // end function operators>

images/00688.jpeg
// Fig. 18.3: figl8_03.cpp
// Passing a Stack template object

// to a function template.

#include <iostream>

#include <string>

#include "Stack.h" // Stack class template definition
using namespace std;

// function template to manipulate Stack< T >
template< typename T >
void testStack(
Stack< T > &theStack, // reference to Stack< T >
const T &alue, // initial value to push
const T &increment, // increment for subsequent values
size_t size, // number of items to push
const string &stackName) // name of the Stack< T > object

cout << "\nPushing elements onto " << stackName << '\n';
T pushvalue = value;

// push element onto Stack
for (size_t i =0; 1 <size; ++i)
{
theStack.push(pushvalue); // push element onto Stack
cout << pushValue << ' '
pushValue += increment;
} // end while

cout << "\n\nPopping elements from " << stackName << '\n';

// pop elements from Stack

while (!theStack.isEmpty()) // loop while Stack is not empty

images/00203.jpeg
// Fig. 2.3: fig02_03.cpp
// Printing a line of text with multiple statements.
#include <iostream> // allows program to output data to the screen

// function main begins program execution
int main()

{

std::cout << "Welcome
std::cout << "to Ce+!\n";
} // end function main

Som~NoUuBUN=-

Welcome to C++!

images/00445.jpeg
CEiohAuGN-CSvm~ouswN~—

// Fig. 10.3: PhoneNumber.h

// PhoneNumber class definition
#ifndef PHONENUMBER_H

#define PHONENUMBER H

#include <iostream>
#include <string>

class PhoneNumber

{
friend std::ostrean &operator<<(std::ostream & const PhoneNumber &);
friend std::istream &operator>>(std::istream &, PhoneNumber &);
private:

std::string areaCode; // 3-digit area code
tring exchange; // 3-digit exchange
tring line; // 4-digit line

}; // end class PhoneNumber

#endif

images/00687.jpeg
Pushing elements onto doubleStack
1.12.2 3.34.45.5

Popping elements from doubleStack
5.54.43.32.21.1
Stack is empty, cannot pop

Pushing elements onto intStack
12345678910

Popping elements from intStack
10987654321
Stack is empty, cannot pop

images/00671.jpeg
// Fig. 17.2: figl7_02.cpp

// Example that throws exceptions on

// attempts to divide by zero.

#include <iostream>

#include "DivideByZeroException.h" // DivideByZeroException class
using namespace std;

// perform division and throw DivideByZeroException object if
// divide-by-zero exception occurs
double quotient(int numerator, int denominator)

{

// throw DivideByZeroException if trying to divide by zero
if (denominator == 0)
throw DivideByZeroException(); // terminate function

// return division result
return static_cast< double >(numerator) / denominator;
} // end function quotient

int main()
{

int numberl; // user-specified numerator
int number2; // user-specified denominator

cout << "Enter two integers (end-of-file to end): ";

// enable user to enter two integers to divide
while (cin >> numberl >> number2)

images/00670.jpeg
GR-ZCom~oausuN=

// Fig. 17.1: DivideByZeroException.h
// Class DivideByZeroException definition.
#include <stdexcept> // stdexcept header contains runtime_error

// DivideByZeroException objects should be thrown by functions
// upon detecting division-by-zero exceptions
Class DivideByZeroException : public std::runtime_error
{
public:

// constructor specifies default error message

DivideByZeroException()

std: :runtime_error("attempted to divide by zero") {}

}: // end class DivideByZeroException

images/00431.jpeg
// Fig. 9.25: Time.cpp
// Time class member-function definitions.
#include <iostream>

#include <iomanip>

#include <stdexcept>

#include "Time.h" // Time class definition
using namespace std;

// constructor function to initialize private data;
// calls member function setTime to set variables;
// default values are 0 (see class definition)
Time::Time(int hr, int min, int sec)
{

setTime(hr, min, sec);
} // end Time constructor

// set values of hour, minute, and second
Time &Time::setTime(int h, int m, int s) // note Time & return
{
setHour(h);
setMinute(m J;
setSecond(s);
return *this; // enables cascading
} // end function setTime

// set hour value
Time &Time::setHour(int h) // note Time & return
&
if (h>=08& h <24)
hour = h;
else
throw invalid_argument("hour must be 0-23");

images/00673.jpeg
26
27
28
29

// Fig. 17.3: figl7_03.cpp
// Rethrowing an exception.
#include <iostream>
#include <exception>
using namespace std;

// throw, catch and rethrow exception
void throwException()

{
// throw exception and catch it immediately
try
{
cout << " Function throwException throws an exception\n";
throw exception(); // generate exception

} // end try
catch (exception &) // handle exception
{

cout << " Exception handled in function throwException”
<< "\n Function throwException rethrows exception";
throw; // rethrow exception for further processing
} // end catch

cout << "This also should not print\n";
} // end function throwException

int mainQ)

{
// throw exception
try

images/00430.jpeg
24
25
26
27
28
29
30
31
32
33
34

// print functions (normally declared const)
void printUniversal() const; // print universal time
void printStandard() const; // print standard time
private:
unsigned int hour; // 0 - 23 (24-hour clock format)
unsigned int minute; // 0 - 59
unsigned int second; // 0 - 59
}; // end class Time

#endif

images/00672.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
4
45
46
a7

// try block contains code that might throw exception
// and code that will not execute if an exception occurs
try
{

double result = quotient(numberl, number2);

cout << "The quotient is: " << result << endl;
} // end try
catch (DivideByZeroException ÷ByZeroException)

{

cout << "Exception occurred:
<< divideByZeroException.what() << endl;
} // end catch

cout << "\nEnter two integers (end-of-file to end): ";
} // end while

cout << endl;

} // end main

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): AZ

images/00437.jpeg
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

cout << "~Employee() called for " << firstName

<< ' ' << lastName << endl;
--count; // decrement static count of employees

} // end ~Employee destructor

// return first name of employee
string Employee::getFirstName() const
{
return firstName; // return copy of first name
} // end function getFirstName

// return Tast name of employee
string Employee::getLastName() const
4

return lastName; // return copy of last name
} // end function getLastName

images/00679.jpeg
24 // aim each ptr[i] at a big block of memory; customNewHandler will be

25 // called on failed memory allocation

26 for (sizet i = 0; i <505 ++i)

27 {

28 ptr[i 1 = new double[50000000 1; // may throw exception

29 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
30 } // end for

31} // end main

ptr0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
customNewHandler was called

images/00436.jpeg
// Fig. 9.28: Employee.cpp
// Employee class member-function definitions.
#include <iostream>

#include "Employee.h” // Employee class definition
using namespace std;

// define and initialize static data member at global namespace scope
unsigned int Employee::count = 0; // cannot include keyword static

// define static member function that returns number of
// Employee objects instantiated (declared static in Employee.h)
unsigned int Employee: :getCount()
{
return count;
} // end static function getCount

// constructor initializes non-static data members and

// increments static data member count

Employee: :Employee(const string &first, const string &last)
+ firstName(first), lastName(Tast)

{

++count; // increment static count of employees
cout << "Employee constructor for " << firstName
<< ' ' << lastName << " called.” << endl;

} // end Employee constructor

// destructor deallocates dynamically allocated memory
Employee: :~Employee ()

images/00678.jpeg
// Fig. 17.6: figl7_06.cpp
// Demonstrating set_new_handler.

#include <iostream>

#include <new> // set_new_handler function prototype
#include <cstd1ib> // abort function prototype
using namespace std;

// handle memory allocation failure
void customNewHandler ()

{

cerr << "customNewHandler was called'

abortQ;
} // end function customNewHandler

// using set_new_handler to handle failed memory allocation

int mainQ
{
double *ptr[50 1;

// specify that customNewHandler should be called on
// memory allocation failure
set_new_handler(customNewHandler);

images/00439.jpeg
29 } // end nested scope in main

30

31 // no objects exist, so call static member function getCount again
32 // using the class name and the scope resolution operator

33 cout << "\nNumber of employees after objects are deleted is "

34 << Employee: :getCount() << endl;

35 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.

Number of employees after objects are instantiated is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Robert Jones
~Employee() called for Susan Baker

Number of employees after objects are deleted is 0

images/00438.jpeg
// Fig. 9.29: fig09_29.cpp

// static data member tracking the number of objects of a class.
#include <iostream>

#include "Employee.h” // Employee class definition

using namespace std;

int mainQ)
{
// no objects exist; use class name and binary scope resolution
// operator to access static member function getCount
cout << "Number of employees before instantiation of any objects is
<< Employee::getCount() << endl; // use class name

// the following scope creates and destroys
// Employee objects before main terminates

{
“Baker");
“Jones" 3

Employee el("Susan"
Employee e2("Robert’

// two objects exist; call static member function getCount again

// using the class name and the scope resolution operator

cout << "Number of employees after objects are instantiated is
<< EmpTloyee: :getCount();

cout << "\n\nEmployee 1:
<< el.getFirstName() <<
<< "\nEmployee 2: "
<< e2.getFirstName() <<

<< el.getlLastName()

<< e2.getLastName() << "\n\n";

images/00433.jpeg
65
66
67
68
69
70
7
72
3
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

// get minute value
unsigned int Time::getMinute() const
{
return minute;
} // end function getMinute

// get second value
unsigned int Time::getSecond() const

{
return second;
} // end function getSecond

// print Time in universal-time format (HH:MM:SS)
void Time::printUniversal() const
o

cout << setfill('0') << setw(2) << hour << ":"
<< setw(2) << minute << ":" << setw(2) << second;
} // end function printUniversal

// print Time in standard-time format (HH:MM:SS AM or PM)
void Time: :printStandard() const
{

cout << (C hour == 0 || hour == 12) ? 12 : hour % 12)
<< << setfill('0") << setw(2) << minute
<<

} // end function printStandard

<< setw(2) << second << (hour < 12 7 " AM" :

" PMY);

images/00675.jpeg
// Fig. 17.4: figl7_04.cpp
// Demonstrating stack unwinding.
#include <iostream>
#include <stdexcept>
using namespace std;

// function3 throws runtime error
void function3()

{

cout << "In function 3" << endl;

// no try block, stack unwinding occurs, return control to function2
throw runtime_error("runtime_error in function3"); // no print
} // end function3

// function2 invokes function3
void function2()
{
cout << "function3 is called inside function2" << endl;
function3(); // stack unwinding occurs, return control to functionl
} // end function2

// functionl invokes function2
void functionl()
{
cout << "function2 is called inside functionl" << endl;
function2(); // stack unwinding occurs, return control to main
} // end functionl

images/00432.jpeg
33
34
35
36
37
38
39
40
a
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

return *this; // enables cascading
} // end function setHour

// set minute value
Time &Time::setMinute(int m) // note Time & return
{
if (m>=028& m<60)
minute = m;
else
throw invalid_argument("minute must be 0-59"

return *this; // enables cascading
} // end function setMinute

// set second value
Time &Time::setSecond(int s) // note Time & return
{
if (s >=
second
else
throw invalid_argument("second must be 0-59"

return *this; // enables cascading
} // end function setSecond

// get hour value
unsigned int Time::getHour() const
{
return hour;
} // end function getHour

images/00674.jpeg
30 {

31 cout << "\nmain invokes function throwException\n";
32 throwException();

33 cout << "This should not print\n";

34 } // end try

35 catch (exception &) // handle exception

36 {

37 cout << "\n\nException handled in main\n";

38 } // end catch

39

40 cout << "Program control continues after catch in main\n";

41 '} // end main

main invokes function throwException
Function throwException throws an exception
Exception handled in function throwException
Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

images/00435.jpeg
// Fig. 9.27: Employee.h

// Employee class definition with a static data member to
// track the number of Employee objects in memory
#ifndef EMPLOYEE H

#define EMPLOYEE H

#include <string>

class Employee

{

public:
Employee(const std::string &, const std::string &); // constructor
~Employee(); // destructor

tring getFirstName() const; // return first name

tring getlastName() const; // return last name

// static member function
static unsigned int getCount(); // return # of objects instantiated

tring firstName;
std: :string lastName;

// static data
static unsigned int count; // number of objects instantiated
}; // end class Employee

#endif

images/00677.jpeg
// Fig. 17.5: figl7_05.cpp

1

2 // Demonstrating standard new throwing bad_alloc when memory

3 // cannot be allocated.

4 #include <iostream>

5 #include <new> // bad_alloc class is defined here

6 using namespace std;

7

& int mainO

9 {

10 double *ptr[50 1;

1

12 // aim each ptr[i] at a big block of memory

13 try

14 {

15 // allocate memory for ptr[i 1; new throws bad_alloc on failure
16 for (size_t i =0; i < 50; ++i)

17 i

18 ptr[i 1 = new double[50000000 1; // may throw exception
19 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
20 } // end for

21 } // end try

22 catch (bad_alloc &memoryAllocationException)

23 {

24 cerr << "Exception occurred: "

25 << memoryAllocationException.what() << endl;

26 } // end catch

27 '} // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr(3] points to 50,000,000 new doubles
Exception occurred: bad allocation

images/00434.jpeg
// Fig. 9.26: fig09_26.cpp
// Cascading member—function calls with the this pointer.
#include <iostream>

#include "Time.h" // Time class definition

using namespace std;

int mainQ
<
Time t; // create Time object

// cascaded function calls
t.setHour(18).setMinute(30).setSecond(22);

// output time in universal and standard formats
cout << "Universal time:
t.printUniversalQ;

cout << "\nStandard time: ";
t.printStandard(Q);

21 cout << "\n\nNew standard time: ";

22

23 // cascaded function calls

24 t.setTime(20, 20, 20).printStandard(Q);
25 cout << endl;

26} // end main

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

images/00676.jpeg
30 // demonstrate stack unwinding
31 dnt mainQ

32 {

33 // invoke functionl

34 try

35 {

36 cout << "functionl is called inside main" << endl;

37 function1(); // call functionl which throws runtime_error
38 } // end try

39 catch (runtime_error &error) // handle runtime error

40 {

41 cout << "Exception occurred: " << error.what() << endl;
42 cout << "Exception handled in main" << endl;

43 } // end catch

44 1} // end main

functionl is called inside main

function2 is called inside functionl
function3 is called inside function2

In function 3

Exception occurred: runtime_error in function3
Exception handled in main

images/00429.jpeg
// Fig. 9.24: Time.h
// Cascading member function calls.

// Time class definition.

// Member functions defined in Time.cpp.
#ifndef TIME_H

#define TIME H

class Time
{
public:

explicit Time(int = 0, int = 0, int = 0); // default constructor

// set functions (the Time & return types enable cascading)
Time &setTime(int, int, int); // set hour, minute, second
Time &setHour(int); // set hour

Time &setMinute(int); // set minute

Time &setSecond(int); // set second

// get functions (normally declared const)
unsigned int getHour() const; // return hour

unsigned int getMinute() const; // return minute
unsigned int getSecond() const; // return second

images/00660.jpeg
Array a before make_heap:
3 100 52 77 22 31 1 98 13 40
Array a after make_heap:
100 98 52 77 40 31 1 3 13 22
Array a after sort_heap:
13 13 22 31 40 52 77 98 100

Array init contains: 3 100 52 77 22 31 1 98 13 40

after push_heap(init[0]):
after push_heap(init[1]):
after push_heap(init[2]):
after push_heap(init[3]):
after push_heap(init[41):
after push_heap(init[5]):
after push_heap(init[6]):
after push_heap(init[71):
after push_heap(init[8]):
after push_heap(init[91):

<<<<<<<<<<

v after 100 popped from heap
98 77 52 22 40 31 1 3 13 100
v after 98 popped from heap
77 40 52 22 13 31 1 3 98 100

3
100

3

100 3 52

100
100
100
100
100
100
100

77
77
77
77
98
98
98

52
52
52
52
52
52
52

3

322

32231
322311

77 223113

77 22 31 1.3 13
77 40 3113 13 22

images/00420.jpeg
// Fig. 9.19: Employee.h
// Employee class definition showing composition.
// Member functions defined in Employee.cpp.
#ifndef EMPLOYEE H

#define EMPLOYEE_H

#include <string>
#include "Date.h” // include Date class definition

class Employee

{
public:
Employee(const std::string & const std::string &,
const Date &, const Date &);
void print() const;
~Employee(); // provided to confirm destruction order
private:

std::string firstName; // composition: member object

std::string lastName; // composition: member object

const Date birthDate; // composition: member object

const Date hireDate; // composition: member object
}; // end class Employee

#endif

images/00662.jpeg
T . 4
B sNanitN-Coe~NauauNn~—

22
23
24

// Fig. 16.13: figl6_13.cpp

// Algorithms min, max, minmax and minmax_element.
#include <iostream>

#include <array>

#include <algorithm>

using namespace std;

int mainQ)
4
cout << "The minimum of 12 and 7 is: " << min(12,
cout << "\nThe maximum of 12 and 7 i
cout << "\nThe minimum of 'G' and 'Z' i
cout << "\nThe maximum of 'G' and 'Z' is:

7);

"o<< max(12, 7);
<< minC 'G", 'Z');
<< max('G', 'Z');

// determine which argument is the min and which is the max

auto resultl = minmax(12, 7);
cout << "\n\nThe minimum of 12 and 7 is:
<< "\nThe maximum of 12 and 7 is: "

array< int, 10 > items = { 3, 100, 52, 77, 22, 31,
ostream_iterator< int > output(cout, b

cout << "\n\nArray items contains: ";
copy(items.cbegin(), items.cend(), output);

<< resultl.first
<< resultl.second;

1, 98, 13, 40 };

images/00661.jpeg
v after 77 popped from heap
52 40 31 22 13 3 1 77 98 100
v after 52 popped from heap
40 22 31 1 13 3 52 77 98 100
v after 40 popped from heap
31 22 3 113 40 52 77 98 100
v after 31 popped from heap
22 13 3 1 31 40 52 77 98 100
v after 22 popped from heap
13 1 3 22 31 40 52 77 98 100
after 13 popped from heap
113 22 31 40 52 77 98 100
after 3 popped from heap

3 13 22 31 40 52 77 98 100
after 1 popped from heap

3 13 22 31 40 52 77 98 100

H<h<w<

images/00426.jpeg
// set hour value
void Time::setHour(int hour)
{
if (hour >= 0 & hour < 24)
this->hour = hour; // use this pointer to access data member
else
throw invalid_argument(“hour must be 0-23");
} // end function setHour

images/00668.jpeg
// Fig. 16.16: Figl6_16.cpp
// Lanbda expressions.
#include <iostream>
#include <array>

#include <algorithm>

using namespace std;

int mainQ)
{
const size_t SIZE = 4; // size of array values
array< int, SIZE > values = { 1, 2, 3, 4 }; // initialize values

// output each element multiplied by two
for_each(values.cbegin(), values.cend(),
[1Cdnt i) { cout << 1 * 2 << endl; });

int sum = 0; // initialize sum to zero
// add each element to sum
for_each(values.cbegin(), values.cend(),

21 [&sum JCdint i) { sum += 15 })3

23 cout << "sum is " << sum << endl; // output sum
24 } // end main

2
4
6
8
s

um is 10

images/00425.jpeg
33
34
35
36
37
38
39
40
41
42
43
4

int mainQ
{
Count counter; // create Count object

cout << "counter.x after instantiation: ";

counter.print(;

setX(counter, 8); // set x using a friend function
cout << "counter.x after call to setX friend function:
counter.print(Q;

} // end main

counter.x after instantiation: 0
counter.x after call to setX friend function: 8

images/00667.jpeg
SumSquaresClass< int > sumSquaresObject;
result = accumulate(integers.chegin(), integers.cend(),
0, sumSquaresObject);

images/00428.jpeg
29 // explicitly use the this pointer and the arrow operator

30 // to access the member x
31 cout << "\n this->x = " << this->x;

32

33 // explicitly use the dereferenced this pointer and
34 // the dot operator to access the member x

35 cout << "\n(this).x = " << (*this).x << endl;

36 } // end function print
37
38 dint mainQ

39 {

40 Test testObject(12); // instantiate and initialize testObject
41

42 testObject.print;

43 '} // end main

x =12
this->x = 12
12

C*this).x

images/00427.jpeg
// Fig. 9.23: fig09_23.cpp

// Using the this pointer to refer to object members.
#include <iostream>

using namespace std;

class Test

{

public:
explicit Test(int = 0); // default constructor
void print() const;

private:
int x;

}; // end class Test

// constructor
Test::Test(int value)
: x(value) // initialize x to value

{
// empty body
} // end constructor Test

// print x using implicit and explicit this pointers;
// the parentheses around *this are required
void Test::print() const

{

// implicitly use the this pointer to access the member x

cout << xXi= " << xi

images/00669.jpeg
en.cppreference.com/w/cpp/algorithm
msdn.microsoft.com/en-us/1ibrary/yahly2x8.aspx

images/00422.jpeg
25
26
27
28
29
30
31
32
33
34
35
36
37

cout << lastName << ", " << firstName << " Hired:
hireDate.print();
cout << " Birthday: ";
birthDate.print();
cout << endl;
} // end function print

// output Employee object to show when its destructor is called
Employee: :~Employee()
{

cout << "Employee object destructor: "

<< lastName << ", " << firstName << endl;
} // end ~Employee destructor

images/00664.jpeg
N -
85N aREtNTSor~Nauaun -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 16.15: figlé_15.cpp
// Demonstrating function objects.

#include <iostreams

#include <array> // array class-template definition
#include <algorithm> // copy algorithm

#include <numeric> // accumulate algorithm
#include <functional> // binary_function definition
#include <iterator> // ostream_iterator

using namespace std;

// binary function adds square of its second argument and the
// running total in its First argument, then returns the sum
int sunSquares(int total, int value)
{

return total + value * value;
3} // end function sumSquares

// Class template SumSquaresClass defines overloaded operator()
// that adds the square of its second argument and running
// total in dits first argument, then returns sum
template< typename T >
class SumSquaresClass
{
public:

// add square of value to total and return result

T operator()(const T &total, const T &value)

{

return total + value * value;

} // end function operator()

}; // end class SumSquaresClass

int main()

images/00421.jpeg
// Fig. 9.20: Employee.cpp
// Employee class member-function definitions.
#include <iostream>

#include "Employee.h” // Employee class definition
#include "Date.h” // Date class definition

using namespace std;

// constructor uses member initializer Tist to pass initializer
// values to constructors of member objects
Employee: :Employee(const string &first, const string &last,
const Date &dateOfBirth, const Date &dateOfHire)
: firstName(first), // initialize firstName
TastName(last), // initialize lastName
birthDate(dateOfBirth), // initialize birthDate
hireDate(dateOfHire) // initialize hireDate

// output Employee object to show when constructor is called
cout << "Employee object constructor: "
<< firstName << ' ' << TastName << endl;
} // end Employee constructor

// print Employee object
void Employee::print() const
K

images/00663.jpeg
25
26
27
28
29
30

auto result2 = minmax_element(items.cbegin(), items.cend()

cout << "\nThe minimum element in items is:
<< "\nThe maximum element in items is:
<< endl;
} // end main

<< *result2.first
<< *result2.second

The
The
The
The

The
The

Array items

The
The

of
of
of
of

12 and 7 i
12 and 7 i
'G' and 'Z' i
'G' and 'Z'

minimum
maximum
minimum
maximum

of
of

12 and 7 i
12 and 7 i

minimum
maximum

3 100 52 77 22 31 1 98 13 40
1
100

contains:
element in items is
element in items is:

minimum
maximum

images/00424.jpeg
//Fig. 9.22: fig09_22.cpp

// Friends can access private members of a class.
#include <iostream

using namespace std;

// Count class definition
class Count

{

friend void setX(Count &, int); // friend declaration
public:

// constructor

Count()

: x(0) // initialize x to 0
{

// empty body
} // end constructor Count

// output x

void print() const

{

cout << x << endl;

} // end function print
private:

int x; // data member
}; // end class Count

// function setX can modify private data of Count
// because setX is declared as a friend of Count (line 9)
void setX(Count &, int val)
{

c.x = val; // allowed because setX is a friend of Count
} // end function setX

images/00666.jpeg
array integers contains:
12345678910

Sum of squares of elements in integers using binary
function sumSquares: 385

Sum of squares of elements in integers using binary
function object of type SumSquaresClass< int >: 385

images/00423.jpeg
1
2
3
4
5
6
7
8
9

0
1"
12
13
14
15

16

// Fig. 9.21: fig09_21.cpp

// Demonstrating composition--an object with member objects.
#include <iostream>

#include "Date.h" // Date class definition

#include "Employee.h" // Employee class definition

using namespace std;

int main()
{
Date birth(7, 24, 1949);
Date hire(3, 12, 1988)
Employee manager("Bob",

"Blue”, birth, hire);

cout << endl;
manager.print(;
} // end main

Date object constructor for date 7/24/1949

Date object constructor for date 3/12/1988 s Sl e s oy
Employee object constructor: Bob Blue — —— calls whenan Employee is
constructed—two calls to the
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949 string class's constructor (lines
Employee object destructor: Blue, Bob 1251 01}z 920), tuo el the
Date object destructor for date 3/12/1988 Date class’s default copy
Date object destructor for date 7/24/1949 constructor (fines 14-15 of
Date object destructor for date 3/12/1988 Fig. 9.20) and the call to the

Date object destructor for date 7/24/1949 Empoyee class’s constructor.

images/00665.jpeg
33
34
35
36
37
38
39
40
a
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57

const size_t SIZE = 10;

array< int, SIZE > integers = { 1, 2, 3, 4
ostream_iterator< int > output(cout,

5, 6,7, 8,9, 10

cout << “array integers contains:\n";
copy(integers.chegin(), integers.cend(), output);

// calculate sum of squares of elements of array integers
// using binary function sumSquares
int result = accumulate(integers.cbegin(), integers.cend(),

0, sumSquares);

cout <

<<

"\n\nSum of squares of elements in integers using "
inary\nfunction sumSquares:

<< result;

// calculate sum of squares of elements of array integers

// using binary function object

result = accumulate(integers.cbegin(), integers.cendQ),

0, SumSquaresClass< int >());

cout << "\n\nSum of squares of elements in integers using "

<<

<< "SumSquaresClass< int >:
} // end main

inary\nfunction object of type

<< result << endl;

Y

images/00419.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
H
52
53
54
55
56
57
58

// output Date object to show when its destructor is called
Date: :~Date()
{

cout << "Date object destructor for date ";
printQ;
cout << endl;

} // end ~Date destructor

// utility function to confirm proper day value based on
// month and year; handles leap years, too
unsigned int Date::checkDay(int testDay) const
{
static const array< int, monthsPerYear + 1 > daysPerMonth =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

// determine whether testDay is valid for specified month
if (testDay > 0 && testDay <= daysPerMonth[month])
return testDay;

// February 29 check for leap year
if (month == 2 && testDay == 29 && (year % 400 == 0 ||
(year % 4 == 0 && year % 100 1= 0)))
return testDay;

throw invalid_argument("Invalid day for current month and year"
} // end function checkbay

images/00418.jpeg
e —
B E o nEGN-Com~ouswN -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 9.18: Date.cpp
// Date class member-function definitions.
#include <array>

#include <iostream>

#include <stdexcept>

#include "Date.h” // include Date class definition

using namespace std;

// constructor confirms proper value for month; calls
// utility function checkDay to confirm proper value for day
Date::Date(int mn, int dy, int yr)

ot
if (mn > 0 8 mn <= monthsPerYear) // validate the month
month = mn;
else

throw invalid_argument("month must be 1-12");

year = yr; // could validate yr
day = checkDay(dy); // validate the day

// output Date object to show when its constructor is called
cout << "Date object constructor for date
printQ;
cout << endl;
} // end Date constructor

// print Date object in form month/day/year
void Date::print() const
{

cout << month << '/' << day <<
} // end function print

/" << year;

images/00651.jpeg
31 copy(resultsl.cbegin(), resultsl.cend(), output);
32

33 vector< int > results2;

34

35 // copy elements of al into results2 in reverse order
36 reverse_copy(al.cbeginQ), al.cend(), back_inserter(results2));
37 cout << "\nAfter reverse copy, results2 contains: ";
38 copy(results2.cbegin(), results2.cend(), output);
39 cout << endl;

40 } // end main

array al contains: 1357913579

After inplace_merge, al contains: 1133557799

After unique_copy resultsl contains: 1357 9

After reverse_copy, results2 contains: 9977553311

images/00650.jpeg
// Fig. 16.9: figl6_09.cpp
// Algorithms inplace_merge, reverse_copy and unique_copy.
#include <iostream>

#include <algorithm> // algorithm definitions

#include <array> // array class-template definition
#include <vector> // vector class-template definition
#include <iterator> // back_inserter definition

using namespace std;

int mainQ

{

const int SIZE = 1
array< int, SIZE >al=1{ 1, 3, 5, 7,
ostream_iterator< int > output(cout,

cout << "array al contains: “;
copy(al.cbegin(), al.cend(), output);

// merge first half of al with second half of al such that
// al contains sorted set of elements after merge
inplace_merge(al.begin(), al.begin() + 5, al.end());

cout << "\nAfter inplace_merge, al contains: ";
copy(al.cbegin(), al.cend(), output);

vector< int > resultsl;

// copy only unique elements of al into resultsl

unique_copy(al.cbegin(), al.cend(), back_inserter(resultsl));

cout << "\nAfter unique_copy resultsl contains: ";

images/00415.jpeg
// Fig. 9.15: fig09_15.cpp

1
2 // Demonstrating that class objects can be assigned

3 // to each other using default memberwise assignment.

4 #include <iostream>

5 #include "Date.h” // include definition of class Date from Date.h
6 using namespace std;

7

8 dint main()

9 {

10 Date datel(7, 4, 2004);

1" Date date2; // date2 defaults to 1/1/2000

12

13 cout << "datel = ";

14 datel.printQ;

15 cout << "\ndate2 = ";

16 date2.printQ;

17

18 date2 = datel; // default memberwise assignment

19

20 cout << "\n\nAfter default memberwise assignment, date2 = ";
21 date2.printQ;

22 cout << endl;

23} // end main

datel
date2

7/4/2004
1/1/2000

After default memberwise assignment, date2 = 7/4/2004

images/00657.jpeg
Array a contains:
2244466668

Lower bound of 6 is element 5 of array a
Upper bound of 6 is element 9 of array a
Using equal_range:
Lower bound of 6 is element 5 of array a
Upper bound of 6 is element 9 of array a

Use lower_bound to Tocate the first point
at which 5 can be inserted in order
Lower bound of 5 is element 5 of array a

Use upper_bound to Tocate the Tast point
at which 7 can be inserted in order
Upper bound of 7 is element 9 of array a

Use equal_range to locate the first and

last point at which 5 can be inserted in order
Lower bound of 5 is element 5 of array a
Upper bound of 5 is element 5 of array a

images/00414.jpeg
NeGEGNZSve~NausuUN—-

// Fig. 9.14: Date.cpp

// Date class member-function definitions.

#include <iostream>

#include "Date.h” // include definition of class Date from Date.h
using namespace std;

// Date constructor (should do range checking)
Date::Date(int m, int d, int y)
: month(m), day(d), year(y)
&
} // end constructor Date

// print Date in the format mm/dd/yyyy
void Date::print(Q)
{
cout << month << '/' << day << '/' << year;
} // end function print

images/00656.jpeg
33
34
35
36
37
38
39
40
a4
42
3
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60

<< (eq.first - a.cbegin()) << " of array a'
cout << "\n Upper bound of 6 is element "
<< (eq.second - a.cbegin()) << " of array a";
cout << "\n\nUse lower bound to locate the first point\n
<< "at which 5 can be inserted in order";

// determine Tower-bound insertion point for 5 in a
Tower = Tower_bound(a.cbegin(), a.cend®, 5);
cout << "\n Lower bound of 5 is element "
<< (Tower - a.cbegin()) << " of array a";
cout << "\n\nUse upper_bound to Tocate the last point\n"
<< "at which 7 can be inserted in order";

// determine upper-bound insertion point for 7 in a
upper = upper_bound(a.cbegin®), a.cend(), 7);
cout << "\n Upper bound of 7 is element "
<< (upper - a.cbegin()) << " of array a
cout << "\n\nUse equal_range to locate the first and\n"
<< "last point at which 5 can be inserted in order";

// use equal_range to determine both the Tower- and
// upper-bound insertion points for 5
eq = equal_range(a.cbegin(), a.cend(, 5);
cout << "\n_ Lower bound of 5 is element "
<< (eq.first - a.chegin()) << " of array a";
cout << "\n Upper bound of 5 is element "
<< (eq.second - a.cbegin()) << " of array a" << endl;
} // end main

images/00417.jpeg
// Fig. 9.17: Date.h

// Date class definition; Member functions defined in Date.cpp
#ifndef DATE H

#define DATE H

class Date
{
public:
static const unsigned int monthsPerYear = 12; // months in a year
explicit Date(int = 1, int = 1, int = 1900); // default constructor
void print() const; // print date in month/day/year format
~Date(); // provided to confirm destruction order
private:
unsigned int month; // 1-12 (January-December)
unsigned int day; // 1-31 based on month
unsigned int year; // any year

// utility function to check if day is proper for month and year
unsigned int checkDay(int) const;
}; // end class Date

#endif

images/00659.jpeg
33
34
35
36
37
38
39
40
41
22
43
4
45
46
a7
48
49
50
51
52
53
54
55
56

vector< int > v;

// place elements of array init into v and

// maintain elements of v in heap
for (size_t i = 0; i < SIZE; ++i)
{
v.push_back(init[i 1);
push_heap(v.begin(), v.end());

cout << "\nv after push_heap(init[" << i << "1):

copy(v.cbegin(), v.cend(), output);

} // end for

cout << endl;

// remove elements from heap in sorted order
for (sizet j =0; j <v.sizeQ; ++j)

{

cout << "\nv after " << v[0] <<
pop_heap(v.begin®, v.end® - j
copy(v.cbegin(Q), v.cendQ, output

} // end for

cout << endl;
} // end main

popped from heap\n";

images/00416.jpeg
// Fig. 9.16: fig09_16.cpp
// const objects and const member functions.
#include "Time.h" // include Time class definition

1

2

3

4

5 dint mainQ

6 {

7 Time wakeUp(6, 45, 0); // non-constant object
8 const Time noon(12, 0, 0); // constant object
9

10 // OBIECT MEMBER FUNCTION
" wakeUp.setHour(18); // non-const non-const
12

13 noon.setHour(12); // const non-const
14

15 wakeUp.getHour(); // non-const const

16

17 noon.getMinute(); // const const

18 noon. printUniversal(; // const const

19

20 noon.printStandard(); // const non-const

21} // end main

Microsoft Visual C+ compiler error messages:

C:\examples\ch09\Fig09_16_18\Fig09_18.cpp(13) : error C2662:
'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
"Time &'
Conversion Toses qualifiers
C:\examples\ch09\Fig09_16_18\Fig09_18.cpp(20) : error C2662:
"Time::printStandard’ : cannot convert 'this' pointer from 'const Time' to
"Time &
Conversion loses qualifiers

images/00658.jpeg
// Fig. 16.12: figl6_12.cpp

// Algorithms push_heap, pop_heap, make_heap and sort_heap.
#include <iostream>

#include <algorithm>

#include <array>

#include <vector>

#include <iterator>

using namespace std;

int mainQ)

{
const size_t SIZE = 10;

array< int, SIZE > init = { 3, 100, 52, 77, 22, 31, 1, 98, 13, 40 }
array< int, SIZE > a(init); // copy ini
ostream_iterator< int > output(cout,

cout << "Array a before make_heap:\n";
copy(a.cbegin(), a.cend(), output);

make_heap(a.begin(), a.end()); // create heap from array a
cout << "\Array a after make_heap:\n"
copy(a.cbegin(), a.cend(), output);

sort_heap(a.begin(), a.end()); // sort elements with sort_heap
cout << "\Array a after sort_heap:\n"

copy(a.cbegin(), a.cend(), output);

// perform the heapsort with push_heap and pop_heap
cout << "\n\nArray init contains: ";

copy(init.cbegin(), init.cend(), output); // display array init
cout << endl;

images/00411.jpeg
// Fig. 9.12: fig09_12.cpp
// Demonstrating a public member function that

// returns a reference to a private data member.
#include <iostream

#include "Time.h" // include definition of class Time
using namespace std;

int mainQ)

{

Time t; // create Time object

// initialize hourRef with the reference returned by badSetHour
int &hourRef = t.badSetHour(20); // 20 is a valid hour

cout << "Valid hour before modification: " << hourRef;
hourRef = 30; // use hourRef to set invalid value in Time object t
cout << "\nInvalid hour after modification: " << t.getHour(Q);

// Dangerous: Function call that returns
// a reference can be used as an Ivalue!
t.badSetHour(12) = 74; // assign another invalid value to hour

cout << "\n\ "

<< "t.badSetHour(12) as an 1value, invalid hour:

images/00653.jpeg
33
34
35
36
37
38
39
40
a1

42
43
44
45
46
a7
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63

cout << "\nal includes a3";
else
cout << "\nal does not include a3";

array< int, SIZEL > difference;

// determine elements of al not in a2

auto resultl = set_difference(al.cbegin(), al.cendQ,
a2.chegin(), a2.cend0), difference.begin());

cout << "\n\nset_difference of al and a2 is: ";

copy(difference.begin(), resultl, output);

array< int, SIZEl > intersection;

// determine elements in both al and a2
auto result2 = set_intersection(al.cbegin(), al.cend(),

a2.cbegin(), a2.cend(), intersection.begin()
cout << "\n\nset_intersection of al and a2 i
copy(intersection.begin(), result2, output

array< int, SIZE1l + SIZE2 > symmetric_difference;

// determine elements of al that are not in a2 and

// elements of a2 that are not in al

auto result3 = set_symmetric_difference(al.cbegin(), al.cend(),
a3.chegin(), a3.cend(), symmetric_difference.beginQ);

cout << "\n\nset_symmetric_difference of al and a3 i

copy(symmetric_difference.begin(), result3, output

array< int, SIZE3 > unionSet;

images/00410.jpeg
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45

// return hour value
unsigned int Time::getHour ()
{

return hour;
} // end function getHour

// poor practice: returning a reference to a private data member.
unsigned int &Time::badSetHour(int hh)

{
if (hh >= 0 & hh < 24)
hour = hh;
else

throw invalid_argument("hour must be 0-23");

return hour; // dangerous reference return
} // end function badSetHour

images/00652.jpeg
// Fig. 16.10: figl6_10.cpp

// Algorithms includes, set_difference, set_intersection,
// set_symmetric_difference and set_union.

#include <iostream>

#include <array>

#include <algorithm> // algorithm definitions

#include <iterator> // ostream_iterator

using namespace std;

int mainQ)

{
const size_t SIZE1l = 10, SIZE2 =

5,
array< int, SIZEl > al = { 1, 2, 3,
array< int, SIZE2 > a2 = { 4, 5, 6,
array< int, SIZE2 > a3 = { 4, 5, 6,
ostream_iterator< int > output(cout,

cout << "al contains: ";
copy(al.cbegin(), al.cend(), output); // display array al
cout << "\na2 contains: ";
copy(a2.cbegin(), a2.cend(), output); // display array a2
cout << "\na3 contains 5

copy(a3.cbegin(), a3.cend(), output); // display array a3

// determine whether a2 is completely contained in al

if (includes(al.cbegin(), al.cend(), a2.cbegin(), a2.cend()))

cout << "\n\nal includes a2";
else
cout << "\n\nal does not include a2";

// determine whether a3 is completely contained in al

if (includes(al.cbegin(), al.cend(), a3.cbegin(), a3.cend()))

images/00413.jpeg
T . T
BEsNanitNSor~Nauaun -

// Fig. 9.13: Date.h
// Date class declaration. Member functions are defined in Date.cpp.

// prevent multiple inclusions of header
#ifndef DATE H
#define DATE H

// class Date definition
class Date
4
public:
explicit Date(int = 1, int = 1, int = 2000); // default constructor
void printQ;
private:
unsigned int month;
unsigned int day;
unsigned int year;
}; // end class Date

#endif

images/00655.jpeg
BN UsWN=

°

0
1

13
14
5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// Fig. 16.11: figl6_11.cpp
// Algorithms Tower_bound, upper_bound and

// equal_range for a sorted sequence of values.
#include <iostream>

#include <algorithm> // algorithm definitions
#include <array> // aray class-template definition
#include <iterator> // ostream_iterator

using namespace std;

int mainQ)

{
const size_t SIZE = 10;
array< int, SIZE > a={2, 2, 4, 4, 4, 6, 6, 6, 6, 8 };
ostream_iterator< int > output(cout, "

cout << "array a contains:\n";
copy(a.cbegin(), a.cend(), output);

// determine lower-bound insertion point for 6 in a
auto Tower = Tower_bound(a.cbegin(®), a.cend(), 6);
cout << "\n\nLower bound of 6 is element "

<< (lower - a.chegin®)) << " of array a";

// determine upper-bound insertion point for 6 in a
auto upper = upper_bound(a.cbeginQ), a.cend(), 6);
cout << "\nUpper bound of 6 is element "

<< (upper - a.cbegin®) << " of array a";

// use equal_range to determine both the Tower- and
// upper-bound insertion points for 6
auto eq = equal_range(a.cbegin(), a.cend(), 6);

Cout << "\nUsing equal_range:\n Lower bound of & is.element ™

images/00412.jpeg
26 << t.getHour()
27 << "\n << endl;
28} // end main

Valid hour before modification: 20
Invalid hour after modification: 30

POOR PROCRAMMINC PRACTICE!
T badSetHour‘(12) as an Tvalue

“invalid hour: 74

images/00654.jpeg
64 // determine elements that are in either or both sets

65 auto result4 = set_union(al.cbegin(), al.cendQ),
66 a3.cbegin(), a3.cend(), unionSet.begin());
67 cout << "\n\nset_union of al and a3 is: ";

68 copy(unionset.begin(), resultd, output);

69 cout << endl;

70} // end main

al contains: 123456789 10
a2 contains: 4 56 7 8
a3 contains: 4 5 6 11 15

al includes a2
al does not include a3

set_difference of al and a2 is: 12 3 9 10
set_intersection of al and a2 is: 4 56 7 8
set_symmetric_difference of al and a3 is: 1237 8 9 10 11 15

set_union of al and a3 is: 1234567 8 9 10 11 15

images/00408.jpeg
// Fig. 9.10: Time.h
// Time class declaration.
// Member functions defined in Time.cpp

// prevent multiple inclusions of header
#ifndef TIME H
#define TIME H

class Time
{
public:
explicit Time(int = 0, int = 0, int =0);
void setTime(int, int, int);
unsigned int getHour() const;
unsigned int &badSetHour(int); // dangerous reference
private:
unsigned int hour;
unsigned int minute;
unsigned int second;
}; // end class Time

#endif

return

images/00407.jpeg
33 } // end function create

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS
Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS

Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION: EXECUTION ENDS
Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION: EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS

Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)
Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

images/00649.jpeg
vector< int > results2;
merge(al.begin(), al.end(), a2.begin(), a2.end(),
back_inserter(results2)

images/00409.jpeg
// Fig. 9.11: Time.cpp

// Time class member-function definitions.

#include <stdexcept>

#include "Time.h" // include definition of class Time
using namespace std;

// constructor function to initialize private data; calls member function
// setTime to set variables; default values are 0 (see class definition)
Time::Time(int hr, int min, int sec)

{

setTime(hr, min, sec);
} // end Time constructor

// set values of hour, minute and second
void Time::setTime(int h, int m, int s)
{

// validate hour, minute and second

if (Ch 0& h<24)8 (m>=02& m<60) &
(s> 08 s <60))
{
hour =
minute
second
} // end if
else

throw invalid_argument(
"hour, minute and/or second was out of range");
} // end function setTime

images/00640.jpeg
al before random_shuffle: 123456789 10
al after random_shuffle: 9 2 10 3 5

a2 contains: 100 2 8 1 50 3 8 8 9 10
Number of elements matching 8: 3
Number of elements greater than 9: 3

Minimum element in a2 is: 1
Maximum element in a2 is: 100

The minimum and maximum elements in a2 are 1 and 100, respectively
The total of the elements in al is: 55

The square of every integer in al is:
814100 9 1 36 64 16 25 49

The cube of every integer in al is:
729 8 1000 27 1 216 512 64 125 343

images/00404.jpeg
// Fig. 9.7: CreateAndDestroy.h
// CreateAndDestroy class definition.

// Member functions defined in CreateAndDestroy.cpp.
#include <string>

using namespace std;

#ifndef CREATE H
#define CREATE_H

class CreateAndDestroy
{
public:
CreateAndDestroy(int, string); // constructor
~CreateAndDestroy(); // destructor
private:
int objectID; // TD number for object
string message; // message describing object
}; // end class CreateAndDestroy

#endif

images/00646.jpeg
27

28 // swap elements in first five elements of array a with
29 // elements in last five elements of array a

30 swap_ranges(a.begin(), a.begin(O + 5, a.beginQ + 5);

31

32 cout << "\nArray a after swapping the first five elements\n"
33 << "with the last five elements:\n ";

34 copy(a.cbegin(), a.cend(), output);

35 cout << endl;

36} // end main

Array a contains:
12345678910

Array a after swapping a[0] and a[l] using swap:
21345678910

Array a after swapping a[0] and a[1] using iter_swap:
12345678910

Array a after swapping the first five elements

with the last five elements:
67891012345

images/00403.jpeg
Tim

{

} // end constructor with no arguments
Time: :Time(int hour)
: TimeC hour, 0, 0) // delegate to Time(int, int, int)

Time()
Time(0, 0, 0) // delegate to Time(int, int, int)

{
} // end constructor with one argument

Time::Time(int hour, int minute)
: Time(hour, minute, 0) // delegate to Time(int, int, int)
{

} // end constructor with two arguments

images/00645.jpeg
// Fig. 16.7: figl6_07.cpp

// Mlgorithms iter_swap, swap and swap_ranges.
#include <iostream>

#include <array>

#include <algorithm> // algorithm definitions
#include <iterator>

using namespace std;

int main()

1

const size_t SIZE = 10;
array< int, SIZE >a=1{1, 2, 3, 4,5, 6, 7, 8, 9, 10 };
ostream_iterator< int > output(cout,)

cout << "Array a contains:\n ";
copy(a.cbegin(), a.cend(), output); // display array a

swap(a[0], a[1]); // swap elements at locations 0 and 1 of a

cout << "\nArray a after swapping a[0] and a[1] using swap:\n i
copy(a.cbegin(Q), a.cendQ), output); // display array a

// use iterators to swap elements at locations 0 and 1 of array a
iter_swap(a.begin(), a.beginQ + 1); // swap with iterators
cout << "\nArray a after swapping a[0] and a[l] using iter_swap:\n
copy(a.chegin(), a.cend(), output);

images/00406.jpeg
N -
85I oniUN-CorNausun—

22
23
24
25
26
27
28
29
30
31
32

// Fig. 9.9: fig09_09.cpp

// Order in which constructors and

// destructors are called.

#include <iostream>

#include "CreateAndDestroy.h" // include CreateAndDestroy class definition
using namespace std;

void create(void); // prototype
CreateAndDestroy first(1, "(global before main)"); // global object

int main()

{
cout << "\nMAIN FUNCTION: EXECUTION BEGINS" << endl;

CreateAndDestroy second(2, “(local automatic in main)");
static CreateAndDestroy third(3, "(local static in main)");

create(); // call function to create objects

cout << "\nMAIN FUNCTION: EXECUTION RESUMES" << endl;
CreateAndDestroy fourth(4, "(local automatic in main)");
cout << "\nMAIN FUNCTION: EXECUTION ENDS" << endl;

} // end main

// function to create objects

void create(void)

{
cout << "\nCREATE FUNCTION: EXECUTION BEGINS" << endl;
CreateAndDestroy fifth(5, "(local automatic in create)"
static CreateAndDestroy sixth(6, "(local static in create)”);
CreateAndDestroy seventh(7, "(local automatic in create)");
cout << "\nCREATE FUNCTIO! EXECUTION ENDS" << endl;

images/00648.jpeg
33

34 cout << "\n\nAfter merge of al and a2 results2 contains: ";
35 copy(results2.cbegin(), results2.cend(), output);

36

37 // eliminate duplicate values from results2

38 auto endlocation = unique(results2.begin(), results2.end());
39

40 cout << "\n\nAfter unique results2 contains:

41 copy(results2.begin(), endLocation, output);

42

43 cout << "\n\narray al after reverse: ";

44 reverse(al.begin(), al.endO)); // reverse elements of al
45 copy(al.cbeginQ), al.cend(), output);

46 cout << endl;

47 '} // end main

array al contains: 13 5
array a2 contain 5

1 9
24 9

Soa~

After copy_backward, results contains: 1357 9
After merge of al and a2 results2 contains: 1234557799
After unique results2 contains: 123457 9

array al after reverse: 97 53 1

images/00405.jpeg
// Fig. 9.8: CreateAndDestroy.cpp
// CreateAndDestroy class member-function definitions.
#include <iostream>

#include "CreateAndDestroy.h"// include CreateAndDestroy class definition

using namespace std;

// constructor sets object's ID number and descriptive message

CreateAndDestroy: :CreateAndDestroy(int ID, string messageString)

: objectID(ID), message(messageString)
{

cout << "Object " << objectID << " constructor runs
<< message << endl;
} // end CreateAndDestroy constructor

// destructor
CreateAndDestroy: :~CreateAndDestroy ()
{
// output newline for certain object:
cout << (objectID == 1 || objectID

helps readability
67 "z Y

cout << "Object " << objectID << * destructor runs
<< message << endl;

} // end ~CreateAndDestroy destructor

images/00647.jpeg
T
B s SaniEtN-com~ouswN -

22
23
24
25
26
27
28
29
30
31
32

// Fig. 16.8: figl6_08.cpp

// Mgorithms copy_backward, merge, unique and reverse.
#include <iostream>

#include <algorithm> // algorithm definitions

#include <array> // array class-template definition
#include <iterator> // ostream_iterator

using namespace std;

int main()

{

const size_t SIZE = §5;

array< int, SIZE > al ={ 1, 3, 5, 7, 9 };
array< int, SIZE > a2 ={2, 4,5, 7,91};
ostream_iterator< int > output(cout, " ");

cout << "array al contains:
copy(al.cbegin(), al.cend(), output); // display al

cout << "\narray a2 contains: ";
copy(a2.cbegin(), a2.cend(), output); // display a2

array< int, SIZE > results;

// place elements of al into results in reverse order
copy_backward(al.cbegin(), al.cend(), results.end());
cout << "\n\nAfter copy _backward, results contains:
copy(results.cbegin(), results.cend(), output);

array< int, SIZE + SIZE > results2;

// merge elements of al and a2 into results2 in sorted order
merge(al.cbegin(), al.cend(), a2.chbegin(), a2.cend(,
results2.begin());

images/00400.jpeg
Time t2{ 2 }; // hour specified; minute and second defaulted
Time t3{ 21, 34 }; // hour and minute specified; second defaulted
Time t4{ 12, 25, 42 }; // hour, minute and second specified

images/00642.jpeg
33
34
35
36
37
38
39
40
a
42
43
44
45
46
a7
48
49
50
H
52
53
54
55
56
57
58
59
60
61
62
63
64
65

else // 100 not found
cout << "\n100 not found";

// locate first occurrence of value greater than 10 in a
Tocation = find_if(a.cbegin(), a.cend(), greater10);

if (location != a.cendQ)) // found value greater than 10
cout << "\n\nThe first value greater than 10 is " << *location
<< "\nfound at location " << (location - a.cbeginQ);
else // value greater than 10 not found
cout << "\n\nNo values greater than 10 were found";

// sort elements of a

sort(a.beginQ, a.end());

cout << "\nm\narray a after sort: ";
copy(a.cbegin(), a.cend(), output);

// use binary_search to locate 13 in a

if (binary_search(a.cbegin(), a.cend, 13))
cout << "\n\n13 was found in a";

else
cout << "\n\nl13 was not found in a";

// use binary_search to Tocate 100 in a

if (binary_search(a.cbegin(), a.cend(), 100))
cout << "\nl00 was found in a";

else
cout << "\n100 was not found in a";

// determine whether all of the elements of a are greater than 10
if (all_of(a.cbeginQ, a.cend(), greaterl0))

cout << "\n\nAll the elements in a are greater than 10";
else

images/00641.jpeg
// Fig. 16.6: figl6_06.cpp
// Standard Library search and sort algorithms.
#include <iostream>

#include <algorithm> // algorithm definitions
#include <array> // array class-template definition
#include <iterator>

using namespace std;

bool greater10(int value); // predicate function prototype

int mainQ)

{

const size_t SIZE = 10;
array< int, SIZE > a = { 10, 2, 17, 5, 16, 8, 13, 11, 20, 7 };
ostream_iterator< int > output(cout,

cout << "array a contains: ";
copy(a.cbegin(Q), a.cend(), output); // display output vector

// locate first occurrence of 16 in a
auto Tocation = find(a.cbegin(), a.cend), 16);

if (location != a.cend()) // found 16
cout << "\n\nFound 16 at location "
else // 16 not found
cout << "\n\nl6 not found";

// Tlocate first occurrence of 100 in a
Tocation = find(a.cbegin(), a.cend(), 100);

if (location != a.cend() // found 100
cout << "\nFound 100 at location "

<< (Tocation - a.cbegin®);

<< (location - a.cbeginQ)

images/00402.jpeg
Time(); // default hour, minute and second to O

Time(int); // initialize hour; default minute and second to 0
Time(int, int); // initialize hour and minute; default second to
0

Time(int, int, int); // initialize hour, minute and second

images/00644.jpeg
array a contains: 10 2 17 5 16 8 13 11 20 7

Found 16 at location 4
100 not found

The first value greater than 10 is 17
found at Tocation 2

array a after sort: 2 57 8 10 11 13 16 17 20

13 was found in a
100 was not found in a

Some elements in a are not greater than 10
Some of the elements in a are greater than 10
Some of the elements in a are greater than 10

The first value not greater than 10 is 2
found at location O

images/00401.jpeg
Time t2 = { 2 }; // hour specified; minute and second defaulted
Time t3 = { 21, 34 }; // hour and minute specified; second defaulted
Time t4 = { 12, 25, 42 }; // hour, minute and second specified

images/00643.jpeg
66
67
68
69
70
{1

72
3
74
75
76
7
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96

cout << "\n\nSome elements in a are not greater than 10";

// determine whether any of the elements of a are greater than 10
if (any_of(a.cbegin(), a.cend(), greaterl0))

cout << "\n\nSome of the elements in a are greater than 10";
else

cout << "\n\nNone of the elements in a are greater than 1

// determine whether none of the elements of a are greater than 10
if (none_of(a.cbegin(), a.cend(), greaterl0))

cout << "\n\nNone of the elements in a are greater than 1
else

cout << "\n\nSome of the elements in a are greater than 10";

// locate first occurrence of value that's not greater than 10 in a
Tocation = find_if_not(a.cbegin(), a.cend(), greaterld);

if (location != a.cend()) // found a value Tless than or eqaul to 10
cout << "\n\nThe first value not greater than 10 is " << *location
<< "\nfound at location " << (Tlocation - a.cbegin());
else // no values less than or equal to 10 were found
cout << "\n\nOnly values greater than 10 were found";

cout << endl;
} // end main

// determine whether argument is greater than 10
bool greater10(int value)
{
return value > 10;
} // end function greater10

images/00639.jpeg
66 copy(cubes.cbegin(), cubes.cend(), output);
67 cout << endl;

68 } // end main

69

70 // determine whether argument is greater than 9
71 bool greater9(int value)

2 {

73 return value > 9;

74 } // end function greaterd
75

76 // output square of argument
77 void outputSquare(int value)

8 {

79 cout << value * value << ' ';
80 } // end function outputSquare
81

82 // return cube of argument

83 dint calculateCube(int value)
84 {

85 return value * value * value;
86 } // end function calculateCube

images/00638.jpeg
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
H
52
53
54
55
56
57
58
59
60
61
62
63
64
65

cout << "\nNumber of elements matching 8:

// count number of elements in a2 that are greater than 9
result = count_if(a2.cbegin(), a2.cend(), greater9);
<< result;

cout << "\nNumber of elements greater than 9:

// locate minimum element in a2
cout << "\n\nMininum element in a2 is:
<< *(min_element(a2.cbegin(), a2.cend®)));

// locate maximum element in a2
cout << "\nMaximum element in a2 is:
<< *(max_element(a2.cbegin(), a2.cendQ));

// locate minimum and maximum elements in a2
auto minAndMax

<< *minAndMax.first << "

<< ", respectively";

// calculate sum of elements in al

cout << "\n\nThe total of the elements in al is: "
<< accumulate(al.cbegin(), al.cend(), 0);

// output square of every element in al

cout << "\n\nThe square of every integer in al is:\n";

for_each(al.cbegin(), al.cend(), outputSquare);

array< int, SIZE > cubes; // instantiate cubes

// calculate cube of each element in al; place results in cubes
transform(al.cbegin(), al.cend(), cubes.begin(), calculateCube

cout << "\n\nThe cube of every integer in al is

<< result;

minmax_element(a2.cbegin(), a2.cend());
cout << "\nThe minimum and maximum elements in a2 are
and " << *minAndMax.second

images/00635.jpeg
33 cout << "\ncl after replacing all 10s in a2:\n H

34 copy(cl.cbeginQ), cl.cend(), output);

35

36 array< int, SIZE > a3(init); // initialize with copy of init
37 cout << "\n\na3 before replacing values greater than 9:\n ";
38 copy(a3.cbegin(), a3.cend(), output);

39

20 // replace values greater than 9 in a3 with 100

41 replace_if(a3.begin(), a3.end(), greater9, 100);

2 cout << "\na3 after replacing all values greater"

43 << "\nthan 9 with 100s:\n ";

44 copy(a3.cbegin(), a3.cend(), output);

45

46 array< int, SIZE > a4(init); // initialize with copy of init
41 array< int, SIZE > c2; // instantiate c2*

48 cout << "\n\na4 before replacing all values greater "

49 << "than 9 and copying:\n "

50 copy(ad4.cbegin(), a4.cend(), output);

51

52 // copy a4 to c2, replacing elements greater than 9 with 100
53 replace_copy_if(a4.cbeginQ), a4.cend(), c2.begin(), greater9, 100);
54 cout << "\nc2 after replacing all values greater than 9 in v4:\n ";
55 copy(c2.begin(), c2.end(), output);

56 cout << endl;

57} // end main

58

59 // determine whether argument is greater than 9
60 bool greater9(int x)

61 {

62 return x > 9;

63 } // end function greater9

images/00634.jpeg
// Fig. 16.4: figl6_04.cpp
// Algorithms replace, replace_if, replace_copy and replace_copy_if.
#include <iostream>

#include <algorithm>

#include <array>

#include <iterator> // ostream_iterator

using namespace std;

bool greater9(int); // predicate function prototype

int mainQ)
{
const size_t SIZE = 10;

array< int, SIZE > init = = { 10, 2, 10, 4, 16, 6, 14, 8, 12, 10 };
ostream_iterator< int > output(cout, " ");

array< int, SIZE > al(init); // initialize with copy of init

cout << "al before replacing all 10s:\n ";
copy(al.cbegin(), al.cend(), output);

// replace all 10s in al with 100
replace(al.begin(), al.end(), 10, 100);
cout << "\nal after replacing 10s with 100s:\n ";

copy(al.cbegin(), al.cend(), output);

array< int, SIZE > a2(init); // initialize with copy of init
array< int, SIZE > cl; // instantiate cl

cout << "\n\na2 before replacing all 10s and copying:\n ";
copy(a2.cbegin(), a2.cend(), output);

// copy from a2 to cl, replacing 10s with 100s
replace_copy(a2.cbegin(), a2.cend(), cl.begin(), 10, 100);

images/00637.jpeg
// Fig. 16.5: figl6_05.cpp
// Mathematical algorithms of the Standard Library.
#include <iostream>

#include <algorithm> // algorithm definitions
#include <numeric> // accumulate is defined here
#include <array>

#include <iterator>

using namespace std;

bool greater9(int); // predicate function prototype
void outputSquare(int); // output square of a value
int calculateCube(int); // calculate cube of a value

int mainQ)

{

const size_t SIZE = 10;
array< int, SIZE > al= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
ostream_iterator< int > output(cout, " ");

cout << "al before random_shuffle: ";
copy(al.cbegin(), al.cend(), output);

random_shuffle(al.beginQ), al.end()); // shuffle elements of al
cout << "\nal after random_shuffle: ";
copy(al.cbegin(), al.cend(), output);

array< int, SIZE > a2 = { 100, 2, 8, 1, 50, 3, 8, 8, 9, 10 };
cout << "\n\na2 contains: ";
copy(a2.cbegin(), a2.cend(), output);

// count number of elements in a2 with value 8
int result = count(a2.cbegin(), a2.cend(), 8);

images/00636.jpeg
al before replacing all 10s:
10 2 10 4 16 6 14 8 12 10

al after replacing 10s with 100s:
100 2 100 4 16 6 14 8 12 100

a2 before replacing all 10s and copying:
10 2 10 4 16 6 14 8 12 10

cl after replacing all 10s in a2:
100 2 100 4 16 6 14 8 12 100

a3 before replacing values greater than 9:
10 2 10 4 16 6 14 8 12 10
a3 after replacing all values greater
than 9 with 100s:
100 2 100 4 100 6 100 8 100 100

a4 before replacing all values greater than 9 and copying:
10 2 10 4 16 6 14 8 12 10

2 after replacing all values greater than 9 in a4:
100 2 100 4 100 6 100 8 100 100

images/00631.jpeg
e e S i
Be5NaniEtN-Com~ouswN-~—

22
23
24
25
26
27
28
29
30
31
32

// Fig. 16.3: figl6_03.cpp

// Algorithms remove, remove_if, remove_copy and remove_copy_if.

#include <iostream>

#include <algorithm> // algorithm definitions
#include <array> // array class-template definition
#include <iterator> // ostream_iterator

using namespace std;

bool greater9(int); // prototype

int mainQ

{

const size_t SIZE = 10;

array< int, SIZE > init = { 10, 2, 10, 4, 16, 6, 14, 8, 12, 10 };

ostream_iterator< int > output(cout, i

array< int, SIZE > al(init); // initialize with copy of init

cout << "al before removing all 10s:\n
copy(al.cbegin(), al.cend(), output);

// remove all 10s from al

auto newLastElement = remove(al.begin(), al.end(), 10);

cout << "\al after removing all 10s:\n ;
copy(al.begin(), newLastElement, output);

array< int, SIZE > a2 init); // initialize with copy of init

array< int, SIZE > ¢ = { 0 }; // initialize to Os
cout << "\n\a2 before removing all 10s and copying:\n
copy(a2.cbegin(), a2.cend(), output);

// copy from a2 to c, removing 10s in the process
remove_copy(a2.cbegin(), a2.cend(), c.begin(), 10);

images/00630.jpeg
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
a7
48 }

// check for mismatch between al and a3

auto Tocation = mismatch(al.cbegin(), al.cend(), a3.cbegin());

cout << "\nThere is a mismatch between al and a3 at location "
<< (_Tocation.first - al.begin()) << "\nwhere al contains
<< *Tocation.first << " and a3 contains " << *location.second
<< "\m\n";

char cl[SIZE] = "HELLO";
char c2[SIZE] = "BYE BYE";

// perform lexicographical comparison of c1 and c2
result = Texicographical_compare(

begin(c1), end(c1), begin(2), end(€2));
cout << cl << (result ? " is less than "

" is greater than or equal to ") << c2 << endl;
// end main

al contains: 123 4 5
a2 contains: 123 45
a3 contains: 12 3 4 1

al is
al is

There
where

HELLO

6 0
678910
000 6 7 8 9 10

equal to a2.
not equal to a3.

is a mismatch between al and a3 at location 4
al contains 5 and a3 contains 1000

is greater than or equal to BYE BYE

images/00633.jpeg
al before removing all 10s:
10 2 10 4 16 6 14 8 12 10

al after removing all 10s:
24166 14 8 12

a2 before removing all 10s and copying:
10 2 10 4 16 6 14 8 12 10

c after removing all 10s from a2:
2416614812000

a3 before removing all elements greater than 9:
10210 4 16 6 14 8 12 10

a3 after removing all elements greater than 9:
2468

a4 before removing all elements
greater than 9 and copying:

10 2 10 4 16 6 14 8 12 10
<2 after removing all elements
greater than 9 from a4:

2468000000

images/00632.jpeg
33
34
35
36
37
38
39
40
41
42
43
4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

cout << "\nc after removing all 10s from a2:\n
copy(c.cbegin(Q), c.cend(), output);

array< int, SIZE > a3(init); // initialize with copy of init
cout << "\n\na3 before removing all elements greater than 9:\n
copy(a3.cbegin(), a3.cend(), output);

// remove elements greater than 9 from a3
newLastElement = remove if(a3.begin(), a3.end(), greaterd);
cout << "\na3 after removing all elements greater than 9:\n
copy(a3.begin(), newLastElement, output);

array< int, SIZE > a4(init); // initialize with copy of init
array< int, SIZE > c2 = { 0 }; // initialize to 0s
cout << "\n\na4 before removing all elements"
<< "\ngreater than 9 and copying:\n ";
copy(ad.cbegin(), a4.cend(), output);

// copy elements from a4 to c2, removing elements greater
// than 9 in the process
remove_copy_if(ad.cbegin(), a4.cend(), c2.begin(), greaterd);
cout << "\nc2 after removing all elements”
<< "\ngreater than 9 from a4:\n ";
copy(c2.cbegin(), c2.cend(), output);
cout << endl;
} // end main

// determine whether argument is greater than 9
bool greater9(int x)
{
return x > 9;
} // end function greater9

images/00628.jpeg
template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,
Generator gen);

images/00627.jpeg
32
33
34
35
36
37
38
39
40
a1
42
43
4
45
46

// generate values for first five elements of chars with nextletter
generate_n(chars.begin(), 5, nextletter);

cout << "\n\nchars after generating K-O for the"
<< " first five elements:\n";
copy(chars.cbegin(), chars.cend(), output);
cout << endl;
} // end main

// generator function returns next letter (starts with A)
char nextletter()

{

static char Tetter = 'A’;
return letter++;
} // end function nextlLetter

chars after filling with S5s:

S5555555

chars after filling five elements with As:
AAAAAS55555

chars after generating letters A-]:
ABCDEFGHTI]

chars after generating K-0 for the first five elements:
KLMNOFGHI)

images/00629.jpeg
// Fig. 16.2: figl6_02.cpp

// Algorithms equal, mismatch and Texicographical_compare.
#include <iostream>

#include <algorithm> // algorithm definitions

#include <array> // array class-template definition
#include <iterator> // ostream_iterator

using namespace std;

int main()

{
const size_t SIZE = 10;
array< int, SIZE > al={1, 2, 3, 4, 5,6, 7, 8, 9, 10 };
array< int, SIZE > a2 al); // initializes a2 with copy of al
array< int, SIZE > a3 = { 1, 2, 3, 4, 1000, 6, 7, 8, 9, 10 };
ostream_iterator< int > output(cout,)

cout << "al contains: ";

copy(al.cbegin(), al.cend(), output);
cout << "\na2 contains: ";

copy(a2.cbegin(), a2.cend(), output);

cout << "\na3 contains: ";
copy(a3.cbegin(), a3.cend(), output);

// compare al and a2 for equality
bool result = equal(al.cbegin(), al.cend(), a2.cbeginQ J;
cout << "\m\al " << (result ? "is" : "is not")

<< " equal to a2.\n";

// compare al and a3 for equality
result = equal(al.cbegin(), al.cend(), a3.cbegin());
cout << "al " << (result ? "is" : "is not") << " equal to a3.\n

