

Android Studio 3.2

Development Essentials

Kotlin Edition

Android Studio 3.2 Development Essentials – Kotlin Edition

ISBN-13: 978-0960010929

© 2018 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers any warranties or representation, express or implied, with regard to the accuracy of information contained in this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Table of Contents

1. Introduction

1.1 Downloading the Code Samples

1.2 Feedback

1.3 Errata

2. Setting up an Android Studio Development Environment

2.1 System Requirements

2.2 Downloading the Android Studio Package

2.3 Installing Android Studio

2.3.1 Installation on Windows

2.3.2 Installation on macOS

2.3.3 Installation on Linux

2.4 The Android Studio Setup Wizard

2.5 Installing Additional Android SDK Packages

2.6 Making the Android SDK Tools Command-line Accessible

2.6.1 Windows 7

2.6.2 Windows 8.1

2.6.3 Windows 10

2.6.4 Linux

2.6.5 macOS

2.7 Updating Android Studio and the SDK

2.8 Summary

3. Creating an Example Android App in Android Studio

3.1 About the Project

3.2 Creating a New Android Project

3.3 Defining the Project and SDK Settings

3.4 Creating an Activity

3.5 Modifying the Example Application

3.6 Reviewing the Layout and Resource Files

3.7 Adding Interaction

3.8 Summary

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devices

4.2 Creating a New AVD

4.3 Starting the Emulator

4.4 Running the Application in the AVD

4.5 Run/Debug Configurations

4.6 Stopping a Running Application

4.7 AVD Command-line Creation

4.8 Android Virtual Device Configuration Files

4.9 Moving and Renaming an Android Virtual Device

4.10 Summary

5. Using and Configuring the Android Studio AVD Emulator

5.1 The Emulator Environment

5.2 The Emulator Toolbar Options

5.3 Working in Zoom Mode

5.4 Resizing the Emulator Window

5.5 Extended Control Options

5.5.1 Location

5.5.2 Cellular

5.5.3 Camera

5.5.4 Battery

5.5.5 Phone

5.5.6 Directional Pad

5.5.7 Microphone

5.5.8 Fingerprint

5.5.9 Virtual Sensors

5.5.10 Snapshots

5.5.11 Screen Record

5.5.12 Google Play

5.5.13 Settings

5.5.14 Help

5.6 Working with Snapshots

5.7 Drag and Drop Support

5.8 Configuring Fingerprint Emulation

5.9 Summary

6. A Tour of the Android Studio User Interface

6.1 The Welcome Screen

6.2 The Main Window

6.3 The Tool Windows

6.4 Android Studio Keyboard Shortcuts

6.5 Switcher and Recent Files Navigation

6.6 Changing the Android Studio Theme

6.7 Summary

7. Testing Android Studio Apps on a Physical Android Device

7.1 An Overview of the Android Debug Bridge (ADB)

7.2 Enabling ADB on Android based Devices

7.2.1 macOS ADB Configuration

7.2.2 Windows ADB Configuration

7.2.3 Linux adb Configuration

7.3 Testing the adb Connection

7.4 Summary

8. The Basics of the Android Studio Code Editor

8.1 The Android Studio Editor

8.2 Splitting the Editor Window

8.3 Code Completion

8.4 Statement Completion

8.5 Parameter Information

8.6 Parameter Name Hints

8.7 Code Generation

8.8 Code Folding

8.9 Quick Documentation Lookup

8.10 Code Reformatting

8.11 Finding Sample Code

8.12 Summary

9. An Overview of the Android Architecture

9.1 The Android Software Stack

9.2 The Linux Kernel

9.3 Android Runtime – ART

9.4 Android Libraries

9.4.1 C/C++ Libraries

9.5 Application Framework

9.6 Applications

9.7 Summary

10. The Anatomy of an Android Application

10.1 Android Activities

10.2 Android Fragments

10.3 Android Intents

10.4 Broadcast Intents

10.5 Broadcast Receivers

10.6 Android Services

10.7 Content Providers

10.8 The Application Manifest

10.9 Application Resources

10.10 Application Context

10.11 Summary

11. An Introduction to Kotlin

11.1 What is Kotlin?

11.2 Kotlin and Java

11.3 Converting from Java to Kotlin

11.4 Kotlin and Android Studio

11.5 Experimenting with Kotlin

11.6 Semi-colons in Kotlin

11.7 Summary

12. Kotlin Data Types,Variables and Nullability

12.1 Kotlin Data Types

12.1.1 Integer Data Types

12.1.2 Floating Point Data Types

12.1.3 Boolean Data Type

12.1.4 Character Data Type

12.1.5 String Data Type

12.1.6 Escape Sequences

12.2 Mutable Variables

12.3 Immutable Variables

12.4 Declaring Mutable and Immutable Variables

12.5 Data Types are Objects

12.6 Type Annotations and Type Inference

12.7 Nullable Type

12.8 The Safe Call Operator

12.9 Not-Null Assertion

12.10 Nullable Types and the let Function

12.11 The Elvis Operator

12.12 Type Casting and Type Checking

12.13 Summary

13. Kotlin Operators and Expressions

13.1 Expression Syntax in Kotlin

13.2 The Basic Assignment Operator

13.3 Kotlin Arithmetic Operators

13.4 Augmented Assignment Operators

13.5 Increment and Decrement Operators

13.6 Equality Operators

13.7 Boolean Logical Operators

13.8 Range Operator

13.9 Bitwise Operators

13.9.1 Bitwise Inversion

13.9.2 Bitwise AND

13.9.3 Bitwise OR

13.9.4 Bitwise XOR

13.9.5 Bitwise Left Shift

13.9.6 Bitwise Right Shift

13.10 Summary

14. Kotlin Flow Control

14.1 Looping Flow Control

14.1.1 The Kotlin for-in
 Statement

14.1.2 The while
 Loop

14.1.3 The do ... while
 loop

14.1.4 Breaking from Loops

14.1.5 The continue
 Statement

14.1.6 Break and Continue Labels

14.2 Conditional Flow Control

14.2.1 Using the if
 Expressions

14.2.2 Using if ... else …
 Expressions

14.2.3 Using if ... else if ... Expressions

14.2.4 Using the when Statement

14.3 Summary

15. An Overview of Kotlin Functions and Lambdas

15.1 What is a Function?

15.2 How to Declare a Kotlin Function

15.3 Calling a Kotlin Function

15.4 Single Expression Functions

15.5 Local Functions

15.6 Handling Return Values

15.7 Declaring Default Function Parameters

15.8 Variable Number of Function Parameters

15.9 Lambda Expressions

15.10 Higher-order Functions

15.11 Summary

16. The Basics of Object Oriented Programming in Kotlin

16.1 What is an Object?

16.2 What is a Class?

16.3 Declaring a Kotlin Class

16.4 Adding Properties to a Class

16.5 Defining Methods

16.6 Declaring and Initializing a Class Instance

16.7 Primary and Secondary Constructors

16.8 Initializer Blocks

16.9 Calling Methods and Accessing Properties

16.10 Custom Accessors

16.11 Nested and Inner Classes

16.12 Companion Objects

16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and Subclasses

17.2 Subclassing Syntax

17.3 A Kotlin Inheritance Example

17.4 Extending the Functionality of a Subclass

17.5 Overriding Inherited Methods

17.6 Adding a Custom Secondary Constructor

17.7 Using the SavingsAccount Class

17.8 Summary

18. Understanding Android Application and Activity Lifecycles

18.1 Android Applications and Resource Management

18.2 Android Process States

18.2.1 Foreground Process

18.2.2 Visible Process

18.2.3 Service Process

18.2.4 Background Process

18.2.5 Empty Process

18.3 Inter-Process Dependencies

18.4 The Activity Lifecycle

18.5 The Activity Stack

18.6 Activity States

18.7 Configuration Changes

18.8 Handling State Change

18.9 Summary

19. Handling Android Activity State Changes

19.1 New vs. Old Lifecycle Techniques

19.2 The Activity and Fragment Classes

19.3 Dynamic State vs. Persistent State

19.4 The Android Lifecycle Methods

19.5 Lifetimes

19.6 Disabling Configuration Change Restarts

19.7 Lifecycle Method Limitations

19.8 Summary

20. Android Activity State Changes by Example

20.1 Creating the State Change Example Project

20.2 Designing the User Interface

20.3 Overriding the Activity Lifecycle Methods

20.4 Filtering the Logcat Panel

20.5 Running the Application

20.6 Experimenting with the Activity

20.7 Summary

21. Saving and Restoring the State of an Android Activity

21.1 Saving Dynamic State

21.2 Default Saving of User Interface State

21.3 The Bundle Class

21.4 Saving the State

21.5 Restoring the State

21.6 Testing the Application

21.7 Summary

22. Understanding Android Views, View Groups and Layouts

22.1 Designing for Different Android Devices

22.2 Views and View Groups

22.3 Android Layout Managers

22.4 The View Hierarchy

22.5 Creating User Interfaces

22.6 Summary

23. A Guide to the Android Studio Layout Editor Tool

23.1 Basic vs. Empty Activity Templates

23.2 The Android Studio Layout Editor

23.3 Design Mode

23.4 The Palette

23.5 Design and Layout Views

23.6 Text Mode

23.7 Setting Attributes

23.8 Configuring Favorite Attributes

23.9 Converting Views

23.10 Displaying Sample Data

23.11 Creating a Custom Device Definition

23.12 Changing the Current Device

23.13 Summary

24. A Guide to the Android ConstraintLayout

24.1 How ConstraintLayout Works

24.1.1 Constraints

24.1.2 Margins

24.1.3 Opposing Constraints

24.1.4 Constraint Bias

24.1.5 Chains

24.1.6 Chain Styles

24.2 Baseline Alignment

24.3 Working with Guidelines

24.4 Configuring Widget Dimensions

24.5 Working with Barriers

24.6 Ratios

24.7 ConstraintLayout Advantages

24.8 ConstraintLayout Availability

24.9 Summary

25. A Guide to using ConstraintLayout in Android Studio

25.1 Design and Layout Views

25.2 Autoconnect Mode

25.3 Inference Mode

25.4 Manipulating Constraints Manually

25.5 Adding Constraints in the Inspector

25.6 Deleting Constraints

25.7 Adjusting Constraint Bias

25.8 Understanding ConstraintLayout Margins

25.9 The Importance of Opposing Constraints and Bias

25.10 Configuring Widget Dimensions

25.11 Adding Guidelines

25.12 Adding Barriers

25.13 Widget Group Alignment and Distribution

25.14 Converting other Layouts to ConstraintLayout

25.15 Summary

26. Working with ConstraintLayout Chains and Ratios in Android Studio

26.1 Creating a Chain

26.2 Changing the Chain Style

26.3 Spread Inside Chain Style

26.4 Packed Chain Style

26.5 Packed Chain Style with Bias

26.6 Weighted Chain

26.7 Working with Ratios

26.8 Summary

27. An Android Studio Layout Editor ConstraintLayout Tutorial

27.1 An Android Studio Layout Editor Tool Example

27.2 Creating a New Activity

27.3 Preparing the Layout Editor Environment

27.4 Adding the Widgets to the User Interface

27.5 Adding the Constraints

27.6 Testing the Layout

27.7 Using the Layout Inspector

27.8 Summary

28. Manual XML Layout Design in Android Studio

28.1 Manually Creating an XML Layout

28.2 Manual XML vs. Visual Layout Design

28.3 Summary

29. Managing Constraints using Constraint Sets

29.1 Kotlin Code vs. XML Layout Files

29.2 Creating Views

29.3 View Attributes

29.4 Constraint Sets

29.4.1 Establishing Connections

29.4.2 Applying Constraints to a Layout

29.4.3 Parent Constraint Connections

29.4.4 Sizing Constraints

29.4.5 Constraint Bias

29.4.6 Alignment Constraints

29.4.7 Copying and Applying Constraint Sets

29.4.8 ConstraintLayout Chains

29.4.9 Guidelines

29.4.10 Removing Constraints

29.4.11 Scaling

29.4.12 Rotation

29.5 Summary

30. An Android ConstraintSet Tutorial

30.1 Creating the Example Project in Android Studio

30.2 Adding Views to an Activity

30.3 Setting View Attributes

30.4 Creating View IDs

30.5 Configuring the Constraint Set

30.6 Adding the EditText View

30.7 Converting Density Independent Pixels (dp) to Pixels (px)

30.8 Summary

31. A Guide to using Instant Run in Android Studio

31.1 Introducing Instant Run

31.2 Understanding Instant Run Swapping Levels

31.3 Enabling and Disabling Instant Run

31.4 Using Instant Run

31.5 An Instant Run Tutorial

31.6 Triggering an Instant Run Hot Swap

31.7 Triggering an Instant Run Warm Swap

31.8 Triggering an Instant Run Cold Swap

31.9 The Run Button

31.10 Summary

32. An Overview and Example of Android Event Handling

32.1 Understanding Android Events

32.2 Using the android:onClick Resource

32.3 Event Listeners and Callback Methods

32.4 An Event Handling Example

32.5 Designing the User Interface

32.6 The Event Listener and Callback Method

32.7 Consuming Events

32.8 Summary

33. Android Touch and Multi-touch Event Handling

33.1 Intercepting Touch Events

33.2 The MotionEvent Object

33.3 Understanding Touch Actions

33.4 Handling Multiple Touches

33.5 An Example Multi-Touch Application

33.6 Designing the Activity User Interface

33.7 Implementing the Touch Event Listener

33.8 Running the Example Application

33.9 Summary

34. Detecting Common Gestures using the Android Gesture Detector Class

34.1 Implementing Common Gesture Detection

34.2 Creating an Example Gesture Detection Project

34.3 Implementing the Listener Class

34.4 Creating the GestureDetectorCompat Instance

34.5 Implementing the onTouchEvent() Method

34.6 Testing the Application

34.7 Summary

35. Implementing Custom Gesture and Pinch Recognition on Android

35.1 The Android Gesture Builder Application

35.2 The GestureOverlayView Class

35.3 Detecting Gestures

35.4 Identifying Specific Gestures

35.5 Building and Running the Gesture Builder Application

35.6 Creating a Gestures File

35.7 Creating the Example Project

35.8 Extracting the Gestures File from the SD Card

35.9 Adding the Gestures File to the Project

35.10 Designing the User Interface

35.11 Loading the Gestures File

35.12 Registering the Event Listener

35.13 Implementing the onGesturePerformed Method

35.14 Testing the Application

35.15 Configuring the GestureOverlayView

35.16 Intercepting Gestures

35.17 Detecting Pinch Gestures

35.18 A Pinch Gesture Example Project

35.19 Summary

36. An Introduction to Android Fragments

36.1 What is a Fragment?

36.2 Creating a Fragment

36.3 Adding a Fragment to an Activity using the Layout XML File

36.4 Adding and Managing Fragments in Code

36.5 Handling Fragment Events

36.6 Implementing Fragment Communication

36.7 Summary

37. Using Fragments in Android Studio - An Example

37.1 About the Example Fragment Application

37.2 Creating the Example Project

37.3 Creating the First Fragment Layout

37.4 Creating the First Fragment Class

37.5 Creating the Second Fragment Layout

37.6 Adding the Fragments to the Activity

37.7 Making the Toolbar Fragment Talk to the Activity

37.8 Making the Activity Talk to the Text Fragment

37.9 Testing the Application

37.10 Summary

38. Modern Android App Architecture with Jetpack

38.1 What is Android Jetpack?

38.2 The “Old” Architecture

38.3 Modern Android Architecture

38.4 The ViewModel Component

38.5 The LiveData Component

38.6 LiveData and Data Binding

38.7 Android Lifecycles

38.8 Repository Modules

38.9 Summary

39. An Android Jetpack ViewModel Tutorial

39.1 About the Project

39.2 Creating the ViewModel Example Project

39.3 Reviewing the Project

39.3.1 The Main Activity

39.3.2 The Content Fragment

39.3.3 The ViewModel

39.4 Designing the Fragment Layout

39.5 Implementing the View Model

39.6 Associating the Fragment with the View Model

39.7 Modifying the Fragment

39.8 Accessing the ViewModel Data

39.9 Testing the Project

39.10 Summary

40. An Android Jetpack LiveData Tutorial

40.1 LiveData - A Recap

40.2 Adding LiveData to the ViewModel

40.3 Implementing the Observer

40.4 Summary

41. An Overview of Android Jetpack Data Binding

41.1 An Overview of Data Binding

41.2 The Key Components of Data Binding

41.2.1 The Project Build Configuration

41.2.2 The Data Binding Layout File

41.2.3 The Layout File Data Element

41.2.4 The Binding Classes

41.2.5 Data Binding Variable Configuration

41.2.6 Binding Expressions (One-Way)

41.2.7 Binding Expressions (Two-Way)

41.2.8 Event and Listener Bindings

41.3 Summary

42. An Android Jetpack Data Binding Tutorial

42.1 Removing the Redundant Code

42.2 Enabling Data Binding

42.3 Adding the Layout Element

42.4 Adding the Data Element to Layout File

42.5 Working with the Binding Class

42.6 Assigning the ViewModel Instance to the Data Binding Variable

42.7 Adding Binding Expressions

42.8 Adding the Conversion Method

42.9 Adding a Listener Binding

42.10 Testing the App

42.11 Summary

43. Working with Android Lifecycle-Aware Components

43.1 Lifecycle Awareness

43.2 Lifecycle Owners

43.3 Lifecycle Observers

43.4 Lifecycle States and Events

43.5 Summary

44. An Android Jetpack Lifecycle Awareness Tutorial

44.1 Creating the Example Lifecycle Project

44.2 Creating a Lifecycle Observer

44.3 Adding the Observer

44.4 Testing the Observer

44.5 Creating a Lifecycle Owner

44.6 Testing the Custom Lifecycle Owner

44.7 Summary

45. An Overview of the Navigation Architecture Component

45.1 Understanding Navigation

45.2 Declaring a Navigation Host

45.3 The Navigation Graph

45.4 Accessing the Navigation Controller

45.5 Triggering a Navigation Action

45.6 Passing Arguments

45.7 Summary

46. An Android Jetpack Navigation Component Tutorial

46.1 Creating the NavigationDemo Project

46.2 Adding Navigation to the Build Configuration

46.3 Creating the Navigation Graph Resource File

46.4 Declaring a Navigation Host

46.5 Adding Navigation Destinations

46.6 Designing the Destination Fragment Layouts

46.7 Adding an Action to the Navigation Graph

46.8 Implement the OnFragmentInteractionListener

46.9 Triggering the Action

46.10 Passing Data Using Safeargs

46.11 Summary

47. Creating and Managing Overflow Menus on Android

47.1 The Overflow Menu

47.2 Creating an Overflow Menu

47.3 Displaying an Overflow Menu

47.4 Responding to Menu Item Selections

47.5 Creating Checkable Item Groups

47.6 Menus and the Android Studio Menu Editor

47.7 Creating the Example Project

47.8 Designing the Menu

47.9 Modifying the onOptionsItemSelected() Method

47.10 Testing the Application

47.11 Summary

48. Animating User Interfaces with the Android Transitions Framework

48.1 Introducing Android Transitions and Scenes

48.2 Using Interpolators with Transitions

48.3 Working with Scene Transitions

48.4 Custom Transitions and TransitionSets in Code

48.5 Custom Transitions and TransitionSets in XML

48.6 Working with Interpolators

48.7 Creating a Custom Interpolator

48.8 Using the beginDelayedTransition Method

48.9 Summary

49. An Android Transition Tutorial using beginDelayedTransition

49.1 Creating the Android Studio TransitionDemo Project

49.2 Preparing the Project Files

49.3 Implementing beginDelayedTransition Animation

49.4 Customizing the Transition

49.5 Summary

50. Implementing Android Scene Transitions – A Tutorial

50.1 An Overview of the Scene Transition Project

50.2 Creating the Android Studio SceneTransitions Project

50.3 Identifying and Preparing the Root Container

50.4 Designing the First Scene

50.5 Designing the Second Scene

50.6 Entering the First Scene

50.7 Loading Scene 2

50.8 Implementing the Transitions

50.9 Adding the Transition File

50.10 Loading and Using the Transition Set

50.11 Configuring Additional Transitions

50.12 Summary

51. Working with the Floating Action Button and Snackbar

51.1 The Material Design

51.2 The Design Library

51.3 The Floating Action Button (FAB)

51.4 The Snackbar

51.5 Creating the Example Project

51.6 Reviewing the Project

51.7 Changing the Floating Action Button

51.8 Adding the ListView to the Content Layout

51.9 Adding Items to the ListView

51.10 Adding an Action to the Snackbar

51.11 Summary

52. Creating a Tabbed Interface using the TabLayout Component

52.1 An Introduction to the ViewPager

52.2 An Overview of the TabLayout Component

52.3 Creating the TabLayoutDemo Project

52.4 Creating the First Fragment

52.5 Duplicating the Fragments

52.6 Adding the TabLayout and ViewPager

52.7 Creating the Pager Adapter

52.8 Performing the Initialization Tasks

52.9 Testing the Application

52.10 Customizing the TabLayout

52.11 Displaying Icon Tab Items

52.12 Summary

53. Working with the RecyclerView and CardView Widgets

53.1 An Overview of the RecyclerView

53.2 An Overview of the CardView

53.3 Adding the Libraries to the Project

53.4 Summary

54. An Android RecyclerView and CardView Tutorial

54.1 Creating the CardDemo Project

54.2 Removing the Floating Action Button

54.3 Adding the RecyclerView and CardView Libraries

54.4 Designing the CardView Layout

54.5 Adding the RecyclerView

54.6 Creating the RecyclerView Adapter

54.7 Adding the Image Files

54.8 Initializing the RecyclerView Component

54.9 Testing the Application

54.10 Responding to Card Selections

54.11 Summary

55. A Layout Editor Sample Data Tutorial

55.1 Adding Sample Data to a Project

55.2 Using Custom Sample Data

55.3 Summary

56. Working with the AppBar and Collapsing Toolbar Layouts

56.1 The Anatomy of an AppBar

56.2 The Example Project

56.3 Coordinating the RecyclerView and Toolbar

56.4 Introducing the Collapsing Toolbar Layout

56.5 Changing the Title and Scrim Color

56.6 Summary

57. Implementing an Android Navigation Drawer

57.1 An Overview of the Navigation Drawer

57.2 Opening and Closing the Drawer

57.3 Responding to Drawer Item Selections

57.4 Using the Navigation Drawer Activity Template

57.5 Creating the Navigation Drawer Template Project

57.6 The Template Layout Resource Files

57.7 The Header Coloring Resource File

57.8 The Template Menu Resource File

57.9 The Template Code

57.10 Running the App

57.11 Summary

58. An Android Studio Master/Detail Flow Tutorial

58.1 The Master/Detail Flow

58.2 Creating a Master/Detail Flow Activity

58.3 The Anatomy of the Master/Detail Flow Template

58.4 Modifying the Master/Detail Flow Template

58.5 Changing the Content Model

58.6 Changing the Detail Pane

58.7 Modifying the WebsiteDetailFragment Class

58.8 Modifying the WebsiteListActivity Class

58.9 Adding Manifest Permissions

58.10 Running the Application

58.11 Summary

59. An Overview of Android Intents

59.1 An Overview of Intents

59.2 Explicit Intents

59.3 Returning Data from an Activity

59.4 Implicit Intents

59.5 Using Intent Filters

59.6 Checking Intent Availability

59.7 Summary

60. Android Explicit Intents – A Worked Example

60.1 Creating the Explicit Intent Example Application

60.2 Designing the User Interface Layout for ActivityA

60.3 Creating the Second Activity Class

60.4 Designing the User Interface Layout for ActivityB

60.5 Reviewing the Application Manifest File

60.6 Creating the Intent

60.7 Extracting Intent Data

60.8 Launching ActivityB as a Sub-Activity

60.9 Returning Data from a Sub-Activity

60.10 Testing the Application

60.11 Summary

61. Android Implicit Intents – A Worked Example

61.1 Creating the Android Studio Implicit Intent Example Project

61.2 Designing the User Interface

61.3 Creating the Implicit Intent

61.4 Adding a Second Matching Activity

61.5 Adding the Web View to the UI

61.6 Obtaining the Intent URL

61.7 Modifying the MyWebView Project Manifest File

61.8 Installing the MyWebView Package on a Device

61.9 Testing the Application

61.10 Summary

62. Android Broadcast Intents and Broadcast Receivers

62.1 An Overview of Broadcast Intents

62.2 An Overview of Broadcast Receivers

62.3 Obtaining Results from a Broadcast

62.4 Sticky Broadcast Intents

62.5 The Broadcast Intent Example

62.6 Creating the Example Application

62.7 Creating and Sending the Broadcast Intent

62.8 Creating the Broadcast Receiver

62.9 Registering the Broadcast Receiver

62.10 Testing the Broadcast Example

62.11 Listening for System Broadcasts

62.12 Summary

63. A Basic Overview of Threads and AsyncTasks

63.1 An Overview of Threads

63.2 The Application Main Thread

63.3 Thread Handlers

63.4 A Basic AsyncTask Example

63.5 Subclassing AsyncTask

63.6 Testing the App

63.7 Canceling a Task

63.8 Summary

64. An Overview of Android Started and Bound Services

64.1 Started Services

64.2 Intent Service

64.3 Bound Service

64.4 The Anatomy of a Service

64.5 Controlling Destroyed Service Restart Options

64.6 Declaring a Service in the Manifest File

64.7 Starting a Service Running on System Startup

64.8 Summary

65. Implementing an Android Started Service – A Worked Example

65.1 Creating the Example Project

65.2 Creating the Service Class

65.3 Adding the Service to the Manifest File

65.4 Starting the Service

65.5 Testing the IntentService Example

65.6 Using the Service Class

65.7 Creating the New Service

65.8 Modifying the User Interface

65.9 Running the Application

65.10 Creating an AsyncTask for Service Tasks

65.11 Summary

66. Android Local Bound Services – A Worked Example

66.1 Understanding Bound Services

66.2 Bound Service Interaction Options

66.3 An Android Studio Local Bound Service Example

66.4 Adding a Bound Service to the Project

66.5 Implementing the Binder

66.6 Binding the Client to the Service

66.7 Completing the Example

66.8 Testing the Application

66.9 Summary

67. Android Remote Bound Services – A Worked Example

67.1 Client to Remote Service Communication

67.2 Creating the Example Application

67.3 Designing the User Interface

67.4 Implementing the Remote Bound Service

67.5 Configuring a Remote Service in the Manifest File

67.6 Launching and Binding to the Remote Service

67.7 Sending a Message to the Remote Service

67.8 Summary

68. An Android Notifications Tutorial

68.1 An Overview of Notifications

68.2 Creating the NotifyDemo Project

68.3 Designing the User Interface

68.4 Creating the Second Activity

68.5 Creating a Notification Channel

68.6 Creating and Issuing a Basic Notification

68.7 Launching an Activity from a Notification

68.8 Adding Actions to a Notification

68.9 Bundled Notifications

68.10 Summary

69. An Android Direct Reply Notification Tutorial

69.1 Creating the DirectReply Project

69.2 Designing the User Interface

69.3 Creating the Notification Channel

69.4 Building the RemoteInput Object

69.5 Creating the PendingIntent

69.6 Creating the Reply Action

69.7 Receiving Direct Reply Input

69.8 Updating the Notification

69.9 Summary

70. An Introduction to Android Multi-Window Support

70.1 Split-Screen, Freeform and Picture-in-Picture Modes

70.2 Entering Multi-Window Mode

70.3 Enabling Freeform Support

70.4 Checking for Freeform Support

70.5 Enabling Multi-Window Support in an App

70.6 Specifying Multi-Window Attributes

70.7 Detecting Multi-Window Mode in an Activity

70.8 Receiving Multi-Window Notifications

70.9 Launching an Activity in Multi-Window Mode

70.10 Configuring Freeform Activity Size and Position

70.11 Summary

71. An Android Studio Multi-Window Split-Screen and Freeform Tutorial

71.1 Creating the Multi-Window Project

71.2 Designing the FirstActivity User Interface

71.3 Adding the Second Activity

71.4 Launching the Second Activity

71.5 Enabling Multi-Window Mode

71.6 Testing Multi-Window Support

71.7 Launching the Second Activity in a Different Window

71.8 Summary

72. An Overview of Android SQLite Databases

72.1 Understanding Database Tables

72.2 Introducing Database Schema

72.3 Columns and Data Types

72.4 Database Rows

72.5 Introducing Primary Keys

72.6 What is SQLite?

72.7 Structured Query Language (SQL)

72.8 Trying SQLite on an Android Virtual Device (AVD)

72.9 The Android Room Persistence Library

72.10 Summary

73. The Android Room Persistence Library

73.1 Revisiting Modern App Architecture

73.2 Key Elements of Room Database Persistence

73.2.1 Repository

73.2.2 Room Database

73.2.3 Data Access Object (DAO)

73.2.4 Entities

73.2.5 SQLite Database

73.3 Understanding Entities

73.4 Data Access Objects

73.5 The Room Database

73.6 The Repository

73.7 In-Memory Databases

73.8 Summary

74. An Android TableLayout and TableRow Tutorial

74.1 The TableLayout and TableRow Layout Views

74.2 Creating the Room Database Project

74.3 Converting to a LinearLayout

74.4 Adding the TableLayout to the User Interface

74.5 Configuring the TableRows

74.6 Adding the Button Bar to the Layout

74.7 Adding the RecyclerView

74.8 Adjusting the Layout Margins

74.9 Summary

75. An Android Room Database and Repository Tutorial

75.1 About the RoomDemo Project

75.2 Modifying the Build Configuration

75.3 Building the Entity

75.4 Creating the Data Access Object

75.5 Adding the Room Database

75.6 Adding the Repository

75.7 Modifying the ViewModel

75.8 Creating the Product Item Layout

75.9 Adding the RecyclerView Adapter

75.10 Preparing the Main Fragment

75.11 Adding the Button Listeners

75.12 Adding LiveData Observers

75.13 Initializing the RecyclerView

75.14 Testing the RoomDemo App

75.15 Summary

76. Accessing Cloud Storage using the Android Storage Access Framework

76.1 The Storage Access Framework

76.2 Working with the Storage Access Framework

76.3 Filtering Picker File Listings

76.4 Handling Intent Results

76.5 Reading the Content of a File

76.6 Writing Content to a File

76.7 Deleting a File

76.8 Gaining Persistent Access to a File

76.9 Summary

77. An Android Storage Access Framework Example

77.1 About the Storage Access Framework Example

77.2 Creating the Storage Access Framework Example

77.3 Designing the User Interface

77.4 Declaring Request Codes

77.5 Creating a New Storage File

77.6 The onActivityResult() Method

77.7 Saving to a Storage File

77.8 Opening and Reading a Storage File

77.9 Testing the Storage Access Application

77.10 Summary

78. Implementing Video Playback on Android using the VideoView and MediaController Classes

78.1 Introducing the Android VideoView Class

78.2 Introducing the Android MediaController Class

78.3 Creating the Video Playback Example

78.4 Designing the VideoPlayer Layout

78.5 Configuring the VideoView

78.6 Adding Internet Permission

78.7 Adding the MediaController to the Video View

78.8 Setting up the onPreparedListener

78.9 Summary

79. Android Picture-in-Picture Mode

79.1 Picture-in-Picture Features

79.2 Enabling Picture-in-Picture Mode

79.3 Configuring Picture-in-Picture Parameters

79.4 Entering Picture-in-Picture Mode

79.5 Detecting Picture-in-Picture Mode Changes

79.6 Adding Picture-in-Picture Actions

79.7 Summary

80. An Android Picture-in-Picture Tutorial

80.1 Adding Picture-in-Picture Support to the Manifest

80.2 Adding a Picture-in-Picture Button

80.3 Entering Picture-in-Picture Mode

80.4 Detecting Picture-in-Picture Mode Changes

80.5 Adding a Broadcast Receiver

80.6 Adding the PiP Action

80.7 Testing the Picture-in-Picture Action

80.8 Summary

81. Video Recording and Image Capture on Android using Camera Intents

81.1 Checking for Camera Support

81.2 Calling the Video Capture Intent

81.3 Calling the Image Capture Intent

81.4 Creating an Android Studio Video Recording Project

81.5 Designing the User Interface Layout

81.6 Checking for the Camera

81.7 Launching the Video Capture Intent

81.8 Handling the Intent Return

81.9 Testing the Application

81.10 Summary

82. Making Runtime Permission Requests in Android

82.1 Understanding Normal and Dangerous Permissions

82.2 Creating the Permissions Example Project

82.3 Checking for a Permission

82.4 Requesting Permission at Runtime

82.5 Providing a Rationale for the Permission Request

82.6 Testing the Permissions App

82.7 Summary

83. Android Audio Recording and Playback using MediaPlayer and MediaRecorder

83.1 Playing Audio

83.2 Recording Audio and Video using the MediaRecorder Class

83.3 About the Example Project

83.4 Creating the AudioApp Project

83.5 Designing the User Interface

83.6 Checking for Microphone Availability

83.7 Performing the Activity Initialization

83.8 Implementing the recordAudio() Method

83.9 Implementing the stopAudio() Method

83.10 Implementing the playAudio() method

83.11 Configuring and Requesting Permissions

83.12 Testing the Application

83.13 Summary

84. Working with the Google Maps Android API in Android Studio

84.1 The Elements of the Google Maps Android API

84.2 Creating the Google Maps Project

84.3 Obtaining Your Developer Signature

84.4 Adding the Apache HTTP Legacy Library Requirement

84.5 Testing the Application

84.6 Understanding Geocoding and Reverse Geocoding

84.7 Adding a Map to an Application

84.8 Requesting Current Location Permission

84.9 Displaying the User’s Current Location

84.10 Changing the Map Type

84.11 Displaying Map Controls to the User

84.12 Handling Map Gesture Interaction

84.12.1 Map Zooming Gestures

84.12.2 Map Scrolling/Panning Gestures

84.12.3 Map Tilt Gestures

84.12.4 Map Rotation Gestures

84.13 Creating Map Markers

84.14 Controlling the Map Camera

84.15 Summary

85. Printing with the Android Printing Framework

85.1 The Android Printing Architecture

85.2 The Print Service Plugins

85.3 Google Cloud Print

85.4 Printing to Google Drive

85.5 Save as PDF

85.6 Printing from Android Devices

85.7 Options for Building Print Support into Android Apps

85.7.1 Image Printing

85.7.2 Creating and Printing HTML Content

85.7.3 Printing a Web Page

85.7.4 Printing a Custom Document

85.8 Summary

86. An Android HTML and Web Content Printing Example

86.1 Creating the HTML Printing Example Application

86.2 Printing Dynamic HTML Content

86.3 Creating the Web Page Printing Example

86.4 Removing the Floating Action Button

86.5 Designing the User Interface Layout

86.6 Loading the Web Page into the WebView

86.7 Adding the Print Menu Option

86.8 Summary

87. A Guide to Android Custom Document Printing

87.1 An Overview of Android Custom Document Printing

87.1.1 Custom Print Adapters

87.2 Preparing the Custom Document Printing Project

87.3 Creating the Custom Print Adapter

87.4 Implementing the onLayout() Callback Method

87.5 Implementing the onWrite() Callback Method

87.6 Checking a Page is in Range

87.7 Drawing the Content on the Page Canvas

87.8 Starting the Print Job

87.9 Testing the Application

87.10 Summary

88. An Introduction to Android App Links

88.1 An Overview of Android App Links

88.2 App Link Intent Filters

88.3 Handling App Link Intents

88.4 Associating the App with a Website

88.5 Summary

89. An Android Studio App Links Tutorial

89.1 About the Example App

89.2 The Database Schema

89.3 Loading and Running the Project

89.4 Adding the URL Mapping

89.5 Adding the Intent Filter

89.6 Adding Intent Handling Code

89.7 Testing the App Link

89.8 Associating an App Link with a Web Site

89.9 Summary

90. An Introduction to Android Instant Apps

90.1 An Overview of Android Instant Apps

90.2 Instant App Feature Modules

90.3 Instant App Project Structure

90.4 The Application and Feature Build Plugins

90.5 Installing the Instant Apps Development SDK

90.6 Summary

91. An Android Instant App Tutorial

91.1 Creating the Instant App Project

91.2 Reviewing the Project

91.3 Testing the Installable App

91.4 Testing the Instant App

91.5 Reviewing the Instant App APK Files

91.6 Summary

92. Adapting an Android Studio Project for Instants Apps

92.1 Getting Started

92.2 Creating the Base Feature Module

92.3 Adding the Application APK Module

92.4 Adding an Instant App Module

92.5 Testing the Instant App

92.6 Summary

93. A Guide to the Android Studio Profiler

93.1 Accessing the Android Profiler

93.2 Enabling Advanced Profiling

93.3 The Android Profiler Tool Window

93.4 The Sessions Panel

93.5 The CPU Profiler

93.6 Memory Profiler

93.7 Network Profiler

93.8 Energy Profiler

93.9 Summary

94. An Android Biometric Authentication Tutorial

94.1 An Overview of Biometric Authentication

94.2 Creating the Biometric Authentication Project

94.3 Configuring Device Fingerprint Authentication

94.4 Adding the Biometric Permission to the Manifest File

94.5 Designing the User Interface

94.6 Adding a Toast Convenience Method

94.7 Checking the Security Settings

94.8 Configuring the Authentication Callbacks

94.9 Adding the CancellationSignal

94.10 Starting the Biometric Prompt

94.11 Testing the Project

94.12 Summary

95. Creating, Testing and Uploading an Android App Bundle

95.1 The Release Preparation Process

95.2 Android App Bundles

95.3 Register for a Google Play Developer Console Account

95.4 Configuring the App in the Console

95.5 Enabling Google Play App Signing

95.6 Enabling ProGuard

95.7 Creating a Keystore File

95.8 Creating the Android App Bundle

95.9 Generating Test APK Files

95.10 Uploading the App Bundle to the Google Play Developer Console

95.11 Exploring the App Bundle

95.12 Managing Testers

95.13 Uploading Instant App Bundles

95.14 Uploading New App Bundle Revisions

95.15 Analyzing the App Bundle File

95.16 Enabling Google Play Signing for an Existing App

95.17 Summary

96. An Overview of Gradle in Android Studio

96.1 An Overview of Gradle

96.2 Gradle and Android Studio

96.2.1 Sensible Defaults

96.2.2 Dependencies

96.2.3 Build Variants

96.2.4 Manifest Entries

96.2.5 APK Signing

96.2.6 ProGuard Support

96.3 The Top-level Gradle Build File

96.4 Module Level Gradle Build Files

96.5 Configuring Signing Settings in the Build File

96.6 Running Gradle Tasks from the Command-line

96.7 Summary

Index

1.

 Introduction

In 2018 Google introduced Android Jetpack to the developer community. Designed to make it quicker and easier to develop modern and reliable Android apps, Jetpack consists of a set of tools, libraries and architectural guidelines. The main elements of Android Jetpack consist of the Android Studio Integrated Development Environment (IDE), the Android Architecture Components and the Modern App Architecture Guidelines, all of which are covered in this latest edition of Android Studio Development Essentials.

Fully updated for Android Studio 3.2 and Android 9, the goal of this book is to teach the skills necessary to develop Android based applications using the Kotlin programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development and testing environment followed by an introduction to programming in Kotlin including data types, flow control, functions, lambdas and object-oriented programming.

An overview of Android Studio is included covering areas such as tool windows, the code editor and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle management, Room database access, app navigation, live data and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, camera access and the playback and recording of both video and audio. This edition of the book also covers printing, transitions and cloud-based file storage.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars, tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play Developer Console.

Other key features of Android Studio 3.2 and Android 9 are also covered in detail including the Layout Editor, the ConstraintLayout and ConstraintSet classes, constraint chains and barriers, direct reply notifications and multi-window support.

Chapters also cover advanced features of Android Studio such as App Links, Instant Apps, the Android Studio Profiler and Gradle build configuration.

Assuming you already have some programming experience, are ready to download Android Studio and the Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are ready to get started.

1.1

 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for download at:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1.
 From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2.
 In the project selection dialog, navigate to and select the folder containing the project to be imported and click on OK.

1.2

 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any comments, questions or concerns please contact us at
feedback@ebookfrenzy.com

 .

1.3

 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book covering a subject area of this size and complexity may include some errors and oversights. Any known issues with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/as32kotlin.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support team at
feedback@ebookfrenzy.com

 . They are there to help you and will work to resolve any problems you may encounter.

2.

 Setting up an Android Studio Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer system to act as the development platform. This involves a number of steps consisting of installing the Android Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK), the Kotlin plug-in and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application development on Windows, macOS and Linux based systems.

2.1

 System Requirements

 Android application development may be performed on any of the following system types:

•
 Windows 7/8/10 (32-bit or 64-bit)

•
 macOS 10.10 or later (Intel based systems only)

•
 Linux systems with version 2.19 or later of GNU C Library (glibc)

•
 Minimum of 3GB of RAM (8GB is preferred)

•
 Approximately 4GB of available disk space

•
 1280 x 800 minimum screen resolution

2.2

 Downloading the Android Studio
 Package

Most of the work involved in developing applications for Android will be performed using the Android Studio environment. The content and examples in this book were created based on Android Studio version 3.2 which, at the time writing is the current version.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that there may be some minor differences between this book and the software. A web search for Android Studio 3.2 should provide the option to download the older version in the event that these differences become a problem.

2.3

 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which the installation is being performed.

2.3.1

 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-ide-<version>-windows.
 exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
 button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to meet your requirements in terms of the file system location into which Android Studio should be installed and whether or not it should be made available to other users of the system. When prompted to select the components to install, make sure that the Android Studio
 , Android SDK
 and Android Virtual Device
 options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio
 and that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk
 sub-folder. Once the options have been configured, click on the Install
 button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry added to that menu during the installation. The executable may be pinned to the task bar for easy access by navigating to the Android Studio\bin
 directory, right-clicking on the executable and selecting the Pin to Taskbar
 menu option. Note that the executable is provided in 32-bit (studio
) and 64-bit (studio64
) executable versions. If you are running a 32-bit system be sure to use the studio
 executable.

2.3.2

 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-<version>-mac.dmg
 file has been downloaded, locate it in a Finder window and double-click on it to open it as shown in Figure 2-1
 :

[image:]

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android Studio package will then be installed into the Applications folder of the system, a process which will typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the dock.

2.3.3

 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the location where Android Studio is to be installed and execute the following command:

unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a sub-directory named android-studio.
 Assuming, therefore, that the above command was executed in /home/demo
 , the software packages will be unpacked into /home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin
 sub-directory and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-1.0:i386

On Red Hat and Fedora based 64-bit systems, use the following command:

sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4

 The Android Studio
 Setup Wizard

The first time that Android Studio is launched after being installed, a dialog will appear providing the option to import settings from a previous Android Studio version. If you have settings from a previous version and would like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2
 though this dialog does not appear on all platfor
 ms:

[image:]

Figure 2-2

If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components and packages. Once this process has completed, click on the Finish
 button in the Downloading Components
 dialog at which point the Welcome to Android Studio screen should then appear:

[image:]

Figure 2-3

2.5

 Installing Additional Android
 SDK Packages

The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install any missing or updated packages.

This task can be performed using the Android SDK Settings

 screen
 , which may be launched from within the Android Studio tool by selecting the Configure -> SDK Manager
 option from within the Android Studio welcome dialog. Once invoked, the Android SDK
 screen of the default settings dialog will appear as shown in Figure 2-4
 :

[image:]

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes corresponding to the versions and click on the Apply
 button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information about the packages that are available for update, enable the Show Package Details
 option located in the lower right-hand corner of the screen. This will display information similar to that shown in Figure 2-5
 :

[image:]

Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of the item name and click on the Apply
 button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications. To view the currently installed packages and check for updates, remain within the SDK settings screen and select the SDK Tools tab as shown in Figure 2-6
 :

[image:]

Figure 2-6

Within the Android SDK Tools screen
 , make sure that the following packages are listed as Installed
 in the Status column
 :

•
 Android SDK Build-tools

•
 Android Emulator

•
 Android SDK Platform-tools

•
 Android SDK Tools

•
 Google Play Services

•
 Instant Apps Development SDK

•
 Intel x86 Emulator Accelerator (HAXM installer)

•
 ConstraintLayout for Android

•
 Solver for ConstraintLayout

•
 Android Support Repository

•
 Google Repository

•
 Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed
 or requiring an update, simply select the checkboxes next to those packages and click on the Apply
 button to initiate the installation process.

Once the installation is complete, review the package list and make sure that the selected packages are now listed as Installed
 in the Status
 column. If any are listed as Not installed,
 make sure they are selected and click on the Apply
 button again.

2.6

 Making the Android SDK Tools
 Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio environment. That being said, however, there will also be instances where it will be useful to be able to invoke those tools from a command prompt or terminal window. In order for the operating system on which you are developing to be able to find these tools, it will be necessary to add them to the system’s PATH
 environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where <path_to_android_sdk_installation>
 represents the file system location into which the Android SDK was installed):

<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/tools/bin

<path_to_android_sdk_installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the Android SDK Location

 :
 field located at the top of the settings panel as highlighted in Figure 2-7
 :

[image:]

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system dependent:

2.6.1

 Windows 7

1.
 Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2.
 In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the Environment Variables… button.

3.
 In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click on Edit…
 . Locate the end of the current variable value string and append the path to the Android platform tools to the end, using a semicolon to separate the path from the preceding values. For example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\sdk, the following would be appended to the end of the current Path value:

;C:\Users\demo\AppData\Local\Android\sdk\platform-tools; C:\Users\demo\AppData\Local\Android\sdk\tools; C:\Users\demo\AppData\Local\Android\sdk\tools\bin

4.
 Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt
 window (Start -> All Programs -> Accessories -> Command Prompt
) and at the prompt enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that the platform-tools
 value is correct by attempting to run the adb
 tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools
 path setting by attempting to launch the AVD Manager command line tool
 (don’t worry if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2

 Windows 8.1

1.
 On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the results area, click on it to launch the tool on the desktop.

2.
 Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons select the one labeled System.

3.
 Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the Search option and enter cmd
 into the search box). Select Command Prompt
 from the search results.

Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that the platform-tools
 value is correct by attempting to run the adb
 tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools
 path setting by attempting to run the AVD Manager command line tool
 (don’t worry if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.3

 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
 button. Follow the steps outlined for Windows 7 starting from step 3.

2.6.4

 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc
 file in your home directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK bundle package was installed into /home/demo/Android/sdk
 , the export line in the .bashrc
 file would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin
 directory to the PATH variable. This will enable the studio.sh
 script to be executed regardless of the current directory within a terminal window.

2.6.5

 macOS

A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably the cleanest method is to add a new file in the /etc/paths.d
 directory containing the paths to be added to $PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk
 , the path may be configured by creating a new file named android-sdk
 in the /etc/paths.d
 directory containing the following lines:

/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo
 command when creating the file. For example:

sudo vi /etc/paths.d/android-sdk

2.7

 Updating Android Studio
 and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready to be installed.

To manually check for Android Studio updates, click on the Configure -> Check for Update
 menu option within the Android Studio welcome screen, or use the Help -> Check for Update
 menu option accessible from within the Android Studio main window.

2.8

 Summary

Prior to beginning the development of Android based applications, the first step is to set up a suitable development environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK development environment). In this chapter, we have covered the steps necessary to install these packages on Windows, macOS and Linux.

3.

 Creating an Example Android App in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for the development of Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now is a good time to validate that all of the required development packages are installed and functioning correctly. The best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the project has been created, a later chapter will explore the use of the Android emulator environment to perform a test run of the application.

3.1

 About the Project

The project created in this chapter takes the form of a very simple currency conversion calculator (so simple, in fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will also make use of the most basic of Android Studio project templates. This simplicity allows us to introduce some of the key aspects of Android app development without overwhelming the beginner by trying to introduce too many concepts, such as the recommended app architecture and Android architecture components, at once. When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial example project will be covered in much greater detail in later chapters.

3.2

 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-1
 :

[image:]

Figure 3-1

Once this window appears, Android Studio is ready for a new project to be created. To create the new project, simply click on the Start a new Android Studio project
 option to display the first screen of the New Project
 wizard as shown in Figure 3-2
 :

[image:]

Figure 3-2

3.3

 Defining the Project
 and SDK Settings

In the New Project
 window, set the Application name
 field to AndroidSample
 . The application name is the name by which the application will be referenced and identified within Android Studio and is also the name that would be used if the completed application were to go on sale in the Google Play store.

The Package Name

 is used to uniquely identify the application within the Android application ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your domain name followed by the name of the application. For example, if your domain is www.mycompany.com
 , and the application has been named AndroidSample
 , then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may use example.com
 for the purposes of testing, though this will need to be changed before an application can be published:

com.example.androidsample

The Project location
 setting will default to a location in the folder named AndroidStudioProjects
 located in your home directory and may be changed by clicking on the button to the right of the text field containing the current path setting.

Finally, enable the Include Kotlin support
 option.

Click Next to proceed. On the form factors
 screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the SDK that will be used in most of the projects created in this book unless a necessary feature is only available in a more recent version. While Android Studio allows older SDK versions to be selected, many of the security and privacy features built into Android were only introduced after the API 25 SDK was released. To improve app security, Google announced that starting in August 2018 the Google Play store will only accept new apps built using API 26 or newer. This same restriction is also applied to updates of existing apps after October 2018. Since the project is not intended for Google TV, Android Auto or wearable devices, leave the remaining options disabled before clicking Next.
 Instant Apps will not be covered until later in this book so make sure that the Include Android Instant App support
 option is disabled.

3.4

 Creating an Activity

The next step is to define the type of initial activity that is to be created for the application. A range of different activity types is available when developing Android applications, many of which will be covered extensively in later chapters. For the purposes of this example, however, simply select the option to create a Basic Activity.
 The Basic Activity
 option creates a template user interface consisting of an app bar, menu, content area and a single floating action button
 .

[image:]

Figure 3-3

With the Basic Activity option selected, click Next.
 On the final screen (Figure 3-4
) name the activity and title AndroidSampleActivity
 . The activity will consist of a single user interface screen layout which, for the purposes of this example, should be named activity_android_sample
 . Finally, enter My Android App
 into the title field as shown in Figure 3-4
 :

 [image:]

Figure 3-4

Click on Finish
 to initiate the project creation process.

3.5

 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

[image:]

Figure 3-5

The newly created project and references to associated files are listed in the Project
 tool window

 located on the left-hand side of the main project window. The Project tool window has a number of modes in which information can be displayed. By default, this panel will be in Android
 mode. This setting is controlled by the menu at the top of the panel as highlighted in Figure 3-6
 . If the panel is not currently in Android mode, use the menu to switch mode:

 [image:]

Figure 3-6

The example project created for us when we selected the option to create an activity consists of a user interface containing a label that will read “Hello World!” when the application is executed.

The next step in this tutorial is to modify the user interface of our application so that it displays a larger text view object with a different message to the one provided for us by Android Studio.

The user interface design for our activity is stored in a file named activity_android_sample.xml
 which, in turn, is located under app -> res -> layout
 in the project file hierarchy. This layout file includes the app bar (also known as an action bar) that appears across the top of the device screen (marked A in Figure 3-7
) and the floating action button
 (the email button marked B). In addition to these items, the activity_android_sample.xml
 layout file contains a reference to a second file containing the content layout (marked C):

 [image:]

Figure 3-7

By default, the content layout
 is contained within a file named content_android_sample.xml
 and it is within this file that changes to the layout of the activity are made. Using the Project tool window, locate this file as illustrated in Figure 3-8
 :

 [image:]

Figure 3-8

Once located, double-click on the file to load it into the user interface Layout Editor tool
 which will appear in the center panel of the Android Studio main window:

[image:]

Figure 3-9

In the toolbar across the top of the Layout Editor window is a menu (currently set to Nexus 4
 in the above figure) which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down menu immediately to the left of the device selection menu showing
 the [image:]
 icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!” message. Running down the left-hand side of the panel is a palette containing different categories of user interface components that may be used to construct a user interface, such as buttons, labels and text fields. It should be noted, however, that not all user interface components are obviously visible to the user. One such category consists of layouts
 . Android supports a variety of layouts that provide different levels of control over how visual user interface components are positioned and managed on the screen. Though it is difficult to tell from looking at the visual representation of the user interface, the current design has been created using a ConstraintLayout. This can be confirmed by reviewing the information in the Component Tree
 panel
 which, by default, is located in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-10
 :

 [image:]

Figure 3-10

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent with a single child in the form of a TextView object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components are added to the layout, the Layout Editor will automatically add constraints to make sure the components are correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure 3-11
). If necessary, re-enable Autoconnect mode by clicking on this button.

[image:]

Figure 3-11

The next step in modifying the application is to add some additional components to the layout, the first of which will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component categories. The right-hand column lists the components contained within the currently selected category. In Figure 3-12
 , for example, the Button view is currently selected within the Buttons category:

[image:]

Figure 3-12

Click and drag the Button
 object from the Buttons list and drop it in the horizontal center of the user interface design so that it is positioned beneath the existing TextView widget:

[image:]

Figure 3-13

The next step is to change the text that is currently displayed by the Button component. The panel located to the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected component in the layout. Within this panel, locate the text
 property and change the current value from “Button” to “Convert” as shown in Figure 3-14
 :

[image:]

Figure 3-14

A useful shortcut to changing the text property of a component is to double-click on it in the layout. This will automatically locate the attribute in the attributes panel and select it ready for editing.

The second text property with a wrench next to it allows a text property to be set which only appears within the Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints button (Figure 3-15
) to add any missing constraints to the layout:

[image:]

Figure 3-15

At this point it is important to explain the warning button located in the top right-hand corner of the Layout Editor tool as indicated in Figure 3-16
 . Obviously, this is indicating potential problems with the layout. For details on any problems, click on the button:

[image:]

Figure 3-16

When clicked, a panel (Figure 3-17
) will appear describing the nature of the problems and offering some possible corrective measures:

[image:]

Figure 3-17

Currently, the only warning listed reads as follows:

Hardcoded string "Convert", should use @string resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N” and has 18 letters in between). The warning is reminding us that when developing Android applications, attributes and values such as text strings should be stored in the form of resources
 wherever possible. Doing so enables changes to the appearance of the application to be made by modifying resource files instead of changing the application source code. This can be especially valuable when translating a user interface to a different spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can be given to a translator who will then perform the translation work and return the translated file for inclusion in the application. This enables multiple languages to be targeted without the necessity for any source code changes to be made.
 In this instance, we are going to create a new resource named convert_string
 and assign to it the string “Convert”.

Click on the Fix
 button in the Issue Explanation panel to display the Extract Resource
 panel (Figure 3-18
). Within this panel, change the resource name field to convert_string
 and leave the resource value set to Convert
 before clicking on the OK button.

[image:]

Figure 3-18

It is also worth noting that the string could also have been assigned to a resource when it was entered into the Attributes panel. This involves clicking on the button displaying three dots to the right of the property field in the Attributes panel and selecting the Add new resource -> New String Value…
 menu option from the resulting Resources dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel fields for any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any necessary resources when the layout is complete.

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be converted. From the widget palette, select the Text category and click and drag a Number (Decimal) component onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the widget selected, use the Attributes tools window to set the hint
 property to “dollars”. Click on the warning icon and extract the string to a resource named dollars_hint
 .

Add any missing layout constraints by clicking on the Infer constraints
 button. At this point the layout should resemble that shown in Figure 3-19
 :

[image:]

Figure 3-19

The code written later in this chapter will need to access the dollar value entered by the user into the EditText field. It will do this by referencing the ID assigned to the widget in the user interface layout. The default ID assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window when the widget is selected in the layout as shown in Figure 3-20
 :

[image:]

Figure 3-20

Change the ID to dollarText
 before proceeding.

3.6

 Reviewing the Layout and Resource File
 s

Before moving on to the next step, we are going to look at some of the internal aspects of user interface design and resource handling. In the previous section, we made some changes to the user interface by modifying the content_android_sample.xml
 file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly in order to make user interface changes and, in some instances, this may actually be quicker than using the Layout Editor tool. At the bottom of the Layout Editor panel are two tabs labeled

 Design
 and Text
 respectively. To switch to the XML view simply select the Text
 tab as shown in Figure 3-21
 :

[image:]

Figure 3-21

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component, which in turn, is the parent of the Button object. We can also see that the text
 property of the Button is set to our convert_string
 resource. Although varying in complexity and content, all user interface layouts are structured in this hierarchical, XML based way.

One of the more powerful features of Android Studio can be found to the right-hand side of the XML editing panel. If the panel is not visible, display it by selecting the Preview
 button located along the right-hand edge of the Android Studio window. This is the Preview panel and shows the current visual state of the layout. As changes are made to the XML layout, these will be reflected in the preview panel. The layout may also be modified visually from within the Preview panel with the changes appearing in the XML listing. To see this in action, modify the XML layout to change the background color of the ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:context=".AndroidSampleActivity"

 tools:showIn="@layout/activity_android_sample"

 android:background="#ff2438"
 >

.

.

</android.support.constraint.ConstraintLayout>

Note that the color of the preview changes in real-time to match the new setting in the XML file. Note also that a small red square appears in the left-hand margin (also referred to as the gutter
) of the XML editor next to the line containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Change the color value to #a0ff28 and note that both the small square in the margin and the preview change to green.

Finally, use the Project view to locate the app -> res -> values -> strings.xml
 file and double-click on it to load it into the editor. Currently the XML should read as follows:

<resources>

 <string name="app_name">AndroidSample</string>

 <string name="action_settings">Settings</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
 resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool in Text mode, click on the “@string/convert_string” property setting so that it highlights and then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
 file
 and take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource back to the original “Convert” text.

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-click on the app -> res -> values -> strings.xml
 file and select the Open Editor
 menu option. This will display the Translation Editor in the main panel of the Android Studio window:

[image:]

Figure 3-22

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages to be managed.

3.7

 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value into the EditText field and clicks the convert button the converted euro value appears on the TextView. This involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be configured so that a method in the app code is called when an onClick
 event is triggered. Event handling can be implemented in a number of different ways and is covered in detail in a later chapter entitled
“An Overview and Example of Android Event Handling”

 . Return the layout editor to Design mode, select the Button widget in the layout editor, refer to the Attributes tool window and specify a method named convertCurrency
 as shown below:

[image:]

Figure 3-23

Next, double-click on the AndroidSampleActivity.
 kt
 file to load it into the code editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import android.view.View

import kotlinx.android.synthetic.main.activity_android_sample.*

import kotlinx.android.synthetic.main.content_android_sample.*

class AndroidSampleActivity : AppCompatActivity() {

.

.

 fun convertCurrency(view: View) {

 if (dollarText.text.isNotEmpty()) {

 val dollarValue = dollarText.text.toString().toFloat()

 val euroValue = dollarValue * 0.85f

 textView.text = euroValue.toString()

 } else {

 textView.text = "No Value"

 }

 }

.

.

}

The method begins by checking the text property of the dollarText EditText view to make sure that it is not empty (in other words that the user has entered a dollar value). If a value has not been entered, a “No Value” string is displayed on the resultText view. If, on the other hand, a dollar amount has been entered, it is converted into a floating point value and the equivalent euro value calculated. This floating point value is then converted into a string and displayed on the resultText view. If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters.

The project is now complete and ready to run, a task that will be performed in the next chapter after an AVD emulator session as been created for testing purposes.

3.8

 Summary

While not excessively complex, a number of steps are involved in setting up an Android development environment. Having performed those steps, it is worth working through a simple example to make sure the environment is correctly installed and configured. In this chapter, we have created a simple application and then used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts. Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

While it is useful to be able to preview a layout from within the Android Studio Layout Editor tool, there is no substitute for testing an application by compiling and running it.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in detail in the next chapter.

4.

 Creating an Android Virtual Device (AVD) in Android Studio

I
 n the course of developing Android apps in Android Studio it will be necessary to compile and run an application multiple times. An Android application may be tested by installing and running it either on a physical device or in an Android Virtual Device (AVD)
 emulator environment. Before an AVD can be used, it must first be created and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is to work through the steps involved in creating such a virtual device using the Nexus 5X phone as a reference example.

4.1

 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the application on a physical Android based device. An AVD
 may be configured to emulate a variety of hardware features including options such as screen size, memory capacity and the presence or otherwise of features such as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation, a number of emulator templates are installed allowing AVDs to be configured for a range of different devices. Additional templates may be loaded or custom configurations created to match any physical Android device by specifying properties such as processor type, memory capacity and the size and pixel density of the screen. Check the online developer documentation for your device to find out if emulator definitions are available for download and installation into the AVD environment.

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure 4-1
 , for example, shows an AVD session configured to emulate the Google Nexus 5X model.

New AVDs are created and managed using the Android Virtual Device Manager
 , which may be used either in command-line mode or with a more user-friendly graphical user interface.

 [image:]

Figure 4-1

4.2

 Creating a New AVD

In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an AVD for a specific Android device configuration.

To create a new AVD
 , the first step is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting the Tools -> Android -> AVD Manager
 menu option from within the main window.

Once launched, the tool will appear as outlined in Figure 4-2
 if existing AVD instances have been created
 :

[image:]

Figure 4-2

To add an additional AVD, begin by clicking on the Create Virtual Device
 button in order to invoke the Virtual Device Configuration
 dialog
 :

[image:]

Figure 4-3

Within the dialog, perform the following steps to create a Nexus 5X compatible emulator:

1.
 From the Category
 panel, select the Phone
 option to display the list of available Android tablet AVD templates.

2.
 Select the Nexus 5X
 device option and click Next
 .

3.
 On the System Image screen, select the latest version of Android (at time of writing this is API level 28, Android 9.0 with Google Play) for the x86
 ABI. Note that if the system image has not yet been installed a Download
 link will be provided next to the Release Name. Click this link to download and install the system image before selecting it. If the image you need is not listed, click on the x86 images
 and Other images
 tabs to view alternative lists.

4.
 Click Next
 to proceed and enter a descriptive name (for example Nexus 5X API 28
) into the name field or simply accept the default name.

5.
 Click Finish
 to create the AVD.

6.
 With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in the Actions
 column of the device row in the AVD Manager.

4.3

 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new window and begin the startup process. The amount of time it takes for the emulator to start will depend on the configuration of both the AVD and the system on which it is running.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options can be changed. Within the AVD Manager, select the new Nexus 5X entry and click on the pencil icon in the Actions
 column of the device row. In the configuration screen locate the
 Startup and orientation
 section and change the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the emulator are covered in the next chapter (
“Using and Configuring the Android Studio AVD Emulator”

).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.4

 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now can be compiled and run. With the AndroidSample project loaded into Android Studio, simply click on the run button represented by a green triangle located in the Android Studio toolbar as shown in Figure 4-4
 below, select the Run -> Run ‘app’
 menu option or use the Ctrl-R keyboard short
 cut:

[image:]

Figure 4-4

By default, Android Studio will respond to the run request by displaying the Select Deployment Target
 dialog. This provides the option to execute the application on an AVD instance that is already running, or to launch a new AVD session specifically for this application. Figure 4-5
 lists the previously created Nexus 5X AVD as a running device as a result of the steps performed in the preceding section. With this device selected in the dialog, click on OK
 to install and run the application on the emulat
 or.

[image:]

Figure 4-5

Once the application is installed and running, the user interface for the AndroidSampleActivity class will appear within the emulator:

[image:]

Figure 4-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run and Logcat tool windows will become available. The Run tool window will display diagnostic information as the application package is installed and launched. Figure 4-7
 shows the Run tool window output from a successful application launch
 :

[image:]

Figure 4-7

If problems are encountered during the launch process, the Run tool window will provide information that will hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the Android development environment is correctly installed and configured.

4.5

 Run/Debug Configurations

A particular project can be configured such that a specific device or emulator is used automatically each time it is run from within Android Studio. This avoids the necessity to make a selection from the device chooser each time the application is executed. To review and modify the Run/Debug configuration, click on the button to the left of the run button in the Android Studio toolbar and select the Edit Configurations…
 option from the resulting menu:

[image:]

Figure 4-8

In the Run/Debug Configurations
 dialog
 , the application may be configured to always use a preferred emulator by selecting Emulator
 from the Target
 menu located in the Deployment Target Options
 section and selecting the emulator from the drop down menu. Figure 4-9
 , for example, shows the AndroidSample application configured to run by default on the previously created Nexus 5X emulator
 :

[image:]

Figure 4-9

Be sure to switch the Target menu
 setting back to “Open Select Deployment Target Dialog” mode before moving on to the next chapter of the book.

4.6

 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure 4-10
 :

[image:]

Figure 4-10

An app may also be terminated using the Logcat tool window. Begin by displaying the Logcat
 tool window
 using the window bar button that becomes available when the app is running. Once the Logcat tool window appears, select the androidsample
 app menu highlighted in Figure 4-11
 belo
 w:

[image:]

Figure 4-11

With the process selected, stop it by clicking on the red Terminate Application

 button in the toolbar to the left of the process list indicated by the arrow in the above figure.

4.7

 AVD
 Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly from the command-line. This is achieved using the avdmanager

 tool in conjunction with some command-line options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) in order to run. If, when attempting run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command prompt or terminal window within which you are running the command can be configured to use the OpenJDK environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1.
 Launch Android Studio and open the AndroidSample project created earlier in the book.

2.
 Select the File -> Project Structure...
 menu option.

3.
 Copy the path contained within the JDK location
 field of the Project Structure dialog. This represents the location of the JRE bundled with Android Studio.

On Windows, execute the following command within the command prompt window from which avdmanager is to be run (where <path to jre>
 is replaced by the path copied from the Project Structure dialog above):

set JAVA_HOME=<path to jre>

On macOS or Linux, execute the following command:

export JAVA_HOME="<path to jre>"

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating system outlined in the chapter entitled
“Setting up an Android Studio Development Environment”

 to configure JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools
 directory is included in the PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following command in a terminal or command window:

avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on the system. For example:

Available Android targets:

id: 1 or "android-28"

 Name: Android API 28

 Type: Platform

 API level: 28

 Revision: 3

id: 2 or "android-26"

 Name: Android API 26

 Type: Platform

 API level: 26

 Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to create a new AVD named Nexus9
 using the target ID for the Android API level 26 device using the x86 ABI, the following command may be used:

avdmanager create avd -n Nexus9 -k "system-images;android-26;google_apis;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also providing the option to create a custom configuration to match the specification of a specific device if required. Once a new AVD has been created from the command line, it may not show up in the Android Device Manager tool until the Refresh
 button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line. For example, a list of currently available AVDs may be obtained using the list avd
 command line arguments:

avdmanager list avd

Available Android Virtual Devices:

 Name: Pixel_XL_API_28_No_Play

 Device: pixel_xl (Google)

 Path: /Users/neilsmyth/.android/avd/Pixel_XL_API_28_No_Play.avd

 Target: Google APIs (Google Inc.)

 Based on: Android API 28 Tag/ABI: google_apis/x86

 Skin: pixel_xl_silver

 Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete
 option as follows:

avdmanager delete avd –n <avd name>

4.8

 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd
 sub-directory of the user’s home directory, the structure of which is as follows (where <avd name>
 is replaced by the name assigned to the AVD):

<avd name>.avd/config.ini

<avd name>.avd/userdata.img

<avd name>.ini

The config.ini
 file contains the device configuration settings such as display dimensions and memory specified during the AVD creation process. These settings may be changed directly within the configuration file and will be adopted by the AVD when it is next invoked.

The <avd name>.ini
 file contains a reference to the target Android SDK and the path to the AVD files. Note that a change to the image.sysdir
 value in the config.ini
 file will also need to be reflected in the target
 value of this file.

4.9

 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD
 files may be altered from the command line using the avdmanager
 tool’s move avd
 argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command may be executed:

avdmanager move avd -n Nexus9 -r Nexus9B

To physically relocate the files associated with the AVD, the following command syntax should be used:

avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:

avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

4.10

 Summary

A typical application development process follows a cycle of coding, compiling and running in a test environment. Android applications may be tested on either a physical Android device or using an Android Virtual Device (AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific Android device model it is important that the virtual device be configured with a hardware specification that matches that of the physical device.

5.

 Using and Configuring the Android Studio AVD Emulator

The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an uncharacteristically weak point in an otherwise reputable application development environment. Regarded by many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately, Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms of configuration flexibility and overall performance and further enhancements have been made in subsequent releases.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide an overview of the Android Studio AVD emulator and highlight many of the configuration features that are available to customize the environment.

5.1

 The Emulator Environment

When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the main emulator window appears containing a representation of the chosen device type (in the case of Figure 5-1
 this is a Nexus 5X device):

[image:]

Figure 5-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator controls and configuration options.

5.2

 The Emulator

 Toolbar Options

The emulator toolbar (Figure 5-2
) provides access to a range of options relating to the appearance and behavior of the emulator environment.

[image:]

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for the sake of completeness:

•
 Exit / Minimize
 – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the ‘-’ option minimizes the entire window.

•
 Power
 – The Power button simulates the hardware power button on a physical Android device. Clicking and releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate the device “Power off” request sequence.

•
 Volume Up / Down
 – Two buttons that control the audio volume of playback within the simulator environment.

•
 Rotate Left/Right

 – Rotates the emulated device between portrait and landscape orientations.

•
 Screenshot

 – Takes a screenshot of the content currently displayed on the device screen. The captured image is stored at the location specified in the Settings screen of the extended controls panel as outlined later in this chapter.

•
 Zoom Mode

 – This button toggles in and out of zoom mode, details of which will be covered later in this chapter.

•
 Back
 – Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

•
 Home
 – Simulates selection of the standard Android “Home” button.

•
 Overview
 – Simulates selection of the standard Android “Overview” button which displays the currently running apps on the device.

•
 Extended Controls

 – Displays the extended controls panel, allowing for the configuration of options such as simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

5.3

 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars located within the emulator window.

5.4

 Resizing the Emulator
 Window

The size of the emulator window (and the corresponding representation of the device) can be changed at any time by clicking and dragging on any of the corners or sides of the window.

5.5

 Extended Control
 Options

The
 extended controls toolbar button displays the panel illustrated in Figure 5-3
 . By default, the location settings will be displayed. Selecting a different category from the left-hand panel will display the corresponding group of control
 s:

[image:]

Figure 5-3

5.5.1

 Location

 The location controls allow simulated location information to be sent to the emulator in the form of decimal or sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or Keyhole Markup Language (KML) format.

A single location is transmitted to the emulator when the Send
 button is clicked. The transmission of GPS data points begins once the “play” button located beneath the data table is selected. The speed at which the GPS data points are fed to the emulator can be controlled using the speed menu adjacent to the play button.

5.5.2

 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data scenarios such as roaming and denied access.

5.5.3

 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual building through which you can navigate by holding down the Option key (Alt on Windows) while using the mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.4

 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen, including battery charge level, battery health and whether the AC charger is currently connected.

5.5.5

 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first option allows for the simulation of an incoming call from a designated phone number. This can be of particular use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.6

 Directional Pad

 A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected externally (such as a game controller) that provides directional controls (left, right, up, down). The directional pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.7

 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.8

 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes it possible to test fingerprint authentication without the need to test apps on a physical device containing a fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail later in this chapter.

5.5.9

 Virtual Sensors

 The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

5.5.10

 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy to return the emulator to an exact state. Snapshots are covered in detail later in this chapter.

5.5.11

 Screen Record

Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

5.5.12

 Google Play

Google Play will need to be present on AVD instances on which Google services such as in-app purchasing need to be tested. This extended controls screen displays the version of Google Play installed on the current AVD instance and provides the option to update or deactivate the Google Play installation. When the Update button is clicked, the appropriate Google Play Store page will load on the emulator allowing changes to be made to the installation, including deactivating Google Play.

5.5.13

 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved, configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on the desktop.

5.5.14

 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator online documentation, file bugs and send feedback, and emulator version information.

5.6

 Working with
 Snapshots

When an emulator starts for the very first time it performs a cold boot
 much like a physical Android device when it is powered on. This cold boot process can take some time to complete as the operating system loads and all the background processes are started. To avoid the necessity of going through this process every time the emulator is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot
) of the emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken using the Take Snapshot
 button (marked A in Figure 5-4
). To restore an existing snapshot, select it from the list (B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the snapshot name and description and to delete (E) the currently selected snapshot:

[image:]

Figure 5-4

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager
), click on the down arrow in the actions column for the emulator and select the Cold Boot Now menu option.

[image:]

Figure 5-5

5.7

 Drag and Drop Support

 An Android application is packaged into an APK file when it is built. When Android Studio built and ran the AndroidSample app created earlier in this book, for example, the application was compiled and packaged into an APK file. That APK file was then transferred to the emulator and launched.

The Android Studio emulator also supports installation of apps by dragging and dropping the corresponding APK file onto the emulator window. To experience this in action, start the emulator, open Settings and select the Apps & notifications
 option followed by the App Info
 option on the subsequent screen. Within the list of installed apps, locate and select the AndroidSample app and, in the app detail screen, uninstall the app from the emulator.

Open the file system navigation tool for your operating system (e.g. Windows Explorer for Windows or Finder for macOS) and navigate to the folder containing the AndroidSample project. Within this folder locate the app/build/outputs/apk/debug
 subfolder which should contain an APK file named app-debug.apk.
 Drag this file and drop it onto the emulator window. The dialog shown in (Figure 5-6
) will subsequently appear as the APK file is
 installed.

[image:]

Figure 5-6

Once the APK file installation has completed, locate the app on the device and click on it to launch it.

In addition to APK files, any other type of file such as image, video or data files can be installed onto the emulator using this drag and drop feature. Such files are added to the SD card storage area of the emulator where they may subsequently be accessed from within app code.

5.8

 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings app and selecting the Security & Location
 option.

Within the Security settings screen, select the Use fingerprint
 option. On the resulting information screen click on the Next
 button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN
 button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point display the extended controls dialog, select the Fingerprint
 category in the left-hand panel and make sure that Finger 1
 is selected in the main settings panel:

[image:]

Figure 5-7

Click on the Touch the Sensor
 button to simulate Finger 1 touching the fingerprint sensor. The emulator will report the successful addition of the fingerprint:

[image:]

Figure 5-8

To add additional fingerprints click on the Add Another
 button and select another finger from the extended controls panel menu before clicking on the Touch the Sensor
 button once again. The topic of building fingerprint authentication into an Android app is covered in detail in the chapter entitled
“An Android Biometric Authentication Tutorial”

 .

5.9

 Summary

Android Studio 3.2 contains a new and improved Android Virtual Device emulator environment designed to make it easier to test applications without the need to run on a physical Android device. This chapter has provided a brief tour of the emulator and highlighted key features that are available to configure and customize the environment to simulate different testing conditions

6.

 A Tour of the Android Studio User Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use. That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this chapter will provide an initial overview of the various areas and components that make up the Android Studio environment.

6.1

 The Welcome Screen

The welcome screen (Figure 6-1
) is displayed any time that Android Studio is running with no projects currently open (open projects can be closed at any time by selecting the File -> Close Project
 menu option). If Android Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it is launched, automatically opening the previously active project.

[image:]

Figure 6-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks such as opening, creating and importing projects along with access to projects currently under version control. In addition, the Configure
 menu at the bottom of the window provides access to the SDK Manager
 along with a vast array of settings and configuration options. A review of these options will quickly reveal that there is almost no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.

6.2

 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window
 will appear. When multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration of the window will vary depending on which tools and panels were displayed the last time the project was open, but will typically resemble that of Figure 6-2
 .

 [image:]

Figure 6-2

The various elements of the main window can be summarized as follows:

A – Menu Bar

 – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar
 –
 A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting the Customize Menus and Toolbars…
 menu option.

C – Navigation Bar
 –
 The navigation bar provides a convenient way to move around the files and folders that make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders and files at that location ready for selection. This provides an alternative to the Project tool window.

D – Editor Window
 –
 The editor window displays the content of the file on which the developer is currently working. What gets displayed in this location, however, is subject to context. When editing code, for example, the code editor will appear. When working on a user interface layout file, on the other hand, the user interface Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the top edge of the editor as shown in Figure 6-3

 .

[image:]

Figure 6-3

E – Status Bar
 –
 The status bar displays informational messages about the project and the activities of Android Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or obtain more detailed status information.

F – Project Tool Window
 –
 The project tool window provides a hierarchical overview of the project file structure allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in a number of different ways. The default setting is the Android
 view which is the mode primarily used in the remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3

 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which, when enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar (Figure 6-4
) without clicking the mouse butt
 on.

[image:]

Figure 6-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the main window.

Alternatively, a set of tool window bars

 can be displayed by clicking on the quick access menu icon in the status bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in Figure 6-5
) and contain buttons for showing and hiding each of the tool windows. When the tool window bars are displayed, a second click on the button in the status bar will hide th
 em.

[image:]

Figure 6-5

Clicking on a button will display the corresponding tool window while a second click will hide the window. Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding number.

The location of a button in a tool window bar indicates the side of the window against which the window will appear when displayed. These positions can be changed by clicking and dragging the buttons to different locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various aspects of the window to be changed. Figure 6-6
 shows the settings menu for the project view tool window. Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android Studio main window and to move and resize the tool panel
 .

[image:]

Figure 6-6

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool window from view. A search of the items within a tool window can be performed simply by giving that window focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window). A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project
 –
 The project view provides an overview of the file structure that makes up the project allowing for quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded into the appropriate editing tool.

Structure
 –
 The structure tool provides a high level view of the structure of the source file currently displayed in the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an item from the structure list will take you to that location in the source file in the editor window.

Captures

 – The captures tool window provides access to performance data files that have been generated by the monitoring tools contained within Android Studio.

Favorites
 –
 A variety of project items can be added to the favorites list. Right-clicking on a file in the project view, for example, provides access to an Add to Favorites
 menu option. Similarly, a method in a source file can be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can be accessed through this Favorites tool window.

Build Variants
 –
 The build variants tool window provides a quick way to configure different build targets for the current application project (for example different builds for debugging and release versions of the application, or multiple builds to target different device categories).

TODO
 –
 As the name suggests, this tool provides a place to review items that have yet to be completed on the project. Android Studio compiles this list by scanning the source files that make up the project to look for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the File -> Settings…
 menu option (Android Studio -> Preferences…
 on macOS) and navigating to the TODO
 page listed under Editor
 .

Messages
 –
 The messages tool window records output from the Gradle build system (Gradle is the underlying system used by Android Studio for building the various parts of projects into runnable applications) and can be useful for identifying the causes of build problems when compiling application projects.

Logcat
 –
 The Logcat tool window provides access to the monitoring log output from a running application in addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal
 –
 Provides access to a terminal window on the system on which Android Studio is running. On Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the form of a Terminal prompt.

Build
 - The build tool windows displays information about the build process while a project is being compiled and packaged and displays details of any errors encountered.

Run
 –
 The run tool window becomes available when an application is currently running and provides a view of the results of the run together with options to stop or restart a running process. If an application is failing to install and run on a device or emulator, this window will typically provide diagnostic information relating to the problem.

Logcat
 - The Logcat tool window provides access to the monitoring log output from a running application in addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Event Log
 –
 The event log window displays messages relating to events and activities performed within Android Studio. The successful build of a project, for example, or the fact that an application is now running will be reported within this tool window.

Gradle
 – The Gradle tool window
 provides a view onto the Gradle tasks that make up the project build configuration. The window lists the tasks that are involved in compiling the various elements of the project into an executable application. Right-click on a top level Gradle task and select the Open Gradle Config
 menu option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later in this book.

Android Profiler
 – The Android Profiler tool window provides realtime monitoring and analysis tools for identifying performance issues within running apps, including CPU, memory and network usage. This option becomes available when an app is currently running.

Device File Explorer
 – The Device File Explorer tool window provides direct access to the filesystem of the currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the local filesystem.

6.4

 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio project window by selecting the Help -> Keymap Reference
 menu option.

6.5

 Switcher
 and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the Switcher
 . Accessed via the Ctrl-Tab
 keyboard shortcut, the switcher appears as a panel listing both the tool windows and currently open fi
 les (Figure 6-7
).

[image:]

Figure 6-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 6-8
). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file name and tool window options. Pressing the Enter key will select the currently h
 ighlighted item.

[image:]

Figure 6-8

6.6

 Changing the Android Studio
 Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using the Configure -> Settings
 option, or via the File -> Settings…
 menu option (Android Studio -> Preferences…
 on macOS) of the main window.

Once the settings dialog is displayed, select the Appearance
 option in the left-hand panel and then change the setting of the Theme
 menu before clicking on the Apply
 button. The themes available will depend on the platform but usually include options such as Light, IntelliJ, Windows, Default and Darcula. Figure 6-9
 shows an example of the main window with the Darcula
 theme selected:

[image:]

Figure 6-9

6.7

 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window. Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges of the main window and can be accessed either using the quick access menu located in the status bar, or via the optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

7.

 Testing Android Studio Apps on a Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute for performing real world application testing on a physical Android device and there are a number of Android features that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug Bridge (ADB).
 In this chapter we will work through the steps to configure the adb environment to enable application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1

 An Overview of the Android Debug Bridge (ADB
)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging applications.

The ADB consists of a client, a server process running in the background on the development system and a daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line tool named adb

 located in the Android SDK platform-tools
 sub-directory. Similarly, Android Studio also has a built-in client.

A variety of tasks may be performed using the adb
 command-line tool. For example, a listing of currently active virtual or physical devices may be obtained using the devices
 command-line argument. The following command output indicates the presence of an AVD on the system but no physical devices

 :

$ adb devices

List of devices attached

emulator-5554 device

7.2

 Enabling ADB

 on Android based Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1.
 Open the Settings app on the device and select the About tablet
 or About phone
 option (on newer versions of Android this can be found on the System
 page of the Settings app).

2.
 On the About
 screen, scroll down to the Build number
 field (Figure 7-1
) and tap on it seven times until a message appears indicating that developer mode has been enabl

 ed. If the build number is not displayed, unfold the Advanced section of the list.

[image:]

Figure 7-1

3.
 Return to the main Settings screen and note the appearance of a new option titled Developer options. Select this option and locate the setting on the developer screen entitled USB debugging
 . Enable the switch next to this item as illustrated in Figure 7-2
 :

[image:]

Figure 7-2

4.
 Swipe downward from the top of the screen to display the notifications panel (Figure 7-3
) and note that the device is currently connected for debuggin
 g.

[image:]

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development system. All that remains is to configure the development system to detect the device when it is attached. While this is a relatively straightforward process, the steps involved differ depending on whether the development system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK platform-tools
 directory is included in the operating system PATH environment variable as described in the chapter entitled
“Setting up an Android Studio Development Environment”

 .

7.2.1

 macOS ADB
 Configuration

In order to configure the ADB environment on a macOS system, connect the device to the computer system using a USB cable, open a terminal window and execute the following command to restart the adb
 server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been detected:

$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as offline
 , go to the Android device and check for the presence of the dialog shown in Figure 7-4
 seeking permission to Allow USB debugging.
 Enable the checkbox next to the option that reads Always allow from this computer
 , before clicking on OK
 . Repeating the adb devices
 command should now list the device as being available:

List of devices attached

015d41d4454bf80c device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the problem persists, rebooting the system.

7.2.2

 Windows ADB Configuration

The first step in configuring a Windows based development system to connect to an Android device using ADB is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers provided by the device manufacturer. A listing of drivers together with download and installation information can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:

List of devices attached

HT4CTJT01906 offline

If the device is listed as offline
 or unauthorized
 , go to the device display and check for the dialog shown in Figure 7-4
 seeking permission to Allow USB debuggi
 ng.

[image:]

Figure 7-4

Enable the checkbox next to the option that reads Always allow from this computer
 , before clicking on OK
 . Repeating the adb devices
 command should now list the device as being ready:

List of devices attached

HT4CTJT01906 device

In the event that the device is not listed, execute the following commands to restart the ADB server:

adb kill-server

adb start-server

If the device is still not listed, try executing the following command:

android update adb

Note that it may also be necessary to reboot the system.

7.2.3

 Linux adb Configuration

For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of configuring adb on Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb
 which, in turn, requires that the Android Studio user be a member of the plugdev
 group. This is the default for user accounts on most Ubuntu versions and can be verified by running the id
 command. If the plugdev group is not listed, run the following command to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb
 package can be installed by executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline
 or unauthorized
 , go to the Android device and check for the dialog shown in Figure 7-4
 seeking permission to Allow USB debugging.

7.3

 Testing the adb
 Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is to try running the test application created in the chapter entitled
“Creating an Example Android App in Android Studio”

 on the device.

Launch Android Studio, open the AndroidSample project and, once the project has loaded, click on the run button located in the Android Studio toolbar (Figure 7-5
).

[image:]

Figure 7-5

Assuming that the project has not previously been configured to run automatically in an emulator environment, the deployment target selection dialog will appear with the connected Android device listed as a currently running device. Figure 7-6
 , for example, lists a Nexus 9 device as a suitable target for installing and executing the applicat
 ion.

[image:]

Figure 7-6

To make this the default device for testing, enable the Use same device for future launches
 option. With the device selected, click on the OK
 button to install and run the application on the device. As with the emulator environment, diagnostic output relating to the installation and launch of the application on the device will be logged in the Run tool window.

7.4

 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep in mind that there is no real substitute for making sure an application functions correctly on a physical Android device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly onto an Android device from within the Android Studio development environment. The exact steps to achieve this goal differ depending on the development platform being used. In this chapter, we have covered those steps for Linux, macOS and Windows based platforms.

8.

 The Basics of the Android Studio Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition, involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting. Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the typing required by the programmer, ease of navigation through large source code files and the editor’s ability to detect and highlight programming errors in real-time as the code is being written. As will become evident in this chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a guide to the key features of the tool. Experienced programmers will find that some of these features are common to most code editors available today, while a number are unique to this particular editing environment.

8.1

 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text based file is selected for editing. Figure 8-1
 , for example, shows a typical editor session with a Kotlin source code file loaded:

[image:]

Figure 8-1

The elements that comprise the editor window can be summarized as follows:

A – Document Tabs

 – Android Studio is capable of holding multiple files open for editing at any one time. As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more errors that need to be addressed before the project can be compiled and run.

Switching between files
 is simply a matter of clicking on the corresponding tab or using the Alt-Left
 and Alt-Right
 keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible via the Ctrl-Tab
 keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab bar in the main window.

B – The Editor Gutter Area

 - The gutter area is used by the editor to display informational icons and controls. Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers
 menu option.

C – The Status Bar

 – Though the status bar is actually part of the main window, as opposed to the editor, it does contain some information about the currently active editing session. This information includes the current position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.). Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line number, for example, displays the Go to Line
 dialog.

D – The Editor Area

 – This is the main area where the code is displayed, entered and edited by the user. Later sections of this chapter will cover the key features of the editing area in detail.

E – The Validation and Marker Sidebar
 – Android Studio incorporates a feature referred to as “on-the-fly code analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors have been detected). Clicking on this indicator will display a popup containing a summary of the issues found with the code in the editor as illustrated in Figure 8-2

 :

[image:]

Figure 8-2

The sidebar also displays markers at the locations where issues have been detected using the same color coding. Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup containing a description of the issue (Figure 8-3
):

[image:]

Figure 8-3

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-4
) allowing it to be viewed without the necessity to scroll to that location in the editor:

 [image:]

Figure 8-4

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over any part of the sidebar will result in a lens appearing containing the code present at that location within the source file.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this chapter will explore the key features of the editing environment in more detail.

8.2

 Splitting the Editor Window

 By default, the editor will display a single panel showing the content of the currently selected file. A particularly useful feature when working simultaneously with multiple source code files is the ability to split the editor into multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split Vertically
 or Split Horizontally
 menu option. Figure 8-5
 , for example, shows the splitter in action with the editor split into three panels:

 [image:]

Figure 8-5

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and selecting the Change Splitter Orientation
 menu option. Repeat these steps to unsplit a single panel, this time selecting the Unsplit
 option from the menu. All of the split panels may be removed by right-clicking on any tab and selecting the Unsplit All
 menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file, allowing different areas of the same file to be viewed and edited concurrently.

8.3

 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of Kotlin programming syntax and the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel will appear containing a list of suggestions. In Figure 8-6
 , for example, the editor is suggesting possibilities for the beginning of a String declaration:

[image:]

Figure 8-6

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space
 keyboard sequence. This can be useful when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that word will automatically highlight. Pressing Ctrl-Space
 will display a list of alternate suggestions. To replace the current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred to as Smart Completion
 . Smart completion is invoked using the Shift-Ctrl-Space
 keyboard sequence and, when selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-Space
 shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact, Android Studio provides a high level of control over the auto completion settings. These can be viewed and modified by selecting the File -> Settings…
 menu option (or Android Studio -> Preferences…
 on macOS) and choosing Editor -> General -> Code Completion
 from the settings panel as shown in Figure 8-7
 :

 [image:]

Figure 8-7

8.4

 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can be used to automatically fill out the parentheses and braces for items such as methods and loop statements. Statement completion is invoked using the Shift-Ctrl-Enter
 (Shift-Cmd-Enter
 on macOS) keyboard sequence. Consider for example the following code:

myMethod()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically add the braces to the method:

myMethod() {

}

8.5

 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method. With the cursor positioned between the brackets of a method call, the Ctrl-P
 (Cmd-P
 on macOS) keyboard sequence will display the parameters known to be accepted by that method, with the most likely suggestion highlighted in bold:

[image:]

Figure 8-8

8.6

 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-9
 , for example, highlights the parameter name hints within the calls to the make()
 and setAction()
 methods of the Snackbar
 class:

 [image:]

Figure 8-9

The settings for this mode may be configured by selecting the File -> Settings
 (Android Studio -> Preferences
 on macOS) menu option followed by Editor -> Appearance
 in the left-hand panel. On the Appearance screen, enable or disable the Show parameter name hints
 option. To adjust the hint settings, click on the Configure...
 button, select the programming language and make any necessary adjustments.

8.7

 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you. The list of available code generation options shown in Figure 8-10
 can be accessed using the Alt-Insert
 (Cmd-N
 on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

[image:]

Figure 8-10

For the purposes of an example, consider a situation where we want to be notified when an Activity in our project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this can be achieved by overriding the onStop()
 lifecycle method of the Activity superclass. To have Android Studio generate a stub method for this, simply select the Override Methods…
 option from the code generation list and select the onStop()
 method from the resulting list of available methods:

[image:]

Figure 8-11

Having selected the method to override, clicking on OK
 will generate the stub method at the current cursor location in the Kotlin source file as follows:

override fun onStop() {

 super.onStop()

}

8.8

 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to have the content of every code block visible at all times. Code navigation can be made easier through the use of the code folding
 feature of the Android Studio editor. Code folding is controlled using markers appearing in the editor gutter at the beginning and end of each block of code in a source file. Figure 8-12
 , for example, highlights the start and end markers for a method declaration which is not currently folded:

[image:]

Figure 8-12

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown in Figure 8-13
 :

[image:]

Figure 8-13

To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code without unfolding it, hover the mouse pointer over the “{…}” indicator as shown in Figure 8-14
 . The editor will then display the lens overlay containing the folded code block:

 [image:]

Figure 8-14

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus
 and Ctrl-Shift-Minus
 keyboard sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure the conditions under which this happens, select File -> Settings…
 (Android Studio -> Preferences…
 on macOS) and choose the Editor -> General -> Code Folding
 entry in the resulting settings panel (Figure 8-15
):

[image:]

Figure 8-15

8.9

 Quick Documentation
 Lookup

Context sensitive Kotlin and Android documentation can be accessed by placing the cursor over the declaration for which documentation is required and pressing the Ctrl-Q
 keyboard shortcut (Ctrl-J
 on macOS). This will display a popup containing the relevant reference documentation for the item. Figure 8-16
 , for example, shows the documentation for the Android Snackbar class.

[image:]

Figure 8-16

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10

 Code Reformatting

 In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a source code reformatting feature which, when selected, will automatically reformat code to match the prevailing code style.

To reformat source code, press the Ctrl-Alt-L
 (Cmd-Alt-L
 on macOS) keyboard shortcut sequence. To display the Reformat Code
 dialog (Figure 8-17
) use the Ctrl-Alt-Shift-L
 (Cmd-Alt-Shift-L
 on macOS). This dialog provides the option to reformat only the currently selected code, the entire source file currently active in the editor or only code that has changed as the result of a source code control update.

[image:]

Figure 8-17

The full range of code style preferences can be changed from within the project settings dialog. Select the File -> Settings
 menu option (Android Studio -> Preferences…
 on macOS) and choose Code Style
 in the left-hand panel to access a list of supported programming and markup languages. Selecting a language will provide access to a vast array of formatting style options, all of which may be modified from the Android Studio default to match your preferred code style. To configure the settings for the Rearrange code
 option in the above dialog, for example, unfold the Code Style
 section, select Kotlin and, from the Kotlin settings, select the Arrangement
 tab.

8.11

 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry within the code listing. This feature can be useful for learning how a particular Android class or method is used. To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample Code
 menu option. The Find Sample Code panel (Figure 8-18
) will appear beneath the editor with a list of matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

[image:]

Figure 8-18

8.12

 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to make that code easier to read and navigate. In this chapter we have covered a number of the key editor features including code completion, code generation, editor window splitting, code folding, reformatting and documentation lookup.

9.

 An Overview of the Android
 Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android applications using Android Studio. An initial step has also been taken into the process of application development through the creation of a simple Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important to gain an understanding of some of the more abstract concepts of both the Android SDK and Android development in general. Gaining a clear understanding of these concepts now will provide a sound foundation on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1

 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually as outlined in Figure 9-1
 . Each layer of the stack, and the corresponding elements within each layer, are tightly integrated and carefully tuned to provide the optimal application development and execution environment for mobile devices. The remainder of this chapter will work through the different layers of the Android stack, starting at the bottom with the Linux Kernel.

[image:]

Figure 9-1

9.2

 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the kernel provides preemptive multitasking, low-level core system services such as memory, process and power management in addition to providing a network stack and device drivers for hardware such as the device display, Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system referred to as GNU/Linux
 . Various Linux distributions have been derived from these basic underpinnings such as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find this software at the heart of the Android software stack.

9.3

 Android
 Runtime – ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format (referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime (ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the native instructions required by the device processor. This format is known as Executable and Linkable Format (ELF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4

 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as string handling, networking and file manipulation), the Android development environment also includes the Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples of libraries in this category include the application framework libraries in addition to those that facilitate user interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:

•
 android.app

 – Provides access to the application model and is the cornerstone of all Android applications.

•
 android.content

 – Facilitates content access, publishing and messaging between applications and application components.

•
 android.database

 – Used to access data published by content providers and includes SQLite database management classes.

•
 android.graphics

 – A low-level 2D graphics drawing API including colors, points, filters, rectangles and canvases.

•
 android.hardware

 – Presents an API providing access to hardware such as the accelerometer and light sensor.

•
 android.opengl

 – A Java interface to the OpenGL ES 3D graphics rendering API.

•
 android.os

 – Provides applications with access to standard operating system services including messages, system services and inter-process communication.

•
 android.media

 – Provides classes to enable playback of audio and video.

•
 android.net

 – A set of APIs providing access to the network stack. Includes android.net.wifi
 , which provides access to the device’s wireless stack.

•
 android.print

 – Includes a set of classes that enable content to be sent to configured printers from within Android applications.

•
 android.provider

 – A set of convenience classes that provide access to standard Android content provider databases such as those maintained by the calendar and contact applications.

•
 android.text

 – Used to render and manipulate text on a device display.

•
 android.util

 – A set of utility classes for performing tasks such as string and number conversion, XML handling and date and time manipulation.

•
 android.view

 – The fundamental building blocks of application user interfaces.

•
 android.widget

 - A rich collection of pre-built user interface components such as buttons, labels, list views, layout managers, radio buttons etc.

•
 android.webkit

 – A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/C++ based libraries contained in this layer of the Android software stack.

9.4.1

 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary APIs for developers writing Android applications. It is important to note, however, that the core libraries do not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based libraries. When making calls, for example, to the android.opengl
 library to draw 3D graphics on the device display, the library actually ultimately makes calls to the OpenGL ES
 C++ library which, in turn, works with the underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics drawing, Secure Sockets Layer (SSL)
 communication, SQLite database management, audio and video playback, bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of the standard C system library (libc)
 .

In practice, the typical Android application developer will access these libraries solely through the Java based Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using the Android Native Development Kit
 (NDK), the purpose of which is to call the native methods of non-Java or Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface
 (JNI).

9.5

 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android applications run and are managed. This framework implements the concept that Android applications are constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in that an application is also able to publish
 its capabilities along with any corresponding data so that they can be found and reused by other applications.

The Android framework includes the following key services:

•
 Activity Manager

 – Controls all aspects of the application lifecycle and activity stack.

•
 Content Providers

 – Allows applications to publish and share data with other applications.

•
 Resource Manager

 – Provides access to non-code embedded resources such as strings, color settings and user interface layouts.

•
 Notifications Manager

 – Allows applications to display alerts and notifications to the user.

•
 View System

 – An extensible set of views used to create application user interfaces.

•
 Package Manager

 – The system by which applications are able to find out information about other applications currently installed on the device.

•
 Telephony Manager

 – Provides information to the application about the telephony services available on the device such as status and subscriber information.

•
 Location Manager

 – Provides access to the location services allowing an application to receive updates about location changes.

9.6

 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications provided with the particular Android implementation (for example web browser and email applications) and the third party applications installed by the user after purchasing the device.

9.7

 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel, a runtime environment and corresponding libraries, an application framework and a set of applications. Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the Android Studio build environment. When the application is subsequently installed on a device, this bytecode is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the Android architecture are performance and efficiency, both in application execution and in the implementation of reuse in application design.

10.

 The Anatomy of an Android Application

R
 egardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the architecture of Android applications. In doing so, we will explore in detail both the various components that can be used to construct an application and the mechanisms that allow these to work together to create a cohesive application.

10.1

 Android

 Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar with the concept of encapsulating elements of application functionality into classes that are then instantiated as objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities
 . An activity is a single, standalone module of application functionality that usually correlates directly to a single user interface screen and its corresponding functionality. An appointments application might, for example, have an activity screen that displays appointments set up for the current day. The application might also utilize a second activity consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different applications. An existing email application, for example, might contain an activity specifically for composing and sending an email message. A developer might be writing an application that also has a requirement to send an email message. Rather than develop an email composition activity specifically for the new application, the developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity
 class and must be implemented so as to be entirely independent of other activities in the application. In other words, a shared activity cannot rely on being called at a known point in a program flow (since other applications may make use of the activity in unanticipated ways) and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved using Intents
 and Content Providers
 .

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is required, the activity must be specifically started as a sub-activity
 of the originating activity.

10.2

 Android Fragments

An activity, as described above, typically represents a single user interface screen within an app. One option is to construct the activity using a single user interface layout and one corresponding activity class file. A better alternative, however, is to break the activity into different sections. Each of these sections is referred to as a fragment, each of which consists of part of the user interface layout and a matching class file (declared as a subclass of the Android Fragment
 class). In this scenario, an activity simply becomes a container into which one or more fragments are embedded.

In fact, fragments provide an efficient alternative to having each user interface screen represented by a separate activity. Instead, an app can consist of a single activity that switches between different fragments, each representing a different app screen.

10.3

 Androi
 d Intent

 s

Intents are the mechanism by which one activity is able to launch another and implement the flow through the activities that make up an application. Intents consist of a description of the operation to be performed and, optionally, the data on which it is to be performed.

Intents can be explicit
 , in that they request the launch of a specific activity by referencing the activity by class name, or implicit
 by stating either the type of action to be performed or providing data of a specific type on which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent Resolution
 .

10.4

 Broadcast Intents

Another type of Intent, the Broadcast Intent
 , is a system wide intent that is sent out to all applications that have registered an “interested” Broadcast Receiver
 . The Android system, for example, will typically send out Broadcast Intents to indicate changes in device status such as the completion of system start up, connection of an external power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal
 (asynchronous) in that it is sent to all interested Broadcast Receivers at more or less the same time, or ordered
 in that it is sent to one receiver at a time where it can be processed and then either aborted or allowed to be passed to the next Broadcast Receiver.

10.5

 Broadcast Receiver
 s

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A Broadcast Receiver must be registered by an application and configured with an Intent Filter
 to indicate the types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked by the Android runtime regardless of whether the application that registered the receiver is currently running. The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service, making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the background and do not have a user interface.

10.6

 Android Service
 s

Android Services are processes that run in the background and do not have a user interface. They can be started and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal for situations where an application needs to continue performing tasks but does not necessarily need a user interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events using notifications and toasts
 (small notification messages that appear on the screen without interrupting the currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be terminated as a last resort by the system in order to free up resources. In the event that the runtime does need to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground
 . This is achieved by making a call to startForeground()
 . This is only recommended for situations where termination would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming of audio that should continue when the application is no longer active, or a stock market tracking application that needs to notify the user when a share hits a specified price.

10.7

 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can provide other applications with access to its underlying data through the implementation of a Content Provider including the ability to add, remove and query the data (subject to permissions). Access to the data is provided via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access data such as contacts and media files. The Content Providers currently available on an Android system may be located using a Content Resolver
 .

10.8

 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file. It is within this XML based file that the application outlines the activities, services, broadcast receivers, data providers and permissions that make up the complete application.

10.9

 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will also typically contain a collection of resource files
 . These files contain resources such as the strings, images, fonts and colors that appear in the user interface together with the XML representation of the user interface layouts. By default, these files are stored in the /res
 sub-directory of the application project’s hierarchy.

10.10

 Application Context

When an application is compiled, a class named R
 is created that contains references to the application resources. The application manifest file and these resources combine to create what is known as the Application Context
 . This context, represented by the Android Context
 class
 , may be used in the application code to gain access to the application resources at runtime. In addition, a wide range of methods may be called on an application’s context to gather information and make changes to the application’s environment at runtime.

10.11

 Summary

A number of different elements can be brought together in order to create an Android application. In this chapter, we have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast Receivers together with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of functionality in the form of activities and intents, while data sharing between applications is achieved by the implementation of content providers.

While activities and activities are focused on areas where the user interacts with the application (an activity essentially equating to a single user interface screen and often made up of one or more fragments), background processing is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however, that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a solid knowledge foundation on which to build your own applications.

11.

 An Introduction to
 Kotlin

Android development is performed primarily using Android Studio which is, in turn, based on the
 IntelliJ IDEA development environment created by a company named
 JetBrains. Prior to the release of Android Studio 3.0, all Android apps were written using Android Studio and the Java programming language (with some occasional C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps using another programming language called Kotlin. Although detailed coverage of all features of this language is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective of this and the following six chapters is to provide enough information to begin programming in Kotlin and quickly get up to speed developing Android apps using this programming language.

11.1

 What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier to understand and write and also safer than many other programming languages. The language, compiler and related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes a number of features that improve the chances that potential problems will be identified when the code is being written instead of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2

 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is design to both integrate with and work alongside Java. When Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within Java.

Kotlin’s creators also acknowledged that while there were ways to improve on existing languages, there are many features of Java that did not need to be changed. Consequently, those familiar with programming in Java will find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming experience will also find much that is familiar when learning Kotlin.

11.3

 Converting from
 Java to
 Kotlin

Given the high level of interoperability between Kotlin and Java it is not essential to convert existing Java code to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert Java File to Kotlin File
 menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that time should be taken to review and tidy up the code after conversion.

11.4

 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into Android Studio 3.0 or later.

11.5

 Experimenting with Kotlin

When learning a new programming language, it is often useful to be able to enter and execute snippets of code. One of the best ways to do this with
 Kotlin is to use the online playground (Figure 11-1
) located at https://try.kotl.in. In addition to providing an environment in which Kotlin code may be quickly entered and executed, the online playground also includes a set of examples demonstrating key Kotlin features in action.

The panel on the left-hand side (marked A in Figure 11-1
) contains a list of coding examples together with any examples you create. Code is typed into the main panel (B) and executed by clicking the Run button (C). Any output from the code execution appears in the console panel (D). Arguments may be passed through to the main function by entering them into the field marked E.

[image:]

Figure 11-1

Try out some Kotlin code by opening a browser window, navigating to the online playground and entering the following into the main code panel:

fun main(args: Array<String>) {

 println("Welcome to Kotlin")

 for (i in 1..8) {

 println("i = $i")

 }

}

After entering the code, click on the Run button and note the output in the console panel:

[image:]

Figure 11-2

The online playground may also be used to find the Kotlin equivalent for fragments of Java code. Simply enter (or cut and paste) the Java code into the main panel and click on the Convert from Java button (marked E).

11.6

 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each statement or expression line. The following, therefore, is valid Kotlin code:

val mynumber = 10

println(mynumber)

Semi-colons are only required when multiple statements appear on the same line:

val mynumber = 10; println(mynumber)

11.7

 Summary

For the first time since the Android operating system was introduced, developers now have an alternative to writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created the development environment on which Android Studio is based. Kotlin is intended to make code safer and easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

12.

 Kotlin Data Types,Variables and Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming language. This chapter will focus on the various data types available for use within Kotlin code. This will also include an explanation of constants, variables, type casting and Kotlin’s handling of null values.

As outlined in the previous chapter, entitled
“An Introduction to Kotlin”

 a useful way to experiment with the language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a browser window, navigate to
https://try.kotl.in

 and use the playground to try out the code in both this and the other Kotlin introductory chapters that follow.

12.1

 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial applications to graphics intensive games, it is easy to forget that computers are really just binary machines. Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks, resulting in faster performance than a 32-bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers, letters and words. In order for a human to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between human and computer thinking is needed. This is where programming languages such as Kotlin come into play. Programming languages allow humans to express instructions to a computer in terms and structures we understand, and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set of data types
 that allow us to work with data in a format we understand when programming. For example, if we want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber
 and then assigned to it the value of 10. When we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0’ through to ‘9’) or punctuation mark (referred to in computer terminology as characters
) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer, but gets compiled down to a binary sequence for the CPU to understand. In this case, the letter ‘c’ is represented by the decimal number 99 using the ASCII table (an internationally recognized standard that assigns numeric values to human readable characters). When converted to binary, it is stored as:

10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a closer look at some of the more commonly used data types supported by Kotlin.

12.1.1

 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All integers in Kotlin are signed (in other words capable of storing positive, negative and zero values).

Kotlin provides support for 8, 16, 32 and 64 bit integers (represented by the Byte, Short, Int and Long types respectively).

12.1.2

 Floating Point Data Types

The

 Kotlin floating point data types are able to store values containing decimal places. For example, 4353.1223 would be stored in a floating point data type. Kotlin provides two floating point data types in the form of Float and Double. Which type to use depends on the size of value to be stored and the level of precision required. The Double type can be used to store up to 64-bit floating point numbers. The Float data type, on the other hand, is limited to 32-bit floating point numbers.

12.1.3

 Boolean Data Type

 Kotlin, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions. Two Boolean constant values (true
 and false
) are provided by Kotlin specifically for working with Boolean data types.

12.1.4

 Character Data Type

The
 Kotlin
 Char data type is used to store a single character of rendered text such as a letter, numerical digit, punctuation mark or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single visible character.

The following lines assign a variety of different characters to Character type variables:

val myChar1 = 'f'

val myChar2 = ':'

val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the ‘X’ character to a variable using Unicode:

val myChar4 = '\u0058'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char data type as opposed to double quotes which indicate a String data type.

12.1.5

 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing a storage mechanism, the String data type also includes a range of string manipulation features allowing strings to be searched, matched, concatenated and modified. Double quotes are used to surround single line strings during assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

val message = """You have 10 new messages,

 5 old messages

 and 6 spam messages."""

The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
 function of the String data type:

val message = """You have 10 new messages,

 5 old messages

 and 6 spam messages.""".trimMargin()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function calls using a concept referred to as string interpolation. For example, the following code creates a new string from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"

val inboxCount = 25

val maxcount = 100

val message = "$username has $inboxCount message. Message capacity remaining is ${maxcount - inboxCount}"

println(message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6

 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also referred to as escape characters) available for specifying items such as a new line, tab or a specific Unicode value within a string. These special characters are identified by prefixing the character with a backslash (a concept referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved by escaping the backslash itself:

var backslash = '\\'

The complete list of special characters supported by Kotlin is as follows:

•
 \n - New line

•
 \r - Carriage return

•
 \t - Horizontal tab

•
 \\ - Backslash

•
 \” - Double quote (used when placing a double quote into a string declaration)

•
 \’ - Single quote (used when placing a single quote into a string declaration)

•
 \$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

•
 \unnnn – Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the Unicode character.

12.2

 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application. Each variable is given a name by the programmer and assigned a value. The name assigned to the variable may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either reading the value of the variable or, in the case of mutable variables
 , changing the value.

12.3

 Immutable Variables

Often referred to as a constant,
 an immutable variable is similar to a mutable variable in that it provides a named location in memory to store a data value. Immutable variables differ in one significant way in that once a value has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value which is used repeatedly throughout the application code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named interestRate
 the purpose of the value becomes much clearer. Immutable values also have the advantage that if the programmer needs to change a widely used value, it only needs to be changed once in the constant declaration and not each time it is referenced.

12.4

 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var
 keyword and may be initialized with a value at creation time. For example:

var userCount = 10

If the variable is declared without an initial value, the type of the variable must also be declared (a topic which will be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val
 keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables whenever possible.

12.5

 Data Types are Objects

All of the above data types are actually objects, each of which provides a range of functions and properties that may be used to perform a variety of different type specific tasks. These functions and properties are accessed using so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the variable name followed by a dot followed in turn by the name of the property to be accessed or function to be called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase()
 function of the String class:

val myString = "The quick brown fox"

val uppercase = myString.toUpperCase()

Similarly, the length of a string is available by accessing the length property:

val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the presence of a specific word. The following code, for example, will return a true
 Boolean value since the word “fox” appears within the string assigned to the myString
 variable:

val result = myString.contains("fox")

All of the number data types include functions for performing tasks such as converting from one data type to another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

12.6

 Type Annotations and

 Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data type of a variable has been identified, that variable cannot subsequently be used to store data of any other type without inducing a compilation error. This contrasts to loosely typed programming languages where a variable, once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed by the type declaration. The following line of code, for example, declares a variable named userCount as being of type Int:

val userCount: Int = 10

In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type inference
 to identify the type of the variable. When relying on type inference, the compiler looks to see what type of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength
 variable is of type Double (type inference in Kotlin defaults to Double for all floating point numbers) and that the companyName constant is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:

val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code. For example:

val iosBookType = false

val bookTitle: String

if (iosBookType) {

 bookTitle = "iOS App Development Essentials"

} else {

 bookTitle = "Android Studio Development Essentials"

}

12.7

 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (with the exception of the optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to handling situations where a variable may have a null value assigned to it. In other words, the objective is to avoid the common problem of code crashing with the null pointer exception errors that occur when code encounters a null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by placing a question mark (?) after the type declaration:

val username: String?
 = null

The username
 variable can now have a null value assigned to it without triggering a compiler error. Once a variable has been declared as nullable, a range of restrictions are then imposed on that variable by the compiler to prevent it being used in situations where it might cause a null pointer exception to occur. A nullable variable, cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to the nullable variable is non-null:

val username: String? = null

if (username != null) {

 val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8

 The

 Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this chapter the toUpperCase()
 function was called on a String object. Given the possibility that this could cause a function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase()

The exact error message generated by the compiler in this situation reads as follows:

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt has been made to verify that the variable is non-null. One way around this is to add some code to verify that something other than null value has been assigned to the variable prior to making the function call:

if (username != null) {

 val uppercase = username.toUpperCase()

}

A much more efficient way to achieve this same verification, however, is to call the function using the safe call operator
 (represented by
 ?.
) as follows:

val uppercase = username?.toUpperCase()

In the above example, if the username variable is null, the toUpperCase()
 function will not be called and execution will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
 function will be called and the result assigned to the uppercase
 variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9

 Not-Null Assertion

The not-null assertion
 removes all of the compiler restrictions from a nullable type, allowing it to be used in the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!
 .length

The above code will now compile, but will crash with the following exception at runtime since an attempt is being made to call a function on a non existent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10

 Nullable Types and the

 let Function

Earlier in this chapter we looked at how the safe call operator can be used when making a call to a function belonging to a nullable type. This technique makes it easier to check if a value is null without having to write an if
 statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an argument to a function which is expecting a non-null parameter. As an example, consider the times()
 function of the Int data type. When called on an Int object and passed another integer value as an argument, the function multiplies the two values and returns the result. When the following code is executed, for example, the value of 200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times(secondNumber)

print(result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if the secondNumber variable is declared as being of nullable type:

val firstNumber = 10

val secondNumber: Int?
 = 20

val result = firstNumber.times(secondNumber)

print(result)

Now the compilation will fail with the following error message because a nullable type is being passed to a function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an if
 statement to verify that the value assigned to the variable is non-null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber != null) {

 val result = firstNumber.times(secondNumber)

 print(result)

}

A more convenient approach to addressing the issue, however, involves use of the let
 function. When called on a nullable type object, the let function converts the nullable type to a non-null variable named it
 which may then be referenced within a lambda statement.

secondNumber?.let
 {

 val result = firstNumber.times(it
)

 print(result)

}

Note the use of the safe call operator when calling the let
 function on secondVariable in the above example. This ensures that the function is only called when the variable is assigned a non-null value.

12.11

 The

 Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be returned in the event that a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for a null value. Consider the following code:

if (myString != null) {

 return myString

} else {

 return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

12.12

 Type Casting and

 Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur, however, where the compiler is unable to identify the specific type. This is often the case when a value type is ambiguous or an unspecified object is returned from a function call. In this situation it may be necessary to let the compiler know the type of object that your code is expecting or to write code that checks whether the object is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting
 and is achieved within Kotlin code using the
 as
 cast operator. The following code, for example, lets the compiler know that the result returned from the getSystemService()
 method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as
 KeyguardManager

The Kotlin language includes both safe and unsafe cast operators. The above cast is an unsafe cast and will cause the app to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the
 as?
 operator and returns null if the cast cannot be performed:

val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as?
 KeyguardManager

A type check can be performed to verify that an object conforms to a specific type using the
 is
 operator, for example:

if (keyMgr is
 KeyguardManager) {

 // It is a KeyguardManager object

}

12.13

 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to declare variables. The chapter has also introduced concepts such as nullable types, type casting and type checking and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to make code writing less prone to error.

13.

 Kotlin Operators and Expressions

So far we have looked at using variables and constants in Kotlin and also described the different data types. Being able to create variables is only part of the story however. The next step is to learn how to use these variables in Kotlin code. The primary method for working with data is in the form of expressions
 .

13.1

 Expression Syntax in
 Kotlin

The most basic expression consists of an operator
 , two operands
 and an assignment
 . The following is an example of an expression:

val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator
 (=) subsequently assigns the result of the addition to a variable named myresult
 . The operands could just have easily been variables (or a mixture of values and variables) instead of the actual numerical values used in the example.

In the remainder of this chapter we will look at the basic types of operators available in Kotlin.

13.2

 The Basic
 Assignment Operator

We have already looked at the most basic of assignment operators, the = operator. This assignment operator simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands. The left-hand operand is the variable to which a value is to be assigned and the right-hand operand is the value to be assigned. The right-hand operand is, more often than not, an expression which performs some type of arithmetic or logical evaluation or a call to a function, the result of which will be assigned to the variable. The following examples are all valid uses of the assignment operator:

var x: Int // Declare a mutable Int variable

val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x

x = x + y // Assign the result of x + y to x

x = y // Assign the value of y to x

13.3

 Kotlin Arithmetic Operators

Kotlin provides a range of operators for the purpose of creating mathematical expressions. These operators primarily fall into the category of binary operators
 in that they take two operands. The exception is the unary negative operator
 (-) which serves to indicate that a value is negative rather than positive. This contrasts with the subtraction operator
 (-) which takes two operands (i.e. one value to be subtracted from another). For example:

var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

	
Operator

	
Description

	
-(unary)

	
Negates the value of a variable or expression

	
*

	
Multiplication

	
/

	
Division

	
+

	
Addition

	
-

	
Subtraction

	
%

	
Remainder/Modulo

Table 13-1

Note that multiple operators may be used in a single expression.

For example:

x = y * 10 + z - 5 / 4

13.4

 Augmented Assignment Operators

In an earlier section we looked at the basic assignment operator (=). Kotlin provides a number of operators designed to combine an assignment with a mathematical or logical operation. These are primarily of use when performing an evaluation where the result is to be stored in one of the operands. For example, one might write an expression as follows:

x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the result in variable x. This can be simplified using the addition augmented assignment operator:

x += y

The above expression performs exactly the same task as x = x + y
 but saves the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The most frequently used of which are outlined in the following table:

	
Operator

	
Description

	
x += y

	
Add x to y and place result in x

	
x -= y

	
Subtract y from x and place result in x

	
x *= y

	
Multiply x by y and place result in x

	
x /= y

	
Divide x by y and place result in x

	
x %= y

	
Perform Modulo on x and y and place result in x

Table 13-2

13.5

 Increment and

 Decrement Operators

Another useful shortcut can be achieved using the Kotlin increment and decrement operators (also referred to as unary operators because they operate on a single operand). Consider the code fragment below:

x = x + 1 // Increase value of variable x by 1

x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach, however, it is quicker to use the ++ and -- operators. The following examples perform exactly the same tasks as the examples above:

x++ // Increment x by 1

x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If the operator is placed before the variable name, the increment or decrement operation is performed before any other operations are performed on the variable. For example, in the following code, x is incremented before it is assigned to y, leaving y with a value of 10:

var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After the expression is evaluated the value of y will be 9 and the value of x will be 8.

var x = 9

val y = x--

13.6

 Equality Operators

Kotlin also includes a set of logical operators useful for performing comparisons. These operators all return a Boolean result depending on the result of the comparison. These operators are binary operators
 in that they work with two operands.

Equality operators are most frequently used in constructing program flow control logic. For example an if
 statement may be constructed based on whether one value matches another:

if x == y {

 // Perform task

}

The result of a comparison may also be stored in a Boolean variable. For example, the following code will result in a true
 value being stored in the variable result:

var result: Bool

val x = 10

val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true
 evaluation of the x < y
 expression. The following table lists the full set of Kotlin comparison operators:

	
Operator

	
Description

	
x == y

	
Returns true if x is equal to y

	
x > y

	
Returns true if x is greater than y

	
x >= y

	
Returns true if x is greater than or equal to y

	
x < y

	
Returns true if x is less than y

	
x <= y

	
Returns true if x is less than or equal to y

	
x != y

	
Returns true if x is not equal to y

Table 13-3

13.7

 Boolean

 Logical Operators

Kotlin also provides a set of so called logical operators designed to return Boolean true
 or false
 values. These operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!), AND (&&) and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For example, if a variable named flag
 is currently true, prefixing the variable with a ‘!’ character will invert the value to false:

val flag = true // variable is true

val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For example, the following code evaluates to true because at least one of the expressions either side of the OR operator is true:

if ((10 < 20) || (20 < 10)) {

 print("Expression is true")

}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will return false because only one of the two operand expressions evaluates to true:

if ((10 < 20) && (20 < 10)) {

 print("Expression is true")

}

13.8

 Range Operator

Kotlin includes a useful operator that allows a range of values to be declared. As will be seen in later chapters, this operator is invaluable when working with looping in program logic.

The syntax for the range operator is as follows:

x..y

This operator represents the range of numbers starting at x and ending at y where both x and y are included within the range (referred to as a closed range). The range operator 5..8, for example, specifies the numbers 5, 6, 7 and 8.

13.9

 Bitwise Operators

As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros, each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we, as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Kotlin provides a range of bit operators
 .

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find nothing new in this area of the Kotlin language syntax. For those unfamiliar with binary numbers, now may be a good time to seek out reference materials on the subject in order to understand how ones and zeros are formed into bytes to form numbers. Other authors have done a much better job of describing the subject than we can do within the scope of this book.

For the purposes of this exercise we will be working with the binary representation of two numbers. First, the decimal number 171 is represented in binary as:

10101011

Second, the number 3 is represented by the following binary sequence:

00000011

Now that we have two binary numbers with which to work, we can begin to look at the Kotlin bitwise operators:

13.9.1

 Bitwise Inversion

The Bitwise inversion (also referred to as NOT) is performed using the inv()
 operation and has the effect of inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros. Taking our example 3 number, a Bitwise NOT operation has the following result:

00000011 NOT

========

11111100

The following Kotlin code, therefore, results in a value of -4:

val y = 3

val z = y.inv()

print("Result is $z")

13.9.2

 Bitwise AND

The Bitwise AND is performed using the and()
 operation. It makes a bit by bit comparison of two numbers. Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result. Taking our two example numbers, this would appear as follows:

10101011 AND

00000011

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in Kotlin code, therefore, we should find that the result is 3 (00000011):

val x = 171

val y = 3

val z = x.and(y)

print("Result is $z")

13.9.3

 Bitwise OR

The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the OR places a 1 in the result if there is a 1 in the first or second operand. Using our example numbers, the result will be as follows:

10101011 OR

00000011

========

10101011

If we perform this operation in Kotlin using the or()
 operation the result will be 171:

val x = 171

val y = 3

val z = x.or(y)

print("Result is $z")

13.9.4

 Bitwise XOR

The bitwise XOR (commonly referred to as exclusive OR
 and performed using the xor()
 operation) performs a similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For example:

10101011 XOR

00000011

========

10101000

The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some Kotlin code:

val x = 171

val y = 3

val z = x.xor(y)

print("Result is $z")

When executed, we get the following output from print:

Result is 168

13.9.5

 Bitwise Left Shift

The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an integer one position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high order bits are discarded:

10101011 Left Shift one bit

========

101010110

In Kotlin the bitwise left shift operator is performed using the shl()
 operation, passing through the number of bit positions to be shifted. For example, to shift left by 1 bit:

val x = 171

val z = x.shl(1)

print("Result is $z")

When compiled and executed, the above code will display a message stating that the result is 342 which, when converted to binary, equates to 101010110.

13.9.6

 Bitwise Right Shift

A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the data type used to contain the result. As a result the low order bits are discarded. Whether or not the vacated high order bit positions are replaced with zeros or ones depends on whether the sign bit
 used to indicate positive and negative numbers is set or not.

10101011 Right Shift one bit

========

01010101

The bitwise right shift is performed using the shr()
 operation passing through the shift count:

val x = 171

val z = x.shr(1)

print("Result is $z")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

13.10

 Summary

Operators and expressions provide the underlying mechanism by which variables and constants are manipulated and evaluated within Kotlin code. This can take the simplest of forms whereby two numbers are added using the addition operator in an expression and the result stored in a variable using the assignment operator. Operators fall into a range of categories, details of which have been covered in this chapter.

14.

 Kotlin Flow Control

Regardless of the programming language used, application development is largely an exercise in applying logic, and much of the art of programming involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets executed, how many times it is executed and, conversely, which code gets by-passed when the program is executing. This is often referred to as flow control
 since it controls the flow
 of program execution. Flow control typically falls into the categories of looping control
 (how often code is executed) and conditional flow control
 (whether or not code is executed). This chapter is intended to provide an introductory overview of both types of flow control in Kotlin.

14.1

 Looping Flow Control

This chapter will begin by looking at flow control in the form of loops. Loops are essentially sequences of Kotlin statements which are to be executed repeatedly until a specified condition is met. The first looping statement we will explore is the for
 loop.

14.1.1

 The
 Kotlin for-in
 Statement

The for-in loop is used to iterate over a sequence of items contained in a collection or number range.

The syntax of the for-in loop is as follows:

for variable name in collection or range {

 // code to be executed

}

In this syntax, variable name
 is the name to be used for a variable that will contain the current item from the collection or range through which the loop is iterating. The code in the body of the loop will typically use this name as a reference to the current item in the loop cycle. The collection or range
 references the item through which the loop is iterating. This could, for example, be an array of string values, a range operator or even a string of characters.

Consider, for example, the following for-in loop construct:

for (index in 1..5) {

 println("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a constant named index
 . The statement then declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at 1 and ending at 5. The body of the loop simply prints out a message to the console indicating the current value assigned to the index
 constant, resulting in the following output:

Value of index is 1

Value of index is 2

Value of index is 3

Value of index is 4

Value of index is 5

The for-in loop is of particular benefit when working with collections such as arrays. In fact, the for-in loop can be used to iterate through any object that contains more than one item. The following loop, for example, outputs each of the characters in the specified string:

for (index in "Hello") {

 println("Value of index is $index")

}

The operation of a for-in loop may be configured using the downTo
 and until
 functions. The downTo function causes the for loop to work backwards through the specified collection until the specified number is reached. The following for loop counts backwards from 100 until the number 90 is reached:

for (index in 100 downTo 90) {

 print("$index.. ")

}

When executed, the above loop will generate the following output:

100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the exception that counting starts from the bottom of the collection range and works up until (but not including) the specified end point (a concept referred to as a half closed range):

for (index in 1 until 10) {

 print("$index.. ")

}

The output from the above code will range from the start value of 1 through to 9:

1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined using the step function as follows:

for (index in 0 until 100 step 10) {

 print("$index.. ")

}

The above code will result in the following console output:

0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2

 The

 while
 Loop

The Kotlin for
 loop described previously works well when it is known in advance how many times a particular task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to meet that criteria. To address this need, Kotlin includes the while
 loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while
 loop syntax is defined as follows:

while condition {

 // Kotlin statements go here

}

In the above syntax, condition
 is an expression that will return either true
 or false
 and the // Kotlin statements go here
 comment represents the code to be executed while the condition expression is true. For example:

var myCount = 0

while (myCount < 100) {

 myCount++

 println(myCount)

}

In the above example, the while
 expression will evaluate whether the myCount
 variable is less than 100. If it is already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount
 is not greater than 100 the code in the braces is executed and the loop returns to the while statement and repeats the evaluation of myCount
 . This process repeats until the value of myCount
 is greater than 100, at which point the loop exits.

14.1.3

 The
 do ... while
 loop

It is often helpful to think of the do ... while
 loop as an inverted while loop. The while
 loop evaluates an expression before executing the code contained in the body of the loop. If the expression evaluates to false
 on the first check then the code is not executed. The do ... while
 loop, on the other hand, is provided for situations where you know that the code contained in the body of the loop will always
 need to be executed at least once. For example, you may want to keep stepping through the items in an array until a specific item is found. You know that you have to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the do ... while
 loop is as follows:

do {

 // Kotlin statements here

} while conditional expression

In the do ... while
 example below the loop will continue until the value of a variable named i equals 0:

var i = 10

do {

 i--

 println(i)

} while (i > 0)

14.1.4

 Breaking from Loops

Having created a loop, it is possible that under certain conditions you might want to break out of the loop before the completion criteria have been met (particularly if you have created an infinite loop). One such example might involve continually checking for activity on a network socket. Once activity has been detected it will most likely be necessary to break out of the monitoring loop and perform some other task.

For the purpose of breaking out of a loop, Kotlin provides the break
 statement which breaks out of the current loop and resumes execution at the code directly after the loop. For example:

var j = 10

for (i in 0..100)

{

 j += j

 if (j > 100) {

 break

 }

 println("j = $j")

}

In the above example the loop will continue to execute until the value of j exceeds 100 at which point the loop will exit and execution will continue with the next line of code after the loop.

14.1.5

 The
 continue
 Statement

The continue
 statement causes all remaining code statements in a loop to be skipped, and execution to be returned to the top of the loop. In the following example, the println function is only called when the value of variable i
 is an even number:

var i = 1

while (i < 20)

{

 i += 1

 if (i % 2 != 0) {

 continue

 }

 println("i = $i")

}

The continue
 statement in the above example will cause the println call to be skipped unless the value of i
 can be divided by 2 with no remainder. If the continue
 statement is triggered, execution will skip to the top of the while loop and the statements in the body of the loop will be repeated (until the value of i
 exceeds 19).

14.1.6

 Break and Continue Labels

Kotlin expressions may be assigned a label by preceding the expression with a label name followed by the @ sign. This label may then be referenced when using break and continue statements to designate where execution is to resume. This is particularly useful when breaking out of nested loops. The following code contains a for loop nested within another for loop. The inner loop contains a break statement which is executed when the value of j reaches 10:

for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {

 println("Inner loop j = $j")

 if (j == 10) break

 }

}

As currently implemented, the break statement will exit the inner for loop but execution will resume at the top of the outer for loop. Suppose, however, that the break statement is required to also exit the outer loop. This can be achieved by assigning a label to the outer loop and referencing that label with the break statement as follows:

outerloop@
 for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {

 println("Inner loop j = $j")

 if (j == 10) break@outerloop

 }

}

Now when the value assigned to variable j reaches 10 the break statement will break out of both loops and resume execution at the line of code immediately following the outer loop.

14.2

 Conditional Flow Control

In the previous chapter we looked at how to use logical expressions in Kotlin to determine whether something is true
 or false
 . Since programming is largely an exercise in applying logic, much of the art of programming involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets executed and, conversely, which code gets by-passed when the program is executing.

14.2.1

 Using the
 if
 Expressions

The if
 expression is perhaps the most basic of flow control options available to the Kotlin programmer. Programmers who are familiar with C, Swift, C++ or Java will immediately be comfortable using Kotlin if statements, although there are some subtle differences.

The basic syntax of the Kotlin if
 expression is as follows:

if (boolean expression) {

 // Kotlin code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces are optional in Kotlin if only one line of code is associated with the if
 expression. In fact, in this scenario, the statement is often placed on the same line as the if expression.

Essentially if the Boolean expression
 evaluates to true
 then the code in the body of the statement is executed. If, on the other hand, the expression evaluates to false
 the code in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would write code similar to the following:

val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

At this point it is important to notice that we have been referring to the if expression instead of the if statement. The reason for this is that unlike the if statement in other programming languages, the Kotlin if returns a result. This allows if constructs to be used within expressions. As an example, a typical if expression to identify the largest of two numbers and assign the result to a variable might read as follows:

if (x > y)

 largest = x

else

 largest = y

The same result can be achieved using the if
 statement within an expression using the following syntax:

variable = if (condition) return_val_1 else return_val_2

The original example can, therefore be re-written as follows:

val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the condition. The following example is also a valid use of if in an expression, in this case assigning a string value to the variable:

val largest = if (x > y) "x is greatest" else "y is greatest"

println(largest)

For those familiar with programming languages such as Java, this feature allows code constructs similar to ternary statements to be implemented in Kotlin.

14.2.2

 Using
 if ... else …
 Expressions

The next variation of the if
 expression allows us to also specify some code to perform if the expression in the if expression evaluates to false
 . The syntax for this construct is as follows:

if (boolean expression) {

 // Code to be executed if expression is true

} else {

 // Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to be executed.

Using the above syntax, we can now extend our previous example to display a different message if the comparison expression evaluates to be false
 :

val x = 10

if (x > 9) println("x is greater than 9!")

 else println("x is less than 9!")

In this case, the second println statement will execute if the value of x was less than 9.

14.2.3

 Using if ... else if ... Expressions

So far we have looked at if
 statements which make decisions based on the result of a single logical expression. Sometimes it becomes necessary to make decisions based on a number of different criteria. For this purpose, we can use the if ... else if ...
 construct, an example of which is as follows:

var x = 9

if (x == 10) println("x is 10")

 else if (x == 9) println("x is 9")

 else if (x == 8) println("x is 8")

 else println("x is less than 8")

}

14.2.4

 Using the
 when Statement

The Kotlin when
 statement provides a cleaner alternative to the if ... else if ...
 construct and uses the following syntax:

when (value) {

 match1 -> // code to be executed on match

 match2 -> // code to be executed on match

 .

 .

 else -> // default code to executed if no match

}

Using this syntax, the previous if ... else if ...
 construct can be rewritten to use the when
 statement:

when (x) {

 10 -> println ("x is 10")

 9 -> println("x is 9")

 8 -> println("x is 8")

 else -> println("x is less than 8")

}

The when
 statement is similar to the switch
 statement found in many other programming languages.

14.3

 Summary

The term flow control
 is used to describe the logic that dictates the execution path that is taken through the source code of an application as it runs. This chapter has looked at the two types of flow control provided by Kotlin (looping and conditional) and explored the various Kotlin constructs that are available to implement both forms of flow control logic.

15.

 An Overview of Kotlin

 Functions and Lambdas

Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to organize programs while avoiding code repetition. In this chapter we will look at how functions and lambdas are declared and used within Kotlin.

15.1

 What is a Function?

A function is a named block of code that can be called upon to perform a specific task. It can be provided data on which to perform the task and is capable of returning results to the code that called it. For example, if a particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic can be placed in a function. The function can be programmed to accept the values on which the arithmetic is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the program code where the calculation is required the function is simply called, parameter values passed through as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however, a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At the point that the function is actually called and passed those values, however, they are referred to as arguments.

15.2

 How to Declare a Kotlin Function

A Kotlin function is declared using the following syntax:

fun <function name> (<para name>: <para type>, <para name>: <para type>, ...): <return type> {

 // Function code

}

This combination of function name, parameters and return type are referred to as the function signature
 or type
 . Explanations of the various fields of the function declaration are as follows:

•
 fun – The prefix keyword used to notify the Kotlin compiler that this is a function.

•
 <function name> - The name assigned to the function. This is the name by which the function will be referenced when it is called from within the application code.

•
 <para name> - The name by which the parameter is to be referenced in the function code.

•
 <para type> - The type of the corresponding parameter.

•
 <return type> - The data type of the result returned by the function. If the function does not return a result then no return type is specified.

•
 Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:

fun sayHello() {

 println("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a string result:

fun buildMessageFor(name: String, count: Int): String {

 return("$name, you are customer number $count")

}

15.3

 Calling a
 Kotlin Function

Once declared, functions are called using the following syntax:

<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the function is configured to accept. For example, to call a function named sayHello that takes no parameters and returns no value, we would write the following code:

sayHello()

In the case of a message that accepts parameters, the function could be called as follows:

buildMessageFor("John", 10)

15.4

 Single Expression Functions

When a function contains a single expression, it is not necessary to include the braces around the expression. All that is required is an equals sign (=) after the function declaration followed by the expression. The following function contains a single expression declared in the usual way:

fun multiply(x: Int, y: Int): Int {

 return x * y

}

Below is the same function expressed as a single line expression:

fun multiply(x: Int, y: Int): Int = x * y

When using single line expressions, the return type may be omitted in situations where the compiler is able to infer the type returned by the expression making for even more compact code:

fun multiply(x: Int, y: Int) = x * y

15.5

 Local Functions

A local function is a function that is embedded within another function. In addition, a local function has access to all of the variables contained within the enclosing function:

fun main(args: Array<String>) {

 val name = "John"

 val count = 5

 fun displayString() {

 for (index in 0..count) {

 println(name)

 }

 }

 displayString()

}

15.6

 Handling Return Values

To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we might write the following code:

val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:

val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=) to store the result returned by the function.

15.7

 Declaring

 Default Function Parameters

Kotlin provides the ability to designate a default parameter value to be used in the event that the value is not provided as an argument when the function is called. This simply involves assigning the default value to the parameter when the function is declared.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer” is used as a default in the event that a customer name is not passed through as an argument. Similarly, the count
 parameter is declared with a default value of 0:

fun buildMessageFor(name: String = "Customer"
 , count: Int = 0
): String {

 return("$name, you are customer number $count")

}

When parameter names are used when making the function call, any parameters for which defaults have been specified may be omitted. The following function call, for example, omits the customer name argument but still compiles because the parameter name has been specified for the second argument:

val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:

val message = buildMessageFor("John") // Valid

val message = buildMessageFor(10) // Invalid

15.8

 Variable Number of
 Function Parameters

It is not always possible to know in advance the number of parameters a function will need to accept when it is called within application code.
 Kotlin handles this possibility through the use of the vararg
 keyword to indicate that the function accepts an arbitrary number of parameters of a specified data type. Within the body of the function, the parameters are made available in the form of an array object. The following function, for example, takes as parameters a variable number of String values and then outputs them to the console panel:

fun displayStrings(vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

displayStrings("one", "two", "three", "four")

Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by the function must be declared before the vararg declaration:

fun displayStrings(name: String, vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

15.9

 Lambda Expressions

Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions. Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda, assigns it to a variable named sayHello and then calls the function via the lambda reference:

val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as follows:

{<para name>: <para type>, <para name> <para type>, ... ->

 // Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:

val multiply = { val1: Int, val2: Int -> val1 * val2 }

val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible when working with functions. Of course, the following syntax will execute the function and assign the result of that execution to a variable, instead of assigning the function itself to the variable:

val myvar = myfunction()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with double colons (::) as follows. The function may then be called simply by referencing the variable name:

val mavar = ::myfunction

myvar()

A lambda block may be executed directly by placing parentheses at the end of the expression including any arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.

val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expressions return value (hence the value of 200 being assigned to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support the return
 statement. In the absence of an expression that returns a result (such as an arithmetic or comparison expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The following lambda returns the Boolean true value after printing a message:

val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:

val nextmessage = { println("Hello"); "Goodbye" }()

A particularly useful feature of lambdas and the ability to create function references is that they can be both passed to functions as arguments and returned as results. This concept, however, requires an understanding of function types and higher-order functions.

15.10

 Higher-order Functions

On the surface, lambdas and function references do not seem to be particularly compelling features. The possibilities that these features offer become more apparent, however, when we consider that lambdas and function references have the same capabilities of many other data types. In particular, these may be passed through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is referred to as a higher-order function
 .

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore the concept of function types
 . The type of a function is dictated by a combination of the parameters it accepts and the type of result it returns. A function which accepts an Int and a Double as parameters and returns a String result for example is considered to have the following function type:

(Int, Double) -> String

In order to accept a function as a parameter, the receiving function simply declares the type of the function it is able to accept.

For the purposes of an example, we will begin by declaring two unit conversion functions:

fun inchesToFeet (inches: Double): Double {

 return inches * 0.0833333

}

fun inchesToYards (inches: Double): Double {

 return inches * 0.0277778

}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print the result in the console panel. This function needs to be as general purpose as possible, capable of performing a variety of different measurement unit conversions. In order to demonstrate functions as parameters, this new function will take as a parameter a function type that matches both the inchesToFeet and inchesToYards functions together with a value to be converted. Since the type of these functions is equivalent to (Double) -> Double, our general purpose function can be written as follows:

fun outputConversion(converterFunc: (Double) -> Double, value: Double) {

 val result = converterFunc(value)

 println("Result of conversion is $result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type. That function will be called to perform the conversion and the result displayed in the console panel. This means that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the appropriate converter function as a parameter, keeping in mind that it is the function reference that is being passed as an argument:

outputConversion(::inchesToFeet, 22.45)

outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type. The following function is configured to return either our inchesToFeet or inchesToYards function type (in other words a function which accepts and returns a Double value) based on the value of a Boolean parameter:

fun decideFunction(feet: Boolean): (Double) -> Double

{

 if (feet) {

 return ::inchesToFeet

 } else {

 return ::inchesToYards

 }

}

When called, the function will return a function reference which can then be used to perform the conversion:

val converter = decideFunction(true)

val result = converter(22.4)

println(result)

15.11

 Summary

Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced the basic concepts of function and lambda declaration and implementation in addition to the use of higher-order functions that allow lambdas and functions to be passed as arguments and returned as results.

16.

 The Basics of Object Oriented Programming in Kotlin

Kotlin provides extensive support for developing object-oriented applications. The subject area of object oriented programming is, however, large. As such, a detailed overview of object oriented software development is beyond the scope of this book. Instead, we will introduce the basic concepts involved in object oriented programming and then move on to explaining the concept as it relates to Kotlin application development.

16.1

 What is an Object?

Objects (also referred to as instances) are self-contained modules of functionality that can be easily used, and re-used as the building blocks for a software application.

Objects consist of data variables (called properties) and functions (called methods) that can be accessed and called on the object or instance to perform tasks and are collectively referred to as class members.

16.2

 What is a Class?

Much as a blueprint or architect’s drawing defines what an item or a building will look like once it has been constructed, a class defines what an object will look like when it is created. It defines, for example, what the methods will do and what the properties will be.

16.3

 Declaring a
 Kotlin Class

Before an object can be instantiated, we first need to define the class ‘blueprint’ for the object. In this chapter we will create a bank account class to demonstrate the basic concepts of Kotlin object oriented programming.

In declaring a new Kotlin class we specify an optional parent class from which the new class is derived and also define the properties and methods that the class will contain. The basic syntax for a new class is as follows:

class NewClassName: ParentClass {

 // Properties

 // Methods

}

The Properties section of the declaration defines the variables and constants that are to be contained within the class. These are declared in the same way that any other variable would be declared in Kotlin.

The Methods sections define the methods that are available to be called on the class and instances of the class. These are essentially functions specific to the class that perform a particular operation when called upon and will be described in greater detail later in this chapter.

To create an example outline for our BankAccount class, we would use the following:

class BankAccount {

}

Now that we have the outline syntax for our class, the next step is to add some properties to it.

16.4

 Adding
 Properties to a Class

A key goal of object oriented programming is a concept referred to as data encapsulation. The idea behind data encapsulation is that data should be stored within classes and accessed only through methods defined in that class. Data encapsulated in a class are referred to as properties or instance variables.

Instances of our BankAccount class will be required to store some data, specifically a bank account number and the balance currently held within the account. Properties are declared in the same way any other variables are declared in Kotlin. We can, therefore, add these variables as follows:

class BankAccount {

 var accountBalance: Double = 0.0

 var accountNumber: Int = 0

}

Having defined our properties, we can now move on to defining the methods of the class that will allow us to work with our properties while staying true to the data encapsulation model.

16.5

 Defining Methods

The methods of a class are essentially code routines that can be called upon to perform specific tasks within the context of that class.

Methods are declared within the opening and closing braces of the class to which they belong and are declared using the standard Kotlin function declaration syntax.

For example, the declaration of a method to display the account balance in our example might read as follows:

class BankAccount {

 var accountBalance: Double = 0.0

 var accountNumber: Int = 0

 fun displayBalance()

 {

 println("Number $accountNumber")

 println("Current balance is $accountBalance")

 }

}

16.6

 Declaring and Initializing a Class Instance

So far all we have done is define the blueprint for our class. In order to do anything with this class, we need to create instances of it. The first step in this process is to declare a variable to store a reference to the instance when it is created. We do this as follows:

val account1: BankAccount = BankAccount()

When executed, an instance of our BankAccount class will have been created and will be accessible via the account1 variable. Of course, the Kotlin compiler will be able to use inference here, making the type declaration optional:

val account1 = BankAccount()

16.7

 Primary and

 Secondary Constructors

A class will often need to perform some initialization tasks at the point of creation. These tasks can be implemented using constructors within the class. In the case of the BankAccount class, it would be useful to be able to initialize the account number and balance properties with values when a new class instance is created. To achieve this, a secondary constructor
 can be declared within the class header as follows:

class BankAccount {

 var accountBalance: Double = 0.0

 var accountNumber: Int = 0

 constructor(number: Int, balance: Double) {

 accountNumber = number

 accountBalance = balance

 }

.

.

}

When creating an instance of the class, it will now be necessary to provide initialization values for the account number and balance properties as follows:

val account1: BankAccount = BankAccount(456456234, 342.98)

A class can contain multiple secondary constructors allowing instances of the class to be initiated with different value sets. The following variation of the BankAccount class includes an additional secondary constructor for use when initializing an instance with the customer’s last name in addition to the corresponding account number and balance:

class BankAccount {

 var accountBalance: Double = 0.0

 var accountNumber: Int = 0

 var lastName: String = ""

 constructor(number: Int,

 balance: Double) {

 accountNumber = number

 accountBalance = balance

 }

 constructor(number: Int,

 balance: Double,

 name: String) {

 accountNumber = number

 accountBalance = balance

 lastName = name

 }

.

.

}

Instances of the BankAccount may now also be created as follows:

val account1: BankAccount = BankAccount(456456234, 342.98, "Smith")

It is also possible to use a primary constructor
 to perform basic initialization tasks. The primary constructor for a class is declared within the class header as follows:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

.

.

 fun displayBalance()

 {

 println("Number $accountNumber")

 println("Current balance is $accountBalance")

 }

}

Note that now both properties have been declared in the primary constructor, it is no longer necessary to also declare the variables within the body of the class. Since the account number will now not change after an instance of the class has been created, this property is declared as being immutable using the val
 keyword.

Although a class may only contain one primary constructor, Kotlin allows multiple secondary constructors to be declared in addition to the primary constructor. In the following class declaration the constructor that handles the account number and balance is declared as the primary constructor while the variation that also accepts the user’s last name is declared as a secondary constructor:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

 var lastName: String = ""

 constructor(accountNumber: Int,

 accountBalance: Double,

 name: String) : this(accountNumber, accountBalance) {

 lastName = name

 }

.

.

}

In the above example there are two key points which need to be noted. First, since the lastName property is referenced by a secondary constructor, the variable is not handled automatically by the primary constructor and must be declared within the body of the class and initialized within the constructor.

var lastName: String = ""

.

.

lastName = name

Second, although the accountNumber and accountBalance properties are accepted as parameters to the secondary constructor, the variable declarations are still handled by the primary constructor and do not need to be declared. To associate the references to these properties in the secondary constructor with the primary constructor, however, they must be linked back to the primary constructor using the this
 keyword:

... this(accountNumber, accountBalance)...

16.8

 Initializer Blocks

In addition to the primary and secondary constructors, a class may also contain initializer blocks
 which are called after the constructors. Since a primary constructor cannot contain any code, these methods are a particularly useful location for adding code to perform initialization tasks when an instance of the class is created. Initializer blocks are declared using the init
 keyword with the initialization code enclosed in braces:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

 init {

 // Initialization code goes here

 }

.

.

}

16.9

 Calling Methods and Accessing Properties

Now is probably a good time to recap what we have done so far in this chapter. We have now created a new Kotlin class named BankAccount. Within this new class we declared primary and secondary constructors to accept and initialize account number, balance and customer name properties. In the preceding sections we also covered the steps necessary to create and initialize an instance of our new class. The next step is to learn how to call the instance methods and access the properties we built into our class. This is most easily achieved using dot notation.

Dot notation involves accessing a property, or calling a method by specifying a class instance followed by a dot followed in turn by the name of the property or method:

classInstance.propertyname

classInstance.methodname()

For example, to get the current value of our accountBalance instance variable:

val balance1 = account1.accountBalance

Dot notation can also be used to set values of instance properties:

account1.accountBalance = 6789.98

The same technique is used to call methods on a class instance. For example, to call the displayBalance method on an instance of the BankAccount class:

account1.displayBalance()

16.10

 Custom Accessors

When accessing the accountBalance property in the previous section, the code is making use of property accessors that are provided automatically by Kotlin. In addition to these default accessors it is also possible to implement custom accessors
 that allow calculations or other logic to be performed before the property is returned or set.

Custom accessors are implemented by creating getter and optional corresponding setter methods containing the code to perform any tasks before returning the property. Consider, for example, that the BankAcccount class might need an additional property to contain the current balance less any recent banking fees. Rather than use a standard accessor, it makes more sense to use a custom accessor which calculates this value on request. The modified BankAccount class might now read as follows:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

 val fees: Double = 25.00

 val balanceLessFees: Double

 get() {

 return accountBalance - fees

 }

 fun displayBalance()

 {

 println("Number $accountNumber")

 println("Current balance is $accountBalance")

 }

}

The above code adds a getter that returns a computed property based on the current balance minus a fee amount. An optional setter could also be declared in much the same way to set the balance value less fees:

val fees: Double = 25.00

var balanceLessFees: Double

 get() {

 return accountBalance - fees

 }

 set(value) {

 accountBalance = value - fees

 }

.

.

}

The new setter takes as a parameter a Double value from which it deducts the fee value before assigning the result to the current balance property. Regardless of the fact that these are custom accessors, they are accessed in the same way as stored properties using dot-notation. The following code gets the current balance less the fees value before setting the property to a new value:

val balance1 = account1.balanceLessFees

account1.balanceLessFees = 12123.12

16.11

 Nested and

 Inner Classes

Kotlin allows one class to be nested within another class. In the following code, for example, ClassB is nested inside ClassA:

class ClassA {

 class ClassB {

 }

}

In the above example, ClassB does not have access to any of the properties within the outer class. If access is required, the nested class must be declared using the inner
 directive. In the example below ClassB now has access to the myProperty variable belonging to ClassA:

class ClassA {

 var myProperty: Int = 10

 inner
 class ClassB {

 val result = 20 + myProperty

 }

}

16.12

 Companion Objects

A Kotlin class can also contain a companion object. A companion object contains methods and variables that are common to all instances of the class. In addition to being accessible via class instances, these properties are also accessible at the class level (in other words without the need to create an instance of the class).

The syntax for declaring a companion object within a class is as follows:

class ClassName: ParentClass {

 // Properties

 // Methods

 companion object {

 // properties

 // methods

 }

}

To experience a simple companion object example in action, enter the following into the Kotlin online playground at https://try.kotl.in:

class MyClass {

 fun showCount() {

 println("counter = " + counter)

 }

 companion object {

 var counter = 1

 fun counterUp() {

 counter += 1

 }

 }

}

fun main(args: Array<String>) {

 println(MyClass.counter)

}

The class contains a companion object consisting of a counter variable and a method to increment that variable. The class also contains a method to display the current counter value. The main()
 method simply displays the current value of the counter variable, but does so by calling the method on the class itself instead of a class instance:

println(MyClass
 .counter)

Modify the main()
 method to also increment the counter, displaying the current value both before and after:

fun main(args: Array<String>) {

 println(MyClass.counter)

 MyClass.counterUp()

 println(MyClass.counter)

}

Run the code and verify that the following output appears in the console:

1

2

Next, add some code to create an instance of MyClass before making a call to the showCount()
 method:

fun main(args: Array<String>) {

 println(MyClass.counter)

 MyClass.counterUp()

 println(MyClass.counter)

 val instanceA = MyClass()

 instanceA.showCount()

}

When executed, the following output will appear in the console:

1

2

counter = 2

Clearly, the class has access to the variables and methods contained within the companion object.

Another useful aspect of companion objects is that all instances of the containing class see the same companion object, including current variable values. To see this in action, create a second instance of MyClass and call the showCount()
 method on that instance:

fun main(args: Array<String>) {

 println(MyClass.counter)

 MyClass.counterUp()

 println(MyClass.counter)

 val instanceA = MyClass()

 instanceA.showCount()

 val instanceB = MyClass()

 instanceB.showCount()

}

When run, the code will produce the following console output:

1

2

counter = 2

counter = 2

Note that both instances return the incremented value of 2, showing that the two class instances are sharing the same companion object data.

16.13

 Summary

Object oriented programming languages such as Kotlin encourage the creation of classes to promote code reuse and the encapsulation of data within class instances. This chapter has covered the basic concepts of classes and instances within Kotlin together with an overview of primary and secondary constructors, initializer blocks, properties, methods, companion objects and custom accessors.

17.

 An Introduction to

 Kotlin Inheritance and Subclassing

In
“The Basics of Object Oriented Programming in Kotlin”

 we covered the basic concepts of object-oriented programming and worked through an example of creating and working with a new class using Kotlin. In that example, our new class was not specifically derived from a base class (though in practice, all Kotlin classes are ultimately derived from the Any
 class). In this chapter we will provide an introduction to the concepts of subclassing, inheritance and extensions in Kotlin.

17.1

 Inheritance, Classes and Subclasses

The concept of inheritance brings something of a real-world view to programming. It allows a class to be defined that has a certain set of characteristics (such as methods and properties) and then other classes to be created which are derived from that class. The derived class inherits all of the features of the parent class and typically then adds some features of its own. In fact, all classes in Kotlin are ultimately subclasses of the Any superclass which provides the basic foundation on which all classes are based.

By deriving classes we create what is often referred to as a class hierarchy. The class at the top of the hierarchy is known as the base class or root class and the derived classes as subclasses or child classes. Any number of subclasses may be derived from a class. The class from which a subclass is derived is called the parent class or superclass.

Classes need not only be derived from a root class. For example, a subclass can also inherit from another subclass with the potential to create large and complex class hierarchies.

In Kotlin a subclass can only be derived from a single direct parent class. This is a concept referred to as single inheritance.

17.2

 Subclassing Syntax

As a safety measure designed to make Kotlin code less prone to error, before a subclass can be derived from a parent class, the parent class must be declared as open. This is achieved by placing the open
 keyword within the class header:

open
 class MyParentClass {

 var myProperty: Int = 0

}

With a simple class of this type, the subclass can be created as follows:

class MySubClass : MyParentClass() {

}

For classes containing primary or secondary constructors, the rules for creating a subclass are slightly more complicated. Consider the following parent class which contains a primary constructor:

open class MyParentClass(var myProperty: Int) {

}

In order to create a subclass of this class, the subclass declaration references any base class parameters while also initializing the parent class using the following syntax:

class MySubClass(myProperty: Int
) : MyParentClass(myProperty
) {

}

If, on the other hand, the parent class contains one or more secondary constructors, the constructors must also be implemented within the subclass declaration and include a call to the secondary constructors of the parent class, passing through as arguments the values passed to the subclass secondary constructor. When working with subclasses, the parent class can be referenced using the super
 keyword. A parent class with a secondary constructor might read as follows:

open class MyParentClass {

 var myProperty: Int = 0

 constructor(number: Int) {

 myProperty = number

 }

}

The code for the corresponding subclass would need to be implemented as follows:

class MySubClass : MyParentClass {

 constructor(number: Int) : super(number)

}

If additional tasks need to be performed within the constructor of the subclass, this can be placed within curly braces after the constructor declaration:

class MySubClass : MyParentClass {

 constructor(number: Int) : super(number) {

 // Subclass constructor code here

 }

}

17.3

 A Kotlin Inheritance Example

As with most programming concepts, the subject of inheritance in Kotlin is perhaps best illustrated with an example. In
“The Basics of Object Oriented Programming in Kotlin”

 we created a class named BankAccount designed to hold a bank account number and corresponding current balance. The BankAccount class contained both properties and methods. A simplified declaration for this class is reproduced below and will be used for the basis of the subclassing example in this chapter:

class BankAccount {

 var accountNumber = 0

 var accountBalance = 0.0

 constructor(number: Int, balance: Double) {

 accountNumber = number

 accountBalance = balance

 }

 open fun displayBalance()

 {

 println("Number $accountNumber")

 println("Current balance is $accountBalance")

 }

}

Though this is a somewhat rudimentary class, it does everything necessary if all you need it to do is store an account number and account balance. Suppose, however, that in addition to the BankAccount class you also needed a class to be used for savings accounts. A savings account will still need to hold an account number and a current balance and methods will still be needed to access that data. One option would be to create an entirely new class, one that duplicates all of the functionality of the BankAccount class together with the new features required by a savings account. A more efficient approach, however, would be to create a new class that is a subclass of the BankAccount class. The new class will then inherit all the features of the BankAccount class but can then be extended to add the additional functionality required by a savings account. Before a subclass of the BankAccount class can be created, the declaration needs to be modified to declare the class as open:

open
 class BankAccount {

To create a subclass of BankAccount that we will call SavingsAccount, we simply declare the new class, this time specifying BankAccount as the parent class and add code to call the constructor on the parent class:

class SavingsAccount : BankAccount {

 constructor(accountNumber: Int, accountBalance: Double) :

 super(accountNumber, accountBalance)

}

Note that although we have yet to add any properties or methods, the class has actually inherited all the methods and properties of the parent BankAccount class. We could, therefore, create an instance of the SavingsAccount class and set variables and call methods in exactly the same way we did with the BankAccount class in previous examples. That said, we haven’t really achieved anything unless we actually take steps to extend the class.

17.4

 Extending the Functionality of a Subclass

So far we have been able to create a subclass that contains all the functionality of the parent class. In order for this exercise to make sense, however, we now need to extend the subclass so that it has the features we need to make it useful for storing savings account information. To do this, we simply add the properties and methods that provide the new functionality, just as we would for any other class we might wish to create:

class SavingsAccount : BankAccount {

 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :

 super(accountNumber, accountBalance)

 fun calculateInterest(): Double

 {

 return interestRate * accountBalance

 }

}

17.5

 Overriding Inherited Methods

When using inheritance it is not unusual to find a method in the parent class that almost does what you need, but requires modification to provide the precise functionality you require. That being said, it is also possible you’ll inherit a method with a name that describes exactly what you want to do, but it actually does not come close to doing what you need. One option in this scenario would be to ignore the inherited method and write a new method with an entirely new name. A better option is to override the inherited method and write a new version of it in the subclass.

Before proceeding with an example, there are three rules that must be obeyed when overriding a method. First, the overriding method in the subclass must take exactly the same number and type of parameters as the overridden method in the parent class. Second, the new method must have the same return type as the parent method. Finally, the original method in the parent class must be declared as open before the compiler will allow it to be overridden.

In our BankAccount class we have a method named displayBalance that displays the bank account number and current balance held by an instance of the class. In our SavingsAccount subclass we might also want to output the current interest rate assigned to the account. To achieve this, we simply declare a new version of the displayBalance method in our SavingsAccount subclass, prefixed with the override
 keyword:

class SavingsAccount : BankAccount {

 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :

		super(accountNumber, accountBalance)

 fun calculateInterest(): Double

 {

 return interestRate * accountBalance

 }

 override fun displayBalance()

 {

 println("Number $accountNumber")

 println("Current balance is $accountBalance")

 println("Prevailing interest rate is $interestRate")

 }

}

Before this code will compile, the displayBalance method in the BankAccount class must be declared as open:

open
 fun displayBalance()

{

 println("Number $accountNumber")

 println("Current balance is $accountBalance")

}

It is also possible to make a call to the overridden method in the super class from within a subclass. The displayBalance method of the super class could, for example, be called to display the account number and balance, before the interest rate is displayed, thereby eliminating further code duplication:

override fun displayBalance()

{

 super.displayBalance()

 println("Prevailing interest rate is $interestRate")

}

17.6

 Adding a Custom Secondary Constructor

As the SavingsAccount class currently stands, it makes a call to the secondary constructor from the parent BankAccount class which was implemented as follows:

constructor(accountNumber: Int, accountBalance: Double) :

		super(accountNumber, accountBalance)

Clearly this constructor takes the necessary steps to initialize both the account number and balance properties of the class. The SavingsAccount class, however, contains an additional property in the form of the interest rate variable. The SavingsAccount class, therefore, needs its own constructor to ensure that the interestRate property is initialized when instances of the class are created. Modify the SavingsAccount class one last time to add an additional secondary constructor allowing the interest rate to also be specified when class instances are initialized:

class SavingsAccount : BankAccount {

 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :

 super(accountNumber, accountBalance)

 constructor(accountNumber: Int, accountBalance: Double, rate: Double) :

 super(accountNumber, accountBalance) {

 interestRate = rate

 }

.

.

.

}

17.7

 Using the SavingsAccount Class

Now that we have completed work on our SavingsAccount class, the class can be used in some example code in much the same way as the parent BankAccount class:

val savings1 = SavingsAccount(12311, 600.00, 0.07)

println(savings1.calculateInterest())

savings1.displayBalance()

17.8

 Summary

Inheritance extends the concept of object re-use in object oriented programming by allowing new classes to be derived from existing classes, with those new classes subsequently extended to add new functionality. When an existing class provides some, but not all, of the functionality required by the programmer, inheritance allows that class to be used as the basis for a new subclass. The new subclass will inherit all the capabilities of the parent class, but may then be extended to add the missing functionality.

18.

 Understanding Android Application and Activity
 Lifecycles

In earlier chapters we have learned that Android applications run within processes and that they are comprised of multiple components in the form of activities, Services and Broadcast Receivers. The goal of this chapter is to expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are still considered to be “resource constrained” by the standards of modern desktop and laptop based systems, particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these limited resources are managed effectively and that both the operating system and the applications running on it remain responsive to the user at all times. In order to achieve this, Android is given full control over the lifecycle and state of both the processes in which the applications run, and the individual components that comprise those applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the application and activity lifecycle management models of Android, and the ways in which an application can react to the state changes that are likely to be imposed upon it during its execution lifetime.

18.1

 Android Applications and Resource Management

Each running Android application is viewed by the operating system as a separate process. If the system identifies that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate in order to free up memory, the system takes into consideration both the priority
 and state
 of all currently running processes, combining these factors to create what is referred to by Google as an importance hierarchy
 . Processes are then terminated starting with the lowest priority and working up the hierarchy until sufficient resources have been liberated for the system to function.

18.2

 Android Process States

Processes host applications and applications are made up of components. Within an Android system, the current state of a process is defined by the highest-ranking active component within the application that it hosts. As outlined in Figure 18-1
 , a process can be in one of the following five states at any given time:

 [image: android_process_priorities.png]

Figure 18-1

18.2.1

 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one or two foreground processes active and these are usually the last to be terminated by the system. A process must meet one or more of the following criteria to qualify for foreground status:

•
 Hosts an activity with which the user is currently interacting.

•
 Hosts a Service connected to the activity with which the user is interacting.

•
 Hosts a Service that has indicated, via a call to startForeground()
 ,
 that termination would be disruptive to the user experience.

•
 Hosts a Service executing either its onCreate()
 ,
 onResume()

 or onStart()
 callbacks.

•
 Hosts a Broadcast Receiver that is currently executing its onReceive()
 method
 .

18.2.2

 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible status if it hosts a Service that is, itself, bound to a visible or foreground activity.

18.2.3

 Service Process

Processes that contain a Service that has already been started and is currently executing.

18.2.4

 Background Process

A process that contains one or more activities that are not currently visible to the user, and does not host a Service that qualifies for Service Process
 status. Processes that fall into this category are at high risk of termination in the event that additional memory needs to be freed for higher priority processes. Android maintains a dynamic list of background processes, terminating processes in chronological order such that processes that were the least recently in the foreground are killed first.

18.2.5

 Empty Process

Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are the first to be killed to free up resources.

18.3

 Inter-Process Dependencies

The situation with regard to determining the highest priority process is slightly more complex than outlined in the preceding section for the simple reason that processes can often be inter-dependent. As such, when making a determination as to the priority of a process, the Android system will also take into consideration whether the process is in some way serving another process of higher priority (for example, a service process acting as the content provider for a foreground process). As a basic rule, the Android documentation states that a process can never be ranked lower than another process that it is currently serving.

18.4

 The Activity Lifecycle

As we have previously determined, the state of an Android process is determined largely by the status of the activities and components that make up the application that it hosts. It is important to understand, therefore, that these activities also transition through different states during the execution lifetime of an application. The current state of an activity is determined, in part, by its position in something called the Activity Stack
 .

18.5

 The Activity Stack

For each application that is running on an Android device, the runtime system maintains an Activity Stack
 . When an application is launched, the first of the application’s activities to be started is placed onto the stack. When a second activity is started, it is placed on the top of the stack and the previous activity is pushed
 down. The activity at the top of the stack is referred to as the active (
 or running
) activity. When the active activity exits, it is popped
 off the stack by the runtime and the activity located immediately beneath it in the stack becomes the current active activity. The activity at the top of the stack might, for example, simply exit because the task for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure 18-2
 .

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or popped off the stack when it exits or the user navigates to the previous activity. In the event that resources become constrained, the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that the last item to be pushed onto the stack is the first to be popped off.

[image: android_activity_lifecycle_diagram.png]

Figure 18-2

18.6

 Activity
 States

An activity can be in one of a number of different states during the course of its execution within an application:

·
 Active / Running

 – The activity is at the top of the Activity Stack, is the foreground task visible on the device screen, has focus and is currently interacting with the user. This is the least likely activity to be terminated in the event of a resource shortage.

·
 Paused

 – The activity is visible to the user but does not currently have focus (typically because this activity is partially obscured by the current active
 activity). Paused activities are held in memory, remain attached to the window manager, retain all state information and can quickly be restored to active status when moved to the top of the Activity Stack.

·
 Stopped

 – The activity is currently not visible to the user (in other words it is totally obscured on the device display by other activities). As with paused activities, it retains all state and member information, but is at higher risk of termination in low memory situations.

·
 Killed

 – The activity has been terminated by the runtime system in order to free up memory and is no longer present on the Activity Stack. Such activities must be restarted if required by the application.

18.7

 Configuration Changes

So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely the movement of an activity between the foreground and background, and termination of an activity by the runtime system in order to free up memory. In fact, there is a third scenario in which the state of an activity can dramatically change and this involves a change to the device configuration.

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation of the device between portrait and landscape, or changing a system font setting) will cause the activity to be destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by the system in response to specific configuration changes.

18.8

 Handling State Change

If nothing else, it should be clear from this chapter that an application and, by definition, the components contained therein will transition through many states during the course of its lifespan. Of particular importance is the fact that these state changes (up to and including complete termination) are imposed upon the application by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly. This will typically involve saving or restoring both internal data structures and user interface state, thereby allowing the user to switch seamlessly between applications and providing at least the appearance of multiple, concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One approach involves responding to state change method calls from the operating system and is covered in detail in the next chapter entitled
“Handling Android Activity State Changes”

 .

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the Jetpack Android Architecture components, introduced in
“Modern Android App Architecture with Jetpack”

 and explained in more detail in the chapter entitled
“Working with Android Lifecycle-Aware Components”

 .

18.9

 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications, and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities in order to free up memory. Process state is taken into consideration by the runtime system when deciding whether a process is a suitable candidate for termination. The state of a process is largely dependent upon the status of the activities hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution lifespan and has very little control over its destiny within the Android runtime environment. Those processes and activities that are not directly interacting with the user run a higher risk of termination by the runtime system. An essential element of Android application development, therefore, involves the ability of an application to respond to state change notifications from the operating system.

19.

 Handling Android Activity
 State Changes

 Based on the information outlined in the chapter entitled
“Understanding Android Application and Activity Lifecycles”

 it is now evident that the activities and fragments that make up an application pass through a variety of different states during the course of the application’s lifespan. The change from one state to the other is imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may be notified of a state change and to outline the areas where it is advisable to save or restore state information. Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes
 .

19.1

 New vs. Old Lifecycle Techniques

Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or fragment instance that get called by the operating system when the lifecycle status of that object changes. This approach has remained unchanged since the early years of the Android operating system and, while still a viable option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better approach to lifecycle handling is now available. This modern approach to lifecycle management (together with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android developer you will not be completely insulated from the traditional lifecycle methods and will still make use of some of them. More importantly, understanding the older way of handling lifecycles will provide a good knowledge foundation on which to begin learning the new approach later in the book.

19.2

 The Activity

 and Fragment Classes

With few exceptions, activities and fragments in an application are created as subclasses of the Android AppCompatActivity class and Fragment classes respectively.

Consider, for example, the simple AndroidSample
 project created in
“Creating an Example Android App in Android Studio”

 . Load this project into the Android Studio environment and locate the AndroidSampleActvity.
 kt
 file (located in app -> java -> com.<your domain>.androidsample
). Having located the file, double-click on it to load it into the editor where it should read as follows:

package com.ebookfrenzy.androidsample

import android.os.Bundle

import android.support.design.widget.Snackbar

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import kotlinx.android.synthetic.main.activity_android_sample.*

import kotlinx.android.synthetic.main.content_android_sample.*

class AndroidSampleActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_android_sample)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

 }

 override fun onCreateOptionsMenu(menu: Menu): Boolean {

 // Inflate the menu; this adds items to the action bar if it is present.

 menuInflater.inflate(R.menu.menu_android_sample, menu)

 return true

 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {

 // Handle action bar item clicks here. The action bar will

 // automatically handle clicks on the Home/Up button, so long

 // as you specify a parent activity in AndroidManifest.xml.

 return when(item.itemId) {

 R.id.action_settings -> true

 else -> super.onOptionsItemSelected(item)

 }

 }

}

When the project was created, we instructed Android Studio also to create an initial activity named AndroidSampleActivity
 . As is evident from the above code, the AndroidSampleActivity class is a subclass of the AppCompatActivity class
 .

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass of the Activity class. This can be verified within the Android Studio editor using the Hierarchy
 tool window. With the AndroidSampleActivity.
 kt
 file loaded into the editor, click on AppCompatActivity in the class
 declaration line and press the Ctrl-H
 keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class hierarchy for the selected class. As illustrated in Figure 19-1
 , AppCompatActivity is clearly subclassed from the FragmentActivity class
 which is itself ultimately a subclass of the Activity cla
 ss:

[image:]

Figure 19-1

The Activity and Fragment classes contain a range of methods that are intended to be called by the Android runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as the lifecycle methods.
 An activity or fragment class simply needs to override
 these methods and implement the necessary functionality within them in order to react accordingly to state changes.

One such method is named onCreate()
 and, turning once again to the above code fragment, we can see that this method has already been overridden and implemented for us in the AndroidSampleActivity
 class. In a later section we will explore in detail both onCreate()
 and the other relevant lifecycle methods of the Activity and Fragment classes.

19.3

 Dynamic State
 vs. Persistent State

A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at appropriate times. When talking about state
 in this context we mean the data that is currently being held within the activity and the appearance of the user interface. The activity might, for example, maintain a data model in memory that needs to be saved to a database, content provider or file. Such state information, because it persists from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the application’s internal data model) is referred to as the dynamic state
 , since it is typically only retained during a single invocation of the application (and also referred to as user interface state

 or instance state
).

Understanding the differences between these two states is important because both the ways they are saved, and the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for reasons that are slightly more complex.

Consider, for example, that an application contains an activity (which we will refer to as Activity A
) containing a text field and some radio buttons. During the course of using the application, the user enters some text into the text field and makes a selection from the radio buttons. Before performing an action to save these changes, however, the user then switches to another activity causing Activity A
 to be pushed down the Activity Stack and placed into the background. After some time, the runtime system ascertains that memory is low and consequently kills Activity A
 to free up resources.
 As far as the user is concerned, however, Activity A
 was simply placed into the background and is ready to be moved to the foreground at any time. On returning Activity A
 to the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been retained. In this scenario, however, a new instance of Activity A
 will have been created and, if the dynamic state was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between foreground and background activities, regardless of the fact that activities may actually have been killed and restarted without the user’s knowledge.

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this chapter.

19.4

 The Android
 Lifecycle Methods

As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as event handlers when the state of an instance changes. The primary methods supported by the Android Activity and Fragment class are as follows:

•
 onCreate(

 savedInstanceState: Bundle?
)
 – The method that is called when the activity is first created and the ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a Bundle
 object that may contain dynamic state information (typically relating to the state of the user interface) from a prior invocation of the activity.

•
 onRestart()

 – Called when the activity is about to restart after having previously been stopped by the runtime system.

•
 onStart()

 – Always called immediately after the call to the onCreate()
 or onRestart()
 methods, this method indicates to the activity that it is about to become visible to the user. This call will be followed by a call to onResume()
 if the activity moves to the top of the activity stack, or onStop()
 in the event that it is pushed down the stack by another activity.

•
 onResume()

 – Indicates that the activity is now at the top of the activity stack and is the activity with which the user is currently interacting.

•
 onPause()

 – Indicates that a previous activity is about to become the foreground activity. This call will be followed by a call to either the onResume()
 or onStop()
 method depending on whether the activity moves back to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent state
 information not yet saved by the app. To avoid delays in switching between activities, time consuming operations such as storing data to a database or performing network operations should be avoided within this method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

•
 onStop()

 – The activity is now no longer visible to the user. The two possible scenarios that may follow this call are a call to onRestart()
 in the event that the activity moves to the foreground again, or onDestroy()
 if the activity is being terminated.

•
 onDestroy()

 – The activity is about to be destroyed, either voluntarily because the activity has completed its tasks and has called the finish()
 method or because the runtime is terminating it either to release memory or due to a configuration change (such as the orientation of the device changing). It is important to note that a call will not always be made to onDestroy()
 when an activity is terminated.

•
 onConfigurationChanged()
 – Called when a configuration change occurs for which the activity has indicated it is not to be restarted. The method is passed a Configuration object outlining the new device configuration and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:

•
 onAttach()
 - Called when the fragment is assigned to an activity.

•
 onCreateView()
 - Called to create and return the fragment’s user interface layout view hierarchy.

•
 onActivityCreated()
 - The onCreate()
 method of the activity with which the fragment is associated has completed execution.

•
 onViewStatusRestored()
 - The fragment’s saved view hierarchy has been restored.

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and restoring the dynamic state
 of an activity:

•
 onRestoreInstanceState

 (
 savedInstanceState: Bundle?
)
 – This method is called immediately after a call to the onStart()
 method in the event that the activity is restarting from a previous invocation in which state was saved. As with onCreate(),
 this method is passed a Bundle object containing the previous state data. This method is typically used in situations where it makes more sense to restore a previous state after the initialization of the activity has been performed in onCreate()
 and onStart()
 .

•
 onSaveInstanceState(

 outState: Bundle?
)
 – Called before an activity is destroyed so that the current dynamic state
 (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the state should be saved and which is subsequently passed through to the onCreate()
 and onRestoreInstanceState()
 methods when the activity is restarted. Note that this method is only called in situations where the runtime ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that, with the exception of onRestoreInstanceState()
 and onSaveInstanceState()
 , the method implementation must include a call to the corresponding method in the super class. For example, the following method overrides the onRestart()
 method but also includes a call to the super class instance of the method:

override fun onRestart() {

 super.onRestart()

 Log.i(TAG, "onRestart")

}

Failure to make this super class call in method overrides will result in the runtime throwing an exception during execution. While calls to the super class in the onRestoreInstanceState()
 and onSaveInstanceState()
 methods are optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are considerable benefits to using them, a subject that will be covered in the chapter entitled
“Saving and Restoring the State of an Android Activity”

 .

19.5

 Lifetimes

The final topic to be covered involves an outline of the entire
 , visible
 and foreground
 lifetimes through which an activity or fragment will transition during execution:

•
 Entire Lifetime

 –The term “entire lifetime” is used to describe everything that takes place between the initial call to the onCreate()
 method and the call to onDestroy()
 prior to the object terminating.

•
 Visible Lifetime

 – Covers the periods of execution between the call to onStart()
 and onStop()
 . During this period the activity or fragment is visible to the user though may not be the object with which the user is currently interacting.

•
 Foreground Lifetime

 – Refers to the periods of execution between calls to the onResume()
 and onPause()
 methods.

It is important to note that an activity or fragment may pass through the foreground
 and visible
 lifetimes multiple times during the course of the entire
 lifetime.

The concepts of lifetimes and lifecycle methods are illus
 trated in Figure 19-2
 :

[image: android_activity_lifecycle_methods.png]

Figure 19-2

19.6

 Disabling Configuration Change Restarts

As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration changes. This is achieved by adding an android:configChanges
 directive to the activity element within the project manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted in the event of configuration changes relating to orientation or device-wide font size:

<activity android:name=".DemoActivity"

 android:configChanges="orientation|fontScale
 "

 android:label="@string/app_name">

19.7

 Lifecycle Method Limitations

As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently, were the only mechanism available for handling lifecycle state changes for activities and fragments. There are, however, shortcomings to this approach.

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find out its current lifecycle state at any given point during app execution. Instead the object would need to track the state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other objects within an app. This is a serious consideration since many other objects within an app can potentially be impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible, therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the other classes that are impacted by the state change. An app that streams video, for example, might include a class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware
 components, a topic which will be covered starting with the chapter entitled
“Modern Android App Architecture with Jetpack”

 .

19.8

 Summary

All activities are derived from the Android Activity
 class which, in turn, contains a number of lifecycle methods that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment class contains a number of comparable methods. By overriding these methods, activities and fragments can respond to state changes and, where necessary, take steps to save and restore the current state of both the activity and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that needs to be stored between application invocations (for example to a file or database). Dynamic state, on the other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware components, an understanding of these methods is important in order to fully understand the new approaches to lifecycle management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of activity lifetimes. In the next chapter, entitled
“Android Activity State Changes by Example”

 , we will implement an example application that puts much of this theory into practice.

20.

 Android Activity State
 Changes by Example

The previous chapters have discussed in some detail the different states and lifecycles of the activities that comprise an Android application. In this chapter, we will put the theory of handling activity state changes into practice through the creation of an example application. The purpose of this example application is to provide a real world demonstration of an activity as it passes through a variety of different states within the Android runtime.

In the next chapter, entitled
“Saving and Restoring the State of an Android Activity”

 , the example project constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

20.1

 Creating the State Change Example Project

The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary, closing any currently open projects using the File -> Close Project
 menu option so that the Welcome screen appears.

Select the Start a new Android Studio project
 quick start option from the welcome screen and, within the resulting new project dialog, enter StateChange
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting. Enable the Include Kotlin support
 option before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Proceed through the screens, requesting the creation of a Basic Activity named StateChangeActivity
 with a corresponding layout named activity_state_change.

Upon completion of the project creation process, the StateChange
 project should be listed in the Project tool window located along the left-hand edge of the Android Studio main window.

The next action to take involves the design of the content area of the user interface for the activity. This is stored in a file named content_state_change.xml
 which should already be loaded into the Layout Editor tool. If it is not, navigate to it in the project tool window where it can be found in the app -> res -> layout
 folder. Once located, double-clicking on the file will load it into the Android Studio Layout Editor tool.

[image:]

Figure 20-1

20.2

 Designing the User Interface

With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for the example application. Instead of the “Hello world!” TextView currently present in the user interface design, the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text
 category and, from the list of text components, click and drag a Plain Text
 component over to the visual representation of the device screen. Move the component to the center of the display so that the center guidelines appear and drop it into place so that the layout resembles that of Figure 20-2
 .

[image:]

Figure 20-2

When using the EditText widget it is necessary to specify an input type
 for the view. This simply defines the type of text or data that will be entered by the user. For example, if the input type is set to Phone
 , the user will be restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,
 the input will default to upper case characters. Input type settings may also be combined.

For the purposes of this example, we will set the input type to support general text input. To do so, select the EditText widget in the layout and locate the inputType
 entry within the Attributes tool window. Click on the current setting to open the list of options and, within the list, switch off textPersonName
 and enable text
 before clicking on the OK button.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this from the text
 property field so that the view is blank within the layout.

20.3

 Overriding the Activity Lifecycle Methods

At this point, the project contains a single activity named StateChangeActivity
 , which is derived from the Android AppCompatActivity
 class. The source code for this activity is contained within the StateChangeActivity.
 kt
 file which should already be open in an editor session and represented by a tab in the editor tab bar. In the event that the file is no longer open, navigate to it in the Project tool window panel (app -> java -> com.ebookfrenzy.statechange -> StateChangeActivity
) and double-click on it to load the file into the editor. Once loaded the code should read as follows:

package com.ebookfrenzy.statechange

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import kotlinx.android.synthetic.main.activity_state_change.*

class StateChangeActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_state_change)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

 }

 override fun onCreateOptionsMenu(menu: Menu): Boolean {

 // Inflate the menu; this adds items to the action bar if it is present.

 menuInflater.inflate(R.menu.menu_state_change, menu)

 return true

 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {

 // Handle action bar item clicks here. The action bar will

 // automatically handle clicks on the Home/Up button, so long

 // as you specify a parent activity in AndroidManifest.xml.

 return when (item.itemId) {

 R.id.action_settings -> true

 else -> super.onOptionsItemSelected(item)

 }

 }

}

So far the only lifecycle method overridden by the activity is the onCreate()
 method which has been implemented to call the super class instance of the method before setting up the user interface for the activity. We will now modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it executes. For this, we will use the Log
 class, which requires that we import android.util.Log
 and declare a tag that will enable us to filter these messages in the log output:

package com.ebookfrenzy.statechange

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import android.util.Log

import kotlinx.android.synthetic.main.activity_state_change.*

class StateChangeActivity : AppCompatActivity() {

 val TAG = "StateChange"

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_state_change)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

 Log.i(TAG, "onCreate")

 }

.

.

}

The next task is to override some more methods, with each one containing a corresponding log call. These override methods may be added manually or generated using the Alt-Insert
 keyboard shortcut as outlined in the chapter entitled
“The Basics of the Android Studio Code Editor”

 . Note that the Log calls will still need to be added manually if the methods are being auto-generated:

override fun onStart() {

 super.onStart()

 Log.i(TAG, "onStart")

}

override fun onResume() {

 super.onResume()

 Log.i(TAG, "onResume")

}

override fun onPause() {

 super.onPause()

 Log.i(TAG, "onPause")

}

override fun onStop() {

 super.onStop()

 Log.i(TAG, "onStop")

}

override fun onRestart() {

 super.onRestart()

 Log.i(TAG, "onRestart")

}

override fun onDestroy() {

 super.onDestroy()

 Log.i(TAG, "onDestroy")

}

override fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 Log.i(TAG, "onSaveInstanceState")

}

override fun onRestoreInstanceState(savedInstanceState: Bundle?) {

 super.onRestoreInstanceState(savedInstanceState)

 Log.i(TAG, "onRestoreInstanceState")

}

20.4

 Filtering the Logcat
 Panel

The purpose of the code added to the overridden methods in StateChangeActivity.
 kt
 is to output logging information to the Logcat
 tool window. This output can be configured to display all events relating to the device or emulator session, or restricted to those events that relate to the currently selected app. The output can also be further restricted to only those log events that match a specified filter.

Display the Logcat tool window
 and click on the filter menu (marked as B in Figure 20-3
) to review the available options. When this menu is set to Show only selected application
 , only those messages relating to the app selected in the menu marked as A will be displayed in the Logcat panel. Choosing No Filter
 , on the other hand, will display all the messages generated by the device or emulator.

[image:]

Figure 20-3

Before running the application, it is worth demonstrating the creation of a filter which, when selected, will further restrict the log output to ensure that only those log messages containing the tag declared in our activity are displayed.

From the filter menu (B), select the
 Edit Filter Configuration
 menu option. In the Create New Logcat Filter
 dialog (Figure 20-4
), name the filter Lifecycle
 and, in the Log Tag
 field, enter the Tag value declared in StateChangeActivity.
 kt
 (in the above code example this was StateChange
).

[image:]

Figure 20-4

Enter the package identifier in the Package Name
 field (clicking on the search icon in the text field will drop down a menu from which the package name may be selected) and, when the changes are complete, click on the OK
 button to create the filter and dismiss the dialog. Instead of listing No Filters,
 the newly created filter should now be selected in the Logcat tool window.

20.5

 Running the Application

For optimal results, the application should be run on a physical Android device or emulator. With the device configured and connected to the development computer, click on the run button represented by a green triangle located in the Android Studio toolbar as shown in Figure 20-5
 below, select the Run -> Run…
 menu option or use the Shift+F10 keyboard shortcut:

[image:]

Figure 20-5

Select the physical Android device from the Choose Device
 dialog if it appears (assuming that you have not already configured it to be the default target). After Android Studio has built the application and installed it on the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered (taking care to ensure that the Lifecycle
 filter created in the preceding section is selected to filter out log events that are not currently of interest to us):

[image:]

Figure 20-6

20.6

 Experimenting with the Activity

With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat panel:

onCreate

onStart

onResume

Clearly, the initial state changes are exactly as outlined in
“Understanding Android Application and Activity Lifecycles”

 . Note, however, that a call was not made to onRestoreInstanceState()
 since the Android runtime detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls reported in the log as follows:

onPause

onStop

onSaveInstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state. Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will either be notified it has been restarted via a call to onRestart()
 or will go through the creation sequence again when the user returns to the activity.

As outlined in
“Understanding Android Application and Activity Lifecycles”

 , the destruction and recreation of an activity can be triggered by making a configuration change to the device, such as rotating from portrait to landscape. To see this in action, simply rotate the device while the StateChange
 application is in the foreground. When using the emulator, device rotation may be simulated using the rotation button located in the emulator toolbar. The resulting sequence of method calls in the log should read as follows:

onPause

onStop

onSaveInstanceState

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and restarted.

20.7

 Summary

The old adage that a picture is worth a thousand words holds just as true for examples when learning a new programming paradigm. In this chapter, we have created an example Android application for the purpose of demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from within an activity.

In the next chapter, we will extend the StateChange
 example project to demonstrate how to save and restore an activity’s dynamic state.

21.

 Saving and Restoring the State of an Android Activity

If the previous few chapters have achieved their objective, it should now be a little clearer as to the importance of saving and restoring the state of a user interface at particular points in the lifetime of an activity.

In this chapter, we will extend the example application created in
“Android Activity State Changes by Example”

 to demonstrate the steps involved in saving and restoring state when an activity is destroyed and recreated by the runtime system.

A key component of saving and restoring dynamic state involves the use of the Android SDK Bundle
 class, a topic that will also be covered in this chapter.

21.1

 Saving Dynamic State

An activity, as we have already learned, is given the opportunity to save dynamic state information via a call from the runtime system to the activity’s implementation of the onSaveInstanceState()
 method. Passed through as an argument to the method is a reference to a Bundle object into which the method will need to store any dynamic data that needs to be saved. The Bundle object is then stored by the runtime system on behalf of the activity and subsequently passed through as an argument to the activity’s onCreate()
 and onRestoreInstanceState()
 methods if and when they are called. The data can then be retrieved from the Bundle object within these methods and used to restore the state of the activity.

21.2

 Default Saving of User Interface State

In the previous chapter, the diagnostic output from the StateChange
 example application showed that an activity goes through a number of state changes when the device on which it is running is rotated sufficiently to trigger an orientation change.

Launch the StateChange
 application once again, this time entering some text into the EditText field prior to performing the device rotation (on devices or emulators running Android 9 it may be necessary to tap the rotation button in the located in the status bar to complete the rotation). Having rotated the device, the following state change sequence should appear in the Logcat window:

onPause

onStop

onSaveInstanceState

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly this has resulted in the activity being destroyed and re-created. A review of the user interface of the running application, however, should show that the text entered into the EditText field has been preserved. Given that the activity was destroyed and recreated, and that we did not add any specific code to make sure the text was saved and restored, this behavior requires some explanation.

In actual fact most of the view widgets included with the Android SDK already implement the behavior necessary to automatically save and restore state when an activity is restarted. The only requirement to enable this behavior is for the onSaveInstanceState()
 and onRestoreInstanceState()
 override methods in the activity to include calls to the equivalent methods of the super class:

override fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 Log.i(TAG, "onSaveInstanceState")

}

override fun onRestoreInstanceState(savedInstanceState: Bundle?) {

 super.onRestoreInstanceState(savedInstanceState)

 Log.i(TAG, "onRestoreInstanceState")

}

The automatic saving of state for a user interface view can be disabled in the XML layout file by setting the android:saveEnabled
 property to false
 . For the purposes of an example, we will disable the automatic state saving mechanism for the EditText view in the user interface layout and then add code to the application to manually save and restore the state of the view.

To configure the EditText view such that state will not be saved and restored in the event that the activity is restarted, edit the content_state_change.xml
 file so that the entry for the view reads as follows (note that the XML can be edited directly by clicking on the Text
 tab on the bottom edge of the Layout Editor panel):

<EditText

 android:id="@+id/editText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="text"

 android:saveEnabled="false"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

After making the change, run the application, enter text and rotate the device to verify that the text is no longer saved and restored before proceeding.

21.3

 The Bundle Class

For situations where state needs to be saved beyond the default functionality provided by the user interface view components, the Bundle class provides a container for storing data using a key-value pair
 mechanism. The keys
 take the form of string values, while the values
 associated with those keys
 can be in the form of a primitive value or any object that implements the Android Parcelable
 interface. A wide range of classes already implements the Parcelable interface. Custom classes may be made “parcelable” by implementing the set of methods defined in the Parcelable interface, details of which can be found in the Android documentation at:

https://developer.android.com/reference/android/os/Parcelable.html

The Bundle class also contains a set of methods that can be used to get and set key-value pairs for a variety of data types including both primitive types (including Boolean, char, double and float values) and objects (such as Strings and CharSequence
 s).

For the purposes of this example, and having disabled the automatic saving of text for the EditText view, we need to make sure that the text entered into the EditText field by the user is saved into the Bundle object and subsequently restored. This will serve as a demonstration of how to manually save and restore state within an Android application and will be achieved using the putCharSequence()
 and getCharSequence()
 methods of the Bundle class respectively.

21.4

 Saving the State

The first step in extending the StateChange
 application is to make sure that the text entered by the user is extracted from the EditText component within the onSaveInstanceState()
 method of the StateChangeActivity
 activity, and then saved as a key-value pair into the Bundle object.

In order to extract the text from the EditText object we first need to identify that object in the user interface. Clearly, this involves bridging the gap between the Kotlin code for the activity (contained in the StateChangeActivity.
 kt
 source code file) and the XML representation of the user interface (contained within the content_state_change.xml
 resource file). In order to extract the text entered into the EditText component we need to gain access to that user interface object.

Each component within a user interface has associated with it a unique identifier. By default, the Layout Editor tool constructs the ID for a newly added component from the object type. If more than one view of the same type is contained in the layout the type name is followed by a sequential number (though this can, and should, be changed to something more meaningful by the developer). As can be seen by checking the Component Tree
 panel within the Android Studio main window when the content_state_change.xml
 file is selected and the Layout Editor tool displayed, the EditText component has been assigned the ID editText
 :

[image:]

Figure 21-1

As outlined in the chapter entitled
“The Anatomy of an Android Application”

 , all of the resources that make up an application are compiled into a class named R.
 Amongst those resources are those that define layouts, including the layout for our current activity. Within the R class is a subclass named layout
 , which contains the layout resources, and within that subclass is our content_state_change
 layout. With this knowledge, we can make a call to the findViewById()
 method of our activity object to get a reference to the editText object as follows:

val textBox: EditText = findViewById(R.id.editText)

When developing Android apps in Kotlin there is actually an easier way to access the views in a user interface layout without having to use the findViewbyId()
 method. Simply by importing the Kotlin synthetic properties for the layout, it is possible to directly access views by id. In this case, the activity class file would include the following import statement:

import kotlinx.android.synthetic.main.content_state_change.*

Having either obtained a reference to the EditText object and assigned it to a variable,
 or imported the synthetic properties, we can now obtain the text that it contains via the object’s text property, which, in turn, returns the current text:

val userText = textBox.text

Finally, we can save the text using the Bundle object’s putCharSequence()
 method, passing through the key (this can be any string value but in this instance, we will declare it as “savedText”) and the userText
 object as arguments:

outState?.putCharSequence("savedText", userText)

Bringing this all together gives us a modified onSaveInstanceState()
 method in the StateChangeActivity.
 kt
 file that reads as follows:

.

.

import kotlinx.android.synthetic.main.content_state_change.*

class StateChangeActivity : AppCompatActivity() {

.

.

 override fun onSaveInstanceState(outState: Bundle?) {

 super.onSaveInstanceState(outState)

 Log.i(TAG, "onSaveInstanceState")

 val userText = editText.text

 outState?.putCharSequence("savedText", userText)

 }

.

.

Now that steps have been taken to save the state, the next phase is to ensure that it is restored when needed.

21.5

 Restoring the State

The saved dynamic state can be restored in those lifecycle methods that are passed the Bundle object as an argument. This leaves the developer with the choice of using either onCreate()
 or onRestoreInstanceState().
 The method to use will depend on the nature of the activity. In instances where state is best restored after the activity’s initialization tasks have been performed, the onRestoreInstanceState()
 method is generally more suitable. For the purposes of this example we will add code to the onRestoreInstanceState()
 method to extract the saved state from the Bundle using the “savedText” key. We can then display the text on the editText component using the object’s setText()

 method:

override fun onRestoreInstanceState(savedInstanceState: Bundle?) {

 super.onRestoreInstanceState(savedInstanceState)

 Log.i(TAG, "onRestoreInstanceState")

 val userText = savedInstanceState?.getCharSequence("savedText")

 editText.setText(userText)

}

21.6

 Testing the Application

All that remains is once again to build and run the StateChange
 application. Once running and in the foreground, touch the EditText component and enter some text before rotating the device to another orientation. Whereas the text changes were previously lost, the new text is retained within the editText component thanks to the code we have added to the activity in this chapter.

Having verified that the code performs as expected, comment out the super.onSaveInstanceState()
 and super.onRestoreInstanceState()
 calls from the two methods, re-launch the app and note that the text is still preserved after a device rotation. The default save and restoration system has essentially been replaced by a custom implementation, thereby providing a way to dynamically and selectively save and restore state within an activity.

21.7

 Summary

The saving and restoration of dynamic state in an Android application is simply a matter of implementing the appropriate code in the appropriate lifecycle methods. For most user interface views, this is handled automatically by the Activity super class. In other instances, this typically consists of extracting values and settings within the onSaveInstanceState()
 method and saving the data as key-value pairs within the Bundle object passed through to the activity by the runtime system.

State can be restored in either the onCreate()
 or the onRestoreInstanceState()
 methods of the activity by extracting values from the Bundle object and updating the activity based on the stored values.

In this chapter, we have used these techniques to update the StateChange
 project so that the Activity retains changes through the destruction and subsequent recreation of an activity.

22.

 Understanding Android Views
 , View Groups
 and Layouts

With the possible exception of listening to streaming audio, a user’s interaction with an Android device is primarily visual and tactile in nature. All of this interaction takes place through the user interfaces of the applications installed on the device, including both the built-in applications and any third party applications installed by the user. It should come as no surprise, therefore, that a key element of developing Android applications involves the design and creation of user interfaces.

Within this chapter, the topic of Android user interface structure will be covered, together with an overview of the different elements that can be brought together to make up a user interface; namely Views, View Groups and Layouts.

22.1

 Designing for Different Android Devices

The term “Android device” covers a vast array of tablet and smartphone products with different screen sizes and resolutions. As a result, application user interfaces must now be carefully designed to ensure correct presentation on as wide a range of display sizes as possible. A key part of this is ensuring that the user interface layouts resize correctly when run on different devices. This can largely be achieved through careful planning and the use of the layout managers outlined in this chapter.

It is also important to keep in mind that the majority of Android based smartphones and tablets can be held by the user in both portrait and landscape orientations. A well-designed user interface should be able to adapt to such changes and make sensible layout adjustments to utilize the available screen space in each orientation.

22.2

 Views
 and View Groups

Every item in a user interface is a subclass of the Android View
 class (to be precise android.view.View
). The Android SDK provides a set of pre-built views that can be used to construct a user interface. Typical examples include standard items such as the Button, CheckBox
 , ProgressBar
 and TextView classes. Such views are also referred to as widgets
 or components.
 For requirements that are not met by the widgets supplied with the SDK, new views may be created either by subclassing and extending an existing class, or creating an entirely new component by building directly on top of the View class.

A view can also be comprised of multiple other views (otherwise known as a composite view
). Such views are subclassed from the Android ViewGroup
 class (android.view.ViewGroup

) which is itself a subclass of View
 . An example of such a view is the RadioGroup, which is intended to contain multiple RadioButton
 objects such that only one can be in the “on” position at any one time. In terms of structure, composite views consist of a single parent view (derived from the ViewGroup class and otherwise known as a container
 view

 or root element

)
 that is capable of containing other views (known as child views
).

Another category of ViewGroup
 based container view is that of the layout manager.

22.3

 Android Layout Managers

In addition to the widget style views discussed in the previous section, the SDK also includes a set of views referred to as layouts
 . Layouts are container views (and, therefore, subclassed from ViewGroup) designed for the sole purpose of controlling how child views are positioned on the screen.

The Android SDK includes the following layout views that may be used within an Android user interface design:

•
 ConstraintLayout
 – Introduced in Android 7, use of this layout manager is recommended for most layout requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts to be quickly and easily created without the necessity to nest other layout types inside each other, resulting in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout Editor tool. Unless otherwise stated, this is the layout of choice for the majority of examples in this book.

•
 LinearLayout

 – Positions child views in a single row or column depending on the orientation selected. A weight
 value can be set on each child to specify how much of the layout space that child should occupy relative to other children.

•
 TableLayout

 – Arranges child views into a grid format of rows and columns. Each row within a table is represented by a TableRow
 object child, which, in turn, contains a view object for each cell.

•
 FrameLayout

 – The purpose of the FrameLayout is to allocate an area of screen, typically for the purposes of displaying a single view. If multiple child views are added they will, by default, appear on top of each other positioned in the top left-hand corner of the layout area. Alternate positioning of individual child views can be achieved by setting gravity values on each child. For example, setting a center_vertical
 gravity value on a child will cause it to be positioned in the vertical center of the containing FrameLayout view.

•
 RelativeLayout

 – The RelativeLayout allows child views to be positioned relative both to each other and the containing layout view through the specification of alignments and margins on child views. For example, child View A
 may be configured to be positioned in the vertical and horizontal center of the containing RelativeLayout view. View B
 , on the other hand, might also be configured to be centered horizontally within the layout view, but positioned 30 pixels above the top edge of View A
 , thereby making the vertical position relative
 to that of View A
 . The RelativeLayout manager can be of particular use when designing a user interface that must work on a variety of screen sizes and orientations.

•
 AbsoluteLayout

 – Allows child views to be positioned at specific X and Y coordinates within the containing layout view. Use of this layout is discouraged since it lacks the flexibility to respond to changes in screen size and orientation.

•
 GridLayout

 – A GridLayout instance is divided by invisible lines that form a grid containing rows and columns of cells. Child views are then placed in cells and may be configured to cover multiple cells both horizontally and vertically allowing a wide range of layout options to be quickly and easily implemented. Gaps between components in a GridLayout may be implemented by placing a special type of view called a Space

 view into adjacent cells, or by setting margin parameters.

•
 CoordinatorLayout

 – Introduced as part of the Android Design Support Library with Android 5.0, the CoordinatorLayout is designed specifically for coordinating the appearance and behavior of the app bar across the top of an application screen with other view elements. When creating a new activity using the Basic Activity template, the parent view in the main layout will be implemented using a CoordinatorLayout instance. This layout manager will be covered in greater detail starting with the chapter entitled
“Working with the Floating Action Button and Snackbar”

 .

When considering the use of layouts in the user interface for an Android application it is worth keeping in mind that, as will be outlined in the next section, these can be nested within each other to create a user interface design of just about any necessary level of complexity.

22.4

 The View Hierarchy

Each view in a user interface represents a rectangular area of the display. A view is responsible for what is drawn in that rectangle and for responding to events that occur within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view

 positioned at the top of the tree and child views positioned on branches below. The child of a container view appears on top of its parent view
 and is constrained to appear within the bounds of the parent view’s display area. Consider, for example, the user interface illu
 strated in Figure 22-1
 :

[image:]

Figure 22-1

In addition to the visible button and checkbox views, the user interface actually includes a number of layout views that control how the visible views are positioned. Figure 22-2
 shows an alternative view of the user interface, this time highlighting the presence of the layout views in relation
 to the child views:

[image:]

Figure 22-2

As was previously discussed, user interfaces are constructed in the form of a view hierarchy with a root view at the top. This being the case, we can also visualize the above user interface example in the form of the view tree illust
 rated in Figure 22-3
 :

[image:]

Figure 22-3

The view hierarchy diagram gives probably the clearest overview of the relationship between the various views that make up the user interface shown in Figure 22-1
 . When a user interface is displayed to the user, the Android runtime walks the view hierarchy, starting at the root view and working down the tree as it renders each view.

22.5

 Creating User Interfaces

With a clearer understanding of the concepts of views, layouts and the view hierarchy, the following few chapters will focus on the steps involved in creating user interfaces for Android activities. In fact, there are three different approaches to user interface design: using the Android Studio Layout Editor tool, handwriting XML layout resource files or writing Kotlin code, each of which will be covered.

22.6

 Summary

Each element within a user interface screen of an Android application is a view that is ultimately subclassed from the android.view.View

 class. Each view represents a rectangular area of the device display and is responsible both for what appears in that rectangle and for handling events that take place within the view’s bounds. Multiple views may be combined to create a single composite view
 . The views within a composite view are children of a container view
 which is generally a subclass of android.view.ViewGroup

 (which is itself a subclass of android.view.View
). A user interface is comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to create a user interface. These include basic components such as text fields and buttons, in addition to a range of layout managers that can be used to control the positioning of child views. In the event that the supplied views do not meet a specific requirement, custom views may be created, either by extending or combining existing views, or by subclassing android.view.View
 and creating an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor tool, handwriting XML layout resource files or by writing Kotlin code. Each of these approaches will be covered in the chapters that follow.

23.

 A Guide to the Android Studio Layout Editor Tool

It is difficult to think of an Android application concept that does not require some form of user interface. Most Android devices come equipped with a touch screen and keyboard (either virtual or physical) and taps and swipes are the primary form of interaction between the user and application. Invariably these interactions take place through the application’s user interface.

A well designed and implemented user interface, an important factor in creating a successful and popular Android application, can vary from simple to extremely complex, depending on the design requirements of the individual application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly simplifies the task of designing and implementing Android user interfaces.

23.1

 Basic vs. Empty Activity Templates

 As outlined in the chapter entitled
“The Anatomy of an Android Application”

 , Android applications are made up of one or more activities. An activity is a standalone module of application functionality that usually correlates directly to a single user interface screen. As such, when working with the Android Studio Layout Editor we are invariably working on the layout for an activity.

When creating a new Android Studio project, a number of different templates are available to be used as the starting point for the user interface of the main activity. The most basic of these templates are the Basic Activity and Empty Activity templates. Although these seem similar at first glance, there are actually considerable differences between the two options.

The Empty Activity template creates a single layout file consisting of a ConstraintLayout manager instance containing a TextView object as shown in Figure 23-1
 :

 [image:]

Figure 23-1

The Basic Activity, on the other hand, consists of two layout files. The top level layout file has a CoordinatorLayout as the root view, a configurable app bar, a menu preconfigured with a single menu item (A in Figure 23-2
), a floating action button
 (B) and a reference to the second layout file in which the layout for the content area of the activity user interface is declared:

 [image:]

Figure 23-2

Clearly the Empty Activity template is useful if you need neither a floating action button nor a menu in your activity and do not need the special app bar behavior provided by the CoordinatorLayout such as options to make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in the chapter entitled
“Working with the AppBar and Collapsing Toolbar Layouts”

). The Basic Activity is useful, however, in that it provides these elements by default. In fact, it is often quicker to create a new activity using the Basic Activity template and delete the elements you do not require than to use the Empty Activity template and manually implement behavior such as collapsing toolbars, a menu or floating action button.

Since not all of the examples in this book require the features of the Basic Activity template, however, most of the examples in this chapter will use the Empty Activity template unless the example requires one or other of the features provided by the Basic Activity template.

For future reference, if you need a menu but not a floating action button
 , use the Basic Activity and follow these steps to delete the floating action button:

1.
 Double-click on the main activity
 layout file located in the Project tool window under app -> res -> layout
 to load it into the Layout Editor. This will be the layout file prefixed with activity_
 and not the content file prefixed with content_
 .

2.
 With the layout loaded into the Layout Editor tool, select the floating action button and tap the keyboard Delete
 key to remove the object from the layout.

3.
 Locate and edit the Kotlin code for the activity (located under app -> java -> <package name> -> <activity class name>
 and remove the floating action button code from the onCreate method as follows:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_state_change)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

}

If you need a floating action button but no menu, use the Basic Activity template and follow these steps:

1.
 Edit the activity class file and delete the onCreateOptionsMenu
 and onOptionsItemSelected
 methods.

2.
 Select the res -> menu
 item in the Project tool window and tap the keyboard Delete
 key to remove the folder and corresponding menu resource files from the project.

23.2

 The Android Studio Layout Editor

As has been demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you get” (WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas representing the display of an Android device. Once a view has been placed on the canvas, it can be moved, deleted and resized (subject to the constraints of the parent view). Further, a wide variety of properties relating to the selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool actually constructs an XML resource file containing the definition of the user interface that is being designed. As such, the Layout Editor tool operates in two distinct modes referred to as Design mode
 and Text mode
 .

23.3

 Design Mode

In design mode, the user interface can be visually manipulated by directly working with the view palette and the graphical representation of the layout. Figure 23-3
 highlights the key areas of the Android Studio Layout Editor tool in design mode
 :

[image:]

Figure 23-3

A – Palette

 – The palette provides access to the range of view components provided by the Android SDK. These are grouped into categories for easy navigation. Items may be added to the layout by dragging a view component from the palette and dropping it at the desired position on the layout.

B – Device Screen

 – The device screen provides a visual “what you see is what you get” representation of the user interface layout as it is being designed. This layout allows for direct manipulation of the design in terms of allowing views to be selected, deleted, moved and resized. The device model represented by the layout can be changed at any time using a menu located in the toolbar.

C – Component Tree
 –
 As outlined in the previous chapter (
“Understanding Android Views, View Groups and Layouts”

) user interfaces are constructed using a hierarchical structure. The component tree provides a visual overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will select that view in the component tree hierarchy.

D – Attributes

 – All of the component views listed in the palette have associated with them a set of attributes that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides access to the attributes of the currently selected view in the layout allowing changes to be made.

E – Toolbar

 – The Layout Editor toolbar provides quick access to a wide range of options including, amongst other options, the ability to zoom in and out of the device screen layout, change the device model currently displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level. The toolbar also has a set of context sensitive buttons which will appear when relevant view types are selected in the device screen layout.

F – Mode Switching Tabs
 – The tabs located along the lower edge of the Layout Editor provide a way to switch back and forth between the Layout Editor tool’s text and design modes.

23.4

 The Palette

The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view components for addition to a layout design. The category panel (marked A in Figure 23-4
) lists the different categories of view components supported by the Android SDK. When a category is selected from the list, the second panel (B) updates to display a list of the components that fall into that cate
 gory:

[image:]

Figure 23-4

To add a component from the palette onto the layout canvas, simply select the item either from the component list or the preview panel, drag it to the desired location on the canvas and drop it into place.

A search for a specific component within the currently selected category may be initiated by clicking on the search button (marked C in Figure 23-4
 above) in the palette toolbar and typing in the component name. As characters are typed, matching results will appear in real-time within the component list panel. If you are unsure of the category in which the component resides, simply select the All category either before or during the search operation.

23.5

 Design and Layout Views

When the Layout Editor tool is in Design mode, the layout can be viewed in two different ways. The view shown in Figure 23-3
 above is the Design view and shows the layout and widgets as they will appear in the running app. A second mode, referred to as Layout or Blueprint view can be shown either instead of, or concurrently with the Design view. The toolbar menu shown in Figure 23-5
 provides options to display the Design, Blueprint, or both views. A fourth option, Force Refresh Layout
 , causes the layout to rebuild and redraw. This can be useful when the layout enters an unexpected state or is not accurately reflecting the current design settin
 gs:

[image:]

Figure 23-5

Whether to display the layout view, design view or both is a matter of personal preference. A good approach is to begin with both displayed as shown in Figure 23-6
 :

[image:]

Figure 23-6

23.6

 Text Mode

It is important to keep in mind when using the Android Studio Layout Editor tool that all it is really doing is providing a user friendly approach to creating XML layout resource files. At any time during the design process, the underlying XML can be viewed and directly edited simply by clicking on the Text
 tab located at the bottom of the Layout Editor tool panel. To return to design mode, simply click on the Design
 tab.

Figure 23-7
 highlights the key areas of the Android Studio Layout Editor tool in text mod

 e:

[image:]

Figure 23-7

A – Editor
 – The editor panel displays the XML that makes up the current user interface layout design. This is the full Android Studio editor environment containing all of the features previously outlined in the
“The Basics of the Android Studio Code Editor”

 chapter of this book.

B – Preview
 – As changes are made to the XML in the editor, these changes are visually reflected in the preview window. This provides instant visual feedback on the XML changes as they are made in the editor, thereby avoiding the need to switch back and forth between text and design mode to see changes. The preview also allows direct manipulation and design of the layout just as if the layout were in Design mode, with visual changes being reflected in the editor panel in real-time. As with Design mode, both the Design and Layout views may be displayed using the toolbar buttons highlighted in Figure 23-5
 above.

C – Toolbar
 – The toolbar in text mode provides access to the same functions available in design mode.

D - Mode Switching Tabs
 – The tabs located along the lower edge of the Layout Editor provide a way to switch back and forth between the Layout Editor tool’s Text and Design modes.

23.7

 Setting Attributes

The Attributes panel provides access to all of the available settings for the currently selected component. By default, the attributes panel shows the most commonly changed attributes for the currently selected component in the layout. Figure 23-8
 , for example, shows this subset of attributes for the TextView widge
 t:

[image:]

Figure 23-8

To access all of the attributes for the currently selected widget, click on the button highlighted in Figure 23-9
 , or use the View all attributes
 link at the bottom of the attributes panel
 :

[image:]

Figure 23-9

A search for a specific attribute may also be performed by selecting the search button in the toolbar of the attributes tool window and typing in the attribute name. Select the View all attributes
 button or link either before or during a search to ensure that all of the attributes for the currently selected component are included in the results.

Some attributes contain a button displaying three dots. This indicates that a settings dialog is available to assist in selecting a suitable property value. To display the dialog, simply click on the button. Attributes for which a finite number of valid options are available will present a drop down menu (Figure 23-10
) from which a selection may be made.

[image:]

Figure 23-10

23.8

 Configuring Favorite Attributes

 The attributes included on the initial subset attribute list may be extended by configuring favorite attributes
 . To add an attribute to the favorites list, display all the attributes for the currently selected component and hover the mouse pointer so that it is positioned to the far left of the attribute entry within the attributes tool window. A star icon will appear to the left of the attribute name which, when clicked, will add the property to the favorites list. Figure 23-11
 , for example, shows the autoText, background and backgroundTint attributes for a TextView widget configured as favorite attributes:

[image:]

Figure 23-11

Once added as favorites, the attributes will be listed beneath the Favorite Attributes
 section in the subject attributes list:

[image:]

Figure 23-12

23.9

 Converting Views

Changing a view in a layout from one type to another (such as converting a TextView to an EditText) can be performed easily within the Android Studio layout editor simply by right-clicking on the view either within the screen layout or Component tree window and selecting the Convert view...
 menu option (Figure 23-13
):

[image:]

Figure 23-13

Once selected, a dialog will appear containing a list of compatible view types to which the selected object is eligible for conversion. Figure 23-14
 , for example shows the types to which an existing TextView view may be converted:

[image:]

Figure 23-14

This technique is also useful for converting layouts from one type to another (for example converting a ConstraintLayout to a LinearLayout).

23.10

 Displaying

 Sample Data

When designing layouts in Android Studio situations will arise where the content to be displayed within the user interface will not be available until the app is completed and running. This can sometimes make it difficult to assess from within the layout editor how the layout will appear at app runtime. To address this issue, the layout editor allows sample data to be specified that will populate views within the layout editor with sample images and data. This sample data only appears within the layout editor and is not displayed when the app runs. Sample data may be configured either by directly editing the XML for the layout, or visually using the design-time helper button which appears when the mouse pointer hovers over a selected view in a layout as highlighted in Figure 23-15
 :

[image:]

Figure 23-15

The design-time helper panel will display a range of preconfigured options for sample data to be displayed on the selected view item including combinations of text and images in a variety of configurations. Figure 23-16
 , for example, shows the sample data options displayed when selecting sample data to appear in a RecyclerView list:

[image:]

Figure 23-16

Alternatively, custom text and images may be provided for display during the layout design process. An example of using sample data within the layout editor is included in a later chapter entitled
“A Layout Editor Sample Data Tutorial”

 .

23.11

 Creating a Custom Device Definition

The device menu in the Layout Editor toolbar (Figure 23-17
) provides a list of preconfigured device types which, when selected, will appear as the device screen canvas. In addition to the pre-configured device types, any AVD instances that have previously been configured within the Android Studio environment will also be listed within the menu. To add additional device configurations, display the device menu, select the Add Device Definition…
 option and follow the steps outlined in the chapter entitled
“Creating an Android Virtual Device (AVD) in Android Studio”

 .

 [image:]

Figure 23-17

23.12

 Changing the Current Device

As an alternative to the device selection menu, the current device format may be changed by selecting the Custom
 option from the device menu, clicking on the resize handle located next to the bottom right-hand corner of the device screen (Figure 23-18
) and dragging to select an alternate device display format. As the screen resizes, markers will appear indicating the various size options and orientations available for selection:

[image:]

Figure 23-18

23.13

 Summary

A key part of developing Android applications involves the creation of the user interface. Within the Android Studio environment, this is performed using the Layout Editor tool which operates in two modes. In design mode, view components are selected from a palette and positioned on a layout representing an Android device screen and configured using a list of attributes. In text mode, the underlying XML that represents the user interface layout can be directly edited, with changes reflected in a preview screen. These modes combine to provide an extensive and intuitive user interface design environment.

24.

 A Guide to the Android ConstraintLayout

As discussed in the chapter entitled
“Understanding Android Views, View Groups and Layouts”

 , Android provides a number of layout managers for the purpose of designing user interfaces. With Android 7, Google introduced a new layout that is intended to address many of the shortcomings of the older layout managers. This new layout, called ConstraintLayout, combines a simple, expressive and flexible layout system with powerful features built into the Android Studio Layout Editor tool to ease the creation of responsive user interface layouts that adapt automatically to different screen sizes and changes in device orientation.

This chapter will outline the basic concepts of ConstraintLayout while the next chapter will provide a detailed overview of how constraint-based layouts can be created using ConstraintLayout within the Android Studio Layout Editor tool.

24.1

 How ConstraintLayout Works

In common with all other layouts, ConstraintLayout is responsible for managing the positioning and sizing behavior of the visual components (also referred to as widgets) it contains. It does this based on the constraint connections that are set on each child widget.

In order to fully understand and use ConstraintLayout, it is important to gain an appreciation of the following key concepts:

•
 Constraints

•
 Margins

•
 Opposing Constraints

•
 Constraint Bias

•
 Chains

•
 Chain Styles

•
 Barriers

24.1.1

 Constraints

Constraints are essentially sets of rules that dictate the way in which a widget is aligned and distanced in relation to other widgets, the sides of the containing ConstraintLayout and special elements called guidelines
 . Constraints also dictate how the user interface layout of an activity will respond to changes in device orientation, or when displayed on devices of differing screen sizes. In order to be adequately configured, a widget must have sufficient constraint connections such that it’s position can be resolved by the ConstraintLayout layout engine in both the horizontal and vertical planes.

24.1.2

 Margins

A margin is a form of constraint that specifies a fixed distance. Consider a Button object that needs to be positioned near the top right-hand corner of the device screen. This might be achieved by implementing margin constraints from the top and right-hand edges of the Button connected to the corresponding sides of the parent ConstraintLayout as illustrated in Figure 24-1
 :

 [image:]

Figure 24-1

As indicated in the above diagram, each of these constraint connections has associated with it a margin value dictating the fixed distances of the widget from two sides of the parent layout. Under this configuration, regardless of screen size or the device orientation, the Button object will always be positioned 20 and 15 device-independent pixels (dp) from the top and right-hand edges of the parent ConstraintLayout respectively as specified by the two constraint connections.

While the above configuration will be acceptable for some situations, it does not provide any flexibility in terms of allowing the ConstraintLayout layout engine to adapt the position of the widget in order to respond to device rotation and to support screens of different sizes. To add this responsiveness to the layout it is necessary to implement opposing constraints.

24.1.3

 Opposing Constraints

Two constraints operating along the same axis on a single widget are referred to as opposing constraints
 . In other words, a widget with constraints on both its left and right-hand sides is considered to have horizontally opposing constraints. Figure 24-2
 , for example, illustrates the addition of both horizontally and vertically opposing constraints to the previous layout:

 [image:]

Figure 24-2

The key point to understand here is that once opposing constraints are implemented on a particular axis, the positioning of the widget becomes percentage rather than coordinate based. Instead of being fixed at 20dp from the top of the layout, for example, the widget is now positioned at a point 30% from the top of the layout. In different orientations and when running on larger or smaller screens, the Button will always be in the same location relative to the dimensions of the parent layout.

It is now important to understand that the layout outlined in Figure 24-2
 has been implemented using not only opposing constraints, but also by applying constraint bias
 .

24.1.4

 Constraint Bias

It has now been established that a widget in a ConstraintLayout can potentially be subject to opposing constraint connections. By default, opposing constraints are equal, resulting in the corresponding widget being centered along the axis of opposition. Figure 24-3
 , for example, shows a widget centered within the containing ConstraintLayout using opposing horizontal and vertical constraints:

[image:]

Figure 24-3

To allow for the adjustment of widget position in the case of opposing constraints, the ConstraintLayout implements a feature known as constraint bias
 . Constraint bias allows the positioning of a widget along the axis of opposition to be biased by a specified percentage in favor of one constraint. Figure 24-4
 , for example, shows the previous constraint layout with a 75% horizontal bias and 10% vertical bias:

 [image:]

Figure 24-4

The next chapter, entitled
“A Guide to using ConstraintLayout in Android Studio”

 , will cover these concepts in greater detail and explain how these features have been integrated into the Android Studio Layout Editor tool. In the meantime, however, a few more areas of the ConstraintLayout class need to be covered.

24.1.5

 Chains

 ConstraintLayout chains provide a way for the layout behavior of two or more widgets to be defined as a group. Chains can be declared in either the vertical or horizontal axis and configured to define how the widgets in the chain are spaced and sized.

Widgets are chained when connected together by bi-directional constraints. Figure 24-5
 , for example, illustrates three widgets chained in this way:

[image:]

Figure 24-5

The first element in the chain is the

 chain head
 which translates to the top widget in a vertical chain or, in the case of a horizontal chain, the left-most widget. The layout behavior of the entire chain is primarily configured by setting attributes on the chain head widget.

24.1.6

 Chain Styles

 The layout behavior of a ConstraintLayout chain is dictated by the chain style
 setting applied to the chain head widget. The ConstraintLayout class currently supports the following chain layout styles:

•
 Spread Chain
 –

 The widgets contained within the chain are distributed evenly across the available space. This is the default behavior for chains.

[image:]

Figure 24-6

•
 Spread Inside Chain
 –

 The widgets contained within the chain are spread evenly between the chain head and the last widget in the chain. The head and last widgets are not included in the distribution of spacing.

[image:]

Figure 24-7

•
 Weighted Chain
 –

 Allows the space taken up by each widget in the chain to be defined via weighting properties.

[image:]

Figure 24-8

•
 Packed Chain
 –

 The widgets that make up the chain are packed together without any spacing. A bias may be applied to control the horizontal or vertical positioning of the chain in relation to the parent container.

[image:]

Figure 24-9

24.2

 Baseline Alignment

So far, this chapter has only referred to constraints that dictate alignment relative to the sides of a widget (typically referred to as side constraints). A common requirement, however, is for a widget to be aligned relative to the content that it displays rather than the boundaries of the widget itself. To address this need, ConstraintLayout provides baseline alignment
 support.

As an example, assume that the previous theoretical layout from Figure 24-1
 requires a TextView widget to be positioned 40dp to the left of the Button. In this case, the TextView needs to be baseline aligned
 with the Button view. This means that the text within the Button needs to be vertically aligned with the text within the TextView. The additional constraints for this layout would need to be connected as illustrated in Figure 24-10
 :

[image:]

Figure 24-10

The TextView is now aligned vertically along the baseline of the Button and positioned 40dp horizontally from the Button object’s left-hand edge.

24.3

 Working with Guidelines

Guidelines are special elements available within the ConstraintLayout
 that provide an additional target to which constraints may be connected. Multiple guidelines may be added to a ConstraintLayout instance which may, in turn, be configured in horizontal or vertical orientations. Once added, constraint connections may be established from widgets in the layout to the guidelines. This is particularly useful when multiple widgets need to be aligned along an axis. In Figure 24-11
 , for example, three Button objects contained within a ConstraintLayout are constrained along a vertical g
 uideline:

[image:]

Figure 24-11

24.4

 Configuring Widget Dimensions

 Controlling the dimensions of a widget is a key element of the user interface design process. The ConstraintLayout provides three options which can be set on individual widgets to manage sizing behavior. These settings are configured individually for height and width dimensions:

•
 Fixed
 – The widget is fixed to specified dimensions.

•
 Match Constraint
 –Allows the widget to be resized by the layout engine to satisfy the prevailing constraints. Also referred to as the AnySize
 or MATCH_CONSTRAINT option.

•
 Wrap Content
 – The size of the widget is dictated by the content it contains (i.e. text or graphics).

24.5

 Working with Barriers

 Rather like guidelines, barriers are virtual views that can be used to constrain views within a layout. As with guidelines, a barrier can be vertical or horizontal and one or more views may be constrained to it (to avoid confusion, these will be referred to as
 constrained views
). Unlike guidelines where the guideline remains at a fixed position within the layout, however, the position of a barrier is defined by a set of so called reference views
 . Barriers were introduced to address an issue that occurs with some frequency involving overlapping views. Consider, for example, the layout illustrated in Figure 24-12
 below:

[image:]

Figure 24-12

The key points to note about the above layout is that the width of View 3 is set to match constraint mode, and the left-hand edge of the view is connected to the right hand edge of View 1. As currently implemented, an increase in width of View 1 will have the desired effect of reducing the width of View 3:

[image:]

Figure 24-13

A problem arises, however, if View 2 increases in width instead of View 1:

[image:]

Figure 24-14

Clearly because View 3 is only constrained by View 1, it does not resize to accommodate the increase in width of View 2 causing the views to overlap.

A solution to this problem is to add a vertical barrier and assign Views 1 and 2 as the barrier’s reference views
 so that they control the barrier position. The left-hand edge of View 3 will then be constrained in relation to the barrier, making it a constrained view
 .

Now when either View 1 or View 2 increase in width, the barrier will move to accommodate the widest of the two views, causing the width of View 3 change in relation to the new barrier position:

[image:]

Figure 24-15

When working with barriers there is no limit to the number of reference views and constrained views that can be associated with a single barrier.

24.6

 Ratios

The dimensions of a widget may be defined using ratio settings. A widget could, for example, be constrained using a ratio setting such that, regardless of any resizing behavior, the width is always twice the height dimension.

24.7

 ConstraintLayout Advantages

ConstraintLayout
 provides a level of flexibility that allows many of the features of older layouts to be achieved with a single layout instance where it would previously have been necessary to nest multiple layouts. This has the benefit of avoiding the problems inherent in layout nesting by allowing so called “flat” or “shallow” layout hierarchies to be designed leading both to less complex layouts and improved user interface rendering performance at runtime.

ConstraintLayout was also implemented with a view to addressing the wide range of Android device screen sizes available on the market today. The flexibility of ConstraintLayout makes it easier for user interfaces to be designed that respond and adapt to the device on which the app is running.

Finally, as will be demonstrated in the chapter entitled
“A Guide to using ConstraintLayout in Android Studio”

 , the Android Studio Layout Editor tool has been enhanced specifically for ConstraintLayout-based user interface design.

24.8

 ConstraintLayout
 Availability

Although introduced with Android 7, ConstraintLayout is provided as a separate support library from the main Android SDK and is compatible with older Android versions as far back as API Level 9 (Gingerbread). This allows apps that make use of this new layout to run on devices running much older versions of Android.

24.9

 Summary

ConstraintLayout is a layout manager introduced with Android 7. It is designed to ease the creation of flexible layouts that adapt to the size and orientation of the many Android devices now on the market. ConstraintLayout uses constraints to control the alignment and positioning of widgets in relation to the parent ConstraintLayout instance, guidelines, barriers and the other widgets in the layout. ConstraintLayout is the default layout for newly created Android Studio projects and is the recommended choice when designing user interface layouts. With this simple yet flexible approach to layout management, complex and responsive user interfaces can be implemented with surprising ease.

25.

 A Guide to using ConstraintLayout
 in Android Studio

As mentioned more than once in previous chapters, Google has made significant changes to the Android Studio Layout Editor tool, many of which were made solely to support user interface layout design using ConstraintLayout. Now that the basic concepts of ConstraintLayout have been outlined in the previous chapter, this chapter will explore these concepts in more detail while also outlining the ways in which the Layout Editor tool allows ConstraintLayout-based user interfaces to be designed and implemented.

25.1

 Design and Layout Views

The chapter entitled
“A Guide to the Android Studio Layout Editor Tool”

 explained that the Android Studio Layout Editor tool provides two ways to view the user interface layout of an activity in the form of Design and Layout (also known as blueprint
) views. These views of the layout may be displayed individually or, as in Figure 25-1
 , side by side:

[image:]

Figure 25-1

The Design view (positioned on the left in the above figure) presents a “what you see is what you get” representation of the layout, wherein the layout appears as it will within the running app. The Layout view, on the other hand, displays a blueprint style of view where the widgets are represented by shaded outlines. As can be seen in Figure 25-1
 above, Layout view also displays the constraint connections (in this case opposing constraints used to center a button within the layout). These constraints are also overlaid onto the Design view when a specific widget in the layout is selected or when the mouse pointer hovers over the design area as illustrated in Figure 25-2
 :

[image:]

Figure 25-2

The appearance of constraint connections in both views can be change using the toolbar menu shown in Figure 25-3
 :

[image:]

Figure 25-3

In addition to the two modes of displaying the user interface layout, the Layout Editor tool also provides three different ways of establishing the constraints required for a specific layout design.

25.2

 Autoconnect Mode

Autoconnect, as the name suggests, automatically establishes constraint connections as items are added to the layout. Autoconnect mode may be enabled and disabled using the toolbar button indicated in Figure 25-4
 :

[image:]

Figure 25-4

Autoconnect mode uses algorithms to decide the best constraints to establish based on the position of the widget and the widget’s proximity to both the sides of the parent layout and other elements in the layout. In the event that any of the automatic constraint connections fail to provide the desired behavior, these may be changed manually as outlined later in this chapter.

25.3

 Inference Mode

Inference mode uses a heuristic approach involving algorithms and probabilities to automatically implement constraint connections after widgets have already been added to the layout. This mode is usually used when the Autoconnect feature has been turned off and objects have been added to the layout without any constraint connections. This allows the layout to be designed simply by dragging and dropping objects from the palette onto the layout canvas and making size and positioning changes until the layout appears as required. In essence this involves “painting” the layout without worrying about constraints. Inference mode may also be used at any time during the design process to fill in missing constraints within a layout.

Constraints are automatically added to a layout when the Infer constraints
 button (Figure 25-5
) is clicked:

[image:]

Figure 25-5

As with Autoconnect mode, there is always the possibility that the Layout Editor tool will infer incorrect constraints, though these may be modified and corrected manually.

25.4

 Manipulating Constraints Manually

 The third option for implementing constraint connections is to do so manually. When doing so, it will be helpful to understand the various handles that appear around a widget within the Layout Editor tool. Consider, for example, the widget shown in Figure 25-6
 :

[image:]

Figure 25-6

Clearly the spring-like lines (A) represent established constraint connections leading from the sides of the widget to the targets. The small square markers (B) in each corner of the object are resize handles which, when clicked and dragged, serve to resize the widget. The small circle handles (C) located on each side of the widget are the side constraint anchors. To create a constraint connection, click on the handle and drag the resulting line to the element to which the constraint is to be connected (such as a guideline or the side of either the parent layout or another widget) as outlined in Figure 25-7
 . When connecting to the side of another widget, simply drag the line to the side constraint handle of that widget and, when it turns green, release the line.

[image:]

Figure 25-7

An additional marker indicates the anchor point for baseline constraints whereby the content within the widget (as opposed to outside edges) is used as the alignment point. To display this marker, simply click on the button displaying the letters ‘ab’ (referenced by marker D in Figure 25-6
). To establish a constraint connection from a baseline constraint handle, simply hover the mouse pointer over the handle until it begins to flash before clicking and dragging to the target (such as the baseline anchor of another widget as shown in Figure 25-8
). When the destination anchor begins to flash green, release the mouse button to make the constraint connection:

[image:]

Figure 25-8

To hide the baseline anchors, simply click on the baseline button a second time.

25.5

 Adding Constraints in the Inspector

Constraints may also be added to a view within the Android Studio Layout Editor tool using the Inspector
 panel located in the Attributes tool window as shown in Figure 25-9
 . The square in the center represents the currently selected view and the areas around the square the constraints, if any, applied to the corresponding sides of the view:

[image:]

Figure 25-9

The absence of a constraint on a side of the view is represented by a dotted line leading to a blue circle containing a plus sign (as is the case with the bottom edge of the view in the above figure). To add a constraint, simply click on this blue circle and the layout editor will add a constraint connected to what it considers to be the most appropriate target within the layout.

25.6

 Deleting Constraints

 To delete an individual constraint, simply click within the anchor to which it is connected. The constraint will then be deleted from the layout (when hovering over the anchor it will glow red to indicate that clicking will perform a deletion):

[image:]

Figure 25-10

Alternatively, remove all of the constraints on a widget by selecting it and clicking on the Delete All Constraints
 button which appears next to the widget when it is selected in the layout as highlighted in Figure 25-11
 :

[image:]

Figure 25-11

To remove all of the constraints from every widget in a layout, use the toolbar button highlighted in Figure 25-12
 :

[image:]

Figure 25-12

25.7

 Adjusting Constraint Bias

In the previous chapter, the concept of using bias settings to favor one opposing constraint over another was outlined. Bias within the Android Studio Layout Editor tool is adjusted using the Inspector
 located in the Attributes tool window and shown in Figure 25-13
 . The two sliders indicated by the arrows in the figure are used to control the bias of the vertical and horizontal opposing constraints of the currently selected widget.

[image:]

Figure 25-13

25.8

 Understanding ConstraintLayout
 Margins

Constraints can be used in conjunction with margins to implement fixed gaps between a widget and another element (such as another widget, a guideline or the side of the parent layout). Consider, for example, the horizontal constraints applied to the Button object in Figure 25-14
 :

[image:]

Figure 25-14

As currently configured, horizontal constraints run to the left and right edges of the parent ConstraintLayout. As such, the widget has opposing horizontal constraints indicating that the ConstraintLayout layout engine has some discretion in terms of the actual positioning of the widget at runtime. This allows the layout some flexibility to accommodate different screen sizes and device orientation. The horizontal bias setting is also able to control the position of the widget right up to the right-hand side of the layout. Figure 25-15
 , for example, shows the same button with 100% horizontal bias applied:

[image:]

Figure 25-15

ConstraintLayout margins can appear at the end of constraint connections and represent a fixed gap into which the widget cannot be moved even when adjusting bias or in response to layout changes elsewhere in the activity. In Figure 25-16
 , the right-hand constraint now includes a 50dp margin into which the widget cannot be moved even though the bias is still set at 100%.

[image:]

Figure 25-16

Existing margin values on a widget can be modified from within the Inspector. As can be seen in Figure 25-17
 , a dropdown menu is being used to change the right-hand margin on the currently selected widget to 16dp. Alternatively, clicking on the current value also allows a number to be typed into the field.

[image:]

Figure 25-17

The default margin for new constraints can be changed at any time using the option in the toolbar highlighted in Figure 25-18
 :

[image:]

Figure 25-18

25.9

 The Importance of Opposing Constraints
 and Bias

As discussed in the previous chapter, opposing constraints, margins and bias form the cornerstone of responsive layout design in Android when using the ConstraintLayout. When a widget is constrained without opposing constraint connections, those constraints are essentially margin constraints. This is indicated visually within the Layout Editor tool by solid straight lines accompanied by margin measurements as shown in Figure 25-19
 .

[image:]

Figure 25-19

The above constraints essentially fix the widget at that position. The result of this is that if the device is rotated to landscape orientation, the widget will no longer be visible since the vertical constraint pushes it beyond the top edge of the device screen (as is the case in Figure 25-20
). A similar problem will arise if the app is run on a device with a smaller screen than that used during the design process.

[image:]

Figure 25-20

When opposing constraints are implemented, the constraint connection is represented by the spring-like jagged line (the spring metaphor is intended to indicate that the position of the widget is not fixed to absolute X and Y coordinates):

[image:]

Figure 25-21

In the above layout, vertical and horizontal bias settings have been configured such that the widget will always be positioned 90% of the distance from the bottom and 35% from the left-hand edge of the parent layout. When rotated, therefore, the widget is still visible and positioned in the same location relative to the dimensions of the screen:

[image:]

Figure 25-22

When designing a responsive and adaptable user interface layout, it is important to take into consideration both bias and opposing constraints when manually designing a user interface layout and making corrections to automatically created constraints.

25.10

 Configuring Widget Dimensions

The inner dimensions of a widget within a ConstraintLayout
 can also be configured using the Inspector. As outlined in the previous chapter, widget dimensions can be set to wrap content, fixed or match constraint modes. The prevailing settings for each dimension on the currently selected widget are shown within the square representing the widget in the Inspector as illustrated in Figure 25-23
 :

[image:]

Figure 25-23

 In the above figure, both the horizontal and vertical dimensions are set to wrap content mode (indicated by the inward pointing chevrons). The inspector uses the following visual indicators to represent the three dimension modes:

	
Fixed Size

	
[image:]

	
Match Constraint

	
[image:]

	
Wrap Content

	
[image:]

Table 25-4

To change the current setting, simply click on the indicator to cycle through the three different settings. When the dimension of a view within the layout editor is set to match constraint mode, the corresponding sides of the view are drawn with the spring-like line instead of the usual straight lines. In Figure 25-24
 , for example, only the width of the view has been set to match constraint:

[image:]

Figure 25-24

In addition, the size of a widget can be expanded either horizontally or vertically to the maximum amount allowed by the constraints and other widgets in the layout using the Expand horizontally
 and Expand vertically
 options. These are accessible by right clicking on a widget within the layout and selecting the Organize
 option from the resulting menu (Figure 25-25
). When used, the currently selected widget will increase in size horizontally or vertically to fill the available space around it.

[image:]

Figure 25-25

25.11

 Adding Guidelines

Gu
 idelines
 provide additional elements to which constraints may be anchored. Guidelines are added by right-clicking on the layout and selecting either the Add Vertical Guideline
 or Add Horizontal Guideline
 menu option or using the toolbar menu options as shown in Figure 25-26
 :

[image:]

Figure 25-26

Once added, a guideline will appear as a dashed line in the layout and may be moved simply by clicking and dragging the line. To establish a constraint connection to a guideline, click in the constraint handler of a widget and drag to the guideline before releasing. In Figure 25-27
 , the left sides of two Buttons are connected by constraints to a vertical guideline.

The position of a vertical guideline can be specified as an absolute distance from either the left or the right of the parent layout (or the top or bottom for a horizontal guideline). The vertical guideline in the above figure, for example, is positioned 96dp from the left-hand edge of the parent.

[image:]

Figure 25-27

Alternatively, the guideline may be positioned as a percentage of the overall width or height of the parent layout. To switch between these three modes, select the guideline and click on the circle at the top or start of the guideline (depending on whether the guideline is vertical or horizontal). Figure 25-28
 , for example, shows a guideline positioned based on percentage:

[image:]

Figure 25-28

25.12

 Adding Barriers

Barriers are added by right-clicking on the layout and selecting either the Add Vertical Barrier
 or Add Horizontal Barrier
 option from the Helpers
 menu, or using the toolbar menu options as shown previously in Figure 25-26
 .

Once a barrier has been added to the layout, it will appear as an entry in the Component Tree panel:

[image:]

Figure 25-29

To add views as reference views (in other words, the views that control the position of the barrier), simply drag the widgets from within the Component Tree onto the barrier entry. In Figure 25-30
 , for example, widgets named textView1 and textView2 have been assigned as the reference widgets for barrier1:

[image:]

Figure 25-30

After the reference views have been added, the barrier needs to be configured to specify the direction of the barrier in relation those views. This is the barrier direction
 setting and is defined within the Attributes tool window when the barrier is selected in the Component Tree panel:

[image:]

Figure 25-31

The following figure shows a layout containing a barrier declared with textView1 and textView2 acting as the reference views and textview3 as the constrained view. Since the barrier is pushing from the end of the reference views towards the constrained view, the barrier direction has been set to end
 :

[image:]

Figure 25-32

25.13

 Widget Group Alignment and Distribution

 The Android Studio Layout Editor tool provides a range of alignment and distribution actions that can be performed when two or more widgets are selected in the layout. Simply shift-click on each of the widgets to be included in the action, right-click on the layout and make a selection from the many options displayed in the Align menu:

[image:]

Figure 25-33

As shown in Figure 25-34
 below, these options are also available as buttons in the Layout Editor toolbar:

[image:]

Figure 25-34

Similarly, the Pack menu (Figure 25-35
) can be used to collectively reposition the selected widgets so that they are packed tightly together either vertically or horizontally. It achieves this by changing the absolute x and y coordinates of the widgets but does not apply any constraints. The two distribution options in the Pack menu, on the other hand, move the selected widgets so that they are spaced evenly apart in either vertical or horizontal axis and applies constraints between the views to maintain this spacing.

[image:]

Figure 25-35

25.14

 Converting other Layouts to ConstraintLayout

For existing user interface layouts that make use of one or more of the other Android layout classes (such as RelativeLayout or LinearLayout), the Layout Editor tool provides an option to convert the user interface to use the ConstraintLayout.

When the Layout Editor tool is open and in Design mode, the Component Tree panel is displayed beneath the Palette. To convert a layout to ConstraintLayout, locate it within the Component Tree, right-click on it and select the Convert <current layout> to Constraint Layout
 menu option:

[image:]

Figure 25-36

When this menu option is selected, Android Studio will convert the selected layout to a ConstraintLayout and use inference to establish constraints designed to match the layout behavior of the original layout type.

25.15

 Summary

A redesigned Layout Editor tool combined with ConstraintLayout makes designing complex user interface layouts with Android Studio a relatively fast and intuitive process. This chapter has covered the concepts of constraints, margins and bias in more detail while also exploring the ways in which ConstraintLayout-based design has been integrated into the Layout Editor tool.

26.

 Working with ConstraintLayout Chains and Ratios in Android Studio

T

 he previous chapters have introduced the key features of the ConstraintLayout class and outlined the best practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled
“A Guide to the Android ConstraintLayout”

 , we have not yet addressed how to make use of these features within the Layout Editor. The focus of this chapter, therefore, is to provide practical steps on how to create and manage chains and ratios when using the ConstraintLayout class.

26.1

 Creating a Chain

 Chains may be implemented either by adding a few lines to the XML layout resource file of an activity or by using some chain specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained so as to be positioned in the top-left, top-center and top-right of the ConstraintLayout parent as illustrated in Figure 26-1
 :

[image:]

Figure 26-1

To represent such a layout, the XML resource layout file might contain the following entries for the button widgets:

<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toStartOf="@+id/button3"

 app:layout_constraintStart_toEndOf="@+id/button1"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address this, additional constraints need to be added from the right-hand side of button1 to the left side of button2, and from the left side of button3 to the right side of button2 as follows:

<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintEnd_toStartOf="@+id/button2"
 />

<Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toStartOf="@+id/button3"

 app:layout_constraintStart_toEndOf="@+id/button1"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintStart_toEndOf="@+id/button2"
 />

With these changes, the widgets now have bi-directional horizontal constraints configured. This essentially constitutes a ConstraintLayout chain which is represented visually within the Layout Editor by chain connections as shown in Figure 26-2
 below. Note that in this configuration the chain has defaulted to the spread chain style.

 [image:]

Figure 26-2

A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
 Chain
 or Chains -> Create Vertical Chain
 menu options.

26.2

 Changing the Chain Style

 If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be altered by selecting any of the widgets in the chain and clicking on the Cycle Chain Style button as highlighted in Figure 26-3
 :

 [image:]

Figure 26-3

Each time the chain button is clicked the style will switch to another setting in the order of spread, spread inside and packed.

Alternatively, the style may be specified in the Attributes tool window by clicking on the View all attributes
 link, unfolding the Constraints
 section and changing either the horizontal_chainStyle
 or vertical_chainStyle
 property depending on the orientation of the chain:

[image:]

Figure 26-4

26.3

 Spread Inside Chain Style

 Figure 26-5
 illustrates the effect of changing the chain style to the spread inside
 chain style using the above techniques:

 [image:]

Figure 26-5

26.4

 Packed Chain Style

 Using the same technique, changing the chain style property to packed
 causes the layout to change as shown in Figure 26-6
 :

[image:]

Figure 26-6

26.5

 Packed Chain Style with Bias

 The positioning of the packed chain may be influenced by applying a bias value. The bias can be any value between 0.0 and 1.0, with 0.5 representing the center of the parent. Bias is controlled by selecting the chain head widget and assigning a value to the horizontal_bias

 or vertical_bias

 attribute in the Attributes panel. Figure 26-7
 shows a packed chain with a horizontal bias setting of 0
 .2:

[image:]

Figure 26-7

26.6

 Weighted Chain

 The final area of chains to explore involves weighting of the individual widgets to control how much space each widget in the chain occupies within the available space. A weighted chain may only be implemented using the spread
 chain style and any widget within the chain that is to respond to the weight property must have the corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured for match constraint
 mode. Match constraint mode for a widget dimension may be configured by selecting the widget, displaying the Attributes panel and changing the dimension to match_constraint
 . In Figure 26-8
 , for example, the layout_width
 constraint for button1 has been set to match_constraint
 to indicate that the width of the widget is to be determined based on the prevailing constraint setti
 ngs:

[image:]

Figure 26-8

Assuming that the spread chain style has been selected, and all three buttons have been configured such that the width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available space:

[image:]

Figure 26-9

The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by adding weight properties to the widgets. Figure 26-10
 shows the effect of setting the horizontal_weight
 property to 4 on button1, and to 2 on both button2 and button
 3:

[image:]

Figure 26-10

As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each occupy one quarter (2/8) of the space.

26.7

 Working with Ratios

ConstraintLayout ratios allow one dimension of a widget to be sized relative to the widget’s other dimension (otherwise known as aspect ratio). An aspect ratio setting could, for example, be applied to an ImageView to ensure that its width is always twice its height.

A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode and configuring the layout_constraintDimensionRatio

 attribute on that widget to the required ratio. This ratio value may be specified either as a float value or a width:height
 ratio setting. The following XML excerpt, for example, configures a ratio of 2:1 on an ImageView widget:

<ImageView

 android:layout_width="0dp"

 android:layout_height="100dp"

 android:id="@+id/imageView"

 app:layout_constraintDimensionRatio="2:1"
 />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:

<ImageView

 android:layout_width="0dp"

 android:layout_height="0dp"

 android:id="@+id/imageView"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintDimensionRatio="W,1:3"
 />

In the above example the height will be defined subject to the constraints applied to it. In this case constraints have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the widget to fill the entire height of the parent. The width dimension, on the other hand, has been constrained to be one third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout appears on, the ImageView will always be the same height as the parent and the width one third of that height.

The same results may also be achieved without the need to manually edit the XML resource file. Whenever a widget dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the property panel. Figure 26-11
 , for example, shows the layout width and height attributes of a button widget set to match constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing prev
 iew:

[image:]

Figure 26-11

By default the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays an additional field where the ratio may be changed:

[image:]

Figure 26-12

26.8

 Summary

Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional options for designing flexible and responsive user interface layouts within Android applications. As outlined in this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during the user interface design process.

27.

 An Android Studio Layout Editor ConstraintLayout
 Tutorial

By far the easiest and most productive way to design a user interface for an Android application is to make use of the Android Studio Layout Editor tool. The goal of this chapter is to provide an overview of how to create a ConstraintLayout-based user interface using this approach. The exercise included in this chapter will also be used as an opportunity to outline the creation of an activity starting with a “bare-bones” Android Studio project.

Having covered the use of the Android Studio Layout Editor, the chapter will also introduce the Layout Inspector tool.

27.1

 An Android Studio
 Layout Editor Tool Example

The first step in this phase of the example is to create a new Android Studio project. Begin, therefore, by launching Android Studio and closing any previously opened projects by selecting the File -> Close Project
 menu option. Within the Android Studio welcome screen click on the Start a new Android Studio project
 quick start option to display the first screen of the new project dialog.

Enter LayoutSample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting and enable Kotlin support before clicking on the Next
 button and setting the minimum SDK to API 26: Android 8.0 (Oreo).

In previous examples, we have requested that Android Studio create a template activity for the project. We will, however, be using this tutorial to learn how to create an entirely new activity and corresponding layout resource file manually, so click Next
 once again and make sure that the Add No Activity
 option is selected before clicking on Finish
 to create the new project.

27.2

 Creating a New Activity

Once the project creation process is complete, the Android Studio main window should appear with no tool windows open.

The next step in the project is to create a new activity. This will be a valuable learning exercise since there are many instances in the course of developing Android applications where new activities need to be created from the ground up.

Begin by displaying the Project tool window using the Alt-1/Cmd-1 keyboard shortcut. Once displayed, unfold the hierarchy by clicking on the right facing arrows next to the entries in the Project window. The objective here is to gain access to the app -> java -> com.ebookfrenzy.layoutsample
 folder in the project hierarchy. Once the package name is visible, right-click on it and select the New -> Activity -> Empty Activity
 menu option as illustrated in Figure 27-1
 :

[image:]

Figure 27-1

In the resulting New Activity
 dialog, name the new activity LayoutSampleActivity
 and the layout activity_layout_sample
 . The activity will, of course, need a layout resource file so make sure that the Generate Layout File
 option is enabled.

In order for an application to be able to run on a device it needs to have an activity designated as the launcher activity
 . Without a launcher activity
 , the operating system will not know which activity to start up when the application first launches and the application will fail to start. Since this example only has one activity, it needs to be designated as the launcher activity for the application so make sure that the Launcher Activity
 option is enabled before clicking on the Finish
 button.

At this point Android Studio should have added two files to the project. The Kotlin source code file for the activity should be located in the app -> java -> com.ebookfrenzy.layoutsample
 folder.

In addition, the XML layout file for the user interface should have been created in the app -> res -> layout
 folder. Note that the Empty Activity template was chosen for this activity so the layout is contained entirely within the activity_layout_sample.xml
 file and there is no separate content layout file.

Finally, the new activity should have been added to the AndroidManifest.xml
 file
 and designated as the launcher activity. The manifest file can be found in the project window under the app -> manifests
 folder and should contain the following XML:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.layoutsample">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".LayoutSampleActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

27.3

 Preparing the Layout Editor Environment

Locate and double-click on the activity_layout_sample.xml
 layout file located in the app -> res -> layout
 folder to load it into the Layout Editor tool. Since the purpose of this tutorial is to gain experience with the use of constraints, turn off the Autoconnect feature using the button located in the Layout Editor toolbar. Once disabled, the button will appear with a line through it as is the case in Figure 27-2
 :

[image:]

Figure 27-2

The user interface design will also make use of the ImageView object to display an image. Before proceeding, this image should be added to the project ready for use later in the chapter. This file is named galaxys6.png
 and can be found in the project_icons
 folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

Locate this image in the file system navigator for your operating system and copy the image file. Right-click on the app -> res -> drawable
 entry in the Project tool window and select Paste from the menu to add the file to the folder. When the copy dialog appears, click on OK to accept the default settings.

[image:]

Figure 27-3

27.4

 Adding the Widgets to the User Interface

From within the Common
 palette
 category, drag an ImageView object into the center of the display view. Note that horizontal and vertical dashed lines appear indicating the center axes of the display. When centered, release the mouse button to drop the view into position. Once placed within the layout, the Resources dialog will appear seeking the image to be displayed within the view. In the search bar located at the top of the dialog, enter “galaxy” to locate the galaxys6.png
 resource as illustrated in Figure 27-4
 .

[image:]

Figure 27-4

Select the image and click on OK to assign it to the ImageView object. If necessary, adjust the size of the ImageView using the resize handles and reposition it in the center of the layout. At this point the layout should match Figure 27-5
 :

[image:]

Figure 27-5

Click and drag a TextView object from the Common
 section of the palette and position it so that it appears above the ImageView as illustrated in Figure 27-6
 .

Using the Attributes panel, change the textSize
 property to 24sp, the textAlignment
 setting to center and the text to “Samsung Galaxy S6”.

[image:]

Figure 27-6

Next, add three Button widgets along the bottom of the layout and set the text attributes of these views to “Buy Now”, “Pricing” and “Details”. The completed layout should now match Figure 27-7
 :

 [image:]

Figure 27-7

At this point, the widgets are not sufficiently constrained for the layout engine to be able to position and size the widgets at runtime. Were the app to run now, all of the widgets would be positioned in the top left-hand corner of the display.

With the widgets added to the layout, use the device rotation button located in the Layout Editor toolbar (indicated by the arrow in Figure 27-8
) to view the user interface in landscape orientation:

[image:]

Figure 27-8

The absence of constraints results in a layout that fails to adapt to the change in device orientation, leaving the content off center and with part of the image and all three buttons positioned beyond the viewable area of the screen. Clearly some work still needs to be done to make this into a responsive user interface.

27.5

 Adding the Constraints

Constraints are the key to creating layouts that can adapt to device orientation changes and different screen sizes. Begin by rotating the layout back to portrait orientation and selecting the TextView widget located above the ImageView. With the widget selected, establish constraints from the left, right and top sides of the TextView to the corresponding sides of the parent ConstraintLayout as shown in Figure 27-9
 :

[image:]

Figure 27-9

With the TextView widget constrained, select the ImageView instance and establish opposing constraints on the left and right-hand sides with each connected to the corresponding sides of the parent layout. Next, establish a constraint connection from the top of the ImageView to the bottom of the TextView and from the bottom of the ImageView to the top of the center Button widget. If necessary, click and drag the ImageView so that it is still positioned in the vertical center of the layout.

With the ImageView still selected, use the Inspector in the attributes panel to change the top and bottom margins on the ImageView to 24 and 8 respectively and to change both the widget height and width dimension properties to match_constraint
 so that the widget will resize to match the constraints. These settings will allow the layout engine to enlarge and reduce the size of the ImageView when necessary to accommodate layout changes:

[image:]

Figure 27-10

Figure 27-11
 , shows the currently implemented constraints for the ImageView in relation to the other elements in the layout:

[image:]

Figure 27-11

The final task is to add constraints to the three Button widgets. For this example, the buttons will be placed in a chain. Begin by turning on Autoconnect within the Layout Editor by clicking the toolbar button highlighted in Figure 27-2
 .

Next, click on the Buy Now button and then shift-click on the other two buttons so that all three are selected. Right-click on the Buy Now button and select the Chains -> Create Horizontal Chain
 menu option from the resulting menu. By default, the chain will be displayed using the spread style which is the correct behavior for this example.

Finally, establish a constraint between the bottom of the Buy Now button and the bottom of the layout. Repeat this step for the remaining buttons.

On completion of these steps the buttons should be constrained as outlined in Figure 27-12
 :

[image:]

Figure 27-12

27.6

 Testing the Layout

With the constraints added to the layout, rotate the screen into landscape orientation and verify that the layout adapts to accommodate the new screen dimensions.

While the Layout Editor tool provides a useful visual environment in which to design user interface layouts, when it comes to testing there is no substitute for testing the running app. Launch the app on a physical Android device or emulator session and verify that the user interface reflects the layout created in the Layout Editor. Figure 27-13
 , for example, shows the running app in landscape orientation:

[image:]

Figure 27-13

The very simple user interface design is now complete. Designing a more complex user interface layout is a continuation of the steps outlined above. Simply drag and drop views onto the display, position, constrain and set properties as needed.

27.7

 Using the Layout Inspector

The hierarchy of components that make up a user interface layout may be viewed at any time using the Layout Inspector tool. In order to access this information the app must be running on a device or emulator. Once the app is running, select the Tools -> Layout Inspector
 menu option followed by the process to be inspected.

Once the inspector loads, the left most panel (A) shows the hierarchy of components that make up the user interface layout. The center panel (B) shows a visual representation of the layout design. Clicking on a widget in the visual layout will cause that item to highlight in the hierarchy list making it easy to find where a visual component is situated relative to the overall layout hierarchy.

Finally, the rightmost panel (marked C in Figure 27-14
) contains all of the property settings for the currently selected component, allowing for in-depth analysis of the component’s internal configuration.

[image:]

Figure 27-14

27.8

 Summary

The Layout Editor tool in Android Studio has been tightly integrated with the ConstraintLayout class. This chapter has worked through the creation of an example user interface intended to outline the ways in which a ConstraintLayout-based user interface can be implemented using the Layout Editor tool in terms of adding widgets and setting constraints. This chapter also introduced the Layout Inspector tool which is useful for analyzing the structural composition of a user interface layout.

28.

 Manual XML Layout Design in Android Studio

While the design of layouts using the Android Studio Layout Editor tool greatly improves productivity, it is still possible to create XML layouts by manually editing the underlying XML. This chapter will introduce the basics of the Android XML layout file format.

28.1

 Manually Creating an XML Layout

The structure of an XML layout file is actually quite straightforward and follows the hierarchical approach of the view tree. The first line of an XML resource file should ideally include the following standard declaration:

<?xml version="1.0" encoding="utf-8"?>

This declaration should be followed by the root element of the layout, typically a container view such as a layout manager. This is represented by both opening and closing tags and any properties that need to be set on the view. The following XML, for example, declares a ConstraintLayout view as the root element, assigns the ID activity_main
 and sets match_parent
 attributes
 such that it fills all the available space of the device display:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/activity_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 tools:context=".MainActivity">

</android.support.constraint.ConstraintLayout>

Note that in the above example the layout element is also configured with padding on each side of 16dp (density independent pixels). Any specification of spacing in an Android layout must be specified using one of the following units of measurement:

•
 in

 – Inches.

•
 mm

 – Millimeters.

•
 pt

 – Points (1/72 of an inch).

•
 dp

 – Density-independent pixels
 . An abstract unit of measurement based on the physical density of the device display relative to a 160dpi display baseline.

•
 sp

 – Scale-independent
 pixels. Similar to dp but scaled based on the user’s font preference.

•
 px

 – Actual screen pixels
 . Use is not recommended since different displays will have different pixels per inch. Use dp
 in preference to this unit.

Any children that need to be added to the ConstraintLayout parent must be nested
 within the opening and closing tags. In the following example a Button widget has been added as a child of the ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/activity_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 tools:context=".MainActivity">

 <Button

 android:text="Button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/button" />

</android.support.constraint.ConstraintLayout>

As currently implemented, the button has no constraint connections. At runtime, therefore, the button will appear in the top left-hand corner of the screen (though indented 16dp by the padding assigned to the parent layout). If opposing constraints are added to the sides of the button, however, it will appear centered within the layout:

<Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"
 />

Note that each of the constraints is attached to the element named activity_main
 which is, in this case, the parent ConstraintLayout instance.

To add a second widget to the layout, simply embed it within the body of the ConstraintLayout element. The following modification, for example, adds a TextView widget to the layout:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/activity_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingTop="16dp"

 android:paddingRight="16dp"

 android:paddingBottom="16dp"

 tools:context=".MainActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <TextView

 android:text="TextView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/textView" />

</android.support.constraint.ConstraintLayout>

Once again, the absence of constraints on the newly added TextView will cause it to appear in the top left-hand corner of the layout at runtime. The following modifications add opposing constraints connected to the parent layout to center the widget horizontally, together with a constraint connecting the bottom of the TextView to the top of the button with a margin of 72dp:

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toTopOf="@+id/button"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:layout_marginBottom="72dp" />

Also, note that the Button and TextView views have a number of attributes declared. Both views have been assigned IDs and configured to display text strings represented by string resources named button_string
 and text_string
 respectively. Additionally, the wrap_content

 height and width properties have been declared on both objects so that they are sized to accommodate the content (in this case the text referenced by the string resource value).

Viewed from within the Preview panel of the Layout Editor in Text mode, the above layout will be rendered as shown in Figure 28-1
 :

[image:]

Figure 28-1

28.2

 Manual XML vs. Visual Layout Design

When to write XML manually as opposed to using the Layout Editor tool in design mode is a matter of personal preference. There are, however, advantages to using design mode.

First, design mode will generally be quicker given that it avoids the necessity to type lines of XML. Additionally, design mode avoids the need to learn the intricacies of the various property values of the Android SDK view classes. Rather than continually refer to the Android documentation to find the correct keywords and values, most properties can be located by referring to the Attributes panel.

All the advantages of design mode aside, it is important to keep in mind that the two approaches to user interface design are in no way mutually exclusive. As an application developer, it is quite likely that you will end up creating user interfaces within design mode while performing fine-tuning and layout tweaks of the design by directly editing the generated XML resources. Both views of the interface design are, after all, displayed side by side within the Android Studio environment making it easy to work seamlessly on both the XML and the visual layout.

28.3

 Summary

The Android Studio Layout Editor tool provides a visually intuitive method for designing user interfaces. Using a drag and drop paradigm combined with a set of property editors, the tool provides considerable productivity benefits to the application developer.

User interface designs may also be implemented by manually writing the XML layout resource files, the format of which is well structured and easily understood.

The fact that the Layout Editor tool generates XML resource files means that these two approaches to interface design can be combined to provide a “best of both worlds” approach to user interface development.

29.

 Managing Constraints using Constraint Sets

Up until this point in the book, all user interface design tasks have been performed using the Android Studio Layout Editor tool, either in text or design mode. An alternative to writing XML resource files or using the Android Studio Layout Editor is to write Kotlin code to directly create, configure and manipulate the view objects that comprise the user interface of an Android activity. Within the context of this chapter, we will explore some of the advantages and disadvantages of writing Kotlin code to create a user interface before describing some of the key concepts such as view properties and the creation and management of layout constraints.

 In the next chapter, an example project will be created and used to demonstrate some of the typical steps involved in this approach to Android user interface creation.

29.1

 Kotlin Code vs. XML Layout File
 s

There are a number of key advantages to using XML resource files to design a user interface as opposed to writing Kotlin code. In fact, Google goes to considerable lengths in the Android documentation to extol the virtues of XML resources over Kotlin code. As discussed in the previous chapter, one key advantage to the XML approach includes the ability to use the Android Studio Layout Editor tool, which, itself, generates XML resources. A second advantage is that once an application has been created, changes to user interface screens can be made by simply modifying the XML file, thereby avoiding the necessity to recompile the application. Also, even when hand writing XML layouts, it is possible to get instant feedback on the appearance of the user interface using the preview feature of the Android Studio Layout Editor tool. In order to test the appearance of a Kotlin created user interface the developer will, inevitably, repeatedly cycle through a loop of writing code, compiling and testing in order to complete the design work.

In terms of the strengths of the Kotlin coding approach to layout creation, perhaps the most significant advantage that Kotlin has over XML resource files comes into play when dealing with dynamic user interfaces. XML resource files are inherently most useful when defining static layouts, in other words layouts that are unlikely to change significantly from one invocation of an activity to the next. Kotlin code, on the other hand, is ideal for creating user interfaces dynamically at run-time. This is particularly useful in situations where the user interface may appear differently each time the activity executes subject to external factors.

A knowledge of working with user interface components in Kotlin code can also be useful when dynamic changes to a static XML resource based layout need to be performed in real-time as the activity is running.

Finally, some developers simply prefer to write Kotlin code than to use layout tools and XML, regardless of the advantages offered by the latter approaches.

29.2

 Creating Views

As previously established, the Android SDK includes a toolbox of view classes designed to meet most of the basic user interface design needs. The creation of a view in Kotlin is simply a matter of creating instances of these classes, passing through as an argument a reference to the activity with which that view is to be associated.

The first view (typically a container view to which additional child views can be added) is displayed to the user via a call to the setContentView()

 method of the activity. Additional views may be added to the root view via calls to the object’s addView()

 method.

When working with Kotlin code to manipulate views contained in XML layout resource files, it is necessary to obtain the ID of the view. The same rule holds true for views created in Kotlin. As such, it is necessary to assign an ID to any view for which certain types of access will be required in subsequent Kotlin code. This is achieved via a call to the setId()
 method
 of the view object in question. In later code, the ID for a view may be obtained via the object’s id property

 .

29.3

 View Attributes

Each view class has associated with it a range of attributes
 . These property settings are set directly on the view instances and generally define how the view object will appear or behave. Examples of attributes are the text that appears on a Button object, or the background color of a ConstraintLayout view. Each view class within the Android SDK has a pre-defined set of methods that allow the user to set
 and get
 these property values. The Button class, for example, has a setText()
 method which can be called from within Kotlin code to set the text displayed on the button to a specific string value. The background color of a ConstraintLayout
 object, on the other hand, can be set with a call to the object’s setBackgroundColor()

 method.

29.4

 Constraint Sets

While property settings are internal to view objects and dictate how a view appears and behaves,
 constraint sets

 are used to control how a view appears relative to its parent view and other sibling views. Every ConstraintLayout instance has associated with it a set of constraints that define how its child views are positioned and constrained.

The key to working with constraint sets in Kotlin code is the ConstraintSet
 class. This class contains a range of methods that allow tasks such as creating, configuring and applying constraints to a ConstraintLayout instance. In addition, the current constraints for a ConstraintLayout instance may be copied into a ConstraintSet object and used to apply the same constraints to other layouts (with or without modifications).

A ConstraintSet
 instance is created just like any other Kotlin object:

val set = ConstraintSet()

Once a constraint set has been created, methods can be called on the instance to perform a wide range of tasks.

29.4.1

 Establishing Connections

 The
 connect()
 method of the ConstraintSet class is used to establish constraint connections between views. The following code configures a constraint set in which the left-hand side of a Button view is connected to the right-hand side of an EditText view with a margin of 70dp:

set.connect(button1.id, ConstraintSet.LEFT,

 editText1.id, ConstraintSet.RIGHT, 70)

29.4.2

 Applying Constraints to a Layout

 Once the constraint set is configured, it must be applied to a ConstraintLayout instance before it will take effect. A constraint set is applied via a call to the
 applyTo()
 method, passing through a reference to the layout object to which the settings are to be applied:

set.applyTo(myLayout)

29.4.3

 Parent Constraint Connections

 Connections may also be established between a child view and its parent ConstraintLayout by referencing the ConstraintSet.PARENT_ID
 constant. In the following example, the constraint set is configured to connect the top edge of a Button view to the top of the parent layout with a margin of 100dp:

set.connect(button1.id, ConstraintSet.TOP,

 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 100)

29.4.4

 Sizing Constraints

 A number of methods are available for controlling the sizing behavior of views. The following code, for example, sets the horizontal size of a Button view to wrap_content
 and the vertical size of an ImageView instance to a maximum of 250dp:

set.constrainWidth(button1.id, ConstraintSet.WRAP_CONTENT)

set.constrainMaxHeight(imageView1.id, 250)

29.4.5

 Constraint Bias

 As outlined in the chapter entitled
“A Guide to using ConstraintLayout in Android Studio”

 , when a view has opposing constraints it is centered along the axis of the constraints (i.e. horizontally or vertically). This centering can be adjusted by applying a bias along the particular axis of constraint. When using the Android Studio Layout Editor, this is achieved using the controls in the Attributes tool window. When working with a constraint set, however, bias can be added using the
 setHorizontalBias()
 and
 setVerticalBias()
 methods, referencing the view ID and the bias as a floating point value between 0 and 1.

The following code, for example, constrains the left and right-hand sides of a Button to the corresponding sides of the parent layout before applying a 25% horizontal bias:

set.connect(button1.id, ConstraintSet.LEFT,

 ConstraintSet.PARENT_ID, ConstraintSet.LEFT, 0)

set.connect(button1.getId(), ConstraintSet.RIGHT,

 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)

set.setHorizontalBias(button1.id, 0.25f)

29.4.6

 Alignment Constraints

 Alignments may also be applied using a constraint set. The full set of alignment options available with the Android Studio Layout Editor may also be configured using a constraint set via the
 centerVertically()
 and centerHorizontally()
 methods
 , both of which take a variety of arguments depending on the alignment being configured. In addition, the center()
 method may be used to center a view between two other views.

In the code below, button2 is positioned so that it is aligned horizontally with button1:

set.centerHorizontally(button2.id, button1.id)

29.4.7

 Copying and Applying Constraint Sets

The current constraint set for a ConstraintLayout instance may be copied into a constraint set object using the
 clone()
 method. The following line of code, for example, copies the constraint settings from a ConstraintLayout instance named myLayout
 into a constraint set object:

set.clone(myLayout)

Once copied, the constraint set may be applied directly to another layout or, as in the following example, modified before being applied to the second layout:

val set = ConstraintSet()

set.clone(myLayout)

set.constrainWidth(button1.id, ConstraintSet.WRAP_CONTENT)

set.applyTo(mySecondLayout)

29.4.8

 ConstraintLayout Chains

 Vertical and horizontal chains may also be created within a constraint set using the
 createHorizontalChain()
 and
 createVerticalChain()
 methods. The syntax for using these methods is as follows:

createVerticalChain(int topId, int topSide, int bottomId,

 int bottomSide, int[] chainIds, float[] weights, int style)

Based on the above syntax, the following example creates a horizontal spread chain that starts with button1 and ends with button4. In between these views are button2 and button3 with weighting set to zero for both:

val set = ConstraintSet()

val chainViews = intArrayOf(button2.id, button2.id)

val chainWeights = floatArrayOf(0f, 0f)

set.createHorizontalChain(button1.id, ConstraintSet.LEFT,

 button4.id, ConstraintSet.RIGHT,

 chainViews, chainWeights,

 ConstraintSet.CHAIN_SPREAD)

A view can be removed from a chain by passing the ID of the view to be removed through to either the
 removeFromHorizontalChain()
 or
 removeFromVerticalChain()
 methods. A view may be added to an existing chain using either the
 addToHorizontalChain()
 or
 addToVerticalChain()
 methods. In both cases the methods take as arguments the IDs of the views between which the new view is to be inserted as follows:

set.addToHorizontalChain(newViewId, leftViewId, rightViewId)

29.4.9

 Guidelines

 Guidelines are added to a constraint set using the create()
 method and then positioned using the
 setGuidelineBegin()
 ,
 setGuidelineEnd()
 or
 setGuidelinePercent(
) methods. In the following code, a vertical guideline is created and positioned 50% across the width of the parent layout. The left side of a button view is then connected to the guideline with no margin:

val set = ConstraintSet()

set.create(R.id.myGuideline, ConstraintSet.VERTICAL_GUIDELINE)

set.setGuidelinePercent(R.id.myGuideline, 0.5f)

set.connect(button.getId(), ConstraintSet.LEFT,

 R.id.myGuideline, ConstraintSet.RIGHT, 0)

set.applyTo(layout)

29.4.10

 Removing Constraints

 A constraint may be removed from a view in a constraint set using the
 clear()
 method, passing through as arguments the view ID and the anchor point for which the constraint is to be removed:

set.clear(button.id, ConstraintSet.LEFT)

Similarly, all of the constraints on a view may be removed in a single step by referencing only the view in the clear()
 method call:

set.clear(button.id)

29.4.11

 Scaling

 The scale of a view within a layout may be adjusted using the ConstraintSet setScaleX()
 and setScaleY()
 methods which take as arguments the view on which the operation is to be performed together with a float value indicating the scale. In the following code, a button object is scaled to twice its original width and half the height:

set.setScaleX(mybutton.id, 2f)

set.setScaleY(myButton.id, 0.5f)

29.4.12

 Rotation

 A view may be rotated on either the X or Y axis using the

 setRotationX()
 and setRotationY()
 methods respectively both of which must be passed the ID of the view to be rotated and a float value representing the degree of rotation to be performed. The pivot point on which the rotation is to take place may be defined via a call to the setTransformPivot()
 , setTransformPivotX()
 and setTransformPivotY()
 methods. The following code rotates a button view 30 degrees on the Y axis using a pivot point located at point 500, 500:

set.setTransformPivot(button.getId(), 500, 500)

set.setRotationY(button.getId(), 30)

set.applyTo(layout)

Having covered the theory of constraint sets and user interface creation from within Kotlin code, the next chapter will work through the creation of an example application with the objective of putting this theory into practice. For more details on the ConstraintSet class, refer to the reference guide at the following URL:

https://developer.android.com/reference/android/support/constraint/ConstraintSet.html

29.5

 Summary

As an alternative to writing XML layout resource files or using the Android Studio Layout Editor tool, Android user interfaces may also be dynamically created in Kotlin code.

Creating layouts in Kotlin code consists of creating instances of view classes and setting attributes on those objects to define required appearance and behavior.

How a view is positioned and sized relative to its ConstraintLayout parent view and any sibling views is defined through the use of constraint sets. A constraint set is represented by an instance of the ConstraintSet class which, once created, can be configured using a wide range of method calls to perform tasks such as establishing constraint connections, controlling view sizing behavior and creating chains.

With the basics of the ConstraintSet class covered in this chapter, the next chapter will work through a tutorial that puts these features to practical use.

30.

 An Android ConstraintSet Tutorial

T
 he previous chapter introduced the basic concepts of creating and modifying user interface layouts in Kotlin code using the ConstraintLayout and ConstraintSet classes. This chapter will take these concepts and put them into practice through the creation of an example layout created entirely in Kotlin code and without using the Android Studio Layout Editor tool.

30.1

 Creating the Example Project in Android Studio

Launch Android Studio and select the Start a new Android Studio project
 option from the quick start menu in the welcome screen.

In the new project configuration dialog enable Kotlin support, enter Kotlin
 Layout
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named Kotlin
 LayoutActivity
 with a corresponding layout named activity_
 kotlin
 _layout
 .

Once the project has been created, the Kotlin
 LayoutActivity.
 kt
 file should automatically load into the editing panel. As we have come to expect, Android Studio has created a template activity and overridden the onCreate()
 method, providing an ideal location for Kotlin code to be added to create a user interface.

30.2

 Adding Views to an Activity

The onCreate()
 method is currently designed to use a resource layout file for the user interface. Begin, therefore, by deleting this line from the method:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_kotlin_layout)

}

The next modification is to add a ConstraintLayout object with a single Button view child to the activity. This involves the creation of new instances of the ConstraintLayout and Button classes. The Button view then needs to be added as a child to the ConstraintLayout view which, in turn, is displayed via a call to the setContentView()
 method
 of the activity instance:

package com.ebookfrenzy.kotlinlayout

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.support.constraint.ConstraintLayout

import android.widget.Button

import android.widget.EditText

class KotlinLayoutActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 configureLayout()

 }

 private fun configureLayout() {

 val myButton = Button(this)

 val myLayout = ConstraintLayout(this)

 myLayout.addView(myButton)

 setContentView(myLayout)

 }

}

When new instances of user interface objects are created in this way, the constructor methods must be passed the context within which the object is being created which, in this case, is the current activity. Since the above code resides within the activity class, the context is simply referenced by the standard this
 keyword:

val myButton = Button(this
)

Once the above additions have been made, compile and run the application (either on a physical device or an emulator). Once launched, the visible result will be a button containing no text appearing in the top left-hand corner of the ConstraintLayout view as shown in Figure 30-1
 :

[image:]

Figure 30-1

30.3

 Setting View
 Attributes

For the purposes of this exercise, we need the background of the ConstraintLayout view to be blue and the Button view to display text that reads “Press Me” on a yellow background. Both of these tasks can be achieved by setting attributes on the views in the Kotlin code as outlined in the following code fragment. In order to allow the text on the button to be easily translated to other languages it will be added as a String resource. Within the Project tool window, locate the app -> res -> values -> strings.xml
 file and modify it to add a resource value for the “Press Me” string:

<resources>

 <string name="app_name">KotlinLayout</string>

 <string name="press_me">Press Me</string>

</resources>

Although this is the recommended way to handle strings that are directly referenced in code, to avoid repetition of this step throughout the remainder of the book, many subsequent code samples will directly enter strings into the code.

Once the string is stored as a resource it can be accessed from within code as follows:

getString(R.string.press_me)

With the string resource created, add code to the configureLayout()
 method to set the button text and color attributes:

.

.

import android.graphics.Color

.

.

 private fun configureLayout() {

 val myButton = Button(this)

 myButton.text = getString(R.string.press_me)

 myButton.setBackgroundColor(Color.YELLOW)

 val myLayout = ConstraintLayout(this)

 myLayout.setBackgroundColor(Color.BLUE)

 myLayout.addView(myButton)

 setContentView(myLayout)

 }

}

When the application is now compiled and run, the layout will reflect the property settings such that the layout will appear with a blue background and the button will display the assigned text on a yellow background.

30.4

 Creating View IDs

 When the layout is complete it will consist of a Button and an EditText view. Before these views can be referenced within the methods of the ConstraintSet class, they must be assigned unique view IDs. The first step in this process is to create a new resource file containing these ID values.

Right click on the app -> res -> values
 folder, select the New -> Values resource file
 menu option and name the new resource file id.xml
 . With the resource file created, edit it so that it reads as follows:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <item name="myButton" type="id" />

 <item name="myEditText" type="id" />

</resources>

At this point in the tutorial, only the Button has been created, so edit the createLayout()
 method to assign the corresponding ID to the object:

fun configureLayout() {

 val myButton = Button(this)

 myButton.text = getString(R.string.press_me)

 myButton.setBackgroundColor(Color.YELLOW)

 myButton.id = R.id.myButton

.

.

30.5

 Configuring the Constraint Set

In the absence of any constraints, the ConstraintLayout view has placed the Button view in the top left corner of the display. In order to instruct the layout view to place the button in a different location, in this case centered both horizontally and vertically, it will be necessary to create a ConstraintSet instance, initialize it with the appropriate settings and apply it to the parent layout.

For this example, the button needs to be configured so that the width and height are constrained to the size of the text it is displaying and the view centered within the parent layout. Edit the onCreate()
 method once more to make these changes:

.

.

import android.support.constraint.ConstraintSet

.

.

private fun configureLayout() {

 val myButton = Button(this)

 myButton.text = getString(R.string.press_me)

 myButton.setBackgroundColor(Color.YELLOW)

 myButton.id = R.id.myButton

 val myLayout = ConstraintLayout(this)

 myLayout.setBackgroundColor(Color.BLUE)

 myLayout.addView(myButton)

 setContentView(myLayout)

 val set = ConstraintSet()

 set.constrainHeight(myButton.id,

 ConstraintSet.WRAP_CONTENT)

 set.constrainWidth(myButton.id,

 ConstraintSet.WRAP_CONTENT)

 set.connect(myButton.id, ConstraintSet.START,

 ConstraintSet.PARENT_ID, ConstraintSet.START, 0)

 set.connect(myButton.id, ConstraintSet.END,

 ConstraintSet.PARENT_ID, ConstraintSet.END, 0)

 set.connect(myButton.id, ConstraintSet.TOP,

 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 0)

 set.connect(myButton.id, ConstraintSet.BOTTOM,

 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0)

 set.applyTo(myLayout)

}

With the initial constraints configured, compile and run the application and verify that the Button view now appears in the center of the layout:

[image:]

Figure 30-2

30.6

 Adding the EditText View

The next item to be added to the layout is the EditText view. The first step is to create the EditText object, assign it the ID as declared in the id.xml
 resource file and add it to the layout. The code changes to achieve these steps now need to be made to the onCreate()
 method as follows:

private fun configureLayout() {

 val myButton = Button(this)

 myButton.text = getString(R.string.press_me)

 myButton.setBackgroundColor(Color.YELLOW)

 myButton.id = R.id.myButton

 val myEditText = EditText(this)

 myEditText.id = R.id.myEditText

 val myLayout = ConstraintLayout(this)

 myLayout.setBackgroundColor(Color.BLUE)

 myLayout.addView(myButton)

 myLayout.addView(myEditText)

 setContentView(myLayout)

.

.

}

The EditText widget is intended to be sized subject to the content it is displaying, centered horizontally within the layout and positioned 70dp above the existing Button view. Add code to the configureLayout()
 method so that it reads as follows:

.

.

set.constrainHeight(myEditText.id,

 ConstraintSet.WRAP_CONTENT)

set.constrainWidth(myEditText.id,

 ConstraintSet.WRAP_CONTENT)

set.connect(myEditText.id, ConstraintSet.LEFT,

 ConstraintSet.PARENT_ID, ConstraintSet.LEFT, 0)

set.connect(myEditText.id, ConstraintSet.RIGHT,

 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)

set.connect(myEditText.id, ConstraintSet.BOTTOM,

 myButton.getId(), ConstraintSet.TOP, 70)

set.applyTo(myLayout)

A test run of the application should show the EditText field centered above the button with a margin of 70dp.

30.7

 Converting Density Independent Pixels
 (dp) to Pixels (px)

The next task in this exercise is to set the width of the EditText view to 200dp. As outlined in the chapter entitled
“An Android Studio Layout Editor ConstraintLayout Tutorial”

 when setting sizes and positions in user interface layouts it is better to use density independent pixels (dp) rather than pixels (px). In order to set a position using dp it is necessary to convert a dp value to a px value at runtime, taking into consideration the density of the device display. In order, therefore, to set the width of the EditText view to 200dp, the following code needs to be added to the class:

package com.ebookfrenzy.kotlinlayout

.

.

import android.content.res.Resources

import android.util.TypedValue

class KotlinLayoutActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 configureLayout()

 }

 private fun convertToPx(value: Int): Int {

 val r = resources

 val px = TypedValue.applyDimension(

 TypedValue.COMPLEX_UNIT_DIP, value.toFloat(),

 r.displayMetrics).toInt()

 return px

 }

 private fun configureLayout() {

 val myButton = Button(this)

 myButton.text = getString(R.string.press_me)

 myButton.setBackgroundColor(Color.YELLOW)

 myButton.id = R.id.myButton

 val myEditText = EditText(this)

 myEditText.id = R.id.myEditText

 myEditText.width = convertToPx(200)

.

.

Compile and run the application one more time and note that the width of the EditText view has changed as illustrated in Figure 30-3
 :

[image:]

Figure 30-3

30.8

 Summary

The example activity created in this chapter has, of course, created a similar user interface (the change in background color and view type notwithstanding) as that created in the earlier
“Manual XML Layout Design in Android Studio”

 chapter. If nothing else, this chapter should have provided an appreciation of the level to which the Android Studio Layout Editor tool and XML resources shield the developer from many of the complexities of creating Android user interface layouts.

There are, however, instances where it makes sense to create a user interface in Kotlin. This approach is most useful, for example, when creating dynamic user interface layouts.

31.

 A Guide to using Instant Run in Android Studio

Now that some of the basic concepts of Android development using Android Studio have been covered, now is a good time to introduce the Android Studio Instant Run feature. As all experienced developers know, every second spent waiting for an app to compile and run is time better spent writing and refining code.

31.1

 Introducing Instant Run

Prior to the introduction of Instant Run, each time a change to a project needed to be tested Android Studio would recompile the code, convert it to Dex format, generate the APK package file and install it on the device or emulator. Having performed these steps the app would finally be launched ready for testing. Even on a fast development system this is a process that takes a considerable amount of time to complete. It is not uncommon for it to take a minute or more for this process to complete for a large application.

Instant Run, in contrast, allows many code and resource changes within a project to be reflected nearly instantaneously within the app while it is already running on a device or emulator session.

Consider, for the purposes of an example, an app being developed in Android Studio which has already been launched on a device or emulator. If changes are made to resource settings or the code within a method, Instant Run will push the updated code and resources to the running app and dynamically “swap” the changes. The changes are then reflected in the running app without the need to build, deploy and relaunch the entire app. In many cases, this allows changes to be tested in a fraction of the time it would take without Instant Run.

31.2

 Understanding Instant Run Swapping Levels

 Not all project changes are fully supported by Instant Run and different changes result in a different level of “swap” being performed. There are three levels of Instant Run support, referred to as hot, warm and cold swapping:

•
 Hot Swapping

 – Hot swapping occurs when the code within an existing method implementation is changed. The new method implementation is used next time it is called by the app. A hot swap occurs instantaneously and, if configured, is accompanied by a toast message on the device screen that reads “Applied code changes without activity restart”.

•
 Warm Swapping

 – When a change is made to a resource file of the project (for example a layout change or the modification of a string or color resource setting) an Instant Run warm swap is performed. A warm swap involves the restarting of the currently running activity. Typically the screen will flicker as the activity restarts. A warm swap is reported on the device screen by a toast message that reads “Applied changes, restarted activity”.

•
 Cold Swapping

 – Structural code changes such as the addition of a new method, a change to the signature of an existing method or a change to the class hierarchy of the project triggers a cold swap in which the entire app is restarted. In some conditions, such as the addition of new image resources to the project, the application package file (APK) will also be reinstalled during the swap.

31.3

 Enabling and Disabling Instant Run

Instant Run is enabled and disabled via the Android Studio Settings screen. To view the current settings begin by selecting the File -> Settings…
 menu option (Android Studio -> Preferences…
 on macOS). Within the Settings dialog select the Build, Execution, Deployment
 entry in the left-hand panel followed by Instant Run
 as shown in Figure 31-1
 :

[image:]

Figure 31-1

The options provided in the panel apply only to the current project. Each new project will start with the default settings. The first option controls whether or not Instant Run is enabled by default each time the project is opened in Android Studio. The Restart activity on code changes
 option forces Instant Run to restart the current activity every time a change is made, regardless of whether a hot swap could have been performed. The next option controls whether or not messages are displayed within Android Studio and the app indicating the type of Instant Run level performed. Finally, an option is provided to allow additional log information to be provided to Google to help in improving the reliability of the Instant Run feature.

31.4

 Using Instant Run

When a project has been loaded into Android Studio, but is not yet running on a device or emulator, it can be launched as usual using either the run (marked A in Figure 31-2
) or debug (B) button located in the toolb
 ar:

[image:]

Figure 31-2

After the app has launched and is running, Android Studio will indicate the availability of Instant Run by enabling the Apply Changes
 button located immediately to the right of the run button as highlighted in Figure 31-3
 :

[image:]

Figure 31-3

When it is enabled, clicking on the Apply Changes button will use Instant Run to update the running app.

31.5

 An Instant Run
 Tutorial

Begin by launching Android Studio and creating a new project. Within the New Project
 dialog enable Kotlin support, enter InstantRunDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Proceed through the screens, requesting the creation of a Basic Activity named InstantRunDemoActivity
 with a corresponding layout named activity_instant_run_demo.

Click on the Finish
 button to initiate the project creation process.

31.6

 Triggering an Instant Run Hot Swap

Begin by clicking on the run button and selecting a suitable emulator or physical device as the run target. After clicking the run button, track the amount of time before the example app appears on the device or emulator.

Once running, click on the action button (the button displaying an envelope icon located in the lower right-hand corner of the screen). Note that a Snackbar instance appears displaying text which reads “Replace with your own action” as shown in Figure 31-4
 :

[image:]

Figure 31-4

Once the app is running, the Apply Changes button should have been enabled indicating the availability of Instant Run. To see this in action, edit the InstantRunDemoActivity.
 kt
 file, locate the onCreate
 method and modify the action code so that a different message is displayed when the action button is selected:

fab.setOnClickListener { view ->

 Snackbar.make(view, "Instant Run is Amazing!
 ", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

}

With the code change implemented, click on the Apply Changes button and note that the toast message appears within a few seconds indicating the app has been updated. Tap the action button and note that the new message is now displayed in the Snackbar. Instant Run has successfully performed a hot swap.

31.7

 Triggering an Instant Run Warm Swap

Any resource change should result in Instant Run performing a warm swap. Within Android Studio select the app -> res -> layout -> content_instant_run_demo.xml
 layout file. With the Layout Editor tool in Design mode, select the ConstraintLayout view within the Component Tree panel, switch the Attributes tool window to expert mode and locate the background
 property. Click on the button displaying three dots next to the background property text field, select a color from the Resources dialog and click on OK
 . With the background color of the activity content modified, click on the Apply Changes button once again. This time a warm swap will be performed and the currently running activity should quickly restart to adopt the new background color setting.

31.8

 Triggering an Instant Run Cold Swap

As previously described, a cold swap triggers a complete restart of the running app. To experience an Instant Run cold swap, edit the InstantRunDemoActivity.
 kt
 file and add a new method after the onCreate
 method as follows:

fun demoMethod() {

}

Click on the Apply Changes button and note that the app now has to terminate and restart to accommodate the addition of the new method. Within Android Studio a message will appear indicating that the app was restarted due to a method being added:

[image:]

Figure 31-5

31.9

 The Run Button

When no apps are running, the run button appears as shown in Figure 31-2
 . When an app is running, however, an additional green dot appears in the bottom right-hand corner of the button as shown in Figure 31-6
 below:

[image:]

Figure 31-6

Although the Instant Run feature has improved significantly since being introduced it can still occasionally produce unexpected results when performing hot or warm swaps. It is worth being aware, therefore, that clicking the run button when an app is currently running will force a cold swap to be performed regardless of the changes made to the project.

31.10

 Summary

Instant Run is a feature of Android Studio designed to significantly accelerate the code, build and run cycle. Using a swapping mechanism, Instant Run is able to push updates to the running application, in many cases without the need to re-install or even restart the app. Instant Run provides a number of different levels of support depending on the nature of the modification being applied to the project. These levels are referred to as hot, warm and cold swapping. This chapter has introduced the concepts of Instant Run and worked through some demonstrations of the different levels of swapping.

32.

 An Overview and Example of Android Event Handling

Much has been covered in the previous chapters relating to the design of user interfaces for Android applications. An area that has yet to be covered, however, involves the way in which a user’s interaction with the user interface triggers the underlying activity to perform a task. In other words, we know from the previous chapters how to create a user interface containing a button view, but not how to make something happen within the application when it is touched by the user.

The primary objective of this chapter, therefore, is to provide an overview of event handling in Android applications together with an Android Studio based example project.

32.1

 Understanding Android
 Events

Events in Android can take a variety of different forms, but are usually generated in response to an external action. The most common form of events, particularly for devices such as tablets and smartphones, involve some form of interaction with the touch screen. Such events fall into the category of input events
 .

The Android framework maintains an event queue
 into which events are placed as they occur. Events are then removed from the queue on a first-in, first-out (FIFO) basis. In the case of an input event such as a touch on the screen, the event is passed to the view positioned at the location on the screen where the touch took place. In addition to the event notification, the view is also passed a range of information (depending on the event type) about the nature of the event such as the coordinates of the point of contact between the user’s fingertip and the screen.

In order to be able to handle the event that it has been passed, the view must have in place an event listener
 . The Android View class, from which all user interface components are derived, contains a range of event listener interfaces, each of which contains an abstract declaration for a callback method. In order to be able to respond to an event of a particular type, a view must register the appropriate event listener and implement the corresponding callback. For example, if a button is to respond to a click
 event (the equivalent to the user touching and releasing the button view as though clicking on a physical button) it must both register the View.onClickListener
 event listener (via a call to the target view’s setOnClickListener()
 method
) and implement the corresponding onClick()
 callback method. In the event that a “click” event is detected on the screen at the location of the button view, the Android framework will call the onClick()
 method
 of that view when that event is removed from the event queue. It is, of course, within the implementation of the onClick()
 callback method that any tasks should be performed or other methods called in response to the button click.

32.2

 Using the android:onClick Resource

Before exploring event listeners in more detail it is worth noting that a shortcut is available when all that is required is for a callback method to be called when a user “clicks” on a button view in the user interface. Consider a user interface layout containing a button view named button1
 with the requirement that when the user touches the button, a method called buttonClick()
 declared in the activity class is called. All that is required to implement this behavior is to write the buttonClick()
 method (which takes as an argument a reference to the view that triggered the click event) and add a single line to the declaration of the button view in the XML file. For example:

<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="buttonClick"

 android:text="Click me" />

This provides a simple way to capture click events. It does not, however, provide the range of options offered by event handlers, which are the topic of the rest of this chapter. As will be outlined in later chapters, the onClick property also has limitations in layouts involving fragments. When working within Android Studio Layout Editor, the onClick property can be found and configured in the Attributes panel when a suitable view type is selected in the device screen layout.

32.3

 Event Listeners
 and Callback Methods

In the example activity outlined later in this chapter the steps involved in registering an event listener and implementing the callback method will be covered in detail. Before doing so, however, it is worth taking some time to outline the event listeners that are available in the Android framework and the callback methods associated with each one.

•
 onClickListener

 – Used to detect click style events whereby the user touches and then releases an area of the device display occupied by a view. Corresponds to the onClick()
 callback method which is passed a reference to the view that received the event as an argument.

•
 onLongClickListener

 – Used to detect when the user maintains the touch over a view for an extended period. Corresponds to the onLongClick()
 callback method which is passed as an argument the view that received the event.

•
 onTouchListener

 – Used to detect any form of contact with the touch screen including individual or multiple touches and gesture motions. Corresponding with the onTouch()
 callback, this topic will be covered in greater detail in the chapter entitled
“Android Touch and Multi-touch Event Handling”

 . The callback method is passed as arguments the view that received the event and a MotionEvent object.

•
 onCreateContextMenuListener

 – Listens for the creation of a context menu as the result of a long click. Corresponds to the onCreateContextMenu()
 callback method. The callback is passed the menu, the view that received the event and a menu context object.

•
 onFocusChangeListener

 – Detects when focus moves away from the current view as the result of interaction with a track-ball or navigation key. Corresponds to the onFocusChange()
 callback method which is passed the view that received the event and a Boolean value to indicate whether focus was gained or lost.

•
 onKeyListener

 – Used to detect when a key on a device is pressed while a view has focus. Corresponds to the onKey()
 callback method. Passed as arguments are the view that received the event, the KeyCode of the physical key that was pressed and a KeyEvent object.

32.4

 An Event Handling
 Example

In the remainder of this chapter, we will work through the creation of a simple Android Studio project designed to demonstrate the implementation of an event listener and corresponding callback method to detect when the user has clicked on a button. The code within the callback method will update a text view to indicate that the event has been processed.

Create a new project in Android Studio with Kotlin support enabled, entering EventExample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the screens, requesting the creation of an Empty Activity named EventExampleActivity
 with a corresponding layout file named activity_event_example.

32.5

 Designing the User Interface

The user interface layout for the EventExampleActivity
 class in this example is to consist of a ConstraintLayout, a Button and a TextView as illustrated in Figure 32-1
 .

[image:]

Figure 32-1

Locate and select the activity_event_example.xml
 file created by Android Studio (located in the Project tool window under app -> res -> layouts
) and double-click on it to load it into the Layout Editor tool.

Make sure that Autoconnect is enabled, then drag a Button widget from the palette and move it so that it is positioned in the horizontal center of the layout and beneath the existing TextView widget. When correctly positioned, drop the widget into place so that appropriate constraints are added by the autoconnect system. Add any missing constraints by clicking on the Infer Constraints
 button in the layout editor
 toolbar.

[image:]

Figure 32-2

With the Button widget selected, use the Attributes panel to set the text property to Press Me. Using the yellow warning button located in the top right-hand corner of the Layout Editor (Figure 32-3
), display the warnings list and click on the Fix
 button to extract the text string on the button to a resource named pr
 ess_me
 :

[image:]

Figure 32-3

Select the “Hello World!” TextView widget and use the Attributes panel to set the ID to statusText
 . Repeat this step to change the ID of the Button widget to myButton
 .

With the user interface layout now completed, the next step is to register the event listener and callback method.

32.6

 The Event Listener
 and Callback Method

For the purposes of this example, an onClickListener

 needs to be registered for the myButton
 view. This is achieved by making a call to the setOnClickListener()

 method of the button view, passing through a new onClickListener
 object as an argument and implementing the onClick()
 callback method. Since this is a task that only needs to be performed when the activity is created, a good location is the onCreate()
 method of the EventExampleActivity class.

If the EventExampleActivity.
 kt
 file is already open within an editor session, select it by clicking on the tab in the editor panel. Alternatively locate it within the Project tool window by navigating to (app -> java -> com.ebookfrenzy.eventexample -> EventExampleActivity
) and double-click on it to load it into the code editor. Once loaded, locate the template onCreate()
 method and modify it to obtain a reference to the button view, register the event listener and implement the onClick()
 callback method:

package com.ebookfrenzy.eventexample

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity_event_example.*

class EventExampleActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_event_example)

 myButton.setOnClickListener(object : View.OnClickListener {

 override fun onClick(v: View?) {

 }

 })

 }

}

The above code has now registered the event listener on the button and implemented the onClick()
 method. In fact, the code to configure the listener can be made more efficient by using a lambda as follows:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_event_example)

 button.setOnClickListener(object : View.OnClickListener {

 override fun onClick(v: View?) {

 }

 })

 myButton.setOnClickListener {

 }

}

If the application were to be run at this point, however, there would be no indication that the event listener installed on the button was working since there is, as yet, no code implemented within the body of the lambda. The goal for the example is to have a message appear on the TextView when the button is clicked, so some further code changes need to be made:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_event_example)

 myButton.setOnClickListener {

 statusText.text = "Button clicked"

 }

}

Complete this phase of the tutorial by compiling and running the application on either an AVD emulator or physical Android device. On touching and releasing the button view (otherwise known as “clicking”) the text view should change to display the “Button clicked” text.

32.7

 Consuming Events

The detection of standard clicks (as opposed to long clicks) on views is a very simple case of event handling. The example will now be extended to include the detection of long click events which occur when the user clicks and holds a view on the screen and, in doing so, cover the topic of event consumption.

Consider the code for the onClick
 listener code in the above section of this chapter. The lambda code assigned to the listener does not return any value and is not required to do so.

The code assigned to the onLongClickListener

 , on the other hand, is required to return a Boolean value to the Android framework. The purpose of this return value is to indicate to the Android runtime whether or not the callback has consumed
 the event. If the callback returns a true
 value, the event is discarded by the framework. If, on the other hand, the callback returns a false
 value the Android framework will consider the event still to be active and will consequently pass it along to the next matching event listener that is registered on the same view.

As with many programming concepts this is, perhaps, best demonstrated with an example. The first step is to add an event listener for long clicks to the button view in the example activity:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_event_example)

 myButton.setOnClickListener {

 statusText.text = "Button clicked"

 }

 myButton.setOnLongClickListener {

 statusText.text = "Long button click"

 true

 }

}

Clearly, when a long click is detected, the lambda code will display “Long button click” on the text view. Note, however, that the callback method also returns a value of true
 to indicate that it has consumed the event. Run the application and press and hold the Button view until the “Long button click” text appears in the text view. On releasing the button, the text view continues to display the “Long button click” text indicating that the onClick listener code was not called.

Next, modify the code so that the onLongClick listener now returns a false
 value:

button.setOnLongClickListener {

 statusText.text = "Long button click"

 false

}

Once again, compile and run the application and perform a long click on the button until the long click message appears. Upon releasing the button this time, however, note that the onClick
 listener is also triggered and the text changes to “Button click”. This is because the false
 value returned by the onLongClick
 listener code indicated to the Android framework that the event was not consumed by the method and was eligible to be passed on to the next registered listener on the view. In this case, the runtime ascertained that the onClickListener
 on the button was also interested in events of this type and subsequently called the onClick
 listener code.

32.8

 Summary

A user interface is of little practical use if the views it contains do not do anything in response to user interaction. Android bridges the gap between the user interface and the back end code of the application through the concepts of event listeners and callback methods. The Android View class defines a set of event listeners, which can be registered on view objects. Each event listener also has associated with it a callback method.

When an event takes place on a view in a user interface, that event is placed into an event queue and handled on a first in, first out basis by the Android runtime. If the view on which the event took place has registered a listener that matches the type of event, the corresponding callback method or lambda expression is called. This code then performs any tasks required by the activity before returning. Some callback methods are required to return a Boolean value to indicate whether the event needs to be passed on to any other event listeners registered on the view or discarded by the system.

Having covered the basics of event handling, the next chapter will explore in some depth the topic of touch events with a particular emphasis on handling multiple touches.

33.

 Android Touch
 and Multi-touch Event Handling

Most Android based devices use a touch screen as the primary interface between user and device. The previous chapter introduced the mechanism by which a touch on the screen translates into an action within a running Android application. There is, however, much more to touch event handling than responding to a single finger tap on a view object. Most Android devices can, for example, detect more than one touch at a time. Nor are touches limited to a single point on the device display. Touches can, of course, be dynamic as the user slides one or more points of contact across the surface of the screen.

Touches can also be interpreted by an application as a gesture
 . Consider, for example, that a horizontal swipe is typically used to turn the page of an eBook, or how a pinching motion can be used to zoom in and out of an image displayed on the screen.

This chapter will explain the handling of touches that involve motion and explore the concept of intercepting multiple concurrent touches. The topic of identifying distinct gestures will be covered in the next chapter.

33.1

 Intercepting Touch Events

Touch events can be intercepted by a view object through the registration of an onTouchListener

 event listener and the implementation of the corresponding onTouch()

 callback method or lambda. The following code, for example, ensures that any touches on a ConstraintLayout view instance named myLayout
 result in a call to a lambda expression:

myLayout.setOnTouchListener {v: View, m: MotionEvent ->

 // Perform tasks here

 true

}

Of course, the above code could also be implemented by using a function instead of a lambda as follows, though the lambda approach results in more compact and readable code:

myLayout.setOnTouchListener(object : View.OnTouchListener {

 override fun onTouch(v: View, m: MotionEvent): Boolean {

 // Perform tasks here

 return true

 }

})

As indicated in the code example, the lambda expression is required to return a Boolean value indicating to the Android runtime system whether or not the event should be passed on to other event listeners registered on the same view or discarded. The method is passed both a reference to the view on which the event was triggered and an object of type MotionEvent

 .

33.2

 The MotionEvent
 Object

The MotionEvent object passed through to the onTouch()

 callback method is the key to obtaining information about the event. Information contained within the object includes the location of the touch within the view and the type of action performed. The MotionEvent object is also the key to handling multiple touches.

33.3

 Understanding Touch Actions

An important aspect of touch event handling involves being able to identify the type of action performed by the user. The type of action associated with an event can be obtained by making a call to the getActionMasked()
 method of the MotionEvent
 object which was passed through to the onTouch()
 callback method. When the first touch on a view occurs, the MotionEvent object will contain an action type of ACTION_DOWN
 together with the coordinates of the touch. When that touch is lifted from the screen, an ACTION_UP
 event is generated. Any motion of the touch between the ACTION_DOWN and ACTION_UP events will be represented by ACTION_MOVE
 events.

When more than one touch is performed simultaneously on a view, the touches are referred to as pointers
 . In a multi-touch scenario, pointers begin and end with event actions of type ACTION_POINTER_DOWN
 and ACTION_POINTER_UP
 respectively. In order to identify the index of the pointer that triggered the event, the getActionIndex()
 callback method of the MotionEvent object must be called.

33.4

 Handling Multiple Touches

The chapter entitled
“An Overview and Example of Android Event Handling”

 began exploring event handling within the narrow context of a single touch event. In practice, most Android devices possess the ability to respond to multiple consecutive touches (though it is important to note that the number of simultaneous touches that can be detected varies depending on the device).

As previously discussed, each touch in a multi-touch situation is considered by the Android framework to be a pointer
 . Each pointer, in turn, is referenced by an index
 value and assigned an ID
 . The current number of pointers can be obtained via a call to the getPointerCount()
 method
 of the current MotionEvent
 object. The ID for a pointer at a particular index in the list of current pointers may be obtained via a call to the MotionEvent getPointerId()
 method
 . For example, the following code excerpt obtains a count of pointers and the ID of the pointer at index 0:

myLayout.setOnTouchListener {v: View, m: MotionEvent ->

 val pointerCount = m.pointerCount

 val pointerId = m.getPointerId(0)

 true

}

Note that the pointer count will always be greater than or equal to 1 when the onTouch
 listener is triggered (since at least one touch must have occurred for the callback to be triggered).

A touch on a view, particularly one involving motion across the screen, will generate a stream of events before the point of contact with the screen is lifted. As such, it is likely that an application will need to track individual touches over multiple touch events. While the ID of a specific touch gesture will not change from one event to the next, it is important to keep in mind that the index value will change as other touch events come and go. When working with a touch gesture over multiple events, therefore, it is essential that the ID value be used as the touch reference in order to make sure the same touch is being tracked. When calling methods that require an index value, this should be obtained by converting the ID for a touch to the corresponding index value via a call to the findPointerIndex()
 method
 of the MotionEvent
 object.

33.5

 An Example Multi-Touch
 Application

The example application created in the remainder of this chapter will track up to two touch gestures as they move across a layout view. As the events for each touch are triggered, the coordinates, index and ID for each touch will be displayed on the screen.

Create a new project in Android Studio with Kotlin support enabled, entering MotionEvent
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Proceed through the screens, requesting the creation of an Empty Activity named MotionEventActivity
 with a corresponding layout file named activity_motion_event.

Click on the Finish
 button to initiate the project creation process.

33.6

 Designing the Activity User Interface

The user interface for the application’s sole activity is to consist of a ConstraintLayout view containing two TextView objects. Within the Project tool window, navigate to app -> res -> layout
 and double-click on the activity_motion_event.xml
 layout resource file to load it into the Android Studio Layout Editor tool.

Select and delete the default “Hello World!” TextView widget and then, with autoconnect enabled, drag and drop a new TextView widget so that it is centered horizontally and positioned at the 16dp margin line on the top edge of the layout:

[image:]

Figure 33-1

Drag a second TextView widget and position and constrain it so that it is distanced by a 32dp margin from the bottom of the first widget:

[image:]

Figure 33-2

Using the Attributes tool window, change the IDs for the TextView widgets to textView1
 and textView2
 respectively. Change the text displayed on the widgets to read “Touch One Status” and “Touch Two Status” and extract the strings to resources using the warning button in the top right-hand corner of the Layout Editor.

Select the ConstraintLayout entry in the Component Tree and use the Attributes panel to change the ID to activity_motion_event
 .

33.7

 Implementing the Touch Event Listener

In order to receive touch event notifications it will be necessary to register a touch listener on the layout view within the onCreate()
 method of the MotionEventActivity
 activity class. Select the MotionEventActivity.
 kt
 tab from the Android Studio editor panel to display the source code. Within the onCreate()
 method, add code to register the touch listener and implement code which, in this case, is going to call a second method named handleTouch()
 to which is passed the MotionEvent object:

package com.ebookfrenzy.motionevent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.MotionEvent

import android.view.View

import android.widget.TextView

import kotlinx.android.synthetic.main.activity_motion_event.*

class MotionEventActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_motion_event)

 activity_motion_event.setOnTouchListener {_,

 m: MotionEvent ->

 handleTouch(m)

 true

 }

 }

}

The final task before testing the application is to implement the handleTouch()
 method called by the listener. The code for this method reads as follows:

private fun handleTouch(m: MotionEvent)

{

 val pointerCount = m.pointerCount

 for (i in 0 until pointerCount)

 {

 val x = m.getX(i)

 val y = m.getY(i)

 val id = m.getPointerId(i)

 val action = m.actionMasked

 val actionIndex = m.actionIndex

 var actionString: String

 when (action)

 {

 MotionEvent.ACTION_DOWN -> actionString = "DOWN"

 MotionEvent.ACTION_UP -> actionString = "UP"

 MotionEvent.ACTION_POINTER_DOWN -> actionString = "PNTR DOWN"

 MotionEvent.ACTION_POINTER_UP -> actionString = "PNTR UP"

 MotionEvent.ACTION_MOVE -> actionString = "MOVE"

 else -> actionString = ""

 }

 val touchStatus =

 "Action: $actionString Index: $actionIndex ID: $id X: $x Y: $y"

 if (id == 0)

 textView1.text = touchStatus

 else

 textView2.text = touchStatus

 }

}

Before compiling and running the application, it is worth taking the time to walk through this code systematically to highlight the tasks that are being performed.

The code begins by identifying how many pointers are currently active on the view:

val pointerCount = m.pointerCount

Next, the pointerCount
 variable is used to initiate a for
 loop which performs a set of tasks for each active pointer. The first few lines of the loop obtain the X and Y coordinates of the touch together with the corresponding event ID, action type and action index. Lastly, a string variable is declared:

for (i in 0 until pointerCount)

{

 val x = m.getX(i)

 val y = m.getY(i)

 val id = m.getPointerId(i)

 val action = m.actionMasked

 val actionIndex = m.actionIndex

 var actionString: String

Since action types equate to integer values, a when
 statement is used to convert the action type to a more meaningful string value, which is stored in the previously declared actionString
 variable:

when (action)

{

 MotionEvent.ACTION_DOWN -> actionString = "DOWN"

 MotionEvent.ACTION_UP -> actionString = "UP"

 MotionEvent.ACTION_POINTER_DOWN -> actionString = "PNTR DOWN"

 MotionEvent.ACTION_POINTER_UP -> actionString = "PNTR UP"

 MotionEvent.ACTION_MOVE -> actionString = "MOVE"

 else -> actionString = ""

}

Finally, the string message is constructed using the actionString
 value, the action index, touch ID and X and Y coordinates. The ID value is then used to decide whether the string should be displayed on the first or second TextView object:

val touchStatus =

 "Action: $actionString Index: $actionIndex ID: $id X: $x Y: $y"

if (id == 0)

 textView1.text = touchStatus

else

 textView2.text = touchStatus

33.8

 Running the Example Application

Compile and run the application and, once launched, experiment with single and multiple touches on the screen and note that the text views update to reflect the events as illustrated in Figure 33-3
 . When running on an emulator, multiple touches may be simulated by holding down the Ctrl (Cmd on macOS) key while clicking t
 he mouse button:

[image:]

Figure 33-3

33.9

 Summary

Activities receive notifications of touch events by registering an onTouchListener event listener and implementing the onTouch()
 callback method which, in turn, is passed a MotionEvent object when called by the Android runtime. This object contains information about the touch such as the type of touch event, the coordinates of the touch and a count of the number of touches currently in contact with the view.

When multiple touches are involved, each point of contact is referred to as a pointer with each assigned an index and an ID. While the index of a touch can change from one event to another, the ID will remain unchanged until the touch ends.

This chapter has worked through the creation of an example Android application designed to display the coordinates and action type of up to two simultaneous touches on a device display.

Having covered touches in general, the next chapter (entitled
“Detecting Common Gestures using the Android Gesture Detector Class”

) will look further at touch screen event handling through the implementation of gesture recognition.

34.

 Detecting Common Gestures
 using the Android Gesture Detector Class

The term “gesture” is used to define a contiguous sequence of interactions between the touch screen and the user. A typical gesture begins at the point that the screen is first touched and ends when the last finger or pointing device leaves the display surface. When correctly harnessed, gestures can be implemented as a form of communication between user and application. Swiping motions to turn the pages of an eBook, or a pinching movement involving two touches to zoom in or out of an image are prime examples of the ways in which gestures can be used to interact with an application.

The Android SDK provides mechanisms for the detection of both common and custom gestures within an application. Common gestures involve interactions such as a tap, double tap, long press or a swiping motion in either a horizontal or a vertical direction (referred to in Android nomenclature as a fling
).

The goal of this chapter is to explore the use of the Android GestureDetector class to detect common gestures performed on the display of an Android device. The next chapter, entitled
“Implementing Custom Gesture and Pinch Recognition on Android”

 , will cover the detection of more complex, custom gestures such as circular motions and pinches.

34.1

 Implementing Common Gesture
 Detection

When a user interacts with the display of an Android device, the onTouchEvent()

 method of the currently active application is called by the system and passed MotionEvent objects containing data about the user’s contact with the screen. This data can be interpreted to identify if the motion on the screen matches a common gesture such as a tap or a swipe. This can be achieved with very little programming effort by making use of the Android GestureDetectorCompat class
 . This class is designed specifically to receive motion event information from the application and to trigger method calls based on the type of common gesture, if any, detected.

The basic steps in detecting common gestures are as follows:

1.
 Declaration of a class which implements the GestureDetector.OnGestureListener interface including the required onFling(

)
 , onDown

 ()
 , onScroll(

)
 , onShowPress(

)
 , onSingleTapUp()

 and onLongPress()

 callback methods. Note that this can be either an entirely new class, or the enclosing activity class. In the event that double tap gesture detection is required, the class must also implement the GestureDetector.OnDoubleTapListener
 interface and include the corresponding onDoubleTap()
 method
 .

2.
 Creation of an instance of the Android GestureDetectorCompat class, passing through an instance of the class created in step 1 as an argument.

3.
 An optional call to the setOnDoubleTapListener()
 method
 of the GestureDetectorCompat instance to enable double tap detection if required.

4.
 Implementation of the onTouchEvent()
 callback method on the enclosing activity which, in turn, must call the onTouchEvent()
 method
 of the GestureDetectorCompat instance, passing through the current motion event object as an argument to the method.

Once implemented, the result is a set of methods within the application code that will be called when a gesture of a particular type is detected. The code within these methods can then be implemented to perform any tasks that need to be performed in response to the corresponding gesture.

In the remainder of this chapter, we will work through the creation of an example project intended to put the above steps into practice.

34.2

 Creating an Example Gesture Detection Project

The goal of this project is to detect the full range of common gestures currently supported by the GestureDetectorCompat class and to display status information to the user indicating the type of gesture that has been detected.

Create a new Kotlin based project in Android Studio, entering CommonGestures
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the screens, requesting the creation of an Empty Activity named CommonGesturesActivity
 with a corresponding layout resource file named activity_common_gestures.

Click on the Finish
 button to initiate the project creation process.

Once the new project has been created, navigate to the app -> res -> layout -> activity_common_gestures.xml
 file in the Project tool window and double-click on it to load it into the Layout Editor tool.

Within the Layout Editor tool, select the “Hello, World!” TextView component and, in the Attributes tool window, enter gestureStatusText
 as the ID.

34.3

 Implementing the Listener Class

As previously outlined, it is necessary to create a class that implements the GestureDetector.OnGestureListener
 interface and, if double tap detection is required, the GestureDetector.OnDoubleTapListener
 interface. While this can be an entirely new class, it is also perfectly valid to implement this within the current activity class. For the purposes of this example, therefore, we will modify the CommonGesturesActivity class to implement these listener interfaces. Edit the CommonGesturesActivity.
 kt
 file so that it reads as follows:

package com.ebookfrenzy.commongestures

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.GestureDetector

import android.widget.TextView

import android.view.MotionEvent

import kotlinx.android.synthetic.main.activity_common_gestures.*

class CommonGesturesActivity : AppCompatActivity(),

 GestureDetector.OnGestureListener, GestureDetector.OnDoubleTapListener

{

.

.

Declaring that the class implements the listener interfaces mandates that the corresponding methods also be implemented in the class:

class CommonGesturesActivity : AppCompatActivity(),

 GestureDetector.OnGestureListener, GestureDetector.OnDoubleTapListener

{

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_common_gestures)

 }

 override fun onDown(event: MotionEvent): Boolean {

 gestureStatusText.text = "onDown"

 return true

 }

 override fun onFling(event1: MotionEvent, event2: MotionEvent,

 velocityX: Float, velocityY: Float): Boolean {

 gestureStatusText.text = "onFling"

 return true

 }

 override fun onLongPress(event: MotionEvent) {

 gestureStatusText.text = "onLongPress"

 }

 override fun onScroll(e1: MotionEvent, e2: MotionEvent,

 distanceX: Float, distanceY: Float): Boolean {

 gestureStatusText.text = "onScroll"

 return true

 }

 override fun onShowPress(event: MotionEvent) {

 gestureStatusText.text = "onShowPress"

 }

 override fun onSingleTapUp(event: MotionEvent): Boolean {

 gestureStatusText.text = "onSingleTapUp"

 return true

 }

 override fun onDoubleTap(event: MotionEvent): Boolean {

 gestureStatusText.text = "onDoubleTap"

 return true

 }

 override fun onDoubleTapEvent(event: MotionEvent): Boolean {

 gestureStatusText.text = "onDoubleTapEvent"

 return true

 }

 override fun onSingleTapConfirmed(event: MotionEvent): Boolean {

 gestureStatusText.text = "onSingleTapConfirmed"

 return true

 }

}

Note that many of these methods return true.
 This indicates to the Android Framework that the event has been consumed by the method and does not need to be passed to the next event handler in the stack.

34.4

 Creating the GestureDetectorCompat
 Instance

With the activity class now updated to implement the listener interfaces, the next step is to create an instance of the GestureDetectorCompat class. Since this only needs to be performed once at the point that the activity is created, the best place for this code is in the onCreate()
 method. Since we also want to detect double taps, the code also needs to call the setOnDoubleTapListener()

 method of the GestureDetectorCompa
 t instance:

package com.ebookfrenzy.commongestures

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.GestureDetector

import android.widget.TextView

import android.view.MotionEvent

import android.support.v4.view.GestureDetectorCompat

import kotlinx.android.synthetic.main.activity_common_gestures.*

class CommonGesturesActivity : AppCompatActivity(), GestureDetector.OnGestureListener, GestureDetector.OnDoubleTapListener

{

 var gDetector: GestureDetectorCompat? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_common_gestures)

 this.gDetector = GestureDetectorCompat(this, this)

 gDetector?.setOnDoubleTapListener(this)

 }

.

.

34.5

 Implementing the onTouchEvent() Method

If the application were to be compiled and run at this point, nothing would happen if gestures were performed on the device display. This is because no code has been added to intercept touch events and to pass them through to the GestureDetectorCompat instance. In order to achieve this, it is necessary to override the onTouchEvent()
 method within the activity class and implement it such that it calls the onTouchEvent()
 method of the GestureDetectorCompat instance. Remaining in the CommonGesturesActivity.
 kt
 file, therefore, implement this method so that it reads as follows:

override fun onTouchEvent(event: MotionEvent): Boolean {

 this.gDetector?.onTouchEvent(event)

 // Be sure to call the superclass implementation

 return super.onTouchEvent(event)

}

34.6

 Testing the Application

Compile and run the application on either a physical Android device or an AVD emulator. Once launched, experiment with swipes, presses, scrolling motions and double and single taps. Note that the text view updates to reflect the events as illustrat
 ed in Figure 34-1
 :

[image:]

Figure 34-1

34.7

 Summary

Any physical contact between the user and the touch screen display of a device can be considered a “gesture”. Lacking the physical keyboard and mouse pointer of a traditional computer system, gestures are widely used as a method of interaction between user and application. While a gesture can be comprised of just about any sequence of motions, there is a widely used set of gestures with which users of touch screen devices have become familiar. A number of these so-called “common gestures” can be easily detected within an application by making use of the Android Gesture Detector classes. In this chapter, the use of this technique has been outlined both in theory and through the implementation of an example project.

Having covered common gestures in this chapter, the next chapter will look at detecting a wider range of gesture types including the ability to both design and detect your own gestures.

35.

 Implementing Custom Gesture
 and Pinch Recognition
 on Android

The previous chapter covered the detection of what are referred to as “common gestures” from within an Android application. In practice, however, a gesture can conceivably involve just about any sequence of touch motions on the display of an Android device. In recognition of this fact, the Android SDK allows custom gestures of just about any nature to be defined by the application developer and used to trigger events when performed by the user. This is a multistage process, the details of which are the topic of this chapter.

35.1

 The Android Gesture Builder Application

The Android SDK allows developers to design custom gestures which are then stored in a gesture file bundled with an Android application package. These custom gesture files are most easily created using the Gesture Builder
 application which is bundled with the samples package supplied as part of the Android SDK. The creation of a gestures file involves launching the Gesture Builder application, either on a physical device or emulator, and “drawing” the gestures that will need to be detected by the application. Once the gestures have been designed, the file containing the gesture data can be pulled off the SD card of the device or emulator and added to the application project. Within the application code, the file is then loaded into an instance of the GestureLibrary
 class
 where it can be used to search for matches to any gestures performed by the user on the device display.

35.2

 The GestureOverlayView Class

In order to facilitate the detection of gestures within an application, the Android SDK provides the GestureOverlayView class. This is a transparent view that can be placed over other views in the user interface for the sole purpose of detecting gestures.

35.3

 Detecting Gestures

Gestures are detected by loading the gestures file created using the Gesture Builder app and then registering a GesturePerformedListener

 event listener on an instance of the GestureOverlayView class. The enclosing class is then declared to implement both the OnGesturePerformedListener
 interface and the corresponding onGesturePerformed
 callback method
 required by that interface. In the event that a gesture is detected by the listener, a call to the onGesturePerformed
 callback method is triggered by the Android runtime system.

35.4

 Identifying Specific Gestures

When a gesture is detected, the onGesturePerformed
 callback method is called and passed as arguments a reference to the GestureOverlayView
 object on which the gesture was detected, together with a Gesture object containing information about the gesture.

With access to the Gesture object, the GestureLibrary
 can then be used to compare the detected gesture to those contained in the gestures file previously loaded into the application. The GestureLibrary reports the probability that the gesture performed by the user matches an entry in the gestures file by calculating a prediction score
 for each gesture. A prediction score of 1.0 or greater is generally accepted to be a good match between a gesture stored in the file and that performed by the user on the device display.

35.5

 Building and Running the Gesture Builder Application

The Gesture Builder application is bundled by default with the AVD emulator profile for some versions of the SDK. It is not, however, pre-installed on most physical Android devices. If the utility is pre-installed, it will be listed along with the other apps installed in the device or AVD instance. In the event that it is not installed, the source code for the utility is included with the sample code provided with this book. If you have not already done so, download this now using the following link:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

The source code for the Gesture Builder application is located within this archive in a folder named GestureBuilder
 .

From the Android Studio welcome screen open the GestureBuilder project and run it on a device or emulator.

35.6

 Creating a Gestures File

Once the Gesture Builder application has loaded, it should indicate that no gestures have yet been created. To create a new gesture, click on the Add gesture
 button located at the bottom of the device screen, enter the name Circle Gesture
 into the Name
 text box and then “draw” a gesture using a circular motion on the screen as illustrated in Figure 35-1
 . Assuming that the gesture appears as required (represented by the yellow line on the device screen), click on the Done
 button to add the gesture to the gesture
 s file:

[image:]

Figure 35-1

After the gesture has been saved, the Gesture Builder app will display a list of currently defined gestures, which, at this point, will consist solely of the new Circle Gesture
 .

35.7

 Creating the Example Project

Create a new project in Android Studio with Kotlin support enabled, entering CustomGestures
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the screens, requesting the creation of an Empty Activity named CustomGesturesActivity
 with a corresponding layout file named activity_custom_gestures.

Click on the Finish
 button to initiate the project creation process.

35.8

 Extracting the Gestures File
 from the SD Card

As each gesture was created within the Gesture Builder application, it was added to a file named gestures
 located on the SD Card of the emulator or device on which the app was running. Before this file can be added to an Android Studio project, however, it must first be pulled off the SD Card and saved to the local file system. This is most easily achieved by using the Android Studio Device File Explorer tool window. Display this tool using the View -> Tool Windows -> Device File Explorer
 menu option. Once displayed, select the device on which the gesture file was created from the dropdown menu, then navigate through the filesystem to the /sdcard
 folder:

[image:]

Figure 35-2

Locate the gestures
 file in this folder, right click on it and select the Save as…
 menu and save the file to a temporary location.

Once the gestures file has been created and pulled off the SD Card, it is ready to be added to an Android Studio project as a resource file.

35.9

 Adding the Gestures File to the Project

Within the Android Studio Project tool window, locate and right-click on the res
 folder (located under app
) and select New -> Directory
 from the resulting menu. In the New Directory dialog, enter raw
 as the folder name and click on the OK
 button. Using the appropriate file explorer utility for your operating system type, locate the gestures
 file previously pulled from the SD Card and copy and paste it into the new raw
 folder in the Project tool window.

35.10

 Designing the User Interface

This example application calls for a very simple user interface consisting of a LinearLayout view with a GestureOverlayView layered on top of it to intercept any gestures performed by the user. Locate the app -> res -> layout -> activity_custom_gestures.xml
 file, double-click on it to load it into the Layout Editor tool and select and delete the default TextView widget.

Switch the layout editor Text mode and modify the XML so that it reads as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".CustomGesturesActivity">

 <android.gesture.GestureOverlayView

 android:id="@+id/gOverlay"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

35.11

 Loading the Gestures File

Now that the gestures file has been added to the project, the next step is to write some code so that the file is loaded when the activity starts up. For the purposes of this project, the code to achieve this will be added to the CustomGesturesActivity
 class located in the CustomGesturesActivity.
 kt
 source file as follows:

package com.ebookfrenzy.customgestures

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.gesture.GestureLibraries

import android.gesture.GestureLibrary

import android.gesture.GestureOverlayView

import android.gesture.GestureOverlayView.OnGesturePerformedListener

import kotlinx.android.synthetic.main.activity_custom_gestures.*

class CustomGesturesActivity : AppCompatActivity(), OnGesturePerformedListener
 {

 var gLibrary: GestureLibrary? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_custom_gestures)

 gestureSetup()

 }

 private fun gestureSetup() {

 gLibrary = GestureLibraries.fromRawResource(this,

 R.raw.gestures)

 if (gLibrary?.load() == false) {

 finish()

 }

 }

.

.

}

In addition to some necessary import directives, the above code also creates a
 GestureLibrary
 instance named
 gLibrary
 and then loads into it the contents of the gestures file located in the
 raw
 resources folder. The activity class has also been modified to implement the
 OnGesturePerformedListener
 interface, which requires the implementation of the
 onGesturePerformed
 callback method (which will be created in a later section of this chapter).

35.12

 Registering the Event Listener

In order for the activity to receive notification that the user has performed a gesture on the screen, it is necessary to register the OnGesturePerformedListener
 event listener as outlined in the following code fragment:

private fun gestureSetup() {

 gLibrary = GestureLibraries.fromRawResource(this,

 R.raw.gestures)

 if (gLibrary?.load() == false) {

 finish()

 }

 gOverlay.addOnGesturePerformedListener(this)

}

35.13

 Implementing the onGesturePerformed Method

All that remains before an initial test run of the application can be performed is to implement the OnGesturePerformed
 callback method. This is the method which will be called when a gesture is performed on the GestureOverlayView instance:

package com.ebookfrenzy.customgestures

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.gesture.GestureLibraries

import android.gesture.GestureLibrary

import android.gesture.GestureOverlayView

import android.gesture.GestureOverlayView.OnGesturePerformedListener

import kotlinx.android.synthetic.main.activity_custom_gestures.*

import android.gesture.Prediction

import android.widget.Toast

import android.gesture.Gesture

import java.util.ArrayList

class CustomGesturesActivity : AppCompatActivity(), OnGesturePerformedListener {

.

.

 override fun onGesturePerformed(overlay: GestureOverlayView,

 gesture: Gesture) {

 val predictions = gLibrary?.recognize(gesture)

 predictions?.let {

 if (it.size > 0 && it[0].score > 1.0) {

 val action = it[0].name

 Toast.makeText(this, action, Toast.LENGTH_SHORT).show()

 }

 }

 }

}

When a gesture on the gesture overlay view object is detected by the Android runtime, the onGesturePerformed
 method is called. Passed through as arguments are a reference to the GestureOverlayView object on which the gesture was detected together with an object of type Gesture
 . The Gesture class is designed to hold the information that defines a specific gesture (essentially a sequence of timed points on the screen depicting the path of the strokes that comprise a gesture).

The Gesture object is passed through to the recognize()
 method of our gLibrary
 instance, the purpose of which is to compare the current gesture with each gesture loaded from the gestures file. Once this task is complete, the recognize()
 method returns an ArrayList object containing a Prediction object for each comparison performed. The list is ranked in order from the best match (at position 0 in the array) to the worst. Contained within each prediction object is the name of the corresponding gesture from the gestures file and a prediction score indicating how closely it matches the current gesture.

The code in the above method, therefore, takes the prediction at position 0 (the closest match) makes sure it has a score of greater than 1.0 and then displays a Toast message (an Android class designed to display notification pop ups to the user) displaying the name of the matching gesture.

35.14

 Testing the Application

Build and run the application on either an emulator or a physical Android device and perform the circle gesture on the display. When performed, the toast notification should appear containing the name of the detected gesture. Note that when a gesture is recognized, it is outlined on the display with a bright yellow line while gestures about which the overlay is uncertain appear as a faded yellow line. While useful during development, this is probably not ideal for a real world application. Clearly, therefore, there is still some more configuration work to do.

35.15

 Configuring the GestureOverlayView

By default, the GestureOverlayView is configured to display yellow lines during gestures. The color used to draw recognized and unrecognized gestures can be defined via the android:gestureColor

 and android:uncertainGestureColor

 attributes. For example, to hide the gesture lines, modify the activity_custom_gestures.xml
 file in the example project as follows:

<android.gesture.GestureOverlayView

 android:id="@+id/gOverlay"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 android:gestureColor="#00000000"

 android:uncertainGestureColor="#00000000"
 />

On re-running the application, gestures should now be invisible (since they are drawn in white on the white background of the LinearLayout view).

35.16

 Intercepting Gestures

The GestureOverlayView is, as previously described, a transparent overlay that may be positioned over the top of other views. This leads to the question as to whether events intercepted by the gesture overlay should then be passed on to the underlying views when a gesture has been recognized. This is controlled via the android:eventsInterceptionEnabled
 property of the GestureOverlayView instance. When set to true, the gesture events are not passed to the underlying views when a gesture is recognized. This can be a particularly useful setting when gestures are being performed over a view that might be configured to scroll in response to certain gestures. Setting this property to true
 will avoid gestures also being interpreted as instructions to the underlying view to scroll in a particular direction.

35.17

 Detecting Pinch Gestures

Before moving on from touch handling in general and gesture recognition in particular, the last topic of this chapter is that of handling pinch gestures. While it is possible to create and detect a wide range of gestures using the steps outlined in the previous sections of this chapter it is, in fact, not possible to detect a pinching gesture (where two fingers are used in a stretching and pinching motion, typically to zoom in and out of a view or image) using the techniques discussed so far.

The simplest method for detecting pinch gestures is to use the Android ScaleGestureDetector
 class
 . In general terms, detecting pinch gestures involves the following three steps:

1.
 Declaration of a new class which implements the SimpleOnScaleGestureListener
 interface including the required onScale()

 , onScaleBegin(

)
 and onScaleEnd()

 callback methods.

2.
 Creation of an instance of the ScaleGestureDetector class, passing through an instance of the class created in step 1 as an argument.

3.
 Implementing the onTouchEvent()

 callback method on the enclosing activity which, in turn, calls the onTouchEvent()
 method of the ScaleGestureDetector class
 .

In the remainder of this chapter, we will create a very simple example designed to demonstrate the implementation of pinch gesture recognition.

35.18

 A Pinch Gesture
 Example Project

Create a new project in Android Studio, entering PinchExample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Progress through the screens, requesting the creation of an Empty Activity named PinchExampleActivity
 with a layout resource file named activity_pinch_example.

Within the activity_pinch_example.xml
 file, select the default TextView object and use the Attributes tool window to set the ID to myTextView
 .

Locate and load the PinchExampleActivity.
 kt
 file into the Android Studio editor and modify the file as follows:

package com.ebookfrenzy.pinchexample

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.MotionEvent

import android.view.ScaleGestureDetector

import android.view.ScaleGestureDetector.SimpleOnScaleGestureListener

import kotlinx.android.synthetic.main.activity_pinch_example.*

class PinchExampleActivity : AppCompatActivity() {

 var scaleGestureDetector: ScaleGestureDetector? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_pinch_example)

 scaleGestureDetector = ScaleGestureDetector(this,

 MyOnScaleGestureListener())

 }

 override fun onTouchEvent(event: MotionEvent): Boolean {

 scaleGestureDetector?.onTouchEvent(event)

 return true

 }

 inner class MyOnScaleGestureListener : SimpleOnScaleGestureListener() {

 override fun onScale(detector: ScaleGestureDetector): Boolean {

 val scaleFactor = detector.scaleFactor

 if (scaleFactor > 1) {

 myTextView.text = "Zooming Out"

 } else {

 myTextView.text = "Zooming In"

 }

 return true

 }

 override fun onScaleBegin(detector: ScaleGestureDetector): Boolean {

 return true

 }

 override fun onScaleEnd(detector: ScaleGestureDetector) {

 }

 }

}

The code declares a new class named MyOnScaleGestureListener which extends the Android SimpleOnScaleGestureListener class
 . This interface requires that three methods (onScale()
 , onScaleBegin()
 and onScaleEnd()
) be implemented. In this instance the onScale()
 method identifies the scale factor and displays a message on the text view indicating the type of pinch gesture detected.

Within the onCreate()
 method a new ScaleGestureDetector
 instance is created, passing through a reference to the enclosing activity and an instance of our new MyOnScaleGestureListener
 class as arguments. Finally, an onTouchEvent()
 callback method is implemented for the activity, which simply calls the corresponding onTouchEvent()
 method of the ScaleGestureDetector
 object, passing through the MotionEvent
 object as an argument.

Compile and run the application on an emulator or physical Android device and perform pinching gestures on the screen, noting that the text view displays either the zoom in or zoom out message depending on the pinching motion. Pinching gestures may be simulated within the emulator by holding down the Ctrl (or Cmd) key and clicking and dragging the mouse pointer
 as shown in Figure 35-3
 :

[image:]

Figure 35-3

35.19

 Summary

A gesture is essentially the motion of points of contact on a touch screen involving one or more strokes and can be used as a method of communication between user and application. Android allows gestures to be designed using the Gesture Builder application. Once created, gestures can be saved to a gestures file and loaded into an activity at application runtime using the GestureLibrary.

Gestures can be detected on areas of the display by overlaying existing views with instances of the transparent GestureOverlayView
 class and implementing an OnGesturePerformedListener
 event listener. Using the GestureLibrary, a ranked list of matches between a gesture performed by the user and the gestures stored in a gestures file may be generated, using a prediction score to decide whether a gesture is a close enough match.

Pinch gestures may be detected through the implementation of the ScaleGestureDetector class, an example of which was also provided in this chapter.

36.

 An Introduction to Android Fragments

As you progress through the chapters of this book it will become increasingly evident that many of the design concepts behind the Android system were conceived with the goal of promoting reuse of, and interaction between, the different elements that make up an application. One such area that will be explored in this chapter involves the use of Fragments.

This chapter will provide an overview of the basics of fragments in terms of what they are and how they can be created and used within applications. The next chapter will work through a tutorial designed to show fragments in action when developing applications in Android Studio, including the implementation of communication between fragments.

36.1

 What is a Fragment
 ?

A fragment is a self-contained, modular section of an application’s user interface and corresponding behavior that can be embedded within an activity. Fragments can be assembled to create an activity during the application design phase, and added to or removed from an activity during application runtime to create a dynamically changing user interface.

Fragments may only be used as part of an activity and cannot be instantiated as standalone application elements. That being said, however, a fragment can be thought of as a functional “sub-activity” with its own lifecycle similar to that of a full activity.

Fragment
 s are stored in the form of XML layout files and may be added to an activity either by placing appropriate <fragment> elements in the activity’s layout file, or directly through code within the activity’s class implementation.

36.2

 Creating a Fragment

The two components that make up a fragment are an XML layout file and a corresponding Kotlin class. The XML layout file for a fragment takes the same format as a layout for any other activity layout and can contain any combination and complexity of layout managers and views. The following XML layout, for example, is for a fragment consisting simply of a RelativeLayout with a red background containing a single TextView:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@color/red" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:text="@string/fragone_label_text"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

The corresponding class to go with the layout must be a subclass of the Android Fragment
 class. This class should, at a minimum, override the onCreateView()
 method which is responsible for loading the fragment layout. For example:

package com.example.myfragmentdemo

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.support.v4.app.Fragment

class FragmentOne : Fragment() {

 override fun onCreateView(inflater: LayoutInflater?,

 container: ViewGroup?, savedInstanceState: Bundle?): View? {

 // Inflate the layout for this fragment

 return inflater?.inflate(R.layout.activity_fragment_demo,

 container, false)

 }

}

In addition to the onCreateView()
 method, the class may also override the standard lifecycle methods.

Note that in order to make the above fragment compatible with Android versions prior to version 3.0, the Fragment class from the v4 support library has been imported.

Once the fragment layout and class have been created, the fragment is ready to be used within application activities.

36.3

 Adding a Fragment
 to an Activity using the Layout XML File

Fragments may be incorporated into an activity either by writing Kotlin code or by embedding the fragment into the activity’s XML layout file. Regardless of the approach used, a key point to be aware of is that when the support library is being used for compatibility with older Android releases, any activities using fragments must be implemented as a subclass of FragmentActivity
 instead of the AppCompatActivity
 class:

package com.example.myFragmentDemo

import android.support.v4.app.FragmentActivity

import android.os.Bundle

class FragmentExampleActivity : FragmentActivity()
 {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_fragment_example)

 }

}

Fragments are embedded into activity layout files using the <fragment> element
 . The following example layout embeds the fragment created in the previous section of this chapter into an activity layout:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".FragmentDemoActivity" >

 <fragment

 android:id="@+id/fragment_one"

 android:name="com.example.myfragmentdemo.myfragmentdemo.FragmentOne"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_centerVertical="true"

 tools:layout="@layout/fragment_one_layout" />

</RelativeLayout>

The key properties within the <fragment>
 element are android:name
 , which must reference the class associated with the fragment, and tools:layout

 , which must reference the XML resource file containing the layout of the fragment.

Once added to the layout of an activity, fragments may be viewed and manipulated within the Android Studio Layout Editor tool. Figure 36-1
 , for example, shows the above layout with the embedded fragment within the Android Studio Layout
 Editor:

[image:]

Figure 36-1

36.4

 Adding and Managing Fragments
 in Code

The ease of adding a fragment to an activity via the activity’s XML layout file comes at the cost of the activity not being able to remove the fragment at runtime. In order to achieve full dynamic control of fragments during runtime, those activities must be added via code. This has the advantage that the fragments can be added, removed and even made to replace one another dynamically while the application is running.

When using code to manage fragments, the fragment itself will still consist of an XML layout file and a corresponding class. The difference comes when working with the fragment within the hosting activity. There is a standard sequence of steps when adding a fragment to an activity using code:

1.
 Create an instance of the fragment’s class.

2.
 Pass any additional intent arguments through to the class instance.

3.
 Obtain a reference to the fragment manager instance.

4.
 Call the beginTransaction()
 method
 on the fragment manager instance. This returns a fragment transaction instance.

5.
 Call the add()
 method of the fragment transaction instance, passing through as arguments the resource ID of the view that is to contain the fragment and the fragment class instance.

6.
 Call the commit()
 method of the fragment transaction.

The following code, for example, adds a fragment defined by the FragmentOne class so that it appears in the container view with an ID of LinearLayout1:

val firstFragment = FragmentOne()

firstFragment.arguments = intent.extras

val transaction = fragmentManager.beginTransaction()

transaction.add(R.id.LinearLayout1, firstFragment)

transaction.commit()

The above code breaks down each step into a separate statement for the purposes of clarity. The last four lines can, however, be abbreviated into a single line of code as follows:

supportFragmentManager.beginTransaction().add(

 R.id.LinearLayout1, firstFragment).commit()

Once added to a container, a fragment may subsequently be removed via a call to the remove()
 method of the fragment transaction instance, passing through a reference to the fragment instance that is to be removed:

transaction.remove(firstFragment)

Similarly, one fragment may be replaced with another by a call to the replace()
 method of the fragment transaction instance. This takes as arguments the ID of the view containing the fragment and an instance of the new fragment. The replaced fragment may also be placed on what is referred to as the back
 stack so that it can be quickly restored in the event that the user navigates back to it. This is achieved by making a call to the addToBackStack()
 method of the fragment transaction object before making the commit()
 method call:

val secondFragment = FragmentTwo()

transaction.replace(R.id.LinearLayout1, secondFragment)

transaction.addToBackStack(null)

transaction.commit()

36.5

 Handling Fragment
 Events

As previously discussed, a fragment is very much like a sub-activity with its own layout, class and lifecycle. The view components (such as buttons and text views) within a fragment are able to generate events just like those in a regular activity. This raises the question as to which class receives an event from a view in a fragment; the fragment itself, or the activity in which the fragment is embedded. The answer to this question depends on how the event handler is declared.

In the chapter entitled
“An Overview and Example of Android Event Handling”

 , two approaches to event handling were discussed. The first method involved configuring an event listener and callback method within the code of the activity. For example:

button.setOnClickListener { // Code to be performed on button click }

In the case of intercepting click events, the second approach involved setting the android:onClick

 property within the XML layout file:

<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="onClick"

 android:text="Click me" />

The general rule for events generated by a view in a fragment is that if the event listener was declared in the fragment class using the event listener and callback method approach, then the event will be handled first by the fragment. If the android:onClick
 resource is used, however, the event will be passed directly to the activity containing the fragment.

36.6

 Implementing Fragment Communication

Once one or more fragments are embedded within an activity, the chances are good that some form of communication will need to take place both between the fragments and the activity, and between one fragment and another. In fact, good practice dictates that fragments do not communicate directly with one another. All communication should take place via the encapsulating activity.

In order for an activity to communicate with a fragment, the activity must identify the fragment object via the ID assigned to it. Once this reference has been obtained, the activity can simply call the public methods of the fragment object.

Communicating in the other direction (from fragment to activity) is a little more complicated. In the first instance, the fragment must define a listener interface, which is then implemented within the activity class. For example, the following code declares an interface named ToolbarListener
 on a fragment class named ToolbarFragment. The code also declares a variable in which a reference to the activity will later be stored:

class ToolbarFragment : Fragment() {

 var activityCallback: ToolbarFragment.ToolbarListener? = null

 interface ToolbarListener {

 fun onButtonClick(fontsize: Int, text: String)

 }

.

.

}

The above code dictates that any class that implements the ToolbarListener interface must also implement a callback method named onButtonClick
 which, in turn, accepts an integer and a String as arguments.

Next, the onAttach()
 method
 of the fragment class needs to be overridden and implemented. This method is called automatically by the Android system when the fragment has been initialized and associated with an activity. The method is passed a reference to the activity in which the fragment is contained. The method must store a local reference to this activity and verify that it implements the ToolbarListener
 interface:

override fun onAttach(context: Context?) {

 super.onAttach(context)

 try {

 activityCallback = context as ToolbarListener

 } catch (e: ClassCastException) {

 throw ClassCastException(context?.toString()

 + " must implement ToolbarListener")

 }

}

Upon execution of this example, a reference to the activity will be stored in the local activityCallback
 variable, and an exception will be thrown if that activity does not implement the ToolbarListener interface.

The next step is to call the callback method of the activity from within the fragment. When and how this happens is entirely dependent on the circumstances under which the activity needs to be contacted by the fragment. The following code, for example, calls the callback method on the activity when a button is clicked:

override fun onButtonClick(arg1: Int, arg2: String) {

 activityCallback.onButtonClick(arg1, arg2)

}

All that remains is to modify the activity class so that it implements the ToolbarListener interface. For example:

class FragmentExampleActivity : FragmentActivity(),

 ToolbarFragment.ToolbarListener
 {

 override fun onButtonClick(arg1: Int, arg2: String) {

 // Implement code for callback method

 }

.

.

}

As we can see from the above code, the activity declares that it implements the ToolbarListener interface of the ToolbarFragment class and then proceeds to implement the onButtonClick()
 method as required by the interface.

36.7

 Summary

Fragments provide a powerful mechanism for creating re-usable modules of user interface layout and application behavior, which, once created, can be embedded in activities. A fragment consists of a user interface layout file and a class. Fragments may be utilized in an activity either by adding the fragment to the activity’s layout file, or by writing code to manage the fragments at runtime. Fragments added to an activity in code can be removed and replaced dynamically at runtime. All communication between fragments should be performed via the activity within which the fragments are embedded.

Having covered the basics of fragments in this chapter, the next chapter will work through a tutorial designed to reinforce the techniques outlined in this chapter.

37.

 Using Fragments
 in Android Studio - An Example

As outlined in the previous chapter, fragments provide a convenient mechanism for creating reusable modules of application functionality consisting of both sections of a user interface and the corresponding behavior. Once created, fragments can be embedded within activities.

Having explored the overall theory of fragments in the previous chapter, the objective of this chapter is to create an example Android application using Android Studio designed to demonstrate the actual steps involved in both creating and using fragments, and also implementing communication between one fragment and another within an activity.

37.1

 About the Example Fragment Application

The application created in this chapter will consist of a single activity and two fragments. The user interface for the first fragment will contain a toolbar of sorts consisting of an EditText view, a SeekBar
 and a Button, all contained within a RelativeLayout view. The second fragment will consist solely of a TextView object, also contained within a RelativeLayout view.

The two fragments will be embedded within the main activity of the application and communication implemented such that when the button in the first fragment is pressed, the text entered into the EditText view will appear on the TextView of the second fragment using a font size dictated by the position of the SeekBar in the first fragment.

Since this application is intended to work on earlier versions of Android, it will also be necessary to make use of the appropriate Android support library.

37.2

 Creating the Example Project

Create a new project in Android Studio with Kotlin support enabled, entering FragmentExample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Progress through the screens, requesting the creation of an Empty Activity named FragmentExampleActivity
 with a corresponding layout resource file named activity_fragment_example.

Click the Finish
 button to begin the project creation process.

37.3

 Creating the First Fragment Layout

The next step is to create the user interface for the first fragment that will be used within our activity.

This user interface will, of course, reside in an XML layout file so begin by navigating to the layout
 folder located under app -> res
 in the Project tool window. Once located, right-click on the layout
 entry and select the New -> Layout resource file
 menu option as illustrated in Figure 37-1
 :

[image:]

Figure 37-1

In the resulting dialog, name the layout toolbar_fragment
 and change the root element to RelativeLayout before clicking on OK to create the new resource file.

The new resource file will appear within the Layout Editor tool ready to be designed. Switch the Layout Editor to Text mode and modify the XML so that it reads as outlined in the following listing to add three new view elements to the layout:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/seekBar1"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="17dp"

 android:text="Change Text" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="16dp"

 android:ems="10"

 android:inputType="text" >

 <requestFocus />

 </EditText>

 <SeekBar

 android:id="@+id/seekBar1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentStart="true"

 android:layout_below="@+id/editText1"

 android:layout_marginTop="14dp" />

</RelativeLayout>

Once the changes have been made, switch the Layout Editor tool back to Design mode and click on the warning button in the top right-hand corner of the design area. Select the hardcoded text warning, click the Fix
 button and assign the string to a resource named change_text
 .

Upon completion of these steps, the user interface layout should resemble that of Figure 37-2
 :

[image:]

Figure 37-2

With the layout for the first fragment implemented, the next step is to create a class to go with it.

37.4

 Creating the First Fragment Class

In addition to a user interface layout, a fragment also needs to have a class associated with it to do the actual work behind the scenes. Add a class for this purpose to the project by unfolding the app -> java
 folder in the Project tool window and right-clicking on the package name given to the project when it was created (in this instance com.ebookfrenzy.fragmentexample
). From the resulting menu, select the New ->
 Kotlin File/Class
 option. In the resulting Create New Class
 dialog, name the class ToolbarFragment
 ,
 change the Kind
 setting to Class
 and click on OK
 to create the new class.

Once the class has been created it should, by default, appear in the editing panel where it will read as follows:

package com.ebookfrenzy.fragmentexample

class ToolbarFragment {

}

For the time being, the only changes to this class are the addition of some import directives and the overriding of the onCreateView()
 method to make sure the layout file is inflated and displayed when the fragment is used within an activity. The class declaration also needs to indicate that the class extends the Android Fragment class:

package com.ebookfrenzy.fragmentexample

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.support.v4.app.Fragment

import android.widget.Button

class ToolbarFragment : Fragment()
 {

 override fun onCreateView(inflater: LayoutInflater,

 container: ViewGroup?,

 savedInstanceState: Bundle?): View? {

 // Inflate the layout for this fragment

 val view = inflater.inflate(R.layout.toolbar_fragment,

 container, false)

 return view

 }

}

Later in this chapter, more functionality will be added to this class. Before that, however, we need to create the second fragment.

37.5

 Creating the Second Fragment Layout

Add a second new Android XML layout resource file to the project, once again selecting a RelativeLayout as the root element. Name the layout text_fragment
 and click OK
 . When the layout loads into the Layout Editor tool, change to Text mode and modify the XML to add a TextView to the fragment layout as follows:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:text="Fragment Two"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Once the XML changes have been made, switch back to Design mode and extract the string to a resource named fragment_two
 . Upon completion of these steps, the user interface layout for this second fragment should resemble that of Figure 37-3
 .

As with the first fragment, this one will also need to have a class associated with it. Right-click on app -> java -> com.ebookfrenzy.fragmentexample
 in the Project tool window. From the resulting menu, select the New ->
 Kotlin File/Class
 option. Name the fragment TextFragment
 , change the Kind
 menu to Class
 and click OK
 to create the class.

[image:]

Figure 37-3

Edit the new TextFragment.
 kt
 class file and modify it to implement the onCreateView()
 method and designate the class as extending the Android Fragment
 class:

package com.ebookfrenzy.fragmentexample

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.support.v4.app.Fragment

class TextFragment : Fragment()
 {

 override fun onCreateView(inflater: LayoutInflater,

 container: ViewGroup?,

 savedInstanceState: Bundle?): View? {

 return inflater.inflate(R.layout.text_fragment,

 container, false)

 }

}

Now that the basic structure of the two fragments has been implemented, they are ready to be embedded in the application’s main activity.

37.6

 Adding the Fragments to the Activity

The main activity for the application has associated with it an XML layout file named activity_fragment_example.xml
 . For the purposes of this example, the fragments will be added to the activity using the <fragment> element within this file. Using the Project tool window, navigate to the app ->
 res -> layout
 section of the FragmentExample
 project and double-click on the activity_fragment_example.xml
 file to load it into the Android Studio Layout Editor tool.

With the Layout Editor tool in Design mode, select and delete the default TextView object from the layout and select the Common
 category in the palette. Drag the <fragment>
 component from the list of layouts and drop it onto the layout so that it is centered horizontally and positioned such that the dashed line appears indicating the top layout margin:

[image:]

Figure 37-4

On dropping the fragment onto the layout, a dialog will appear displaying a list of Fragments available within the current project as illustrated in Figure 37-5
 :

[image:]

Figure 37-5

Select the ToolbarFragment entry from the list and click on the OK button to dismiss the Fragments dialog. Once added, click on the red warning button in the top right-hand corner of the layout editor to display the warnings panel. An unknown fragments
 message (Figure 37-6
) will be listed indicating that the Layout Editor tool needs to know which fragment to display during the preview session. Display the ToolbarFragment fragment by clicking on the Use @layout/toolbar_fragment

 link within the message:

[image:]

Figure 37-6

Click and drag another <fragment> entry from the panel and position it so that it is centered horizontally and located beneath the bottom edge of the first fragment. When prompted, select the TextFragment
 entry from the fragment dialog before clicking on the OK button. When the rendering message appears, click on the Use @layout/text_fragment
 option. Use the Infer Constraints button to establish any missing layout constraints.

Note that the fragments are now visible in the layout as demonstrated in Figure 37-7
 :

[image:]

Figure 37-7

Before proceeding to the next step, select the TextFragment instance in the layout and, within the Attributes tool window, change the ID of the fragment to text_fragment
 .

37.7

 Making the Toolbar Fragment Talk to the Activity

When the user touches the button in the toolbar fragment, the fragment class is going to need to get the text from the EditText view and the current value of the SeekBar and send them to the text fragment. As outlined in
“An Introduction to Android Fragments”

 , fragments should not communicate with each other directly, instead using the activity in which they are embedded as an intermediary.

The first step in this process is to make sure that the toolbar fragment responds to the button being clicked. We also need to implement some code to keep track of the value of the SeekBar view. For the purposes of this example, we will implement these listeners within the ToolbarFragment class. Select the ToolbarFragment.
 kt
 file and modify it so that it reads as shown in the following listing:

package com.ebookfrenzy.fragmentexample

import android.os.Bundle

import android.support.v4.app.Fragment

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.widget.Button

import android.widget.SeekBar

import android.content.Context

import kotlinx.android.synthetic.main.toolbar_fragment.*

class ToolbarFragment : Fragment(), SeekBar.OnSeekBarChangeListener
 {

 var seekvalue = 10

 override fun onCreateView(inflater: LayoutInflater,

 container: ViewGroup?, savedInstanceState: Bundle?): View? {

 // Inflate the layout for this fragment

 val view = inflater?.inflate(R.layout.toolbar_fragment,

 container, false)

 val seekBar: SeekBar? = view?.findViewById(R.id.seekBar1)

 val button: Button? = view?.findViewById(R.id.button1)

 seekBar?.setOnSeekBarChangeListener(this)

 button?.setOnClickListener { v: View -> buttonClicked(v)}

 return view

 }

 private fun buttonClicked(view: View) {

 }

 override fun onProgressChanged(seekBar: SeekBar, progress: Int,

 fromUser: Boolean) {

 seekvalue = progress

 }

 override fun onStartTrackingTouch(arg0: SeekBar) {

 }

 override fun onStopTrackingTouch(arg0: SeekBar) {

 }

}

Before moving on, we need to take some time to explain the above code changes. First, the class is declared as implementing the OnSeekBarChangeListener interface. This is because the user interface contains a SeekBar instance and the fragment needs to receive notifications when the user slides the bar to change the font size. Implementation of the OnSeekBarChangeListener
 interface requires that the onProgressChanged()
 , onStartTrackingTouch()
 and onStopTrackingTouch()
 methods be implemented. These methods have been implemented but only the onProgressChanged()
 method is actually required to perform a task, in this case storing the new value in a variable named seekvalue which has been declared at the start of the class. Also declared is a variable in which to store a reference to the EditText object.

The onCreateView()
 method has been modified to set up an onClickListener on the button which is configured to call a method named buttonClicked()
 when a click event is detected. This method is also then implemented, though at this point it does not do anything.

The next phase of this process is to set up the listener that will allow the fragment to call the activity when the button is clicked. This follows the mechanism outlined in the previous chapter:

class ToolbarFragment : Fragment(), SeekBar.OnSeekBarChangeListener {

 var seekvalue = 10

 var activityCallback: ToolbarFragment.ToolbarListener? = null

 interface ToolbarListener {

 fun onButtonClick(position: Int, text: String)

 }

 override fun onAttach(context: Context?) {

 super.onAttach(context)

 try {

 activityCallback = context as ToolbarListener

 } catch (e: ClassCastException) {

 throw ClassCastException(context?.toString()

 + " must implement ToolbarListener")

 }

 }

 override fun onCreateView(inflater: LayoutInflater,

 container: ViewGroup?, savedInstanceState: Bundle?): View? {

 seekBar1.setOnSeekBarChangeListener(this)

 button1.setOnClickListener { v: View -> buttonClicked(v)}

 // Inflate the layout for this fragment

 return inflater?.inflate(R.layout.toolbar_fragment,

 container, false)

 }

 private fun buttonClicked(view: View) {

 activityCallback?.onButtonClick(seekvalue,

 editText1.text.toString())

 }

.

.

}

The above implementation will result in a method named onButtonClick()
 belonging to the activity class being called when the button is clicked by the user. All that remains, therefore, is to declare that the activity class implements the newly created ToolbarListener interface and to implement the onButtonClick()
 method.

Since the Android Support Library is being used for fragment support in earlier Android versions, the activity also needs to be changed to subclass from FragmentActivity
 instead of AppCompatActivity
 . Bringing these requirements together results in the following modified FragmentExampleActivity.
 kt
 file:

package com.ebookfrenzy.fragmentexample

import android.support.v7.app.AppCompatActivity

import android.support.v4.app.FragmentActivity

import android.os.Bundle

class FragmentExampleActivity : FragmentActivity(),

 ToolbarFragment.ToolbarListener
 {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_fragment_example)

 }

 override fun onButtonClick(fontsize: Int, text: String) {

 }

}

With the code changes as they currently stand, the toolbar fragment will detect when the button is clicked by the user and call a method on the activity passing through the content of the EditText field and the current setting of the SeekBar view. It is now the job of the activity to communicate with the Text Fragment and to pass along these values so that the fragment can update the TextView object accordingly.

37.8

 Making the Activity Talk to the Text Fragment

As outlined in
“An Introduction to Android Fragments”

 , an activity can communicate with a fragment by obtaining a reference to the fragment class instance and then calling public methods on the object. As such, within the TextFragment class we will now implement a public method named changeTextProperties()
 which takes as arguments an integer for the font size and a string for the new text to be displayed. The method will then use these values to modify the TextView object. Within the Android Studio editing panel, locate and modify the TextFragment.
 kt
 file to add this new method and to add code to the onCreateView()
 method to obtain the ID of the TextView object:

package com.ebookfrenzy.fragmentexample

import android.os.Bundle

import android.support.v4.app.Fragment

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.support.v4.app.Fragment

import kotlinx.android.synthetic.main.text_fragment.*

class TextFragment : Fragment() {

 override fun onCreateView(inflater: LayoutInflater?,

 container: ViewGroup?,

 savedInstanceState: Bundle?): View? {

 return inflater?.inflate(R.layout.text_fragment,

 container, false)

 }

 fun changeTextProperties(fontsize: Int, text: String)

 {

 textView1.textSize = fontsize.toFloat()

 textView1.text = text

 }

}

When the TextFragment fragment was placed in the layout of the activity, it was given an ID of text_fragment.
 Using this ID, it is now possible for the activity to obtain a reference to the fragment instance and call the changeTextProperties()
 method on the object. Edit the FragmentExampleActivity.
 kt
 file and modify the onButtonClick()
 method as follows:

override fun onButtonClick(fontsize: Int, text: String) {

 val textFragment = supportFragmentManager.findFragmentById(

				R.id.text_fragment) as TextFragment

 textFragment.changeTextProperties(fontsize, text)

}

37.9

 Testing the Application

With the coding for this project now complete, the last remaining task is to run the application. When the application is launched, the main activity will start and will, in turn, create and display the two fragments. When the user touches the button in the toolbar fragment, the onButtonClick()
 method of the activity will be called by the toolbar fragment and passed the text from the EditText view and the current value of the SeekBar. The activity will then call the changeTextProperties()
 method of the second fragment, which will modify the TextView to reflect the new text and font size:

[image:]

Figure 37-8

37.10

 Summary

The goal of this chapter was to work through the creation of an example project intended specifically to demonstrate the steps involved in using fragments within an Android application. Topics covered included the use of the Android Support Library for compatibility with Android versions predating the introduction of fragments, the inclusion of fragments within an activity layout and the implementation of inter-fragment communication.

38.

 Modern Android
 App Architecture with

 Jetpack

Until recently, Google did not recommend a specific approach to building Android apps other than to provide tools and development kits while letting developers decide what worked best for a particular project or individual programming style. That changed in 2017 with the introduction of the
 Android
 Architecture Components which, in turn, became part of Android Jetpack when it was released in 2018.

The purpose of this chapter is to provide an overview of the concepts of Jetpack, Android app architecture recommendations and some of the key architecture components. Once the basics have been covered, these topics will be covered in more detail and demonstrated through practical examples in later chapters.

38.1

 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components and Android Support Library together with a set of guidelines that recommend how an Android App should be structured. The Android Architecture Components are designed to make it quicker and easier both to perform common tasks when developing Android apps while also conforming to the key principle of the architectural guidelines.

While all of the Android Architecture Components will be covered in this book, the objective of this chapter is to introduce the key architectural guidelines together with the ViewModel, LiveData, Lifecycle components while also introducing Data Binding and the use of Repositories.

Before moving on, it is important to understand the Jetpack approach to app development is not mandatory. While highlighting some of the shortcoming of other techniques that have gained popularity of the years, Google stopped short of completely condemning those approaches to app development. Google appears to be taking the position that while there is no right or wrong way to develop an app, there is a recommended way.

38.2

 The “Old” Architecture

In the chapter entitled
“Creating an Example Android App in Android Studio”

 , an Android project was created consisting of a single activity which contained all of the code for presenting and managing the user interface together with the back-end logic of the app. Up until the introduction of Jetpack, the most common architecture followed this paradigm with apps consisting of multiple activities (one for each screen within the app) with each activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed and recreated each time the user rotates the device leading to the loss of any app data that had not been saved to some form of persistent storage) as well as issues such inefficient navigation involving launching a new activity for each app screen accessed by the user.

38.3

 Modern Android Architecture

At the most basic level, Google now advocates single activity apps where different screens are loaded as content within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into entirely separate modules (a concept Google refers to as “separation of concerns”). One of the keys to this approach is the ViewModel component.

38.4

 The
 ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the code responsible for actually displaying and managing the user interface and interacting with the operating system. When designed in this way, an app will consist of one or more UI Controllers,
 such as an activity, together with ViewModel instances responsible for handling the data needed by those controllers.

In effect, the ViewModel only knows about the data model and corresponding logic. It knows nothing about the user interface and makes no attempt to directly access or respond to events relating to views within the user interface. When a UI controller needs data to display, it simply asks the ViewModel to provide it. Similarly, when the user enters data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how many times a UI controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in memory until the activity completely finishes which, in the single activity app, is not until the app exits.

[image:]

Figure 38-1

For all its strengths, however, the ViewModel class alone does not entirely address the issue of keeping the user interface data up to date through UI controller lifecycles. After it has been recreated due to a screen rotation or other event, for example, it is still the responsibility of the UI controller to re-populate the user interface with data from the ViewModel. It is also the responsibility of the UI controller to identify when data has changed within the ViewModel so that the user interface can be updated accordingly. Fortunately, these shortcoming are addressed by making use of the LiveData component.

38.5

 The
 LiveData Component

Consider an app that displays realtime data such as the current price of a financial stock. The app would probably use some form of stock price web service to continuously update the data model within the ViewModel with the latest information. Obviously, this realtime data is of little use unless it is displayed to the user in a timely manner. There are only two ways that the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller to continuously check with the ViewModel to find out if the data has changed since it was last displayed. The problem with this approach, however, is that it is inefficient. To maintain the realtime nature of the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that allows a value to become observable
 . In basic terms, an observable object has the ability to notify other objects when changes to its data occur thereby solving the problem of making sure that the user interface always matches the data within the ViewModel

This means, for example, that a UI controller that is interested a ViewModel value can set up an observer
 which will, in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would be wrapped in a LiveData object within the ViewModel and the UI controller would assign an observer to the value, declaring a method to be called when the value changes. This method will, when triggered by data change, read the updated value from the ViewModel and use it to update the user interface.

[image:]

Figure 38-2

A LiveData instance may also be declared as being mutable, allowing the observing entity to update the underlying value held within the LiveData object. The user might, for example, enter a value in the user interface that needs to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state
 of its observers. If, for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the background), the LiveData object will stop sending events to the observer. If the activity has just started or resumes after being paused, the LiveData object will send a LiveData event to the observer so that the activity has the most up to date value. Similarly, the LiveData instance will know when the activity is destroyed and remove the observer to free up resources.

So far, we’ve only talked about UI controllers using observers. In practice, however, an observer can be used within any object that conforms to the Jetpack approach to lifecycle management.

38.6

 LiveData and

 Data Binding

Android Jetpack includes the Data Binding Library which allows data in a ViewModel to be mapped directly to specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had to be written both to obtain references to the EditText and TextView views and to set and get the text properties to reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly within the XML layout file avoiding the need to write code to keep the layout views updated.

[image:]

Data binding will be covered in greater detail starting with the chapter entitled
“An Overview of Android Jetpack Data Binding”

 .

38.7

 Android

 Lifecycles

The duration from when an Android component is created to the point that it is destroyed is referred to as the lifecycle.
 During this lifecycle, the component will change between different lifecycle states, usually under the control of the operating system and in response to user actions. An activity, for example, will begin in the initialized
 state before transitioning to the created
 state. Once the activity is running it will switch to the started
 state from which it will cycle through various states including created
 , started
 , resumed
 and destroyed
 .

Many Android Framework classes and components allow other objects to access their current state. Lifecycle observers
 may also be used so that an object receives notification when the lifecycle state of another object changes. This is the technique used behind the scenes by the ViewModel component to identify when an observer has restarted or been destroyed. This functionality is not limited to Android framework and architecture components and may also be built into any other classes using a set lifecycle components included with the architecture components.

Objects that are able to detect and react to lifecycle state changes in other objects are said to be lifecycle-aware
 , while objects that provide access to their lifecycle state are called lifecycle-owners
 . Lifecycles will be covered in greater detail in the chapter entitled
“Working with Android Lifecycle-Aware Components”

 .

38.8

 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services) it is important to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would, after all, violate the separation of concerns guidelines. To avoid mixing this functionality in with the ViewModel, Google’s architecture guidelines recommend placing this code in a separate Repository
 module.

A repository is not an Android architecture component, but rather a Java class created by the app developer that is responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel allowing that data to be stored in the model.

[image:]

Figure 38-3

38.9

 Summary

Until the last year, Google has tended not to recommend any particular approach to structuring an Android app. That has now changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries and architecture guidelines. Google now recommends that an app project be divided into separate modules, each being responsible for a particular area of functionality otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible for handling the user interface. In addition, the code responsible for gathering data from data sources such as wen services or databases should be built into a separate repository module instead of being bundled with the view model.

Android Jetpack includes the Android Architecture Components which have been designed specifically to make it easier to develop apps the confirm to the recommended guidelines. This chapter has introduced the ViewModel, LiveData and Lifecycle components. These will be covered in more detail starting with the next chapter. Other architecture components not mentioned in this chapter will be covered later in the book.

39.

 An Android Jetpack
 ViewModel Tutorial

The previous chapter introduced the key concepts of Android Jetpack and outlined the basics of modern Android app architecture. Jetpack essentially defines a set of recommendations describing how an Android app project should be structured while providing a set of libraries and components that make it easier to conform with these guidelines with the goal of developing reliable apps with less coding and fewer errors.

To help re-enforce and clarify the information provided in the previous chapter, this chapter will step through the creation of an example app project that makes use of the ViewModel component. This example will be further enhanced in the next chapter with the inclusion of LiveData and data binding support.

39.1

 About the Project

In the chapter entitled
“Creating an Example Android App in Android Studio”

 , a project named AndroidSample was created in which all of the code for the app was bundled into the main Activity class file. In the chapter that followed, an AVD emulator was created and used to run the app. While the app was running, we experienced first-hand the kind of problems that occur when developing apps in this way when the data displayed on a TextView widget was lost during a device rotation.

This chapter will implement the same currency converter app, this time using the ViewModel component and following the Google app architecture guidelines to avoid Activity lifecycle complications.

39.2

 Creating the ViewModel Example Project

The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary, closing any currently open projects using the File -> Close Project
 menu option so that the Welcome screen appears.

Select the Start a new Android Studio project
 quick start option from the welcome screen and, within the resulting new project dialog, enter ViewModelDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet option and set the minimum SDK setting to API 26: Android 8.0 (Oreo) before proceeding to the Activity selection screen.

When the AndroidSample project was created, the Basic Activity template was chosen as the basis for the project. For this project, however, the Fragment+ViewModel
 template will be used. This will generate an Android Studio project structured to conform to the architectural guidelines. Select this option as shown in Figure 39-1
 before clicking the Next
 button:

[image:]

Figure 39-1

On the final setup screen, accept the default file names and create the project using the Finish button.

39.3

 Reviewing the Project

When a project is created using the Fragment+ViewModel
 template, the structure of the project differs in a number of ways from the Basic Activity used when the AndroidSample project was created. The key components of the project are as follows:

39.3.1

 The Main Activity

The first point to note is that the user interface of the main activity has been structured so as to allow a single activity to act as a container for all of the screens that will eventually be needed for the completed app. The main user interface layout for the activity is contained within the app -> res -> layout -> main_activity.xml
 file and provides an empty container space in the form of a FrameLayout (highlighted in Figure 39-2
) in which screen content will appear:

[image:]

Figure 39-2

39.3.2

 The Content Fragment

The FrameLayout container is just a placeholder which will be replaced at runtime by the content of the first screen that is to appear when the app launches. This content will typically take the form of a Fragment consisting of an XML layout resource file and corresponding class file. In fact, when the project was created, Android Studio created an initial fragment for this very purpose. The layout resource file for this fragment can be found at app -> res -> layout -> main_fragment.xml
 and will appear as shown in Figure 39-3
 when loaded into the layout editor:

[image:]

Figure 39-3

By default, the fragment simply contains a TextView displaying text which reads “MainFragment” but is otherwise ready to be modified to contain the layout of the first app screen. It is worth taking some time at this point to look at the code that has already been generated by Android Studio to display this fragment within the activity container area.

The process of replacing the FrameLayout placeholder with the fragment begins in the main Activity class file (app -> java -> <package name> -> MainActivity
). The key lines of code appear within the onCreate()
 method of this class and replace the object with the id of container
 (which has already been assigned to the FrameLayout placeholder view) with the MainFragment class:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.main_activity)

 if (savedInstanceState == null) {

 supportFragmentManager.beginTransaction()

 .replace(R.id.container, MainFragment.newInstance())

 .commitNow()

 }

}

The code that accompanies the fragment can be found in the MainFragment.
 kt
 file (app -> <package name> -> ui.main -> MainFragment)
 . Within this class file is the onCreateView()
 method which is called when the fragment is created. This method inflates the main_fragment.xml
 layout file so that it is displayed within the container area of the main activity layout:

override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

 savedInstanceState: Bundle?): View {

 return inflater.inflate(R.layout.main_fragment, container, false)

}

39.3.3

 The ViewModel

The ViewModel for the activity is contained within the MainViewModel.
 kt
 class file located at app -> java -> ui.main -> MainViewModel
 . This is declared as a sub-class of the ViewModel Android architecture component class and is ready to be modified to store the data model for the app:

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.arch.lifecycle.ViewModel

class MainViewModel : ViewModel() {

 // TODO: Implement the ViewModel

}

39.4

 Designing the Fragment Layout

The next step is to design the layout of the fragment. Locate the main_fragment.xml
 file in the Project tool window and double click on it to load it into the layout editor. Once the layout has loaded, select the existing TextView widget and use the Attributes tool window to change the id property to resultText
 .

Drag a Number (Decimal) view from the palette and position it above the existing TextView. With the view selected in the layout refer to the Attributes tool window and change the id to dollarText
 .

Drag a Button widget onto the layout so that it is positioned below the TextView, double-click on it to edit the text and change it to read “Convert”. With the button still selected, change the id property to convertButton
 . At this point, the layout should resemble that illustrated in Figure 39-4
 :

[image:]

Figure 39-4

Click on the Infer constraints
 button (Figure 39-5
) to add any missing layout constraints:

[image:]

Figure 39-5

 Finally, click on the warning icon in the top right-hand corner of the layout editor and convert the hardcoded strings to resources.

39.5

 Implementing the View Model

With the user interface layout completed, the data model for the app needs to be created within the view model. Within the Project tool window, locate the MainViewModel.
 kt
 file, double-click on it to load it into the code editor and modify the class so that it reads as follows:

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.util.Log

import android.arch.lifecycle.ViewModel

class MainViewModel : ViewModel() {

 private val usd_to_eu_rate = 0.74f

 private var dollarText = ""

 private var result: Float = 0f

 fun setAmount(value: String) {

 this.dollarText = value

 result = value.toFloat() * usd_to_eu_rate

 }

 fun getResult(): Float? {

 return result

 }

}

The class declares variables to store the current dollar string value and the converted amount together with getter and setter methods to provide access to those data values. When called, the setAmount()
 method takes as an argument the current dollar amount and stores it in the local dollarText
 variable. The dollar string value is converted to a floating point number, multiplied by a fictitious exchange rate and the resulting euro value stored in the result
 variable. The getResult()
 method, on the other hand, simply returns the current value assigned to the result
 variable.

39.6

 Associating the Fragment with the View Model

Clearly, there needs to be some way for the fragment to obtain a reference to the
 ViewModel in order to be able to access the model and observe data changes. A Fragment or Activity maintains references to the ViewModels on which it relies for data using an instance of the ViewModelProvider class.

A ViewModelProvider instance is created via a call to the ViewModelProviders.of()
 method from within the Fragment. When called, the method is passed a reference to the current Fragment or Activity and returns a ViewModelProvider instance as follows:

val viewModelProvider = ViewModelProviders.of(fragment)

Once the ViewModelProvider instance has been created, the get()
 method can be called on that instance passing through the class of specific ViewModel that is required. The provider will then either create a new instance of that ViewModel class, or return an existing instance:

val viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

Edit the MainFragment.
 kt
 file and verify that Android Studio has already included this step within the onActivityCreated()
 method (albeit performing the operation in a single line of code for brevity):

viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

With access to the model view, code can now be added to the Fragment to begin working with the data model.

39.7

 Modifying the Fragment

The fragment class now needs to be updated to react to button clicks and to interact with the data values stored in the ViewModel. The class will also need references to the three views in the user interface layout to react to button clicks, extract the current dollar value and to display the converted currency amount.

In the chapter entitled
“Creating an Example Android App in Android Studio”

 , the onClick property of the Button widget was used to designate the method to be called when the button is clicked by the user. Unfortunately, this property is only able to call methods on an Activity and cannot be used to call a method in a Fragment. To get around this limitation, we will need to add some code to the Fragment class to set up an onClick listener on the button. The code to do this can be added to the onActivityCreated()
 method of the MainFragment.
 kt
 file as follows:

.

.

import kotlinx.android.synthetic.main.main_fragment.*

.

.

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 convertButton.setOnClickListener {

 }

}

With the listener added, any code placed within the onClick()
 method will be called whenever the button is clicked by the user.

39.8

 Accessing the
 ViewModel Data

When the button is clicked, the onClick()
 method needs to read the current value from the EditText view, confirm that the field is not empty and then call the setAmount()
 method of the ViewModel instance. The method will then need to call the ViewModel’s getResult()
 method and display the converted value on the TextView widget.

Since LiveData is not yet being used in the project, it will also be necessary to get the latest result value from the ViewModel each time the Fragment is created.

Remaining in the MainFragment.
 kt
 file, implement these requirements as follows in the onActivityCreated()
 method:

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 resultText.text = viewModel.getResult().toString()

 convertButton.setOnClickListener {

 if (dollarText.text.isNotEmpty()) {

 viewModel.setAmount(dollarText.text.toString())

 resultText.text = viewModel.getResult().toString()

 } else {

 resultText.text = "No Value"

 }

 }

}

39.9

 Testing the Project

With this phase of the project development completed, build and run the app on the simulator or a physical device, enter a dollar value and click on the Convert button. The converted amount should appear on the TextView indicating that the UI controller and ViewModel re-structuring appears to be working as expected.

When the original AndroidSample app was run, rotating the device caused the value displayed on the resultText
 TextView widget to be lost. Repeat this test now with the ViewModelDemo app and note that the current euro value is retained after the rotation. This is because the ViewModel remained in memory as the Fragment was destroyed and recreated and code was added to the onActivityCreated()
 method to update the TextView with the result data value from the ViewModel each time the Fragment re-started.

While this is an improvement on the original AndroidSample app, there is much more that can be achieved to simplify the project by making use of LiveData and data binding, both of which are the topics of the next chapter.

39.10

 Summary

In this chapter we revisited the AndroidSample project created earlier in the book and created a new version of the project structured to comply with the Android Jetpack architectural guidelines. The chapter outlined the structure of the Fragment+ViewModel project template and explained the concept of basing an app on a single Activity using Fragments to present different screens within a single Activity layout. The example project also demonstrated the use of ViewModels to separate data handling from user interface related code. Finally, the chapter showed how the ViewModel approach avoids some of the problems of handling Fragment and Activity lifecycles.

40.

 An Android Jetpack
 LiveData Tutorial

The previous chapter began the process of designing an app to conform to the recommended Jetpack architecture guidelines. These initial steps involved the selection of the Fragment+ViewModel project template and the implementation of the data model for the app user interface within a ViewModel instance.

This chapter will further enhance the app design by making use of the LiveData architecture component. Once LiveData support has been added to the project in this chapter, the next chapters (starting with
“An Overview of Android Jetpack Data Binding”

) will make use of the Jetpack Data Binding library to eliminate even more code from the project.

40.1

 LiveData - A Recap

LiveData was introduced previously in the chapter entitled
“Modern Android App Architecture with Jetpack”

 . As described earlier, the LiveData component can be used as a wrapper around data values within a view model. Once contained in a LiveData instance, those variables become observable to other objects within the app, typically UI controllers such as Activities and Fragments. This allows the UI controller to receive a notification whenever the underlying LiveData value changes. An observer is set up by creating an instance of the Observer class and defining an onChange()
 method to be called when the LiveData value changes. Once the Observer instance has been created, it is attached to the LiveData object via a call to the LiveData object’s observe()
 method.

LiveData instances can be declared as being mutable using the MutableLiveData class, allowing both the ViewModel and UI controller to make changes to the underlying data value.

40.2

 Adding
 LiveData to the
 ViewModel

Launch Android Studio, open the ViewModelDemo project created in the previous chapter and edit the MainViewModel.
 kt
 file which should currently read as follows:

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.arch.lifecycle.ViewModel

class MainViewModel : ViewModel() {

 private val usd_to_eu_rate = 0.74f

 private var dollarText = ""

 private var result: Float = 0f

 fun setAmount(value: String) {

 this.dollarText = value

 result = value.toFloat() * usd_to_eu_rate

 }

 fun getResult(): Float? {

 return result

 }

}

The objective of this stage in the chapter is to wrap the result
 variable in a MutableLiveData instance (the object will need to be mutable so that the value can be changed each time the user requests a currency conversion). Begin by modifying the class so that it now reads as follows noting that an additional package needs to be imported when making use of LiveData:

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.arch.lifecycle.ViewModel

import android.arch.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val usd_to_eu_rate = 0.74f

 private var dollarText = ""

 private var result: Float = 0f

 private var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {

 this.dollarText = value

 result = value.toFloat() * usd_to_eu_rate

 }

 fun getResult(): Float? {

 return result

 }

}

Now that the result variable is contained in a mutable LiveData instance, both the setAmount()
 and getResult()
 methods need to modified. In the case of the setAmount()
 method, a value can no longer be assigned to the result variable using the assignment (=) operator. Instead, the LiveData setValue()
 method must be called, passing through the new value as an argument. As currently implemented, the getResult()
 method is declared as returning a Float value and now needs to be changed to return a MutableLiveData object. Making these remaining changes results in the following class file:

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.arch.lifecycle.ViewModel

import android.arch.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val usd_to_eu_rate = 0.74f

 private var dollarText = ""

 private var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {

 this.dollarText = value

 result = value.toFloat() * usd_to_eu_rate

 result.setValue(value.toFloat() * usd_to_eu_rate)

 }

 fun getResult(): Float? {

 fun getResult(): MutableLiveData<Float> {

 return result

 }

}

40.3

 Implementing the

 Observer

Now that the conversion result is contained within a LiveData instance, the next step is to configure an observer within the UI controller which, in this example, is the MainFragment class. Locate the MainFragment.
 kt
 class (app -> java -> <package name> -> MainFragment
), double-click on it to load it into the editor and modify the onActivityCreated()
 method to create a new Observer instance named resultObserver
 :

.

.

import android.arch.lifecycle.Observer

.

.

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 resultText.text = viewModel.getResult().toString()

 val resultObserver = Observer<Float> {

 result -> resultText.text = result.toString() }

.

.

}

The resultObserver
 instance declares lambda code which, when called, is passed the current result value which it then converts to a string and displays on the result TextView object. The next step is to add the observer to the result LiveData object, a reference to which can be obtained via a call to the getResult()
 method of the ViewModel object. Since updating the result TextView is now the responsibility of the onChanged()
 callback method, the existing lines of code to perform this task can now be deleted:

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 resultText.text = viewModel.getResult().toString()

 val resultObserver = Observer<Float> { result -> resultText.text =

 result.toString() }

 viewModel.getResult().observe(this, resultObserver)

 convertButton.setOnClickListener {

 if (dollarText.text.isNotEmpty()) {

 viewModel.setAmount(dollarText.text.toString())

 resultText.text = viewModel.getResult().toString()

 } else {

 resultText.text = "No Value"

 }

 }

}

Compile and run the app, enter a value into the dollar field, click on the Convert button and verify that the converted euro amount appears on the TextView. This confirms that the observer received notification that the result value had changed and called the onChanged()
 method to display the latest data.

Note in the above implementation of the onActivityCreated()
 method that the line of code responsible for displaying the current result value each time the method was called was removed. This was originally put in place to ensure that the displayed value was not lost in the event that the Fragment was recreated for any reason. Because LiveData monitors the lifecycle status of its observers, this step is no longer necessary. When LiveData detects that the UI controller was recreated, it automatically triggers any associated observers and provides the latest data. Verify this by rotating the device while a euro value is displayed on the TextView object and confirming that the value is not lost.

40.4

 Summary

This chapter demonstrated the use of the Android LiveData component to make sure that the data displayed to the user always matches that stored in the ViewModel. This relatively simple process consisted of wrapping a ViewModel data value within a LiveData object and setting up an observer within the UI controller subscribed to the LiveData value. Each time the LiveData value changes, the observer is notified and the onChanged()
 method called and passed the updated value.

Adding LiveData support to the project has gone some way towards simplifying the design of the project. Additional and significant improvements are also possible by making use of the Data Binding Library, details of which are covered in the next chapter.

41.

 An Overview of Android Jetpack
 Data Binding

In the chapter entitled
“Modern Android App Architecture with Jetpack”

 , we introduced the concept of Android Data Binding and briefly explained how it is used to directly connect the views in a user interface layout to the methods and data located in other objects within an app without the need to write code. This chapter will provide more details on data binding with an emphasis on explaining how data binding is implemented within an Android Studio project. The tutorial in the next chapter (
“An Android Jetpack Data Binding Tutorial”

) will provide a practical example of data binding in action.

41.1

 An Overview of Data Binding

Data binding support is provided by the Android Jetpack Data Binding Library, the primary purpose of which is to provide a simple way to connect the views in a user interface layout to the data that is stored within the code of the app (typically within ViewModel instances). Data binding also provides a convenient way to map user interface controls such as Button widgets to event and listener methods within other objects such as UI controllers and ViewModel instances.

Data binding becomes particularly powerful when used in conjunction with the LiveData component. Consider, for example, an EditText view bound to a LiveData variable within a ViewModel using data binding. When connected in this way, any changes to the data value in the ViewModel will automatically appear within the EditText view and, when using two-way binding, any data typed into the EditText will automatically be used to update the LiveData value. Perhaps most impressive is the fact that this can be achieved with no code beyond that necessary to initially set up the binding.

Connecting an interactive view such as a Button widget to a method within a UI controller traditionally required that the developer write code to implement a listener method to be called when the button is clicked. Data binding makes this as simple as referencing the method to be called within the Button element in the layout XML file.

41.2

 The Key Components of
 Data Binding

By default, an Android Studio project is not configured for data binding support. In fact, a number of different elements need to be combined before an app can begin making use of data binding. These involve the project build configuration, the layout XML file, data binding classes and use of the data binding expression language. While this may appear to be a little overwhelming at first, when taken separately these are actually quite simple steps which, once completed, are more than worthwhile in terms of saved coding effort. In the remainder of this chapter, each of these elements will be covered in detail. Once these basics have been covered, the next chapter will work through a detailed tutorial demonstrating these steps in practical terms.

41.2.1

 The Project Build Configuration

Before a project can make use of data binding it must first be configured to make use of the Android Data Binding Library and to enable support for data binding classes and the binding expression syntax. Fortunately this can be achieved with just a few lines added to the module level build.gradle
 file (the one listed as build.gradle
 (Module: app)
 under Gradle Scripts
 in the Project tool window). The following lists a partial build file with data binding enabled:

apply plugin: 'com.android.application'

android {

 compileSdkVersion 28

 dataBinding {

 enabled = true

 }

 defaultConfig {

 applicationId "com.ebookfrenzy.myapplication"

.

.

41.2.2

 The Data Binding Layout File

As we have seen in previous chapters, the user interfaces for an app are typically contained within an XML layout file. Before the views contained within one of these layout files can take advantage of data binding, the layout file must first be converted to a data binding layout file
 .

As outlined earlier in the book, XML layout files define the hierarchy of components in the layout starting with a top-level or root view
 . Invariably, this root view takes the form of a layout container such as a ConstraintLayout, FrameLayout or LinearLayout instance, as is the case in the main_fragment.xml
 file for the ViewModelDemo project:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</android.support.constraint.ConstraintLayout
 >

In order to be able to use data binding, the layout hierarchy must have a layout
 component as the root view which, in turn, becomes the parent of the current root view.

In the case of the above example, this would require that the following changes be made to the existing layout file:

<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <android.support.constraint.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

 </android.support.constraint.ConstraintLayout>

</layout>

41.2.3

 The Layout File Data Element

The data binding layout file needs some way to declare the classes within the project to which the views in the layout are to be bound (for example a ViewModel or UI controller). Having declared these classes, the layout file will also need a variable name by which to reference those instances within binding expressions.

This is achieved using the data
 element,
 an example of which is shown below:

<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>

 <variable

 name="myViewModel"

 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />

 </data>

 <android.support.constraint.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</layout>

The above data element declares a new variable named myViewModel
 of type MainViewModel (note that it is necessary to declare the full package name of the MyViewModel class when declaring the variable).

The data element can also import other classes that may then be referenced within binding expressions elsewhere in the layout file. For example, if you have a class containing a method that needs to be called on a value before it is displayed to the user, the class could be imported as follows:

<data>

 <import type="com.ebookfrenzy.MyFormattingTools" />

 <variable

 name="viewModel"

 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />

 </data>

41.2.4

 The
 Binding Classes

For each class referenced in the data
 element within the binding layout file, Android Studio will automatically generate a corresponding binding class
 . This is a subclass of the Android ViewDataBinding class and will be named based on the layout filename using word capitalization and the Binding
 suffix. The binding class for a layout file named main_fragment.xml
 file, therefore, will be named MainFragmentBinding
 . The binding class contains the bindings specified within the layout file and maps them to the variables and methods within the bound objects.

Although the binding class is generated automatically, code still needs to be written to create an instance of the class based on the corresponding data binding layout file. Fortunately, this can be achieved by making use of the DataBindingUtil class.

The initialization code for an Activity or Fragment will typically set the content view or “inflate” the user interface layout file. This simply means that the code opens the layout file, parses the XML and creates and configures all of the view objects in memory. In the case of an existing Activity class, the code to achieve this can be found in the onCreate()
 method and will read as follows:

setContentView(R.layout.activity_main)

In the case of a Fragment, this takes place in the onCreateView()
 method:

return inflater.inflate(R.layout.main_fragment, container, false)

All that is needed to create the binding class instances within an Activity class is to modify this initialization code as follows:

lateinit var binding: MainFragmentBinding

binding = DataBindingUtil.inflate(

 inflater, R.layout.main_fragment, container, false)

In the case of a Fragment, the code would read as follows:

lateinit var binding: MainFragmentBinding

binding = DataBindingUtil.inflate(

 inflater, R.layout.main_fragment, container, false)

binding.setLifecycleOwner(this)

return binding.root

41.2.5

 Data Binding Variable Configuration

As outlined above, the data binding layout file contains the data
 element which contains variable
 elements consisting of variable names and the class types to which the bindings are to be established. For example:

<data>

 <variable

 name="viewModel"

 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />

 <variable

 name="uiController"

 type="com.ebookfrenzy.viewmodeldemo_databinding.ui.main.MainFragment" />

</data>

In the above example, the first variable knows that it will be binding to an instance of a ViewModel class of type MainViewModel but has not yet been connected to an actual MainViewModel object instance. This requires the additional step of assigning the MainViewModel instance used within the app to the variable declared in the layout file. This is performed via a call to the setVariable()
 method of the data binding instance, a reference to which was obtained in the previous chapter:

var MainViewModel viewModel =

 ViewModelProviders.of(this).get(MainViewModel::class.java)

binding.setVariable(myViewModel, viewModel)

The second variable in the above data element references a UI controller class in the form of a Fragment named MainFragment. In this situation the code within a UI controller (be it a Activity or Fragment) would simply need to assign itself to the variable as follows:

binding.setVariable(uiController, this)

41.2.6

 Binding Expressions (One-Way)

Binding expressions define how a particular view interacts with bound objects. A binding expression on a Button, for example, might declare which method on an object is called in response to a click. Alternatively, a binding expression might define which data value stored in a ViewModel is to appear within a TextView and how it is to be presented and formatted.

Binding expressions use a declarative language that allows logic and access to other classes and methods to be used in deciding how bound data is used. Expressions can, for example, include mathematical expressions, method calls, string concatenations, access to array elements and comparison operations. In addition, all of the standard Java language libraries are imported by default so many things that can be achieved in Java or Kotlin can also be performed in a binding expression. As already discussed, the data element may also be used to import custom classes to add yet more capability to expressions.

A binding expression begins with an @ symbol followed by the expression enclosed in curly braces ({}).

Consider, for example, a ViewModel instance containing a variable named result
 . Assume that this class has been assigned to a variable named viewModel
 within the data binding layout file and needs to be bound to a TextView object so that the view always displays the latest result value. If this value was stored as a String object, this would be declared within the layout file as follows:

<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{viewModel.result}"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

In the above XML the text
 property is being set to the value stored in the result
 LiveData property of the viewModel object.

Consider, however, that the result is stored within the model as a Float value instead of a String. That being the case, the above expression would cause a compilation error. Clearly the Float value will need to be converted to a string before the TextView can display it. To resolve issues such as this, the binding expression can include the necessary steps to complete the conversion using the standard Java language classes:

android:text="@{String.valueOf(viewModel.result)}"

When running the app after making this change it is important to be aware that the following warning may appear in the Android Studio console:

warning: myViewModel.result.getValue() is a boxed field but needs to be un-boxed to execute String.valueOf(viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean
 type (referred to as being unboxed
) or wrapped in an Java object such as the Boolean
 type and accessed via reference to that object (i.e. boxed
). The process of unboxing
 involves the unwrapping of the primitive value from the object.

To avoid this message, wrap the offending operation in a safeUnbox()
 call as follows:

android:text="@{String.valueOf(safeUnbox(
 myViewModel.result))
 }"

String concatenation may also be used. For example, to includes the word “dollars” after the result string value the following expression would be used:

android:text='@{String.valueOf(safeUnbox(myViewModel.result)) + " dollars"}'

Note that since the appended result string is wrapped in double quotes, the expression is now encapsulated with single quotes to avoid syntax errors.

The expression syntax also allows ternary statements to be declared. In the following expression the view will display different text depending on whether or not the result value is greater than 10.

@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data array:

@{myViewModel.resultsArray[3]}

41.2.7

 Binding Expressions (Two-Way)

The type of expressions covered so far are referred to as a one-way binding
 . In other words, the layout is constantly updated as the corresponding value changes, but changes to the value from within the layout do not update the stored value.

A two-way binding
 on the other hand allows the data model to be updated in response to changes in the layout. An EditText view, for example, could be configured with a two-way binding so that when the user enters a different value, that value is used to update the corresponding data model value. When declaring a two-way expression, the syntax is similar to a one-way expression with the exception that it begins with @=. For example:

android:text="@={myViewModel.result}"

41.2.8

 Event and Listener Bindings

Binding expressions may also be used to trigger method calls in response to events on a view. A Button view, for example, can be configured to call a method when clicked. Back in the chapter entitled
“Creating an Example Android App in Android Studio”

 , for example, the onClick property of a button was configured to call a method within the app’s main activity named convertCurrency()
 . Within the XML file this was represented as follows:

android:onClick="convertCurrency"

The convertCurrency()
 method was declared along the following lines:

fun convertCurrency(view: View) {

.

.

}

Note that this type of method call is always passed a reference to the view on which the event occurred. The same effect can be achieved in data binding using the following expression (assuming the layout has been bound to a class with a variable name of uiController
):

android:onClick="@{uiController::convertCurrency}"

Another option, and one which provides the ability to pass parameters to the method, is referred to as a listener binding
 . The following expression uses this approach to call a method on the same viewModel instance with no parameters:

android:onClick='@{() -> myViewModel.methodOne()}'

The following expression calls a method that expects three parameters:

android:onClick='@{() -> myViewModel.methodTwo(viewModel.result, 10, "A String")}'

Binding expressions provide a rich and flexible language in which to bind user interface views to data and methods in other objects and this chapter has only covered the most common use cases. To learn more about binding expressions, review the Android documentation online at:

https://developer.android.com/topic/libraries/data-binding/expressions

41.3

 Summary

Android data bindings provide a system for creating connections between the views in a user interface layout and the data and methods of other objects within the app architecture without having to write code. Once some initial configuration steps have been performed, data binding simply involves the use of binding expressions within the view elements of the layout file. These binding expressions can be either one-way or two-way and may also be used to bind methods to be called in response to events such as button clicks within the user interface.

42.

 An Android Jetpack
 Data Binding Tutorial

So far in this book we have covered the basic concepts of modern Android app architecture and looked in more detail at the ViewModel and LiveData components. The concept of data binding was also covered in the previous chapter and will now be used in this chapter to further modify the ViewModelDemo app.

42.1

 Removing the Redundant Code

Before implementing data binding within the ViewModelDemo app, the power of data binding will be demonstrated by deleting all of the code within the project that will no longer be needed by the end of this chapter.

Launch Android Studio, open the ViewModelDemo project, edit the MainFragment.
 kt
 file and modify the code as follows:

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.arch.lifecycle.ViewModelProviders

import android.os.Bundle

import android.support.v4.app.Fragment

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import com.ebookfrenzy.viewmodeldemo.R

import android.arch.lifecycle.Observer

import kotlinx.android.synthetic.main.main_fragment.*

class MainFragment : Fragment() {

.

.

 override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 val resultObserver = Observer<Float> { result -> resultText.text = result.toString() }

 viewModel.getResult().observe(this, resultObserver)

 convertButton.setOnClickListener {

 if (dollarText.text.isNotEmpty()) {

 viewModel.setAmount(dollarText.text.toString())

 //resultText.text = viewModel.getResult().toString()

 } else {

 resultText.text = "No Value"

 }

 }

 }

}

Next, edit the MainViewModel.
 kt
 file and continue deleting code as follows (note also the conversion of the dollarText
 variable to LiveData):

package com.ebookfrenzy.viewmodeldemo.ui.main

import android.arch.lifecycle.ViewModel

import android.arch.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val usd_to_eu_rate = 0.74f

 private var dollarText = ""

 var dollarValue: MutableLiveData<String> = MutableLiveData()

 private
 var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {

 this.dollarText = value

 //result = value.toFloat() * usd_to_eu_rate

 result.setValue(value.toFloat() * usd_to_eu_rate)

 }

 fun getResult(): MutableLiveData<Float> {

 return result

 }

}

Though we‘ll be adding a few additional lines of code in the course of implementing data binding, clearly data binding has significantly reduced the amount of code that needed to be written.

42.2

 Enabling
 Data Binding

The first step in using data binding is to enable it within the Android Studio project. This involves adding a new property to the Module level build.gradle
 file, so open this file (app -> Gradle Scripts -> build.gradle (Module: app)
) as highlighted in Figure 42-1
 :

[image:]

Figure 42-1

Within the build.gradle
 file, add the element shown below to enable data binding within the project and to apply the Kotlin kapt
 plugin. This plugin is required to process the data binding annotations that will be added to the fragment XML layout file later in the chapter:

apply plugin: 'com.android.application'

apply plugin: 'kotlin-android'

apply plugin: 'kotlin-android-extensions'

apply plugin: 'kotlin-kapt'

android {

 dataBinding {

 enabled = true

 }

 compileSdkVersion 28

.

.

}

Once the entry has been added, a yellow bar will appear across the top of the editor screen containing a Sync Now
 link. Click this to resynchronize the project with the new build configuration settings:

[image:]

Figure 42-2

42.3

 Adding the Layout Element

As described in
“An Overview of Android Jetpack Data Binding”

 , in order to be able to use data binding, the layout hierarchy must have a layout
 component as the root view. This requires that the following changes be made to the main_fragment.xml
 layout file (app -> res -> layout -> main_fragment.xml
). Open this file in the layout editor tool, switch to Text mode and make these changes:

<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <android.support.constraint.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

 </android.support.constraint.ConstraintLayout>

</layout>

Once these changes have been made, switch back to Design mode and note that the new root view, though invisible in the layout canvas, is now listed in the component tree as shown in Figure 42-3
 :

[image:]

Figure 42-3

Build and run the app to verify that the addition of the layout element has not changed the user interface appearance in any way.

42.4

 Adding the Data Element to Layout File

The next step in converting the layout file to a data binding layout file is to add the data
 element. For this example, the layout will be bound to MainViewModel so edit the main_fragment.xml
 file to add the data element as follows:

<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>

 <variable

 name="myViewModel"

 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />

 </data>

 <android.support.constraint.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</layout>

Build and run the app once again to make sure that these changes take effect.

42.5

 Working with the Binding Class

The next step is to modify the code within the MainFragment.
 kt
 file to obtain a reference to the binding class instance. This is best achieved by rewriting the onCreateView()
 method:

.

.

import android.databinding.DataBindingUtil

import com.ebookfrenzy.viewmodeldemo.databinding.MainFragmentBinding

.

.

class MainFragment : Fragment() {

 companion object {

 fun newInstance() = MainFragment()

 }

 private lateinit var viewModel: MainViewModel

 lateinit var binding: MainFragmentBinding

 override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

 savedInstanceState: Bundle?): View {

 binding = DataBindingUtil.inflate(

 inflater, R.layout.main_fragment, container, false)

 binding.setLifecycleOwner(this)

 return binding.root

 return inflater.inflate(R.layout.main_fragment, container, false)

 }

.

.

The old code simply inflated the main_fragment.xml
 layout file (in other words created the layout containing all of the view objects) and returned a reference to the root view (the top level layout container). The Data Binding Library contains a utility class which provides a special inflation method which, in addition to constructing the UI, also initializes and returns an instance of the layout‘s data binding class. The new code calls this method and stores a reference to the binding class instance in a variable:

binding = DataBindingUtil.inflate(

 inflater, R.layout.main_fragment, container, false)

The binding object will only need to remain in memory for as long as the fragment is present. To ensure that the instance is destroyed when the fragment goes away, the current fragment is declared as the lifecycle owner for the binding object.

binding.setLifecycleOwner(this)

Although the code for the onCreateView()
 method has been rewritten, the basic requirement that it return the root view of the layout has not changed. Fortunately, this can be obtained via a call to the getRoot()
 method of the binding object:

return binding.root

42.6

 Assigning the ViewModel Instance to the Data Binding Variable

At this point, the data binding knows that it will be binding to an instance of a class of type MainViewModel but has not yet been connected to an actual MainViewModel object. This requires the additional step of assigning the MainViewModel instance used within the app to the viewModel variable declared in the layout file. Since the reference to the ViewModel is obtained in the onActivityCreated()
 method, it makes sense to make the assignment there:

.

.

import com.ebookfrenzy.viewmodeldemo.BR.myViewModel

.

.

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 binding.setVariable(myViewModel, viewModel)

}

.

.

With these changes made, the next step is to begin inserting some binding expressions into the view elements of the data binding layout file.

42.7

 Adding Binding Expressions

The first binding expression will bind the resultText TextView to the result value within the model view. Edit the main_fragment.xml
 file, locate the resultText element and modify the text property so that the element reads as follows:

<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="MainFragment"

 android:text='@{safeUnbox(myViewModel.result) == 0.0 ? "Enter value" : String.valueOf(safeUnbox(myViewModel.result)) + " euros"}'

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

The expression begins by checking if the result value is currently zero and, if it is, displays a message instructing the user to enter a value. If the result is not zero, however, the value is converted to a string and concatenated with the word “euros” before being displayed to the user.

The result value only requires a one-way binding in that the layout does not ever need to update the value stored in the ViewModel. The dollarValue
 EditText view, on the other hand, needs to use two-way binding so that the data model can be updated with the latest value entered by the user, and to allow the current value to be redisplayed in the view in the event of a lifecycle event such as that triggered by a device rotation. The dollarText
 element should now be declared as follows:

<EditText

 android:id="@+id/dollarText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="96dp"

 android:ems="10"

 android:importantForAutofill="no"

 android:inputType="numberDecimal"

 android:text="@={myViewModel.dollarValue}"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.502"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

Now that these initial binding expressions have been added a method now needs to be written to perform the conversion when the user clicks on the Button widget.

42.8

 Adding the Conversion Method

When the Convert button is clicked, it is going to call a method on the ViewModel to perform the conversion calculation and place the euro value in the result
 LiveData variable. Add this method now within the MainViewModel.
 kt
 file:

.

.

class MainViewModel : ViewModel() {

 private val usd_to_eu_rate = 0.74f

 public var dollarValue: MutableLiveData<String> = MutableLiveData()

 public var result: MutableLiveData<Float> = MutableLiveData()

 fun convertValue() {

 dollarValue.let {

 if (!it.value.equals("")) {

 result.value = it.value?.toFloat()?.times(usd_to_eu_rate)

 } else {

 result.value = 0f

 }

 }

 }

}

Note that in the absence of a valid dollar value, a zero value is assigned to the result
 LiveData variable. This ensures that the binding expression assigned to the resultText
 TextView displays the “Enter value” message if no value has been entered by the user.

42.9

 Adding a Listener Binding

The final step before testing the project is to add a listener binding expression to the Button element within the layout file to call the convertValue()
 method when the button is clicked. Edit the main_fragment.xml
 file in text mode once again, locate the convertButton
 element and add an onClick entry as follows:

<Button

 android:id="@+id/convertButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="77dp"

 android:onClick="@{() -> myViewModel.convertValue()}"

 android:text="@{viewModel.myString}"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/resultText" />

42.10

 Testing the App

Compile and run the app and test that entering a value into the dollar field and clicking on the Convert button displays the correct result on the TextView (together with the “euros” suffix) and that the “Enter value” prompt appears if a conversion is attempted while the dollar field is empty. Also, verify that information displayed in the user interface is retained through a device rotation.

42.11

 Summary

The primary goal of this chapter has been to work through the steps involved in setting up a project to use data binding and to demonstrate the use of one-way, two-way and listener binding expressions. The chapter also provided a practical example of how much code writing is saved by using data binding in conjunction with LiveData to connect the user interface views with the back-end data and logic of the app.

43.

 Working with Android
 Lifecycle-Aware Components

The earlier chapter entitled
“Understanding Android Application and Activity Lifecycles”

 described the use of lifecycle methods to track lifecycle state changes within a UI controller such as an activity or fragment. One of the main problems with these methods is that they place the burden of handling lifecycle changes onto the UI controller. On the surface this might seem like the logical approach since the UI controller is, after all, the object going through the state change. The fact is, however, that the code that is typically impacted by the state change invariably resides in other classes within the app. This led to complex code appearing in the UI controller that needed to manage and manipulate other objects in response to changes in lifecycle state. Clearly this is a scenario best avoided when following the Android architectural guidelines.

A much cleaner and logical approach would be for the objects within an app to be able to observe the lifecycle state of other objects and to be responsible for taking any necessary actions in response to the changes. The class responsible for tracking a user’s location, for example, could observe the lifecycle state of a UI controller and suspend location updates when the controller enters a paused state. Tracking would then be restarted when the controller enters the resumed state. This is made possible by the classes and interfaces provided by the Lifecycle package bundled with the Android architecture components.

This chapter will introduce the terminology and key components that enable lifecycle awareness to be built into Android apps.

43.1

 Lifecycle Awareness

An object is said to be lifecycle-aware
 if it is able to detect and respond to changes in the lifecycle state of other objects within an app. Some Android components, LiveData being a prime example, are already lifecycle-aware. It is also possible to configure any class to be lifecycle-aware by implementing the LifecycleObserver interface within the class.

43.2

 Lifecycle Owners

Lifecycle-aware components can only observe the status of objects that are lifecycle owners
 . Lifecycle owners implement the LifecycleOwner interface and are assigned a companion Lifecycle object
 which is responsible for storing the current state of the component and providing state information to lifecycle observers
 . Most standard Android Framework components (such as activity and fragment classes) are lifecycle owners. Custom classes may also be configured as lifecycle owners by using the LifecycleRegistry class and implementing the LifecycleObserver interface. For example:

class SampleOwner: LifecycleOwner {

 private val lifecycleRegistry: LifecycleRegistry

 init {

 lifecycleRegistry = LifecycleRegistry(this)

 lifecycle.addObserver(DemoObserver())

 }

 override fun getLifecycle(): Lifecycle {

 return lifecycleRegistry

 }

}

Unless the lifecycle owner is a subclass of another lifecycle-aware component, the class will need to trigger lifecycle state changes itself via calls to methods of the LifecycleRegistry class. The markState()
 method can be used to trigger a lifecycle state change passing through the new state value:

fun resuming() {

 lifecycleRegistry.markState(Lifecycle.State.RESUMED)

}

The above call will also result in a call to the corresponding event handler. Alternatively, the LifecycleRegistry handleLifecycleEvent(
) method may be called and passed the lifecycle event to be triggered (which will also result in the lifecycle state changing). For example:

lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START)

43.3

 Lifecycle Observers

In order for a lifecycle-aware component to observe the state of a lifecycle owner it must implement the LifecycleObserver interface and contain event listener handlers for any lifecycle change events it needs to observe.

class DemoObserver: LifecycleObserver {

 // Lifecycle event methods go here

}

An instance of this observer class is then created and added to the list of observers maintained by the Lifecycle object.

lifecycle.addObserver(DemoObserver())

An observer may also be removed from the Lifecycle object at any time if it no longer needs to track the lifecycle state.

Figure 43-1
 illustrates the relationship between the key elements that provide lifecycle awareness:

[image:]

Figure 43-1

43.4

 Lifecycle States and Events

When the status of a lifecycle owner changes, the assigned Lifecycle object will be updated with the new state. At any given time, a lifecycle owner will be in one of the following five states:

•
 Lifecycle.State.INITIALIZED

•
 Lifecycle.State.CREATED

•
 Lifecycle.State.STARTED

•
 Lifecycle.State.RESUMED

•
 Lifecycle.State.DESTROYED

As the component transitions through the different states, the Lifecycle object will trigger events on any observers that have been added to the list. The following events are available for implementation within the lifecycle observer:

•
 Lifecycle.Event.ON_CREATE

•
 Lifecycle.Event.ON_START

•
 Lifecycle.Event.ON_RESUME

•
 Lifecycle.Event.ON_PAUSE

•
 Lifecycle.Event.ON_STOP

•
 Lifecycle.Event.ON_DESTROY

•
 Lifecycle.Event.ON_ANY

Annotations are used within the observer class to associate methods with lifecycle events. The following code, for example, configures a method within a observer to be called in response to an ON_RESUME lifecycle event:

@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)

fun onResume() {

 // Perform tasks in response to change to RESUMED status

}

The method assigned to the ON_ANY event will be called for all lifecycle events. The method for this event type is passed a reference to the lifecycle owner and an event object which can be used to find the current state and event type. The following method, for example, extracts the names of both the current state and event:

@OnLifecycleEvent(Lifecycle.Event.ON_ANY)

fun onAny(owner: LifecycleOwner, event: Lifecycle.Event) {

 var currentState = owner.lifecycle.currentState.name

 var eventName = event.name

}

The isAtLeast()
 method of the current state object may also be used when the owner state needs to be at a certain lifecycle level:

if (owner.lifecycle.currentState.isAtLeast(Lifecycle.State.STARTED)) {

}

The flowchart in Figure 43-2
 illustrates the sequence of state changes for a lifecycle owner and the lifecycle events that will be triggered on observers between each state transition:

[image:]

Figure 43-2

43.5

 Summary

This chapter has introduced the basics of lifecycle awareness and the classes and interfaces of the Android Lifecycle package included with Android Jetpack. The package contains a number of classes and interfaces that are used to create lifecycle owners, lifecycle observers and lifecycle-aware components. A lifecycle owner has assigned to it a Lifecycle object that maintains a record of the owners state and a list of subscribed observers. When the owner’s state changes, the observer is notified via lifecycle event methods so that it can respond to the change.

The next chapter will create an Android Studio project that demonstrates how to work with and create lifecycle-aware components including the creation of both lifecycle observers and owners, and the handling of lifecycle state changes and events.

44.

 An Android Jetpack
 Lifecycle Awareness Tutorial

The previous chapter provided an overview of lifecycle awareness and outlined the key classes and interfaces that make this possible within an Android app project. This chapter will build on this knowledge base by building an Android Studio project designed to highlight lifecycle awareness in action.

44.1

 Creating the Example Lifecycle Project

Begin this example by launching Android Studio and creating a new project, entering LifecycleDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the setup screens, requesting the Fragment+ViewModel option using the default activity, fragment and view model names.

44.2

 Creating a

 Lifecycle Observer

As previously discussed, activities and fragments already implement the LifecycleOwner interface and are ready to be observed by other objects. To see this in practice, the next step in this tutorial is to add a new class to the project that will be able to observe the MainFragment instance.

To add the new class, right-click on app -> java -> com.ebookfrenzy.lifecycledemo
 in the Project tool window and select New ->
 Kotlin File/Class
 ...
 from the resulting menu. In the Create New Class dialog, name the class DemoObserver, select Class from the Kind menu and click on the OK button to create the DemoObserver.
 kt
 file. The new file should automatically open in the editor where it will read as follows:

package com.ebookfrenzy.lifecycledemo

class DemoObserver {

}

Remaining in the editor, modify the class file to declare that it will be implementing the LifecycleObserver interface:

package com.ebookfrenzy.lifecycledemo

import android.arch.lifecycle.LifecycleObserver

class DemoObserver: LifecycleObserver
 {

}

The next step is to add the lifecycle methods and assign them as the lifecycle event handlers. For the purposes of this example, all of the events will be handled, each outputting a message to the Logcat panel displaying the event type. Update the observer class as outlined in the following listing:

package com.ebookfrenzy.lifecycledemo

import android.util.Log

import android.arch.lifecycle.LifecycleObserver

import android.arch.lifecycle.Lifecycle

import android.arch.lifecycle.OnLifecycleEvent

import android.arch.lifecycle.LifecycleOwner

class DemoObserver: LifecycleObserver {

 private val LOG_TAG = "DemoObserver"

 @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)

 fun onResume() {

 Log.i(LOG_TAG, "onResume")

 }

 @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)

 fun onPause() {

 Log.i(LOG_TAG, "onPause")

 }

 @OnLifecycleEvent(Lifecycle.Event.ON_CREATE)

 fun onCreate() {

 Log.i(LOG_TAG, "onCreate")

 }

 @OnLifecycleEvent(Lifecycle.Event.ON_START)

 fun onStart() {

 Log.i(LOG_TAG, "onStart")

 }

 @OnLifecycleEvent(Lifecycle.Event.ON_STOP)

 fun onStop() {

 Log.i(LOG_TAG, "onStop")

 }

 @OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)

 fun onDestroy() {

 Log.i(LOG_TAG, "onDestroy")

 }

}

So that we can track the events in relation to the current state of the fragment, an ON_ANY event handler will also be added. Since this method is passed a reference to the lifecycle owner, code can be added to obtain the current state. Remaining in the DemoObserver.
 kt
 file, add the following method:

@OnLifecycleEvent(Lifecycle.Event.ON_ANY)

fun onAny(owner: LifecycleOwner, event: Lifecycle.Event) {

 Log.i(LOG_TAG, owner.lifecycle.currentState.name)

}

With the DemoObserver class completed the next step is to add it as an observer on the MainFragment class.

44.3

 Adding the Observer

Observers are added to lifecycle owners via calls to the addObserver()
 method of the owner’s Lifecycle object, a reference to which is obtained via a call to the getLifecycle()
 method. Edit the MainFragment.
 kt
 class file and add code to the onActivityCreated()
 method to add the observer:

.

.

import com.ebookfrenzy.lifecycledemo.DemoObserver

.

.

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 lifecycle.addObserver(DemoObserver())

}

With the observer class created and added to the lifecycle owner’s Lifecycle object, the app is ready to be tested.

44.4

 Testing the Observer

Since the DemoObserver class outputs diagnostic information to the Logcat console, it will be easier to see the output if a filter is configured to display only the DemoObserver messages. Using the steps outlined previously in
“Android Activity State Changes by Example”

 , configure a filter for messages associated with the DemoObserver tag before running the app on a device or emulator.

On successful launch of the app, the Logcat output should indicate the following lifecycle state changes and events:

onCreate

CREATED

onStart

STARTED

onResume

RESUMED

With the app still running, perform a device rotation to trigger the destruction and recreation of the fragment, generating the following additional output:

STARTED

onStop

CREATED

onDestroy

DESTROYED

onCreate

CREATED

onStart

STARTED

onResume

RESUMED

Before moving to the next section in this chapter, take some time to compare the output from the app with the flow chart in Figure 43-2
 of the previous chapter.

44.5

 Creating a
 Lifecycle Owner

The final task in this chapter is to create a custom lifecycle owner class and demonstrate how to trigger events and modify the lifecycle state from within that class.

Add a new class by right-clicking on the app -> java -> com.ebookfrenzy.lifecycledemo
 entry in the Project tool window and selecting the New ->
 Kotlin File/Class
 ...
 menu option. Name the class DemoOwner in the Create Class dialog and change the Kind menu to Class before clicking on the OK button. With the new DemoOwner.
 kt
 file loaded into the code editor, modify it as follows:

package com.ebookfrenzy.lifecycledemo

import android.arch.lifecycle.Lifecycle

import android.arch.lifecycle.LifecycleOwner

import android.arch.lifecycle.LifecycleRegistry

class DemoOwner: LifecycleOwner
 {

}

The class is going to need a LifecycleRegistry instance initialized with a reference to itself, and a getLifecycle()
 method configured to return the LifecycleRegistry instance. Declare a variable to store the LifecycleRegistry reference, a constructor to initialize the LifecycleRegistry instance and add the getLifecycle()
 method:

package com.ebookfrenzy.lifecycledemo

import android.arch.lifecycle.Lifecycle

import android.arch.lifecycle.LifecycleOwner

import android.arch.lifecycle.LifecycleRegistry

class DemoOwner: LifecycleOwner {

 private val lifecycleRegistry: LifecycleRegistry

 init {

 lifecycleRegistry = LifecycleRegistry(this)

 }

 override fun getLifecycle(): Lifecycle {

 return lifecycleRegistry

 }

}

Next, the class will need to notify the registry of lifecycle state changes. This can be achieved either by marking the state with the markState()
 method of the LifecycleRegistry object, or by triggering lifecycle events using the handleLifecycleEvent()
 method. What constitutes a state change within a custom class will depend on the purpose of the class. For this example, we will add some methods that simply trigger lifecycle events when called:

.

.

private val lifecycleRegistry: LifecycleRegistry

.

.

fun startOwner() {

 lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START)

}

fun stopOwner() {

 lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_STOP)

}

override fun getLifecycle(): Lifecycle {

 return lifecycleRegistry

}

.

.

The final change within the DemoOwner class is to add the DemoObserver class as the observer. This call will be made within the constructor as follows:

init {

 lifecycleRegistry = LifecycleRegistry(this)

 lifecycle.addObserver(DemoObserver())

}

Load the MainFragment.
 kt
 file into the code editor, locate the onActivityCreated()
 method and add code to create an instance of the DemoOwner class and to call the startOwner()
 and stopOwner()
 methods. Note also that the call to add the DemoObserver as an observer has been removed. Although a single observer can be used with multiple owners, it is removed in this case to avoid duplicated and confusing output within the Logcat tool window:

.

.

import com.ebookfrenzy.lifecycledemo.DemoOwner

.

.

private lateinit var demoOwner: DemoOwner

override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 demoOwner = DemoOwner()

 demoOwner.startOwner()

 demoOwner.stopOwner()

 lifecycle.addObserver(DemoObserver())

}

44.6

 Testing the Custom Lifecycle Owner

Build and run the app one final time, refer to the Logcat tool window and confirm that the observer detected the create, start and stop lifecycle events in the following order:

onCreate

CREATED

onStart

STARTED

onStop

CREATED

Note that the “created” state changes were triggered even though code was not added to the DemoOwner class to do this manually. In fact, these were triggered automatically both when the owner instance was first created and subsequently when the ON_STOP event was handled.

44.7

 Summary

This chapter has provided a practical demonstration of the steps involved in implementing lifecycle awareness within an Android app. This included the creation of a lifecycle observer and the design and implementation of a basic lifecycle owner class.

45.

 An Overview of the

 Navigation Architecture Component

Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens through which the user navigates using screen gestures, button clicks and menu selections. Prior to the introduction of Android Jetpack, the implementation of navigation within an app was largely a manual coding process with no easy way to view and organize potentially complex navigation paths. This situation has improved considerably, however, with the introduction of the Android Navigation Architecture Component combined with support for navigation graphs in Android Studio.

45.1

 Understanding
 Navigation

Every app has a home screen that appears after the app has launched and after any splash screen has appeared (a splash screen being the app branding screen that appears temporarily while the app loads). From this home screen, the user will typically perform tasks that will result in other screens appearing. These screens will usually take the form of other activities and fragments within the app. A messaging app, for example, might have a home screen listing current messages from which the user can navigate to either another screen to access a contact list or to a settings screen. The contacts list screen, in turn, might allow the user to navigate to other screens where new users can be added or existing contacts updated. Graphically, the app’s navigation graph
 might be represented as shown in Figure 45-1
 :

[image:]

Figure 45-1

Each screen that makes up an app, including the home screen, is referred to as a destination
 and is usually a fragment or activity. The Android navigation architecture uses a
 navigation stack
 to track the user’s path through the destinations within the app. When the app first launches, the home screen is the first destination placed onto the stack and becomes the current destination
 . When the user navigates to another destination, that screen becomes the current destination and is pushed
 onto the stack above the home destination. As the user navigates to other screens, they are also pushed onto the stack. Figure 45-2
 , for example, shows the current state of the navigation stack for the hypothetical messaging app after the user has launched the app and is navigating to the “Add Contact” screen:

[image:]

Figure 45-2

As the user navigates back through the screens using the system back button, each destination is popped
 off the stack until the home screen is once again the only destination on the stack. In Figure 45-3
 , the user has navigated back from the Add Contact screen, popping it off the stack and making the Contact List screen the current destination:

[image:]

Figure 45-3

All of the work involved in navigating between destinations and managing the
 navigation stack is handled by a navigation controller
 which is represented by the NavController class.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward process involving a navigation host, navigation graph, navigation actions and a minimal amount of code writing to obtain a reference to, and interact with, the navigation controller instance.

45.2

 Declaring a
 Navigation Host

A navigation host is simply a special fragment (NavHostFragment) that is embedded into the user interface layout of an activity and serves as a placeholder for the destinations through which the user will navigate. Figure 45-4
 , for example, shows a typical activity screen and highlights the area represented by the navigation host fragment:

[image:]

Figure 45-4

A NavHostFragment can be placed into an activity layout within the Android Studio layout editor either by dragging and dropping an instance from the Containers section of the palette, or by manually editing the XML as follows:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/container"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <fragment

 android:id="@+id/demo_nav_host_fragment"

 android:name="androidx.navigation.fragment.NavHostFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:defaultNavHost="true"

 app:navGraph="@navigation/navigation_graph" />

</FrameLayout>

The points of note in the above navigation host fragment element are the reference to the NavHostFragment in the name
 property, the setting of defaultNavHost
 to true and the assignment of the file containing the navigation graph to the navGraph
 property.

When the activity launches, this navigation host fragment is replaced by the home destination designated in the navigation graph. As the user navigates through the app screens, the host fragment will be replaced by the appropriate fragment for the destination.

45.3

 The
 Navigation Graph

A navigation graph is an XML file which contains the destinations that will be included in the app navigation. In addition to these destinations, the file also contains navigation actions that define navigation between destinations, and optional arguments for passing data from one destination to another. Android Studio includes a navigation graph editor that can be used to design graphs and implement actions either visually or by manually editing the XML.

Figure 45-5
 , shows the Android Studio navigation graph editor in Design mode:

[image:]

Figure 45-5

The destinations list (A) provides a list of all of the destinations currently contained within the graph. Selecting a destination from the list will locate and select the corresponding destination in the graph (particularly useful for locating specific destinations in a large graph). The navigation graph panel (B) contains a dialog for each destination showing a representation of the user interface layout. In this example, this graph contains two destinations named mainFragment and secondFragment. Arrows between destinations (C) represent navigation action connections. Actions are added by hovering the mouse pointer over the edge of the origin until a circle appears, then clicking and dragging from the circle to the destination. The Attributes panel (D) allows the properties of the currently selected destination or action connection to be viewed and modified. In the above figure, the attributes for the action are displayed. New destinations are added by clicking on the button marked E and selecting options from a menu. Options are available to add existing fragments or activities as destinations, or to create new blank fragment destinations.

The underlying XML for the navigation graph can be viewed and modified by switching the editor into Text mode. The following XML listing represents the navigation graph for the destinations and action connection shown in Figure 45-5
 above:

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/mainFragment">

 <fragment

 android:id="@+id/mainFragment"

 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"

 android:label="main_fragment"

 tools:layout="@layout/main_fragment" >

 <action

 android:id="@+id/mainToSecond"

 app:destination="@id/secondFragment" />

 </fragment>

 <fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 </fragment>

</navigation>

If necessary, navigation graphs can also be split over multiple files to improve organization and promote reuse. When structured in this way, nested graphs
 are embedded into root graphs
 . To create a nested graph, simply shift-click on the destinations to be nested, right-click over the first destination and select the Move to Nested Graph -> New Graph
 menu option. The nested graph will then appear as a new node in the graph. To access the nested graph, simply double-click on the nested graph node to load the graph file into the editor.

45.4

 Accessing the
 Navigation Controller

Navigating from one destination to another will usually take place in response to an event of some kind within an app such as a button click or menu selection. Before a navigation action can be triggered, the code must first obtain a reference to the navigation controller instance. This requires a call to the findNavController()
 method of the Navigation or NavHostFragment classes. The following code, for example, can be used to access the navigation controller of an activity. Note that for the code to work, the activity must contain a navigation host fragment:

val controller: NavController =

 Navigation.findNavController(activity, R.id.demo_nav_host_fragment)

In this case, the method call is passed a reference to the activity and the id of the NavHostFragment embedded in the activity’s layout.

Alternatively, the navigation controller associated with any view may be identified simply by passing that view to the method:

val controller: NavController = Navigation.findNavController(button)

The final option finds the navigation controller for a fragment by calling the findNavController()
 method of the NavHostFragment class, passing through a reference to the fragment:

val controller: NavController = NavHostFragment.findNavController(fragment)

45.5

 Triggering a
 Navigation Action

Once the navigation controller has been found, a navigation action is triggered by calling the controller’s navigate()
 method and passing through the resource id of the action to be performed. For example:

controller.navigate(R.id.goToContactsList)

The id of the action is defined within the Attributes panel of the navigation graph editor when an action connection is selected.

45.6

 Passing Arguments

Data may be passed from one destination to another during a navigation action by making use of arguments which are declared within the navigation graph file. An argument consists of a name, type and an optional default value and may be added manually within the XML or using the Attributes panel when an action arrow or destination is selected within the graph. In Figure 45-6
 , for example, an integer argument named contactsCount
 has been declared with a default value of 0:

[image:]

Figure 45-6

Once added, arguments are placed within the XML element of the receiving destination, for example:

<fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 <argument

 android:name="contactsCount"

 android:defaultValue=0

 app:type="integer" />

</fragment>

The Navigation Architecture Component provides two techniques for passing data between destinations. One approach involves placing the data into a Bundle object that is passed to the destination during an action where it is then unbundled and the arguments extracted.

The main drawback to this particular approach is that it is not “type safe”. In other words, if the receiving destination treats an argument as being a different type than it was declared (for example treating a string as an integer) this error will not be caught by the compiler and will likely cause problems at runtime.

A better option, and the one used in this book is to make use of

 safeargs
 . Safeargs is a plugin for the Android Studio Gradle build system which automatically generates special classes that allow arguments to be passed in a type safe way. The safeargs approach to argument passing will be described and demonstrated in the next chapter (
“An Android Jetpack Navigation Component Tutorial”

).

45.7

 Summary

The term Navigation within the context of an Android app user interface refers to the ability of a user to move back and forth between different screens. Once time consuming to implement and difficult to organize, Android Studio and the Navigation Architecture Component now make it easier to implement and manage navigation within Android app projects.

The different screens within an app are referred to as destinations and are usually represented by fragments or activities. All apps have a home destination which includes the screen displayed when the app first loads. The content area of this layout is replaced by a navigation host fragment which is swapped out for other destination fragments as the user navigates the app. The navigation path is defined by the navigation graph file consisting of destinations and the actions that connect them together with any arguments to be passed between destinations. Navigation is handled by navigation controllers which, in addition to managing the navigation stack, provide methods to initiate navigation actions from within app code.

46.

 An Android Jetpack

 Navigation Component Tutorial

The previous chapter described the Android Jetpack Navigation Component and how it integrates with the navigation graphing features of Android Studio to provide an easy way to implement navigation between the screens of an Android app. In this chapter a new Android Studio project will be created that makes use of these navigation features to implement a simple app containing multiple screens. In addition to demonstrating the use of the Android Studio navigation graph editor, the example project will also implement the passing of data between origin and destination screens using type-safe arguments.

46.1

 Creating the NavigationDemo Project

Begin by launching Android Studio and creating a new project, entering NavigationDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the setup screens, requesting the Fragment+ViewModel option and using the default activity, fragment and view model names.

46.2

 Adding Navigation to the Build Configuration

A new Android Studio project does not, by default, include the Navigation component libraries in the build configuration files. Before performing any other tasks, therefore, the first step is to modify the app level build.gradle
 file. Locate this file in the project tool window (Gradle Scripts -> build.gradle (Module: app)
), double-click on it to load it into the code editor and modify the dependencies section to add the navigation libraries:

dependencies {

 implementation "android.arch.navigation:navigation-fragment
 -ktx
 :1.0.0-alpha07"

 implementation "android.arch.navigation:navigation-ui
 -ktx
 :1.0.0-alpha07"

.

.

}

Note that newer versions of these libraries may have been released since this book was published. To find the latest version, refer to the following URL:

https://developer.android.com/topic/libraries/architecture/adding-components#navigation

After adding the navigation dependencies to the file, click on the Sync Now
 link to resynchronize the build configuration for the project.

46.3

 Creating the

 Navigation Graph Resource File

With the navigation libraries added to the build configuration the navigation graph resource file can now be added to the project. As outlined in
“An Overview of the Navigation Architecture Component”

 , this is an XML file that contains the fragments and activities through which the user will be able to navigate, together with the actions to perform the transitions and any data to be passed between destinations.

Within the Project tool window, locate the res
 folder (app -> res
), right-click on it and select the New ->Android Resource File
 menu option:

[image:]

Figure 46-1

After the menu item has been selected, the New Resource File dialog will appear. In this dialog, name the file navigation_graph
 and change the Resource type menu to Navigation as outlined in Figure 46-2
 before clicking on the OK button to create the file. If the Navigation type is not available, select the File -> Settings
 menu option (Android Studio -> Preferences...
 on macOS), display the Experimental
 screen and turn on the Enable Navigation Editor
 option.

[image:]

Figure 46-2

After the navigation graph resource file has been added to the project it will appear in the main panel ready for new destinations to be added. Switch the editor to Text mode and review the XML for the graph before any destinations are added:

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/navigation_graph">

</navigation>

Switch back to Design mode within the editor and note that the Host section of the Destinations panel indicates that no navigation host fragments have been detected within the project:

[image:]

Figure 46-3

Before adding any destinations to the navigation graph, the next step is to add a navigation host fragment to the project.

46.4

 Declaring a
 Navigation Host

For this project, the navigation host fragment will be contained within the user interface layout of the main activity. This means that the destination fragments within the navigation graph will appear in the content area of the main activity currently occupied by the main_fragment.xml
 layout. Locate the main activity layout file in the Project tool window (app -> res -> layout -> main_activity.xml
) and load it into the layout editor tool.

With the layout editor in Design mode, drag a NavHostFragment element from the Containers section of the Palette and drop it onto the container area of the activity layout as indicated by the arrow in Figure 46-4
 :

[image:]

Figure 46-4

From the resulting Navigation Graphs dialog, select the navigation_graph.xml
 file created in the previous section and click on the OK button.

With the newly added NavHostFragment instance selected in the layout, use the Attributes tool window to change the ID of the element to demo_nav_host_fragment
 .

Switch the layout editor to Text mode and review the XML file. Note that the editor has correctly configured the navigation graph property to reference the navigation_graph.xml
 file and that the defaultNavHost
 property has been set to true
 :

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/container"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <fragment

 android:id="@+id/demo_nav_host_fragment"

 android:name="androidx.navigation.fragment.NavHostFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:defaultNavHost="true"

 app:navGraph="@navigation/navigation_graph" />

</FrameLayout>

With the NavHostFragment configured within the main activity layout file, some code needs to be removed from the MainActivity.
 kt
 class file to prevent the activity from loading the main_fragment.xml
 file at runtime. Load this file into the code editor, locate the onCreate()
 method and remove the code responsible for displaying the main fragment:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.main_activity)

 if (savedInstanceState == null) {

 supportFragmentManager.beginTransaction()

 .replace(R.id.container, MainFragment.newInstance())

 .commitNow()

 }

}

Return to the navigation_graph.xml
 file and confirm that the NavHostFragment instance has been detected (it may be necessary to close and reopen the file before the change appears):

[image:]

Figure 46-5

46.5

 Adding
 Navigation Destinations

Remaining in the navigation graph it is now time to add the first destination. Since the project already has a fragment for the first screen (main_fragment.xml
) this will be the first destination to be added to the graph. Click on the new destination button highlighted in Figure 46-6
 to select or create a destination:

[image:]

Figure 46-6

Select main_fragment
 as the destination so that it appears within the navigation graph:

[image:]

Figure 46-7

The home icon positioned above the destination node indicates that this is the start destination
 . This means that the destination will be the first displayed when the activity containing the NavHostFragment is created. To change the start destination to another destination, select that node in the graph and click on the Set Start Destination
 button located in the Attributes tool window.

Review the XML content of the navigation graph by switching the editor to Text mode:

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/mainFragment">

 <fragment

 android:id="@+id/mainFragment"

 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"

 android:label="main_fragment"

 tools:layout="@layout/main_fragment" />

</navigation>

Before any navigation can be performed, the graph needs at least one more destination. This time, the navigation graph editor will be used to create a new blank destination. Switch back to Design mode and click once again on the New Destination
 button, this time selecting the Create blank destination
 option from the menu. In the resulting dialog, name the new fragment SecondFragment
 and the layout fragment_second
 before clicking on the Finish button. After a short delay while the project rebuilds, the new fragment will appear as another destination within the graph as shown in Figure 46-8
 :

[image:]

Figure 46-8

46.6

 Designing the Destination Fragment Layouts

Before adding actions to navigate between destinations now is a good time to add some user interface components to the two destination fragments in the graph. Begin by double-clicking on the mainFragment destination so that the main_fragment.xml
 file loads into the layout editor. Select and delete the current TextView widget, then drag and drop Button and Plain Text EditText widgets onto the layout so that it resembles that shown in Figure 46-9
 below:

[image:]

Figure 46-9

Once the views are correctly positioned, click on the Infer constraints
 button in the toolbar to add any missing constraints to the layout. Select the EditText view and use the Attributes tool window to delete the default “Name” text and to change the ID of the widget to userText
 .

Return to the navigation_graph.xml
 file and double-click on the secondFragment destination to load the fragment_second.xml
 file into the layout editor, then select and delete the default TextView instance. Within the Component Tree panel, right-click on the FrameLayout entry and select the Convert from FrameLayout to ConstraintLayout...
 menu option, accepting the default settings in the resulting conversion dialog:

[image:]

Figure 46-10

With the fragment’s parent layout manager now converted to the more flexible ConstraintLayout, drag and drop a new TextView widget so that it is positioned in the center of the layout and click on the Infer constraints
 button to add any missing constraints. With the new TextView selected, use the Attributes panel to change the ID to argText
 .

46.7

 Adding an Action to the
 Navigation Graph

Now that the two destinations have been added to the graph and the corresponding user interface layouts designed, the project now needs a way for the user to navigate from the main fragment to the second fragment. This will be achieved by adding an action to the graph which can then be referenced from within the app code.

To establish an action connection with the main fragment as the origin and second fragment as the destination, open the navigation graph and hover the mouse pointer over the vertical center of the right-hand edge of the mainFragment destination so that a circle appears as highlighted in Figure 46-11
 :

[image:]

Figure 46-11

Click within the circle and drag the resulting line to the secondFragment destination:

[image:]

Figure 46-12

Release the line to establish the action connection between the origin and destination at which point the line will change into an arrow as shown in Figure 46-13
 :

[image:]

Figure 46-13

An action connection may be deleted at any time by selecting it and pressing the keyboard Delete key. With the arrow selected, review the properties available within the Attributes tool window and change the ID to mainToSecond
 . This is the ID by which the action will be referenced within the code. Switch the editor to Text mode and note that the action is now included within the XML:

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/mainFragment">

 <fragment

 android:id="@+id/mainFragment"

 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"

 android:label="main_fragment"

 tools:layout="@layout/main_fragment" >

 <action

 android:id="@+id/mainToSecond"

 app:destination="@id/secondFragment" />

 </fragment>

 <fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" />

46.8

 Implement the
 OnFragmentInteractionListener

Before adding code to trigger the action, the MainActivity class will need to be modified to implement the OnFragmentInteractionListener interface. This is an interface that was generated within the SecondFragment class when the blank fragment was created within the navigation graph editor. In order to conform to the interface, the activity needs to implement a single method named onFragmentInteraction()
 and is used to implement communication between the fragment and the activity.

Edit the MainActivity.
 kt
 file and modify it so that it reads as follows:

.

.

import android.net.Uri

.

.

class MainActivity : AppCompatActivity(),

 SecondFragment.OnFragmentInteractionListener
 {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.main_activity)

 }

 override fun onFragmentInteraction(uri: Uri) {

 }

}

46.9

 Triggering the Action

Now that the action has been added to the navigation graph, the next step is to add some code within the main fragment to trigger the action when the Button widget is clicked. Locate the MainFragment.
 kt
 file, load it into the code editor and modify the onActivityCreated()
 method to obtain a reference to the button instance and to configure an onClickListener instance to be called when the user clicks the button:

.

.

import androidx.navigation.Navigation

import kotlinx.android.synthetic.main.main_fragment.*

.

.

class MainFragment : Fragment() {

.

.

 override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 button.setOnClickListener {

 Navigation.findNavController(it).navigate(

 R.id.mainToSecond)

 }

 }

}

The above code obtains a reference to the navigation controller and calls the navigate()
 method on that instance, passing through the resource ID of the navigation action as an argument.

Compile and run the app and verify that clicking the button in the main fragment transitions to the second fragment.

As an alternative to this approach to setting up a listener, the Navigation class also includes a method named createNavigateOnClickListener()
 which provides a more efficient way of setting up a listener and navigating to a destination. The same result can be achieved, therefore, using the following single line of code to initiate the transition:

button.setOnClickListener(Navigation.createNavigateOnClickListener(

 R.id.mainToSecond, null))

46.10

 Passing Data Using

 Safeargs

The next objective in this tutorial is to pass the text entered into the EditText view in the main fragment to the second fragment where it will be displayed on the TextView widget. As outlined in the previous chapter, the Android Navigation component supports two approaches to passing data. This chapter will make use of type safe argument passing.

The first step in using safeargs is to add the safeargs plugin to the Gradle build configuration. Using the Project tool window, locate and edit the project level build.gradle
 file (Gradle Scripts -> build.gradle (Project: NavigationDemo)
) to add the plugin to the dependencies as follows (once again keeping in mind that a more recent version may now be available):

buildscript {

 ext.kotlin_version = '1.2.51'

 repositories {

 google()

 jcenter()

 }

 dependencies {

 classpath 'com.android.tools.build:gradle:3.2.0-beta04'

 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

 classpath "android.arch.navigation:navigation-safe-args-gradle-plugin:1.0.0-alpha07"

.

.

Next, edit the app level build.gradle
 file (Gradle Scripts -> build.gradle (Module: App)
) to apply the plugin as follows and resync the project when prompted to do so.

apply plugin: 'com.android.application'

apply plugin: 'androidx.navigation.safeargs'

.

.

android {

.

.

The next step is to define any arguments that will be received by the destination which, in this case, is the second fragment. Edit the navigation graph, select the secondFragment destination and locate the Arguments section within the Attributes tool window. Click on the + button (highlighted in Figure 46-14
) to add a new argument to the destination:

[image:]

Figure 46-14

After the + button has been clicked, a row will appear into which the argument name, type and default value need to be entered. Name the argument message
 , set the type to string
 and enter No Message
 into the default value field:

[image:]

Figure 46-15

The newly configured argument will appear in the secondFragment element of the navigation_graph.xml
 file as follows:

<fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 <argument

 android:name="message"

 android:defaultValue="No Message"

 app:argType="string" />

</fragment>

The next step is to add code to the Mainfragment.
 kt
 file to extract the text from the EditText view and pass it to the second fragment during the navigation action. This will involve using some special navigation classes that have been generated automatically by the safeargs plugin. Currently the navigation involves the MainFragment class, the SecondFragment class, a navigation action named mainToSecond
 and an argument named message
 .

When the project is built, the safeargs plugin will generate the following additional classes that can be used to pass and receive arguments during navigation.

•
 MainFragmentDirections
 - This class represents the origin for the navigation action (named using the class name of the navigation origin with “Directions” appended to the end) and provides access to the action object.

•
 ActionMainToSecond
 - The class that represents the action used to perform the transition (named based on the ID assigned to the action within the navigation graph file prefixed with “Action”). This class contains a setter method for each of the arguments configured on the destination. For example, since the second fragment destination contains an argument named message
 , the class includes a method named setMessage()
 . Once configured, an instance of this class is then passed to the navigate()
 method of the navigation controller to navigate to the destination.

•
 SecondFragmentArgs
 - The class used in the destination fragment to access the arguments passed from the origin (named using the class name of the navigation destination with “Args” appended to the end). This class includes a getter method for each of the arguments passed to the destination (i.e. getMessage()
)

Using these classes, the onClickListener
 code within the onActivityCreated()
 method of the MainFragment.
 kt
 file can be modified as follows to extract the current text from the EditText widget, apply it to the action and initiate the transition to the second fragment:

button.setOnClickListener {

 var action: MainFragmentDirections.MainToSecond =

 MainFragmentDirections.mainToSecond()

 action.setMessage(userText.text.toString())

 Navigation.findNavController(it).navigate(action)

}

The above code obtains a reference to the action object, sets the message argument string using the setMessage()
 method and then calls the navigate()
 method of the navigation controller, passing through the action object.

All that remains is to modify the SecondFragment.
 kt
 class file to receive the argument after the navigation has been performed and display it on the TextView widget. For this example, the code to achieve these tasks will be added using an onStart()
 lifecycle method. Edit the SecondFragment.
 kt
 file and add this method so that it reads as follows:

.

.

import kotlinx.android.synthetic.main.fragment_second.*

.

.

 override fun onStart() {

 super.onStart()

 var args = SecondFragmentArgs.fromBundle(arguments)

 argText.text = args.message

 }

.

.

The code in the above method begins by obtaining a reference to the TextView widget. Next, the fromBundle()
 method of the SecondFragmentArgs class is called to extract the SecondFragmentArgs object received from the origin. Since the argument in this example was named message
 in the navigation_graph.xml
 file, the corresponding getMessage()
 method is called on the args object to obtain the string value. This string is then displayed on the TextView widget.

Compile and run the app and enter some text before clicking on the Button widget. When the second fragment destination appears, the TextView should now display the text entered in the main fragment indicating that the data was successfully passed between navigation destinations.

46.11

 Summary

This chapter has provided a practical example of how to implement Android app navigation using the Navigation Architecture Component together with the Android Studio navigation graph editor. Topics covered included the creation of a navigation graph containing both existing and new destination fragments, the embedding of a navigation host fragment within an activity layout, writing code to trigger navigation events and the passing of arguments between destinations using the Gradle safeargs plugin.

47.

 Creating and Managing Overflow Menus

 on Android

An area of user interface design that has not yet been covered in this book relates to the concept of menus within an Android application. Menus provide a mechanism for offering additional choices to the user beyond the view components that are present in the user interface layout. While there are a number of different menu systems available to the Android application developer, this chapter will focus on the more commonly used Overflow menu. The chapter will cover the creation of menus both manually via XML and visually using the Android Studio Layout Editor tool.

47.1

 The Overflow Menu

The overflow menu (also referred to as the options menu) is a menu that is accessible to the user from the device display and allows the developer to include other application options beyond those included in the user interface of the application. The location of the overflow menu is dependent upon the version of Android that is running on the device. With the Android 4.0 release and later, the overflow menu button is located in the top right-hand corner (Figure 47-1
) in the action toolbar represented by the stack of three squares:

 [image:]

Figure 47-1

47.2

 Creating an Overflow Menu

The items in a menu can be declared within an XML file, which is then inflated and displayed to the user on demand. This involves the use of the <menu>
 element, containing an <item> sub-element for each menu item. The following XML, for example, defines a menu consisting of two menu items relating to color choices:

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 tools:context=

 ".MenuExampleActivity" >

 <item

 android:id="@+id/menu_red"

 android:orderInCategory="1"

 app:showAsAction="never"

 android:title="@string/red_string"/>

 <item

 android:id="@+id/menu_green"

 android:orderInCategory="2"

 app:showAsAction="never"

 android:title="@string/green_string"/>

</menu>

In the above XML, the android:orderInCategory

 property dictates the order in which the menu items will appear within the menu when it is displayed. The app:showAsAction

 property, on the other hand, controls the conditions under which the corresponding item appears as an item within the action bar itself. If set to if Room
 , for example, the item will appear in the action bar if there is enough room. Figure 47-2
 shows the effect of setting this property to ifRoom
 for both menu ite
 ms:

[image:]

Figure 47-2

This property should be used sparingly to avoid over cluttering the action bar.

By default, a menu XML file is created by Android Studio when a new Android application project is created. This file is located in the app -> res -> menu
 project folder and contains a single menu item entitled “Settings”:

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 tools:context=".MainActivity">

 <item android:id="@+id/action_settings"

 android:title="@string/action_settings"

 android:orderInCategory="100"

 app:showAsAction="never" />

</menu>

This menu is already configured to be displayed when the user selects the overflow menu on the user interface when the app is running, so simply modify this one to meet your needs.

47.3

 Displaying an Overflow Menu

An overflow menu is created by overriding the onCreateOptionsMenu()
 method
 of the corresponding activity and then inflating the menu’s XML file. For example, the following code creates the menu contained within a menu XML file named menu_menu_example
 :

override fun onCreateOptionsMenu(menu: Menu): Boolean {

 menuInflater.inflate(R.menu.menu_menu_example, menu)

 return true

}

As with the menu XML file, Android Studio will already have overridden this method in the main activity of a newly created Android application project. In the event that an overflow menu is not required in your activity, either remove or comment out this method.

47.4

 Responding to Menu Item Selections

Once a menu has been implemented, the question arises as to how the application receives notification when the user makes menu item selections. All that an activity needs to do to receive menu selection notifications is to override the onOptionsItemSelected()
 method
 . Passed as an argument to this method is a reference to the selected menu item. The getItemId()
 method
 may then be called on the item to obtain the ID which may, in turn, be used to identify which item was selected. For example:

override fun onOptionsItemSelected(item: MenuItem): Boolean {

 when (item.itemId) {

 R.id.menu_red -> {

 return true

 }

 R.id.menu_green -> {

 return true

 }

 else -> return super.onOptionsItemSelected(item)

 }

}

47.5

 Creating Checkable Item Groups

In addition to configuring independent menu items, it is also possible to create groups of menu items. This is of particular use when creating checkable menu items whereby only one out of a number of choices can be selected at any one time. Menu items can be assigned to a group by wrapping them in the <group>
 tag. The group is declared as checkable using the android:checkableBehavior

 property, setting the value to either single,
 all
 or none
 . The following XML declares that two menu items make up a group wherein only one item may be selected at any given time:

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto">

 <group android:checkableBehavior="single">

 <item

 android:id="@+id/menu_red"

 android:title="@string/red_string"/>

 <item

 android:id="@+id/menu_green"

 android:title="@string/green_string"/>

 </group>

</menu>

When a menu group is configured to be checkable, a small circle appears next to the item in the menu as illustrated in Figure 47-3
 . It is important to be aware that the setting and unsetting of this indicator does not take place automatically. It is, therefore, the responsibility of the application to check and uncheck the me
 nu item.

[image:]

Figure 47-3

Continuing the color example used previously in this chapter, this would be implemented as follows:

override fun onOptionsItemSelected(item: MenuItem): Boolean {

 when (item.itemId) {

 R.id.menu_red -> {

 if (item.isChecked)

 item.isChecked = false

 else

 item.isChecked = true

 return true

 }

 R.id.menu_green -> {

 if (item.isChecked)

 item.isChecked = false

 else

 item.isChecked = true

 return true

 }

 else -> return super.onOptionsItemSelected(item)

 }

}

47.6

 Menus
 and the Android Studio Menu Editor

Android Studio allows menus to be designed visually simply by loading the menu resource file into the Menu Editor tool, dragging and dropping menu elements from a palette and setting properties. This considerably eases the menu design process, though it is important to be aware that it is still necessary to write the code in the onOptionsItemSelected()
 method to implement the menu behavior.

To visually design a menu, locate the menu resource file and double-click on it to load it into the Menu Editor tool. Figure 47-4
 , for example, shows the default menu resource file for a basic activity loaded into the Me
 nu Editor:

[image:]

Figure 47-4

The palette (A) contains items that can be added to the menu contained in the design area (C). The Component Tree (B) is a useful tool for identifying the hierarchical structure of the menu. The Attributes panel (D) contains a subset of common attributes for the currently selected item. The view all attributes link (E) may be used to access the full list of attributes.

New elements may be added to the menu by dragging and dropping objects either onto the layout canvas or the Component Tree. When working with menus in the Layout Editor tool, it will sometimes be easier to drop the items onto the Component Tree since this provides greater control over where the item is placed within the tree. This is of particular use, for example, when adding items to a group.

Although the Menu Editor provides a visual approach to constructing menus, the underlying menu is still stored in XML format which may be viewed and edited manually by switching from Design to Text mode using the tab marked F in the above figure.

47.7

 Creating the Example Project

To see the overflow menu in action, create a new project in Android Studio, entering MenuExample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Work through the remaining screens, requesting the creation of a basic activity named MenuExampleActivity
 with a corresponding layout file named activity_menu_example.

When the project has been created, navigate to the app -> res -> layout
 folder in the Project tool window and double-click on the content_menu_example.xml
 file to load it into the Android Studio Menu Editor tool. Switch the tool to Design mode, select the ConstraintLayout from the Component Tree panel and enter layoutView
 into the ID field of the Attributes panel.

47.8

 Designing the Menu

Within the Project tool window, locate the project’s app -> res -> menu -> menu_menu_example.xml
 file and double-click on it to load it into the Layout Editor tool. Switch to Design mode if necessary and select and delete the default Settings menu item added by Android Studio so that the menu currently has no items.

From the palette, click and drag a menu group
 object onto the title bar of the layout canvas as highlighted in Figure 47-5
 :

[image:]

Figure 47-5

Although the group item has been added, it will be invisible within the layout. To verify the presence of the element, refer to the Component Tree panel where the group will be listed as a child of the menu:

[image:]

Figure 47-6

Select the group
 entry in the Component Tree and, referring to the Attributes panel, set the checkableBehavior
 property to single
 so that only one group menu item can be selected at any one time:

[image:]

Figure 47-7

Next, drag four Menu Item
 elements from the palette and drop them onto the group
 element in the Component Tree. Select the first item and use the Attributes panel to change the title to “Red” and the ID to menu_red
 :

[image:]

Figure 47-8

Repeat these steps for the remaining three menu items setting the titles to “Green”, “Yellow” and “Blue” with matching IDs of menu_green
 , menu_yellow
 and menu_blue
 . Use the warning buttons to the right of the menu items in the Component Tree panel to extract the strings to resources:

[image:]

Figure 47-9

On completion of these steps, the menu layout should match that shown in Figure 47-10
 be
 low:

[image:]

Figure 47-10

Switch the Layout Editor tool to Text mode and review the XML representation of the menu which should match the following listing:

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 tools:context="com.ebookfrenzy.menuexample.MenuExampleActivity">

 <group android:checkableBehavior="single">

 <item android:title="@string/red_string"

 android:id="@+id/menu_red" />

 <item android:title="@string/green_string"

 android:id="@+id/menu_green" />

 <item android:title="@string/yellow_string"

 android:id="@+id/menu_yellow" />

 <item android:title="@string/blue_string"

 android:id="@+id/menu_blue" />

 </group>

</menu>

47.9

 Modifying the onOptionsItemSelected() Method

When items are selected from the menu, the overridden onOptionsItemsSelected()
 method
 of the application’s activity will be called. The role of this method will be to identify which item was selected and change the background color of the layout view to the corresponding color. Locate and double-click on the app -> java -> com.ebookfrenzy.menuexample -> MenuExampleActivity
 file and modify the method as follows:

package com.ebookfrenzy.menuexample

import android.os.Bundle

import android.support.constraint.ConstraintLayout

import android.support.design.widget.Snackbar

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import kotlinx.android.synthetic.main.activity_menu_example.*

import kotlinx.android.synthetic.main.content_menu_example.*

class MenuExampleActivity : AppCompatActivity() {

.

.

 override fun onCreateOptionsMenu(menu: Menu): Boolean {

 // Inflate the menu; this adds items to the action bar if it is present.

 menuInflater.inflate(R.menu.menu_menu_example, menu)

 return true

 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {

 when (item.itemId) {

 R.id.menu_red -> {

 item.isChecked = !item.isChecked

 layoutView.setBackgroundColor(android.graphics.Color.RED)

 return true

 }

 R.id.menu_green -> {

 item.isChecked = !item.isChecked

 layoutView.setBackgroundColor(android.graphics.Color.GREEN)

 return true

 }

 R.id.menu_yellow -> {

 item.isChecked = !item.isChecked

 layoutView.setBackgroundColor(android.graphics.Color.YELLOW)

 return true

 }

 R.id.menu_blue -> {

 item.isChecked = !item.isChecked

 layoutView.setBackgroundColor(android.graphics.Color.BLUE)

 return true

 }

 else -> return super.onOptionsItemSelected(item)

 }

 }

.

.

}

47.10

 Testing the Application

Build and run the application on either an emulator or physical Android device. Using the overflow menu, select menu items and verify that the layout background color changes appropriately. Note that the currently selected color is displayed as the checked item in the menu.

[image:]

Figure 47-11

47.11

 Summary

The Android overflow menu is accessed from the far right of the actions toolbar at the top of the display of the running app. This menu provides a location for applications to provide additional options to the user.

The structure of the menu is most easily defined within an XML file and the application activity receives notifications of menu item selections by overriding and implementing the onOptionsItemSelected()
 method.

48.

 Animating User Interfaces with the Android Transitions Framework

The Android Transitions framework was introduced as part of the Android 4.4 KitKat release and is designed to make it easy for you, as an Android developer, to add animation effects to the views that make up the screens of your applications. As will be outlined in both this and subsequent chapters, animated effects such as making the views in a user interface gently fade in and out of sight and glide smoothly to new positions on the screen can be implemented with just a few simple lines of code when using the Transitions framework in Android Studio.

48.1

 Introducing Android Transitions and Scenes

Transitions allow the changes made to the layout and appearance of the views in a user interface to be animated during application runtime. While there are a number of different ways to implement Transitions from within application code, perhaps the most powerful mechanism involves the use of Scenes
 . A scene represents either the entire layout of a user interface screen, or a subset of the layout (represented by a ViewGroup).

To implement transitions using this approach, scenes are defined that reflect the two different user interface states (these can be thought of as the “before” and “after” scenes). One scene, for example, might consist of EditText, Button and TextView views positioned near the top of the screen. The second scene might remove the Button view and move the remaining EditText and TextView objects to the bottom of the screen to make room for the introduction of a MapView instance. Using the transition framework, the changes between these two scenes can be animated so that the Button fades from view, the EditText and TextView slide to the new locations and the map gently fades into view.

Scenes can be created in code from ViewGroups, or implemented in layout resource files that are loaded into Scene instances at application runtime.

Transitions can also be implemented dynamically from within application code. Using this approach, scenes are created by referencing collections of user interface views in the form of ViewGroups with transitions then being performed on those elements using the TransitionManager class
 , which provides a range of methods for triggering and managing the transitions between scenes.

Perhaps the simplest form of transition involves the use of the beginDelayedTransition()
 method
 of the TransitionManager class. When called and passed the ViewGroup representing a scene, any subsequent changes to any views within that scene (such as moving, resizing, adding or deleting views) will be animated by the Transition framework.

The actual animation is handled by the Transition framework via instances of the Transition
 class. Transition instances are responsible for detecting changes to the size, position and visibility of the views within a scene and animating those changes accordingly.

By default, transitions will be animated using a set of criteria defined by the AutoTransition class
 . Custom transitions can be created either via settings in XML transition files or directly within code. Multiple transitions can be combined together in a TransitionSet
 and configured to be performed either in parallel or sequentially.

48.2

 Using Interpolators
 with Transitions

The Transitions framework makes extensive use of the Android Animation framework to implement animation effects. This fact is largely incidental when using transitions since most of this work happens behind the scenes, thereby shielding the developer from some of the complexities of the Animation framework. One area where some knowledge of the Animation framework
 is beneficial when using Transitions, however, involves the concept of interpolators.

Interpolators are a feature of the Android Animation framework that allow animations to be modified in a number of pre-defined ways. At present the Animation framework provides the following interpolators, all of which are available for use in customizing transitions:

•
 AccelerateDecelerateInterpolator

 – By default, animation is performed at a constant rate. The AccelerateDecelerateInterpolator can be used to cause the animation to begin slowly and then speed up in the middle before slowing down towards the end of the sequence.

•
 AccelerateInterpolator

 – As the name suggests, the AccelerateInterpolator begins the animation slowly and accelerates at a specified rate with no deceleration at the end.

•
 AnticipateInterpolator

 – The AnticipateInterpolator provides an effect similar to that of a sling shot. The animated view moves in the opposite direction to the configured animation for a short distance before being flung forward in the correct direction. The amount of backward force can be controlled through the specification of a tension value.

•
 AnticipateOvershootInterpolator

 – Combines the effect provided by the AnticipateInterpolator with the animated object overshooting and then returning to the destination position on the screen.

•
 BounceInterpolator

 – Causes the animated view to bounce on arrival at its destination position.

•
 CycleInterpolator

 – Configures the animation to be repeated a specified number of times.

•
 DecelerateInterpolator

 – The DecelerateInterpolator causes the animation to begin quickly and then decelerate by a specified factor as it nears the end.

•
 LinearInterpolator

 – Used to specify that the animation is to be performed at a constant rate.

•
 OvershootInterpolator

 – Causes the animated view to overshoot the specified destination position before returning. The overshoot can be configured by specifying a tension value.

As will be demonstrated in this and later chapters, interpolators can be specified both in code and XML files.

48.3

 Working with Scene Transitions

Scenes can be represented by the content of an Android Studio XML layout file. The following XML, for example, could be used to represent a scene consisting of three button views within a RelativeLayout parent:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/RelativeLayout1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:onClick="goToScene2"

 android:text="@string/one_string" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true"

 android:onClick="goToScene1"

 android:text="@string/two_string" />

 <Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:text="@string/three_string" />

</RelativeLayout>

Assuming that the above layout resides in a file named scene1_layout.xml
 located in the res/layout
 folder of the project, the layout can be loaded into a scene using the getSceneForLayout()
 method
 of the Scene class. For example:

val scene1 = Scene.getSceneForLayout(rootContainer,

 R.layout.scene1_layout, this)

Note that the method call requires a reference to the root container. This is the view at the top of the view hierarchy in which the scene is to be displayed.

To display a scene to the user without any transition animation, the enter()
 method is called on the scene instance:

scene1.enter()

Transitions between two scenes using the default AutoTransition class
 can be triggered using the go()
 method
 of the TransitionManager class
 :

TransitionManager.go(scene2)

Scene instances can be created easily in code by bundling the view elements into one or more ViewGroups and then creating a scene from those groups. For example:

val scene1 = Scene(viewGroup1)

val scene2 = Scene(viewGroup2, viewGroup3)

48.4

 Custom Transitions
 and TransitionSets
 in Code

The examples outlined so far in this chapter have used the default transition settings in which resizing, fading and motion are animated using pre-configured behavior. These can be modified by creating custom transitions which are then referenced during the transition process. Animations are categorized as either change bounds
 (relating to changes in the position and size of a view) and fade
 (relating to the visibility or otherwise of a view).

A single Transition can be created as follows:

val myChangeBounds = ChangeBounds()

This new transition can then be used when performing a transition:

TransitionManager.go(scene2, myChangeBounds)

Multiple transitions may be bundled together into a TransitionSet instance. The following code, for example, creates a new TransitionSet
 object consisting of both change bounds and fade transition effects:

val myTransition = TransitionSet()

myTransition.addTransition(ChangeBounds())

myTransition.addTransition(Fade())

Transitions can be configured to target specific views (referenced by view ID). For example, the following code will configure the previous fade transition to target only the view with an ID that matches myButton1
 :

val myTransition = TransitionSet()

myTransition.addTransition(ChangeBounds())

val fade = Fade()

fade.addTarget(R.id.myButton1)

myTransition.addTransition(fade)

Additional aspects of the transition may also be customized, such as the duration of the animation. The following code specifies the duration over which the animation is to be performed:

val changeBounds = ChangeBounds()

changeBounds.duration = 2000

As with Transition instances, once a TransitionSet instance has been created, it can be used in a transition via the TransitionManager class
 . For example:

TransitionManager.go(scene1, myTransition)

48.5

 Custom Transitions and TransitionSets
 in XML

While custom transitions can be implemented in code, it is often easier to do so via XML transition files using the <fade>
 and <changeBounds>
 tags together with some additional options. The following XML includes a single changeBounds transition:

<?xml version="1.0" encoding="utf-8"?>

<changeBounds/>

As with the code based approach to working with transitions, each transition entry in a resource file may be customized. The XML below, for example, configures a duration for a change bounds transition:

<changeBounds android:duration="5000" >

Multiple transitions may be bundled together using the <transitionSet>
 element:

<?xml version="1.0" encoding="utf-8"?>

<transitionSet

 xmlns:android="http://schemas.android.com/apk/res/android" >

 <fade

 android:duration="2000"

 android:fadingMode="fade_out" />

 <changeBounds

 android:duration="5000" >

 <targets>

 <target android:targetId="@id/button2" />

 </targets>

 </changeBounds>

 <fade

 android:duration="2000"

 android:fadingMode="fade_in" />

</transitionSet>

Transitions contained within an XML resource file should be stored in the res/transition
 folder of the project in which they are being used and must be inflated before being referenced in the code of an application. The following code, for example, inflates the transition resources contained within a file named transition.xml
 and assigns the results to a reference named myTransition
 :

val myTransition = TransitionInflater.from(this)

 .inflateTransition(R.transition.transition)

Once inflated, the new transition can be referenced in the usual way:

TransitionManager.go(scene1, myTransition)

By default, transition effects within a TransitionSet are performed in parallel. To instruct the Transition framework to perform the animations sequentially, add the appropriate android:transitionOrdering

 property to the transitionSet element of the resource file:

<?xml version="1.0" encoding="utf-8"?>

<transitionSet

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:transitionOrdering="sequential"
 >

 <fade

 android:duration="2000"

 android:fadingMode="fade_out" />

 <changeBounds

 android:duration="5000" >

 </changeBounds>

</transitionSet>

Change the value from “sequential” to “together” to indicate that the animation sequences are to be performed in parallel.

48.6

 Working with Interpolators

As previously discussed, interpolators can be used to modify the behavior of a transition in a variety of ways and may be specified either in code or via the settings within a transition XML resource file.

When working in code, new interpolator instances can be created by calling the constructor method of the required interpolator class and, where appropriate, passing through values to further modify the interpolator behavior:

·
 AccelerateDecelerateInterpolator()

·
 AccelerateInterpolator(float factor)

·
 AnticipateInterpolator(float tension)

·
 AnticipateOvershootInterpolator(float tension)

·
 BounceInterpolator()

·
 CycleInterpolator(float cycles)

·
 DecelerateInterpolator(float factor)

·
 LinearInterpolator()

·
 OvershootInterpolator(float tension)

Once created, an interpolator instance can be attached to a transition using the setInterpolator()
 method
 of the Transition class.
 The following code, for example, adds a bounce interpolator to a change bounds transition:

val changeBounds = ChangeBounds()

changeBounds.interpolator = BounceInterpolator()

Similarly, the following code adds an accelerate interpolator to the same transition, specifying an acceleration factor of 1.2:

changeBounds.interpolator = AccelerateInterpolator(1.2f)

In the case of XML based transition resources, a default interpolator is declared using the following syntax:

android:interpolator="@android:anim/<interpolator_element>
 "

In the above syntax, <interpolator_element>
 must be replaced by the resource ID of the corresponding interpolator selected from the following list:

·
 accelerate_decelerate_interpolator

·
 accelerate_interpolator

·
 anticipate_interpolator

·
 anticipate_overshoot_interpolator

·
 bounce_interpolator

·
 cycle_interpolator

·
 decelerate_interpolator

·
 linear_interpolator

·
 overshoot_interpolator

The following XML fragment, for example, adds a bounce interpolator to a change bounds transition contained within a transition set:

<?xml version="1.0" encoding="utf-8"?>

<transitionSet

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:transitionOrdering="sequential">

 <changeBounds

 android:interpolator="@android:anim/bounce_interpolator"

 android:duration="2000" />

 <fade

 android:duration="1000"

 android:fadingMode="fade_in" />

</transitionSet>

This approach to adding interpolators to transitions within XML resources works well when the default behavior of the interpolator is required. The task becomes a little more complex when the default behavior of an interpolator needs to be changed. Take, for example, the cycle interpolator. The purpose of this interpolator is to make an animation or transition repeat a specified number of times. In the absence of a cycles
 attribute setting, the cycle interpolator will perform only one cycle. Unfortunately, there is no way to directly specify the number of cycles (or any other interpolator attribute for that matter) when adding an interpolator using the above technique. Instead, a custom interpolator must be created and then referenced within the transition file.

48.7

 Creating a Custom Interpolator

A custom interpolator must be declared in a separate XML file and stored within the res/anim
 folder of the project. The name of the XML file will be used by the Android system as the resource ID for the custom interpolator.

Within the custom interpolator XML resource file, the syntax should read as follows:

<?xml version="1.0" encoding="utf-8"?>

<interpolatorElement
 xmlns:android="http://schemas.android.com/apk/res/android" android:attribute
 ="value
 " />

In the above syntax, interpolatorElement

 must be replaced with the element name of the required interpolator selected from the following list:

•
 accelerateDecelerateInterpolator

•
 accelerateInterpolator

•
 anticipateInterpolator

•
 anticipateOvershootInterpolator

•
 bounceInterpolator

•
 cycleInterpolator

•
 decelerateInterpolator

•
 linearInterpolator

•
 overshootInterpolator

The attribute
 keyword is replaced by the name attribute of the interpolator for which the value is to be changed (for example tension
 to change the tension attribute of an overshoot interpolator). Finally, value
 represents the value to be assigned to the specified attribute. The following XML, for example, contains a custom cycle interpolator configured to cycle 7 times:

<?xml version="1.0" encoding="utf-8"?>

<cycleInterpolator xmlns:android="http://schemas.android.com/apk/res/android" android:cycles="7" />

Assuming that the above XML was stored in a resource file named my_cycle.xml
 located in the res/anim
 project folder, the custom interpolator could be added to a transition resource file using the following XML syntax:

<changeBounds

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:duration="5000"

 android:interpolator="@anim/my_cycle"
 >

48.8

 Using the beginDelayedTransition Method

Perhaps the simplest form of Transition based user interface animation involves the use of the beginDelayedTransition()
 method of the TransitionManager class. This method is passed a reference to the root view of the viewgroup representing the scene for which animation is required. Subsequent changes to the views within that sub view will then be animated using the default transition settings:

TransitionManager.beginDelayedTransition(myLayout)

// Make changes to the scene here

If behavior other than the default animation behavior is required, simply pass a suitably configured Transition or TransitionSet instance through to the method call:

TransitionManager.beginDelayedTransition(myLayout, myTransition)

48.9

 Summary

The Android 4.4 KitKat SDK release introduced the Transition Framework, the purpose of which is to simplify the task of adding animation to the views that make up the user interface of an Android application. With some simple configuration and a few lines of code, animation effects such as movement, visibility and resizing of views can be animated by making use of the Transition framework. A number of different approaches to implementing transitions are available involving a combination of Kotlin code and XML resource files. The animation effects of transitions may also be enhanced through the use of a range of interpolators.

Having covered some of the theory of Transitions in Android, the next two chapters will put this theory into practice by working through some example Android Studio based transition implementations.

49.

 An Android Transition Tutorial using beginDelayedTransition

The previous chapter, entitled
“Animating User Interfaces with the Android Transitions Framework”

 , provided an introduction to the animation of user interfaces using the Android Transitions framework. This chapter uses a tutorial based approach to demonstrate Android transitions in action using the beginDelayedTransition()
 method of the TransitionManager class.

The next chapter will create a more complex example that uses layout files and transition resource files to animate the transition from one scene to another within an application.

49.1

 Creating the Android Studio TransitionDemo Project

Create a new project in Android Studio, entering TransitionDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Proceed through the remaining screens, requesting the creation of an Empty Activity named TransitionDemoActivity
 with a layout resource file named activity_transition_demo
 .

49.2

 Preparing the Project Files

The first example transition animation will be implemented through the use of the beginDelayedTransition()
 method of the TransitionManager class. If Android Studio does not automatically load the file, locate and double-click on the app -> res -> layout -> activity_transition_demo.xml
 file in the Project tool window panel to load it into the Layout Editor tool.

Switch the Layout Editor to Design mode, delete the “Hello World!” TextView, drag a Button from the Widget section of the Layout Editor palette and position it in the top left-hand corner of the device screen layout. Once positioned, select the button and use the Attributes tool window to specify an ID value of myButton
 .

Select the ConstraintLayout entry in the Component Tree tool window and use the Attributes window to set the ID to myLayout
 .

49.3

 Implementing beginDelayedTransition Animation

The objective for the initial phase of this tutorial is to implement a touch handler so that when the user taps on the layout view the button view moves to the lower right-hand corner of the screen.

Open the TransitionDemoActivity.
 kt
 file (located in the Project tool window under app -> java -> com.ebookfrenzy.transitiondemo
) and modify the onCreate()
 method to implement the onTouch handler:

package com.ebookfrenzy.transitiondemo

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.MotionEvent

import android.view.View

import android.support.constraint.ConstraintSet

import kotlinx.android.synthetic.main.activity_transition_demo.*

class TransitionDemoActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_transition_demo)

 myLayout.setOnTouchListener { v: View, m: MotionEvent ->

 handleTouch()

 true

 }

 }

}

The above code simply sets up a touch listener on the ConstraintLayout container and configures it to call a method named handleTouch()
 when a touch is detected. The next task, therefore, is to implement the handleTouch()
 method as follows:

private fun handleTouch() {

 myButton.minWidth = 500

 myButton.minHeight = 350

 val set = ConstraintSet()

 set.connect(R.id.myButton, ConstraintSet.BOTTOM,

 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0)

 set.connect(R.id.myButton, ConstraintSet.RIGHT,

 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)

 set.constrainWidth(R.id.myButton, ConstraintSet.WRAP_CONTENT)

 set.applyTo(myLayout)

}

This method obtains a reference to the button view in the user interface layout and sets new minimum height and width attributes so that the button increases in size.

A ConstraintSet object is then created and configured with constraints that will position the button in the lower right-hand corner of the parent layout. This constraint set is then applied to the layout.

Test the code so far by compiling and running the application. Once launched, touch the background (not the button) and note that the button moves and resizes as illustrated in Figure 49-1
 :

[image:]

Figure 49-1

Although the layout changes took effect, they did so instantly and without any form of animation. This is where the call to the beginDelayedTransition()
 method of the TransitionManager
 class comes in. All that is needed to add animation to this layout change is the addition of a single line of code before the layout changes are implemented. Remaining within the TransitionDemoActivity.
 kt
 file, modify the code as follows:

.

.

import android.transition.TransitionManager

.

.

private fun handleTouch() {

 TransitionManager.beginDelayedTransition(myLayout)

 myButton.minWidth = 500

 myButton.minHeight = 350

 val set = ConstraintSet()

 set.connect(R.id.myButton, ConstraintSet.BOTTOM,

 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0)

 set.connect(R.id.myButton, ConstraintSet.RIGHT,

 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)

 set.constrainWidth(R.id.myButton, ConstraintSet.WRAP_CONTENT)

 set.applyTo(myLayout)

}

Compile and run the application once again and note that the transition is now animated.

49.4

 Customizing the Transition

The final task in this example is to modify the changeBounds transition
 so that it is performed over a longer duration and incorporates a bounce effect when the view reaches its new screen location. This involves the creation of a Transition instance with appropriate duration interpolator settings which is, in turn, passed through as an argument to the beginDelayedTransition()
 method:

.

.

import android.transition.ChangeBounds

import android.transition.Transition

import android.view.animation.BounceInterpolator

.

.

private fun handleTouch() {

 val changeBounds: Transition = ChangeBounds()

 changeBounds.duration = 3000

 changeBounds.interpolator = BounceInterpolator()

 TransitionManager.beginDelayedTransition(myLayout, changeBounds
)

 myButton.minWidth = 500

 myButton.minHeight = 350

 val set = ConstraintSet()

 set.connect(R.id.myButton, ConstraintSet.BOTTOM,

 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0)

 set.connect(R.id.myButton, ConstraintSet.RIGHT,

 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)

 set.constrainWidth(R.id.myButton, ConstraintSet.WRAP_CONTENT)

 set.applyTo(myLayout)

}

When the application is now executed, the animation will slow to match the new duration setting and the button will bounce on arrival at the bottom right-hand corner of the display.

49.5

 Summary

The most basic form of transition animation involves the use of the beginDelayedTransition()
 method of the TransitionManager class. Once called, any changes in size and position of the views in the next user interface rendering frame, and within a defined view group, will be animated using the specified transitions. This chapter has worked through a simple Android Studio example that demonstrates the use of this approach to implementing transitions.

50.

 Implementing Android Scene Transitions
 – A Tutorial

This chapter will build on the theory outlined in the chapter entitled
“Animating User Interfaces with the Android Transitions Framework”

 by working through the creation of a project designed to demonstrate transitioning from one scene to another using the Android Transition framework.

50.1

 An Overview of the Scene Transition Project

The application created in this chapter will consist of two scenes, each represented by an XML layout resource file. A transition will then be used to animate the changes from one scene to another. The first scene will consist of three button views. The second scene will contain two of the buttons from the first scene positioned at different locations on the screen. The third button will be absent from the second scene. Once the transition has been implemented, movement of the first two buttons will be animated with a bounce effect. The third button will gently fade into view as the application transitions back to the first scene from the second.

50.2

 Creating the Android Studio SceneTransitions Project

Create a new project in Android Studio, entering SceneTransitions
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Work through the remaining screens, requesting the creation of an Empty Activity named SceneTransitionsActivity
 with a corresponding layout file named activity_scene_transitions.

50.3

 Identifying and Preparing the Root Container

When working with transitions it is important to identify the root container for the scenes. This is essentially the parent layout container into which the scenes are going to be displayed. When the project was created, Android Studio created a layout resource file in the app -> res -> layout
 folder named activity_scene_transitions.xml
 and containing a single layout container and TextView. When the application is launched, this is the first layout that will be displayed to the user on the device screen.

Begin by locating the activity_scene_transitions.xml
 layout resource file, loading it into the Android Studio Layout Editor tool and deleting the default TextView widget. Select the ConstraintLayout entry within the Component Tree window and change the ID property in the Attributes tool window to rootContainer
 .

50.4

 Designing the First Scene

The first scene is going to consist of a layout containing three button views. Create this layout resource file by right-clicking on the app -> res -> layout
 entry in the Project tool window and selecting the New -> Layout resource file…
 menu option. In the resulting dialog, name the file scene1_layout
 and enter android.support.constraint.ConstraintLayout
 as the root element before clicking on OK
 .

When the newly created layout file has loaded into the Layout Editor tool, check that Autoconnect mode is enabled, drag a Button view from the Common section of the palette onto the layout canvas and position it in the top left-hand corner of the layout view so that the dashed margin guidelines appear as illustrated in Figure 50-1
 . Drop the Button view at this position, select it and change the text value in the Attributes tool window to “One”.

[image:]

Figure 50-1

Drag a second Button view from the palette and position it in the top right-hand corner of the layout view so that the margin guidelines appear. Repeating the steps for the first button, assign text that reads “Two” on the button.

Drag a third Button view and position it so that it is centered both horizontally and vertically within the layout, this time configuring the button text to read “Three”.

Click on the warning button in the top right-hand corner of the Layout Editor and work through the list of hardcoded text warnings, extracting the three button strings to resource values.

On completion of the above steps, the layout for the first scene should resemble that shown in Figure 50-2
 :

[image:]

Figure 50-2

Select the “One” button and, using the Attributes tool window, configure the onClick attribute to call a method named goToScene2.
 Repeat this step for the “Two” button, this time entering a method named goToScene1
 into the onClick
 field.

50.5

 Designing the Second Scene

The second scene is simply a modified version of the first scene. The first and second buttons will still be present but will be located in the bottom right and left-hand corners of the layout respectively. The third button, on the other hand, will no longer be present in the second scene.

For the purposes of avoiding duplicated effort, the layout file for the second scene will be created by copying and modifying the scene1_layout.xml
 file. Within the Project tool window, locate the app -> res -> layout -> scene1_layout.xml
 file, right-click on it and select the Copy
 menu option. Right-click on the layout
 folder, this time selecting the Paste
 menu option and change the name of the file to scene2_layout.xml
 when prompted to do so.

Double-click on the new scene2_layout.xml
 file to load it into the Layout Editor tool and switch to Design mode if necessary. Use the Clear all Constraints
 button located in the toolbar to remove the current constraints from the layout.

Select and delete the “Three” button and move the first and second buttons to the bottom right and bottom left locations as illustrated in Figure 50-3
 :

[image:]

Figure 50-3

50.6

 Entering the First Scene

If the application were to be run now, only the blank layout represented by the activity_scene_transitions.xml
 file would be displayed. Some code must, therefore, be added to the onCreate()
 method located in the SceneTransitionsActivity.
 kt
 file so that the first scene is presented when the activity is created. This can be achieved as follows:

package com.ebookfrenzy.scenetransitions

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.transition.Scene

import android.view.View

import android.transition.TransitionManager

import kotlinx.android.synthetic.main.activity_scene_transitions.*

class SceneTransitionsActivity : AppCompatActivity() {

 var scene1: Scene? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_scene_transitions)

 scene1 = Scene.getSceneForLayout(rootContainer,

 R.layout.scene1_layout, this)

 scene1?.enter()

 }

}

The code added to the activity class declares some variables in which to store references to the root container and first scene and obtains a reference to the root container view. The getSceneForLayout()
 method
 of the Scene class is then used to create a scene from the layout contained in the scene1_layout.xml
 file to convert that layout into a scene. The scene is then entered via the enter()
 method call so that it is displayed to the user.

Compile and run the application at this point and verify that scene 1 is displayed after the application has launched.

50.7

 Loading Scene
 2

Before implementing the transition between the first and second scene it is first necessary to add some code to load the layout from the scene2_layout.xml
 file into a Scene instance. Remaining in the SceneTransitionsActivity.
 kt
 file, therefore, add this code as follows:

class SceneTransitionsActivity : AppCompatActivity() {

 var scene1: Scene? = null

 var scene2: Scene? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_scene_transitions)

 scene1 = Scene.getSceneForLayout(rootContainer,

 R.layout.scene1_layout, this)

 scene2 = Scene.getSceneForLayout(rootContainer,

 R.layout.scene2_layout, this)

 scene1?.enter()

 }

}

50.8

 Implementing the Transitions

The first and second buttons have been configured to call methods named goToScene2
 and goToScene1
 respectively when selected. As the method names suggest, it is the responsibility of these methods to trigger the transitions between the two scenes. Add these two methods within the SceneTransitionsActivity.
 kt
 file so that they read as follows:

fun goToScene2(view: View) {

 TransitionManager.go(scene2)

}

fun goToScene1(view: View) {

 TransitionManager.go(scene1)

}

Run the application and note that selecting the first two buttons causes the layout to switch between the two scenes. Since we have yet to configure any transitions, these layout changes are not yet animated.

50.9

 Adding the Transition File

All of the transition effects for this project will be implemented within a single transition XML resource file. As outlined in the chapter entitled
“Animating User Interfaces with the Android Transitions Framework”

 , transition resource files must be placed in the app -> res -> transition
 folder of the project. Begin, therefore, by right-clicking on the res
 folder in the Project tool window and selecting the New -> Directory
 menu option. In the resulting dialog, name the new folder transition
 and click on the OK
 button. Right-click on the new transition folder, this time selecting the New -> Transition Resource File
 option and name the new file transition.xml
 .

With the newly created transition.xml
 file selected and loaded into the editing panel, add the following XML content to add a transition set that enables the change bounds transition animation with a duration attribute setting:

<?xml version="1.0" encoding="utf-8"?>

<transitionSet

 xmlns:android="http://schemas.android.com/apk/res/android">

 <changeBounds

 android:duration="2000">

 </changeBounds>

</transitionSet>

50.10

 Loading and Using the Transition Set

Although a transition resource file has been created and populated with a change bounds transition, this will have no effect until some code is added to load the transitions into a TransitionManager instance and reference it in the scene changes. The changes to achieve this are as follows:

package com.ebookfrenzy.scenetransitions

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.transition.Scene

import android.view.View

import android.transition.TransitionManager

import android.transition.TransitionInflater

import android.transition.Transition

import kotlinx.android.synthetic.main.activity_scene_transitions.*

class SceneTransitionsActivity : AppCompatActivity() {

 var scene1: Scene? = null

 var scene2: Scene? = null

 var transitionMgr: Transition? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_scene_transitions)

 transitionMgr = TransitionInflater.from(this)

 .inflateTransition(R.transition.transition)

 scene1 = Scene.getSceneForLayout(rootContainer,

 R.layout.scene1_layout, this)

 scene2 = Scene.getSceneForLayout(rootContainer,

 R.layout.scene2_layout, this)

 scene1?.enter()

 }

 fun goToScene2(view: View) {

 TransitionManager.go(scene2, transitionMgr
)

 }

 fun goToScene1(view: View) {

 TransitionManager.go(scene1, transitionMgr
)

 }

}

When the application is now run the two buttons will gently glide to their new positions during the transition.

50.11

 Configuring Additional Transitions

With the transition file integrated into the project, any number of additional transitions may be added to the file without the need to make any further changes to the Kotlin source code of the activity. Take, for example, the following changes to the transition.xml
 file to add a bounce interpolator to the change bounds transition, introduce a fade-in transition targeted at the third button and to change the transitions such that they are performed sequentially:

<?xml version="1.0" encoding="utf-8"?>

<transitionSet

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:transitionOrdering="sequential"
 >

 <fade

 android:duration="2000"

 android:fadingMode="fade_in">

 <targets>

 <target android:targetId="@id/button3" />

 </targets>

 </fade>

 <changeBounds

 android:duration="2000"

 android:interpolator="@android:anim/bounce_interpolator"
 >

 </changeBounds>

</transitionSet>

Buttons one and two will now bounce on arriving at the end destinations and button three will gently fade back into view when transitioning to scene 1 from scene 2.

Take some time to experiment with different transitions and interpolators by making changes to the transition.xml
 file and re-running the application.

50.12

 Summary

Scene based transitions provide a flexible approach to animating user interface layout changes within an Android application. This chapter has demonstrated the steps involved in animating the transition between the scenes represented by two layout resource files. In addition, the example also used a transition XML resource file to configure the transition animation effects between the two scenes.

51.

 Working with the Floating Action Button and Snackbar

One of the objectives of this chapter is to provide an overview of the concepts of material design. Originally introduced as part of Android 5.0, material design is a set of design guidelines that dictate how the Android user interface, and that of the apps running on Android, appear and behave.

As part of the implementation of the material design concepts, Google also introduced the Android Design Support Library
 . This library contains a number of different components that allow many of the key features of material design to be built into Android applications. Two of these components, the floating action button
 and Snackbar
 , will also be covered in this chapter prior to introducing many of the other components in subsequent chapters.

51.1

 The Material Design

The overall appearance of the Android environment is defined by the principles of material design. Material design
 was created by the Android team at Google and dictates that the elements that make up the user interface of Android and the apps that run on it appear and behave in a certain way in terms of behavior, shadowing, animation and style. One of the tenets of the material design is that the elements of a user interface appear to have physical depth and a sense that items are constructed in layers of physical material. A button, for example, appears to be raised above the surface of the layout in which it resides through the use of shadowing effects. Pressing the button causes the button to flex and lift as though made of a thin material that ripples when released.

Material design also dictates the layout and behavior of many standard user interface elements. A key example is the way in which the app bar located at the top of the screen should appear and the way in which it should behave in relation to scrolling activities taking place within the main content of the activity.

In fact, material design covers a wide range of areas from recommended color styles to the way in which objects are animated. A full description of the material design concepts and guidelines can be found online at the following link and is recommended reading for all Android developers:

https://www.google.com/design/spec/material-design/introduction.html

51.2

 The Design Library

Many of the building blocks needed to implement Android applications that adopt the principles of material design are contained within the Android Design Support Library. This library contains a collection of user interface components that can be included in Android applications to implement much of the look, feel and behavior of material design. Two of the components from this library, the floating action button and Snackbar, will be covered in this chapter, while others will be introduced in later chapters.

51.3

 The Floating Action Button (FAB)

The floating action button
 is a button which appears to float above the surface of the user interface of an app and is generally used to promote the most common action within a user interface screen. A floating action button might, for example, be placed on a screen to allow the user to add an entry to a list of contacts or to send an email from within the app. Figure 51-1
 , for example, highlights the floating action button that allows the user to add a new contact within the standard Android Contacts ap
 p:

[image:]

Figure 51-1

To conform with the material design guidelines, there are a number of rules that should be followed when using floating action buttons. Floating action buttons

 must be circular and can be either 56 x 56dp (Default) or 40 x 40dp (Mini) in size. The button should be positioned a minimum of 16dp from the edge of the screen on phones and 24dp on desktops and tablet devices. Regardless of the size, the button must contain an interior icon that is 24x24dp in size and it is recommended that each user interface screen have only one floating action button.

Floating action buttons can be animated or designed to morph into other items when touched. A floating action button could, for example, rotate when tapped or morph into another element such as a toolbar or panel listing related actions.

51.4

 The Snackbar

The Snackbar
 component provides a way to present the user with information in the form of a panel that appears at the bottom of the screen as shown in Figure 51-2
 . Snackbar instances contain a brief text message and an optional action button which will perform a task when tapped by the user. Once displayed, a Snackbar will either timeout automatically or can be removed manually by the user via a swiping action. During the appearance of the Snackbar the app will continue to function and respond to user interactions in the normal ma
 nner.

[image:]

Figure 51-2

In the remainder of this chapter an example application will be created that makes use of the basic features of the floating action button and Snackbar to add entries to a list of items.

51.5

 Creating the Example Project

Create a new project in Android Studio, entering FabExample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo).

Although it is possible to manually add a floating action button to an activity, it is much easier to use the Basic Activity template which includes a floating action button by default. Continue through the screens, therefore, requesting the creation of a Basic Activity named FabExampleActivity
 with a corresponding layout file named activity_fab_example.

Click on the Finish
 button to initiate the project creation process.

51.6

 Reviewing the Project

Since the Basic Activity template was selected, the activity contains two layout files. The activity_fab_example.xml
 file consists of a CoordinatorLayout manager containing entries for an app bar, a toolbar and a floating action button.

The content_fab_example.xml
 file represents the layout of the content area of the activity and contains a ConstraintLayout instance and a TextView. This file is embedded into the activity_fab_example.xml
 file via the following include directive:

<include layout="@layout/content_fab_example" />

The floating action button element within the activity_fab_example.xml
 file reads as follows:

<com.google.android.material.floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 android:src="@android:drawable/ic_dialog_email" />

This declares that the button is to appear in the bottom right-hand corner of the screen with margins represented by the fab_margin
 identifier in the values/dimens.xml
 file (which in this case is set to 16dp). The XML further declares that the interior icon for the button is to take the form of the standard drawable built-in email icon.

The blank template has also configured the floating action button to display a Snackbar
 instance when tapped by the user. The code to implement this can be found in the onCreate()
 method of the FabExampleActivity.
 kt
 file and reads as follows:

fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

}

The code obtains a reference to the floating action button via the button’s ID and adds to it an onClickListener handler to be called when the button is tapped. This method simply displays a Snackbar instance configured with a message but no actions.

When the project is compiled and run the floating action button will appear at the bottom of the screen as shown in Figure 51-3
 :

[image:]

Figure 51-3

Tapping the floating action button will trigger the onClickListener handler method causing the Snackbar to appear at the bottom of the sc
 reen:

[image:]

Figure 51-4

When the Snackbar appears on a narrower device (as is the case in Figure 51-4
 above) note that the floating action button is moved up to make room for the Snackbar to appear. This is handled for us automatically by the CoordinatorLayout container in the activity_fab_example.xml
 layout resource file.

51.7

 Changing the Floating Action Button

Since the objective of this example is to configure the floating action button to add entries to a list, the email icon currently displayed on the button needs to be changed to something more indicative of the action being performed. The icon that will be used for the button is named ic_add_entry.png
 and can be found in the project_icons
 folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

Locate this image in the file system navigator for your operating system and copy the image file. Right-click on the app -> res -> drawable
 entry in the Project tool window and select Paste from the menu to add the file to the folder:

[image:]

Figure 51-5

Next, edit the activity_fab_example.xml
 file and change the image source for the icon from @android:drawable/ic_dialog_email
 to @drawable/ic_add_entry
 as follows:

<com.google.android.material.floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 app:srcCompat="@drawable/ic_add_entry
 " />

Within the layout preview, the interior icon for the button will have changed to a plus sign.

The background color of the floating action button is defined by the accentColor
 property of the prevailing theme used by the application. The color assigned to this value is declared in the colors.xml
 file located under app -> res -> values
 in the Project tool window. Instead of editing this XML file directly a better approach is to use the Android Studio Theme Editor.

Select the Tools -> Theme Editor
 menu option to display the Theme Editor as illustrated in Figure 51-6
 :

[image:]

Figure 51-6

Click on the color swatch for the colorAccent
 setting (highlighted in the figure above) to display the color resource dialog. Within the color resource dialog, enter holo_orange_light
 into the search field and select the color from the list:

[image:]

Figure 51-7

Click on the OK
 button to apply the new accentColor setting, return to the activity_fab_example.xml
 file and verify that the floating action button
 now appears with an orange background.

51.8

 Adding the ListView
 to the Content Layout

The next step in this tutorial is to add the ListView instance to the content_fab_example.xml
 file. The ListView class provides a way to display items in a list format and can be found in the Containers
 section of the Layout Editor tool palette.

Load the content_fab_example.xml
 file into the Layout Editor tool, select Design mode if necessary, and select and delete the default TextView object. Locate the ListView object in the Legacy category of the palette and, with autoconnect mode enabled, drag and drop it onto the center of the layout canvas. Select the ListView object and change the ID to listView
 within the Attributes tool window. The Layout Editor should have sized the ListView to fill the entire container and established constraints on all four edges as illustrated in Figure 51-8
 :

[image:]

Figure 51-8

51.9

 Adding Items to the ListView

Each time the floating action button is tapped by the user, a new item will be added to the ListView in the form of the prevailing time and date. To achieve this, some changes need to be made to the FabExampleActivity.
 kt
 file.

Begin by modifying the onCreate()
 method to obtain a reference to the ListView

 instance and to initialize an adapter instance to allow us to add items to the list in the form of an array:

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import android.view.View

import android.widget.ArrayAdapter

import kotlinx.android.synthetic.main.activity_fab_example.*

import kotlinx.android.synthetic.main.content_fab_example.*

import java.util.ArrayList

class FabExampleActivity : AppCompatActivity() {

 var listItems = ArrayList<String>()

 var adapter: ArrayAdapter<String>? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_fab_example)

 setSupportActionBar(toolbar)

 adapter = ArrayAdapter(this,

 android.R.layout.simple_list_item_1,

 listItems)

 listView.adapter = adapter

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

 }

.

.

}

The ListView needs an array of items to display, an adapter to manage the items in that array and a layout definition to dictate how items are to be presented to the user.

In the above code changes, the items are stored in an ArrayList instance assigned to an adapter that takes the form of an ArrayAdapter. The items added to the list will be displayed in the ListView using the simple_list_item_1
 layout, a built-in layout that is provided with Android to display simple string based items in a ListView instance.

Next, edit the onClickListener code for the floating action button to display a different message in the Snackbar and to call a method to add an item to the list:

fab.setOnClickListener { view ->

 addListItem()

 Snackbar.make(view, "Item added to list
 ", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

}

Remaining within the FabExampleActivity.
 kt
 file, add the addListItem()
 method as follows:

package com.ebookfrenzy.fabexample

.

.

import java.text.SimpleDateFormat

import java.util.*

class FabExampleActivity : AppCompatActivity() {

.

.

 private fun addListItem() {

 val dateformat: SimpleDateFormat =

 SimpleDateFormat("HH:mm:ss MM/dd/yyyy", Locale.US)

 listItems.add(dateformat.format(Date()))

 adapter?.notifyDataSetChanged()

 }

.

.

}

The code in the addListItem()
 method identifies and formats the current date and time and adds it to the list items array. The array adapter assigned to the ListView is then notified that the list data has changed, causing the ListView to update to display the latest list items.

Compile and run the app and test that tapping the floating action button adds new time and date entries to the ListView, displaying the Snackbar each time as shown in Figure 51-9
 :

[image:]

Figure 51-9

51.10

 Adding an Action to the Snackbar

 The final task in this project is to add an action to the Snackbar that allows the user to undo the most recent addition to the list. Edit the FabExampleActivity.
 kt
 file and modify the Snackbar creation code to add an action titled “Undo” configured with an onClickListener named undoOnClickListener
 :

fab.setOnClickListener { view ->

 addListItem()

 Snackbar.make(view, "Item added to list", Snackbar.LENGTH_LONG)

 .setAction("Undo
 ", undoOnClickListener
).show()

}

Within the FabExampleActivity.
 kt
 file add the listener handler:

var undoOnClickListener: View.OnClickListener = View.OnClickListener { view ->

 listItems.removeAt(listItems.size - 1)

 adapter?.notifyDataSetChanged()

 Snackbar.make(view, "Item removed", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

}

The code in the onClick method identifies the location of the last item in the list array and removes it from the list before triggering the list view to perform an update. A new Snackbar is then displayed indicating that the last item has been removed from the list.

Run the app once again and add some items to the list. On the final addition, tap the Undo button in the Snackbar (Figure 51-10
) to remove the last item from the
 list:

[image:]

Figure 51-10

It is also worth noting that the Undo button appears using the same color assigned to the accentColor property via the Theme Editor earlier in the chapter.

51.11

 Summary

This chapter has provided a general overview of material design, the floating action button and Snackbar before working through an example project that makes use of these features.

Both the floating action button and the Snackbar are part of the material design approach to user interface implementation in Android. The floating action button provides a way to promote the most common action within a particular screen of an Android application. The Snackbar provides a way for an application to both present information to the user and also allow the user to take action upon it.

52.

 Creating a Tabbed Interface using the TabLayout Component

The previous chapter outlined the concept of material design in Android and introduced two of the components provided by the design support library in the form of the floating action button and the Snackbar. This chapter will demonstrate how to use another of the design library components, the TabLayout
 , which can be combined with the ViewPager
 class to create a tab based interface within an Android activity.

52.1

 An Introduction to the ViewPager

Although not part of the design support library, the ViewPager is a useful companion class when used in conjunction with the TabLayout component to implement a tabbed user interface. The primary role of the ViewPager is to allow the user to flip through different pages of information where each page is most typically represented by a layout fragment. The fragments that are associated with the ViewPager are managed by an instance of the FragmentPagerAdapter class.

At a minimum the pager adapter assigned to a ViewPager must implement two methods. The first, named

 getCount()
 , must return the total number of page fragments available to be displayed to the user. The second method, getItem()
 , is passed a page number and must return the corresponding fragment object ready to be presented to the user.

52.2

 An Overview of the TabLayout Component

As previously discussed, TabLayout
 is one of the components introduced as part of material design and is included in the design support library. The purpose of the TabLayout is to present the user with a row of tabs which can be selected to display different pages to the user. The tabs can be fixed or scrollable, whereby the user can swipe left or right to view more tabs than will currently fit on the display. The information displayed on a tab can be text-based, an image or a combination of text and images. Figure 52-1
 , for example, shows the tab bar for the Android phone app consisting of three tabs displaying images
 :

[image:]

Figure 52-1

Figure 52-2
 , on the other hand, shows a TabLayout configuration consisting of four tabs displaying text in a scrollable configuration:

[image:]

Figure 52-2

The remainder of this chapter will work through the creation of an example project that demonstrates the use of the TabLayout component together with a ViewPager and four fragments.

52.3

 Creating the TabLayoutDemo Project

Create a new project in Android Studio, entering TabLayoutDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo).

Continue through the configuration screens requesting the creation of a Basic Activity named TabLayoutDemoActivity
 with a corresponding layout file named activity_tab_layout_demo.
 Click on the Finish
 button to initiate the project creation process.

Once the project has been created, load the content_tab_layout_demo.xml
 file into the Layout Editor tool, select the “Hello World” TextView object, and then delete it.

52.4

 Creating the First Fragment

Each of the tabs on the TabLayout will display a different fragment when selected. Create the first of these fragments by right-clicking on the app -> java -> com.ebookfrenzy.tablayoutdemo
 entry in the Project tool window and selecting the New -> Fragment -> Fragment (Blank)
 option. In the resulting dialog, enter Tab1Fragment
 into the Fragment Name:
 field and fragment_tab1
 into the Fragment Layout Name:
 field. Enable the Create layout XML?
 and Include interface callbacks?
 options while disabling the Include fragment factory methods?
 option. Click on the Finish
 button to create the new fragment:

[image:]

Figure 52-3

Load the newly created fragment_tab1.xml
 file (located under app -> res -> layout
) into the Layout Editor tool, right-click on the FrameLayout entry in the Component Tree panel and select the Convert FrameLayout to ConstraintLayout
 menu option. In the resulting dialog, verify that all conversion options are selected before clicking on OK.

Once the layout has been converted to a ConstraintLayout, delete the TextView from the layout. From the Palette, locate the TextView widget and drag and drop it so that it is positioned in the center of the layout. Edit the text property on the object so that it reads “Tab 1 Fragment” and extract the string to a resource named tab_1_fragment
 , at which point the layout should match that of Figure 52-4
 :

[image:]

Figure 52-4

52.5

 Duplicating the Fragments

So far, the project contains one of the four required fragments. Instead of creating the remaining three fragments using the previous steps it would be quicker to duplicate the first fragment. Each fragment consists of a layout XML file and a Kotlin class file, each of which needs to be duplicated.

Right-click on the fragment_tab1.xml
 file in the Project tool window and select the Copy option from the resulting menu. Right-click on the layout
 entry, this time selecting the Paste option. In the resulting dialog, name the new layout file fragment_tab2.xml
 before clicking the OK
 button. Edit the new fragment_tab2.xml
 file and change the text on the Text View to “Tab 2 Fragment”, following the usual steps to extract the string to a resource named tab_2_fragment
 .

To duplicate the Tab1Fragment class file, right-click on the class listed under app -> java -> com.ebookfrenzy.tablayoutdemo
 and select Copy. Right-click on the com.ebookfrenzy.tablayoutdemo
 entry and select Paste. In the Copy Class dialog, enter Tab2Fragment into the New name:
 field and click on OK. Edit the new Tab2Fragment.
 kt
 file and change the class name and onCreateView()
 method to inflate the fragment_tab2
 layout file:

.

.

class Tab2Fragment
 : Fragment() {

.

.

override fun onCreateView(inflater: LayoutInflater?, container: ViewGroup?,

 savedInstanceState: Bundle?): View? {

 // Inflate the layout for this fragment

 return inflater?
 .inflate(R.layout.fragment_tab2
 , container, false)

}

Perform the above duplication steps twice more to create the fragment layout and class files for the remaining two fragments. On completion of these steps the project structure should match that of Figure 52-5
 :

[image:]

Figure 52-5

52.6

 Adding the TabLayout and ViewPager

With the fragment creation process now complete, the next step is to add the TabLayout
 and ViewPager
 to the main activity layout file. Edit the activity_tab_layout_demo.xml
 file and add these elements as outlined in the following XML listing. Note that the TabLayout component is embedded into the AppBarLayout element while the ViewPager is placed after the AppBarLayout:

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:fitsSystemWindows="true"

 tools:context=".TabLayoutDemoActivity">

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/AppTheme.PopupOverlay" />

 <android.support.design.widget.TabLayout

 android:id="@+id/tab_layout"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 app:tabMode="fixed"

 app:tabGravity="fill"/>

 </android.support.design.widget.AppBarLayout>

 <android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 />

 <include layout="@layout/content_tab_layout_demo" />

 <android.support.design.widget.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 android:src="@android:drawable/ic_dialog_email" />

</android.support.design.widget.CoordinatorLayout>

52.7

 Creating the Pager Adapter

This example will use the ViewPager
 approach to handling the fragments assigned to the TabLayout tabs. With the ViewPager
 added to the layout resource file, a new class which subclasses FragmentPagerAdapter needs to be added to the project to manage the fragments that will be displayed when the tab items are selected by the user.

Add a new class to the project by right-clicking on the com.ebookfrenzy.tablayoutdemo
 entry in the Project tool window and selecting the New ->
 Kotlin File/Class
 menu option. In the new class dialog, enter TabPagerAdapter
 into the Name:
 field, change the Kind menu to Class and click OK
 .

Edit the TabPagerAdapter.
 kt
 file so that it reads as follows:

package com.ebookfrenzy.tablayoutdemo

import android.support.v4.app.Fragment

import android.support.v4.app.FragmentManager

import android.support.v4.app.FragmentPagerAdapter

class TabPagerAdapter(fm: FragmentManager, private var tabCount: Int) :

 FragmentPagerAdapter(fm)
 {

 override fun getItem(position: Int): Fragment? {

 when (position) {

 0 -> return Tab1Fragment()

 1 -> return Tab2Fragment()

 2 -> return Tab3Fragment()

 3 -> return Tab4Fragment()

 else -> return null

 }

 }

 override fun getCount(): Int {

 return tabCount

 }

}

The class is declared as extending the FragmentPagerAdapter class
 and a primary constructor is implemented allowing the number of pages required to be passed to the class when an instance is created. The getItem()
 method will be called when a specific page is required. A switch statement is used to identify the page number being requested and to return a corresponding fragment instance. Finally, the getCount()
 method simply returns the count value passed through when the object instance was created.

52.8

 Performing the Initialization Tasks

The remaining tasks involve initializing the TabLayout, ViewPager and TabPagerAdapter instances and declaring the main activity class as implementing fragment interaction listeners for each of the four tab fragments. Edit the TabLayoutDemoActivity.
 kt
 file so that it reads as follows:

package com.ebookfrenzy.tablayoutdemo

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar

android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import android.support.design.widget.TabLayout

import android.support.v4.view.ViewPager

import kotlinx.android.synthetic.main.activity_tab_layout_demo.*

class TabLayoutDemoActivity : AppCompatActivity(),

 Tab1Fragment.OnFragmentInteractionListener,

 Tab2Fragment.OnFragmentInteractionListener,

 Tab3Fragment.OnFragmentInteractionListener,

 Tab4Fragment.OnFragmentInteractionListener
 {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_tab_layout_demo)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

 configureTabLayout()

 }

 private fun configureTabLayout() {

 tab_layout.addTab(tab_layout.newTab().setText("Tab 1 Item"))

 tab_layout.addTab(tab_layout.newTab().setText("Tab 2 Item"))

 tab_layout.addTab(tab_layout.newTab().setText("Tab 3 Item"))

 tab_layout.addTab(tab_layout.newTab().setText("Tab 4 Item"))

 val adapter = TabPagerAdapter(supportFragmentManager,

 tab_layout.tabCount)

 pager.adapter = adapter

 pager.addOnPageChangeListener(

 TabLayout.TabLayoutOnPageChangeListener(tab_layout))

 tab_layout.addOnTabSelectedListener(object :

 TabLayout.OnTabSelectedListener {

 override fun onTabSelected(tab: TabLayout.Tab) {

 pager.currentItem = tab.position

 }

 override fun onTabUnselected(tab: TabLayout.Tab) {

 }

 override fun onTabReselected(tab: TabLayout.Tab) {

 }

 })

 }

 override fun onFragmentInteraction(uri: Uri) {

 }

.

.

}

The code begins by creating four tabs, assigning the text to appear on each:

tab_layout.addTab(tab_layout.newTab().setText("Tab 1 Item"))

tab_layout.addTab(tab_layout.newTab().setText("Tab 2 Item"))

tab_layout.addTab(tab_layout.newTab().setText("Tab 3 Item"))

tab_layout.addTab(tab_layout.newTab().setText("Tab 4 Item"))

A reference to the ViewPager instance in the layout file is then obtained and an instance of the TabPagerAdapter class created. Note that the code to create the TabPagerAdapter instance passes through the number of tabs that have been assigned to the TabLayout component. The TabPagerAdapter instance is then assigned as the adapter for the ViewPager and the TabLayout component added to the page change listener:

val adapter = TabPagerAdapter(supportFragmentManager,

 tab_layout.tabCount)

pager.adapter = adapter

pager.addOnPageChangeListener(TabLayout.TabLayoutOnPageChangeListener(tab_layout))

Finally, the onTabSelectedListener

 is configured on the TabLayout instance and the onTabSelected()
 method implemented to set the current page on the ViewPager based on the currently selected tab number. For the sake of completeness the other listener methods are added as stubs:

tab_layout.addOnTabSelectedListener(object : TabLayout.OnTabSelectedListener {

 override fun onTabSelected(tab: TabLayout.Tab) {

 pager.currentItem = tab.position

 }

 override fun onTabUnselected(tab: TabLayout.Tab) {

 }

 override fun onTabReselected(tab: TabLayout.Tab) {

 }

})

52.9

 Testing the Application

Compile and run the app on a device or emulator and make sure that selecting a tab causes the corresponding fragment to appear in the content area of the screen:

[image:]

Figure 52-6

52.10

 Customizing the TabLayout

The TabLayout
 in this example project is configured using fixed
 mode. This mode works well for a limited number of tabs with short titles. A greater number of tabs or longer titles can quickly become a problem when using fixed mode as illustrated by Figure 52-7
 :

[image:]

Figure 52-7

In an effort to fit the tabs into the available display width the TabLayout has used multiple lines of text. Even so, the second line is clearly truncated making it impossible to see the full title. The best solution to this problem is to switch the TabLayout
 to scrollable
 mode. In this mode the titles appear in full length, single line format allowing the user to swipe to scroll horizontally through the available items as demonstrated in Figure 52-8
 :

[image:]

Figure 52-8

To switch a TabLayout
 to scrollable mode, simply change the app:tabMode
 property in the activity_tab_layout_demo.xml
 layout resource file from “fixed” to “scrollable”:

<android.support.design.widget.TabLayout

 android:id="@+id/tab_layout"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 app:tabMode="scrollable
 "

 app:tabGravity="fill"/>

</android.support.design.widget.AppBarLayout>

When in fixed mode, the TabLayout
 may be configured to control how the tab items are displayed to take up the available space on the screen. This is controlled via the app:tabGravity
 property, the results of which are more noticeable on wider displays such as tablets in landscape orientation. When set to “fill”, for example, the items will be distributed evenly across the width of the TabLayout as shown in
 Figure 52-9
 :

[image:]

Figure 52-9

Changing the property value to “center” will cause the items to be positioned relative to the center of the tab bar:

[image:]

Figure 52-10

Before proceeding to the final step in this chapter, revert the tabMode and tabGravity attributes in the activity_tab_layout_demo.xml
 file to “fixed” and “fill” respectively.

52.11

 Displaying Icon Tab Items

 The last step in this tutorial is to replace the text based tabs with icons. Achieve this by modifying the onCreate()
 method in the TabLayoutDemoActivity.
 kt
 file to assign some built-in drawable icons to the tab items:

private fun configureTabLayout() {

 tab_layout.addTab(tab_layout.newTab().setIcon(

 android.R.drawable.ic_dialog_email))

 tab_layout.addTab(tab_layout.newTab().setIcon(

 android.R.drawable.ic_dialog_dialer))

 tab_layout.addTab(tab_layout.newTab().setIcon(

 android.R.drawable.ic_dialog_map))

 tab_layout.addTab(tab_layout.newTab().setIcon(

 android.R.drawable.ic_dialog_info))

.

.

Instead of using the setText()
 method of the tab item, the code is now calling the setIcon()
 method and passing through a drawable icon reference. When compiled and run, the tab bar should now appear as shown in Figure 52-11
 . Note if using Instant Run that it will be necessary to trigger a warm swap using Ctrl-Shift-R for the changes to t
 ake effect:

[image:]

Figure 52-11

52.12

 Summary

TabLayout is one of the components introduced as part of the Android material design implementation. The purpose of the TabLayout component is to present a series of tab items which, when selected, display different content to the user. The tab items can display text, images or a combination of both. When combined with the ViewPager class and fragments, tab layouts can be created with relative ease, with each tab item selection displaying a different fragment.

53.

 Working with the RecyclerView and CardView Widgets

The RecyclerView and CardView widgets work together to provide scrollable lists of information to the user in which the information is presented in the form of individual cards. Details of both classes will be covered in this chapter before working through the design and implementation of an example project.

53.1

 An Overview of the RecyclerView

Much like the ListView class outlined in the chapter entitled
“Working with the Floating Action Button and Snackbar”

 , the purpose of the RecyclerView is to allow information to be presented to the user in the form of a scrollable list. The RecyclerView, however, provides a number of advantages over the ListView. In particular, the RecyclerView is significantly more efficient in the way it manages the views that make up a list, essentially reusing existing views that make up list items as they scroll off the screen instead if creating new ones (hence the name “recycler”). This both increases the performance and reduces the resources used by a list, a feature that is of particular benefit when presenting large amounts of data to the user.

Unlike the ListView, the RecyclerView also provides a choice of three built-in layout managers to control the way in which the list items are presented to the user:

•
 LinearLayoutManager

 – The list items are presented as either a horizontal or vertical scrolling list.

[image:]

Figure 53-1

•

 GridLayoutManager

 – The list items are presented in grid format. This manager is best used when the list items are of uniform size.

[image:]

Figure 53-2

•
 StaggeredGridLayoutManager

 - The list items are presented in a staggered grid format. This manager is best used when the list items are not of uniform size.

[image:]

Figure 53-3

For situations where none of the three built-in managers provide the necessary layout, custom layout managers may be implemented by subclassing the RecyclerView.LayoutManager class.

Each list item displayed in a RecyclerView is created as an instance of the ViewHolder class
 . The ViewHolder instance contains everything necessary for the RecyclerView to display the list item, including the information to be displayed and the view layout used to display the item.

As with the ListView, the RecyclerView depends on an adapter to act as the intermediary between the RecyclerView instance and the data that is to be displayed to the user. The adapter is created as a subclass of the RecyclerView.Adapter
 class and must, at a minimum, implement the following methods, which will be called at various points by the RecyclerView object to which the adapter is assigned:

•

 getItemCount()
 – This method must return a count of the number of items that are to be displayed in the list.

•

 onCreateViewHolder()
 – This method creates and returns a ViewHolder object initialized with the view that is to be used to display the data. This view is typically created by inflating the XML layout file.

•

 onBindViewHolder()
 – This method is passed the ViewHolder object created by the onCreateViewHolder()
 method together with an integer value indicating the list item that is about to be displayed. Contained within the ViewHolder object is the layout assigned by the onCreateViewHolder()
 method. It is the responsibility of the onBindViewHolder()
 method to populate the views in the layout with the text and graphics corresponding to the specified item and to return the object to the RecyclerView where it will be presented to the user.

Adding a RecyclerView
 to a layout is simply a matter of adding the appropriate element to the XML content layout file of the activity in which it is to appear. For example:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:context=".CardDemoActivity"

 tools:showIn="@layout/activity_card_demo">

 <android.support.v7.widget.RecyclerView

 android:id="@+id/recycler_view"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 tools:listItem="@layout/card_layout" />

</android.support.constraint.ConstraintLayout>

.

.

In the above example the RecyclerView has been embedded into the CoordinatorLayout of a main activity layout file along with the AppBar and Toolbar. This provides some additional features, such as configuring the Toolbar and AppBar to scroll off the screen when the user scrolls up within the RecyclerView (a topic covered in more detail in the chapter entitled
“Working with the AppBar and Collapsing Toolbar Layouts”

).

53.2

 An Overview of the CardView

The CardView class
 is a user interface view that allows information to be presented in groups using a card metaphor. Cards are usually presented in lists using a RecyclerView instance and may be configured to appear with shadow effects and rounded corners. Figure 53-4
 , for example, shows three CardView instances configured to display a layout consisting of an ImageView and two Tex
 tViews:

[image:]

Figure 53-4

The user interface layout to be presented with a CardView instance is defined within an XML layout resource file and loaded into the CardView at runtime. The CardView
 layout can contain a layout of any complexity using the standard layout managers such as RelativeLayout and LinearLayout. The following XML layout file represents a card view layout consisting of a RelativeLayout and a single ImageView. The card is configured to be elevated to create shadowing effect and to appear with rounded corners:

<?xml version="1.0" encoding="utf-8"?>

 <android.support.v7.widget.CardView

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/card_view"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_margin="5dp"

 card_view:cardCornerRadius="12dp"

 card_view:cardElevation="3dp"

 card_view:contentPadding="4dp">

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:padding="16dp" >

 <ImageView

 android:layout_width="100dp"

 android:layout_height="100dp"

 android:id="@+id/item_image"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginRight="16dp" />

 </RelativeLayout>

</android.support.v7.widget.CardView>

When combined with the RecyclerView to create a scrollable list of cards, the onCreateViewHolder()
 method of the recycler view inflates the layout resource file for the card, assigns it to the ViewHolder instance and returns it to the RecyclerView instance.

53.3

 Adding the Libraries to the Project

In order to use the RecyclerView
 and CardView
 components, the corresponding libraries must be added to the Gradle build dependencies for the project. Within the module level build.gradle
 file, therefore, the following lines need to be added to the dependencies
 section:

dependencies {

.

.

 implementation 'com.android.support:recyclerview-v7:28.0.0'

 implementation 'com.android.support:cardview-v7:28.0.0'

}

53.4

 Summary

This chapter has introduced the Android RecyclerView and CardView components. The RecyclerView provides a resource efficient way to display scrollable lists of views within an Android app. The CardView is useful when presenting groups of data (such as a list of names and addresses) in the form of cards. As previously outlined, and demonstrated in the tutorial contained in the next chapter, the RecyclerView and CardView are particularly useful when combined.

54.

 An Android RecyclerView and CardView Tutorial

In this chapter an example project will be created that makes use of both the CardView
 and RecyclerView
 components to create a scrollable list of cards. The completed app will display a list of cards containing images and text. In addition to displaying the list of cards, the project will be implemented such that selecting a card causes messages to be displayed to the user indicating which card was tapped.

54.1

 Creating the CardDemo Project

Create a new project in Android Studio, entering CardDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo).

In a later chapter, the scroll handling features of the AppBar, Toolbar and CoordinatorLayout layout will be demonstrated using this project. On the activity selection screen, therefore, request the creation of a Basic Activity named CardDemoActivity
 with a corresponding layout file named activity_card_demo
 .
 Click on the Finish
 button to initiate the project creation process.

Once the project has been created, load the content_card_demo.xml
 file into the Layout Editor tool and select and delete the “Hello World” TextView object.

54.2

 Removing the Floating Action Button

Since the Basic Activity was selected, the layout includes a floating action button which is not required for this project. Load the activity_card_demo.xml
 layout file into the Layout Editor tool, select the floating action button and tap the keyboard delete key to remove the object from the layout. Edit the CardDemoActivity.
 kt
 file and remove the floating action button code from the onCreate method as follows:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_card_demo)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

}

54.3

 Adding the RecyclerView and CardView Libraries

Within the Project tool window locate and select the module level build.gradle
 file and modify the dependencies section of the file to add the support library dependencies for the RecyclerView and CardView:

dependencies {

.

.

 implementation 'com.android.support:recyclerview-v7:28.0.0'

 implementation 'com.android.support:cardview-v7:28.0.0'

.

.

}

When prompted to do so, resync the new Gradle build configuration by clicking on the Sync Now
 link in the warning bar.

54.4

 Designing the CardView Layout

The layout of the views contained within the cards will be defined within a separate XML layout file. Within the Project tool window right-click on the app -> res -> layout
 entry and select the New -> Layout resource file
 menu option. In the New Resource Dialog enter card_layout
 into the File name:
 field and android.support.v7.widget.CardView
 into the root element field before clicking on the OK
 button.

Load the content_card_layout.xml
 file into the Layout Editor tool, switch to Text mode and modify the layout so that it reads as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="wrap_content
 "

 android:id="@+id/card_view"

 android:layout_margin="5dp"

 app:cardBackgroundColor="#81C784"

 app:cardCornerRadius="12dp"

 app:cardElevation="3dp"

 app:contentPadding="4dp"
 >

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:padding="16dp" >

 <ImageView

 android:layout_width="100dp"

 android:layout_height="100dp"

 android:id="@+id/item_image"

 android:layout_alignParentStart="true"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginEnd="16dp"

 android:layout_marginRight="16dp" />

 <TextView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:id="@+id/item_title"

 android:layout_toEndOf="@+id/item_image"

 android:layout_toRightOf="@+id/item_image"

 android:layout_alignParentTop="true"

 android:textSize="30sp" />

 <TextView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:id="@+id/item_detail"

 android:layout_toEndOf="@+id/item_image"

 android:layout_toRightOf="@+id/item_image"

 android:layout_below="@+id/item_title" />

 </RelativeLayout>

</android.support.v7.widget.CardView>

54.5

 Adding the RecyclerView

Select the content_card_demo.xml
 layout file and drag and drop a RecyclerView object from the Containers
 section of the palette onto the layout so that it is positioned in the center of the screen where it should automatically resize to fill the entire screen. Use the Infer constraints
 toolbar button to add any missing layout constraints to the view. Using the Attributes tool window, change the ID of the RecyclerView instance to recycler_view
 and the layout_width and layout_height properties to match_constraint
 .

54.6

 Creating the RecyclerView Adapter

As outlined in the previous chapter, the RecyclerView needs to have an adapter to handle the creation of the list items. Add this new class to the project by right-clicking on the app -> java -> com.ebookfrenzy.carddemo
 entry in the Project tool window and selecting the New ->
 Kotlin File/Class
 menu option. In the Create New Class dialog, enter RecyclerAdapter
 into the Name:
 field and change the Kind menu to Class
 before clicking on the OK
 button to create the new Kotlin class file.

Edit the new RecyclerAdapter.
 kt
 file to add some import directives and to declare that the class now extends RecyclerView.Adapter
 . Rather than create a separate class to provide the data to be displayed, some basic arrays will also be added to the adapter to act as the data for the app:

package com.ebookfrenzy.carddemo

import android.view.LayoutInflater

import android.widget.ImageView

import android.widget.TextView

import android.view.View

import android.view.ViewGroup

import android.support.v7.widget.RecyclerView

class RecyclerAdapter : RecyclerView.Adapter<RecyclerAdapter.ViewHolder>()
 {

 private val titles = arrayOf("Chapter One",

 "Chapter Two", "Chapter Three", "Chapter Four",

 "Chapter Five", "Chapter Six", "Chapter Seven",

 "Chapter Eight")

 private val details = arrayOf("Item one details", "Item two details",

 "Item three details", "Item four details",

 "Item five details", "Item six details",

 "Item seven details", "Item eight details")

 private val images = intArrayOf(R.drawable.android_image_1,

 R.drawable.android_image_2, R.drawable.android_image_3,

 R.drawable.android_image_4, R.drawable.android_image_5,

 R.drawable.android_image_6, R.drawable.android_image_7,

 R.drawable.android_image_8)

}

Within the RecyclerAdapter class we now need our own implementation of the ViewHolder class
 configured to reference the view elements in the card_layout.xml
 file. Remaining within the RecyclerAdapter.
 kt
 file implement this class as follows:

.

.

class RecyclerAdapter : RecyclerView.Adapter<RecyclerAdapter.ViewHolder>() {

.

.

 inner class ViewHolder(itemView: View) : RecyclerView.ViewHolder(itemView) {

 var itemImage: ImageView

 var itemTitle: TextView

 var itemDetail: TextView

 init {

 itemImage = itemView.findViewById(R.id.item_image)

 itemTitle = itemView.findViewById(R.id.item_title)

 itemDetail = itemView.findViewById(R.id.item_detail)

 }

 }

.

.

}

.

.

The ViewHolder class contains an ImageView and two TextView variables together with a constructor method that initializes those variables with references to the three view items in the card_layout.xml
 file.

The next item to be added to the RecyclerAdapter.
 kt
 file is the implementation of the onCreateViewHolder()
 method:

override fun onCreateViewHolder(viewGroup: ViewGroup, i: Int): ViewHolder {

 val v = LayoutInflater.from(viewGroup.context)

 .inflate(R.layout.card_layout, viewGroup, false)

 return ViewHolder(v)

}

This method will be called by the RecyclerView to obtain a ViewHolder object. It inflates the view hierarchy card_layout.xml
 file and creates an instance of our ViewHolder class initialized with the view hierarchy before returning it to the RecyclerView.

The purpose of the onBindViewHolder()
 method
 is to populate the view hierarchy within the ViewHolder object with the data to be displayed. It is passed the ViewHolder object and an integer value indicating the list item that is to be displayed. This method should now be added, using the item number as an index into the data arrays. This data is then displayed on the layout views using the references created in the constructor method of the ViewHolder class:

override fun onBindViewHolder(viewHolder: ViewHolder, i: Int) {

 viewHolder.itemTitle.text = titles[i]

 viewHolder.itemDetail.text = details[i]

 viewHolder.itemImage.setImageResource(images[i])

}

The final requirement for the adapter class is an implementation of the getItem()
 method which, in this case, simply returns the number of items in the titles
 array:

override fun getItemCount(): Int {

 return titles.size

}

54.7

 Adding the Image Files

In addition to the two TextViews, the card layout also contains an ImageView on which the Recycler adapter has been configured to display images. Before the project can be tested these images must be added. The images that will be used for the project are named android_image_<n>.jpg
 and can be found in the project_icons
 folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

Locate these images in the file system navigator for your operating system and select and copy the eight images. Right click on the app -> res -> drawable
 entry in the Project tool window and select Paste to add the files to the folder:

[image:]

Figure 54-1

54.8

 Initializing the RecyclerView
 Component

At this point the project consists of a RecyclerView instance, an XML layout file for the CardView instances and an adapter for the RecyclerView. The last step before testing the progress so far is to initialize the RecyclerView with a layout manager, create an instance of the adapter and assign that instance to the RecyclerView object. For the purposes of this example, the RecyclerView will be configured to use the LinearLayoutManager layout
 option. Edit the CardDemoActivity.
 kt
 file and modify the onCreate()
 method to implement this initialization code:

package com.ebookfrenzy.carddemo

import android.os.Bundle

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import android.support.v7.widget.LinearLayoutManager

import android.support.v7.widget.RecyclerView

import kotlinx.android.synthetic.main.content_card_demo.*

import kotlinx.android.synthetic.main.activity_card_demo.*

class CardDemoActivity : AppCompatActivity() {

 private var layoutManager: RecyclerView.LayoutManager? = null

 private var adapter: RecyclerView.Adapter<RecyclerAdapter.ViewHolder>? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_card_demo)

 setSupportActionBar(toolbar)

 layoutManager = LinearLayoutManager(this)

 recycler_view.layoutManager = layoutManager

 adapter = RecyclerAdapter()

 recycler_view.adapter = adapter

 }

.

.

}

54.9

 Testing the Application

Compile and run the app on a physical device or emulator session and scroll through the different card items in the list:

[image:]

Figure 54-2

54.10

 Responding to Card Selections

The last phase of this project is to make the cards
 in the list selectable so that clicking on a card triggers an event within the app. For this example, the cards will be configured to present a message on the display when tapped by the user. To respond to clicks, the ViewHolder class needs to be modified to assign an onClickListener on each item view. Edit the RecyclerAdapter.
 kt
 file and modify the ViewHolder class declaration so that it reads as follows:

.

.

import android.support.v7.widget.RecyclerView

.

.

 inner class ViewHolder(itemView: View) : RecyclerView.ViewHolder(itemView) {

 var itemImage: ImageView

 var itemTitle: TextView

 var itemDetail: TextView

 init {

 itemImage = itemView.findViewById(R.id.item_image)

 itemTitle = itemView.findViewById(R.id.item_title)

 itemDetail = itemView.findViewById(R.id.item_detail)

 itemView.setOnClickListener { v: View ->

 }

 }

 }

.

.

}

Within the body of the onClick handler, code can now be added to display a message indicating that the card has been clicked. Given that the actions performed as a result of a click will likely depend on which card was tapped it is also important to identify the selected card. This information can be obtained via a call to the getAdapterPosition()
 method of the RecyclerView.ViewHolder

 class. Remaining within the RecyclerAdapter.
 kt
 file, add code to the onClick
 handler so it reads as follows:

itemView.setOnClickListener { v: View ->

 var position: Int = getAdapterPosition()

 Snackbar.make(v, "Click detected on item $position",

 Snackbar.LENGTH_LONG).setAction("Action", null).show()

}

The last task is to enable the material design ripple effect that appears when items are tapped within Android applications. This simply involves the addition of some properties to the declaration of the CardView instance in the card_layout.xml
 file as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/card_view"

 android:layout_margin="5dp"

 app:cardBackgroundColor="#81C784"

 app:cardCornerRadius="12dp"

 app:cardElevation="3dp"

 app:contentPadding="4dp"

 android:foreground="?selectableItemBackground"

 android:clickable="true"
 >

Run the app once again and verify that tapping a card in the list triggers both the standard ripple effect at the point of contact and the appearance of a Snackbar reporting the number of the selected item.

54.11

 Summary

This chapter has worked through the steps involved in combining the CardView and RecyclerView components to display a scrollable list of card based items. The example also covered the detection of clicks on list items, including the identification of the selected item and the enabling of the ripple effect visual feedback on the tapped CardView instance.

55.

 A Layout Editor

 Sample Data Tutorial

The CardDemo project created in the previous chapter has provided a good example of how it can be difficult to assess from within the layout editor exactly how a user interface is going to appear until the completed app is tested. This is a problem that frequently occurs when the content to be displayed in a user interface is only generated or acquired once the user has the app installed and running.

For some time now, the Android Studio layout editor has provided the ability to specify simple attributes that are active only when the layout is being designed. A design-time only string resource could, for example, be assigned to a TextView within the layout editor that would not appear when the app runs. This capability has been extended significantly with the introduction of sample data support within the Android Studio layout editor and will be used in this chapter to improve the layout editor experience in the CardDemo project.

55.1

 Adding Sample Data to a Project

During the design phase of the user interface layout, the RecyclerView instance (Figure 55-1
) bears little resemblance to the running app tested at the end of the previous chapter:

[image:]

Figure 55-1

In the
“Modern Android App Architecture with Jetpack”

 chapter earlier in the book the concept of sample data was introduced. To demonstrate sample data in use, the project will now be modified so that the fully populated cards appear within the RecyclerView from within the layout editor. Before doing that, however, it is worth noting that the layout editor has a collection of preconfigured sample data templates that can be used when designing user interfaces. To see some of these in action, load the content_card_demo.xml
 layout file into the layout editor and select the RecyclerView instance. With the view selected, hover the mouse pointer over the view until the buttons shown in Figure 55-2
 appear:

[image:]

Figure 55-2

Click on the button showing the wrench icon to display the Design-time View Attributes panel:

[image:]

Figure 55-3

Change the template option to the Email Client option and note that the RecyclerView changes to display data from the template:

[image:]

Figure 55-4

These templates can be useful for displaying sample data without any additional work and will often provide enough to complete the layout design. For this example, however, sample data is going to be used to display the cards within the RecyclerView as they are intended to appear in the running app. With the content_card_demo.xml
 file still loaded in the layout editor, switch to Text mode and locate the RecyclerView element which should read as follows:

<android.support.v7.widget.RecyclerView

 android:id="@+id/recycler_view"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 tools:itemCount="10"

 tools:listitem="@layout/recycler_view_item" />

Note the two special tools
 properties currently configured to display 10 items in the list, each using a layout contained within a file named recycler_view_item.xml
 . The layout editor provides a range of tools options that may be configured within a layout file. Though coverage of all of these settings is beyond the scope of this book, a full description of each can be found at the following URL:

https://developer.android.com/studio/write/tool-attributes#toolssample_resources

The recycler_view_item.xml
 file referenced above was generated automatically by the layout editor when the sample data template was selected and can be found in the project tool window.

Switch back to Design mode and, with the RecyclerView selected, use the Design-time View Attributes panel to switch the template back to the default setting. The recycler_view_item.xml
 file will be removed from the project along with the two tools
 property lines within the content_card_demo.xml
 XML file.

To switch to using the card layout for the sample data display, add a listitem
 property to reference the card_layout.xml
 file:

tools:listItem="@layout/card_layout" />

Switch back to Design mode and note the card layout is now appearing for each list item, though without any images and using sample text data:

[image:]

Figure 55-5

The next step is to display some images and different text on the views within the card layout. This can either take the form of template sample data provided by the layout editor, or custom sample data added specifically for this project. Load the card_layout.xml
 file into the layout editor, select the ImageView, hover the mouse pointer and display the Design-time View Attributes panel as outlined earlier in the chapter. From the srcCompat menu, select the built-in backgrounds/scenic image set as illustrated in Figure 55-6
 below:

[image:]

Figure 55-6

Next, select the item_title
 TextView object, display the Design-time attributes panel and select the cities
 text option. Repeat this step for the item_detail
 view, this time selecting the full_names
 option as shown in Figure 55-7
 :

[image:]

Figure 55-7

Open the content_card_demo.xml
 file in Design mode and note that the RecyclerView is now using the built-in images and sample text data:

[image:]

Figure 55-8

55.2

 Using Custom Sample Data

The final step in this chapter is to demonstrate the use of custom sample data and images within the layout editor. This requires the creation of a sample data directory and the addition of some text and image files. Within the Project tool window, right-click on the app
 entry and select the New -> Sample Data Directory
 menu option, at which point a new directory named sampledata
 will appear within the Project tool window.

Right-click on the sampledata
 directory, create a subdirectory named images
 and copy and paste the Android images into the new folder using the same steps outlined earlier in the chapter. Display the Design-time View Attributes panel for the ImageView once again, this time clicking the Browse link and selecting the newly added Android images in the Resources
 dialog (if the images folder does not appear try rebuilding the project):

[image:]

Figure 55-9

Right-click once again on the sampledata
 directory, select the New File option, name the file chapters
 and set the type to Text
 . After the file has been created, enter the following content:

Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Five

Chapter Six

Chapter Seven

Chapter Eight

Next, create a second text file named items
 with the following content:

Item one details

Item two details

Item three details

Item four details

Item five details

Item six details

Item seven details

Item eight details

With the sample data text files created, all that remains is to reference them in the view elements of the card_layout.xml
 file as follows:

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/item_title"

 android:layout_toEndOf="@+id/item_image"

 android:layout_toRightOf="@+id/item_image"

 android:layout_alignParentTop="true"

 android:textSize="30sp"

 card_view
 :text="@sample/chapters"
 />

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/item_detail"

 android:layout_toEndOf="@+id/item_image"

 android:layout_toRightOf="@+id/item_image"

 android:layout_below="@+id/item_title"

 card_view:text="@sample/items"
 />

Return to the layout design in the content_card_layout.xml
 file where the custom sample data and images should now be displayed within the RecyclerView list:

[image:]

Figure 55-10

Instead of having two separate text files and a reference to the image set, another option is to declare the sample data within a JSON file. For example:

{

 "mydata": [

 {

 "chapter" : "Chapter One",

 "details": "Item one details",

 "image": "@sample/images"

 },

 {

 "chapter" : "Chapter Two",

 "details": "Item two details",

 "image": "@sample/images"

 },

.

.

}

Assuming the above was contained within a file named chapterdata.json
 , the sample data would then be referenced within the view XML elements as follows:

.

.

<ImageView

.

.

 tools:src="@sample/chapterdata.json/mydata/image
 " />

<TextView

.

.

 tools:text="@sample/chapterdata.json/mydata/chapter
 " />

<TextView

.

.

 tools:text="@sample/chapterdata.json/mydata/details
 " />

.

.

55.3

 Summary

This chapter has demonstrated the use of sample data within the layout editor to provide a more realistic representation of how the user interface will appear at runtime. The steps covered in this tutorial included the use of both pre-existing sample data templates and the integration of custom sample data.

56.

 Working with the AppBar and Collapsing Toolbar Layouts

In this chapter we will be exploring the ways in which the app bar within an activity layout can be customized and made to react to the scrolling events taking place within other views on the screen. By making use of the CoordinatorLayout
 in conjunction with the AppBarLayout and CollapsingToolbarLayout containers, the app bar can be configured to display an image and to animate in and out of view. An upward scrolling motion on a list, for example, can be configured so that the app bar recedes from view and then reappears when a downward scrolling motion is performed.

Beginning with an overview of the elements that can comprise an app bar, this chapter will then work through a variety of examples of app bar configuration.

56.1

 The Anatomy of an AppBar

The app bar is the area that appears at the top of the display when an app is running and can be configured to contain a variety of different items including the status bar
 , toolbar
 , tab bar
 and a flexible space area
 . Figure 56-1
 , for example, shows an app bar containing a status bar, toolbar and tab ba
 r:

[image:]

Figure 56-1

The flexible space area can be filled by a blank background color, or as shown in Figure 56-2
 , an image displayed on an ImageView object
 :

[image:]

Figure 56-2

As will be demonstrated in the remainder of this chapter, if the main content area of the activity user interface layout contains scrollable content, the elements of the app bar can be configured to expand and contract as the content on the screen is scrolled.

56.2

 The Example Project

For the purposes of this example, changes will be made to the CardDemo project created in the earlier chapter entitled
“An Android RecyclerView and CardView Tutorial”

 . Begin by launching Android Studio and loading this project.

Once the project has loaded, run the app and note when scrolling the list upwards that the toolbar remains visible as shown in Figure 56-3
 :

[image:]

Figure 56-3

The first step is to make some configuration changes so that the toolbar contracts during an upward scrolling motion, and then expands on a downward scroll.

56.3

 Coordinating the RecyclerView and Toolbar

Load the activity_card_demo.xml
 file into the Layout Editor tool, switch to text mode and review the XML layout design, the hierarchy of which is represented by the diagram in Figure 56-4
 :

 [image:]

Figure 56-4

At the top level of the hierarchy is the CoordinatorLayout which, as the name suggests, coordinates the interactions between the various child view elements it contains. As highlighted in
“Working with the Floating Action Button and Snackbar”

 for example, the CoordinatorLayout automatically slides the floating action button upwards to accommodate the appearance of a Snackbar when it appears, then moves the button back down after the bar is dismissed.

The CoordinatorLayout
 can similarly be used to cause elements of the app bar to slide in and out of view based on the scrolling action of certain views within the view hierarchy. One such element within the layout hierarchy shown in Figure 56-4
 is the ConstraintLayout. To achieve this coordinated behavior, it is necessary to set properties on both the element on which scrolling takes place and the elements with which the scrolling is to be coordinated.

On the scrolling element (in this case the RecyclerView) the android:layout_behavior
 property
 must be set to appbar_scrolling_view_behavior

 . Within the content_card_demo.xml
 file, locate the top level ConstraintLayout element and note that this property has been set by default:

<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:context=".CardDemoActivity"

 tools:showIn="@layout/activity_card_demo">

Next, open the activity_card_layout.xml
 file in the layout editor, switch to Text mode and locate the AppBarLayout element. Note that the only child of AppBarLayout in the view hierarchy is the Toolbar. To make the toolbar react to the scroll events taking place in the RecyclerView the app:layout_scrollFlags
 property must be set on this element. The value assigned to this property will depend on the nature of the interaction required and must consist of one or more of the following:

•

 scroll
 – Indicates that the view is to be scrolled off the screen. If this is not set the view will remain pinned at the top of the screen during scrolling events.

•

 enterAlways
 – When used in conjunction with the scroll
 option, an upward scrolling motion will cause the view to retract. Any downward scrolling motion in this mode will cause the view to re-appear.

•

 enterAlwaysCollapsed
 – When set on a view, that view will not expand from the collapsed state until the downward scrolling motion reaches the limit of the list. If the minHeight
 property is set, the view will appear during the initial scrolling motion but only until the minimum height is reached. It will then remain at that height and will not expand fully until the top of the list is reached. Note this option only works when used in conjunction with both the enterAlways
 and scroll
 options. For example:

app:layout_scrollFlags="scroll|enterAlways|enterAlwaysCollapsed"

android:minHeight="20dp"

•

 exitUntilCollapsed
 – When set, the view will collapse during an upward scrolling motion until the minHeight threshold is met, at which point it will remain at that height until the scroll direction changes.

For the purposes of this example, the scroll
 and enterAlways
 options will be set on the Toolbar as follows:

<android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/AppTheme.PopupOverlay"

 app:layout_scrollFlags="scroll|enterAlways"
 />

With the appropriate properties set, run the app once again and make an upward scrolling motion in the RecyclerView list. This should cause the toolbar to collapse out of view (Figure 56-5
). A downward scrolling motion should cause the toolbar to re-ap
 pear.

[image:]

Figure 56-5

56.4

 Introducing the Collapsing Toolbar Layout

The CollapsingToolbarLayout
 container enhances the standard toolbar by providing a greater range of options and level of control over the collapsing of the app bar and its children in response to coordinated scrolling actions. The CollapsingToolbarLayout class is intended to be added as a child of the AppBarLayout and provides features such as automatically adjusting the font size of the toolbar title as the toolbar collapses and expands. A
 parallax
 mode allows designated content in the app bar to fade from view as it collapses while a
 pin
 mode allows elements of the app bar to remain in fixed position during the contraction.

A scrim
 option is also available to designate the color to which the toolbar should transition during the collapse sequence.

To see these features in action, the app bar contained in the activity_card_demo.xml
 file will be modified to use the CollapsingToolbarLayout
 class together with the addition of an ImageView to better demonstrate the effect of parallax mode. The new view hierarchy that makes use of the CollapsingToolbarLayout is represented by the diagram in Figure 56-6
 :

[image:]

Figure 56-6

 Load the activity_card_demo.xml
 file into the Layout Editor tool in Text mode and modify the layout so that it reads as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:fitsSystemWindows="true"

 tools:context=".CardDemoActivity">

 <com.google.android.material.appbar.AppBarLayout

 android:layout_height="200dp"

 android:layout_width="match_parent"

 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.design.widget.CollapsingToolbarLayout

 android:id="@+id/collapsing_toolbar"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_scrollFlags="scroll|enterAlways"

 android:fitsSystemWindows="true"

 app:contentScrim="?attr/colorPrimary"

 app:expandedTitleMarginStart="48dp"

 app:expandedTitleMarginEnd="64dp">

 <ImageView

 android:id="@+id/backdrop"

 android:layout_width="match_parent"

 android:layout_height="200dp"

 android:scaleType="centerCrop"

 android:fitsSystemWindows="true"

 app:layout_collapseMode="parallax"

 android:src="@drawable/appbar_image" />

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/AppTheme.PopupOverlay"

 app:layout_scrollFlags="scroll|enterAlways"

 app:layout_collapseMode="pin"
 />

 </android.support.design.widget.CollapsingToolbarLayout>

 </com.google.android.material.appbar.AppBarLayout>

 <include layout="@layout/content_card_demo" />

</android.support.design.widget.CoordinatorLayout>

In addition to adding the new elements to the layout above, the background color property setting has been removed. This change has the advantage of providing a transparent toolbar allowing more of the image to be visible in the app bar.

Using the file system navigator for your operating system, locate the appbar_image.jpg
 image file in the project_icons
 folder of the code sample download for the book and copy it. Right-click on the app -> res -> drawable
 entry in the Project tool window and select Paste
 from the resulting menu.

When run, the app bar should appear as illustrated in Figure 56-7
 :

[image:]

Figure 56-7

Scrolling the list upwards will cause the app bar to gradually collapse. During the contraction, the image will fade to the color defined by the scrim property while the title text font size reduces at a corresponding rate until only the toolbar is visible:

[image:]

Figure 56-8

 The toolbar has remained visible during the initial stages of the scrolling motion (the toolbar will also recede from view if the upward scrolling motion continues) as the flexible area collapses because the toolbar element in the activity_card_demo.xml
 file was configured to use pin mode:

app:layout_collapseMode="pin"

Had the collapse mode been set to parallax the toolbar would have retracted along with the image view.

Continuing the upward scrolling motion will cause the toolbar to also collapse leaving only the status bar visible:

[image:]

Figure 56-9

Since the scroll flags property for the CollapsingToolbarLayout element includes the enterAlways option, a downward scrolling motion will cause the app bar to expand once again.

To fix the toolbar in place so that it no longer recedes from view during the upward scrolling motion, replace enterAlways
 with exitUntilCollapsed
 in the layout_scrollFlags
 property of the CollapsingToolbarLayout element in the activity_card_demo.xml
 file as follows:

<com.google.android.material.appbar.CollapsingToolbarLayout

 android:id="@+id/collapsing_toolbar"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_scrollFlags="scroll|exitUntilCollapsed
 "

 android:fitsSystemWindows="true"

 app:contentScrim="?attr/colorPrimary"

 app:expandedTitleMarginStart="48dp"

 app:expandedTitleMarginEnd="64dp">

56.5

 Changing the Title and Scrim Color

 As a final task, edit the CardDemoActivity.
 kt
 file and add some code to the onCreate()
 method to change the title text on the collapsing layout manager instance and to set a different scrim color (note that the scrim color may also be set within the layout resource file):

package com.ebookfrenzy.carddemo

.

.

import android.graphics.Color

.

.

class CardDemoActivity : AppCompatActivity() {

.

.

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_card_demo)

 setSupportActionBar(toolbar)

 collapsing_toolbar.title = "My Toolbar Title"

 collapsing_toolbar.setContentScrimColor(Color.GREEN)

 layoutManager = LinearLayoutManager(this)

 recycler_view.layoutManager = layoutManager

 adapter = RecyclerAdapter()

 recycler_view.adapter = adapter

 }

.

.

}

Run the app one last time and note that the new title appears in the app bar and that scrolling now causes the toolbar to transition to green as it retracts from view.

56.6

 Summary

The app bar that appears at the top of most Android apps can consist of a number of different elements including a toolbar, tab layout and even an image view. When embedded in a CoordinatorLayout parent, a number of different options are available to control the way in which the app bar behaves in response to scrolling events in the main content of the activity. For greater control over this behavior, the CollapsingToolbarLayout manager provides a range of additional levels of control over the way the app bar content expands and contracts in relation to scrolling activity.

57.

 Implementing an Android Navigation Drawer

In this, the final of this series of chapters dedicated to the Android material design components, the topic of the navigation drawer will be covered. Comprising the DrawerLayout
 , NavigationView
 and ActionBarDrawerToggle
 classes, a navigation drawer takes the form of a panel appearing from the left-hand edge of the screen when selected by the user and containing a range of options and sub-options which can be selected to perform tasks within the application.

57.1

 An Overview of the Navigation Drawer

The navigation drawer is a panel that slides out from the left of the screen and contains a range of options available for selection by the user, typically intended to facilitate navigation to some other part of the application. Figure 57-1
 , for example, shows the navigation drawer built into the Google Play app:

[image:]

Figure 57-1

A navigation drawer is made up of the following components:

•
 An instance of the DrawerLayout
 component.

•
 An instance of the NavigationView
 component embedded as a child of the DrawerLayout.

•
 A menu resource file containing the options to be displayed within the navigation drawer.

•
 An optional layout resource file containing the content to appear in the header section of the navigation drawer.

•
 A listener assigned to the NavigationView to detect when an item has been selected by the user.

•
 An ActionBarDrawerToggle
 instance to connect and synchronize the navigation drawer to the app bar. The ActionBarDrawerToggle also displays the drawer indicator in the app bar which presents the drawer when tapped.

The following XML listing shows an example navigation drawer
 implementation which also contains an include directive for a second layout file containing the standard app bar layout.

<?xml version="1.0" encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/drawer_layout"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:fitsSystemWindows="true"

 tools:openDrawer="start">

 <include

 layout="@layout/app_bar_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <com.google.android.material.navigation.NavigationView

 android:id="@+id/nav_view"

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="start"

 android:fitsSystemWindows="true"

 app:headerLayout="@layout/nav_header_main"

 app:menu="@menu/activity_main_drawer" />

</android.support.v4.widget.DrawerLayout>

57.2

 Opening and Closing the Drawer

When the user taps the drawer indicator in the app bar, the drawer will automatically appear. Whether the drawer is currently open may be identified via a call to the isDrawerOpen()
 method of the DrawerLayout
 object passing through a gravity setting:

if (drawer.isDrawerOpen(GravityCompat.START)) {

 // Drawer is open

}

The GravityCompat.START setting indicates a drawer open along the x-axis of the layout. An open drawer may be closed via a call to the closeDrawer()
 method:

drawer.closeDrawer(GravityCompat.START)

Conversely, the drawer may be opened using the openDrawer()
 method:

drawer.openDrawer(GravityCompat.START)

57.3

 Responding to Drawer Item Selections

Handling selections within a navigation drawer is a two-step process. The first step is to specify an object to act as the item selection listener. This is achieved by obtaining a reference to the NavigationView
 instance in the layout and making a call to its setNavigationItemSelectedListener(
) method
 , passing through a reference to the object that is to act as the listener. Typically the listener will be configured to be the current activity, for example:

navigationView.setNavigationItemSelectedListener(this)

The second step is to implement the onNavigationItemSelected()
 method
 within the designated listener. This method is called each time a selection is made within the navigation drawer and is passed a reference to the selected menu item as an argument which can then be used to extract and identify the selected item id:

override fun onNavigationItemSelected(item: MenuItem): Boolean {

 // Handle navigation view item clicks here.

 when (item.itemId) {

 R.id.nav_camera -> {

 // Handle the camera action

 }

 R.id.nav_gallery -> {

 }

 R.id.nav_slideshow -> {

 }

 R.id.nav_manage -> {

 }

 R.id.nav_share -> {

 }

 R.id.nav_send -> {

 }

 }

 drawer_layout.closeDrawer(GravityCompat.START)

 return true

}

If it is appropriate to do so, and as outlined in the above example, it is also important to close the drawer after the item has been selected.

57.4

 Using the Navigation Drawer Activity Template

 While it is possible to implement a navigation drawer within any activity, the easiest approach is to select the Navigation Drawer Activity template when creating a new project or adding a new activity to an existing project:

[image:]

Figure 57-2

This template creates all of the components and requirements necessary to implement a navigation drawer, requiring only that the default settings be adjusted where necessary.

57.5

 Creating the Navigation Drawer Template Project

Create a new project in Android Studio, entering NavDrawerDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the remaining screens, requesting the creation of a Navigation Drawer Activity named NavDrawerActivity
 with a corresponding layout file named activity_nav_drawer.
 Click on the Finish
 button to initiate the project creation process.

57.6

 The Template Layout Resource Files

Once the project has been created, it will contain the following XML resource files located under app -> res -> layout
 in the Project tool window:

•
 activity_nav_drawer.xml
 – This is the top level layout resource file. It contains the DrawerLayout container and the NavigationView child. The NavigationView declaration in this file indicates that the layout for the drawer header is contained within the nav_header_nav_drawer.xml
 file and that the menu options for the drawer are located in the activity_nav_drawer_drawer.xml
 file. In addition, it includes a reference to the app_bar_nav_drawer.xml
 file.

•
 app_bar_nav_drawer.xml
 – This layout resource file is included by the activity_nav_drawer.xml
 file and is the standard app bar layout file built within a CoordinatorLayout container as covered in the preceding chapters. As with previous examples this file also contains a directive to include the content file which, in this case, is named content_nav_drawer.xml
 .

•
 content_nav_drawer.xml
 – The standard layout for the content area of the activity layout. This layout consists of a ConstraintLayout container and a “Hello World!” TextView.

•
 nav_header_nav_drawer.xml
 – Referenced by the NavigationView element in the activity_nav_drawer.xml
 file this is a placeholder header layout for the drawer.

57.7

 The Header Coloring Resource File

 In addition to the layout resource files, the side_nav_bar.xml
 file located under app -> res -> drawable
 may be modified to change the colors applied to the drawer header. By default, this file declares a rectangular color gradient transitioning horizontally from dark to light green.

57.8

 The Template Menu Resource File

The menu options presented within the navigation drawer
 can be found in the activity_nav_drawer_drawer.xml
 file located under app -> res -> menu
 in the project tool window. By default, the menu consists of a range of text based titles with accompanying icons (the files for which are all located in the drawable
 folder). For more details on menu resource files, refer to the chapter entitled
“Creating and Managing Overflow Menus on Android”

 .

57.9

 The Template Code

The onCreate()
 method located in the NavDrawerActivity.
 kt
 file performs much of the initialization work required for the navigation drawer:

val toggle = ActionBarDrawerToggle(

 this, drawer_layout, toolbar, R.string.navigation_drawer_open,

 R.string.navigation_drawer_close)

drawer_layout.addDrawerListener(toggle)

toggle.syncState()

nav_view.setNavigationItemSelectedListener(this)

The code obtains a reference to the DrawerLayout object and then creates an ActionBarDrawerToggle object, initializing it with a reference to the current activity, the DrawerLayout object, the toolbar contained within the app bar and two strings describing the drawer opening and closing actions for accessibility purposes. The ActionBarDrawerToggle object is then assigned as the listener for the drawer and synchronized.

The code then obtains a reference to the NavigationView instance before declaring the current activity as the listener for any item selections made within the navigation drawer.

Since the current activity is now declared as the drawer listener, the onNavigationItemSelected()
 method is also implemented in the NavDrawerActivity.
 kt
 file. The implementation of this method in the activity matches that outlined earlier in this chapter.

Finally, an additional method named onBackPressed()
 has been added to the activity by Android Studio. This method is added to handle situations whereby the activity has a “back” button to return to a previous activity screen. The code in this method ensures that the drawer is closed before the app switches back to the previous activity screen:

override fun onBackPressed() {

 if (drawer_layout.isDrawerOpen(GravityCompat.START)) {

 drawer_layout.closeDrawer(GravityCompat.START)

 } else {

 super.onBackPressed()

 }

}

57.10

 Running the App

 Compile and run the project and note the appearance of the drawer indicator as highlighted in
 Figure 57-3
 :

[image:]

Figure 57-3

Tap the indicator and note that the icon rotates as the navigation drawer appears:

[image:]

Figure 57-4

57.11

 Summary

The navigation drawer is a panel that extends from the left-hand edge of an activity screen when an indicator is selected by the user. The drawer contains menu options available for selection and serves as a useful application navigation tool that conforms to the material design guidelines. Although it is possible to add a navigation drawer to any activity, the quickest technique is to use the Android Studio Navigation Drawer Activity template and then customize it for specific requirements. This chapter has outlined the components that make up a navigation drawer and highlighted how these are implemented within the template.

58.

 An Android Studio Master/Detail Flow Tutorial

This chapter will explain the concept of the Master/Detail user interface design before exploring, in detail, the elements that make up the Master/Detail Flow template included with Android Studio. An example application will then be created that demonstrates the steps involved in modifying the template to meet the specific needs of the application developer.

58.1

 The Master/Detail Flow

A master/detail flow is an interface design concept whereby a list of items (referred to as the master list
) is displayed to the user. On selecting an item from the list, additional information relating to that item is then presented to the user within a detail
 pane. An email application might, for example, consist of a master list of received messages consisting of the address of the sender and the subject of the message. Upon selection of a message from the master list, the body of the email message would appear within the detail pane.

On tablet sized Android device displays in landscape orientation, the master list appears in a narrow vertical panel along the left-hand edge of the screen. The remainder of the display is devoted to the detail pane in an arrangement referred to as two-pane mode

 . Figure 58-1
 , for example, shows the master/detail, two-pane arrangement with master items listed and the content of item one displayed in the detail pane:

[image:]

Figure 58-1

On smaller, phone sized Android devices, the master list takes up the entire screen and the detail pane appears on a separate screen which appears when a selection is made from the master list. In this mode, the detail screen includes an action bar entry to return to the master list. Figure 58-2
 for example, illustrates both the master and detail screens for the same item list on a 4” phone screen:

[image:]

Figure 58-2

58.2

 Creating a Master/Detail Flow
 Activity

In the next section of this chapter, the different elements that comprise the Master/Detail Flow template will be covered in some detail. This is best achieved by creating a project using the Master/Detail Flow template to use while working through the information. This project will subsequently be used as the basis for the tutorial at the end of the chapter.

Create a new project in Android Studio, entering MasterDetailFlow
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). After the project has been created, the minSdkVersion
 setting in the build.gradle (module: app)
 file located under Gradle Scripts
 in the Project tool window may be changed to target older Android versions if required.

When the activity configuration screen of the New Project dialog appears, select the Master/Detail Flow
 option as illustrated in Figure 58-3
 before clicking on Next
 once again:

[image:]

Figure 58-3

The next screen (Figure 58-4
) provides the opportunity to configure the objects that will be displayed within the master/detail activity. In the tutorial later in this chapter, the master list will contain a number of web site names which, when selected, will load the chosen web site into a web view within the detail pane. With these requirements in mind, set the Object Kind

 field to “Website”, and the Object Kind

 Plural
 and Title
 settings to “Websites”.

[image:]

Figure 58-4

Finally, click Finish to create the new Master/Detail Flow based application project.

58.3

 The Anatomy of the Master/Detail Flow
 Template

Once a new project has been created using the Master/Detail Flow template, a number of Kotlin and XML layout resource files will have been created automatically. It is important to gain an understanding of these different files in order to be able to adapt the template to specific requirements. A review of the project within the Android Studio Project tool window will reveal the following files, where <item>
 is replaced by the Object Kind
 name that was specified when the project was created (this being “Website” in the case of the MasterDetailFlow
 example project):

•
 activity_
 <item>
 _list.xml
 – The top level layout file for the master list, this file is loaded by the
 <item>
 ListActivity
 class. This layout contains a toolbar, a floating action button and includes the
 <item>_list.xml
 file.

•
 <item>
 ListActivity.
 kt
 – The activity class responsible for displaying and managing the master list (declared in the
 activity_
 <item>
 _list.xml
 file) and for both displaying and responding to the selection of items within that list.

•
 <item>
 _list.xml
 – The layout file used to display the master list of items in single-pane mode where the master list and detail pane appear on different screens. This file consists of a RecyclerView object configured to use the LinearLayoutManager. The RecyclerView element declares that each item in the master list is to be displayed using the layout declared within the
 <item>
 _list_content.xml
 file.

•
 <item>
 _list.xml (w900dp)
 – The layout file for the master list in the two-pane mode used on tablets in landscape (where the master list and detail pane appear side by side). This file contains a horizontal LinearLayout parent within which resides a RecyclerView to display the master list, and a FrameLayout to contain the content of the detail pane. As with the single-pane variant of this file, the RecyclerView element declares that each item in the list be displayed using the layout contained within the
 <item>
 _list_content.xml
 file.

•
 <item>
 _content_list.xml
 – This file contains the layout to be used for each item in the master list. By default, this consists of two TextView objects embedded in a horizontal LinearLayout but may be changed to meet specific application needs.

•
 activity_
 <item>
 _detail.xml
 – The top level layout file used for the detail pane when running in single-pane mode. This layout contains an app bar, collapsing toolbar, scrolling view and a floating action button. At runtime this layout file is loaded and displayed by the
 <item>
 DetailActivity
 class.

•
 <item>
 DetailActivity.
 kt
 – This class displays the layout defined in the
 activity_
 <item>
 _detail.xml
 file. The class also initializes and displays the fragment containing the detail content defined in the <
 item>_detail.xml
 and
 <item>
 DetailFragment.
 kt
 files.

•
 <item>
 _detail.xml
 – The layout file that accompanies the
 <item>
 DetailFragment
 class and contains the layout for the content area of the detail pane. By default, this contains a single TextView object, but may be changed to meet your specific application needs. In single-pane mode, this fragment is loaded into the layout defined by the
 activity_
 <item>
 _detail.xml
 file. In two-pane mode, this layout is loaded into the FrameLayout area of the
 <item>
 _list.xml (w900dp)
 file so that it appears adjacent to the master list.

•
 <item>
 DetailFragment.
 kt
 – The fragment class file responsible for displaying the
 <item>_detail.xml
 layout and populating it with the content to be displayed in the detail pane. This fragment is initialized and displayed within the
 <item>
 DetailActivity.
 kt
 file to provide the content displayed within the
 activity_
 <item>
 _detail.xml
 layout for single-pane mode and the
 <item>
 _list.xml (w900dp)
 layout for two-pane mode.

•
 DummyContent.
 kt
 – A class file intended to provide sample data for the template. This class can either be modified to meet application needs, or replaced entirely. By default, the content provided by this class simply consists of a number of string items.

58.4

 Modifying the Master/Detail Flow Template

While the structure of the Master/Detail Flow template can appear confusing at first, the concepts will become clearer as the default template is modified in the remainder of this chapter. As will become evident, much of the functionality provided by the template can remain unchanged for many master/detail implementation requirements.

In the rest of this chapter, the MasterDetailFlow
 project will be modified such that the master list displays a list of web site names and the detail pane altered to contain a WebView object instead of the current TextView. When a web site is selected by the user, the corresponding web page will subsequently load and display in the detail pane.

58.5

 Changing the Content Model

The content for the example as it currently stands is defined by the DummyContent
 class file. Begin, therefore, by selecting the DummyContent.
 kt
 file (located in the Project tool window in the app -> java -> com.ebookfrenzy.masterdetailflow -> dummy
 folder) and reviewing the code. At the bottom of the file is a declaration for a class named DummyItem
 which is currently able to store two String objects representing a content string and an ID. The updated project, on the other hand, will need each item object to contain an ID string, a string for the web site name, and a string for the corresponding URL of the web site. To add these features, modify the DummyItem
 class so that it reads as follows:

data class DummyItem(val id: String, val website_name: String,

 val website_url: String) {

 override fun toString(): String = website_name

}

Note that the encapsulating DummyContent class currently contains a for
 loop that adds 25 items by making multiple calls to methods named createDummyItem()
 and makeDetails()
 . Much of this code will no longer be required and should be deleted from the class as follows:

object DummyContent {

 /**

 * An array of sample (dummy) items.

 */

 val ITEMS: MutableList<DummyItem> = ArrayList()

 /**

 * A map of sample (dummy) items, by ID.

 */

 val ITEM_MAP: MutableMap<String, DummyItem> = HashMap()

 private val COUNT = 25

 init {

 // Add some sample items.

 for (i in 1..COUNT) {

 addItem(createDummyItem(i))

 }

 }

 private fun addItem(item: DummyItem) {

 ITEMS.add(item)

 ITEM_MAP.put(item.id, item)

 }

 private fun createDummyItem(position: Int): DummyItem {

 return DummyItem(position.toString(), "Item " +

 position, makeDetails(position))

 }

 private fun makeDetails(position: Int): String {

 val builder = StringBuilder()

 builder.append("Details about Item: ").append(position)

 for (i in 0..position - 1) {

 builder.append("\nMore details information here.")

 }

 return builder.toString()

 }

This code needs to be modified to initialize the data model with the required web site data:

val ITEMS: MutableList<DummyItem> = ArrayList()

init {

 // Add 3 sample items.

 addItem(DummyItem("1", "eBookFrenzy",

 "https://www.ebookfrenzy.com"))

 addItem(DummyItem("2", "Amazon",

 "https://www.amazon.com"))

 addItem(DummyItem("3", "New York Times",

 "https://www.nytimes.com"))

}

The code now takes advantage of the modified DummyItem class to store an ID, web site name and URL for each item.

58.6

 Changing the Detail Pane

The detail information shown to the user when an item is selected from the master list is currently displayed via the layout contained in the website_detail.xml
 file. By default, this contains a single view in the form of a TextView. Since the TextView class is not capable of displaying a web page, this needs to be changed to a WebView object for this tutorial. To achieve this, navigate to the app -> res -> layout -> website_detail.xml
 file in the Project tool window and double-click on it to load it into the Layout Editor tool. Switch to Text mode and delete the current XML content from the file. Replace this content with the following XML:

<WebView xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/website_detail"

 tools:context= ".WebsiteDetailFragment">

</WebView>

Switch to Design mode and verify that the layout now matches that shown in Figure 58-5
 :

[image:]

Figure 58-5

58.7

 Modifying the WebsiteDetailFragment Class

At this point the user interface detail pane has been modified but the corresponding Kotlin class is still designed for working with a TextView object instead of a WebView. Load the source code for this class by double-clicking on the WebsiteDetailFragment.
 kt
 file in the Project tool window.

In order to load the web page URL corresponding to the currently selected item only a few lines of code need to be changed. Once this change has been made, the code should read as follows:

package com.ebookfrenzy.masterdetailflow

.

.

import android.webkit.WebResourceRequest

import android.webkit.WebView

import android.webkit.WebViewClient

.

.

import com.ebookfrenzy.masterdetailflow.dummy.DummyContent

class WebsiteDetailFragment : Fragment() {

 /**

 * The dummy content this fragment is presenting.

 */

 private var item: DummyContent.DummyItem? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 if (arguments.containsKey(ARG_ITEM_ID)) {

 // Load the dummy content specified by the fragment

 // arguments. In a real-world scenario, use a Loader

 // to load content from a content provider.

 item = DummyContent.ITEM_MAP[arguments.getString(ARG_ITEM_ID)]

 item?.let {

 activity?.toolbar_layout?.title = it.website_name

 }

 }

 }

 override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

 savedInstanceState: Bundle?): View? {

 val rootView = inflater.inflate(R.layout.website_detail, container, false)

 item?.let {

 val webView: WebView = rootView.findViewById(R.id.website_detail)

 webView.webViewClient = object : WebViewClient() {

 override fun shouldOverrideUrlLoading(

 view: WebView, request: WebResourceRequest): Boolean {

 return super.shouldOverrideUrlLoading(

 view, request)

 }

 }

 webView.settings.javaScriptEnabled = true

 webView.loadUrl(item?.website_url)

 }

 return rootView

 }

.

.

}

The above changes modify the onCreate()
 method to display the web site name on the app bar:

activity?.toolbar_layout?.title = it.website_name

The onCreateView()
 method is then modified to find the view with the ID of website_detail
 (this was formally the TextView but is now a WebView) and extract the URL of the web site from the selected item. An instance of the WebViewClient class is created and assigned the shouldOverrideUrlLoading()
 callback method. This method is implemented so as to force the system to use the WebView instance to load the page instead of the Chrome browser. Finally, JavaScript support is enabled on the webView instance and the web page loaded.

58.8

 Modifying the WebsiteListActivity Class

A minor change also needs to be made to the WebsiteListActivity.
 kt
 file to make sure that the web site names appear in the master list. Edit this file, locate the onBindViewHolder()
 method and modify the setText()
 method call to reference the web site name as follows:

override fun onBindViewHolder(holder: ViewHolder, position: Int) {

 val item = mValues[position]

 holder.mIdView.text = item.id

 holder.mContentView.text = item.website_name

.

.

}

58.9

 Adding Manifest Permissions

The final step is to add internet permission to the application via the manifest file. This will enable the WebView object to access the internet and download web pages. Navigate to, and load the AndroidManifest.xml
 file in the Project tool window (app -> manifests
), and double-click on it to load it into the editor. Once loaded, add the appropriate permission line to the file:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.masterdetailflow" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

.

.

58.10

 Running the Application

Compile and run the application on a suitably configured emulator or an attached Android device. Depending on the size of the display, the application will appear either in small screen or two-pane mode. Regardless, the master list should appear primed with the names of the three web sites defined in the content model. Selecting an item should cause the corresponding web site to appear in the detail pane as illustrated in two-pane mode in Figure 58-6
 :

[image:]

Figure 58-6

58.11

 Summary

A master/detail user interface consists of a master list of items which, when selected, displays additional information about that selection within a detail pane. The Master/Detail Flow is a template provided with Android Studio that allows a master/detail arrangement to be created quickly and with relative ease. As demonstrated in this chapter, with minor modifications to the default template files, a wide range of master/detail based functionality can be implemented with minimal coding and design effort.

59.

 An Overview of Android Intents

By this stage of the book, it should be clear that Android applications are comprised, among other things, of one or more activities. An area that has yet to be covered in extensive detail, however, is the mechanism by which one activity can trigger the launch of another activity. As outlined briefly in the chapter entitled
“The Anatomy of an Android Application”

 , this is achieved primarily by using Intents
 .

Prior to working through some Android Studio based example implementations of intents in the following chapters, the goal of this chapter is to provide an overview of intents in the form of explicit intents
 and implicit intents
 together with an introduction to intent filters

 .

59.1

 An Overview of Intents

Intents (android.content.Intent

) are the messaging system by which one activity is able to launch another activity. An activity can, for example, issue an intent to request the launch of another activity contained within the same application. Intents also, however, go beyond this concept by allowing an activity to request the services of any other appropriately registered activity on the device for which permissions are configured. Consider, for example, an activity contained within an application that requires a web page to be loaded and displayed to the user. Rather than the application having to contain a second activity to perform this task, the code can simply send an intent to the Android runtime requesting the services of any activity that has registered the ability to display a web page. The runtime system will match the request to available activities on the device and either launch the activity that matches or, in the event of multiple matches, allow the user to decide which activity to use.

Intents also allow for the transfer of data from the sending activity to the receiving activity. In the previously outlined scenario, for example, the sending activity would need to send the URL of the web page to be displayed to the second activity. Similarly, the receiving activity may also be configured to return data to the sending activity when the required tasks are completed.

Though not covered until later chapters, it is also worth highlighting the fact that, in addition to launching activities, intents are also used to launch and communicate with services and broadcast receivers.

Intents are categorized as either explicit

 or implicit

 .

59.2

 Explicit Intents

An explicit intent
 requests the launch of a specific activity by referencing the component name
 (which is actually the class name) of the target activity. This approach is most common when launching an activity residing in the same application as the sending activity (since the class name is known to the application developer).

An explicit intent is issued by creating an instance of the Intent class, passing through the activity context and the component name of the activity to be launched. A call is then made to the startActivity()
 method
 , passing the intent object as an argument. For example, the following code fragment issues an intent for the activity with the class name ActivityB to be launched:

val i = Intent(this, ActivityB::class.java)

startActivity(i)

Data may be transmitted to the receiving activity by adding it to the intent object before it is started via calls to the putExtra()
 method
 of the intent object. Data must be added in the form of key-value pairs. The following code extends the previous example to add String and integer values with the keys “myString” and “myInt” respectively to the intent:

val i = Intent(this, ActivityB::class.java)

i.putExtra("myString", "This is a message for ActivityB")

i.putExtra("myInt", 100)

startActivity(i)

The data is received by the target activity as part of a Bundle object which can be obtained via a call to getIntent().getExtras()
 . The getIntent()
 method
 of the Activity class returns the intent that started the activity, while the getExtras()
 method (of the Intent class) returns a Bundle object containing the data.
 For example, to extract the data values passed to ActivityB:

val extras = intent.extras ?: return

val myString = extras.getString("myString")

int myInt = extras.getInt("MyInt")

When using intents to launch other activities within the same application, it is essential that those activities be listed in the application manifest file. The following AndroidManifest.xml
 contents are correctly configured for an application containing activities named ActivityA and ActivityB:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.intent1.intent1" >

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name="com.ebookfrenzy.intent1.intent1.ActivityA" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="ActivityB"

 android:label="ActivityB" >

 </activity>

 </application>

</manifest>

59.3

 Returning Data from an Activity

As the example in the previous section stands, while data is transferred to ActivityB, there is no way for data to be returned to the first activity (which we will call ActivityA). This can, however, be achieved by launching ActivityB as a sub-activity
 of ActivityA. An activity is started as a sub-activity by starting the intent with a call to the startActivityForResult()
 method
 instead of using startActivity()
 . In addition to the intent object, this method is also passed a request code
 value which can be used to identify the return data when the sub-activity returns. For example:

startActivityForResult(i, REQUEST_CODE)

In order to return data to the parent activity, the sub-activity must implement the finish()
 method, the purpose of which is to create a new intent object containing the data to be returned, and then calling the setResult()
 method
 of the enclosing activity, passing through a result code
 and the intent containing the return data. The result code is typically RESULT_OK,
 or RESULT_CANCELED
 , but may also be a custom value subject to the requirements of the developer. In the event that a sub-activity crashes, the parent activity will receive a RESULT_CANCELED
 result code.

The following code, for example, illustrates the code for a typical sub-activity finish()
 method:

override fun finish() {

 val data = Intent()

 data.putExtra("returnString1", "Message to parent activity")

 setResult(RESULT_OK, data)

 super.finish()

}

In order to obtain and extract the returned data, the parent activity must implement the onActivityResult()
 method
 , for example:

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent) {

 if ((requestCode == request_code) &&

 (resultCode == RESULT_OK)) {

 if (data.hasExtra("returnString1")) {

 val returnString = data.extras.getString("returnString1")

 }

 }

}

Note that the above method checks the returned request code value to make sure that it matches that passed through to the startActivityForResult()
 method. When starting multiple sub-activities it is especially important to use the request code to track which activity is currently returning results, since all will call the same onActivityResult()
 method on exit.

59.4

 Implicit Intent
 s

Unlike explicit intents, which reference the class name of the activity to be launched, implicit intents identify the activity to be launched by specifying the action to be performed and the type of data to be handled by the receiving activity. For example, an action type of ACTION_VIEW accompanied by the URL of a web page in the form of a URI object will instruct the Android system to search for, and subsequently launch, a web browser capable activity. The following implicit intent will, when executed on an Android device, result in the designated web page appearing in a web browser activity:

val intent = Intent(Intent.ACTION_VIEW,

 Uri.parse("http://www.ebookfrenzy.com"))

startActivity(intent)

When the above implicit intent is issued by an activity, the Android system will search for activities on the device that have registered the ability to handle ACTION_VIEW requests on http
 scheme data using a process referred to as intent resolution

 . In the event that a single match is found, that activity will be launched. If more than one match is found, the user will be prompted to choose from the available activity options.

59.5

 Using Intent Filters

Intent filters are the mechanism by which activities “advertise” supported actions and data handling capabilities to the Android intent resolution process. Continuing the example in the previous section, an activity capable of displaying web pages would include an intent filter section in its manifest file indicating support for the ACTION_VIEW type of intent requests on http scheme data.

It is important to note that both the sending and receiving activities must have requested permission for the type of action to be performed. This is achieved by adding <uses-permission

 >
 tags to the manifest files of both activities. For example, the following manifest lines request permission to access the internet and contacts database:

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.INTERNET"/>

The following AndroidManifest.xml
 file illustrates a configuration for an activity named WebViewActivity
 with intent filters and permissions enabled for internet access:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfreny.WebView"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10" />

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name=".WebViewActivity" >

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="http" />

 </intent-filter>

 </activity>

 </application>

</manifest>

59.6

 Checking Intent Availability

It is generally unwise to assume that an activity will be available for a particular intent, especially since the absence of a matching action will typically result in the application crashing. Fortunately, it is possible to identify the availability of an activity for a specific intent before it is sent to the runtime system. The following method can be used to identify the availability of an activity for a specified intent action type:

fun isIntentAvailable(context: Context, action: String): Boolean {

 val packageManager = context.packageManager

 val intent = Intent(action)

 val list = packageManager.queryIntentActivities(intent,

 PackageManager.MATCH_DEFAULT_ONLY)

 return list.size > 0

}

59.7

 Summary

Intents are the messaging mechanism by which one Android activity can launch another. An explicit intent references a specific activity to be launched by referencing the receiving activity by class name. Explicit intents are typically, though not exclusively, used when launching activities contained within the same application. An implicit intent specifies the action to be performed and the type of data to be handled, and lets the Android runtime find a matching activity to launch. Implicit intents are generally used when launching activities that reside in different applications.

An activity can send data to the receiving activity by bundling data into the intent object in the form of key-value pairs. Data can only be returned from an activity if it is started as a sub-activity
 of the sending activity.

Activities advertise capabilities to the Android intent resolution process through the specification of intent-filters in the application manifest file. Both sending and receiving activities must also request appropriate permissions to perform tasks such as accessing the device contact database or the internet.

Having covered the theory of intents, the next few chapters will work through the creation of some examples in Android Studio that put both explicit and implicit intents into action.

60.

 Android Explicit Intents – A Worked Example

The chapter entitled
“An Overview of Android Intents”

 covered the theory of using intents to launch activities. This chapter will put that theory into practice through the creation of an example application.

The example Android Studio application project created in this chapter will demonstrate the use of an explicit intent to launch an activity, including the transfer of data between sending and receiving activities. The next chapter (
“Android Implicit Intents – A Worked Example”

) will demonstrate the use of implicit intents.

60.1

 Creating the Explicit Intent Example Application

Launch Android Studio and create a new project, entering ExplicitIntent
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the setup screens, requesting the creation of an Empty Activity named ActivityA
 with a corresponding layout named activity_a.

Click Finish
 to create the new project.

60.2

 Designing the User Interface Layout for ActivityA

The user interface for ActivityA will consist of a ConstraintLayout view containing EditText (Plain Text), TextView and Button views named editText1
 , textView1
 and button1
 respectively. Using the Project tool window, locate the activity_a.xml
 resource file for ActivityA (located under app -> res -> layout
) and double-click on it to load it into the Android Studio Layout Editor tool. Select and delete the default “Hello World!” TextView.

For this tutorial, Inference mode will be used to add constraints after the layout has been designed. Begin, therefore, by turning off the Autoconnect feature of the Layout Editor using the toolbar button indicated in Figure 60-1
 :

[image:]

Figure 60-1

Drag a TextView widget from the palette and drop it so that it is centered within the layout and use the Attributes tool window to assign an ID of textView1
 .

Drag a Button object from the palette and position it so that it is centered horizontally and located beneath the bottom edge of the TextView. Change the text property so that it reads “Ask Question” and configure the onClick
 property to call a method named onClick
 .

Next, add a Plain Text object so that it is centered horizontally and positioned above the top edge of the TextView. Using the Attributes tool window, remove the “Name” string assigned to the text property and set the ID to editText1
 . With the layout completed, click on the toolbar Infer constraints
 button to add appropriate constraints:

[image:]

Figure 60-2

Finally, click on the red warning button in the top right-hand corner of the Layout Editor window and use the resulting panel to extract the “Ask Question” string to a resource named ask_question
 .

Once the layout is complete, the user interface should resemble that illustrated in Figure 60-3
 :

[image:]

Figure 60-3

60.3

 Creating the Second Activity Class

When the “Ask Question” button is touched by the user, an intent will be issued requesting that a second activity be launched into which an answer can be entered by the user. The next step, therefore, is to create the second activity. Within the Project tool window, right-click on the com.ebookfrenzy.explicitintent
 package name located in app -> java
 and select the New -> Activity -> Empty Activity
 menu option to display the New Android Activity
 dialog as shown in Figure 60-4
 :

[image:]

Figure 60-4

Enter ActivityB
 into the Activity Name and Title fields and name the layout file activity_b.
 Since this activity will not be started when the application is launched (it will instead be launched via an intent by ActivityA when the button is pressed), it is important to make sure that the Launcher Activity
 option is disabled before clicking on the Finish button.

60.4

 Designing the User Interface Layout for ActivityB

The elements that are required for the user interface of the second activity are a Plain Text EditText, TextView and Button view. With these requirements in mind, load the activity_b.xml
 layout into the Layout Editor tool, turn off Autoconnect mode in the Layout Editor toolbar and add the views.

During the design process, note that the onClick
 property on the button view has been configured to call a method named onClick
 , and the TextView and EditText views have been assigned IDs textView1
 and editText1
 respectively. Once completed, the layout should resemble that illustrated in Figure 60-5
 . Note that the text on the button (which reads “Answer Question”) has been extracted to a string resource named answer_question
 .

With the layout complete, click on the Infer constraints toolbar button to add the necessary constraints to the layout:

[image:]

Figure 60-5

60.5

 Reviewing the Application Manifest File

In order for ActivityA to be able to launch ActivityB using an intent, it is necessary that an entry for ActivityB be present in the AndroidManifest.xml
 file. Locate this file within the Project tool window (app -> manifests
), double-click on it to load it into the editor and verify that Android Studio has automatically added an entry for the activity:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.explicitintent">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".ActivityA">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".ActivityB">

 </activity>

 </application>

</manifest>

With the second activity created and listed in the manifest file, it is now time to write some code in the ActivityA class to issue the intent.

60.6

 Creating the Intent

The objective for ActivityA is to create and start an intent when the user touches the “Ask Question” button. As part of the intent creation process, the question string entered by the user into the EditText view will be added to the intent object as a key-value pair. When the user interface layout was created for ActivityA, the button object was configured to call a method named onClick()
 when “clicked” by the user. This method now needs to be added to the ActivityA class ActivityA.
 kt
 source file as follows:

package com.ebookfrenzy.explicitintent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import android.content.Intent

import kotlinx.android.synthetic.main.activity_a.*

class ActivityA : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_a)

 }

 fun onClick(view: View) {

 val i = Intent(this, ActivityB::class.java)

 val myString = editText1.text.toString()

 i.putExtra("qString", myString)

 startActivity(i)

 }

}

The code for the onClick()
 method follows the techniques outlined in
“An Overview of Android Intents”

 . First, a new Intent instance is created, passing through the current activity and the class name of ActivityB as arguments. Next, the text entered into the EditText object is added to the intent object as a key-value pair and the intent started via a call to startActivity()
 , passing through the intent object as an argument.

Compile and run the application and touch the “Ask Question” button to launch ActivityB and the back button (located in the toolbar along the bottom of the display) to return to ActivityA.

60.7

 Extracting Intent Data

Now that ActivityB is being launched from ActivityA, the next step is to extract the String data value included in the intent and assign it to the TextView object in the ActivityB user interface. This involves adding some code to the onCreate()
 method of ActivityB in the ActivityB.
 kt
 source file:

package com.ebookfrenzy.explicitintent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import android.content.Intent

import kotlinx.android.synthetic.main.activity_b.*

class ActivityB : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_b)

 val extras = intent.extras ?: return

 val qString = extras.getString("qString")

 textView1.text = qString

 }

}

Compile and run the application either within an emulator or on a physical Android device. Enter a question into the text box in ActivityA before touching the “Ask Question” button. The question should now appear on the TextView component in the ActivityB user interface.

60.8

 Launching ActivityB as a Sub-Activity

In order for ActivityB to be able to return data to ActivityA, ActivityB must be started as a sub-activity
 of ActivityA. This means that the call to startActivity()
 in the ActivityA onClick()
 method needs to be replaced with a call to startActivityForResult()
 .
 Unlike the startActivity()
 method, which takes only the intent object as an argument, startActivityForResult()
 requires that a request code also be passed through. The request code can be any number value and is used to identify which sub-activity is associated with which set of return data. For the purposes of this example, a request code of 5 will be used, giving us a modified ActivityA class that reads as follows:

package com.ebookfrenzy.explicitintent

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity_a.*

class ActivityA : AppCompatActivity() {

 private val request_code = 5

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_a)

 }

 fun onClick(view: View) {

 val i = Intent(this, ActivityB::class.java)

 val myString = editText.text.toString()

 i.putExtra("qString", myString)

 startActivityForResult(i, request_code)

 }

}

When the sub-activity exits, the onActivityResult()
 method
 of the parent activity is called and passed as arguments the request code associated with the intent, a result code indicating the success or otherwise of the sub-activity and an intent object containing any data returned by the sub-activity. Remaining within the ActivityA class source file, implement this method as follows:

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

 super.onActivityResult(requestCode, resultCode, data)

 if ((requestCode == request_code) &&

 (resultCode == RESULT_OK)) {

 data?.let {

 if (it.hasExtra("returnData")) {

 val returnString = it.extras?.getString("returnData")

 textView1.text = returnString

 }

 }

 }

}

The code in the above method begins by checking that the request code matches the one used when the intent was issued and ensuring that the activity was successful. The return data is then extracted from the intent and displayed on the TextView object.

60.9

 Returning Data from a Sub-Activity

ActivityB is now launched as a sub-activity of ActivityA, which has, in turn, been modified to handle data returned from ActivityB. All that remains is to modify ActivityB.
 kt
 to implement the finish()
 method and to add code for the onClick()
 method, which is called when the “Answer Question” button is touched. The finish()
 method is triggered when an activity exits (for example when the user selects the back button on the device):

fun onClick(view: View) {

 finish()

}

override fun finish() {

 val data = Intent()

 val returnString = editText1.text.toString()

 data.putExtra("returnData", returnString)

 setResult(RESULT_OK, data)

 super.finish()

}

All that the finish()
 method needs to do is create a new intent, add the return data as a key-value pair and then call the setResult()
 method, passing through a result code and the intent object. The onClick()
 method simply calls the finish()
 method.

60.10

 Testing the Application

Compile and run the application, enter a question into the text field on ActivityA and touch the “Ask Question” button. When ActivityB appears, enter the answer to the question and use either the back button or the “Submit Answer” button to return to ActivityA where the answer should appear in the text view object.

60.11

 Summary

Having covered the basics of intents in the previous chapter, the goal of this chapter was to work through the creation of an application project in Android Studio designed to demonstrate the use of explicit intents together with the concepts of data transfer between a parent activity and sub-activity.

The next chapter will work through an example designed to demonstrate implicit intents in action.

61.

 Android Implicit Intents
 – A Worked Example

In this chapter, an example application will be created in Android Studio designed to demonstrate a practical implementation of implicit intents. The goal will be to create and send an intent requesting that the content of a particular web page be loaded and displayed to the user. Since the example application itself will not contain an activity capable of performing this task, an implicit intent will be issued so that the Android intent resolution algorithm can be engaged to identify and launch a suitable activity from another application. This is most likely to be an activity from the Chrome web browser bundled with the Android operating system.

Having successfully launched the built-in browser, a new project will be created that also contains an activity capable of displaying web pages. This will be installed onto the device or emulator and used to demonstrate what happens when two activities match the criteria for an implicit intent.

61.1

 Creating the Android Studio Implicit Intent Example Project

Launch Android Studio and create a new project, entering ImplicitIntent
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK to API 26: Android 8.0 (Oreo). Proceed through the screens, requesting the creation of an Empty Activity named ImplicitIntentActivity
 with a corresponding layout resource file named activity_implicit_intent.

Click Finish
 to create the new project.

61.2

 Designing the User Interface

The user interface for the ImplicitIntentActivity
 class is very simple, consisting solely of a ConstraintLayout and a Button object. Within the Project tool window, locate the app -> res -> layout -> activity_implicit_intent.xml
 file and double-click on it to load it into the Layout Editor tool.

Delete the default TextView and, with Autoconnect mode enabled, position a Button widget so that it is centered within the layout. Note that the text on the button (“Show Web Page”) has been extracted to a string resource named show_web_page
 .

[image:]

Figure 61-1

With the Button selected use the Attributes tool window to configure the onClick
 property to call a method named showWebPage()
 .

61.3

 Creating the Implicit Intent

As outlined above, the implicit intent will be created and issued from within a method named showWebPage()
 which, in turn, needs to be implemented in the ImplicitIntentActivity
 class, the code for which resides in the ImplicitIntentActivity.
 kt
 source file. Locate this file in the Project tool window and double-click on it to load it into an editing pane. Once loaded, modify the code to add the showWebPage()
 method together with a few requisite imports:

package com.ebookfrenzy.implicitintent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

import android.net.Uri

class ImplicitIntentActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_implicit_intent)

 }

 fun showWebPage(view: View) {

 val intent = Intent(Intent.ACTION_VIEW,

 Uri.parse("https://www.ebookfrenzy.com"))

 startActivity(intent)

 }

}

The tasks performed by this method are actually very simple. First, a new intent object is created. Instead of specifying the class name of the intent, however, the code simply indicates the nature of the intent (to display something to the user) using the ACTION_VIEW option. The intent object also includes a URI containing the URL to be displayed. This indicates to the Android intent resolution system that the activity is requesting that a web page be displayed. The intent is then issued via a call to the startActivity()
 method.

Compile and run the application on either an emulator or a physical Android device and, once running, touch the Show Web Page
 button. When touched, a web browser view should appear and load the web page designated by the URL. A successful implicit intent has now been executed.

61.4

 Adding a Second Matching Activity

The remainder of this chapter will be used to demonstrate the effect of the presence of more than one activity installed on the device matching the requirements for an implicit intent. To achieve this, a second application will be created and installed on the device or emulator. Begin, therefore, by creating a new project within Android Studio with the application name set to MyWebView
 , using the same SDK configuration options used when creating the ImplicitIntent project earlier in this chapter. Select an Empty Activity and, when prompted, name the activity MyWebViewActivity
 and the layout and resource file activity_my_web_view
 .

61.5

 Adding the Web View to the UI

The user interface for the sole activity contained within the new MyWebView
 project is going to consist of an instance of the Android WebView widget
 . Within the Project tool window, locate the activity_my_web_view.xml
 file, which contains the user interface description for the activity, and double-click on it to load it into the Layout Editor tool.

With the Layout Editor tool in Design mode, select the default TextView widget and remove it from the layout by using the keyboard delete key.

Drag and drop a WebView object from the Widgets
 section of the palette onto the existing ConstraintLayout view as illustrated in Figure 61-2
 :

[image:]

Figure 61-2

Before continuing, change the ID of the WebView instance to webView1
 .

61.6

 Obtaining the Intent URL

When the implicit intent object is created to display a web browser window, the URL of the web page to be displayed will be bundled into the intent object within a Uri object. The task of the onCreate()
 method within the MyWebViewActivity
 class is to extract this Uri from the intent object, convert it into a URL string and assign it to the WebView object. To implement this functionality, modify the MyWebViewActivity.
 kt
 file so that it reads as follows:

package com.ebookfrenzy.mywebview

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_my_web_view.*

import java.net.URL

class MyWebViewActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_my_web_view)

 handleIntent()

 }

 private fun handleIntent() {

 val intent = this.intent

 val data = intent.data

 var url: URL? = null

 try {

 url = URL(data?.scheme,

 data?.host,

 data?.path)

 } catch (e: Exception) {

 e.printStackTrace()

 }

 webView1.loadUrl(url?.toString())

 }

}

The new code added to the onCreate()
 method performs the following tasks:

•
 Obtains a reference to the intent which caused this activity to be launched

•
 Extracts the Uri data from the intent object

•
 Converts the Uri data to a URL object

•
 Loads the URL into the web view, converting the URL to a String in the process

The coding part of the MyWebView project is now complete. All that remains is to modify the manifest file.

61.7

 Modifying the MyWebView Project Manifest File

There are a number of changes that must be made to the MyWebView manifest file before it can be tested. In the first instance, the activity will need to seek permission to access the internet (since it will be required to load a web page). This is achieved by adding the appropriate permission line to the manifest file:

<uses-permission android:name="android.permission.INTERNET" />

Further, a review of the contents of the intent filter section of the AndroidManifest.xml
 file for the MyWebView project will reveal the following settings:

<intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

In the above XML, the android.intent.action.MAIN

 entry indicates that this activity is the point of entry for the application when it is launched without any data input. The android.intent.category.LAUNCHER

 directive, on the other hand, indicates that the activity should be listed within the application launcher screen of the device.

Since the activity is not required to be launched as the entry point to an application, cannot be run without data input (in this case a URL) and is not required to appear in the launcher, neither the MAIN nor LAUNCHER directives are required in the manifest file for this activity.

The intent filter for the MyWebViewActivity
 activity does, however, need to be modified to indicate that it is capable of handling ACTION_VIEW
 intent actions for http data schemes.

Android also requires that any activities capable of handling implicit intents that do not include MAIN and LAUNCHER entries, also include the so-called browsable
 and default
 categories in the intent filter. The modified intent filter section should therefore read as follows:

<intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.BROWSABLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="http" />

</intent-filter>

Bringing these requirements together results in the following complete AndroidManifest.xml
 file:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.mywebview" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MyWebViewActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.VIEW
 " />

 <category

 android:name="android.intent.category.BROWSABLE
 " />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="https" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Load the AndroidManifest.xml
 file into the manifest editor by double-clicking on the file name in the Project tool window. Once loaded, modify the XML to match the above changes.

Having made the appropriate modifications to the manifest file, the new activity is ready to be installed on the device.

61.8

 Installing the MyWebView Package on a Device

Before the MyWebViewActivity can be used as the recipient of an implicit intent, it must first be installed onto the device. This is achieved by running the application in the normal manner. Because the manifest file contains neither the android.intent.action.MAIN
 nor the android.intent.category.LAUNCHER
 settings, Android Studio needs to be instructed to install, but not launch, the app. To configure this behavior, select the app -> Edit configurations…
 menu from the toolbar as illustrated in Figure 61-3

 :

[image:]

Figure 61-3

Within the Run/Debug Configurations dialog, change the Launch option located in the Launch Options
 section of the panel to Nothing
 and click on Apply followed by OK:

[image:]

Figure 61-4

With this setting configured run the app as usual. Note that the app is installed on the device, but not launched.

61.9

 Testing the Application

In order to test MyWebView, simply re-launch the ImplicitIntent
 application created earlier in this chapter and touch the Show Web Page
 button. This time, however, the intent resolution process will find two activities with intent filters matching the implicit intent. As such, the system will display a dialog (Figure 61-5
) providing the user with the choice of activity to launch.

 [image:]

Figure 61-5

Selecting the MyWebView
 option followed by the Just once
 button should cause the intent to be handled by our new MyWebViewActivity
 , which will subsequently appear and display the designated web page.

If the web page loads into the Chrome browser without the above selection dialog appearing, it may be that Chrome has been configured as the default browser on the device. This can be changed by going to Settings -> Apps & notifications
 on the device followed by
 App info
 . Scroll down the list of apps and select Chrome
 . On the Chrome app info screen, tap the Open by default
 option followed by the Clear Defaults
 button.

61.10

 Summary

Implicit intents provide a mechanism by which one activity can request the service of another, simply by specifying an action type and, optionally, the data on which that action is to be performed. In order to be eligible as a target candidate for an implicit intent, however, an activity must be configured to extract the appropriate data from the inbound intent object and be included in a correctly configured manifest file, including appropriate permissions and intent filters. When more than one matching activity for an implicit intent is found during an intent resolution search, the user is prompted to make a choice as to which to use.

Within this chapter an example was created to demonstrate both the issuing of an implicit intent, and the creation of an example activity capable of handling such an intent.

62.

 Android Broadcast Intents
 and Broadcast Receiver
 s

In addition to providing a mechanism for launching application activities, intents are also used as a way to broadcast system wide messages to other components on the system. This involves the implementation of Broadcast Intents and Broadcast Receivers, both of which are the topic of this chapter.

62.1

 An Overview of Broadcast Intent
 s

Broadcast intents are Intent objects that are broadcast via a call to the sendBroadcast(

)
 , sendStickyBroadcast()

 or sendOrderedBroadcast()
 methods
 of the Activity class (the latter being used when results are required from the broadcast). In addition to providing a messaging and event system between application components, broadcast intents are also used by the Android system to notify interested applications about key system events (such as the external power supply or headphones being connected or disconnected).

When a broadcast intent is created, it must include an action string
 in addition to optional data and a category string. As with standard intents, data is added to a broadcast intent using key-value pairs in conjunction with the putExtra()
 method
 of the intent object. The optional category string may be assigned to a broadcast intent via a call to the addCategory()
 method
 .

The action string, which identifies the broadcast event, must be unique and typically uses the application’s package name syntax. For example, the following code fragment creates and sends a broadcast intent including a unique action string and data:

val intent = Intent()

intent.action = "com.example.Broadcast"

intent.putExtra("MyData", 1000)

sendBroadcast(intent)

The above code would successfully launch the corresponding broadcast receiver on a device running an Android version earlier than 3.0. On more recent versions of Android, however, the intent would not be received by the broadcast receiver. This is because Android 3.0 introduced a launch control security measure that prevents components of stopped
 applications from being launched via an intent. An application is considered to be in a stopped state if the application has either just been installed and not previously launched, or been manually stopped by the user using the application manager on the device. To get around this, however, a flag can be added to the intent before it is sent to indicate that the intent is to be allowed to start a component of a stopped application. This flag is FLAG_INCLUDE_STOPPED_PACKAGES
 and would be used as outlined in the following adaptation of the previous code fragment:

val intent = Intent()

intent.action = "com.example.Broadcast"

intent.putExtra("MyData", 1000)

intent.flags = Intent.FLAG_INCLUDE_STOPPED_PACKAGES

sendBroadcast(intent)

62.2

 An Overview of Broadcast Receivers

An application listens for specific broadcast intents by registering a broadcast receiver
 . Broadcast receivers are implemented by extending the Android BroadcastReceiver class
 and overriding the onReceive()
 method
 . The broadcast receiver may then be registered, either within code (for example within an activity), or within a manifest file. Part of the registration implementation involves the creation of intent filters to indicate the specific broadcast intents the receiver is required to listen for. This is achieved by referencing the action string
 of the broadcast intent. When a matching broadcast is detected, the onReceive()
 method of the broadcast receiver is called, at which point the method has 5 seconds within which to perform any necessary tasks before returning. It is important to note that a broadcast receiver does not need to be running all the time. In the event that a matching intent is detected, the Android runtime system will automatically start up the broadcast receiver before calling the onReceive()
 method.

The following code outlines a template Broadcast Receiver subclass:

package com.ebookfrenzy.sendbroadcast

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

class MyReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {

 // TODO: This method is called when the BroadcastReceiver is receiving

 // an Intent broadcast.

 throw UnsupportedOperationException("Not yet implemented")

 }

}

When registering a broadcast receiver within a manifest file, a <receiver>

 entry must be added for the receiver.

The following example manifest file registers the above example broadcast receiver:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.broadcastdetector.broadcastdetector"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="17" />

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <receiver android:name="MyReceiver" >

 </receiver>

 </application>

</manifest>

When running on versions of Android older than Android 8.0, the intent filters associated with a receiver can be placed within the receiver element of the manifest file as follows:

<receiver android:name="MyReceiver" >

 <intent-filter>

 <action android:name="com.example.Broadcast" >

 </action>

 </intent-filter>

</receiver>

On Android 8.0 or later, the receiver must be registered in code using the registerReceiver()
 method of the Activity class together with an appropriately configured IntentFilter object:

val filter = IntentFilter()

filter.addAction("com.example.Broadcast")

val receiver: MyReceiver = MyReceiver()

registerReceiver(receiver, filter)

When a broadcast receiver registered in code is no longer required, it may be unregistered via a call to the unregisterReceiver()
 method
 of the activity class, passing through a reference to the receiver object as an argument. For example, the following code will unregister the above broadcast receiver:

unregisterReceiver(receiver)

It is important to keep in mind that some system broadcast intents can only be detected by a broadcast receiver if it is registered in code rather than in the manifest file. Check the Android Intent class documentation for a detailed overview of the system broadcast intents and corresponding requirements online at:

https://developer.android.com/reference/android/content/Intent.html

62.3

 Obtaining Results from a Broadcast

When a broadcast intent is sent using the sendBroadcast()

 method, there is no way for the initiating activity to receive results from any broadcast receivers that pick up the broadcast. In the event that return results are required, it is necessary to use the sendOrderedBroadcast()

 method instead. When a broadcast intent is sent using this method, it is delivered in sequential order to each broadcast receiver with a registered interest.

The sendOrderedBroadcast()

 method is called with a number of arguments including a reference to another broadcast receiver (known as the result receiver

) which is to be notified when all other broadcast receivers have handled the intent, together with a set of data references into which those receivers can place result data. When all broadcast receivers have been given the opportunity to handle the broadcast, the onReceive()

 method of the result receiver
 is called and passed the result data.

62.4

 Sticky Broadcast Intents

By default, broadcast intents disappear once they have been sent and handled by any interested broadcast receivers. A broadcast intent can, however, be defined as being “sticky”. A sticky intent, and the data contained therein, remains present in the system after it has completed. The data stored within a sticky broadcast intent can be obtained via the return value of a call to the registerReceiver()
 method
 , using the usual arguments (references to the broadcast receiver and intent filter object). Many of the Android system broadcasts are sticky, a prime example being those broadcasts relating to battery level status.

A sticky broadcast may be removed at any time via a call to the removeStickyBroadcast()
 method, passing through as an argument a reference to the broadcast intent to be removed.

62.5

 The Broadcast Intent
 Example

The remainder of this chapter will work through the creation of an Android Studio based example of broadcast intents in action. In the first instance, a simple application will be created for the purpose of issuing a custom broadcast intent. A corresponding broadcast receiver will then be created that will display a message on the display of the Android device when the broadcast is detected. Finally, the broadcast receiver will be modified to detect notification by the system that external power has been disconnected from the device.

62.6

 Creating the Example Application

Launch Android Studio and create a new project, entering SendBroadcast
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named SendBroadcastActivity
 with a corresponding layout resource file named activity_send_broadcast.

Once the new project has been created, locate and load the activity_send_broadcast.xml
 layout file located in the Project tool window under app -> res -> layout
 and, with the Layout Editor tool in Design mode, replace the TextView object with a Button view and set the text property so that it reads “Send Broadcast”. Once the text value has been set, follow the usual steps to extract the string to a resource named send_broadcast
 .

With the button still selected in the layout, locate the onClick
 property in the Attributes panel and configure it to call a method named broadcastIntent.

62.7

 Creating and Sending the Broadcast Intent

Having created the framework for the SendBroadcast
 application, it is now time to implement the code to send the broadcast intent. This involves implementing the broadcastIntent()
 method specified previously as the onClick
 target of the Button view in the user interface. Locate and double-click on the SendBroadcastActivity.
 kt
 file and modify it to add the code to create and send the broadcast intent. Once modified, the source code for this class should read as follows:

package com.ebookfrenzy.sendbroadcast

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

class SendBroadcastActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_send_broadcast)

 }

 fun broadcastIntent(view: View) {

 val intent = Intent()

 intent.action = "com.ebookfrenzy.sendbroadcast"

 intent.flags = Intent.FLAG_INCLUDE_STOPPED_PACKAGES

 sendBroadcast(intent)

 }

}

Note that in this instance the action string for the intent is com.ebookfrenzy.sendbroadcast
 . When the broadcast receiver class is created in later sections of this chapter, it is essential that the intent filter declaration match this action string.

This concludes the creation of the application to send the broadcast intent. All that remains is to build a matching broadcast receiver.

62.8

 Creating the Broadcast Receiver

In order to create the broadcast receiver, a new class needs to be created which subclasses the BroadcastReceiver superclass
 . Within the Project tool window, navigate to app -> java
 and right-click on the package name. From the resulting menu, select the New -> Other -> Broadcast Receiver
 menu option, name the class MyReceiver
 and make sure the Exported
 and Enabled
 options are selected. These settings allow the Android system to launch the receiver when needed and ensure that the class can receive messages sent by other applications on the device. With the class configured, click on Finish
 .

Once created, Android Studio will automatically load the new MyReceiver.
 kt
 class file into the editor where it should read as follows:

package com.ebookfrenzy.sendbraodcast

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

class MyReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {

 // This method is called when the BroadcastReceiver is receiving an Intent broadcast.

 TODO("MyReceiver.onReceive() is not implemented")

 }

}

As can be seen in the code, Android Studio has generated a template for the new class and generated a stub for the onReceive()
 method
 . A number of changes now need to be made to the class to implement the required behavior. Remaining in the MyReceiver.
 kt
 file, therefore, modify the code so that it reads as follows:

package com.ebookfrenzy.sendbroadcast

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

import android.widget.Toast

class MyReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {

 // TODO: This method is called when the BroadcastReceiver is receiving

 // an Intent broadcast.

 throw UnsupportedOperationException("Not yet implemented")

 Toast.makeText(context, "Broadcast Intent Detected.",

 Toast.LENGTH_LONG).show()

 }

}

The code for the broadcast receiver is now complete.

62.9

 Registering the Broadcast Receiver

The project needs to publicize the presence of the broadcast receiver and must include an intent filter to specify the broadcast intents in which the receiver is interested. When the BroadcastReceiver class was created in the previous section, Android Studio automatically added a <receiver> element to the manifest file. All that remains, therefore, is to add code within the SendBroadcastActivity.
 kt
 file to create an intent filter and to register the receiver:

package com.ebookfrenzy.sendbroadcast

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

import android.content.IntentFilter

import android.content.BroadcastReceiver

class SendBroadcastActivity : AppCompatActivity() {

 var receiver: BroadcastReceiver? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_send_broadcast)

 configureReceiver()

 }

 private fun configureReceiver() {

 val filter = IntentFilter()

 filter.addAction("com.ebookfrenzy.sendbroadcast")

 receiver = MyReceiver()

 registerReceiver(receiver, filter)

 }

.

.

}

It is also important to unregister the broadcast receiver when it is no longer needed:

override fun onDestroy() {

 super.onDestroy()

 unregisterReceiver(receiver)

}

62.10

 Testing the Broadcast Example

In order to test the broadcast sender and receiver, run the SendBroadcast app on a device or AVD and wait for it to appear on the display. Once running, touch the button, at which point the toast message reading “Broadcast Intent Detected.” should pop up for a few seconds before fading away.

62.11

 Listening for System Broadcasts

The final stage of this example is to modify the intent filter for the broadcast receiver to listen also for the system intent that is broadcast when external power is disconnected from the device. That action is android.intent.action

 .ACTION_POWER_DISCONNECTED
 . Modify the onCreate()
 method in the SendBroadcastActivity.
 kt
 file to add this additional filter:

private fun configureReceiver() {

 val filter = IntentFilter()

 filter.addAction("com.ebookfrenzy.sendbroadcast")

 filter.addAction("android.intent.action.ACTION_POWER_DISCONNECTED")

 receiver = MyReceiver()

 registerReceiver(receiver, filter)

}

Since the onReceive()
 method is now going to be listening for two types of broadcast intent, it is worthwhile to modify the code so that the action string of the current intent is also displayed in the toast message. This string can be obtained via a call to the getAction()
 method
 of the intent object passed as an argument to the onReceive()
 method:

override fun onReceive(context: Context, intent: Intent) {

 val message = "Broadcast intent detected " + intent.action

 Toast.makeText(context, message
 ,

 Toast.LENGTH_LONG).show()

}

Test the receiver by re-installing the modified BroadcastReceiver
 package. Touching the button in the SendBroadcast
 application should now result in a new message containing the custom action string:

Broadcast intent detected com.ebookfrenzy.sendbroadcast

Next, remove the USB connector that is currently supplying power to the Android device, at which point the receiver should report the following in the toast message. If the app is running on an emulator, display the extended controls, select the Battery
 option and change the Charger connection
 setting to None
 .

Broadcast intent detected android.intent.action.ACTION_POWER_DISCONNECTED

To avoid this message appearing every time the device is disconnected from a power supply launch the Settings app on the device and select the Apps & notifications
 option. Select the BroadcastReceiver app from the resulting list and tap the Uninstall
 button.

62.12

 Summary

Broadcast intents are a mechanism by which an intent can be issued for consumption by multiple components on an Android system. Broadcasts are detected by registering a Broadcast Receiver which, in turn, is configured to listen for intents that match particular action strings. In general, broadcast receivers remain dormant until woken up by the system when a matching intent is detected. Broadcast intents are also used by the Android system to issue notifications of events such as a low battery warning or the connection or disconnection of external power to the device.

In addition to providing an overview of Broadcast intents and receivers, this chapter has also worked through an example of sending broadcast intents and the implementation of a broadcast receiver to listen for both custom and system broadcast intents.

63.

 A Basic Overview of Threads and AsyncTask

 s

The next chapter will be the first in a series of chapters intended to introduce the use of Android Services to perform application tasks in the background. It is impossible, however, to understand the steps involved in implementing services without first gaining a basic understanding of the concept of threading in Android applications. Threads and the AsyncTask class are, therefore, the topic of this chapter.

63.1

 An Overview of Threads

Threads are the cornerstone of any multitasking operating system and can be thought of as mini-processes running within a main process, the purpose of which is to enable at least the appearance of parallel execution paths within applications.

63.2

 The Application Main Thread

When an Android application is first started, the runtime system creates a single thread in which all application components will run by default. This thread is generally referred to as the main thread
 . The primary role of the main thread is to handle the user interface in terms of event handling and interaction with views in the user interface. Any additional components that are started within the application will, by default, also run on the main thread.

Any component within an application that performs a time consuming task using the main thread will cause the entire application to appear to lock up until the task is completed. This will typically result in the operating system displaying an “Application is not responding” warning to the user. Clearly, this is far from the desired behavior for any application. This can be avoided simply by launching the task to be performed in a separate thread, allowing the main thread to continue unhindered with other tasks.

63.3

 Thread Handlers

Clearly, one of the key rules of Android development is to never perform time-consuming operations on the main thread of an application. The second, equally important, rule is that the code within a separate thread must never, under any circumstances, directly update any aspect of the user interface. Any changes to the user interface must always be performed from within the main thread. The reason for this is that the Android UI toolkit is not thread-safe
 . Attempts to work with non-thread-safe code
 from within multiple threads will typically result in intermittent problems and unpredictable application behavior.

If a time consuming task needs to run in a background thread and also update the user interface the best approach is to implement an asynchronous task by subclassing the AsyncTask class.

63.4

 A Basic AsyncTask
 Example

The remainder of this chapter will work through some simple examples intended to provide a basic introduction to threads and the use of the AsyncTask class. The first step will be to highlight the importance of performing time-consuming tasks in a separate thread from the main thread. Begin, therefore, by creating a new project in Android Studio, entering AsyncDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the remaining screens, requesting the creation of an Empty Activity named AsyncDemoActivity
 , using the default for the layout resource files.

Click Finish
 to create the new project.

Load the activity_async_demo.xml
 file for the project into the Layout Editor tool. Select the default TextView component and change the ID for the view to myTextView
 in the Attributes tool window.

With autoconnect mode disabled, add a Button view to the user interface, positioned directly beneath the existing TextView object as illustrated in Figure 63-1
 . Once the button has been added, click on the Infer Constraints button in the toolbar to add the missing constraints.

Change the text to “Press Me” and extract the string to a resource named press_me.
 With the button view still selected in the layout locate the onClick
 property and enter buttonClick
 as the method na
 me.

[image:]

Figure 63-1

Next, load the AsyncDemoActivity.
 kt
 file into an editing panel and add code to implement the buttonClick()
 method which will be called when the Button view is touched by the user. Since the goal here is to demonstrate the problem of performing lengthy tasks on the main thread, the code will simply pause for 20 seconds before displaying different text on the TextView object:

package com.ebookfrenzy.asyncdemo

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity_async_demo.*

class AsyncDemoActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_async_demo)

 }

 fun buttonClick(view: View) {

 var i = 0

 while (i <= 20) {

 try {

 Thread.sleep(1000)

 i++

 } catch (e: Exception) {

 }

 }

 myTextView.text = "Button Pressed"

 }

}

With the code changes complete, run the application on either a physical device or an emulator. Once the application is running, touch the Button, at which point the application will appear to freeze. It will, for example, not be possible to touch the button a second time and in some situations the operating system will, as demonstrated in Figure 63-2
 , report the application as being unresponsi
 ve:

[image:]

Figure 63-2

Clearly, anything that is going to take time to complete within the buttonClick()
 method needs to be performed within a separate thread.

63.5

 Subclassing AsyncTask

In order to create a new thread, the code to be executed in that thread needs to be performed within an AsyncTask instance. The first step is to subclass AsyncTask in the AsyncDemoActivity.
 kt
 file as follows:

package com.ebookfrenzy.asyncdemo

.

.

import android.os.AsyncTask

.

.

class AsyncDemoActivity : AppCompatActivity() {

 private inner class MyTask : AsyncTask<String, Void, String>() {

 override fun onPreExecute() {

 }

 override fun doInBackground(vararg params: String): String {

 }

 override fun onProgressUpdate(vararg values: Int?) {

 }

 override fun onPostExecute(result: String) {

 }

 }

.

.

}

The AsyncTask
 class uses three different types which are declared in the class signature line as follows:

private inner class MyTask : AsyncTask<Type 1
 , Type 2
 , Type 3
 >() {

.

.

 These three types correspond to the argument types for the doInBackground()
 , onProgressUpdate()
 and onPostExecute()
 methods respectively. If a method does not expect an argument then Void is used, as is the case for the onProgressUpdate()
 in the above code. To change the argument type for a method, change the type declaration both in the class declaration and in the method signature. For this example, the onProgressUpdate()
 method will be passed an Integer, so modify the class declaration as follows:

private inner class MyTask : AsyncTask<String, Int
 , String>() {

.

.

 override fun onProgressUpdate(vararg values: Int?) {

 }

.

.

The onPreExecute()
 is called before the background tasks are initiated and can be used to perform initialization steps. This method runs on the main thread so may be used to update the user interface.

 The code to be performed in the background on a different thread from the main thread resides in the doInBackground()
 method. This method does not have access to the main thread so cannot make user interface changes. The onProgressUpdate()
 method, however, is called each time a call is made to the publishProgress()
 method from within the doInBackground()
 method and can be used to update the user interface with progress information.

The onPostExecute()
 method is called when the tasks performed within the doInBackground()
 method complete. This method is passed the value returned by the doInBackground()
 method and runs within the main thread allowing user interface updates to be made.

Modify the code to move the timer code from the buttonClick()
 method to the doInBackground()
 method as follows:

override fun doInBackground(vararg params: String): String {

 var i = 0

 while (i <= 20) {

 try {

 Thread.sleep(1000)

 i++

 }

 catch (e: Exception) {

 return(e.localizedMessage)

 }

 }

 return "Button Pressed"

}

Next, move the TextView update code to the onPostExecute()
 method where it will display the text returned by the doInBackground()
 method:

override fun onPostExecute(result: String) {

 myTextView.text = result

}

To provide regular updates via the onProgressUpdate()
 method, modify the class to add a call to the publishProgress()
 method in the timer loop code (passing through the current loop counter) and to display the current count value in the onProgressUpdate()
 method:

override fun doInBackground(vararg params: String): String {

 var i = 0

 while (i <= 20) {

 try {

 Thread.sleep(1000)

 publishProgress(i)

 i++

 }

 catch (e: Exception) {

 return(e.localizedMessage)

 }

 }

 return "Button Pressed"

}

override fun onProgressUpdate(vararg values: Int?) {

 super.onProgressUpdate(*values)

 val counter = values.get(0)

 myTextView.text = "Counter = $counter"

}

Finally, modify the buttonClicked()
 method to begin the asynchronous task execution:

fun buttonClick(view: View) {

 val task = MyTask().execute()

}

By default, asynchronous tasks are performed serially. In other words, if an app executes more than one task, only the first task begins execution. The remaining tasks are placed in a queue and executed in sequence as each one finishes. To execute asynchronous tasks in parallel, those tasks must be executed using the AsyncTask
 thread pool executor
 as follows:

val task = MyTask().executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)

The number of tasks that can be executed in parallel using this approach is limited by the core pool size on the device which, in turn, is dictated by the number of CPU cores available. The number of CPU cores available on a device can be identified from within an app using the following code:

val cpu_cores = Runtime.getRuntime().availableProcessors()

Android uses an algorithm to calculate the default number of pool threads. The minimum number of threads is 2 while the maximum default value is equal to either 4, or the CPU core count minus 1 (whichever is smallest). The maximum possible number of threads available to the pool on any device is calculated by doubling the CPU core count and adding one.

63.6

 Testing the App

When the application is now run, touching the button causes the delay to be performed in a new thread leaving the main thread to continue handling the user interface, including responding to additional button presses. During the delay, the user interface will be updated every second showing the counter value. On completion of the timeout, the TextView will display the “Button Pressed” message.

63.7

 Canceling a Task

A running task may be canceled by calling the cancel()
 method of the task object passing through a Boolean value indicating whether the task can be interrupted before the in-progress task completes:

val task = MyTask().execute()

.

.

task.cancel()

63.8

 Summary

This chapter has provided an overview of threading within Android applications. When an application is first launched in a process, the runtime system creates a main thread
 in which all subsequently launched application components run by default. The primary role of the main thread is to handle the user interface, so any time consuming tasks performed in that thread will give the appearance that the application has locked up. It is essential, therefore, that tasks likely to take time to complete be started in a separate thread.

Because the Android user interface toolkit is not thread-safe, changes to the user interface should not be made in any thread other than the main thread. Background tasks may be performed in a separate thread by subclassing the AsyncTask class and implementing the class methods to perform the task and update the user interface.

64.

 An Overview of Android Started
 and Bound Services

The Android Service class is designed specifically to allow applications to initiate and perform background tasks. Unlike broadcast receivers, which are intended to perform a task quickly and then exit, services are designed to perform tasks that take a long time to complete (such as downloading a file over an internet connection or streaming music to the user) but do not require a user interface.

In this chapter, an overview of the different types of services available will be covered, including started services
 , bound services
 and intent services
 . Once these basics have been covered, subsequent chapters will work through a number of examples of services in action.

64.1

 Started Service
 s

Started services
 are launched by other application components (such as an activity or even a broadcast receiver) and potentially run indefinitely in the background until the service is stopped, or is destroyed by the Android runtime system in order to free up resources. A service will continue to run if the application that started it is no longer in the foreground, and even in the event that the component that originally started the service is destroyed.

By default, a service will run within the same main thread as the application process from which it was launched (referred to as a local service
). It is important, therefore, that any CPU intensive tasks be performed in a new thread within the service. Instructing a service to run within a separate process (and therefore known as a remote service
) requires a configuration change within the manifest file.

Unless a service is specifically configured to be private (once again via a setting in the manifest file), that service can be started by other components on the same Android device. This is achieved using the Intent mechanism in the same way that one activity can launch another, as outlined in preceding chapters.

Started services are launched via a call to the startService()
 method
 , passing through as an argument an Intent object identifying the service to be started. When a started service has completed its tasks, it should stop itself via a call to stopSelf().

 Alternatively, a running service may be stopped by another component via a call to the stopService()
 method
 , passing through as an argument the matching Intent for the service to be stopped.

Services are given a high priority by the Android system and are typically among the last to be terminated in order to free up resources.

64.2

 Intent Service

As previously outlined, services run by default within the same main thread as the component from which they are launched. As such, any CPU intensive tasks that need to be performed by the service should take place within a new thread, thereby avoiding impacting the performance of the calling application.

The IntentService
 class is a convenience class (subclassed from the Service class) that sets up a worker thread for handling background tasks and handles each request in an asynchronous manner. Once the service has handled all queued requests, it simply exits. All that is required when using the IntentService class
 is that the onHandleIntent()
 method
 be implemented containing the code to be executed for each request.

For services that do not require synchronous processing of requests, IntentService is the recommended option. Services requiring synchronous handling of requests will, however, need to subclass from the Service class and manually implement and manage threading to handle any CPU intensive tasks efficiently.

64.3

 Bound Service

A bound service
 is similar to a started service with the exception that a started service does not generally return results or permit interaction with the component that launched it. A bound service, on the other hand, allows the launching component to interact with, and receive results from, the service. Through the implementation of interprocess communication (IPC), this interaction can also take place across process boundaries. An activity might, for example, start a service to handle audio playback. The activity will, in all probability, include a user interface providing controls to the user for the purpose of pausing playback or skipping to the next track. Similarly, the service will quite likely need to communicate information to the calling activity to indicate that the current audio track has completed and to provide details of the next track that is about to start playing.

A component (also referred to in this context as a client
) starts and binds
 to a bound service via a call to the bindService()
 method
 . Also, multiple components may bind to a service simultaneously. When the service binding is no longer required by a client, a call should be made to the unbindService()
 method
 . When the last bound client unbinds from a service, the service will be terminated by the Android runtime system. It is important to keep in mind that a bound service may also be started via a call to startService()
 . Once started, components may then bind to it via bindService()
 calls. When a bound service is launched via a call to startService()
 it will continue to run even after the last client unbinds from it.

A bound service must include an implementation of the onBind()
 method which is called both when the service is initially created and when other clients subsequently bind to the running service. The purpose of this method is to return to binding clients an object of type IBinder

 containing the information needed by the client to communicate with the service.

In terms of implementing the communication between a client and a bound service, the recommended technique depends on whether the client and service reside in the same or different processes and whether or not the service is private to the client. Local communication can be achieved by extending the Binder class and returning an instance from the onBind()
 method. Interprocess communication, on the other hand, requires Messenger and Handler implementation. Details of both of these approaches will be covered in later chapters.

64.4

 The Anatomy of a Service

A service must, as has already been mentioned, be created as a subclass of the Android Service class (more specifically android.app.Service
) or a sub-class thereof (such as android.app.IntentService
). As part of the subclassing procedure, one or more of the following superclass callback methods must be overridden, depending on the exact nature of the service being created:

•
 onStartCommand()

 – This is the method that is called when the service is started by another component via a call to the startService()
 method. This method does not need to be implemented for bound services.

•
 onBind()

 – Called when a component binds to the service via a call to the bindService()
 method. When implementing a bound service, this method must return an IBinder
 object facilitating communication with the client. In the case of started services
 , this method must be implemented to return a NULL value.

•
 onCreate()

 – Intended as a location to perform initialization tasks, this method is called immediately before the call to either onStartCommand()
 or the first
 call to the onBind()
 method.

•
 onDestroy()

 – Called when the service is being destroyed.

•
 onHandleIntent()

 – Applies only to IntentService subclasses. This method is called to handle the processing for the service. It is executed in a separate thread from the main application.

Note that the IntentService class includes its own implementations of the onStartCommand()
 and onBind()
 callback methods so these do not need to be implemented in subclasses.

64.5

 Controlling Destroyed Service Restart Options

The onStartCommand()
 callback method is required to return an integer value to define what should happen with regard to the service in the event that it is destroyed by the Android runtime system. Possible return values for these methods are as follows:

•
 START_NOT_STICKY

 – Indicates to the system that the service should not be restarted in the event that it is destroyed unless there are pending intents awaiting delivery.

•
 START_STICKY

 – Indicates that the service should be restarted as soon as possible after it has been destroyed if the destruction occurred after the onStartCommand()
 method returned. In the event that no pending intents are waiting to be delivered, the onStartCommand()
 callback method is called with a NULL intent value. The intent being processed at the time that the service was destroyed is discarded.

•
 START_REDELIVER_INTENT

 – Indicates that, if the service was destroyed after returning from the onStartCommand()
 callback method, the service should be restarted with the current intent redelivered to the onStartCommand()
 method followed by any pending intents.

64.6

 Declaring a Service
 in the Manifest File

In order for a service to be useable, it must first be declared within a manifest file. This involves embedding an appropriately configured <service>
 element into an existing <application>

 entry. At a minimum, the <service>
 element must contain a property declaring the class name of the service as illustrated in the following XML fragment:

.

.

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name=".TestActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service android:name="MyService>

 </service>

 </application>

</manifest>

By default, services are declared as public, in that they can be accessed by components outside of the application package in which they reside. In order to make a service private, the android:exported

 property must be declared as false
 within the <service> element of the manifest file. For example:

<service android:name="MyService"

android:exported=
 "false
 ">

</service>

As previously discussed, services run within the same process as the calling component by default. In order to force a service
 to run within its own process, add an android:process

 property to the <service> element, declaring a name for the process prefixed with a colon (:):

<service android:name="MyService"

android:exported="false"

android:process=":myprocess">

</service>

The colon prefix indicates that the new process is private to the local application. If the process name begins with a lower case letter instead of a colon, however, the process will be global and available for use by other components.

Finally, using the same intent filter mechanisms outlined for activities, a service may also advertise capabilities to other applications running on the device. For more details on intent filters, refer to the chapter entitled
“An Overview of Android Intents”

 .

64.7

 Starting a Service
 Running on System Startup

Given the background nature of services, it is not uncommon for a service to need to be started when an Android-based system first boots up. This can be achieved by creating a broadcast receiver with an intent filter configured to listen for the system android.intent.action.BOOT_COMPLETED

 intent. When such an intent is detected, the broadcast receiver would simply invoke the necessary service and then return. Note that, in order to function, such a broadcast receiver will need to request the android.permission.RECEIVE_BOOT_COMPLETED
 permission.

64.8

 Summary

Android services are a powerful mechanism that allows applications to perform tasks in the background. A service, once launched, will continue to run regardless of whether the calling application is the foreground task or not, and even in the event that the component that initiated the service is destroyed.

Services are subclassed from the Android Service class and fall into the category of either started services
 or bound services
 . Started services run until they are stopped or destroyed and do not inherently provide a mechanism for interaction or data exchange with other components. Bound services, on the other hand, provide a communication interface to other client components and generally run until the last client unbinds from the service.

By default, services run locally within the same process and main thread as the calling application. A new thread should, therefore, be created within the service for the purpose of handling CPU intensive tasks. Remote services may be started within a separate process by making a minor configuration change to the corresponding <service> entry in the application manifest file.

The IntentService class
 (itself a subclass of the Android Service class) provides a convenient mechanism for handling asynchronous service requests within a separate worker thread.

65.

 Implementing an Android Started Service
 – A Worked Example

The previous chapter covered a considerable amount of information relating to Android services and, at this point, the concept of services may seem somewhat overwhelming. In order to reinforce the information in the previous chapter, this chapter will work through an Android Studio tutorial intended to gradually introduce the concepts of started service implementation.

Within this chapter, a sample application will be created and used as the basis for implementing an Android service. In the first instance, the service will be created using the IntentService
 class
 . This example will subsequently be extended to demonstrate the use of the Service
 class. Finally, the steps involved in performing tasks within a separate thread when using the Service class will be implemented. Having covered started services in this chapter, the next chapter, entitled
“Android Local Bound Services – A Worked Example”

 , will focus on the implementation of bound services and client-service communication.

65.1

 Creating the Example Project

Launch Android Studio and follow the usual steps to create a new project, entering ServiceExample
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the screens, requesting the creation of an Empty Activity named ServiceExampleActivity
 using the default values for the remaining options.

65.2

 Creating the Service Class

Before writing any code, the first step is to add a new class to the project to contain the service. The first type of service to be demonstrated in this tutorial is to be based on the IntentService class. As outlined in the preceding chapter (
“An Overview of Android Started and Bound Services”

), the purpose of the IntentService class is to provide the developer with a convenient mechanism for creating services that perform tasks asynchronously within a separate thread from the calling application.

Add a new class to the project by right-clicking on the com.ebookfrenzy.serviceexample
 package name located under app -> java
 in the Project tool window and selecting the New ->
 Kotlin File/Class
 menu option. Within the resulting Create New Class
 dialog, name the new class MyIntentService
 and select Class
 from the Kind
 menu. Finally, click on the OK
 button to create the new class.

Review the new MyIntentService.
 kt
 file in the Android Studio editor where it should read as follows:

package com.ebookfrenzy.serviceexample

class MyIntentService {

}

The class needs to be modified so that it subclasses the IntentService class
 . When subclassing the IntentService class, there are two rules that must be followed. First, a constructor for the class must be implemented which calls the superclass constructor, passing through the class name of the service. Second, the class must override the onHandleIntent()
 method
 . Modify the code in the MyIntentService.
 kt
 file, therefore, so that it reads as follows:

package com.ebookfrenzy.serviceexample

import android.app.IntentService

import android.content.Intent

class MyIntentService : IntentService("MyIntentService")
 {

 override fun onHandleIntent(arg0: Intent?) {

 }

}

All that remains at this point is to implement some code within the onHandleIntent()
 method
 so that the service actually does something when invoked. Ordinarily this would involve performing a task that takes some time to complete such as downloading a large file or playing audio. For the purposes of this example, however, the handler will simply output a message to the Android Studio Logcat panel:

package com.ebookfrenzy.serviceexample

import android.app.IntentService

import android.content.Intent

import android.util.Log

class MyIntentService : IntentService("MyIntentService") {

 private val TAG = "ServiceExample"

 override fun onHandleIntent(arg0: Intent?) {

 Log.i(TAG, "Intent Service started")

 }

}

65.3

 Adding the Service to the Manifest File

Before a service can be invoked, it must first be added to the manifest file of the application to which it belongs. At a minimum, this involves adding a <service> element together with the class name of the service.

Double-click on the AndroidManifest.xml
 file (app -> manifests
) for the current project to load it into the editor and modify the XML to add the service element as shown in the following listing:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.serviceexample">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".ServiceExampleActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service android:name=".MyIntentService" />

 </application>

</manifest>

65.4

 Starting the Service

Now that the service has been implemented and declared in the manifest file, the next step is to add code to start the service when the application launches. As is typically the case, the ideal location for such code is the onCreate()
 callback method of the activity class (which, in this case, can be found in the ServiceExampleActivity.
 kt
 file). Locate and load this file into the editor and modify the onCreate()
 method to add the code to start the service:

package com.ebookfrenzy.serviceexample

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

class ServiceExampleActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_service_example)

 val intent = Intent(this, MyIntentService::class.java)

 startService(intent)

 }

}

All that the added code needs to do is to create a new Intent object primed with the class name of the service to start and then use it as an argument to the startService()
 method
 .

65.5

 Testing the IntentService Example

The example IntentService based service is now complete and ready to be tested. Since the message displayed by the service will appear in the Logcat panel, it is important that this is configured in the Android Studio environment.

Begin by displaying the Logcat tool window before clicking on the menu in the upper right-hand corner of the panel (which will probably currently read Show only selected application
). From this menu, select the Edit Filter Configuration
 menu option.

In the Create New Logcat Filter
 dialog name the filter ServiceExample
 and, in the by Log Tag
 field, enter the TAG value declared in ServiceExampleActivity.
 kt
 (in the above code example this was ServiceExample
).

When the changes are complete, click on the OK
 button to create the filter and dismiss the dialog. The newly created filter should now be selected in the Android tool window.

With the filter configured, run the application on a physical device or AVD emulator session and note that the “Intent Service Started” message appears in the Logcat panel. Note that it may be necessary to change the filter menu setting back to ServiceExample after the application has launched:

06-29 09:05:16.887 3389-3948/com.ebookfrenzy.serviceexample I/ServiceExample: Intent Service started

Had the service been tasked with a long-term activity, the service would have continued to run in the background in a separate thread until the task was completed, allowing the application to continue functioning and responding to the user. Since all our service did was log a message, it will have simply stopped upon completion.

65.6

 Using the Service Class

While the IntentServic
 e class allows a service to be implemented with minimal coding, there are situations where the flexibility and synchronous nature of the Service class will be required. As will become evident in this chapter, this involves some additional programming work to implement.

In order to avoid introducing too many concepts at once, and as a demonstration of the risks inherent in performing time-consuming service tasks in the same thread as the calling application, the example service created here will not run the service task within a new thread, instead relying on the main thread of the application. Creation and management of a new thread within a service will be covered in the next phase of the tutorial.

65.7

 Creating the New Service

For the purposes of this example, a new class will be added to the project that will subclass from the Service class. Right-click, therefore, on the package name listed under app -> java
 in the Project tool window and select the New -> Service -> Service
 menu option. Create a new class named MyService
 with both the Exported
 and Enabled
 options selected.

The minimal requirement in order to create an operational service is to implement the onStartCommand()
 callback method which will be called when the service is starting up. In addition, the onBind()
 method
 must return a null value to indicate to the Android system that this is not a bound service. For the purposes of this example, the onStartCommand()
 method
 will loop 3 times sleeping for 10 seconds on each loop iteration. For the sake of completeness, stub versions of the onCreate()
 and onDestroy()
 methods will also be implemented in the new MyService.
 kt
 file as follows:

package com.ebookfrenzy.serviceexample

import android.app.Service

import android.content.Intent

import android.os.IBinder

import android.util.Log

class MyService : Service() {

 private val TAG = "ServiceExample"

 override fun onCreate() {

 Log.i(TAG, "Service onCreate")

 }

 override fun onStartCommand(intent: Intent?, flags: Int, startId: Int): Int {

 Log.i(TAG, "Service onStartCommand " + startId)

 var i: Int = 0

 while (i <= 3) {

 try {

 Thread.sleep(10000)

 i++

 } catch (e: Exception) {

 }

 Log.i(TAG, "Service running")

 }

 return Service.START_STICKY

 }

 override fun onBind(p0: Intent?): IBinder {

 Log.i(TAG, "Service onBind")

 TODO("not implemented")

 }

 override fun onDestroy() {

 Log.i(TAG, "Service onDestroy")

 }

.

.

}

With the service implemented, load the AndroidManifest.xml
 file into the editor and verify that Android Studio has added an appropriate entry for the new service which should read as follows:

<service

 android:name=".MyService"

 android:enabled="true"

 android:exported="true" >

</service>

65.8

 Modifying the User Interface

As will become evident when the application runs, failing to create a new thread for the service to perform tasks creates a serious usability problem. In order to be able to appreciate fully the magnitude of this issue, it is going to be necessary to add a Button view to the user interface of the ServiceExampleActivity
 activity and configure it to call a method when “clicked” by the user.

Locate and load the activity_service_example.xml
 file in the Project tool window (app -> res -> layout -> activity_service_example.xml
). Delete the TextView and add a Button view to the layout. Select the new button, change the text to read “Start Service” and extract the string to a resource named start_service
 .

With the new Button still selected, locate the onClick
 property in the Attributes panel and assign to it a method named buttonClick
 .

Next, edit the ServiceExampleActivity.
 kt
 file to add the buttonClick()
 method and remove the code from the onCreate()
 method that was previously added to launch the MyIntentService service:

package com.ebookfrenzy.serviceexample

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

class ServiceExampleActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_service_example)

 val intent = Intent(this, MyIntentService::class.java)

 startService(intent)

 }

 fun buttonClick(view: View)

 {

 intent = Intent(this, MyService::class.java)

 startService(intent)

 }

}

All that the buttonClick()
 method does is create an intent object for the new service and then start it running.

65.9

 Running the Application

Run the application and, once loaded, touch the Start Service
 button. Within the Logcat tool window (using the ServiceExample
 filter created previously) the log messages will appear indicating that the onCreate()
 method was called and that the loop in the onStartCommand()
 method
 is executing.

Before the final loop message appears, attempt to touch the Start Service
 button a second time. Note that the button is unresponsive. After approximately 20 seconds, the system may display a warning dialog containing the message “ServiceExample isn’t responding”. The reason for this is that the main thread of the application is currently being held up by the service while it performs the looping task. Not only does this prevent the application from responding to the user, but also to the system, which eventually assumes that the application has locked up in some way.

Clearly, the code for the service needs to be modified to perform tasks in a separate thread from the main thread.

65.10

 Creating an AsyncTask for Service Tasks

As outlined in
“A Basic Overview of Threads and AsyncTasks”

 , when an Android application is first started, the runtime system creates a single thread in which all application components will run by default. This thread is generally referred to as the main thread
 . The primary role of the main thread is to handle the user interface in terms of event handling and interaction with views in the user interface. Any additional components that are started within the application will, by default, also run on the main thread.

As demonstrated in the previous section, any component that undertakes a time consuming operation on the main thread will cause the application to become unresponsive until that task is complete. It is not surprising, therefore, that Android provides an API that allows applications to create and use additional threads. Any tasks performed in a separate thread from the main thread are essentially performed in the background. Such threads are typically referred to as background
 or worker
 threads.

A very simple solution to this problem involves performing the service task within an AsyncTask instance. To add this support to the app, modify the MyService.
 kt
 file to create an AsyncTask subclass containing the timer code from the onStartCommand()
 method:

.

.

import android.os.AsyncTask

.

.

 private inner class SrvTask : AsyncTask<Int, Int, String>() {

 override fun onPreExecute() {

 }

 override fun doInBackground(vararg params: Int?): String {

 val startId = params[0]

 var i = 0

 while (i <= 20) {

 try {

 Thread.sleep(10000)

 publishProgress(startId)

 i++

 }

 catch (e: Exception) {

 return(e.localizedMessage)

 }

 }

 return "Service complete $startId"

 }

 override fun onProgressUpdate(vararg values: Int?) {

 super.onProgressUpdate(*values)

 val counter = values.get(0)

 Log.i(TAG, "Service Running $counter")

 }

 override fun onPostExecute(result: String) {

 Log.i(TAG, result)

 }

 }

}

Next, modify the onStartCommand()
 method to execute the task in the background, this time using the thread pool executor to allow multiple instances of the task to run in parallel:

override fun onStartCommand(intent: Intent?, flags: Int, startId: Int): Int {

 val task = SrvTask().executeOnExecutor(

			AsyncTask.THREAD_POOL_EXECUTOR, startId)

 return Service.START_STICKY

}

When the application is now run, it should be possible to touch the Start Service
 button multiple times. When doing so, the Logcat output should indicate more than one task running simultaneously (subject to CPU core limitations):

I/ServiceExample: Service Running 1

I/ServiceExample: Service Running 2

I/ServiceExample: Service Running 1

I/ServiceExample: Service Running 2

I/ServiceExample: Service Running 1

I/ServiceExample: Service Running 2

I/ServiceExample: Service Running 1

I/ServiceExample: Service Running 2

I/ServiceExample: Service complete 1

I/ServiceExample: Service complete 2

With the service now handling requests outside of the main thread, the application remains responsive to both the user and the Android system.

65.11

 Summary

This chapter has worked through an example implementation of an Android started service using the IntentService
 and Service
 classes. The example also demonstrated the use of asynchronous tasks within a service to avoid making the main thread of the application unresponsive.

66.

 Android Local Bound Services
 – A Worked Example

As outlined in some detail in the previous chapters, bound services, unlike started services, provide a mechanism for implementing communication between an Android service and one or more client components. The objective of this chapter is to build on the overview of bound services provided in
“An Overview of Android Started and Bound Services”

 before embarking on an example implementation of a local
 bound service in action.

66.1

 Understanding Bound Service
 s

In common with started services, bound services are provided to allow applications to perform tasks in the background. Unlike started services, however, multiple client components may bind
 to a bound service and, once bound, interact with that service using a variety of different mechanisms.

Bound services are created as sub-classes of the Android Service class and must, at a minimum, implement the onBind()
 method
 . Client components bind to a service via a call to the bindService()
 method
 . The first bind request to a bound service will result in a call to that service’s onBind()
 method (subsequent bind requests do not trigger an onBind()
 call). Clients wishing to bind to a service must also implement a ServiceConnection subclass containing onServiceConnected()

 and onServiceDisconnected()
 method
 s which will be called once the client-server connection has been established or disconnected, respectively. In the case of the onServiceConnected()
 method, this will be passed an IBinder object
 containing the information needed by the client to interact with the service.

66.2

 Bound Service
 Interaction Options

There are two recommended mechanisms for implementing interaction between client components and a bound service. In the event that the bound service is local and private to the same application as the client component (in other words it runs within the same process and is not available to components in other applications), the recommended method is to create a subclass of the Binder class and extend it to provide an interface to the service. An instance of this Binder object is then returned by the onBind()
 method
 and subsequently used by the client component to directly access methods and data held within the service.

In situations where the bound service is not local to the application (in other words, it is running in a different process from the client component), interaction is best achieved using a Messenger/Handler implementation.

In the remainder of this chapter, an example will be created with the aim of demonstrating the steps involved in creating, starting and interacting with a local, private bound service.

66.3

 An Android Studio Local Bound Service
 Example

The example application created in the remainder of this chapter will consist of a single activity and a bound service. The purpose of the bound service is to obtain the current time from the system and return that information to the activity where it will be displayed to the user. The bound service will be local and private to the same application as the activity.

Launch Android Studio and follow the usual steps to create a new project, entering LocalBound
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named LocalBoundActivity
 with the remaining fields set to the default values.

Once the project has been created, the next step is to add a new class to act as the bound service.

66.4

 Adding a Bound Service
 to the Project

To add a new class to the project, right-click on the package name (located under app -> java -> com.ebookfrenzy.localbound
) within the Project tool window and select the New -> Service -> Service
 menu option. Specify BoundService
 as the class name and make sure that both the Exported
 and Enabled
 options are selected before clicking on Finish
 to create the class. By default, Android Studio will load the BoundService.
 kt
 file into the editor where it will read as follows:

package com.ebookfrenzy.localbound

import android.app.Service

import android.content.Intent

import android.os.IBinder

class BoundService : Service() {

 override fun onBind(intent: Intent): IBinder {

 TODO("Return the communication channel to the service.")

 }

}

66.5

 Implementing the Binder

As previously outlined, local bound services can communicate with bound clients by passing an appropriately configured Binder object to the client. This is achieved by creating a Binder subclass within the bound service class and extending it by adding one or more new methods that can be called by the client. In most cases, this simply involves implementing a method that returns a reference to the bound service instance. With a reference to this instance, the client can then access data and call methods within the bound service directly.

For the purposes of this example, therefore, some changes are needed to the template BoundService
 class created in the preceding section. In the first instance, a Binder subclass needs to be declared. This class will contain a single method named getService()
 which will simply return a reference to the current service object instance (represented by the this
 keyword). With these requirements in mind, edit the BoundService.
 kt
 file and modify it as follows:

package com.ebookfrenzy.localbound

import android.app.Service

import android.content.Intent

import android.os.IBinder

import android.os.Binder

class BoundService : Service() {

 private val myBinder = MyLocalBinder()

 override fun onBind(intent: Intent): IBinder {

 TODO("Return the communication channel to the service.")

 }

 inner class MyLocalBinder : Binder() {

 fun getService() : BoundService {

 return this@BoundService

 }

 }

}

Having made the changes to the class, it is worth taking a moment to recap the steps performed here. First, a new subclass of Binder (named MyLocalBinder
) is declared. This class contains a single method for the sole purpose of returning a reference to the current instance of the BoundService
 class
 . A new instance of the MyLocalBinder
 class is created and assigned to the myBinder
 IBinder reference (since Binder is a subclass of IBinder
 there is no type mismatch in this assignment).

Next, the onBind()
 method needs to be modified to return a reference to the myBinder
 object and a new public method implemented to return the current time when called by any clients that bind to the service:

package com.ebookfrenzy.localbound

import android.app.Service

import android.content.Intent

import android.os.Binder

import android.os.IBinder

import java.text.SimpleDateFormat

import java.util.*

class BoundService : Service() {

 private val myBinder = MyLocalBinder()

 override fun onBind(intent: Intent): IBinder? {

 return myBinder

 }

 fun getCurrentTime(): String {

 val dateformat = SimpleDateFormat("HH:mm:ss MM/dd/yyyy",

 Locale.US)

 return dateformat.format(Date())

 }

 inner class MyLocalBinder : Binder() {

 fun getService() : BoundService {

 return this@BoundService

 }

 }

}

At this point, the bound service is complete and is ready to be added to the project manifest file. Locate and double-click on the AndroidManifest.xml
 file for the LocalBound
 project in the Project tool window and, once loaded into the Manifest Editor, verify that Android Studio has already added a <service>
 entry for the service as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.localbound.localbound" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=" .LocalBoundActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service

 android:name=".BoundService"

 android:enabled="true"

 android:exported="true" >

 </service>

 </application>

</manifest>

The next phase is to implement the necessary code within the activity to bind to the service and call the getCurrentTime()
 method.

66.6

 Binding the Client to the Service

For the purposes of this tutorial, the client is the LocalBoundActivity
 instance of the running application.
 As previously noted, in order to successfully bind to a service and receive the IBinder object returned by the service’s onBind()
 method, it is necessary to create a ServiceConnection subclass and implement onServiceConnected()

 and onServiceDisconnected()

 callback methods. Edit the LocalBoundActivity.
 kt
 file and modify it as follows:

package com.ebookfrenzy.localbound

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.ComponentName

import android.content.Context

import android.content.ServiceConnection

import android.os.IBinder

import android.content.Intent

class LocalBoundActivity : AppCompatActivity() {

 var myService: BoundService? = null

 var isBound = false

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_local_bound)

 }

 private val myConnection = object : ServiceConnection {

 override fun onServiceConnected(className: ComponentName,

 service: IBinder) {

 val binder = service as BoundService.MyLocalBinder

 myService = binder.getService()

 isBound = true

 }

 override fun onServiceDisconnected(name: ComponentName) {

 isBound = false

 }

 }

}

The onServiceConnected()
 method will be called when the client binds successfully to the service. The method is passed as an argument the IBinder object returned by the onBind()
 method of the service. This argument is cast to an object of type MyLocalBinder and then the getService()
 method
 of the binder object is called to obtain a reference to the service instance, which, in turn, is assigned to myService.
 A Boolean flag is used to indicate that the connection has been successfully established.

The onServiceDisconnected()
 method is called when the connection ends and simply sets the Boolean flag to false.

Having established the connection, the next step is to modify the activity to bind to the service. This involves the creation of an intent and a call to the bindService()
 method
 , which can be performed in the onCreate()
 method of the activity:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_local_bound)

 val intent = Intent(this, BoundService::class.java)

 bindService(intent, myConnection, Context.BIND_AUTO_CREATE)

}

66.7

 Completing the Example

All that remains is to implement a mechanism for calling the getCurrentTime()
 method and displaying the result to the user. As is now customary, Android Studio will have created a template activity_local_bound.xml
 file for the activity containing only a TextView. Load this file into the Layout Editor tool and, using Design mode, select the TextView component and change the ID to myTextView
 . Add a Button view beneath the TextView and change the text on the button to read “Show Time”, extracting the text to a string resource named show_time
 . On completion of these changes, the layout should resemble that illustrated in Figure 66-1
 . If any constraints are missing, click on the Infer Constraints button in the Layout
 Editor toolbar.

[image:]

Figure 66-1

Complete the user interface design by selecting the Button and configuring the onClick
 property to call a method named showTime
 .

Finally, edit the code in the LocalBoundActivity.
 kt
 file to implement the showTime()
 method. This method simply calls the getCurrentTime()
 method of the service (which, thanks to the onServiceConnected()
 method, is now available from within the activity via the myService
 reference) and assigns the resulting string to the TextView:

package com.ebookfrenzy.localbound

import android.content.ComponentName

import android.content.Context

import android.content.ServiceConnection

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.os.IBinder

import android.content.Intent

import android.view.View

import kotlinx.android.synthetic.main.activity_local_bound.*

class LocalBoundActivity : AppCompatActivity() {

 var myService: BoundService? = null

 var isBound = false

 fun showTime(view: View) {

 val currentTime = myService?.getCurrentTime()

 myTextView.text = currentTime

 }

.

.

}

66.8

 Testing the Application

With the code changes complete, perform a test run of the application. Once visible, touch the button and note that the text view changes to display the current date and time. The example has successfully started and bound to a service and then called a method of that service to cause a task to be performed and results returned to the activity.

66.9

 Summary

When a bound service is local and private to an application, components within that application can interact with the service without the need to resort to inter-process communication (IPC). In general terms, the service’s onBind()
 method returns an IBinder object containing a reference to the instance of the running service. The client component implements a ServiceConnection subclass containing callback methods that are called when the service is connected and disconnected. The former method is passed the IBinder object returned by the onBind()
 method allowing public methods within the service to be called.

Having covered the implementation of local bound services, the next chapter will focus on using IPC to interact with remote bound services.

67.

 Android Remote Bound Services
 – A Worked Example

In this, the final chapter dedicated to Android services, an example application will be developed to demonstrate the use of a messenger and handler configuration to facilitate interaction between a client and remote bound service.

67.1

 Client to Remote Service
 Communication

As outlined in the previous chapter, interaction between a client and a local service can be implemented by returning to the client an IBinder object containing a reference to the service object. In the case of remote services, however, this approach does not work because the remote service is running in a different process and, as such, cannot be reached directly from the client.

In the case of remote services, a Messenger and Handler configuration must be created which allows messages to be passed across process boundaries between client and service.

Specifically, the service creates a Handler instance that will be called when a message is received from the client. In terms of initialization, it is the job of the Handler to create a Messenger object which, in turn, creates an IBinder object to be returned to the client in the onBind()
 method
 . This IBinder object
 is used by the client to create an instance of the Messenger object and, subsequently, to send messages to the service handler. Each time a message is sent by the client, the handleMessage()
 method of the handler is called, passing through the message object.

The simple example created in this chapter will consist of an activity and a bound service running in separate processes. The Messenger/Handler mechanism will be used to send a string to the service, which will then display that string in a Toast message.

67.2

 Creating the Example Application

Launch Android Studio and follow the steps to create a new project, entering RemoteBound
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named RemoteBoundActivity
 with a corresponding layout resource file named activity_remote_bound.

67.3

 Designing the User Interface

Locate the activity_remote_bound.xml
 file in the Project tool window and double-click on it to load it into the Layout Editor tool. With the Layout Editor tool in Design mode, right-click on the default TextView instance, choose the Convert view...
 menu option and select the Button view from the resulting dialog and click Apply. Change the text property of the button to read “Send Message” and extract the string to a new resource named send_message
 .

Finally, configure the onClick
 property to call a method named sendMessage
 .

67.4

 Implementing the Remote Bound Service

In order to implement the remote bound service for this example, add a new class to the project by right-clicking on the package name (located under app -> java
) within the Project tool window and select the New -> Service -> Service
 menu option. Specify RemoteService
 as the class name and make sure that both the Exported
 and Enabled
 options are selected before clicking on Finish
 to create the class.

The next step is to implement the handler class for the new service. This is achieved by extending the Handler class
 and implementing the handleMessage()
 method. This method will be called when a message is received from the client. It will be passed a Message object as an argument containing any data that the client needs to pass to the service. In this instance, this will be a Bundle object containing a string to be displayed to the user. The modified class in the RemoteService.
 kt
 file should read as follows once this has been implemented:

package com.ebookfrenzy.remotebound

import android.app.Service

import android.content.Intent

import android.os.IBinder

import android.os.Handler

import android.os.Message

import android.os.Messenger

import android.widget.Toast

class RemoteService : Service() {

 inner class IncomingHandler : Handler() {

 override fun handleMessage(msg: Message) {

 val data = msg.data

 val dataString = data.getString("MyString")

 Toast.makeText(applicationContext,

 dataString, Toast.LENGTH_SHORT).show()

 }

 }

 override fun onBind(intent: Intent): IBinder? {

 // TODO: Return the communication channel to the service.

 throw UnsupportedOperationException("Not yet implemented")

 }

}

With the handler implemented, the only remaining task in terms of the service code is to modify the onBind()
 method such that it returns an IBinder object
 containing a Messenger object
 which, in turn, contains a reference to the handler:

private val myMessenger = Messenger(IncomingHandler())

override fun onBind(intent: Intent): IBinder {

 return myMessenger.binder

}

The first line of the above code fragment creates a new instance of our handler class and passes it through to the constructor of a new Messenger object. Within the onBind()
 method, the getBinder()
 method of the messenger object is called to return the messenger’s IBinder object.

67.5

 Configuring a Remote Service
 in the Manifest File

In order to portray the communication between a client and remote service accurately, it will be necessary to configure the service to run in a separate process from the rest of the application. This is achieved by adding an android:process

 property within the <service>
 tag for the service in the manifest file. In order to launch a remote service it is also necessary to provide an intent filter for the service. To implement these changes, modify the AndroidManifest.xml
 file to add the required entries:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.remotebound" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".RemoteBoundActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service

 android:name=".RemoteService"

 android:enabled="true"

 android:exported="true"

 android:process=":my_process"
 >

 </service>

 </service>

 </application>

</manifest>

67.6

 Launching and Binding to the Remote Service

As with a local bound service, the client component needs to implement an instance of the ServiceConnection class
 with onServiceConnected()

 and onServiceDisconnected()
 methods
 . Also, in common with local services, the onServiceConnected()
 method will be passed the IBinder object returned by the onBind()
 method of the remote service which will be used to send messages to the server handler. In the case of this example, the client is RemoteBoundActivity
 , the code for which is located in RemoteBoundActivity.
 kt
 . Load this file and modify it to add the ServiceConnection class and a variable to store a reference to the received Messenger object together with a Boolean flag to indicate whether or not the connection is established:

package com.ebookfrenzy.remotebound

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.ComponentName

import android.content.ServiceConnection

import android.os.*

import android.view.View

class RemoteBoundActivity : AppCompatActivity() {

 var myService: Messenger? = null

 var isBound: Boolean = false

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_remote_bound)

 }

 private val myConnection = object : ServiceConnection {

 override fun onServiceConnected(

 className: ComponentName,

 service: IBinder) {

 myService = Messenger(service)

 isBound = true

 }

 override fun onServiceDisconnected(

 className: ComponentName) {

 myService = null

 isBound = false

 }

 }

}

Next, some code needs to be added to bind to the remote service. This involves creating an intent that matches the intent filter for the service as declared in the manifest file and then making a call to the bindService()
 method, providing the intent and a reference to the ServiceConnection instance as arguments. For the purposes of this example, this code will be implemented in the activity’s onCreate()
 method:

.

.

import android.content.Context

import android.content.Intent

.

.

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_remote_bound)

 val intent = Intent(getApplicationContext(), RemoteService::class.java)

 bindService(intent, myConnection, Context.BIND_AUTO_CREATE)

}

67.7

 Sending a Message to the Remote Service

All that remains before testing the application is to implement the sendMessage()
 method in the RemoteBoundActivity
 class which is configured to be called when the button in the user interface is touched by the user. This method needs to check that the service is connected, create a bundle object containing the string to be displayed by the server, add it to a Message object and send it to the server:

fun sendMessage(view: View) {

 if (!isBound) return

 val msg = Message.obtain()

 val bundle = Bundle()

 bundle.putString("MyString", "Message Received")

 msg.data = bundle

 try {

 myService?.send(msg)

 } catch (e: RemoteException) {

 e.printStackTrace()

 }

}

With the code changes complete, compile and run the application. Once loaded, touch the button in the user interface, at which point a Toast message should appear that reads “Message Received”.

67.8

 Summary

In order to implement interaction between a client and remote bound service it is necessary to implement a handler/message communication framework. The basic concepts behind this technique have been covered in this chapter together with the implementation of an example application designed to demonstrate communication between a client and a bound service, each running in a separate process.

68.

 An Android Notifications Tutorial

Notifications
 provide a way for an app to convey a message to the user when the app is either not running or is currently in the background. A messaging app might, for example, issue a notification to let the user know that a new message has arrived from a contact. Notifications can be categorized as being either local or remote. A local notification is triggered by the app itself on the device on which it is running. Remote notifications, on the other hand, are initiated by a remote server and delivered to the device for presentation to the user.

Notifications appear in the notification drawer that is pulled down from the status bar of the screen and each notification can include actions such as a button to open the app that sent the notification. Android also supports Direct Reply notifications, a feature that allows the user to type in and submit a response to a notification from within the notification panel.

The goal of this chapter is to outline and demonstrate the implementation of local notifications within an Android app. The next chapter (
“An Android Direct Reply Notification Tutorial”

) will cover the implementation of direct reply notifications.

68.1

 An Overview of Notifications

When a notification
 is initiated on an Android device, it appears as an icon in the status bar. Figure 68-1
 , for example, shows a status bar with a number of notification icons:

[image:]

Figure 68-1

To view the notifications, the user makes a downward swiping motion starting at the status bar to pull down the notification drawer as shown in Figure 68-2
 :

[image:]

Figure 68-2

In devices running Android 8 or newer, performing a long press on an app launcher icon will display any pending notifications associated with that app as shown in Figure 68-3
 :

[image:]

Figure 68-3

Android 8 also supports notification badges that appear on app launcher icons when a notification is waiting to be seen by the user.

A typical notification will simply display a message and, when tapped, launch the app responsible for issuing the notification. Notifications may also contain action buttons which perform a task specific to the corresponding app when tapped. Figure 68-4
 , for example, shows a notification containing two action buttons allowing the user to either delete or save an incoming message.

[image:]

Figure 68-4

It is also possible for the user to enter an in-line text reply into the notification and send it to the app, as is the case in Figure 68-5
 below. This allows the user to respond to a notification without having to launch the corresponding app into the foreground.

[image:]

Figure 68-5

The remainder of this chapter will work through the steps involved in creating and issuing a simple notification containing actions. The topic of direct reply support will then be covered in the next chapter entitled
“An Android Direct Reply Notification Tutorial”

 .

68.2

 Creating the NotifyDemo Project

Start Android Studio and create a new project, entering NotifyDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the screens, requesting the creation of an Empty Activity named NotifyDemoActivity
 with a corresponding layout file named activity_notify_demo.

68.3

 Designing the User Interface

The main activity will contain a single button, the purpose of which is to create and issue an intent. Locate and load the activity_notify_demo.xml
 file into the Layout Editor tool and delete the default TextView widget.

With Autoconnect enabled, drag and drop a Button object from the panel onto the center of the layout canvas as illustrated in Figure 68-6
 .

With the Button widget selected in the layout, use the Attributes panel to configure the onClick property to call a method named sendNotification
 .

[image:]

Figure 68-6

Double-click on the Button widget and change the text property in the Attributes tool window to “Notify”.

68.4

 Creating the Second Activity

For the purposes of this example, the app will contain a second activity which will be launched by the user from within the notification. Add this new activity to the project by right-clicking on the com.ebookfrenzy.notifydemo
 package name located in app -> java
 and select the New -> Activity -> Empty Activity
 menu option to display the New Android Activity
 dialog.

Enter ResultActivity
 into the Activity Name field and name the layout file activity_result.
 Since this activity will not be started when the application is launched (it will instead be launched via an intent from within the notification), it is important to make sure that the Launcher Activity
 option is disabled before clicking on the Finish button.

Open the layout for the second activity (app -> res -> layout -> activity_result.xml
) and drag and drop a TextView widget so that it is positioned in the center of the layout. Edit the text of the TextView so that it reads “Result Activity” and extract the property value to a string resource.

68.5

 Creating a Notification Channel

Before an app can send a notification, it must first create a notification channel. A notification channel consists of an ID that uniquely identifies the channel within the app, a channel name and a channel description (only the latter two of which will be seen by the user). Channels are created by configuring a NotificationChannel instance and then passing that object through to the createNotificationChannel()
 method of the NotificationManager class. For this example, the app will contain a single notification channel named “NotifyDemo News”. Edit the NotifyDemoActivty.
 kt
 file and implement code to create the channel when the app starts:

.

.

import android.app.NotificationChannel

import android.app.NotificationManager

import android.content.Context

import android.graphics.Color

class NotifyDemoActivity : AppCompatActivity() {

 private var notificationManager: NotificationManager? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_notify_demo)

 notificationManager =

 getSystemService(

 Context.NOTIFICATION_SERVICE) as NotificationManager

 createNotificationChannel(

 "com.ebookfrenzy.notifydemo.news",

 "NotifyDemo News",

 "Example News Channel")

 }

 private fun createNotificationChannel(id: String, name: String,

 description: String) {

 val importance = NotificationManager.IMPORTANCE_LOW

 val channel = NotificationChannel(id, name, importance)

 channel.description = description

 channel.enableLights(true)

 channel.lightColor = Color.RED

 channel.enableVibration(true)

 channel.vibrationPattern =

 longArrayOf(100, 200, 300, 400, 500, 400, 300, 200, 400)

 notificationManager?.createNotificationChannel(channel)

 }

}

The code declares and initializes a NotificationManager instance and then creates the new channel with a low importance level (other options are high, low, max, min and none) with the name and description properties configured. A range of optional settings are also added to the channel to customize the way in which the user is alerted to the arrival of a notification. These settings apply to all notifications sent to this channel. Finally, the channel is created by passing the notification channel object through to the createNotificationChannel()
 method of the notification manager instance.

With the code changes complete, compile and run the app on a device or emulator running Android 8 or later. After the app has launched, place it into the background and open the Settings app. Within the Settings app, select the Apps & notifications
 option followed by App info.
 On the App info screen locate and select the NotifyDemo project and, on the subsequent screen, tap the App notifications
 entry. The notification screen should list the NotifyDemo News category as being active for the user:

[image:]

Figure 68-7

Although not a requirement for this example, it is worth noting that a channel can be deleted from within the app via a call to the deleteNotificationChannel()
 method of the notification manager, passing through the ID of the channel to be deleted:

val channelID = "com.ebookfrenzy.notifydemo.news"

notificationManager?.deleteNotificationChannel(channelID)

68.6

 Creating and Issuing a Basic Notification

Notifications are created using the Notification.Builder class and must contain an icon, title and content. Open the NotifyDemoActivity.
 kt
 file and implement the sendNotification()
 method as follows to build a basic notification:

.

.

import android.app.Notification

import android.view.View

.

.

fun sendNotification(view: View) {

 val channelID = "com.ebookfrenzy.notifydemo.news"

 val notification = Notification.Builder(this@NotifyDemoActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .build()

}

Once a notification has been built, it needs to be issued using the notify()
 method of the NotificationManager instance. The code to access the NotificationManager and issue the notification needs to be added to the sendNotification()
 method as follows:

fun sendNotification(view: View) {

 val notificationID = 101

 val channelID = "com.ebookfrenzy.notifydemo.news"

 val notification = Notification.Builder(this@NotifyDemoActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .build()

 notificationManager?.notify(notificationID, notification)

}

Note that when the notification is issued, it is assigned a notification ID. This can be any integer and may be used later when updating the notification.

Compile and run the app and tap the button on the main activity. When the notification icon appears in the status bar, touch and drag down from the status bar to view the full notification:

[image:]

Figure 68-8

Click and slide right on the notification, then select the settings gear icon to view additional information about the notification:

[image:]

Figure 68-9

Next, place the app in the background, navigate to the home screen displaying the launcher icons for all of the apps and note that a notification badge has appeared on the NotifyDemo launcher icon as indicated by the arrow in Figure 68-10
 :

[image:]

Figure 68-10

Performing a long press over the launcher icon will display a popup containing the notification:

[image:]

Figure 68-11

If more than one notification is pending for an app, the long press menu popup will contain a count of the number of notifications (highlighted in the above figure). This number may be configured from within the app by making a call to the setNumber()
 method when building the notification:

val notification = Notification.Builder(this@NotifyDemoActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setNumber(10)

 .build()

As currently implemented, tapping on the notification has no effect regardless of where it is accessed. The next step is to configure the notification to launch an activity when tapped.

68.7

 Launching an Activity from a Notification

A notification should ideally allow the user to perform some form of action, such as launching the corresponding app, or taking some other form of action in response to the notification. A common requirement is to simply launch an activity belonging to the app when the user taps the notification.

This approach requires an activity to be launched and an Intent configured to launch that activity. Assuming an app that contains an activity named ResultActivity, the intent would be created as follows:

val resultIntent = Intent(this, ResultActivity::class.java)

This intent needs to then be wrapped in a PendingIntent instance. PendingIntent objects are designed to allow an intent to be passed to other applications, essentially granting those applications permission to perform the intent at some point in the future. In this case, the PendingIntent object is being used to provide the Notification system with a way to launch the ResultActivity activity when the user taps the notification panel:

val pendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_UPDATE_CURRENT)

All that remains is to assign the PendingIntent object during the notification build process using the setContentIntent()
 method.

Bringing these changes together results in a modified sendNotification()
 method which reads as follows:

.

.

import android.app.PendingIntent

import android.content.Intent

import android.graphics.drawable.Icon

.

.

class NotifyDemoActivity : AppCompatActivity() {

 fun sendNotification(view: View) {

 val notificationID = 101

 val resultIntent = Intent(this, ResultActivity::class.java)

 val pendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_UPDATE_CURRENT

)

 val channelID = "com.ebookfrenzy.notifydemo.news"

 val notification = Notification.Builder(this@NotifyDemoActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setContentIntent(pendingIntent)

 .build()

 notificationManager?.notify(notificationID, notification)

 }

.

.

Compile and run the app once again, tap the button and display the notification drawer. This time, however, tapping the notification will cause the ResultActivity to launch.

68.8

 Adding Actions to a Notification

Another way to add interactivity to a notification is to create actions. These appear as buttons beneath the notification message and are programmed to trigger specific intents when tapped by the user. The following code, if added to the sendNotification()
 method, will add an action button labeled “Open” which launches the referenced pending intent when selected:

val icon: Icon = Icon.createWithResource(this, android.R.drawable.ic_dialog_info)

val action: Notification.Action =

 Notification.Action.Builder(icon, "Open", pendingIntent).build()

val notification = Notification.Builder(this@NotifyDemoActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setContentIntent(pendingIntent)

 .setActions(action)

 .build()

notificationManager?.notify(notificationID, notification)

Add the above code to the method and run the app. Issue the notification and note the appearance of the Open action within the notification (depending on the Android version it may be necessary to pull down on the notification panel to reveal the Open action):

[image:]

Figure 68-12

Tapping the action will trigger the pending intend and launch the ResultActivity.

68.9

 Bundled Notifications

 If an app has a tendency to regularly issue notifications there is a danger that those notifications will rapidly clutter both the status bar and the notification drawer providing a less than optimal experience for the user. This can be particularly true of news or messaging apps that send a notification every time there is either a breaking news story or a new message arrives from a contact. Consider, for example, the notifications in Figure 68-13
 :

[image:]

Figure 68-13

Now imagine if ten or even twenty new messages had arrived. To avoid this kind of problem Android allows notifications to be bundled together into groups.

To bundle notifications, each notification must be designated as belonging to the same group via the setGroup()
 method, and an additional notification must be issued and configured as being the summary notification
 . The following code, for example, creates and issues the three notifications shown in Figure 68-13
 above, but bundles them into the same group. The code also issues a notification to act as the summary:

val GROUP_KEY_NOTIFY = "group_key_notify"

var builderSummary: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("A Bundle Example")

 .setContentText("You have 3 new messages")

 .setGroup(GROUP_KEY_NOTIFY)

 .setGroupSummary(true)

var builder1: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Kassidy")

 .setGroup(GROUP_KEY_NOTIFY)

var builder2: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Caitlyn")

 .setGroup(GROUP_KEY_NOTIFY)

var builder3: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Jason")

 .setGroup(GROUP_KEY_NOTIFY)

var notificationId0 = 100

var notificationId1 = 101

var notificationId2 = 102

var notificationId3 = 103

notificationManager?.notify(notificationId1, builder1.build())

notificationManager?.notify(notificationId2, builder2.build())

notificationManager?.notify(notificationId3, builder3.build())

notificationManager?.notify(notificationId0, builderSummary.build())

When the code is executed, a single notification icon will appear in the status bar even though four notifications have actually been issued by the app. Within the notification drawer, a single summary notification is displayed listing the information in each of the bundled notifications:

[image:]

Figure 68-14

Pulling further downward on the notification entry expands the panel to show the details of each of the bundled notifications:

[image:]

Figure 68-15

68.10

 Summary

Notifications provide a way for an app to deliver a message to the user when the app is not running, or is currently in the background. Notifications appear in the status bar and notification drawer. Local notifications are triggered on the device by the running app while remote notifications are initiated by a remote server and delivered to the device. Local notifications are created using the NotificationCompat.Builder class and issued using the NotificationManager service.

As demonstrated in this chapter, notifications can be configured to provide the user with options (such as launching an activity or saving a message) by making use of actions, intents and the PendingIntent class. Notification bundling provides a mechanism for grouping together notifications to provide an improved experience for apps that issue a greater number of notifications.

69.

 An Android Direct Reply Notification Tutorial

Direct reply

 is a feature introduced in Android 7 that allows the user to enter text into a notification and send it to the app associated with that notification. This allows the user to reply to a message in the notification without the need to launch an activity within the app. This chapter will build on the knowledge gained in the previous chapter to create an example app that makes use of this notification feature.

69.1

 Creating the DirectReply Project

Start Android Studio and create a new project, entering DirectReply
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the setup screens, requesting the creation of an Empty Activity named DirectReplyActivity
 with a corresponding layout file named activity_direct_reply.

69.2

 Designing the User Interface

Load the activity_direct_reply.xml
 layout file into the layout tool. With Autoconnect enabled, add a Button object beneath the existing “Hello World!” label. With the Button widget selected in the layout, use the Attributes tool window to set the onClick property to call a method named sendNotification
 . If necessary, use the Infer Constraints button to add any missing constraints to the layout.

[image:]

Figure 69-1

Before continuing, select the “Hello World!” TextView and change ID attribute to textView
 and modify the text on the button to read “Notify”.

69.3

 Creating the Notification Channel

As with the example in the previous chapter, a channel must be created before a notification can be sent. Edit the DirectReplyActivity.
 kt
 file and add code to create a new channel as follows:

.

.

import android.app.NotificationChannel

import android.app.NotificationManager

import android.content.Context

import android.graphics.Color

.

.

class DirectReplyActivity : AppCompatActivity() {

 private var notificationManager: NotificationManager? = null

 private val channelID = "com.ebookfrenzy.directreply.news"

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_direct_reply)

 notificationManager =

 getSystemService(

 Context.NOTIFICATION_SERVICE) as NotificationManager

 createNotificationChannel(channelID,

 "DirectReply News", "Example News Channel")

 }

 private fun createNotificationChannel(id: String,

 name: String, description: String) {

 val importance = NotificationManager.IMPORTANCE_HIGH

 val channel = NotificationChannel(id, name, importance)

 channel.description = description

 channel.enableLights(true)

 channel.lightColor = Color.RED

 channel.enableVibration(true)

 channel.vibrationPattern =

 longArrayOf(100, 200, 300, 400, 500, 400, 300, 200, 400)

 notificationManager?.createNotificationChannel(channel)

 }

.

.

}

69.4

 Building the RemoteInput Object

 The key element that makes direct reply in-line text possible within a notification is the RemoteInput class. The previous chapters introduced the PendingIntent
 class
 and explained the way in which it allows one application to create an intent and then grant other applications or services the ability to launch that intent from outside the original app. In that chapter, entitled
“An Android Notifications Tutorial”

 , a pending intent was created that allowed an activity in the original app to be launched from within a notification. The RemoteInput class allows a request for user input to be included in the PendingIntent object along with the intent. When the intent within the PendingIntent object is triggered, for example launching an activity, that activity is also passed any input provided by the user.

The first step in implementing direct reply within a notification is to create the RemoteInput object. This is achieved using the RemoteInput.Builder()
 method
 . To build a RemoteInput object, a key string is required that will be used to extract the input from the resulting intent. The object also needs a label string that will appear within the text input field of the notification. Edit the DirectReplyAction.
 kt
 file and begin implementing the sendNotification()
 method. Note also the addition of some import directives and variables that will be used later as the chapter progresses:

package com.ebookfrenzy.directreply

.

.

import android.content.Intent

import android.app.RemoteInput

import android.view.View

import android.app.PendingIntent

class DirectReplyActivity : AppCompatActivity() {

 private val notificationId = 101

 private val KEY_TEXT_REPLY = "key_text_reply"

 private var notificationManager: NotificationManager? = null

 private val channelID = "com.ebookfrenzy.directreply.news"

 fun sendNotification(view: View) {

 val replyLabel = "Enter your reply here"

 val remoteInput = RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

 .build()

 }

.

.

}

Now that the RemoteInput object has been created and initialized with a key and a label string it will need to be placed inside a notification action object. Before that step can be performed, however, the PendingIntent instance needs to be created.

69.5

 Creating the PendingIntent

The steps to creating the PendingIntent are the same as those outlined in the
“An Android Notifications Tutorial”

 chapter, with the exception that the intent will be configured to launch the main DirectReplyActivity activity. Remaining within the DirectReplyActivity.
 kt
 file, add the code to create the PendingIntent as follows:

fun sendNotification(view: View) {

 val replyLabel = "Enter your reply here"

 val remoteInput = RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

 .build()

 val resultIntent = Intent(this, DirectReplyActivity::class.java)

 val resultPendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_UPDATE_CURRENT

)

}

69.6

 Creating the Reply Action

The in-line reply will be accessible within the notification via an action button. This action now needs to be created and configured with an icon, a label to appear on the button, the PendingIntent object and the RemoteInput object. Modify the sendNotification()
 method to add the code to create this action:

.

.

import android.graphics.drawable.Icon

import android.app.Notification

.

.

fun sendNotification(view: View) {

 val replyLabel = "Enter your reply here"

 val remoteInput = RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

 .build()

 val resultIntent = Intent(this, DirectReplyActivity::class.java)

 val resultPendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_UPDATE_CURRENT

)

 val icon = Icon.createWithResource(this@DirectReplyActivity,

 android.R.drawable.ic_dialog_info)

 val replyAction = Notification.Action.Builder(

 icon,

 "Reply", resultPendingIntent)

 .addRemoteInput(remoteInput)

 .build()

 }

.

.

At this stage in the tutorial we have the RemoteInput, PendingIntent and Notification Action objects built and ready to be used. The next stage is to build the notification and issue it:

.

.

import android.support.v4.content.ContextCompat

.

.

fun sendNotification(view: View) {

 val replyLabel = "Enter your reply here"

 val remoteInput = RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

 .build()

 val resultIntent = Intent(this, DirectReplyActivity::class.java)

 val resultPendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_UPDATE_CURRENT

)

 val icon = Icon.createWithResource(this@DirectReplyActivity,

 android.R.drawable.ic_dialog_info)

 val replyAction = Notification.Action.Builder(

 icon,

 "Reply", resultPendingIntent)

 .addRemoteInput(remoteInput)

 .build()

 val newMessageNotification = Notification.Builder(this, channelID)

 .setColor(ContextCompat.getColor(this,

 R.color.colorPrimary))

 .setSmallIcon(

 android.R.drawable.ic_dialog_info)

 .setContentTitle("My Notification")

 .setContentText("This is a test message")

 .addAction(replyAction).build()

 val notificationManager = getSystemService(

 Context.NOTIFICATION_SERVICE) as NotificationManager

 notificationManager.notify(notificationId,

 newMessageNotification)

}

With the changes made, compile and run the app and test that tapping the button successfully issues the notification. When viewing the notification drawer, the notification should appear as shown in Figure 69-2
 :

[image:]

Figure 69-2

Tap the Reply action button so that the text input field appears displaying the reply label that was embedded into the RemoteInput object when it was created.

[image:]

Figure 69-3

Enter some text and tap the send arrow button located at the end of the input field.

69.7

 Receiving Direct Reply Input

Now that the notification is successfully seeking input from the user, the app needs to do something with that input. The goal of this particular tutorial is to have the text entered by the user into the notification appear on the TextView widget in the activity user interface.

When the user enters text and taps the send button the DirectReplyActivity activity is launched via the intent contained in the PendingIntent object. Embedded in this intent is the text entered by the user via the notification. Within the onCreate()
 method of the activity, a call to the getIntent()
 method will return a copy of the intent that launched the activity. Passing this through to the RemoteInput.getResultsFromIntent()
 method will, in turn, return a Bundle object containing the reply text which can be extracted and assigned to the TextView widget. This results in a modified onCreate()
 method within the DirectReplyActivity.
 kt
 file which reads as follows:

.

.

import kotlinx.android.synthetic.main.activity_direct_reply.*

.

.

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_direct_reply)

 notificationManager =

 getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager

 createNotificationChannel(channelID,

 "DirectReply News", "Example News Channel")

 handleIntent()

}

private fun handleIntent() {

 val intent = this.intent

 val remoteInput = RemoteInput.getResultsFromIntent(intent)

 if (remoteInput != null) {

 val inputString = remoteInput.getCharSequence(

 KEY_TEXT_REPLY).toString()

 textView.text = inputString

 }

}

.

.

After making these code changes build and run the app once again. Click the button to issue the notification and enter and send some text from within the notification panel. Note that the TextView widget in the DirectReplyActivity activity is updated to display the in-line text that was entered.

69.8

 Updating the Notification

 After sending the reply within the notification you may have noticed that the progress indicator continues to spin within the notification panel as highlighted in Figure 69-4
 :

[image:]

Figure 69-4

The notification is showing this indicator because it is waiting for a response from the activity confirming receipt of the sent text. The recommended approach to performing this task is to update the notification with a new message indicating that the reply has been received and handled. Since the original notification was assigned an ID when it was issued, this can be used once again to perform an update. Add the following code to the onCreate()
 method to perform this task:

private fun handleIntent() {

 val intent = this.intent

 val remoteInput = RemoteInput.getResultsFromIntent(intent)

 if (remoteInput != null) {

 val inputString = remoteInput.getCharSequence(

 KEY_TEXT_REPLY).toString()

 textView.text = inputString

 val repliedNotification = Notification.Builder(this, channelID)

 .setSmallIcon(

 android.R.drawable.ic_dialog_info)

 .setContentText("Reply received")

 .build()

 notificationManager?.notify(notificationId,

 repliedNotification)

 }

}

Test the app one last time and verify that the progress indicator goes away after the in-line reply text has been sent and that a new panel appears indicating that the reply has been received:

[image:]

Figure 69-5

69.9

 Summary

The direct reply notification feature allows text to be entered by the user within a notification and passed via an intent to an activity of the corresponding application. Direct reply is made possible by the RemoteInput class, an instance of which can be embedded within an action and bundled with the notification. When working with direct reply notifications, it is important to let the NotificationManager service know that the reply has been received and processed. The best way to achieve this is to simply update the notification message using the notification ID provided when the notification was first issued.

70.

 An Introduction to Android Multi-Window
 Support

Android 7 introduced a new feature in the form of multi-window support. Unlike previous versions of Android, multi-window support in Android 7 allowed more than one activity to be displayed on the device screen at one time. In this chapter, an overview of Android multi-window modes will be provided from both user and app developer perspectives.

Once the basics of multi-window support have been covered, the next chapter will work through a tutorial outlining the practical steps involved in working with multi-window mode when developing Android apps.

70.1

 Split-Screen
 , Freeform
 and Picture-in-Picture
 Modes

Multi-window support in Android provides three different forms of window support. Split-screen mode, available on most phone and tablet devices, provides a split screen environment where two activities appear either side by side or one above the other. A moveable divider is provided which, when dragged by the user, adjusts the percentage of the screen assigned to each of the adjacent activities:

[image:]

Figure 70-1

Freeform mode provides a windowing environment on devices with larger screens and is currently enabled at the discretion of the device manufacturer. Freeform differs from split-screen mode in that it allows each activity to appear in a separate, resizable window and is not limited to two activities being displayed concurrently. Figure 70-2
 , for example, shows a device in freeform mode with the Calculator and Contacts apps displayed in separate windows:

 [image:]

Figure 70-2

Picture-in-picture support, as the name suggests, allows video playback to continue in a smaller window while the user performs other tasks. At present this feature is only available on Android TV and, as such, is outside the scope of this book.

70.2

 Entering Multi-Window Mode

Split-screen mode can be entered by pressing and holding the square Overview button until the display switches mode. Once in split-screen mode, the Overview button will change to display two rectangles as shown in Figure 70-3
 and the current activity will fill one half of the screen. The Overview screen will appear in the adjacent half of the screen allowing the second activity to be selected for display:

 [image:]

Figure 70-3

Alternatively, an app may be placed in split-screen mode by displaying the Overview screen, pressing and holding the title bar of a listed app and then dragging and dropping the app onto the highlighted section of the screen.

To exit split-screen mode, simply drag the divider separating the two activities to a far edge so that only one activity fills the screen, or press and hold the Overview button until it reverts to a single square.

In the case of freeform mode, an additional button appears within the title bar of the apps when listed in the Overview screen. When selected, this button (highlighted in Figure 70-4
) causes the activity to appear in a freeform window:

[image:]

Figure 70-4

The additional button located in the title bar of a freeform activity (shown in Figure 70-5
) may be pressed to return the activity to full screen mode:

[image:]

Figure 70-5

70.3

 Enabling Freeform Support

Although not officially supported on all devices, it is possible to enable freeform multi-window mode on large screen devices and emulators. To enable this mode, run the following adb command while the emulator is running, or the device is connected:

adb shell settings put global enable_freeform_support 1

After making this change, it may be necessary to reboot the device before the setting takes effect.

70.4

 Checking for Freeform Support

As outlined earlier in the chapter, Google is leaving the choice of whether to enable freeform multi-window mode to the individual Android device manufacturers. Since it only makes sense to use freeform on larger devices, there is no guarantee that freeform will be available on every device on which an app is likely to run. Fortunately all of the freeform specific methods and attributes are ignored by the system if freeform mode is not available on a device, so using these will not cause the app to crash on a non-freeform device. Situations might arise, however, where it may be useful to be able to detect if a device supports freeform multi-window mode. Fortunately, this can be achieved by checking for the freeform window management feature in the package manager. The following code example checks for freeform multi-window support and returns a Boolean value based on the result of the test:

fun checkFreeform(): Boolean {

 return packageManager.hasSystemFeature(

 PackageManager.FEATURE_FREEFORM_WINDOW_MANAGEMENT)

}

70.5

 Enabling Multi-Window Support
 in an App

The android:resizableActivity
 manifest file setting controls whether multi-window behavior is supported by an app. This setting can be made at either the application or individual activity levels. The following fragment, for example, configures the activity named MainActivity to support both split-screen and freeform multi-window modes:

<activity

 android:name=".MainActivity"

 android:resizeableActivity="true"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

Setting the property to false will prevent the activity from appearing in split-screen or freeform mode. Launching an activity for which multi-window support is disabled will result in a message appearing indicating that the app does not support multi-window mode and the activity filling the entire screen. When a device is in multi-window mode, the title bar of such activities will also display a message within the Overview screen indicating that multi-window mode is not supported by the activity (Figure 70-6
):

[image:]

Figure 70-6

70.6

 Specifying Multi-Window
 Attributes

A number of attributes are available as part of the <layout> element for specifying the size and placement of an activity when it is launched into a multi-window mode. The initial height, width and position of an activity when launched in freeform mode may be specified using the following attributes:

•
 android:defaultWidth
 – Specifies the default width of the activity.

•
 android:defaultHeight
 – Specifies the default height of the activity.

•
 android:gravity
 – Specifies the initial position of the activity (start, end, left, right, top etc.).

Note that the above attributes apply to the activity only when it is displayed in freeform mode. The following example configures an activity to appear with a specific height and width at the top of the starting edge of the screen:

<activity android:name=".MainActivity ">

 <layout android:defaultHeight="350dp"

 android:defaultWidth="450dp"

 android:gravity="start|end" />

</activity>

The following <layout> attributes may be used to specify the minimum width and height to which an activity may be reduced in either split-view or freeform modes:

•
 android:minimalHeight
 – Specifies the minimum height to which the activity may be reduced while in split-screen or freeform mode.

•
 android:minimalWidth
 - Specifies the minimum width to which the activity may be reduced while in split-screen or freeform mode.

When the user slides the split-screen divider beyond the minimal height or width boundaries, the system will stop resizing the layout of the shrinking activity and simply clip the user interface to make room for the adjacent activity.

The following manifest file fragment implements the minimal width and height attributes for an activity:

<activity android:name=".MainActivity ">

 <layout android:minimalHeight="400dp"

 android:minimalWidth="290dp" />

</activity>

70.7

 Detecting Multi-Window Mode
 in an Activity

Situations may arise where an activity needs to detect whether it is currently being displayed to the user in multi-window mode. The current status can be obtained via a call to the isInMultiWindowMode()
 method of the Activity class. When called, this method returns a true or false value depending on whether or not the activity is currently full screen:

if (this.isInMultiWindowMode()) {

 // Activity is running in Multi-Window mode

} else {

 // Activity is not in Multi-Window mode

}

70.8

 Receiving Multi-Window Notifications

An activity will receive notification that it is entering or exiting multi-window mode if it overrides the onMultiWindowModeChanged()
 callback method. The first argument passed to this method is true on entering multi-window mode, and false when the activity exits the mode. The new configuration settings are contained within the Configuration object passed as the second argument:

override fun onMultiWindowModeChanged(isInMultiWindowMode: Boolean,

 newConfig: Configuration?) {

 super.onMultiWindowModeChanged(isInMultiWindowMode, newConfig)

 if (isInMultiWindowMode) {

 // Activity has entered multi-window mode

 } else {

 // Activity has exited multi-window mode

 }

}

70.9

 Launching an Activity in Multi-Window Mode

In the
“Android Explicit Intents – A Worked Example”

 chapter of this book, an example app was created in which an activity uses an intent to launch a second activity. By default, activities launched via an intent are considered to reside in the same task stack
 as the originating activity. An activity can, however, be launched into a new task stack by passing through the appropriate flags with the intent.

When an activity in multi-window mode launches another activity within the same task stack, the new activity replaces the originating activity within the split-screen or freeform window (the user returns to the original activity via the back button).

When launched into a new task stack in split-screen mode, however, the second activity will appear in the window adjacent to the original activity, allowing both activities to be viewed simultaneously. In the case of freeform mode, the launched activity will appear in a separate window from the original activity.

In order to launch an activity into a new task stack, the following flags must be set on the intent before it is started:

•
 Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT

•
 Intent.FLAG_ACTIVITY_MULTIPLE_TASK

•
 Intent.FLAG_ACTIVITY_NEW_TASK

The following code, for example, configures and launches a second activity designed to appear in a separate window:

val i = Intent(this, SecondActivity::class.java)

i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT or

 Intent.FLAG_ACTIVITY_MULTIPLE_TASK or

 Intent.FLAG_ACTIVITY_NEW_TASK)

startActivity(i)

70.10

 Configuring Freeform Activity Size and Position

By default, an activity launched into a different task stack while in freeform mode will be positioned in the center of the screen at a size dictated by the system. The location and dimensions of this window can be controlled by passing launch bounds
 settings to the intent via the ActivityOptions
 class. The first step in this process is to create a Rect
 object configured with the left (X), top (Y), right (X) and bottom (Y) coordinates of the rectangle representing the activity window. The following code, for example, creates a Rect object in which the top-left corner is positioned at coordinate (0, 0) and the bottom-right at (100, 100):

val rect = Rect(0, 0, 100, 100)

The next step is to create a basic instance of the ActivityOptions class and initialize it with the Rect settings via the setLaunchBounds()
 method:

val options = ActivityOptions.makeBasic()

val bounds = options.setLaunchBounds(rect)

Finally, the ActivityOptions instance is converted to a Bundle object and passed to the startActivity()
 method along with the Intent object:

startActivity(i, bounds.toBundle())

Combining these steps results in a code sequence that reads as follows:

val i = Intent(this, SecondActivity::class.java)

i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT or

 Intent.FLAG_ACTIVITY_MULTIPLE_TASK or

 Intent.FLAG_ACTIVITY_NEW_TASK)

val rect = Rect(0, 0, 100, 100)

val options = ActivityOptions.makeBasic()

val bounds = options.setLaunchBounds(rect)

startActivity(i, bounds.toBundle())

When the second activity is launched by the intent while the originating activity is in freeform mode, the new activity window will appear with the location and dimensions defined in the Rect object.

70.11

 Summary

Android 7 introduced multi-window support, a system whereby more than one activity is displayed on the screen at any one time. The three modes provided by multi-window support are split-screen, freeform and picture-in-picture. In split-screen mode, the screen is split either horizontally or vertically into two panes with an activity displayed in each pane. Freeform mode, which is only supported on certain Android devices, allows each activity to appear in a separate, movable and resizable window. Picture-in-picture mode is only available on Android TV and allows video playback to continue in a small window while the user is performing other tasks.

As outlined in this chapter, a number of methods and property settings are available within the Android SDK to detect, respond to and control multi-window behavior within an app.

71.

 An Android Studio Multi-Window Split-Screen and Freeform Tutorial

With the basics of Android multi-window support covered in the previous chapter, this chapter will work through the steps involved in implementing multi-window support within an Android app. This project will be used to demonstrate the steps involved in configuring and managing both split-screen and freeform behavior within a multi-activity app.

71.1

 Creating the Multi-Window
 Project

Start Android Studio and create a new project, entering MultiWindow
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the remaining setup screens, requesting the creation of an Empty Activity named FirstActivity
 with a corresponding layout file named activity_first.

71.2

 Designing the FirstActivity User Interface

The user interface will need to be comprised of a single Button and a TextView. Within the Project tool window, navigate to the activity_first.xml
 layout file located in app -> res -> layout
 and double-click on it to load it into the Layout Editor tool.

With Autoconnect mode enabled, drag a Button object and position it beneath the default TextView. Edit the text on the Button so that it reads “Launch”. If any constraints are missing from the layout, simply click on the Infer Constraints button in the Layout Editor toolbar to add them. On completion of these steps, the layout should resemble that shown in Figure 71-1
 :

[image:]

Figure 71-1

In the attributes panel, change the widget ID for the TextView to myTextView
 and assign an onClick
 property to the button so that it calls a method named launchIntent
 when selected by the user.

71.3

 Adding the Second Activity

The second activity will be launched when the user clicks on the button in the first activity. Add this new activity by right-clicking on the com.ebookfrenzy.multiwindow
 package name located in app -> java
 and select the New -> Activity -> Empty Activity
 menu option to display the New Android Activity
 dialog.

Enter SecondActivity
 into the Activity Name and Title fields and name the layout file activity_second.
 Since this activity will not be started when the application is launched (it will instead be launched via an intent by FirstActivity when the button is pressed), it is important to make sure that the Launcher Activity
 option is disabled before clicking on the Finish button.

Open the layout for the second activity (app -> res -> layout -> activity_second.xml
) and drag and drop a TextView widget so that it is positioned in the center of the layout. Edit the text of the TextView so that it reads “Second Activity”:

[image:]

Figure 71-2

71.4

 Launching the Second Activity

The next step is to add some code to the FirstActivity.
 kt
 class file to implement the launchIntent()
 method. Edit the FirstActivity.
 kt
 file and implement this method as follows:

package com.ebookfrenzy.multiwindow

.

.

import android.content.Intent

import android.view.View

.

.

class FirstActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_first)

 }

 fun launchIntent(view: View) {

 val i = Intent(this, SecondActivity::class.java)

 startActivity(i)

 }

}

Compile and run the app and verify that the second activity is launched when the Launch button is clicked.

71.5

 Enabling Multi-Window Mode

Edit the AndroidManifest.xml
 file and add the directive to enable multi-window support for the app as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.multiwindow">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity

 android:name=".FirstActivity"

 android:resizeableActivity="true"
 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".SecondActivity"></activity>

 </application>

</manifest>

Note that, at the time of writing, multi-window support is enabled by default. The above step, however, is recommended for the purposes of completeness and to defend against the possibility that this default behavior may change in the future.

71.6

 Testing Multi-Window Support

Build and run the app once again and, once running, press and hold the Overview button as outlined in the previous chapter to switch to split-screen mode. From the Overview screen in the second half of the screen, choose an app to appear in the adjacent panel:

[image:]

Figure 71-3

Click on the Launch button and note that the second activity appears in the same panel as the first activity.

If the app is running on a device or emulator session that supports freeform mode, or on which freeform mode has been enabled as outlined in the previous chapter, press and hold the Overview button a second time until multi-window mode exits. Click on the Overview button once again and, in the resulting Overview screen, select the freeform button located in the title bar of the MultiWindow app as outlined in Figure 71-4
 :

[image:]

Figure 71-4

Once selected, the activity should appear in freeform mode as illustrated in Figure 71-5
 :

[image:]

Figure 71-5

Click on the Launch button and note that, once again, the second activity appears in place of the first rather than in a separate window.

In order for the second activity to appear in a different split-screen panel or freeform window, the intent must be launched with the appropriate flags set.

71.7

 Launching the Second Activity in a Different Window

To prevent the second activity from replacing the first activity the launchIntent()
 method needs to be modified to launch the second activity in a different task stack as follows:

fun launchIntent(view: View) {

 val i = Intent(this, SecondActivity::class.java)

 i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT or

 Intent.FLAG_ACTIVITY_MULTIPLE_TASK or

 Intent.FLAG_ACTIVITY_NEW_TASK)

 startActivity(i)

}

After making this change, rerun the app, enter split-screen mode and launch the second activity. The second activity should now appear in the panel adjacent to the first activity:

[image:]

Figure 71-6

Repeat the steps from the previous section to enter freeform mode and verify that the second activity appears in a separate window from the first as shown in Figure 71-7
 :

[image:]

Figure 71-7

71.8

 Summary

This chapter has demonstrated some of the basics of enabling and working with multi-window support within an Android app through the implementation of an example project. In particular, this example has focused on enabling multi-window support and launching a second activity into a new task stack.

72.

 An Overview of Android SQLite
 Databases

Mobile applications that do not need to store at least some amount of persistent data are few and far between. The use of databases is an essential aspect of most applications, ranging from applications that are almost entirely data driven, to those that simply need to store small amounts of data such as the prevailing score of a game.

The importance of persistent data storage becomes even more evident when taking into consideration the somewhat transient lifecycle of the typical Android application. With the ever-present risk that the Android runtime system will terminate an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key factor in the design and implementation of any application development strategy.

This chapter will provide an overview of the SQLite database management system bundled with the Android operating system, together with an outline of the Android SDK classes that are provided to facilitate persistent SQLite based database storage from within an Android application. Before delving into the specifics of SQLite in the context of Android development, however, a brief overview of databases and SQL will be covered.

72.1

 Understanding Database Tables

Database Tables
 provide the most basic level of data structure in a database. Each database can contain multiple tables and each table is designed to hold information of a specific type. For example, a database may contain a customer
 table that contains the name, address and telephone number for each of the customers of a particular business. The same database may also include a products
 table used to store the product descriptions with associated product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name, once assigned to a table in one database, may not be used for another table except within the context of another database.

72.2

 Introducing Database Schema

Database Schemas
 define the characteristics of the data stored in a database table. For example, the table schema for a customer database table might define that the customer name is a string of no more than 20 characters in length, and that the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables contained in each database.

72.3

 Columns and Data Types

It is helpful at this stage to begin to view a database table as being similar to a spreadsheet where data is stored in rows and columns.

Each column represents a data field in the corresponding table. For example, the name, address and telephone data fields of a table are all columns
 .

Each column, in turn, is defined to contain a certain type of data. A column designed to store numbers would, therefore, be defined as containing numerical data.

72.4

 Database Rows

Each new record that is saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table is equivalent to a row in a spreadsheet and each column contains the data for each customer (name, address, telephone etc). When a new customer is added to the table, a new row is created and the data for that customer stored in the corresponding columns of the new row.

Rows
 are also sometimes referred to as records
 or entries
 and these terms can generally be used interchangeably.

72.5

 Introducing Primary Keys

 Each database table should contain one or more columns that can be used to identify each row in the table uniquely. This is known in database terminology as the Primary Key
 . For example, a table may use a bank account number column as the primary key. Alternatively, a customer table may use the customer’s social security number as the primary key.

Primary keys allow the database management system to identify a specific row in a table uniquely. Without a primary key it would not be possible to retrieve or delete a specific row in a table because there can be no certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last name had been defined as the primary key. Imagine then the problem that might arise if more than one customer named “Smith” were recorded in the database. Without some guaranteed way to identify a specific row uniquely, it would be impossible to ensure the correct data was being accessed at any given time.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary key, no two rows can contain matching primary key values. When using multiple columns to construct a primary key, individual column values do not need to be unique, but all the columns’ values combined together must be unique.

72.6

 What is SQLite
 ?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle, SQL Server and MySQL being prime examples) are standalone server processes that run independently, and in cooperation with, applications that require database access. SQLite is referred to as embedded
 because it is provided in the form of a library that is linked into applications. As such, there is no standalone database server running in the background. All database operations are handled internally within the application through calls to functions contained in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a widely deployed database solution.

SQLite is written in the C programming language and as such, the Android SDK provides a Java based “wrapper” around the underlying database interface. This essentially consists of a set of classes that may be utilized within the Java or Kotlin code of an application to create and manage SQLite based databases.

For additional information about SQLite refer to
https://www.sqlite.org

 .

72.7

 Structured Query Language
 (SQL
)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is usually abbreviated to SQL and pronounced sequel
 . SQL is a standard language used by most relational database management systems. SQLite conforms mostly to the SQL-92 standard.

SQL is essentially a very simple and easy to use language designed specifically to enable the reading and writing of database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is more or less identical between most DBMS implementations, so having learned SQL for one system, it is likely that your skills will transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the scope of this book. There are, however, many other resources that provide a far better overview of SQL than we could ever hope to provide in a single chapter here.

72.8

 Trying SQLite
 on an Android Virtual Device (AVD)

For readers unfamiliar with databases in general and SQLite in particular, diving right into creating an Android application that uses SQLite may seem a little intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an interactive environment for issuing SQL commands from within an adb shell
 session connected to a running Android AVD emulator instance. This is both a useful way to learn about SQLite and SQL, and also an invaluable tool for identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved from within Android Studio by launching the Android Virtual Device Manager (Tools -> AVD Manager
), selecting a previously configured AVD and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator using the adb
 command-line tool as follows (note that the –e flag directs the tool to look for an emulator with which to connect, rather than a physical device):

adb –e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered. Begin by obtaining super user privileges using the su
 command:

Generic_x86:/ su

root@android:/ #

If a message appears indicating that super user privileges are not allowed, it is likely that the AVD instance includes Google Play support. To resolve this create a new AVD and, on the “Choose a device definition” screen, select a device that does not have a marker in the “Play Store” column.

Data stored in SQLite databases are actually stored in database files on the file system of the Android device on which the application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example.MyDBApp
 creates a database named mydatabase.db
 , the path to the file on the device would read as follows:

/data/data/com.example.MyDBApp/databases/mydatabase.
 db

For the purposes of this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

root@android:/data/data/databases # sqlite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite>

At the sqlite>
 prompt, commands may be entered to perform tasks such as creating tables and inserting and retrieving data. For example, to create a new table in our database with fields to hold ID, name, address and phone number fields the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address text, phone text);

Note that each row in a table should have a primary key
 that is unique to that row. In the above example, we have designated the ID field as the primary key, declared it as being of type integer
 and asked SQLite to increment the number automatically each time a row is added. This is a common way to make sure that each row has a unique primary key. On most other platforms, the choice of name for the primary key is arbitrary. In the case of Android, however, it is essential that the key be named _id
 in order for the database to be fully accessible using all of the Android database related classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables
 statement:

sqlite> .tables

contacts

To insert records into the table:

sqlite> insert into contacts (name, address, phone) values ("Bill Smith", "123 Main Street, California", "123-555-2323");

sqlite> insert into contacts (name, address, phone) values ("Mike Parks", "10 Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|123-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sqlite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sqlite> .exit

When running an Android application in the emulator environment, any database files will be created on the file system of the emulator using the previously discussed path convention. This has the advantage that you can connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool and perform tasks on the data to identify possible problems occurring in the application code.

It is also important to note that, while it is possible to connect with an adb shell to a physical Android device, the shell is not granted sufficient privileges by default to create and manage SQLite databases. Debugging of database problems is, therefore, best performed using an AVD session.

72.9

 The Android
 Room Persistence Library

SQLite is, as previously mentioned, written in the C programming language while Android applications are primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included a set of classes that provide a layer on top of the SQLite database management system. Although still available in the SDK, use of these classes still involved writing a considerable amount of code and did not take advantage of the new architecture guidelines and features such as LiveData and lifecycle management. To address these shortcomings, the Android Jetpack Architecture Components include the Room persistent library. This library provides a high level interface on top of the SQLite database system that make it easy to store data locally on Android devices with minimal coding while also conforming to the recommendations for modern application architecture.

The next few chapters will provide an overview and tutorial of SQLite database management using the Room persistence library.

72.10

 Summary

SQLite is a lightweight, embedded relational database management system that is included as part of the Android framework and provides a mechanism for implementing organized persistent data storage for Android applications. When combined with the Room persistence library, Android provides a modern way to implement data storage from within an Android app.

The goal of this chapter was to provide an overview of databases in general and SQLite in particular within the context of Android application development. The next chapters will provide an overview of the Room persistence library, after which we will work through the creation of an example application.

73.

 The Android
 Room Persistence Library

Included with the Android Architecture Components, the Room persistence library is designed specifically to make it easier to add database storage support to Android apps in a way that is consistent with the Android architecture guidelines. With the basics of SQLite databases covered in the previous chapter, this chapter will explore the basic concepts behind Room-based database management, the key elements that work together to implement Room support within an Android app and how these are implemented in terms of architecture and coding. Having covered these topics, the next two chapters will put this theory into practice in the form of an example Room database project.

73.1

 Revisiting Modern App Architecture

The chapter entitled
“Modern Android App Architecture with Jetpack”

 introduced the concept of modern app architecture and stressed the importance of separating different areas of responsibility within an app. The diagram illustrated in Figure 73-1
 outlines the recommended architecture for a typical Android app:

[image:]

Figure 73-1

With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is now time to begin exploration of the repository and database architecture levels in the context of the Room persistence library.

73.2

 Key Elements of
 Room Database Persistence

Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in working with SQLite databases using the Room persistence library:

73.2.1

 Repository

As previously discussed, the repository module contains all of the code necessary for directly handling all data sources used by the app. This avoids the need for the UI controller and ViewModel to contain code that directly accesses sources such as databases or web services.

73.2.2

 Room Database

The room database object provides the interface to the underlying SQLite database. It also provides the repository with access to the Data Access Object (DAO). An app should only have one room database instance which may then be used to access multiple database tables.

73.2.3

 Data Access Object (DAO)

The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within the SQLite database. These SQL statements are mapped to methods which are then called from within the repository to execute the corresponding query.

73.2.4

 Entities

An entity is a class that defines the schema for a table within the database and defines the table name, column names and data types, and identifies which column is to be the primary key. In addition to declaring the table schema, entity classes also contain getter and setter methods that provide access to these data fields. The data returned to the repository by the DAO in response to the SQL query method calls will take the form of instances of these entity classes. The getter methods will then be called to extract the data from the entity object. Similarly, when the repository needs to write new records to the database, it will create an entity instance, configure values on the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to be saved.

73.2.5

 SQLite Database

The actual SQLite database responsible for storing and providing access to the data. The app code, including the repository, should never make direct access to this underlying database. All database operations are performed using a combination of the room database, DAOs and entities.

The architecture diagram in Figure 73-2
 illustrates the way in which these different elements interact to provide Room-based database storage within an Android app:

[image:]

Figure 73-2

The numbered connections in the above architecture diagram can be summarized as follows:

1.
 The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain references to DAO instances.

2.
 The repository creates entity instances and configures them with data before passing them to the DAO for use in search and insertion operations.

3.
 The repository calls methods on the DAO passing through entities to be inserted into the database and receives entity instances back in response to search queries.

4.
 When a DAO has results to return to the repository it packages those results into entity objects.

5.
 The DAO interacts with the Room Database to initiate database operations and handle results.

6.
 The Room Database handles all of the low level interactions with the underlying SQLite database, submitting queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is now time to explore entities, DAOs, room databases and repositories in more detail.

73.3

 Understanding
 Entities

Each database table will have associated with it an entity class. This class defines the schema for the table and takes the form of a standard Kotlin class interspersed with some special Room annotations. An example Kotlin class declaring the data to be stored within a database table might read as follows:

class Customer {

 var id: Int = 0

 var name: String? = null

 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {

 this.id = id

 this.name = name

 this.address = address

 }

 constructor(name: String, address: String) {

 this.name = name

 this.address = address

 }

}

As currently implemented, the above code declares a basic Kotlin class containing a number of variables representing database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To make this class into an entity and to make it accessible within SQL statements, some Room annotations need to be added as follows:

@Entity(tableName = "customers")

class Customer {

 @PrimaryKey(autoGenerate = true)

 @NonNull

 @ColumnInfo(name = "customerId")

 var id: Int = 0

 @ColumnInfo(name = "customerName")

 var name: String? = null

 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {

 this.id = id

 this.name = name

 this.address = address

 }

 constructor(name: String, address: String) {

 this.name = name

 this.address = address

 }

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of “customers”. This is the name by which the table will be referenced in the DAO SQL statements:

@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated. This means that the id assigned to new records will be automatically generated by the system to avoid duplicate keys.

@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "customerId")

var id: Int = 0

A column name is also assigned to the customer name field. Note, however, that no column name was assigned to the address field. This means that the address data will still be stored within the database, but that it is not required to be referenced in SQL statements. If a field within an entity is not required to be stored within a database, simply use the @Ignore annotation:

@Ignore

var MyString: String? = null

Annotations may also be included within an entity class to establish relationships with other entities using a relational database concept referred to as foreign keys
 . Foreign keys allow a table to reference the primary key in another table. For example, a relationship could be established between an entity named Purchase and our existing Customer entity as follows:

@Entity(ForeignKeys = @ForeignKey(entity = Customer.class,

 parentColumns = "id", childColumns = "purchaseId"))

class Purchase {

 @PrimaryKey(autoGenerate = true)

 @NonNull

 @ColumnInfo(name = "purchaseId")

 var int id: Int = 0

 @ColumnInfo(name = "productName")

 var name: String? = null

.

.

}

73.4

 Data Access Objects

A Data Access Object provides a way to access the data stored within a SQLite database. A DAO is declared as a standard Kotlin interface with some additional annotations that map specific SQL statements to methods that may then be called by the repository.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:

@Dao

interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method named getAllCustomers()
 :

@Dao

interface CustomerDao {

 @Query("SELECT * FROM customers")

 fun getAllCustomers: LiveData<List<Customer>>

}

Note that the getAllCustomers()
 method returns a List object containing a Customer entity object for each record retrieved from the database table. The DAO is also making use of LiveData so that the repository is able to observe changes to the database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements. Consider the following DAO declaration which searches for database records matching a customer’s name (note that the column name referenced in the WHERE condition is the name assigned to the column in the entity class):

@Query("SELECT * FROM customers WHERE name = :customerName")

fun findCustomer(customerName: String): List<Customer>

In this example, the method is passed a string value which is, in turn, included within an SQL statement by prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation
 :

@Insert

fun addCustomer(Customer customer)

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer entity passed to the addCustomer()
 method is to be inserted into the database without the need for the SQL insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:

@Insert

fun insertCustomers(Customer... customers)

The following DAO declaration deletes all records matching the provided customer name:

@Query("DELETE FROM customers WHERE name = :name")

fun deleteCustomer(String name)

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation may also be used. In the following example, all of the Customer records that match the set of entities passed to the deleteCustomers()
 method will be deleted from the database:

@Delete

fun deleteCustomers(Customer... customers)

The @Update convenience annotation provides similar behavior when updating records:

@Update

fun updateCustomers(Customer... customers)

The DAO methods for these types of database operations may also be declared to return an int value indicating the number of rows affected by the transaction, for example:

@Delete

fun deleteCustomers(Customer... customers): int

73.5

 The Room Database

The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the actual SQLite database embedded into the Android operating system. The class is responsible for creating and returning a new room database instance and for providing access to the DAO instances associated with the database.

The Room persistence library provides a database builder for creating database instances. Each Android app should only have one room database instance, so it is best to implement defensive code within the class to prevent more than one instance being created.

An example Room Database implementation for use with the example customer table is outlined in the following code listing:

import android.content.Context

import android.arch.persistence.room.Database

import android.arch.persistence.room.Room

import android.arch.persistence.room.RoomDatabase

@Database(entities = [(Customer::class)], version = 1)

abstract class CustomerRoomDatabase: RoomDatabase() {

 abstract fun customerDao(): CustomerDao

 companion object {

 private var INSTANCE: CustomerRoomDatabase? = null

 internal fun getDatabase(context: Context): CustomerRoomDatabase? {

 if (INSTANCE == null) {

 synchronized(CustomerRoomDatabase::class.java) {

 if (INSTANCE == null) {

 INSTANCE =

 Room.databaseBuilder<CustomerRoomDatabase>(

 context.applicationContext,

 CustomerRoomDatabase::class.java,

 "customer_database").build()

 }

 }

 }

 return INSTANCE

 }

 }

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities with which the database is to work, the code to check that an instance of the class has not already been created and assignment of the name “customer_database” to the instance.

73.6

 The Repository

The repository is responsible for getting a Room Database instance, using that instance to access associated DAOs and then making calls to DAO methods to perform database operations. A typical constructor for a repository designed to work with a Room Database might read as follows:

class CustomerRepository(application: Application) {

 private var customerDao: CustomerDao?

 init {

 val db: CustomerRoomDatabase? =

 CustomerRoomDatabase.getDatabase(application)

 customerDao = db?.customerDao()

 }

.

.

Once the repository has access to the DAO, it can make calls to the data access methods. The following code, for example, calls the getAllCustomers()
 DAO method:

val allCustomers: LiveData<List<Customer>>?

allCustomers = customerDao.getAllCustomers()

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread. In fact, attempting to do so will cause the app to crash with the following diagnostic output:

Cannot access database on the main thread since it may potentially lock the UI for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled
“An Android Room Database and Repository Tutorial”

 , this problem can be easily resolved by making use of the AsyncTask class (for more information or a reminder of how to use AsyncTask, refer back to the chapter entitled
“A Basic Overview of Threads and AsyncTasks”

).

73.7

 In-Memory Databases

The examples outlined in this chapter involved the use of a SQLite database that exists as a database file on the persistent storage of an Android device. This ensures that the data persists even after the app process is terminated.

The Room database persistence library also supports in-memory
 databases. These databases reside entirely in memory and are lost when the app terminates. The only change necessary to work with an in-memory database is to call the Room.inMemoryDatabaseBuilder()
 method of the Room Database class instead of Room.databaseBuilder()
 . The following code shows the difference between the method calls (note that the in-memory database does not require a database name):

// Create a file storage based database

INSTANCE = Room.databaseBuilder<CustomerRoomDatabase>(context.applicationContext,

 CustomerRoomDatabase::class.java, "customer_database")

 .build()

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder<CustomerRoomDatabase>(

 context.getApplicationContext(),

 CustomerRoomDatabase.class)

 .build()

73.8

 Summary

The Android Room persistence library is bundled with the Android Architecture Components and acts as an abstract layer above the lower level SQLite database. The library is designed to make it easier to work with databases while conforming to the Android architecture guidelines. This chapter has introduced the different elements that interact to build Room-based database storage into Android app projects including entities, repositories, data access objects, annotations and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example app that puts this theory into practice. Since the user interface for the example application will require a forms based layout, the next chapter, entitled
“An Android TableLayout and TableRow Tutorial”

 , will detour slightly from the core topic by introducing the basics of the TableLayout and TableRow views.

74.

 An Android TableLayout
 and TableRow
 Tutorial

When the work began on the next chapter of this book (
“An Android Room Database and Repository Tutorial”

) it was originally intended that it would include the steps to design the user interface layout for the Room database example application. It quickly became evident, however, that the best way to implement the user interface was to make use of the Android TableLayout and TableRow views and that this topic area deserved a self-contained chapter. As a result, this chapter will focus solely on the user interface design of the database application to be completed in the next chapter, and in doing so, take some time to introduce the basic concepts of table layouts in Android Studio.

74.1

 The TableLayout and TableRow Layout Views

The purpose of the TableLayout container view is to allow user interface elements to be organized on the screen in a table format consisting of rows and columns. Each row within a TableLayout is occupied by a TableRow instance which, in turn, is divided into cells, with each cell containing a single child view (which may itself be a container with multiple view children).

The number of columns in a table is dictated by the row with the most columns and, by default, the width of each column is defined by the widest cell in that column. Columns may be configured to be shrinkable or stretchable (or both) such that they change in size relative to the parent TableLayout. In addition, a single cell may be configured to span multiple columns.

Consider the user interface layout shown in Figure 74-1
 :

[image:]

Figure 74-1

From the visual appearance of the layout, it is difficult to identify the TableLayout structure used to design the interface. The hierarchical tree illustrated in Figure 74-2
 , however, makes the structure a little easier to understand:

[image:]

Figure 74-2

Clearly, the layout consists of a parent LinearLayout view with TableLayout, LinearLayout and RecyclerView children. The TableLayout contains three TableRow children representing three rows in the table. The TableRows contain two child views, with each child representing the contents of a table column cell. The LinearLayout child view contains three Button children.

The layout shown in Figure 74-2
 is the exact layout that is required for the database example that will be completed in the next chapter. The remainder of this chapter, therefore, will be used to work step by step through the design of this user interface using the Android Studio Layout Editor tool.

74.2

 Creating the Room Database Project

Start Android Studio and create a new project, entering RoomDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the setup screens, requesting the Fragment+ViewModel option and using the default activity, fragment and view model names.

74.3

 Converting to a LinearLayout

Locate the main_fragment.xml
 file in the Project tool window (app -> res -> layout
) and double-click on it to load it into the Layout Editor tool. By default, Android Studio has used a ConstraintLayout as the root layout element in the user interface. This needs to be converted to a vertically oriented LinearLayout. With the Layout Editor tool in Design mode, locate the main
 ConstraintLayout component in the Component tree and right-click on it to display the menu shown in Figure 74-3
 and select the Convert View...
 option:

[image:]

Figure 74-3

In the resulting dialog (Figure 74-4
) select the option to convert to a LinearLayout before clicking on the Apply button:

[image:]

Figure 74-4

By default, the layout editor will have converted the ConstraintLayout to a horizontal LinearLayout so select the layout component in the Component Tree window, refer to the Attributes tool window and change the orientation property to vertical
 :

[image:]

Figure 74-5

With the conversion complete, select and delete the default TextView widget from the layout.

74.4

 Adding the TableLayout to the User Interface

Remaining in the main_fragment.xml
 file and referring to the Layouts category of the Palette, drag and drop a TableLayout view so that it is positioned at the top of the LinearLayout canvas area.

Once these initial steps are complete, the Component Tree for the layout should resemble that shown in Figure 74-6
 .

[image:]

Figure 74-6

Clearly, Android Studio has automatically added four TableRow instances to the TableLayout. Since only three rows are required for this example, select and delete the fourth TableRow instance. Additional rows may be added to the TableLayout at any time by dragging the TableRow object from the palette and dropping it onto the TableLayout entry in the Component Tree tool window.

With the TableLayout selected, use the Attributes tool window to change the layout_height property to wrap_content
 and layout_width to match_parent
 .

74.5

 Configuring the TableRows

From within the Text
 section of the palette, drag and drop two TextView objects onto the uppermost TableRow entry in the Component Tree (Figure 74-7
):

[image:]

Figure 74-7

Select the left most TextView within the screen layout and, in the Attributes tool window, change the text
 property to “Product ID”. Repeat this step for the right most TextView, this time changing the text to “Not assigned” and specifying an ID
 value of productID
 .

Drag and drop another TextView widget onto the second TableRow entry in the Component Tree and change the text on the view to read “Product Name”. Locate the Plain Text object in the palette and drag and drop it so that it is positioned beneath the Product Name TextView within the Component Tree as outlined in Figure 74-8
 . With the TextView selected, change the inputType property from textPersonName to None, delete the “Name” string from the text property and set the ID to productName
 .

[image:]

Figure 74-8

Drag and drop another TextView and a Number (Decimal) Text Field onto the third TableRow so that the TextView is positioned above the Text Field in the hierarchy. Change the text on the TextView to Product Quantity
 and the ID of the Text Field object to productQuantity
 .

Shift-click to select all of the widgets in the layout as shown in Figure 74-9
 below, and use the Attributes tool window to set the textSize property on all of the objects to 18sp:

[image:]

Figure 74-9

Before proceeding, be sure to extract all of the text properties added in the above steps to string resources.

74.6

 Adding the Button Bar to the Layout

The next step is to add a LinearLayout (Horizontal) view to the parent LinearLayout view, positioned immediately below the TableLayout view. Begin by clicking on the small disclosure arrow to the left of the TableLayout entry in the Component Tree so that the TableRows are folded away from view. Drag a LinearLayout (Horizontal)
 instance from the Layouts
 section of the Layout Editor palette, drop it immediately beneath the TableLayout entry in the Component Tree panel and change the layout_height property to wrap_content
 :

[image:]

Figure 74-10

Drag and drop three Button objects onto the new LinearLayout and assign string resources for each button that read “Add”, “Find” and “Delete” respectively. Buttons in this type of button bar arrangement should generally be displayed with a borderless style. For each button, use the Attributes tool window to change the style setting to Widget.AppCompat.Button.Borderless
 . Change the IDs for the buttons to addButton
 , deleteButton
 and findButton
 respectively.

[image:]

Figure 74-11

With the new horizontal LinearLayout view selected in the Component Tree change the gravity property to center_horizontal
 so that the buttons are centered horizontally within the display.

74.7

 Adding the RecyclerView

In the Component Tree, click on the disclosure arrow to the right of the newly added horizontal LinearLayout entry to fold all of the children from view.

From the Containers section of the Palette, drag a RecyclerView instance and drop it onto the Component Tree so that it positioned beneath the button bar LinearLayout as shown in Figure 74-12
 . Take care to ensure the RecyclerView is added as a direct child of the parent vertical LinearLayout view and not as a child of the horizontal button bar LinearLayout.

[image:]

Figure 74-12

With the RecyclerView selected in the layout, change the ID of the view to product_recycler
 . Before proceeding, check that the hierarchy of the layout in the Component Tree panel matches that shown in the following figure:

[image:]

Figure 74-13

74.8

 Adjusting the Layout Margins

All that remains is to adjust some of the layout settings. Begin by clicking on the first TableRow entry in the Component Tree panel so that it is selected. Hold down the Cmd/Ctrl-key on the keyboard and click in the second and third TableRows, the horizontal LinearLayout and the RecyclerView so that all five items are selected. In the Attributes panel, list all attributes, locate the Layout_Margin
 attributes category and, once located, change all the all
 value to 10dp as shown in Figure 74-14
 :

[image:]

Figure 74-14

With margins set, the user interface should appear as illustrated in Figure 74-1
 .

74.9

 Summary

The Android TableLayout container view provides a way to arrange view components in a row and column configuration. While the TableLayout view provides the overall container, each row and the cells contained therein are implemented via instances of the TableRow view. In this chapter, a user interface has been designed in Android Studio using the TableLayout and TableRow containers. The next chapter will add the functionality behind this user interface to implement the SQLite database capabilities using a repository and the Room persistence library.

75.

 An Android

 Room Database and Repository Tutorial

This chapter will combine the knowledge gained in the chapter entitled
“The Android Room Persistence Library”

 with the initial project created in the previous chapter to provide a detailed tutorial demonstrating how to implement SQLite-based database storage using the Room persistence library. In keeping with the Android architectural guidelines, the project will make use of a view model and repository. The tutorial will make use of all of the elements covered in
“The Android Room Persistence Library”

 including entities, a Data Access Object, a Room Databases and asynchronous database queries.

75.1

 About the RoomDemo Project

The user interface layout created in the previous chapter was the first step in creating a rudimentary inventory app designed to store the names and quantities of products. When completed, the app will provide the ability to add, delete and search for database entries while also displaying a scrollable list of all products currently stored in the database. This product list will update automatically as database entries are added or deleted.

75.2

 Modifying the Build Configuration

Begin by launching Android Studio and opening the RoomDemo project started in the previous chapter. Before adding any new classes to the project, the first step is to add some additional libraries to the build configuration, specifically the Room persistence library and the RecyclerView library. Locate and edit the module level build.gradle
 file (app -> Gradle Scripts -> build.gradle (Module: app)
) and modify it as follows:

apply plugin: 'com.android.application'

apply plugin: 'kotlin-android'

apply plugin: 'kotlin-android-extensions'

apply plugin: 'kotlin-kapt'

.

.

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'com.android.support:recyclerview-v7:28.0.0'

 implementation "android.arch.persistence.room:runtime:1.1.1"

 annotationProcessor "android.arch.persistence.room:compiler:1.1.1"

 kapt "android.arch.persistence.room:compiler:1.1.1"

.

.

}

75.3

 Building the Entity

This project will begin by creating the entity which defines the schema for the database table. The entity will consist of an integer for the product id, a string column to hold the product name and another integer value to store the quantity. The product id column will serve as the primary key and will be auto-generated. Table 75-5
 summarizes the structure of the entity:

	
Column

	
Data Type

	
productid

	
Integer / Primary Key / Auto Increment

	
productname

	
String

	
productquantity

	
Integer

Table 75-5

Add a class file for the entity by right clicking on the app -> java -> com.ebookfrenzy.roomdemo
 entry in the Project tool window and selecting the New ->
 Kotlin File/Class
 menu option. In the Create New Class dialog, name the class Product
 , change the Kind menu to Class and click on the OK button to generate the file.

When the Product.
 kt
 file opens in the editor, modify it so that it reads as follows:

package com.ebookfrenzy.roomdemo

class Product {

 var id: Int = 0

 var productName: String? = null

 var quantity: Int = 0

 constructor() {}

 constructor(id: Int, productname: String, quantity: Int) {

 this.id = id

 this.productName = productname

 this.quantity = quantity

 }

 constructor(productname: String, quantity: Int) {

 this.productName = productname

 this.quantity = quantity

 }

}

The class now has variables for the database table columns and matching getter and setter methods. Of course this class does not become an entity until it has been annotated. With the class file still open in the editor, add annotations and corresponding import statements:

package com.ebookfrenzy.roomdemo

import android.support.annotation.NonNull

import android.arch.persistence.room.ColumnInfo

import android.arch.persistence.room.Entity

import android.arch.persistence.room.PrimaryKey

@Entity(tableName = "products")

class Product {

 @PrimaryKey(autoGenerate = true)

 @NonNull

 @ColumnInfo(name = "productId")

 var id: Int = 0

 @ColumnInfo(name = "productName")

 var productName: String? = null

 var quantity: Int = 0

 constructor() {}

 constructor(id: Int, productname: String, quantity: Int) {

 this.id = id

 this.productName = productname

 this.quantity = quantity

 }

 constructor(productname: String, quantity: Int) {

 this.productName = productname

 this.quantity = quantity

 }

}

These annotations declare this as the entity for a table named products
 and assigns column names for both the id
 and name
 variables. The id column is also configured to be the primary key and auto-generated. Since a primary key can never be null, the @NonNull annotation is also applied. Since it will not be necessary to reference the quantity column in SQL queries, a column name has not been assigned to the quantity
 variable.

75.4

 Creating the Data Access Object

With the product entity defined, the next step is to create the DAO interface. Referring once again to the Project tool window, right-click on the app -> java -> com.ebookfrenzy.roomdemo
 entry and select the New ->
 Kotlin File/Class
 menu option. In the Create New Class dialog, enter ProductDao
 into the Name field and select Interface
 from the Kind menu as highlighted in Figure 75-1
 :

[image:]

Figure 75-1

Click on OK to generate the new interface and, with the ProductDao.
 kt
 file loaded into the code editor, make the following changes:

package com.ebookfrenzy.roomdemo

import android.arch.lifecycle.LiveData

import android.arch.persistence.room.Dao

import android.arch.persistence.room.Insert

import android.arch.persistence.room.Query

import kotlin.collections.List

@Dao

interface ProductDao {

 @Insert

 fun insertProduct(product: Product)

 @Query("SELECT * FROM products WHERE productName = :name")

 fun findProduct(name: String): List<Product>

 @Query("DELETE FROM products WHERE productName = :name")

 fun deleteProduct(name: String)

 @Query("SELECT * FROM products")

 fun getAllProducts(): LiveData<List<Product>>

}

The DAO implements methods to insert, find and delete records from the products database. The insertion method is passed a Product entity object containing the data to be stored while the methods to find and delete records are passed a string containing the name of the product on which to perform the operation. The getAllProducts()
 method returns a LiveData object containing all of the records within the database. This method will be used to keep the RecyclerView product list in the user interface layout synchronized with the database.

75.5

 Adding the Room Database

The last task before adding the repository to the project is to implement the Room Database instance. Add a new class to the project named ProductRoomDatabase
 , this time with the Kind menu set to Class
 .

Once the file has been generated, modify it as follows using the steps outlined in the
“The Android Room Persistence Library”

 chapter:

package com.ebookfrenzy.roomdemo

import android.content.Context

import android.arch.persistence.room.Database

import android.arch.persistence.room.Room

import android.arch.persistence.room.RoomDatabase

@Database(entities = [(Product::class)], version = 1)

abstract
 class ProductRoomDatabase: RoomDatabase()
 {

 abstract fun productDao(): ProductDao

 companion object {

 private var INSTANCE: ProductRoomDatabase? = null

 internal fun getDatabase(context: Context): ProductRoomDatabase? {

 if (INSTANCE == null) {

 synchronized(ProductRoomDatabase::class.java) {

 if (INSTANCE == null) {

 INSTANCE =

 Room.databaseBuilder<ProductRoomDatabase>(

 context.applicationContext,

 ProductRoomDatabase::class.java,

 "product_database").build()

 }

 }

 }

 return INSTANCE

 }

 }

}

75.6

 Adding the Repository

Add a new class named ProductRepository
 to the project, with the Kind menu set to Class
 .

The repository class will be responsible for interacting with the Room database on behalf of the ViewModel and will need to provide methods that use the DAO to insert, delete and query product records. With the exception of the getAllProducts()
 DAO method (which returns a LiveData object) these database operations will need to be performed on separate threads from the main thread using the AsyncTask class.

Remaining within the ProductRepository.
 kt
 file, add the code for the search AsyncTask. Also add a method named asyncFinished()
 which will be called by the query AsyncTask to return the search results to the repository thread:

package com.ebookfrenzy.roomdemo

import android.os.AsyncTask

import android.arch.lifecycle.MutableLiveData

import kotlin.collections.List

import android.app.Application

import android.arch.lifecycle.LiveData

class ProductRepository(application: Application)
 {

 val searchResults = MutableLiveData<List<Product>>()

 fun asyncFinished(results: List<Product>) {

 searchResults.value = results

 }

 private class QueryAsyncTask constructor(val asyncTaskDao: ProductDao?) :

 AsyncTask<String, Void, List<Product>>() {

 var delegate: ProductRepository? = null

 override fun doInBackground(vararg params: String): List<Product>? {

 return asyncTaskDao?.findProduct(params[0])

 }

 override fun onPostExecute(result: List<Product>) {

 delegate?.asyncFinished(result)

 }

 }

}

The above declares a MutableLiveData variable named searchResults
 into which the results of a search operation are stored whenever an asynchronous search task completes (later in the tutorial, an observer within the ViewModel will monitor this live data object).

The AsyncTask class contains a constructor method into which must be passed a reference to the DAO object. The doInBackground()
 method is passed a String containing the product name for which the search is to be performed, passes it to the findProduct()
 method of the DAO and returns a list of matching Product entity objects which will, in turn, be passed to the onPostExecute()
 method. Finally, the onPostExecute()
 method stores the matching product list in the searchResults
 MutableLiveData object.

The repository will also need to include the following AsyncTask implementation for inserting products into the database:

private class InsertAsyncTask constructor(private val asyncTaskDao: ProductDao?) : AsyncTask<Product, Void, Void>() {

 override fun doInBackground(vararg params: Product): Void? {

 asyncTaskDao?.insertProduct(params[0])

 return null

 }

}

Once again a constructor method is passed a reference to the DAO object, though this time the doInBackground()
 method is passed an array of Product entity objects to be inserted into the database. Since the app allows only one new product to be added at a time, the method simply inserts the first Product in the array into the database via a call to the insertProduct()
 DAO method. In this case, no results need to be returned from the task.

The only remaining AsyncTask will be used when deleting products from the database and should be added beneath the insertAsyncTask declaration as follows:

private class DeleteAsyncTask constructor(private val asyncTaskDao: ProductDao?) : AsyncTask<String, Void, Void>() {

 override fun doInBackground(vararg params: String): Void? {

 asyncTaskDao?.deleteProduct(params[0])

 return null

 }

}

With the AsyncTask classes defined, the repository class now needs to provide some methods that can be called by the ViewModel to initiate these operations. These methods will create and call appropriate AsyncTask instances and pass through a reference to the DAO. In order to be able to do this, however, the repository needs to obtain the DAO reference via a ProductRoomDatabase instance. Add a constructor method to the ProductRepository class to perform these tasks:

.

.

class ProductRepository(application: Application) {

 val searchResults = MutableLiveData<List<Product>>()

 private var productDao: ProductDao?

 init {

 val db: ProductRoomDatabase? =

 ProductRoomDatabase.getDatabase(application)

 productDao = db?.productDao()

 }

.

.

With a reference to DAO stored, the methods are ready to be added to the class file:

.

.

fun insertProduct(newproduct: Product) {

 val task = InsertAsyncTask(productDao)

 task.execute(newproduct)

}

fun deleteProduct(name: String) {

 val task = DeleteAsyncTask(productDao)

 task.execute(name)

}

fun findProduct(name: String) {

 val task = QueryAsyncTask(productDao)

 task.delegate = this

 task.execute(name)

}

.

.

In the cases of the insertion and deletion methods, the appropriate AsyncTask instance is created and passed the necessary arguments. In the case of the findProduct()
 method, the delegate property of the class is set to the repository instance so that the asyncFinished()
 method can be called after the search completes.

One final task remains to complete the repository class. The RecyclerView in the user interface layout will need to be able to keep up to date the current list of products stored in the database. The ProductDao class already includes a method named getAllProducts()
 which uses a SQL query to select all of the database records and return them wrapped in a LiveData object. The repository needs to call this method once on initialization and store the result within a LiveData object that can be observed by the ViewModel and, in turn, by the UI controller. Once this has been set up, each time a change occurs to the database table the UI controller observer will be notified and the RecyclerView can be updated with the latest product list. Remaining within the ProductRepository.
 kt
 file, add a LiveData variable and call to the DAO getAllProducts()
 method within the constructor:

.

.

class ProductRepository(application: Application) {

.

.

 val allProducts: LiveData<List<Product>>?

 init {

 val db: ProductRoomDatabase? =

 ProductRoomDatabase.getDatabase(application)

 productDao = db?.productDao()

 allProducts = productDao?.getAllProducts()

 }

.

.

75.7

 Modifying the ViewModel

The ViewModel is responsible for creating an instance of the repository and for providing methods and LiveData objects that can be utilized by the UI controller to keep the user interface synchronized with the underlying database. As implemented in ProductRepository.
 kt
 , the repository constructor requires access to the application context in order to be able to get a Room Database instance. To make the application context accessible within the ViewModel so that it can be passed to the repository, the ViewModel needs to subclass AndroidViewModel instead of ViewModel. Begin, therefore, by editing the MainViewModel.
 kt
 file (located in the Project tool window under app -> java -> com.ebookfrenzy.roomdemo -> ui.main
) and changing the class to extend AndroidViewModel and to implement the default constructor:

package com.ebookfrenzy.roomdemo.ui.main

import android.app.Application

import android.arch.lifecycle.AndroidViewModel

import android.arch.lifecycle.LiveData

import android.arch.lifecycle.MutableLiveData

import com.ebookfrenzy.roomdemo.Product

import com.ebookfrenzy.roomdemo.ProductRepository

import kotlin.collections.List

import android.arch.lifecycle.ViewModel

class MainViewModel(application: Application) : AndroidViewModel(application)
 {

 private val repository: ProductRepository = ProductRepository(application)

 private val allProducts: LiveData<List<Product>>?

 private val searchResults: MutableLiveData<List<Product>>

 init {

 allProducts = repository.allProducts

 searchResults = repository.searchResults

 }

}

The constructor essentially creates a repository instance and then uses it to get references to the results and live data objects so that they can be observed by the UI controller. All that now remains within the ViewModel is to implement the methods that will be called from within the UI controller in response to button clicks and when setting up observers on the LiveData objects:

fun insertProduct(product: Product) {

 repository.insertProduct(product)

}

fun findProduct(name: String) {

 repository.findProduct(name)

}

fun deleteProduct(name: String) {

 repository.deleteProduct(name)

}

fun getSearchResults(): MutableLiveData<List<Product>> {

 return searchResults

}

fun getAllProducts(): LiveData<List<Product>>? {

 return allProducts

}

75.8

 Creating the Product Item Layout

The name of each product in the database will appear within the RecyclerView list in the main user interface. This will require a simple layout resource file containing a TextView to be used for each row in the list. Add this file now by right-clicking on the app -> res -> layout
 entry in the Project tool window and selecting the New -> Layout resource file
 menu option. Name the file product_list_item
 and change the root element to LinearLayout before clicking on OK to create the file and load it into the layout editor. With the layout editor in Design mode, drag a TextView object from the palette onto the layout where it will appear by default at the top of the layout:

[image:]

Figure 75-2

With the TextView selected in the layout, use the Attributes tool window to set the ID of the view to product_row
 and the layout_height to 30dp. Select the LinearLayout entry in the Component Tree window and set the layout_height attribute to wrap_content
 .

75.9

 Adding the RecyclerView Adapter

As outlined in detail in the chapter entitled
“Working with the RecyclerView and CardView Widgets”

 , a RecyclerView instance requires an adapter class to provide the data to be displayed. Add this class now by right clicking on the app -> java -> com.ebookfrenzy.roomdemo -> ui.main
 entry in the Project tool window and selecting the New ->
 Kotlin
 File/
 Class...
 menu option and change the Kind menu to Class. In the Create New Class Dialog, name the class ProductListAdapter
 . With the resulting ProductListAdapter.
 kt
 class loaded into the editor, implement the class as follows:

package com.ebookfrenzy.roomdemo

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.widget.TextView

import android.support.v7.widget.RecyclerView

import kotlin.collections.List

class ProductListAdapter(private val productItemLayout: Int) :

 RecyclerView.Adapter<ProductListAdapter.ViewHolder>()
 {

 private var productList: List<Product>? = null

 override fun onBindViewHolder(holder: ViewHolder, listPosition: Int) {

 val item = holder.item

 productList.let {

 item.text = it!![listPosition].productName

 }

 }

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

 ViewHolder {

 val view = LayoutInflater.from(parent.context).inflate(

 productItemLayout, parent, false)

 return ViewHolder(view)

 }

 fun setProductList(products: List<Product>) {

 productList = products

 notifyDataSetChanged()

 }

 override fun getItemCount(): Int {

 return if (productList == null) 0 else productList!!.size

 }

 class ViewHolder(itemView: View) : RecyclerView.ViewHolder(itemView) {

 var item: TextView = itemView.findViewById(R.id.product_row)

 }

}

75.10

 Preparing the Main Fragment

The last remaining component to modify is the MainFragment class which needs to configure listeners on the Button views and observers on the live data objects located in the ViewModel class. Before adding this code, some preparation work needs to be performed to add some imports, variables and to obtain references to view ids. Edit the MainFragment.
 kt
 file and modify it as follows:

package com.ebookfrenzy.roomdemo.ui.main

.

.

import android.arch.lifecycle.Observer

import android.support.v7.widget.LinearLayoutManager

import android.support.v7.widget.RecyclerView

import com.ebookfrenzy.roomdemo.Product

import com.ebookfrenzy.roomdemo.ProductListAdapter

import kotlinx.android.synthetic.main.main_fragment.*

import java.util.Locale

class MainFragment : Fragment() {

 private var adapter: ProductListAdapter? = null

.

.

 override fun onActivityCreated(savedInstanceState: Bundle?) {

 super.onActivityCreated(savedInstanceState)

 viewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

 listenerSetup()

 observerSetup()

 recyclerSetup()

 }

.

.

At various stages in the code, the app will need to clear the product information displayed in the user interface. To avoid code repetition, add the following clearFields()
 convenience function:

private fun clearFields() {

 productID.text = ""

 productName.setText("")

 productQuantity.setText("")

}

Before the app can be built and tested, the three setup methods called from the onActivityCreated()
 method above need to be added to the class.

75.11

 Adding the Button Listeners

The user interface layout for the main fragment contains three buttons each of which needs to perform a specific task when clicked by user. Edit the MainFragment.
 kt
 file and add the listenerSetup()
 method:

private fun listenerSetup() {

 addButton.setOnClickListener {

 val name = productName.text.toString()

 val quantity = productQuantity.text.toString()

 if (name != "" && quantity != "") {

 val product = Product(name, Integer.parseInt(quantity))

 viewModel.insertProduct(product)

 clearFields()

 } else {

 productID.text = "Incomplete information"

 }

 }

 findButton.setOnClickListener { viewModel.findProduct(productName.text.toString()) }

 deleteButton.setOnClickListener {

 viewModel.deleteProduct(productName.text.toString())

 clearFields()

 }

}

The addButton listener performs some basic validation to ensure that the user has entered both a product name and quantity and uses this data to create a new Product entity object (note that the quantity string is converted to an integer to match the entity data type). The ViewModel insertProduct()
 method is then called and passed the Product object before the fields are cleared.

The findButton and deleteButton listeners pass the product name to either the ViewModel findProduct()
 or deleteProduct()
 method.

75.12

 Adding LiveData Observers

The user interface now needs to add observers to remain synchronized with the searchResults
 and allProducts
 live data objects within the ViewModel. Remaining in the Mainfragment.
 kt
 file, implement the observer setup method as follows:

private fun observerSetup() {

 viewModel.getAllProducts()?.observe(this, Observer { products ->

 products?.let {

 adapter?.setProductList(it)

 }

 })

 viewModel.getSearchResults().observe(this, Observer { products ->

 products?.let {

 if (it.isNotEmpty()) {

 productID.text = String.format(Locale.US, "%d", it[0].id)

 productName.setText(it[0].productName)

 productQuantity.setText(String.format(Locale.US, "%d",

 it[0].quantity))

 } else {

 productID.text = "No Match"

 }

 }

 })

}

The “all products” observer simply passes the current list of products to the setProductList()
 method of the RecyclerAdapter where the displayed list will be updated.

The “search results” observer checks that at least one matching result has been located in the database, extracts the first matching Product entity object from the list, gets the data from the object, converts it where necessary and assigns it to the TextView and EditText views in the layout. If the product search failed, the user is notified via a message displayed on the product ID TextView.

75.13

 Initializing the RecyclerView

Add the final setup method to initialize and configure the RecyclerView and adapter as follows:

private fun recyclerSetup() {

 adapter = ProductListAdapter(R.layout.product_list_item)

 val recyclerView: RecyclerView? = view?.findViewById(R.id.product_recycler)

 recyclerView?.layoutManager = LinearLayoutManager(context)

 recyclerView?.adapter = adapter

}

75.14

 Testing the RoomDemo App

Compile and run the app on a device or emulator, add some products and make sure that they appear automatically in the RecyclerView. Perform a search for an existing product and verify that the product ID and quantity fields update accordingly. Finally, enter the name for an existing product, delete it from the database and confirm that it is removed from the RecyclerView product list.

75.15

 Summary

This chapter has demonstrated the use of the Room persistence library to store data in a SQLite database. The finished project made use of a repository to separate the ViewModel from all database operations and demonstrated the creation of entities, a DAO and a room database instance, including the use of asynchronous tasks when performing some database operations.

76.

 Accessing Cloud Storage using the Android Storage Access Framework

Recent years have seen the wide adoption of remote storage services (otherwise known as “cloud storage”) to store user files and data. Driving this growth are two key factors. One is that most mobile devices now provide continuous, high speed internet connectivity, thereby making the transfer of data fast and affordable. The second factor is that, relative to traditional computer systems (such as desktops and laptops) these mobile devices are constrained in terms of internal storage resources. A high specification Android tablet today, for example, typically comes with 128Gb of storage capacity. When compared with a mid-range laptop system with a 750Gb disk drive, the need for the seamless remote storage of files is a key requirement for many mobile applications today.

In recognition of this fact, Google introduced the Storage Access Framework as part of the Android 4.4 SDK. This chapter will provide a high level overview of the storage access framework in preparation for the more detail oriented tutorial contained in the next chapter, entitled
“An Android Storage Access Framework Example”

 .

76.1

 The Storage Access Framework

From the perspective of the user, the Storage Access Framework provides an intuitive user interface that allows the user to browse, select, delete and create files hosted by storage services (also referred to as document provider

 s
) from within Android applications. Using this browsing interface (also referred to as the picker

), users can, for example, browse through the files (such as documents, audio, images and videos) hosted by their chosen document providers. Figure 76-1
 , for example, shows the picker user interface displaying a collection of files hosted by a document provider service:

[image:]

Figure 76-1

Document providers can range from cloud-based services to local document providers running on the same device as the client application. At the time of writing, the most prominent document providers compatible with the Storage Access Framework are Box and, unsurprisingly, Google Drive
 . It is highly likely that other cloud storage providers and application developers will soon also provide services that conform to the Android Storage Access Framework
 .

In addition to cloud based document providers the picker also provides access to internal storage on the device, providing a range of file storage options to the application user.

Through a set of Intents, Android application developers can incorporate these storage capabilities into applications with just a few lines of code. A particularly compelling aspect of the Storage Access Framework from the point of view of the developer is that the underlying document provider selected by the user is completely transparent to the application. Once the storage functionality has been implemented using the framework within an application, it will work with all document providers without any code modifications.

76.2

 Working with the Storage Access Framework

Android includes a set of Intents designed to integrate the features of the Storage Access Framework into Android applications. These intents display the Storage Access Framework
 picker user interface to the user and return the results of the interaction to the application via a call to the onActivityResult()
 method of the activity that launched the intent. When the onActivityResult()
 method is called, it is passed the Uri of the selected file together with a value indicating the success or otherwise of the operation.

The Storage Access Framework intents can be summarized as follows:

•
 ACTION_OPEN_DOCUMENT

 – Provides the user with access to the picker user interface so that files may be selected from the document providers configured on the device. Selected files are passed back to the application in the form of Uri objects.

•
 ACTION_CREATE_DOCUMENT

 – Allows the user to select a document provider, a location on that provider’s storage and a file name for a new file. Once selected, the file is created by the Storage Access Framework and the Uri of that file returned to the application for further processing.

76.3

 Filtering Picker File Listings

 The files listed within the picker user interface when an intent is started may be filtered using a variety of options. Consider, for example, the following code to start an ACTION_OPEN_DOCUMENT intent
 :

val OPEN_REQUEST_CODE = 41

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

startActivityForResult(intent, OPEN_REQUEST_CODE)

When executed, the above code will cause the picker user interface to be displayed, allowing the user to browse and select any files hosted by available document providers. Once a file has been selected by the user, a reference to that file will be provided to the application in the form of a Uri object. The application can then open the file using the openFileDescriptor(Uri, String)
 method
 . There is some risk, however, that not all files listed by a document provider can be opened in this way. The exclusion of such files within the picker can be achieved by modifying the intent using the CATEGORY_OPENABLE

 option. For example:

val OPEN_REQUEST_CODE = 41

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

intent.addCategory(Intent.CATEGORY_OPENABLE)

startActivityForResult(intent, OPEN_REQUEST_CODE)

When the picker is now displayed, files which cannot be opened using the openFileDescriptor()
 method
 will be listed but not selectable by the user.

Another useful approach to filtering allows the files available for selection to be restricted by file type. This involves specifying the types of the files the application is able to handle. An image editing application might, for example, only want to provide the user with the option of selecting image files from the document providers. This is achieved by configuring the intent object with the MIME types of the files that are to be selectable by the user. The following code, for example, specifies that only image files are suitable for selection in the picker:

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

intent.addCategory(Intent.CATEGORY_OPENABLE)

intent.type = "image/*"

startActivityForResult(intent, OPEN_REQUEST_CODE)

This could be further refined to limit selection to JPEG images:

intent.type = "image/jpeg"

Alternatively, an audio player app might only be able to handle audio files:

intent.type = "audio/*"

The audio app might be limited even further in only supporting the playback of MP4 based audio files:

intent.type = "audio/mp4"

A wide range of MIME type settings are available for use when working with the Storage Access Framework
 , the more common of which can be found listed online at:

https://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

76.4

 Handling Intent Results

When an intent returns control to the application, it does so by calling the onActivityResult()
 method of the activity which started the intent. This method is passed the request code that was handed to the intent at launch time, a result code indicating whether or not the intent was successful and a result data object containing the Uri of the selected file. The following code, for example, might be used as the basis for handling the results from the ACTION_OPEN_DOCUMEN
 T intent outlined in the previous section:

public override fun onActivityResult(requestCode: Int, resultCode: Int,

 resultData: Intent?) {

 var currentUri: Uri? = null

 if (resultCode == Activity.RESULT_OK) {

 if (requestCode == OPEN_REQUEST_CODE) {

 resultData?.let {

 currentUri = it.data

 try {

 val content = readFileContent(currentUri)

 fileText.setText(content)

 } catch (e: IOException) {

 // Handle error here

 }

 }

 }

 }

}

The above method verifies that the intent was successful, checks that the request code matches that for a file open request and then extracts the Uri from the intent data. The Uri can then be used to read the content of the file.

76.5

 Reading the Content of a File

The exact steps required to read the content of a file hosted by a document provider will depend to a large extent on the type of the file. The steps to read lines from a text file, for example, differ from those for image or audio files.

An image file can be assigned to a Bitmap object by extracting the file descriptor from the Uri object and then decoding the image into a BitmapFactory
 instance. For example:

val pFileDescriptor = contentResolver.openFileDescriptor(uri, "r")

val fileDescriptor = pFileDescriptor.fileDescriptor

val image = BitmapFactory.decodeFileDescriptor(fileDescriptor)

pFileDescriptor.close()

val myImageView = ImageView(this)

myImageView.setImageBitmap(image)

Note that the file descriptor is opened in “r” mode. This indicates that the file is to be opened for reading. Other options are “w” for write access and “rwt” for read and write access, where existing content in the file is truncated by the new content.

Reading the content of a text file requires slightly more work and the use of an InputStream object. The following code, for example, reads the lines from a text file:

val inputStream = contentResolver.openInputStream(uri)

val reader = BufferedReader(InputStreamReader(inputStream))

var currentline = reader.readLine()

while (currentline != null) {

 // Do something with each line in the file

}

inputStream.close()

76.6

 Writing Content to a File

 Writing to an open file hosted by a document provider is similar to reading with the exception that an output stream is used instead of an input stream. The following code, for example, writes text to the output stream of the storage based file referenced by the specified Uri:

try {

 val pfd = contentResolver.openFileDescriptor(uri, "w")

 val fileOutputStream = FileOutputStream(

 pfd.fileDescriptor)

 val textContent = fileText.text.toString()

 fileOutputStream.write(textContent.toByteArray())

 fileOutputStream.close()

 pfd.close()

} catch (e: FileNotFoundException) {

 e.printStackTrace()

} catch (e: IOException) {

 e.printStackTrace()

}

First, the file descriptor is extracted from the Uri, this time requesting write permission to the target file. The file descriptor is subsequently used to obtain a reference to the file’s output stream. The content (in this example, some text) is then written to the output stream before the file descriptor and output stream are closed.

76.7

 Deleting a File

 Whether a file can be deleted from storage depends on whether or not the file’s document provider supports deletion of the file. Assuming deletion is permitted, it may be performed on a designated Uri as follows:

if (DocumentsContract.deleteDocument(contentResolver, uri))

 // Deletion was successful

else

 // Deletion failed

76.8

 Gaining Persistent Access
 to a File

When an application gains access to a file via the Storage Access Framework, the access will remain valid until the Android device on which the application is running is restarted. Persistent access to a specific file can be obtained by “taking” the necessary permissions for the Uri. The following code, for example, persists read and write permissions for the file referenced by the fileUri
 Uri instance:

val takeFlags = (intent.flags and (Intent.FLAG_GRANT_READ_URI_PERMISSION

 or Intent.FLAG_GRANT_WRITE_URI_PERMISSION)

contentResolver.takePersistableUriPermission(fileUri, takeFlags)

Once the permissions for the file have been taken by the application, and assuming the Uri has been saved by the application, the user should be able to continue accessing the file after a device restart without the user having to reselect the file from the picker interface.

If, at any time, the persistent permissions are no longer required, they can be released via a call to the releasePersistableUriPermission()
 method
 of the content resolver:

val takeFlags = (intent.flags and (Intent.FLAG_GRANT_READ_URI_PERMISSION

 or Intent.FLAG_GRANT_WRITE_URI_PERMISSION)

contentResolver.releasePersistableUriPermission(fileUri, takeFlags)

76.9

 Summary

It is interesting to consider how perceptions of storage have changed in recent years. Once synonymous with high capacity internal hard disk drives, the term “storage” is now just as likely to refer to storage space hosted remotely in the cloud and accessed over an internet connection. This is increasingly the case with the wide adoption of resource constrained, “always-connected” mobile devices with minimal internal storage capacity.

The Android Storage Access Framework provides a simple mechanism for both users and application developers to seamlessly gain access to files stored in the cloud. Through the use of a set of intents and a built-in user interface for selecting document providers and files, comprehensive cloud based storage can now be integrated into Android applications with a minimal amount of coding.

77.

 An Android Storage Access Framework Example

As previously discussed, the Storage Access Framework considerably eases the process of integrating cloud based storage access into Android applications. Consisting of a picker user interface and a set of new intents, access to files stored on document providers such as Google Drive and Box can now be built into Android applications with relative ease. With the basics of the Android Storage Access Framework covered in the preceding chapter, this chapter will work through the creation of an example application which uses the Storage Access Framework to store and manage files.

77.1

 About the Storage Access Framework
 Example

The Android application created in this chapter will take the form of a rudimentary text editor designed to create and store text files remotely onto a cloud based storage service. In practice, the example will work with any cloud based document storage provider that is compatible with the Storage Access Framework, though for the purpose of this example the use of Google Drive is assumed.

In functional terms, the application will present the user with a multi-line text view into which text may be entered and edited, together with a set of buttons allowing storage based text files to be created, opened and saved.

77.2

 Creating the Storage Access Framework Example

Create a new project in Android Studio, entering StorageDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named StorageDemoActivity
 with a corresponding layout named activity_storage_demo.

77.3

 Designing the User Interface

The user interface will need to be comprised of three Button views and a single EditText view. Within the Project tool window, navigate to the activity_storage_demo.xml
 layout file located in app -> res -> layout
 and double-click on it to load it into the Layout Editor tool. With the tool in Design mode, select and delete the Hello World!
 TextView object.

Drag and position a Button widget in the top left-hand corner of the layout so that both the left and top dotted margin guidelines appear before dropping the widget in place. Position a second Button such that the center and top margin guidelines appear. The third Button widget should then be placed so that the top and right-hand margin guidelines appear.

Change the text attributes on the three buttons to “New”, “Open” and “Save” respectively. Next, position a Plain Text widget so that it is centered horizontally and positioned beneath the center Button so that the user interface layout matches that shown in Figure 77-1
 . Use the Infer Constraints button in the Layout Editor toolbar to add any missing constraints.

Select the Plain Text widget in the layout, delete the current text property setting so that the field is initially blank and set the ID to fileText
 , remembering to extract all the string attributes to resource values:

[image:]

Figure 77-1

Using the Attributes tool window, configure the onClick property on the Button widgets to call methods named newFile, openFile
 and saveFile
 respectively.

77.4

 Declaring Request Codes

Working with files in the Storage Access Framework involves triggering a variety of intents depending on the specific action to be performed. Invariably this will result in the framework displaying the storage picker user interface so that the user can specify the storage location (such as a directory on Google Drive and the name of a file). When the work of the intent is complete, the application will be notified by a call to a method named onActivityResult()
 .

Since all intents from a single activity will result in a call to the same onActivityResult()
 method, a mechanism is required to identify which intent triggered the call. This can be achieved by passing a request code through to the intent when it is launched. This code is then passed on to the onActivityResult()
 method
 by the intents, enabling the method to identify which action has been requested by the user. Before implementing the onClick handlers to create, save and open files, the first step is to declare some request codes for these three actions.

Locate and load the StorageDemoActivity.
 kt
 file into the editor and declare constant values for the three actions to be performed by the application.

package com.ebookfrenzy.storagedemo

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

class StorageDemoActivity : AppCompatActivity() {

 private val CREATE_REQUEST_CODE = 40

 private val OPEN_REQUEST_CODE = 41

 private val SAVE_REQUEST_CODE = 42

.

.

77.5

 Creating a New Storage File

 When the New button is selected, the application will need to trigger an ACTION_CREATE_DOCUMENT

 intent configured to create a file with a plain-text MIME type. When the user interface was designed, the New button was configured to call a method named newFile()
 . It is within this method that the appropriate intent needs to be launched.

Remaining in the StorageDemoActivity.
 kt
 file, implement this method as follows:

package com.ebookfrenzy.storagedemo

import android.app.Activity

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

import android.net.Uri

import kotlinx.android.synthetic.main.activity_storage_demo.*

class StorageDemoActivity : AppCompatActivity() {

 private val CREATE_REQUEST_CODE = 40

 private val OPEN_REQUEST_CODE = 41

 private val SAVE_REQUEST_CODE = 42

.

.

 fun newFile(view: View) {

 val intent = Intent(Intent.ACTION_CREATE_DOCUMENT)

 intent.addCategory(Intent.CATEGORY_OPENABLE)

 intent.type = "text/plain"

 intent.putExtra(Intent.EXTRA_TITLE, "newfile.txt")

 startActivityForResult(intent, CREATE_REQUEST_CODE)

 }

.

.

}

This code creates a new ACTION_CREATE_INTENT
 Intent object. This intent is then configured so that only files that can be opened with a file descriptor are returned (via the Intent.CATEGORY_OPENABLE
 category setting).

Next the code specifies that the file to be opened is to have a plain text MIME type and a placeholder filename is provided (which can be changed by the user in the picker interface). Finally, the intent is started, passing through the previously declared CREATE_REQUEST_CODE
 .

When this method is executed and the intent has completed the assigned task, a call will be made to the application’s onActivityResult()
 method and passed, amongst other arguments, the Uri of the newly created document and the request code that was used when the intent was started. Now is an ideal opportunity to begin to implement this method.

77.6

 The onActivityResult() Method

The onActivityResult()
 method
 will be shared by all of the intents that will be called during the lifecycle of the application. In each case, the method will be passed a request code, a result code and a set of result data which contains the Uri of the storage file. The method will need to be implemented such that it checks for the success of the intent action, identifies the type of action performed and extracts the file Uri from the results data. At this point in the tutorial, the method only needs to handle the creation of a new file on the selected document provider, so modify the StorageDemoActivity.
 kt
 file to add this method as follows:

public override fun onActivityResult(requestCode: Int, resultCode: Int,

 resultData: Intent?) {

 var currentUri: Uri? = null

 if (resultCode == Activity.RESULT_OK) {

 if (requestCode == CREATE_REQUEST_CODE) {

 if (resultData != null) {

 fileText.setText("")

 }

 }

 }

}

The code in this method is largely straightforward. The result of the activity is checked and, if successful, the request code is compared to the CREATE_REQUEST_CODE value to verify that the user is creating a new file. That being the case, the edit text view is cleared of any previous text to signify the creation of a new file.

Compile and run the application and select the New button. The Storage Access Framework should subsequently display the “Save to” storage picker user interface as illustrated in Figure 77-2
 .

From this menu, select the Drive
 option followed by My Drive
 and navigate to a suitable location on your Google Drive storage into which to save the file. In the text field at the bottom of the picker interface, change the name from “newfile.txt” to a suitable name (but keeping the .txt
 extension) before selecting the Save
 option.

[image:]

Figure 77-2

Once the new file has been created, the app should return to the main activity and a notification will appear within the notifications panel which reads “1 file uploaded”.

[image:]

Figure 77-3

At this point, it should be possible to log into your Google Drive account in a browser window and find the newly created file in the requested location. In the event that the file is missing, make sure that the Android device on which the application is running has an active internet connection. Access to Google Drive on the device may also be verified by running the Google Drive
 app, which is installed by default on many Android devices, and available for download from the Google Play store.

77.7

 Saving to a Storage File

Now that the application is able to create new storage based files, the next step is to add the ability to save any text entered by the user to a file. The user interface is configured to call the saveFile()
 method when the Save button is selected by the user. This method will be responsible for starting a new intent of type ACTION_OPEN_DOCUMENT
 which will result in the picker user interface appearing so that the user can choose the file to which the text is to be stored. Since we are only working with plain text files, the intent needs to be configured to restrict the user’s selection options to existing files that match the text/plain MIME type. Having identified the actions to be performed by the saveFile()
 method, this can now be added to the StorageDemoActivity.
 kt
 class file as follows:

fun saveFile(view: View) {

 val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

 intent.addCategory(Intent.CATEGORY_OPENABLE)

 intent.type = "text/plain"

 startActivityForResult(intent, SAVE_REQUEST_CODE)

}

Since the SAVE_REQUEST_CODE was passed through to the intent, the onActivityResult()
 method must now be extended to handle save actions:

.

.

class StorageDemoActivity : AppCompatActivity() {

.

.

 public override fun onActivityResult(requestCode: Int, resultCode: Int,

 resultData: Intent?) {

 var currentUri: Uri? = null

 if (resultCode == Activity.RESULT_OK) {

 if (requestCode == CREATE_REQUEST_CODE) {

 if (resultData != null) {

 fileText.setText("")

 }

 } else if (requestCode == SAVE_REQUEST_CODE) {

 resultData?.let {

 currentUri = it.data

 writeFileContent(currentUri)

 }

 }

 }

.

.

}

The method now checks for the save request code, extracts the Uri of the file selected by the user in the storage picker and calls a method named writeFileContent()
 , passing through the Uri of the file to which the text is to be written. Remaining in the StorageDemoActivity.
 kt
 file, implement this method now so that it reads as follows:

package com.ebookfrenzy.storagedemo

import java.io.FileNotFoundException

import java.io.FileOutputStream

import java.io.IOException

import android.app.Activity

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

import android.net.Uri

import kotlinx.android.synthetic.main.activity_storage_demo.*

class StorageDemoActivity : AppCompatActivity() {

 private fun writeFileContent(uri: Uri?) {

 try {

 val pfd = contentResolver.openFileDescriptor(uri, "w")

 val fileOutputStream = FileOutputStream(

 pfd.fileDescriptor)

 val textContent = fileText.text.toString()

 fileOutputStream.write(textContent.toByteArray())

 fileOutputStream.close()

 pfd.close()

 } catch (e: Throwable) {

 e.printStackTrace()

 } catch (e: IOException) {

 e.printStackTrace()

 }

 }

.

.

}

The method begins by obtaining and opening the file descriptor from the Uri of the file selected by the user. Since the code will need to write to the file, the descriptor is opened in write mode (“w”). The file descriptor is then used as the basis for creating an output stream that will enable the application to write to the file.

The text entered by the user is extracted from the edit text object and written to the output stream before both the file descriptor and stream are closed. Code is also added to handle any IO exceptions encountered during the file writing process.

With the new method added, compile and run the application, enter some text into the text view and select the Save
 button. From the picker interface, locate the previously created file from the Google Drive storage to save the text to that file. Return to your Google Drive account in a browser window and select the text file to display the contents. The file should now contain the text entered within the StorageDemo application on the Android device.

77.8

 Opening and Reading a Storage File

Having written the code to create and save text files, the final task is to add some functionality to open and read a file from the storage. This will involve writing the openFile()
 onClick event handler method and implementing it so that it starts an ACTION_OPEN_DOCUMENT intent:

fun openFile(view: View) {

 val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

 intent.addCategory(Intent.CATEGORY_OPENABLE)

 intent.type = "text/plain"

 startActivityForResult(intent, OPEN_REQUEST_CODE)

}

In this code, the intent is configured to filter selection to files which can be opened by the application. When the activity is started, it is passed the open request code constant which will now need to be handled within the onActivityResult()
 method:

public override fun onActivityResult(requestCode: Int, resultCode: Int,

 resultData: Intent?) {

 var currentUri: Uri? = null

 if (resultCode == Activity.RESULT_OK) {

 if (requestCode == CREATE_REQUEST_CODE) {

 if (resultData != null) {

 fileText.setText("")

 }

 } else if (requestCode == SAVE_REQUEST_CODE) {

 resultData?.let {

 currentUri = it.data

 writeFileContent(currentUri)

 }

 } else if (requestCode == OPEN_REQUEST_CODE) {

 resultData?.let {

 currentUri = it.data

 try {

 val content = readFileContent(currentUri)

 fileText.setText(content)

 } catch (e: IOException) {

 // Handle error here

 }

 }

 }

 }

}

The new code added above to handle the open request obtains the Uri of the file selected by the user from the picker user interface and passes it through to a method named readFileContent()
 which is expected to return the content of the selected file in the form of a String object. The resulting string is then assigned to the text property of the edit text view. Clearly, the next task is to implement the readFileContent()
 method:

package com.ebookfrenzy.storagedemo

import java.io.FileNotFoundException

import java.io.FileOutputStream

import java.io.IOException

import java.io.BufferedReader

import java.io.InputStreamReader

import android.app.Activity

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.Intent

import android.view.View

import android.net.Uri

import kotlinx.android.synthetic.main.activity_storage_demo.*

class StorageDemoActivity : AppCompatActivity() {

 private fun readFileContent(uri: Uri?): String {

 val inputStream = contentResolver.openInputStream(uri)

 val reader = BufferedReader(InputStreamReader(

 inputStream))

 val stringBuilder = StringBuilder()

 var currentline = reader.readLine()

 while (currentline != null) {

 stringBuilder.append(currentline + "\n")

 currentline = reader.readLine()

 }

 inputStream.close()

 return stringBuilder.toString()

 }

.

.

}

This method begins by extracting the file descriptor for the selected text file and opening it for reading. The input stream associated with the Uri is then opened and used as the input source for a BufferedReader
 instance. Each line within the file is then read and stored in a StringBuilder object
 . Once all the lines have been read, the input stream and file descriptor are both closed, and the file content is returned as a String object.

77.9

 Testing the Storage Access Application

With the coding phase complete the application is now ready to be fully tested. Begin by launching the application on an Android device or AVD configured with your Google account identity and selecting the “New” button. Within the resulting storage picker interface, select a Google Drive location and name the text file storagedemo.txt
 before selecting the Save option located to the right of the file name field.

When control returns to your application look for the file uploading notification, then enter some text into the text area before selecting the “Save” button. Select the previously created storagedemo.txt
 file from the picker to save the content to the file. On returning to the application, delete the text and select the “Open” button, once again choosing the storagedemo.txt
 file. When control is returned to the application, the text view should have been populated with the content of the text file.

It is important to note that the Storage Access Framework will cache storage files locally in the event that the Android device lacks an active internet connection. Once connectivity is re-established, however, any cached data will be synchronized with the remote storage service. As a final test of the application, therefore, log into your Google Drive account in a browser window, navigate to the storagedemo.txt
 file and click on it to view the content which should, all being well, contain the text saved by the application.

77.10

 Summary

This chapter has worked through the creation of an example Android Studio application in the form of a very rudimentary text editor designed to use cloud based storage to create, save and open files using the Android Storage Access Framework.

78.

 Implementing Video Playback
 on Android using the VideoView and MediaController Classes

One of the primary uses for smartphones and tablets is to provide access to online content. One key form of content widely used, especially in the case of tablet devices, is video.

The Android SDK includes two classes that make the implementation of video playback on Android devices extremely easy to implement when developing applications. This chapter will provide an overview of these two classes, VideoView and MediaController, before working through the creation of a simple video playback application.

78.1

 Introducing the Android VideoView Class

By far the simplest way to display video within an Android application is to use the VideoView class. This is a visual component which, when added to the layout of an activity, provides a surface onto which a video may be played. Android currently supports the following video formats:

•
 H.263

•
 H.264 AVC

•
 H.265 HEVC

•
 MPEG-4 SP

•
 VP8

•
 VP9

The VideoView class has a wide range of methods that may be called in order to manage the playback of video. Some of the more commonly used methods are as follows:

•

 setVideoPath(String path)
 – Specifies the path (as a string) of the video media to be played. This can be either the URL of a remote video file or a video file local to the device.

•
 setVideoUri(Uri uri)
 – Performs the same task as the setVideoPath()
 method but takes a Uri object as an argument instead of a string.

•
 start()
 – Starts video playback.

•
 stopPlayback()
 – Stops the video playback.

•
 pause()
 – Pauses video playback.

•
 isPlaying()
 – Returns a Boolean value indicating whether a video is currently playing.

•
 setOnPreparedListener(MediaPlayer.OnPreparedListener)
 – Allows a callback method to be called when the video is ready to play.

•
 setOnErrorListener(MediaPlayer.OnErrorListener)
 - Allows a callback method to be called when an error occurs during the video playback.

•
 setOnCompletionListener(MediaPlayer.OnCompletionListener)
 - Allows a callback method to be called when the end of the video is reached.

•
 getDuration()
 – Returns the duration of the video. Will typically return -1 unless called from within the OnPreparedListener()
 callback method.

•
 getCurrentPosition()
 – Returns an integer value indicating the current position of playback.

•
 setMediaController(MediaController)
 – Designates a MediaController instance allowing playback controls to be displayed to the user.

78.2

 Introducing the Android MediaController Class

If a video is simply played using the VideoView class, the user will not be given any control over the playback, which will run until the end of the video is reached. This issue can be addressed by attaching an instance of the MediaController class to the VideoView instance. The MediaController will then provide a set of controls allowing the user to manage the playback (such as pausing and seeking backwards/forwards in the video time-line).

The position of the controls is designated by anchoring the controller instance to a specific view in the user interface layout. Once attached and anchored, the controls will appear briefly when playback starts and may subsequently be restored at any point by the user tapping on the view to which the instance is anchored.

Some of the key methods of this class are as follows:

•
 setAnchorView(View view)
 – Designates the view to which the controller is to be anchored. This designates the location of the controls on the screen.

•
 show()
 – Displays the controls.

•
 show(int timeout)
 – Controls are displayed for the designated duration (in milliseconds).

•
 hide()
 – Hides the controller from the user.

•
 isShowing()
 – Returns a Boolean value indicating whether the controls are currently visible to the user.

78.3

 Creating the Video Playback Example

The remainder of this chapter will create an example application intended to use the VideoView and MediaController classes to play a web based MPEG-4 video file.

Create a new project in Android Studio, entering VideoPlayer
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named VideoPlayerActivity
 with a corresponding layout named activity_video_player.

78.4

 Designing the VideoPlayer Layout

The user interface for the main activity will consist solely of an instance of the VideoView class. Use the Project tool window to locate the app -> res -> layout -> activity_video_player.xml
 file, double-click on it, switch the Layout Editor tool to Design mode and delete the default TextView widget.

From the Widgets category of the Palette panel, drag and drop a VideoView instance onto the layout so that it fills the available canvas area as shown in Figure 78-1
 . Using the Attributes panel, change the layout_width and layout_height attributes to match_constraint
 and wrap_content
 respectively. Also, remove the constraint connecting the bottom of the VideoView to the bottom of the parent ConstraintLayout. Finally, change the ID of the component to videoView

 1
 .

[image:]

Figure 78-1

On completion of the layout design, the XML resources for the layout should read as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".VideoPlayerActivity">

 <VideoView

 android:id="@+id/videoView1"

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

78.5

 Configuring the VideoView

The next step is to configure the VideoView with the path of the video to be played and then start the playback. This will be performed when the main activity has initialized, so load the VideoPlayerActivity.
 kt
 file into the editor and modify it as outlined in the following listing:

package com.ebookfrenzy.videoplayer

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_video_player.*

class VideoPlayerActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_video_player)

 configureVideoView()

 }

 private fun configureVideoView() {

 videoView1.setVideoPath(

 "https://www.ebookfrenzy.com/android_book/movie.mp4")

 videoView1.start()

 }

}

All that this code does is obtain a reference to the VideoView instance in the layout, set the video path on it to point to an MPEG-4 file hosted on a web site and then start the video playing.

78.6

 Adding Internet Permission

 An attempt to run the application at this point would result in the application failing to launch with an error dialog appearing on the Android device that reads “Unable to Play Video. Sorry, this video cannot be played”. This is not because of an error in the code or an incorrect video file format. The issue would be that the application is attempting to access a file over the internet, but has failed to request appropriate permissions to do so. To resolve this, edit the AndroidManifest.xml
 file for the project and add a line to request internet access:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.videoplayer" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

.

.

.

</manifest>

Test the application by running it on a physical Android device. After the application launches there may be a short delay while video content is buffered before the playback begins (Figure 78-2
)
 .

[image:]

Figure 78-2

This provides an indication of how easy it can be to integrate video playback into an Android application. Everything so far in this example has been achieved using a VideoView instance and three lines of code.

78.7

 Adding the MediaControlle
 r to the Video View

As the VideoPlayer application currently stands, there is no way for the user to control playback. As previously outlined, this can be achieved using the MediaController class. To add a controller to the VideoView, modify the configureVideoView()
 method once again:

package com.ebookfrenzy.videoplayer

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.widget.MediaController

import kotlinx.android.synthetic.main.activity_video_player.*

class VideoPlayerActivity : AppCompatActivity() {

 private var mediaController: MediaController? = null

.

.

 private fun configureVideoView() {

 videoView1.setVideoPath(

 "https://www.ebookfrenzy.com/android_book/movie.mp4")

 mediaController = MediaController(this)

 mediaController?.setAnchorView(videoView1)

 videoView1.setMediaController(mediaController)

 videoView1.start()

 }

}

When the application is launched with these changes implemented, tapping the VideoView canvas will cause the media controls to appear over the video playback. These controls should include a seekbar together with fast forward, rewind and play/pause buttons. After the controls recede from view, they can be restored at any time by tapping on the VideoView canvas once again. With just three more lines of code, our video player application now has media controls as shown in Figure 78-3
 :

[image:]

Figure 78-3

78.8

 Setting up the onPreparedListener

As a final example of working with video based media, the activity will now be extended further to demonstrate the mechanism for configuring a listener. In this case, a listener will be implemented that is intended to output the duration of the video as a message in the Android Studio Logcat panel. The listener will also configure video playback to loop continuously:

package com.ebookfrenzy.videoplayer

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.widget.MediaController

import android.util.Log

import kotlinx.android.

synthetic.main.activity_video_player.*

class VideoPlayerActivity : AppCompatActivity() {

 private var TAG = "VideoPlayer"

.

.

 private fun configureVideoView() {

 videoView1.setVideoPath(

 "https://www.ebookfrenzy.com/android_book/movie.mp4")

 mediaController = MediaController(this)

 mediaController.setAnchorView(videoView1)

 videoView1.setMediaController(mediaController)

 videoView1.setOnPreparedListener { mp ->

 mp.isLooping = true

 Log.i(TAG, "Duration = " + videoView1.duration)

 }

 videoView1.start()

 }

}

Now just before the video playback begins, a message will appear in the Android Studio Logcat panel that reads along the lines of the following and the video will restart after playback ends:

11-05 10:27:52.256 12542-12542/com.ebookfrenzy.videoplayer I/VideoPlayer: Duration = 6874

78.9

 Summary

Android devices make excellent platforms for the delivery of content to users, particularly in the form of video media. As outlined in this chapter, the Android SDK provides two classes, namely VideoView and MediaController, which combine to make the integration of video playback into Android applications quick and easy, often involving just a few lines of Kotlin code.

79.

 Android Picture-in-Picture Mode

When multi-tasking in Android was covered in earlier chapters, Picture-in-picture (PiP) mode was mentioned briefly but not covered in any detail. Intended primarily for video playback, PiP mode allows an activity screen to be reduced in size and positioned at any location on the screen. While in this state, the activity continues to run and the window remains visible regardless of any other activities running on the device. This allows the user to, for example, continue watching video playback while performing tasks such as checking email or working on a spreadsheet.

This chapter will provide an overview of Picture-in-Picture mode before Picture-in-Picture support is added to the VideoPlayer project in the next chapter.

79.1

 Picture-in-Picture Features

As will be explained later in the chapter, and demonstrated in the next chapter, an activity is placed into PiP mode via an API call from within the running app. When placed into PiP mode, configuration options may be specified that control the aspect ratio of the PiP window and also to define the area of the activity screen that is to be included in the window. Figure 79-1
 , for example, shows a video playback activity in PiP mode:

[image:]

Figure 79-1

Figure 79-2
 shows a PiP mode window after it has been tapped by the user. When in this mode, the window appears larger and includes a full screen action in the center which, when tapped, restores the window to full screen mode and an exit button in the top right-hand corner to close the window and place the app in the background. Any custom actions added to the PiP window will also appear on the screen when it is displayed in this mode. In the case of Figure 79-2
 , the PiP window includes custom play and pause action buttons:

[image:]

Figure 79-2

The remainder of this chapter will outline how PiP mode is enabled and managed from within an Android app.

79.2

 Enabling Picture-in-Picture Mode

PiP mode is currently only supported on devices running API 26: Android 8.0 (Oreo) or newer. The first step in implementing PiP mode is to enable it within the project’s manifest file. PiP mode is configured on a per activity basis by adding the following lines to each activity element for which PiP support is required:

<activity android:name=".MyActivity"

 android:supportsPictureInPicture="true"

 android:configChanges=

 "screenSize|smallestScreenSize|screenLayout|orientation"

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

The android:supportsPictureInPicture
 entry enables PiP for the activity while the android:configChanges
 property notifies Android that the activity is able to handle layout configuration changes. Without this setting, each time the activity moves in and out of PiP mode the activity will be restarted resulting in playback restarting from the beginning of the video during the transition.

79.3

 Configuring Picture-in-Picture Parameters

PiP behavior is defined through the use of the PictureInPictureParams class, instances of which can be created using the Builder class as follows:

val params = PictureInPictureParams.Builder().build()

The above code creates a default PictureInPictureParams instance with special parameters defined. The following optional method calls may also be used to customize the parameters:

•
 setActions()
 – Used to define actions that can be performed from within the PiP window while the activity is in PiP mode. Actions will be covered in more detail later in this chapter.

•
 setAspectRatio()
 – Declares the preferred aspect ratio for appearance of the PiP window. This method takes as an argument a Rational object containing the height width / height ratio.

•
 setSourceRectHint()
 – Takes as an argument a Rect object defining the area of the activity screen to be displayed within the PiP window.

The following code, for example, configures aspect ratio and action parameters within a PictureInPictureParams object. In the case of the aspect ratio, this is defined using the width and height dimensions of a VideoView instance:

val rational = Rational(videoView.width,

 videoView.height)

val params = PictureInPictureParams.Builder()

 .setAspectRatio(rational)

 .setActions(actions)

 .build()

Once defined, PiP parameters may be set at any time using the setPictureInPictureParams()
 method as follows:

setPictureInPictureParams(params)

Parameters may also be specified when entering PiP mode.

79.4

 Entering Picture-in-Picture Mode

An activity is placed into Picture-in-Picture mode via a call to the enterPictureInPictureMode()
 method, passing through a PictureInPictureParams object:

enterPictureInPictureMode(params)

If no parameters are required, simply create a default PictureInPictureParams object as outlined in the previous section. If parameters have previously been set using the setPictureInPictureParams()
 method, these parameters are combined with those specified during the enterPictureInPictureMode()
 method call.

79.5

 Detecting Picture-in-Picture Mode Changes

When an activity enters PiP mode, it is important to hide any unnecessary views so that only the video playback is visible within the PiP window. When the activity re-enters full screen mode, any hidden user interface components need to be re-instated. These and any other app specific tasks can be performed by overriding the onPictureInPictureModeChanged()
 method. When added to the activity, this method is called each time the activity transitions between PiP and full screen modes and is passed a Boolean value indicating whether the activity is currently in PiP mode:

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration?) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode, newConfig)

 if (isInPictureInPictureMode) {

 // Acitivity entered Picture-in-Picture mode

 } else {

 // Activity entered full screen mode

 }

}

79.6

 Adding Picture-in-Picture Actions

Picture-in-Picture actions appear as icons within the PiP window when it is tapped by the user. Implementation of PiP actions is a multi-step process that begins with implementing a way for the PiP window to notify the activity that an action has been selected. This is achieved by setting up a broadcast receiver within the activity, and then creating a pending intent within the PiP action which, in turn, is configured to broadcast an intent for which the broadcast receiver is listening. When the broadcast receiver is triggered by the intent, the data stored in the intent can be used to identify the action performed and to take the necessary action within the activity.

PiP actions are declared using the RemoteAction instances which are initialized with an icon, a title, a description and the PendingIntent object. Once one or more actions have been created, they are added to an ArrayList and passed through to the setActions()
 method while building a PictureInPictureParams object.

The following code fragment demonstrates the creation of the Intent, PendingIntent and RemoteAction objects together with a PictureInPictureParams instance which is then applied to the activity’s PiP settings:

val actions = ArrayList<RemoteAction>()

val actionIntent = Intent("MY_PIP_ACTION")

val pendingIntent = PendingIntent.getBroadcast(this@MyActivity,

 REQUEST_CODE, actionIntent, 0)

val icon = Icon.createWithResource(this, R.drawable.action_icon)

val remoteAction = RemoteAction(icon,

 "My Action Title",

 "My Action Description",

 pendingIntent)

actions.add(remoteAction)

val params = PictureInPictureParams.Builder()

 .setActions(actions)

 .build()

setPictureInPictureParams(params)

79.7

 Summary

Picture-in-Picture mode is a multitasking feature introduced with Android 8.0 designed specifically to allow video playback to continue in a small window while the user performs tasks in other apps and activities. Before PiP mode can be used, it must first be enabled within the manifest file for those activities that require PiP support.

PiP mode behavior is configured using instances of the PictureInPictureParams class and initiated via a call to the enterPictureInPictureMode()
 method from within the activity. When in PiP mode, only the video playback should be visible, requiring that any other user interface elements be hidden until full screen mode is selected. These and other mode transition related tasks can be performed by overriding the onPictureInPictureModeChanged()
 method.

PiP actions appear as icons overlaid onto the PiP window when it is tapped by the user. When selected, these actions trigger behavior within the activity. The activity is notified of an action by the PiP window using broadcast receivers and pending intents.

80.

 An Android Picture-in-Picture Tutorial

Following on from the previous chapters, this chapter will take the existing VideoPlayer project and enhance it to add Picture-in-Picture support, including detecting PiP mode changes and the addition of a PiP action designed to display information about the currently running video.

80.1

 Adding Picture-in-Picture Support to the Manifest

The first step in adding PiP support to an Android app project is to enable it within the project Manifest file. Open the manifests -> AndroidManifest.xml
 file and modify the activity element to enable PiP support:

.

.

<activity android:name=".VideoPlayerActivity"

 android:supportsPictureInPicture="true"

 android:configChanges="screenSize|smallestScreenSize|screenLayout|orientation"
 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

.

.

80.2

 Adding a Picture-in-Picture Button

As currently designed, the layout for the VideoPlayer activity consists solely of a VideoView instance. A button will now be added to the layout for the purpose of switching into PiP mode. Load the activity_video_player.xml
 file into the layout editor and drag a Button object from the palette onto the layout so that it is positioned as shown in Figure 80-1
 :

[image:]

Figure 80-1

Change the text on the button so that it reads “Enter PiP Mode” and extract the string to a resource named enter_pip_mode
 . Before moving on to the next step, change the ID of the button to pipButton
 and configure the button to call a method named enterPipMode
 .

80.3

 Entering Picture-in-Picture Mode

The enterPipMode
 onClick callback method now needs to be added to the VideoPlayerActivity.
 kt
 class file. Locate this file, open it in the code editor and add this method as follows:

.

.

import android.app.PictureInPictureParams

import android.util.Rational

import android.view.View

import android.content.res.Configuration

.

.

fun enterPipMode(view: View) {

 val rational = Rational(videoView1.width,

 videoView1.height)

 val params = PictureInPictureParams.Builder()

 .setAspectRatio(rational)

 .build()

 pipButton.visibility = View.INVISIBLE

 videoView1.setMediaController(null)

 enterPictureInPictureMode(params)

}

The method begins by obtaining a reference to the Button view, then creates a Rational object containing the width and height of the VideoView. A set of Picture-in-Picture parameters is then created using the PictureInPictureParams Builder, passing through the Rational object as the aspect ratio for the video playback. Since the button does not need to be visible while the video is in PiP mode it is made invisible. The video playback controls are also hidden from view so that the video view will be unobstructed while in PiP mode.

Compile and run the app on a device or emulator running Android version 8 or newer and wait for video playback to begin before clicking on the PiP mode button. The video playback should minimize and appear in the PiP window as shown in Figure 80-2
 :

[image:]

Figure 80-2

Although the video is now playing in the PiP window, much of the view is obscured by the standard Android action bar. To remove this requires a change to the application theme style of the activity. Within Android Studio, locate and edit the app -> res -> styles.xml
 file and modify the AppTheme element to use the NoActionBar
 theme:

<resources>

 <!-- Base application theme. -->

 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar
 ">

 <!-- Customize your theme here. -->

 <item name="colorPrimary">@color/colorPrimary</item>

 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>

 <item name="colorAccent">@color/colorAccent</item>

 </style>

</resources>

Compile and run the app, place the video playback into PiP mode and note that the action bar no longer appears in the window:

[image:]

Figure 80-3

Click in the PiP window so that it increases in size, then click within the full screen mode markers that appear in the center of the window. Although the activity returns to full screen mode, note the button and media playback controls remain hidden.

Clearly some code needs to be added to the project to detect when PiP mode changes take place within the activity.

80.4

 Detecting Picture-in-Picture Mode Changes

As discussed in the previous chapter, PiP mode changes are detected by overriding the onPictureInPictureModeChanged()
 method within the affected activity. In this case, the method needs to be written such that it can detect whether the activity is entering or exiting PiP mode and to take appropriate action to re-activate the PiP button and the playback controls. Remaining within the VideoPlayerActivity.
 kt
 file, add this method now:

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration?) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode, newConfig)

 if (isInPictureInPictureMode) {

 } else {

 pipButton.visibility = View.VISIBLE

 videoView1.setMediaController(mediaController)

 }

}

When the method is called, it is passed a Boolean value indicating whether the activity is now in PiP mode. The code in the above method simply checks this value to decide whether to show the PiP button and to re-activate the playback controls.

80.5

 Adding a Broadcast Receiver

The final step in the project is to add an action to the PiP window. The purpose of this action is to display a Toast message containing the name of the currently playing video. This will require some communication between the PiP window and the activity. One of the simplest ways to achieve this is to implement a broadcast receiver within the activity, and the use of a pending intent to broadcast a message from the PiP window to the activity. These steps will need to be performed each time the activity enters PiP mode so code will need to be added to the onPictureInPictureModeChanged()
 method. Locate this method now and begin by adding some code to create an intent filter and initialize the broadcast receiver:

.

.

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

import android.content.IntentFilter

import android.widget.Toast

.

.

class VideoPlayerActivity : AppCompatActivity() {

 private var TAG = "VideoPlayer"

 private var mediaController: MediaController? = null

 private val receiver: BroadcastReceiver? = null

.

.

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration?) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode, newConfig)

 if (isInPictureInPictureMode) {

 val filter = IntentFilter()

 filter.addAction(

 "com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val receiver = object : BroadcastReceiver() {

 override fun onReceive(context: Context,

 intent: Intent) {

 Toast.makeText(context,

 "Favorite Home Movie Clips",

 Toast.LENGTH_LONG).show()

 }

 }

 registerReceiver(receiver, filter)

 } else {

 pipButton.visibility = View.VISIBLE

 videoView1.setMediaController(mediaController)

 receiver?.let {

 unregisterReceiver(it)

 }

 }

}

80.6

 Adding the PiP Action

With the broadcast receiver implemented, the next step is to create a RemoteAction object configured with an image to represent the action within the PiP window. For the purposes of this example, an image icon file named ic_info_24dp.xml
 will be used. This file can be found in the project_icons
 folder of the source code download archive available from the following URL:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

Locate this icon file and copy and paste it into the app -> res -> drawables
 folder within the Project tool window:

[image:]

Figure 80-4

The next step is to create an Intent that will be sent to the broadcast receiver. This intent then needs to be wrapped up within a PendingIntent object, allowing the intent to be triggered later when the user taps the action button in the PiP window.

Edit the VideoPlayerActivity.
 kt
 file to add a method to create the Intent and PendingIntent objects as follows:

.

.

import android.app.PendingIntent

.

.

class VideoPlayerActivity : AppCompatActivity() {

 private val REQUEST_CODE = 101

.

.

 private fun createPipAction() {

 val actionIntent = Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val pendingIntent = PendingIntent.getBroadcast(this@VideoPlayerActivity,

 REQUEST_CODE, actionIntent, 0)

 }

}

.

.

Now that both the Intent object, and the PendingIntent instance in which it is contained have been created, a RemoteAction object needs to be created containing the icon to appear in the PiP window, and the PendingIntent object. Remaining within the createPipAction()
 method, add this code as follows:

.

.

import android.app.RemoteAction

import android.graphics.drawable.Icon

.

.

private fun createPipAction() {

 val actions = ArrayList<RemoteAction>()

 val actionIntent = Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val pendingIntent = PendingIntent.getBroadcast(this@VideoPlayerActivity,

 REQUEST_CODE, actionIntent, 0)

 val icon = Icon.createWithResource(this, R.drawable.ic_info_24dp)

 val remoteAction = RemoteAction(icon, "Info", "Video Info", pendingIntent)

 actions.add(remoteAction)

}

Now a PictureInPictureParams object containing the action needs to be created and the parameters applied so that the action appears within the PiP window:

private fun createPipAction() {

 val actions = ArrayList<RemoteAction>()

 val actionIntent = Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val pendingIntent = PendingIntent.getBroadcast(this@VideoPlayerActivity,

 REQUEST_CODE, actionIntent, 0)

 val icon =

 Icon.createWithResource(this,

 R.drawable.ic_info_24dp)

 val remoteAction = RemoteAction(icon, "Info",

 "Video Info", pendingIntent)

 actions.add(remoteAction)

 val params = PictureInPictureParams.Builder()

 .setActions(actions)

 .build()

 setPictureInPictureParams(params)

}

The final task before testing the action is to make a call to the createPipAction()
 method when the activity enters PiP mode:

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration?) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode, newConfig)

.

.

 registerReceiver(receiver, filter)

 createPipAction()

 } else {

 pipButton.visibility = View.VISIBLE

 videoView1.setMediaController(mediaController)

.

.

80.7

 Testing the Picture-in-Picture Action

Build and run the app once again and place the activity into PiP mode. Tap on the PiP window so that the new action button appears as shown in Figure 80-5
 :

[image:]

Figure 80-5

Click on the action button and wait for the Toast message to appear displaying the name of the video:

[image:]

Figure 80-6

80.8

 Summary

This chapter has demonstrated addition of Picture-in-Picture support to an Android Studio app project including enabling and entering PiP mode and the implementation of a PiP action. This included the use of a broadcast receiver and pending intents to implement communication between the PiP window and the activity.

81.

 Video Recording
 and Image Capture
 on Android using Camera Intents

Many Android devices are equipped with at least one camera. There are a number of ways to allow the user to record video from within an Android application via these built-in cameras, but by far the easiest approach is to make use of a camera intent included with the Android operating system. This allows an application to invoke the standard Android video recording interface. When the user has finished recording, the intent will return to the application, passing through a reference to the media file containing the recorded video.

As will be demonstrated in this chapter, this approach allows video recording capabilities to be added to applications with just a few lines of code.

81.1

 Checking for Camera Support

Before attempting to access the camera on an Android device, it is essential that defensive code be implemented to verify the presence of camera hardware. This is of particular importance since not all Android devices include a camera.

The presence or otherwise of a camera can be identified via a call to the PackageManager.hasSystemFeature()

 method. In order to check for the presence of a front-facing camera, the code needs to check for the presence of the PackageManager.FEATURE_CAMERA_FRONT

 feature. This can be encapsulated into the following convenience method:

private fun hasCamera(): Boolean {

 return packageManager.hasSystemFeature(

 PackageManager.FEATURE_CAMERA_ANY)

}

The presence of a camera facing away from the device screen can be similarly verified using the PackageManager.FEATURE_CAMERA
 constant. A test for whether a device has any camera can be performed by referencing PackageManager.FEATURE_CAMERA_ANY
 .

81.2

 Calling the Video Capture Intent

Use of the video capture intent involves, at a minimum, the implementation of code to call the intent activity and a method to handle the return from the activity. The Android built-in video recording intent is represented by MediaStore.ACTION_VIDEO_CAPTURE

 and may be launched as follows:

private val VIDEO_CAPTURE = 101

val intent = Intent(MediaStore.ACTION_VIDEO_CAPTURE)

startActivityForResult(intent, VIDEO_CAPTURE)

When invoked in this way, the intent will place the recorded video into a file using a default location and file name.

When the user either completes or cancels the video recording session, the onActivityResult()
 method of the calling activity will be called. This method needs to check that the request code passed through as an argument matches that specified when the intent was launched, verify that the recording session was successful and extract the path of the video media file. The corresponding onActivityResult()
 method for the above intent launch code might, therefore, be implemented as follows:

override fun onActivityResult(requestCode: Int,

 resultCode: Int, data: Intent) {

 val videoUri = data.data

 if (requestCode == VIDEO_CAPTURE) {

 if (resultCode == Activity.RESULT_OK) {

 Toast.makeText(this, "Video saved to:\n"

 + videoUri, Toast.LENGTH_LONG).show()

 } else if (resultCode == Activity.RESULT_CANCELED) {

 Toast.makeText(this, "Video recording cancelled.",

 Toast.LENGTH_LONG).show()

 } else {

 Toast.makeText(this, "Failed to record video",

 Toast.LENGTH_LONG).show()

 }

 }

}

The above code example simply displays a toast message indicating the success of the recording intent session. In the event of a successful recording, the path to the stored video file is displayed.

When executed, the video capture intent (Figure 81-1
) will launch and provide the user the opportunity to record
 video.

[image:]

Figure 81-1

81.3

 Calling the Image Capture Intent

In addition to the video capture intent, Android also includes an intent designed for taking still photos using the built-in camera, launched by referencing MediaStore.ACTION_IMAGE_CAPTURE

 :

private val VIDEO_CAPTURE = 102

val intent = Intent(MediaStore.ACTION_IMAGE_CAPTURE)

startActivityForResult(intent, IMAGE_CAPTURE)

As with video capture, the intent may be passed the location and file name into which the image is to be stored, or left to use the default location and naming convention.

81.4

 Creating an Android Studio Video Recording Project

In the remainder of this chapter, a very simple application will be created to demonstrate the use of the video capture intent. The application will consist of a single button which will launch the video capture intent. Once video has been recorded and the video capture intent dismissed, the application will simply display the path to the video file as a Toast message. The VideoPlayer application created in the previous chapter may then be modified to play back the recorded video.

Create a new project in Android Studio, entering CameraApp
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue through the remaining screens, requesting the creation of an Empty Activity named CameraAppActivity
 with a layout file named activity_camera_app.

81.5

 Designing the User Interface Layout

Navigate to app -> res -> layout
 and double-click on the activity_camera_app.xml
 layout file to load it into the Layout Editor tool.

With the Layout Editor tool in Design mode, delete the default “Hello World!” text view and replace it with a Button view positioned in the center of the layout canvas. Change the text on the button to read “Record Video” and extract the text to a string resource. Also, assign an onClick
 property to the button so that it calls a method named startRecording
 when selected by the user:

[image:]

Figure 81-2

Remaining within the Attributes tool window, change the ID to recordButton.

81.6

 Checking for the Camera

Before attempting to launch the video capture intent, the application first needs to verify that the device on which it is running actually has a camera. For the purposes of this example, we will simply make use of the previously outlined hasCamera()
 method, this time checking for any camera type. In the event that a camera is not present, the Record Video button will be disabled.

Edit the CameraAppActivity.
 kt
 file and modify it as follows:

package com.ebookfrenzy.cameraapp

import android.app.Activity

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.pm.PackageManager

import kotlinx.android.synthetic.main.activity_camera_app.*

class CameraAppActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_camera_app)

 recordButton.isEnabled = hasCamera()

 }

 private fun hasCamera(): Boolean {

 return packageManager.hasSystemFeature(

 PackageManager.FEATURE_CAMERA_ANY)

 }

}

81.7

 Launching the Video Capture Intent

The objective is for the video capture intent to launch when the user selects the Record Video
 button. Since this is now configured to call a method named startRecording()
 , the next logical step is to implement this method within the CameraAppActivity.
 kt
 source file:

package com.ebookfrenzy.cameraapp

import android.app.Activity

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.pm.PackageManager

import android.provider.MediaStore

import android.content.Intent

import android.view.View

import android.app.Activity

import kotlinx.android.synthetic.main.activity_camera_app.*

class CameraAppActivity : AppCompatActivity() {

 private val VIDEO_CAPTURE = 101

 fun startRecording(view: View) {

 val intent = Intent(MediaStore.ACTION_VIDEO_CAPTURE)

 startActivityForResult(intent, VIDEO_CAPTURE)

 }

.

.

}

81.8

 Handling the Intent Return

When control returns back from the intent to the application’s main activity, the onActivityResult()
 method will be called. All that this method needs to do for this example is verify the success of the video capture and display the path of the file into which the video has been stored:

.

.

import android.widget.Toast

.

.

class CameraAppActivity : AppCompatActivity() {

.

.

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

 super.onActivityResult(requestCode, resultCode, data)

 val videoUri = data?.data

 if (requestCode == VIDEO_CAPTURE) {

 if (resultCode == Activity.RESULT_OK) {

 Toast.makeText(this, "Video saved to:\n"

 + videoUri, Toast.LENGTH_LONG).show()

 } else if (resultCode == Activity.RESULT_CANCELED) {

 Toast.makeText(this, "Video recording cancelled.",

 Toast.LENGTH_LONG).show()

 } else {

 Toast.makeText(this, "Failed to record video",

 Toast.LENGTH_LONG).show()

 }

 }

}

81.9

 Testing the Application

Compile and run the application on a physical Android device or emulator session, touch the record button and use the video capture intent to record some video. Once completed, stop the video recording. Play back the recording by selecting the play button on the screen. Finally, touch the Done
 (sometimes represented by a check mark) button on the screen to return to the CameraApp application. On returning, a Toast message should appear stating that the video has been stored in a specific location on the device (the exact location will differ from one device type to another) from where it can be moved, stored or played back depending on the requirements of the app.

81.10

 Summary

Most Android tablet and smartphone devices include a camera that can be accessed by applications. While there are a number of different approaches to adding camera support to applications, the Android video and image capture intents provide a simple and easy solution to capturing video and images.

82.

 Making Runtime Permission Requests in Android

In a number of the example projects created in preceding chapters, changes have been made to the AndroidManifest.xml
 file to request permission for the app to perform a specific task. In a couple of instances, for example, internet access permission has been requested in order to allow the app to download and display web pages. In each case up until this point, the addition of the request to the manifest was all that is required in order for the app to obtain permission from the user to perform the designated task.

 There are, however, a number of permissions for which additional steps are required in order for the app to function when running on Android 6.0 or later. The first of these so-called “dangerous” permissions

 will be encountered in the next chapter. Before reaching that point, however, this chapter will outline the steps involved in requesting such permissions when running on the latest generations of Android.

82.1

 Understanding Normal and Dangerous Permissions

Android enforces security by requiring the user to grant permission for an app to perform certain tasks. Prior to the introduction of Android 6, permission was always sought at the point that the app was installed on the device. Figure 82-1
 , for example, shows a typical screen seeking a variety of permissions during the installation of an app via Google Play.

 [image:]

Figure 82-1

For many types of permissions this scenario still applies for apps on Android 6.0 or later. These permissions are referred to as normal permissions

 and are still required to be accepted by the user at the point of installation. A second type of permission, referred to as dangerous permissions
 must also be declared within the manifest file in the same way as a normal permission, but must also be requested from the user when the application is first launched. When such a request is made, it appears in the form of a dialog box as illustrated in Figure 82-2
 :

[image:]

Figure 82-2

The full list of permissions that fall into the dangerous
 category is contained in Table 82-6
 :

	
Permission Group

	
Permission

	
Calendar

	
READ_CALENDAR

WRITE_CALENDAR

	
Camera

	
CAMERA

	
Contacts

	
READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

	
Location

	
ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

	
Microphone

	
RECORD_AUDIO

	
Phone

	
READ_PHONE_STATE

CALL_PHONE

READ_CALL_LOG

WRITE_CALL_LOG

ADD_VOICEMAIL

USE_SIP

PROCESS_OUTGOING_CALLS

	
Sensors

	
BODY_SENSORS

	
SMS

	
SEND_SMS

RECEIVE_SMS

READ_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

	
Storage

	
READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE

Table 82-6

82.2

 Creating the Permissions Example Project

Create a new project in Android Studio, entering PermissionDemo
 into the Application name field and com.ebookfrenzy
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named PermissionDemoActivity
 with a corresponding layout named activity_permission_demo.

82.3

 Checking for a Permission

The Android Support Library contains a number of methods that can be used to seek and manage dangerous permissions within the code of an Android app. These API calls can be made safely regardless of the version of Android on which the app is running, but will only perform meaningful tasks when executed on Android 6.0 or later.

Before an app attempts to make use of a feature that requires approval of a dangerous permission, and regardless of whether or not permission was previously granted, the code must check that the permission has been granted. This can be achieved via a call to the checkSelfPermission()
 method of the ContextCompat class, passing through as arguments a reference to the current activity and the permission being requested. The method will check whether the permission has been previously granted and return an integer value matching PackageManager.PERMISSION_GRANTED

 or PackageManager.PERMISSION_DENIED

 .

Within the PermissionDemoActivity.
 kt
 file of the example project, modify the code to check whether permission has been granted for the app to record audio:

package com.ebookfrenzy.permissiondemo

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.Manifest

import android.content.pm.PackageManager

import android.support.v4.content.ContextCompat

import android.util.Log

class PermissionDemoActivity : AppCompatActivity() {

 private val TAG = "PermissionDemo"

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_permission_demo)

 setupPermissions()

 }

 private fun setupPermissions() {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied")

 }

 }

}

Run the app on a device or emulator running a version of Android that predates Android 6.0 and check the Logcat output within Android Studio. After the app has launched, the Logcat output should include the “Permission to record denied” message.

Edit the AndroidManifest.xml
 file (located in the Project tool window under app -> manifests
) and add a line to request recording permission as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.permissiondemoactivity" >

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@sxtring/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity android:name=".PermissionDemoActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Compile and run the app once again and note that this time the permission denial message does not appear. Clearly, everything that needs to be done to request this permission on older versions of Android has been done. Run the app on a device or emulator running Android 6.0 or later, however, and note that even though permission has been added to the manifest file, the check still reports that permission has been denied. This is because Android version 6 or later requires that the app also request dangerous permissions at runtime.

82.4

 Requesting Permission at Runtime

A permission request is made via a call to the requestPermissions()
 method of the ActivityCompat class. When this method is called, the permission request is handled asynchronously and a method named onRequestPermissionsResult()
 is called when the task is completed.

The requestPermissions()
 method
 takes as arguments a reference to the current activity, together with the identifier of the permission being requested and a request code. The request code can be any integer value and will be used to identify which request has triggered the call to the onRequestPermissionsResult()
 method
 . Modify the PermissionDemoActivity.
 kt
 file to declare a request code and request recording permission in the event that the permission check failed:

package com.ebookfrenzy.permissiondemo

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.Manifest

import android.content.pm.PackageManager

import android.support.v4.content.ContextCompat

import android.util.Log

import android.support.v4.app.ActivityCompat

class PermissionDemoActivity : AppCompatActivity() {

 private val TAG = "PermissionDemo"

 private val RECORD_REQUEST_CODE = 101

.

.

 private fun setupPermissions() {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied")

 makeRequest()

 }

 }

 private fun makeRequest() {

 ActivityCompat.requestPermissions(this,

 arrayOf(Manifest.permission.RECORD_AUDIO),

 RECORD_REQUEST_CODE)

 }

}

Next, implement the onRequestPermissionsResult()
 method
 so that it reads as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 when (requestCode) {

 RECORD_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0] != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission has been denied by user")

 } else {

 Log.i(TAG, "Permission has been granted by user")

 }

 }

 }

}

Compile and run the app on an Android 6 or later emulator or device and note that a dialog seeking permission to record audio appears as shown in Figure 82-3
 :

[image:]

Figure 82-3

Tap the Allow button and check that the “Permission has been granted by user” message appears in the Logcat panel.

Once the user has granted the requested permission, the checkSelfPermission()
 method
 call will return a PERMISSION_GRANTED result on future app invocations until the user uninstalls and re-installs the app or changes the permissions for the app in Settings.

82.5

 Providing a Rationale for the Permission Request

As is evident from Figure 82-3
 , the user has the option to deny the requested permission. In this case, the app will continue to request the permission each time that it is launched by the user unless the user selected the “Never ask again” option prior to clicking on the Deny button. Repeated denials by the user may indicate that the user doesn’t understand why the permission is required by the app. The user might, therefore, be more likely to grant permission if the reason for the requirements is explained when the request is made. Unfortunately, it is not possible to change the content of the request dialog to include such an explanation.

An explanation is best included in a separate dialog which can be displayed before the request dialog is presented to the user. This raises the question as to when to display this explanation dialog. The Android documentation recommends that an explanation dialog only be shown in the event that the user has previously denied the permission and provides a method to identify when this is the case.

A call to the shouldShowRequestPermissionRationale()
 method
 of the ActivityCompat class
 will return a true result if the user has previously denied a request for the specified permission, and a false result if the request has not previously been made. In the case of a true result, the app should display a dialog containing a rationale for needing the permission and, once the dialog has been read and dismissed by the user, the permission request should be repeated.

To add this functionality to the example app, modify the onCreate()
 method so that it reads as follows:

.

.

import android.app.AlertDialog

.

.

private fun setupPermissions() {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied")

 if (ActivityCompat.shouldShowRequestPermissionRationale(this,

 Manifest.permission.RECORD_AUDIO)) {

 val builder = AlertDialog.Builder(this)

 builder.setMessage("Permission to access the microphone is required

for this app to record audio.")

 .setTitle("Permission required")

 builder.setPositiveButton("OK"

) { dialog, id ->

 Log.i(TAG, "Clicked")

 makeRequest()

 }

 val dialog = builder.create()

 dialog.show()

 } else {

 makeRequest()

 }

 }

}

The method still checks whether or not the permission has been granted, but now also identifies whether a rationale needs to be displayed. If the user has previously denied the request, a dialog is displayed containing an explanation and an OK button on which a listener is configured to call the makeRequest()
 method when the button is tapped. In the event that the permission request has not previously been made, the code moves directly to seeking permission.

82.6

 Testing the Permissions App

On the Android 6 or later device or emulator session on which testing is being performed, launch the Settings app, select the Apps & notifications
 option and scroll to and select the PermissionDemo app. On the app settings screen, tap the uninstall button to remove the app from the device.

Run the app once again and, when the permission request dialog appears, click on the Deny button. Terminate the app, run it a second time and verify that the rationale dialog appears. Tap the OK button and, when the permission request dialog appears, tap the Allow button.

Return to the Settings app, select the Apps option and select the PermissionDemo app once again from the list. Once the settings for the app are listed, verify that the Permissions section lists the Microphone
 permission:

[image:]

Figure 82-4

82.7

 Summary

Prior to the introduction of Android 6.0 the only step necessary for an app to request permission to access certain functionality was to add an appropriate line to the application’s manifest file. The user would then be prompted to approve the permission at the point that the app was installed. This is still the case for most permissions, with the exception of a set of permissions that are considered dangerous. Permissions that are considered dangerous usually have the potential to allow an app to violate the user’s privacy such as allowing access to the microphone, contacts list or external storage.

As outlined in this chapter, apps based on Android 6 or later must now request dangerous permission approval from the user when the app launches in addition to including the permission request in the manifest file.

83.

 Android Audio Recording
 and Playback
 using MediaPlayer
 and MediaRecorder

This chapter will provide an overview of the MediaRecorder class and explain the basics of how this class can be used to record audio or video. The use of the MediaPlayer class to play back audio will also be covered. Having covered the basics, an example application will be created to demonstrate these techniques in action. In addition to looking at audio and video handling, this chapter will also touch on the subject of saving files to the SD card.

83.1

 Playing Audio

In terms of audio playback, most implementations of Android support AAC LC/LTP, HE-AACv1 (AAC+), HE-AACv2 (enhanced AAC+), AMR-NB, AMR-WB, MP3, MIDI, Ogg Vorbis, and PCM/WAVE formats.

Audio playback can be performed using either the MediaPlayer or the AudioTrack classes. AudioTrack is a more advanced option that uses streaming audio buffers and provides greater control over the audio. The MediaPlayer class, on the other hand, provides an easier programming interface for implementing audio playback and will meet the needs of most audio requirements.

The MediaPlayer class
 has associated with it a range of methods that can be called by an application to perform certain tasks. A subset of some of the key methods of this class is as follows:

•
 create()
 – Called to create a new instance of the class, passing through the Uri of the audio to be played.

•
 setDataSource()
 – Sets the source from which the audio is to play.

•
 prepare()
 – Instructs the player to prepare to begin playback.

•
 start()
 – Starts the playback.

•
 pause()
 – Pauses the playback. Playback may be resumed via a call to the resume()
 method.

•
 stop()
 – Stops playback.

•
 setVolume()
 – Takes two floating-point arguments specifying the playback volume for the left and right channels.

•
 resume()
 – Resumes a previously paused playback session.

•
 reset()
 – Resets the state of the media player instance. Essentially sets the instance back to the uninitialized state. At a minimum, a reset player will need to have the data source set again and the prepare()
 method called.

•
 release()
 – To be called when the player instance is no longer needed. This method ensures that any resources held by the player are released.

In a typical implementation, an application will instantiate an instance of the MediaPlayer class, set the source of the audio to be played and then call prepare()
 followed by start()
 . For example:

val mediaPlayer = MediaPlayer()

mediaPlayer?.setDataSource("https://www.yourcompany.com/myaudio.mp3")

mediaPlayer?.prepare()

mediaPlayer?.start()

83.2

 Recording Audio and Video using the MediaRecorder Class

As with audio playback, recording can be performed using a number of different techniques. One option is to use the MediaRecorder class
 , which, as with the MediaPlayer class, provides a number of methods that are used to record audio:

•
 setAudioSource()

 – Specifies the source of the audio to be recorded (typically this will be MediaRecorder.AudioSource.MIC for the device microphone).

•
 setVideoSource()

 – Specifies the source of the video to be recorded (for example MediaRecorder.VideoSource.CAMERA).

•
 setOutputFormat()

 – Specifies the format into which the recorded audio or video is to be stored (for example MediaRecorder.OutputFormat.AAC_ADTS).

•
 setAudioEncoder()

 – Specifies the audio encoder to be used for the recorded audio (for example MediaRecorder.AudioEncoder.AAC).

•
 setOutputFile()

 – Configures the path to the file into which the recorded audio or video is to be stored.

•
 prepare()
 – Prepares the MediaRecorder instance to begin recording.

•
 start()
 - Begins the recording process.

•
 stop()
 – Stops the recording process. Once a recorder has been stopped, it will need to be completely reconfigured and prepared before being restarted.

•
 reset()
 – Resets the recorder. The instance will need to be completely reconfigured and prepared before being restarted.

•
 release()
 – Should be called when the recorder instance is no longer needed. This method ensures all resources held by the instance are released.

A typical implementation using this class will set the source, output and encoding format and output file. Calls will then be made to the prepare()
 and start()
 methods. The stop()
 method will then be called when recording is to end, followed by the reset()
 method. When the application no longer needs the recorder instance, a call to the release()
 method is recommended:

val mediaRecorder = MediaRecorder()

mediaRecorder?.setAudioSource(MediaRecorder.AudioSource.MIC)

mediaRecorder?.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP)

mediaRecorder?.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB)

mediaRecorder?.setOutputFile(audioFilePath)

mediaRecorder?.prepare()

mediaRecorder?.start()

.

.

mediaRecorder?.stop()

mediaRecorder?.reset()

mediaRecorder?.release()

In order to record audio, the manifest file for the application must include the android.permission.RECORD_AUDIO
 permission
 :

<uses-permission android:name="android.permission.RECORD_AUDIO" />

As outlined in the chapter entitled
“Making Runtime Permission Requests in Android”

 , access to the microphone falls into the category of dangerous permissions. To support Android 6, therefore, a specific request for microphone access must also be made when the application launches, the steps for which will be covered later in this chapter.

83.3

 About the Example Project

The remainder of this chapter will work through the creation of an example application intended to demonstrate the use of the MediaPlayer and MediaRecorder classes to implement the recording and playback of audio on an Android device.

When developing applications that make use of specific hardware features, the microphone being a case in point, it is important to check the availability of the feature before attempting to access it in the application code. The application created in this chapter will, therefore, also include code to detect the presence of a microphone on the device.

Once completed, this application will provide a very simple interface intended to allow the user to record and playback audio. The recorded audio will need to be stored within an audio file on the device. That being the case, this tutorial will also briefly explore the mechanism for using SD Card storage
 .

83.4

 Creating the AudioApp Project

Create a new project in Android Studio, entering AudioApp
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named AudioAppActivity
 with a corresponding layout resource file named activity_audio_app.

83.5

 Designing the User Interface

Once the new project has been created, select the activity_audio_app.xml
 file from the Project tool window and with the Layout Editor tool in Design mode, select the “Hello World!” TextView and delete it from the layout.

Drag and drop three Button views onto the layout. The positioning of the buttons is not of paramount importance to this example, though Figure 83-1
 shows a suggested layout using a ver
 tical chain.

Configure the buttons to display string resources that read Play, Record
 and Stop
 and give them view IDs of playButton
 , recordButton
 , and stopButton
 respectively.

Select the Play button and, within the Attributes panel, configure the onClick
 property to call a method named playAudio
 when selected by the user. Repeat these steps to configure the remaining buttons to call methods named recordAudio
 and stopAudio
 respectively.

[image:]

Figure 83-1

83.6

 Checking for Microphone
 Availability

Attempting to record audio on a device without a microphone will cause the Android system to throw an exception. It is vital, therefore, that the code check for the presence of a microphone before making such an attempt. There are a number of ways of doing this, including checking for the physical presence of the device. An easier approach, and one that is more likely to work on different Android devices, is to ask the Android system if it has a package installed for a particular feature
 . This involves creating an instance of the Android PackageManager class
 and then making a call to the object’s hasSystemFeature()
 method. PackageManager.FEATURE_MICROPHONE
 is the feature of interest in this case
 .

For the purposes of this example, we will create a method named hasMicrophone()
 that may be called upon to check for the presence of a microphone. Within the Project tool window, locate and double-click on the AudioAppActivity.
 kt
 file and modify it to add this method:

package com.ebookfrenzy.audioapp

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.content.pm.PackageManager

class AudioAppActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_audio_app)

 }

 private fun hasMicrophone(): Boolean {

 val pmanager = this.packageManager

 return pmanager.hasSystemFeature(

 PackageManager.FEATURE_MICROPHONE)

 }

}

83.7

 Performing the Activity Initialization

The next step is to modify the activity to perform a number of initialization tasks. Remaining within the AudioAppActivity.
 kt
 file, modify the code as follows:

.

.

import android.media.MediaRecorder

import android.os.Environment

import android.view.View

import android.media.MediaPlayer

import kotlinx.android.synthetic.main.activity_audio_app.*

.

.

class AudioAppActivity : AppCompatActivity() {

 private var mediaRecorder: MediaRecorder? = null

 private var mediaPlayer: MediaPlayer? = null

 private var audioFilePath: String? = null

 private var isRecording = false

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_audio_app)

 audioSetup()

 }

 private fun audioSetup() {

 if (!hasMicrophone()) {

 stopButton.isEnabled = false

 playButton.isEnabled = false

 recordButton.isEnabled = false

 } else {

 playButton.isEnabled = false

 stopButton.isEnabled = false

 }

 audioFilePath = Environment.getExternalStorageDirectory()

 .absolutePath + "/myaudio.3gp"

 }

.

.

}

The added code begins by obtaining references to the three button views in the user interface. Next, the previously implemented hasMicrophone()
 method is called to ascertain whether the device includes a microphone. If it does not, all the buttons are disabled, otherwise only the Stop and Play buttons are disabled.

The next line of code needs a little more explanation:

audioFilePath = Environment.getExternalStorageDirectory()

 .absolutePath + "/myaudio.3gp"

The purpose of this code is to identify the location of the SD card storage on the device and to use that to create a path to a file named myaudio.3gp
 into which the audio recording will be stored. The path of the SD card (which is referred to as external storage even though it is internal to the device on many Android devices) is obtained via a call to the getExternalStorageDirectory()
 method
 of the Android Environment class
 .

When working with external storage it is important to be aware that such activity by an application requires permission to be requested in the application manifest file. For example:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

83.8

 Implementing the recordAudio() Method

When the user touches the Record button, the recordAudio()
 method will be called. This method will need to enable and disable the appropriate buttons and configure the MediaRecorder instance with information about the source of the audio, the output format and encoding, and the location of the file into which the audio is to be stored. Finally, the prepare()
 and start()
 methods of the MediaRecorder object will need to be called. Combined, these requirements result in the following method implementation in the AudioAppActivity.
 kt
 file:

fun recordAudio(view: View) {

 isRecording = true

 stopButton.isEnabled = true

 playButton.isEnabled = false

 recordButton.isEnabled = false

 try {

 mediaRecorder = MediaRecorder()

 mediaRecorder?.setAudioSource(MediaRecorder.AudioSource.MIC)

 mediaRecorder?.setOutputFormat(

 MediaRecorder.OutputFormat.THREE_GPP)

 mediaRecorder?.setOutputFile(audioFilePath)

 mediaRecorder?.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB)

 mediaRecorder?.prepare()

 } catch (e: Exception) {

 e.printStackTrace()

 }

 mediaRecorder?.start()

}

83.9

 Implementing the stopAudio() Method

The stopAudio()
 method is responsible for enabling the Play button, disabling the Stop button and then stopping and resetting the MediaRecorder instance. The code to achieve this reads as outlined in the following listing and should be added to the AudioAppActivity.
 kt
 file:

fun stopAudio(view: View) {

 stopButton.isEnabled = false

 playButton.isEnabled = true

 if (isRecording) {

 recordButton.isEnabled = false

 mediaRecorder?.stop()

 mediaRecorder?.release()

 mediaRecorder = null

 isRecording = false

 } else {

 mediaPlayer?.release()

 mediaPlayer = null

 recordButton.isEnabled = true

 }

}

83.10

 Implementing the playAudio() method

The playAudio()
 method will simply create a new MediaPlayer instance, assign the audio file located on the SD card as the data source and then prepare and start the playback:

fun playAudio(view: View) {

 playButton.isEnabled = false

 recordButton.isEnabled = false

 stopButton.isEnabled = true

 mediaPlayer = MediaPlayer()

 mediaPlayer?.setDataSource(audioFilePath)

 mediaPlayer?.prepare()

 mediaPlayer?.start()

}

83.11

 Configuring and Requesting Permissions

Before testing the application, it is essential that the appropriate permissions be requested within the manifest file for the application. Specifically, the application will require permission to record audio and to access the external storage (SD card). Within the Project tool window, locate and double-click on the AndroidManifest.xml
 file to load it into the editor and modify the XML to add the two permission tags:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.audioapp" >

 <uses-permission android:name=

 "android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity android:name=".AudioAppActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name=

 "android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

The above steps will be adequate to ensure that the user enables these permissions when the app is installed on devices running versions of Android pre-dating Android 6.0. Both microphone and external storage access are categorized in Android as being dangerous permissions because they give the app the potential to compromise the user’s privacy. In order for the example app to function on Android 6 or later devices, therefore, code needs to be added to specifically request these two permissions at app runtime.

Edit the AudioAppActivity.
 kt
 file and begin by adding some additional import directives and constants to act as request identification codes for the permissions being requested:

.

.

import android.Manifest

import android.widget.Toast

import android.support.v4.app.ActivityCompat

import android.support.v4.content.ContextCompat

.

.

class AudioAppActivity : AppCompatActivity() {

.

.

 private val RECORD_REQUEST_CODE = 101

 private val STORAGE_REQUEST_CODE = 102

.

.

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to be requested and the corresponding request identification code. Remaining with the AudioAppActivity.
 kt
 class file, implement this method as follows:

private fun requestPermission(permissionType: String, requestCode: Int) {

 val permission = ContextCompat.checkSelfPermission(this,

 permissionType)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 arrayOf(permissionType), requestCode

)

 }

}

Using the steps outlined in the
“Making Runtime Permission Requests in Android”

 chapter of this book, the above method verifies that the specified permission has not already been granted before making the request, passing through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult()
 method
 will be called on the activity, passing through the identification code and the results of the request. The next step, therefore, is to implement this method within the AudioAppActivity.
 kt
 file as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 when (requestCode) {

 RECORD_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0]

 != PackageManager.PERMISSION_GRANTED) {

 recordButton.isEnabled = false

 Toast.makeText(this,

 "Record permission required",

 Toast.LENGTH_LONG).show()

 } else {

 requestPermission(

 Manifest.permission.WRITE_EXTERNAL_STORAGE,

 STORAGE_REQUEST_CODE)

 }

 return

 }

 STORAGE_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0]

 != PackageManager.PERMISSION_GRANTED) {

 recordButton.isEnabled = false

 Toast.makeText(this,

 "External Storage permission required",

 Toast.LENGTH_LONG).show()

 }

 return

 }

 }

}

The above code checks the request identifier code to identify which permission request has returned before checking whether or not the corresponding permission was granted. If the user grants permission to access the microphone the code then proceeds to request access to the external storage. In the event that either permission was denied, a message is displayed to the user indicating the app will not function. In both instances, the record button is also disabled.

All that remains prior to testing the app is to call the newly added requestPermission()
 method for microphone access when the app launches. Remaining in the AudioAppActivity.
 kt
 file, modify the audioSetup()
 method as follows:

private fun audioSetup() {

 if (!hasMicrophone()) {

 stopButton.isEnabled = false

 playButton.isEnabled = false

 recordButton.isEnabled = false

 } else {

 playButton.isEnabled = false

 stopButton.isEnabled = false

 }

 audioFilePath = Environment.getExternalStorageDirectory()

 .absolutePath + "/myaudio.3gp"

 requestPermission(Manifest.permission.RECORD_AUDIO,

 RECORD_REQUEST_CODE)

}

83.12

 Testing the Application

Compile and run the application on an Android device containing a microphone, allow the requested permissions and touch the Record button. After recording, touch Stop followed by Play, at which point the recorded audio should play back through the device speakers. If running on Android 6.0 or later, note that the app requests permission to use the external storage and to record audio when first launched.

83.13

 Summary

The Android SDK provides a number of mechanisms for the implementation of audio recording and playback. This chapter has looked at two of these, in the form of the MediaPlayer and MediaRecorder classes.
 Having covered the theory of using these techniques, this chapter worked through the creation of an example application designed to record and then play back audio. In the course of working with audio in Android, this chapter also looked at the steps involved in ensuring that the device on which the application is running has a microphone before attempting to record audio. The use of external storage in the form of an SD card was also covered.

84.

 Working with the Google Maps Android API in Android Studio

When Google decided to introduce a map service many years ago, it is hard to say whether or not they ever anticipated having a version available for integration into mobile applications. When the first web based version of what would eventually be called Google Maps was introduced in 2005, the iPhone had yet to ignite the smartphone revolution and the company that was developing the Android operating system would not be acquired by Google for another six months. Whatever aspirations Google had for the future of Google Maps, it is remarkable to consider that all of the power of Google Maps can now be accessed directly via Android applications using the Google Maps Android API.

This chapter is intended to provide an overview of the Google Maps
 system and Google Maps Android API. The chapter will provide an overview of the different elements that make up the API, detail the steps necessary to configure a development environment to work with Google Maps and then work through some code examples demonstrating some of the basics of Google Maps Android integration.

84.1

 The Elements of the Google Maps Android API

The Google Maps Android API consists of a core set of classes that combine to provide mapping capabilities in Android applications. The key elements of a map are as follows:

•
 GoogleMap
 –
 The main class of the Google Maps Android API. This class is responsible for downloading and displaying map tiles and for displaying and responding to map controls. The GoogleMap object is not created directly by the application but is instead created when MapView or MapFragment instances are created. A reference to the GoogleMap object can be obtained within application code via a call to the getMap()
 method of a MapView, MapFragment or SupportMapFragment instance.

•
 MapView

 - A subclass of the View class, this class provides the view canvas onto which the map is drawn by the GoogleMap object, allowing a map to be placed in the user interface layout of an activity.

•
 SupportMapFragment

 – A subclass of the Fragment class, this class allows a map to be placed within a Fragment in an Android layout.

•
 Marker
 – The purpose of the Marker class
 is to allow locations to be marked on a map. Markers are added to a map by obtaining a reference to the GoogleMap object associated with a map and then making a call to the addMarker()
 method of that object instance. The position of a marker is defined via Longitude and Latitude. Markers can be configured in a number of ways, including specifying a title, text and an icon. Markers may also be made to be “draggable”, allowing the user to move the marker to different positions on a map.

•
 Shapes
 – The drawing of lines and shapes on a map is achieved through the use of the Polyline

 , Polygon

 and Circle
 classes
 .

•
 UiSettings

 – The UiSettings class provides a level of control from within an application of which user interface controls appear on a map. Using this class, for example, the application can control whether or not the zoom, current location and compass controls appear on a map. This class can also be used to configure which touch screen gestures are recognized by the map.

•
 My Location Layer

 – When enabled, the My Location Layer displays a button on the map which, when selected by the user, centers the map on the user’s current geographical location. If the user is stationary, this location is represented on the map by a blue marker. If the user is in motion the location is represented by a chevron indicating the user’s direction of travel.

The best way to gain familiarity with the Google Maps Android API is to work through an example. The remainder of this chapter will create a simple Google Maps based application while highlighting the key areas of the API.

84.2

 Creating the Google Maps Project

Create a new project in Android Studio, entering MapDemo
 into the Application name field and com.ebookfrenzy
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of a Google Maps Activity
 named MapDemoActivity
 with a corresponding layout named activity_map_demo
 and a title of Map Demo
 .

84.3

 Obtaining Your Developer Signature

Before an application can make use of the Google Maps Android API
 , it must first be registered within the Google APIs Console. Before an application can be registered, however, the developer signature (also referred to as the SHA-1 fingerprint) associated with your development environment must be identified. This is contained in a keystore file located in the .android
 subdirectory of your home directory and may be obtained using the keytool
 utility provided as part of the Java SDK as outlined below. In order to make the process easier, however, Android Studio adds some additional files to the project when the Google Maps Activity
 option is selected during the project creation process. One of these files is named google_maps_api.xml
 and is located in the app -> res -> values
 folder of the project.

Contained within the google_maps_api.xml
 file is a link to the Google Developer console. Copy and paste this link into a browser window. Once loaded, a page similar to the following will appear:

[image:]

Figure 84-1

Verify that the menu is set to Create a new project
 before clicking on the Continue
 button. Once the API has been enabled, click on the Create API Key
 button. After a short delay, the new project will be created and a panel will appear (Figure 84-2
) providing the API key for the ap
 plication.

[image:]

Figure 84-2

Copy this key, return to Android Studio and paste the API key into the YOUR_KEY_HERE
 section of the file:

<string name="google_maps_key"

templateMergeStrategy="preserve" translatable="false">YOUR_KEY_HERE</string>

84.4

 Adding the Apache HTTP Legacy Library Requirement

Since this example project will be built for use with
 Android version 9.0 or later, the following declaration needs to be added within the <application> section of the AndroidManifest.xml
 file as follows:

.

.

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <uses-library

 android:name="org.apache.http.legacy"

 android:required="false" />

.

.

84.5

 Testing the Application

Perform a test run of the application to verify that the API key is correctly configured. Assuming that the configuration is correct, the application will run and display a map on the screen.

In the event that a map is not displayed, check the following areas:

•
 If the application is running on an emulator, make sure that the emulator is running a version of Android that includes the Google APIs. The current operating system can be changed for an AVD configuration by selecting the Tools -> Android -> AVD Manager
 menu option, clicking on the pencil icon in the Actions
 column of the AVD followed by the Change…
 button next to the current Android version. Within the system image dialog, select a target which includes the Google APIs.

•
 Check the Logcat output for any areas relating to authentication problems with regard to the Google Maps API. This usually means the API key was entered incorrectly or that the application package name does not match that specified when the API key was generated.

•
 Verify within the Google API Console that the Google Maps Android API
 has been enabled in the Services panel.

84.6

 Understanding Geocoding
 and Reverse Geocoding

It is impossible to talk about maps and geographical locations without first covering the subject of Geocoding. Geocoding can best be described as the process of converting a textual based geographical location (such as a street address) into geographical coordinates expressed in terms of longitude and latitude.

Geocoding can be achieved using the Android Geocoder class. An instance of the Geocoder class
 can, for example, be passed a string representing a location such as a city name, street address or airport code. The Geocoder will attempt to find a match for the location and return a list of Address objects that potentially match the location string, ranked in order with the closest match at position 0 in the list. A variety of information can then be extracted from the Address objects, including the longitude and latitude of the potential matches.

The following code, for example, requests the location of the National Air and Space Museum in Washington, D.C.:

import android.location.Geocoder

import android.location.Address

import java.io.IOException

.

.

val latitude: Double

val longitude: Double

var geocodeMatches: List<Address>? = null

try {

 geocodeMatches = Geocoder(this).getFromLocationName(

 "600 Independence Ave SW, Washington, DC 20560", 1)

} catch (e: IOException) {

 e.printStackTrace()

}

if (geocodeMatches != null) {

 latitude = geocodeMatches[0].latitude

 longitude = geocodeMatches[0].longitude

}

Note that the value of 1 is passed through as the second argument to the getFromLocationName()
 method. This simply tells the Geocoder to return only one result in the array. Given the specific nature of the address provided, there should only be one potential match. For more vague location names, however, it may be necessary to request more potential matches and allow the user to choose the correct one.

The above code is an example of forward-geocoding

 in that coordinates are calculated based on a text location description. Reverse-geocoding

 , as the name suggests, involves the translation of geographical coordinates into a human readable address string. Consider, for example, the following code:

import android.location.Geocoder

import android.location.Address

import java.io.IOException

.

.

var geocodeMatches: List<Address>? = null

val Address1: String?

val Address2: String?

val State: String?

val Zipcode: String?

val Country: String?

try {

 geocodeMatches = Geocoder(this).getFromLocation(38.8874245, -77.0200729, 1)

} catch (e: IOException) {

 e.printStackTrace()

}

if (geocodeMatches != null) {

 Address1 = geocodeMatches[0].getAddressLine(0)

 Address2 = geocodeMatches[0].getAddressLine(1)

 State = geocodeMatches[0].adminArea

 Zipcode = geocodeMatches[0].postalCode

 Country = geocodeMatches[0].countryName

}

In this case the Geocoder object
 is initialized with latitude and longitude values via the getFromLocation()
 method
 . Once again, only a single matching result is requested. The text based address information is then extracted from the resulting Address object.

It should be noted that the geocoding is not actually performed on the Android device, but rather on a server to which the device connects when a translation is required and the results subsequently returned when the translation is complete. As such, geocoding can only take place when the device has an active internet connection.

84.7

 Adding a Map
 to an Application

The simplest way to add a map to an application is to specify it in the user interface layout XML file for an activity. The following example layout file shows the SupportMapFragment instance added to the activity_map_demo.xml
 file created by Android Studio:

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/map"

 tools:context=".MapDemoActivity"

 android:name="com.google.android.gms.maps.SupportMapFragment"/>

84.8

 Requesting Current Location Permission

As outlined in the chapter entitled
“Making Runtime Permission Requests in Android”

 , certain permissions are categorized as being dangerous and require special handling for Android 6.0 or later. One such permission gives applications the ability to identify the user’s current location. By default, Android Studio has placed a location permission request within the AndroidManifest.xml
 file. Locate this file located under app -> manifests
 in the Project tool window and locate the following permission line:

<uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

This will ensure that the app is given the opportunity to provide permission for the app to obtain location information at the point that the app is installed on older versions of Android, but to fully support Android 6.0 or later, the app must also specifically request this permission at runtime. To achieve this, some code needs to be added to the MapDemoActivity.
 kt
 file.

Begin by adding some import directives and a constant to act as the permission request code:

package com.ebookfrenzy.mapdemo

.

.

import android.support.v4.content.ContextCompat

import android.support.v4.app.ActivityCompat

import android.Manifest

import android.widget.Toast

import android.content.pm.PackageManager

.

.

class MapDemoActivity : FragmentActivity(), OnMapReadyCallback {

 private val LOCATION_REQUEST_CODE = 101

 private lateinit var mMap: GoogleMap? = null

.

.

}

Next, a method needs to be added to the class to request a specified permission from the user. Remaining within the MapDemoActivity.
 kt
 class file, implement this method as follows:

private fun requestPermission(permissionType: String,

 requestCode: Int) {

 ActivityCompat.requestPermissions(this,

 arrayOf(permissionType), requestCode

)

}

When the user has responded to the permission request, the onRequestPermissionsResult()
 method will be called on the activity. Remaining in the MapDemoActivity.
 kt
 file, implement this method now so that it reads as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 when (requestCode) {

 LOCATION_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(this,

 "Unable to show location - permission required",

 Toast.LENGTH_LONG).show()

 } else {

 val mapFragment = supportFragmentManager

 .findFragmentById(R.id.map) as SupportMapFragment

 mapFragment.getMapAsync(this)

 }

 }

 }

}

If permission has not been granted by the user, the app displays a message indicating that the current location cannot be displayed. If, on the other hand, permission was granted, the map is refreshed to provide an opportunity for the location marker to be displayed.

84.9

 Displaying the User’s Current Location

Once the appropriate permission has been granted, the user’s current location may be displayed on the map by obtaining a reference to the GoogleMap object associated with the displayed map and calling the setMyLocationEnabled()
 method of that instance, passing through a value of true.

When the map is ready to display, the onMapReady()
 method of the activity is called. This method will also be called when the map is refreshed within the onRequestPermissionsResult()
 method above. By default, Android Studio has implemented this method and added some code to orient the map over Australia with a marker positioned over the city of Sidney. Locate and edit the onMapReady()
 method
 in the MapDemoActivity.
 kt
 file to remove this template code and to add code to check the location permission has been granted before enabling display of the user’s current location. If permission has not been granted, a request is made to the user via a call to the previously added requestPermission()
 method:

override fun onMapReady(googleMap: GoogleMap) {

 mMap = googleMap

 // Add a marker in Sydney and move the camera

 val sydney = LatLng(-34.0, 151.0)

 mMap.addMarker(MarkerOptions().position(sydney).title("Marker in Sydney"))

 mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney))

 if (mMap != null) {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 if (permission == PackageManager.PERMISSION_GRANTED) {

 mMap?.isMyLocationEnabled = true

 } else {

 requestPermission(

 Manifest.permission.ACCESS_FINE_LOCATION,

 LOCATION_REQUEST_CODE)

 }

 }

}

When the app is now run, the dialog shown in Figure 84-3
 will appear requesting location permission. If permission is granted, a blue dot will appear on the map indicating the current locat
 ion of the device.

[image:]

Figure 84-3

84.10

 Changing the Map Type

The type of map displayed can be modified dynamically by making a call to the setMapType()
 method of the corresponding GoogleMap
 object, passing through one of the following values:

·
 GoogleMap.MAP_TYPE_NONE

 – An empty grid with no mapping tiles displayed.

·
 GoogleMap.MAP_TYPE_NORMAL

 – The standard view consisting of the classic road map.

·
 GoogleMap.MAP_TYPE_SATELLITE

 – Displays the satellite imagery of the map region.

·
 GoogleMap.MAP_TYPE_HYBRID

 – Displays satellite imagery with the road map superimposed.

·
 GoogleMap.MAP_TYPE_TERRAIN

 – Displays topographical information such as contour lines and colors.

The following code change to the onMapReady()
 method, for example, switches a map to Satellite mode:

.

.

if (mMap != null) {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 if (permission == PackageManager.PERMISSION_GRANTED) {

 mMap?.isMyLocationEnabled = true

 } else {

 requestPermission(

 Manifest.permission.ACCESS_FINE_LOCATION,

 LOCATION_REQUEST_CODE)

 }

 }

 mMap?.mapType = GoogleMap.MAP_TYPE_SATELLITE

.

.

Alternatively, the map type may be specified in the XML layout file in which the map is embedded using the map:mapType
 property together with a value of none
 , normal
 , hybrid
 , satellite
 or terrain
 . For example:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:map="http://schemas.android.com/apk/res-auto"

 android:id="@+id/map"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 map:mapType="hybrid"

 android:name="com.google.android.gms.maps.SupportMapFragment"/>

84.11

 Displaying Map Controls to the User

The Google Maps Android API
 provides a number of controls that may be optionally displayed to the user consisting of zoom in and out buttons, a “my location” button and a compass.

Whether or not the zoom and compass controls are displayed may be controlled either programmatically or within the map element in XML layout resources. In order to configure the controls programmatically, a reference to the UiSettings object associated with the GoogleMap object must be obtained:

val mapSettings = mMap?.uiSettings

The zoom controls are enabled and disabled via the isZoomControlsEnabled
 property of the UiSettings object. For example:

mapSettings?.isZoomControlsEnabled = true

Alternatively, the map:uiZoomControls
 property may be set within the map element of the XML resource file:

map:uiZoomControls="false"

The compass may be displayed either via a call to the setCompassEnabled()
 method
 of the UiSettings instance, or through XML resources using the map:uiCompass
 property. Note the compass icon only appears when the map camera is tilted or rotated away from the default orientation.

The “My Location” button will only appear when My Location
 mode is enabled as outlined earlier in this chapter. The button may be prevented from appearing even when in this mode via a call to the setMyLocationButtonEnabled()
 method
 of the UiSettings instance.

84.12

 Handling Map Gesture Interaction

The Google Maps Android API
 is capable of responding to a number of different user interactions. These interactions can be used to change the area of the map displayed, the zoom level and even the angle of view (such that a 3D representation of the map area is displayed for certain cities).

84.12.1

 Map Zooming Gestures

Support for gestures relating to zooming in and out of a map may be enabled or disabled using the isZoomGesturesEnabled property of the UiSettings object associated with the GoogleMap instance. For example, the following code disables zoom gestures for our example map:

val mapSettings = mMap?.uiSettings

mapSettings?.isZoomGesturesEnabled = true

The same result can be achieved within an XML resource file by setting the map:uiZoomGestures
 property to true or false.

When enabled, zooming will occur when the user makes pinching gestures on the screen. Similarly, a double tap will zoom in while a two finger tap will zoom out. One finger zooming gestures, on the other hand, are performed by tapping twice but not releasing the second tap and then sliding the finger up and down on the screen to zoom in and out respectively.

84.12.2

 Map Scrolling/Panning Gestures

A scrolling, or panning gesture allows the user to move around the map by dragging the map around the screen with a single finger motion. Scrolling gestures may be enabled within code via a call to the isScrollGesturesEnabled
 property of the UiSettings instance:

val mapSettings = mMap?.uiSettings

mapSettings?.isScrollGesturesEnabled = true

Alternatively, scrolling on a map instance may be enabled in an XML resource layout file using the map:uiScrollGestures
 property.

84.12.3

 Map Tilt Gestures

Tilt gestures allow the user to tilt the angle of projection of the map by placing two fingers on the screen and moving them up and down to adjust the tilt angle. Tilt gestures may be enabled or disabled via a call to the isTiltGesturesEnabled property of the UiSettings instance, for example:

val mapSettings = mMap?.uiSettings

mapSettings?.isTiltGesturesEnabled = true

Tilt gestures may also be enabled and disabled using the map:uiTiltGestures
 property in an XML layout resource file.

84.12.4

 Map Rotation Gestures

By placing two fingers on the screen and rotating them in a circular motion, the user may rotate the orientation of a map when map rotation gestures are enabled. This gesture support is enabled and disabled in code via the isRotateGesturesEnabled
 property of the UiSettings instance, for example:

val mapSettings = mMap?.uiSettings

mapSettings?.isRotateGesturesEnabled = true

Rotation gestures may also be enabled or disabled using the map:uiRotateGestures
 property in an XML layout resource file.

84.13

 Creating Map Markers

Markers are used to notify the user of locations on a map and take the form of either a standard or custom icon. Markers may also include a title and optional text (referred to as a snippet) and may be configured such that they can be dragged to different locations on the map by the user. When tapped by the user an info window
 will appear displaying additional information about the marker location.

Markers are represented by instances of the Marker class and are added to a map via a call to the addMarker()
 method
 of the corresponding GoogleMap object. Passed through as an argument to this method is a MarkerOptions class instance containing the various options required for the marker such as the title and snippet text. The location of a marker is defined by specifying latitude and longitude values, also included as part of the MarkerOptions instance. For example, the following code adds a marker including a title, snippet and a position to a specific location on the map:

import com.google.android.gms.maps.model.LatLng

import com.google.android.gms.maps.model.MarkerOptions

.

.

val position = LatLng(38.8874245, -77.0200729)

mMap?.addMarker(MarkerOptions()

 .position(position)

 .title("Museum")

 .snippet("National Air and Space Museum"))

When executed, the above code will mark the location specified which, when tapped, will display an info window containing the title
 and snippet as shown in Figure 84-4
 :

[image:]

Figure 84-4

84.14

 Controlling the Map Camera

Because Android device screens are flat and the world is a sphere, the Google Maps Android API uses the Mercator projection to represent the earth on a flat surface. The default view of the map is presented to the user as though through a camera
 suspended above the map and pointing directly down at the map. The Google Maps Android API allows the target
 , zoom, bearing
 and tilt
 of this camera to be changed in real-time from within the application:

•
 Target
 – The location of the center of the map within the device display specified in terms of longitude and latitude.

•
 Zoom
 – The zoom level of the camera specified in levels. Increasing the zoom level by 1.0 doubles the width of the amount of the map displayed.

•
 Tilt
 – The viewing angle of the camera specified as a position on an arc spanning directly over the center of the viewable map area measured in degrees from the top of the arc (this being the nadir of the arc where the camera points directly down to the map).

•
 Bearing
 – The orientation of the map in degrees measured in a clockwise direction from North.

Camera changes are made by creating an instance of the CameraUpdate class with the appropriate settings. CameraUpdate instances are created by making method calls to the CameraUpdateFactory
 class. Once a CameraUpdate instance has been created, it is applied to the map via a call to the moveCamera()
 method
 of the GoogleMap instance. To obtain a smooth animated effect as the camera changes, the animateCamera()
 method may be called instead of moveCamera()
 .

A summary of CameraUpdateFactory methods is as follows:

•
 CameraUpdateFactory

 .zoomIn()
 – Provides a CameraUpdate instance zoomed in by one level.

•
 CameraUpdateFactory.zoomOut()
 - Provides a CameraUpdate instance zoomed out by one level.

•
 CameraUpdateFactory.zoomTo(float)
 - Generates a CameraUpdate instance that changes the zoom level to the specified value.

•
 CameraUpdateFactory.zoomBy(float)
 – Provides a CameraUpdate instance with a zoom level increased or decreased by the specified amount.

•
 CameraUpdateFactory.zoomBy(float, Point)
 - Creates a CameraUpdate instance that increases or decreases the zoom level by the specified value.

•
 CameraUpdateFactory.newLatLng(LatLng)
 - Creates a CameraUpdate instance that changes the camera’s target latitude and longitude.

•
 CameraUpdateFactory.newLatLngZoom(LatLng, float)
 - Generates a CameraUpdate instance that changes the camera’s latitude, longitude and zoom.

•
 CameraUpdateFactory.newCameraPosition(CameraPosition)
 - Returns a CameraUpdate instance that moves the camera to the specified position. A CameraPosition instance can be obtained using CameraPosition.Builder().

The following code, for example, zooms in the camera by one level using animation:

mMap?.animateCamera(CameraUpdateFactory.zoomIn())

The following code, on the other hand, moves the camera to a new location and adjusts the zoom level to 10 without animation:

val position = LatLng(38.8874245, -77.0200729)

mMap?.moveCamera(CameraUpdateFactory.newLatLngZoom(position, 10f))

Finally, the next code example uses CameraPosition.Builder()
 to create a CameraPosition object with changes to the target, zoom, bearing and tilt. This change is then applied to the camera using animation:

import com.google.android.gms.maps.model.CameraPosition

import com.google.android.gms.maps.CameraUpdateFactory

.

.

val cameraPosition = CameraPosition.Builder()

 .target(position)

 .zoom(50f)

 .bearing(70f)

 .tilt(25f)

 .build()

mMap?.animateCamera(CameraUpdateFactory.newCameraPosition(

 cameraPosition))

84.15

 Summary

This chapter has provided an overview of the key classes and methods that make up the Google Maps Android API and outlined the steps involved in preparing both the development environment and an application project to make use of the API.

85.

 Printing with the Android Printing Framework

With the introduction of the Android 4.4 KitKat release, it became possible to print content from within Android applications. While subsequent chapters will explore in more detail the options for adding printing support to your own applications, this chapter will focus on the various printing options now available in Android and the steps involved in enabling those options. Having covered these initial topics, the chapter will then provide an overview of the various printing features that are available to Android developers in terms of building printing support into applications.

85.1

 The Android Printing Architecture

Printing in Android is provided by the Printing framework. In basic terms, this framework consists of a Print Manager
 and a number of print service plugins. It is the responsibility of the Print Manager to handle the print requests from applications on the device and to interact with the print service plugins that are installed on the device, thereby ensuring that print requests are fulfilled. By default, many Android devices have print service plugins installed to enable printing using the Google Cloud Print and Google Drive services. Print Services Plugins for other printer types, if not already installed, may also be obtained from the Google Play store. Print Service Plugins are currently available for HP, Epson, Samsung and Canon printers and plugins from other printer manufactures will most likely be released in the future though the Google Cloud Print service plugin can also be used to print from an Android device to just about any printer type and model. For the purposes of this book, we will use the HP Print Services Plugin as a reference example.

85.2

 The Print Service Plugins

The purpose of the Print Service plugins is to enable applications to print to compatible printers that are visible to the Android device via a local area wireless network or Bluetooth.

The presence of the Print Service Plugin on an Android device can be verified by loading the Google Play app and performing a search for “Print Service Plugin”. Once the plugin is listed in the Play Store, and in the event that the plugin is not already installed, it can be installed by selecting the Install
 button. Figure 85-1
 , for example, shows the HP Print Service plugin within Google Play.

The Print Services plugins will automatically detect compatible printers on the network to which the Android device is currently connected and list them as options when printing from an application.

[image:]

Figure 85-1

85.3

 Google Cloud Print

Google Cloud Print is a service provided by Google that enables you to print content onto your own printer over the web from anywhere with internet connectivity. Google Cloud Print supports a wide range of devices and printer models in the form of both Cloud Ready
 and Classic
 printers. A Cloud Ready printer has technology built-in that enables printing via the web. Manufacturers that provide cloud ready printers include Brother, Canon, Dell, Epson, HP, Kodak and Samsung. To identify if your printer is both cloud ready and supported by Google Cloud Print, review the list of printers at the following URL:

https://www.google.com/cloudprint/learn/printers.html

In the case of classic, non-Cloud Ready printers, Google Cloud Print provides support for cloud printing through the installation of software on the computer system to which the classic printer is connected (either directly or over a home or office network).

To set up Google Cloud Print, visit the following web page and login using the same Google account ID that you use when logging in to your Android devices:

https://www.google.com/cloudprint/learn/index.html

Once printers have been added to your Google Cloud Print account, they will be listed as printer destination options when you print from within Android applications on your devices.

85.4

 Printing to Google Drive

In addition to supporting physical printers, it is also possible to save printed output to your Google Drive account. When printing from a device, select the Save to Google Drive
 option in the printing panel. The content to be printed will then be converted to a PDF file and saved to the Google Drive cloud-based storage associated with the currently active Google Account ID on the device.

85.5

 Save as PDF

The final printing option provided by Android allows the printed content to be saved locally as a PDF file on the Android device. Once selected, this option will request a name for the PDF file and a location on the device into which the document is to be saved.

Both the Save as PDF and Google Drive options can be invaluable in terms of saving paper when testing the printing functionality of your own Android applications.

85.6

 Printing from Android Devices

Google recommends that applications which provide the ability to print content do so by placing the print option in the Overflow menu (a topic covered in some detail in the chapter entitled
“Creating and Managing Overflow Menus on Android”

). A number of applications bundled with Android now include “Print…” menu options. Figure 85-2
 , for example, shows the Print option accessed by selecting the “Share…” option in the Overflow menu of the Chrome browser application
 :

[image:]

Figure 85-2

Once the print option has been selected from within an application, the standard Android print screen will appear showing a preview of the content to be printed as illustrated in Figure 85-3
 :

[image:]

Figure 85-3

Tapping the panel along the top of the screen will display the full range of printing options:

[image:]

Figure 85-4

The Android print panel provides the usual printing options such as paper size, color, orientation and number of copies. Other print destination options may be accessed by tapping on the current printer or PDF output selection.

85.7

 Options for Building Print Support into Android Apps

The Printing framework provides a number of options for incorporating print support into Android applications. These options can be categorized as follows:

85.7.1

 Image Printing

As the name suggests, this option allows image printing to be incorporated into Android applications. When adding this feature to an application, the first step is to create a new instance of the PrintHelper class:

val imagePrinter = PrintHelper(context)

Next, the scale mode for the printed image may be specified via a call to the setScaleMode()
 method of the PrintHelper instance. Options are as follows:

•
 SCALE_MODE_FIT
 – The image will be scaled to fit within the paper size without any cropping or changes to aspect ratio. This will typically result in white space appearing in one dimension.

•
 SCALE_MODE_FILL
 – The image will be scaled to fill the paper size with cropping performed where necessary to avoid the appearance of white space in the printed output.

In the absence of a scale mode setting, the system will default to SCALE_MODE_FILL. The following code, for example, sets scale to fit mode on the previously declared PrintHelper instance:

imagePrinter.setScaleMode(PrintHelper.SCALE_MODE_FIT)

Similarly, the color mode may also be configured to indicate whether the print output is to be in color or black and white. This is achieved by passing one of the following options through to the setColorMode()
 method of the PrintHelper instance:

•

 COLOR_MODE_COLOR

 – Indicates that the image is to be printed in color.

•

 COLOR_MODE_MONOCHROME

 – Indicates that the image is to be printed in black and white.

The printing framework will default to color printing unless the monochrome option is specified as follows:

imagePrinter.colorMode = PrintHelper.COLOR_MODE_MONOCHROME

All that is required to complete the printing operation is an image to be printed and a call to the printBitmap()
 method of the PrintHelper instance, passing through a string representing the name to be assigned to the print job and a reference to the image (in the form of either a Bitmap object or a Uri reference to the image):

val bitmap = BitmapFactory.decodeResource(resources,

 R.drawable.oceanscene)

imagePrinter.printBitmap("My Test Print Job", bitmap)

Once the print job has been started, the Printing framework will display the print dialog and handle both the subsequent interaction with the user and the printing of the image on the user-selected print destination.

85.7.2

 Creating and Printing HTML
 Content

The Android Printing framework also provides an easy way to print HTML based content from within an application. This content can either be in the form of HTML content referenced by the URL of a page hosted on a web site, or HTML content that is dynamically created within the application.

To enable HTML printing, the WebView class has been extended to include support for printing with minimal coding requirements.

When dynamically creating HTML content (as opposed to loading and printing an existing web page) the process involves the creation of a WebView object and associating with it a WebViewClient
 instance. The web view client is then configured to start a print job when the HTML has finished being loaded into the WebView. With the web view client configured, the HTML is then loaded into the WebView, at which point the print process is triggered.

Consider, for example, the following code:

private fun printWebView() {

 val webView = WebView(this)

 webView.webViewClient = object : WebViewClient() {

 override fun shouldOverrideUrlLoading(view: WebView,

 request: WebResourceRequest): Boolean {

 return false

 }

 override fun onPageFinished(view: WebView, url: String) {

 createWebPrintJob(view)

 myWebView = null

 }

 }

 val htmlDocument = "<html><body><h1>Android Print Test</h1><p>" +

 "This is some sample content.</p></body></html>"

 webView.loadDataWithBaseURL(null, htmlDocument,

 "text/HTML", "UTF-8", null)

 myWebView = webView

}

The code in this method begins by declaring a variable named myWebView
 in which will be stored a reference to the WebView instance created in the method. Within the printContent()
 method, an instance of the WebView class is created to which a WebViewClient instance is then assigned.

The WebViewClient assigned to the web view object is configured to indicate that loading of the HTML content is to be handled by the WebView instance (by returning false
 from the shouldOverrideUrlLoading()
) method. More importantly, an onPageFinished()
 handler method is declared and implemented to call a method named createWebPrintJob()
 . The onPageFinished()
 callback method will be called automatically when all of the HTML content has been loaded into the web view. This ensures that the print job is not started until the content is ready, thereby ensuring that all of the content is printed.

Next, a string is created containing some HTML to serve as the content. This is then loaded into the web view. Once the HTML is loaded, the onPageFinished()
 method will trigger. Finally, the method stores a reference to the web view object. Without this vital step, there is a significant risk that the Java runtime system will assume that the application no longer needs the web view object and will discard it to free up memory (a concept referred to in Java terminology as garbage collection
) resulting in the print job terminating prior to completion.

All that remains in this example is to implement the createWebPrintJob()
 method as follows:

private fun createWebPrintJob(webView: WebView) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val printAdapter = webView.createPrintDocumentAdapter("MyDocument")

 val jobName = getString(R.string.app_name) + " Document"

 printManager.print(jobName, printAdapter,

 PrintAttributes.Builder().build())

}

This method simply obtains a reference to the PrintManager service and instructs the web view instance to create a print adapter. A new string is created to store the name of the print job (which in this case is based on the name of the application and the word “Document”).

Finally, the print job is started by calling the print()
 method of the print manager, passing through the job name, print adapter and a set of default print attributes. If required, the print attributes could be customized to specify resolution (dots per inch), margin and color options.

85.7.3

 Printing a Web Page

The steps involved in printing a web page are similar to those outlined above, with the exception that the web view is passed the URL of the web page to be printed in place of the dynamically created HTML, for example:

myWebView?.loadUrl("https://developer.android.com/google/index.html")

It is also important to note that the WebViewClient configuration is only necessary if a web page is to automatically print as soon as it has loaded. If the printing is to be initiated by the user selecting a menu option after the page has loaded, only the code in the createWebPrintJob()
 method outlined above need be included in the application code. The next chapter, entitled
“An Android HTML and Web Content Printing Example”

 , will demonstrate just such a scenario.

85.7.4

 Printing a Custom Document

While the HTML and web printing features introduced by the Printing framework provide an easy path to printing content from within an Android application, it is clear that these options will be overly simplistic for more advanced printing requirements. For more complex printing tasks, the Printing framework also provides custom document printing support. This allows content in the form of text and graphics to be drawn onto a canvas and then printed.

Unlike HTML and image printing, which can be implemented with relative ease, custom document printing is a more complex, multi-stage process which will be outlined in the
“A Guide to Android Custom Document Printing”

 chapter of this book. These steps can be summarized as follows:

•
 Connect to the Android Print Manager

•
 Create a Custom Print Adapter sub-classed from the PrintDocumentAdapter
 class

•
 Create a PdfDocument
 instance to represent the document pages

•
 Obtain a reference to the pages of the PdfDocument instance, each of which has associated with it a Canvas instance

•
 Draw the content on the page canvases

•
 Notify the print framework that the document is ready to print

The custom print adapter outlined in the above steps needs to implement a number of methods which will be called upon by the Android system to perform specific tasks during the printing process. The most important of these are the onLayout()
 method which is responsible for re-arranging the document layout in response to the user changing settings such as paper size or page orientation, and the onWrite()
 method which is responsible for rendering the pages to be printed. This topic will be covered in detail in the chapter entitled
“A Guide to Android Custom Document Printing”

 .

85.8

 Summary

The Android SDK includes the ability to print content from within a running app. Print output can be directed to suitably configured printers, a local PDF file or to the cloud via Google Drive. From the perspective of the Android application developer, these capabilities are available for use in applications by making use of the Printing framework. By far the easiest printing options to implement are those involving content in the form of images and HTML. More advanced printing may, however, be implemented using the custom document printing features of the framework.

86.

 An Android HTML and Web Content Printing Example

As outlined in the previous chapter, entitled
“Printing with the Android Printing Framework”

 , the Android Printing framework can be used to print both web pages and dynamically created HTML content. While there is much similarity in these two approaches to printing, there are also some subtle differences that need to be taken into consideration. This chapter will work through the creation of two example applications in order to bring some clarity to these two printing options.

86.1

 Creating the HTML Printing
 Example Application

Begin this example by launching the Android Studio environment and creating a new project, entering HTMLPrint
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named HTMLPrintActivity
 with a corresponding layout named activity_html_print
 .

86.2

 Printing Dynamic HTML Content

The first stage of this tutorial is to add code to the project to create some HTML content and send it to the Printing framework in the form of a print job.

Begin by locating the HTMLPrintActivity.
 kt
 file (located in the Project tool window under app -> java -> com.ebookfrenzy.htmlprint
) and loading it into the editing panel. Once loaded, modify the code so that it reads as outlined in the following listing:

package com.ebookfrenzy.htmlprint

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.print.PrintAttributes

import android.print.PrintManager

import android.webkit.WebResourceRequest

import android.webkit.WebView

import android.webkit.WebViewClient

import android.content.Context

class HTMLPrintActivity : AppCompatActivity() {

 private var myWebView: WebView? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_html_print)

 printWebView()

 }

 private fun printWebView() {

 val webView = WebView(this)

 webView.webViewClient = object : WebViewClient() {

 override fun shouldOverrideUrlLoading(view: WebView,

 request: WebResourceRequest): Boolean {

 return false

 }

 override fun onPageFinished(view: WebView, url: String) {

 createWebPrintJob(view)

 myWebView = null

 }

 }

 val htmlDocument = "<html><body><h1>Android Print Test</h1><p>" +

 "This is some sample content.</p></body></html>"

 webView.loadDataWithBaseURL(null, htmlDocument,

 "text/HTML", "UTF-8", null)

 myWebView = webView

 }

}

The code changes begin by declaring a variable named myWebView
 in which will be stored a reference to the WebView instance used for the printing operation. Within the onCreate()
 method, an instance of the WebView class is created to which a WebViewClient instance is then assigned.

The WebViewClient
 assigned to the web view object is configured to indicate that loading of the HTML content is to be handled by the WebView instance (by returning false
 from the shouldOverrideUrlLoading()
 method
). More importantly, an onPageFinished()
 handler method is declared and implemented to call a method named createWebPrintJob()
 . The onPageFinished()
 method will be called automatically when all of the HTML content has been loaded into the web view. As outlined in the previous chapter, this step is necessary when printing dynamically created HTML content to ensure that the print job is not started until the content has fully loaded into the WebView.

Next, a String object is created containing some HTML to serve as the content and subsequently loaded into the web view. Once the HTML is loaded, the onPageFinished()
 callback
 method will trigger. Finally, the method stores a reference to the web view object in the previously declared myWebView
 variable. Without this vital step, there is a significant risk that the Java runtime system will assume that the application no longer needs the web view object and will discard it to free up memory resulting in the print job terminating before completion.

All that remains in this example is to implement the createWebPrintJob()
 method which is currently configured to be called by the onPageFinished()
 callback method. Remaining within the HTMLPrintActivity.
 kt
 file, therefore, implement this method so that it reads as follows:

private fun createWebPrintJob(webView: WebView) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val printAdapter = webView.createPrintDocumentAdapter("MyDocument")

 val jobName = getString(R.string.app_name) + " Print Test"

 printManager.print(jobName, printAdapter,

 PrintAttributes.Builder().build())

}

This method obtains a reference to the PrintManager service
 and instructs the web view instance to create a print adapter. A new string is created to store the name of the print job (in this case based on the name of the application and the word “Print Test”).

Finally, the print job is started by calling the print()
 method of the print manager, passing through the job name, print adapter and a set of default print attributes.

Compile and run the application on a device or emulator running Android 5.0 or later. Once launched, the standard Android printing page should appear as illustrated in Figure 86-1
 .

[image:]

Figure 86-1

Print to a physical printer if you have one configured, save to Google Drive or, alternatively, select the option to save to a PDF file. Once the print job has been initiated, check the generated output on your chosen destination. Note that when using the Save to PDF option, the system will request a name and location for the PDF file. The Downloads
 folder makes a good option, the contents of which can be viewed by selecting the Downloads
 icon (renamed Files
 on Android 8) located amongst the other app icons on the device.

86.3

 Creating the Web Page Printing Example

The second example application to be created in this chapter will provide the user with an Overflow menu option to print the web page currently displayed within a WebView instance. Create a new project in Android Studio, entering WebPrint
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of a Basic Activity (since we will be making use of the context menu provided by the Basic Activity template) named WebPrintActivity
 with the remaining properties set to the default values.

86.4

 Removing the Floating Action Button

Selecting the Basic Activity template provided a context menu and a floating action button. Since the floating action button is not required by the app it can be removed before proceeding. Load the activity_web_print.xml
 layout file into the Layout Editor, select the floating action button and tap the keyboard Delete
 key to remove the object from the layout. Edit the WebPrintActivity.
 kt
 file and remove the floating action button code from the onCreate method as follows:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_web_print)

 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

}

86.5

 Designing the User Interface Layout

Load the content_web_print.xml
 layout resource file into the Layout Editor tool if it has not already been loaded and, in Design mode, select and delete the “Hello World!” TextView object. From the Widgets
 section of the palette, drag and drop a WebView object onto the center of the device screen layout. Using the Attributes tool window, change the layout_width and layout_height properties of the WebView to match_constraint
 so that it fills the entire layout canvas as outlined in Figure 86-2
 :

[image:]

Figure 86-2

Select the newly added WebView instance and change the ID of the view to myWebView
 .

Before proceeding to the next step of this tutorial, an additional permission needs to be added to the project to enable the WebView object to access the internet and download a web page for printing. Add this permission by locating the AndroidManifest.xml
 file in the Project tool window and double-clicking on it to load it into the editing panel. Once loaded, edit the XML content to add the appropriate permission line as shown in the following listing:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.webprint" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".WebPrintActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name=

 "android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

86.6

 Loading the Web Page into the WebView

Before the web page can be printed, it needs to be loaded into the WebView instance. For the purposes of this tutorial, this will be performed by a call to the loadUrl()
 method of the WebView instance, which will be placed in a method named configureWebView()
 and called from within the onCreate()
 method of the WebPrintActivity class. Edit the WebPrintActivity.
 kt
 file, therefore, and modify it as follows:

package com.ebookfrenzy.webprint

import android.os.Bundle

import android.support.v7.app.AppCompatActivity

import android.view.Menu

import android.view.MenuItem

import android.webkit.WebView

import android.webkit.WebViewClient

import android.webkit.WebResourceRequest

import android.content.Context

import kotlinx.android.synthetic.main.activity_web_print.*

import kotlinx.android.synthetic.main.content_web_print.*

class WebPrintActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_web_print)

 setSupportActionBar(toolbar)

 configureWebView()

 }

 private fun configureWebView() {

 myWebView?.webViewClient = object : WebViewClient() {

 override fun shouldOverrideUrlLoading(

 view: WebView, request: WebResourceRequest): Boolean {

 return super.shouldOverrideUrlLoading(

 view, request)

 }

 }

 myWebView?.settings?.javaScriptEnabled = true

 myWebView?.loadUrl(

 "https://developer.android.com/google/index.html")

 }

.

.

}

86.7

 Adding the Print Menu Option

The option to print the web page will now be added to the Overflow menu using the techniques outlined in the chapter entitled
“Creating and Managing Overflow Menus on Android”

 .

The first requirement is a string resource with which to label the menu option. Within the Project tool window, locate the app -> res -> values -> strings.xml
 file, double-click on it to load it into the editor and modify it to add a new string resource:

<resources>

 <string name="app_name">WebPrint</string>

 <string name="action_settings">Settings</string>

 <string name="print_string">Print</string>

</resources>

Next, load the app -> res -> menu -> menu_web_print.xml
 file into the menu editor, switch to Text mode and replace the Settings
 menu option with the print option:

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 tools:context="com.ebookfrenzy.webprint.WebPrintActivity" >

 <item android:id="@+id/action_settings"

 android:title="@string/action_settings"

 android:orderInCategory="100"

 app:showAsAction="never" />

 <item

 android:id="@+id/action_print"

 android:orderInCategory="100"

 app:showAsAction="never"

 android:title="@string/print_string"/>

</menu>

All that remains in terms of configuring the menu option is to modify the onOptionsItemSelected()
 handler method within the WebPrintActivity.
 kt
 file:

override fun onOptionsItemSelected(item: MenuItem): Boolean {

 if (item.itemId == R.id.action_print) {

 createWebPrintJob(myWebView)

 }

 return super.onOptionsItemSelected(item)

}

With the onOptionsItemSelected()
 method implemented, the activity will call a method named createWebPrintJob()
 when the print menu option is selected from the overflow menu. The implementation of this method is identical to that used in the previous HTMLPrint project and may now be added to the WebPrintActivity.
 kt
 file such that it reads as follows:

.

.

import android.print.PrintAttributes

import android.print.PrintManager

.

.

class WebPrintActivity : AppCompatActivity() {

.

.

 private fun createWebPrintJob(webView: WebView?) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val printAdapter = webView?.createPrintDocumentAdapter("MyDocument")

 val jobName = getString(R.string.app_name) + " Print Test"

 printManager.print(jobName, printAdapter,

 PrintAttributes.Builder().build())

 }

.

.

}

With the code changes complete, run the application on a physical Android device or emulator running Android version 5.0 or later. Once successfully launched, the WebView should be visible with the designated web page loaded. Once the page has loaded, select the Print option from the Overflow menu (Figure 86-3
) and use the resulting print panel to print the web page to a suitable destination.

 [image:]

Figure 86-3

86.8

 Summary

The Android Printing framework includes extensions to the WebView class that make it possible to print HTML based content from within an Android application. This content can be in the form of HTML created dynamically within the application at runtime, or a pre-existing web page loaded into a WebView instance. In the case of dynamically created HTML, it is important to use a WebViewClient instance to ensure that printing does not start until the HTML has been fully loaded into the WebView.

87.

 A Guide to Android Custom Document Printing

As we have seen in the preceding chapters, the Android Printing framework makes it relatively easy to build printing support into applications as long as the content is in the form of an image or HTML markup. More advanced printing requirements can be met by making use of the custom document printing feature of the Printing framework.

87.1

 An Overview of Android Custom Document Printing

In simplistic terms, custom document printing uses canvases to represent the pages of the document to be printed. The application draws the content to be printed onto these canvases in the form of shapes, colors, text and images. In actual fact, the canvases are represented by instances of the Android Canvas class, thereby providing access to a rich selection of drawing options. Once all the pages have been drawn, the document is then printed.

While this sounds simple enough, there are actually a number of steps that need to be performed to make this happen, which can be summarized as follows:

•
 Implement a custom print adapter sub-classed from the PrintDocumentAdapter
 class

•
 Obtain a reference to the Print Manager Service

•
 Create an instance of the PdfDocument class in which to store the document pages

•
 Add pages to the PdfDocument in the form of PdfDocument.Page
 instances

•
 Obtain references to the Canvas objects associated with the document pages

•
 Draw content onto the canvases

•
 Write the PDF document to a destination output stream provided by the Printing framework

•
 Notify the Printing framework that the document is ready to print

In this chapter, an overview of these steps will be provided, followed by a detailed tutorial designed to demonstrate the implementation of custom document printing within Android applications.

87.1.1

 Custom Print Adapters

The role of the print adapter is to provide the Printing framework with the content to be printed, and to ensure that it is formatted correctly for the user’s chosen preferences (taking into consideration factors such as paper size and page orientation).

When printing HTML and images, much of this work is performed by the print adapters provided as part of the Android Printing framework and designed for these specific printing tasks. When printing a web page, for example, a print adapter is created for us when a call is made to the createPrintDocumentAdapter()
 method
 of an instance of the WebView class.

In the case of custom document printing, however, it is the responsibility of the application developer to design the print adapter and implement the code to draw and format the content in preparation for printing.

Custom print adapters are created by sub-classing the PrintDocumentAdapter class and overriding a set of callback methods within that class which will be called by the Printing framework at various stages in the print process. These callback methods can be summarized as follows:

·
 onStart()
 – This method is called when the printing process begins and is provided so that the application code has an opportunity to perform any necessary tasks in preparation for creating the print job. Implementation of this method within the PrintDocumentAdapter sub-class is optional.

·
 onLayout()
 – This callback method is called after the call to the onStart()
 method and then again each time the user makes changes to the print settings (such as changing the orientation, paper size or color settings). This method should adapt the content and layout where necessary to accommodate these changes. Once these changes are completed, the method must return the number of pages to be printed. Implementation of the onLayout()
 method within the PrintDocumentAdapter sub-class is mandatory.

·
 onWrite()
 – This method is called after each call to onLayout()
 and is responsible for rendering the content on the canvases of the pages to be printed. Amongst other arguments, this method is passed a file descriptor to which the resulting PDF document must be written once rendering is complete. A call is then made to the onWriteFinished()
 callback method passing through an argument containing information about the page ranges to be printed. Implementation of the onWrite()
 method within the PrintDocumentAdapter sub-class is mandatory.

·
 onFinish()
 – An optional method which, if implemented, is called once by the Printing framework when the printing process is completed, thereby providing the application the opportunity to perform any clean-up operations that may be necessary.

87.2

 Preparing the Custom Document Printing Project

Launch the Android Studio environment and create a new project, entering CustomPrint
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 26: Android 8.0 (Oreo). Continue to proceed through the screens, requesting the creation of an Empty Activity named CustomPrintActivity
 with a corresponding layout resource file named activity_custom_print.

Load the activity_custom_print.xml
 layout file into the Layout Editor tool and, in Design mode, select and delete the “Hello World!” TextView object. Drag and drop a Button view from the Form Widgets section of the palette and position it in the center of the layout view. With the Button view selected, change the text property to “Print Document” and extract the string to a new resource. On completion, the user interface layout should match that shown in Figure 87-1

 :

[image:]

Figure 87-1

When the button is selected within the application it will be required to call a method to initiate the document printing process. Remaining within the Attributes tool window, set the onClick
 property to call a method named printDocument
 .

87.3

 Creating the Custom Print Adapter

Most of the work involved in printing a custom document from within an Android application involves the implementation of the custom print adapter. This example will require a print adapter with the onLayout()
 and onWrite()
 callback methods implemented. Within the CustomPrintActivity.
 kt
 file, add the template for this new class so that it reads as follows:

package com.ebookfrenzy.customprint

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.os.ParcelFileDescriptor

import android.print.PageRange

import android.print.PrintAttributes

import android.print.PrintDocumentAdapter

import android.os.CancellationSignal

import android.content.Context

class CustomPrintActivity : AppCompatActivity() {

 inner class MyPrintDocumentAdapter(private var context: Context)

 : PrintDocumentAdapter() {

 override fun onLayout(oldAttributes: PrintAttributes?,

 newAttributes: PrintAttributes?,

 cancellationSignal: android.os.CancellationSignal?,

 callback: LayoutResultCallback?,

 metadata: Bundle?) {

 }

 override fun onWrite(pageRanges: Array<out PageRange>?,

 destination: ParcelFileDescriptor?,

 cancellationSignal: android.os.CancellationSignal?,

 callback: WriteResultCallback?) {

 }

.

.

}

As the new class currently stands, it contains a constructor method which will be called when a new instance of the class is created. The constructor takes as an argument the context of the calling activity which is then stored so that it can be referenced later in the two callback methods.

With the outline of the class established, the next step is to begin implementing the two callback methods, beginning with onLayout()
 .

87.4

 Implementing the onLayout() Callback Method

Remaining within the CustomPrintActivity.
 kt
 file, begin by adding some import directives that will be required by the code in the onLayout()
 method:

package com.ebookfrenzy.customprint

.

.

import android.print.PrintDocumentInfo

import android.print.pdf.PrintedPdfDocument

import android.graphics.pdf.PdfDocument

class CustomPrintActivity : AppCompatActivity() {

.

.

}

Next, modify the MyPrintDocumentAdapter class to declare variables to be used within the onLayout()
 method:

inner class MyPrintDocumentAdapter(private var context: Context) :

 PrintDocumentAdapter() {

 private var pageHeight: Int = 0

 private var pageWidth: Int = 0

 private var myPdfDocument: PdfDocument? = null

 private var totalpages = 4

.

.

}

Note that for the purposes of this example, a four page document is going to be printed. In more complex situations, the application will most likely need to dynamically calculate the number of pages to be printed based on the quantity and layout of the content in relation to the user’s paper size and page orientation selections.

With the variables declared, implement the onLayout()
 method as outlined in the following code listing:

override fun onLayout(oldAttributes: PrintAttributes?,

 newAttributes: PrintAttributes?,

 cancellationSignal: android.os.CancellationSignal?,

 callback: LayoutResultCallback?,

 metadata: Bundle?) {

 myPdfDocument = PrintedPdfDocument(context, newAttributes)

 val height = newAttributes?.mediaSize?.heightMils

 val width = newAttributes?.mediaSize?.heightMils

 height?.let {

 pageHeight = it / 1000 * 72

 }

 width?.let {

 pageWidth = it / 1000 * 72

 }

 cancellationSignal?.let {

 if (it.isCanceled) {

 callback?.onLayoutCancelled()

 return

 }

 }

 if (totalpages > 0) {

 val builder =

 PrintDocumentInfo.Builder("print_output.pdf").setContentType(

 PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)

 .setPageCount(totalpages)

 val info = builder.build()

 callback?.onLayoutFinished(info, true)

 } else {

 callback?.onLayoutFailed("Page count is zero.")

 }

}

Clearly this method is performing quite a few tasks, each of which requires some detailed explanation.

To begin with, a new PDF document is created in the form of a PdfDocument class instance. One of the arguments passed into the onLayout()
 method when it is called by the Printing framework is an object of type PrintAttributes containing details about the paper size, resolution and color settings selected by the user for the print output. These settings are used when creating the PDF document, along with the context of the activity previously stored for us by our constructor method:

myPdfDocument = PrintedPdfDocument(context, newAttributes)

The method then uses the PrintAttributes
 object to extract the height and width values for the document pages. These dimensions are stored in the object in the form of thousandths of an inch. Since the methods that will use these values later in this example work in units of 1/72 of an inch these numbers are converted before they are stored:

val height = newAttributes?.mediaSize?.heightMils

val width = newAttributes?.mediaSize?.heightMils

height?.let {

 pageHeight = it / 1000 * 72

}

width?.let {

 pageWidth = it / 1000 * 72

}

Although this example does not make use of the user’s color selection, this property can be obtained via a call to the getColorMode()
 method of the PrintAttributes object which will return a value of either COLOR_MODE_COLOR
 or COLOR_MODE_MONOCHROME
 .

When the onLayout()
 method is called, it is passed an object of type LayoutResultCallback
 . This object provides a way for the method to communicate status information back to the Printing framework via a set of methods. The onLayout()
 method, for example, will be called in the event that the user cancels the print process. The fact that the process has been cancelled is indicated via a setting within the CancellationSignal argument. In the event that a cancellation is detected, the onLayout()
 method must call the onLayoutCancelled()
 method of the LayoutResultCallback
 object to notify the Print framework that the cancellation request was received and that the layout task has been cancelled:

cancellationSignal?.let {

 if (it.isCanceled) {

 callback?.onLayoutCancelled()

 return

 }

}

When the layout work is complete, the method is required to call the onLayoutFinished()
 method of the LayoutResultCallback
 object, passing through two arguments. The first argument takes the form of a PrintDocumentInfo
 object containing information about the document to be printed. This information consists of the name to be used for the PDF document, the type of content (in this case a document rather than an image) and the page count. The second argument is a Boolean value indicating whether or not the layout has changed since the last call made to the onLayout()
 method:

if (totalpages > 0) {

 val builder = PrintDocumentInfo.Builder("print_output.pdf").setContentType(

 PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)

 .setPageCount(totalpages)

 val info = builder.build()

 callback?.onLayoutFinished(info, true)

} else {

 callback?.onLayoutFailed("Page count is zero.")

}

In the event that the page count is zero, the code reports this failure to the Printing framework via a call to the onLayoutFailed()
 method
 of the LayoutResultCallback
 object
 .

The call to the onLayoutFinished()
 method
 notifies the Printing framework that the layout work is complete, thereby triggering a call to the onWrite()
 method.

87.5

 Implementing the onWrite() Callback Method

The onWrite()
 callback method is responsible for rendering the pages of the document and then notifying the Printing framework that the document is ready to be printed. When completed, the onWrite()
 method reads as follows:

package com.ebookfrenzy.customprint

import java.io.FileOutputStream

import java.io.IOException

.

.

import android.graphics.pdf.PdfDocument.PageInfo

.

.

override fun onWrite(pageRanges: Array<out PageRange>?,

 destination: ParcelFileDescriptor?,

 cancellationSignal: android.os.CancellationSignal?,

 callback: WriteResultCallback?) {

 for (i in 0 until totalpages) {

 if (pageInRange(pageRanges, i)) {

 val newPage = PdfDocument.PageInfo.Builder(pageWidth,

 pageHeight, i).create()

 val page = myPdfDocument?.startPage(newPage)

 cancellationSignal?.let {

 if (it.isCanceled) {

 callback?.onWriteCancelled()

 myPdfDocument?.close()

 myPdfDocument = null

 return

 }

 }

 page?.let {

 drawPage(it, i)

 }

 myPdfDocument?.finishPage(page)

 }

 }

 try {

 myPdfDocument?.writeTo(FileOutputStream(

 destination?.fileDescriptor))

 } catch (e: IOException) {

 callback?.onWriteFailed(e.toString())

 return

 } finally {

 myPdfDocument?.close()

 myPdfDocument = null

 }

 callback?.onWriteFinished(pageRanges)

}

The onWrite()
 method starts by looping through each of the pages in the document. It is important to take into consideration, however, that the user may not have requested that all of the pages that make up the document be printed. In actual fact, the Printing framework user interface panel provides the option to specify that specific pages, or ranges of pages be printed. Figure 87-2
 , for example, shows the print panel configured to print pages 1-4, pages 8 and 9 and pages 11-13 of a d
 ocument.

[image:]

Figure 87-2

When writing the pages to the PDF document, the onWrite()
 method must take steps to ensure that only those pages specified by the user are printed. To make this possible, the Printing framework passes through as an argument an array of PageRange
 objects indicating the ranges of pages to be printed. In the above onWrite()
 implementation, a method named pagesInRange()
 is called for each page to verify that the page is within the specified ranges. The code for the pagesInRange()
 method will be implemented later in this chapter.

for (i in 0 until totalpages) {

 if (pageInRange(pageRanges, i)) {

For each page that is within any specified ranges, a new PdfDocument.Page
 object is created. When creating a new page, the height and width values previously stored by the onLayout()
 method are passed through as arguments so that the page size matches the print options selected by the user:

val newPage = PageInfo.Builder(pageWidth, pageHeight, i).create()

val page = myPdfDocument?.startPage(newPage)

As with the onLayout()
 method, the onWrite()
 method is required to respond to cancellation requests. In this case, the code notifies the Printing framework that the cancellation has been performed, before closing and de-referencing the myPdfDocument variable:

cancellationSignal?.let {

 if (it.isCanceled) {

 callback?.onWriteCancelled()

 myPdfDocument?.close()

 myPdfDocument = null

 return

 }

}

As long as the print process has not been cancelled, the method then calls a method to draw the content on the current page before calling the finishedPage()
 method on the myPdfDocument object.

page?.let {

 drawPage(it, i)

}

myPdfDocument?.finishPage(page)

The drawPage()
 method is responsible for drawing the content onto the page and will be implemented once the onWrite()
 method is complete.

When the required number of pages have been added to the PDF document, the document is then written to the destination
 stream using the file descriptor which was passed through as an argument to the onWrite()
 method. If, for any reason, the write operation fails, the method notifies the framework by calling the onWriteFailed()
 method of the WriteResultCallback
 object (also passed as an argument to the onWrite()
 method).

try {

 myPdfDocument?.writeTo(FileOutputStream(

 destination?.fileDescriptor))

} catch (e: IOException) {

 callback?.onWriteFailed(e.toString())

 return

} finally {

 myPdfDocument?.close()

 myPdfDocument = null

}

Finally, the onWriteFinish()
 method of the WriteResultsCallback
 object is called to notify the Printing framework that the document is ready to be printed.

87.6

 Checking a Page is in Range

As previously outlined, when the onWrite()
 method is called it is passed an array of PageRange objects indicating the ranges of pages within the document that are to be printed. The PageRange class is designed to store the start and end pages of a page range which, in turn, may be accessed via the getStart()
 and getEnd()
 methods of the class.

When the onWrite()
 method was implemented in the previous section, a call was made to a method named pageInRange()
 , which takes as arguments an array of PageRange
 objects and a page number. The role of the pageInRange()
 method is to identify whether the specified page number is within the ranges specified and may be implemented within the MyPrintDocumentAdapter class in the CustomPrintActivity.
 kt
 class as follows:

inner class MyPrintDocumentAdapter(private var context: Context) :

 PrintDocumentAdapter() {

.

.

 private fun pageInRange(pageRanges: Array<out PageRange>?, page: Int):

 Boolean {

 pageRanges?.let {

 for (i in it.indices) {

 if (page >= it[i].start && page <= it[i].end)

 return true

 }

 }

 return false

 }

.

.

}

87.7

 Drawing the Content on the Page Canvas

We have now reached the point where some code needs to be written to draw the content on the pages so that they are ready for printing. The content that gets drawn is completely application specific and limited only by what can be achieved using the Android Canvas class
 . For the purposes of this example, however, some simple text and graphics will be drawn on the canvas.

The onWrite()
 method has been designed to call a method named drawPage()
 which takes as arguments the PdfDocument.Page object representing the current page and an integer representing the page number. Within the CustomPrintActivity.
 kt
 file this method should now be implemented as follows:

package com.ebookfrenzy.customprint

.

.

import android.graphics.Color

import android.graphics.Paint

class CustomPrintActivity : AppCompatActivity() {

.

.

 inner class MyPrintDocumentAdapter(private var context: Context) :

 PrintDocumentAdapter() {

 private fun drawPage(page: PdfDocument.Page,

 pagenumber: Int) {

 var pagenum = pagenumber

 val canvas = page.canvas

 pagenum++ // Make sure page numbers start at 1

 val titleBaseLine = 72

 val leftMargin = 54

 val paint = Paint()

 paint.color = Color.BLACK

 paint.textSize = 40f

 canvas.drawText(

 "Test Print Document Page " + pagenum,

 leftMargin.toFloat(),

 titleBaseLine.toFloat(),

 paint)

 paint.textSize = 14f

 canvas.drawText("This is some test content to verify that custom document printing works", leftMargin.toFloat(), (titleBaseLine + 35).toFloat(), paint)

 if (pagenum % 2 == 0)

 paint.color = Color.RED

 else

 paint.color = Color.GREEN

 val pageInfo = page.info

 canvas.drawCircle((pageInfo.pageWidth / 2).toFloat(),

 (pageInfo.pageHeight / 2).toFloat(),

 150f,

 paint)

 }

.

.

}

Page numbering within the code starts at 0. Since documents traditionally start at page 1, the method begins by incrementing the stored page number. A reference to the Canvas object associated with the page is then obtained and some margin and baseline values declared:

var pagenum = pagenumber

val canvas = page.canvas

pagenum++ // Make sure page numbers start at 1

val titleBaseLine = 72

val leftMargin = 54

Next, the code creates Paint
 and Color
 objects to be used for drawing, sets a text size and draws the page title text, including the current page number:

val paint = Paint()

paint.color = Color.BLACK

paint.textSize = 40f

canvas.drawText(

 "Test Print Document Page " + pagenum,

 leftMargin.toFloat(),

 titleBaseLine.toFloat(),

 paint)

The text size is then reduced and some body text drawn beneath the title:

paint.textSize = 14f

canvas.drawText("This is some test content to verify that custom document printing works", leftMargin.toFloat(), (titleBaseLine + 35).toFloat(), paint)

The last task performed by this method involves drawing a circle (red on even numbered pages and green on odd). Having ascertained whether the page is odd or even, the method obtains the height and width of the page before using this information to position the circle in the center of the page:

if (pagenum % 2 == 0)

 paint.color = Color.RED

else

 paint.color = Color.GREEN

val pageInfo = page.info

canvas.drawCircle((pageInfo.pageWidth / 2).toFloat(),

 (pageInfo.pageHeight / 2).toFloat(),

 150f, paint)

Having drawn on the canvas, the method returns control to the onWrite()
 method.

With the completion of the drawPage()
 method, the MyPrintDocumentAdapter class is now finished.

87.8

 Starting the Print Job

When the “Print Document” button is touched by the user, the printDocument()
 onClick event handler method will be called. All that now remains before testing can commence, therefore, is to add this method to the CustomPrintActivity.
 kt
 file, taking particular care to ensure that it is placed outside of the MyPrintDocumentAdapter class:

package com.ebookfrenzy.customprint

.

.

import android.print.PrintManager

import android.view.View

class CustomPrintActivity : AppCompatActivity() {

 fun printDocument(view: View) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val jobName = this.getString(R.string.app_name) + " Document"

 printManager.print(jobName, MyPrintDocumentAdapter(this), null)

 }

.

.

}

This method obtains a reference to the Print Manager service running on the device before creating a new String object to serve as the job name for the print task. Finally the print()
 method of the Print Manager is called to start the print job, passing through the job name and an instance of our custom print document adapter class.

87.9

 Testing the Application

Compile and run the application on an Android device or emulator that is running Android 4.4 or later. When the application has loaded, touch the “Print Document” button to initiate the print job and select a suitable target for the output (the Save to PDF option is a useful option for avoiding wasting paper and printer ink).

Check the printed output which should consist of 4 pages including text and graphics. Figure 87-3
 , for example, shows the four pages of the document viewed as a PDF file ready to be saved on the device.

Experiment with other print configuration options such as changing the paper size, orientation and pages settings within the print panel. Each setting change should be reflected in the printed output, indicating that the custom print document adapter is function
 ing correctly.

[image:]

Figure 87-3

87.10

 Summary

Although more complex to implement than the Android Printing framework HTML and image printing options, custom document printing provides considerable flexibility in terms of printing complex content from within an Android application. The majority of the work involved in implementing custom document printing involves the creation of a custom Print Adapter class such that it not only draws the content on the document pages, but also responds correctly as changes are made by the user to print settings such as the page size and range of pages to be printed.

88.

 An Introduction to Android App Links

As technology evolves, the traditional distinction between web and mobile content is beginning to blur. One area where this is particularly true is the growing popularity of progressive web apps, where web apps look and behave much like traditional mobile apps.

Another trend involves making the content within mobile apps discoverable within web search and via URL links. In the context of Android app development, the App Links and Instant Apps features are designed specifically to make it easier for users to both discover and access content that is stored within an Android app even if the user does not have the app installed.

In this and the following chapter, the topic of Android App Links will be covered. Once App Links have been explained, the chapter entitled
“An Android Instant App Tutorial”

 will begin coverage of Android Instant Apps.

88.1

 An Overview of Android App Links

An app link is a standard HTTP URL intended to serve as an easy way to link directly to a particular place in your app from an external source such as a website or app. App links (also referred to as deep links
) are used primarily to encourage users to engage with an app and to allow users to share app content. App links also provide the foundation on which Instant Apps are built.

App link implementation is a multi-step process that involves the addition of intent filters to the project manifest, the implementation of link handling code within the associated app activities and the use of digital assets files to associate app and web-based content.

These steps can either be performed manually by making changes within the project, or automatically using the Android Studio App Links Assistant.

The remainder of this chapter will outline app links implementation in terms of the changes that need to be made to a project. The next chapter (“An Android Instant App Tutorial”
) will demonstrate the use of the App Links Assistant to achieve the same results.

88.2

 App Link
 Intent Filters

An app link URL needs to be mapped to a specific activity within an app project. This is achieved by adding intent filters to the project’s AndroidManifest.xml
 file designed to launch an activity in response to an android.intent.action.VIEW
 action. The intent filters are declared within the element for the activity to be launched and must contain the data outlining the scheme, host and path of the app link URL. The following manifest fragment, for example, declares an intent filter to launch an activity named MyActivity when an app link matching http://www.example.com/welcome
 is detected:

 <activity android:name="com.ebookfrenzy.myapp.MyActivity">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data

 android:scheme="http"

 android:host="www.example.com"

 android:pathPrefix="/welcome" />

 </intent-filter>

</activity>

The order in which ambiguous intent filters are handled can be specified using the order
 property of the intent filter tag as follows:

<application>

 <activity android:name=" com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:order="1">

.

.

The intent filter will cause the app link to launch the correct activity, but code still needs to be implemented within the target activity to handle the intent appropriately.

88.3

 Handling App Link
 Intents

In most cases, the launched activity will need to gain access to the app link URL and to take specific action based on the way in which the URL is structured. Continuing from the above example, the activity will most likely display different content when launched via a URL containing a path of /welcome/newuser
 than one with the path set to /welcome/existinguser
 .

When the activity is launched by the link, it is passed an intent object containing data about the action which launched the activity including a Uri object containing the app link URL. Within the initialization stages of the activity, code can be added to extract this data as follows:

val appLinkIntent = intent

val appLinkAction = appLinkIntent.action

val appLinkData = appLinkIntent.data

Having obtained the Uri for the app link, the various components that make up the URL path can be used to make decisions about the actions to be performed within the activity. In the following code example, the last component of the URL is used to identify whether content should be displayed for a new or existing user:

val userType = appLinkData.lastPathSegment

if (userType == "newuser") {

 // display new user content

} else {

 // display existing user content

}

88.4

 Associating the App with a Website

By default, Android will provide the user with a range of options for handling an app link using the panel shown in Figure 88-1
 . This will usually consist of the Chrome browser and the target app
 .

[image:]

Figure 88-1

To prevent this from happening the app link URL needs to be associated with the website on which the app link is based. This is achieved by creating a Digital Assets Link file

 named assetlinks.json

 and installing it within the website’s .well-known
 folder
 . Note that digital asset linking is only possible for websites that are https based.

A digital asset link file comprises a relation
 statement granting permission for a target app to be launched using the web site’s link URLs and a target statement declaring the companion app package name and SHA-256 certificate fingerprint for that project. A typical asset link file might, for example, read as follows:

[{

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target" : { "namespace": "android_app",

 "package_name": "<app package name here>",

 "sha256_cert_fingerprints": ["<app certificate here>"] }

}]

The assetlinks.json
 file can contain multiple digital asset links, potentially allowing a single web site to be associated with more than one companion app.

88.5

 Summary

Android App Links allow app activities to be launched via URL links both from external websites and other apps. App links are implemented using a combination of intent filters within the project manifest file and intent handling code within the launched activity. It is also possible, through the use of a Digital Assets Link file, to associate the domain name used in an app link with the corresponding website. Once the association has been established, Android no longer needs to ask the user to select the target app when an app link is used.

89.

 An Android Studio App Links Tutorial

The goal of this chapter is to provide a practical demonstration of both Android app links and the Android Studio App Link
 Assistant

 .

This chapter will add app linking support to an existing Android app, allowing an activity to be launched via an app link URL. In addition to launching the activity, the content displayed will be specified within the path of the URL.

89.1

 About the Example App

The project used in this chapter is named AppLinking and is a basic app designed to allow users to find out information about landmarks in London. The app uses a SQLite database accessed through a standard Android content provider class. The app is provided with an existing database containing a set of records for some popular tourist attractions in London. In addition to the existing database entries, the app also lets the user add and delete landmark descriptions.

In its current form, the app allows the existing records to be searched and new records to be added and deleted.

The project consists of two activities named AppLinkingActivity and LandmarkActivity. AppLinkingActivity is the main activity launched at app startup. This activity allows the user to enter search criteria and to add additional records to the database. When a search locates a matching record, LandmarkActivity launches and displays the information for the related landmark.

The goal of this chapter is to enhance the app to add support for app linking so that URLs can be used to display specific landmark records within the app.

89.2

 The Database Schema

The data for the example app is contained within a file named landmarks.db
 located in the app -> assets –> databases
 folder of the project hierarchy. The database contains a single table named locations
 , the structure of which is outlined in Table 89-7
 :

	
Column

	
Type

	
Description

	
_id

	
String

	
The primary index, this column contains string values that uniquely identify the landmarks in the database.

	
Title

	
String

	
The name of the landmark (e.g. London Bridge).

	
description

	
String

	
A description of the landmark.

	
personal

	
Boolean

	
Indicates whether the record is personal or public. This value is set to true for all records added by the user. Existing records provided with the database are set to false.

Table 89-7

89.3

 Loading and Running the Project

The project is contained within the AppLinking
 folder of the sample source code download archive located at the following URL:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

Having located the folder, open it within Android Studio and run the app on a device or emulator. Once the app is launched, the screen illustrated in Figure 89-1
 below will appear:

[image:]

Figure 89-1

As currently implemented, landmarks are located using the ID for the location. The default database configuration currently contains two records referenced by the IDs “londonbridge” and “toweroflondon”. Test the search feature by entering londonbridge
 into the ID field and clicking the Find
 button. When a matching record is found, the second activity (LandmarkActivity) is launched and passed information about the record to be displayed. This information takes the form of extra data added to the Intent object. This information is used by LandmarkActivity to extract the record from the database and display it to the user using the screen shown in Figure 89-2
 .

[image:]

Figure 89-2

89.4

 Adding the URL Mapping

Now that the app has been loaded into Android Studio and tested, the project is ready for the addition of app link support. The objective is for the LandmarkActivity screen to launch and display information in response to an app link click. This is achieved by mapping a URL to LandmarkActivity. For this example, the format of the URL will be as follows:

http://<website domain>/landmarks/<landmarkId>

When all of the steps have been completed, the following URL should, for example, cause the app to display information for the Tower of London:

http://www.yourdomain.com/landmarks/toweroflondon

To add a URL mapping to the project, begin by opening the App Links Assistant using the Tools -> App Links Assistant
 menu option. Once open, the assistant should appear as shown in Figure 89-3
 :

[image:]

Figure 89-3

Click on the Open URL Mapping Editor
 button to begin mapping a URL to an activity. Within the mapping screen, click on the ‘+’ button (highlighted in Figure 89-4
) to add a new URL:

[image:]

Figure 89-4

In the Host field of the Add URL Mapping
 dialog, enter either the domain name for your website or http://www.example.com
 if you do not have one.

The Path field (marked A in Figure 89-5
 below) is where the path component of the URL is declared. The path must be prefixed with / so enter /landmarks
 into this field.

The Path menu (B) provides the following three path matching options:

•
 path
 – The URL must match the path component of the URL exactly in order to launch the activity. If the path is set to /landmarks, for example, http://www.example.com/landmarks
 will be considered a match. A URL of http://www.example.com/landmarks/londonbridge
 , however, will not be considered a match.

•
 pathPrefix
 – The specified path is only considered as the prefix. Additional path components may be included after the /landmarks
 component (for example http://www.example.com/landmarks/londonbridge
 will still be considered a match).

•
 pathPattern
 – Allows the path to be specified using pattern matching in the form of basic regular expressions and wildcards, for example landmarks/*/[l-L]ondon/*

Since the path in this example is a prefix to the landmark ID component, select the pathPrefix
 menu option.

Finally, use the Activity menu (C) to select LandmarkActivity as the activity to be launched in response to the app link:

[image:]

Figure 89-5

After completing the settings in the dialog, click on the OK
 button to commit the changes. Check that the URL is correctly formatted and assigned to the appropriate activity by entering the following URL into the Check URL Mapping
 field of the mapping screen (where <your domain>
 is set to the domain specified in the Host field above) :

http://<your domain>/landmarks/toweroflondon

If the mapping is configured correctly, LandmarkActivity will be listed as the mapped activity:

[image:]

Figure 89-6

The latest version of Android requires that App Links be declared for both HTTP and HTTPS protocols, even if only one is being used. Before proceeding to the next step, therefore, repeat the above steps to add the HTTPS version of the URL to the list.

The next step will also be performed in the URL mapping screen of the App Links Assistant, so leave the screen selected.

89.5

 Adding the Intent Filter

 As explained in the previous chapter, an intent filter is needed to allow the target activity to be launched in response to an app link click. In fact, when the URL mapping was added, the intent filter was automatically added to the project manifest file. With the URL mapping selected in the App Links Assistant URL mapping list, scroll down the screen until the intent filter Preview section comes into view. The preview should contain the modified AndroidManifest.xml
 file with the newly added intent filters included:

[image:]

Figure 89-7

89.6

 Adding Intent Handling Code

 The steps taken so far ensure that the correct activity is launched in response to an appropriately formatted app link URL. The next step is to handle the intent within the LandmarkActivity class so that the correct record is extracted from the database and displayed to the user. Before making any changes to the code within the LandmarkActivity.
 kt
 file, it is worthwhile reviewing some areas of the existing code. Open the LandmarkActivity.
 kt
 file in the code editor and locate the onCreate()
 and handleIntent()
 methods which should currently read as follows:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_landmark)

 handleIntent(intent)

}

private fun handleIntent(intent: Intent) {

 val landmarkId = intent.getStringExtra(AppLinkingActivity.LANDMARK_ID)

 displayLandmark(landmarkId)

}

In its current form, the code is expecting to find the landmark ID within the extra data of the Intent bundle. Since the activity can now also be launched by an app link, this code needs to be changed to handle both scenarios. Begin by deleting the call to handleIntent()
 in the onCreate()
 method:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_landmark)

 handleIntent(intent)

}

To add the initial app link intent handling code, return to the App Links Assistant panel and click on the Select Activity
 button listed under step 2. Within the activity selection dialog, select the LandmarkActivity entry before clicking on the Insert Code
 button:

[image:]

Figure 89-8

Return to the LandmarkActivity.
 kt
 file and note that the following code has been inserted into the onCreate()
 method:

// ATTENTION: This was auto-generated to handle app links.

val appLinkIntent = intent

val appLinkAction = appLinkIntent.action

val appLinkData = appLinkIntent.data

This code accesses the Intent object and extracts both the Action string and Uri. If the activity launch is the result of an app link, the action string will be set to android.intent.action.VIEW
 which matches the action declared in the intent filter added to the manifest file. If, on the other hand, the activity was launched by the standard intent launching code in the findLandmark()
 method of the main activity, the action string will be null. By checking the value assigned to the action string, code can be written to identify the way in which the activity was launched and take appropriate action:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_landmark)

 // ATTENTION: This was auto-generated to handle app links.

 val appLinkIntent = intent

 val appLinkAction = appLinkIntent.action

 val appLinkData = appLinkIntent.data

 val landmarkId = appLinkData?.lastPathSegment

 if (landmarkId != null) {

 displayLandmark(landmarkId)

 }

}

All that remains is to add some additional code to the method to identify the last component in the app link URL path, and to use that as the landmark ID when querying the database:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_landmark)

 // ATTENTION: This was auto-generated to handle app links.

 val appLinkIntent = intent

 val appLinkAction = appLinkIntent.action

 val appLinkData = appLinkIntent.data

 if (appLinkAction != null) {

 if (appLinkAction == "android.intent.action.VIEW") {

 val landmarkId = appLinkData?.lastPathSegment

 if (landmarkId != null) {

 displayLandmark(landmarkId)

 }

 }

 } else {

 handleIntent(appLinkIntent)

 }

}

If the action string is not null, a check is made to verify that it is set to android.intent.action.VIEW
 before extracting the last component of the Uri path. This component is then used as the landmark ID when making the database query. If, on the other hand, the action string is null, the existing handleIntent()
 method is called to extract the ID from the intent data.

An alternative option to identifying the way in which the activity has been launched is to modify the findLandmark()
 method located in the AppLinkingActivity.
 kt
 file so that it also triggers the launch using a View intent action:

fun findLandmark(view: View) {

 if (idText?.text.toString() != "") {

 val landmark = dbHandler?.findLandmark(idText?.text.toString())

 if (landmark != null) {

 val uri = Uri.parse("http://<your_domain>/landmarks/" + landmark.id)

 val intent = Intent(Intent.ACTION_VIEW, uri)

 startActivity(intent)

 } else {

 titleText?.setText("No Match")

 }

 }

}

This technique has the advantage that code does not need to be written to identify how the activity was launched, but also has the disadvantage that it may trigger the activity selection panel illustrated in Figure 89-10
 below unless the app link is associated with a web site.

89.7

 Testing the App Link

Test that the intent handling works by returning to the App Links Assistant panel and clicking on the Test App Links
 button. When prompted for a URL to test, enter the URL (using the domain referenced in the app link mapping) for the londonbridge landmark ID before clicking on the Run Test
 button:

[image:]

Figure 89-9

Select a suitable device or emulator as the deployment target and verify that the landmark screen appears populated with the London Bridge information. Before the activity appears, it is likely that Android will display a panel (Figure 89-10
) within which a choice needs to be made as to how the app link is to be handled:

[image:]

Figure 89-10

Until the app link has been associated with a web site, Android will display this selection panel every time the activity is launched using a View intent action unless the user selects the Always
 option.

89.8

 Associating an App Link
 with a Web Site

As outlined in the previous chapter, an app link may be associated with a web site by creating a Digital Asset Links file and installing it on the web site. Although the steps to generate this file will be covered in this chapter, it will only be possible to test these instructions using your own app (with a unique application ID) and if you have access to an https based web server onto which the assets file can be installed.

To generate the Digital Asset Links file, display the App Links Assistant and click on the Open Digital Asset Links File Generator
 button. This will display the panel shown in Figure 89-11
 :

[image:]

Figure 89-11

Enter the URL of the site onto which the assets file is to be uploaded and verify that the application ID matches the package name. Choose either a keystore file containing the SHA signing key for your project, or use the menu to select either the release or debug signing configuration as used by Android Studio, keeping in mind that the debug key will need to be replaced by the release key before you publish your app to the Google Play store.

If your app uses either Google Sign-In or other supported sign-in providers to authenticate users together with Google’s Smart Lock feature for storing passwords, selecting the Support sharing credentials between app and website
 option will allow users to store sign-in credentials for use when signing in on both platforms.

Once the assets file has been configured, click on the Generate Digital Asset Link File

 button to preview and save the file:

[image:]

Figure 89-12

Once the file has been saved, upload it to the path specified beneath the preview panel in the above figure and click on the Link and Verify
 button to complete the process.

After the Digital Assets Link file has been linked and verified, Android should no longer display the selection panel before launching the landmark activity.

89.9

 Summary

This chapter has demonstrated the steps involved in implementing App Link support within an Android app project. Areas covered in this chapter include the use of the App Link Assistant in Android Studio, App Link URL mapping, intent filters, handling website association using Digital Asset File entries and App Link testing.

90.

 An Introduction to Android Instant Apps

The previous chapters covered Android App Links and explained how these links can be used to make the content of Android apps easier to discover and share with other users. App links alone, however, are only part of the solution. A significant limitation of app links is that an app link only works if the user already has the corresponding app installed on the Android device. This shortcoming is addressed by combining app links with the Android Instant App feature.

This chapter will provide an overview of Android Instant apps in terms of what they are and how they work. The following chapters will demonstrate how to implement Instant App support in both new and existing Android Studio projects.

90.1

 An Overview of Android Instant Apps

A traditional Android app (also referred to as an installed app
) consists of an APK file containing all of the various components that make up the app including classes, resource files and images. When development on the app is completed, the APK file is published to the Google Play store where prospective users can find and install the app onto their devices.

When an app makes use of Instant Apps, that app is divided into one or more feature modules
 , each of which is contained within a separate feature APK
 file. Each feature consists of a specific area of functionality within the app, typically involving one or more Activity instances. The individual feature APKs are then bundled into an instant app APK
 which is then uploaded to the Google Play Developer Console.

The features within an app are assigned App Links which can be used to launch the feature. When the link is clicked or used in an intent launch, Google Play matches the URL with the feature module, downloads only the required feature APK files and launches the entry point activity as specified in the APK manifest file. This allows the user to quickly gain access to a particular app feature without having to manually go to the Google Play store and install the entire app. The user simply clicks the link and Android Instant Apps handles the rest.

Consider a hotel booking app that displays detailed hotel descriptions. A user with the app installed can send an app link to a friend to display information about a particular hotel. If the app supports Instant Apps and the friend does not already have the app installed, clicking the link will automatically download the APK file for the hotel detail feature of the app and launch it on the device.

To avoid cluttering devices with Instant App features, Android will typically remove infrequently used feature modules installed on a device.

90.2

 Instant App
 Feature Modules

To support Instant Apps, a project needs to be divided into separate feature modules. A feature should contain at least one activity and represent a logical, standalone subset of the app’s functionality. A feature module can, in fact, be thought of as a sharable library containing the code for a specific app feature.

All projects must contain one base feature module
 . If an app only consists of one feature, then the base feature module will contain all of the app’s functionality. If an app has multiple features, each feature will have its own feature module in addition to the base module. In multi-feature apps, the base feature will typically contain one feature together with any resources that need to be shared with the requested feature module. When an instant app feature is requested, the base feature module is always downloaded in addition to the requested feature. This ensures that any shared resources are available for the requested feature module.

90.3

 Instant App
 Project Structure

An Android Studio project needs to conform to a specific structure if it is to support instant apps. In fact, the project needs to be able to support both traditional installed apps and instant apps. This project structure consists of both an app module

 and an instant app
 module
 . The app module is responsible for building the standard installable APK file that is installed when the user taps the Install button in the Google Play store. The instant app module, on the other hand is responsible for generating each of the individual feature APK files.

Both the app module and the instant app module are essentially containers for the feature modules that make up the app functionality. This ensures that the same code base is used for both installed and instant app variants. The build files for both modules simply declare the necessary feature modules as dependencies. Figure 90-1
 , for example, shows the structure for a simple multi-feature proje
 ct:

[image:]

Figure 90-1

90.4

 The Application

 and Feature Build Plugins

When a project is built, the build system uses the settings in the Gradle files for the app and instant app modules to decide how the output is to be structured. The build.gradle
 file for the app module will make use of the standard com.android.application
 plugin to build the single installable APK file, including in that file the feature modules declared in the dependencies section:

apply plugin: 'com.android.application
 '

android {

 compileSdkVersion 28

.

.

dependencies {

 implementation project(':myappbase')

 implementation project(':myappdetail')

}

The build.gradle
 file for the instant app module, on the other hand, will use the com.android.instantapp
 plugin to build separate feature APK files for the features referenced in the dependencies section. Note that feature dependencies are referenced using implementation project()
 declarations:

apply plugin: 'com.android.instantapp
 '

dependencies {

 implementation project(':myappbase')

 implementation project(':myappfeature')

}

Each of the non-base feature modules that make up the app will also have a build.gradle
 file that uses the com.android.feature
 plugin, for example:

apply plugin: 'com.android.feature
 '

android {

 compileSdkVersion 28

.

.

.

dependencies {

 implementation project(':myappbase')

}

The build.gradle
 file for the base feature module is a special case and must include a baseFeature true
 declaration. The file must also use the feature project()
 declaration for any feature module dependencies together with an application project()
 entry referencing the installed app module, for example:

apply plugin: 'com.android.feature
 '

android {

 baseFeature true

 compileSdkVersion 28

.

.

.

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

.

.

 application project(':myappapk')

 feature project(':myappfeature')

}

90.5

 Installing the Instant Apps
 Development SDK

Before working with Instant Apps in Android Studio, the Instant Apps Development SDK must be installed. In preparation for the chapters that follows, launch Android Studio and select the Configure -> SDK Manager
 menu option (or use the Tools -> Android -> SDK Manager
 option if a project is already open).

Within the SDK manager screen, select the SDK Tools
 option and locate and enable the Instant Apps Development SDK
 entry:

[image:]

Figure 90-2

With the SDK selected, click on the OK button to perform the installation.

90.6

 Summary

Android Instant Apps combine with Android App Links to provide an easy way for users to share and discover the content and features of apps. Instant apps are broken up into separate feature modules which can be launched using app links. When a link is selected, if the app is not already installed on the user’s device, the code for the app feature is downloaded by Google Play onto the device and launched. This allows app features to be run on demand without the need to manually install the entire app through Google Play.

Each app project must include an app module to contain the standard installable APK file and an instant app module for generating the separate feature APKs. Both the app and instant app modules serve as containers for the feature modules that make up the app. An app must contain at least one feature module and may also contain additional modules for other features.

With the basics of instant apps covered, the next chapter will explain how to add instant app support to a new Android Studio project.

91.

 An Android Instant App
 Tutorial

The previous chapter has introduced Android Instant Apps and provided an overview of how these are structured and implemented. Instant Apps can be created as part of a new Android Studio project, or added retroactively to an existing project. This chapter will focus on including instant app support in a new project. The chapters that follow will outline how to add instant app support to an existing project.

91.1

 Creating the Instant App Project

Launch Android Studio, select the option to create a new project and name the project InstantAppDemo
 before clicking on the Next
 button. On the subsequent screen, select the Phone and Tablet
 option and change the SDK setting to API 26: Android 8.0 (Oreo). Before clicking the Next button, enable the Include Android Instant App support
 option as highlighted in Figure 91-1
 below:

[image:]

Figure 91-1

Click Next
 and, on the instant app customization screen, name the feature myfeature
 :

[image:]

Figure 91-2

On the next screen, select the Empty Activity
 template before proceeding to the final screen. Since the Instant App option was selected, the activity configuration screen will provide fields within which to specify an app link for this activity. Activate these options by enabling the Associate a URL with this Activity
 option. Specify example.com
 as the Instant App URL Host
 , select the Path
 option from the Instant App URL Route Type
 and enter /home
 as the route URL. Name the activity InstantAppActivity
 and the layout activity_instant_app
 before clicking on the Finish
 button to create the new project.

91.2

 Reviewing the Project

Based on the selections made, Android Studio has actually completed all of the work necessary to support both installed and instant app builds of the project. All that would be required to complete the app is to implement the functionality in the main activity and to add other feature modules if needed.

Before testing the app, it is worthwhile taking some time to review the way in which the project has been structured. At this point, the project structure within the Project Tool window should match that shown in Figure 91-3
 :

[image:]

Figure 91-3

The project now consists of an installed app module (app
), an instant app module (instantapp
), a base feature module (base
) and an additional feature module (myfeature
). Each of these modules has associated with it a build.gradle
 file that defines how the module is to be built and the other modules on which it is dependent. The build.gradle (Module: app)
 file, for example, uses the com.android.application
 plugin to build the installed app version of the project and declares both the base
 and myfeature
 modules as dependencies:

apply plugin: 'com.android.application'

.

.

.

dependencies {

 implementation project(':myfeature')

 implementation project(':base')

}

The Gradle build file for the instantapp
 module also declares the base
 and myfeature
 modules as dependencies, but this time the com.android.instantapp
 plugin is used to build the instant app version of the project:

apply plugin: 'com.android.instantapp'

dependencies {

 implementation project(':myfeature')

 implementation project(':base')

}

A review of the build file for the base
 module will reveal the use of the com.android.feature
 plugin, a declaration that this is the base class and the app
 and myfeature
 dependencies:

apply plugin: 'com.android.feature'

android {

 compileSdkVersion 28

 baseFeature true

.

.

.

}

dependencies {

 application project(':app')

 feature project(':myfeature')

 api 'com.android.support:appcompat-v7:26.0.2'

 api 'com.android.support.constraint:constraint-layout:1.0.2'

}

The myfeature
 module contains both the layout and class file for the main activity. Although not necessary for the purposes of this tutorial, any change to the activity would be made within these module files.

In addition to the build files and module structure, Android Studio has also placed the appropriate intent filter for the app link to the AndroidManifest.xml
 file belonging to the instantapp
 module.

91.3

 Testing the Installable App

Test the installable app by selecting the app
 entry in the toolbar run configuration selection menu as shown in Figure 91-4
 and then clicking on the run button:

[image:]

Figure 91-4

Select a suitable deployment target and verify that the APK installs and the app launches.

91.4

 Testing the Instant App

Before the instant app can be tested, the installed app must first be removed from the device or emulator being used for testing. Launch the Settings app and navigate to the Apps & notifications
 screen. Locate and select the InstantAppDemo
 app then click on the Uninstall
 button.

Once the installed app has been removed, return to Android Studio and select the instantapp
 module in the run configuration menu. Before running the app, open the menu once again and select the Edit configurations…
 option. In the Run/Debug Configurations
 dialog, note that Android Studio has automatically configured the module to launch using the previously declared app link URL:

[image:]

Figure 91-5

Close the configuration dialog and click on the run button to launch the instant app. As the app is launching the following output will appear in the Run Tool window confirming the instant app is being launched:

07/17 10:12:11: Launching instantapp

INFO - Analyzing files...

INFO - Checking device...

INFO - Pushing instant app to device...

INFO - Launching app...

INFO - Instant app started

The instant app may also be launched from the command line using the following adb commands:

$ adb shell setprop log.tag.AppIndexApi VERBOSE

$ adb shell am start -a android.intent.action.VIEW -c android.intent.category.BROWSABLE -d https://example.com/home

Aside from the different output, the instant app feature should launch just as it did for the installable app.

A review of the installed app on the device within the Settings app will now display the app icon with a lightning bolt to indicate that this is an instant app:

[image:]

Figure 91-6

91.5

 Reviewing the Instant App
 APK Files

The previous chapter explained that the installable app APK file contains the basic components that make up an app. To see this in practical terms, select the Android Studio Build -> Analyze APK…
 menu option and navigate to, select and open the InstantApp -> app -> build -> outputs -> apk -> debug -> app-debug.apk
 file. Once selected, the APK Analyzer panel will open and display the content of the APK file. As shown in Figure 91-7
 below, this file contains the class dex files and the associated resources for the entire app:

[image:]

Figure 91-7

Repeat this step, this time navigating to the InstantApp -> instantapp -> build -> outputs -> apk -> debug -> instantapp-debug.zip
 file. Note that this file contains two APK files, one for the base module and the other for the myfeature module, each containing its own dex and resource files:

[image:]

Figure 91-8

91.6

 Summary

This chapter has outlined the steps to creating a new Android Studio project including Android Instant App support. As revealed in this chapter, much of the work involved in structuring the project to build both installable and instant apps is performed automatically by Android Studio. Having created the example app, this chapter also outlined how to test instant apps and demonstrated the use of the APK Analyzer to review the difference between the APK files for installable and instant app projects.

92.

 Adapting an Android Studio Project for Instants App
 s

In addition to being able to include Instant Apps support in a new project, it is also important to be able to convert an existing Android Studio project to provide instant app installation and launch capabilities.

In this chapter, the AppLinking project completed in the chapter entitled
“An Android Studio App Links Tutorial”

 will be modified to add instant apps support.

92.1

 Getting Started

As previously outlined, the objective of this chapter is to take the existing AppLinking project and modify it to support instant apps. The completed project will consist of an instant app module, a base feature module containing the main activity, and a second feature module containing the landmark detail activity. The app link already configured within the project will be used to install and launch one of these instant app feature modules. A second app link will be added during this tutorial for the other feature module.

Begin by launching Android Studio and opening the completed AppLinking project. If you have not yet completed this project, refer to the
“An Android Studio App Links Tutorial”

 chapter, or load the completed version of the app from the AppLinking_completed
 folder of the code samples download available from the following URL:

https://www.ebookfrenzy.com/retail/as32kotlin/index.php

92.2

 Creating the Base Feature Module

The project currently contains an application module named app
 which uses the com.android.application
 build plugin. This module will serve as the base feature module for the modified project, so needs to be given a more descriptive name. Within the project tool window, right-click on the app
 entry and select the Refactor -> Rename…
 option from the menu. In the Rename Module dialog, change the module name to applinkingbase
 before clicking on the OK
 button.

Although the module has been renamed, it is still configured as an application. To resolve this, edit the applinking-base build.gradle
 file (Gradle Scripts -> build.gradle (Module: applinkingbase
) and change the plugin declaration to reference com.android.feature
 instead of com.android.application
 . Since this is no longer an application module, it also no longer makes sense to have an application Id assigned, so also remove this declaration from the build file. Finally, the build file needs to be declared as the base feature module for the project:

apply plugin: 'com.android.feature'

.

.

android {

 baseFeature true

 compileSdkVersion 28

 defaultConfig {

 applicationId "com.ebookfrenzy.applinking"

 minSdkVersion 28

 targetSdkVersion 28

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner

 "android.support.test.runner.AndroidJUnitRunner"

 }

.

.

.

The next step is to add an application module to the project that will allow the app to continue to support the standard APK app installation mechanism in addition to supporting instant app installations.

92.3

 Adding the Application APK Module

At this stage we have a base feature module containing all of the code for the project. The project will still need to be able to generate standard application-type APK files during the build process. This can be achieved by adding an app module to the project and configuring it to contain the applinkingbase
 feature module. To add the new module, select the Android Studio File -> New -> New Module...
 menu option and select the Phone and Tablet
 option from the selection panel (Figure 92-1
). Once selected, click on the Next
 button to proceed
 :

[image:]

Figure 92-1

On the next screen, set the application/library name to AppLinking APK
 and the module name to applinkingapk
 . Set the minimum SDK to API 26: Android 8.0 (Oreo) before clicking on the Next
 button:

[image:]

Figure 92-2

Since this module is simply a container within which the base feature module will be referenced, it does not need to have any activities of its own. On the final screen, therefore, select the Add No Activity
 option before clicking on the Finish
 button.

When Android Studio generates the new application module, a number of default dependencies will have been added to the module’s build.gradle
 file. Since the only dependency that the module actually has is the base feature module, the default dependencies need to be removed from the build.gradle (applinkingapk)
 file and replaced with a reference to the applinkingbase
 module:

apply plugin: 'com.android.application'

android {

.

.

.

dependencies {

 implementation project(':applinkingbase')

}

Note that since applinkingapk
 is an application module, the build file correctly applies the com.android.application
 plugin.

At this point in the chapter, the original application module has been converted to a base feature module and a new application module has been added and configured to contain the base module. Check that the applinkingapk application module compiles and runs without any problems by selecting it in the toolbar run target menu and clicking on the run button:

[image:]

Figure 92-3

Verify that the app launches and functions as expected. Assuming that the app still works, it is time to begin adding instant app support. First, however, use the Settings app to remove the AppLinkingAPK app from the device or emulator so that it does not conflict with the instant app module created in the next section.

92.4

 Adding an Instant App Module

The project now has a base feature module and an application module used for creating a standard APK for the project. The next step is to add an instant app module to the project. Begin by selecting the Android Studio File New -> New Module…
 menu option and selecting the Instant App
 option in the selection panel:

[image:]

Figure 92-4

Click on the Next
 button, name the module applinkinginstantapp
 and click on the Finish
 button. As with the applinkingapk module, the only dependency for the instant app module is the base feature module. Edit the build.gradle (applinkinginstantapp)
 file and modify it as follows to add this dependency:

apply plugin: 'com.android.instantapp'

dependencies {

 implementation project(":applinkingbase")

}

Now that the instant app module has been declared, the project is ready to be tested as an instant app. Before proceeding, however, the current standard (i.e. non-instant app APK) for the project must be removed from the device or emulator on which testing is being performed. Launch the Settings app, navigate to the list of installed apps and select and uninstall the AppLinking APK
 app.

92.5

 Testing the Instant App

Within the Android Studio toolbar, select applinkinginstantapp
 from the run menu as shown in Figure 92-5
 :

 [image:]

Figure 92-5

Display the menu again, this time selecting the Edit Configurations…
 option. In the launch options section of the configuration dialog, configure a launch URL containing the londonbridge landmark path as illustrated in Figure 92-6
 :

[image:]

Figure 92-6

Click on the Apply
 button followed by the OK
 button to commit the change, then launch the instant app using the run button. After the build completes, the instant app will be installed and launched using the URL and display the landmark activity populated with London Bridge information.

On the device or emulator, open the Settings app and navigate to the list of installed apps. The AppLinking app icon will now include a lightning bolt indicating that this is an instant app:

[image:]

Figure 92-7

92.6

 Summary

This chapter has outlined how to modify an existing Android Studio app project to add Instant App support. This involved converting the existing app to the base feature module and then creating and configuring both the app and instant app modules, both of which have the base feature module as a dependency. The app was then tested using the previously configured app link.

93.

 A Guide to the Android Studio Profiler

Introduced in Android Studio 3.0, the Android Profiler
 provides a way to monitor CPU, networking and memory metrics of an app in realtime as it is running on a device or emulator. This serves as an invaluable tool for performing tasks such as identifying performance bottlenecks in an app, checking that the app makes appropriate use of memory resources and ensuring that the app does not use excessive networking data bandwidth. This chapter will provide a guided tour of the Android Profiler so that you can begin to use it to monitor the behavior and performance of your own apps.

93.1

 Accessing the Android Profiler

The Android Profiler appears in a tool window which may be launched either using the View -> Tool Windows -> Android Profiler
 menu option or via any of the usual toolbar options available for displaying Android Studio Tool windows. Once displayed, the Profiler Tool window will appear as illustrated in Figure 93-1
 :

[image:]

Figure 93-1

In the above figure, no processes have been detected on any connected devices or currently running emulators. To see profiling information, an app will need to be launched. Before doing that, however, it may be necessary to configure the project to enable advanced profiling information to be collected.

93.2

 Enabling Advanced Profiling

If the app is built using an SDK older than API 26, it will be necessary to build the app with some additional monitoring code inserted during compilation in order to be able to monitor all of the metrics supported by the Android Profiler. To enable advanced profiling, begin by editing the build configuration settings for the build target using the menu in the Android Studio toolbar shown in Figure 93-2
 :

 [image:]

Figure 93-2

Within the Run/Debug configuration dialog, select the Profiling
 tab and enable the Enable advanced profiling
 option before clicking on the Apply
 and OK
 buttons.

93.3

 The Android Profiler Tool Window

An active Profiler tool window monitoring a running app is shown in Figure 93-3
 .

[image:]

Figure 93-3

The Sessions panel (marked A) lists both the current profiling sessions and any other stored sessions performed since Android Studio was last launched. To the right of the Sessions panel is the live profiling window. The window will continue to scroll with the latest metrics unless it is paused using the Live
 button (B). Clicking on the button a second time will jump to the current time and resume scrolling. Horizontal scrolling is available for manually moving back and forth within the recorded time-line.

The top row of the window (C) is the event time-line
 and displays changes to the status of the app’s activities together with other events such as the user touching the screen, typing text or changing the device orientation. The bottom time-line (D) charts the elapsed time since the app was launched.

The remaining timelines show realtime data for CPU, memory, network and energy usage. Hovering the mouse pointer over any point in the time-line (without clicking) will display additional information similar to that shown in Figure 93-4
 .

[image:]

Figure 93-4

Clicking within the CPU, memory, networking or energy timelines will display the corresponding profiler window, each of which will be explored in the remainder of this chapter.

93.4

 The
 Sessions Panel

When an app is running and the Profiler tool window displayed, the profiler will automatically attached to the app and begin profiling. An entry showing the app name, the device or emulator on which it is running and the start time will appear in the Sessions panel as shown in Figure 93-5
 . The green circle next to the time indicates a currently active profiling session. Pressing the red stop button will end the current session but the data and graphs will remain available for browsing until Android Studio exits. Additional profiling sessions can be started by clicking on the + button and selecting the device and app:

[image:]

Figure 93-5

 The green circle next to the time indicates a currently active profiling session. Pressing the red stop button will end the current session but the data and graphs will remain available for browsing until Android Studio exits. Additional profiling sessions can be started by clicking on the + button and selecting the device and app:

[image:]

Figure 93-6

The Load from file...
 menu option allows a CPU trace previously saved from within the CPU profiler to be loaded into the Profiler for inspection.

To automatically start profiling for an app when it launches (as opposed manually starting a profiler session after the app has launched), begin by opening the Run / Debug Configurations
 dialog as outlined in Figure 93-2
 above.

From within the dialog, select the Profiling screen and enable the Start recording a method trace on startup
 option:

[image:]

Figure 93-7

93.5

 The CPU Profiler

When displayed, the CPU Profiler window will appear as shown in Figure 93-8
 . As with the main window, the data is displayed in realtime including the event time-line (A) and a scrolling graph showing CPU usage (B) in realtime for both the current app and a combined total for all other processes on the device:

[image:]

Figure 93-8

Located beneath the graph is a list of all of the threads associated with the current app (C). Referred to as the thread activity timeline
 , this also takes the form of a scrolling time-line displaying the status of each thread as represented by colored blocks (green for active, yellow for active but waiting for a disk or network I/O operation to complete or gray if the thread is currently sleeping).

The CPU Profiler supports two types of method tracing (in other words profiling individual methods within the running app). The current tracing type, either sampled or instrumented, is selected using the menu marked D. The tracing types can be summarized as follows:

•
 Sampled (Java)

 – Captures the method call stack at frequent intervals to collect tracing data for Java code execution. While less invasive than instrumented tracing, sampled tracing can miss method calls if they occur during the intervals between captures. Snapshot frequency may be changed by selecting the Edit configurations…
 button within the type selection menu and creating new custom trace types.

•
 Instrumented

 (Java)
 – Traces the beginning and ending of all Java method calls performed within the running app. This has the advantage that no method calls are missed during profiling, but may impact app performance due to the overhead of tracing all method calls, resulting in misleading performance data.

•
 Sampled (Native)
 - Captures the method call stack at frequent intervals to collect tracing data for native (for example C or C++) code execution within the app.

•
 System Trace
 - Profiles the system level CPU and thread activity on the device while the app is running (in other words CPU activity occurring outside the app process).

Method tracing does not begin until the record button (E) is clicked and continues until the recording is stopped. Once recording completes, the Profiler tool window will display the method trace in call chart
 format as shown in Figure 93-12
 including information on execution timings for the methods. The recorded trace will also appear within the Sessions panel. Clicking on the disk icon (indicated in Figure 93-9
 below) allows the trace to be saved to file for future inspection within the profiler as outlined earlier in the chapter:

[image:]

Figure 93-9

The trace results may be viewed in Top Down, Bottom Up, Call Chart and Flame Chart modes, each of which can be summarized as follows:

•
 Top Down

 – Displays the methods called during the trace period in a hierarchical format. Selecting a method will unfold the next level of the hierarchy and display any methods called by that method
 :

[image:]

Figure 93-10

•

 Bottom Up

 – Displays an inverted hierarchical list of methods called during the trace period. Selecting a method displays the list of methods that called the selected method:

[image:]

Figure 93-11

•
 Call Chart

 – Provides a graphical representation of the method trace list where the horizontal axis represents the start, end and duration of the method calls. In the vertical axis, each row represents methods called by the method above. Methods contained within the app are colored green, API methods orange and third-party methods appear in blue:

[image:]

Figure 93-12

•
 Flame Chart

 – Provides an inverted graphical representation method trace list where each method is sized on the horizontal axis based on the amount of time the method was executing relative to other methods. Wider entries within the chart represent methods that used the most execution time relative to the other methods making it easy to identify which methods are taking the most time to complete. Note that method calls that have matching call stacks (in other words situations where the method was called repeatedly as the result of the same sequence of preceding method calls) are combined in this view to provide an overall representation of the method’s performance during the trace period:

[image:]

Figure 93-13

Right-clicking on a method entry in any of the above views provides the option to open the source code for the method in a code editing window.

93.6

 Memory Profiler

The memory profiler is displayed when the memory time-line is clicked within the main Android Profiler Tool window and appears as shown in Figure 93-14
 :

[image:]

Figure 93-14

The memory time-line shows memory allocations relative to the scale on the right-hand side of the time-line for a range of different categories as indicated by the color key. The dashed line (A) represents the number of objects allocated for the app relative to the scale on the left-hand side of the time-line graph.

The trash can icons (B) indicate garbage collection
 events. A garbage collection event occurs when the Android runtime decides that an object residing in memory is no longer needed and automatically removes it to free memory.

In addition to the usual timelines, the window includes buttons (C) to force garbage collection events and to capture a heap dump.

A heap dump (Figure 93-15
) lists all of the objects within the app that were using memory at the time the dump was performed showing the number of instances of the object in the heap (allocation count), the size of all instances of the object (shallow size) and the total amount of memory being held by the Android runtime system for those objects (retained siz
 e).

[image:]

Figure 93-15

Double clicking on an object in the heap list will display the Instance View panel (marked A in Figure 93-16
) displaying a list of instances of the object within the app. Selecting an instance from the list will display the References panel (B) listing where the object is referenced. Figure 93-16
 , for example shows that a String instance has been selected and is listed as being referenced by a variable named myString
 located in the MainActivity class of the a
 pp:

[image:]

Figure 93-16

Right-clicking on the reference would provide the option to go to the MainActivity class in the heap list, or jump to the source code for that class.

93.7

 Network Profiler

The Network Profiler is the least complex of the tools provided by the Android Profiler. When selected the Network tool window appears as shown in Figure 93-17
 :

[image:]

Figure 93-17

In common with the other profiler windows, the Network Profiler window includes an event time-line. The Radio time-line (marked A in Figure 93-17
) shows the power status of the radio relative to the Wi-Fi connection if one is available.

The time-line graph (B) includes sent and received data and a count of the number of current connections. At time of writing, the Network Profiler is only able to monitor network activity performed as a result of HttpURLConnection and OkHttp based connections.

To view information about the files sent or received, click and drag on the time-line to select a period of time. On completing the selection, the panel labeled A in Figure 93-18
 will appear listing the files. Selecting a file from the list will display the detail panel (B) from which additional information is available including response, header and call stack information
 :

[image:]

Figure 93-18

93.8

 Energy Profiler

The energy profiler (Figure 93-19
) provides a realtime analysis of the energy used by the currently running app categorized in terms of CPU, networking and location tracking activity.

[image:]

Figure 93-19

The Energy profiler includes an event timeline (A) and a graph indicating the current energy usage (B). The graph is colored based on the key (C) which also indicates the current energy usage levels of the three categories. Selecting a section of the graph will list any system processes that are contributing to excessive energy use such as alarms and jobs, location requests or wake locks.

93.9

 Summary

The Android Profiler monitors the CPU, memory, network and energy resource usage of apps in realtime providing a visual environment in which to locate memory leaks, performance problems and the excessive or inefficient battery use or transmission of data over network connections. Consisting of different profiler views, the Android Profile allows detailed metrics to be monitored, recorded and analyzed.

94.

 An Android

 Biometric Authentication Tutorial

Touch sensors are now built into many Android devices to identify the user and provide access to both the device and application functionality such as in-app payment options using fingerprint recognition. Fingerprint recognition is, of course, just one of a number of different authentication methods including passwords, PIN numbers and, more recently, facial recognition.

Although only a few Android devices currently on the market provide facial recognition, it is likely that this will become more common in the near future. In recognition of this, Google has begun to transition away from what was a fingerprint-centric approach to adding authentication to apps to a less specific approach that is referred to as biometric authentication
 . In the initial release of Android 8, these biometric features only cover fingerprint authentication but this will change in future releases and updates of the Android operating system and SDK.

This chapter provides both an overview of biometric authentication and a detailed, step by step tutorial that demonstrates a practical approach to implementing biometric authentication within an Android app project.

94.1

 An Overview of Biometric Authentication

The key biometric authentication component is the BiometricPrompt class. This class performs much of the work that previously had to be performed by writing code in earlier Android versions, including displaying a standard dialog to guide the user through the authentication process, performing the authentication and reporting the results to the app. The class also handles excessive failed authentication attempts and enforces a timeout before the user can try again.

The BiometricPrompt class includes a companion Builder class that can be used to configure and create BiometricPrompt instances, including defining the text that is to appear within the biometric authentication dialog and the customization of the cancel button (also referred to as the negative button
) that appears in the dialog.

The BiometricPrompt instance is also assigned a set of authentication callbacks that will be called to provide the app with the results of an authentication operation. A CancellationSignal instance is also used to allow the app to cancel the authentication while it is in process.

With these basics covered, the remainder of this chapter will implement fingerprint-based biometric authentication within an example project.

94.2

 Creating the Biometric Authentication Project

Begin this example by launching the Android Studio environment and creating a new project, entering BiometricDemo
 into the Application name field and ebookfrenzy.com
 as the Company Domain setting before clicking on the Next
 button.

On the form factors screen, enable the Phone and Tablet
 option and set the minimum SDK setting to API 28: Android 9.0 (Pie). Continue through the setup screens, requesting the creation of an Empty Activity named BiometricDemoActivity
 with a corresponding layout named activity_biometric_demo
 .

94.3

 Configuring Device Fingerprint Authentication

Fingerprint authentication is only available on devices containing a touch sensor and on which the appropriate configuration steps have been taken to secure the device and enroll at least one fingerprint. For steps on configuring an emulator session to test fingerprint authentication, refer to the chapter entitled
“Using and Configuring the Android Studio AVD Emulator”

 .

To configure fingerprint authentication on a physical device begin by opening the Settings app and selecting the Security & Location
 option. Within the Security settings screen, select the Fingerprint
 option. On the resulting information screen click on the Next
 button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a backup screen unlocking method (such as a PIN number) must be configured. If the lock screen is not already secured, follow the steps to configure either PIN, pattern or password security.

With the lock screen secured, proceed to the fingerprint detection screen and touch the sensor when prompted to do so (Figure 94-1
), repeating the process to add additional fingerprints if required.

[image:]

Figure 94-1

94.4

 Adding the Biometric Permission to the Manifest File

Biometric authentication
 requires that the app request the
 USE_BIOMETRIC
 permission within the project manifest file. Within the Android Studio Project tool window locate and edit the app -> manifests -> AndroidManifest.xml
 file to add the permission request as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.biometricdemo">

 <uses-permission

 android:name="android.permission.USE_BIOMETRIC" />

.

.

94.5

 Designing the User Interface

In the interests of keeping the example as simple as possible, the only visual element within the user interface will be a Button view. Locate and select the activity_biometric_demo.xml
 layout resource file to load it into the Layout Editor tool.

Delete the sample TextView object, drag and drop a Button object from the Common
 category of the palette and position it in the center of the layout canvas. Using the Attributes tool window, change the text property on the button to “Authenticate” and extract the string to a resource. Finally, configure the onClick property to call a method named authenticateUser
 .

On completion of the above steps the layout should match that shown in Figure 94-2
 :

[image:]

Figure 94-2

94.6

 Adding a Toast Convenience Method

At various points throughout the code in this example the app will be designed to display information to the user via Toast messages. Rather than repeat the same Toast code multiple times, a convenience method named notifyUser()
 will be added to the main activity. This method will accept a single String value and display it to the user in the form of a Toast message. Edit the FingerprintDemoActivity.
 kt
 file now and add this method as follows:

.

.

import android.widget.Toast

.

.

private fun notifyUser(message: String) {

 Toast.makeText(this,

 message,

 Toast.LENGTH_LONG).show()

}

94.7

 Checking the Security Settings

Earlier in this chapter steps were taken to configure the lock screen and register fingerprints on the device or emulator on which the app is going to be tested. It is important, however, to include defensive code in the app to make sure that these requirements have been met before attempting to seek fingerprint authentication. These steps will be performed within the onCreate
 method residing in the FingerprintDemoActivity.
 kt
 file, making use of the Keyguard and PackageManager manager services. Note that code has also been added to verify that the USE_BIOMETRIC permission has been configured for the app:

.

.

import android.support.v7.app.AppCompatActivity

import android.Manifest

import android.app.KeyguardManager

import android.content.Context

import android.content.pm.PackageManager

.

.

class BiometricDemoActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_biometric_demo)

 checkBiometricSupport()

 }

 private fun checkBiometricSupport(): Boolean {

 val keyguardManager = getSystemService(Context.KEYGUARD_SERVICE)

 as KeyguardManager

 if (!keyguardManager.isKeyguardSecure) {

 notifyUser("Lock screen security not enabled in Settings")

 return false

 }

 if (ActivityCompat.checkSelfPermission(this,

 Manifest.permission.USE_BIOMETRIC) !=

 PackageManager.PERMISSION_GRANTED) {

 notifyUser("Fingerprint authentication permission not enabled")

 return false

 }

 return if (packageManager.hasSystemFeature(

 PackageManager.FEATURE_FINGERPRINT)) {

 true

 } else true

 }

.

.

}

The above code changes begin by using the Keyguard manager to verify that a backup screen unlocking method has been configured (in other words a PIN or other authentication method can be used as an alternative to fingerprint authentication to unlock the screen). In the event that the lock screen is not secured the code reports the problem to the user and returns from the method.

The method then checks that the user has biometric authentication permission enabled for the app before using the package manager to verify that fingerprint authentication is available on the device.

94.8

 Configuring the
 Authentication Callbacks

When the biometric prompt dialog is configured, it will need to be assigned a set of authentication callback methods that can be called to notify the app of the success or failure of the authentication process. These methods need to be wrapped in a BiometricPrompt.AuthenticationCallback class instance. Remaining in the BiometricDemoActivity.
 kt
 file, add a method to create and return an instance of this class with the appropriate methods implemented:

.

.

import android.hardware.biometrics.BiometricPrompt

.

.

private val authenticationCallback: BiometricPrompt.AuthenticationCallback

 get() = object : BiometricPrompt.AuthenticationCallback() {

 override fun onAuthenticationError(errorCode: Int,

 errString: CharSequence) {

 notifyUser("Authentication error: $errString")

 super.onAuthenticationError(errorCode, errString)

 }

 override fun onAuthenticationHelp(helpCode: Int,

 helpString: CharSequence) {

 super.onAuthenticationHelp(helpCode, helpString)

 }

 override fun onAuthenticationFailed() {

 super.onAuthenticationFailed()

 }

 override fun onAuthenticationSucceeded(result:

 BiometricPrompt.AuthenticationResult) {

 notifyUser("Authentication Succeeded")

 super.onAuthenticationSucceeded(result)

 }

 }

.

.

94.9

 Adding the
 CancellationSignal

Once initiated, the biometric authentication process is performed independently of the app. To provide the app with a way to cancel the operation, an instance of the CancellationSignal class is created and passed to the biometric authentication process. This CancellationSignal instance can then be used to cancel the process if necessary. The cancellation signal instance may be configured with a listener which will be called when the cancellation is completed. Add a new method to the activity class to configure and return a CancellationSignal object as follows:

.

.

import android.os.CancellationSignal

.

.

private var cancellationSignal: CancellationSignal? = null

.

.

private fun getCancellationSignal(): CancellationSignal {

 cancellationSignal = CancellationSignal()

 cancellationSignal?.setOnCancelListener {

 notifyUser("Cancelled via signal")

 }

 return cancellationSignal as CancellationSignal

}

.

.

94.10

 Starting the
 Biometric Prompt

All that remains is to add code to the authenticateUser()
 method to create and configure a BiometricPrompt instance and initiate the authentication. Add the authenticateUser()
 method as follows:

.

.

import android.view.View

import android.content.DialogInterface

.

.

fun authenticateUser(view: View) {

 val biometricPrompt = BiometricPrompt.Builder(this)

 .setTitle("Biometric Demo")

 .setSubtitle("Authentication is required to continue")

 .setDescription("This app uses biometric authentication to protect your data.")

 .setNegativeButton("Cancel", this.mainExecutor,

 DialogInterface.OnClickListener { dialogInterface, i ->

 notifyUser("Authentication cancelled") }).build()

 biometricPrompt.authenticate(getCancellationSignal(), mainExecutor,

 authenticationCallback)

}

The BiometricPrompt.Builder class is used to create a new BiometricPrompt instance configured with title, subtitle and description text to appear in the prompt dialog. The negative button is configured to display text which reads “Cancel” and a listener configured to display a message when this button is clicked. Finally, the authenticate()
 method of the BiometricPrompt instance is called and passed the AuthenticationCallback and CancellationSignal instances. The Biometric prompt also needs to know which thread to perform the authentication on. This is defined by passing through an Executor object configured for the required thread. In this case, the getMainExecutor()
 method is used to pass a main Executor object to the BiometricPrompt instance so that the authentication process takes place on the app’s main thread.

94.11

 Testing the Project

With the project now complete, run the app on a physical Android device or emulator session and click on the Authenticate button to display the BiometricPrompt dialog as shown in Figure 94-3
 :

[image:]

Figure 94-3

Once running, either touch the fingerprint sensor or use the extended controls panel within the emulator to simulate a fingerprint touch as outlined in the chapter entitled
“Using and Configuring the Android Studio AVD Emulator”

 . Assuming a registered fingerprint is detected the prompt dialog will return to the main activity where the toast message from the successful authentication callback method will appear.

Click the Authenticate button once again, this time using an unregistered fingerprint to attempt the authentication. This time the biometric prompt dialog will indicate that the fingerprint was not recognized:

[image:]

Figure 94-4

Verify that the error handling callback is working by clicking on the activity outside of the biometric prompt dialog. The prompt dialog will disappear and the toast message will appear with the following message:

Authentication error: Fingerprint operation cancelled by user.

Check that canceling the prompt dialog using the Cancel button triggers the “Authentication Cancelled” toast message. Finally, attempt to authenticate multiple times using an unregistered fingerprint and note that after a number of attempts the prompt dialog indicates that too many failures have occurred and that future attempts cannot be made until later.

94.12

 Summary

This chapter has outlined how to integrate biometric authentication into an Android app project. This involves the use of the BiometricPrompt class which, once configured with appropriate message text and callbacks, automatically handles most of the authentication process.

95.

 Creating, Testing and Uploading an Android
 App Bundle

Once the development work on an Android application is complete and it has been tested on a wide range of Android devices, the next step is to prepare the application for submission to Google Play. Before submission can take place, however, the application must be packaged for release and signed with a private key. This chapter will work through the steps involved in obtaining a private key, preparing the Android App Bundle for the project and uploading it to Google Play.

95.1

 The Release Preparation
 Process

Up until this point in the book, we have been building application projects in a mode suitable for testing and debugging. Building an application package for release to customers via Google Play, on the other hand, requires that some additional steps be taken. The first requirement is that the application be compiled in release mode

 instead of debug mode.
 Secondly, the application must be signed with a private key that uniquely identifies you as the application’s developer. Finally, the application must be packaged into an Android App Bundle
 .

While each of these tasks can be performed outside of the Android Studio environment, the procedures can more easily be performed using the Android Studio build mechanism as outlined in the remainder of this chapter. First, however, it is important to understand a little more about Android App Bundles.

95.2

 Android
 App Bundles

When a user installs an app from Google Play, the app is downloaded in the form of an APK file. This file contains everything needed to install and run the app on the user’s device. Prior to the introduction of Android Studio 3.2, the developer would generate one or more APK files using Android Studio and upload them to Google Play. In order to support multiple device types, screen sizes and locales this would require either the creation and upload of multiple APK files customized for each target device and locale, or the generation of a large universal APK
 containing all of the different configuration resources and platform binaries within a single package.

Creating multiple APK files involved a significant amount of work that had to be repeated each time the app needed to be updated imposing a considerable time overhead to the app release process.

The universal APK option, while less of a burden to the developer, caused an entirely unexpected problem. By analyzing app installation metrics, Google discovered that the larger an installation APK file becomes (resulting in longer download times and increased storage use on the device), the less conversions the app receives. The conversion rate is calculated as a percentage of the users who completed the installation of an app after viewing that app on Google Play. In fact, Google estimates that the conversion rate for an app drops by 1% for each 6MB increase in APK file size.

Android App Bundles solve both of these problems by providing a way for the developer to create a single package from within Android Studio and have custom APK files automatically generated by Google Play for each individual supported configuration (a concept referred to as Dynamic Delivery
).

An Android App Bundle is essentially a ZIP file containing all of the files necessary to build APK files for the devices and locales for which support has been provided within the app project. The project might, for example, include resources and images for different screen sizes. When a user installs the app, Google Play receives information about the user’s device including the display, processor architecture and locale. Using this information, the appropriate pre-generated APK files are transferred onto the user’s device.

Although it is still possible to generate APK files from Android Studio, app bundles are now the recommended way to upload apps to Google Play.

95.3

 Register for a Google Play Developer Console
 Account

The first step in the application submission process is to create a Google Play Developer Console account. To do so, navigate to
https://play.google.com/apps/publish/signup/

 and follow the instructions to complete the registration process. Note that there is a one-time $25 fee to register. Once an application goes on sale, Google will keep 30% of all revenues associated with the application.

Once the account has been created, the next step is to gather together information about the application. In order to bring your application to market, the following information will be required:

•
 Title
 – The title of the application.

•
 Short Description
 - Up to 80 words describing the application.

•
 Full Description
 – Up to 4000 words describing the application.

•
 Screenshots
 – Up to 8 screenshots of your application running (a minimum of two is required). Google recommends submitting screenshots of the application running on a 7” or 10” tablet.

•
 Language
 – The language of the application (the default is US English).

•
 Promotional Text
 – The text that will be used when your application appears in special promotional features within the Google Play environment.

•
 Application Type
 – Whether your application is considered to be a game
 or an application
 .

•
 Category
 – The category that best describes your application (for example finance, health and fitness, education, sports, etc.).

•
 Locations
 – The geographical locations into which you wish your application to be made available for purchase.

•
 Contact Details
 – Methods by which users may contact you for support relating to the application. Options include web, email and phone.

•
 Pricing & Distribution
 – Information about the price of the application and the geographical locations where it is to be marketed and sold.

Having collected the above information, click on the Create Application
 button within the Google Play Console to begin the creation process.

95.4

 Configuring the App in the Console

When the Create Application button is first clicked, the Store listing
 screen will appear as shown in Figure 95-1
 below. The screen may also be accessed by selecting the Store listing
 option (marked A) in the navigation panel. Once all of the requirements have been met for the Store listing screen, both the Content rating
 (B) and Pricing & distribution
 (C) screens must also be completed:

 [image:]

Figure 95-1

Once the app entry has been fully configured, the next step is to enable app signing and upload the app bundle.

95.5

 Enabling Google Play App Signing

Up until recently, Google Play uploads were signed with a release app signing key from within Android Studio and then uploaded to the Google Play console. While this option is still available, the recommended way to upload files is to now use a process referred to as Google Play App Signing
 . For a newly created app, this involves opting in to Google Play App Signing and then generating an upload key
 that is used to sign the app bundle file within Android Studio. When the app bundle file generated by Android Studio is uploaded, the Google Play console removes the upload key and then signs the file with an app signing key that is stored securely within the Google Play servers. For existing apps, some additional steps are required to enable Google Play Signing and will be covered at the end of this chapter.

Within the Google Play console, select the newly added app entry from the dashboard and click on the App releases
 option located in the left-hand navigation panel. On the App releases screen, select the Manage
 button in the Internal test track
 section. The internal test track is particularly useful when performing tests early in the app development cycle, or when experimenting with Android App Bundles. Eventually the app will progress through Alpha and Beta testing before finally being ready for production release.

[image:]

Figure 95-2

On the subsequent screen, click on the Create Release
 button to display the settings screen shown in Figure 95-3
 :

[image:]

Figure 95-3

To enroll the app in Google Play App Signing, click on the Continue
 button highlighted in the above figure. This will generate an app signing certificate for the app which will be securely stored within Google Play.

The next step is to generate the upload
 key from within Android Studio. This is performed as part of the process of generating a signed app bundle.

95.6

 Enabling ProGuard

When generating an application package, the option is available to use ProGuard during the package creation process. ProGuard performs a series of optimization and verification tasks that result in smaller and more efficient byte code. In order to use ProGuard, it is necessary to enable this feature within the Project Structure settings prior to generating the app bundle file.

The steps to enable ProGuard are as follows:

1.
 Display the Project Structure dialog (File -> Project Structure
).

2.
 Select the “app” module in the far left panel.

3.
 Select the “Build Types” tab in the main panel and the “release” entry from the middle panel.

4.
 Change the “Minify Enabled” option from “false” to “true” and click on OK
 .

5.
 Follow the steps to create a keystore file and build the app bundle file.

With the project configured for release building, the next step is to create a keystore file containing the upload key.

95.7

 Creating a Keystore File

To create a keystore file, select the Build -> Generate Signed Bundle / APK…
 menu option to display the Generate Signed Bundle or APK Wizard dialog
 as shown in Figure 95-4
 :

[image:]

Figure 95-4

Verify that the Android App Bundle
 option is selected before clicking on the Next
 button.

In the event that you have an existing release keystore file, click on the Choose existing…
 button on the next screen and navigate to and select the file. If you have yet to create a keystore file, click on the Create new…
 button to display the New Key Store
 dialog (Figure 95-5
). Click on the button to the right of the Key store path field and navigate to a suitable location on your file system, enter a name for the keystore file (for example, release.keystore.jks
) and click on the OK button.

The New Key Store dialog is divided into two sections. The top section relates to the keystore file. In this section, enter a strong password with which to protect the keystore file into both the Password
 and Confirm
 fields. The lower section of the dialog relates to the upload key that will be stored in the key store file.

[image:]

Figure 95-5

Within the Certificate
 section of the New Key Store dialog, enter the following details:

•
 An alias by which the key will be referenced. This can be any sequence of characters, though only the first 8 are used by the system.

•
 A suitably strong password to protect the key.

•
 The number of years for which the key is to be valid (Google recommends a duration in excess of 25 years).

In addition, information must be provided for at least one of the remaining fields (for example, your first and last name, or organization name).

[image:]

Figure 95-6

Once the information has been entered, click on the OK
 button to proceed with the bundle creation.

95.8

 Creating the Android
 App Bundle

The next step is to instruct Android Studio to build the application app bundle file in release mode and then sign it with the newly created private key. At this point the Generate Signed Bundle or APK
 dialog should still be displayed with the keystore path, passwords and key alias fields populated with information:

[image:]

Figure 95-7

Make sure that the Export Encrypted Key option is enabled and, assuming that the other settings are correct, click on the Next
 button to proceed to the app bundle generation screen (Figure 95-8
). Within this screen, review the Destination Folder:
 setting to verify that the location into which the app bundle file will be generated is acceptable. In the event that another location is preferred, click on the button to the right of the text field and navigate to the desired file system location.

[image:]

Figure 95-8

Click on the Finish
 button and wait for the Gradle system to build the app bundle. Once the build is complete, a dialog will appear providing the option to open the folder containing the app bundle file in an explorer window, or to load the file into the APK Analyzer:

[image:]

Figure 95-9

At this point the application is ready to be submitted to Google Play. Click on the locate
 link to open a filesystem browser window. The file should be named bundle.aab
 and be located in the app/release
 sub-directory of the project folder unless another location was specified.

The private key generated as part of this process should be used when signing and releasing future applications and, as such, should be kept in a safe place and securely backed up.

95.9

 Generating Test APK Files

An optional step at this stage is to generate APK files from the app bundle and install and run them on devices or emulator sessions. Google provides a command-line tool called bundletool
 designed specifically for this purpose which can be downloaded from the following URL:

https://github.com/google/bundletool/releases

At time of writing, bundletool is provide as a .jar file which can be executed from the command line as follows (noting that the version number may have changed since this book was published):

java -jar bundletool-all-0.3.3.jar

Running the above command will list all of the options available within the tool. To generate the APK files from the app bundle, the build-apks
 option is used. To generate APK files that can be installed onto a device or emulator the files will also need to be signed. To achieve this include the --ks
 option specifying the path of the keystore file created earlier in the chapter, together with the --ks-key-alias
 option specifying the alias provided when the key was generated.

Finally, the --output
 flag must be used to specify the path of the file (referred to as the APK Set) into which the APK files will be generated. This file must not already exist and is required to have a .apks
 filename extension. Bringing these requirements together results in the following command-line (allowing for differences in your operating system path structure):

java -jar bundletool-all-0.3.3.jar build-apks --bundle=/tmp/MyApps/app/release/bundle.aab --output=/tmp/MyApks.apks --ks=/MyKeys/release.keystore.jks --ks-key-alias=MyReleaseKey

When this command is executed, a prompt will appear requesting the keystore password before the APK files are generated into the specified APK Set file. The APK Set file is simply a ZIP file containing all of the APK files generated from the app bundle.

To install the appropriate APK files onto a connected device or emulator, use a command similar to the following:

java -jar bundletool-all-0.3.3.jar install-apks --apks=/tmp/MyApks.apks

This command will instruct the tool to identify the appropriate APK files for the connected device and install them so that the app can be launched and tested.

It is also possible to extract the APK files from the APK Set for the connected device without installing them. The first step in this process is to obtain the specification of the connected device as follows:

java -jar bundletool-all-0.3.3.jar get-device-spec --output=/tmp/device.json

The above command will generate a JSON file similar to the following:

{

 "supportedAbis": ["x86"],

 "supportedLocales": ["en-US"],

 "screenDensity": 420,

 "sdkVersion": 27

}

Next, this specification file is used to extract the matching APK files from the APK Set:

java -jar bundletool-all-0.3.3.jar extract-apks --apks=/tmp/MyApks.apks --output-dir=/tmp/nexus5_apks --device-spec=/tmp/device.json

When executed, the directory specified via the --output-dir
 flag will contain correct APK files for the specified device configuration.

The next step in bringing an Android application to market involves submitting it to the Google Play Developer Console so that it can be made available for testing.

95.10

 Uploading
 the App Bundle to the Google Play Developer Console

Return to the internal testing track screen within the Google Play Console and upload the app bundle by dragging and dropping it onto the designated area, or click on the button to browse for the bundle file:

[image:]

Figure 95-10

After the app bundle file has uploaded, Google Play will generate all of the necessary APK files ready for testing. Once the APK files have been generated, scroll down to the bottom of the screen and click on the Save
 button. Once the settings have been saved, click on the Review
 button.

95.11
 Exploring the
 App Bundle

On the review screen, click on the bundle name to unfold the information about the bundle as shown in Figure 95-11
 :

[image:]

Figure 95-11

This section of the screen provides summary information relating to the API levels, screen layouts and platforms supported by the app bundle. For more information, click on the Explore App Bundle
 option highlighted in the figure above. This will display information about the size savings compared to a universal APK file (marked A in Figure 95-12
) and provide the option to download individual APK files for local testing purposes (B) as an alternative to using the bundletool:

[image:]

Figure 95-12

The bundle explorer also lists the supported screen densities (C) and respective install APK size. Clicking on a View Devices option for a screen density will display the devices that are supported by the APK file:

[image:]

Figure 95-13

At this point, the app is ready for testing but cannot be rolled out until some testers have been set up within the console.

95.12

 Managing Testers

If the app is still in the Internal, Alpha or Beta testing phase, a list of authorized testers may be specified by selecting the app from within the Google Play console, clicking on App releases
 in the navigation panel, selecting the Manage button for the release type and unfolding the Manage testers
 section of the release screen as shown in Figure 95-14
 :

[image:]

Figure 95-14

The following options are available for app testing:

•
 Internal Testing
 – The app is made available to up to 100 designated internal testers. This is the fastest way to get the app to a small group of known testers.

•
 Closed Testing
 – Testing is only available for designated users identified by email address or membership in Google Groups and Google+ communities.

•
 Open Testing
 – The app is made available to all users within the Google Play Store. Users are provided with a mechanism to provide feedback to you during testing. The total number of testers may also be specified (though the number cannot be less than 1000 users).

To configure testing, use the Choose testing method
 menu to select the type of testing to be performed, click on the Create List
 button and specify the email addresses for the test users either manually or by uploading a CSV file.

The opt-in URL will be displayed when the app has been rolled out for testing. Return to the Review page for the app (App Releases -> Manage -> Edit Release -> Review
) and click on the Start Rollout to Internal Testers
 button.

The URL may now be copied from the manage testers screen (Figure 95-14
 above) and provided to the test users so that they accept the testing invitation and download the app.

95.13

 Uploading Instant App Bundles

The process for uploading Instant App bundle files is similar to that for a standard app. From within the Google Play console, select the app from the dashboard followed by the Android Instant Apps
 option in the navigation panel as shown in Figure 95-15
 :

[image:]

Figure 95-15

Select the option to upload APKs for development, pre-release or testing purposes. If the APKs are to be uploaded for development or pre-release testing, use the Manage testers
 section of the subsequent screen to enter a list of Gmail email addresses for the users that will be testing the app, then click on the Save button followed by the Create Release
 button:

[image:]

Figure 95-16

Return to Android Studio and follow the previous steps to build the Instant App module of the project using release mode and to generate signed versions of the Instant App APK files. When the build is complete, the Instant App APK files will be packaged in a ZIP file within the <module name>/release
 folder of the project directory. This file may be uploaded to the console without first extracting the separate APK files.

95.14

 Uploading New
 App Bundle Revisions

The first app bundle file uploaded for your application will invariably have a version code of 1. If an attempt is made to upload another bundle file with the same version code number, the console will reject the file with the following error:

You need to use a different version code for your APK because you already have

one with version code 1.

To resolve this problem, the version code embedded into the bundle file needs to be increased. This is performed in the module
 level build.gradle
 file of the project, shown highlighted in Figure 95-17
 :

[image:]

Figure 95-17

By default, this file will typically read as follows:

apply plugin: 'com.android.application'

android {

 compileSdkVersion 26

 buildToolsVersion "26.0.2"

 defaultConfig {

 applicationId "com.ebookfrenzy.demoapp"

 minSdkVersion 14

 targetSdkVersion 26

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

 }

 }

}

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'com.android.support:appcompat-v7:26.0.2'

 implementation 'com.android.support.constraint:constraint-layout:1.0.2'

 implementation 'com.google.android.material:material:1.0.0'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation('com.android.support.test.espresso:espresso-core:3.0.1', {

 exclude group: 'com.android.support', module: 'support-annotations'

 })

}

To change the version code, simply change the number declared next to versionCode
 . To also change the version number displayed to users of your application, change the versionName
 string. For example:

versionCode 2

versionName "2.0"

Having made these changes, rebuild the APK file and perform the upload again.

95.15

 Analyzing the App Bundle File

 Android Studio provides the ability to analyze the content of an app bundle file. To analyze a bundle file, select the Android Studio Build -> Analyze APK…
 menu option and navigate to and choose the bundle file to be reviewed. Once loaded into the tool, information will be displayed about the raw and download size of the package together with a listing of the file structure of the package as illustrated in Figure 95-18
 :

[image:]

Figure 95-18

Selecting the classes.dex
 file will display the class structure of the file in the lower panel. Within this panel, details of the individual classes may be explored down to the level of the methods within a class:

[image:]

Figure 95-19

Similarly, selecting a resource or image file within the file list will display the file content within the lower panel. The size differences between two bundle files may be reviewed by clicking on the Compare with previous APK…
 button and selecting a second bundle file.

95.16

 Enabling Google Play Signing for an Existing App

To enable Google Play Signing for an app already registered within the Google Play console, begin by selecting that app from the list of apps in the console dashboard. Once selected, click on the App signing
 link in the left-hand navigation panel as shown in Figure 95-20
 :

[image:]

Figure 95-20

The first step is to click on the button to download the PEPK Tool
 (A) which will be used to encrypt the app signing key for the project. Once downloaded, copy it to the directory containing your existing keystore file and run the following command where (<your app signing key file>
 and <your alias>
 are replaced by the name of your keystore file and the corresponding alias key respectively):

java -jar pepk.jar --keystore=<your app signing key file> --alias=<your alias> --output=encrypted_private_key_path --encryptionkey=<your app signing key>

Enter the keystore and key passwords when prompted, then check that a file named encrypted_private_key_path
 has been generated. This file contains your app signing key encrypted for uploading to the Google Play Store. Return to the Google Play console, click on the App Signing Key
 button (B) and upload the encrypted_private_key_path
 file.

Next, follow the steps outlined earlier in this chapter to generate the upload key and store it in a new keystore file. In a terminal or command-prompt window, change directory to the location of the upload keystore file and run the following command to convert the keystroke into a PEM certificate format file:

keytool -export -rfc -keystore <your upload key file> -alias <your alias> -file upload_certificate.pem

With the file generated, click on the Upload Public Key Certificate
 button (C) in the Google Play console and upload the PEM certificate file.

Finally, enroll the app in Google Play Signing by clicking on the Enroll
 button (D). Once the app is enrolled, the new upload keystore file must be used whenever the signed app bundle file is generated within Android Studio.

95.17

 Summary

Once an app project is either complete, or ready for user testing, it can be uploaded to the Google Play console and published for production, internal, alpha or beta testing. Before the app can be uploaded, an app entry must be created within the console including information about the app together with screenshots to be used within the Play Store. A release Android App Bundle file is then generated and signed with an upload key from within Android Studio. After the bundle file has been uploaded, Google Play removes the upload key and replaces it with the securely stored app signing key and the app is ready to be published.

The content of a bundle file can be reviewed at any time by loading it into the Android Studio APK Analyzer tool.

96.

 An Overview of Gradle in Android Studio

Up until this point it has, for the most part, been taken for granted that Android Studio will take the necessary steps to compile and run the application projects that have been created. Android Studio has been achieving this in the background using a system known as Gradle
 .

It is now time to look at how Gradle is used to compile and package together the various elements of an application project and to begin exploring how to configure this system when more advanced requirements are needed in terms of building projects in Android Studio.

96.1

 An Overview of Gradle

Gradle is an automated build toolkit that allows the way in which projects are built to be configured and managed through a set of build configuration files. This includes defining how a project is to be built, what dependencies need to be fulfilled for the project to build successfully and what the end result (or results) of the build process should be.

The strength of Gradle lies in the flexibility that it provides to the developer. The Gradle system is a self-contained, command-line based environment that can be integrated into other environments through the use of plug-ins. In the case of Android Studio, Gradle integration is provided through the appropriately named Android Studio Plug-in.

Although the Android Studio Plug-in allows Gradle tasks to be initiated and managed from within Android Studio, the Gradle command-line wrapper can still be used to build Android Studio based projects, including on systems on which Android Studio is not installed.

The configuration rules to build a project are declared in Gradle build files and scripts based on the Groovy programming language.

96.2

 Gradle and Android Studio

Gradle brings a number of powerful features to building Android application projects. Some of the key features are as follows:

96.2.1

 Sensible Defaults

Gradle
 implements a concept referred to as convention over configuration
 . This simply means that Gradle has a pre-defined set of sensible default configuration settings that will be used unless they are overridden by settings in the build files. This means that builds can be performed with the minimum of configuration required by the developer. Changes to the build files are only needed when the default configuration does not meet your build needs.

96.2.2

 Dependencies

Another key area of Gradle
 functionality is that of dependencies. Consider, for example, a module within an Android Studio project which triggers an intent to load another module in the project. The first module has, in effect, a dependency on the second module since the application will fail to build if the second module cannot be located and launched at runtime. This dependency can be declared in the Gradle build file for the first module so that the second module is included in the application build, or an error flagged in the event the second module cannot be found or built. Other examples of dependencies are libraries and JAR files on which the project depends in order to compile and run.

Gradle dependencies can be categorized as local
 or remote.
 A local dependency references an item that is present on the local file system of the computer system on which the build is being performed. A remote dependency refers to an item that is present on a remote server (typically referred to as a repository
).

Remote dependencies are handled for Android Studio projects using another project management tool named Maven
 . If a remote dependency is declared in a Gradle build file using Maven syntax then the dependency will be downloaded automatically from the designated repository and included in the build process. The following dependency declaration, for example, causes the AppCompat library to be added to the project from the Google repository:

implementation 'com.android.support:appcompat-v7:26.0.2'

96.2.3

 Build Variants

In addition to dependencies, Gradle also provides build variant
 support for Android Studio projects. This allows multiple variations of an application to be built from a single project. Android runs on many different devices encompassing a range of processor types and screen sizes. In order to target as wide a range of device types and sizes as possible it will often be necessary to build a number of different variants of an application (for example, one with a user interface for phones and another for tablet sized screens). Through the use of Gradle, this is now possible in Android Studio.

96.2.4

 Manifest Entries

Each Android Studio project has associated with it an AndroidManifest.xml
 file containing configuration details about the application. A number of manifest entries can be specified in Gradle build files which are then auto-generated into the manifest file when the project is built. This capability is complementary to the build variants feature, allowing elements such as the application version number, application ID and SDK version information to be configured differently for each build variant.

96.2.5

 APK Signing

The chapter entitled
“Creating, Testing and Uploading an Android App Bundle”

 covered the creation of a signed release APK file using the Android Studio environment. It is also possible to include the signing information entered through the Android Studio user interface within a Gradle build file so that signed APK files can be generated from the command-line.

96.2.6

 ProGuard Support

ProGuard is a tool included with Android Studio that optimizes, shrinks and obfuscates Java byte code to make it more efficient and harder to reverse engineer (the method by which the logic of an application can be identified by others through analysis of the compiled Java byte code). The Gradle build files provide the ability to control whether or not ProGuard is run on your application when it is built.

96.3

 The Top-level Gradle Build File

A completed Android Studio project contains everything needed to build an Android application and consists of modules, libraries, manifest files and Gradle build files.

Each project contains one top-level Gradle build file. This file is listed as build.gradle (Project: <project name>)
 and can be found in the project tool window as highlighted in Figure 96-1
 :

[image:]

Figure 96-1

By default, the contents of the top level Gradle build file reads as follows:

// Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {

 repositories {

 google()

 jcenter()

 }

 dependencies {

 classpath 'com.android.tools.build:gradle:3.2.0'

 // NOTE: Do not place your application dependencies here; they belong

 // in the individual module build.gradle files

 }

}

allprojects {

 repositories {

 google()

 jcenter()

 }

}

task clean(type: Delete) {

 delete rootProject.buildDir

}

As it stands all the file does is declare that remote libraries are to be obtained using the jcenter repository and that builds are dependent on the Android plugin for Gradle. In most situations it is not necessary to make any changes to this build file.

96.4

 Module Level Gradle Build Files

An Android Studio application project is made up of one or more modules. Take, for example, a hypothetical application project named GradleDemo which contains two modules named Module1 and Module2 respectively. In this scenario, each of the modules will require its own Gradle build file. In terms of the project structure, these would be located as follows:

•
 Module1/build.gradle

•
 Module2/build.gradle

By default, the Module1 build.gradle file would resemble that of the following listing:

apply plugin: 'com.android.application'

android {

 compileSdkVersion 28

 defaultConfig {

 applicationId "com.ebookfrenzy.module1"

 minSdkVersion 18

 targetSdkVersion 28

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

 }

 }

}

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'com.android.support:appcompat-v7:26.0.2'

 implementation 'com.android.support.constraint:constraint-layout:1.0.2'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'

 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'

}

As is evident from the file content, the build file begins by declaring the use of the Gradle Android application plug-in:

apply plugin: 'com.android.application'

The android
 section of the file then states the version of the SDK to be used when building Module1.

android {

 compileSdkVersion 28

The items declared in the defaultConfig section define elements that are to be generated into the module’s AndroidManifest.xml
 file during the build. These settings, which may be modified in the build file, are taken from the settings entered within Android Studio when the module was first created:

defaultConfig {

 applicationId "com.ebookfrenzy.module1"

 minSdkVersion 28

 targetSdkVersion 28

 versionCode 1

 versionName "1.0"

}

The buildTypes section contains instructions on whether and how to run ProGuard on the APK file when a release version of the application is built:

buildTypes {

 release {

 runProguard false

 proguardFiles getDefaultProguardFile('proguard-android.txt'),

 'proguard-rules.pro'

 }

}

As currently configured, ProGuard will not be run when Module1 is built. To enable ProGuard, the runProguard
 entry needs to be changed from false
 to true
 . The proguard-rules.pro
 file
 can be found in the module directory of the project. Changes made to this file override the default settings in the proguard-android.txt
 file which is located on the Android SDK installation directory under sdk/tools/proguard
 .

Since no debug buildType is declared in this file, the defaults will be used (built without ProGuard, signed with a debug key and with debug symbols enabled).

An additional section, entitled productFlavors
 may also be included in the module build file to enable multiple build variants to be created.

Finally, the dependencies section lists any local and remote dependencies on which the module is dependent. The first dependency reads as follows:

implementation fileTree(dir: 'libs', include: ['*.jar'])

This is a standard line that tells the Gradle system that any JAR file located in the module’s lib sub-directory is to be included in the project build. If, for example, a JAR file named myclasses.jar was present in the GradleDemo/Module1/lib folder of the project, that JAR file would be treated as a module dependency and included in the build process.

The last dependency lines in the above example file designate the Android libraries that need to be included from the Android Repository:

implementation 'com.android.support:appcompat-v7:26.0.2'

implementation 'com.android.support.constraint:constraint-layout:1.0.2'

Note that the dependency declaration can include version numbers to indicate which version of the library should be included.

96.5

 Configuring Signing Settings in the Build File

 The
“Creating, Testing and Uploading an Android App Bundle”

 chapter of this book covered the steps involved in setting up keys and generating a signed release APK file using the Android Studio user interface. These settings may also be declared within a signingSettings
 section of the build.gradle file. For example:

apply plugin: 'com.android.application'

android {

 compileSdkVersion 28

 defaultConfig {

 applicationId "com.ebookfrenzy.gradledemo.module1"

 minSdkVersion 28

 targetSdkVersion 28

 versionCode 1

 versionName "1.0"

 }

 signingConfigs {

 release {

 storeFile file("keystore.release")

 storePassword "your keystore password here"

 keyAlias "your key alias here"

 keyPassword "your key password here"

 }

 }

 buildTypes {

.

.

.

}

The above example embeds the key password information directly into the build file. An alternative to this approach is to extract these values from system environment variables:

signingConfigs {

 release {

 storeFile file("keystore.release")

 storePassword System.getenv("KEYSTOREPASSWD")

 keyAlias "your key alias here"

 keyPassword System.getenv("KEYPASSWD")

 }

}

Yet another approach is to configure the build file so that Gradle prompts for the passwords to be entered during the build process:

signingConfigs {

 release {

 storeFile file("keystore.release")

 storePassword System.console().readLine

 ("\nEnter Keystore password: ")

 keyAlias "your key alias here"

 keyPassword System.console().readLIne("\nEnter Key password: ")

 }

}

96.6

 Running Gradle
 Tasks from the Command-line

Each Android Studio project contains a Gradle wrapper tool for the purpose of allowing Gradle tasks to be invoked from the command line. This tool is located in the root directory of each project folder. While this wrapper is executable on Windows systems, it needs to have execute permission enabled on Linux and macOS before it can be used. To enable execute permission, open a terminal window, change directory to the project folder for which the wrapper is needed and execute the following command:

chmod +x gradlew

Once the file has execute permissions, the location of the file will either need to be added to your $PATH environment variable, or the name prefixed by ./ in order to run. For example:

./gradlew tasks

Gradle views project building in terms of a number of different tasks. A full listing of tasks that are available for the current project can be obtained by running the following command from within the project directory (remembering to prefix the command with a ./ if running on macOS or Linux):

gradlew tasks

To build a debug release of the project suitable for device or emulator testing, use the assembleDebug option:

gradlew assembleDebug

Alternatively, to build a release version of the application:

gradlew assembleRelease

96.7

 Summary

For the most part, Android Studio performs application builds in the background without any intervention from the developer. This build process is handled using the Gradle system, an automated build toolkit designed to allow the ways in which projects are built to be configured and managed through a set of build configuration files. While the default behavior of Gradle is adequate for many basic project build requirements, the need to configure the build process is inevitable with more complex projects. This chapter has provided an overview of the Gradle build system and configuration files within the context of an Android Studio project.

 Index

Symbols

?. 83

<application> 489

<changeBounds> 362

<fade> 362

<fragment> 265

<fragment> element 265

<menu> 349

<receiver> 474

<service> 489
 , 502
 , 509

<transitionSet> 362

<uses-permission> 454

Code Reformatting 63

@layout/toolbar_fragment 276

.well-known folder 693

A

AbsoluteLayout 154

accelerate_decelerate_interpolator 364

accelerateDecelerateInterpolator 365

AccelerateDecelerateInterpolator 360

AccelerateDecelerateInterpolator() method 364

accelerate_interpolator 364

accelerateInterpolator 365

AccelerateInterpolator 360

AccelerateInterpolator() method 364

ACCESS_COARSE_LOCATION permission 630

ACCESS_FINE_LOCATION permission 630

ActionBarDrawerToggle 435
 , 436

ACTION_CREATE_DOCUMENT 595

ACTION_CREATE_INTENT 595

ACTION_DOWN 242

ACTION_MOVE 242

ACTION_OPEN_DOCUMENT 589

ACTION_OPEN_DOCUMENT intent 588

ACTION_POINTER_DOWN 242

ACTION_POINTER_UP 242

ACTION_UP 242

ACTION_VIEW 469

Active / Running state 128

Activity 69
 , 131

adding to a project 203

adding views in Java code 223

class 131

creation 13

Entire Lifetime 135

Foreground Lifetime 135

lifecycle methods 134

lifecycles 125

returning data from 452

state change example 139

state changes 131

states 128

Visible Lifetime 135

ActivityCompat class 635

Activity Lifecycle 127

Activity Manager 68

Activity Stack 127

Actual screen pixels 214

adb

command-line tool 49

list devices 49

restart server 50

ADB

enabling on Android devices 49

Linux configuration 52

macOS configuration 50

overview 49

testing connection 52

Windows configuration 51

addCategory() method 473

addMarker() method 656

addView() method 218

ADD_VOICEMAIL permission 630

Advanced Profiling 723

android

checkableBehavior 351

commandline tool 30

exported 489

gestureColor 258

layout_behavior property 429

onClick 267

orderInCategory 350

process 509

transitionOrdering 363

uncertainGestureColor 258

android\

onClick Resource 235

process 490

Android

Activity 69

architecture 65

events 235

intents 70

runtime 66

SDK Packages 6

android.app 66

Android Architecture Components 283

android.content 66

android.content.Intent 451

android.database 66

Android Debug Bridge. See
 ADB

Android Design Support Library 381

Android Development

System Requirements 3

Android Devices

designing for different 153

android.graphics 66

android.hardware 66

android.intent.action 479

android.intent.action.BOOT_COMPLETED 490

android.intent.action.MAIN 469

android.intent.category.LAUNCHER 469

Android Libraries 66

AndroidManifest.xml file 204

android.media 67

Android Monitor tool window 30
 , 144

Android Native Development Kit 67

android.net 67

android.opengl 67

android.os 67

android.permission.RECORD_AUDIO 639

android.print 67

Android Profiler 723

Android Project

create new 11

android.provider 67

Android SDK Location

identifying 8

Android SDK Manager 6
 , 7
 , 9

Android SDK Packages

version requirements 7

Android SDK Tools

command-line access 8

Linux 10

macOS 10

Windows 7 8

Windows 8 9

Android Software Stack 65

Android Storage Access Framework 588

Android Studio

changing theme 47

downloading 3

Editor Window 42

installation 3

Linux installation 5

macOS installation 4

Main Window 42

Menu Bar 42

Navigation Bar 42

Project tool window 43

setup wizard 5

Status Bar 43

Toolbar 42

updating 10

Welcome Screen 41

Windows installation 4

android.text 67

Android tool window 45

android.util 67

android.view 67

android.view.View 156

android.view.ViewGroup 153
 , 156

Android Virtual Device. See
 AVD

overview 25

Android Virtual Device Manager 25

android.webkit 67

android.widget 67

Animation framework 360

anticipate_interpolator 364

anticipateInterpolator 365

AnticipateInterpolator 360

AnticipateInterpolator() method 364

anticipate_overshoot_interpolator 364

anticipateOvershootInterpolator 365

AnticipateOvershootInterpolator 360

AnticipateOvershootInterpolator() method 364

APK analyzer 754

APK file 746

APK File

analyzing 754

APK Signing 758

APK Wizard dialog 744

app

showAsAction 350

App Architecture

modern 283

AppBar

anatomy of 427

appbar_scrolling_view_behavior 429

App Bundles 741

creating 746

overview 741

revisions 753

uploading 748

AppCompatActivity class 132

Application

stopping 30

Application APK Module 718

Application Context 71

Application Framework 67

Application Manifest 71

Application Plugin 708

Application Resources 71

App Link

Adding Intent Filter 700

Assistant 695

Digital Assets Link file 693

Intent Filter Handling 700

Intent Filters 691

Intent Handling 692

Testing 703

tutorial 695

URL Mapping 697

website association 704

App Link Assistant 695

App Links 691

overview 691

app module 708

Architecture Components 283

ART 66

as 85

as? 85

assetlinks.json 693

AsyncTask

doInBackground() method 484

example 481

onPostExecute() method 484

onPreExecute() method 484

onProgressUpdate() method 484

publishProgress() method 484

subclassing 483

thread pool executor 486

Audio

supported formats 637

Audio Recording 637

Audo Playback 637

Autoconnect Mode 180

AutoTransition class 359
 , 361

AVD

command-line creation 26
 , 30

configuration files 32

creation 26

overview 25

renaming 32

running an application 27

starting 27

Startup size and orientation 27

B

Background Process 126

Barriers 174

adding 191

constrained views 174

Base Feature Module 717

Baseline Alignment 173

beginDelayedTransition

tutorial 367

beginDelayedTransition() method 359
 , 366

beginTransaction() method 266

Binding Expressions 305

one-way 305

two-way 306

bindService() method 488
 , 499
 , 503

Biometric Authentication 733

callbacks 737

overview 733

tutorial 733

Biometric Prompt 738

BitmapFactory 590

Bitwise AND 91

Bitwise Inversion 91

Bitwise Left Shift 92

Bitwise OR 91

Bitwise Right Shift 92

Bitwise XOR 92

black activity 13

Blank template 157

Blueprint view 179

BODY_SENSORS permission 630

Boolean 78

Bottom Up 727

bounce_interpolator 364

bounceInterpolator 365

BounceInterpolator 360

BounceInterpolator() method 364

Bound Service 487
 , 488
 , 499

adding to a project 500

Implementing the Binder 500

Interaction options 499

BoundService class 501

Broadcast Intent 473

example 476

overview 70
 , 473

sending 476

Sticky 475

Broadcast Receiver 473

adding to manifest file 478

creation 477

overview 70
 , 474

BroadcastReceiver class 474

BroadcastReceiver superclass 477

BufferedReader object 602

Build Variants 758

Build Variants tool window 45

Bundle class 148

Bundled Notifications 522

C

Calendar permissions 630

Call Chart 728

CALL_PHONE permission 630

Camera Intents 623

CAMERA permission 630

Camera permissions 630

Camera Support

checking for 623

CameraUpdateFactory class

methods 658

CancellationSignal 738

Canvas class 686

Captures tool window 45

CardView

adding library to project 406

example 409

layout file 406

responding to selection of 415

CardView class 405

CATEGORY_OPENABLE 588

C/C++ Libraries 67

Chain bias 199

chain head 172

chains 172

Chains

creation of 195

Chain style

changing 197

chain styles 172

changeBounds transition 370

Char 78

CharSequence 149

CheckBox 153

checkSelfPermission() method 634

Circle class 647

Code completion 58

Code Editor

basics 55

Code completion 58

Code Generation 60

Code Reformatting 63

Document Tabs 56

Editing area 56

Gutter Area 56

Splitting 57

Statement Completion 59

Status Bar 56

Code Generation 60

code samples

download 1

Cold Swapping 231

CollapsingToolbarLayout

example 431

introduction 430

parallax mode 430

pin mode 430

setting scrim color 433

setting title 433

with image 430

Color class 688

COLOR_MODE_COLOR 664
 , 682

COLOR_MODE_MONOCHROME 665
 , 682

Common Gestures 247

detection 247

Companion Objects 115

Component tree 16

Constraint Bias 171

adjusting 184

ConstraintLayout

advantages of 176

Availability 176

Barriers 174

Baseline Alignment 173

chain bias 199

chain head 172

chains 172

chain styles 172

Constraint Bias 171

Constraints 169

conversion to 194

deleting constraints 183

guidelines 189

Guidelines 174

manual constraint manipulation 181

Margins 170
 , 184

Opposing Constraints 170
 , 186

overview of 169

Packed chain 173
 , 198

ratios 176
 , 200

Spread chain 172

Spread inside 198

Spread inside chain 172

tutorial 203

using in Android Studio 179

Weighted chain 173
 , 199

Widget Dimensions 174
 , 188

Widget Group Alignment 192

ConstraintLayout chains

creation of 195

in layout editor 195

ConstraintLayout Chain style

changing 197

Constraints

deleting 183

ConstraintSet

addToHorizontalChain() method 220

addToVerticalChain() method 220

alignment constraints 219

apply to layout 218

applyTo() method 218

centerHorizontally() method 219

centerVertically() method 219

chains 219

clear() method 220

clone() method 219

connect() method 218

connect to parent 218

constraint bias 219

copying constraints 219

create 218

create connection 218

createHorizontalChain() method 219

createVerticalChain() method 219

guidelines 220

removeFromHorizontalChain() method 220

removeFromVerticalChain() method 220

removing constraints 220

rotation 221

scaling 220

setGuidelineBegin() method 220

setGuidelineEnd() method 220

setGuidelinePercent() method 220

setHorizonalBias() method 219

setRotationX() method 221

setRotationY() method 221

setScaleX() method 220

setScaleY() method 220

setTransformPivot() method 221

setTransformPivotX() method 221

setTransformPivotY() method 221

setVerticalBias() method 219

sizing constraints 219

tutorial 223

view IDs 225

ConstraintSet class 217
 , 218

ConstraintSet.PARENT_ID 218

Constraint Sets 218

Contacts permissions 630

container view 153

content layout 15

Content Provider 68

overview 71

Context class 71

CoordinatorLayout 154
 , 427
 , 429

CPU Profiler 726

createPrintDocumentAdapter() method 677

Custom Accessors 113

Custom Document Printing 667
 , 677

Custom Gesture

recognition 253

Custom Interpolator 365

Custom Print Adapter

implementation 679

Custom Print Adapters 677

cycle_interpolator 364

cycleInterpolator 365

CycleInterpolator 360

CycleInterpolator() method 364

D

dangerous permissions 629

list of 630

Data Access Object (DAO) 558

Database Rows 552

Database Schema 551

Database Tables 551

Data binding

binding expressions 305

Data Binding 285

binding classes 304

enabling 310

event and listener binding 306

key components 301

overview 301

tutorial 309

variables 304

with LiveData 285

DDMS 30

Debugging

enabling on device 49

decelerate_interpolator 364

decelerateInterpolator 366

DecelerateInterpolator 360

DecelerateInterpolator() method 364

Default Function Parameters 105

Density-independent pixels 213

Density Independent Pixels

converting to pixels 228

Developer Signature 648

Device Definition

custom 166

Digital Asset Link file 705

Digital Assets Link file 693

Direct Reply Input 533

Direct Reply Notification 527

document provider 587

dp 213

DrawerLayout 435

opening and closing 436

Dynamic State 133

saving 147

E

Elvis Operator 84

Empty Process 127

Empty template 157

Emulator

battery simulation 36

cellular configuration 36

configuring fingerprints 39

creation 26

directional pad 36

drag and drop 38

extended control options 35

Extended controls 35

fingerprint 36

Google Play 37

location configuration 35

phone settings 36

resize 35

rotate 34

Screen Record 36

Snapshots 36

starting 27

take screenshot 34

toolbar 33

toolbar options 33

Virtual Sensors 36

zoom 34

enabling ADB support 49

Energy Profiler 732

Environment class 642

Escape Sequences 79

Event Handling 235

example 236

Event Listener 238

Event Listeners 236

Event Log tool window 46

Events

consuming 239

explicit

intent 70

explicit intent 451

Explicit Intent 451

Extended Control

options 35

F

Favorites tool window 45

Feature Modules 707

Feature Plugin 708

Files

switching between 56

findPointerIndex() method 242

Fingerprint

emulation 39

Fingerprint authentication

device configuration 734

permission 734

steps to implement 733

Fingerprint Authentication

overview 733

tutorial 733

FLAG_INCLUDE_STOPPED_PACKAGES 473

Flame Chart 728

flexible space area 427

Float 78

floating action button 13
 , 15
 , 158
 , 381
 , 386

changing appearance of 384

margins 382

overview of 381

removing 158

sizes 382

Foreground Process 126

form factors 12

Forward-geocoding 650

Fragment

creation 263

event handling 267

XML file 263
 , 264

FragmentActivity class 132

Fragment Communication 267

FragmentPagerAdapter class 396

Fragments 263

adding in code 266

duplicating 393

example 271

overview 263

FrameLayout 154

Freeform 537

Function Parameters

variable number of 105

Functions 103

G

Geocoder class 650

Geocoder object 651

Geocoding 650

Gesture Builder Application 253

building and running 254

Gesture Detector class 247

GestureDetectorCompat 250

instance creation 250

GestureDetectorCompat class 247

GestureDetector.OnDoubleTapListener 247
 , 248

GestureDetector.OnGestureListener 248

GestureLibrary 253

GestureLibrary class 253

GestureOverlayView 253

configuring color 258

configuring multiple strokes 258

GestureOverlayView class 253

GesturePerformedListener 253

Gestures

interception of 259

Gestures File

creation 254

extract from SD card 255

loading into application 256

GET_ACCOUNTS permission 630

getAction() method 479

getExternalStorageDirectory() method 642

getFromLocation() method 651

getId() method 218

getIntent() method 452

getItemId() method 351

getPointerCount() method 242

getPointerId() method 242

getSceneForLayout() method 361
 , 376

getService() method 503

GNU/Linux 66

go() method 361

Google Cloud Print 662

Google Drive 588

printing to 662

GoogleMap 647

map types 654

GoogleMap.MAP_TYPE_HYBRID 654

GoogleMap.MAP_TYPE_NONE 654

GoogleMap.MAP_TYPE_NORMAL 654

GoogleMap.MAP_TYPE_SATELLITE 654

GoogleMap.MAP_TYPE_TERRAIN 654

Google Maps 647

Google Maps Android API 647

Controlling the Map Camera 657

developer signature 648

displaying controls 655

gesture handling 655

Map Markers 656

overview 647

Google Play Developer Console 742

Gradle

APK signing settings 762

Build Variants 758

command line tasks 763

dependencies 757

Manifest Entries 758

overview 757

sensible defaults 757

Gradle Build File

top level 758

Gradle Build Files

module level 760

Gradle tool window 46

GridLayout 154

GridLayoutManager 403

H

Handler class 508

Higher-order Functions 107

Hot Swapping 231

HP Print Services Plugin 661

HTML printing 665

HTML Printing

example 669

I

IBinder 488
 , 501

IBinder object 499
 , 507
 , 508

Image Capture 623

Image Capture Intent 624

Image Printing 664

Immutable Variables 80

implicit

intent 70

implicit intent 451

Implicit Intent 453

Implicit Intents

example 465

in 213

Initializer Blocks 113

In-Memory Database 564

Inner Classes 114

Installable App 713

Instant App

APK files 715

Application APK Module 718

Base Feature Module 717

feature modules 707

project structure 708

testing 714
 , 721

tutorial 711

instant app module 708

Instant App Module

adding to project 720

Instant Apps 707

installing SDK 710

overview 707

Instant Run

Cold Swapping 231

enabling and disabling 232

Hot Swapping 231

swapping levels 231

tutorial 233

Warm Swapping 231

Instants App

converting to 717

IntelliJ IDEA 73

Intent 70

explicit 70

implicit 70

Intent Availability

checking for 455

Intent.CATEGORY_OPENABLE 595

intent filters 451

Intent Filters 454

App Link 691

intent resolution 454

Intents 451

overview 451

Intent Service 487

IntentService 494

IntentService class 487
 , 490
 , 491

Intent URL 468

Internet Permission 606

Interpolator

custom 365

interpolatorElement 365

Interpolators

transition 360

transitions 364

is 85

J

Java

convert to Kotlin 73

Java Native Interface 67

JetBrains 73

Jetpack 283

overview 283

K

Keyboard Shortcuts 46

Keystore File

creation 744

Killed state 128

Kotlin

accessing class properties 113

and Java 73

arithmetic operators 87

assignment operator 87

augmented assigment operators 88

bitwise operators 90

Boolean 78

break 98

breaking from loops 97

calling class methods 113

Char 78

class declaration 109

class initialization 110

class properties 110

Companion Objects 115

conditional flow control 99

continue labels 98

continue statement 98

convert from Java 73

Custom Accessors 113

data types 77

decrement operator 88

Default Function Parameters 105

defining class methods 110

do ... while loop 97

Elvis Operator 84

equality operators 89

Escape Sequences 79

expression syntax 87

Float 78

flow control 95

for-in statement 95

function calling 104

Functions 103

Higher-order Functions 107

if ... else ... expressions 100

if expressions 99

Immutable Variables 80

increment operator 88

inheritance 119

Initializer Blocks 113

Inner Classes 114

introduction 73

Lambda Expressions 106

let Function 83

Local Functions 104

logical operators 89

looping 95

Mutable Variables 80

Not-Null Assertion 83

Nullable Type 82

Overriding inherited methods 122

playground 74

Primary Constructor 110

properties 113

range operator 90

Safe Call Operator 82

Secondary Constructors 110

Single Expression Functions 104

String 78

subclassing 119

Type Annotations 81

Type Casting 85

Type Checking 85

Type Inference 81

variable parameters 105

when statement 100

while loop 96

L

Lambda Expressions 106

launcher activity 204

layout_collapseMode

parallax 432

pin 432

layout_constraintDimentionRatio 200

layout_constraintHorizontal_bias 199

layout_constraintVertical_bias 199

layout editor

ConstraintLayout chains 195

Layout Editor 15
 , 203

Autoconnect Mode 180

Component Tree 160

design mode 21
 , 159

device screen 160

example project 203

Inference Mode 181

palette 160

properties panel 160

Sample Data 165

Setting Properties 162

text mode 21
 , 161

toolbar 160

user interface design 205

view conversion 165

Layout Editor Tool

changing orientation 16

overview 159

Layout Managers 153

LayoutResultCallback object 683

Layouts 153

layout_scrollFlags

enterAlwaysCollapsed mode 429

enterAlways mode 429

exitUntilCollapsed mode 429

scroll mode 429

let Function 83

libc 67

Lifecycle

awareness 317

components 286

observers 318

owners 317

states and events 318

tutorial 321

Lifecycle-Aware Components 317

Lifecycle Methods 134

Lifecycle Observer 321

creating a 321

Lifecycle Owner

creating a 324

Lifecycles

modern 286

linear_interpolator 365

linearInterpolator 366

LinearInterpolator 360

LinearInterpolator() method 364

LinearLayout 154

LinearLayoutManager 403

LinearLayoutManager layout 414

Linux Kernel 66

list devices 49

ListView

adaptor 386

adding items 386

example 386

LiveData 284
 , 297

adding to ViewModel 297

observer 299

tutorial 297

Local Bound Service 499

example 499

Local Functions 104

Location Manager 68

Location permission 630

LogCat

enabling 144

filter configuration 144

M

Main Thread 481

Manifest File

permissions 469

Maps 647

MapView 647

adding to a layout 651

Marker class 647

Master/Detail Flow

anatomy of 444

creation 442

Object Kind 443
 , 444

two pane mode 441

match_parent properties 213

Material design 381

MediaController

adding to VideoView instance 607

MediaController class 604

methods 604

MediaPlayer class 637

methods 637

MediaRecorder class 637

methods 638

recording audio 638

MediaStore.ACTION_IMAGE_CAPTURE 624

MediaStore.ACTION_VIDEO_CAPTURE 623

Memory Profiler 729

Menu Editor 352

Menu Item Selections 351

Menus 349

menu editor 352

Messages tool window 45

Messenger object 508

Microphone

checking for availability 640

Microphone permissions 630

mm 213

MotionEvent 241
 , 242
 , 261

getActionMasked() 242

moveCamera() method 658

Multiple Touches

handling 242

Multi-Touch

example 243

Multi-touch Event Handling 241

Multi-Window 537

attributes 540

Multi-Window Mode

detecting 541

entering 538

launching activity into 542

tutorial 545

Multi-Window Notifications 541

Multi-Window Support

enabling 540

Mutable Variables 80

My Location Layer 648

N

Navigation 327

adding destinations 338

overview 327

pass data with safeargs 344

passing arguments 332

safeargs 332

stack 328

tutorial 335

Navigation Action

triggering 332

Navigation Architecture Component 327

Navigation Component

tutorial 335

Navigation Controller

accessing 331

Navigation Drawer

adding to layout file 436

header coloring 439

indicator 440

menu resource file 439

overview 435

Navigation Drawer Activity 438

Navigation Graph 330
 , 335

adding actions 342

creating a 335

Navigation Host 329

declaring 337

NavigationView 435

responding to selections 437

Network Profiler 730

non-thread-safe code 481

normal permissions 629

Notification

adding actions 522

direct reply 527

Direct Reply Input 533

issuing a basic 518

launch activity from a 520

PendingIntent 529

Reply Action 530

updating direct reply 534

Notifications 513

bundled 522

overview 513

Notifications Manager 68

Not-Null Assertion 83

Nullable Type 82

O

Observer

implementing a LiveData 299

onActivityResult() method 453
 , 463
 , 594
 , 596

onAttach() method 268

onBind() method 488
 , 494
 , 499
 , 507

onBindViewHolder() method 413

onClickListener 236
 , 238
 , 240

onClick() method 235

onCreateContextMenuListener 236

onCreate() method 126
 , 134
 , 488

onCreateOptionsMenu() method 350

onDestroy() method 134
 , 488

onDoubleTap() method 247

onDown() method 247

onFling() method 247

onFocusChangeListener 236

OnFragmentInteractionListener

implementation 343

onGesturePerformed() method 253

onHandleIntent() method 487
 , 488
 , 492

onKeyListener 236

onLayoutFailed() method 683

onLayoutFinished() method 683

onLongClickListener 236
 , 239

onLongPress() method 247

onMapReady() method 653

onNavigationItemSelected() method 437

onOptionsItemSelected() method 351

onOptionsItemsSelected() method 356

onPageFinished() callback 670

onPause() method 134

onReceive() method 126
 , 474
 , 475
 , 477

onRequestPermissionsResult() method 633
 , 645

onRestart() method 134

onRestoreInstanceState() method 135

onResume() method 126
 , 134

onSaveInstanceState() method 135

onScaleBegin() method 259

onScaleEnd() method 259

onScale() method 259

onScroll() method 247

OnSeekBarChangeListener 279

onServiceConnected() method 499
 , 502
 , 509

onServiceDisconnected() method 499
 , 502
 , 509

onShowPress() method 247

onSingleTapUp() method 247

onStartCommand() method 488
 , 494
 , 496

onStart() method 134

onStop() method 134

onTabSelectedListener 398

onTouchEvent() method 247
 , 259

onTouchListener 236
 , 241

onTouch() method 241
 , 242

openFileDescriptor() method 588
 , 589

Overflow Menu 349

creation 349

displaying 350

overview 349

XML file 349

Overflow Menus

Checkable Item Groups 351

overshoot_interpolator 365

overshootInterpolator 366

OvershootInterpolator 360

OvershootInterpolator() method 364

P

Package Explorer 14

Package Manager 68

PackageManager class 640

PackageManager.FEATURE_CAMERA_FRONT 623

PackageManager.FEATURE_MICROPHONE 640

PackageManager.hasSystemFeature() 623

PackageManager.PERMISSION_DENIED 631

PackageManager.PERMISSION_GRANTED 631

Package Name 12

Packed chain 173
 , 198

PageRange 684
 , 686

Paint class 688

parent view 155

Paused state 128

PdfDocument 667

PdfDocument.Page 677
 , 684

PendingIntent class 529

Permission

checking for 631

permissions

dangerous 629

normal 629

Persistent State 133

Phone permissions 630

picker 587

Picture-in-Picture 537

Pinch Gesture

detection 259

example 259

Pinch Gesture Recognition 253

Polygon class 647

Polyline class 647

Primary Constructor 110

PrintAttributes 682

PrintDocumentAdapter 667
 , 677

PrintDocumentInfo 682

Printing

color 664

monochrome 665

Printing framework

architecture 661

Printing Framework 661

Print Job

starting 688

Print Manager 661

PrintManager service 671

PROCESS_OUTGOING_CALLS permission 630

Process States 125

Profiler 723

Bottom Up 727

Call Chart 728

CPU Profiler 726

enable advanced profiling 723

Energy Profiler 732

Flame Chart 728

Instrumented 726

Memory 729

Network 730

Sampled 726

Sessions Panel 725

Top Down 727

ProgressBar 153

ProGuard

enabling 744

proguard-rules.pro file 761

ProGuard Support 758

Project Name 12

Project tool window 14
 , 45

Property Tool Window

favorite attributes 164

pt 213

putExtra() method 451
 , 473

px 214

Q

Quick Documentation 62

R

RadioButton 153

Range Operator 90

ratios 200

READ_CALENDAR permission 630

READ_CALL_LOG permission 630

READ_CONTACTS permission 630

READ_EXTERNAL_STORAGE permission 631

READ_PHONE_STATE permission 630

READ_SMS permission 630

RECEIVE_MMS permission 630

RECEIVE_SMS permission 630

RECEIVE_WAP_PUSH permission 630

Recent Files Navigation 46

RECORD_AUDIO permission 630

Recording Audio

permission 639

RecyclerView 403

adding library to project 406

adding to layout file 404

example 409

GridLayoutManager 403

initializing 414

LinearLayoutManager 403

StaggeredGridLayoutManager 404

RecyclerView Adapter

creation of 411

RecyclerView.Adapter 404
 , 411

getItemCount() method 404

onBindViewHolder() method 404

onCreateViewHolder() method 404

RecyclerView.ViewHolder

getAdapterPosition() method 416

registerReceiver() method 475

RelativeLayout 154

release mode 741

releasePersistableUriPermission() method 591

Release Preparation 741

Remote Bound Service 507

client communication 507

implementation 508

manifest file declaration 509

RemoteInput.Builder() method 529

RemoteInput Object 529

Remote Service

launching and binding 509

sending a message 511

Repository

tutorial 573

Repository Modules 286

requestPermissions() method 633

Resource

string creation 19

Resource File 21

Resource Management 125

Resource Manager 68

result receiver 475

Reverse-geocoding 650

Reverse Geocoding 650

Room

Data Access Object (DAO) 558

entities 558
 , 559

In-Memory Database 564

Repository 558

Room Database 558

tutorial 573

Room Database Persistence 557

Room Persistence Library 555
 , 557

root element 153

root view 155

Run/Debug Configurations 29

Run/Debug Configurations dialog 29

Runtime Permission Requests 629

Run tool window 45

S

safeargs 332
 , 344

Safe Call Operator 82

Sample Data 165
 , 419

tutorial 419

ScaleGestureDetector class 259

Scale-independent 214

Scenes

transition 359

Scene Transitions 360

tutorial 373

SD Card storage 639

SDK Manager 41

SDK Packages 6

SDK Settings 6

Secondary Constructors 110

Secure Sockets Layer (SSL) 67

SeekBar 271

sendBroadcast() method 473
 , 475

sendOrderedBroadcast() method 473
 , 475

SEND_SMS permission 630

sendStickyBroadcast() method 473

Sensor permissions 630

Service

anatomy 488

launch at system start 490

manifest file entry 489

overview 70

run in separate process 490

starting 493

ServiceConnection class 509

Service Process 126

Service Restart Options 489

Service Tasks

in new thread 497

setAudioEncoder() method 638

setAudioSource() method 638

setBackgroundColor() 218

setCompassEnabled() method 655

setContentView() method 217
 , 223

setId() method 218

setInterpolator() method 364

setMyLocationButtonEnabled() method 655

setNavigationItemSelectedListener() method 437

setOnClickListener() method 235
 , 238

setOnDoubleTapListener() method 247
 , 250

setOutputFile() method 638

setOutputFormat() method 638

setResult() method 453

setText() method 150

setVideoSource() method 638

shouldOverrideUrlLoading() method 670

shouldShowRequestPermissionRationale() method 635

SimpleOnScaleGestureListener 259

SimpleOnScaleGestureListener class 261

SMS permissions 630

Snackbar 381
 , 382
 , 383

adding an action item 389

overview of 382

Snapshots

emulator 37

sp 214

Space class 154

Split-Screen 537

Spread chain 172

Spread inside 198

Spread inside chain 172

SQL 552

SQLite 551

AVD command-line use 553

Columns and Data Types 551

overview 552

Primary keys 552

StaggeredGridLayoutManager 404

startActivityForResult() method 452
 , 462

startActivity() method 451

Started Service 487

example 491

startForeground() method 126

START_NOT_STICKY 489

START_REDELIVER_INTENT 489

startService() method 487
 , 493

START_STICKY 489

State

restoring 150

State Change

handling 129

Statement Completion 59

status bar 427

Sticky Broadcast Intents 475

Stopped state 128

stopSelf() method 487

stopService() method 487

Storage Access Framework 587

ACTION_CREATE_DOCUMENT 588

ACTION_OPEN_DOCUMENT 588

deleting a file 591

example 593

file creation 595

file filtering 588

file reading 590

file writing 590

intents 588

MIME Types 589

Persistent Access 591

picker 587

Storage permissions 631

String 78

StringBuilder object 602

strings.xml file 22

Structured Query Language 552

Structure tool window 45

SupportMapFragment class 647

Switcher 46

syncTask 481

System Broadcasts 479

system requirements 3

T

tab bar 427

TabLayout 391

adding to layout 394

addTab() method 400

app

tabGravity property 400

tabMode property 400

example 392

fixed mode 399

getCount() method 391

getItem() method 391

onTabSelectedListener 398

overview 391

scrollable mode 399

setIcon() method 400

setting tab icons 400

TableLayout 154
 , 565

TableRow 565

Target Device 30

Telephony Manager 68

Templates

blank vs. empty 157

Terminal tool window 45

Terminate Application 30

Thread Handlers 481

Threads 481

creating 483

overview 481

TODO tool window 45

toolbar 427

ToolbarListener 267
 , 268

tools

layout 265

tool window bars 43

Tool Windows 43

Top Down 727

Touch Actions 242

Touch Event Listener

implementation 244

Touch Events

intercepting 241

Touch handling 241

Transition class 364

Transition File

creating a 377

TransitionManager 369

TransitionManager class 359
 , 361
 , 362

Transitions

custom 362

interpolators 360

Root Container 373

Transition Scene

entering 375

loading 376

TransitionSet 359
 , 362

using 377

TransitionSets

in code 362

in XML 362

Transitions Framework 359

Type Annotations 81

Type Casting 85

Type Checking 85

Type Inference 81

U

UiSettings class 647

unbindService() method 488

unregisterReceiver() method 475

URL Mapping 697

USB debugging

enabling 50

USE_BIOMETRIC 734

user interface state 133

USE_SIP permission 630

V

Video Capture Intent 623

launching 626

Video Playback 603

Video Recording 623

VideoView class 603

methods 603

supported formats 603

View class

setting properties 224

view conversion 165

ViewGroup 153

View Groups 153

View Hierarchy 155

ViewHolder class 404

sample implementation 412

ViewModel

adding LiveData 297

data access 295

fragment association 294

overview 284

tutorial 289

ViewPager 391
 , 395

adapter 395

adding to layout 394

example 392

Views 153

Java creation 217

View System 68

Virtual Device Configuration dialog 26

Virtual Sensors 36

Visible Process 126

W

Warm Swapping 231

WebViewClient 665
 , 670

WebView view 467

Weighted chain 173
 , 199

while Loop 96

Widget Dimensions 174

Widget Group Alignment 192

Widgets palette 205

wrap_content properties 216

WRITE_CALENDAR permission 630

WRITE_CALL_LOG permission 630

WRITE_CONTACTS permission 630

WRITE_EXTERNAL_STORAGE permission 631

X

XML Layout File

manual creation 213

vs. Java Code 217

OEBPS/Image00004.jpg
Name API Level | Revision Status

Android TV Intel x86 Atom System Image 25 6 Not installed
Android Wear for China ARM EABI v7a System Image 25 3 Not installed
Android Wear for China Intel x86 Atom System Image 25 3 Not installed
Android Wear ARM EABI v7a System Image 25 3 Not installed
Android Wear Intel x86 Atom System Image 25 3 Not installed
Google APIs ARM 64 v8a System Image 25 8 Not installed
Google APIs ARM EABI v7a System Image 25 8 Not installed
Google APIs Intel x86 Atom System Image 25 8 ot in ad
B Google APIs Intel x86 Atom_64 System Image 25 6

Android 7.0 (Nougat)
Google APIs 24 1 Not installed

OEBPS/Image00125.jpg
Button

Button

Button

OEBPS/Image00246.jpg
Arguments +

OEBPS/Image00368.jpg
100x10

1,000

OEBPS/Image00489.jpg
00 ® Generate Signed Bundle or APK
© Android App Bundle
Generate a signed app bundle for upload to app stores for the following benefits:
® Smaller download size

® On-demand app features
® Asset-only modules

Learn more

APK

Build a signed APK that you can deploy to a device

? Cancel m

OEBPS/Image00003.jpg
e o
Q
Appearance & Behavior
Appearance
Menus and Toolbars
System Settings
Passwords
HTTP Proxy
Updates
Usage Statistics

Android SDK

Notifications
Quick Lists
Path Variables
Keymap
Editor
Plugins
Build, Execution, Deployment

Tools

Default Preferences
Appearance & Behavior > System Settings > Android SDK
Manager for the Android SDK and Tools used by Android Studio
Android SDK Location: | /Users/neilsmyth/Library/Android/sdk Edit

Each Android SDK Platform package includes the Android platform and sources pertaining to an
API level by default. Once installed, Android Studio will automatically check for updates. Check
"show package details" to display individual SDK components.

SDK Update Sites

Name APl Level Revision Status
Android 8.0 (Oreo) 26 2 Partially installed
Android 7.1.1 (Nougat) 25 3 Update available
Android 7.0 (Nougat) 24 2 Not installed
Android 6.0 (Marshmallow) 23 3 Update available
Android 5.1 (Lollipop) 2 2 Not installed
Android 5.0 (Lollipop) 2 2 Not installed
Android 4.4W (KitKat Wear) 20 2 Not installed
Android 4.4 (KitKat) 19 4 Not installed
Android 4.3 (Jelly Bean) 18 8 Not installed
Android 4.2 (Jelly Bean) 17 3 Not installed
Android 4.1 (Jelly Bean) 16 5 Not installed
Android 4.0.3 (IceCreamSandwich) 15 5 Not installed
Android 4.0 (IceCreamSandwich) 14 4 Not installed
Show Package Details
Cancel \pply m

OEBPS/Image00124.jpg
Button

Button

Button

OEBPS/Image00245.jpg
Destinations Q# - 0 e Q125% ® © O Avivutes LR
Type
[h main_activity (demo_nav_host_fragment) #f mainFragment secondFragment
ot lialy 1Y mainToSecond
0 mainFragment - Start Destination secondFragment
0 secondFragment * Transitions
Enter none
Exit none
° o Pop Enter none
—> Pop Exit none
+ Argument Default Values
message string default valuq
Pop Behavior
Pop To none
Inclusive e

* Launch Options
singleTop &

OEBPS/Image00369.jpg
B Messages 1= X

OEBPS/Image00006.jpg
Appearance & Behavior > System Settings > Android SDK

Manager for the Android SDK and Tools used by Android Studio
Android SDK Location: £/Users/neilsmyth/Library/Android/sd Edit
SDK Platforms [SDKITo0lsl| SDK Update Sites

Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.

OEBPS/Image00127.jpg
ConstraintLayout

\

Horizontal
Constraint

Baseline
Constraint

OEBPS/Image00248.jpg
[JOX)

File name: navigation_graph
Resource type: Navigation

Root element: navigatior
Source set: main

Directory name: navigation

Available qualifiers:

&) Country Code

@: Network Code

@ Locale

= Layout Direction

[Smallest Screen Width
= Screen Width <<
Screen Height

4 size

|1 Ratio

[Orientation

[E Ul Mode

>>

2

New Resource File

Chosen qualifiers:

Nothing to show

Tl

Cancel

OEBPS/Image00366.jpg
4 @ 1:46
< New York Times .
Cassini Arrives at Saturn
Cassini arrived at Saturn in July 2004, after a

seven-year voyage. It was the first spacecraft to
orbit the ringed planet.

OEBPS/Image00487.jpg
BB Google Play Console = Appreleases B M pemoTest e] »' 6 O

& All applications
Closed track CREATE CLOSED TRACK

B3 Dashboard

Alpha MANAGE
least
Q ‘Add Android App Bundles or APKs to alpha to make your app available for closed testing.

@ Android Instant Apps

B Artifact lib
& e Internal test track

] Device catalog
Internal test

or signin,
App signing The internal test track makes your app available for internal testing within minutes.

B storelisting A

OEBPS/Image00005.jpg
e e Default Preferences

Q Appearance & Behavior > System Settings > Android SDK
Appearance & Behavior Manager for the Android SDK and Tools used by Android Studio
Appearance Android SDK Location: | /Users/neilsmyth/Library/Android/sdk Edit
e anairooibas SDK Platforms - SDK Update Sites
System Settings

Below are the available SDK developer tools. Once installed, Android Studio will automatically

Passwords check for updates. Check “show package details" to display available versions of an SDK Tool.
HIiERC | Name | Version | Status
Updates Update Available: 26
Usage Statistics GPU Debugging tools Not Installed
CMake Not Installed
(o Not nstaed
Notifications Android Auto API Simulators 1 Not installed
Quick Lists Android Auto Desktop Head Unit emulator 11 Not installed
Path Variables & Android Emulator 26.1.3 Update Available: 26.1.4
e Android SDK Platform-Tools 26.0.0 Installed
oymap; & Android SDK Tools 26.0.2 Update Available: 26.1.0
+ Editor Documentation for Android SDK 1 Not installed
Plugins Google Play APK Expansion library 1 Not installed
Build, Execution, Deployment Google Play B_lllmg.lera.ry 5 Insta.lled
Google Play Licensing Library 1 Not installed
Tools . Gnnnle Dlav sarvicas 22 Inctallad

Show Package Details

2 cancel | | Aopy | (K

OEBPS/Image00126.jpg
Button

Button

Button

OEBPS/Image00247.jpg
& -~ aldiviu
» java

4 compileSdkVersion 27
v BEres s = Aafanl+Canfin {
> drawable ¢ Kotlin File/Class
> ' . . Android Resource File
IaYOUt ‘ Link C++ Project with Gradle 2 z
> mipmap | © Android Resource Directory
» [values Cut sgx [Sample Data Directory

v (2 Gradle Scripts

Copy sgc | & File

OEBPS/Image00367.jpg
10010

OEBPS/Image00488.jpg
App Bundle Demo
Draft

App releases

Manage your app's Android App Bundles, APKs, review release history, and rollout your app to production or testing tracks.
Learn more

< New release to internal test

Prepare release Review and rollout
App signing by Google Play

App signing by Google Play secures your app using Google's robust security infrastructure. Learn more

Clicking Continue will permanently enroll your app into app signing by Google Play.

w OPT-OUT REUSE SIGNING KEY

OEBPS/Image00008.jpg
[K) Create New Project

Application name

My Appi

Company domain

ebookfrenzy.com

Project location

I il id_Studio_3. i i03.0Sampl

Package name

com.ebookfrenzy.myapplication

Include C++ support
Include Kotlin support

Cancel Previous

Edit

Finish

OEBPS/Image00129.jpg
View 1

View 2

View 3

OEBPS/Image00007.jpg
LX) Welcome to Android Studio

Android Studio

Start a new Android Studio project

= Open an existing Android Studio project

¥ Check out project from Version Control -

& Profile or debug APK
¢ Import project (Gradle, Eclipse ADT, etc.)

' Import an Android code sample

Configure ~

Get Help +

OEBPS/Image00128.jpg
Guideline

OEBPS/Image00249.jpg
Destinations Q % I-

No NavHostFragments found

OEBPS/Image00009.jpg
Create New Project

Add an Activity to Mobile

Add No Activity

Bottom Navigation Activity

Empty Activity

Basic Activity

Cancel | | previous | (TS | Finish

OEBPS/Image00360.jpg
0 NotifyDemo ~

now

New Message
You have a new message from Kassidy

now

New Message
You have a new message from Caitlyn

now

New Message
You have a new message from Jason

OEBPS/Image00481.jpg
& ENERGY v Modeled @

WebsiteDet:

ENERGY
Medum

SYSTEM

Websit.

02:35.000

WebsiteDetailActivity

0®e6 1

02:40.000

02:45.000

CPU:Light I Networ

ight M Location: None

02:50.000 02:55.000 03:00.000

OEBPS/Image00361.jpg
¥ls00
DirectReply

BUTTON

OEBPS/Image00482.jpg
®
Let's start

Put your finger on the sensor and lift after
you feel a vibration

OEBPS/Image00240.jpg
INITIALIZED

ON_CREATE

ON_DESTROY

CREATED DESTROYED

STARTED | I
RESUMED

ON_STOP

ON_PAUSE

OEBPS/Image00480.jpg
Android Profiler

4 NETWORK v |

NETWORK
- 8MB/S

=== Receiving:

OMB/S = Sending:

WIFI == HIGH Low

OMB/S ~~ Connections: 1

-

4

X ©O@® O Lk

Response Headers Call Stack

<!DOCTYPE html>

<html lang="en-US">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"

<title>Ultra HD Blue 4K (1920x1200) #68461565</title>
<meta name="author" content="guoguiyan.com" />

<meta name="robots" content="noindex,follow" />
<link rel="canonical" href="http://www.guoguiyan.com/blue-backgroun

<link tylesheet" href="/tpl/css/style.css" type="text/css">
<link tylesheet" href="/tpl/css/mobile.css" type="text/css">
<link tylesheet" href="/tpl/css/wd-input.css" type="text/css"

<link tvlesheet" href="/tpl/css/font-awesome.min.css" tvoe="t

Request 68461565-bl o

Method GET
Status 200 e
Content type text/html

URL hito://www m/data/out/23, bl ound-wa

Timing

[7 sent: 485ms [Received: 1ms

X

OEBPS/Image00000.jpg
Android
/X Studio

OEBPS/Image00121.jpg
90%

--------------------- Button ==

1 10%

Widget Offset using Constraint Bias

OEBPS/Image00242.jpg
Navigation Stack

Add Contact Destination

Push

Contacts List Destination

Message List
(Home Destination)

OEBPS/Image00364.jpg
o DirectReply ~
My Notification
This is a test message

Hello ©

OEBPS/Image00485.jpg
Biometric Demo
Authentication is required to continue

This app uses biometric authentication to protect
your data.

O

Not recognized

OEBPS/Image00120.jpg
Button

Widget Centered by Opposing Constraints

OEBPS/Image00241.jpg
$ AddContact
Screen

» ContactsList
Screen

Message List
(Home Screen)

Modify Contacts

—> Screen

B - Settings Screen

OEBPS/Image00365.jpg
o DirectReply
Reply received

OEBPS/Image00486.jpg
p Google Play Console Store listing Q search for apps 20

€ Allapplications ﬂ My Sample App ~ Draft SAVEDRAFT Why cant | publish?

. Appreleases

@ Android Instant Apps
with * need
1B Antifact library
Title *
7] Device catalog English (United States) - en-US My Sample App
13/50
Or Appsigning
B storelisting °
Short description *
@ contentrating o English (United States) - en-US
/80
@ Pricing & distribution e
B In-app products

Full description *

Xp Translation service English (United States) - en-US

OEBPS/Image00002.jpg
LX) Welcome to Android Studio

Android Studio

Start a new Android Studio project
= Open an existing Android Studio project
¥ Check out project from Version Control -
[Profile or debug APK

< Import project (Gradie, Eclipse ADT, etc.)

' Import an Android code sample

Configure ~

Get Help +

OEBPS/Image00123.jpg
Button

Button

Button

OEBPS/Image00244.jpg
Pl s00
NavigationDemo

Navigation Host
Fragment

OEBPS/Image00362.jpg
o DirectReply ~
My Notification
This is a test message

REPLY

OEBPS/Image00483.jpg
¥l g00

BiometricDemo

OEBPS/Image00001.jpg
Welcome

Android Studio

Welcome! This wizard will set up your development environment for Android Studio.
Additionally, the wizard will help port existing Android apps into Android Studio
o create a new Android application project.

OO | i

|
o
|

Cancel previous | (NN Finish

OEBPS/Image00122.jpg
Bi-Directional
Constraints

Button

N

Button

Button

OEBPS/Image00243.jpg
Navigation Stack

Add Contact Destination

Contacts List Destination

Message List
(Home Destination)

OEBPS/Image00363.jpg
o DirectReply ~
My Notification
This is a test message

lEnter your reply here

OEBPS/Image00484.jpg
Biometric Demo
Authentication is required to continue

This app uses biometric authentication to protect
your data.

—_—

Q

Touch the fingerprint sensor

CANCEL

OEBPS/Image00015.jpg
content_android_sample.xm!

Palette Q #- + O~ [ONexus4~ =28+ © NoActionBar » » O 50% @ © @ Atributes Q &8 -1
Common Ab TextView N8, G F T o
z = sutton
. I ImageView layout_width match_parent
i RecyclerView
layout_height match_parent
Widgets <> <fragment> a g =
Layouts. WU ScrollView

 ConstraintLayout
Containers | *® Switch

minWidth
— maxWidth
o minHeight
maxHeight
Component Tree -

¥ Favorite Attributes

“\ ConstraintLayout

Ab TextView- "Hello World!"

visibility none

View all attributes =

OEBPS/Image00136.jpg
v @v [J Nexus 4~ = P~ © AppTheme ~

S TR

OEBPS/Image00257.jpg
A mainFragment

OEBPS/Image00379.jpg
User Interface
Ul Controller
ViewModel

Repository

=
Web
Database

OEBPS/Image00014.jpg
1§ Android AR - 2
v [Lapp
» [manifests
» [wjava
v Dzres
» [drawable
v [wlayout
. activity_android_sample.xml
» [mmenu
» 2 mipmap
» [mvalues
» (& Gradle Scripts

D
3
°
2
w
N
'l

@ Captures

OEBPS/Image00135.jpg
Show Constraints

|V Show Margins
Fade Unselected Views

OEBPS/Image00256.jpg
Component Tree - 20 o

[=] FrameLayout

Ab TextView Convert view...
Convert FrameLayout to ConstraintLayout

Refactor >
3 Cut 38X
= Copy 38C
Paste BV
Delete 4
Go to XML B

OEBPS/Image00017.jpg
Component Tree - 20 o

% ConstraintLayout
Ab TextView - "Hello World!"

OEBPS/Image00138.jpg
O,
@ BUTTON @
O,

OEBPS/Image00259.jpg
}—’ ‘ ‘ TextView

OEBPS/Image00377.jpg
MultiWindow

TextView

LAUNCH

MultiWindow

Second Activity

OEBPS/Image00498.jpg
ALLDEVICES ® SUPPORTED DEVICES ® EXCLUDED DEVICES ®
5 match your criteria 5 match your criteria 0 match your criteria

Installs on active devices (last 30 days) (3) Cumulative average rating ()

Insufficient data Insufficient data

Google
2 devices

Pixel 2 XL Pixel XL

3840 MB 3840 MB

Qualcomm MSM8998 Qualcomm MSM8996 !
1440x2880 1440x2560

Supported Supported

Huawei
1 device

Nexus 6P
2816 MB
Qualcomm MSM8994

1440x2560
Supported

OEBPS/Image00016.jpg
©

OEBPS/Image00137.jpg
[J Nexus 4~ = P~ © AppTheme ~

,rx :-ED.|-_.1V

OEBPS/Image00258.jpg
TextView

OEBPS/Image00378.jpg
MultiWindow

LAUI

Second Activity

OEBPS/Image00499.jpg
< Internal test

Manage testers

Internal test

Choose how to run your testing program. Learn more

o 100 internal testers per app

Your internal test can have up to 100 testers at any time. The first 100 testers who attempt to opt-in to your interal test program

will succeed.

Choose a testing method

Users

Feedback Channel ()

Optiin URL

Internal test v

CREATE LIST
After you create a list, you can reuse the list for Closed Testing with any of your published apps.

Active Listname Number of users
[m} Alpha Testers 1 tester

Internal Testers 3testers

[Email address or URL

EDIT

EDIT

‘Share this opt-in link with your testers.

DISABLE INTERNAL TESTING

OEBPS/Image00019.jpg
Palette Q #- 1
conmon IR
5 ImageButton

+ CheckBox

@ RadioGroup
Widgets | @ RadioButton
Layots | (3 ToggleButton
Containers | *® Switch

© FloatingActio.

Text

Google

Legacy

OEBPS/Image00018.jpg

OEBPS/Image00139.jpg
O
O BUTTON (5

OEBPS/Image00371.jpg
& DemoApp = X

- App does not support split-screen. -

OEBPS/Image00492.jpg
[O) Generate Signed Bundle or APK

Module: = app <
Key store path: /Users/neilsmyth/Documents/AndroidKeyStore/release.keystore

Create new... Choose existing...
Key store password: @ o
Key alias: MyReleaseKey
Key password: [] L]

Remember passwords

Export encrypted key (needed to enroll your app in Google Play App Signing)

2 Cancel Previous m

OEBPS/Image00372.jpg
Pl 800

MultiWindow

OEBPS/Image00493.jpg
[NON] Generate Signed Bundle or APK

Destination Folder: /Users/neilsmyth/AndroidStudioProjects/AppBundleDemo/app

Build Type: release

No product flavors defined

Flavors:

? Cancel Previous

OEBPS/Image00130.jpg
View 1

View2

Views

OEBPS/Image00251.jpg
Destinations Q #- I+

[A main_activity (demo_nav_host_fragment)

OEBPS/Image00490.jpg
[JoX) New Key Store

Key store path: |

Password: Confirm:
Key

Alias: key0

Password: Confirm:

Validity (years): 25
Certificate
First and Last Name:

Organizational Unit:
Organization:

City or Locality:
State or Province:

Country Code (XX):

Cancel m

OEBPS/Image00250.jpg
Palette Q#1- €+ O- [ONexusd~ P+ © AppTheme v » @67% ® ©®
Commees [l Tabs
AppB:
_—] pp. arl._ayoPt
Hl NavigationView
Bt E BottomNavigationView
Widgets B4 Toolbar
Layouts s TabLayout
Containers = Tabltem NavigationDemo
ViewStub
Google X
N <include>
Legacy <> <fragment>
<> NavHostFragment
O <view>
2 <requestFocus>
Component Tree %~ Ir

[=] container

OEBPS/Image00370.jpg
@ x

Messages Q

OEBPS/Image00491.jpg
[BON J New Key Store

Key store path: | /Users/neilsmyth/Desktop/mykeystore

Password: [elulelelolelols] Confirm: ooooooool
Key

Alias: MyReleaseKey

Password: 00000000 Confirm: 00000000
Validity (years): 25

Certificate

First and Last Name:

Organizational Unit:

Organization: eBookFrenzy
City or Locality:

State or Province:

Country Code (XX):

? Cancel

OEBPS/Image00011.jpg
ene AndroidSample [~/Documents/Books/Android_Studio_3.2/PRODUCTIO!

= AndroidSample) 1z app) i src) i main) 1= res) [layout) &, content_android_sample.xmi)

3 I:Project

@ Captures

Structure

unz

4 Build Variants.

2% 2: Favorites.

@ Android + © 4 %

content_android_samplexmi

app Palette Q#- 1 €+ O~ [Nexusd~ =28+ © NoActionBar +
» b manifests :
» B java Common Ab TextView. O W8k, S H I
» 75 generatedJava Text . Button
2y Y imageView
Buttons .
» £ drawable Widgets Recycierylew
> Bulayout o <> <fragment>
B v Layots | WO ScrollView
> Barmiprioh Containers | *® Switch
» £ values Google
» (@ Gradle Scripts ey
Component Tree #*-
“\ ConstraintLayout Helo Word
Ab TextView- “Hello World!
Design | Text
2 1000 Terminal

Gradle sync finished in 807 ms (from cached state) (a minute ago)

A G b4 B aR

» ©65% ® © © Auwibutes

t_android_sample.xm! [app]

R L

Q

Q &l

Yol

Jo10/dx3 0l14 99100 11

OEBPS/Image00132.jpg
y T v

: t : t
1 '
1 '
1 '
'
View 1 <« Vview1 f------- &
'
'
A ! A '

View 2 F- vlﬂ— View 3 -« View 2 View 3
1

' .
1 '
1 '
1 '
1 '
Barrier — % | Barrier —
: i
1 '

: ¥ ; v

OEBPS/Image00253.jpg
Destinations Q %1~ [k

. . A mainFragment
[A main_activity (demo_nav_host_ g

[0 mainFragment - Start

MainFragment

OEBPS/Image00375.jpg

OEBPS/Image00496.jpg
Android App Bundles in this release

Type Version code
1 app bundle added

A Android App Bundle 1

Configuration APKs
API levels

Target SDK

Screen layouts
Features

Required permissions
OpenGL textures

Native platforms

Installed APK Size
Uploaded @

32 minutes ago 1.06-1.10 MB

Generated for: 7 screen layouts, 72 languages
27+

27

4 screen layouts: small, normal, large, xlarge

1 feature: android.hardware.faketouch

none

all textures

all native platforms

Installs on active
devices

No data

Hide all

>

OEBPS/Image00010.jpg
o o Create New Project

A Configure Activity

Creates a new basic activity with an app bar.

Activity Name

AndroidSampleActivity

Layout Name

activity_android_sample

. Title

| My Android App

Use a Fragment

Hierarchical Parent

The name of the activity. For launcher activities, the application title.

Cancel Previous Next Finish

OEBPS/Image00131.jpg
View 1

View 2

View 3

OEBPS/Image00252.jpg
Destinations Q #- 1| O
— K

[A mai

activity (demo_nay

Create blank destination

main_activity
main_fragment
Fragment

OEBPS/Image00376.jpg
MultiWindow

Textie

LAUNCH

OEBPS/Image00497.jpg
App Bundle Demo
orat ® o

p bundle explore

Browse APKs generated from your app bundle & download APKs for testing.

Select Android App Bundle
1 - Uploaded 49 minute

App size savings using the Android App Bundle

Size saved
The APKs generated from your app bundle are 14.7% smaller in comparison to the universal APK. This ° ;
iis a representative example and is calculated based on the xxhdpi armeabi-v7a device configuration. ‘I 4 70/
Learn more * o

Totest your app on a device model, download the specific APKs generated for that particular device model configuration.

Download device-specific APKs i

/APKS PER DEVICE CONFIGURATION

APKs per device configuration 1

ABI Screen density Installed APK size (3) Devices

- xxxhdpi 1.09 MB VIEW DEVICES e
® xxhdpi 1.08 MB VIEW DEVICES

- xhdpi 1.07 MB VIEW DEVICES

hdpi 1.07MB VIEW DEVICES

- tvdpi 1.10MB VIEW DEVICES

OEBPS/Image00013.jpg
Hello World!

OEBPS/Image00134.jpg
DemoApp

OEBPS/Image00255.jpg
NavigationDemo

BUTTON

OEBPS/Image00373.jpg
MultiWindow

OEBPS/Image00494.jpg
@ Generate Signed Bundle

App bundle(s) generated successfully:
Module 'app'": locate or analyze the app bundle.

PEIC [EETIER

OEBPS/Image00012.jpg
2 AndroidSample) 11; app) I src) I main)

| @ android + © B 1=
& Project
£ Packages

@ Project Files

g @ Problems

§ @ Production

® @ Tests Widgets
@ Local Unit Tests Layouts
@ Android Instrumented Tests o, .o
€ Project Source Files

Google

@ Project Non-Source Files
»1e Graaie Soripts ¥ Logecy

OEBPS/Image00133.jpg
DemoApp

Pl s00

OEBPS/Image00254.jpg
A mainFragment

secondFragment

MainFragment

Hello blank fragment

OEBPS/Image00374.jpg
H Calculator

TextView

LAUNCH

OEBPS/Image00495.jpg
< New release to internal test

Prepare release Review and rollout
App signing by Google Play

@ Enabled

Android App Bundles and APKs to add

ADD FROM LIBRARY
These app bundles and APKs will be served in the Google Play Store after the rollout of this release.

Drop your app bundles & APKs here, or select a file.

BROWSE FILES

OEBPS/Image00103.jpg
Palette O Q #- I
All ok Button

Widgets] ToggleButton
Text CheckBox

@® RadioButton

Layouts s
. ‘v CheckedTextView

Containers i

= Spinner
images Q ProgressBar
Date = ProgressBar (Horizontal)
Transitions -e- SeekBar
Advanced *_SeekBar (Discrete)
Google E QuickContactBadge
Design RatingBar
AppCompat ® Switch

|---|Space

Ab TextView

OEBPS/Image00224.jpg
1Error Show issues on the preview X

© Unknown fragments Rendering Issue

A <fragment> tag allows a layout file to dynamically include different layouts at runtime. At layout editing time the specific
layout to be used is not known. You can choose which layout you would like previewed while editing the layout.

- <fragment com.ebookfrenzy.fragmentexample.ToolbarFragment ...> (Use @layout/toolbar fragment, Pick Layout...)

Do not warn t <fragment> t: in thi ion

OEBPS/Image00346.jpg
ANAYY [4

DemoApp

OEBPS/Image00467.jpg
SESSIONS + B O

911 AM @
masterdetailflow (Google Pixel_2_API_28)
1min 44 sec

OEBPS/Image00102.jpg
& activity_main.xml © MainActivity java

Palette Q %~ I
All o Button
Widgets) ToggleButton
Text CheckBox o
Layouts © RadioButton
N %y CheckedTextView

Containers ¥, =

= Spinner
Images © ProgressBar
Date = ProgressBar (Horizontal)
Transitions - SeekBar
Advanced -2 SeekBar (Discrete)
Google [QuickContactBadge
Design RatingBar
AppCompat * Switch

|| space

b TextView

s Plain Text

& Password

“a Password (Numeric)

@ E-mail

Phone

Postal Address

= Muttiline Text
Component Tree #- 1

7 ConstraintLayout
‘Hello World!

Design | Text G

<

€. O~

0 Ney v
O~ U L/ G-

EmptyActivity

= 26 v (©AppTheme
[CLACH=R RN]

Attributes. Q &% 1
D
0

layout_width | ‘ap_content
layout_height | ap_content
TextView
text Hello World! |
text]
contentDescri]
textAppear: | Material Small
fontFamily | sans-serif
typeface none
textSize 14sp
lineSpacingEx | none
textColor]
textStyle

B I T

textAlignment

View all attributes =

OEBPS/Image00223.jpg
[NON] Fragments

© © TextFragment (com.ebookfrenzy.fragmentexample) app g
© © ToolbarFragment (com.ebookfrenzy.fragmentexample) app g

- Cancel |

OEBPS/Image00347.jpg
Android 100% @ 4:18
b3 oN

(N <& 3
Thu, Sep 14 3 v
B Android System
Configure physical keyboard
Tap to select language and layout
Gmail » @gmail.com * 20m v
Dropbox
Download Dropbox on your computer!

Drive -+ 24m v

1 upload paused.
Waiting for Wi-Fi network.

OEBPS/Image00468.jpg
Profiler com

(Google Pixel_2_API_28)
SESSIONS aL O
9:20 AM Load from file...

masterdetailflow (Google Pixe Google Pixel_2_API_28 » com.ebookfrenzy.masterdetailflow (10215)
5 min 11 sec

Other processes » ‘ com.ebookfrenzy.storagedemo (18899)
CPU
9:11 AM 1005¢
masterdetailflow (Google Pixel_2_API_28) °
9 min18 sec

MEMORY

OEBPS/Image00105.jpg
¥ls00

EmptyActivity

OEBPS/Image00226.jpg
od "4 @ 455

Android Studiol

CHANGE TEXT

Android Studio

OEBPS/Image00344.jpg
AsyncDemo isn't responding

X Close app

@ Wait

OEBPS/Image00465.jpg
Profiler com.ebookfrenzy.storagedemo (Google Pixel_2_API_28)
SESSIONS + 80

2:57PM ® ®
storagedemo (Google Pixel_2_API_28) StorageD... StorageDemoActivity
1 min© sec

CcPU
° 100%

MEMORY 33.4MB

128 M8

NETWORK — Sending: 0 B/s — Receiving: 0 B/s

48l

ENERGY None

Medim

40.000 45.000 Q 50.000 55.000 01:00.000 01:06.000

OEBPS/Image00104.jpg
Palette

All
Widgets
Text
Layouts
Containers

Q#-1- €+ O+ [INexusd - =26+ @AppTheme : ® Language ~

oK Button

] ToggleButton
CheckBox

@® RadioButton

‘v CheckedTextView

= Spinner

Design
Blueprint

Design + Blueprint

Force Refresh Layout

Os%@E ¥ O

OEBPS/Image00225.jpg
FragmentExample

CHANGE TEXT

OEBPS/Image00345.jpg
¥ls00

LocalBound

OEBPS/Image00466.jpg
NETWORK at 40.15s

[T sent: 7.68KB/S

M Received: 14.29KB/S

OEBPS/Image00107.jpg
Attributes Q &
D textView
layout_width arap_content

layout_height arap_content

o v
i —
500 [v)-9 «<@(0 |v
——
43 v
&
v TextView
text Hello World!
o text

contentDescrip

» textAppearar Material

» Favorite Attributes

jew all attributes &

OEBPS/Image00228.jpg
User Interface

View View
Ul Controller
Observer Observer
LiveData LiveData

ViewModel

OEBPS/Image00106.jpg
iy content_state_change.xm!

1 <7xml version="1.0" encoding="utf-8"?> L
© <android.support. constraine. ConstraintLayout
“http://schenas .android. con/apk/res/android"

e o »

]
HES L TR

s Q L

android: Layout._ ‘wrap_content’
‘wrap_content’

android:id="e+id/editText"

android: inputType="tex!

android:saveEnabled="false"

‘app:layout_constraintTop_toTop0f="parent

‘app: Layout_constraintstart_toStart0f="parent" |E—
Ipp ayout_constraintBottom_toBottom0f="parent"

ayout_constraintEnd_toEnd0f="parent"/>
</amlold:somport. oaviraiat ConstraTntLayouts

androd. constraint.ConstraintLayout » EditText
Design Text

OEBPS/Image00227.jpg
User Interface

View

View

)

V

Ul Controller

t

v

ViewModel

OEBPS/Image00109.jpg
textAppearance
fontFamily
typeface
textSize
lineSpacingExtra
textColor

textStyle

textAlignment

[Material.Small

[sans-serif

i sans-serif

i sans-serif-condensed
i serif

' monospace

ii§ serif-monospace

i casual

i cursive

OEBPS/Image00348.jpg
@ App info
Notifications

Example Notification o
This is an example no...

200

Maps Messages NotifyDemo

OEBPS/Image00469.jpg
General Miscellaneous Debugger Profiling

Enable advanced profiling (required for API level < 26 only)

Allows the profilers to track data such as network payloads, application events and object
counts, but it might have a minor performance impact on your build speeds.

Start recording a method trace on startup

You must select RU om the main menu and deploy your app to a device running
Android 8.0 (API level 26) or hlgher

Sampled (Java)

<>

OEBPS/Image00108.jpg
Attributes.
D
layout_width

layout_height

View all attributes |

arap_content

arap_content

OEBPS/Image00229.jpg
User Interface
DataBinding DataBinding ‘

Ul Controller

Observer Observer

LiveData LiveData

ViewModel ‘

OEBPS/Image00349.jpg
o NotifyDemo ~
Example Notification
This is an example notification.

DELETE SAVE

OEBPS/Image00460.jpg
C2 applinkingapk~ | B> 4 4% b 3 W L @ Gz
Edit Configurations...

CX URL http://www.example.com/landmarks/londonbridge
X app

% applinkingbase

% applinkingapk

applinkinginstantapp

& T

OEBPS/Image00220.jpg
FragmentExample

CHANGE TEXT

OEBPS/Image00342.jpg
Open with

Q Chrome

Q MyWebView

OEBPS/Image00463.jpg
HTC Nexus © (HTACTJT01906) ~ No/debuggable processes =

4

Android Profiler

No debuggable processes detected for
the selected device.

BTODO = 6:Logcat |y Android Profiler | [Terminal QEventlog (& Gradle Console

OEBPS/Image00343.jpg
¥l s.00

AsyncDemo

Hello World!

OEBPS/Image00464.jpg
A | ﬂapp'\ P 4 ﬁ i &
q =

& app 1<

OEBPS/Image00101.jpg
Basic Activity

Hello World!

OEBPS/Image00222.jpg
FragmentExample

OEBPS/Image00340.jpg
A Do~ | P 4 B b [W

Aani Edit Configurations... ;
X app

manifest

OEBPS/Image00461.jpg
Launch Options
Launch: URL c
URL: | http://www.example.com/landmarks/londonbridge

Launch Flags: |Options to 'am start' command

OEBPS/Image00100.jpg
Empty Activity

Hello World!

OEBPS/Image00221.jpg
FragmentExample

Fragment Two

OEBPS/Image00341.jpg
Launch Options

Deployment Target Options

Target: Open Select Deployment Target Dialog

Use same device for future launches

OEBPS/Image00462.jpg
< Appinfo

‘ AppLinking
4 Instant app

OEBPS/Image00114.jpg

OEBPS/Image00235.jpg
[0 Nexus4~ =P~

OEBPS/Image00357.jpg
o NotifyDemo ~

Example Notification
This is an example notification.

OPEN

OEBPS/Image00478.jpg
Instance View X

Instance | De...| Shallow Size| Retained... ~
1 String 16 (Ox1 “Thisisan Stringin My App!! 0 2134
(T String@314687984 (0x12¢1c1f0) . If the resource you are tryingtousei 0 16 386
(1 String@314587648 (0x12c03a00) "Studio Profilers encounteredanune; 0 o 16 384
I String@314985456 (0x12c64bf0) "aq:native-post-i 5 16 198
T String@314985664 (0x12c64cc0) "aq: ive-pre-i y 4 16 196
1 String@314799680 (0x12c37640) "aq:pending:com.ebookfrenzy. myam 3 16 182
T String@315482512 (0x12cde190) il enzy. 6 16 174
T String@315483216 (0x12cde450) "com.google.android.. mputmethud lat 1 16 166
1 String@314693600 (0x12¢1d7e0) "com. enzy. 3 16 160
» (1 String@314693440 (0x12c1d740) "/data/app/com.ebookfrenzy. myappll 6 16 146
1 String@315528816 (0x12ce9670) "/d: P/pe 0 16 142
@ String@314739008 (0x12c28940) "Dalvik/2.1.0 (Linux; U; Android7.1.1 4 16 136
1 String@314598784 (0x12c06580) "/data/ - y.n 2 16 128
(1 String@314599296 (0x12c06780) i i v-iucv:- 7 16 124
1 String@314599040 (0x12c06680) i i i 7 16 124
1 String@314598528 (0x12c06480) "android.security.net.config. RootTrl 7 16 124
1 String@314845912 (0x12c42ad8) "res/drawable/action_bar_item_back¢ 9 16 120
(1 String@314843512 (0x12c42178) "/data/app/com.ebookfrenzy.myappli 3 16 118
1 String@314843872 (0x12c422e0) "/data/app/com.ebookfrenzy.myappl 6 16 118
@ String@314873744 (0x12c49790) "/data/app/com.ebookfrenzy.myappli 6 16 118
1 String@314843752 (0x12¢42268) "/data/app/com.ebookfrenzy.myappl 6 16 116
References
Reference | Depth | Shallow Size| Retained Si...

v 1 String@314658816 (0x12¢15000) 0 16 2134
» myString in MainAc @314905856 (0x12c5150! 3 256 4031

OEBPS/Image00113.jpg
Convert View to:

TextView @8 Button
M ImageView Ab EditText
+ CheckBox (@® RadioButton
[N ToggleButton

_ Apply |

Set the new type for the selected View

OEBPS/Image00234.jpg
1 800

ViewModelDemo

MainFragment

CONVERT

OEBPS/Image00358.jpg
@ Notifypemo

New Message
You have a new message from Jason.

@ Notifybemo

New Message
You have a new message from Caitlyn.

@ noiypemo

New Message
You have a new message from Kassidy.

OEBPS/Image00479.jpg
& NETWORK ¥

®eOIN
® [] ® ®
WebsiteDetailActivity - stopped - WebsiteListActivity - ... WebsiteDetailActivity
e

RADIO o WIFl = HIGH ~ LOW
NETWORK == Receiving: 0 MB/s == Sending: 0 MB/s Connections: 35
aw8/s 100
3
2 H 50

/
K)[]/-\/\A ‘m = K\Q RS ’ﬁoo\/.\ \é\(}Z\ = 50.000 /3 /\ 55.0

OEBPS/Image00116.jpg
[Nexus 4 » = 28 ~ © NoActionBar ~ &
0 3.7, 480 x 800, hdpi (Nexus One)
4.0, 480 x 800, hdpi (Nexus S)

V 4.7, 768 x 1280, xhdpi (Nexus 4)
5.0, 1080 x 1920, xxhdpi (Nexus 5)

0 5.0,1080 x 1920, 420dpi (Pixel)
5.0, 1080 x 1920, 420dpi (Pixel 2)
5.2,1080 x 1920, 420dpi (Nexus 5X)
5.5,1440 x 2560, 560dpi (Pixel XL)
5.7, 1440 x 2560, 560dpi (Nexus 6P)
6.0, 1440 x 2560, 560dpi (Nexus 6)
6.0, 1440 x 2880, 560dpi (Pixel 2 XL)

[7.0, 800 x 1280, tvdpi (Nexus 7 2012)
7.0,1200 x 1920, xhdpi (Nexus 7)
8.9, 2048 x 1536, xhdpi (Nexus 9)
9.9, 2560 x 1800, xhdpi (Pixel C)
10.1, 2560 x 1600, xhdpi (Nexus 10)

£ 280 x 280, hdpi (Square)
320 x 320, hdpi (Round)
320 x 290, tvdpi (Round Chin)

£ 1080p, 1920 x 1080, xhdpi (TV)
720p, 1280 x 720, tvdpi (TV)

Custom

O AVD: Nexus_5X_API_27
AVD: Nexus_9_API_28
AVD: Pixel 2 APLP
AVD: Pixel 2 API_28
AVD: Pixel XL_API_27_No_Play

Generic Phones and Tablets >
Add Device Definition.

OEBPS/Image00237.jpg
‘€ MainViewModel.java € MainFragment.java (& app

Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly. -
1 apply plugin: 'com.android.application’ |
2

3 android {

OEBPS/Image00355.jpg
hlllr

=49 IBA
an - Inh
EE e
L XA
\ "= 4

NotifyDemo Phone

Messages

OEBPS/Image00476.jpg
& MEMORY

StorageDemoActivity e

MEMORY Total: 37.5M8 M Java:

.1MB M Native:18.6 MB [l Graphics: 0 MB M Stack: 0.1MB [Code:

.5MB M Others:

.3MB == Allocated: 157932

12:26.000 12:30.000 12:35.000 12:45.000 12:50.000

OEBPS/Image00115.jpg
Design-time View Attributes

Item template
< Two Lines »

Item count

14

OEBPS/Image00236.jpg
' Android ~ O = | ¥ I
v . app
» " manifests
v [java
v [com.ebookfrenzy.viewmodeldemo
v ui.main
‘€ MainFragment
‘€ MainViewModel
‘© MainActivity
»» [com.ebookfrenzy.viewmodeldemo (androidTest)
» [com.ebookfrenzy.viewmodeldemo (test)

v

Pzres
v (& Gradle Scripts

O

b 5 gdModelDemo)
build.gradle (Module: app)

i1 gradle-wrapper.properties

i,1local.properties

& proguard-rules.pro (ProGuard Rules for app)
(® settings.gradle (Project Settings)

OEBPS/Image00356.jpg
e e 5% 2 M

@ App info
Clock Contacts

Notifications @
o jq/; Example Notification

This is an example no... 0
Files Gestures Bu..

Q2000

Maps Messages NotifyDemo Phone Photos

OEBPS/Image00477.jpg
Heap Dump = app heap Arrange by class © 2562023:38:47.080 - 2662023:38:47.080 = Y

Class Name Allocations | _ NativesSize | Shallow Size |Retained Si... *
app heap 9,474 112,343 585,378 2,244,844
© Class (java.lang) 490 0 70,567 261,732
© bytell 1,980 0 205,510 205,510
@ string (java.lang) 1,677 0 25,232 80,090
© Object(] (java.lang) 521 0 26,792 72,889
@ Editor (android.widget) 1 0 248 60,437
@ SelectionActionModeHelper (android.widget) 1 0 36 57,818
@ SelectionActionModeHelpers$SelectionTracker (android. widget) 1 0 37 57,213
@ RuleBasedBreakiterator (andiroid icu. text) 2 0 14 67,183

fonActi i ogger (android. widget) 1 0 25 57,163
€ leulteratorWrapper (java.text) 1 0 12 57,138
@ RBBIDataWrapper (android.icu. text) 1 0 0 55,645
@ char(] 15 0 46,950 46,950

OEBPS/Image00118.jpg
ConstraintLayout

Constraint
Connections

N

Button

15dp

OEBPS/Image00239.jpg
[Observer/

Lifecycle Object Lifecycle-aware
Object

Lifecycle Owner Current State

Lifecycle Event

Observer List Handlers

OEBPS/Image00117.jpg
Hello World!

small size range

al Sereen |
7

OEBPS/Image00238.jpg
Component Tree - 20 o

o

v "\, main
Ab resultText- "@string/...
Ab dollarText(Number... A
@ convertButton- "@st...

OEBPS/Image00359.jpg
Android 100% @ 10:20
LTE Q

D & A
Thu, Sep 14 ted v
o NotifyDemo v
New Message You have a new message from Kassidy

New Message You have a new message from Caitlyn
New Message You have a new message from Jason

OEBPS/Image00119.jpg
Horizontally Opposing
Constraints
\

'
'
30% 1
'
f

-------------------------- Button B
80% 20%

70%.

OEBPS/Image00470.jpg
& CPU ¥ . Sampled (Java)e Record G

StorageDemoActivity - stopped - saved -

50

* THREADS (24)

nzy.storagedemo
RenderThread
ADB-JDWP Connec
Binder:30164_1
Binder:30164_2
Binder:30164_3
Binder:30164.4
FinalizerDaemon
FinalizerWatchd

HeapTaskDaemon

07:40.000 07:45.000

N N
destroyed o StorageDemoActivity ... StorageDemoActivity
M App: 0% Others: 2% == Threads: 24
- 00:07:46.735 ~ m-mmmmmmmmmememme e eeeemmmmmmmmmmemeememseeeeemememmmmmmmmmmm—m————-- 25
M App: 0% 20
Others: 10 % e 1
== Threads: 24 0
5

Selection Unavailable

07:50.000

08:00.000

O@®O O M

08:05.000

OEBPS/Image00350.jpg
o DirectReply ~
My Notification
This is a test message

lEnter your reply here

OEBPS/Image00471.jpg
SESSIONS + B O

10:30 AM @
masterdetailflow (Google Pixel_2_API_28)
3 min 19 sec

£} Method Trace (Java)
00:00:07.434

9:50 AM
masterdetailflow (Google Pixel_2_API_28)

39 min 27 sec ‘
£ Method Trace (Java)

00:39:09.503

{3} Method Trace (Native)
00:38:10.958

OEBPS/Image00110.jpg
autoSizeTextType

* autoText e
autofillHints

% background

% backgroundTint

backgroundTintMode

OEBPS/Image00231.jpg
® e Create New Project

/"(Add an Activity to Mobile

Add No Activity

Activity & Fragment-+ViewModel Basic Activity Bottom Navigation Activity
C— ¢ i C—

Cancel previous [[EQ Finish

OEBPS/Image00353.jpg
0 NotifyDemo

Example Notification
This is an example notification.

OEBPS/Image00474.jpg
Wall Clock Time

Flame Chart

Call Chart

TopDown Bottom Up

i
H

HH
3
3
5
(I

[EEEERSEEsss=matsss———

D E O S e e — -

SeEEmmmEN==s=======

e e e e

T e ————

@ e o g

L —]] L1
I
I
|
Il
I

L suppor 7.

2 Aensuresut

iroid.support ¥7.app.

R

: =

[[ass

D B e————

St Smemm————————

OEBPS/Image00230.jpg
User Interface

DataBinding DataBinding

Ul Controller

—‘M[LiveData '—

ViewModel

A

Repository

T’ =2

Wb Service

OEBPS/Image00354.jpg
Q NotifyDemo @

NotifyDemo News
Keep showing these notifications?

Stop notifications Keep showing

OEBPS/Image00475.jpg
Flame Chart

Call Chart

TopDown Bottom Up

[

=
===~

_————

SamunRfin

lllll EEEE===- -

...... =
m

- e S OO

OEBPS/Image00112.jpg
Component Tree .u.- 1~

\ Constraintlayou* —

Ab TextView- “| 100 Organize >
@ button- "Bu“ +|+ Center >
I Helpers >

Refactor >

3 cut 38X

= Copy %8C

Paste BV

Desion Delete ®

Go to XML #B

OEBPS/Image00233.jpg
ViewModelDemo

MainFragment

OEBPS/Image00351.jpg
¥l s.00

NotifyDemo

OEBPS/Image00472.jpg
TopDown BottomUp CallChart Flame Chart

Name
v H JOWP
v @ dispatch() (org.apache.harmony.dalvik.ddmc.Ds ver)
v @@ get() (Java.util.HashMap)
m getEntry() (java.util. HashMap)
v @ equals() (iava.lang.Integer)
m intValue() (java.lang.Integer)
v @ si insHash() (sun.misc.Hashing)
m hashCode() (java.lang.Integer)
m indexFor() (java.util.HashMap)
getValue() (java.util. HashMap$HashMapEntry)
» @ handleChunk() (android.ddm.DdmHandleProfiling)
m valueOf() (java.lang.Integer)
m <init>() (org.apache.harmony.dalvik.ddmc.Chunk)

| seffs) | % | childrenws)| % |
3,498,238 99.929 2,888 0.08%
1,937 0.06% 9510.03%

32 0.00% 418 0.01%

120 0.00% 293 0.01%

173 0.00% 50.00%
50.00% 00.00%

78 0.00% 310.00%
310.00% 00.00%
60.00% 00.00%

50.00% 00.00%

35 0.00% 210 0.01%
1810.01% 58 0.00%
130.00% 40.00%

Wall Clock Time

Total (us) %
3,501,126 100.0C
2,888 0.08%
450 0.01%
413 0.01%

OEBPS/Image00111.jpg
textStyle B

textAlignment =

Favorite Attributes

autoText =

5

background [

backgroundTint [

View all attributes &

OEBPS/Image00232.jpg
¥Hs00
ViewModelDemo

Container
Area

OEBPS/Image00352.jpg
334 & 0 @ P4

& Settings Q

Q NotifyDemo
Show notifications @

NotifyDemo News |

Advanced
Allow notification dot

OEBPS/Image00473.jpg
TopDown BottomUp CallChart Flame Chart Wall Clock Time

Name Self (us) | % Children (us) | % | Total (us) | %
H Jowp 3,498,238 99.929 2,8880.08% 3,501,126 100.0C
dispatch() (org.apache.harmony.dalvik.ddmc.DdmServer) 1,937 0.06% 9510.03% 2,888 0.08%
v @ get() (java.util. HashMap) 32 0.00% 418 0.01% 450 0.01%
> @ dispatch() (org.apache.harmony.dalvik.ddme.DdmServer) 32 0.00% 418 0.01% 450 0.01%
v im getEntry() (java.util. HashMap) 120 0.00% 292 0.01% 412 0.01%
> @ get() (java.util.HashMap) 120 0.00% 293 0.01% 213 0.01%
v @ handleChunk() (android.ddm.DdmHandleProfiling) 35 0.00% 210 0.01% 245 0.01%
> @ dispatch() (org.apache.harmony.dalvik.ddme.DdmServer) 35 0.00% 210 0.01% 245 0.01%
v @ valueOf() (java.lang.Integer) 1810.01% 58 0.00% 239 0.01%
> @ dispatch() (org.apache.harmony.dalvik.ddmc.DdmServer) 1810.01% 58 0.00% 239 0.01%
» @ equals() (java.lang.integer) 173 0.00% 50.00% 178 0.01%
» @ handleMPSS() (android.ddm.DdmHandleProfiling) 90.00% 119 0.00% 128 0.00%
» m startMethodTracingDdms() (android.os.Debug) 70.00% 112 0.00% 119 0.00%
» i startMethodTracingDdms() (dalvik.system.VMDebug) 1110.00% 10.00% 112 0.00%
> si insHash() (isc.Hashing) 78 0.00% 310.00% 109 0.00%

» @ <init>() (java.lang.Integer) 25 0.00% 33 0.00% 58 0.00%

OEBPS/Image00209.jpg
\ i \

FANMANMWANANAHello World ~ANANVWAANWANNWAA:

rordl

OEBPS/Image00202.jpg
® e Preferences

Q Build, Execution, Deployment > Instant Run

Plugins Enable Instant Run to hot swap code/resource changes on deploy (default enabled)
Version Control & Restart activity on code changes
Build, Execution, Deployment Show toasts in the running app when changes are applied

Gradle B Show Instant Run status notifications

Debugger Log extra info to help Google troubleshoot Instant Run issues (Recommended)

Compiler @ Learn more about what is logged, and our privacy policy.

Coverage (&

Espresso Test Recorder &

Required Plugins &

Languages & Frameworks =

OEBPS/Image00324.jpg
[) Create New Project

/_,(Add an Activity to Mobile

Fullscreen Activity Google AdMob Ads Activity Google Maps Activity Login Activity

Master/Detail Flow

Scrolling Activity Settings Activity

Cancel Previous Finish

OEBPS/Image00445.jpg
Preview:
[{
"relation": ["delegate_permission/common.handle_all_urls"],
"target": {
"namespace": "android_app",
"package_name": "com.ebookfrenzy.applinking",
"sha256_cert_fingerprints":
™ "
}
b

To complete associating your app with your website, save the above file to <[/ WWW. le.com/.well-| n tlinks.json Save file

Complete the association
Link your Digital Asset Links file with your app and verify that it has been uploaded to the current location.

Link and Verify

OEBPS/Image00201.jpg

OEBPS/Image00325.jpg
= NavDrawerDemo

OEBPS/Image00446.jpg
Instant

App
Module

App
Module

—

Base Feature APK

OEBPS/Image00204.jpg
Example - [~/Documents/E

h@i& G E

okfrenzy) eventexample)

OEBPS/Image00322.jpg
Chapter Two

Item two details

OEBPS/Image00443.jpg
= Open with AppLinking
JUSTONCE ~ ALWAYS

Use a different app

@ Chrome

OEBPS/Image00203.jpg
[app

° een“

OEBPS/Image00323.jpg
Apps & games

My apps & games

Movies, Music, Books

Movies & TV

Music

Books

Newsstand

Account

Redeem

Wishlist

OEBPS/Image00444.jpg
Android App Links Support
Declare Website Association
To associate your website with your app, enter the information below to generate a Digital Asset Links file and upload to your website.

Site domain Application ID

http://www.example.com com.ebookfrenzy.applinking

Support sharing credentials between the app and website = What is this?

SHA256 Fingerprint of signing certificate
Specify either the signing config or the keystore file used to sign your app to obtain the SHA256 fingerprint.

© signing config Select keystore file

[debug

Reminder: if you generate the DAL file with a debug keystore, it won't work with your release build.

Generate Digital Asset Links file

OEBPS/Image00206.jpg
Instant Run applied code changes and restarted the app. Method Added.
(Don't show again)

Terminal = 6: Logcat 7y Android Profiler

= 0: Messages

OEBPS/Image00328.jpg
1 Item 1
2 Iltem 2
3 Item 3
Details about Item: 1
4 Hemd More details information here.
5 Item 5
6 Iltem 6
7 ltem 7
8 Iltem 8
9 Item9
10 Item 10
1 Item 11 L

OEBPS/Image00449.jpg
[XeK) Create New Project

Customize Instant App Support

Configure the feature module
Module Name

myfeature

Package Name

T

Concel | | previous | (TS Finn

OEBPS/Image00205.jpg
Replace with your own action

< L |

OEBPS/Image00329.jpg
® O Create New Project

/L’(Add an Activity to Mobile

Fullscreen Activity Google AdMob Ads Activity Google Maps Activity Login Activity

Master/Detail Flow Navigation Drawer Activity Scrolling Activity Settings Activity

Cancel Previous Finish

OEBPS/Image00208.jpg
EventExample

Hello World!

PRESS ME

OEBPS/Image00326.jpg
13

i

Android Studio

indroid.studio@android.com

Import
Gallery
Slideshow

Tools

Communicate

< Share
> Send

@ 3:07

OEBPS/Image00447.jpg
® o
Q

Appearance & Behavior
Appearance
Menus and Toolbars
System Settings
Passwords
HTTP Proxy
Updates
Usage Statistics
Notifications
Quick Lists
Path Variables
Keymap
Editor
Plugins
Build, Execution, Deployment
Tools

Default Preferences
Appearance & Behavior > System Settings > Android SDK
Manager for the Android SDK and Tools used by Android Studio
Android SDK Location: | /Users/neilsmyth/Library/Android/sdk Edit

SDK Platforms - SDK Update Sites

Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.

.

e Name | Version o mﬂiﬁ&tgs
Android Auto API Simulators 1 Not installed
Android Auto Desktop Head Unit emulator 1.1 Not installed
Android Emulator 26.1.2 Installed
Android SDK Platform-Tools 26.0.0 Installed
Android SDK Tools 26.0.2 Installed
Documentation for Android SDK 1 Not installed
Google Play APK Expansion library 1 Not installed
Google Play Billing Library 5 Not installed
Google Play Licensing Library 1 Not installed
Google Play services 42 Installed
2 Not installed
Instant Apps Development SDK 1.0.0 Installed
i W;or (HAXM installer) 6.1.1 Installed
NDK 15.1.4119039 Not installed
Support Repository
ConstraintLayout for Android Installed
Solver for ConstraintLayout Installed
Android Support Repository 47.0.0 Installed
Google Repository 55 Installed

Show Package Details

Cancel

OEBPS/Image00207.jpg

OEBPS/Image00327.jpg
MasterDetailDemo

1 ltem1 Details about Item: 1
More details information here.

2 Item 2

3 Item 3

4 Item 4

5 Item 5

6 Item 6

7 Item 7

8 Iltem 8

9 Item 9

10 Item 10

n Item 11 @
12 Item 12

OEBPS/Image00448.jpg
Create New Project

Select the form factors and minimum SDK
Some devices require additional SDKs. Low AP levels target more devices, but offer fewer API features.

Phone and Tablet
API 23: Android 6.0 (Marshmallow) B

By targ our app will run on i 39.3% of devices. Help me choose

€ Include Android Instant App support

Wear

API 21: Android 5.0 (Lollipop)
v
API 21: Android 5.0 (Lollipop)
Android Auto
Android Things
API 24: Android 7.0 (Nougat) B

Cancel JB_Previous

OEBPS/Image00320.jpg

OEBPS/Image00441.jpg
o0 e Select an Activity

com.ebookfrenzy.applinking.LandmarkActivity (app)

(?) BT Insert Code

OEBPS/Image00321.jpg
CardDemo

OEBPS/Image00442.jpg
App Links Assistant
Test on Device or Emulator

Enter a URL below and click 'Run Test' to simulate a user clicking the URL on a device with your app installed. A Run configuration will be
automatically added to run with this URL so you can easily test it again.

URL

http://www.example.com/landmarks/londonbridge Run Test

OEBPS/Image00200.jpg

OEBPS/Image00440.jpg
Preview

</activity>
<activity android:name="com.ebookfrenzy.applinking.LandmarkActivity">

<intent-filter>
<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />

<data
android:scheme="http"
android:host="www.example.com"
android:pathPrefix="/landmarks" />

</activity>

Open AndroidManfest.xml

OEBPS/Image00213.jpg
MotionEvent

Action: PNTR UP Index: 0 ID: 0 X: 633 Y: 806

Action: UP Index: 0 ID: 1 X: 438 Y: 686

OEBPS/Image00335.jpg
Pl 500
Explicitintent

ASK QUESTION

OEBPS/Image00456.jpg
/_,(New Module

Phone & Tablet Module

Android Wear Module

Android Library

]
| I

Android TV Module

Create New Module

Instant App

|
[

Android Things Module

Cancel

Previous

k|
[=]a)
Feature Module
©

Import Gradle Project

OEBPS/Image00212.jpg
W ls00

MotionEvent

TextView~VNANAMAAMAMAA

OEBPS/Image00336.jpg
Configure Activity

Android Studio

New Android Activity

Creates a new empty activity

Activity Name

. ActivityB

Generate Layout File

Layout Name

activity_b

Launcher Activity

Backwards Compatibility (AppCompat)

Package name

com.ebookfrenzy.explicitintent

Source Language

Java

The name of the activity class to create

Cancel Previous Next

©

©

OEBPS/Image00457.jpg
e o Create New Module

/_,(Phone & Tablet Module

Configure the new module

Application/Library name
AppLinking APK

Module name

applinkingapk

Package name

com.ebookirenzy.applinkingapk Edit
Minimum SDK
| AP 26: Android 8.0 (Oreo)

Cancel Previous Finish

OEBPS/Image00215.jpg
['] U4 @ 3:49
. Create a gesture

Name Circle Gesture

OEBPS/Image00333.jpg
[Turn off Autoconnect lexus 4 ~

En
L7 B -

ool

OEBPS/Image00454.jpg
com.ebookfrenzy.instantappdemo (version 1.0)
@ Raw File Size: 464.2 KB, Download Size: 289.7 KB

File
=res
,resources.arsc
META-INF
o Classes6.dex
o Classes2.dex
o Classes5.dex
o Classes3.dex
o Classes4.dex
« AndroidManifest.xml
o Classes.dex

Raw File Size
191.5 KB
185.9 KB

19.7 KB
13.8 KB
8 KB
3.2 KB
2.6 KB
2.4 KB
1.1 KB
429 B

Compare with previous APK...

Download Size% of Total Download ...

185.2 KB
46.5 KB
18.5 KB
13.1KB

7.6 KB
3.1KB
2.5 KB
2.3 KB
1.1 KB
407 B

66.1% I
16.6% l
6.6% |

4.7% |

2.7% |

1.1%

0.9%

0.8%

0.4%

0.1%

OEBPS/Image00214.jpg
CommonGestures

onSingleTapConfirmed

OEBPS/Image00334.jpg
S ﬂ Infer Constralnts v m 26
@ +

J
t.& f§'|='

OEBPS/Image00455.jpg
com.ebookfrenzy.instantapp (version 1.0)

@ Raw File Size: 1.2 MB, Download Size: 1.2 MB Compare with previous APK...
File Raw File Size Download Size% of Total Download...
1l base-debug.apk 1.4 MB 1.1MB 99.7% I
o Classes.dex 989.8 KB 908.9 KB 77.9% [l
=res 195.1 KB 188.7KB 16.2% [l
,resources.arsc 184.8 KB 46.3 KB 4% |
META-INF 19.2 KB 18 KB 1.5%
« AndroidManifest.xml 1011 B 101MB 0.1%
1y myfeature-debug.apk 4.4 KB 3.7KB 0.3%
META-INF 1.3 KB 1.2KB 0.1%
o Classes.dex 1.1KB 11KB 0.1%
« AndroidManifest.xml 8218 821B 0.1%
=res 393 B 393 B 0%

,resources.arsc 864 B 193 B 0%

OEBPS/Image00217.jpg

OEBPS/Image00339.jpg
¥His00
MyWebView

WebView

OEBPS/Image00216.jpg
Device File Explorer k- 2 |

[i¥ Emulator Nexus_5X_API_26_2 Android 8.0.0, AP| 26
Name Permissions ‘ Date j Size
cwe TWWAIWAIWA 1909~ 14791 19.VUV "o
mnt drwxr-xr-x 2017-07-24 13:16 2208B
oem drwxr-xr-x 1969-12-3119:00 40 B
proc dr-xr-xr-x 2017-07-24 13:16 oB
root drwx------ 2017-04-18 20:57 40B
sbin drwxr-x--- 1969-12-3119:00 120 B
?sdcard Irwxrwxrwx 1969-12-3119:00 21B
Alarms drwxrwx--x 2017-07-13 10:57 4 KB
Android drwxrwx--x 2017-07-13 10:58 4 KB
DCIM drwxrwx--x 2017-07-13 10:57 4 KB
Download drwxrwx--x 2017-07-13 10:57 4 KB
Movies drwxrwx--x 2017-07-13 10:57 4 KB
Music drwxrwx--x 2017-07-13 10:57 4 KB
Notifications drwxrwx--x 2017-07-13 10:57 4 KB
Pictures drwxrwx--x 2017-07-13 10:57 4 KB
Podcasts drwxrwx--x 2017-07-13 10:57 4 KB
Ringtones drwxrwx--x 2017-07-13 10:57 4 KB

gestures -rw-rw---- 2017-07-24 13:21
storage drwxr-xr-x 2017-07-24 13:17 100 B
sys dr-xr-xr-x 2017-07-24 13:16 0B

OEBPS/Image00219.jpg
» (& Gradle Scrig

sapp
» [manifests
7 lwjava
v com.ebookfrenzy.fragmentexample
‘€ = FragmentExampleActivity
com.ebookfrenzy.fragmentexample (androidTest)
com.ebookfrenzy.fragmentexample (test)

drawable
. layout

> value
Link C++ Project with Gradle

3 Cut 88X
[l Copy 3C
Copy Path £r38C

Copy as Rich Text

Copy Reference X{3C
[Paste R’V
Find Usages NF7
Find in Path... 1 38F
Replace in Path... TR

1 package com.ebookfrenz
2

3 +import ...

5

6 & public class FragmentE
7

8 @Override

9 of protected void onC
10 super.onCreate
11 setContentView

& Kotlin File/Class

Sample Data dm'ectory
= File
=, Scratch File
Directory

TN

s C++Class
e« C/C++ Source File
4 C/C++ Header File

Image Asset
' Vector Asset

OEBPS/Image00337.jpg
V1500

Explicitintent

TextView

I

ANSWER QUESTION

OEBPS/Image00458.jpg
4, [applinkingapk ~ P>

_ AndroidManifest.xml

OEBPS/Image00218.jpg
DemoApp

OEBPS/Image00338.jpg
Implicitintents

il

|

OEBPS/Image00459.jpg
Create New Module

A New Module

[E— /1
m —

Phone & Tablet Module Android Library Instant App Feature Module

e e — E—
¢ . & @

Android Wear Module Android TV Module Android Things Module Import Gradle Project

Cancel Previous m Finish

OEBPS/Image00331.jpg
MasterDetailFlow

WebView

OEBPS/Image00452.jpg
Launch Options

Launch: URL <

URL: | https://example.com/home

Launch Flags: |Options to 'am start' command

OEBPS/Image00332.jpg
MasterDetailFlow

1 eBookFrenzy = secTions Q seARcH
2 Amazon ~' \U] l\ ~‘.

€he New York imes
3 New York Times Wednesday, September 13,2017 (& Today's Paper @« Video

World US. Poliics NY. Business Opinion Tech Scence Health Sports Arts Style Food Travel Magazine

6 Die and 100

corton

Are Evacuated Senators in Search of a
From Florida Foreign Policy

. Lindsey Grahamiiiee
Nursing Home Leahy aim to ¢

foreign aid and YRt
State Department.

OEBPS/Image00453.jpg
< Appinfo

o InstantAppDemo
4 Instant app

OEBPS/Image00211.jpg
W ls00

MotionEvent

OEBPS/Image00450.jpg
1§ Android ~ O = | ¥k
- app
" manifests
% AndroidManifest.xml
& generatedJava
~ base
" manifests
% AndroidManifest.xml
! generatedJava
~res
+ instantapp
- myfeature
v [manifests
% AndroidManifest.xml
" java
com.ebookfrenzy.instantappdemo.myfeature
© InstantAppActivity
com.ebookfrenzy.instantappdemo.myfeature (androidTest)
com.ebookfrenzy.instantappdemo.myfeature (test)
[generatedJava
~res
(& Gradle Scripts
(® build.gradle (Project: InstantAppDemo)
(2 build.gradle (Module: app)
(® build.gradle (Module: base)
(2 build.gradle (Module: instantapp)
© build.gradle (Module: myfeature)
", gradle-wrapper.properties (Gradle Version)
= proguard-rules.pro (ProGuard Rules for myfeature)
L1gradle.properties (Project Properties)
(2 settings.gradle (Project Settings)
“.1local.properties (SDK Location)

(
(
(
(

OEBPS/Image00210.jpg
Q% ®E ¥ A

7

OEBPS/Image00330.jpg
H Configure Activity

Create New Project

Creates a new master/detail flow, allowing users to view a
collection of objects as well as details for each object. This flow
is presented using two columns on tablet-size screens and one
column on handsets and smaller screens. This template creates
two activi a master and a detail

Object Kind

Website

Object Kind Plural
| Websites|

Title

Websites

Hierarchical Parent

Other examples are 'People’, 'Books", etc.

Cancel Previous Next

OEBPS/Image00451.jpg
1

C%app v ’ f &

[Edit Configurations...

[instantapp

\”’? k=

OEBPS/Image00308.jpg
Iltem O

Subitem 0

Iltem 1

Subitem 1

Iltem 2

Subltem 2

OEBPS/Image00429.jpg

OEBPS/Image00309.jpg
CardDemo

Design-time View Attributes

srcCompat
| backgrounds/sc... v | 2 Useas set

backgrounds/scenic Browse

OEBPS/Image00302.jpg
/= android_image_1.jpg
/= android_image_2.jpg
| android_image_3.jpg
' android_image_4.jpg
' android_image_5.jpg
| android_image_6.jpg
= android_image_7.jpg
/= android_image_8.jpg
- ic_launcher_background.xml

i 25 7

s 7

OEBPS/Image00423.jpg
Easily print what matters most from
your smartphone or tablet!

HP Print Service Plugin
HP Inc.
'€ Everyone

N
(500)

Downloads ~ 1,033,6092 Productivity Similar

The plugin enables printing to many HP inkjet
and LaserJet printers.

comgepmsaiss

Hitprint

OEBPS/Image00303.jpg
Chapter One

Item one details

Chapter Two

Item two details

Chapter Three

Item three details

Chapter Four

Item four details

OEBPS/Image00424.jpg
Share via

O@® m @

Messages Print Gmail Copy to clipboard

e =+ @0

Save to Drive Add to Dropbox Hangouts

OEBPS/Image00300.jpg

OEBPS/Image00421.jpg
Allow MapDemo to
access this device's

location?

DENY ALLOW

OEBPS/Image00301.jpg

OEBPS/Image00422.jpg
P -

- N L
Gggﬁ'ﬁ;oog‘v; - Imagery ©2017 DigitalGlobéDietETof Columbia

d (@] O

(BC.GIS), USDA Farm Service Agency, Commonwealth of Virginia, U.S. Geological Survey, Sanborn, Map data 62017 Google

OEBPS/Image00306.jpg
Design-time View Attributes

Item template
< Default »

Item count

10

OEBPS/Image00427.jpg
Select a printer

Android Print Test

OEBPS/Image00307.jpg
Pl 00

Max Mendez 07:29
Lorem ipsum dolor sit amet

Theodore Duarte 07:38

Lorem ipsum dolor sit amet, consectetur

<
’
Amelia Baxter 07:44
Lorem ips dolor sit amet, consectetur
=0

Autumn Gill 07:55

Lorem ipsum dolor sit amet, consectetur

A Mackenzie Boone 08:03
Lorem ipsum dolor sit amet, consectetur
Maria Calhoun 08:17
Lorem ipsum dolor sit amet, consectetur

Rachel Pratt 08:34

Lorem ipsum dolor sit amet, consectetur

e
C Christopher Aguilar 08:45
=

Lorem ipsum dolor sit amet

Rebecca Crane 08:55

OEBPS/Image00428.jpg
WebView.

OEBPS/Image00304.jpg
ftem 0

ftem 5
ftem 6
ftem

OEBPS/Image00425.jpg
Paper size: Letter

T4 8§

OEBPS/Image00305.jpg
‘J‘x

OEBPS/Image00426.jpg
Q "4 @ 2:16

@ Save as PDF &

Copies Paper size

L Letter =
Color Orientation

Color v Portrait v
Two-sided Pages

None v All 4 v

A

topics for a fraction of the cost of buying books from a traditional publisher.

OEBPS/Image00420.jpg
API key created

Use this key in your application by passing it with the key=API_KEY parameter.

Your API key
AIzaSyCF jcwSpgbjCubSENTCF2h |]

£ Restrict your key to prevent unauthorized use in production.

CLOSE RESTRICT KEY

OEBPS/Image00319.jpg
AppBarlLayout
CollapsingToolbarLayout

‘ ImageView \ ‘ Toolbar ’

ConstraintLayout

RecyclerView

OEBPS/Image00313.jpg
@
el

o

Chapter One

Item one details

&
V.),

9
[

Chapter Two

Item two details

ol

Chapter Three

Item three details

Chapter Four

Item four details

OEBPS/Image00434.jpg
AppLinking

ADD FIND

OEBPS/Image00314.jpg
Status Bar

Y
6 Toolbar
-

Tab Bar

= EH) i]

OEBPS/Image00435.jpg
AppLinking

London Bridge

Throughout history, a number of bridges named London
Bridge have spanned the River Thames between the City

of London and Southwark, in central London. The current
crossing, which opened to traffic in 1973, is a box girder bridge
built from concrete and steel. This replaced a 19th-century
stone-arched bridge, which in turn superseded a 600-year-old
medieval structure. This was preceded by a succession

of timber bridges, the first built by the Roman founders

of London. (Wikipedia)

OEBPS/Image00311.jpg
¥l 800

Shangha
Max Mendez

Beijing

Theodore Duarte

Lagos
S Amelia Baxter
n Istanbul

OEBPS/Image00432.jpg
L@ Save as PDF

Copies: 1 Paper size:

Page1

OEBPS/Image00312.jpg
[JON] Resources

Add new resource ¥

v Sample data
Drawable Use as set

avatars

Color P
4
‘ backgrounds/scenic)% %‘ ‘0’ kF
; & F XY =&
N -
» Project Z dq! ’
4

» android

Resource name
@samplefimages

» Theme attributes

@ This sample resource will be used at design-time. Learn More.

Cancel | m

OEBPS/Image00433.jpg
= Open with AppLinking
JUSTONCE ALWAYS

Use a different app

@ Chrome

OEBPS/Image00317.jpg
ConstraintLayout

‘ AppBarlLayout

‘ Toolbar \ ‘ RecyclerView |

OEBPS/Image00438.jpg
[NON] Add URL Mapping

Basic URL Mapping
You can add or edit your URL mapping here

Host

http://www.example.com o
Path

pathPrefix |& /landmarks e How it works
Activity

com.ebookfrenzy.applinking.LandmarkActivity (app) e

Cancel Show Advanced “

OEBPS/Image00318.jpg
Chapter Four

Item four details

OEBPS/Image00439.jpg
Check URL Mapping

I http://www.example.com/landmarks/toweroflondon

This URL maps to com. kfrenzy.applinking.LandmarkActivit
Add as a test URL

OEBPS/Image00315.jpg
Status Bar

@ Toolbar

J h Flexible Space

OEBPS/Image00436.jpg
Assistant

- -l
(=iz% App Links Assistant

Android App Links enable your users to launch directly into your app when they click on URLs
that your app supports and they can also make your app content searchable.

The App Links Assistant will walk you through how to implement Android App Links below.

@ Add URL intent filters
Use the URL Mapping editor to easily add URL intent filters to your Activities.
Open URL Mapping Editor
@ Add logic to handle the intent

When the system starts the activity through the intent filter, you can use the data provided
by the intent to determine your app's response.

Select each URL-mapped activity and insert the template codes. You can then add your
own logic to handle the intent as appropriate.

Select Activity

@ Associate website

Associate your app with your website through a Digital Asset Links file.

Open Digital Asset Links File Generator

() Teston device or emulator
Test your implementation of Android App Links by simulating launching a URL on a device
or emulator.

Test App Links

OEBPS/Image00316.jpg
"4 @ 2:33

CardDemo :

\ W

OEBPS/Image00437.jpg
Android App Links Support
URL-to-Activity mappings

Use the URL Mapping table below to add, update or delete URL to Activity mappings. The URL Mapper will update your
AndroidManifest.xmi fle to include the appropriate URL intent filters.

URL Mapping
Host Path values Activity Order

©

Check URL Mapping

OEBPS/Image00430.jpg
Pl s00

CustomPrint

OEBPS/Image00310.jpg
CardDemo

N 5

Design-time View Attributes

Text

full_names v

OEBPS/Image00431.jpg
@ Save as PDF >

Copies Paper size Color
Letter > Color

Orientation Two-sided Pages

Portrait v None v Range of 4

e.g.1-5811-13
1-4,9,11-13

OEBPS/Image00084.jpg
f &V @ B &t Shortcuts | (@ Convertfromjava | 51 Fullscreen
Examples) Hello, world! » A multi-language Hello) A multi-language Hello.kt
4 Examples H

4 Hello, world!

%] Simpleggversion
Read| ame from...

Reading many names...

38 - [vm
Saveas | Arguments Run

FR

In this example, 'val' denotes a declaration of a read-only local variable,

* that is assigned an pattern matching expression.

* See http://kotlinlang.org/docs/reference/control-flow.html#when-expression

5|

A multi-language Hello 6

= - 7 fun main(args: Array<String>) {

* Amulti-language ... 8 val language = if (args.size == 0) "EN" else args[0]

9 printin(when (language) {
w 5

] An object-oriented H...

Basic syntax walk-through

else -> "Sorry, I can't greet you in $language yet"

Destructuring declarations

Delegated properties 15| ¥

Callable references
» Longer examples
» Problems

» Canvas

Kotlin Koans 0/42

Kotlin in Action
» Advent of Code # (log in)
» My programs (log in)

» Public links

rors/warnings On-the-fly type checking

{ Problems view | Console | Generated classfiles \ This demo is running on Kotlin | v.1.1.50

OEBPS/Image00083.jpg
Applications

Native Android Apps Third Party Apps

Application Framework

Window Notification View
Manager Manager System
Package (
Manager

OpenGL ES
Media
Framework

Activity
Manager

Location
Manager

Resource
Manager

Content
Providers

Libraries

SQLite WebKit
Surface
SsL SGL

Android Runtime
(ART)

Linux Kernel
Display WiFi Audio Binder (IPC)
Driver Driver Drivers | Drivers

Camera Power Process Memory
Driver Management M Management Al Management

OEBPS/Image00086.jpg
Foreground Process | Highest Priority
Visible Process

Background Process
Empty Process Lowest Priority

OEBPS/Image00085.jpg
Compilation completed successfully @ on-the-fly type checking

Welcome to Kotlin

Problems view | Console = Generated classfiles This demo is running on Kotlin v.1.1.50 ~

OEBPS/Image00088.jpg
Hierarchy: Class AppCompatActivity k- 20|
AW A 12 scope: (A~ X E R DX

v @;fh Object (java.lang)
v (B4 = Context (android.content)
v (€= ContextWrapper (android.content)
v (€= ContextThemeWrapper (android.view)
v (6 & Activity (android.app)
v (€, = ComponentActivity (androidx.core.app)
v (€ &= FragmentActivity (androidx.fragment.app)
© % AndroidSampleActivity (com.ebookfrenzy.androidsample)

[l

OEBPS/Image00087.jpg
Activity Stack

Starting Activity
Push

Z [Previous Active
3 Activity
4
Activity

.

.

.
ﬂ'? Oldest Activit
3 lest Activity |

Pop Activity exits or

Active Activity ~ |———m- User navigates

to "Previous Active
Activity"

Killed Terminated

— to free

memory

OEBPS/Image00089.jpg
Entire Lifetime

onCreate()

Visible Lifetime

o

onStart())(—(onRestart())

Y

| onRestorelnstanceState() l

onResume()

| onSavelnstanceState() |

onPause()

(Foreground Lifetime

\

A

~

onDestroy()

OEBPS/Image00080.jpg
fab.setOnClickListener { view :View! =>
Snackbar.make(view, "Replace with your own action", FfEYSA%:N:.LENGTH_LONG)

.setAction("Action", null).show() Documentation for Snackbar 2

} 73 i, design-26.1.0 &
android.support.design.widget

public final class Snackbar
override fun onCreateOptionsMenu(menu: Menu): Boolean {...} extends android.support.design.widget.BaseTransientBottomBar<Snackba

Snackbars provide lightweight feedback about an operation. They show a brief
message at the bottom of the screen on mobile and lower left on larger devices.
Snackbars appear above all other elements on screen and only one can be

override fun onStop() { displayed at a time.

super.onStop()

OEBPS/Image00082.jpg
Find Sample Code
% ¥ Symbol
Qandroid.view.Menu
v Found results (72 results)
7 Android Developers
v google/iosched
[ltemActivity.java (4 results)
[ProductListActivity.java (3 results)
[ScheduleActivity.java (3 results)

ﬂ Gradle build finished in 2s 134ms (yesterday 3:54 PM)

241
242
243
244
245
246
247
248
249
250
251

public boolean onPrepareOptionsMenu(Menu menu) {
mAvatar = menu.findItem(R.id.menu_avatar);
if (AccountUtils.hasActiveAccount(this)) {
showAvatar();

return super.onPrepareOptionsMenu(menu);

@verride
public boolean nnCreatertmnsHenu(Henu menu) {

B

8 a

OEBPS/Image00081.jpg
: @ @ Reformat File: AndroidSampleActivity.java
Scope: Optional:
Only VCS changed text Optimize imports

o Selected text Rearrange code

Whole file

OEBPS/Image00095.jpg
Logcat E- 2

[T Emulator Nexus_5X_API_26 Android 8.0.0, API 26 com.ebookfrenzy.statechange (41041) Verbose o Regex | LifeCycle B

= 09-08 16:53:24.775 4041-4041/com.ebookfrenzy.statechange I/StateChange: onCreate
09-08 16:53:24.776 4041-4041/com.ebookfrenzy.statechange I/StateChang
[¥ 09-08 16:53:24.778 4041-4041/com.ebookfrenzy.statechange I/StateChang

OEBPS/Image00094.jpg
A [ERapp~ | & 1& &

layout (En ‘app’ (*R) &_samble.m

OEBPS/Image00097.jpg
"1 800

My App
BUTTON BUTTON
[checkBox [checkBox
[checkBox [checkBox

OEBPS/Image00096.jpg
Component Tree ﬁ,. 1~

7%, ConstraintLayout

OEBPS/Image00099.jpg
LinearLayout TableLayout
‘ Button ’ ‘ Button ’ TableRow TableRow

‘ CheckBox CheckBox

‘ CheckBox

‘ CheckBox

OEBPS/Image00098.jpg
ConstraintLayout

LinearLayout

TableRow

TableRow

TableLayout

OEBPS/Image00091.jpg
¥ 100

OEBPS/Image00090.jpg
® © ® stateChangeActivity [~/Documents/Books/Android_Studio_3.2/PRODUCTION/AndroidStudio3.2Samples/StateChangeActivity] -

= StateChangeActivity) s app) s src) B main) i res) Cnlayout) &, Ciagp - B ¢ % 0 @ b 0 8 B L GEQ
§ W andr © - @ StatechangeActivity ikt % | content_state_changexm e
v 2
E v mamp et Q# 1€ 10, ODhewss- m2s- » O ® @0 1|5
S Cres) ule
- [, Commen b TextView °- W o0 5 A T H
» U5 generatedJava Text ' Button é
L) = Recyclerview
G » (@ Gradle Scripts
® widgets | (5 cfragment>
sl e s I
S Containers =@ Switch
H goa
3 pm— e
“\ ConstraintLayout
H Ab TextView- “Hello World:
H
)
2 © g
E—— g
H g
é Design | Test H
Wren i5ia S 100
] Gradie build finished in1 s 191 ms (a minute ago) :

OEBPS/Image00093.jpg
[BON] Create New Logcat Filter

+ - Filter Name: | LifeCycle |
Specify one or several filtering parameters:
Log Tag: Q- StateChange [x) Regex
Log Message: Q- Regex

Package Name: Q- com.ebookfrenzy.statechange @ Regex

PID: [l]

Log Level: Verbose

? Cancel m

OEBPS/Image00092.jpg
{55 Emulator Nexus_5X_APL26 Android 8.0.0, API 26 . | No Debuggable Processes °_. Verbose [Show only selected application [

. 09-08 16:47:00.009 1319-1393/? D/hwcomposer: hw_composer sent 5 syncs in 60s

OEBPS/Image00069.jpg
‘> activity_android_sample.xm|

Goew N e

Design

‘o stringsxml

android: layout_width="natch_parent" ¥
android: theme="@style/AppTheme.AppBarOverlay">
<android.support.v7.widget.Toolbar
androi "@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="7attr/actionBarSize"
andr ound="?attr/colorPrimary’
y pupOverlay"ll,
</android.support.design.widget.AppBarLayout>
<include layout="@layout/content_android_sample"/>
<android_sunnart desion widnet. FloatinaActionRitton
Text
&> content_android_sample.xm|
| android. support. cnnstraint.ConstraintLayout_\
4
om/apk/res/andfic
ittp: //schenus android.com/tools"
"http://schemas.android. com/apk/res-auto"
andnu.d ayout_width="match_parent"
android:layout_height="match_parent"
app:layout_behavior="android.support.design.widget.Apf
‘tools:showIn="@layout/activity_android_sample"
tool renzy.androi 0l
android:background="#ff2438">

2o
BGRRESom~a

15

Design

<TextView
android:layout_width="wrap_content"
android:lavout heiaht="wran content"

Text

(6 AndroidSampleActivity.kt

of

0 ef

AndroidSampleActivity || onCreate() || fab. setOnClickListener{.

package
~import .
class An

over

}

over

¥

com. ebookfrenzy.androidsample
droidSampleActivity : AppCompatActivity() {
ride fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R. layout.activity_android_sample)
setSupportActionBar(toolbar)

fab,setOnClickListener { view ->

Snackbar.make(view, “Replace with your own act

.setAction("Action", null).show()

ride fun onCreateOptionsMenu(menu: Menu): Boolean
// Inflate the menu; this adds items to the actio
menuInflater.inflate(R.menu.menu_android_sample,
return true

override fun onOptionsItemSelected(item: MenuItem): B

// Handle action bar item clicks here. The action
// automatically handle clicks on the Home/Up but
// as you specify a parent activity in AndroidMan.
return when(item.itemId) {

R.id.action_settings -> true

else -> super.onOptionsItemSelected(item)

v

OEBPS/Image00062.jpg
Allow USB debugging?
The computer's RSA key fingerprint is:
6E:BF:56:13:95:F8:9B:7E:12:CF:C5:67

|:| Always allow from this computer

CANCEL

OK

OEBPS/Image00183.jpg
152 ¥

OEBPS/Image00061.jpg
©

USB debugging connected
Touch to disable USB debugging.

OEBPS/Image00182.jpg
Toggle Aspect Ratio ConstraintJ

»

152 v -0 0104 v

~
~

4]

50

OEBPS/Image00064.jpg
[BON) Select Deployment Target

Connected Devices
@ HTC Nexus 9 (Android 7.1.1, API 25)

Available Virtual Devices

Nexus 5X APl 26

Create New Virtual Device

(2) Cancel m

OEBPS/Image00185.jpg
[0 Nexus4~ =P~

OEBPS/Image00063.jpg
A [ERapp~ | & 1& &

layout (En ‘app’ (*R) &_sample.X|

OEBPS/Image00184.jpg
WoAdred BB R

v lzapp
» 1 manifests
v java

© Java Class

2 (i T Kotlin File/Class
> hzres LDk Gt Rrojectwith Gradle & Android resource file
» (@ Gradle Scrip) cut %x ™ Android resource directory
I3 Copy sc ™ Sample Data directory
Copy Path ogc | # Fie
Copy as Rich Text =, Scratch File O8N
Copy Reference oec [Package
¥ Peste #V 5 Cre Class
Find Usages F7 | @ C/C++ Source File
Find in Path... 0%F & C/C++ Header File
:enpllace in Path... mtmb Vi
st ' Vector Asset
REECS * | & singleton
Add to Favorites > -
Edit File Templates...
Show Image Thumbnails onT | i
= AIDL >
Reformat Code }st e [# Gallery...
Optimize Imports X0 W Androld Auto > . — - -
elete... roi ivity (Requires minSdk >=
Delet Bl s rois » | 7 Android TV Activity (R Sdk >=21)
= Android Things Empty Activity (Requires minSdk >= 24)
Ly in ' y -~ Fragment >
P Run ‘Tests in ‘com.ebookfrenzy.layo... ar il Freg = Android Things Peripheral Activity (Requires minSdk >= 24)
4% Debug 'Tests in 'com.ebookfrenzy.layo..." ~0p | '# Google b= Basic Activity
Testsin" i Other =
il Run 'Tests in ‘com.ebookfrenzy.layo...' with Coverage : Servi::e > | = Biank wear Acuviy (Requires minsck >= 22)
[Create 'Tests in ‘com. # Ul » _ Bottom Navigation Activity
Local History Ry e 5 vity
& synchronize 'layoutsample’ 1 : ‘)’(V:fe‘ : = | ogin Activity
-
Reveal in Finder i Resourcs Bindle = Master/DetailFlow
3 Navigation Drawer Activity
(@ Compare With... %D = Scrolling Activity

= Settings Activity
= Tabbed Activity

© Create Gist...

OEBPS/Image00066.jpg
| Analysis completed

2errors found
3 warnings found

1) findViewByld (R.id.fab);

OEBPS/Image00187.jpg
[JeX J Resources

Q Add new resource ¥
v Sample data
Drawable P Name: galaxys6 Default
avatars

Color PNG

backgrounds/scenic

~ Project

n ic_launcher

. ic_launcher_background

_launcher_foreground

° ic_launcher_round

» android

» Theme attributes @drawable/galaxys6
= galaxys6.png

Cancel m

OEBPS/Image00065.jpg
(G AndroidSampleActivity.kt > strings.xml <> content_android_sample.xm| o

iy package com.ebookfrenzy.androidsample
2
3 +import ...

10
11 class AndroidSampleActivity : AppCompatActivity() {
12
13 eof override fun onCreate(savedInstanceState: Bundle?) {
14 super.onCreate(savedInstanceState)
15 setContentView(R. layout.activity_android_sample)
16 setSupportActionBar(toolbar)
17
18 fab.setOnClickListener { view —>
Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)
.setAction("Action”, null).show()
27 }
= o
23
24 ol override fun onCreateOptionsMenu(menu: Menu): Boolean {
25 // Inflate the menu; this adds items to the action bar if it is present.
26 menuInflater.inflate(R.menu.menu_android_sample, menu)
27 return true
28 }
29
30 of override fun onOptionsItemSelected(item: MenuItem): Boolean {
31 // Handle action bar item clicks here. The action bar will
32 // automatically handle clicks on the Home/Up button, so long
33 // as you specify a parent activity in AndroidManifest.xml.
34 return when(item.itemId) {
35 R.id.action_settings —> true
36 else —> super.onOptionsItemSelected(item)
37 ¥
38 }
39 }

40
u Gradle build finished in 2s 134ms (47 minutes ago)

101 LF$

UTF-8%

Context: <no context>

a2 8@

OEBPS/Image00186.jpg
res
drawable

galaxys6.png

< ic_launcher_background.xml

OEBPS/Image00068.jpg
setSupportActionBar(toolbar)

fab.setOnClickListen None of the following functions can be called with the arguments supplied.

? Snackbar.make (vi
had ar.g;]%{/g“(:z; e make(View, CharSequence, Int) defined in android.support.design.widget.Snackbar > —
} e make(View, Int, Int) defined in android.support.design.widget.Snackbar

OEBPS/Image00189.jpg
Pl s00

LayoutSample

Samsung Galaxy S6 <§ ED

N
ImageView

OEBPS/Image00067.jpg
';' expected
Cannot resolve symbol 'ascx’

OEBPS/Image00188.jpg
300

LayoutSample

ImageView

OEBPS/Image00060.jpg
Debugging

USB debugging

Debug mode when USB is connected

OEBPS/Image00181.jpg
¥ 1 s.00
DemoApp

BUTTON

OEBPS/Image00180.jpg
BUTTON BUTTON BUTTON

OEBPS/Image00073.jpg
FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
fab.setOnClickListener((view) - {
Snackbar.make(view, Replace with your own action", Snackbar.LENGTH_LONG)
.setAction("Action”, null).show();

1;

OEBPS/Image00194.jpg
V500

LayoutSample

o

ImageView

S
3UY NOW PRICING DETAILS | | l | |

OEBPS/Image00072.jpg
val myButtonText: String = myString.format ()

locale: Locale, vararg args: Any?
vararg args: Any?

OEBPS/Image00193.jpg
Attributes Q & (% 1

ID | imageView

-

3
@ g o
3

JL
(D)
(50}

OEBPS/Image00075.jpg
® e
e

- M- N-N-N- N

=
& =

Override Members

M4

supportNavigateUpTo(uplntent: Intent): Unit
onCreateSupportNavigateUpTaskStack(builder: TaskStackBuilder): U
onPostCreate(savedinstanceState: Bundle?): Unit
onPrepareSupportNavigateUpTaskStack(builder: TaskStackBuilder):

= closeOptionsMenu(): Unit

setSupportProgressBarindeterminateVisibility(visible: Boolean): Unit
onStop(): Unit

m = dispatchKeyEvent(event: KeyEvent!): Boolean

m % invalidateOptionsMenu(): Unit

m = setSupportProgressBarVisibility(visible: Boolean): Unit
‘c android.support.v4.app.FragmentActivity

m

90800000060 & @ &

b

setExitSharedElementCallback(listener: SharedElementCallback!): Uni
supportPostponeEnterTransition(): Unit
requestPermissionsFromFragment(fragment: Fragment!, permissions
onPause(): Unit

onPreparePanel(featureld: Int, view: View!, menu: Menu!): Boolean
setEnterSharedElementCallback(callback: SharedElementCallback!): L
startActivityFromFragment(fragment: Fragment!, intent: Intent!, requ

= startActivityFromFragment(fragment: Fragment!, intent: Intent!, requ

b

onActivityResult(requestCode: Int, resultCode: Int, data: Intent!): Unit
onMultiWindowModeChanged(isinMultiWindowMode: Boolean): Unit
getLastCustomNonConfigurationinstance(): Any!

getLifecycle(): Lifecycle!

supportFinishAfterTransition(): Unit

Copy JavaDoc Cancel Select None “

OEBPS/Image00196.jpg
BUY NOW PRICING DETAILS

OEBPS/Image00074.jpg
aenerate

Secondary Constructor

toString()

Override Methods... ~0
Implement Methods... *I
Copyright

OEBPS/Image00195.jpg
BUY NOW PRICING) DETAILS

OEBPS/Image00077.jpg
of

override fun onCreateOptionsMenu(menu: Menu): Boolean {...}

OEBPS/Image00198.jpg
¥l 00

DemoApp

BUTTON

OEBPS/Image00076.jpg
override fun onCreateOptionsMenu(menu: Menu): Boolean {
// Inflate the menu; this adds items to the action bar if it is present.
menuInflater.inflate(R.menu.menu_android_sample, menu)
return true
%

OEBPS/Image00197.jpg
‘o activity_layout T com. 2017.09.12.13.43-11i
View Tree Q #~ 1=
v % DecorView

v MiLinearLayout
action_mode_bar_stub (ViewStub)

v O Framelayout
v % decor_content_parent (ActionBarOverlaylLayout)
¥ O content (ContentFrameLayout)
v % ConstraintLayout
M imageView (AppCompatimageView)
Ab textView (AppCompatTextView) - “Samsung Calaxy S6"
ok button (AppCompatButton) - "Buy Now"
o button2 (AppCompatButton) ci
ok button3 (AppCompatButton)
¥ 7 action_bar_container (ActionBarContainer)
v ™ action_bar (Toolbar)
Ab AppCompatTextView - “LayoutSample"
% ActionMenuView
% action_context_bar (ActionBarContextView)
74 naviaationBarBackaround (View)

ity java

Samsung Galaxy S

Properties Table

accessibility
drawing
focus

layout
measurement
methods
padding
properties

> scrolling

text
theme

Q #- -l

OEBPS/Image00079.jpg
[JON] Preferences

Q Editor > General > Code Folding
Appearance & Behavior Show code folding outline
Keymap Collapse by default:

Editor File header
General Imports
Auto Import B Documentation comments
Method bodies
Appearance

Custom folding regions
Code Completion

Code Folding XML tags

Console HTML 'style’ attribute
XML entities

Editor Tabs B

Gutter Icons
One-line methods

Postfix Completion .
Simple property accessors

SIS Inner classes
Colors & Fonts Anonymous classes
Code Style [Annotations
Inspections B "Closures" (anonymous classes implementing one method, before Java 8)
? Cancel Ap

OEBPS/Image00078.jpg
23

24

25

26 @f override fun onCreateOptionsMenu(menu: Menu): Boolean {...}

26 of override fun onCreateOptionsMenu(menu: Menu): Boolean {

27 // Inflate the menu; this adds items to the action bar if it is present.
28 menuInflater.inflate(R.menu.menu_android_sample, menu)

29 return true

30 }

OEBPS/Image00199.jpg
1254 & 0 @

KotlinLayout

OEBPS/Image00190.jpg
LayoutSample

Samsung Galaxy S6

BUY NOW PRICING DETAILS

OEBPS/Image00071.jpg
[JoN | Preferences

Q Editor > General > Code Completion
Appearance & Behavior :
Scopes Code Completion
Notifications Case sensitive completion: First letter
Quick Lists Auto-insert when only one choice on:
Path Variables Basic Completion (~Space)
Keymap Smart Type Completion (~{*Space)
Editor Sort lookup items lexicographically
General Autopopup code completion
Auto Import = Insert selected variant by typing dot, space, etc.
Appearance
et Autopopup documentation in (ms): 1000
Code Completion For explicitly invoked completion
Code Folding
Parameter Info
Console
. Autopopup in (ms): 1000
Editor Tabs

Gutter lcons Show full signatures

Postfix Completion

Cancel

OEBPS/Image00192.jpg
¥ 1 s.00

LayoutSample

@ T
Samsung Galaxy S6 §H\AMM»{®Samsung Galaxy S6 W’

OEBPS/Image00070.jpg
var_name: Strinl
overrfe w StringBuffer (java.lang)

4 % StringIndexOutOfBoundsException (java.lang)
@ % StringBuilder (kotlin.text) StringBuilder
® © StringBuilder (java.lang)

® © StringJoiner (java.util) Snackbar.LENGTH_LONG)
© © StringTokenizer (java.util)

} f® w StringCharacterIterator (java.text)
@© % StringReader (java.io)

overr © & StringWriter (java.io)

B SE A RORUALAAEREINES Lud @ Ak odfortida 1) I

£ if it is present.

OEBPS/Image00191.jpg
€+ O~ [0Nexus5~ =26+ ©AppTheme : ® Language ~
(oIS] /i 8 BTy I~ O ®E ¥ 0

LayoutSample

Samsung Galaxy S6

OEBPS/Image00048.jpg
® ¢ = A ©

-

D

Location Fingerprint
Finger 1
Cellular
TOUCH THE SENSOR
Battery
Phone

Directional pad

Microphone

Fingerprint

OEBPS/Image00169.jpg
G
a
i

n

[J Nexus 4 v = P~ © AppTheme ~

v i v

Left Edges
Horizontal Centers
Right Edges

Top Edges
Vertical Centers
Bottom Edges
Baselines

= b

g |

"
T

Horizontally
Vertically

[3] ok

e

Vertically in Parent

® Default (en-us) ~

“ Horizontally in Parent

OEBPS/Image00047.jpg
©® © I APK Installer

Installing APK...

Cancel

OEBPS/Image00168.jpg
BUTTON
E A Orgamze

5 T = oo cies

| =4 Chain » & Align Horizontal Centers

BUTTO *|« Center » | "=| Align Right Edges
I Helpers » | I Align Top Edges
4+ Align Vertical Centers
ey " 15 Align Bottom Edges
Y cut 3gx 2= Align Baselines
[Copy ®C | I
[l Paste RV
Delete £
Go to XML ¥#B
Refactor >

[Save Screenshot...

Convert to ConstraintLayout

OEBPS/Image00289.jpg
New Android Component

Configure Component
Android Studio

Creates a blank fragment that is compatible
back to API level 4.

Fragment Name: TabiFragment

Create layout XML?
Fragment Layout Name: | fragment_tab1]
 Include fragment factory metho...

Include interface callbacks?

Source Language: Kotlin

The name of the layout to create

© Fragment Name must be unique
Cancel | Previous | Next

OEBPS/Image00049.jpg
®
Fingerprint added!

Whenever you see this icon, you can use your
fingerprint for identification or to authorize
a purchase.

ADD ANOTHER

OEBPS/Image00040.jpg
>4 % GNR &

ntent_android_s, StOP ‘app' (38F2)

OEBPS/Image00161.jpg
0 @

I Add Vertical Guideline
II Add Horizontal Guideline
I Add Vertical Barrier

I=1 Add Horizontal Barrier

0O Add Group

O Add Set of Constraints
O Add Layer

OEBPS/Image00282.jpg
o activity_fab_examplexml « (@ Theme Editor

leActivityjava x| g content fob_ex
v [Nexus4 v =26 v @ Language ~ a ?
Theme

I AopTheme - Defay

(@) ® Theme parent v

AppCompat Light [Theme. AppCorfig)

colorPrimary A

' @color/colorPrimary

App bar

colorPrimaryDark
NORMAL
0 ' @color/colorPrimaryDark
DISABLED
Accent
button Kbox lor/colorAccent
android:colorBackground 6 v
| @android:color/background...
NORMAL LA
[] android:colorForeground >
DISABLED
. @android:color/foreground._...

atbutton Switch android:navigationBarColor -

OEBPS/Image00160.jpg
Organize L < Expand Horizontally
|= Align » | 1 Expand Vertically
=~ Chain >

OEBPS/Image00281.jpg
res

drawable

= ic_add_entry.png

- ic_launcher_background.xml
layout

OEBPS/Image00042.jpg

OEBPS/Image00163.jpg
25% BUTTON—)

_____ N

i8 8
HHAWWWWA— T BUTTON ~WWWMAWWHHD

OEBPS/Image00284.jpg
Item 1
Sub Item 1

Item 2
Sub Item 2

Item 3
Sub Item 3

Item 4
Sub Item 4

Item 5
Sub Item 5

Item 6
Sub Item 6

Item 7
Sub Item 7

Item 8

¥l s00

@

OEBPS/Image00041.jpg
Logcat - 2N

| [Emulator Nexus_5X_API_26 Android 8.0.0, API 26 B com.cbookfrenzy.androidsample (19607 Verbose Q- Regex Show only selecte
o e9-e8 .993 19607-19635/com. ebookfrenzy.androidsample D/OpenGLRenderer: HWUI GL Pipeline
09-08 8.156 196@7-19635/com.ebookfrenzy.androidsample I/OpenGLRenderer: TInitialized EGL, version 1.4
¥ o09-08 8.156 19607-19635/com.ebookfrenzy.androidsample D/OpenGLRenderer: Swap behavior 1
09-08 8.156 19607-19635/com.ebookfrenzy.androidsample W/OpenGLRenderer: Failed to choose config with EGL_SWAP_BEHAVIOR_PRESERVED, retrying withou
09-08 8.156 19607-19635/com.ebookfrenzy.androidsample D/OpenGLRenderer: Swap behavior @
09-08 8.157219607-19635/ com. ebookfrenzy.androidsample D/EGL_emulation: eglCreateContext: @xael46ce@: maj 2 min @ rcv 2

09-08 13:59:58.1! 9607-19635/com. ebookfrenzy.androidsample D/EGL_emulation: eglMakeCurrent: @xael46ce@: ver 2 @ (tinfo @xael12160)

[@9-08 13:59:58.163 19607:19635 D/)
SurfaceInterface::setAsyncMode: set async mode 1
19607-19635/com. ebookfrenzy.androidsample D/EGL_emulation: eglMakeCurrent: @xael46ce@: ver 2 @ (tinfo 0xaell2160)

Logcat (7 Android Profiler Terminal & 0: Messages () Eventlog [¥] Gradle Console

G # i@
4:Run 2 TODO

OEBPS/Image00162.jpg
DemoApp
<)

|=——=08=—10

OEBPS/Image00283.jpg
L 2N] Select Resource for colorAccent

Q holo_orange_light| &

Add new resource ¥

~ Project 0 ~
Name: holo_orange_light Default

¥ android

~ Theme attributes

@android:color/holo_orange_light
= #ffffbb33

Cancel m

OEBPS/Image00044.jpg
“« & 2D 0 ¢ =

d & ¥

Location

Cellular

Battery

Phone

Directional pad

Microphone

Fingerprint

Virtual sensors

Bug report

Google Play

Settings

Help

I Extended controls

GPS data point

Coordinate system Decimal

Currently reported location

GPS data playback

Delay (sec) Latitude Longitude

Longitude
22 Bﬂ-]

Latitude
37.422

Altitude (meters)

0.0

Elevation Name

OEBPS/Image00165.jpg
Component Tree - 20 o

v | ConstraintLayout
Ab textView1 - "Some sample text"
Ab textView2 - "Some more text"
Ab textView3 - "TextView"
v barrien
textView2
textViewT

OEBPS/Image00286.jpg
Item added to list

4 L |

OEBPS/Image00043.jpg
Power ———>|

Volume Down ——>

Rotate Right ———>

Zoom Mode ———>

Home ——>

Extended Controls ———>

j<—— Exit / Minimize

le——— Volume Up

f«—— Rotate Left

r«—— Take Screenshot

r<«—Back

<—— Overview

OEBPS/Image00164.jpg
Component Tree - 20 o

v R ConstraintLayout

Ab textView1 - "Some sample text"
Ab textView2 - "Some more text"
Ab te jowa - "TextView"

OEBPS/Image00285.jpg
& & »

FabExampleActivity

11:14:12 09/13/2017
11:14:14 09/13/2017
11:14:1509/13/2017
11:14:21 09/13/2017
11:14:23 09/13/2017
11:14:24 09/13/2017
11:14:26 09/13/2017
11:14:27 09/13/2017
11:14:28 09/13/2017

11:14:29 09/13/2017

OEBPS/Image00046.jpg
Size on Disk

4.4 GB

9.7GB

2.3GB

Duplicate

Actions t
> /S~
R

> -
Wipe Data

Y o oo

Show on Disk

View Details
Delete

Stop
B

OEBPS/Image00167.jpg
¥R 7.00
My Application

TextView3

textView1 longer

textView2

OEBPS/Image00288.jpg
CONTACTS FAVORITES RECENT MESSAGES

OEBPS/Image00045.jpg
10 Extended controls - Pixel_2_API_P:5554.
S swq,e

App Runnign Before Crash
snap_2018-07-09_14-55-28

App Runnign Before Crash ~
590 MB, captured 7/9/18 2:55 PM
File: sn3p_2018-07-09.14-55-18

» s & °uk(smvsunr

OEBPS/Image00166.jpg
" Barrier

barrierDirection | left l

v Favorite Att

visibility

OEBPS/Image00287.jpg

OEBPS/Image00280.jpg
Replace with your own action

4 L |

OEBPS/Image00059.jpg
Wi-Fi MAC address
02:00:00:44:55:66

Build number
PPP2.180412.012

OEBPS/Image00058.jpg
AndroidSample [~/Documents/Books/Androl

2/WORK/AndroldSample]
ndroidSample Bz app BN src BEmain BEres BMlayout # contentandroidsamp 4, [iapp v P 4 £

/app/src/main/res/layout/conter

% @ Android v €@ = | #- I© @ AndroidSampleActivityjava « & stringsxml « _#& content android_samplexml ©
b
2 v manp Palette Q#t- €. O~ » Q% ®® A Aibues Q & #-+1 |8
B manifests &
R v mjova Common Ab TextView ©- U8, S H ., D dollarText
& Button
v bm com.ebookfrenzy.ani Text
8 layout_width wrap_content v
H @ Androldsampleac oo HimageView
8 »> Bu com. n = layout_height wrap_content v
S Widgets ¢y s, JeRt ey s
® >
> 5 generatedJava Layouts WU ScrollView
v Bzres Containers =@ Switch s
» Ex drawable Google %0 v
v Balayout .
2 activity_android_s -°9%
2 content_android_t) - T
2 > Bamenu
£ > Ewmipmap Component Tres w1
2 v Bu values [+)
= 5 *\ ConstraintLayout
H 2 colors.xmi
s Ab resultText- "Hello Worl
o 2 dimens.xmi 5 :
L 8 button- "@string/convert”
2 strings.xml S T e (et
8 A styles.xml 2 dollarText(Number (Deci... v EditText
£ > © oradle Scripts inputType numberDecimal
&
hint @string/dollars E
e style Te) v g
g singleLine = s
o 3

Design Text
Terminal |%Buid = G:logcat e Profiler P 4:Run % TODO. @ EventLog

[Gradle build finished in 27 s 543 ms (15 minutes ago) Contat ool =

OEBPS/Image00179.jpg
Attributes Q &8
ID button]
layout_width ' match_constraint n
layout_height 'wrap_content n

<<

(16 [~)-9+ rig-(0 [+)

9>

OEBPS/Image00051.jpg
i Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ity.kt - AndroidSample - [~/Documents/Books/Kotlin_Android _Studio_3.0/WORK/AndroidSample] - Android Stu
¢d ADwm- b/ BELERERLA? Q

AndroidSample | app | src) [main | [java | £ com) o 3
< @ % - I- G AndrodSampleActiviykt 4, content android_samplexmi

s

‘ B manifests package co. ebookfrenzy.androidsample v
| najava
. ¥ 3 com.ebookfrenzy.androidsa - import ...
g 8 » ArroldsampleActity B lass AndroidSampleActivity : AppCompatActivity() {
‘g’ » £ com.ebookfrenzy.androidsa | FRSSSEAGHPESEESRIA! SRPCONSEOLE R
& » £ com.ebookfrenzy.androidsa 1+ of override fun onCreate(savedInstanceState: Bundle?) {
¥ v omeres 4 super. onCreate(savedInstanceState)
rawatia s setContentView(R. layout.activity_android_sample)

s setsupportActionBar (toolbar)
H vt layout
5 & activity_android_sample.; fab.setOnClickListener { view ->
: & content_android_sample) Snackbar.make(view, "Replace with your own action”, Snackbar.LENGTH_LONG)
© +setAction("Action”, null).show()

> tmmenu 3

» £ mipmap 3

> Eavalues

» (@ Gradie Scripts t override fun onCreate0ptionsMenu(menu: Menu): Boolean {
7/ Inflate the menu; this adds itens to the action bar if it is present.
o 26 menunflater. inflate(R.menu.nenu_android_sanple, menu)
H 27 return true
4 2 ¥
= 29
2 30 o override fun onOptionsItenSelected(item: Menultem): Boolean {
3 31 /1 Handle action bar item clicks here. The action bar will 0
& 2 77 autonatically handle clicks on the Hone/up button, 50 long o
33 71 as you specify a parent activity in AndroidManifest.xml. £

g 3 return when(iten. itenld) { g
£ 35 R.id.action_settings -> true z
& 3 else —> super.on0ptionsTtenselected(iten))
& 37 3 \g
; 3 b
I 3 0}
| 2T0D0 = @logeat e AncroidProfiler B Terminal i O: Messages G @ Eventlog [Gradle Console
I Gradie build finished in 25 134ms (2 minutes ago) » 8

OEBPS/Image00172.jpg
R— y o —
| [|16 | 16

- BUTTON | - -y

OEBPS/Image00293.jpg
" @ 1:25

TabLayoutDemo :

MY TAB MY TAB MY TAB MY TAB
NUMBER 1 I... NUMBER 2 ... NUMBER 3 I... NUMBER 4 |...

OEBPS/Image00050.jpg
0 Welcome to Android Studio

AndroidSample
in/AndroidSample

-
Android Studio
sion 3.2.1
% Start a new Android Studio project
= Open an existing Android Studio project
¥ Check out project from Version Control ~
& Profile or debug APK
 Import project (Gradle, Eclipse ADT, etc.)

£ Import an Android code sample

Configure » Get Help +

OEBPS/Image00171.jpg
Component Tree - 20 o

N RelativeLayout

@ button8 Convert view...
@ button9 Convert RelativeLayout to ConstraintLayout

@ button1 Refactor P
3 Cut 38X
= Copy #C
Paste ¥V
Delete 4
Go to XML B

OEBPS/Image00292.jpg
&8 >

TabLayoutDemo

TAB 1 ITEM TAB 2 ITEM TAB 3 ITEM TAB 4 ITEM

Tab 1 Fragment

OEBPS/Image00053.jpg
1% Build

& Build Variants

© Captures

[Device File Explorer
@) Event Log

vr Favorites

(s> Gradle

Logcat

@ Project
¥% Structure
Terminal
% TO|

[Gradle build finished in12 s

OEBPS/Image00174.jpg

OEBPS/Image00295.jpg
"4 3 1:29

TabLayoutDemo

TAB 1 ITEM TAB 2 ITEM TAB 3 ITEM TAB 4 ITEM

OEBPS/Image00052.jpg
6?" AndroidSampleActivity.kt <> content_android_sample.xml

package com.ebookfrenzy.androidsample
+import ...

class AndroidSampleActivity : AppCompatActivity() {

<

OEBPS/Image00173.jpg
BUTTON BUTTON BUTTON

OEBPS/Image00294.jpg
g @ 1:27

TabLayoutDemo

MY TABNUMBER 1 ITEM MY TAB NUMBER 2 ITEM MY TA

OEBPS/Image00055.jpg
1§ Android v © = | -2
- app
[manifests V.
[java
=res
drawable
layout

- activity_andr v
< content_and

menu v
mipmap v
values

o colors.xml

<« dimens.xml

< strings.xml

< styles.xml
(&> Gradle Scripts

Flatten Packages

Hide Empty Middle Packages
Show Members

Autoscroll to Source
Autoscroll from Source

Sort by Type

Folders Always on Top

Pinned Mode

Docked Mode
Floating Mode

Split Mode

Remove from Sidebar

V Group Tabs

Move to
Resize

OEBPS/Image00176.jpg
L1 16 T _Lie
BUTTON ~ BUTTON T BUTTON

OEBPS/Image00297.jpg
"4 @ 1:34
TabLayoutDemo

= —) -

OEBPS/Image00054.jpg
AndroidSample [~/Documents/Books/Android_Studio_3.2/WORK/AndroidSample]
AndroidSample) [app) [src) [main) 1 java) £ com) [ebookfrenzy) 1 4, Czapp v P F 0L @ [0

@ 1: Project

@ Captures

£
5
S
z
=
a

¥ 2: Favorites

1 Z: Structure
Jo10dx3 8114 901090 T

Terminal |%Build = 6:Logcat “® TODO @) Event Log
Gradle buiild finished in 12 s 29 ms (2 minutes ago) Context: <no context> > 80

OEBPS/Image00175.jpg
horizontal_bias
horizontal_chainStyle
horizontal_weight
left_creator
left_toLeftOf
right_creator
right_toLeftOf

{ 1+

none
spread

spread_inside

packed

OEBPS/Image00296.jpg
"4 |3 1:30

TabLayoutDemo

TAB1ITEM TAB2ITEM TAB3ITEM TAB4ITEM

OEBPS/Image00057.jpg
Recent Files

® Project strings.xml
& Favorites ‘€ AndroidSampleActivity.java
P Run @ activity_android_sample.xml
= Logcat
£ Structure
' Build
© Captures
O Device File Explorer
@ Event Log
@ Gradle
“® TODO
@ Profiler
Terminal
“f* Build Variants

id_Studio_:

OEBPS/Image00178.jpg
¥ 1 s.00

OEBPS/Image00299.jpg

OEBPS/Image00056.jpg
Switcher

& 0: Messages ‘o strings.xml

® 1: Project content_android_sample.xml
& 2: Favorites ndroidSampleActivity.kt
[3: Gradle Console

® C: Captures

u] evice File Explorer
vent Log

(@ G: Gradle

“2 0: TODO

I: Terminal

./Books/Kotlin_Android _Studio_3.0/WORK/AndroidSample/app/src/main/res/layout

OEBPS/Image00177.jpg
BUTTON BUTTON BUTTON

OEBPS/Image00298.jpg

OEBPS/Image00170.jpg
=] |- T
=] H
G jmm vV .V

fon Pack Horizontally
12 Pack Vertically

> Expand Horizontally
1 Expand Vertically
"™ Distribute Horizontally
1E Distribute Vertically

OEBPS/Image00291.jpg
[java
com.ebookfrenzy.tablayoutdemo
‘€ = Tab1Fragment
€ = Tab2Fragment
€ = Tab3Fragment
€ = Tab4Fragment
‘€ = TabLayoutDemoActivity
com.ebookfrenzy.tablayoutdemo (androidTest)
com.ebookfrenzy.tablayoutdemo (test)

drawable

layout

- activity_tab_layout_demo.xml
« content_tab_layout_demo.xml
« fragment_tab1.xml

« fragment_tab2.xml

s fragment_tab3.xml

« fragment_tab4.xml

OEBPS/Image00290.jpg
TabLayoutDemo

W1 800

OEBPS/Image00026.jpg
dollars

Hello World!

CONVERT

Q@
a4 o o

OEBPS/Image00147.jpg
O,
@ BUTTON (¢
O,

OEBPS/Image00268.jpg
Attributes Q & (% 1

group
id | |
checkableBehavior | single| |
visible gone
enabled o

all

OEBPS/Image00025.jpg
[BON) Extract Resource
Resource name: convert_string|
Resource value: Convert
Source set: main

File name: strings.xml

< J o)

Create the resource in directories:

values

Cancel m

OEBPS/Image00146.jpg
@ BUTTON ®
.

OEBPS/Image00267.jpg
Component Tree

|[Cimenu

gro

el

OEBPS/Image00028.jpg
s content_android_sample.xm!

Preview
<Pl version="1.0" encoding="utf-g"7> i, e.
droi i i intLayout id="http://schemas.androi §
xmlns:app="http: //s:hemas sy con/apk/res-auto" 2o
xmlns: tools="http://sch id. com/tools" a M

npp layout_} behavior= com.. google. nndroid material.appbar.AppBarLayout$Scrolli..."

tools: showIn="glayout/activity_android_sample">
<TextView

android: id="g+id/textView"

android: layout_width="wrap_content"

android: layout_height="wrap_content"

android: text="Hello World!"
app:layout_constrai ‘parent’
app:layout_constraintLeft_toLeft0Of="parent"
app:layout_constraintRight_toRight0f="parent"
app:layout_constraintTop_toTop0f="parent" />

<But:

-ap_content"
rap_content"

android ayaut_height

25 android: layout_narginTop="40dp"

26 android: text="Convert"

27 app:layout_constraintEnd_toEnd0f="parent"

28 app:layout_constraintStart_toStartOf="parent" T
29 app:layout_constraintTop_toBottom0f="@+id/textView" />
30

31 <EditText

32 android: id="g+id/dollarText"

33 android: urap. content”

34

35

36

37 i

38 android: inputType="numberDecimal"

39 app:layout_constraintBottom_toTop0f="g+id/textView"

40 app:layout_constraintEnd_toEnd0f="parent"

41 app:layout_constraintStart. tostartof-“parent" />

42

43 </androidx. constraintlayout.widget. ConstraintLayout>

#*-
Q7% ® O 0

S~ [INexusd~ =28+

180, S S

¥ 500

Hello World!

CONVERT

o
[< o o |

OEBPS/Image00149.jpg

OEBPS/Image00388.jpg
v = TableRow
Ab Product Name- "TextView"
Ab productName- "Name"

> >

OEBPS/Image00027.jpg
Attributes Q & (% 1

D Qeditred)

layout_width wrap_cbntent

layout_height wrap_content

OEBPS/Image00148.jpg
o P
® BUTTON @
e

OEBPS/Image00269.jpg
Attributes

item

id

title

icon
showAsAction
visible
enabled

checkable

Q ok - 2 |

| menu_red

| Red|

OEBPS/Image00389.jpg
RoomDemo

Product D ot assigned

Eroduct Name
Eroduct Quantit

OEBPS/Image00029.jpg
1 content_android_sample.xml| <3 Strings.xml @ Translations Editor

-+ e Show All Keys ~ Show All Locales ~ ?
Key Resource Folder Untranslatable
app_name app/src/main/res

action_settings app/src/main/res
convert_string app/src/main/res

dollars app/src/main/res

AndroidSample
Settings
Convert

dollars

Default Value

OEBPS/Image00260.jpg
Attributes
Type
Label

ID

Class

-l

fragment_second
secondFragment

SecondFragment

Set Start Destination

Arguments

Actions

Deep Links

—

OEBPS/Image00382.jpg
LinearLayout

l LinearLayout I | RecyclerView ’

ITabIeLayoutI l Button Il Button Il Button I

TableRow TableRow TableRow

| TextView Il TextView I | TextView I | TextView I | TextView I | TextView I

OEBPS/Image00383.jpg
Component Tree

“\, mai
Ab ¢ oon Organize >
+|« Center >
I Helpers >
Refactor >
3% Cut 98X

OEBPS/Image00020.jpg
Hello World!

BUTTON

(=)
« o o

OEBPS/Image00141.jpg
Attributes
ID
layout_width

layout_height

75

button

Q

wrap_content

wrap_content

205 ¥

50

P

- 2|

OEBPS/Image00262.jpg
™" o 9:53

MenuExample :

OEBPS/Image00380.jpg
Repository

Room E
Database 5
6

Entities

OEBPS/Image00140.jpg
RIITEAN—]

OEBPS/Image00261.jpg
Arguments +
message string No Message

OEBPS/Image00381.jpg
RoomDemo

Product ID Not assigned

Product Name

Product Quantity

ADD DELETE FIND

Item 0
Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Iltem 9

OEBPS/Image00022.jpg
S AN

v

[] Nexus 4 v = 28 v © NoActionBar ~

J; sgnv|-_v T o

OEBPS/Image00143.jpg
BUTTON

OEBPS/Image00264.jpg
MenuExample

Green O

OEBPS/Image00386.jpg
Component Tree - 20 o

& main(vertical)

| &= TableRow A
£ TableRow A
£ TableRow A
£ TableRow A

OEBPS/Image00021.jpg
TextView

o text
contentDescrip’

textAppearar Material

OEBPS/Image00142.jpg
Delete Connection
BUTTON

OEBPS/Image00263.jpg
"] " @ 9:56

MenuExample RED GREEN

OEBPS/Image00387.jpg
Component Tree

E main(vertical)
=i TableLayout
v = TableRow
Ab textView- "TextView"
Ab textView2- "TextView"
£ TableRow
£ TableRow

OEBPS/Image00024.jpg
1 Warning Show issues on the preview X

/. Hardcoded text Internationalization button <Button>
Hardcoded string "Demo", should use @string resource

Hardcoding text attributes directly in layout files is bad for several reasons:

* When creating configuration variations (for example for landscape or portrait)you
have to repeat the actual text (and keep it up to date when making changes)

* The application cannot be translated to other languages by just adding new
translations for existing string resources.

There are quickfixes to automatically extract this hardcoded string into a resource
lookup.

Suggested Fix

Fix Extract string resource

OEBPS/Image00145.jpg

OEBPS/Image00266.jpg
Palette Q #- I ©93% @ [
All Cast Button

Menu Item

Search Item

Switch Item

|C) Menu
Group

OEBPS/Image00384.jpg
Convert View to: LinearLayout

“\, ConstraintLayout |, ConstraintLayout

LinearLayout = CoordinatorLayout

= CoordinatorLayout UM RelativeLayout
[=] FrameLayout

Apply

Set the new type for the selected View

OEBPS/Image00023.jpg
©103% ® O A

7

OEBPS/Image00144.jpg
O Nexus4~ m P~

- O

<

OEBPS/Image00265.jpg
© MenuExampleActivity java ¢ content menu_examplexml « g activity menu examplexml <, menu menu_examplexm!

Palette ©102% @ [Atibutes Qe
Al item
id action_settings
title @string/action
icon
showAsActior never
visible e
...... enabled e
o Settings checkable &
Component Tree w1

Cimenu
= action_settings (@string,

m Viow 2l auributes & G

Design Text

OEBPS/Image00385.jpg
LinearLayout

orientation

gravity

OEBPS/Image00037.jpg
Run "3 app B b

09/08 13:52:35: Launching app
$ adb install-multiple -r -t -p com.ebookfrenzy.androidsample /Users/neilsmyth/Documents/Books/Android_Studio_3.0/AndroidSample/app/build/outputs/apk,
Split APKs installed

$ adb shell am start -n "com.ebookfrenzy.androidsample/com.ebookfrenzy.androidsample.AndroidSampleActivity" -a android.intent.action.MAIN -c android.:
Client not ready yet..Waiting for process to come online

Connected to process 15374 on device emulator-5554

2 TODO = 6:Logcat (73 Android Profiler Terminal & 0: Messages Q Event Log [E] Gradle Console

OEBPS/Image00158.jpg
>>>

OEBPS/Image00279.jpg

OEBPS/Image00036.jpg

OEBPS/Image00157.jpg

OEBPS/Image00278.jpg
e
This is a Snackbar UNDO

N ©) O

OEBPS/Image00039.jpg
® 0 Run/Debug Configurations

+ - 0 % Name: | app Share
[z Android App
'napp - Miscellaneous Debugger Profiling
Defaults
o Module: = app

Installation Options

Deploy: Default APK

Install Flags: |Options to 'pm install' command
Launch Options

Launch: Default Activity

Launch Flags: |Options to 'am start' command
Deployment Target Options

Target: Emulator

Prefer Android Virtual Device: | Nexus 5X API 26

~ Before launch: Gradle-aware Make, Instant App Provision

i Gradle-aware Make
" Instant App Provision

+

Show this page Activate tool window

? Cancel Apply “

OEBPS/Image00399.jpg
Downloads

& Drive

@gmail.com

OEBPS/Image00038.jpg
DA Qoo B 4 B b G WIR
BRI o conrigurations..|

Sampl L% app

d_sample.xml

OEBPS/Image00159.jpg
[TextView

OEBPS/Image00150.jpg
<®. @v [J Nexus4~ =P~ @AppThemevé

©- U8y s itEy =y I

OEBPS/Image00271.jpg
Yellow

Blue

OEBPS/Image00393.jpg
Component Tree - 20 o

E main (vertical)
v iEi TableLayout
v &= TableRow
Ab textView- "@string/product_id"
Ab productID- "@string/not_assigned"
= TableRow
Ab textView2- "@string/product_name"
Ab productName
v &= TableRow
Ab textView4- "@string/product_quantity"
Ab productQuantity(Number (Decimal))
v [LinearLayout(horizontal)
@ addButton- "@string/add"
@ deleteButton- "@string/delete”
@ findButton- "@string/find"
:= RecyclerView

OEBPS/Image00270.jpg
Component Tree

|[Cmenu
3 group
=/menu_red (Red)
[=/menu_green (Green)
=/menu_yellow (Yellow)
[=/menu_blue (Blue)

OEBPS/Image00394.jpg
Layout_Margin [10dp, ?, ?, ?, ?]
all 10dp
bottom
end
left
right
start
top

OEBPS/Image00031.jpg
Tuesday, Jul 10 | @ 90°F

OEBPS/Image00152.jpg

OEBPS/Image00273.jpg
TransitionDemo

BUTTON

OEBPS/Image00391.jpg
Button
style

stateListAnimat
onClick
elevation
background

backgroundTini

buttonStyle [default]
Widget.AppCompat.Button

Widget. AppCompat.Button.Borderless
Widget.AppCompat.Button.Borderless.Colored
Widget.AppCompat.Button.ButtonBar.AlertDialog
Widget.AppCompat.Button.Colored
Widget.AppCompat.Button.Small

T ——

OEBPS/Image00030.jpg
Button
style buttonStyle

stateListAnimat
onClick
elevation
background

backgroundTini

backgroundTint none

OEBPS/Image00151.jpg
DemoApp

+———@ BUTTON :)

OEBPS/Image00272.jpg
MenuExample

Green

Yellow

O ® O

Blue

OEBPS/Image00392.jpg
v = TableRow
Ab textView4- "@string/product...
Ab productQuantity(Number ... A
» [LinearLayout(horizontal)

RecyclerView

Design Text

OEBPS/Image00033.jpg
Select Hardware

Android Studio

Choose a device definition

a
Category Name - | PlayStore | size
™v Pixel XL 5.5"
Wear Pixel 5.0"
Tablet Nexus One 37"
Nexus 6P 57"
Nexus 6 5.96"

Nexus 5 L3 4.95"
Nexus 4 a.7"
New Hardware Profile Import Hardware Profiles
?

LK) Virtual Device Configuration

Resolution |

1440x2...
1080x1....
480x800
480x800
1440x2...

1440x2...

1080x1...

768x1280

Density.

560dpi
xxhdpi
hdpi
hdpi
560dpi

660dpi

xxhdpi

xhdpi

%]

Cfy Nexus 5X
10800
Size: large
Ratio: ~ long
Density: 420dpi
5.2 1920px

Clone Device...

Cancel | | Previous Finish

OEBPS/Image00154.jpg
) BUTTON

OEBPS/Image00275.jpg
¥l s00

SceneTransitions

OEBPS/Image00397.jpg
Name A

aj part 100000... animal jam .mov
= 36.87 MB Feb 4 - 197 MB Feb 5

] animal jam mo... Animal jam par...
0.95GB Feb 8 59.85MB Feb 4

OEBPS/Image00032.jpg
LK) Android Virtual Device Manager

Your Virtual Devices

A Android Studio

Type | Name Play Store | Resolution | APl Target | cpujmBl | Size on Disk | Actions
[Nexus5X API26 B 1080 x 1920: 420... 26 Android 8.0 (Goo... x86 2GB > o~

? + Create Virtual Device... (%]

OEBPS/Image00153.jpg
DemoApp

O,

4 @® BUTTON @ »
@

OEBPS/Image00274.jpg
SceneTransitions

BUTTON

OEBPS/Image00398.jpg
StorageDemo

¥Hs00

OEBPS/Image00035.jpg
[BoN Select D Target

(Connected Devices \

Nexus 5X APl 26 (Android 8. API 26)

Create New Virtual Device

O Cancel m

OEBPS/Image00156.jpg

OEBPS/Image00277.jpg
Contacts

Your contacts list is empty

ADD CONTACT

N
@

OEBPS/Image00395.jpg
[NON] New Kotlin File/Class

Name: lProductDao | 1!

<
| Cancel | m

OEBPS/Image00034.jpg
A [ERapp~ | & 1& &

layout (En ‘app’ (*R) &_sample.X|

OEBPS/Image00155.jpg
)

v -0

=)
«s{”]

> KK

—@>>»>

$s

L

OEBPS/Image00276.jpg
¥Hls00

SceneTransitions

OEBPS/Image00396.jpg
¥ s.00

RoomDemo

OEBPS/Image00390.jpg
Component Tree

E main(vertical)

» i TableLayout
[LinearLayout(horizontal)

E- 2 o

OEBPS/Image00409.jpg
1§ Android - O = | - It
v [Lapp
» [manifests
» [java
v hzres
v [mdrawable

. ic_launcher_background.xml

OEBPS/Image00407.jpg
Display

Sound B

OEBPS/Image00408.jpg
Display

Sound ' ,:,‘

OEBPS/Image00401.jpg

OEBPS/Image00402.jpg

OEBPS/Image00400.jpg
4 Drive - payloadmedia@gmail.com * now ~
1 file uploaded.
september2017.txt

ADD PEOPLE ~ SHARE LINK

OEBPS/Image00405.jpg

OEBPS/Image00406.jpg
BUTTON

OEBPS/Image00403.jpg
00:05

00:06

OEBPS/Image00404.jpg
Play Store

OEBPS/Image00418.jpg
AudioApp

RECORD

i

i

i

OEBPS/Image00419.jpg
= Google APls selectaproject ~

Register your application for Google Maps Android API in Google API
Console

Google API Console allows you to manage your application and monitor AP|
usage.

Select a project where your application will be registered
You can use one project to manage all of your applications, or you can create a different
project for each application.

Create a project v

Continue

OEBPS/Image00412.jpg

OEBPS/Image00413.jpg
¥l 800
CameraApp

RECORD VIDEO

OEBPS/Image00410.jpg

OEBPS/Image00411.jpg
i

ra

OEBPS/Image00416.jpg
. Allow
PermissionDemo to
record audio? -

DENY ALLOW

OEBPS/Image00417.jpg
>
]

"] 4 @ 1:21
< Appinfo

PermissionDemo
Installed

UNINSTALL FORCE STOP

App notifications

Storage
1.82 MB used in internal storage

Data usage
No data used

OEBPS/Image00414.jpg
Ace Hardware
ACE

needs access to

& Identity v
9 Location v
. Phone v
B Photos/Media/Files v
g Camera »:
W Wi-Fi connection information o s

OEBPS/Image00415.jpg
. Allow
PermissionDemo to

record audio?

DENY ALLOW

OEBPS/Image00507.jpg
Android Studio 3.2
Development

Essentials

Kotlin Edition

OEBPS/Image00509.jpg
Android Studio 3.2
Development
Essentials

Kotlin Edition

OEBPS/Image00506.jpg
1§ Android v
» [manifests
» [java
> Bzres

v (& Gradle Sgrints

& (® build.gradle (Project: DemoApp) 2

II|gradle wrapper. propertles (Gradle Version)
= proguard-rules.pro (ProGuard Rules for app)
ugradle.properties (Project Properties)
(& settings.gradle (Project Settings)
ulocal.properties (SDK Location)

OEBPS/Image00500.jpg
- M

X0 ® o B 2 um@so

©

0

All applications

App releases

Android Instant Apps

Artifact ibrary

Device catalog

App signing

Store listing

Content rating

Pricing & distribution

In-app products

Translation service

Services & APl

opumization tips

DRAFT Why cant| publsh?

u MyDemoTest (D Draft

Instant App relcascs.

Manage your instant app's APKS, drollout Jease, or development L

Instant app production 'MANAGE PRODUCTION

@ Add Instant App APKs to make your instant app available to your users.

Instant app pre-release MANAGE

@ ‘Add Instant App APKs to make your instant app available for pre-release testing.

Instant app development MANAGE

@ Add Instant App APKs to make your instant app available to your testers.

OEBPS/Image00501.jpg
/ B
B
. ®
v P
Create release
You can prepare, revew, and then publish the version of your app you want o make avaiable o users of the Play Stoe.
Manage testers
Choose how to run your testing program. Lea STOP TEST
Choose a testing method Closed test using testers lists v
Users CREATE LIST
After you create a list, for Closed Testing with any of your

Actve. Listname Number of users

Optin URL p pps/i ing/4701663916131600842

Share this opt-n link with your testers.

OEBPS/Image00504.jpg
® B
Class
android
Jjava
com
org
© float[]
© int[]
€ longl]

Load Proguard mappings... @ This dex file defines 2142 classes with 16751 methods, and references 22365 methods.

Defined Methods
16727

24

Referenced Methods
21813

503

28

18

1
1
1

Size

2.3 MB
12 KB
36.3 KB
434 B
208B
208B
208B

OEBPS/Image00505.jpg
BB Google Play Console App signin O search forsops 2+ 00
& Allapplications
loases
9. Aoproloase o . i
© Androld Instant Apps. ¥ PEPKTOOL °
. 2
(8 Artitact library Hibola: .

jar pepk.jar Keyst:

1 private_key_path --

7] Device catalog

3. Upload your encrypted app sianing private key.

B swrelisting 2 repsionneprvatekey ()
© Comentreting Generate and reaister your new upload public key
4
@ Fricing & distribution
s
B in-app roducts e T T
S Tanstaton serica . pload ey o rgitr it Googe
2 UPLOAD PUBLIC KEY CERTIFICATE °
Services & APl
Enrolln Google Play App Signing
Q Optimization tips (1] Clicking ENROLL willresult in the following:

« Transfer of your app signing key to Google.

anol @

OEBPS/Image00502.jpg
| GRS
v Caapp
» C maitets
> Bljea
v are
» 3 drawable
v Ellayout
55 activity_my_demo_appxmi
» Elmenu

(@ settings.gradle (Project Settings)
[t local.properties (SDK Location)

OEBPS/Image00503.jpg
unknown (version unknown)

@ APK size: 1.1 MB, Download Size: 1.1 MB Compare with previous APK...
File Raw File Size Download Size% of Total Download size
v [u base 1MB 1MB 96.8%
v Bu dex 752.4 KB 751.2 KB 69.3% [
o Classes.dex 752.4 KB 751.2 KB 69.3% [N
216.3 KB 216.2KB 20%
81.5 KB 811KB 7.5%
663 B 663B 0.1%
»> BEroot 95B 958 0%
» [META-INF 34.6 KB 341KB 3.1%]|

> BundleConfig.pb 135 B 135 B 0%

