

Ruby Beginner’s Crash Course

Beginner’s Guide to Ruby Programming, Ruby On Rails & Rails Programming

 Copyright 2015 – All rights reserved.

In no way is it legal to reproduce, duplicate, or transmit any part of this document in either electronic means or in printed format. Recording of this publication is strictly prohibited and any storage of this document is not allowed unless with written permission from the publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability, in terms of inattention or otherwise, by any usage or abuse of any policies, processes, or directions contained within is the solitary and utter responsibility of the recipient reader. Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

Legal Notice:

This book is copyright protected. This is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part or the content within this book without the consent of the author or copyright owner. Legal action will be pursued if this is breached.

Disclaimer:

Please note the information contained within this document is for educational and entertainment purposes only. Every attempt has been made to provide accurate, up to date and reliable complete information. No warranties of any kind are expressed or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice.

By reading this document, the reader agrees that under no circumstances are we responsible for any losses, direct or indirect, which are incurred as a result of the use of information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

Table of Contents

Introduction

Chapter 1 – What is Ruby?

Features

Implementations

Official Ruby interpreter

Rubinius & JRuby

Ruby – an inside look

Virtual machines

The Ruby virtual machine

Rubinius

JRuby

Chapter 2 – How to Use Ruby

Required knowledge

Required software

Chapter 3 – How to Install Ruby

Windows

Linux

Chapter 4 – Let’s Get Started

How your computer evaluates Ruby

Ruby objects

Ruby methods

Ruby classes

Ruby class instances

Chapter 5 – How Data Is Structured In Ruby

Variables

Local

Global

Constant

Class

Instance

How to use the different variable types

Ruby strings

Ruby collections

Arrays

Ruby iterators

Blocks

Ruby hashes

Symbols

The BEGIN statement

The END statement

Comments in Ruby

Chapter 6 – Input & Output Methods in Ruby

Reading input from the screen

Writing output to the screen

The chomp method

Chapter 7 – Conditional Structures in Ruby

If… else statements

The
 if
 modifier

The
 unless
 statement

The
 unless
 modifier

The
 case
 statement

Chapter 8 – Loops in Ruby

The
 while
 statement

The
 while
 modifier

The
 until
 statement

The
 until
 modifier

The
 for
 statement

The
 break
 statement

The
 next
 statement

The
 redo
 statement

The
 retry
 statement

Chapter 9 – Ruby Methods

Declaration & definition of methods

Return values of a method

The
 return
 statement

Variable number of parameters

Methods in a class

The
 alias
 statement

The
 undef
 statement

Chapter 10 – How to Write a Web Application Using Ruby on Rails

Installing the software

Installing the Bundler gem

Installing Rails

Creating the Rails app

A first look at Bundler & Gemfile

Run the development server

An introduction to MVC patterns and Rails

Add a bookmark resource

Database migration

The bookmark model

The bookmarks controller & views

Routes

Try the server

Adding users & authentication

Installing Devise

Generating a user model

Associating users & bookmarks

Requiring authentication for bookmark management

Try the server (again)

Handling wrong inputs

Model validations

When resources aren’t found

Making improvements a step at a time

Root page

Nicer GUI

Prettier forms

Chapter 11 – The Command Line in Rails

rails new

rails server

rails generate

rails console

The app and helper objects

rails runner

rails destroy

Chapter 12 – Useful Programs in Ruby

Print the reverse of a string

Find if a string is a palindrome

Generate the Fibonacci series

Find the factorial of a number

Find the second biggest number from an array

Conclusion

Introduction

Ruby is a computer programming language created in the 1990s by the Japanese programmer Matz, whose full name is Yukihiro Matsumoto. It was designed to make programming fun, and is one of the few computer languages that emphasize human comprehension over machine logic.

Ruby is fast becoming one of the most popular languages for developing web applications. Ruby on Rails, developed by David Heinemeier Hansson to work with Ruby, introduced more people to Ruby. Now, a language that may otherwise have remained unknown has a buzzing community of programmers. They welcome beginners and are focused on one thing – producing the highest quality code.

Many people perceive computer programming as difficult, but it really isn’t. It does require you to have a certain mindset, though, a real thirst for knowledge and learning. When you adopt this mindset, you will find that programming is not as frustrating as you might have feared. It can be fun, and successful programming is very rewarding, provided you possess enough patience to see you through.

I have written this book to give inexperienced people an overview of Ruby and Ruby on Rails. Applying the principles and the knowledge that you learn in this book will help you build a strong foundation in Ruby programming, enough to allow you to move on to more advanced programming.

Chapter 1 – What is Ruby?

Ruby stands alone as the most unique of the object-oriented computer scripting languages. In many of these languages, some things are not actually objects – but in Ruby
 absolutely everything
 is an object. For those who don’t know what an object is, think of it as similar to building a car. You have a blueprint, and if you follow it correctly, the object is the end product.

Matz designed Ruby to be easy for beginners yet powerful enough for more advanced programmers. This is possible because of the object-oriented nature of the language and the addition of carefully selected features from other languages.

Features

Ruby is not like other object-oriented programming languages such as C++ and Java, wherein not all things are objects. In C++ and Java, we need to create a class in order to create an object.

Ruby is one of the most popular “dynamic” programming languages. The other class of programming languages is called “static,” and to understand the difference you need to know a little about compile time and run time. When a program is written using a high level programming language, it needs to be translated into machine code (binary code) before it can be executed. This translation is called compilation and the duration of the process is called compile time. After they’re compiled, programs become executable, and users can run them in the form of applications. This running of applications is referred to as run time. During runtime, a dynamic programming language like Ruby exhibits several programming behaviors which static programming languages exhibit only during compile time.

Ruby is popularly used for creating web applications. It has a vast collection of libraries, like Rails, making it an ideal programming choice for web developers. The popular web application framework Ruby on Rails has been programmed using Ruby. This framework is popularly used by web developers to build web applications.

Ruby is also a scripting language. Web developers use scripting languages to control programs written in other languages. They do so by embedding scripts written in the scripting language into the program. Ruby as a scripting language has been used in Google Sketchup, a program that accepts 2D picture and converts them into 3D models. The Application Program Interface (API) of Google Sketchup is written using Ruby; the interface has been embedded into the program so that it controls the generated 3D models. Ruby may not be the easiest of scripting languages for embedding, but it’s still prominent as a proper scripting language for the completeness of its features.

Ruby can be downloaded free of cost. There are no trial versions; the complete version of the software can be downloaded freely and used for personal or commercial purposes. Its official interpreter is available for free and so are several other interpreters that are used for different platforms. Most importantly, its source code can be viewed, modified and used by anyone who wishes to tailor the software to their own requirements.

Implementations

Official Ruby interpreter

Matz’s Ruby Interpreter (MRI) was Ruby’s official interpreter till version 1.8.The now-retired interpreter was written in C and employed a virtual machine specific to Ruby.

From version 1.9, YARV (Yet Another Ruby VM) has replaced MRI as the official interpreter of Ruby. This implementation is faster than the previous MRI interpreters, whose virtual machines were slower.

YARV is a virtual machine written in C language and comprises the following components:

	
A Stack Pointer(SP)

	
A Program Counter(PC)

	
Frame Pointers(FP)

YARV works by compiling Ruby code into an intermediate instruction set. This instruction set is specific to Ruby and is seen in no other programming language. YARV draws in many elements of old Ruby, like the Ruby parser, garbage collection, the technique of object management etc. This is because YARV is a module that was introduced as an extension for old Ruby.

Rubinius & JRuby

There are other implementations of the Ruby interpreter, including MacRuby and IronRuby. But the most popular alternate implementations of Ruby are Rubinius and JRuby, which can be described as follows:

	
Rubinius
 is a C++ implementation which currently aims at Ruby 2.1. Some part of the implementation was also written in Ruby. It is a bytecode compiler that can perform compilation over the machine code during runtime. It employs a LLVM (Low Level Virtual Machine) for compiling the machine code during runtime.

	
JRuby
 is a Java implementation that employs the Java Virtual Machine (JVM) and currently aims at Ruby 2.2.

Ruby – an inside look

Virtual machines

We have seen that different implementations of Ruby use different kinds of virtual machines. Now let’s examine in detail what a virtual machine is. A virtual machine forms the key portion of a typical Ruby interpreter. Simply put, a virtual machine is software that can be thought of as a virtual computer which works by following a set of predetermined commands.

A typical computer uses and executes assembly language commands for performing a specific task. These assembly language commands are translated into machine code (binary code), the only type of code a computer understands. A similar kind of behavior is emulated by a virtual machine, except that people who write the virtual machine software predetermine what kind of commands the machine can understand. These predetermined commands are called instructions.

It is not possible to derive these instructions from anything else; they are fundamental in nature. The Java Virtual Machine (JVM) uses different instructions for performing different tasks like addition, type conversion and memory storage. Putting together such fundamental instructions results in the generation of the bytecode, a code that is run by the virtual machine.

Now let’s see how a virtual machine works with the Ruby code. A Ruby program is saved using the .rb extension. For example, when we save a Ruby program with the name ruby_sampl.rb, it is not executed immediately. Firstly, the program undergoes conversion into the bytecode, which in turn undergoes interpretation.

You may wonder why the virtual machine is needed to run Ruby code. Why isn’t there a direct way to execute Ruby programs, without going through all of these bytecode conversions?

Firstly, the bytecode is a relatively smaller instruction set when compared to the actual Ruby instructions. Obviously, working with a smaller instruction set is simpler and easier, and also results in code optimization.

Secondly, the main advantage of generating a bytecode is that it is platform independent, which means it works on all platforms irrespective of the operating system or the hardware. This means Ruby can be run anywhere by implementing the virtual machine. Because of its portable nature, the Java Virtual Machine is by far the most popular virtual machine, employed by several other languages besides Java, like JRuby, Scala and Jython.

The Ruby virtual machine

When it comes to virtual machines, Ruby has kept on undergoing changes since its release. YARV had to be made the official interpreter of Ruby since the 1.9 version because the virtual machine of the old Ruby faced problems with optimization. Ruby, which was once thought be a very slow language, began gradually improving its performance with every version.

Let’s see how a Ruby code is converted into bytecode. The working of a compiler or an interpreter can be very interesting to learn, but gets quite theoretical as we delve deep into the details. Still, let’s try to get a basic idea of what happens internally. The conversion of the Ruby code into bytecode takes place in two parts:

Tokenizer

A Ruby interpreter like MRI scans the Ruby code and converts it into small individual units. These individual units are called tokens and the process is called tokenization. Tokenization is carried out by a program called a lexer. For instance, let us take a look at a simple line of arithmetic code (without quotes) as follows:

2+ (6 / 3)-(5)

The above line of code is converted by the lexer into individual units as follows:

NUMBER OPERATOR OPENPAREN NUMBER OPERATOR NUMBER CLOSEPAREN OPERATOR OPENPAREN NUMBER CLOSEPAREN

From the above line, we can see that there is a complete shift of focus after the conversion. The lexer has taken a group of characters (numbers in this case) and symbols as input and converted it into a group of units which tell what kind of input was being handled. Both 2 and 200 are evaluated as a NUMBER by the lexer; the main aim of the lexer is to give a general structure to a line of code. Now what happens to the tokens given out by the lexer?

Parsing

The tokens given out by the lexer undergo a process called parsing during which the tokens are converted into bytecode. The process of parsing is carried out by a program called a parser.

Let’s continue with the tokens obtained in the last section:

NUMBER OPERATOR OPENPAREN NUMBER OPERATOR NUMBER CLOSEPAREN OPERATOR OPENPAREN NUMBER CLOSEPAREN

From the above set of tokens, the parser looks for certain specific patterns and identifies the pattern NUMBER OPERATOR NUMBER before converting it into its corresponding bytecode. Similarly, it identifies other patterns, like OPENPAREN NUMBER CLOSEPAREN, and converts them into their associated bytecode. The resulting bytecode is put together and run on the virtual machine.

A typical Ruby interpreter carries out the above two stages in a fairly similar manner, wherein the tokens obtained are searched for certain patterns specifically and the identified patterns are converted into their corresponding bytecode.

However, the two phases are not as simple as portrayed in the example; they are much more complicated. The processes of lexing and parsing involve complex constructs like AST trees, but this simple example should give you a basic idea of how lexers and parsers work.

You might be thinking that a Ruby code always undergoes interpretation after reading all about how the Ruby interpreters work. However, the two popular Ruby implementations JRuby and Rubinius employ a compiler just like static programming languages like C.

What happens in these cases is that the Ruby code is first compiled into bytecode before getting executed. Let’s see how both Rubinius and JRuby operate on the Ruby code.

Rubinius

Rubinius compiles and executes the Ruby code in two steps:

	
In the first step, the Ruby code is compiled by the Rubinius compiler into Rubinius bytecode.

	
The next step takes place on the Rubinius virtual machine (written using C++ and Ruby). In this step, the Rubinius bytecode obtained from the previous step is compiled into the machine code, by the Rubinius JIT (Just In Time) compiler.

The two steps can be illustrated using the following diagram:

[image: Description: Rubinius compiler]

JRuby

Just like Rubinius, Jruby also carries out two steps – one for converting the Ruby code into bytecode, and the other for converting the bytecode into machine code. We can say that these two steps are common to both Rubinius and JRuby; the only difference is that Rubinius uses the Rubinius virtual machine in the second step, whereas JRuby uses the Java Virtual Machine for the task.

The following diagram illustrates the two steps that take place when JRuby is used:

[image: Description: JRuby compiler]

The Rubinius bytecode is much simpler and easier to understand than the Java bytecode generated in JRuby, which comes off as complicated and cryptic.

Chapter 2 – How to Use Ruby

Ruby is used in many scripting applications, like middleware programs and text processing. It is good for small tasks and using Ruby to write a program is dead simple – it follows a similar to path to BASIC in writing the type of program that follows a sequence of events.

The expressions in Ruby are topnotch, which helps make text processing scripts easy to write. The syntax is flexible, which stops you from getting bogged down in heavy and cumbersome code. And it is also highly usable for larger systems – Ruby on Rails is a perfect example, containing at least five major subsystems and loads of minor systems and support scripts, as well as libraries and database backends.

Required knowledge

To learn and understand Ruby you need to have:

	
An understanding of the concepts of object-oriented programming

After all, Ruby is all about the objects, and if you don’t have a basic understanding of them, you will struggle to use Ruby for programming.

	
A little knowledge of functional programming

If you don’t have this knowledge, it isn’t too much of a problem, but it will help if you do, because Ruby uses blocks quite extensively. You can learn how to create blocks while you are learning to use Ruby, but it is best to have some prior knowledge.

	
A bit of knowledge about navigation

The first method of running Ruby scripts is using the command line, and knowing how to run scripts, navigate directories and redirect inputs and outputs is essential to learning how to use Ruby to its full extent.

Required software

You will need to have:

	
The Ruby interpreter

	
A text editor – Notepad++ is the best one to use. Word processors like WordPad and MS Word aren’t suitable.

	
Access to the command line. This will be different depending on which platform you use, but the major platforms all have this built in.

Chapter 3 – How to Install Ruby

Windows

To install Ruby on your Windows PC:

	
Open http://rubyinstaller.org

	
Click on Downloads

	
Choose the version of Ruby you want and click on it to download the installer.

	
Run the installer and follow the on-screen directions. Make sure all boxes are checked if you only intend to run one version of Ruby; otherwise, it will not be available for you to use in the command line and it will not be associated with any .rb or .rbw files.

Now you can open your Start menu and see what has been added. You should see:

	
Interactive Ruby – This is IRB in the standard command line window.

	
RubyGems Document Server – This will allow the gem server command to be run for the version you downloaded.

	
Start Command Prompt with Ruby – you can us this to start a command prompt.

	
Documentation – This is the help file format for Ruby API documentation and a PDF version of The Book of Ruby.

Linux

Ruby is usually preinstalled on Linux distributions, but if you are not sure you can follow these steps to find out if it is:

	
Open a terminal window, sometimes called shell or bash shell.

	
Type in and run the command
 which ruby
 .

	
If you get a path that says something like /usr/bin/ruby, it is installed – if you don’t get anything like that, it isn’t.

	
If you want to make sure you have a current version, type in and run the command
 ruby –v
 .

	
Compare the number returned to the latest version on https://www.ruby-lang.org/en/downloads/. At the time of writing, the most up-to-date stable version is 2.2.2.

If you don’t have Ruby installed, use the downloads page to download and install the latest version. Once you have done that, you can install the Ruby packages:

	
Type in sudo apt-get install ruby1.8 ruby1.8-dev irb rdoc ri.

	
Open your text editor and input:

	

	
#!/usr/bin/env ruby

	
puts "Hello world!"

	
Save it as test rb.

	
In your terminal window, change the directory (using the cd command) to the one where you saved the test file.

	
Run the following command: - chmod +x test.rb.

	
Next, run this command: - ./test.rb. You should now see “Hello World!” displayed on your screen.

Ruby is now fully installed and ready for use.

Chapter 4 – Let’s Get Started

It’s time to start breaking Ruby down and seeing exactly what it can do and how to do it. I am going to walk you through each element of Ruby, giving code examples, and explain how it all works. So, without further ado, let’s get started.

How your computer evaluates Ruby

The Ruby interpreter is the part of the language that makes something out of other code you are writing. It reads your code from left to right, top to bottom, which means it starts at the first character of the first line and reads every character in every line, working its way down the code. If there are any errors in your code, the interpreter will stop in its tracks and pop up an error message. That message will normally tell you the line number where the error is.

Ruby objects

Objects are the heart of Ruby; all data in a Ruby program is manipulated on the basis that the data is an object. Everything is an object in Ruby – every operation, every variable, every single thing. Each object has its own characteristics, which are what makes it different and makes it behave differently from another object.

Ruby methods

A Ruby method is an action that is performed on an object. Ruby contains a number of built-in object methods and definitions, one of which is
 capitalize
 , used for the class strings (more about those later). An example:

	
Type in string1 = “this string is awesome”

	
Now add in the capitalize method:

	
Type in string1.capitalize

	
The output will read, “This string is awesome”.

The capitalize method tells Ruby that the first character of that string should be changed to uppercase.

Something else you may have noticed is the way in which a method is called. The method string1.capitalize is broken down as {{object name}}. {{method name}}. The object in this example is a string variable, and if you attempted to use the capitalize method on an object that was not a string, you would just get an error message.

Creating an object for any method is easy:

def method_name

#Enter code here

end

The # is telling the interpreter that the comment is for a human to read and it is to be ignored. The interpreter will ignore any line that begins with a #.

Ruby classes

A class is simply a blueprint, a set of plans that lets you create objects of a specific type and then create methods that relate to them. Classes have something else – a property called inheritance, which means exactly what you would expect it to mean – a relationship, say grandparents to grandchildren, in which you expect to receive something, or have inherited an attribute from a relative.

In Ruby, those principles are the same. Ruby contains parent, children and grandchildren classes. As a rule, a child class will inherit the attributes contained in a parent or grandparent class.

The grandparent class of a Ruby object is called a superclass, which means, if the object is a string, that object will inherit the properties contained in the string class. That then means that the parent class of a string is the string’s superclass.

There is something important that you must not miss here – the superclass of a string (a class that informs Ruby how strings are to be treated) is NOT the same as the superclass of a string object. An example of this:

num1 = "this is a string"

"this is a string"

num1.class

String

String.superclass

Object

Object.superclass

BasicObject

BasicObject.superclass

nil

All we have done here is set the local variable, num1, as a string. When we call out the class of the string, it shows that the class is String, and on checking, the superclass is Object. The following is an example of what would happen if we used num1.superclass:

num1 = "this is a string"

"this is a string"

num1.superclass

#<NoMethodError: undefined method `superclass' for "this is a string":String>

This doesn’t work because num1 is a variable object that inherited the properties from String, and because num1 is not a class it doesn’t have any superclass. The following example is an alternative way:

num1 = "this is a string"

"this is a string"

num1.class

String

num1.class.superclass

Object

num1.class.superclass.superclass

BasicObject

num1.class.superclass.superclass.superclass

nil

There is a reason why the final value is nil – the BasicObject does not have a parent and thus doesn’t inherit anything, so it can’t go any further. What we have done differently here is chained the methods, which means that we have carried on applying that method to the statement. And that is one more great thing about Ruby – every time it looks at something and evaluates it, it will return a copy of it and let you carry on evaluating. Take the last line of the above example:

num1.class.superclass.superclass.superclass

nil

What Ruby did was this:

	
What is num1 class? It is a string, so Ruby returns String.

	
What is String superclass? Because String is a child of the parent class object, Ruby returns Object.

	
Because Object is a child of the parent class BasicObject, Ruby returns BasicObject as the superclass.

	
Because BasicObject is not a child class of anything else, it has no superclass, which is why Ruby returns nil.

One line, one command. Very simple and very neat. The hierarchy of class inheritance is defined by classes and superclasses, so your next question should be, how do you define and use a class? Here’s how:

class MyClass

some code logic

end

That is all there is to it.
 Class
 is the opening keyword, and that is followed by your class name. Then there is a bit of code, and when that’s finished, you close it with another keyword,
 end
 . The keywords
 class
 and
 end
 should always be in lowercase – adding capitals will simply result in errors. If you want to use a parent class that you would like this new class to inherit properties from, define it as such:

class MyChildClass < MyClass

some code that is specific to the child class

end

The < operator is interpreted as meaning that the class on the right is the parent and that on the left is the child. Also, remember that class names should begin with an uppercase letter and if there is more than one word you use CamelCasing – instead of separating the words with a space, hyphen or underscore, you simply join the words together and start each one with a capital, i.e. CamelCasing.

Ruby class instances

Now you know how to create a class. Now think of a class as a recipe and that contains a list of the ingredients and the instructions for making a particular dish. Once you make that recipe, let’s say chocolate muffins for example, each muffin becomes an instance of the class. You create an instance like this:

muffin = ChocolateMuffin.new

Again, that is all there is to it. The only bit of this statement that creates the instance is ChocolateMuffin.new. To use an object, it has to be stored somewhere so we use muffin, which is a local variable. By doing this, you can reuse the instance.

Chapter 5 – How Data Is Structured In Ruby

Data manipulation is the core of any programming language. In order to help manipulate the data in a structured way, computer scientists came up with something called data structures. These are containers for specific data types. Words and formulas are handled differently, in the same way that letters and characters are handled differently from numbers in most cases.

Variables

Variables are the most basic container for data storage. The names of the variables must be unique to their scope. Let’s say you want to create a piece of a program that adds two numbers. You would have to set up one container for each number and then set the function that goes between the two numbers.

The reason for doing it this way is so that the user doesn’t have to make any changes to the source code whenever they want to do the calculation. In Ruby programming, each one of these containers is a variable, so you would have something like:

sum = num1 + num2

Instead of:

sum = 19 + 20

Most computer programming languages contain variables like Ruby. There is a wide range of different ones, though, so to avoid any confusion, I am going to go over some of the more common ones.

Local

This variable can only be used in a finite part of the program, like a method or a function. As soon as you come out of that particular part of the program, such a variable becomes obsolete and cannot be used again.

Global

Global variables can be used throughout the whole program and are not restricted to one specific area. This means that, once you have used them in a specific area, they are not destroyed and can be used elsewhere.

Constant

These are classed as “sacred” global variables. The value of such a variable remains constant for the entire life of the program unless you change it. If you do, you will get a warning message because Ruby doesn’t like this happening.

Class

Class variables are limited to the class in which they are defined at the start of the variable.

Instance

These variables are limited to just one instance of a class and are defined by the use of an @ at the start of the variable name.

How to use the different variable types

	
Local – Variable name should begin with an underscore or a lowercase letter.

	
Global – Variable name should begin with a $.

	
Constants – Variable should at least begin with an uppercase letter, and is normally written entirely in capitals.

	
Class – Tells how long the side of an object is in a class. An example would be @@length = 10 #.

	
Instance – Tells how long the side of a specific object is.

These rules are not comprehensive, and there are words that you simply can’t use as variable names. These are known as reserved words and they are used by Ruby to identify particular language elements. The reserved words are:

	
FILE

	
LINE

	
BEGIN

	
END

	
alias

	
and

	
begin

	
break

	
case

	
class

	
def

	
defined?

	
do

	
else

	
elsif

	
end

	
ensure

	
false

	
for

	
if

	
in

	
module

	
next

	
nil

	
not

	
or

	
redo

	
rescue

	
retry

	
return

	
self

	
super

	
then

	
true

	
undef

	
unless

	
until

	
when

	
while

	
yield

Ruby strings

Strings are sequences of characters, for example, words or a series of words. They are not sentences. For example:

string1 = 'a'

string2 = 'This is a string'

There are two things to note here. The first is that we have used local variables; the second is that, to define the variable content, we used single quotes. Although string1 only contains one letter, it is still classed as a string because we have declared it inside the single quotes.

Ruby knows exactly how to treat a variable because it looks at the way it is declared. You can use double instead of single quotes, but whichever one you choose, you must be consistent throughout. In other words, you cannot start a string with single quotes and end it with doubles or vice versa. Here’s another example:

num1 = 9

Num1 has been set with a value of 9, so if you were to type in num1 + 1 you would get a return of 10. But what if you put single quotes around the 9?

num1 = '9'

That would be telling Ruby that 9 is actually a string and not a number. If you were to type num1 + 1 it would throw up an error message, something along the lines of =>#. The interpreter is telling you that you have given it both a string and a number and it cannot add them – it doesn’t know how. If we go a step further and do this:

num1 = '9'

num2 = '1'

num1 + num2

The result would look like this:

"91"

The result comes about because Ruby takes both of the strings and squashes them together. If you specify values in between quotes, you are telling the interpreter that you don’t want it to be translated; instead, you want the interpreter to take the content that is between the quotes – the exact content. In this case, the 9 is treated as an ordinary letter, not as a number.

Ruby collections

So far, we have talked about individual bits of data that can be stored in local variables or created as instances of a class. But what if you want to use several data pieces at once – a collection like a series of numbers that you want to put in ascending order, or a list of names that you want to sort in alphabetical order? To allow us to do that, Ruby provides us with two tools – arrays and hashes.

Arrays

The best way to explain an array is to show you what one looks like:

Food

[0] = Chicken

[1] = Rice

[2] = Steak

[3] = Fish

[4] = Shrimp

[5] = Beef

Instead of having six separate variables, one for each of the food types, we have one array that lists and stores each item inside its own container. The numbers indicate the key of the specific element within the array, and you will note that we always start from zero – 0 is the first element, 1 is the second, and so on. To produce this array in Ruby, you would input the following:

food = ['chicken', 'rice', 'steak', 'fish', 'shrimp', 'beef']

['chicken', 'rice', 'steak', 'fish', 'shrimp', 'beef']

food.count

6

Each element is enclosed in single quotes because what we are doing here is storing strings in the elements. The array class in Ruby has a few methods that can be used straightaway, such as
 count
 in the example above. This counts the elements that are in the array and returns the value. (Even though the index only goes up to 5, the count is 6 because we started at zero.)

Now that you’ve created the array, each individual item can be accessed by invoking the specific name of the array, followed with the index number of the food item:

food[0]

"chicken"

food[1]

"rice"

food[2]

"steak"

food[6]

nil

The reason why the return for food 6 is nil is because there isn’t a 6 in the array – or at least nothing stored in it, anyway. Ruby will automatically set the sequence as an ongoing sequence – food [6], food [7] etc. – and to add another item to the array you simply set the next element to the value you want it to be:

food[6] = 'carrots'

"carrots"

food

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots"]

food.count

7

Another way to add elements to the array is to use an operator called
 append
 , which is written as <<. All this does is add something to the end of the array. The difference is that you do not need to specify any index positions with this operator; all you need to do is this:

food << "irish potato"

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots", "irish potato"]

food << 42

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots", "irish potato", 42]

Whatever is added in after << is automatically added on to the end of the array, which is convenient because it means you can add in variables and other objects without needing to worry about the actual content:

sum = 10 + 23

33

food << sum

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots", "irish potato", 42, 33]

All we have done is created a local variable that we called
 sum
 and then pushed the value to the end of the array. If you want, you can add arrays on to the end of other arrays:

name_and_age = ["Marc", "Gayle", 28]

["Marc", "Gayle", 28]

food

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots", "irish potato", 42, 33]

food.count

10

food << name_and_age

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots", "irish potato", 42, 33, ["Marc", "Gayle", 28]]

food.last

["Marc", "Gayle", 28]

food.count

11

You will note that in this example the final element is an array that contains three elements but it is still counted as a single element inside the array; the count number has now risen to 11. If you wanted to know how many elements are inside any specific element of the array, the last element, for example, you would do this:

food.last.count

3

There are a couple of other interesting Ruby methods that you can use off the bat, including
 first
 ,
 last
 ,
 length
 and
 include
 , and these are followed by the object you are checking for, i.e., empty?, eql? and sort.

food

["chicken", "rice", "steak", "fish", "shrimp", "beef", "carrots"]

food.first

"chicken"

food.last

"carrots"

food.length

7

food.count

7

food.include?("chicken")

true

food.include?("filet mignon")

false

food.empty?

false

food[0]

"chicken"

food[0].eql?("chicken")

true

food[0].eql?("beef")

false

food.sort

["beef", "carrots", "chicken", "fish", "rice", "shrimp", "steak"]

What we’ve done here is put the string inside double quotes, after the eql? The sort method arranges alphabetically and by number, from low to high. Anything can be stored in elements; you don’t have to stop at strings. You can mix as well – some elements can have numbers in them and others can have strings. If you wanted an array of numbers, you would do this:

numbers = [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6]

Remember that we said earlier that indexes must start at zero. In this example, you can see why that is important. To reference the number 1, the array reference must be 0 because that is the first element of the array

numbers[0]

1

numbers[1]

2

numbers[6]

nil

numbers.first

1

numbers.last

6

numbers.count

6

numbers.length

6

numbers.include?(3)

true

numbers.include?(10)

false

numbers.empty?

false

numbers[1]

2

numbers[1].eql?(1)

false

numbers[1].eql?(2)

true

We are evaluating numbers, so the objects that are contained in the brackets must not be in double quotes. Otherwise Ruby would not be able to find them – it would be searching for a string instead. So be careful how you use those quote marks!

numbers.include?("3")

false

numbers[1].eql?("2")

false

Ruby iterators

Iterators are Ruby mechanisms that help you to move through data structures that contain multiple elements and examine each of the elements. The most commonly used iterator is
 each
 , and this is a method that is contained in the array class and is included in Ruby. Let’s say that we wanted to print off a list of all of the items we have stored in the food array:

food

["chicken", "rice", "steak", "fish", "beef"

food.each do |x|

puts x

end

chicken

rice

steak

fish

beef

There are a couple of things to be aware of:

	
each
 can only be called on data collections.

	
Once
 each
 is called, you must pass a data block to it. A block is a piece of contained code, and by passing the block you are saying that you want the code applied to each of the elements you look at.

Blocks

You can use a block in two ways – first, like the above example, where you would do this:

do |variable| #some code end

Blocks must always be used with an iterator. You can define a block without one, but to execute that block, you need the iterator. This is why we called do.x after food.each in the earlier example. Your block can have one or more variables in it, and they are local to that specific block only. That means that they will be destroyed once you leave the block. If you had two blocks, the variable x could be used in both and neither would affect the other. Another way to use blocks is:

food.each { |x| puts x }

Here, the curly brace at the start replaces the variable
 do
 and the closing brace replaces
 end
 . If your operation contains just one line this is the most convenient method, but it may be a little harder to read the code at a later date. You might find it easier to use
 do
 and
 end
 ; that’s down to your personal preference.

Blocks use variables because the elements in the collection have not been modified (unless you’ve chosen to modify them). What happens is this – for every iteration through the array, a copy is stored in x, which is then used in the block. If you went through the food array, x would look something like this:

First iteration:

food[0] = 'chicken'

x = food[0]

x = 'chicken'

Second iteration:

food[1] = 'rice'

x = food[1]

x = 'rice'

Third iteration:

food[2] = 'steak'

x = food[2]

x = 'steak'

When you use numbers it’s easier to illustrate that the values do not change in the original array:

numbers = [1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

numbers.each do |x|

… x = x + 2

… puts x

… end

3

4

5

6

7

numbers

[1, 2, 3, 4, 5]

Ruby hashes

Hashes are simply collection types, of key-value pairs, to be precise. These are a combination of the container name, or key, and the value or contents of the container.

a => "Marc"

In this example, the name or key is a and the value or contents is Marc. A hash is a list of these pairs, each separated by a comma and looking something like to this:

a =>"Marc", b => "Cheyenne", c => "Alexander", d=> "Mia"

There are some differences between arrays and hashes, though:

	
These keys are not specifically integer keys; they can be integers, characters, strings, or any other object type.

	
They are not ordered – Ruby doesn’t take any notice of the order when it is looking in hashes.

	
Despite the fact that they are not ordered, if you were to iterate through a hash (I will show you that in a while), Ruby would go in the order things were added to the hash. This is not the same way that array keys are ordered.

There are a lot of different ways to create a hash. The most common ways are illustrated by the examples below. To start a hash that is empty or has no values:

day = Hash.new

{}

A hash that has values would look something like:

names = Hash["a" => "Marc", "b" => "Cheyenne", "c" => "Alexander", "d" => "Mia"]

{"a"=>"Marc", "b"=>"Cheyenne", "c"=>"Alexander", "d"=>"Mia"}

names2 = {"a" => "Marc", "b" => "Cheyenne"}

{"a" => "Marc", "b" =>"Cheyenne"}

You do not need to use the keyword
 hash
 in order to create one, nor do you need to use the square brackets ([]). You can if you wish, or you could just use curly braces. The keys do not need to be enclosed in quote marks either, unless you intend to use the strings as a key. Ruby does require that => be used to assign the value on the right of the => to the key on the left. If, for example, you attempted to put in names2 without the quotes, you would probably see something like this error message:

names2 = { a => "Marc", b => "Cheyenne"}

#<NameError: undefined local variable or method `a' for main:Object>

In order to access the values, you must specify the hash name as well as the key to the value you want access to:

names

{"a"=>"Marc", "b"=>"Cheyenne", "c"=>"Alexander", "d"=>"Mia"}

names["a"]

"Marc"

names["c"]

"Alexander"

names[a]

#<NameError: undefined local variable or method `a' for main:Object>

Because we didn’t use the quote marks for names[a], Ruby sees
 a
 as a method or a local variable. It can’t locate a value for it, so it gives an error message. If you were to attempt to access what looked like a legitimate value using a legitimate key that has no value assigned to it, you would normally see a return of nil:

day["a"]

nil

day[9]

nil

Let’s say that you wanted to create a hash that has a default value for every value contained in it. You could do this:

year = Hash.new("2012")

{}

year[0]

"2012"

year[12]

"2012"

What we have done is called the method
 new
 on the class Hash and passed a default value of 2012 in to the method. When you try to access a non-existent value, instead of coming back with nil, Ruby will now give you the default value that you specified. There are a few different methods you can use with hashes:

names.keys

["a", "b", "c", "d", "e"]

names.values

["Marc", "Cheyenne", "Alexander", "Mia", "Christopher"]

In this, the keys simply return the keys in the hash and values will return all the values.

names.length

5

names.has_key?("a")

true

names.has_key?("z")

false

?names.has_key("a")

#<NoMethodError: undefined method `has_key' for #<Hash:0x55c797d7>>

Note that the
 has key
 method actually reads
 has key?
 If you left the
 ?
 out, you would see an error like the one in the last row above. All
 has key?
 does is check to see if any of the keys in the hash match the values in the brackets – if there is one, true will be returned, if not then false is returned.

f_names = names

{"a"=>"Marc", "b"=>"Cheyenne", "c"=>"Alexander", "d"=>"Mia", "e"=>"Christopher"}

l_names = {"g" => "Gayle", "h" => "Gayle", "j" => "Jackson", "m" => "Brow-n"}

{"g"=>"Gayle", "h"=>"Gayle", "j"=>"Jackson", "m"=>"Brown"}

f_names.merge(l_names)

{"a"=>"Marc", "b"=>"Cheyenne", "c"=>"Alexander", "d"=>"Mia", "e"=>"Christopher", "g"=>"Gayle", "h"=>"Gayle","j"=>"Jackson", "m"=>"Brown"}

f_names

{"a"=>"Marc", "b"=>"Cheyenne", "c"=>"Alexander", "d"=>"Mia", "e"=>"Christopher"}

l_names

{"g"=>"Gayle", "h"=>"Gayle", "j"=>"Jackson", "m"=>"Brown"}

What we have done here is create a new hash called
 f names
 simply by assigning it to
 names
 . Then we made another one called
 l names
 that has a number of names inside it. We then merged the hashes together to create one hash. However, we only ran merge; we didn’t actually assign the results to any particular variables, so they won’t have been stored. If you look at the values of
 l names
 and
 f names
 , you can see that they are identical to what they were before merge was run. If you want to store those values, you would need to do something along the lines of:

master_hash = f_names.merge(l_names)

{"a"=>"Marc", "b"=>"Cheyenne", "c"=>"Alexander", "d"=>"Mia", "e"=>"Christopher", "g"=>"Gayle", "h"=>"Gayle", "j"=>"Jackson", "m"=>"Brown"}

Symbols

Symbols are types of object that resemble strings but are not quite strings. The big difference between a symbol and a string is that symbols always start with a colon. Symbols play very nicely with hashes because they can be used as keys in place of strings.

f_names

{:a =>"Marc", :b =>"Cheyenne", :c =>"Alexander", :d =>"Mia", :e =>"Christopher"}

f_names[:a]

"Marc"

This is a good thing because it means no more worrying about the quotes around the values and the keys, but you still know the names for the keys:

pets = {:dog => "Cookie", :cat => "Snowy", :fish => "Goldie"}

{:dog=>"Cookie", :cat=>"Snowy", :fish=>"Goldie"}

pets[:dog]

"Cookie"

pets[:fish]

"Goldie"

Using symbols with hashes is much easier than using strings with keys. Of course, you can use hashes for just about anything else in Ruby since their main function is storing values and making it easier for the interpreter to retrieve them.

The BEGIN statement

If you want a piece of code to be executed before the main program is run, place the code in a BEGIN statement. The syntax is as follows:

BEGIN {

code

}

The following example illustrates how to use a BEGIN statement:

#!/usr/bin/ruby

puts "This is the main Program"

BEGIN {

puts "This is executed before the main program"

}

This will produce the following result:

This is executed before the main program

This is the main Program

The END statement

If you want certain code to be executed at the end of a program, you can use the END statement to specify it.

The syntax for the END statement is simple:

END {

block of code

}

The following example illustrates the usage of the END statement and also illustrates the difference between the BEGIN and END statements:

#!/usr/bin/ruby

puts "This is the main Program"

END {

puts "This is executed at the end"

}

BEGIN {

puts "This is executed before the main program"

}

The above code generates the following output:

This is executed before the main program

This is the main Program

This is executed at the end

Comments in Ruby

If you want the Ruby interpreter to ignore a statement (or several statements or lines of code), begin the statement(s) with a hash (#) character. When you begin a line with a hash character, it is treated as a comment and is skipped by the interpreter. Thus, comments are used to hide lines of code.

An example of a comment is as follows:

This is a comment, so it is ignored by the interpreter.

A comment can also follow an expression or a statement on the same line. Comments are mainly used for documenting the code.

city= "Dallas" # I am a comment, so I am ignored.

Multiple lines of comments can be specified as follows:

I’m a comment

I’m a comment too.

I’m a comment too.

We are all comments.

If you want to specify several lines of comments as a single block, you can use the =begin/=end statements as follows:

=begin

I’m a comment

I’m a comment too.

I’m a comment too.

We are all comments

=end

Chapter 6 – Input & Output Methods in Ruby

Any data that is fed into a program through a keyboard or another program or a file is called an input. The program processes the input and produces data called output. The program may send the output to the screen, another program, or a file.

That sounds simple enough, but the topic of input and output in Ruby can get quite big as we proceed through its different levels. The following examples illustrate the concepts of input and output in their most basic forms. There are several methods available in Ruby that can be used for performing input and output operations. These methods belong to different classes like IO, File, Kernel, Dir etc.

Reading input from the screen

Let’s see a few examples of how input can be read from the screen.

We can use the variable $stdin for reading input from the screen. The standard input stream is held by $stdin, which is a global variable.

#!/usr/bin/ruby

inpt = $stdin.read

puts inpt

The above example uses the
 read
 method for reading input from the screen.

inpt = $stdin.read

The
 read
 method works by reading the data until the end of the file is reached. If you are using the Windows operating system, pressing the keys Ctrl+Z produces EOF (End Of File). If you are using Unix, pressing Ctrl+D will do the job.

$./readdata.rb

Lizzie Luke

Lizzie Luke

When a program devoid of any parameters is launched, data provided by the user is read by the script. It keeps on reading the data until Ctrl+W or Ctrl+D is pressed.

$ echo "Jon" | ./readdata.rb

Jon

$./inputs.rb < Fruits

Mango

Apple

Banana

Strawberry

Grape

Orange

Pineapple

Peach

Blueberry

If necessary, we can redirect the script such that it reads data from other files or programs.

The commonly used method for reading data from the screen is the
 gets
 method.

#!/usr/bin/ruby

print "Enter your city: "

city = gets

puts "You live in #{city}"

Let us take a look at the above code step by step:

We have used the
 gets
 method to read the name of the city in which the user lives:

city = gets

Through the above line of code, the city name provided by the user is read by the
 gets
 method. The data string provided by the user is assigned to the variable
 city
 .

puts "you live in #{city}"

The above line of code prints the data read from the user to the screen. Interpolation can be used such that the string includes the variable.

$./readtheline.rb

Enter your city: Dallas

You live in Dallas

Writing output to the screen

There are several methods available in Ruby if you want to print an output on the screen. Of these methods, the
 print
 and
 puts
 methods of the kernel module are most widely used. Any Ruby object can access these methods from the kernel module.

Take a look at the following example:

#!/usr/bin/ruby--->this is nothing but Ruby’s pathname given as a comment

print "Jon "

print "Jasper\n"

puts "Lizzy"

puts "Luke"

In the code given above, both the
 print
 and
 puts
 statements write the outputs to the screen. The only difference is that the
 puts
 method automatically inserts a newline character at the end, while the
 print
 statement doesn’t. So if you are using the
 print
 statement and you want a statement to be printed in a new line, you have to specify the newline character \n. On the other hand, if you are using the
 puts
 statement, you need not specify this; it automatically adds the \n character at the end. Take a look at the
 print
 statements given in the code:

print "Jon "

print "Jasper\n"

In the above case, the
 print
 statement prints the first string Jon and then prints the next string Jasper immediately next to Jon, as no new line character is specified between the print statements for Jon and Jasper. Observe that a new line character is specified only after the second statement.

Now, take a look at the second part of the code:

puts "Lizzy"

puts "Luke"

We can see that no new line characters are specified with either of the
 puts
 statements. Now, save the code with the name ‘printoutput.rb’, which gives the following output on the screen:

$./printoutput.rb

Jon Jasper

Lizzy

Luke

Observe that the strings Lizzy and Luke are printed on different lines, even though no newline character is used.

The
 print
 method performs an equivalent function to the
 $stdout
 statement. The standard output stream is held by the global variable
 $stdout
 . The following example illustrates the usage of the
 $stdout
 variable.

#!/usr/bin/ruby

$stdout.print "I love ice-cream \n"

$stdout.puts "I hate mangoes"

Thus, the
 $stdout
 variable has been used to print two lines in the above example.

There are three other methods available in Ruby for printing output to the screen. Observe the methods in the following code:

#!/usr/bin/ruby

p "Lizzy"

p "Luke"

printf "Lizzy is %d years old\n", 23

putc 'M'

putc 0xA

You can see that we have used three methods in the above code. The first is
 p
 . For every object printed on the screen, the inspect method is called by the
 p
 statement, after which a newline follows.

p “Lizzy”

p “Luke”

OUTPUT:

“Lizzy”

“Luke”

You will clearly understand the
 p
 method if you study the output of the following example:

class Thing

 def inspect

 "Result of inspect"

 end

end

puts Thing.new

p Thing.new

The output of the above code is:

#<Thing:0x0000000381d3f8

Result of inspect

If you observe the output, you can see that the result of the inspect method is printed by the
 p
 method.

Now to the
 printf
 method, which you’re probably familiar with from C. String formatting is allowed by the
 printf
 method, as is evident from the following line of code and its output:

printf "Lizzy is %d years old\n", 23

OUTPUT:

Lizzy is 23 years old.

Lastly, the
 putc
 method is used for printing a single character onto the screen, for example:

putc 'M'

OUTPUT:

M

A new line can be printed using the
 putc
 method using hexadecimal code as follows:

putc 0xA

The chomp method

The white spaces which linger at the end of a string can be removed using the
 chomp
 method. This method is used while performing input operations. The name of the method and its functionality are taken from Perl. The following two examples illustrate the usage of the
 chomp
 method during input operations:

Example 1

#!/usr/bin/ruby

print "Enter any word: "

inpt = gets

puts "This word has #{inpt.size} characters"

In the above code, we have accepted a word from the user and calculated the number of characters present in the word. The resultant output is as follows:

$./nochomp.rb

Enter any word: Lion

This word has 5 characters

You can observe from the above output that the number of characters present in the string Lion is calculated as 5, instead of 4. The reason is that the new line at the end of the string has also been counted.

If you want the correct string length as the output, the newline character at the end of the string needs to be removed, and the
 chomp
 method is used for doing the job. We can rewrite the above program using the
 chomp
 method as follows:

#!/usr/bin/ruby

print "Enter any word: "

inpt = gets.chomp

puts "This word has #{inpt.size} characters"

The above code produces the following output:

$./chompthestring.rb

Enter any word: Lion

This word has 4 characters

We get the correct number of characters this time, as we have “chomped off” the newline character at the end using the
 chomp
 method.

Chapter 7 – Conditional Structures in Ruby

Just like all modern programming languages, Ruby offers conditional structures. Let’s take a look at them, as well as the modifiers available in Ruby.

If… else statements

If… else statements are used for executing code based on conditions. All values are evaluated as true except the nil and false values, which are evaluated as false. Note that Ruby does not use either
 else if
 or
 elif
 for the false part; it uses the reserved word
 elsif
 .

The code written in the if-block gets executed if the if-condition evaluates to true. If the if-condition evaluates to false, the code written in the else statement is executed.

The reserved word
 then
 separates the if-condition and the block of code. A semicolon or a newline character can also be used to separate the if-statement and the code block.

The syntax of the if… else statement is as follows:

if conditional [then]

 block of code

[elsif conditional [then]

 block of code

[else

 block of code

end

The following example illustrates the usage of the if… else statement:

#!/usr/bin/ruby

a=10

if a > 20

 puts "a is greater than 20"

elsif a <= 20 and a!=0

 puts "a is 10"

else

 puts "The number cannot be guessed"

end

x is 10

The
 if
 modifier

The
 if
 modifier is used to execute code if the condition evaluates to true. Take a look at its syntax to get a clear idea of how it should be used:

code if condition

The following example illustrates the usage of the
 if
 modifier:

#!/usr/bin/ruby

$a=1

print "‘a’ is a character\n" if $a

The above code generates the following output:

‘a’ is a character

The
 unless
 statement

The unless… else statement is similar to the if…else statement, except that the conditions are evaluated in the opposite manner. That is, if the condition evaluates to false, the code written in the
 unless
 block is executed. If the condition evaluates to true, the code written in the
 else
 block is executed.

The syntax of the unless… else statement is as follows:

unless conditional [then]

 code

[else

 code]

end

The following example illustrates the usage of the
 unless
 statement:

#!/usr/bin/ruby

a=10

unless a>20

 puts "a is less than 20"

else

 puts "a is greater than 20"

end

The above code generates the following output:

a is less than 20

The
 unless
 modifier

The
 if
 modifier is used to execute a code if the condition evaluates to false. The syntax of the
 unless
 modifier is similar to that of the
 if
 modifier and is given as follows:

code unless conditional

The following example illustrates the difference between the
 if
 modifier and the
 unless
 modifier:

#!/usr/bin/ruby

$x = 10

print "1.The value is true \n" if $x

print "2.The value is false\n" unless $x

$x = false

print "3.The value is false\n" unless $x

The above code generates the following output:

1.The value is true

3.The value is false

The
 case
 statement

The
 case
 statement in Ruby is accompanied by one or several
 when
 clauses. The
 case
 expression is compared with the
 when
 expression(s), and if a match is found in a
 when
 clause, the code specified in that
 when
 clause is executed.

Let’s take a look at the syntax of the case statement:

case expression

[when expression [, expression …] [then]

 code]…

[else

 code]

end

The === operator is used for comparing the expressions of the
 case
 statement and the
 when
 clause. The expression of the
 case
 statement is evaluated as the right operand and the expression of the
 when
 clause acts as the left operand. If none of the
 when
 clauses match the
 case
 expression, the code specified in the
 else
 statement is executed.

The reserved keyword
 then
 is used to separate the
 when
 clause and its associated code. A semicolon or a newline character can also be used to separate the
 when
 clause from the block of code.

Consider the following syntax consisting of a
 case
 statement with several
 when
 clauses and an
 else
 statement at the end:

case exp0

when exp1, exp2

 satement1

when exp3, exp4

 satement2

when expr5, expr6

 satement3

else

 satement4

end

The above syntax is similar to the following syntax:

_tmp = exp0

if exp1 === _tmp || exp2 === _tmp

 statement1

elsif exp3 === _tmp || exp4 === _tmp

 statement2

else

 statement3

end

The following example illustrates how a case system is used:

#!/usr/bin/ruby

$age = 3

case $age

when 0 .. 2

 puts " It’s a toddler"

when 3 .. 6

 puts "It’s a little child"

when 7 .. 12

 puts " It’s a child"

when 13 .. 18

 puts " It’s a youth"

else

 puts " It’s an adult"

end

The above code generates the following result:

It’s a little child

Chapter 8 – Loops in Ruby

Just as in every programming language, you can use loops in Ruby if you want a repeated execution of the same block of code for a required number of times. Ruby supports the following loop statements:

	
while

	
for

	
until

	
break

	
redo

	
retry

The
 while
 statement

A
 while
 statement is used to execute a block of code a repeated number of times as long as a condition is satisfied. Take a look at its syntax:

while conditional [do]

block of code

end

The while statement executes the block of code as long as the conditional evaluates to true. The reserved word
 do
 separates the conditional and the block of code. A backslash, semicolon or a newline character can also be used to separate them.

The following example illustrates the use of the
 while
 statement:

#!/usr/bin/ruby

$j = 1

$n = 5

while $j < $n do

 puts("This is the statement number #$j")

 $j +=1 #It is equivalent to $j=j+1

end

The above code generates the following output:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

The
 while
 modifier

The syntax of the
 while
 modifier is as follows:

block of code while condition

OR

begin

 block of code

end while conditional

Here, the block of code is executed repeatedly as long as the conditional evaluates to true. If the
 while
 modifier is specified after the begin statement, without providing the ensure clause or the rescue clause, the control executes the block of code one time, even before evaluating the conditional.

Example:

#!/usr/bin/ruby

$j = 1

$n = 5

begin

 puts("This is the statement number #$j")

 $j +=1

end while $j < $n

The above code generates the following output:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

The
 until
 statement

The
 until
 statement can be thought of as the opposite of the
 while
 statement. If the
 until
 statement is used, the block of code is executed repeatedly as long as the conditional evaluates to false. Just like in the
 while
 statement, the reserved word
 do
 separates the conditional and the block of code. A semicolon can also be used to separate them.

until conditional [do]

 block of code

end

.

The following example illustrates how an
 until
 statement is used:

#!/usr/bin/ruby

$j = 1

$n = 5

until $j > $n do

 puts("This is the statement number #$j")

 $j +=1;

end

The above code generates the following output:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

This is the statement number 5

The
 until
 modifier

The syntax of the
 until
 modifier is as follows:

block of code until conditional

OR

begin

 block of code

end until conditional

The
 until
 modifier also executes a block of code as long as the conditional evaluates to false. But if the
 until
 modifier is specified after the begin statement, without providing the ensure clause or the rescue clause, the control executes the block of code one time, even before evaluating the conditional.

The following example illustrates how an
 until
 modifier is used:

#!/usr/bin/ruby

$j = 1

$n = 5

begin

 puts("This is the statement number #$j")

 $j +=1;

end until $j > $n

The above code generates the following output:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

This is the statement number 5

The
 for
 statement

The
 for
 statement executes the block of code for all the number of elements specified in the range or expression.

The syntax of the
 for
 statement is as follows:

for variable [, variable ...] in expression [do]

 block of code

end

The following example illustrates how a
 for
 statement is used:

#!/usr/bin/ruby

for j in 1..6

 puts "This is the statement number #{j}"

end

In the above code, the range is given as 1..6, which means the
 puts
 statement is executed for every element from 1 to 6 (including 6). The output generated is as follows:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

This is the statement number 5

This is the statement number 6

If you use the
 for
 loop, a new scope is not created for the local variables. The reserved word
 do
 separates the expression and the block of code. A semicolon or a newline character can also be used to separate them.

The loop can also be declared as follows:

#!/usr/bin/ruby

(1..6).each do |j|

 puts "This is the statement number #{j}"

end

The above code generates the following output:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

This is the statement number 5

This is the statement number 6

The
 break
 statement

The
 break
 statement is used to terminate a loop at any point. If a
 break
 statement is encountered, the control jumps out of the loop and is passed on to the statement that comes after the
 for
 block.

The syntax for the
 break
 statement is simple and is as follows:

break

The following example illustrates how a
 break
 statement is used:

#!/usr/bin/ruby

for j in 1..8

 if j> 4 then

 break

 end

 puts "This is the statement number #{j}"

end

The above code generates the following result:

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 4

What happens in the above program is that a range of numbers from 1 to 8 is declared in the
 for
 loop. Then, an if… then statement is specified within the loop and the condition is given as if(j>4). So the loop starts from element 1 and proceeds till element 4, executing the
 puts
 statement for every iteration till the element 4. When the element becomes 5, the
 if
 statement evaluates to true, passing the control to the
 break
 statement specified in the
 if
 block. As soon as the
 break
 statement is encountered, the loop terminates, leaving the elements from 5 to 8 unprinted.

The
 next
 statement

The
 next
 statement keeps on passing the control to the next iteration, without executing the required block of code, as long as a condition evaluates to true.

Its syntax is as follows:

next

The following example should give you a clear idea about the functionality of the
 next
 statement:

#!/usr/bin/ruby

for j in 1..8

 if j < 4 then

 next

 end

 puts "This is the statement number #{j}"

end

Observe the output produced for the above code:

This is the statement number 4

This is the statement number 5

This is the statement number 6

This is the statement number 7

This is the statement number 8

What happened in the above example is that, as long as the if… then condition was true, the control was passed over to the
 next
 statement. As soon as the
 next
 statement is encountered, the control is passed over to the next iteration. The
 next
 statement keeps on handing over the control to the subsequent iterations without executing the
 puts
 statement, as long as the condition evaluates to true.

The
 redo
 statement

The
 redo
 statement is used to restart an iteration, irrespective of the condition given in the
 for
 loop.

Its syntax is as follows:

redo

The following example demonstrates the functionality of the
 redo
 statement:

#!/usr/bin/ruby

for j in 1..8

 if j < 2 then

 puts "This is the statement number #{j}"

 redo

 end

end

The above code generates the following output, in which the statement goes into an infinite loop.

This is the statement number 1

This is the statement number 1

This is the statement number 1

. .

This is because the
 redo
 statement is specified after the
 puts
 statement. So after the
 puts
 statement is executed, the
 redo
 statement in encountered every time. As soon as the
 redo
 statement is executed, the control is passed over to the start, restarting the loop beginning from the first element, which is 1 in this case. Since there is a restart of the loop every time, the
 puts
 statement goes into an infinite loop, repeatedly printing the statement pertaining to the element 1.

The
 retry
 statement

The
 retry
 statement in Ruby is similar to the
 redo
 statement, except that the
 retry
 statement is specified with the if… then condition.

Its syntax is as follows:

retry

While using with the
 for
 loop, the syntax of the
 retry
 statement as follows:

for variable [, variable ...] in expression [do]

 retry if some_condition # restart from the first element of the expression

end

The following example shows the functionality of a retry statement:

#!/usr/bin/ruby

for j in 1..8

 retry if j> 3

 puts "This is the statement number #{j}"

end

The above code generates the following output, in which the statements for the first three elements go into an infinite loop.

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 1

This is the statement number 2

This is the statement number 3

This is the statement number 1

This is the statement number 2

This is the statement number 3

. .

Chapter 9 – Ruby Methods

Ruby has a concept called “methods,” which is similar to the concept of functions found in other modern programming languages. By using methods, one or several statements exhibiting related functionalities are bundled together into a single unit.

Declaration & definition of methods

A lowercase letter should always be used as the beginning letter of the name of a method. If an uppercase letter is used as the beginning letter of a method’s name, it will come off as a constant to the Ruby parser, making it parse an incorrect call.

If a method that has not been defined is called, an exception is raised by Ruby that an undefined method has been invoked.

The syntax for declaring and defining a method is as follows:

def method_name [([arg [= default]]...[, * arg [, &exp]])]

 expressions..

end

A simpler syntax can be given as follows:

def method_name

 expressions..

end

We can declare parameters of the method as follows:

def method_name (param1, param2)

 expressions..

end

Default parametric values, which have been preset, are passed if you call a method without providing the values of the required parameters:

def method_name (param1=value1, param2=value2)

 expressions..

end

If you want to simply call a method that does not require providing any parametric values, it is enough to write the name of the method as follows:

method_name

On the other hand, if a method is to be called along with its parameters, the name of the method is written while specifying the parametric values as shown below:

method_name 50, 35

You should be careful while passing parameters to a method; if you pass the wrong number of parameters, Ruby displays an error. This is the drawback you may face if you use a method with parameters. For instance, for a method that requires four parameters, if only two parameters are passed, an error is displayed by Ruby.

The following example illustrates how a method is defined and called correctly:

#!/usr/bin/ruby

def testdata(a="Lizzy", b="Luke")

 puts "My first name is #{a}"

 puts "My last name is #{b}"

end

testdata "Jon", "Jasper"

testdata

The above code generates the following output:

My first name is Jon

My last name is Jasper

My first name is Lizzy

My last name is Luke

Return values of a method

By default, in Ruby, a value is returned by every method. It is the last statement’s value that is returned by the method. Consider the following example:

def testdata

 a = 1

 b = 10

 c = 100

end

When the method testdata is called, the value of the last variable c is returned by the method.

The
 return
 statement

In Ruby, to get a method to return a value(s), we use the
 return
 statement.

The syntax of the
 return
 statement is as follows:

return [exp[`,' exp...]]

If two or more expressions are specified, their values are returned as an array. If even one expression is not specified, the value nil is returned by the method.

In simpler form, the syntax of the
 return
 statement is as follows:

return

OR

return 20

OR

return 10,20,30

The following example illustrates the usage of the
 return
 statement:

#!/usr/bin/ruby

def testdata

 a = 10

 b = 20

 c = 30

return a, b, c

end

var = testdata

puts var

The above program generates the following output:

10

20

30

Variable number of parameters

If a method is declared such that it accepts two parameters, those two parameters must be passed while calling the method.

But Ruby facilitates the declaration of a method such that a variable number of parameters can be passed while calling the method. The following example illustrates how a variable number of parameters can be passed to a method:

#!/usr/bin/ruby

def sampledata (*testdata)

 puts "The number of parameters is #{testdata.length}"

 for j in 0...testdata.length

 puts "The parameter is #{testdata[j]}"

 end

end

sampledata "Zachery", "16", "M"

sampledata "Maddison", "17", "F", "Dallas", "USA"

In the above example, a method named sampledata is declared with a variable parameter named testdata. We have specified the symbol * in front of the parameter, which means that the parameter can accept a variable number of values. So the above code generates the following output:

The number of parameters is 3

The parameter is Zachery

The parameter is 16

The parameter is M

The number of parameters is 5

The parameter is Maddison

The parameter is 17

The parameter is F

The parameter is USA

Methods in a class

When you define a method externally to a class, by default, the method is set as private. If you define a method internally to a class, by default, the method is set as public. We can use private or public to change the method’s default visibility.

You need an object for accessing a method that is declared and defined within a class. So the class needs to be instantiated first, to facilitate the accessing of all the members of the class.

But Ruby facilitates the accessing of methods from a class, without having to instantiate the class. The following example illustrates the declaration of a method in a class and how it can be accessed:

class SchoolLibrary

 def fee

 end

 def SchoolLibrary.return_date

 end

end

Observe the declaration of the method return_date. In the declaration, the class name is specified first, after which a period (.) follows. Then the method’s name follows the period. This method can be accessed directly as shown below:

SchoolLibrary.return_date

No objects of the class SchoolLibrary need to be created for accessing the method return_date.

The
 alias
 statement

We can use the
 alias
 statement for giving alternative names to global variables and methods. We cannot define an alias of a method inside the body of the method. A method’s current definition is retained by its alias, even if you override the method.

You cannot make aliases for global variables that are numbered. For example, the global variables $1, $10, $100 etc. cannot have aliases. Also, problems may arise if you override built-in global variables.

The syntax of the
 alias
 statement can be given as follows:

alias method_name method_name

alias global_variable_name global_variable_name

The following example illustrates how aliases can be created:

alias abc xyz

alias $amp $&

in the above lines of code, an alias abc has been defined for the method xyz and an alias $amp has been defined for $&.

The
 undef
 statement

This statement facilitates the cancellation of method’s definition. We cannot use the
 undef
 statement inside the body of the method.

The
 alias
 and
 undef
 statements can be used for modifying class interfaces independently.

The syntax of the
 undef
 statement is as follows:

undef method-name

For undefining a method named abc, we can use the
 undef
 statement as follows:

undef abc

Chapter 10 – How to Write a Web Application Using Ruby on Rails

You’ve probably heard of Ruby on Rails, even if you don’t know what it is or what it means. For this chapter you’re going to use Ruby on Rails to write a very simple web application. This will show you how powerful Rails is and how fast it makes developing. I’ll tell you how to install the software you need, how to get started on a new project, how to manage the data, and much more, everything you need to get this application, and many more, up and running.

Installing the software

You should already have the most up-to-date version of Ruby installed. If not, please refer to

Chapter 3

 for instructions. Once you have done that, there are a couple of other pieces of software that you need to install:

Installing the Bundler gem

Bundler is a specific gem (package) that helps you to manage the dependencies needed when developing new projects. At your command prompt, type in

gem install bundler

Installing Rails

Next you need to install the latest version of Rails, so type in:

gem install rails -v4.2.3.rc2

Creating the Rails app

The next step is to create the Rails app. When Rails is installed, it brings with it loads of libraries and command line tools, and what we want to do now is install the skeleton of your new web app. Type this in at the command prompt:

rails new bookmarks -T -d sqlite3 -B

Let me break down what you have just input:

	
bookmarks is the name of your project.

	
-T is an instruction to skip Test::Unit files. While this isn’t really a fundamental part of the project, I included it because testing is a subject for another time; it would only complicate matters if I went into it here.

	
-d sqlite3 opts for SQLite database, which is the perfect fit for this project. Rails supports a lot of different databases, even NoSQL databases, so you will be spoilt for choice once you truly get going.

	
-B says that we don’t want to run the bundle install; we’ll do it ourselves later on.

Once you have run that command, you should now see something like the following, which is explaining exactly what is going on:

andrea@mbair ~/Works/12dos % rails new bookmarks -T -d sqlite3 -B

create

create README.rdoc

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

[...]

andrea@mbair ~/Works/12dos % cd bookmarks

andrea@mbair ~/Works/12dos/bookmarks %

You can see that a brand new directory has been created. It’s called bookmarks, which is the name of our project. Along with that, a whole bundle of files and directories has now appeared inside that directory.

A first look at Bundler & Gemfile

You know that Bundler is a tool that helps you to manage dependencies within an app. It works by reading Gemfile, which should be in the root directory of the app. Gemfile is required to ensure that all of the needed gems are installed properly (including Rails itself). The following shows you what Gemfile is generated by the
 rails new
 command:

source 'https://rubygems.org'

Our rails version

gem 'rails', '4.0.0.rc2'

Use sqlite3 as the database for Active Record

gem 'sqlite3'

Use SCSS for stylesheets

gem 'sass-rails', '~> 4.0.0.rc2'

Use Uglifier as compressor for JavaScript assets

gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views

gem 'coffee-rails', '~> 4.0.0

Uncomment this if you haven't a nodejs and coffeescript installed

gem 'therubyracer', platforms: :ruby

[...]

What is happening here is that a default list of gems has been produced – these are the ones you need to begin working on your project. You will, throughout the course of your development, change this list, removing some and adding others.

Now you can run Bundle Install:

andrea@mbair ~/Works/12dos/bookmarks % bundle install

Fetching gem metadata from https://rubygems.org/..........

Fetching gem metadata from https://rubygems.org/..

Resolving dependencies...

Using rake (10.0.4)

Installing i18n (0.6.4)

[...]

And that completes your bundle!

If you want to see where a specific bundled gem has been installed, use the command
 bundle show [gemname]
 and you should see something like this:

andrea@mbair ~/Works/12dos/bookmarks %

Run the development server

Although you haven’t yet run any code, you are already able to use the default Rails development server, so run this command:

andrea@mbair ~/Works/12dos/bookmarks % rails server

Booting WEBrick

Rails 4.0.0.rc2 application starting in development on http://0.0.0.0:3000

Run `rails server -h` for more startup options

Ctrl-C to shutdown server

[2013-06-14 16:10:48] INFO WEBrick 1.3.1

[2013-06-14 16:10:48] INFO ruby 1.9.3 (2012-04-20) [x86_64-darwin12.2.0]

[2013-06-14 16:10:48] INFO WEBrick::HTTPServer#start: pid=1174 port=3000

[...]

Now open up a browser and go to http://localhost:3000 and you will see the default welcome page.

An introduction to MVC patterns and Rails

Rails is defined as a model–view–controller (MVC) framework. To break that down:

	
Model – Manages the data between the database and the rest of the application. You define how individual entities behave, including validation of data, before and after save hooks, etc.

	
View – This is the final output for a specific request and is normally HTML code, although it may be JSON or XML.

	
Controller – The controller is, to all intents and purposes, the glue that holds the Model management and the View together. Any http requests that come in to your application will be routed to the controller and that will then interact with at least one, maybe more, models to render the final output – the View.

Add a bookmark resource

The app we are building has a single goal – to manage bookmarks – so the next step is to create the bookmark resource:

andrea@mbair ~/Works/12dos/bookmarks % rails generate scaffold bookmark title: string url:string

invoke active_record

create db/migrate/20130614142337_create_bookmarks.rb

create app/models/bookmark.rb

invoke resource_route

route resources :bookmarks

invoke scaffold_controller

create app/controllers/bookmarks_controller.rb

[...]

Here we’ve used a very useful command, Rails generate. We have built a scaffold that makes all of the files and the code that will automatically give you an MVC stack to manage the bookmark. Let’s take a close look at what the command has done:

Database migration

What we have done is specify that a bookmark record should consist of a title and a field called URL. Both of these are strings with a default length of 255 characters. The Rails scaffold generator has created a migration script so that your database schema can be updated:

db/migrate/db/migrate/20130614142337_create_bookmarks.rb

class CreateBookmarks < ActiveRecord::Migration

def change

create_table :bookmarks do |t|

t.string :title

t.string :url

t.timestamps

end

end

end

If you found this script easy to read, well and good; if not, it means:

	
We have created a bookmarks table on a database.

	
The fields Title and URL are included and are of string type.

	
We have also added in timestamps as default – these are translated automatically to created_at and updated_at date and time fields.

But, at this stage, your database is not aware of the changes that have been made to the schema, so you need to run the migration task:

andrea@mbair ~/Works/12dos/bookmarks % rake db: migrate

== CreateBookmarks: migrating ==

create_table(:bookmarks)

0.0011s

== CreateBookmarks: migrated (0.0012s) =======================================

Rake is another very useful and commonly used tool in the world of Ruby, and it works similarly to MakeFile in Ruby language. Rails includes a number of Rake tasks that are ready for use, but you can create your own custom ones if needed:

andrea@mbair ~/Works/12dos/bookmarks % rake -T

rake about # List versions of all Rails frameworks and the environment

rake assets:clean # Remove old compiled assets

rake assets:clobber # Remove compiled assets

rake assets:environment # Load asset compile environment

[...]

The bookmark model

The model that is used to represent a bookmark was created within app/models/bookmark.rb. Right now, it is virtually empty of code, but it does know how it is meant to behave with the database. The following is a demonstration of that, using another common Rails command for opening a console:

andrea@mbair ~/Works/12dos/bookmarks % rails console

Loading development environment (Rails 4.0.0.rc2)

>

Now we have created a shell that we can use to issue commands to our Rails app. Let’s have a look and see if it knows anything about our bookmark:

Bookmark

Bookmark(id: integer, title: string, url: string, user_id: integer, created_at: datetime, updated_at: datetime)

Bookmark.count

(0.3ms) SELECT COUNT(*) FROM "bookmarks"

0

It does know something about the bookmarks table, the fields contained within, and how to query the database. So let’s create a bookmark:

Bookmark.create(title: "Hello Bookmarks app!", url: "http://localhost:3000")

(0.1ms) begin transaction

SQL (7.7ms) INSERT INTO "bookmarks" ("created_at", "title", "updated_at", "url") VALUES (?, ?, ?, ?) [["created_at", Fri, 14 Jun 2013 15:16:17 UTC +00:00], ["title", "Hello Bookmarks app!"], ["updated_at", Fri, 14 Jun 2013 15:16:17 UTC +00:00], ["url", "http://localhost:3000"]]

(0.8ms) commit transaction

#<Bookmark id: 1, title: "Hello Bookmarks app!", url: "http://localhost:3000", user_id: nil, created_at: "2013-06-14 15:16:17", updated_at: "2013-06-14 15:16:17

Bookmark.count

(0.3ms) SELECT COUNT(*) FROM "bookmarks"

1

The bookmarks controller & views

Earlier we said that the scaffold generator gave us all the MC stack parts, so now it’s time for the controller. Take a look in app/controllers/bookmarks_controller.rb and you should see a BookmarksController class and several methods. These are known as actions and each one corresponds to an HTTP path.

Routes

The last part of the MVC stack is all about routing the HTTP requests to the correct controller and action. To do this, the Rails generator has made a change to config/routes.rb. A new line has been added – resources: bookmarks – and this is the shorthand version of a command that tells it to use REST routes for the resource bookmark. If you want to know which routes are available, use the relative rake task, like this:

andrea@mbair ~/Works/12dos/bookmarks % rake routes

Prefix Verb URI Pattern Controller#Action

bookmarks GET /bookmarks(.:format) bookmarks#index

POST /bookmarks(.:format) bookmarks#create

new_bookmark GET /bookmarks/new(.:format) bookmarks#new

edit_bookmark GET /bookmarks/:id/edit(.:format) bookmarks#edit

bookmark GET /bookmarks/:id(.:format) bookmarks#show

PATCH /bookmarks/:id(.:format) bookmarks#update

PUT /bookmarks/:id(.:format) bookmarks#update

DELETE /bookmarks/:id(.:format) bookmarks#destroy

Try the server

Now we come to the fun bit. Start up the Rails server again, and use your browser to go to http://localhost:3000/bookmarks/. Provided you’ve done everything correctly so far you should now see the bookmark that you made earlier. If you don’t, you can always click on the New Bookmarks link and create another one.

Now try http://localhost:3000/bookmarks.json and see what happens. Although you have yet to write any code, you can see that this already does loads of things!

Adding users & authentication

Now that we have the bookmark resource, we need some users with bookmarks and we need a way of authenticating them. The Ruby on Rails community is hugely active, so no matter what your task is, there’s no doubt that you will find a gem to help you. User authentication is one of the most common and there are a number of options. The most common is Devise, so let’s take a look at it.

Installing Devise

First, you need to install the Devise gem. Open up Gemfile and add in this line:

gem 'devise', '~> 3.0.0.rc'

We have also told Bundler here that we want to use a version of Devise that is greater_or_equal to its minor version. Now run Bundle install to install the gem:

andrea@mbair ~/Works/12dos/bookmarks % bundle install

Resolving dependencies...

Using rake (10.0.4)

[...]

Installing devise (3.0.0.rc)

[...]

Your bundle is complete!

To see where a bundled gem has been installed, use bundle show [gemname].

The output will look something like this:

andrea@mbair ~/Works/12dos/bookmarks %

And now you can run the Devise generator:

andrea@mbair ~/Works/12dos/bookmarks % rails generate devise:install

create config/initializers/devise.rb

create config/locales/devise.en.yml

===

If you haven’t done this already, there is a little manual set up that you need to do.

First make sure that your environments files contain defined default URL options. An example of default_url_options that are suitable for a development environment in config/environments/development.rb:

config.action_mailer.default_url_options = { :host => 'localhost:3000' }

Make sure that, in production, :host is set to your application’s host.

Next make sure that the definition of root_url s set to *something* in the config/routes.rb file. An example:

root :to => "home#index"

Then make sure that you have flash messages in app/views/layouts/application.html.erb, for example:

<p class="notice"><%= notice %></p>

<p class="alert"><%= alert %></p>

If you are using Rails 3.1 or higher on Heroku, set the following:

config.assets.initialize_on_precompile = false

If you want to, you can copy Devise views to your app. Do this:

rails g devise:views

===

andrea@mbair ~/Works/12dos/bookmarks %

This has resulted in two more files being created under config/ directory:

	
config/initializers/devise.rb – This is where you can change Devise settings, but for the purposes of this tutorial, we are going to stay with the defaults.

	
Config/locales/devise.en.yml – This is the default path for all Rails app locales and it contains i18n translations for Devise.

Devise has also told us that we need to check five steps before we can complete the setup:

	
Open config/environments/development.rb ad add config.action_mailer_default_url_options = {:host=> ‘localhost:3000’}

	
Go to config/routes.rb and define a root_url. For our purposes you can point BookmarksController#index to the root of the website:

	
Bookmarks::Application.routes.draw do # [...] root ‘bookmarks#index’

	
[...] end

	
Open app/views/layouts/application.html.erb and add in the two bits of HTML code. This file will be the main app layout.

	
You can skip this one because you are, or should be, running the latest version of Rails

	
Use the command
 rails generate devise:views
 to generate the default views. These have a scaffold in them to make Devise work. If you see loads of generated views, don’t panic – we are only going to use a small section of them for now.

Generating a user model

Devise is now set up, but we still need to create a user model:

andrea@mbair ~/Works/12dos/bookmarks % rails generate devise User

invoke active_record

create db/migrate/20130617132545_devise_create_users.rb

create app/models/user.rb

insert app/models/user.rb

route devise_for :users

When we generated the bookmark, we used a scaffold generator. This is similar but is focused only on the model and the route that informs Devise how it should handle /uses/*paths. Edit the whole sequence so it looks like this:

class DeviseCreateUsers < ActiveRecord::Migration

def change

create_table(:users) do |t|

Database authenticatable

t.string :email, :null => false, :default => ""

t.string :encrypted_password, :null => false, :default => ""

Rememberable

t.datetime :remember_created_at

t.timestamps

end

add_index :users, :email, :unique => true

end

end

Also, the model needs to reflect the changes made to the migration:

class User < ActiveRecord::Base

devise :database_authenticatable, :registerable,

:rememberable, :validatable

end

Finally, you can use command rake db:migrate to run it.

What we have now is a very simple system that allows a user to register with the website, log in, and log out again. If you try running rake routes, you will see that there are now new routes for all of these actions and each one is referred to users.

Associating users & bookmarks

Now we have both a user and a bookmark, it’s time to associate them. In this case, we are associating one to many. We now need to create a new migration, as such:

rails generate migration AddUserIdToBookmark user_id:integer

Try to choose an appropriate name; it isn’t required for this tutorial, but it is a habit you should get into. The newly generated migration adds a user_id integer column into the bookmarks table.

Right now, neither of the two Rails models have any knowledge of one another. All we have done is put another field in the database, but without a few extra instructions, it’s all pretty meaningless. What you need to do is this:

add has_many:bookmarks into app/models/user.rb

add belongs_to:user to app/models/user.rb

These changes will associate a user instance with a bookmarks method, and all of the records with that specific user ID will be referred to it.

Requiring authentication for bookmark management

Now, if we take a look at the models, it looks as if the data part is all working. But the BookmarksController that was created by the scaffold command doesn’t yet apply any kind of authentication check, so it needs a bit of work. First, you must check the user authentication before any action can be executed:

class BookmarksController < ApplicationController

other before_actions

before_action :authenticate_user!

[...] actions

end

From here on in, any request that arrives on the BookmarksController will first be checked for authentication and then redirected to the login page.

To access the bookmarks that are owned by the authenticated user, you must replace bookmark occurrences with current_user.bookmarks. Current_user is the Devise object that is representative of the authenticated user while .bookmarks is the method that is provided by the model association between the bookmark and user models.

Try the server (again)

If you haven’t played around with this yet, do it now. First point your browser to http://localhost:3000 and it should automatically redirect you to the users/sign_in page. If you haven’t yet registered a user, go to http://localhost:3000/users/sign_up and register one.

Handling wrong inputs

There are a couple of places where incorrect user input could cause damage to your application:

	
If they provide incomplete data or wrong data when they create a new bookmark.

	
If they request an ID for a bookmark that is non-existent; this will cause an ugly error to form in your app.

Let’s take a closer look at how to deal with these issues.

Model validations

If you attempt to use a password that is not long enough, i.e., shorter than 8 characters, or a wrongly formatted email during registration, Devise will pick up those errors and will not save the record. This will render the user registration form for another go. To put some validations in your app on the bookmark model, change app/models/bookmark.rb as follows:

class Bookmark < ActiveRecord::Base

belongs to :user

ensure that a user_id is present

validates :user_id, presence: true

ensure that title is present and at least 10 chars long

validates :title, length: { minimum: 10 }, presence: true

ensure the url is present, and respects the URL format for http/https

validates :url, format: {with: Regexp.new(URI::regexp(%w(http https)))}, presence: true

end

These validations should be pretty much self-explanatory.

When resources aren’t found

The second issue we mentioned was about trying to use an ID that doesn’t exist. There are a few ways to handle this, but the easiest is to redirect the index using a flash message. To do this, we need to change some code in the BookmarksController:

class BookmarksController < ApplicationController

[...] other code here

private

Use callbacks to share common setup or constraints between actions.

def set_bookmark

unless @bookmark = current_user.bookmarks.where(id: params[:id]).first

flash[:alert] = 'Bookmark not found.'

redirect_to root_url

end

end

end

Set_bookmark is a method that is called before_action, but only for those actions that require a resource id, such as update, show, destroy and edit. The new code lines will check for database existence and, if the ID is not there, the user will then be redirected to the root path with a flash message.

Making improvements a step at a time

Your app is almost finished, but it is still lacking in a number of details that make a huge difference.

Root page

Let’s start with the first one, adding a good root page. This is a pretty simple task, and all we need is to create a new route, controller and view. This time, though, we will use a controller dedicated generator:

rails generate controller site index

I have not shown the output; by now, you should be able to guess what the result will be. A new SiteController has been created with a new action called index and there is a related view in apps/views/site/index.html.erb along with a new route in config/routes.rb. That said, the route needs to be changed to reflect what we want to achieve:

Bookmarks::Application.routes.draw

[...] other routes

Comment/remove these lines

get "site/index"

root 'bookmarks#index'

Use this

root 'site#index'

end

Try loading http://localhost:3000 now and all you will get is an empty template for apps/views/site/index.html.erb. In order to render the content we must change the controller in app/controllers/site_controller.rb:

class SiteController < ApplicationController

def index

retrieve all Bookmarks ordered by descending creation timestamp

@bookmarks = Bookmark.order('created_at desc')

end

end

While in apps/views/site/index.html.erb, you might see this as a starting point:

<h2>Latest Bookmarks</h2>

<table style="width: 100%">

<thead>

<tr>

<th>Url</th>

</tr>

</thead>

<tbody>

<% @bookmarks.each do |bookmark| %>

<tr>

<td><%= link_to bookmark.title, bookmark.url %></td>

</tr>

<% end %>

</tbody>

</table>

Again, note that the controller has processed the request by getting some records from the database by going through bookmark and then rendering the view that has the correct data in it.

Nicer GUI

If you want to pretty up your design and site layout, there are a number of CSS frameworks that can help you. You could use the standard Twitter Bootstrap, but for this I’ve chosen something a little fancier, called ZURB Foundation. Luckily, there is a gem for ZURB so we can integrate it into our Rails app:

gem 'zurb-foundation', '~> 4.2.2'

Now you can run the Bundle install and the install generator:

rails generate foundation:install

Once you execute this command, you will be asked to overwrite the existing application layout in app/views/layouts/application.html.erb/ Just press Y.

You can also now get rid of the stylesheets in the old scaffold:

rm app/assets/stylesheets/scaffolds.css.scss

Prettier forms

There is no doubt that forms do look ugly, and they are pretty boring to write, but we can use another gem to change that. Add this to your gemfile:

gem 'simple_form', '~> 3.0.0.rc'

Again, run the Bundle install and the install generator:

rails generate simple_form:install --foundation

At the same time, we are going to regenerate Devise views because this supports the SimpleForm gem we just installed:

rails generate devise:views

The generator will want to know if you intend to overwrite the existing files. Just press Y.

The final step is to fix the form for bookmarks, because this one wasn’t updated by the other generators. We can use the following content in app/views/bookmarks/_form.html.erb:

<%= simple_form_for(@bookmark) do |f| %>

<%= f.error_notification %>

<div class="form-inputs">

<%= f.input :title %>

<%= f.input :url %>

</div>

<div class="form-actions">

<%= f.button :submit %>

</div>

<% end %>

Congratulations! You have reached the end of this tutorial. If you followed it correctly, you should now have a basic but functional Ruby on Rails app. This is really only the beginning; there is so much more to Ruby on Rails, but perhaps that is a subject best left for a more advanced chapter.

Chapter 11 – The Command Line in Rails

If you are planning to use Rails, it is important that you be well versed in a few command line commands. The six most commonly used commands are listed here in the order of the frequency of their usage.

	
rails console

	
rails server

	
rake

	
rails generate

	
rails dbconsole

	
rails new app_name

We can use either –help or –h with all the commands if we want more information to be listed.

You can better understand the commands and their functions if they are explained in the context of creating a simple Rails application, as follows:

rails new

We need to first install Rails in order to create a Rails application. After the installation, we use the command
 rails new
 for creating a new Rails application.

If your system doesn’t have the Rails gem, you need to install it through the command gem install rails:

$ rails new commandsapp

 create

 create README.rdoc

 create Rakefile

 create config.ru

 create .gitignore

 create Gemfile

 create app

 create tmp/cache

 run bundle install

As you can see, Rails sets up a lot of stuff even though the command is a small one. The Rails directory structure is set up in its entirety, so that you have all the code required for running a simple Rails application.

rails server

WEBrick is a small web server that comes along with Ruby. You need to use the
 rails server
 command to launch the WEBrick server. This is so that you can access your application through the web server whenever you want.

The Rails application is run by the
 rails server
 command as follows:

$ cd commandsapp

$ bin/rails server

=> Booting WEBrick

=> Rails 4.2.0 application starting in development on http://localhost:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

[2013-08-07 02:00:01] INFO WEBrick 1.3.1

[2013-08-07 02:00:01] INFO ruby 2.0.0 (2013-06-27) [x86_64-darwin11.2.0]

[2013-08-07 02:00:01] INFO WEBrick::HTTPServer#start: pid=69680 port=3000

After using the three commands, the Rails server is ready to listen on the port number 3000. Open your browser and type the address http://localhost:3000. After the link is opened, you can see that the basic Rails app is being run.

Instead of using the name
 server
 , its alias
 s
 can also be used for starting the server. The command goes like this:

rails s.

If you want the server running on another port, you can use the -p option. You can use the -e option for changing the default development environment.

$ bin/rails server -e production -p 4000

Rails can be bound to the required IP by using the -b option. Rail is bound to the localhost by default. A server can be run as a daemon, if we use the -d option.

rails generate

So many things can be created using the command
 rails generate
 . This command makes use of templates for creating things. A list of all the generators available can be generated by using the
 rails generate
 command.

Instead of using the word
 generate
 , its alias
 g
 can be used for invoking the generator command. The alias can be used as follows:

rails g.

$ bin/rails generate

Usage: rails generate GENERATOR [args] [options]

...

...

Please choose a generator below.

Rails:

 assets

 controller

 generator

 ...

 ...

More generators can be installed using the generator gems, and they can also be created on your own.

A code known as the boilerplate code is required for the working of the app. The generators write the boilerplate code, thereby saving a lot of time for the user.

We can use the controller generator for making a controller of our own. We can find out which command we need to use by asking the generator.

Help text is present for all the utilities of the Rails console. We can add to the end either –h or –help, just as seen in the *nix utilities.

Example: rails server --help.

$ bin/rails generate controller

Usage: rails generate controller NAME [action action] [options]

...

...

Description:

 ...

 The controller name can be specified as a path, for creating a controller within a module. The path can be given as follows:

'parent_module/controller_name'.

 ...

Example:

 `rails generate controller CreditCards open debit credit close`

 Credit card controller with URLs like /credit_cards/debit.

 Controller: app/controllers/credit_cards_controller.rb

 Test: test/controllers/credit_cards_controller_test.rb

 Views: app/views/credit_cards/debit.html.erb [...]

 Helper: app/helpers/credit_cards_helper.rb

Parameters are expected by the controller generator, in the generate controller form ControllerName action1 action2.

Now, let’s create something nice. A Greetings controller that will say something nice to the user can be made having
 hello
 as an action.

$ bin/rails generate controller Greetings hello

 create app/controllers/greetings_controller.rb

 route get "greetings/hello"

 invoke erb

 create app/views/greetings

 create app/views/greetings/hello.html.erb

 invoke test_unit

 create test/controllers/greetings_controller_test.rb

 invoke helper

 create app/helpers/greetings_helper.rb

 invoke assets

 invoke coffee

 create app/assets/javascripts/greetings.js.coffee

 invoke scss

 create app/assets/stylesheets/greetings.css.scss

What has been generated by all of the above?

	
It ensured that our application has a bunch of directories in it.

	
A controller file was created.

	
A functional test file and view file were also created.

	
A view helper, a JavaScript and style sheet files were also created.

The controller can be modified a little after checking it out (in app/controllers/greetings_controller.rb):

class GreetingsController < ApplicationController

 def hello

 @message = "Hello, how are you today?"

 end

end

And now comes the view for displaying our message (in app/views/greetings/hello.html.erb):

<h1>A Greeting for You!</h1>

<p><%= @message %></p>

The server can be fired up with the help of the Rails server.

$ bin/rails server

=> Booting WEBrick...

The URL is: http://localhost:3000/greetings/hello.

For normal Rails applications, the pattern followed by the URL is: http://(host)/(controller)/(action).

Rails also makes the generators available for data models.

For keeping track of your highest video game score, you will create ‘HighScore’, an uncomplicated resource.

$ bin/rails generate scaffold HighScore game:string score:integer

 invoke active_record

 create db/migrate/20130717151933_create_high_scores.rb

 create app/models/high_score.rb

 invoke test_unit

 create test/models/high_score_test.rb

 create test/fixtures/high_scores.yml

 invoke resource_route

 route resources :high_scores

 invoke scaffold_controller

 create app/controllers/high_scores_controller.rb

 invoke erb

 create app/views/high_scores

 create app/views/high_scores/index.html.erb

 create app/views/high_scores/edit.html.erb

 create app/views/high_scores/show.html.erb

 create app/views/high_scores/new.html.erb

 create app/views/high_scores/_form.html.erb

 invoke test_unit

 create test/controllers/high_scores_controller_test.rb

 invoke helper

 create app/helpers/high_scores_helper.rb

 invoke jbuilder

 create app/views/high_scores/index.json.jbuilder

 create app/views/high_scores/show.json.jbuilder

 invoke assets

 invoke coffee

 create app/assets/javascripts/high_scores.js.coffee

 invoke scss

 create app/assets/stylesheets/high_scores.css.scss

 invoke scss

 identical app/assets/stylesheets/scaffolds.css.scss

$ bin/rake db:migrate

== CreateHighScores: migrating ===

-- create_table(:high_scores)

 -> 0.0017s

== CreateHighScores: migrated (0.0019s) ======================================

Let’s see what unit tests are. We can perform unit testing by taking a unit of a code and testing it for input and output. Unit tests are a gift. The sooner you realize that unit testing makes life easier for you, the better. The unit can be a module or a program.

The following is the interface that Rails creates for the

$ bin/rails server

Open your browser and type in the address http://localhost:3000/high_scores, if you want to create new high scores (56,275 on Space Invaders!)

rails console

The
 console
 command facilitates the interaction of the user with the application through the command line interface.

The console can be invoked using the alias
 c
 as follows: rails c.

The user can specify the environment for the runner command to run.

$ bin/rails console staging

For testing out a code without making any changes in the data, you need to invoke the rails console --sandbox.

$ bin/rails console --sandbox

Loading development environment in sandbox (Rails 4.2.0)

Any modifications you make will be rolled back on exit.

irb(main):001:0>

The app and helper objects

The app and helper objects can be accessed from the rails console. The URL and path helpers can be accessed by using the app method. Requests can also be made using the app method.

>> app.root_path

=> "/"

>> app.get _

Started GET "/" for 127.0.0.1 at 2014-06-19 10:41:57 -0300

...

The helpers of the application and Rails can be accessed using the helper method as follows:

>> helper.time_ago_in_words 30.days.ago

=> "about 1 month"

>> helper.my_custom_helper

=> "my custom helper"

rails dbconsole

rails dbconsole does two things:

	
It determines what database is being used by the user.

	
It puts you in a command line interface that goes with the database you are using and also determines the required command line parameters.

The following databases are supported by this command.

	
MySQL

	
PostgreSQL

	
SQLite

	
SQLite3

The dbconsole can be invoked by using the alias
 db
 as follows: rails db.

rails runner

The runner is used for the non-interactive running of the Ruby code. The code is run in the context of Rails. For instance:

$ bin/rails runner "Model.long_running_method"

The runner can be invoked by using the alias
 r
 as follows: rails r.

The –e switch is used for specifying the environment where you want the runner command to run.

$ bin/rails runner -e staging "Model.long_running_method"

rails destroy

Destroy and generate can be thought of as opposites. What destroy does is to find and undo whatever the generate did.

Destroy can also be invoked using its alias
 d
 as follows: rails d.

$ bin/rails generate model Oops

 invoke active_record

 create db/migrate/20120528062523_create_oops.rb

 create app/models/oops.rb

 invoke test_unit

 create test/models/oops_test.rb

 create test/fixtures/oops.yml

$ bin/rails destroy model Oops

 invoke active_record

 remove db/migrate/20120528062523_create_oops.rb

 remove app/models/oops.rb

 invoke test_unit

 remove test/models/oops_test.rb

 remove test/fixtures/oops.yml

.

Chapter 12 – Useful Programs in Ruby

Print the reverse of a string

def rev(text)

puts text.reverse

end

rev("Lizzy")

OUTPUT: yzziL

Find if a string is a palindrome

def palin(text)

 if text.reverse == text

 puts "The given string #{text} is a palindrome"

 else

 puts "the given string #{text} is not a palindrome"

 end

end

palin("madam")

OUTPUT:

The given string madam is a palindrome

Generate the Fibonacci series

def fib(count)

 a=0

 b=1

 puts a

 puts b

 current_count=0

 while current_count < count-2

 puts c= a+b

 a=b

 b=c

 current_count+=1

 end

end

fib(10)

Find the factorial of a number

def factorial(x)

puts 1.upto(x).inject('*')

end

factorial(5)

Find the second biggest number from an array

def second_big(collection)

 puts collection.sort[-2]

end

second_big([15,13,14,56,34,23,76,99,56,32])

OUTPUT: 76

Conclusion

I hope that I have been able to teach you something about Ruby and Rails. Remember that this is by no means a comprehensive guide; it is just an introduction for those with little to no knowledge of Ruby or experience with programming. I have tried to keep things simple, although the nature of computer programming language does not really lend itself to this.

Now that you have a base knowledge of Ruby and Ruby on Rails, you should continue with your learning and go on to a more advanced program. Remember that practice makes perfect. If you get stuck or start getting frustrated, step back, take a breather and start again. Eventually you will figure things out. When you have completed this tutorial and you move on, do one thing – figure out your own code, why it does what it does and how it works. Too many people copy and paste code off the Internet without truly understanding it, and they never actually learn anything.

Thank you again for downloading my book; I hope you enjoyed it and found it useful!

[image: Description: thank_you_cute_beagle_puppy_dog_sticker-ra2addcf756b04443ac0e33cc97e16c75_v9wf3_8byvr_512.jpg]

Did You Like This Book?

Before you leave, I wanted to say thank-you again for buying my book.

I know you could have picked from a number of different books on this topic, but you

chose this one, so I can’t thank you enough for doing that and reading until the end.

I’d like to ask you a small favor

If you enjoyed this book or feel that it has helped you in anyway, then could you please

take a minute and post an honest review about it on Amazon?

Your review will help get my book out there to more people and they’ll be grateful, as will I.

TAP HERE TO LEAVE A REVIEW!

OEBPS/Image00002.jpg
Ed
e

e

Thank You

OEBPS/Image00003.jpg
RUBY

Beginner's Crash Course

Ruby for Beginner’'s Guide to
Ruby Programming,
Ruby On Rails & Rails Programming

D

DUICKSTART GUIDES

OEBPS/Image00005.jpg
QUCKSTARTBUOES

OEBPS/Image00001.jpg
Step 1: Compie Ruby o Java byt code

oot ‘Compiled Fuby
e ——— (Java byte code)
(ava)

Step 2: Compile Java byte code 0 machine language

Java Virtual Machine (©)

o Java JIT compiler iz

©

comptedmuy | [atve wachine ‘

OEBPS/Image00000.jpg
160 1 Compie Fuby to bye cose

= Compied Auby
o Fuinius compe | (B BYie 0ode)
Ry

160 2: Compie Byte Gode to Machine Language

s, | —————|
s s by1e ©090) | Aubinius J1T compher

e

Native machine
Language’

