

www.it-ebooks.info

Python Data

Visualization Cookbook

Over 60 recipes that will enable you to learn how to

create attractive visualizations using Python's most

popular libraries

Igor Milovanović

BIRMINGHAM - MUMBAI

www.it-ebooks.info

Python Data Visualization Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1191113

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-336-7

www.packtpub.com

Cover Image by Gorkee Bhardwaj (afterglowpictures@gmail.com)

www.it-ebooks.info

Credits

Author

Project Coordinator

Igor Milovanović

Rahul Dixit

Reviewers

Proofreaders

Tarek Amr

Amy Johnson

Simeone Franklin

Lindsey Thomas

Jayesh K. Gupta

Indexer

Kostiantyn Kucher

Mariammal Chettiyar

Kenneth Emeka Odoh

Graphics

Acquisition Editor

Abhinash Sahu

James Jones

Production Coordinator

Lead Technical Editor

Shantanu Zagade

Ankita Shashi

Cover Work

Technical Editors

Shantanu Zagade

Pratik More

Amit Ramadas

Ritika Singh

Copy Editors

Brandt D'Mello

Janbal Dharmaraj

Deepa Nambiar

Kirti Pai

Laxmi Subramanian

www.it-ebooks.info

About the Author

Igor Milovanović is an experienced developer with a strong background in Linux system and software engineering. He has skills in building scalable data-driven distributed software-rich systems.

He is an Evangelist for high-quality systems design who holds strong interests in software architecture and development methodologies. He is always persistent on advocating methodologies that promote high-quality software, such as test-driven development, one-step builds, and continuous integration.

He also possesses solid knowledge of product development. Having field experience and official training, he is capable of transferring knowledge and communication flow from business to developers and vice versa.

I am most grateful to my fiance for letting me spend endless hours on the work instead with her and for being an avid listener to my endless book monologues. I want to also thank my brother for always being my strongest supporter. I am thankful to my parents for letting me develop myself in various ways and become the person I am today.

I could not write this book without enormous energy from open source community that developed Python, matplotlib, and all libraries that we have used in this book. I owe the most to the people behind all these projects. Thank you.

www.it-ebooks.info

About the Reviewers

Tarek Amr achieved his postgraduate degree in Data Mining and Information Retrieval from the University of East Anglia. He has about 10 years' experience in Software Development.

He has been volunteering in Global Voices Online (GVO) since 2007, and currently he is the local ambassador of the Open Knowledge Foundation (OKFN) in Egypt. Words such as Open Data, Government 2.0, Data Visualisation, Data Journalism, Machine Learning, and Natural Language Processing are like music to his ears.

Tarek's Twitter handle is @gr33ndata and his homepage is

http://tarekamr.appspot.com/.

Jayesh K. Gupta is the Lead Developer of Matlab Toolbox for Biclustering Analysis (MTBA).

He is currently an undergraduate student and researcher at IIT Kanpur. His interests lie in the field of pattern recognition. His interests also lie in basic sciences, recognizing them as the means of analyzing patterns in nature. Coming to IIT, he realized how this analysis is being augmented by Machine Learning algorithms with various diverse applications. He believes that augmenting human thought with machine intelligence is one of the best ways to advance human knowledge. He is a long time technophile and a free-software Evangelist. He usually goes by the handle, rejuvyesh online. He is also an avid reader and his books can be checked out at Goodreads. Checkout his projects at Bitbucket and GitHub. For all links visit http://

home.iitk.ac.in/~jayeshkg/. He can be contacted at a2z.jayesh@gmail.com.

www.it-ebooks.info

Kostiantyn Kucher was born in Odessa, Ukraine. He received his Master's degree in Computer Science from Odessa National Polytechnic University in 2012. He used Python as well as Matplotlib and PIL for Machine Learning and Image Recognition purposes.

Currently, Kostiantyn is a PhD student in Computer Science specializing in Information Visualization. He conducts his research under the supervision of Prof. Dr. Andreas Kerren
 with the ISOVIS group at the Computer Science Department of Linnaeus University (Växjö, Sweden).

Kenneth Emeka Odoh performs research on state of the art Data Visualization techniques. His research interest includes exploratory search where the users are guided to their search results using visual clues.

Kenneth is proficient in Python programming. He has presented a Python conference talk at Pycon, Finland in 2012 where he spoke about Data Visualization in Django to a packed audience.

He currently works as a Graduate Researcher at the University of Regina, Canada.

He is a polyglot with experience in developing applications in C, C++, Python, and Java programming languages.

When Kenneth is not writing source codes, you can find him singing at the Campion College chant choir.

www.it-ebooks.info

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

f

Fully searchable across every book published by Packt

f

Copy and paste, print and bookmark content

f

On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.it-ebooks.info

Table of Contents

Preface 1

Chapter 1: Preparing Your Working Environment

5

Introduction 5

Installing matplotlib, NumPy, and SciPy

6

Installing virtualenv and virtualenvwrapper

8

Installing matplotlib on Mac OS X

10

Installing matplotlib on Windows

11

Installing Python Imaging Library (PIL) for image processing

12

Installing a requests module

14

Customizing matplotlib's parameters in code

14

Customizing matplotlib's parameters per project

16

Chapter 2: Knowing Your Data

19

Introduction 19

Importing data from CSV

20

Importing data from Microsoft Excel files

22

Importing data from fixed-width datafiles

25

Importing data from tab-delimited files

27

Importing data from a JSON resource

28

Exporting data to JSON, CSV, and Excel

31

Importing data from a database

36

Cleaning up data from outliers

40

Reading files in chunks

46

Reading streaming data sources

48

Importing image data into NumPy arrays

50

Generating controlled random datasets

56

Smoothing the noise in real-world data

64

www.it-ebooks.info

Table of Contents

Chapter 3: Drawing Your First Plots and Customizing Them

71

Introduction

72

Defining plot types – bar, line, and stacked charts

72

Drawing a simple sine and cosine plot

78

Defining axis lengths and limits

81

Defining plot line styles, properties, and format strings

84

Setting ticks, labels, and grids

89

Adding a legend and annotations

92

Moving spines to the center

95

Making histograms

96

Making bar charts with error bars

99

Making pie charts count

101

Plotting with filled areas

103

Drawing scatter plots with colored markers

105

Chapter 4: More Plots and Customizations

109

Introduction 109

Setting the transparency and size of axis labels

110

Adding a shadow to the chart line

113

Adding a data table to the figure

116

Using subplots

118

Customizing grids

121

Creating contour plots

125

Filling an under-plot area

128

Drawing polar plots

131

Visualizing the filesystem tree using a polar bar

134

Chapter 5: Making 3D Visualizations

139

Introduction 139

Creating 3D bars

139

Creating 3D histograms

143

Animating in matplotlib

146

Animating with OpenGL

150

ii

www.it-ebooks.info

Table of Contents

Chapter 6: Plotting Charts with Images and Maps

157

Introduction

157

Processing images with PIL

158

Plotting with images

164

Displaying an image with other plots in the figure

168

Plotting data on a map using Basemap

172

Plotting data on a map using Google Map API

177

Generating CAPTCHA images

183

Chapter 7: Using Right Plots to Understand Data

189

Introduction 189

Understanding logarithmic plots

190

Understanding spectrograms

193

Creating a stem plot

198

Drawing streamlines of vector flow

201

Using colormaps

205

Using scatter plots and histograms

210

Plotting the cross-correlation between two variables

217

Importance of autocorrelation

220

Chapter 8: More on matplotlib Gems

225

Introduction 225

Drawing barbs

225

Making a box and a whisker plot

229

Making Gantt charts

232

Making errorbars

237

Making use of text and font properties

240

Rendering text with LaTeX

246

Understanding the difference between pyplot and OO API

250

Index

257

iii

www.it-ebooks.info

Table of Contents

iv

www.it-ebooks.info

Preface

The best data is the data that we can see and understand. As developers, we want to create and build the most comprehensive and understandable visualizations. It is not always simple; we need to find the data, read it, clean it, massage it, and then use the right tool to visualize it. This book explains the process of how to read, clean, and visualize the data into information with straight and simple (and not so simple) recipes.

How to read local data, remote data, CSV, JSON, and data from relational databases are all explained in this book.

Some simple plots can be plotted with a simple one-liner in Python using matplotlib, but doing more advanced charting requires knowledge of more than just Python. We need to understand the information theory and human perception aesthetics to produce the most appealing visualizations.

This book will explain some practices behind plotting with matplotlib in Python, statistics used, and usage examples for different charting features we should use in an optimal way.

This book is written and the code is developed on Ubuntu 12.03 using Python 2.7, IPython 0.13.2, virtualenv 1.9.1, matplotlib 1.2.1, NumPy 1.7.1, and SciPy 0.11.0.

What this book covers

Chapter 1
 , Preparing Your Working Environment
 , covers a set of installation recipes and advices on how to install the required Python packages and libraries on your platform.

Chapter 2
 , Knowing Your Data
 , introduces you to common data formats and how to read and write them, be it CSV, JSON, XSL, or relational databases.

Chapter 3
 , Drawing Your First Plots and Customizing Them
 , starts with drawing simple plots and covers some of the customization.

Chapter 4
 , More Plots and Customizations
 , follows up from previous chapter and covers more advanced charts and grid customization.

www.it-ebooks.info

Preface

Chapter 5
 , Making 3D Visualizations
 , covers three-dimensional data visualizations such as 3D bars, 3D histograms, and also matplotlib animations.

Chapter 6
 , Plotting Charts with Images and Maps
 , covers image processing, projecting data onto maps, and creating CAPTCHA test images.

Chapter 7
 , Using Right Plots to Understand Data
 , covers explanations and recipes on some more advanced plotting techniques such as spectrograms and correlations.

Chapter 8
 , More on matplotlib Gems
 , covers a set of charts such as Gantt charts, box plots, and whisker plots, and also explains how to use LaTeX for rendering text in matplotlib.

What you need for this book

For this book, you will need Python 2.7.3 or a later version installed on your operating system.

This book was written using Ubuntu 12.03's Python default version (2.7.3).

Other software packages used in this book are IPython, which is an interactive Python environment that is very powerful, and flexible. This can be installed using package managers for Linux-based OSes or prepared installers for Windows and Mac OSes.

If you are new to Python installation and software installation in general, it is very much recommended to use prepackaged scientific Python distributions such as Anaconda, Enthought Python Distribution, or Python(X,Y).

Other required software mainly comprises of Python packages that are all installed using the Python installation manager, pip, which itself is installed using Python's easy_install setup tool.

Who this book is for

Python Data Visualization Cookbook
 is for developers who already know about Python programming in general. If you have heard about data visualization but don't know where to start, this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data.

You will need to know some general programming concepts, and any kind of programming experience will be helpful. However, the code in this book is explained almost line by line. You don't need math for this book; every concept that is introduced is thoroughly explained in plain English, and references are available for further interest in the topic.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.

2

www.it-ebooks.info

Preface

Code words in text are shown as follows: "We packed our little demo in class DemoPIL, so that we can extend it easily, while sharing the common code around the demo function, run_fixed_filters_demo."

A block of code is set as follows:

def _load_image(self, imfile):

self.im = mplimage.imread(imfile)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

tidy up tick labels size

all_axes = plt.gcf().axes

for ax in all_axes:

for ticklabel in ax.get_xticklabels() + ax.get_yticklabels():

ticklabel.set_fontsize(10)

Any command-line input or output is written as follows:

$ sudo python setup.py install

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "We then set up a label for the stem plot and the position of baseline, which defaults to 0."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and mention the book title via the subject of your message.

3

www.it-ebooks.info

Preface

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any aspect of the book, and we will do our best to address it.

4

www.it-ebooks.info

1

Preparing Your Working

Environment

In this chapter, we will cover the following recipes:

f

Installing matplotlib, NumPy, and SciPy

f

Installing virtualenv and virtualenvwrapper

f

Installing matplotlib on Mac OS X

f

Installing matplotlib on Windows

f

Installing Python Imaging Library (PIL) for image processing

f

Installing a requests module

f

Customizing matplotlib's parameters in code

f

Customizing matplotlib's parameters per project

Introduction

This chapter introduces the reader to the essential tooling and installation and configuration of them. This is a necessary work and common base for the rest of the book. If you have never used Python for data and image processing and visualization, it is advised not to skip this chapter. Even if you do skip it, you can always return to this chapter in case you need to install some supporting tool or verify what version you need to support the current solution.

www.it-ebooks.info

Preparing Your Working Environment

Installing matplotlib, NumPy, and SciPy

This chapter describes several ways of installing matplotlib and required dependencies under Linux.

Getting ready

We assume that you already have Linux (preferably Debian/Ubuntu or RedHat/SciLinux) installed and Python installed on it. Usually, Python is already installed on the mentioned Linux distributions and, if not, it is easily installable through standard means. We assume that Python 2.7+ Version is installed on your workstation.

Almost all code should work with Python 3.3+ Versions, but because most operating systems still deliver Python 2.7 (some even Python 2.6) we decided to write the Python 2.7 Version code. The differences are small, mainly in version of packages and some code (xrange should be substituted with range in Python 3.3+).

We also assume that you know how to use your OS package manager in order to install software packages and know how to use a terminal.

Build requirements must be satisfied before matplotlib can be built.

matplotlib requires NumPy, libpng, and freetype as build dependencies. In order to be able to build matplotlib from source, we must have installed NumPy. Here's how to do it: Install NumPy (at least 1.4+, or 1.5+ if you want to use it with Python 3) from http://www.numpy.org/.

NumPy will provide us with data structures and mathematical functions for using it with large datasets. Python's default data structures such as tuples, lists, or dictionaries are great for insertions, deletions, and concatenation.

NumPy's data structures support "vectorized" operations and are very efficient for use and for executions. They are implemented with Big Data in mind and rely on C implementations that allow efficient execution time.

SciPy, building on top of NumPy, is the de facto standard's scientific and numeric toolkit for Python comprising great selection of special functions and algorithms, most of them actually implemented in C and Fortran, coming from the well-known Netlib repository (see http://www.netlib.org).

6

www.it-ebooks.info

Chapter 1

Perform the following steps for installing NumPy:

1. Install Python-NumPy package:

$ sudo apt-get install python-numpy

2. Check the installed version:

$ python -c 'import numpy; print numpy.__version__'

3. Install the required libraries:

�

libpng 1.2: PNG files support (requires zlib)

�

freetype 1.4+: True type font support

$ sudo apt-get install build-dep python-matplotlib

If you are using RedHat or variation of this distribution (Fedora, SciLinux, or CentOS) you can use yum to perform same installation:

$ su -c 'yum-builddep python-matplotlib'

How to do it...

There are many ways one can install matplotlib and its dependencies: from source, from precompiled binaries, from OS package manager, and with prepackaged python distributions with built-in matplotlib.

Most probably the easiest way is to use your distribution's package manager. For Ubuntu that should be:

in your terminal, type:

$ sudo apt-get install python-numpy python-matplotlib python-scipy
 If you want to be on the bleeding edge, the best option is to install from source. This path comprises a few steps: Get the source, build requirements, and configure, compile, and install.

Download the latest source from code host www.github.com by following these steps: $ cd ~/Downloads/

$ wget https://github.com/downloads/matplotlib/matplotlib/matplotlib-1.2.0.tar.gz

$ tar xzf matplotlib-1.2.0.tar.gz

$ cd matplotlib-1.2.0

$ python setup.py build

$ sudo python setup.py install

7

www.it-ebooks.info

Preparing Your Working Environment

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you

purchased this book elsewhere, you can visit http://www.packtpub.

com/support and register to have the files e-mailed directly to you.

How it works...

We use standard Python Distribution Utilities, known as Distutils, to install matplotlib from source code. This procedure requires us to previously install dependencies, as we already explained in the Getting ready
 section of this recipe. The dependencies are installed using the standard Linux packaging tools.

There's more...

There are more optional packages that you might want to install depending on what your data visualization projects are about.

No matter what project you are working on, we recommend installing IPython—an Interactive Python shell that supports PyLab mode where you already have matplotlib and related packages, such as NumPy and SciPy, imported and ready to play with! Please refer to IPython's official site on how to install it and use it—it is, though, very straightforward.

Installing virtualenv and virtualenvwrapper

If you are working on many projects simultaneously, or even just switching between them frequently, you'll find that having everything installed system-wide is not the best option and can bring problems in future on different systems (production) where you want to run your software. This is not a good time to find out that you are missing a certain package or have versioning conflicts between packages that are already installed on production system; hence, virtualenv.

virtualenv is an open source project started by Ian Bicking
 that enables a developer to isolate working environments per project, for easier maintenance of different package versions.

For example, you inherited legacy Django website based on Django 1.1 and Python 2.3, but at the same time you are working on a new project that must be written in Python 2.6. This is my usual case—having more than one required Python version (and related packages) depending on the project I am working on.

8

www.it-ebooks.info

Chapter 1

virtualenv enables me to easily switch to different environments and have the same package easily reproduced if I need to switch to another machine or to deploy software to a production server (or to a client's workstation).

Getting ready

To install virtualenv, you must have workable installation of Python and pip. Pip is a tool for installing and managing Python packages, and it is a replacement for easy install. We will use pip through most of this book for package management. Pip is easily installed, as root executes the following line in your terminal:

easy_install pip

virtualenv by itself is really useful, but with the help of virtualenvwrapper, all this becomes easy to do and also easy to organize many virtual environments. See all the features at http://virtualenvwrapper.readthedocs.org/en/latest/#features.

How to do it...

By performing the following steps you can install the virtualenv and virtualenvwrapper tools: 1. Install virtualenv and virtualenvwrapper:

$ sudo pip virtualenv

$ sudo pip virtualenvwrapper

Create folder to hold all our virtual environments and export

the path to it.

$ export VIRTENV=~/.virtualenvs

$ mkdir -p $VIRTENV

We source (ie. execute) shell script to activate the wrappers

$ source /usr/local/bin/virtualenvwrapper.sh

And create our first virtual environment

$ mkvirtualenv virt1

2. You can now install our favorite package inside virt1:

(virt1)user1:~$ pip install matplotlib

3. You will probably want to add the following line to your ~/.bashrc file: source /usr/loca/bin/virtualenvwrapper.sh

Few useful and most frequently used commands are as follows:

f

mkvirtualenv ENV: This creates virtual environment with name ENV and activates it

f

workon ENV: This activates the previously created ENV

f

deactivate: This gets us out of the current virtual environment

9

www.it-ebooks.info

Preparing Your Working Environment

Installing matplotlib on Mac OS X

The easiest way to get matplotlib on Mac OS X is to use prepackaged python distributions such as Enthought Python Distribution (EPD). Just go to the EPD site and download and install the latest stable version for your OS.

In case you are not satisfied with EPD or cannot use it for other reasons such as versions distributed with it, there is a manual (read: harder) way of installing Python, matplotlib, and its dependencies.

Getting ready

We will use the Homebrew project that eases installation of all software that Apple did not install on your OS, including Python and matplotlib. Under the hood, Homebrew is a set of Ruby and Git that automate download and installation. Following these instructions should get the installation working. First, we will install Homebrew, and then Python, followed by tools such as virtualenv, then dependencies for matplotlib (NumPy and SciPy), and finally matplotlib. Hold on, here we go.

How to do it...

1. In your Terminal paste and execute the following command:

ruby <(curl -fsSkL raw.github.com/mxcl/homebrew/go)

After the command finishes, try running brew update or brew doctor to verify that installation is working properly.

2. Next, add the Homebrew directory to your system path, so the packages you install using Homebrew have greater priority than other versions. Open ~/.bash_profile (or /Users/[your-user-name]/.bash_profile) and add the following line to the end of file:

export PATH=/usr/local/bin:$PATH

3. You will need to restart the terminal so it picks a new path. Installing Python is as easy as firing up another one-liner:

brew install python --framework --universal

This will also install any prerequisites required by Python.

4. Now, you need to update your path (add to the same line):

export PATH=/usr/local/share/python:/usr/local/bin:$PATH

5. To verify that installation worked, type python --version at the command line, you should see 2.7.3 as the version number in the response.

10

www.it-ebooks.info

Chapter 1

6. You should have pip installed by now. In case it is not installed, use easy_install to add pip:

$ easy_install pip

7. Now, it's easy to install any required package; for example, virtualenv and virtualenvwrapper are useful:

pip install virtualenv

pip install virtualenvwrapper

8. Next step is what we really wanted to do all along—install matplotlib: pip install numpy

brew install gfortran

pip install scipy

Mountain Lion users will need to install the development version

of SciPy (0.11) by executing the following line:

pip install -e git+https://github.com/scipy/

scipy#egg=scipy-dev

9. Verify that everything is working. Call Python and execute the following commands: import numpy

print numpy.__version__

import scipy

print scipy.__version__

quit()

10. Install matplotlib:

pip install matplotlib

Installing matplotlib on Windows

In this recipe, we will demonstrate how to install Python and start working with matplotlib installation. We assume Python was not previously installed.

Getting ready

There are two ways of installing matplotlib on Windows. The easier way is by installing prepackaged Python environments such as EPD, Anaconda and Python(x,y). This is the suggested way to install Python, especially for beginners.

11

www.it-ebooks.info

Preparing Your Working Environment

The second way is to install everything using binaries of precompiled matplotlib and required dependencies. This is more difficult as you have to be careful about the versions of NumPy and SciPy you are installing, as not every version is compatible with the latest version of matplotlib binaries. The advantage in this is that you can even compile your particular versions of matplotlib or any library as to have the latest features, even if they are not provided by authors.

How to do it...

The suggested way of installing free or commercial Python scientific distributions is as easy as following the steps provided on the project's website.

If you just want to start using matplotlib and don't want to be bothered with Python versions and dependencies, you may want to consider using the Enthought Python Distribution (EPD).

EPD contains prepackaged libraries required to work with matplotlib and all the required dependencies (SciPy, NumPy, IPython, and more).

As usual, we download Windows Installer (*.exe) that will install all the code we need to start using matplotlib and all recipes from this book.

There is also a free scientific project Python(x,y) (http://code.google.com/p/

pythonxy/) for Windows 32-bit system that contains all dependencies resolved, and is an easy (and free!) way of installing matplotlib on Windows. Because Python(x,y) is compatible with Python modules installers, it can be easily extended with other Python libraries. No Python installation should be present on the system before installing Python(x,y).

Let me shortly explain how we would install matplotlib using precompiled Python, NumPy, SciPy, and matplotlib binaries. First, we download and install standard Python using official MSI Installer for our platform (x86 or x86-64). After that, download official binaries for NumPy and SciPy and install them first. When you are sure that NumPy and SciPy are properly installed, then we download the latest stable release binary for matplotlib and install it by following the official instructions.

There's more...

Note that many examples are not included in the Windows installer. If you want to try the demos, download the matplotlib source and look in the examples subdirectory.

Installing Python Imaging Library (PIL) for

image processing

Python Imaging Library (PIL) enables image processing using Python, has an extensive file format support, and is powerful enough for image processing.

12

www.it-ebooks.info

Chapter 1

Some popular features of PIL are fast access to data, point operations, filtering, image resizing, rotation, and arbitrary affine transforms. For example, the histogram method allows us to get statistics about the images.

PIL can also be used for other purposes, such as batch processing, image archiving, creating thumbnails, conversion between image formats, and printing images.

PIL reads a large number of formats, while write support is (intentionally) restricted to the most commonly used interchange and presentation formats.

How to do it...

The easiest and most recommended way is to use your platform's package managers.

For Debian/Ubuntu use the following commands:

$ sudo apt-get build-dep python-imaging

$ sudo pip install http://effbot.org/downloads/Imaging-1.1.7.tar.gz
 How it works...

This way we are satisfying all build dependencies using apt-get system but also installing the latest stable release of PIL. Some older versions of Ubuntu usually don't provide the latest releases.

On RedHat/SciLinux:

yum install python-imaging

yum install freetype-devel

pip install PIL

There's more...

There is a good online handbook, specifically, for PIL. You can read it at http://www.pythonware.com/library/pil/handbook/index.htm, or download the PDF version from http://www.pythonware.com/media/data/pil-handbook.pdf.

There is also a PIL fork, Pillow, whose main aim is to fix installation issues. Pillow can be found at http://pypi.python.org/pypi/Pillow and it is easy to install.

On Windows, PIL can also be installed using a binary installation file. Install PIL in your Python site-packages by executing .exe from http://www.pythonware.com/products/pil/.

Now, if you want PIL used in virtual environment, manually copy the PIL.pth file and the PIL

directory at C:\Python27\Lib\site-packages to your virtualenv site-packages directory.

13

www.it-ebooks.info

Preparing Your Working Environment

Installing a requests module

Most of the data that we need now is available over HTTP or similar protocol, so we need something to get it. Python library requests makes that job easy.

Even though Python comes with the urllib2 module for work with remote resources and supporting HTTP capabilities, it requires a lot of work to get the basic tasks done.

Requests module brings new API that makes the use of web services seamless and pain free.

Lot of the HTTP 1.1 stuff is hidden away and exposed only if you need it to behave differently than default.

How to do it...

Using pip is the best way to install requests. Use the following command for the same: $ pip install requests

That's it. This can also be done inside your virtualenv if you don't need requests for every project or want to support different requests versions for each project.

Just to get you ahead quickly, here's a small example on how to use requests: import requests

r = requests.get('http://github.com/timeline.json')

print r.content

How it works...

We sent the GET HTTP request to a URI at www.github.com that returns a JSON-formatted timeline of activity on GitHub (you can see HTML version of that timeline at https://github.com/timeline). After response is successfully read, the r object contains content and other properties of the response (response code, cookies set, header metadata, even the request we sent in order to get this response).

Customizing matplotlib's parameters in code

The Library we will use the most throughout this book is matplotlib; it provides the plotting capabilities. Default values for most properties are already set inside the configuration file for matplotlib, called.rc file. This recipe describes how to modify matplotlib properties from our application code.

14

www.it-ebooks.info

Chapter 1

Getting ready

As we already said, matplotlib configuration is read from a configuration file. This file provides a place to set up permanent default values for certain matplotlib properties, well, for almost everything in matplotlib.

How to do it...

There are two ways to change parameters during code execution: using the dictionary of parameters (rcParams) or calling the matplotlib.rc() command. The former enables us to load already existing dictionary into rcParams, while the latter enables a call to a function using tuple of keyword arguments.

If we want to restore the dynamically changed parameters, we can use matplotlib.

rcdefaults() call to restore the standard matplotlib settings.

The following two code samples illustrate previously explained behaviors: Example for matplotlib.rcParams:

import matplotlib as mp

mpl.rcParams['lines.linewidth'] = 2

mpl.rcParams['lines.color'] = 'r'

Example for the matplotlib.rc() call:

import matplotlib as mpl

mpl.rc('lines', linewidth=2, color='r')

Both examples are semantically the same. In the second sample, we define that all subsequent plots will have lines with line width of 2 points. The last statement of the previous code defines that the color of every line following this statement will be red, unless we override it by local settings. See the following example:

import matplotlib.pyplot as plt

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2 * np.pi * t)

make line red

plt.rcParams['lines.color'] = 'r'

plt.plot(t,s)

c = np.cos(2 * np.pi * t)

make line thick

15

www.it-ebooks.info

Preparing Your Working Environment

plt.rcParams['lines.linewidth'] = '3

plt.plot(t,c)

plt.show()

How it works...

First, we import matplotlib.pyplot and NumPy to allow us to draw sine and cosine graphs. Before plotting the first graph, we explicitly set line color to red using plt.

rcParams['lines.color'] = 'r'.

Next, we go to the second graph (cosine function), and explicitly set line width to 3 points using plt.rcParams['lines.linewidth'] = '3'.

If we want to reset specific settings, we should call matplotlib.rcdefaults().

Customizing matplotlib's parameters per

project

This recipe explains where the various configuration files are that matplotlib uses, and why we want to use one or the other. Also, we explain what is in these configuration files.

Getting ready

If you don't want to configure matplotlib as the first step in your code every time you use it (as we did in the previous recipe), this recipe will explain how to have different default configurations of matplotlib for different projects. This way your code will not be cluttered with configuration data and, moreover, you can easily share configuration templates with your co-workers or even among other projects.

How to do it...

If you have a working project that always uses the same settings for certain parameters in matplotlib, you probably don't want to set them every time you want to add a new graph code.

Instead, what you want is a permanent file, outside of your code, which sets defaults for matplotlib parameters.

matplotlib supports this via its matplotlibrc configuration file that contains most of the changeable properties of matplotlib.

16

www.it-ebooks.info

Chapter 1

How it works...

There are three different places where this file can reside and its location defines its usage.

They are:

f

Current working directory: This is where your code runs from. This is the place to customize matplotlib just for your current directory that might contain your current project code. File is named matplotlibrc.

f

Per user .matplotlib/matplotlibrc: This is usually in user's $HOME directory (under Windows, this is your Documents and Settings directory). You can find out where your configuration directory is using the matplotlib.get_configdir() command. Check the next command.

f

Per installation configuration file: This is usually in your python site-packages.

This is a system-wide configuration, but it will get overwritten every time you reinstall matplotlib; so it is better to use per user configuration file for more persistent customizations. Best usage so far for me was to use this as a default template if I mess up my user's configuration file or if I need fresh configuration to customize for a different project.

The following one-liner will print the location of your configuration directory and can be run from shell.

$ python -c 'import matplotlib as mpl; print mpl.get_configdir()'

The configuration file contains settings for:

f

axes: Deals with face and edge color, tick sizes, and grid display.

f

backend: Sets the target output: TkAgg and GTKAgg.

f

figure: Deals with dpi, edge color, figure size, and subplot settings.

f

font: Looks at font families, font size, and style settings.

f

grid: Deals with grid color and line settings.

f

legend: Specifies how legends and text inside will be displayed.

f

lines: It checks for line (color, style, width, and so on) and markers settings.

f

patch: Patches are graphical objects that fill 2D space, such as polygons and circles; set linewidth, color, antialiasing, and so on.

f

savefig: There are separate settings for saved figures. For example, to make rendered files with a white background.

f

text: This looks for text color, how to interepret text (plain versus latex markup) and similar.

f

verbose: It checks how much information matplotlib gives during runtime: silent, helpful, debug, and debug-annoying.

f

xticks and yticks: These set the color, size, direction, and labelsize for major and minor ticks for x and y axes.

17

www.it-ebooks.info

Preparing Your Working Environment

There's more...

If you are interested in more details for every mentioned setting (and some that we did not mention here), the best place to go is the website of matplotlib project where there is up-to-date API documentation. If it doesn't help, user and development lists are always good places to leave questions. See the back of this book for useful online resources.

18

www.it-ebooks.info

2

Knowing Your Data

In this chapter we will cover the following recipes:

f

Importing data from CSV

f

Importing data from Microsoft Excel files

f

Importing data from fixed-width datafiles

f

Importing data from tab-delimited files

f

Importing data from a JSON resource

f

Exporting data to JSON, CSV, and Excel

f

Importing data from a database

f

Cleaning up data from outliers

f

Reading files in chunks

f

Reading streaming data sources

f

Importing image data into NumPy arrays

f

Generating controlled random datasets

f

Smoothing the noise in real-world data

Introduction

This chapter covers basics about importing and exporting data from various formats. Also covered are ways of cleaning data, such as normalizing values, adding missing data, live data inspection, and usage of some similar tricks to get data correctly prepared for visualization.

www.it-ebooks.info

Knowing Your Data

Importing data from CSV

In this recipe we will work with the most common file format that one will encounter in the wild world of data, CSV. It stands for Comma Separated Values, which almost explains all the formatting there is. (There is also a header part of the file, but those values are also comma separated.)

Python has a module called csv that supports reading and writing CSV files in various dialects. Dialects are important because there is no standard CSV and different applications implement CSV in slightly different ways. A file's dialect is almost always recognizable by the first look into the file.

Getting ready

What we need for this recipe is the CSV file itself. We will use sample CSV data that you can download from ch02-data.csv.

We assume that sample datafiles is in the same folder as the code reading it.

How to do it...

The following code example demonstrates how to import data from a CSV file. We will: 1. Open the ch02-data.csv file for reading.

2. Read the header first.

3. Read the rest of the rows.

4. In case there is an error, raise an exception.

5. After reading everything, print the header and the rest of the rows.

import csv

filename = 'ch02-data.csv'

data = []

try:

with open(filename) as f:

reader = csv.reader(f)

header = reader.next()

data = [row for row in reader]

except csv.Error as e:

print "Error reading CSV file at line %s: %s" % (reader.line_

num, e)

sys.exit(-1)

20

www.it-ebooks.info

Chapter 2

if header:

print header

print '=================='

for datarow in data:

print datarow

How it works...

First, we import the csv module in order to enable access to required methods. Then, we open the file with data using the with compound statement and bind it to the object f. The context manager with statement releases us of care about the closing resource after we are finished manipulating those resources. It is a very handy way of working with resource-like files because it makes sure that the resource is freed (for example, that the file is closed) after the block of code is executed over it.

Then, we use the csv.reader() method that returns the reader object, allowing us to iterate over all rows of the read file. Every row is just a list of values and is printed inside the loop.

Reading the first row is somewhat different as it is the header of the file and describes the data in each column. This is not mandatory for CSV files and some files don't have headers, but they are a really nice way of providing minimal metadata about datasets. Sometimes though, you will find separate text or even CSV files that are just used as metadata, describing the format and additional data about the data.

The only way to check what the first line looks like is to open the file and visually inspect it (for example, see the first few lines of the file). This can be done efficiently on Linux using bash commands such as head as follows:

$ head some_file.csv

During iteration of data, we save the first row in header, while we add every other row to the data list.

Should any errors occur during reading, csv.reader() will generate an error that we can catch and print the helpful message to the user, in order to help detection of errors.

There's more...

If you want to read about the background and reasoning for the csv module, the PEP-defined document CSV File API
 is available at http://www.python.org/dev/peps/pep-0305/.

If we have larger files that we want to load, it's often better to use well-known libraries, such as NumPy's loadtxt(), that cope better with large CSV files.

21

www.it-ebooks.info

Knowing Your Data

The basic usage is simple as shown in the following code snippet:

import numpy

data = numpy.looadtxt('ch02-data.csv', dtype='string', delimiter=',') Note that we need to define a delimiter to instruct NumPy to separate our data as appropriate. The function numpy.loadtxt() is somewhat faster than the similar function numpy.genfromtxt(), but the latter can cope better with missing data, and you are able to provide functions to express what is to be done during the processing of certain columns of loaded datafiles.

Currently, in Python 2.7.x, the csv module doesn't support Unicode, and you must explicitly convert the read data into UTF-8 or ASCII printable. The official Python CSV documentation offers good examples on how to resolve data encoding issues.

In Python 3.3 and later versions, Unicode support is default and there are no such issues.

Importing data from Microsoft Excel files

Although Microsoft Excel supports some charting, sometimes you need more flexible and powerful visualization and need to export data from existing spreadsheets into Python for further use.

A common approach to importing data from Excel files is to export data from Excel into CSV-formatted files and use the tools described in the previous recipe to import data using Python from the CSV file. This is a fairly easy process if we have one or two files (and have Microsoft Excel or OpenOffice.org installed), but if we are automating a data pipe for many files (as part of an ongoing data processing effort), we are not in a position to manually convert every Excel file into CSV. So, we need a way to read any Excel file.

Python has decent support for reading and writing Excel files through the project www.python-excel.org. This support is available in the form of different modules for reading and writing, and is platform independent; in other words, we don't have to run on Windows in order to read Excel files.

The Microsoft Excel file format changed over time, and support for different versions is available in different Python libraries. The latest stable version of XLRD is 0.90 at the time of this writing and it has support for reading .xlsx files.

22

www.it-ebooks.info

Chapter 2

Getting ready

First we need to install the required module. For this example, we will use the module xlrd.

We will use pip in our virtual environment.

$ mkvirtualenv xlrdexample

(xlrdexample)$ pip install xlrd

After successful installation, use the sample file ch02-xlsxdata.xlsx.

How to do it...

The following code example demonstrates how to read a sample dataset from a known Excel file. We will:

1. Open the file workbook.

2. Find the sheet by name.

3. Read the cells using the number of rows (nrows) and columns (ncols).

4. For demonstration purposes, we only print the read dataset.

import xlrd

file = 'ch02-xlsxdata.xlsx'

wb = xlrd.open_workbook(filename=file)

ws = wb.sheet_by_name('Sheet1')

dataset = []

for r in xrange(ws.nrows):

col = []

for c in range(ws.ncols):

col.append(ws.cell(r, c).value)

dataset.append(col)

from pprint import pprint

pprint(dataset)

23

www.it-ebooks.info

Knowing Your Data

How it works...

Let us try to explain the simple object model that xlrd uses. At the top level, we have a workbook (the Python class xlrd.book.Book) that consists of one or more worksheets (xlrd.sheet.Sheet), and every sheet has a cell (xlrd.sheet.Cell) that we can then read the value from.

We load a workbook from a file using open_workbook(), which returns the xlrd.book.

Book instance that contains all the information about a workbook, such as sheets. We access sheets using sheet_by_name(); if we need all sheets, we could use sheets(), which returns a list of the xlrd.sheet.Sheet instances. The xlrd.sheet.Sheet class has a number of columns and rows as attributes that we can use to infer ranges for our loop to access every particular cell inside a worksheet using the method cell(). There is an xrld.

sheet.Cell class, though it is not something we want to use directly.

Note that the date is stored as a floating point number and not as a separate data type, but the xlrd module is able to inspect the value and try to infer if the data is in fact a date. So we can inspect the cell type for the cell to get the Python date object. The module xlrd will return xlrd.XL_CELL_DATE as the cell type if the number format string looks like a date.

Here is a snippet of code that demonstrates this:

from datetime import datetime

from xlrd import open_workbook, xldate_as_tuple

…

cell = sheet.cell(1, 0)

print cell

print cell.value

print cell.ctype

if cell.ctype == xlrd.XL_CELL_DATE:

date_value = xldate_as_tuple(cell.value, book.datemode)

print datetime(*date_value)

This field still has issues, so please refer to the official documentation and mailing list in case you require extensive work with dates.

There's more...

A neat feature of xlrd is its ability to load only parts of the file that are required in the memory. There is an on_demand parameter that can be passed the value True while calling open_workbook so that the worksheet will only be loaded when requested. For example: book = open_workbook('large.xls', on_demand=True)

We didn't mention writing Excel files in this section, partly because there will be a separate recipe for that and partly because there is a different module for that—xlwt. You will read more about it in the Exporting data to JSON, CSV, and Excel
 recipe in this chapter.

24

www.it-ebooks.info

Chapter 2

If you need specific usage that was not covered with the module and examples explained earlier, here is a list of other Python modules on PyPi that might help you out with spreadsheets: http://pypi.python.org/pypi?:action=browse&c=377.

Importing data from fixed-width datafiles

Logfiles from events and time series datafiles are common sources for data visualizations.

Sometimes, we can read them using CSV dialect for tab-separated data, but sometimes they are not separated by any specific character. Instead, fields are of fixed widths and we can infer the format to match and extract data.

One way to approach this is to read a file line by line and then use string manipulation functions to split a string into separate parts. This approach seems straightforward, and if performance is not an issue, should be tried first.

If performance is more important or the file to parse is large (hundreds of megabytes), using the Python module struct (http://docs.python.org/library/struct.html) can speed us up as the module is implemented in C rather than in Python.

Getting ready

As the module struct is part of the Python Standard Library, we don't need to install any additional software to implement this recipe.

How to do it...

We will use a pregenerated dataset with a million rows of fixed-width records. Here's what sample data looks like:

…

207152670 3984356804116 9532

427053180 1466959270421 5338

316700885 9726131532544 4920

138359697 3286515244210 7400

476953136 0921567802830 4214

213420370 6459362591178 0546

…

This dataset is generated using code that can be found in the repository for this chapter, ch02-generate_f_data.py.

25

www.it-ebooks.info

Knowing Your Data

Now we can read the data. We can use the following code sample. We will: 1. Define the datafile to read.

2. Define the mask for how to read the data.

3. Read line by line using the mask to unpack each line into separate data fields.

4. Print each line as separate fields.

import struct

import string

datafile = 'ch02-fixed-width-1M.data'

this is where we define how to

understand line of data from the file

mask='9s14s5s'

with open(datafile, 'r') as f:

for line in f:

fields = struct.Struct(mask).unpack_from(line)

print 'fields: ', [field.strip() for field in fields]

How it works...

We define our format mask according to what we have previously seen in the datafile.

To see the file, we could have used Linux shell commands, such as head or more, or something similar.

String formats are used to define the expected layout of the data to extract. We use format characters to define what type of data we expect. So if the mask is defined as 9s15s5s, we can read that as "a string of width nine characters, followed by a string width of 15 characters, further followed by a string of five characters."

In general, c defines the character (the char type in C) or a string of length 1, s defines a string (the char[] type in C), d defines a float (the double type in C), and so on. The complete table is available on the official Python website at http://docs.python.org/

library/struct.html#format-characters.

We then read the file line by line and extract (the unpack_from method) the line according to the specified format. Because we might have extraneous spaces before (or after) our fields, we use strip() to strip every extracted field.

For unpacking, we used the object-oriented (OO) approach using the struct.Struct class, but we could have as well used the non-object approach where the line would be: fields = struct.unpack_from(mask, line)

26

www.it-ebooks.info

Chapter 2

The only difference is the usage of pattern. If we are to perform more processing using the same formatting mask, the OO approach saves us from stating that format in every call. Also, it gives us the ability to inherit the struct.Struct class in future, extending or providing additional functionality for specific needs.

Importing data from tab-delimited files

Another very common format of flat datafile is the tab-delimited file. This can also come from an Excel export but can be the output of some custom software we must get our input from.

The good thing is that usually this format can be read in almost the same way as CSV files, as the Python module csv supports so-called dialects that enable us to use the same principles to read variations of similar file formats—one of them being the tab delimited format.

Getting ready

We are already able to read CSV files. If not, please refer the Importing data from CSV

recipe first.

How to do it...

We will re-use the code from the Importing data from CSV
 recipe, where all we need to change is the dialect we are using.

import csv

filename = 'ch02-data.tab'

data = []

try:

with open(filename) as f:

reader = csv.reader(f, dialect=csv.excel_tab)

header = reader.next()

data = [row for row in reader]

except csv.Error as e:

print "Error reading CSV file at line %s: %s" % (reader.line_num, e)

sys.exit(-1)

if header:

print header

print '==================='

for datarow in data:

print datarow

27

www.it-ebooks.info

Knowing Your Data

How it works...

The dialect-based approach is very similar to what we already did in the Importing data from
 CSV
 recipe, except for the one line where we instantiate the csv reader object, giving it the parameter dialect and specifying the 'excel_tab' dialect that we want.

There's more...

A CSV-based approach will not work if the data is "dirty", that is, if there are certain lines not ending with just a new line character but that instead have additional \t (tab) markers. So we need to clean special lines separately before splitting them. The sample "dirty" tab-delimited file can be found in ch02-data-dirty.tab. The following code sample cleans data as it reads it:

datafile = 'ch02-data-dirty.tab'

with open(datafile, 'r') as f:

for line in f:

remove next comment to see line before cleanup

print 'DIRTY: ', line.split('\t')

we remove any space in line start or end

line = line.strip()

now we split the line by tab delimiter

print line.split('\t')

We see also that there is another approach—using the split('\t') function.

The advantage of using the csv module approach over split() sometimes is that we can re-use the same code for reading by just changing the dialect and detecting the dialect with the file extension (.csv and .tab) or some other method (for example, using the csv.Sniffer class).

Importing data from a JSON resource

This recipe will show us how we can read the JSON data format. Moreover, we will be using a remote resource in this recipe. It will add a tiny level of complexity to the recipe, but it will make it much more useful because, in real life, we will encounter more remote resources than local.

JavaScript Object Notation (JSON) is widely used as a platform-independent format to exchange data between systems or applications.

28

www.it-ebooks.info

Chapter 2

A resource, in this context, is anything we can read, be it a file or a URL endpoint (which can be the output of a remote process/program or just a remote static file). In short, we don't care who produced a resource and how; we just need it to be in a known format, such as JSON.

Getting ready

In order to get started with this recipe, we need the requests module installed and importable (in PYTHONPATH) in our virtual environment. We have installed this module in Chapter 1
 , Preparing Your Working Environment
 .

We also need Internet connectivity as we will be reading a remote resource.

How to do it...

The following code sample performs reading and parsing of the recent activities timeline from the GitHub (http://github.com) site. We will perform the following steps for this: 1. Define the GitHub URL to read the JSON format.

2. Get the contents from the URL using the requests module.

3. Read the content as JSON.

4. For each entry in the JSON object, read the URL value for each repository.

import requests

url = 'https://github.com/timeline.json'

r = requests.get(url)

json_obj = r.json()

repos = set()

for entry in json_obj:

try:

repos.add(entry['repository']['url'])

except KeyError as e:

print "No key %s. Skipping..." % (e)

from pprint import pprint

pprint(repos)

29

www.it-ebooks.info

Knowing Your Data

How it works...

First, we use the requests module to fetch a remote resource. This is very straightforward as the requests module offers a simple API to define HTTP verbs, so we just need to issue one get() method call. This method retrieves data and request metadata and wraps it in the Response object so we can inspect it. For this recipe, we are only interested in the Response.json() method, which automatically reads content (available at Response.

content) and parses it as JSON and loads it into the JSON object.

Now that we have the JSON object, we can process data. In order to do that, we need to understand what data looks like. We can achieve that understanding by opening the JSON

resource using our favorite web browser or command-line tool such as wget or curl.

Another way is to fetch data from IPython and inspect it interactively. We can achieve that by running our program from IPython (using %run program_name.py). After execution, we are left with all variables that the program produced. List them all using %who or %whos.

Whatever method we use, we gain knowledge about the structure of the JSON data and the ability to see what parts of that structure we are interested in.

The JSON object is basically just a Python dictionary (or if more complex, a dictionary of dictionaries) and we can access parts of it using a well-known, key-based notation. We get our list of URLs of recently updated repositories referencing entry['repository']['url'].

entry['repository']['url'] matches this section in the actual JSON file:

…

"repository" : {

...

"url" : "https://github.com/ipython/ipython",

...

},

…

We can now see how nested structures correspond to multidimensional key indexes in Python code.

There's more...

The JSON format (specified by RFC 4627; refer to http://tools.ietf.org/html/

rfc4627.html) became very popular recently, as it is more human readable than XML and is also less verbose. Hence, it's lighter in terms of the syntaxes required to transfer data. It is very popular in the web application domain as it is native to JavaScript, the language used for most of today's rich Internet applications.

30

www.it-ebooks.info

Chapter 2

The Python JSON module has more capabilities than we have displayed here; for example, we could specialize the basic JSONEncoder/JSONDecoder class to transform our Python data into JSON format. The classical example uses this approach to JSON-ify the Python built-in type for complex numbers.

For simple customization, we don't have to subclass the JSONDecoder/JSONEncoder class as some of the parameters can solve our problems.

For example, json.loads() will parse a float as the Python type float, and most of the time it will be right. Sometimes, however, the float value in the JSON file represents a price value, and this is better represented as a decimal. We can instruct the json parser to parse floats as decimal. For example, we have this JSON string:

jstring = '{"name":"prod1","price":12.50}'

This is followed by these two lines of code:

from decimal import Decimal

json.loads(jstring, parse_float=Decimal)

The preceding two lines of code will generate this output:

{u'name': u'prod1', u'price': Decimal('12.50')}

Exporting data to JSON, CSV, and Excel

While, as producers of data visualization, we are mostly using other people's data; importing and reading data are major activities. We do need to write or export data that we produced or processed, whether it is for our or others' current or future use.

We will demonstrate how to use the previously mentioned Python modules to import, export, and write data to various formats such as JSON, CSV, and XLSX.

For demonstration purposes, we are using the pregenerated dataset from the Importing data
 from fixed-width datafiles
 recipe.

Getting ready

For the Excel writing part, we will need to install the xlwt module (inside our virtual environment) by executing the following command:

$ pip install xlwt

31

www.it-ebooks.info

Knowing Your Data

How to do it...

We will present one code sample that contains all the formats that we want to demonstrate: CSV, JSON, and XLSX. The main part of the program accepts the input and calls appropriate functions to transform data. We will walk through separate sections of code, explaining its purpose.

1. Import the required modules.

import os

import sys

import argparse

try:

import cStringIO as StringIO

except:

import StringIO

import struct

import json

import csv

2. Then, define the appropriate functions for reading and writing data.

def import_data(import_file):

'''

Imports data from import_file.

Expects to find fixed width row

Sample row: 161322597 0386544351896 0042

'''

mask = '9s14s5s'

data = []

with open(import_file, 'r') as f:

for line in f:

unpack line to tuple

fields = struct.Struct(mask).unpack_from(line)

strip any whitespace for each field

pack everything in a list and add to full dataset

data.append(list([f.strip() for f in fields]))

return data

def write_data(data, export_format):

'''Dispatches call to a specific transformer and returns data

set.

Exception is xlsx where we have to save data in a file.

'''

if export_format == 'csv':

32

www.it-ebooks.info

Chapter 2

return write_csv(data)

elif export_format == 'json':

return write_json(data)

elif export_format == 'xlsx':

return write_xlsx(data)

else:

raise Exception("Illegal format defined")

3. We separately specify separate implementation for each data format (CSV, JSON, and XLSX).

def write_csv(data):

'''Transforms data into csv. Returns csv as string.

'''

Using this to simulate file IO,

as csv can only write to files.

f = StringIO.StringIO()

writer = csv.writer(f)

for row in data:

writer.writerow(row)

Get the content of the file-like object

return f.getvalue()

def write_json(data):

'''Transforms data into json. Very straightforward.

'''

j = json.dumps(data)

return j

def write_xlsx(data):

'''Writes data into xlsx file.

'''

from xlwt import Workbook

book = Workbook()

sheet1 = book.add_sheet("Sheet 1")

row = 0

for line in data:

col = 0

for datum in line:

print datum

sheet1.write(row, col, datum)

col += 1

row += 1

We have hard limit here of 65535 rows

33

www.it-ebooks.info

Knowing Your Data

that we are able to save in spreadsheet.

if row > 65535:

print >> sys.stderr, "Hit limit of # of rows in one

sheet (65535)."

break

XLS is special case where we have to

save the file and just return 0

f = StringIO.StringIO()

book.save(f)

return f.getvalue()

4. Finally, we have the main code entry point, where we parse argument-like files from the command line to import data and export it to the required format.

if __name__ == '__main__':

parse input arguments

parser = argparse.ArgumentParser()

parser.add_argument("import_file", help="Path to a fixed-width data file.")

parser.add_argument("export_format", help="Export format: json, csv, xlsx.")

args = parser.parse_args()

if args.import_file is None:

print >> sys.stderr, "You myst specify path to import

from."

sys.exit(1)

if args.export_format not in ('csv','json','xlsx'):

print >> sys.stderr, "You must provide valid export file

format."

sys.exit(1)

verify given path is accesible file

if not os.path.isfile(args.import_file):

print >> sys.stderr, "Given path is not a file: %s" %

args.import_file

sys.exit(1)

read from formated fixed-width file

data = import_data(args.import_file)

export data to specified format

to make this Unix-lixe pipe-able

we just print to stdout

print write_data(data, args.export_format)

34

www.it-ebooks.info

Chapter 2

How it works...

In one broad sentence, we import the fixed-width dataset (defined in the Importing data from
 fixed-width datafiles
 recipe) and then export that to stdout so we can catch that in a file or as input to another program.

We call out the programmer from the command line giving two mandatory arguments: the input filename and the export data format (JSON, CSV, and XLSX).

If we successfully parse those arguments, we dispatch the input file reading to a function import_data(), which returns the Python data structure (list of lists) that we can easily manipulate to get to the appropriate export format.

We route our request inside the write_data() function, where we just forward a call to the appropriate function (write_csv(), for example).

For CSV, we obtain the csv.writer() instance that we use to write every line of data we iterate over.

We just return the given string as we will redirect this output from our program to another program (or just to cat in a file).

The JSON export is not required for this example, as the json module provides us with the dump() method that happily reads our Python structure. Just as for CSV, we simply return and dump this output to stdout.

The Excel export requires more code, as we need to create a more complex model of the Excel workbook and worksheet(s) that will hold the data. This activity is followed by a similar iterative approach. We have two loops, the outer one goes over every line in the source dataset iterated, while the inner one iterates over every field in the given line.

After all this, we save the Book instance into a file-like stream that we can return to stdout and use it both in read files and the files consumed by the web service.

There's more...

This, of course, is just a small set of possible data formats that we could be exporting to.

It is fairly easy to modify the behavior. Basically, two places need changes: the import and export functions. The function for import needs to change if we want to import a new kind of data source.

If we want to add a new export format, we need to first add functions that will return a stream of formatted data. Then, we need to update the write_data() function to add the new elif branch to have it call our new write_* function.

35

www.it-ebooks.info

Knowing Your Data

One thing we could also do is make this a Python package, so we can re-use it over more projects. In that case, we would like to make import more flexible and maybe add some more configuration features for import.

Importing data from a database

Very often, our work on data analysis and visualization is at the consumer end of the data pipeline. We most often use the already produced data, rather than producing the data ourselves. A modern application, for example, holds different datasets inside relational databases (or other databases), and we use these databases and produce beautiful graphs.

This recipe will show you how to use SQL drivers from Python to access data.

We will demonstrate this recipe using a SQLite database because it requires the least effort to setup, but the interface is similar to most other SQL-based database engines (MySQL and PostgreSQL). There are, however, differences in the SQL dialect that those database engines support. This example uses simple SQL language and should be reproducible on most common SQL database engines.

Getting ready

To be able to execute this recipe, we need to install the SQLite library.

$ sudo apt-get install sqlite3

Python support for SQLite is there by default, so we don't need to install anything Python related. Just fire the following code snippet in IPython to verify that everything is there: import sqlite3

sqlite3.version

sqlite3.sqlite_version

We get the output similar to this:

In [1]: import sqlite3

In [2]: sqlite3.version

Out[2]: '2.6.0'

In [3]: sqlite3.sqlite_version

Out[3]: '3.6.22'

Here, sqlite3.version gets us the version of the Python sqlite3 module, and sqlite_version returns the system SQLite library version.

36

www.it-ebooks.info

Chapter 2

How to do it...

To be able to read from the database, we need to:

1. Connect to the database engine (or the file in the case of SQLite).

2. Run the query against the selected tables.

3. Read the result returned from the database engine.

I will not try to teach SQL here, as there are many books on that particular topic. But just for clarity, we will explain the SQL query in this code sample:

SELECT ID, Name, Population FROM City ORDER BY Population DESC LIMIT 1000

ID, Name, and Population are columns (fields) of the table City from which we select data.

ORDER BY tells the database engine to sort our data by the Population column, and DESC

means descending order. LIMIT allows us to get just the first 1,000 records found.

For this example, we will use the world.sql example table, which holds the world's city names and populations. This table has more than 5,000 entries.

This is how our table looks:

First we need to import this SQL file into the SQLite database. Here's how to do it: import sqlite3

import sys

if len(sys.argv) < 2:

37

www.it-ebooks.info

Knowing Your Data

print "Error: You must supply at least SQL script."

print "Usage: %s table.db ./sql-dump.sql" % (sys.argv[0])

sys.exit(1)

script_path = sys.argv[1]

if len(sys.argv) == 3:

db = sys.argv[2]

else:

if DB is not defined

create memory database

db = ":memory:"

try:

con = sqlite3.connect(db)

with con:

cur = con.cursor()

with open(script_path,'rb') as f:

cur.executescript(f.read())

except sqlite3.Error as err:

print "Error occured: %s" % err

This reads the SQL file and executes the SQL statements against the opened SQLite db file. If we don't specify the filename, SQLite creates the database in the memory. The statements are then executed line by line.

If we encounter any errors, we catch exceptions and print the error message to the user.

After we have imported data into the database, we are able to query the data and do some processing. Here is the code to read the data from the database file: import sqlite3

import sys

if len(sys.argv) != 2:

print "Please specify database file."

sys.exit(1)

db = sys.argv[1]

try:

con = sqlite3.connect(db)

with con:

cur = con.cursor()

query = 'SELECT ID, Name, Population FROM City ORDER BY

Population DESC LIMIT 1000'

38

www.it-ebooks.info

Chapter 2

con.text_factory = str

cur.execute(query)

resultset = cur.fetchall()

extract column names

col_names = [cn[0] for cn in cur.description]

print "%10s %30s %10s" % tuple(col_names)

print "="*(10+1+30+1+10)

for row in resultset:

print "%10s %30s %10s" % row

except sqlite3.Error as err:

print "[ERROR]:", err

How it works...

First, we verify that the user has provided the database filepath. This is just a quick check that we can proceed with the rest of the code.

Then, we try to connect to the database; if that fails, we catch sqlite3.Error and print it to the user.

If the connection is successful, we obtain a cursor using con.cursor(). A cursor is an iterator-like structure that enables us to traverse records of the result set returned from a database.

We define a query that we execute over the connection and we fetch the result set using cur.fetchall(). Had we expected just one result, we would have used just fetchone().

List comprehension over cur.description allows us to obtain column names.

description is a read-only attribute and returns more than we need for just column names, so we just fetch the first item from every column's 7-item tuple.

We then use simple string formatting to print the header of our table with column names.

After that, we iterate over resultset and print every row in a similar manner.

There's more...

Databases are the most common sources of data today. We could not present everything in this short recipe, but we can suggest where to look further.

39

www.it-ebooks.info

Knowing Your Data

The official Python documentation is the first place to look for an explanation about how to work with databases. The most common databases are open source databases—such as MySQL, PostgreSQL, and SQLite—and on the other end of the spectrum, there are enterprise database systems, such as MS SQL, Oracle, and Sybase. Mostly Python has support for them and the interface is abstracted always, so you don't have to change your program if your underlying database changes, but some tweaks may be required. It depends on whether you have used the specifics of a particular database system. For example, Oracle supports a specific language PL/SQL that is not standard SQL, and some things will not work if your database changes from Oracle to MS SQL. Similarly, SQLite does not support specifics from MySQL data types or database engine types (MyISAM and InnoDB). Those things can be annoying, but having your code rely on standard SQL (http://en.wikipedia.org/wiki/

SQL:2011) will make your code portable from one database system to another.

Cleaning up data from outliers

This recipe describes how to deal with datasets coming from the real world and how to clean them before doing any visualization.

We will present a few techniques, different in essence but with the same goal, which is to get the data cleaned.

However, cleaning should not be fully automatic. We need to understand the data as given and be able to understand what the outliers are and what the data points represent before we apply any of the robust modern algorithms made to clean the data. This is not something that can be defined in a recipe because it relies on vast areas such as statistics, knowledge of the domain, and a good eye (and then some luck).

Getting ready

We will use the standard Python modules we already know about, so no additional installation is required.

In this recipe, I will introduce a new term, MAD. Median absolute deviation (MAD) in statistics represents a measure of the variability of a univariate (possessing one variable) sample of quantitative data. It is a measure of statistical dispersion. It falls into a group of robust statistics, such that it is more resilient to outliers.

How to do it...

Here's one example that shows how to use MAD to detect outliers in our data. We will perform the following steps for this:

1. Generate normally distributed random data.

2. Add in a few outliers.

40

www.it-ebooks.info

Chapter 2

3. Use the function is_outlier() to detect the outliers.

4. Plot both the datasets (x and filtered) to see the difference.

import numpy as np

import matplotlib.pyplot as plt

def is_outlier(points, threshold=3.5):

"""

Returns a boolean array with True if points are outliers and

False

otherwise.

Data points with a modified z-score greater than this

value will be classified as outliers.

"""

transform into vector

if len(points.shape) == 1:

points = points[:,None]

compute median value

median = np.median(points, axis=0)

compute diff sums along the axis

diff = np.sum((points - median)**2, axis=-1)

diff = np.sqrt(diff)

compute MAD

med_abs_deviation = np.median(diff)

compute modified Z-score

http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.

htm#Iglewicz

modified_z_score = 0.6745 * diff / med_abs_deviation

return a mask for each outlier

return modified_z_score > threshold

Random data

x = np.random.random(100)

histogram buckets

buckets = 50

Add in a few outliers

x = np.r_[x, -49, 95, 100, -100]

Keep valid data points

Note here that

"~" is logical NOT on boolean numpy arrays

filtered = x[~is_outlier(x)]

41

www.it-ebooks.info

Knowing Your Data

plot histograms

plt.figure()

plt.subplot(211)

plt.hist(x, buckets)

plt.xlabel('Raw')

plt.subplot(212)

plt.hist(filtered, buckets)

plt.xlabel('Cleaned')

plt.show()

Note that, in NumPy, the ~ operator is overloaded to operate as a logical operator, not on Boolean arrays. For example, suppose we fire up IPython in pylab mode.

$ ipython –pylab

We get:

In [1]: ~numpy.array(False)

Out[1]: True

We should see two distinct histograms, the first one showing almost nothing—except in one bucket where the biggest outlier is—and the second histogram showing diversified data buckets because we removed outliers.

42

www.it-ebooks.info

Chapter 2

Another way to identify outliers is to visually inspect your data. In order to do so, we could create scatter plots, where we could easily spot values that are out of the central swarm.

We can also make a box plot, which will display the median, quartiles above and below the median, and points that are distant to this box.

The box extends from the lower to upper quartile values of the data, with a line at the median.

The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers.

Here's an example to demonstrate that:

from pylab import *

fake up some data

spread= rand(50) * 100

center = ones(25) * 50

generate some outliers high and low

flier_high = rand(10) * 100 + 100

flier_low = rand(10) * -100

merge generated data set

data = concatenate((spread, center, flier_high, flier_low), 0)

subplot(311)

basic plot

'gx' defining the outlier plotting properties

boxplot(data, 0, 'gx')

compare this with similar scatter plot

subplot(312)

spread_1 = concatenate((spread, flier_high, flier_low), 0)

center_1 = ones(70) * 25

scatter(center_1, spread_1)

xlim([0, 50])

and with another that is more appropriate for

scatter plot

subplot(313)

center_2 = rand(70) * 50

scatter(center_2, spread_1)

xlim([0, 50])

show()

43

www.it-ebooks.info

Knowing Your Data

We can then see x-shaped markers representing outliers:

We can also see that the second plot showing a similar dataset in the scatter plot is not very intuitive because the x axis has all the values at 25 and we don't really distinguish between inliers and outliers.

The third plot, where we generated values on the x axis to be spread across the range from 0 to 50, gives us more visibility of the different values and we can see what values are outliers in terms of the y axis.

In the following code example, we see how the same data (in this example, uniformly distributed) can display itself very differently and sometimes deceptively convey some information that is not really true:

generate uniform data points

x = 1e6*rand(1000)

y = rand(1000)

figure()

44

www.it-ebooks.info

Chapter 2

crate first subplot

subplot(211)

make scatter plot

scatter(x, y)

limit x axis

xlim(1e-6, 1e6)

crate second subplot

subplot(212)

make scatter plot

scatter(x,y)

but make x axis logarithmic

xscale('log')

set same x axis limit

xlim(1e-6, 1e6)

show()

This is the resulting output:

45

www.it-ebooks.info

Knowing Your Data

What if we have a dataset with missing values? We can use NumPy loaders to compensate for missing values, or we can write code to replace existing values with the ones we need for further use.

Say we want to illustrate some dataset over the geographical map of USA and may have values for state names that are not consistent in the dataset. For example, we have values OH, Ohio, OHIO, US-OH, and OH-USA all representing the state of Ohio in the USA. What we must do in this situation is inspect the dataset manually, either loading it in a spreadsheet processor such as Microsoft Excel or OpenOffice.org Calc. Sometimes, it is easy enough to just print all the lines using Python. If the file is CSV or CSV-like, we can open it with any text editor and inspect the data directly.

After we have concluded about what is in the data, we can write Python code to group those similar values and replace them with the one value that is going to make further processing consistent. The usual way of doing this is to read in lines of the file using readlines() and use standard Python string manipulation functions to perform manipulations.

There's more...

There are special products, both commercial and non-commercial (such as OpenRefine—https://github.com/OpenRefine), that provide some automation around transformation on "dirty" live datasets.

Still, manual work is involved, depending on how noisy the data is and how great our understanding of that data is.

If you want to find out more about cleaning outliers and cleaning of data in general, look for statistical models and the sampling theory.

Reading files in chunks

Python is very good at handling reading and writing files or file-like objects. For example, if you try to load big files, say a few hundred MB, assuming you have a modern machine with at least 2 GB of RAM, Python will be able to handle it without any issue. It will not try to load everything at once, but play smart and load it as needed.

So even with decent file sizes, doing something as simple as the following code will work straight out of the box:

with open('/tmp/my_big_file', 'r') as bigfile:

for line in bigfile:

line based operation, like 'print line'

46

www.it-ebooks.info

Chapter 2

But if we want to jump to a particular place in the file or do other nonsequential reading, we will need to use the handcrafted approach and use IO functions such as seek(), tell(), read(), and next() that allow enough flexibility for most users. Most of these functions are just bindings to C implementations (and are OS-specific), so they are fast, but their behavior can vary based on the OS we are running.

How to do it...

Depending on what our aim is, processing large files can sometimes be managed in chunks. For example, you could read 1,000 lines and process them using Python standard iterator-based approaches.

import sys

filename = sys.argv[1] # must pass valid file name

with open(filename, 'rb') as hugefile:

chunksize = 1000

readable = ''

if you want to stop after certain number of blocks

put condition in the while

while hugefile:

if you want to start not from 1st byte

do a hugefile.seek(skipbytes) to skip

skipbytes of bytes from the file start

start = hugefile.tell()

print "starting at:", start

file_block = '' # holds chunk_size of lines

for _ in xrange(start, start + chunksize):

line = hugefile.next()

file_block = file_block + line

print 'file_block', type(file_block), file_block

readable = readable + file_block

tell where are we in file

file IO is usually buffered so tell()

will not be precise for every read.

stop = hugefile.tell()

print 'readable', type(readable), readable

print 'reading bytes from %s to %s' % (start, stop)

print 'read bytes total:', len(readable)

if you want to pause read between chucks

uncomment following line

#raw_input()

47

www.it-ebooks.info

Knowing Your Data

We call this code from the Python command-line interpreter, giving the filename path as the first parameter.

$ python ch02-chunk-read.py myhugefile.dat

How it works...

We want to be able to read blocks of lines for processing without reading the whole file in the memory.

We open the file and read in lines in the inner for loop. The way we move through the file is by calling next() on the file object. This function reads the line from the file and moves the file pointer to the next line. We append lines in the file_block variable during the loop execution. In order to simplify the example code, we don't do any processing but just add file_block to complete the output variable readable.

We do some printing during execution just to illustrate the current state of certain variables.

The last comment line in the while loop, raw_input(), can be uncommented and we can pause the execution and read the printed lines above it.

There's more...

This recipe is, of course, just one of the possible approaches to reading large (huge) files.

Other approaches could include specific Python or C libraries, but they all depend on what it is that we aim to do with data and how we want to process it.

Parallel approaches such as the MapReduce paradigm have become very popular recently as we get more processing power and memory for a low price.

Multiprocessing is also a feasible approach sometimes, as Python has good library support for creating and managing threads with several libraries such as multiprocessing, threading, and thread.

If processing huge files is a repeated process for a project, we suggest building your data pipeline so that every time you need data ready in a specific format on the output end, you don't have to go to the source and do it manually.

Reading streaming data sources

What if the data that is coming from the source is continuous? What if we need to read continuous data? This recipe will demonstrate a simple solution that will work for many common real-life scenarios, though it is not universal and you will need to modify it if you hit a special case in your application.

48

www.it-ebooks.info

Chapter 2

How to do it...

In this recipe, we will show you how to read an always-changing file and print the output.

We will use the common Python module to accomplish this.

import time

import os

import sys

if len(sys.argv) != 2:

print >> sys.stderr, "Please specify filename to read"

filename = sys.argv[1]

if not os.path.isfile(filename):

print >> sys.stderr, "Given file: \"%s\" is not a file" % filename with open(filename,'r') as f:

Move to the end of file

filesize = os.stat(filename)[6]

f.seek(filesize)

endlessly loop

while True:

where = f.tell()

try reading a line

line = f.readline()

if empty, go back

if not line:

time.sleep(1)

f.seek(where)

else:

, at the end prevents print to add newline, as

readline()

already read that.

print line,

How it works...

The core of the code is inside the while True: loop. This loop never stops (unless we interrupt it by pressing Ctrl
 + C
 on our keyboard). We first move to the end of the file we are reading and then we try to read a line. If there is no line, that means nothing was added to the file after we checked it using seek(). So, we sleep for one second and then try again.

If there is a nonempty line, we print that out and suppress the new line character.

49

www.it-ebooks.info

Knowing Your Data

There's more...

We might want to read the last n
 lines. We could do that by going almost to the end of the file.

We could go there by looking for the file, that is, with file.seek(filesize – N * avg_

line_len). Here, avg_line_len should be the approximation of average line length in that file (approximately 1,024). Then, we could use readlines() from that point to read line, and then print just [-N] lines from that list.

The idea from this example can be used for various solutions. For example, the input has to be a file-like object or a remote HTTP-accessible resource. Thus, one can read the input from a remote service and continuously parse it and update live charts, for example, or update the intermediate queue, buffer, or database.

One particular module is very useful for stream handling—io. It is in Python from Version 2.6, is built as a replacement for the file module, and is a default interface in Python 3.x.

In some more complex data pipelines, we will need to enable some sort of message queues, where our incoming continuous data will have to be queued for some time before we are able to accept it. This enables us, as consumers of the data, to be able to pause processing if we are overloaded. Having data on the common message bus enables other clients on the project to consume the same data and not interfere with our software.

Importing image data into NumPy arrays

We are going to demonstrate how to do image processing using Python's libraries such as NumPy and SciPy.

In scientific computing, images are usually seen as n
 -dimensional arrays. They are usually two-dimensional arrays; in our examples, they are represented as a NumPy array data structure. Therefore, functions and operations performed on those structures are seen as matrix operations.

Images in this sense are not always two-dimensional. For medical or bio-sciences, images are data structures of higher dimensions, such as 3D (having the z axis as depth or as the time axis) or 4D (having three spatial dimensions and a temporal one as the fourth dimension).

We will not be using those in this recipe.

We can import images using various techniques; they all depend on what you want to do with image. Also, it depends on the larger ecosystem of tools you are using and the platform you are running your project on.

In this recipe we will demonstrate several ways to use image processing in Python, mainly related to scientific processing and less on the artistic side of image manipulation.

50

www.it-ebooks.info

Chapter 2

Getting ready

In some examples in this recipe, we use the SciPy library, which you have already installed if you have installed NumPy. If you haven't, it is easily installable using your OS's package manager by executing the following command:

$ sudo apt-get install python-scipy

For Windows users, we recommend using prepackaged Python environments, such as EPD, that we discussed in Chapter 1
 , Preparing Your Working Environment
 .

If you want to install these using official source distributions, make sure you have installed system dependencies, such as:

f

BLAS and LAPACK: libblas and liblapack

f

C and Fortran compilers: gcc and gfortran

How to do it...

Whoever has worked in the field of digital signal processing or even attended a university course on this or a related subject must have come across Lena's image, the de facto standard image, used for demonstrating image processing algorithms.

SciPy contains this image already packed inside the misc. module, so it is really simple for us to re-use that image. This is how to read and show this image:

import scipy.misc

import matplotlib.pyplot as plt

load already prepared ndarray from scipy

lena = scipy.misc.lena()

set the default colormap to gray

plt.gray()

plt.imshow(lena)

plt.colorbar()

plt.show()

51

www.it-ebooks.info

Knowing Your Data

This should open a new window with a figure displaying Lena's image in gray tones and axes.

The color bar shows a range of values in the figure; here it shows 0—black to 255—white.

Further, we could examine this object with the following code:

print lena.shape

print lena.max()

print lena.dtype

The output for the preceding code is as follows:

(512, 512)

245

dtype('int32')

Here we see that the image is:

f

512 points wide and 512 points high

f

The max value in the whole array (that is, the image) is 254

f

Every point is represented as a little endian 32-bit long integer

52

www.it-ebooks.info

Chapter 2

We could also read in an image using Python Imaging Library (PIL), which we installed in Chapter 1
 , Preparing Your Working Environment
 .

import numpy

import Image

import matplotlib.pyplot as plt

bug = Image.open('stinkbug.png')

arr = numpy.array(bug.getdata(), numpy.uint8).reshape(bug.size[1],

bug.size[0], 3)

plt.gray()

plt.imshow(arr)

plt.colorbar()

plt.show()

We should see something similar to Lena's image as follows:

This is useful if we are already tapping into an existing system that uses PIL as their default image loader.

53

www.it-ebooks.info

Knowing Your Data

How it works...

Other than just loading the images, what we really want to do is use Python to manipulate images and process them. We want to be able to, say, load a real image that consists of RGB

channels, convert that into one channel ndarray, and later use array slicing to also zoom in to the part of the image. Here's the code to demonstrate how we are able to use NumPy and matplotlib to do that.

import matplotlib.pyplot as plt

import scipy

import numpy

bug = scipy.misc.imread('stinkbug1.png')

if you want to inspect the shape of the loaded image

uncomment following line

#print bug.shape

the original image is RGB having values for all three

channels separately. We need to convert that to greyscale image

by picking up just one channel.

convert to gray

bug = bug[:,:,0]

bug[:,:,0] is called array slicing. This NumPy feature allows us to select any part of the multidimensional array. For example, let's see a one-dimensional array:

>>> a = array(5, 1, 2, 3, 4)

>>> a[2:3]

array([2])

>>> a[:2]

array([5, 1])

>>> a[3:]

array([3, 4])

For multidimensional arrays, we separate each dimension with a comma (,). For example:

>>> b = array([[1,1,1],[2,2,2],[3,3,3]]) # matrix 3 x 3

>>> b[0,:] # pick first row

array([1,1,1])

>>> b[:,0] # we pick the first column

array([1,2,3])

54

www.it-ebooks.info

Chapter 2

Have a look at the following code:

show original image

plt.figure()

plt.gray()

plt.subplot(121)

plt.imshow(bug)

show 'zoomed' region

zbug = bug[100:350,140:350]

Here we zoom into the particular portion of the whole image. Remember that the image is just a multidimensional array represented as a NumPy array. Zooming here means selecting a range of rows and columns from this matrix. So we select a partial matrix from rows 100 to 250 and columns 140 to 350. Remember that indexing starts at 0, so the row at coordinate 100 is the 101st row.

plt.subplot(122)

plt.imshow(zbug)

plt.show()

This will be displayed as follows:

55

www.it-ebooks.info

Knowing Your Data

There's more...

For large images we recommend using numpy.memmap for memory mapping of images. This will speed up manipulating the image data. For example:

import numpy

file_name = 'stinkbug.png'

image = numpy.memmap(file_name, dtype=numpy.uint8, shape = (375, 500)) Here we load part of a large file into memory, accessing it as a NumPy array. This is very efficient and allows us to manipulate file data structures as standard NumPy arrays without loading everything into memory. The argument shape defines the shape of the array loaded from the file_name argument, which is a file-like object. Note that this is a similar concept to Python's mmap argument (http://docs.python.org/2/library/mmap.html) but is different in a very important way—NumPy's memmap attribute returns an array-like object, while Python's mmap returns a file-like object. So the way we use them is very different, yet very natural in each environment.

There are some specialized packages that just focus on image processing, for example, scikit-image (http://scikit-image.org/); this is basically a free collection of algorithms for image processing, built on top of NumPy/SciPy libraries. If you want to do edge detection, remove noise from an image, or find contours, scikit is the tool to use to look for algorithms.

The best way to start is to look at the example gallery and find the example image and code (http://scikit-image.org/docs/dev/auto_examples/).

Generating controlled random datasets

In this recipe, we will show different ways of generating random number sequences and word sequences. Some of the examples use standard Python modules, and some use NumPy/SciPy functions.

We will go into some statistics terminology, but we will explain every term so you don't have to have a statistical reference book with you while reading this recipe.

We generate artificial datasets using common Python modules. By doing so, we are able to understand distributions, variance, sampling, and similar statistical terminology. More importantly, we can use this fake data as a way to understand if our statistical method is capable of discovering models we want to discover. We can do that because we know the model in advance and verify our statistical method by applying it over our known data. In real life, we don't have that ability and there is always a percentage of uncertainty that we must assume, giving way to errors.

56

www.it-ebooks.info

Chapter 2

Getting ready

We don't need anything new installed on the system in order to exercise these examples.

Having some knowledge of statistics is useful, although not required.

To refresh our statistical knowledge, here's a little glossary we will use in this and the following chapters.

f

Distribution or probability distribution: This links the outcome of a statistical experiment with the probability of occurrence of that experiment.

f

Standard deviation: This is a numerical value that indicates how individuals vary in comparison to a group. If they vary more, the standard derivation will be big, and the opposite—if all the individual experiments are more or less the same across the whole group, the standard derivation will be small.

f

Variance: This equals the square of standard derivation.

f

Population or statistical population: This is a total set of all the potentially observable cases, for example, all the grades of all the students in the world, if we are interested in getting the student average of the world.

f

Sample: This is a subset of the population. We cannot obtain all the grades of all the students in the world, so we have to gather only a sample of data and model it.

How to do it...

We can generate a simple random sample using Python's module random. Here's an example: import pylab

import random

SAMPLE_SIZE = 100

seed random generator

if no argument provided

uses system current time

random.seed()

store generated random values here

real_rand_vars = []

pick some random values

57

www.it-ebooks.info

Knowing Your Data

real_rand_vars = [random.random() for val in xrange(SIZE)]

create histogram from data in 10 buckets

pylab.hist(real_rand_vars, 10)

define x and y labels

pylab.xlabel("Number range")

pylab.ylabel("Count")

show figure

pylab.show()

This is a uniformly distributed sample. When we run this example, we should see something similar to the following plot:

Try setting SAMPLE_SIZE to a big number (say 10000) and see how the histogram behaves.

If we wanted to have values that range not from 0 to 1, but say, from 1 to 6 (simulating single dice throws, for example), we could use random.randint(min, max); here, min and max are the lower and upper inclusive bounds respectively. If what you want to generate are floats and not integers, there is a random.uniform(min, max) function to provide that.

58

www.it-ebooks.info

Chapter 2

In a similar fashion, and using the same tools, we can generate a time series plot of fictional price growth data with some random noise.

import pylab

import random

days to generate data for

duration = 100

mean value

mean_inc = 0.2

standard deviation

std_dev_inc = 1.2

time series

x = range(duration)

y = []

price_today = 0

for i in x:

next_delta = random.normalvariate(mean_inc, std_dev_inc)

price_today += next_delta

y.append(price_today)

pylab.plot(x,y)

pylab.xlabel("Time")

pylab.xlabel("Time")

pylab.ylabel("Value")

pylab.show()

This code defines a series of 100 data points (fictional days). For every next day, we pick a random value from the normal distribution (random.normalvariate()) ranging from mean_inc to std_dev_inc and add that value to yesterday's price value (price_today).

If we wanted more control, we could use different distributions. The following code illustrates and visualizes different distributions. We will comment separate code sections as we present them. We start by importing required modules and defining a number of histogram buckets.

We also create a figure that will hold our histograms.

coding: utf-8

import random

import matplotlib

import matplotlib.pyplot as plt

SAMPLE_SIZE = 1000

59

www.it-ebooks.info

Knowing Your Data

histogram buckets

buckets = 100

plt.figure()

we need to update font size just for this example

matplotlib.rcParams.update({'font.size': 7})

To lay out all the required plots, we define a grid of six by two subplots for all the histograms.

The first plot is a normal distributed random variable.

plt.subplot(621)

plt.xlabel("random.random")

Return the next random floating point number in the range [0.0,

1.0).

res = [random.random() for _ in xrange(1, SAMPLE_SIZE)]

plt.hi

For the second plot, we plot a uniformly distributed random variable.

plt.subplot(622)

plt.xlabel("random.uniform")

Return a random floating point number N such that a <= N <= b for a

<= b and b <= N <= a for b < a.

The end-point value b may or may not be included in the range

depending on floating-point rounding in the equation a + (b-a) *

random().

a = 1

b = SAMPLE_SIZE

res = [random.uniform(a, b) for _ in xrange(1, SAMPLE_SIZE)]

plt.hist(res, buckets)

The third plot is a triangular distribution.

plt.subplot(623)

plt.xlabel("random.triangular")

Return a random floating point number N such that low <= N <= high and with the specified # mode between those bounds. The low and high bounds default to zero and one. The mode

argument defaults to the midpoint between the bounds, giving a

symmetric distribution.

low = 1

high = SAMPLE_SIZE

res = [random.triangular(low, high) for _ in xrange(1, SAMPLE_SIZE)]

plt.hist(res, buckets)

60

www.it-ebooks.info

Chapter 2

The fourth plot is a beta distribution. The condition on the parameters is that alpha and beta should be greater than zero. The returned values range between 0 and 1.

plt.subplot(624)

plt.xlabel("random.betavariate")

alpha = 1

beta = 10

res = [random.betavariate(alpha, beta) for _ in xrange(1, SAMPLE_

SIZE)]

plt.hist(res, buckets)

The fifth plot visualizes an exponential distribution. lambd is 1.0 divided by the desired mean.

It should be nonzero. (The parameter would be called lambda, but that is a reserved word in Python.) The returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

plt.subplot(625)

plt.xlabel("random.expovariate")

lambd = 1.0 / ((SAMPLE_SIZE + 1) / 2.)

res = [random.expovariate(lambd) for _ in xrange(1, SAMPLE_SIZE)]

plt.hist(res, buckets)

Our next plot is the gamma distribution, where the condition on the parameters is that alpha and beta are greater than 0. The probability distribution function is:

− x

a
 1

−

β

() x e

PDF x
 = γ (a
) a
 β

Here's the code for the gamma distribution:

plt.subplot(626)

plt.xlabel("random.gammavariate")

alpha = 1

beta = 10

res = [random.gammavariate(alpha, beta) for _ in xrange(1, SAMPLE_

SIZE)]

plt.hist(res, buckets)

61

www.it-ebooks.info

Knowing Your Data

Log normal distribution is our next plot. If you take the natural logarithm of this distribution, you'll get a normal distribution with the mean mu and the standard deviation sigma. mu can have any value, and sigma must be greater than zero.

plt.subplot(627)

plt.xlabel("random.lognormvariate")

mu = 1

sigma = 0.5

res = [random.lognormvariate(mu, sigma) for _ in xrange(1, SAMPLE_

SIZE)]

plt.hist(res, buckets)

The next plot is normal distribution, where mu is the mean and sigma is the standard deviation.

plt.subplot(628)

plt.xlabel("random.normalvariate")

mu = 1

sigma = 0.5

res = [random.normalvariate(mu, sigma) for _ in xrange(1, SAMPLE_

SIZE)]

plt.hist(res, buckets)

The last plot is the Pareto distribution. alpha is the shape parameter.

plt.subplot(629)

plt.xlabel("random.paretovariate")

alpha = 1

res = [random.paretovariate(alpha) for _ in xrange(1, SAMPLE_SIZE)]

plt.hist(res, buckets)

plt.tight_layout()

plt.show()

This was a big code example, but basically, we pick 1,000 random numbers according to various distributions. These are common distributions used in different statistical branches (economics, sociology, bio-sciences, and so on).

62

www.it-ebooks.info

Chapter 2

We should see differences in the histogram based on the distribution algorithm used. Take a moment to understand the following nine plots:

Use seed() to initialize the pseudo-random generator, so random() produces the same expected random values. This is sometimes useful and it is better than pregenerating random data and saving it to a file. The latter technique is not always feasible as it requires saving (possibly huge amounts of) data on a filesystem.

If you want to prevent any repeatability of your randomly generated sequences, we recommend using random.SystemRandom, which uses os.urandom underneath; os.urandom provides access to more entropy sources. If using this random generator interface, seed() and setstate() have no effect; hence, these samples are not reproducible.

If we want to have some random words, the easiest way (on Linux) is probably to use

/usr/share/dicts/words. We can see how that is done, in the following example: import random

with open('/usr/share/dict/words', 'rt') as f:

words = f.readlines()

words = [w.rstrip() for w in words]

for w in random.sample(words, 5):

print w

63

www.it-ebooks.info

Knowing Your Data

This solution is for Unix only and will not work on Windows (it will work on Mac OS, though).

For Windows, you could use a file constructed from various free sources (Project Gutenberg, Wiktionary, British National Corpus, or http://norvig.com/big.txt by Dr Peter Norvig).

Smoothing the noise in real-world data

In this recipe, we introduce a few advanced algorithms to help with cleaning the data coming from real-world sources. These algorithms are well known in the signal processing world, and we will not go deep into mathematics but will just exemplify how and why they work and for what purposes they can be used.

Getting ready

Data that comes from different real-life sensors usually is not smooth and clean and contains some noise that we usually don't want to show on diagrams and plots. We want graphs and plots to be clear and to display information and cost viewers minimal efforts to interpret.

We don't need any new software installed because we are going to use some already familiar Python packages: NumPy, SciPy, and matplotlib.

How to do it...

The basic algorithm is based on using the rolling window (for example, convolution).

This window rolls over the data and is used to compute the average over that window.

For our discrete data, we use NumPy's convolve function; it returns a discrete linear convolution of two one-dimensional sequences. We also use NumPy's linspace function, which generates a sequence of evenly spaced numbers for a specified interval.

The function ones defines an array or matrix (for example, a multidimensional array) where every element has the value 1. This helps with generating windows for use in averaging.

How it works...

One simple and naive technique to smooth the noise in data we are processing is to average over some window (sample) and plot just that average value for the given window, instead of all the data points. This is the basis for more advanced algorithms.

from pylab import *

from numpy import *

def moving_average(interval, window_size):

'''Compute convoluted window for given size

'''

64

www.it-ebooks.info

Chapter 2

window = ones(int(window_size)) / float(window_size)

return convolve(interval, window, 'same')

t = linspace(-4, 4, 100)

y = sin(t) + randn(len(t))*0.1

plot(t, y, "k.")

compute moving average

y_av = moving_average(y, 10)

plot(t, y_av,"r")

#xlim(0,1000)

xlabel("Time")

ylabel("Value")

grid(True)

show()

Here, we show how the smoothed line looks compared to the original data points (plotted as dots):

65

www.it-ebooks.info

Knowing Your Data

Following on this idea, we can jump ahead to an even more advanced example and use the existing SciPy library to make this window smoothing work even better.

The method we are going to demonstrate is based on convolution (summation of functions) of a scaled window with the signal (that is, data points). This signal is prepared in a clever way, adding copies of the same signal on both ends but reflecting it, so we minimize the boundary effect. This code is based on SciPy Cookbook's example that can be found here: http://www.scipy.org/Cookbook/SignalSmooth.

import numpy

from numpy import *

from pylab import *

possible window type

WINDOWS = ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']

if you want to see just two window type, comment previous line,

and uncomment the following one

WINDOWS = ['flat', 'hanning']

def smooth(x, window_len=11, window='hanning'):

"""

Smooth the data using a window with requested size.

Returns smoothed signal.

x -- input signal

window_len -- lenght of smoothing window

window -- type of window: 'flat', 'hanning', 'hamming',

'bartlett', 'blackman'

flat window will produce a moving average smoothing.

"""

if x.ndim != 1:

raise ValueError, "smooth only accepts 1 dimension arrays."

if x.size < window_len:

raise ValueError, "Input vector needs to be bigger than window

size."

if window_len < 3:

return x

if not window in WINDOWS:

raise ValueError("Window is one of 'flat', 'hanning',

'hamming', "

"'bartlett', 'blackman'")

adding reflected windows in front and at the end

s=numpy.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]

66

www.it-ebooks.info

Chapter 2

pick windows type and do averaging

if window == 'flat': #moving average

w = numpy.ones(window_len, 'd')

else:

call appropriate function in numpy

w = eval('numpy.' + window + '(window_len)')

NOTE: length(output) != length(input), to correct this:

return y[(window_len/2-1):-(window_len/2)] instead of just y.

y = numpy.convolve(w/w.sum(), s, mode='valid')

return y

Get some evenly spaced numbers over a specified interval.

t = linspace(-4, 4, 100)

Make some noisy sinusoidal

x = sin(t)

xn = x + randn(len(t))*0.1

Smooth it

y = smooth(x)

windows

ws = 31

subplot(211)

plot(ones(ws))

draw on the same axes

hold(True)

plot for every windows

for w in WINDOWS[1:]:

eval('plot('+w+'(ws))')

configure axis properties

axis([0, 30, 0, 1.1])

add legend for every window

legend(WINDOWS)

title("Smoothing windows")

add second plot

subplot(212)

67

www.it-ebooks.info

Knowing Your Data

draw original signal

plot(x)

and signal with added noise

plot(xn)

smooth signal with noise for every possible windowing algorithm

for w in WINDOWS:

plot(smooth(xn, 10, w))

add legend for every graph

l=['original signal', 'signal with noise']

l.extend(WINDOWS)

legend(l)

title("Smoothed signal")

show()

We should see the following two plots to see how the windowing algorithm influences the noise signal. The top plot represents possible windowing algorithms and the bottom one displays every possible result, from the original signal, to the noised up signal, and even the smoothed signal for every windowing algorithm. Try commenting possible window types and leave just one or two to gain better understanding.

68

www.it-ebooks.info

Chapter 2

There's more...

Another very popular signal smoothing algorithm is Median Filter. The main idea of this filter is to run through the signal entry by entry, replacing each entry with the median of neighboring entries. This idea makes this filter fast and usable both for one-dimensional datasets as well as for two-dimensional datasets (such as images).

In the following example, we use the implementation from the SciPy signal toolbox: import numpy as np

import pylab as p

import scipy.signal as signal

get some linear data

x = np.linspace (0, 1, 101)

add some noisy signal

x[3::10] = 1.5

p.plot(x)

p.plot(signal.medfilt(x,3))

p.plot(signal.medfilt(x,5))

p.legend(['original signal', 'length 3','length 5'])

p.show ()

We see in the following plot that the bigger the window, the more our signal gets distorted as compared to the original but the smoother it looks:

69

www.it-ebooks.info

Knowing Your Data

There are many more ways to smooth data (signals) that you receive from external sources.

It depends a lot on the area you are working in and the nature of the signal. Many algorithms are specialized for a particular signal, and there may not be a general solution for every case you encounter.

There is, however, one important question: "When should you not smooth a signal?" One common situation where you should not smooth signals is prior to statistical procedures, such as least-squares curve fitting, because all smoothing algorithms are at least slightly lossy and they change the signal shape. Also, smoothed noise may be mistaken for an actual signal.

70

www.it-ebooks.info

3

Drawing Your

First Plots and

Customizing Them

In this chapter we will go into a lot more detail and present most of the possibilities of matplotlib. We will cover:

f

Defining plot types – bar, line, and stacked charts

f

Drawing simple sine and cosine plots

f

Defining axis lengths and limits

f

Defining plot line styles, properties, and format strings

f

Setting ticks, labels, and grids

f

Adding legends and annotations

f

Moving spines to the center

f

Making histograms

f

Making bar charts with error bars

f

Making pie charts count

f

Plotting with filled areas

f

Drawing scatter plots with colored markers

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Introduction

Although we have already drawn our first plots using matplotlib, we didn't go into the details about how they work, how to set them up, or what the possibilities are with using matplotlib.

We explore and exercise most common types of data visualizations: line graphs, bar charts, histograms, pies, and variations thereof.

matplotlib is a powerful toolbox that satisfies almost all our needs for 2D and some 3D

plotting needs as well. The best way the authors intend for you to learn matplotlib is through examples. When we need to draw a plot, we look for a similar example and try to change it to fit our needs. In this way, we are also going to present you with some useful examples and believe that this example will help you find a plot most similar to what you need.

Defining plot types – bar, line, and stacked

charts

In this recipe, we will present different basic plots and what are they used for. Most of the plots described here are used daily, and some of them present the basis for understanding more advanced concepts in data visualization.

Getting ready

We start with some common charts from the matplotlib.pyplot library with just sample datasets to get started with basic charting and lay down the foundations of the following recipes.

How to do it...

We start by creating a simple plot in IPython. IPython is great because it allows us to interactively change plots and see the results immediately.

1. Start IPython by typing the following at the command prompt:

$ ipython --pylab

2. Then type the matplotlib plot code:

In [1]: plot([1,2,3,2,3,2,2,1])

Out[1]: [<matplotlib.lines.Line2D at 0x412fb50>]

72

www.it-ebooks.info

Chapter 3

The plot should open in a new window displaying the default look of the plot and some supporting information:

The basic plot in matplotlib contains the following elements:

f

x and y axes: These are both horizontal and vertical axes.

f

x and y tickers: These are little tickers denoting the segments of axes. There can be major and minor tickers.

f

x and y tick labels: These represent values on particular axis.

f

Plotting area: This is where the actual plots are drawn.

You will notice that the values we provided to plot() are y axis values. plot()provides default values for the x axis; they are linear values from 0 to 7 (the number of y values minus 1).

Now, try adding values for the x axis; as first argument to the plot() function, again in the same IPython session, type:

In [2]: plot([4,3,2,1],[1,2,3,4])

Out[2]: [<matplotlib.lines.Line2D at 0x31444d0>]

73

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Note how IPython counts input and output lines (In [2] and Out [2]).

This will help us remember where we are in the current session, and enables more advanced features such as saving part of the session in a Python file.

During data analysis, using IPython for prototyping is the fastest way to come to a satisfying solution and then save particular sessions into a file, to be executed later if you need to reproduce the same plot.

This will update the plot to look like this:

We see here how matplotlib expands the y axis to accommodate the new value range and automatically changes color of the second plot line to enable us to distinguish the new plot.

Unless we turn off the hold property (by calling hold(False)) all subsequent plots will draw over the same axes. This is the default behavior in pylab mode in IPython, while in regular Python scripts, hold is off by default.

Let us pack some more common plots and compare them over the same dataset. You can type this in IPython or run it from a separate Python script:

from matplotlib.pyplot import *

some simple data

x = [1,2,3,4]

y = [5,4,3,2]

74

www.it-ebooks.info

Chapter 3

create new figure

figure()

divide subplots into 2 x 3 grid

and select #1

subplot(231)

plot(x, y)

select #2

subplot(232)

bar(x, y)

horizontal bar-charts

subplot(233)

barh(x, y)

create stacked bar charts

subplot(234)

bar(x, y)

we need more data for stacked bar charts

y1 = [7,8,5,3]

bar(x, y1, bottom=y, color = 'r')

box plot

subplot(235)

boxplot(x)

scatter plot

subplot(236)

scatter(x,y)

show()

75

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

This is how it should turn out into graphs:

How it works...

With figure() we create a new figure. If we supply a string argument, such as sample charts, it will be the backend title of a window. If we call the figure() function with the same parameter (that can also be a number), we will make the corresponding figure active and all the following plotting will be performed on that figure.

Next, we divide the figure into a 2 by 3 grid using a subplot(231) call. We could call this using subplot(3, 2, 1), where the first parameter is the number of rows, the second is the number of columns, and the third represents the plot number.

We continue and create a common charting type using simple calls to create vertical bar charts (bar()) and horizontal bars (barh()). For stacked bar charts, we need to tie two bar chart calls together. We do that by connecting the second bar chart with the previous using the parameter bottom = y.

76

www.it-ebooks.info

Chapter 3

Box plots are created using the boxplot() call, where the box extends from lower to upper quartiles with the line at the median value. We will return to box plots shortly.

We finally create a scatter plot to give you an idea of a point-based dataset. This is probably more appropriately used when we have thousands of data points in a dataset, but here we wanted to illustrate the difference in representations of the same dataset.

There's more...

We can return to box plots now as we need to explain the most important display options.

For starters, we could add whiskers that extend from the box to represent the whole range of the dataset. Box and whiskers plots are mainly used to represent variations of data in one or multiple datasets; they are easy to compare and easy to read. In the same plot they can represent five statistics:

f

Minimum value: This is in the dataset

f

Second quartile: Below this the lower 25 percent of the given dataset lies f

Median value: This is the median value of the dataset

f

Third quartile: Above this the upper 25 percent of the given dataset lies f

Maximum value: This is the maximum value of the given dataset

To illustrate this behavior, we will demonstrate plotting the same dataset in a box plot and a histogram as in the following code:

from pylab import *

dataset = [113, 115, 119, 121, 124,

124, 125, 126, 126, 126,

127, 127, 128, 129, 130,

130, 131, 132, 133, 136]

subplot(121)

boxplot(dataset, vert=False)

subplot(122)

hist(dataset)

show()

77

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

That will give us the following plots:

In the preceding comparison, we can observe a difference in representation of the same dataset in two different charts. The one on the left points toward the five mentioned statistical values, while the one on the right (the histogram) displays the grouping of the dataset in a given range.

Drawing a simple sine and cosine plot

This recipe will go over basics of plotting mathematical functions and several things that are related to math graphs, such as writing Greek symbols in labels and on curves.

Getting ready

The most common graph we will use is the line plot command, which draws the given (x,y) coordinates on a figure plot.

78

www.it-ebooks.info

Chapter 3

How to do it...

We start with computing sine and cosine functions over the same linear interval—from Pi to Pi, with 256 points in between—and we plot the values for sin(x) and cos(x) over the same plot: import matplotlib.pyplot as pl

import numpy as np

x = np.linspace(-np.pi, np.pi, 256, endpoint=True)

y = np.cos(x)

y1 = np.sin(x)

pl.plot(x,y)

pl.plot(x, y1)

pl.show()

That will give us the following graph:

79

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Following this simple plot, we can customize more to give more information and be more precise about axes and boundaries:

from pylab import *

import numpy as np

generate uniformly distributed

256 points from -pi to pi, inclusive

x = np.linspace(-np.pi, np.pi, 256, endpoint=True)

these are vectorised versions

of math.cos, and math.sin in built-in Python maths

compute cos for every x

y = np.cos(x)

compute sin for every x

y1 = np.sin(x)

plot cos

plot(x, y)

plot sin

plot(x, y1)

define plot title

title("Functions \sin and \cos")

set x limit

xlim(-3.0, 3.0)

set y limit

ylim(-1.0, 1.0)

format ticks at specific values

xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],

[r'$-\pi$', r'$-\pi/2$', r'0', r'$+\pi/2$', r'$+\pi$'])

yticks([-1, 0, +1],

[r'-1', r'0', r'$+1$'])

show()

80

www.it-ebooks.info

Chapter 3

That should give us a slightly nicer graph:

We see that we used expressions such as \sin, or $-\pi$ to write letters of the Greek alphabet in figures. This is LaTex syntax, which we will explore further in the following chapters. Here, we just illustrated how easy it is to make your math charts more readable for certain audiences.

Defining axis lengths and limits

This recipe will demonstrate a variety of useful axis properties around limits and lengths that we can configure in matplotlib.

Getting ready

For this recipe we want to fire up IPython:

$ ipython --pylab

81

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

How to do it...

Start experimenting with various properties of axes. Just calling an empty axis() function will return default values for the axis:

In [1]: axis()

Out[1]: (0.0, 1.0, 0.0, 1.0)

Note that if you are in interactive mode and are using a windowing backend, a figure with an empty axis will be displayed.

Here the values represent xmin, xmax, ymin, and ymax respectively. Similarly, we can set values for the x and y axes:

In [2]: l = [-1, 1, -10, 10]

In [3]: axis(l)

Out[3]: [-1, 1, -10, 10]

Again, if you are in interactive mode, this will update the same figure. Furthermore, we can also update any value separately using keyword arguments (**kwargs), setting just xmax to a certain value.

How it works...

If we don't use axis() or other settings, matplotlib will automatically use minimum values that allow us to see all data points on one plot. If we set axis() limits to be less than the maximum values in a dataset, matplotlib will do as told and we will not see all points on the figure. This can be a source of confusion or even error, where we think we see everything we drew. One way to avoid this is to call autoscale() (matplotlib.pyploy.autoscale()), which will compute the optimal size of the axes to fit the data to be displayed.

If we want to add new axes to the same figure, we can use matplotlib.pyploy.axes().

We usually want to add some properties to this default call; for example, rect—which can have the attributes left, bottom, width, and height in normalized units (0, 1)—and maybe axisbg, which specifies the background color of axes.

There are also other properties that we can set for added axes such as sharex/sharey, which accepts values for other instances of axes and share the current axis (x/y) with other axes. Or parameter polar that defines whether we want to use polar axes.

Adding new axes can be useful; for example, to combine multiple charts on one figure if there is a need to tightly couple different views on the same data to illustrate its properties.

82

www.it-ebooks.info

Chapter 3

If we want to add just one line to the current figure, we can use matplotlib.pyploy.

axhline() or matplotlib.pyplot.axvline(). The functions axhilne() and axvline() will draw horizontal and vertical lines across axes for given x and y data values respectively. They share similar parameters, the most important ones being y position, xmin, and xmax for axhline() and x position, ymin, and ymax for axvline().

Let's see how it looks as a figure, continuing in the same IPython session: In [3]: axhline()

Out[3]: <matplotlib.lines.Line2D at 0x414ecd0>

In [4]: axvline()

Out[4]: <matplotlib.lines.Line2D at 0x4152490>

In [5]: axhline(4)

Out[5]: <matplotlib.lines.Line2D at 0x4152850>

We should have a figure like the following plot:

Here we see that just calling these functions without parameters makes them take default values and draw a horizontal line for y=0 (axhline()) and a vertical line for x=0 (axvline()).

83

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Similar to these are two related functions that allow us to add a horizontal span (rectangle) across the axes. These are matplotlib.pyplot.axhspan() and matplotlib.pyplot.

axspan(). The function axhspan() has ymin and ymax as required parameters that define how wide the horizontal span is. Analogous to this, axvspan() has xmin and xmax to define the width of the vertical span.

There's more...

Having a grid in a figure is turned off by default, but it can easily be switched on and customized. A default call to matplotlib.pyplot.grid() will toggle the grid's visibility.

Other parameters for control are as follows:

f

which: This defines what grid tick type to draw (can be major, minor, or both) f

axis: This defines which set of grid lines are drawn (can be both, x, or y) Axes are usually controlled via matplotlib.pyplot.axis(). Internally, axes are represented by several Python classes, the parent one is matplotlib.axes.Axes, which contains most methods to manipulate axes. A single axis is represented by the matplotlib.

axis.Axis class, where the x axis uses matplotlib.axis.XAxis and the y axis uses the matplotlib.axis.YAxis class.

We don't need to use these to perform our recipe, but it is important to know where to look if more advanced axis control interests us and when we hit the limits of what is available via the matplotlib.pyplot namespace.

Defining plot line styles, properties, and

format strings

This recipe shows how we can change various line properties, such as styles, colors, or width. Having lines set up appropriately—according to the information presented—and distinct enough for target audiences (if the audience is younger population, we may want to target them with more vivid colors; if they are older we may want to use more contrasting colors) can make the difference between being barely noticeable and leaving a great impact on the viewer.

Getting ready

Although we stressed how important is to aesthetically tune your presentation, we first must learn how to do it.

84

www.it-ebooks.info

Chapter 3

If you don't have a particular eye for color matching, there are free and commercial online tools that can generate color sets for you. One of the most well known is Colorbrewer2, which can be found at http://colorbrewer2.org/.

Some serious research has been conducted on the usage of color in data visualizations, but explaining that theory is out of the scope of this book. The material on the topic is a must read if you are working with more advanced visualizations daily.

How to do it...

Let us learn how to change line properties. We can change the lines in our plots using different methods and approaches.

First and most common is to define lines by passing keyword parameters to functions such as plot():

plot(x, y, linewidth=1.5)

Because a call to plot() returns the line instance (matplotlib.lines.Line2D), we can use a set of setter methods on that instance to set various properties: line, = plot(x, y)

line.set_linewidth(1.5)

Those who used MATLAB© will feel the need to use a third way of configuring line properties—using the setp() function:

lines = plot(x, y)

setp(lines, 'linewidth', 1.5)

Another way to use setp() is:

setp(lines, linewidth=1.5)

Whatever way you prefer to configure lines, choose one method and stay consistent for the whole project (or at least a file). This way, when you (or someone else that's you in the future) come back to the code, it will be easier to make sense of it and change it.

85

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

How it works...

All the properties we can change for a line are contained in the matplotlib.lines.

Line2D class. We list some of them in the following table:

Property

Value type

Description

alpha

float

Sets the alpha value used for blending;

not supported on all backends.

color or c

Any matplotlib color

Sets the color of the line.

dashes

Sequence of on/off ink

Sets the dash sequence, the sequence

in points

of dashes with on/off ink in points. If

seq is empty or if seq = (None,

None), linestyle will be set

to solid.

label

Any string

Sets the label to s for auto legend.

linestyle or ls

['-' | '–' | '-.' | Sets the linestyle of the line

':' | 'steps' | ...]

(also accepts drawstyles).

linewidth or lw

float value in points

Sets the line width in points.

marker

[7 | 4 | 5 | 6 | 'o' Sets the line marker.

| 'D' | 'h' | 'H' |

'_' | '' | 'None' | '

' | None | '8' | 'p'

| ',' | '+' | '.' |

's' | '*' | 'd' | 3

| 0 | 1 | 2 | '1' |

'3' | '4' | '2' | 'v'

| '<' | '>' | '^' |

'|' | 'x' | '$...$' |

tuple | Nx2 array]

markeredgecolor or Any matplotlib color

Sets the marker edge color.

mec

markeredgewidth or float value in points

Sets the marker edge width in points.

mew

markerfacecolor or Any matplotlib color

Set the marker face color.

mfc

markersize or ms

float

Set the marker size in points.

solid_capstyle

['butt' | 'round' |

Set the cap style for solid line styles.

'projecting']

solid_joinstyle

['miter' | 'round' | Set the join style for solid line styles.

'bevel']

visible

[True | False]

Set the artist's visibility.

xdata

np.array

Set the data np.array for x.

86

www.it-ebooks.info

Chapter 3

Property

Value type

Description

ydata

np.array

Set the data np.array for y.

Zorder

Any number

Set the z axis order for the artist.

Artists with lower Zorder values

are drawn first.

If x and y are axes going horizontal to

the right and vertical to the top of the

screen, the z axis is the one extending

toward the viewer. So 0 value would be

at the screen, 1, one layer above, and

so on.

The following table shows some linestyles:

Linestyle

Description

'-'

Solid

'--'

Dashed

'-.'

Dash_dot

':'

Dotted

'None', ' ', Draw nothing

''

The following table shows line markers:

Marker

Description

'o'

Circle

'D'

Diamond

'h'

Hexagon1

'H'

Hexagon2

'_'

Horizontal line

'', 'None', ' ',

Nothing

None

'8'

Octagon

'p'

Pentagon

','

Pixel

'+'

Plus

'.'

Point

's'

Square

'*'

Star

87

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Marker

Description

'd'

Thin_diamond

'v'

Triangle_down

'<'

Triangle_left

'>'

Triangle_right

'^'

Triangle_up

'|'

Vertical line

'x'

X

Color

We can get all colors that matplotlib supports by calling matplotlib.pyplot.colors(); this will give:

Alias

Color

b

Blue

g

Green

r

Red

c

Cyan

m

Magenta

y

Yellow

k

Black

w

White

These colors can be used in different matplotlib functions that take color arguments.

If these basic colors are not enough—and as we progress, they will not be enough—we can use two other ways of defining a color value. We can use an HTML hexadecimal string: color = '#eeefff'

We can also use legal HTML color names ('red', 'chartreuse'). We can also pass an RGB

tuple normalized to [0, 1]:

color = (0.3, 0.3, 0.4)

Argument color is accepted by a range of functions, such as title(): title('Title in a custom color', color='#123456')

88

www.it-ebooks.info

Chapter 3

Background color

By providing axisbg to a function such as matplotlib.pyplot.axes() or matplotlib.

pyplot.subplot(), we can define the background color of an axis:

subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

Setting ticks, labels, and grids

In this recipe we will continue with setting axis and line properties and adding more data to our figure and charts.

Getting ready

Let us learn a little about figures and subplots.

In matplotlib, figure() is used to explicitly create a figure, which represents a user interface window. Figures are created implicitly just by calling plot() or similar functions. This is fine for simple charts, but having the ability to explicitly create a figure and get a reference to its instance is very useful for more advanced use.

A figure contains one or more subplots. Subplots allow us to arrange plots in a regular grid.

We already used subplot(), in which we specify the number of rows and columns and the number of the plot we are referring to.

If we want more control, we need to use axes instances from the matplotlib.axes.Axes class. They allow us to place plots at any location in the figure. An example of this would be to put a smaller plot inside a bigger one.

How to do it...

Ticks are part of figures. They consist of tick locators—where ticks appear—and tick formatters which show how ticks appear. There are major and minor ticks. Minor ticks are not visible by default. More importantly, major and minor ticks can be formatted and located independently of each other.

We can use matplotlib.pyplot.locator_params() to control the behavior of tick locators. Even though tick locations are usually determined automatically, we can control the number of ticks and use a tight view if we want to, for when plots are smaller.

from pylab import *

get current axis

ax = gca()

89

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

set view to tight, and maximum number of tick intervals to 10

ax.locator_params(tight=True, nbins = 10)

generate 100 normal distribution values

ax.plot(np.random.normal(10, .1, 100))

show()

This should give us the following graph:

We see how the x and y axes are divided and what values are shown. We could have achieved the same setup using locator classes. Here we are saying "set the major locator to be a multiple of 10":

ax.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(10))

Tick formatters can similarly be specified. Formatters specify how the values (usually numbers) are displayed. For example, matplotlib.ticker.FormatStrFormatter simply specifies '%2.1f' or '%1.1f cm' as the string to be used as the label for the ticker.

Let's take a look at one example using dates.

90

www.it-ebooks.info

Chapter 3

matplotlib represents dates in floating point values as the time in days passed since 0001-01-01 UTC plus 1. So, 0001-01-01 UTC 06:00 is 1.25.

Then we can use helper functions such as matplotlib.dates.date2num(), matplotlib.dates.num2date(), and matplotlib.dates.drange() to

convert dates between different representations.

Let's see another example:

from pylab import *

import matplotlib as mpl

import datetime

fig = figure()

get current axis

ax = gca()

set some daterange

start = datetime.datetime(2013, 01, 01)

stop = datetime.datetime(2013, 12, 31)

delta = datetime.timedelta(days = 1)

convert dates for matplotlib

dates = mpl.dates.drange(start, stop, delta)

generate some random values

values = np.random.rand(len(dates))

ax = gca()

create plot with dates

ax.plot_date(dates, values, linestyle='-', marker='')

specify formater

date_format = mpl.dates.DateFormatter('%Y-%m-%d')

apply formater

ax.xaxis.set_major_formatter(date_format)

autoformat date labels

rotates labels by 30 degrees by default

use rotate param to specify different rotation degree

use bottom param to give more room to date labels

fig.autofmt_xdate()

show()

91

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

The preceding code will give us the following graph:

Adding a legend and annotations

Legends and annotations explain data plots clearly and in context. By assigning each plot a short description about what data it represents, we are enabling an easier mental model in the reader's (viewer's) head. This recipe will show how to annotate specific points on our figures and how to create and position data legends.

Getting ready

How many times have you looked at a chart and wondered what the data represents? More often than not, newspapers and other daily and weekly publications create plots that don't contain appropriate legends, thus leaving the reader free to interpret the representation.

This creates ambiguity for the readers and increases the possibility of error.

How to do it...

Let us demonstrate how to add legends and annotations with the following example: from matplotlib.pyplot import *

generate different normal distributions

x1 = np.random.normal(30, 3, 100)

92

www.it-ebooks.info

Chapter 3

x2 = np.random.normal(20, 2, 100)

x3 = np.random.normal(10, 3, 100)

plot them

plot(x1, label='plot')

plot(x2, label='2nd plot')

plot(x3, label='last plot')

generate a legend box

legend
 (bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

ncol=3, mode="expand", borderaxespad=0.)

annotate an important value

annotate
 ("Important value", (55,20), xycoords='data', xytext=(5, 38),

arrowprops=dict(arrowstyle='->'))

show()

The preceding code will give us the following plot:

What we do is assign a string label with every plot so legend() will try and determine what to add in the legend box.

93

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

We set the location of a legend box by defining the loc parameter. This is optional, but we want to specify a location where it is least likely for the legend box to be drawn over plot lines.

How it works...

All location parameter strings are given in the following table:

String

Number value

upper right

1

upper left

2

lower left

3

lower right

4

right

5

center left

6

center right

7

lower center

8

upper center

9

center

10

To not show the label in a legend, set the label to _nolegend_.

For the legend, we defined the number of columns with ncol = 3 and set the location with lower left. We specified a bounding box (bbox_to_anchor) to start from position (0., 1.02), and to have a width of 1 and a height of 0.102. These are normalized axis coordinates. Parameter mode is either None or expand to allow the legend box to expand horizontally filling the axis area. The parameter borderaxespad defines the padding between the axes and the legend border.

For annotations, we have defined a string to be drawn on a plot, on a coordinate xy. The coordinate system is specified to be the same as the data one; therefore, coordinate system is xycoord = 'data'. The starting position for the text is defined by the value of xytext.

An arrow is drawn from xytext to xy coordinate and the arrowprops dictionary can define many properties for that arrow. For this example, we used arrowstyle to define arrow style.

94

www.it-ebooks.info

Chapter 3

Moving spines to the center

This recipe will demonstrate how to move spines to the center.

Spines define data area boundaries; they connect the axis tick marks. There are four spines.

We can place them wherever we want; by default, they are placed on the border of the axis, hence we see a box around our data plot.

How to do it...

To move the spines to the center of the plot, we need to remove two spines, making them hidden (set color to none). After that we move two others to coordinate (0,0).

The coordinates are specified in data space coordinates.

The following code shows how to do this:

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(-np.pi, np.pi, 500, endpoint=True)

y = np.sin(x)

plt.plot(x, y)

ax = plt.gca()

hide two spines

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

move bottom and left spine to 0,0

ax.spines['bottom'].set_position(('data',0))

ax.spines['left'].set_position(('data',0))

move ticks positions

ax.xaxis.set_ticks_position('bottom')

ax.yaxis.set_ticks_position('left')

plt.show()

95

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

This is what the plot will look like:

How it works...

This code is dependent on the plot that is drawn because we are moving spines to the location (0, 0) and are plotting a sine function on the interval where (0, 0) is in the middle of the plot.

Nevertheless, this demonstrated how to move spines to a particular location and how to get rid of spines we don't want to show.

There's more...

Furthermore, spines can be limited to end where the data ends, for example, using a set_smart_bounds(True) call. In this case matplotlib tries to set bounds in a sophisticated way, for example, to handle inverted limits, or to clip line to view if data extends past view.

Making histograms

Histograms are simple, yet it's important to get the right data into them. We will cover histograms in 2D for now.

96

www.it-ebooks.info

Chapter 3

Histograms are used to visualize estimations of distribution of data. Generally, we use a few terms when speaking of histograms. Vertical rectangles represent frequencies of data points within a particular interval, called a bin. Bins are created at fixed intervals so the total area of a histogram equals the number of data points.

Instead of using absolute values of data, histograms can display relative frequencies of data.

When this is the case, the total area equals 1.

Histograms are often used in image manipulation software as a way to visualize image properties, such as distribution of light in a particular color channel. Further, these image histograms can be used in computer vision algorithms to detect peaks aiding in edge detections, image segmentation, and so on.

In Chapter 5
 , Making 3D Visualizations
 , we have recipes that deal with 3D histograms.

Getting ready

The number of bins is the value we want to get right, but it is hard to get right as there are no strict rules on what is the optimal number of bins. There are different theories on how to calculate number of bins, the simplest being the one based on a ceiling function, where the number of bins (k
) is equal to the ceiling (max(x) – min(x)/h)
 where x
 is the dataset plotted, and h
 is the desired bin width. This is just one option as the number of bins required to display data properly is dependent on real data distribution.

How to do it...

We create a histogram calling matplotlib.pyploy.hist() with a set of parameters.

Here are some of the most useful ones:

f

bins: This is either an integer number of bins or a sequence giving the bins.

The default is 10.

f

range: This is the range of bins and is not used if bins are given as a sequence.

Outliers are ignored and the default is None.

f

normed: If the value for this is True, histogram values are normalized and form probability density. The default is False.

f

histtype: This is the default bar-type histogram. The other options are:

�

barstacked: This for multiple data gives stacked-view histograms.

�

step: This creates a line plot that is left unfilled.

�

stepfilled: This creates line plot that is filled by default. The default is bar.

f

align: This centers bars between bin edges. The default is mid. Other values are left and right.

97

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

f

color: This specifies the color of the histogram. It may be a single value or have a sequence of colors. If multiple datasets are specified, the color sequence will be used in the same order. If not specified, a default line color sequence is used.

f

orientation: This allows the creation of histograms that are horizontal by setting orientation to horizontal. The default is vertical.

The following code demonstrates how hist() is used:

import numpy as np

import matplotlib.pyplot as plt

mu = 100

sigma = 15

x = np.random.normal(mu, sigma, 10000)

ax = plt.gca()

the histogram of the data

ax.hist(x, bins=35, color='r')

ax.set_xlabel('Values')

ax.set_ylabel('Frequency')

ax.set_title(r'$\mathrm{Histogram:}\ \mu=%d,\ \sigma=%d$' % (mu,

sigma))

plt.show()

This creates a neat, red-colored histogram for our data sample:

98

www.it-ebooks.info

Chapter 3

How it works...

We start by generating some normally distributed data. The histogram is plotted with the specified number of bins—35—and it is normalized by setting normed to True (or 1); we set the color to red (r).

After that, we set labels and a title for the plot. Here we used the ability to write LaTeX

expressions to write math symbols and mixed that with Python format strings.

Making bar charts with error bars

In this recipe, we will show how to create bar charts and how to draw error bars.

Getting ready

To visualize uncertainty of measurement in our dataset or to indicate the error, we can use error bars. Error bars can easily give an idea of how error free the dataset is. They can show one standard deviation, one standard error, or 95 percent confidence interval. There is no standard here, so always explicitly state what values (errors) error bars display. Most papers in the experimental sciences should contain error bars to present accuracy of the data.

How to do it...

Even though just two parameters are mandatory—left and height— we often want to use more than that. Here are some parameters we can use:

f

width: This gives the width of the bars. The default value is 0.8.

f

bottom: If bottom is specified, the value is added to the height. The default is None.

f

edgecolor: This gives the color of the bar edges.

f

ecolor: This specifies the color of any error bar.

f

linewidth: This gives width of bar edges; special values are None (use defaults) and 0 (when bar edges are not displayed).

f

orientation: This has two values vertical and horizontal.

f

xerr and yerr: These are used to generate error bars on the bar chart.

Some optional arguments (color, edgecolor, linewidth, xerr, and yerr) can be single values or sequences with the same length as the number of bars.

99

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

How it works...

Let us illustrate this using an example:

import numpy as np

import matplotlib.pyplot as plt

generate number of measurements

x = np.arange(0, 10, 1)

values computed from "measured"

y = np.log(x)

add some error samples from standard normal distribution

xe = 0.1 * np.abs(np.random.randn(len(y)))

draw and show errorbar

plt.bar(x, y, yerr=xe, width=0.4, align='center', ecolor='r',

color='cyan', label='experiment #1');

give some explainations

plt.xlabel('# measurement')

plt.ylabel('Measured values')

plt.title('Measurements')

plt.legend(loc='upper left')

plt.show()

The preceding code will plot the following:

100

www.it-ebooks.info

Chapter 3

To be able to plot an error bar, we needed to have some measures (x); for every measure computed (y), we introduced errors (xe).

We used NumPy to generate and compute values; standard distributions are good enough for demonstration purposes, but if you happen to know your data distribution in advance, you can always make some prototype visualizations and try out different layouts to find the best options to present information.

Another interesting option to use if we are preparing visualizations for a black-and-white medium is hatch; it can have the following values:

Hatch value

Description

/

Diagonal hatching

\

Back diagonal

|

Vertical hatching

-

Horizontal

+

Crossed

x

Crossed diagonal

o

Small circle

0

Large circle

.

Dot pattern

*

Star pattern

There's more...

What we have just used are error bars known as symmetrical error bars. If the nature of our dataset is such that errors are not the same in both directions (negative and positive), we can also specify them separately using asymmetrical error bars.

All we have to do differently is to specify xerr or yerr using a two-element list (such as a 2D array), where the first list contains values for negative errors and the second one for positive errors.

Making pie charts count

Pie charts are special in many ways, the most important being that the dataset they display must sum up to 100 percent or they are just plain not valid.

101

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Getting ready

Pie charts represent numerical proportions, where the arc length of each segment is proportional to the quantity it represents.

They are compact, can look very aesthetically pleasing, but they have been criticized as they can be hard to compare. Another property of pie charts that does not work in their best interest is that pie charts are presented in a specific angle (perspective)—and segments use certain colors—that can skew our perception and influence our conclusion about information presented.

What we will show here is different ways to use pie charts to present data.

How to do it...

As a start, we create a so-called exploded pie chart:

from pylab import *

make a square figure and axes

figure(1, figsize=(6,6))

ax = axes([0.1, 0.1, 0.8, 0.8])

the slices will be ordered

and plotted counter-clockwise.

labels = 'Spring', 'Summer', 'Autumn', 'Winter'

fractions are either x/sum(x) or x if sum(x) <= 1

x = [15, 30, 45, 10]

explode must be len(x) sequence or None

explode=(0.1, 0.1, 0.1, 0.1)

pie(x, explode=explode, labels=labels,

autopct='%1.1f%%', startangle=67)

title('Rainy days by season')

show()

Pie charts look best if they are inside a square figure and have square axes.

102

www.it-ebooks.info

Chapter 3

Fractions of the whole sum of the pie chart are defined as x/sum(x), or x if sum(x) <= 1.

We get the explode effect by defining an explode sequence where each item represents the fraction of radius with which to offset each arc. We use the autopct parameter to format the labels that will be drawn inside the arcs; they can be a format string or a callable (function).

We can also use a Boolean shadow parameter to add a shadow effect to a pie chart.

If we don't specify startangle, the fractions will be ordered starting counterclockwise from the x axis (angle 0). If we specify 90 as the value of startangle, that will start the pie chart from the y axis.

This is the resulting pie chart:

Plotting with filled areas

In this recipe, we will show you how to fill the area under a curve or in between two different curves.

103

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Getting ready

Library matplotlib allows us to fill areas in between and under the curves with color so that we can display the value of that area to the spectator. Sometimes, it is necessary for readers (viewers) to comprehend the given specialization.

How to do it...

Here's one example of how to fill areas between two contours:

from matplotlib.pyplot import figure, show, gca

import numpy as np

x = np.arange(0.0, 2, 0.01)

two different signals are measured

y1 = np.sin(2*np.pi*x)

y2 = 1.2*np.sin(4*np.pi*x)

fig = figure()

ax = gca()

plot and

fill between y1 and y2 where a logical condition is met

ax.plot(x, y1, x, y2, color='black')

ax.fill_between(x, y1, y2, where=y2>=y1, facecolor='darkblue',

interpolate=True)

ax.fill_between(x, y1, y2, where=y2<=y1, facecolor='deeppink',

interpolate=True)

ax.set_title('filled between')

show()

How it works...

After we have generated random signals for a predefined interval, we plot these two signals using a regular plot(). Then we call fill_between() with properties that are required and mandatory.

The function fill_between() is using x as the location from where to pick y values (y1, y2) and will then plot the polygon in certain defined colors.

104

www.it-ebooks.info

Chapter 3

We specify a condition to fill the curve with the where parameter, which accepts Boolean values (can be expressions) so that the fill happens only when the where condition is met.

There's more...

Similar to other functions for plotting, this function also accepts many more parameters, for example, hatch (to specify patterns to fill with instead of color), and line options (linewidth and linestyle).

There is also fill_betweenx(), which enables similar fill features, but it does so between horizontal curves.

The more general function fill() provides the ability to fill any polygon with a color or a hatch.

Drawing scatter plots with colored markers

If you have two variables and want to spot the correlation between those, a scatter plot may be the solution to spot patterns.

This type of plot is also very usable as a start for more advanced visualization of multidimensional data, for example, to plot a scatter plot matrix.

105

www.it-ebooks.info

Drawing Your First Plots and Customizing Them

Getting ready

Scatter plots display values for two sets of data. The data visualization is done as a collection of points not connected by lines. Each of them has its coordinates determined by the value of the variables. One variable is controlled (independent variable) while the other variable is measured (dependent variable) and is often plotted on the y axis.

How to do it...

Here's a code sample that plots two plots: one with uncorrelated data and other with strong positive correlation:

import matplotlib.pyplot as plt

import numpy as np

generate x values

x = np.random.randn(1000)

random measurements, no correlation

y1 = np.random.randn(len(x))

strong correlation

y2 = 1.2 + np.exp(x)

ax1 = plt.subplot(121)

plt.scatter(x, y1, color='indigo', alpha=0.3, edgecolors='white',

label='no correl')

plt.xlabel('no correlation')

plt.grid(True)

plt.legend()

ax2 = plt.subplot(122, sharey=ax1, sharex=ax1)

plt.scatter(x, y2, color='green', alpha=0.3, edgecolors='grey',

label='correl')

plt.xlabel('strong correlation')

plt.grid(True)

plt.legend()

plt.show()

106

www.it-ebooks.info

Chapter 3

Here, we also use more parameters, such as color for setting the color of the plot, marker for using as a point marker (the default is circle), alpha (alpha transparency), edgecolors (color of the marker edge), and label (for legend box).

These are the plots we get:

How it works...

A scatter plot is often used to identify potential association between two variables, and it's often drawn before working on a fitting regression function. It gives a good visual picture of the correlation, particularly for nonlinear relationships. matplotlib provides the scatter() function to plot x versus y unidimensional array of the same length as a scatter plot.

107

www.it-ebooks.info

www.it-ebooks.info

4

More Plots and

Customizations

In this chapter we will learn about:

f

Setting the transparency and size of axis labels

f

Adding a shadow to the chart line

f

Adding a data table to the figure

f

Using subplots

f

Customizing grids

f

Creating contour plots

f

Filling an under-plot area

f

Drawing polar plots

f

Visualizing the filesystem tree using a polar bar

Introduction

In this chapter we will explore more advanced properties of the matplolib library. We are going to introduce more options and will look at how to achieve certain visually pleasing results.

During this chapter we will seek the solutions to some non-trivial problems with representing data when simple charts are not enough. We will try to use more than one type of graph or create hybrid ones to cover some advanced data structures and the representation required.

www.it-ebooks.info

More Plots and Customizations

Setting the transparency and size of

axis labels

The Axes label describes what the data in the figure represents and is quite important in the viewer's understanding of the figure itself. By providing labels to the axes background, we help the viewer comprehend the information in an appropriate way.

Getting ready

Before we dive into the code, it is important to understand how matplotlib organizes our figures.

At the top level, there is a Figure instance containing all that we see and some more (that we don't see). The figure contains, among other things, instances of the Axes class as a field Figure.axes. The Axes instances contain almost everything we care about: all the lines, points, and ticks and labels. So, when we call plot(), we are adding a line (matplotlib.

lines.Line2D) to the Axes.lines list. If we plot a histogram (hist()), we are adding rectangles to the list of Axes.patches ("patches" is the term inherited from MATLAB™, and represents the "patch of color" concept).

An instance of Axes also holds references to the XAxis and YAxis instances, which in turn refer to the x axis and y axis, respectively. XAxis and YAxis manage the drawing of the axis, labels, ticks, tick labels, locators, and formatters. We can reference those through Axes.

xaxis and Axes.yaxis, respectively. We don't have to go all the way down to XAxis or YAxis instances to get to the labels as matplotlib gives us a helper method (practically a shortcut) that enables iterations via these labels: matplotlib.pyplot.xlabel() and matplotlib.pyplot.ylabel().

How to do it...

We will now create a new figure where we will:

1. Create a plot with some random generated data.

2. Add the title and axes labels.

3. Add alpha settings.

4. Add shadow effects to the title and axes labels.

import matplotlib.pyplot as plt

from matplotlib import patheffects

import numpy as np

110

www.it-ebooks.info

Chapter 4

data = np.random.randn(70)

fontsize = 18

plt.plot(data)

title = "This is figure title"

x_label = "This is x axis label"

y_label = "This is y axis label"

title_text_obj = plt.title(title, fontsize=fontsize,

verticalalignment='bottom')

title_text_obj.set_path_effects([patheffects.

withSimplePatchShadow()])

offset_xy -- set the 'angle' of the shadow

shadow_rgbFace -- set the color of the shadow

patch_alpha -- setup the transparency of the shadow

offset_xy = (1, -1)

rgbRed = (1.0,0.0,0.0)

alpha = 0.8

customize shadow properties

pe = patheffects.withSimplePatchShadow(offset_xy = offset_xy,

shadow_rgbFace = rgbRed,

patch_alpha = alpha)

apply them to the xaxis and yaxis labels

xlabel_obj = plt.xlabel(x_label, fontsize=fontsize, alpha=0.5)

xlabel_obj.set_path_effects([pe])

ylabel_obj = plt.ylabel(y_label, fontsize=fontsize, alpha=0.5)

ylabel_obj.set_path_effects([pe])

plt.show()

How it works...

We already know all the familiar imports, parts that generate data, and basic plotting techniques so we will skip that. If you are not able to decipher the first few lines of the example, please refer to Chapter 2
 , Knowing Your Data
 , and Chapter 3
 , Drawing Your
 First Plots and Customizing Them
 , where these concepts are already explained.

111

www.it-ebooks.info

More Plots and Customizations

After we plot the dataset, we are ready to add titles and labels, and customize their appearance.

First, we add the title. Then we define the font size and vertical alignment of the title text to be bottom. The default shadow effect is added to the title if we are using matplotlib.

patheffects.withSimplePatchShadow() with no parameters. The default values for parameters are: offset_xy=(2,-2), shadow_rgbFace=None, and patch_alpha=0.7.

The other values are center, top, and baseline but we choose bottom as the text will have some shadow. In the next line, we add shadow effect. The path effects are part of the matplotlib module matplotlib.patheffects that supports matplotlib.text.Text and matplotlib.patches.Patch.

We now want to add different settings of the shadow to both the x and y axes. First, we customize the position (offset) of the shadow to the parent object, and then we set the color of the shadow. The color is here represented in triples (3-tuple) of float values between 0.0

and 1.0, for each of the RGB channels. Therefore, our red color is represented as (1.0, 0.0, 0.0) (all red, no green, no blue).

The transparency (or alpha) is set up as a normalized value, and we also want to set this up here to be different from default.

With all the settings there, we instantiate matplotlib.patheffects.

withSimplePatchShadow and hold the reference to it in the variable pe to reuse it few lines later.

To be able to apply the shadow effect, we need to get to the label object. This is simple enough because matplotlib.pyplot.xlabel() returns a reference to the object (matplotlib.text.Text) that we use then to call set_path_effects([pe]).

We finally show the plot and feel proud of our work.

There's more...

If you are not satisfied with the effects that matplotlib.patheffects currently offers, you can inherit the matplotlib.patheffects._Base class and override the draw_path method. Take a look at the code and comments on how to do that here: https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/

patheffects.py#L47

112

www.it-ebooks.info

Chapter 4

Adding a shadow to the chart line

To be able to distinguish one particular plot line in the figure or just to fit in the overall style of the output our figure is in, we sometimes need to add a shadow effect to the chart line (or histogram, for that matter). In this recipe we will be learning how to add a shadow effect to the plot's chart lines.

Getting ready

To add shadows to the lines or rectangles in our charts, we need to use the transformation framework built in matplotlib and located in matplotlib.transforms.

To understand how it all works, we need to explain what transformations are in matplotlib and how they work.

Transformations know how to convert the given coordinates from their coordinate system into display. They also know how to convert them from display coordinates into their own coordinate system.

The following table summarizes existing coordinate systems and what they represent: Coordinate

Transformation object

Description

system

Data

Axes.transData

Represents the user's data coordinate system.

Axes

Axes.transAxes

Represents the Axes coordinate system, where

(0,0) represents the bottom-left end of the axes

and (1,1) represents the upper-right end of the

axes.

Figure

Figure.transFigure

This is the Figure coordinate system, where

(0,0) represents the bottom-left end of the figure

and (1,1) represents the upper-right end of the

figure.

Display

None

Represents the pixel coordinate system of the

user display, where (0,0) represents the

bottom-left of the display, and tuple (width,

height) represents the upper-right of the display,

where width and height are in pixels.

Note how the display does not have a value in the column. This is because the default coordinate system is Display, so coordinates are always in pixels relative to your display coordinate systems. This is not very useful, and most often we want them normalized into Figure or Axes or a Data coordinate system.

113

www.it-ebooks.info

More Plots and Customizations

This framework enables us to transform the current object into an offset object, that is, to place that object shifted for a certain distance from the original object.

We will use this framework to create our desired effect on the plotted sine wave.

How to do it...

Here is the code recipe to add shadow to the plotted chart. The code is explained in the section that follows.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.transforms as transforms

def setup(layout=None):

assert layout is not None

fig = plt.figure()

ax = fig.add_subplot(layout)

return fig, ax

def get_signal():

t = np.arange(0., 2.5, 0.01)

s = np.sin(5 * np.pi * t)

return t, s

def plot_signal(t, s):

line, = axes.plot(t, s, linewidth=5, color='magenta')

return line,

def make_shadow(fig, axes, line, t, s):

delta = 2 / 72. # how many points to move the shadow

offset = transforms.ScaledTranslation(delta, -delta, fig.dpi_

scale_trans)

offset_transform = axes.transData + offset

We plot the same data, but now using offset transform

zorder -- to render it below the line

axes.plot(t, s, linewidth=5, color='gray',

transform=offset_transform,

114

www.it-ebooks.info

Chapter 4

zorder=0.5 * line.get_zorder())

if __name__ == "__main__":

fig, axes = setup(111)

t, s = get_signal()

line, = plot_signal(t, s)

make_shadow(fig, axes, line, t, s)

axes.set_title('Shadow effect using an offset transform')

plt.show()

How it works...

We start reading the code from the bottom, after the if __name__ check. First, we create the figure and axes in setup(); after that, we obtain a signal (or generate data—sine wave).

We plot the basic signal in plot_signal(). Then, we make the shadow transformation and plot the shadow in make_shadow().

We use the offset effect to create an offset object underneath and just few points away from original object.

The original object is a simple sine wave that we plot using the standard function plot().

To add to this offset transformation, matplotlib contains helper transformation—

matplotlib.transforms.ScaledTranslation.

The values for dx and dy are defined in points, and as the point is 1/72 inches, we move the offset object 2pt right and 2pt down.

If you want to learn more about how we converted the point to 1/71 inches, read more in this Wikipedia article: http://en.wikipedia.org/wiki/

Point_%28typography%29.

We can use matplotlib.transforms.ScaledTransformation(xtr, ytr,

scaletr); here, xtr and ytr are translation offsets and scaletr is a transformation callable to scale xtr and ytr at transformation time and before display. The most common use case for this is transforming from points to display space: for example, to DPI so that the offset always stays at the same place no matter what the actual output—be it the monitor or printed material. The callable we use for this is already built in, and is available at Figure.dpi_scale_trans.

We then plot the same data with the applied transformation.

115

www.it-ebooks.info

More Plots and Customizations

There's more...

Using transforms to add shadows is just one and not the most popular use case of this framework. To be able to do more with transformation framework, you will need to learn the details of how the transformation pipeline works and what the extension points are (what classes to inherit and how). It's easy enough because matplotlib is open source, and even if some code is not well documented, there is a source you can read from and use or change, thus contributing to the overall quality and usefulness of matplotlib.

Adding a data table to the figure

Although matplotlib is mainly a plotting library, it helps us with small errands when we are creating a chart, such as having a neat data table beside our beautiful chart. In this recipe we will be learning how to display a data table alongside the plots in the figure.

Getting ready

It is important to understand why we are adding a table to a chart. The main intention of plotting data visually is to explain the otherwise not understandable (or hardly understandable) data values. Now, we want to add that data back. It is not wise just to cram a big table with values underneath the chart.

But, carefully picked, maybe the summed or highlighted values from the whole, charted dataset can identify important parts of the chart or emphasize the important values for those places where the exact value (for example, yearly sales in USD) is important (or even required).

How to do it...

Here's the code to add a sample table to our figure:

import matplotlib.pylab as plt

import numpy as np

plt.figure()

ax = plt.gca()

y = np.random.randn(9)

col_labels = ['col1','col2','col3']

row_labels = ['row1','row2','row3']

table_vals = [[11, 12, 13], [21, 22, 23], [28, 29, 30]]

row_colors = ['red', 'gold', 'green']

116

www.it-ebooks.info

Chapter 4

my_table = plt.table(cellText=table_vals,

colWidths=[0.1] * 3,

rowLabels=row_labels,

colLabels=col_labels,

rowColours=row_colors,

loc='upper right')

plt.plot(y)

plt.show()

The previous code snippet gives a plot such as the following:

How it works...

Using plt.table() we create a table of cells and add it to the current axes. The table can have (optional) row and column headers. Each table cell contains either patch or text. The column widths and row heights for the table can be specified. The return value is a sequence of objects (text, line, and patch instances) that the table is made of.

117

www.it-ebooks.info

More Plots and Customizations

The basic function signature is:

table(cellText=None, cellColours=None,

cellLoc='right', colWidths=None,

rowLabels=None, rowColours=None, rowLoc='left',

colLabels=None, colColours=None, colLoc='center',

loc='bottom', bbox=None)

The function instantiates and returns the matplotlib.table.Table instance. This is usually the case with matplotlib; there's just one way to add the table to the figure. The object-oriented interface can be directly accessed. We can use the matplotlib.table.

Table class directly to fine-tune our table before we add it onto our axes instance with add_table().

There's more...

You can have more control if you directly create an instance of matplotlib.table.Table and configure it before you add it to the axes instance. You can add the table instance to axes using Axes.add_table(table), where table is an instance of matplotlib.

table.Table.

Using subplots

If you are reading this book from the start, you are probably familiar with the subplot class, a descendant of axes that lives on the regular grid of subplot instances. We are going to explain and demonstrate how to use subplots in advanced ways.

In this recipe we will be learning how to create custom subplot configurations on our plots.

Getting ready

The base class for subplots is matplotlib.axes.SubplotBase. These subplots are matplotlib.axes.Axes instances but provides helper methods for generating and manipulating a set of Axes within a figure.

There is a class matplotlib.figure.SubplotParams, which holds all the parameters for subplot. The dimensions are normalized to the width or height of the figure. As we already know, if we don't specify any custom values, they will be read from the rc parameters.

The scripting layer (matplotlib.pyplot) holds a few helper methods to manipulate subplots.

matplotlib.pyplot.subplots is used for the easy creation of common layouts of subplots. We can specify the size of the grid—the number of rows and columns of the subplot grid.

118

www.it-ebooks.info

Chapter 4

We can create subplots that share the x or y axes. This is achieved using sharex or the sharey keyword argument. The argument sharex can have the value True, in which case the x axis is shared among all the subplots. The tick labels will be invisible on all but the last row of plots. They can also be defined as String, with enumerated values of row, col, all, or none. The value all is the same as True, and the value none is the same as False. If the value row is specified, each subplot row shares the x axis. If the value col is specified, each subplot column shares the x axis. This helper returns tuple fig, ax where ax is either an axis instance or, if more than one subplot is created, an array of axis instances.

matplotlib.pyplot.subplots_adjust is used to tune the subplot layout. The keyword arguments specify the coordinates of the subplots inside the figure (left, right, bottom, and top) normalized to figure size. White space can be specified to be left between the subplots using the wspace and hspace arguments for width and height amounts respectively.

How to do it...

1. We will show you an example of using yet another helper function in the matplotlib toolkit—subplot2grid. We define the grid's geometry and the subplot location. Note that this location is 0-based, not 1-based as we are used to in plot.subplot(). We can also use colspan and rowspan to allow the subplot to span multiple columns and rows in a given grid. For example, we will: create a figure; add various subplot layouts using subplot2grid; reconfigure the tick label size.

2. Show the plot:

import matplotlib.pyplot as plt

plt.figure(0)

axes1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)

axes2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)

axes3 = plt.subplot2grid((3, 3), (1, 2))

axes4 = plt.subplot2grid((3, 3), (2, 0))

axes5 = plt.subplot2grid((3, 3), (2, 1), colspan=2)

tidy up tick labels size

all_axes = plt.gcf().axes

for ax in all_axes:

for ticklabel in ax.get_xticklabels() + ax.get_yticklabels():

ticklabel.set_fontsize(10)

plt.suptitle("Demo of subplot2grid")

plt.show()

119

www.it-ebooks.info

More Plots and Customizations

When we execute the previous code, the following plot is created:

How it works...

We provide subplot2grid with a shape, location (loc), and optionally, rowspan and colspan. The important difference here is that the location is indexed from 0, and not from 1, as in figure.add_subplot.

There's more...

To give an example of another way you can customize the current axes or subplot: axes = fig.add_subplot(111)

rectangle = axes.patch

rectangle.set_facecolor('blue')

Here we see that every axes instance contains a field patch referencing the rectangle instance, thus representing the background of the current axes instance. This instance has properties that we can update, hence updating the current axes background. We can change its color, but we can also load an image to add a watermark protection, for example.

120

www.it-ebooks.info

Chapter 4

It is also possible to create a patch first and then just add it to the axes background: fig = plt.figure()

axes = fig.add_subplot(111)

rect = matplotlib.patches.Rectangle((1,1), width=6, height=12)

axes.add_patch(rect)

we have to manually force a figure draw

axes.figure.canvas.draw()

Customizing grids

A grid is usually handy to have under lines and charts as it helps the human eye spot differences in pattern and compare plots visually in the figure. To be able to set up how visibly, how frequently, and in what style the grid is displayed—or whether it is displayed at all—we should use matplotlib.pyplot.grid.

In this recipe we will be learning how to turn the grid on and off, and how to change the major and minor ticks on a grid.

Getting ready

The most frequent grid customization is reachable in the matplotlib.pyplot.grid helper function.

To see the interactive effect of this, you should run the following under ipython –pylab.

The basic call to plt.grid() will toggle grid visibility in the current interactive session started by the last IPython PyLab environment:

In [1]: plt.plot([1,2,3,3.5,4,4.3,3])

Out[1]: [<matplotlib.lines.Line2D at 0x3dcc810>]

121

www.it-ebooks.info

More Plots and Customizations

Now we can toggle the grid on the same figure:

In [2]: plt.grid()

We turn the grid back on, as shown in the following plot:

And then we turn if off again:

In [3]: plt.grid()

Apart from just turning them on and off, we can further customize the grid appearance.

122

www.it-ebooks.info

Chapter 4

We can manipulate the grid with just major ticks, or just minor ticks, or both; hence, the value of function argument which can be 'major', 'minor', or 'both'. Similar to this, we can control the horizontal and vertical ticks separately by using the argument axis that can have values 'x', 'y', or 'both'.

All the other properties are passed via kwargs and represent a standard set of properties that a matplotlib.lines.Line2D instance can accept, such as color, linestyle, and linewidth; here is an example:

ax.grid(color='g', linestyle='--', linewidth=1)

How to do it...

This is nice, but we want to be able to customize more. In order to do that we need to reach deeper into matplotlib and into mpl_toolkits and find the AxesGrid module that allows us to make grids of axes in an easy and manageable way:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1 import ImageGrid

from matplotlib.cbook import get_sample_data

def get_demo_image():

f = get_sample_data("axes_grid/bivariate_normal.npy",

asfileobj=False)

z is a numpy array of 15x15

Z = np.load(f)

return Z, (-3, 4, -4, 3)

def get_grid(fig=None, layout=None, nrows_ncols=None):

assert fig is not None

assert layout is not None

assert nrows_ncols is not None

grid = ImageGrid(fig, layout, nrows_ncols=nrows_ncols,

axes_pad=0.05, add_all=True, label_mode="L")

return grid

def load_images_to_grid(grid, Z, *images):

min, max = Z.min(), Z.max()

for i, image in enumerate(images):

axes = grid[i]

axes.imshow(image, origin="lower", vmin=min, vmax=max,

interpolation="nearest")

123

www.it-ebooks.info

More Plots and Customizations

if __name__ == "__main__":

fig = plt.figure(1, (8, 6))

grid = get_grid(fig, 111, (1, 3))

Z, extent = get_demo_image()

Slice image

image1 = Z

image2 = Z[:, :10]

image3 = Z[:, 10:]

load_images_to_grid(grid, Z, image1, image2, image3)

plt.draw()

plt.show()

The given code will render the following plot:

How it works...

In the function get_demo_image, we loaded data from the sample data directory that comes with matplotlib.

The list grid holds our axes grid (in this case, ImageGrid).

The variables image1, image2, and image3 hold sliced data from Z that we have split over multiple axes in the list grid.

124

www.it-ebooks.info

Chapter 4

Looping over all the grids, we are plotting data from im1, im2, and im3 using the standard imshow() call, while matplotlib takes care that everything is neatly rendered and aligned.

Creating contour plots

A contour plot displays the isolines of matrix. Isolines are curves where a function of two variables has the same value.

In this recipe we will learn how to create contour plots.

Getting ready

Contours are represented as a contour plot of matrix Z, where Z is interpreted as height with respect to the X-Y plane. Z is of minimum size 2 and must contain at least two different values.

The problem with contour plots is that if they are coded without labeling the isolines, they render pretty useless as we cannot decode the high points from low points or find local minimas.

Here we need to label the contour also. The labeling of isolines can be done either by using labels (clabel()) or colormaps. If your output medium permits the usage of color, colormaps are preferred because viewers will be able to decode data more easily.

The other risk with contour plots is choosing the number of isolines to plot. If we choose too many, the plot becomes too dense to decode, and if we go with too few isolines, we lose information and can perceive data differently.

The function contour() will automatically guess how many isolines to plot, but we also have the ability to specify our own number.

In matplotlib, we draw contour plots using matplotlib.pyplot.contour.

There are two similar functions: contour() draws contour lines, and contourf() draws filled contours. We are going to demonstrate only contour(), but almost everything is applicable to contourf(). They understand almost the same arguments as well.

125

www.it-ebooks.info

More Plots and Customizations

The function contour() can have different call signatures, depending on what data we have and/or what the properties that we want to visualize are.

Call signature

Description

contour(Z)

Plots the contour of Z (array). The level values are chosen

automatically.

contour(X,Y,Z)

Plots the contour of X, Y, and Z. The arrays X and Y are (x, y)

surface coordinates.

contour(Z,N)

Plots the contour of Z, where the number of levels is defined

contour(X,Y,Z,N)

with N. The level values are automatically chosen.

contour(Z,V)

Plots the contour lines with levels at the values specified in V.

contour(X,Y,Z,V)

contourf(..., V)

Fills the len(V)-1 regions between the level values in

sequence V.

contour(Z, **kwargs)

Uses keyword arguments to control common line properties

(colors, line width, origin, color map, and so on).

There exist certain constraints on the dimensionality and shape of X, Y, and Z. For example, X and Y can be of two dimensions and of the same shape as Z. If they are of one dimension, such that the length of X is equal to the number of columns in Z, then the length of Y will be equal to the number of rows in Z.

How to do it...

In the following code example, we will:

1. Implement a function to act as a mock signal processor.

2. Generate some linear signal data.

3. Transform the data into suitable matrices for use in matrix operations.

4. Plot contour lines.

5. Add contour line labels.

6. Show the plot.

7. Import numpy as np.

8. Import matplotlib as mpl.

9. Import matplotlib.pyplot as plt.

def process_signals(x,y):

return (1 – (x ** 2 + y ** 2)) * np.exp(-y ** 3 / 3)

x = np.arange(-1.5, 1.5, 0.1)

126

www.it-ebooks.info

Chapter 4

y = np.arange(-1.5, 1.5, 0.1)

Make grids of points

X,Y = np.meshgrid(x, y)

Z = process_signals(X, Y)

Number of isolines

N = np.arange(-1, 1.5, 0.3)

adding the Contour lines with labels

CS = plt.contour(Z, N, linewidths=2, cmap=mpl.cm.jet)

plt.clabel(CS, inline=True, fmt='%1.1f', fontsize=10)

plt.colorbar(CS)

plt.title('My function: $z=(1-x^2+y^2) e^{-(y^3)/3}$')

plt.show()

This will give us the following chart:

127

www.it-ebooks.info

More Plots and Customizations

How it works...

We reached for little helpers from numpy to create our ranges and matrices.

After we evaluated my_function into Z, we simply called contour, providing Z and the number of levels for isolines.

At this point, try experimenting with the third parameter in the N arange() call.

For example, instead of N = np.arange(-1, 1.5, 0.3), try changing 0.3 to 0.1 or 1

to experience how the same data is seen differently, depending on how we encode the data in a contour plot.

We also added a color map by simply giving it CS (a matplotlib.contour.

QuadContourSet instance).

Filling an under-plot area

The basic way to draw a filled polygon in matplotlib is to use matplotlib.pyplot.fill.

This function accepts similar arguments as matplotlib.pyplot.plot—multiple x and y pairs and other Line2D properties. This function returns the list of Patch instances that were added.

In this recipe we will learn how to shade certain areas of plot intersections.

Getting ready

matplotlib provides several functions to help us plot filled figures, apart from plotting functions that are inherently plotting closed filled polygons, such as histogram (), of course.

We already mentioned one—matplotlib.pyplot.fill—but there are the matplotlib.

pyplot.fill_between() and matplotlib.pyploy.fill_betweenx() functions too. These functions fill the polygons between two curves. The main difference between fill_between() and fill_betweenx() is that the latter fills between the x axis values, whereas the former fills between the y axis values.

The function fill_between accepts argument x—an x axis array of data—and y1 and y2—the y axis arrays of the data. Using arguments, we can specify conditions under which the area will be filled. This condition is the Boolean condition, usually specifying the y axis value ranges. The default value is None—meaning, to fill everywhere.

128

www.it-ebooks.info

Chapter 4

How to do it...

To start off with a simple example, we will fill the area under a simple function: import numpy as np

import matplotlib.pyplot as plt

from math import sqrt

t = range(1000)

y = [sqrt(i) for i in t]

plt.plot(t, y, color='red', lw=2)

plt.fill_between(t, y, color='silver')

plt.show()

The previous code gives us the following plot:

This is fairly straightforward and gives an idea how fill_between() works. Note how we needed to plot the actual function line (using plot(), of course), where fill_between() just draws a polygonal area filled with color ('silver').

129

www.it-ebooks.info

More Plots and Customizations

We will demonstrate another recipe here. It will involve more conditioning for the fill function. The following is the code for the example:

import matplotlib.pyplot as plt

import numpy as np

x = np.arange(0.0, 2, 0.01)

y1 = np.sin(np.pi*x)

y2 = 1.7*np.sin(4*np.pi*x)

fig = plt.figure()

axes1 = fig.add_subplot(211)

axes1.plot(x, y1, x, y2, color='grey')

axes1.fill_between(x, y1, y2, where=y2<=y1, facecolor='blue',

interpolate=True)

axes1.fill_between(x, y1, y2, where=y2>=y1, facecolor='gold',

interpolate=True)

axes1.set_title('Blue where y2 <= y1. Gold-color where y2 >= y1.') axes1.set_ylim(-2,2)

Mask values in y2 with value greater than 1.0

y2 = np.ma.masked_greater(y2, 1.0)

axes2 = fig.add_subplot(212, sharex=axes1)

axes2.plot(x, y1, x, y2, color='black')

axes2.fill_between(x, y1, y2, where=y2<=y1, facecolor='blue',

interpolate=True)

axes2.fill_between(x, y1, y2, where=y2>=y1, facecolor='gold',

interpolate=True)

axes2.set_title('Same as above, but mask')

axes2.set_ylim(-2,2)

axes2.grid('on')

plt.show()

130

www.it-ebooks.info

Chapter 4

The preceding code will render the following plot:

How it works...

For this example, we first created two sinusoidal functions that overlap at certain points.

We also created two subplots to compare the two variations that render filled regions.

In both cases, we used fill_between() with an argument, where, that accepts an N-length Boolean array and will fill over the regions where where equals True.

The bottom subplot illustrates mask_greater, which masks an array at values greater than a given value. This is a function from the numpy.ma package to handle missing or invalid values. We turned the grid on the bottom axes to make it easier to spot this.

Drawing polar plots

If the data is already represented using polar coordinates, we can as well display it using polar figures. Even if the data is not in polar coordinates, we should consider converting it to polar form and draw on polar plots.

131

www.it-ebooks.info

More Plots and Customizations

To answer whether we want to do this, we need to understand what the data represents and what we are hoping to display to the end user. Imagining what the user will read and decode from our figures leads us usually to the best of visualizations.

Polar plots are commonly used to display information that is radial in nature. For example, in sun path diagrams—we see the sky in radial projection, and the radiation maps of antennas radiate differently at different angles. You can learn more about this at: http://www.

astronwireless.com/topic-archives-antenna-radiation-patterns.asp.

In this recipe, we will learn how to change the coordinate system used in the plot and to use the polar coordinate system instead.

Getting ready

To display data in polar coordinates, we must have appropriate data values. In the polar coordinate system, a point is described with radius distance (usually denoted with r
) and angle (usually theta
). The angle can be in radians or degrees, but matplotlib uses degrees.

Similar enough to the function plot(), to draw polar plots, we will use the function polar(), which accepts two same-length arrays of parameters, theta and r, for angle array and radius array, respectively. The function also accepts other formatting arguments, the same ones as plot() one does.

We also need to tell matplotlib that we want axes in the polar coordinate system. This is done by providing the polar=True argument to the add_axes or add_subplot functions.

Additionally, to set other properties on the figure, such as grids on radii or angles, we need to use matplotlib.pyplot.rgrids() to toggle radial grid visibility or to set up labels.

Similarly, we use matplotlib.pyplot.thetagrid() to configure angle ticks and labels.

How to do it...

Here is one recipe that demonstrates how to plot polar bars:

import numpy as np

import matplotlib.cm as cm

import matplotlib.pyplot as plt

figsize = 7

colormap = lambda r: cm.Set2(r / 20.)

N = 18 # number of bars

fig = plt.figure(figsize=(figsize,figsize))

ax = fig.add_axes([0.2, 0.2, 0.7, 0.7], polar=True)

theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)

132

www.it-ebooks.info

Chapter 4

radii = 20*np.random.rand(N)

width = np.pi/4*np.random.rand(N)

bars = ax.bar(theta, radii, width=width, bottom=0.0)

for r, bar in zip(radii, bars):

bar.set_facecolor(colormap(r))

bar.set_alpha(0.6)

plt.show()

The preceding code snippet will give us the following plot:

How it works...

First, we create a square figure and add the polar axes to it. The figure does not have to be square, but then our polar plot will be ellipsoidal.

We then generate random values for a set of angles (theta) and a set of polar distances (radii). Because we drew bars, we also needed a set of widths for each bar, so we also generated a set of widths. Since maplotlib.axes.bar accepts an array of values (as almost all the drawing functions in matplotlib do) we don't have to loop over this generated dataset; we just need to call the bar once with all the arguments passed to it.

In order to make every bar easily distinguishable, we have to loop over each bar added to ax (Axes) and customize its appearance (face-color and transparency).

133

www.it-ebooks.info

More Plots and Customizations

Visualizing the filesystem tree using a

polar bar

We want to show in this recipe how to solve a "real-world" task—how to use matplotlib to visualize our directory occupancy.

In this recipe we will learn how to visualize a filesystem tree with relative sizes.

Getting ready

We all have big hard drives that sometimes contain stuff that we usually forget about. It would be nice to see what is inside such a directory, and what the biggest file inside is.

Although there are many more sophisticated and elaborate software products for this job, we want to demonstrate how this is achievable using Python and matplotlib.

How to do it...

Let's perform the following steps:

1. Implement a few helper functions to deal with folder discovery and internal data structures.

2. Implement the main function, draw(), that does the plotting.

3. Implement the main program body that verifies the user input arguments: import os

import sys

import matplotlib.pyplot as plt

import matplotlib.cm as cm

import numpy as np

def build_folders(start_path):

folders = []

for each in get_directories(start_path):

size = get_size(each)

if size >= 25 * 1024 * 1024:

folders.append({'size' : size, 'path' : each})

for each in folders:

print "Path: " + os.path.basename(each['path'])

print "Size: " + str(each['size'] / 1024 / 1024) + " MB"

134

www.it-ebooks.info

Chapter 4

return folders

def get_size(path):

assert path is not None

total_size = 0

for dirpath, dirnames, filenames in os.walk(path):

for f in filenames:

fp = os.path.join(dirpath, f)

try:

size = os.path.getsize(fp)

total_size += size

#print "Size of '{0}' is {1}".format(fp, size)

except OSError as err:

print str(err)

pass

return total_size

def get_directories(path):

dirs = set()

for dirpath, dirnames, filenames in os.walk(path):

dirs = set([os.path.join(dirpath, x) for x in dirnames])

break # we just want the first one

return dirs

def draw(folders):

""" Draw folder size for given folder"""

figsize = (8, 8) # keep the figure square

ldo, rup = 0.1, 0.8 # leftdown and right up normalized

fig = plt.figure(figsize=figsize)

ax = fig.add_axes([ldo, ldo, rup, rup], polar=True)

transform data

x = [os.path.basename(x['path']) for x in folders]

y = [y['size'] / 1024 / 1024 for y in folders]

theta = np.arange(0.0, 2 * np.pi, 2 * np.pi / len(x))

radii = y

bars = ax.bar(theta, radii)

middle = 90/len(x)

theta_ticks = [t*(180/np.pi)+middle for t in theta]

lines, labels = plt.thetagrids(theta_ticks, labels=x,

frac=0.5)

for step, each in enumerate(labels):

135

www.it-ebooks.info

More Plots and Customizations

each.set_rotation(theta[step]*(180/np.pi)+ middle)

each.set_fontsize(8)

configure bars

colormap = lambda r:cm.Set2(r / len(x))

for r, each in zip(radii, bars):

each.set_facecolor(colormap(r))

each.set_alpha(0.5)

plt.show()

4. Next, we will implement the main program body where we verify the input arguments given by the user when the program is called from the command line:

if __name__ == '__main__':

if len(sys.argv) is not 2:

print "ERROR: Please supply path to folder."

sys.exit(-1)

start_path = sys.argv[1]

if not os.path.exists(start_path):

print "ERROR: Path must exits."

sys.exit(-1)

folders = build_folders(start_path)

if len(folders) < 1:

print "ERROR: Path does not contain any folders."

sys.exit(-1)

draw(folders)

You need to run the following from the command line:

$ python ch04_rec11_filesystem.py /usr/lib/

136

www.it-ebooks.info

Chapter 4

It will produce a plot similar to this one:

How it works...

We will start from the bottom of the code, after if __name__ == '__main__' because that is the place where our program starts.

Using the module sys, we pick up command-line arguments; they represent the path to directory we want to visualize.

The function build_folders builds the list of dictionaries, each containing the size and path that it found inside the given start_path. This function calls get_directories, which returns a list of all the subdirectories in start_path. Later, for each found directory, we calculated the sizes in bytes using the get_size function.

For debugging purposes, we print our dictionary so that we are able to compare the figure to what our data looks like.

137

www.it-ebooks.info

More Plots and Customizations

After we have built the folders as a list of dictionaries, we pass them to a function, draw, that performs all the work of transforming the data to the right dimensions (here, we are using the polar coordinate system), constructing the polar figure, and drawing all the bars, ticks, and labels.

Strictly speaking, we should divide this job into smaller functions, especially if this code is to be further developed.

138

www.it-ebooks.info

5

Making 3D

Visualizations

We will learn the following recipes in this chapter:

f

Creating 3D bars

f

Creating 3D histograms

f

Animating in matplotlib

f

Animating with OpenGL

Introduction

Visualization in 3D is sometimes effective, and sometimes inevitable. Here, we present some examples that will satisfy the most frequent requirements.

The content of this chapter will introduce and explain some topics on 3D visualizations.

Creating 3D bars

Although matplotlib is mainly focused on plotting and mainly in two dimensions, there are different extensions that enable us to plot over geographical maps, to integrate more with Excel and plot in 3D. These extensions are called toolkits in the matplotlib world. Toolkit is a collection of specific function that focuses on one topic, such as plotting in 3D.

Popular toolkits are Basemap, GTK Tools, Excel Tools, Natgrid, AxesGrid, and mplot3d.

www.it-ebooks.info

Making 3D Visualizations

We will explore more of mplot3d in this recipe. The toolkit mpl_toolkits.mplot3d provides some basic 3D plotting. Plots supported are scatter, surf, line, and mesh. Although this is not the best 3D plotting library, it comes with matplotlib and we are already familiar with the interface.

Getting ready

Basically, we still need to create a figure and add desired axes to it. The difference is that we specify 3D projection for the figure, and the axes we add are Axes3D.

Now, we can use almost the same functions for plotting. Of course, what are different are the arguments, for we now have three axes that we need to provide data for.

For example, the function mpl_toolkits.mplot3d.Axes3D.plot specifies xs, ys, zs, and zdir arguments. All others are transferred directly to matplotlib.axes.Axes.plot.

We will explain these specific arguments:

f

xs and ys: These are coordinates for x and y axes

f

zs: This is the value(s) for z axis. It can be one for all points or one for each point f

zdir: This will choose what will be the z-axis dimension (usually this is zs, but can be xs or ys)

There is a method rotate_axes in the module mpl_toolkits.

mplot3d.art3d that contains 3D artist code and functions to convert

2D artists into 3D versions, which can be added to Axes3D to reorder coordinates so that the axes are rotated along with zdir. The default value is z. Prepending the axis with a '-' does the inverse transform, so zdir can be x, -x, y, -y, z, or -z.

How to do it...

This is the code to demonstrate the concept explained:

import random

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

140

www.it-ebooks.info

Chapter 5

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

for z in [2011, 2012, 2013, 2014]:

xs = xrange(1,13)

ys = 1000 * np.random.rand(12)

color = plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))

ax.bar(xs, ys, zs=z, zdir='y', color=color, alpha=0.8)

ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))

ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))

ax.set_xlabel('Month')

ax.set_ylabel('Year')

ax.set_zlabel('Sales Net [usd]')

plt.show()

The preceding code produces the following diagram:

141

www.it-ebooks.info

Making 3D Visualizations

How it works...

We had to do the same preparation work as in the 2D world. The difference here is that we needed to specify the kind of backend. Then we generate some random data, for example, 4 years of sale (2011-2014).

We needed to specify the Z values to be the same for the 3D axis.

We picked a color randomly from the color-map set, and then we associated each Z-order collection of xs, ys pairs we would render the bar series.

There's more...

Other plotting from 2D matplotlib is available here; for example, scatter() with similar interface to plot() but with added size of the point marker. We are also familiar with contour, contourf, and bar.

The new types that are available just in 3D are wireframe, surface, and tri-surface plots.

The following code example plots tri-surface plot of popular Pringle functions or, more mathematically, hyperbolic paraboloid:

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

import matplotlib.pyplot as plt

import numpy as np

n_angles = 36

n_radii = 8

An array of radii

Does not include radius r=0, this is to eliminate duplicate points radii = np.linspace(0.125, 1.0, n_radii)

An array of angles

angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)

Repeat all angles for each radius

angles = np.repeat(angles[...,np.newaxis], n_radii, axis=1)

Convert polar (radii, angles) coords to cartesian (x, y) coords

(0, 0) is added here. There are no duplicate points in the (x, y)

plane

x = np.append(0, (radii*np.cos(angles)).flatten())

y = np.append(0, (radii*np.sin(angles)).flatten())

142

www.it-ebooks.info

Chapter 5

Pringle surface

z = np.sin(-x*y)

fig = plt.figure()

ax = fig.gca(projection='3d')

ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)

plt.show()

The preceding code will give the following output:

Creating 3D histograms

Similar to 3D bars, we might want to create 3D histograms. They are used to easily spot correlation between three independent variables. They can be used to extract information from images where the third dimension could be the intensity of a channel in (x,y) space of the image under analysis.

In this recipe, we will learn how to create 3D histograms.

143

www.it-ebooks.info

Making 3D Visualizations

Getting ready

To recall, a histogram represents a number of occurrences of some value in a particular column (usually called "bin"). The three-dimensional histogram, then, represents a number of occurrences in a grid. This grid is rectangular, over two variables that are data in the two columns.

How to do it...

For this computation, we will:

1. Use NumPy because it has the function to compute a histogram of two variables.

2. Generate x and y from normal distributions but with different parameters to be able to distinct the correlation in the resulting histogram.

3. Plot the scatter plot of the same dataset to demonstrate how different is the display of scatter plot to 3D histogram.

Following is the code sample to implement the described steps:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

samples = 25

x = np.random.normal(5, 1, samples)

y = np.random.normal(3, .5, samples)

fig = plt.figure()

ax1 = fig.add_subplot(211, projection='3d')

compute two-dimensional histogram

hist, xedges, yedges = np.histogram2d(x, y, bins=10)

compute location of the x,y bar positions

elements = (len(xedges) - 1) * (len(yedges) - 1)

xpos, ypos = np.meshgrid(xedges[:-1]+.25, yedges[:-1]+.25)

xpos = xpos.flatten()

ypos = ypos.flatten()

144

www.it-ebooks.info

Chapter 5

zpos = np.zeros(elements)

make every bar the same width in base

dx = .1 * np.ones_like(zpos)

dy = dx.copy()

this defines the height of the bar

dz = hist.flatten()

ax1.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', alpha=0.4)

ax1.set_xlabel('X Axis')

ax1.set_ylabel('Y Axis')

ax1.set_zlabel('Z Axis')

plot the same x,y correlation in scatter plot

for comparison

ax2 = fig.add_subplot(212)

ax2.scatter(x, y)

ax2.set_xlabel('X Axis')

ax2.set_ylabel('Y Axis')

plt.show()

The preceding code will give the following output:

145

www.it-ebooks.info

Making 3D Visualizations

How it works...

We prepare a computer histogram using np.histogram2d that returns our histogram (hist) and the x and y bin edges.

Because for the bard3d function we need coordinates in x, y space, so we need to compute the common matrix coordinates, and for that we use np.meshgrid that combines the x and y positional vectors into the 2D space grid (matrix). We can use this to plot bars in the xy plane locations.

The variables dx and dy represent width of the base of each bar and we want to make this constant, hence we give it a 0.1 point value for every position in the xy plane.

The value in the z axis (dz) is actually our computer histogram (in variable hist) that represents the count of common x and y samples at a particular bin.

Scatter plot below (in preceding plots) displays the 2D axes that also visualize correlation between two similar distributions but with a different set of starting parameters.

Sometimes 3D is what gives us more information and resonates what the data is containing in a better way. As more often 3D visualizations are more confusing than 2D, it is advised to think twice before we choose them over 2D.

Animating in matplotlib

In this recipe, we will explore how to animate our figures. Sometimes it is more descriptive to have pictures moving in animations to explain what is going on when we change values of variables. Our main library has limited but usually sufficient animation capabilities and we will explain how to use them.

Getting ready

A framework for animation is added to the standard matplotlib from version 1.1 and its main class is matplotlib.animation.Animation. This class is a base class; it is to be subclassed for specific behavior as is the case with the already provided classes: TimedAnimation, ArtistAnimation, and FuncAnimation. The following table gives the description of the classes:

Class name (parent class)

Description

Animation (object)

This class wraps the creation of an animation

using matplotlib. It is only a base class that

should be subclassed to provide the needed

behavior.

146

www.it-ebooks.info

Chapter 5

Class name (parent class)

Description

TimedAnimation (Animation)

This animation subclass supports time-based

animation, and drawing a new frame every

interval* milliseconds.

ArtistAnimation (TimedAnimation)

Before calling this function, all plotting should

have taken place and the relevant artists

saved.

FuncAnimation (TimedAnimation)

This makes an animation by repeatedly calling

a function, passing in (optional) arguments.

In order to be able to save animations in a video file, we must have ffmpeg or mencoder installer. Installation of these packages varies depending on the OS used, and the changes by different releases, so we must leave it to our dear reader to Google valid information.

How to do it...

The following code listing demonstrates some matplotlib animations:

import numpy as np

from matplotlib import pyplot as plt

from matplotlib import animation

fig = plt.figure()

ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))

line, = ax.plot([], [], lw=2)

def init():

"""Clears current frame."""

line.set_data([], [])

return line,

def animate(i):

"""Draw figure.

@param i: Frame counter

@type i: int

"""

x = np.linspace(0, 2, 1000)

y = np.sin(2 * np.pi * (x - 0.01 * i)) * np.cos(22 * np.pi * (x -

0.01 * i))

line.set_data(x, y)

return line,

147

www.it-ebooks.info

Making 3D Visualizations

This call puts the work in motion

connecting init and animate functions and figure we want to draw

animator = animation.FuncAnimation(fig, animate, init_func=init,

frames=200, interval=20, blit=True)

This call creates the video file.

Temporary, every frame is saved as PNG file

and later processed by ffmpeg encoder into MPEG4 file

we can pass various arguments to ffmpeg via extra_args

animator.save('basic_animation.mp4', fps=30,

extra_args=['-vcodec', 'libx264'],

writer='ffmpeg_file')

plt.show()

This will create the file basic_animation.mp4 in the folder from where you started working on this file, and also display a figure window with a running animation. The video file can be opened with most modern video players that support MPEG-4 format. The figure (frame) should look like the following graph:

148

www.it-ebooks.info

Chapter 5

How it works...

Most important are the functions init(), animate(), and save(). We first construct FuncAnimate by passing two callback functions to it, init and animate. Then we call its save() method to save our video file. More details on each function are in the following table: Function name

Usage

init

Passed to the matplotlib.animation.

FuncAnimation constructor via parameter

init_func to clear frame before next frame

is drawn.

animate

Passed to the matplotlib.animation.

FuncAnimation constructor via func

parameter.

The figure we want to animate is passed

via fig argument, which under the hood is

passed to the matplotlib.animation.

Animation constructor to connect

animation events with the figure we want to

draw. This function gets (optional) parameters

from frames, usually iterable, representing a

number of frames.

matplotlib.animation.Animation.

Saves a movie file by drawing every frame.

save

It creates temporary image files before

processing them through encoder (ffmpeg

or mencoder) to create a video file. This

function also accepts various parameters

that configure the video output, metadata

(author...), codec to use, resolution/size,

and so on. One of the parameters is the

one that defines what video encoder to use.

Currently supported are ffmpeg, ffmpeg_file,

and mencoder.

There's more...

The usage of matplotlib.animation.ArtistAnimation differs from the usage of FuncAnimation, in that we must draw each artist beforehand and then instantiate the ArtistAnimation class with all artists' different frames. Artist animation is a kind of a wrapper of the matplotlib.animation.TimedAnimation class that draws frames every N milliseconds, thus supporting time-based animation.

149

www.it-ebooks.info

Making 3D Visualizations

Unfortunately, for the Mac OS X users, animation framework can be

troublesome on this platform, and sometimes simply does not work,

which will improve with future releases of matplotlib.

Animating with OpenGL

The motivation to use OpenGL comes from the limitations of CPU processing power when we face a task to visualize millions of data points and do it fast (sometimes even in real time).

Modern computers have powerful GPUs that are made for fast visualization related computations (such as games), and there is no reason why they can't be used for scientific-related visualizations.

Actually, there is at least one drawback of writing the hardware accelerated software. As far as hardware dependency is concerned, modern graphic cards require proprietary drivers, sometimes not available on the target platform/machine (for example, user laptop); even when available, sometimes installing required dependencies on site is not what you want to spend your time on, while all you want is to present your findings and demonstrate your research results. This is not a show stopper but have this in mind, and measure benefits and costs of introducing this complexity in your project.

With caveats explained, we can say yes to hardware accelerated visualizations and say yes to OpenGL, industry standard for accelerated graphics.

We will be using OpenGL, as it is across platform, so the examples should work as presented on Linux, Mac, or Windows, given that you have the required hardware and OS level drivers installed.

Getting ready

If you have never used OpenGL, we will now try to give a quick intro, although really to know OpenGL, at least one full book needs to be read and understood. OpenGL is a specification, not an implementation, so OpenGL itself doesn't have any code, where the implementations are libraries developed according to this specification. Those are shipped with your operating system, or by vendors of graphic cards such as NVIDIA, or AMD/ATI.

Moreover, OpenGL is concerned only with graphics rendering and not animation, timing and other complex things that are left for additional library to pick up.

150

www.it-ebooks.info

Chapter 5

Basics of animating with OpenGL

Because OpenGL is a rendering library, it does not know what objects we draw on a screen. It doesn't care if we draw a cat, a ball, or a line, or all of those objects. So to move a rendered object, we need to clear and draw the whole image again. To animate something, we need a loop that draws and redraws everything very fast, and displays that to a user, so that the user thinks he/

she is seeing an animation.

Installing OpenGL on a machine is a platform dependent process. On Mac OS X, OpenGL

implementations is part of OS upgrade, but development libraries (so called "headers") are part of Xcode development package.

On Windows, the best way would be to install vendor's latest graphic drivers for your graphic card. OpenGL may work without them, but you will probably be left without the latest features of stock drivers.

On Linux, if you are not against installing closed source software, there are vendor specific drivers downloadable from either Distro's own software manager, or from vendor site as installable binary. Standard implementation is almost always Mesa3D, the best known OpenGL implementation that uses Xorg to provide support for OpenGL for Linux, FreeBSD, and similar operating systems.

Basically, on Debian/Ubuntu, you should install the following packages and their dependencies: $ sudo apt-get install libgl1-mesa-dev libgl-mesa-dri

After this, you should be ready to use some development libraries and/or frameworks to actually write OpenGL backed applications.

We are focused here on Python, so we will overview some of the Python's most used libraries and frameworks that are built on top of OpenGL. We will mention matplotlib and its current and future support for OpenGL:

f

Mayavi: This is a library specialized for 3D

f

Pyglet: This is a pure Python library for graphics

f

Glumpy: This is a fast rendering library built on top of NumPy

f

Pyglet and OpenGL: This is used for visualizing Big Data (multi-million data points) 151

www.it-ebooks.info

Making 3D Visualizations

How to do it...

The specialized project Mayavi is a full feature 3D graphic library, and it is mainly used for advanced 3D rendering. It comes with the already mentioned Python packages such as EPD

(though not with free license), which is a recommended way to install it on Windows and Mac OS X. On Linux; it can also be easily installed using pip:

$ pip install mayavi

Mayavi can be used as a development library/framework or as an application.

The Mayavi application comprises a visual editor for easy data explorations and somewhat interactive visualization.

As a library it can be used similarly to matplotlib, either from a script interface or as a full object-oriented library. Most of that interface is inside the module mlab, to be able to use that interface. For example, a simple animation with Mayavi can be done as follows: import numpy

from mayavi.mlab import *

Produce some nice data.

n_mer, n_long = 6, 11

pi = numpy.pi

dphi = pi/1000.0

phi = numpy.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd')

mu = phi*n_mer

x = numpy.cos(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5)

y = numpy.sin(mu)*(1+numpy.cos(n_long*mu/n_mer)*0.5)

z = numpy.sin(n_long*mu/n_mer)*0.5

View it.

l = plot3d(x, y, z, numpy.sin(mu), tube_radius=0.025,

colormap='Spectral')

Now animate the data.

ms = l.mlab_source

for i in range(100):

x = numpy.cos(mu)*(1+numpy.cos(n_long*mu/n_mer +

numpy.pi*(i+1)/5.)*0.5)

scalars = numpy.sin(mu + numpy.pi*(i+1)/5)

ms.set(x=x, scalars=scalars)

152

www.it-ebooks.info

Chapter 5

The preceding code will produce the following window with the rotating figure: How it works...

We generate the dataset and create a set of functions for x, y, and z to be used in the plot3d function for the start position of the figure.

We then import the mlab_source object that enables us to manipulate our plot on the level of the points and scalars. We use this feature to then set particular points and scalars in for the loop to create a rotation animation with 100 frames.

There's more...

If you want to experiment more, the easiest way to do that is to load IPython, import mayavi.mlab, and run some test_* functions.

To see what is going on, you use IPython's ability to inspect and explore Python source, as shown in the following code:

In [1]: import mayavi.mlab

In [2]: mayavi.mlab.test_simple_surf??

Type: function

String Form:<function test_simple_surf at 0x641b410>

File: /usr/lib/python2.7/dist-packages/mayavi/tools/helper_

functions.py

Definition: mayavi.mlab.test_simple_surf()

153

www.it-ebooks.info

Making 3D Visualizations

Source:

def test_simple_surf():

"""Test Surf with a simple collection of points."""

x, y = numpy.mgrid[0:3:1,0:3:1]

return surf(x, y, numpy.asarray(x, 'd'))

We see here how by adding two question marks after function name ("??"), IPython found the source of the function and showed it to us. This is a true exploratory computing, and is often used within the visualization community because it is a fast way to get to know your data and code.

Using Pyglet Quickstart

Pyglet is another popular Python library that eases writing graphics and windowing-related applications. It supports OpenGL through its module pyglet.gl, but you don't have to directly talk to this module to use the power of Pyglet. Most convenient use is through pyglet.graphics.

Pyglet takes a different approach to Mayavi; there is no visual IDE, and you are responsible for doing everything from creating a window to issuing a low-level OpenGL call to configure OpenGL context. This is sometimes slower than Mayavi, but what you gain is the ability to control every piece of your application. Sometimes that also means more work hours involved, but usually it means better quality and performance for your applications.

The simplest application (image viewer) can be obtained using the following code: import pyglet

window = pyglet.window.Window()

image = pyglet.resource.image('kitten.jpg')

@window.event

def on_draw():

window.clear()

image.blit(0, 0)

pyglet.app.run()

Here you can see that we create a window, load an image, and define what is going to happen when we draw a window object (that is, we define an event handler for the on_draw event).

Lastly, we run our application (pyglet.app.run()).

Under the hood, OpenGL is used to draw in windows. This interface is accessible from the pyglet.gl module. Using it directly, though, is not efficient, so pyglet has a simpler interface at pyglet.graphics, where vertex arrays and buffers are used internally to this interface.

154

www.it-ebooks.info

Chapter 5

Using Glumpy Quickstart

Glumpy is an OpenGL plus NumPy library for fast NumPy visualization using OpenGL. It is an open source project started by Nicolas Rougier
 , and aimed to be efficient. To use it, we need Python OpenGL bindings, SciPy, and of course Glumpy. Use following commands for this: sudo apt-get install python-opengl

sudo pip install scipy

sudo pip install glumpy

Glumpy uses OpenGL textures to represent arrays since it is probably the fastest method of visualization on modern graphic hardware.

Pyprocessing introduction

Pyprocessing works in much the same fashion as Processing (http://processing.org).

Most functions in Pyprocessing are equivalent to Processing functions. If you are familiar with Processing and Python, you already know almost everything you need to write Pyprocessing applications. To use it, the only thing we need to do is to import the pyprocessing package, write the rest of your code using Pyprocessing functions and data structures, and call run().

There are a lot of free tutorials on OpenGL and how to use it from C/C++ or any other language bindings. One list is provided here, on official OpenGL wiki at http://www.

opengl.org/wiki/Getting_started#Tutorials_and_How_To_Guides.

There are many more projects that tackle Python, OpenGL, and 3D visualization in general.

Some of them are young, some of them not maintained, but if you spot one that needs to be mentioned, let us know.

155

www.it-ebooks.info

www.it-ebooks.info

6

Plotting Charts with

Images and Maps

This chapter contains recipes that will show:

f

Processing images with PIL

f

Plotting with images

f

Displaying image with other plots in the figure

f

Plotting data on a map using Basemap

f

Plotting data on a map using Google Map API

f

Generating CAPTCHA images

Introduction

This chapter explores how to work with images and maps. Python has some well-known image libraries that allow us to process images in both aesthetic and scientific ways.

We will touch on PIL's capabilities by demonstrating how to process images by applying filters and by resizing them.

Furthermore, we will show how to use image files as annotation for our matplotlibs' charts.

To deal with data visualization of geospatial datasets, we will cover the functionality of Python's available libraries and public APIs that we can use with map-based visual representations.

The final recipe shows how Python can create CAPTCHA test images.

www.it-ebooks.info

Plotting Charts with Images and Maps

Processing images with PIL

Why use Python for image processing, if we could use WIMP (http://en.wikipedia.org/

wiki/WIMP_(computing)) or WYSIWYG (http://en.wikipedia.org/wiki/WYSIWYG) to achieve the same goal? This is used because we want to create an automated system to process images in real time without human support, thus, optimizing the image pipeline.

Getting ready

Note that the PIL coordinate system assumes that the (0,0) coordinate is in the upper-left corner.

The Image module has a useful class and instance methods to perform basic operations over a loaded image object (im):

f

im = Image.open(filename): This opens a file and loads the image into im object.

f

im.crop(box): This crops the image inside the coordinates defined by box. box defines left, upper, right, lower pixels coordinates (for example: box = (0, 100, 100,100)).

f

im.filter(filter): This applies a filter on the image and returns a filtered image.

f

im.histogram(): This returns a histogram list for this image, where each item represents the number of pixels. Number of items in the list is 256 for single channel images, but if the image is not a single channel image, there can be more items in the list. For an RGB image the list contains 768 items (one set of 256 values for each channel).

f

im.resize(size, filter): This resizes the image and uses a filter for resampling. The possible filters are NEAREST, BILINEAR, BICUBIC, and ANTIALIAS. The default is NEAREST.

f

im.rotate(angle, filter): This rotates an image in the counter

clockwise direction.

f

im.split(): This splits bands of image and returns a tuple of individual bands.

Useful for splitting an RGB image into three single band images.

f

im.transform(size, method, data, filter): This applies transformation on a given image using data and a filter. Transformation can be AFFINE, EXTENT, QUAD, and MESH. You can read more about transformation in the official documentation. Data defines the box in the original image where the transformation will be applied.

The ImageDraw module allows us to draw over the image, where we can use functions such as arc, ellipse, line, pieslice, point, and polygon to modify the pixels of the loaded image.

158

www.it-ebooks.info

Chapter 6

The ImageChops module contains a number of image channel operations (hence the name Chops) that can be used for image composition, painting, special effects, and other processing operations. Channel operations are allowed only for 8-bit images. Here are some interesting channel operations:

f

ImageChops.duplicate(image): This copies current image into a new i

mage object

f

ImageChops.invert(image): This inverts an image and returns a copy

f

ImageChops.difference(image1, image2): This is useful for verification that images are the same without visual inspection

The ImageFilter module contains the implementation of the kernel class that allows the creation of custom convolution kernels. This module also contains a set of healthy common filters that allows the application of well-known filters (BLUR and MedianFilter) to our image.

There are two types of filters provided by the ImageFilter module: fixed image enhancement filters and image filters that require certain arguments to be defined; for example, size of the kernel to be used.

We can easily get the list of all fixed filter names in IPython:

In [1]: import ImageFilter

In [2]: [f for f in dir(ImageFilter) if f.isupper()]

Out[2]:

['BLUR',

'CONTOUR',

'DETAIL',

'EDGE_ENHANCE',

'EDGE_ENHANCE_MORE',

'EMBOSS',

'FIND_EDGES',

'SHARPEN',

'SMOOTH',

'SMOOTH_MORE']

The next example shows how we can apply all currently supported fixed filters on any supported image:

import os

import sys

from PIL import Image, ImageChops, ImageFilter

class DemoPIL(object):

def __init__(self, image_file=None):

159

www.it-ebooks.info

Plotting Charts with Images and Maps

self.fixed_filters = [ff for ff in dir(ImageFilter) if

ff.isupper()]

assert image_file is not None

assert os.path.isfile(image_file) is True

self.image_file = image_file

self.image = Image.open(self.image_file)

def _make_temp_dir(self):

from tempfile import mkdtemp

self.ff_tempdir = mkdtemp(prefix="ff_demo")

def _get_temp_name(self, filter_name):

name, ext = os.path.splitext(os.path.basename(self.image_

file))

newimage_file = name + "-" + filter_name + ext

path = os.path.join(self.ff_tempdir, newimage_file)

return path

def _get_filter(self, filter_name):

note the use Python's eval() builtin here to return function

object

real_filter = eval("ImageFilter." + filter_name)

return real_filter

def apply_filter(self, filter_name):

print "Applying filter: " + filter_name

filter_callable = self._get_filter(filter_name)

prevent calling non-fixed filters for now

if filter_name in self.fixed_filters:

temp_img = self.image.filter(filter_callable)

else:

print "Can't apply non-fixed filter now."

return temp_img

def run_fixed_filters_demo(self):

self._make_temp_dir()

for ffilter in self.fixed_filters:

temp_img = self.apply_filter(ffilter)

temp_img.save(self._get_temp_name(ffilter))

print "Images are in: {0}".format((self.ff_tempdir),)

if __name__ == "__main__":

assert len(sys.argv) == 2

160

www.it-ebooks.info

Chapter 6

demo_image = sys.argv[1]

demo = DemoPIL(demo_image)

will create set of images in temporary folder

demo.run_fixed_filters_demo()

We can run this easily from the command prompt:

$ pythonch06_rec01_01_pil_demo.py image.jpeg

We packed our little demo in the DemoPIL class, so we can extend it easily while sharing the common code around the demo function run_fixed_filters_demo. Common code here includes opening the image file, testing if the file is really a file, creating temporary directory to hold our filtered images, building the filtered image filename, and printing useful information to user. This way the code is organized in a better manner and we can easily focus on our demo function, without touching other parts of the code.

This demo will open our image file and apply every fixed filter available in ImageFilter to it and save that new filtered image in a unique temporary directory. The location of this temporary directory is retrieved, so we can open it with our OS's file explorer and view the created images.

As an optional exercise, try extending this demo class to perform other filters available in ImageFilter on the given image.

How to do it...

The example in this section shows how we can process all the images in a certain folder. We specify a target path, and the program reads all the image files in that target path (images folder) and resizes them to a specified ratio (0.1 in this example), and saves each one in a target folder called thumbnail_folder:

import os

import sys

from PIL import Image

class Thumbnailer(object):

def __init__(self, src_folder=None):

self.src_folder = src_folder

self.ratio = .3

self.thumbnail_folder = "thumbnails"

def _create_thumbnails_folder(self):

thumb_path = os.path.join(self.src_folder, self.thumbnail_

folder)

if not os.path.isdir(thumb_path):

161

www.it-ebooks.info

Plotting Charts with Images and Maps

os.makedirs(thumb_path)

def _build_thumb_path(self, image_path):

root = os.path.dirname(image_path)

name, ext = os.path.splitext(os.path.basename(image_path))

suffix = ".thumbnail"

return os.path.join(root, self.thumbnail_folder, name + suffix

+ ext)

def _load_files(self):

files = set()

for each in os.listdir(self.src_folder):

each = os.path.abspath(self.src_folder + '/' + each)

if os.path.isfile(each):

files.add(each)

return files

def _thumb_size(self, size):

return (int(size[0] * self.ratio), int(size[1] * self.ratio))

def create_thumbnails(self):

self._create_thumbnails_folder()

files = self._load_files()

for each in files:

print "Processing: " + each

try:

img = Image.open(each)

thumb_size = self._thumb_size(img.size)

resized = img.resize(thumb_size, Image.ANTIALIAS)

savepath = self._build_thumb_path(each)

resized.save(savepath)

except IOError as ex:

print "Error: " + str(ex)

if __name__ == "__main__":

Usage:

ch06_rec01_02_pil_thumbnails.py my_images

assert len(sys.argv) == 2

src_folder = sys.argv[1]

if not os.path.isdir(src_folder):

print "Error: Path '{0}' does not exits.".format((src_folder)) sys.exit(-1)

162

www.it-ebooks.info

Chapter 6

thumbs = Thumbnailer(src_folder)

optionally set the name of theachumbnail folder relative to

src_folder.

thumbs.thumbnail_folder = "THUMBS"

define ratio to resize image to

0.1 means the original image will be resized to 10% of its size

thumbs.ratio = 0.1

will create set of images in temporary folder

thumbs.create_thumbnails()

How it works...

For the given src_folder folder, we load all the files in this folder and try to load each file using Image.open(); this is the logic of the create_thumbnails() function. If the file we try to load is not an image, IOError will be thrown, and it will print this error and skip to next file in the sequence.

If we want to have more control over what files we load, we should change the _load_

files() function to only include files with certain extension (file type): for each in os.listdir(self.src_folder):

if os.path.isfile(each) and os.path.splitext(each) is in

('.jpg','.png'):

self._files.add(each)

This is not foolproof, as file extension does not define file type, it just helps the operating system to attach a default program to the file, but it works in majority of the cases and is simpler than reading a file header to determine the file content (which still does not guarantee that the file really is the first couple of bytes, say it is).

There's more...

With PIL, although not used very often, we can easily convert images from one format to the other. This is achievable with two simple operations: first open an image in a source format using open(), and then save that image in the other format using save(). Format is defined either implicitly via filename extension (.png or .jpeg), or explicitly via the format of the argument passed to the save() function.

163

www.it-ebooks.info

Plotting Charts with Images and Maps

Plotting with images

Images can be used to highlight the strengths of your visualization in addition to pure data values. Many examples have proven that by using symbolic images, we map deeper into the viewer's mental model, thereby helping the viewer to remember the visualizations better and for a longer time. One way to do so is to place images where your data is, to map the values to what they represent. The matplotlib library is capable of delivering this functionality, thus we will demonstrate how to do it.

Getting ready

Use the fictional example from the story The Gospel of the Flying Spaghetti Monster
 , by Bobby
 Henderson
 where the author correlates number of pirates with sea-surface temperature. To highlight this correlation, we will display the size of the pirate ship proportional to the value representing the number of pirates in the year the sea-surface temperature is measured.

We will use Python matplotlib library's ability to annotate using images and text with advanced location settings, as well as arrow capabilities.

All the files required in the following recipe are available in the source code repository in the ch06 folder.

How to do it...

The following example shows how to add an annotation to a chart using images and text: import matplotlib.pyplot as plt

from matplotlib._png import read_png

from matplotlib.offsetbox import TextArea, OffsetImage, \

AnnotationBbox

def load_data():

import csv

with open('pirates_temperature.csv', 'r') as f:

reader = csv.reader(f)

header = reader.next()

datarows = []

for row in reader:

datarows.append(row)

return header, datarows

def format_data(datarows):

164

www.it-ebooks.info

Chapter 6

years, temps, pirates = [], [], []

for each in datarows:

years.append(each[0])

temps.append(each[1])

pirates.append(each[2])

return years, temps, pirates

After we have defined helper functions, we can approach the construction of the figure object and add subplots. We will annotate these for every year in the collection of years using the image of the ship, scaling the image to the appropriate size:

if __name__ == "__main__":

fig = plt.figure(figsize=(16,8))

ax = plt.subplot(111) # add sub-plot

header, datarows = load_data()

xlabel, ylabel = header[0], header[1]

years, temperature, pirates = format_data(datarows)

title = "Global Average Temperature vs. Number of Pirates"

plt.plot(years, temperature, lw=2)

plt.xlabel(xlabel)

plt.ylabel(ylabel)

for every data point annotate with image and number

for x in xrange(len(years)):

current data coordinate

xy = years[x], temperature[x]

add image

ax.plot(xy[0], xy[1], "ok")

load pirate image

pirate = read_png('tall-ship.png')

zoom coefficient (move image with size)

zoomc = int(pirates[x]) * (1 / 90000.)

create OffsetImage

imagebox = OffsetImage(pirate, zoom=zoomc)

create anotation bbox with image and setup properties

ab = AnnotationBbox(imagebox, xy,

xybox=(-200.*zoomc, 200.*zoomc),

xycoords='data',

boxcoords="offset points",

pad=0.1,

arrowprops=dict(arrowstyle="->",

165

www.it-ebooks.info

Plotting Charts with Images and Maps

connectionstyle="angle,angleA=0,angleB=-

30,rad=3")

)

ax.add_artist(ab)

add text

no_pirates = TextArea(pirates[x], minimumdescent=False)

ab = AnnotationBbox(no_pirates, xy,

xybox=(50., -25.),

xycoords='data',

boxcoords="offset points",

pad=0.3,

arrowprops=dict(arrowstyle="->",

connectionstyle="angle,angleA=0,angleB=-

30,rad=3")

)

ax.add_artist(ab)

plt.grid(1)

plt.xlim(1800, 2020)

plt.ylim(14, 16)

plt.title(title)

plt.show()

The preceding code should give the following plot:

166

www.it-ebooks.info

Chapter 6

How it works...

We start by creating a figure of a decent size, that is, 16 x 8. We need this size to fit the images we want to display. Now, we load our data from the file, using the csv module.

Instantiating the csv reader object, we can iterate over the data from the file row by row.

Note how the first row is special, it is the header describing our columns. As we have plotted years on the x axis and temperature on the y axis, we read that: xlabel, ylabel, _ = header

And use the following lines:

plt.xlabel(xlabel)

plt.ylabel(ylabel)

We used neat Python convention here to unpack the header into three

variables, where by using _ for variable name, we indicate that we are not interested in the value of that variable.

We return the header and datarows lists from the load_data function to the main caller.

Using the format_data() function, we read every item in the list, and add each separate entity (year, temperature, and number of pirates) into the relevant ID list for that entity.

Year is displayed along the x axis, while temperature is on the y axis. The number of pirates is displayed as an image of a pirate ship, and also to add precision, the value will be displayed.

We plot year/temperature values using the standard plot() function, not adding anything more, apart from making the line a bit wider (2 pt).

We proceed then to add one image for every measurement and to illustrate the number of pirates for a given year. For this we loop over the range of values of length (range(len(years))) , plotting one black point on each year/temperature coordinate: ax.plot(xy[0], xy[1], "ok")

The image of the ship is loaded from file into a suitable array format using the read_png helper function:

pirate = read_png('tall-ship.png')

We then compute zoom coefficient (zoomc) to enable us to scale the size of the image in proportion to the number of pirates for the current (pirates[x]) measurement. We also use the same coefficient to position the image along the plot.

The actual image is then instantiated inside OffsetImage—the image container with relative position to its parent (AnnotationBbox).

167

www.it-ebooks.info

Plotting Charts with Images and Maps

AnnotationBbox is an annotation-like class, but instead of displaying just text as with the Axes.annotate function, it can display other OffsetBox instances. This allows us to load an image or text object in an annotation and locate it at a particular distance from the data point, as well as to use the arrowing capabilities (arrowprops) to precisely point to an annotated data point.

We supply the AnnotateBbox constructor with certain arguments:

f

Imagebox: This must be an instance of OffsetBox (for example, OffsetImage); it is the content of the annotation box

f

xy: This is the data point coordinate that the annotation relates to f

xybox: This defines the location of the annotation box

f

xycoords: This defines what coordinating system is used by xy (for example, data coordinates)

f

boxcoords: This defines what coordinating system is used by xybox (for example, offset from the xy location)

f

pad: This specifies the amount of padding

f

arrowprops: This is the dictionary of properties for drawing an arrow connection from an annotation-bounding box to a data point

We add text annotation to this plot, using the same data items from the pirates list, with a slightly different relative position. Most of the arguments of the second AnnotationBbox are the same—we adjust xybox and pad to locate the text to the opposite side of the line. The text is inside the TextArea class instance, this is similar to what we do with image, but with text time.TextArea and OffsetImage inherit from the same parent class, OffsetBox.

We set the text in this TextArea instance to no_pirates and put it in our AnnotationBbox.

Displaying an image with other plots in the

figure

This recipe will show how we can make simple yet effective usage of Python matplotlib library to process image channels and display per-channel histogram of an external image.

Getting ready

We have provided some sample images, but the code is ready to load any image file, provided it is supported by matplotlib's imread function.

In this recipe, we will learn how to combine different matplotlib plots to achieve functionality of a simple image viewer that displays an image histogram for red, green, and blue channels.

168

www.it-ebooks.info

Chapter 6

How to do it...

To show how to build an image histogram viewer, we are going to implement a simple class named ImageViewer and that class will contain helper methods to:

1. Load image.

2. Separate RGB channels from image matrix.

3. Configure figure and axes (subplots).

4. Plot channel histograms.

5. Plot the image.

The following code shows how to build an image histogram viewer:

import matplotlib.pyplot as plt

import matplotlib.image as mplimage

import matplotlib as mpl

import os

class ImageViewer(object):

def __init__(self, imfile):

self._load_image(imfile)

self._configure()

self.figure = plt.gcf()

t = "Image: {0}".format(os.path.basename(imfile))

self.figure.suptitle(t, fontsize=20)

self.shape = (3, 2)

def _configure(self):

mpl.rcParams['font.size'] = 10

mpl.rcParams['figure.autolayout'] = False

mpl.rcParams['figure.figsize'] = (9, 6)

mpl.rcParams['figure.subplot.top'] = .9

def _load_image(self, imfile):

self.im = mplimage.imread(imfile)

@staticmethod

def _get_chno(ch):

chmap = {'R': 0, 'G': 1, 'B': 2}

return chmap.get(ch, -1)

169

www.it-ebooks.info

Plotting Charts with Images and Maps

def show_channel(self, ch):

bins = 256

ec = 'none'

chno = self._get_chno(ch)

loc = (chno, 1)

ax = plt.subplot2grid(self.shape, loc)

ax.hist(self.im[:, :, chno].flatten(), bins, color=ch, ec=ec,\

label=ch, alpha=.7)

ax.set_xlim(0, 255)

plt.setp(ax.get_xticklabels(), visible=True)

plt.setp(ax.get_yticklabels(), visible=False)

plt.setp(ax.get_xticklines(), visible=True)

plt.setp(ax.get_yticklines(), visible=False)

plt.legend()

plt.grid(True, axis='y')

return ax

def show(self):

loc = (0, 0)

axim = plt.subplot2grid(self.shape, loc, rowspan=3)

axim.imshow(self.im)

plt.setp(axim.get_xticklabels(), visible=False)

plt.setp(axim.get_yticklabels(), visible=False)

plt.setp(axim.get_xticklines(), visible=False)

plt.setp(axim.get_yticklines(), visible=False)

axr = self.show_channel('R')

axg = self.show_channel('G')

axb = self.show_channel('B')

plt.show()

if __name__ == '__main__':

im = 'images/yellow_flowers.jpg'

try:

iv = ImageViewer(im)

iv.show()

except Exception as ex:

print ex

How it works...

Reading from the end of the code, we see hard-coded filenames. These can be swapped by loading the argument from command line and parsing the given argument into the im variable using the sys.argv sequence.

170

www.it-ebooks.info

Chapter 6

We instantiate the ImageViewer class with the provided path to an image file. During object instantiation, we try to load an image file into an array, configure the figure via the rcParams dictionary, set the figure size and title, and define object fields (self.shape) to be used inside object's methods.

The main method here is show(), which creates a layout for the figure and loads the image arrays into the main (left column) subplot. We hide any ticks and tick labels as this is the actual image, where we don't have to use the ticks.

We then call the private method show_channel() for each of the red, green, and blue channels. This method also creates new subplot axes, this time in the right-hand side column, with each one in separate row. We plot the histogram for each channel in a separate subplot.

We also set up a little plot to remove unnecessary x ticks and add a legend in case we want to print this figure in a non-color environment. Therefore, we could discern channel representation even in those environments.

After we run this code we will get the following screenshot:

171

www.it-ebooks.info

Plotting Charts with Images and Maps

There's more...

The use of histogram plot type is just a choice for this image viewer example. We could have used any of the matplotlib supported plot types. Another real-world example would be to plot EEG or similar medical records where we would want to display slice as an image, the time series of EEG recorded as a line plot, and also additional meta information about the data shown, that would probably go into matplotlib.text.Text artists.

Having the ability to interact with the user GUI event, matplotlib's figure allows us also to implement interaction where we would want to zoom into all plots if we manually zoom on one plot only. That would be another usage where we want to display an image and zoom into it while also zoom into other displayed plots in the currently active figure. An idea would be to use motion_notify_event to call a function that will update x and y limits for all axes (subplots) in the current figure.

Plotting data on a map using Basemap

Probably the best geospatial visualizations are done by overlaying the data over the map.

Whether the whole globe, a continent, a state, or even the sky, it is one of the easiest ways for a viewer to comprehend the relation between the data and geography it has displayed.

In this recipe we will be learning how to project data on a map using matplotlib's Basemap toolkit.

Getting ready

As we are already familiar with matplotlib as our plotting engine, we can extend that to matplotlib's capabilities to use other toolkits, one such example being the Basemap mapping toolkit.

Basemap itself doesn't do any plotting. It just transforms given geospatial coordinates to map projection and gives that data to matplotlib for plotting.

First, we need to install the Basemap toolkit. If you are using EPD, Basemap is already installed. If you are on Linux, it is best to use native package managers to install the package containing Basemap. On Ubuntu, for example, the package is called python-mpltoolkits.

basemap and can be installed using standard package manager:

$ sudo apt-get install python-mpltoolkits.basemap

On Mac OS X it is recommended to use EPD, although installation using popular package managers such as Homebrew, Fink, and pip is also possible.

172

www.it-ebooks.info

Chapter 6

How to do it...

Here is a example on how to use the Basemap toolkit to plot simple Mercator projection within a specific region, specified by long, lat coordinate pairs:

1. We instantiate Basemap defining the projection to be used (merc for Mercator).

2. We define (in the same Basemap constructor) longitude and latitude for the lower-left and upper-right corners of a map.

3. We set up the Basemap instance map, to draw coastlines and countries.

4. We set up the Basemap instance map to fill continents and draw the map boundary.

5. We instruct the Basemap instance map to draw meridians and parallels.

The following code shows how to use Basemap toolkit to plot a simple Mercator projection: from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

import numpy as np

map = Basemap(projection='merc',

resolution = 'h',

area_thresh = 0.1,

llcrnrlon=-126.619875, llcrnrlat=31.354158,

urcrnrlon=-59.647219, urcrnrlat=47.517613)

map.drawcoastlines()

map.drawcountries()

map.fillcontinents(color='coral', lake_color='aqua')

map.drawmapboundary(fill_color='aqua')

map.drawmeridians(np.arange(0, 360, 30))

map.drawparallels(np.arange(-90, 90, 30))

plt.show()

173

www.it-ebooks.info

Plotting Charts with Images and Maps

This will give a recognizable portion of our globe:

Now that we know how to plot a map, we need to know how to plot data on top of this map.

If we recall that Basemap is a big transcoder of longitude and latitude pairs into current map projections, we recognize that all we need is a dataset that contains long/lat that we pass to Basemap for projecting, before plotting over with matplotlib. We use the cities.shp and cities.shx files to load the coordinates of US cities and project them on to the map.

The file is provided in the ch06 folder of the code repository. Here's the example on how to achieve this:

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

import numpy as np

map = Basemap(projection='merc',

resolution = 'h',

area_thresh = 100,

llcrnrlon=-126.619875, llcrnrlat=25,

urcrnrlon=-59.647219, urcrnrlat=55)

shapeinfo = map.readshapefile('cities','cities')

x, y = zip(*map.cities)

build a list of US cities

city_names = []

174

www.it-ebooks.info

Chapter 6

for each in map.cities_info:

if each['COUNTRY'] != 'US':

city_names.append("")

else:

city_names.append(each['NAME'])

map.drawcoastlines()

map.drawcountries()

map.fillcontinents(color='coral', lake_color='aqua')

map.drawmapboundary(fill_color='aqua')

map.drawmeridians(np.arange(0, 360, 30))

map.drawparallels(np.arange(-90, 90, 30))

draw city markers

map.scatter(x,y,25, marker='o',zorder=10)

plot labels at City coords.

for city_label, city_x, city_y in zip(city_names, x, y):

plt.text(city_x, city_y, city_label)

plt.title('Cities in USA')

plt.show()

How it works...

The basics of Basemap usage consists of importing the main module and instantiating a Basemap class with desired properties. What we must specify during instantiations are the projections to be used and the portion of a globe that we want to work with.

Additional configuration can be applied before drawing the map and displaying the figure window with matplotlib.pyplot.show().

More than a dozen (or 32, to be precise) of different projections are supported in Basemap.

Most of them are very narrow-usage oriented, but some are more general and applied for most common map visualizations.

175

www.it-ebooks.info

Plotting Charts with Images and Maps

We can easily see what projections are available by asking the Basemap module itself:

In [5]: import mpl_toolkits.basemap

In [6]: print mpl_toolkits.basemap.supported_

projections

mbtfpq McBryde-Thomas Flat-Polar Quartic

aeqd Azimuthal Equidistant

sinu Sinusoidal

poly Polyconic

omerc Oblique Mercator

gnom Gnomonic

moll Mollweide

lcc Lambert Conformal

tmerc Transverse Mercator

nplaea North-Polar Lambert Azimuthal

gall Gall Stereographic Cylindrical

npaeqd North-Polar Azimuthal Equidistant

mill Miller Cylindrical

merc Mercator

stere Stereographic

eqdc Equidistant Conic

cyl Cylindrical Equidistant

npstere North-Polar Stereographic

spstere South-Polar Stereographic

hammer Hammer

geos Geostationary

nsper Near-Sided Perspective

eck4 Eckert IV

aea Albers Equal Area

kav7 Kavrayskiy VII

spaeqd South-Polar Azimuthal Equidistant

ortho Orthographic

cass Cassini-Soldner

vandg van der Grinten

laea Lambert Azimuthal Equal Area

splaea South-Polar Lambert Azimuthal

robin Robinson

Usually, we will plot the whole projection, if nothing is specified, some reasonable defaults are used.

To zoom in on a specific region of the map, we will specify the latitude and longitude of the lower-left and upper-right corners of the region you want to show. For this example, we will use the Mercator projection.

176

www.it-ebooks.info

Chapter 6

Here we see how the arguments names are shortened descriptions:

f

llcrnrlon: This is lower-left corner longitude

f

llcrnrlat: This is lower-left corner latitude

f

urcrnrlon: This is upper-right corner longitude

f

urcrnrlat: This is upper-right corner latitude

There's more...

We have just scratched the surface of the capabilities of Basemap toolkit, more examples can be found in the official documentation at http://matplotlib.org/basemap/users/

examples.html.

Most of the data used in the examples in the official Basemap documentation is located on remote servers and in a specific format. To efficiently fetch this data, NetCDF data format is used. NetCDF is a common data format designed with network efficiency in mind. It allows a program to fetch as much data as is needed, even when the whole dataset is very large, which makes using this format very practical. We don't have to download and store large datasets locally every time we want to use them and every time they change.

Plotting data on a map using Google Map

API

In this recipe, we will diverge from the desktop environment and show how we can output for the Web. Although, the main language for the web frontend is not Python but HTML, CSS, and JavaScript, we can still use Python for heavy lifting: fetch data, process it, perform intensive computations, and render data in a format(s) suitable for web output, that is, create HTML

pages with the required JavaScript version to render our visualization(s).

Getting ready

We will use Google Data Visualization Library for Python to help us prepare data for the frontend interface, where we will use another Google Visualization API to render data in the desired visualization, that is, a map and a table.

Before we start, we need to install the google-visualization-python module. Download the latest stable version from https://code.google.com/p/google-visualization-python/downloads/detail?name=gviz_api_py-1.8.2.tar.gz&can=2&q=, unpack the archive and install the module. The following actions demonstrate how to do this: $ tar xfv gviz_api_py-1.8.2.tar.gz

$ cd gviz_api_py

$ sudo python ./setup.py install

177

www.it-ebooks.info

Plotting Charts with Images and Maps

On Windows and Mac OS X use the appropriate software to unpack the tar.gz archive, while the other steps should remain the same. Note that we have to become a super user (that is, gain administrator privileges) to install this module on our system.

A better option, if you don't want to pollute your OS packages, is to create a virtualenv environment to install the packages just for this recipe. We explained how to deal with virutalenv environments in Chapter 1
 , Preparing Your Working Environment
 .

For the frontend library we don't have to install anything, as that library will be loaded from the web page directly from the Google servers.

We need active access to Internet for this recipe because the output of it will be a web page that will, when opened in a web browser, pull the JavaScript libraries directly from remote servers.

In this recipe, we will be learning how to use Google Data Visualization Library for Python and JavaScript to combine them for creating web visualization.

How to do it...

The following example shows how to visualize Disposable Median Monthly Salary per Country on the world map projection using Google Geochart and Table Visualization, loading the data from a CSV file using Python and the gdata_viz module. We will: 1. Implement a function to act as a template generator.

2. Use the csv module to load the data from the local CSV file.

3. Use DataTable to describe the data and LoadData to load the data from the Python dictionary.

4. Render the output to a web page.

This can be achieved with the following code:

import csv

import gviz_api

def get_page_template():

page_template = """

<html>

<script src="https://www.google.com/jsapi" type="text/

javascript"></script>

<script>

google.load('visualization', '1', {packages:['geochart',

'table']});

google.setOnLoadCallback(drawMap);

178

www.it-ebooks.info

Chapter 6

function drawMap() {

var json_data = new google.visualization.DataTable(%s,

0.6);

var options = {colorAxis: {colors: ['#eee', 'green']}};

var mymap = new google.visualization.GeoChart(

document.getElementById('map_div'));

mymap.draw(json_data, options);

var mytable = new google.visualization.Table(

document.getElementById('table_div'));

mytable.draw(json_data, {showRowNumber: true})

}

</script>

<body>

<H1>Median Monthly Disposable Salary World Countries</H1>

<div id="map_div"></div>

<hr />

<div id="table_div"></div>

<div id="source">

<hr />

<small>

Source:

<a href="http://www.numbeo.com/cost-of-living/prices_by_

country.jsp?displayCurrency=EUR&itemId=105">

http://www.numbeo.com/cost-of-living/prices_by_country.jsp?dis

playCurrency=EUR&itemId=105

</small>

</div>

</body>

</html>

"""

return page_template

def main():

Load data from CVS file

afile = "median-dpi-countries.csv"

datarows = []

with open(afile, 'r') as f:

reader = csv.reader(f)

179

www.it-ebooks.info

Plotting Charts with Images and Maps

reader.next() # skip header

for row in reader:

datarows.append(row)

Describe data

description = {"country": ("string", "Country"),

"dpi": ("number", "EUR"), }

Build list of dictionaries from loaded data

data = []

for each in datarows:

data.append({"country": each[0],

"dpi": (float(each[1]), each[1])})

Instantiate DataTable with structure defined in 'description'

data_table = gviz_api.DataTable(description)

Load it into gviz_api.DataTable

data_table.LoadData(data)

Creating a JSon string

json = data_table.ToJSon(columns_order=("country", "dpi"), order_by="country",)

Put JSON string into the template

and save to output.html

with open('output.html', 'w') as out:

out.write(get_page_template() % (json,))

if __name__ == '__main__':

main()

180

www.it-ebooks.info

Chapter 6

This will produce the output.html file, which we can open in our favorite web browser.

The page should look like the following screenshot:

How it works...

The main entry point here is our main() function. First we use the csv module to load our data. This data is obtained from the public website www.numbeo.com, and data is put in the CSV format. The final file is available in the repository for this chapter in the ch06 folder. To be able to use from Google Data Visualization Library, we need to describe the data to it. We describe data using the Python dictionaries, where we define the ID of the columns, their data type, and optional label. In the following example the data is defined in this constraint:

{"name": ("data_type", "Label")}:

description = {"country": ("string", "Country"),

"dpi": ("number", "EUR"), }

181

www.it-ebooks.info

Plotting Charts with Images and Maps

Then we need to fit our loaded CSV rows in this format. We will build a list of dictionaries in the data variable.

Now we have everything to instantiate our data_table with gviz_data.DataTable with the described structure. Then we load the data into it and output in the JSON format to our page_template.

The get_page_template()function contains the other part of this equation. It contains a client (frontend) code to produce an HTML web page and a JavaScript code to load Google Data Visualization Library from Google servers. The line that loads the Google's JavaScript API is:

<script src="https://www.google.com/jsapi"

type="text/javascript"></script>

After this, follows another pair of <script>...</script> tags that contains an additional setup. First we load Google Data Visualization Library and the required package—geochart and table:

google.load('visualization', '1', {packages:['geochart',

'table']});

Then we set up a function that will be called when the pages are loaded. This event in the web world is registered as onLoad, so callback is set up via setOnLoadCallback function: google.setOnLoadCallback(drawMap);

This defines that when a page is loaded, the google instance will call the custom function drawMap() that we defined. The drawMap function loads a JSON string into the JavaScript version of the DataTable instance:

var json_data = new google.visualization.DataTable(%s, 0.6);

Following that, we create a geochart instance in an HTML element with the ID map_div: var mymap = new google.visualization.GeoChart(

document.getElementById('map_div'));

Draw the map using json_data and provided custom options:

mymap.draw(json_data, options);

Similarly, Google's JavaScript table is rendered below the map:

var mytable = new google.visualization.Table(

document.getElementById('table_div'));

mytable.draw(json_data, {showRowNumber: true})

182

www.it-ebooks.info

Chapter 6

We save this output as an HTML file that we can open in a browser. This is not so useful for the dynamic rendering of a web service. There is a better option for this—to output the HTTP

Response directly from Python, and thus build a background service responding to client web requests with JSON that client can load and render.

If you want to understand more on reading HTTP responses, please read more on HTTP Protocol and Response messages at http://en.wikipedia.

org/wiki/Hypertext_Transfer_Protocol#Response_message.

We do this by replacing the ToJson() call with the ToJSonResponse() with the same signature. This call will respond with a proper HTTP response containing the payload—our JSON-ified data_table ready to be consumed by our JavaScript client.

There's more...

This, of course, is just one example of how we can combine Python as a backend language, sitting on our server, doing the data fetch and processing, while the frontend is left to the universal HTML/JavaScript/CSS set of languages. This enables us to provide interactive and dynamic interfaces with visualizations to a wide audience without requiring them to install anything (well, apart from a web browser, but that is usually installed on a computer or smartphone). Saying that, we must note that the quality of these outputs is not as high as that of matplotlib, whereas the strength of matplotlib lies in the high quality output.

To work more with the Web (and Python) you would have to learn more about the web technologies and languages used. This book does not cover such topics but does give an insight into how to achieve one possible solution using well known third-party libraries that produce pleasing web outputs, with as little web coding as possible.

More documentation is available on the Google Developer portal at https://developers.

google.com/chart/interactive/docs/dev/gviz_api_lib.

Generating CAPTCHA images

Although this is not strictly data visualization in terms that we usually refer to, the ability to generate images using Python comes in handy in many cases, and this is one of them.

In this recipe, we will be covering the generation of random images to tell humans and computers apart—CAPTCHA image.

183

www.it-ebooks.info

Plotting Charts with Images and Maps

Getting ready

CAPTCHA stands for Completely Automated Public Turing test to tell Computers and Humans Apart, and is trademarked by Carnegie Mellon University. This test is used to challenge computer programs (usually referred to as bots) that automatically fill various web forms that are primarily targeted to humans and that should not be automated. Usual examples are sign-up forms, login forms, surveys, and similar.

CAPTCHA itself can take various forms, but the most common form consists of a challenge where humans should read an image with distorted characters and numbers and type in the result in the related response field.

In this recipe, we will learn how to harness Python's Imaging Library to generate images, rendering lines and points, and also rendering text.

How to do it...

We will show what would be involved in creating a personal and simple CAPTCHA generator by performing the following steps:

1. Define size, text, font size, background color, and CAPTCHA length.

2. Pick random characters from the English alphabet.

3. Draw those on the image using defined font and colors.

4. Add some noise in the form of lines and arcs.

5. Return the image object to the caller together with the CAPTCHA challenge.

6. Show the generated image to the user.

The following code shows how to create a personal and simple CAPTCHA generator: from PIL import Image, ImageDraw, ImageFont

import random

import string

class SimpleCaptchaException(Exception):

pass

class SimpleCaptcha(object):

def __init__(self, length=5, size=(200, 100), fontsize=36,

random_text=None, random_bgcolor=None):

self.size = size

self.text = "CAPTCHA"

self.fontsize = fontsize

184

www.it-ebooks.info

Chapter 6

self.bgcolor = 255

self.length = length

self.image = None # current captcha image

if random_text:

self.text = self._random_text()

if not self.text:

raise SimpleCaptchaException("Field text must not be

empty.")

if not self.size:

raise SimpleCaptchaException("Size must not be empty.")

if not self.fontsize:

raise SimpleCaptchaException("Font size must be defined.") if random_bgcolor:

self.bgcolor = self._random_color()

def _center_coords(self, draw, font):

width, height = draw.textsize(self.text, font)

xy = (self.size[0] - width) / 2., (self.size[1] - height) / 2.

return xy

def _add_noise_dots(self, draw):

size = self.image.size

for _ in range(int(size[0] * size[1] * 0.1)):

draw.point((random.randint(0, size[0]),

random.randint(0, size[1])),

fill="white")

return draw

def _add_noise_lines(self, draw):

size = self.image.size

for _ in range(8):

width = random.randint(1, 2)

start = (0, random.randint(0, size[1] - 1))

end = (size[0], random.randint(0,size[1]-1))

draw.line([start, end], fill="white", width=width)

for _ in range(8):

start = (-50, -50)

end = (size[0] + 10, random.randint(0, size[1]+10))

185

www.it-ebooks.info

Plotting Charts with Images and Maps

draw.arc(start + end, 0, 360, fill="white")

return draw

def get_captcha(self, size=None, text=None, bgcolor=None):

if text is not None:

self.text = text

if size is not None:

self.size = size

if bgcolor is not None:

self.bgcolor = bgcolor

self.image = Image.new('RGB', self.size, self.bgcolor)

Note that the font file must be present

or point to your OS's system font

Ex. on Mac the path should be '/Library/Fonts/Tahoma.ttf'

font = ImageFont.truetype('fonts/Vera.ttf', self.fontsize)

draw = ImageDraw.Draw(self.image)

xy = self._center_coords(draw, font)

draw.text(xy=xy, text=self.text, font=font)

Add some dot noise

draw = self._add_noise_dots(draw)

Add some random lines

draw = self._add_noise_lines(draw)

self.image.show()

return self.image, self.text

def _random_text(self):

letters = string.ascii_lowercase + string.ascii_uppercase

random_text = ""

for _ in range(self.length):

random_text += random.choice(letters)

return random_text

def _random_color(self):

r = random.randint(0, 255)

g = random.randint(0, 255)

b = random.randint(0, 255)

return (r, g, b)

if __name__ == "__main__":

sc = SimpleCaptcha(length=7, fontsize=36, random_text=True,

random_bgcolor=True)

sc.get_captcha()

186

www.it-ebooks.info

Chapter 6

This produces an image similar to the following:

How it works...

This example gives a process on how to use Python's imaging library to generate predefined images, to create a simple, yet effective CAPTCHA generator.

We wrapped the functionality into one class SimpleCaptcha, because it gives us a safe space for future development. We also created a custom SimpleCaptchaException to accommodate future exception hierarchies.

If you are writing anything more than trivial and quick and dirty scripts, it is always good to start writing and designing custom exception hierarchies for your domain, rather than using generic Python's standard exceptions. You will gain a lot in the readability and maintenance of the software.

Start reading from the main section, at the end of code listing, where we instantiate class giving settings of our future image as arguments to the constructor. Following that, we call the get_captcha method on the sc object. For this recipe's purposes, get_captcha shows the image object as a result, but we also return the image object to the potential caller of this method, so it could make use of the result. The usage can vary, the caller could either save the image on the file, or if this was a web application, return the image stream and written challenge to the client requesting this CAPTCHA.

The important thing to note is that, in order to finish the challenge-response process of the CAPTCHA test, we must return the CAPTCHA string generated on the image as text so that the caller can compare the user's response with the expected values.

The get_captcha method first verifies the input arguments, in order to override the class'

defaults if the user provides custom values. After that, a new image object is instantiated by Image.new. This object is saved in self.image, where we use it to draw and write text.

Having written the text to the image, we add the noise of randomly placed points and lines, as well as some arc segments.

187

www.it-ebooks.info

Plotting Charts with Images and Maps

These tasks are carried out by the _add_noise_points and _add_noise_lines methods. The first one loops a few times and adds a point to a random location on the image, not too close to the edges of the image, and the latter one draws lines from the left-hand side of the image to the right-hand side of the image.

There's more...

We constructed this class using some assumptions about its use. We assumed that user will just want to accept our default settings (that is, random seven characters on a random background color) and receive the result from it. That is the reasoning behind placing helper functions in the constructor to set random text and random background color. If the most frequent and effective usage is to always override configuration, then we want to remove these operations from the constructor and place them in separate calls.

For example, maybe a user wants to always use English words as the CAPTCHA challenge. If this is the case, we want to be able to just call a method to provide us with results like that.

This method could be get_english_captcha and with the random logic of this constructor, we would then construct that method to pick random words from the provided English dictionary. On a Unix system, there is a common English dictionary inside /usr/share/

dict/words that we could use for this:

def get_english_captcha(self):

words = '/usr/share/dict/words'

with open(words, 'r') as wf:

words = wf.readlines()

aword = random.choice(words)

aword = aword.strip() # remove newline and spaces

return self.get_captcha(text=aword)

Overall, the example of CAPTCHA generation is not production quality and should not be used without adding more protection and randomness, such as letter rotation.

If you need to protect your web forms from bots, there are already third-party Python modules and libraries that you should reuse. There are even specialized modules built for the existing web frameworks.

There are event web services such as reCAPTCHA (http://www.google.com/recaptcha) with already proven Python module recaptcha-client (https://pypi.python.org/

pypi/recaptcha-client) that you can sign up and use. It does not require any imaging libraries because the image is pulled directly from the reCAPTCHA web service but it has other dependencies such as pycrypto. By using this web service and library, you are also helping books scanned using Optical Character Recognition (OCR) from the Google Books project or old editions of the New York Times. Read more on the reCAPTCHA website.

188

www.it-ebooks.info

7

Using Right Plots to

Understand Data

In this chapter we will cover the following recipes:

f

Understanding logarithmic plots

f

Understanding spectrograms

f

Creating a stem plot

f

Drawing streamlines of vector flow

f

Using colormaps

f

Using scatter plots and histograms

f

Plotting the cross-correlation between two variables

f

Importance of autocorrelation

Introduction

In this chapter we will focus more on understanding what we want to say with the data we are presenting, and how to say it effectively. We will present some new techniques and plots, but all will be underlined by an understanding of the information we want to convey to the user.

Let's ask the question, "Why do we want to present information in this state?". This is the most important question that should be asked during the data exploration phase. If we miss the opportunity to understand the data and present it in a certain way, the viewer, then, is not going to understand the data correctly for sure.

www.it-ebooks.info

Using Right Plots to Understand Data

Understanding logarithmic plots

More often than not, reading daily newspapers and similar articles, one can find charts that are used by media organizations to misrepresent the facts. One common example is using linear scales to create so called panic charts, where a constantly growing value is followed for a long period of time (years) and starting values are smaller than the latest one by several magnitudes. These values when visualized correctly would (and usually should) produce linear or almost linear charts, taking some panic out of the articles they illustrate.

Getting ready

With the logarithmic scale, the ratio of consecutive values is constant. This is important when we are trying to read log plots. With linear (arithmetic) scales, the constant is the distance between consecutive values. In other words, logarithmic plots have a constant distance in orders of magnitude. We will see this illustrated in the following plots. The code used to produce this figure is explained next.

As a general rule of thumb, logarithmic scales should be used for the following conditions: f

When the data presented has values that span several orders of magnitude f

When the data presented has skewness towards large values (some points are much larger than the rest of the data)

f

When you want to show the rate of change (growth rate), and not the value of change Don't go blindly following these rules; they are more like hints, than rules. Always use your own judgment about the data in hand and requirements presented to you by the project or customer.

Depending on the data range, different log bases should be used. The standard base for logs is 10, but if the range of the data is smaller, a base of 2 can prove to be more useful as it will show more resolution within the smaller range.

If we have the range of data suitable for display on logarithmic scales, we will notice that the values previously being too close to judge any difference are now well apart. This allows us to read the chart much easier than if we would present the data in linear scale.

The growth rate charts, where long range time-series data is collected, are where we want to see not the absolute value measured at time point, but the growth in time. We will still get the absolute value information, but that information is of lower priority.

Also, if the data distribution has a positive skew, for example, salaries, taking the logarithm of the value (salary) will help us fit the data into the model, as the logarithm transformation will give us a more normal data distribution.

190

www.it-ebooks.info

Chapter 7

How to do it...

We will exemplify this with a sample code that shows the same two datasets (one linear, and one logarithmic in nature) on two different plots (in the same figure) using different scales (linear and logarithmic).

We will be performing the following steps with the help of the code mentioned after these steps:

1. Generate two simple datasets: y—exponential/logarithmic in nature and z—linear.

2. Create a figure containing a grid of four subplots.

3. Create two subplots containing the y dataset: one in logarithmic scale and one in linear scale.

4. Create two other subplots containing the z dataset, again one logarithmic and the other linear.

The following is the code:

from matplotlib import pyplot as plt

import numpy as np

x = np.linspace(1, 10)

y = [10 ** el for el in x]

z = [2 * el for el in x]

fig = plt.figure(figsize=(10, 8))

ax1 = fig.add_subplot(2, 2, 1)

ax1.plot(x, y, color='blue')

ax1.set_yscale('log')

ax1.set_title(r'Logarithmic plot of $ {10}^{x} $ ')

ax1.set_ylabel(r'$ {y} = {10}^{x} $')

plt.grid(b=True, which='both', axis='both')

ax2 = fig.add_subplot(2, 2, 2)

ax2.plot(x, y, color='red')

ax2.set_yscale('linear')

ax2.set_title(r'Linear plot of $ {10}^{x} $ ')

ax2.set_ylabel(r'$ {y} = {10}^{x} $')

plt.grid(b=True, which='both', axis='both')

ax3 = fig.add_subplot(2, 2, 3)

191

www.it-ebooks.info

Using Right Plots to Understand Data

ax3.plot(x, z, color='green')

ax3.set_yscale('log')

ax3.set_title(r'Logarithmic plot of $ {2}*{x} $ ')

ax3.set_ylabel(r'$ {y} = {2}*{x} $')

plt.grid(b=True, which='both', axis='both')

ax4 = fig.add_subplot(2, 2, 4)

ax4.plot(x, z, color='magenta')

ax4.set_yscale('linear')

ax4.set_title(r'Linear plot of $ {2}*{x} $ ')

ax4.set_ylabel(r'$ {y} = {2}*{x} $')

plt.grid(b=True, which='both', axis='both')

plt.show()

This code will produce the following output:

How it works...

We generate some sample data and two dependent variables: y and z. The variable y is expressed as an exponential function of x (data), and the variable z is a simple linear function of x. This helps us illustrate different looks of linear and exponential charts.

192

www.it-ebooks.info

Chapter 7

We then create a grid of four subplots, where the top row subplots are of data (x, y) and bottom row are of data (x, z) pairs.

Looking from the left-hand side, the columns have logarithmic scales on the y axis, while from the right-hand side, the columns are in the linear scale. We set this using set_yscale('log') for every axis separately.

For every subplot we set the title and label, where the label also describes the function plotted.

With plt.grid(b=True, which='both', axis='both'), we turn the grid on for both the axes and both major and minor ticks.

We observe how linear functions are straight lines on linear plots, while logarithmic functions are straight lines on logarithmic plots.

Understanding spectrograms

A spectrogram is a time-varying spectral representation that shows how the spectral density of a signal varies with time.

A spectrogram represents a spectrum of frequencies of the sound or other signal in a visual manner. It is used in various science fields, from sound fingerprinting such as voice recognition, to radar engineering and seismology.

Usually, a spectrogram layout is as follows: the x axis represents time, the y axis represents frequency, and the third dimension is the amplitude of a frequency-time pair, which is color coded. This is three-dimensional data; therefore, we can also create 3D plots where the intensity is represented as the height on the z axis. The problem with 3D charts is that humans are bad at understanding and comparing them. Also, they tend to take more space than 2D charts.

Getting ready

For serious signal processing, we would go into low-level details to be able to detect patterns and autofingerprint certain specifics; but for this data visualization recipe we will leverage a couple of well-known Python libraries to read an audio file, sample it, and plot a spectrogram.

In order to read WAV files to visualize sound, we need to do some prep work. We need to install the libsndfile1 system library for reading/writing audio files. This is done via your favorite package manager. For Ubuntu, use:

$ sudo apt-get install libsndfile1-dev

It is important to install the dev package, which contains header files, so pip can build the scikits.audiolab module.

193

www.it-ebooks.info

Using Right Plots to Understand Data

We also can install libasound and ALSA (Advanced Linux Sound Architecture) headers to avoid runtime warning. This is optional, as we are not going to use the features provided by the ALSA library. For Ubuntu Linux, issue the following command:

$ sudo apt-get install libasound2-dev

To install scikits.audiolab, which we will use to read WAV files, we will use pip: $ pip install scikits.audiolab

Always remember to enter the virtual environment for the current project, as you don't want to dirty the system libraries.

How to do it...

For this recipe, we will use the prerecorded sound file, test.wav, that can be found in the file repository of this book. But we could also generate a sample, which we will try later.

In this example, we perform the following steps in order:

1. Read the WAV file that contains a recorded sound sample.

2. Define the length of the window used for the Fourier Transform using NFFT.

3. Define the overlapping data points using noverlap while sampling.

import os

from math import floor, log

from scikits.audiolab import Sndfile

import numpy as np

from matplotlib import pyplot as plt

Load the sound file in Sndfile instance

soundfile = Sndfile("test.wav")

define start/stop seconds and compute start/stop frames

start_sec = 0

stop_sec = 5

start_frame = start_sec * soundfile.samplerate

stop_frame = stop_sec * soundfile.samplerate

go to the start frame of the sound object

soundfile.seek(start_frame)

read number of frames from start to stop

delta_frames = stop_frame - start_frame

sample = soundfile.read_frames(delta_frames)

194

www.it-ebooks.info

Chapter 7

map = 'CMRmap'

fig = plt.figure(figsize=(10, 6),)

ax = fig.add_subplot(111)

define number of data points for FT

NFFT = 128

define number of data points to overlap for each block

noverlap = 65

pxx, freq, t, cax = ax.specgram(sample, Fs=soundfile.samplerate,

NFFT=NFFT, noverlap=noverlap,

cmap=plt.get_cmap(map))

plt.colorbar(cax)

plt.xlabel("Times [sec]")

plt.ylabel("Frequency [Hz]")

plt.show()

This generates the following spectrogram, with visible white-like traces for separate notes:

195

www.it-ebooks.info

Using Right Plots to Understand Data

NFFT defines the number of data points used for computing the Discrete Fourier Transform in each block. The most efficient computation is when NFFT is a value raised to the power of 2. The windows can overlap and the number of data points that are overlapped (that is, repeated) is defined by the noverlap argument.

How it works...

We need to load a sound file first. To do that, we use the scikits.audiolab.SndFile method and provide it with a filename. This will instantiate a sound object, which we can then query for data and call the function on.

To read the data needed for the spectrogram, we need to read the desired frames of data from our sound object. This is done by read_frames(), which accepts the start and end frames. We calculate the frame number by multiplying the sample rate with the time points (start, end) we want to visualize.

There's more...

If you can't find audio (wave), you can easily generate one. Here's how to generate it: import numpy

def _get_mask(t, t1, t2, lvl_pos, lvl_neg):

if t1 >= t2:

raise ValueError("t1 must be less than t2")

return numpy.where(numpy.logical_and(t > t1, t < t2), lvl_pos, lvl_neg)

def generate_signal(t):

sin1 = numpy.sin(2 * numpy.pi * 100 * t)

sin2 = 2 * numpy.sin(2 * numpy.pi * 200 * t)

add interval of high pitched signal

sin2 = sin2 * _get_mask(t, 2, 5, 1.0, 0.0)

noise = 0.02 * numpy.random.randn(len(t))

final_signal = sin1 + sin2 + noise

return final_signal

196

www.it-ebooks.info

Chapter 7

if __name__ == '__main__':

step = 0.001

sampling_freq=1000

t = numpy.arange(0.0, 20.0, step)

y = generate_signal(t)

we can visualize this now

in time

ax1 = plt.subplot(211)

plt.plot(t, y)

and in frequency

plt.subplot(212)

plt.specgram(y, NFFT=1024, noverlap=900,

Fs=sampling_freq, cmap=plt.cm.gist_heat)

plt.show()

This will give you the following signal where the top subplot represents the signal we generated. Here, the x axis represents time and the y axis represents the signal's amplitude.

The bottom subplot represents the same signal in the frequency domain. Here, while the x axis represents time as in the top subplot (we matched the time by selecting the sampling rate), the y axis represents the frequency of the signal.

197

www.it-ebooks.info

Using Right Plots to Understand Data

Creating a stem plot

A two-dimensional stem plot displays data as lines extending from a baseline along the x axis.

A circle (the default) or other marker, whose y axis represents the data value, terminates each stem.

In this recipe we will be discussing how to create a stem plot.

Do not confuse stem with stem and leaf plots, which is a method of representing data by separating the last important digit of values as leaves and higher order values as stems.

Getting ready

For this kind of plot we want to use a sequence of discrete data, where ordinary line plots will not make sense anyway.

Plot discrete sequences as stems, where data values are represented as markers at the end of each stem. Stems extend from the baseline (usually at y = 0) to the data point value.

How to do it...

We will use matplotlib to plot stem plots using the stem() function. This function can use just a series of y values when x values are generated as a simple sequence from 0 to len(y) - 1. If we provide the stem() function with both x and y sequences, they will be used for both axes.

What we want to configure with the stem plot is several formatters:

f

linefmt: This is the line formatter for the stem line

f

markerfmt: Stems at the end of the line are formatted using this argument f

basefmt: This formats the look of the base line

f

label: This defines the label for legend for the stem plot

f

hold: This holds the current graphs on the current axes

f

bottom: This sets up the location of baseline position on the y axis, and the default value is 0

198

www.it-ebooks.info

Chapter 7

The argument hold is used as a usual feature for plots. If it is on (True), all the following plots are added to the current axes. Otherwise, each plot will create new figures and axes.

To create a stem plot, perform the following steps:

1. Generate random noise data.

2. Configure stem options.

3. Plot the stem.

The following is the code to do it:

import matplotlib.pyplot as plt

import numpy as np

time domain in which we sample

x = np.linspace(0, 20, 50)

random function to simulate sampled signal

y = np.sin(x + 1) + np.cos(x ** 2)

here we can setup baseline position

bottom = -0.1

True -- hold current axes for further plotting

False -- opposite. clear and use new figure/plot

hold = False

set label for legend.

label = "delta"

markerline, stemlines, baseline = plt.stem(x, y, bottom=bottom,

label=label, hold=hold)

we use setp() here to setup

multiple properties of lines generated by stem()

plt.setp(markerline, color='red', marker='o')

plt.setp(stemlines, color='blue', linestyle=':')

plt.setp(baseline, color='grey', linewidth=2, linestyle='-')

draw a legend

plt.legend()

plt.show()

199

www.it-ebooks.info

Using Right Plots to Understand Data

The previous code produces the following plot:

How it works...

First, we need some data. For this recipe, the generated sampled pseudo-signal will suffice. In the real world, any discrete sequential data can be properly visualized using the stem plot. We generate this signal using Numpy's numpy.linspace, numpy.cos, and numpy.sin functions.

We then set up a label for the stem plot and the position of the baseline, which defaults to 0.0.

If we want to draw multiple stem plots, we will set hold to True and the resulting plot calls will be rendered over the same set of axes.

A call to matplotlib.stem returns three objects. First is markerline, an instance of Line2D. This holds the reference to a line representing stems themselves, rendering only markers and not the line connecting the markers. This line can be made visible by editing the property of that Line2D instance; the process for this will be explained soon. The final one is also a Line2D instance, baseline, holding a reference to a horizontal line that represents the source of stemlines. The second object returned is stemlines, which is a collection (Python list at the moment) of Line2D instances representing stem lines, of course.

200

www.it-ebooks.info

Chapter 7

We use these returned objects to manipulate the visual appeal of a stem plot using the setp function to apply properties to all the lines (the Line2D instances) in those objects, or a collections of objects.

Experiment with the desired settings until you understand how setp changes your plot's style.

Drawing streamlines of vector flow

Stream plots are used to visualize a flow in vector fields. Examples from Science and Nature include fields of magnetic and gravitational forces and movement of liquid materials.

A vector field can be visualized in such a way where we assign a line and one or more arrows to every point. The intensity can be represented by the line length, and the direction by an arrow pointing in a particular direction.

Usually, the intensity of the force is visualized with the length of a particular streamline, but the density can also be used for the same purpose.

Getting ready

To visualize vector fields, we will use matplotlib's matplotlib.pyplot.streamplot function. This function creates plots from streamlines of a flow, uniformly filling the domain.

The velocities field is interpolated and streamlines are integrated. The original source for this function is to visualize wind patterns or liquid flow; hence, we don't need strict vector lines but a uniform representation of the vector field.

The most important arguments for this function are (X, Y), which are the evenly spaced grids of one-dimensional NumPy arrays, and (U, V), which match two-dimensional NumPy arrays of (X, Y) velocities. Matrices U and V must be of such dimensions that the number of rows must be of equal length as Y, and the number of columns must match the length of X.

The line width of the stream plot can be controlled per line, if the linewidth argument is given a two-dimensional array matching the shape of u and v velocities, or it simply can be just one integer value that all the lines will accept.

Color, also, can be just one value for all streamlines and a matrix shaped like the linewidth argument.

Arrows (the class FancyArrowPatch) are used to indicate the vector direction and we can control them using two parameters: arrowsize to change the size of the arrow, and arrowstyle to change the format of the arrow (for example, "simple", "->"...).

201

www.it-ebooks.info

Using Right Plots to Understand Data

How to do it...

We will start with a simple example, just to get a sense of what's going on here. Perform the following steps:

1. Create data vectors.

2. Print intermediate values.

3. Plot the stream plot.

4. Show the figure with streamlines visualizing our vectors.

The following is the code sample:

import matplotlib.pyplot as plt

import numpy as np

Y, X = np.mgrid[0:5:100j, 0:5:100j]

U = X

V = Y

from pprint import pprint

print "X"

pprint(X)

print "Y"

pprint(Y)

plt.streamplot(X, Y, U, V)

plt.show()

The previous code will give the following textual output:

X

array([[0. , 0.05050505, 0.1010101 , ..., 4.8989899 ,

4.94949495, 5.],

[0. , 0.05050505, 0.1010101 , ..., 4.8989899 ,

4.94949495, 5.],

[0. , 0.05050505, 0.1010101 , ..., 4.8989899 ,

4.94949495, 5.],

...,

[0. , 0.05050505, 0.1010101 , ..., 4.8989899 ,

4.94949495, 5.],

202

www.it-ebooks.info

Chapter 7

[0. , 0.05050505, 0.1010101 , ..., 4.8989899 ,

4.94949495, 5.],

[0. , 0.05050505, 0.1010101 , ..., 4.8989899 ,

4.94949495, 5.]])

Y

array([[0. , 0. , 0. , ..., 0. ,

0. , 0.],

[0.05050505, 0.05050505, 0.05050505, ..., 0.05050505,

0.05050505, 0.05050505],

[0.1010101 , 0.1010101 , 0.1010101 , ..., 0.1010101 ,

0.1010101 , 0.1010101],

...,

[4.8989899 , 4.8989899 , 4.8989899 , ..., 4.8989899 ,

4.8989899 , 4.8989899],

[4.94949495, 4.94949495, 4.94949495, ..., 4.94949495,

4.94949495, 4.94949495],

[5. , 5. , 5. , ..., 5. ,

5. , 5.]])

And it also generates the following streamline flow figure:

203

www.it-ebooks.info

Using Right Plots to Understand Data

How it works...

We create a vector field of X and Y by indexing the two-dimensional mesh grid using NumPy's mgrid instance. We specify a range of the grid as start and stop (-2 and 2, respectively).

The third index represents a step length. The step length represents the number of points to include between start and stop. If we want to include the stop value, we use a complex number for the step length, where the magnitude is used for a number of points required between start and stop, stop being inclusive.

The mesh grid, fleshed out like this, is then used to compute vector velocities. Here, for the sake of an example, we just use the same meshgrid property as vector velocities. This generates a plot that clearly shows plain linear dependency and the flow of the represented vector field.

Play with the values of U and V to get a sense of how the values of U and V influence the stream plot. For example, make U = np.sin(X) or V = np.sin(Y). Following that, try to change the start and stop values. Check out the following plot for U = np.sin(X): Bare in mind that the plot is a generated set of lines and arrow patches; hence, there is no way (currently, at least) to update the existing plot because lines and arrows know nothing about vectors and fields. Future implementations might include that, but at the moment this is a known limitation in the current version of matplotlib.

204

www.it-ebooks.info

Chapter 7

There's more...

Of course, this example gives just an opportunity to get to know and understand matplotlib's stream plot features and capabilities.

The real power comes when you have the real data at hand to play with. And after understanding this recipe, you will be able to recognize what are the tools you have, so that when you are given the data and you know its domain, you will be able to pick the best tool for the job.

Using colormaps

Color coding the data can have a great impact on how your visualizations are perceived by the viewer, as they come with assumptions about color and what that color represents.

Being explicit, if the color is used to add additional information to the data, it is always good.

To know when and how to use color in your visualizations is even better.

Getting ready

If your data is not naturally color coded (such as earth/terrain altitudes or an object's temperature), it's better not to make any artificial mappings to natural coloring. We want to understand the data appropriately and so make a choice of color to help the reader decode data easily. We don't want readers constantly trying to suppress learned mapping of color for temperatures if we are representing financial data that has no connection with Kelvins or Celsius.

If possible, avoid usual red/green associations if there is no strong correlation in the data to associate them with those colors.

To help you pick the right color mapping, we will explain some colormaps available in the matplotlib package that can save a lot of time and help you, if you know what they are used for and how to find them.

Colormaps in general can be categorized as follows:

f

Sequential: This represents monochromatic colormaps of two color tones from low to high saturation of the same color, for example, from white to bright blue. This is ideal for most cases, as they clearly show the change from low to high values.

f

Diverging: This represents the central point and is the median value (some light color usually), but then ranges go to two different color tones in direction for high and low values. This can be ideal for data with a significant median value; for example, when the median is at 0, it clearly shows the difference between negative and positive values.

205

www.it-ebooks.info

Using Right Plots to Understand Data

f

Qualitative: For cases where data has no inherent ordering and all you want is to make sure different categories are easily discernible from each other, this is the colormap to choose.

f

Cyclic: This is handy to use where data can wrap around endpoint values, for example, representing time of the day, wind direction, or phase angle.

matplotlib comes with a lot of predefined maps, and we can divide them into several categories. We will suggest when to use some of those colormaps. The most common and base colormaps are autumn, bone, cool, copper, flag, gray, hot, hsv, jet, pink, prism, sprint, summer, winter, and spectral.

We have another set of colormaps coming from the Yorick scientific visualization package.

This is an evolution from the GIST package, so all colormaps in this collection have gist_ as the prefix in their names.

The Yorick scientific visualization package is also an interpreted language written in C, not quite active lately. You can find more information on its official website at http://yorick.sourceforge.net/index.php.

These colormap sets contain the following maps: gist_earth, gist_heat, gist_ncar, gist_rainbow, and gist_stern.

Then we have the colormaps based on ColorBrewer (http://colorbrewer.org), where we can categorize them into the following:

f

Diverging: This is where luminance is highest at the midpoint and decreases towards different endpoints

f

Sequential: This is where luminance decreases monotonically

f

Qualitative: This is where different sets of colors are used to differentiate data categories

Also, there are some miscellaneous colormaps that are available:

Colormap

Description

brg

This will represent a diverging blue-red-green colormap.

bwr

This will represent a diverging blue-white-red colormap.

coolwarm

This is useful for 3D shading, color blindness, and ordering of colors.

rainbow

This represents a spectral purple-blue-green-yellow-orange-red colormap with diverging luminance.

seismic

This represents a diverging blue-white-red colormap.

terrain

This represents Mapmaker's colors—blue, green, yellow, brown,

and white—originally from the IGOR Pro software.

206

www.it-ebooks.info

Chapter 7

Most of the maps presented here can be reversed by putting the _r postfix after the name of the colormap, for example, hot_r is an inversed cycle colormap of hot.

How to do it...

We can set colormaps on many items in matplotlib. For example, a colormap can be set on image, pcolor, and scatter. This is usually accomplished via an argument to a function call, cmap. This argument accepts an instance of colors.Colormap.

We can also use matplotlib.pyplot.set_cmap to set cmap for the latest object plotted on the axes.

You can get all the available colormaps easily with matplotlib.pyplot.colormaps.

Fire up IPython and type in the following:

In [1]: import matplotlib.pyplot as plt

In [2]: plt.colormaps()

Out[2]:

['Accent',

'Accent_r',

'Blues',

'Blues_r',

...

'winter',

'winter_r']

Note that we have shortened the preceding list because it contains around 140 items and will span across several pages here.

This will import the pyplot function interface and allow us to call the colormaps function, which returns a list of all the registered colormaps.

Finally, we want to show you how to make a nice looking colormap. In the following example we need to:

1. Navigate to the ColorBrewer website to get divergent colormap color values in the Hex format.

2. Generate random samples of x and y, where y is the cumulative sum of values (simulate stock price variations).

3. Apply customization to the scatter plot function of matplotlib.

207

www.it-ebooks.info

Using Right Plots to Understand Data

4. Tweak the scatter marker line color and width to make the plot more readable and pleasant for the viewer.

import matplotlib as mpl

import matplotlib.pyplot as plt

import numpy as np

Red Yellow Green divergent colormap

red_yellow_green = ['#d73027', '#f46d43', '#fdae61',

'#fee08b', '#ffffbf', '#d9ef8b',

'#a6d96a', '#66bd63', '#1a9850']

sample_size = 1000

fig, ax = plt.subplots(1)

for i in range(9):

y = np.random.normal(size=sample_size).cumsum()

x = np.arange(sample_size)

ax.scatter(x, y, label=str(i), linewidth=0.1,

edgecolors='grey',

facecolor=red_yellow_green[i])

ax.legend()

plt.show()

The previous code will render a nice looking figure:

208

www.it-ebooks.info

Chapter 7

How it works...

We used the ColorBrewer website to find out colors in a red-yellow-green diverging colormap.

Then, we listed those colors in our code and applied them to our scatter plot.

ColorBrewer is a web tool built by Cynthia Brewer
 , Mark Harrower
 , and The
 Pennsylvania State University
 to explore colormaps. It is a very handy tool to pick up colormaps of different ranges and see them applied on a map using slight variations, so that you immediately sense what they will look like on a chart. This particular map is at http://colorbrewer2.org/index.ph

p?type=diverging&scheme=RdYlGn&n=9.

Sometimes, we will have to make our customization on matplotlib.rcParams, which is the first thing we want to do before we create a figure or any of the axes.

For example, matplotlib.rcParams['axes.cycle_color'] is the configuration setting we want to change in order to set up the default colormap for most of the matplotlib functions.

There's more...

Using matplotlib.pyplot.register_cmap, we can register a new colormap to matplotlib, so it can be found using the get_cmap function. We can use it in two different ways. Here are both the signatures:

f

register_cmap(name='swirly', cmap=swirly_cmap)

f

register_cmap(name='choppy', data=choppydata, lut=128)

The first signature allows us to specify a colormap as an instance of colors.Colormap and register it using the name argument. The argument name can be omitted in which case it will be inherited from the name attribute of the cmap instance provided.

For the latter one, we are passing three arguments to the linear-segmented colormap constructor and registering that colormap afterwards.

Using maplotlib.pyplot.get_cmap we can get the colors.Colormap instance using the name argument.

The following is how to make your own map using

matplotlib.colors.LinearSegmentedColormap:

from pylab import *

cdict = {'red': ((0.0, 0.0, 0.0),

(0.5, 1.0, 0.7),

(1.0, 1.0, 1.0)),

209

www.it-ebooks.info

Using Right Plots to Understand Data

'green': ((0.0, 0.0, 0.0),

(0.5, 1.0, 0.0),

(1.0, 1.0, 1.0)),

'blue': ((0.0, 0.0, 0.0),

(0.5, 1.0, 0.0),

(1.0, 0.5, 1.0))}

my_cmap = matplotlib.colors.LinearSegmentedColormap('my_

colormap',cdict,256)

pcolor(rand(10,10),cmap=my_cmap)

colorbar()

Executing this method is the simplest part, while the hardest part is to actually come up with a combination of colors that are informative, that do not take any information away from the data we want to visualize, and that are also pleasant to the eyes of the viewer.

For the base map list (the colormaps listed in the table earlier), we can use the pylab shortcut to set the colormap. For example:

imshow(X)

hot()

This would set the colormap of the image X to cmap='hot'.

Using scatter plots and histograms

Scatter plots are very often encountered, as they are the most common plot to visualize the relation between two variables. If we want to have a quick look at the data of these two variables and see if there is any relation between them (that is, correlation), we will draw a quick scatter plot. For a scatter plot to exist, we must have one variable that can be systematically changed by, for example, experimenter, so we can inspect the possibilities of influencing another variable.

That's why, in this recipe, we will learn how to understand the scatter plots.

Getting ready

We want to see, for example, how two events are affected by each other or if they are affected at all. This visualization is especially useful on large sets of data, where we cannot make any conclusions by looking at the data in the native form, when it is just numbers.

Correlation between values, if there is any, can be positive and negative. Positive correlation is for increasing X values, we have Y values increasing too. In negative correlation for increasing X values, Y values are decreasing. In an ideal case, positive correlation is a line starting from the bottom-left corner of the axes to the top-right corner. An ideal negative correlation is a line starting from the top-left corner to the bottom-right corner of the axes.

210

www.it-ebooks.info

Chapter 7

An ideal positive correlation between two data points is given the value of 1, and an ideal negative is given the value of -1. Everything inside this interval represents a weaker correlation between the two values. Usually, everything inside -0.5 to 0.5 is not considered valuable from the perspective of two variables being in real connection.

An example of positive correlation would be the amount of money put in a charity jar being directly positively correlated to the number of people seeing the jar. Negative correlation is between the time required to reach place B from place A, depending on the distance between the locations A and B. The bigger the distance, more will be the time we need to complete the travel.

The example we have presented here is of a positive correlation but this is not perfect, as different people might put different amounts of money per visit. But in general, we can assume that the more the number of people who see the jar, more will be the money left inside.

Keep in mind, though, that even if the scatter plot displays a correlation between two variables, that correlation might not be a direct one. There might be a third variable that influences both the plotted variables, so the correlation is just a case that plotted values are correlated with that third variable. In the end, the correlation might be just apparent and no real relation exists behind it.

How to do it...

With the following code sample, we will demonstrate how the scatter plot can explain the relation between variables.

The data we use is obtained using the Google Trends web portal, where one can download the CSV file containing normalized values of relative search volumes for the given parameters.

We will store our data in the ch07_search_data.py Python module, so we can import it in subsequent code recipes. The following is the content of it:

ch07_search_data

daily search trend for keyword 'flowers' for a year

DATA = [

1.04, 1.04, 1.16, 1.22, 1.46, 2.34, 1.16, 1.12, 1.24, 1.30, 1.44,

1.22, 1.26,

1.34, 1.26, 1.40, 1.52, 2.56, 1.36, 1.30, 1.20, 1.12, 1.12, 1.12,

1.06, 1.06,

1.00, 1.02, 1.04, 1.02, 1.06, 1.02, 1.04, 0.98, 0.98, 0.98, 1.00,

1.02, 1.02,

1.00, 1.02, 0.96, 0.94, 0.94, 0.94, 0.96, 0.86, 0.92, 0.98, 1.08,

1.04, 0.74,

211

www.it-ebooks.info

Using Right Plots to Understand Data

0.98, 1.02, 1.02, 1.12, 1.34, 2.02, 1.68, 1.12, 1.38, 1.14, 1.16,

1.22, 1.10,

1.14, 1.16, 1.28, 1.44, 2.58, 1.30, 1.20, 1.16, 1.06, 1.06, 1.08,

1.00, 1.00,

0.92, 1.00, 1.02, 1.00, 1.06, 1.10, 1.14, 1.08, 1.00, 1.04, 1.10,

1.06, 1.06,

1.06, 1.02, 1.04, 0.96, 0.96, 0.96, 0.92, 0.84, 0.88, 0.90, 1.00,

1.08, 0.80,

0.90, 0.98, 1.00, 1.10, 1.24, 1.66, 1.94, 1.02, 1.06, 1.08, 1.10,

1.30, 1.10,

1.12, 1.20, 1.16, 1.26, 1.42, 2.18, 1.26, 1.06, 1.00, 1.04, 1.00,

0.98, 0.94,

0.88, 0.98, 0.96, 0.92, 0.94, 0.96, 0.96, 0.94, 0.90, 0.92, 0.96,

0.96, 0.96,

0.98, 0.90, 0.90, 0.88, 0.88, 0.88, 0.90, 0.78, 0.84, 0.86, 0.92,

1.00, 0.68,

0.82, 0.90, 0.88, 0.98, 1.08, 1.36, 2.04, 0.98, 0.96, 1.02, 1.20,

0.98, 1.00,

1.08, 0.98, 1.02, 1.14, 1.28, 2.04, 1.16, 1.04, 0.96, 0.98, 0.92,

0.86, 0.88,

0.82, 0.92, 0.90, 0.86, 0.84, 0.86, 0.90, 0.84, 0.82, 0.82, 0.86,

0.86, 0.84,

0.84, 0.82, 0.80, 0.78, 0.78, 0.76, 0.74, 0.68, 0.74, 0.80, 0.80,

0.90, 0.60,

0.72, 0.80, 0.82, 0.86, 0.94, 1.24, 1.92, 0.92, 1.12, 0.90, 0.90,

0.94, 0.90,

0.90, 0.94, 0.98, 1.08, 1.24, 2.04, 1.04, 0.94, 0.86, 0.86, 0.86,

0.82, 0.84,

0.76, 0.80, 0.80, 0.80, 0.78, 0.80, 0.82, 0.76, 0.76, 0.76, 0.76,

0.78, 0.78,

0.76, 0.76, 0.72, 0.74, 0.70, 0.68, 0.72, 0.70, 0.64, 0.70, 0.72,

0.74, 0.64,

0.62, 0.74, 0.80, 0.82, 0.88, 1.02, 1.66, 0.94, 0.94, 0.96, 1.00,

1.16, 1.02,

1.04, 1.06, 1.02, 1.10, 1.22, 1.94, 1.18, 1.12, 1.06, 1.06, 1.04,

1.02, 0.94,

0.94, 0.98, 0.96, 0.96, 0.98, 1.00, 0.96, 0.92, 0.90, 0.86, 0.82,

0.90, 0.84,

0.84, 0.82, 0.80, 0.80, 0.76, 0.80, 0.82, 0.80, 0.72, 0.72, 0.76,

0.80, 0.76,

0.70, 0.74, 0.82, 0.84, 0.88, 0.98, 1.44, 0.96, 0.88, 0.92, 1.08,

0.90, 0.92,

0.96, 0.94, 1.04, 1.08, 1.14, 1.66, 1.08, 0.96, 0.90, 0.86, 0.84,

0.86, 0.82,

0.84, 0.82, 0.84, 0.84, 0.84, 0.84, 0.82, 0.86, 0.82, 0.82, 0.86,

0.90, 0.84,

0.82, 0.78, 0.80, 0.78, 0.74, 0.78, 0.76, 0.76, 0.70, 0.72, 0.76,

0.72, 0.70,

0.64]

212

www.it-ebooks.info

Chapter 7

We need to perform the following steps:

1. Use a clean dataset of the Google Trend search volume for one year for the keyword flowers; we will import this dataset into the variable d.

2. Use a random normal distribution of the same length (365 data points) as our Google Trend dataset; this will be the dataset d1.

3. Create a plot containing four subplots.

4. In the first subplot, plot a scatter plot of d and d1.

5. In the second subplot, plot a scatter plot of d1 with d1.

6. In the third subplot, render a scatter plot of d1 with inverted d1.

7. And in the fourth subplot, render a scatter plot of d1 with a similar dataset constructed with a combination of d1 and d.

The following code will illustrate the relation as explained earlier in this recipe: import matplotlib.pyplot as plt

import numpy as np

import the data

from ch07_search_data import DATA

d = DATA

Now let's generate random data for the same period

d1 = np.random.random(365)

assert len(d) == len(d1)

fig = plt.figure()

ax1 = fig.add_subplot(221)

ax1.scatter(d, d1, alpha=0.5)

ax1.set_title('No correlation')

ax1.grid(True)

ax2 = fig.add_subplot(222)

ax2.scatter(d1, d1, alpha=0.5)

ax2.set_title('Ideal positive correlation')

ax2.grid(True)

ax3 = fig.add_subplot(223)

ax3.scatter(d1, d1*-1, alpha=0.5)

213

www.it-ebooks.info

Using Right Plots to Understand Data

ax3.set_title('Ideal negative correlation')

ax3.grid(True)

ax4 = fig.add_subplot(224)

ax4.scatter(d1, d1+d, alpha=0.5)

ax4.set_title('Non ideal positive correlation')

ax4.grid(True)

plt.tight_layout()

plt.show()

The following is the output we should get when the preceding code is executed: How it works...

The sample we see in the preceding output clearly displays if there is any correlation between different datasets. While the second (top-right) subplot shows an ideal, or perfect, positive correlation of the dataset d1 with d1 itself (obviously), we can see that the fourth subplot (bottom right) hints that there is a positive correlation, although not ideal. We constructed this dataset from d1 and d (random) to simulate two similar signals (events), while the second subplot plotted using d and d1 has certain randomness (or noise) in it, but still can be compared with the original (d) signal.

214

www.it-ebooks.info

Chapter 7

There's more...

We can also add histograms to scatter plots in such a way that they can tell us more about the data plotted. We can add horizontal and vertical histograms to show frequencies of data points on the x and y axes. Using this, we can at the same time see the summary of the whole dataset (histogram) and individual data points (the scatter plot).

The following is an example of the code to generate the scatter-histogram combination using the same two datasets we introduced in this recipe. The meat of the code is the function scatterhist() that is given here for reuse with different datasets, trying to set some of the variables based on the dataset provided (the number of bins in histogram, limits for axes, and so on).

We start with the usual imports:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1 import make_axes_locatable

The following code is the definition of our function to generate scatter histograms given an (x, y) dataset and optionally, a figsize parameter:

def scatterhist(x, y, figsize=(8,8)):

"""

Create simple scatter & histograms of data x, y inside given plot

@param figsize: Figure size to create figure

@type figsize: Tuple of two floats representing size in inches

@param x: X axis data set

@type x: np.array

@param y: Y axis data set

@type y: np.array

"""

_, scatter_axes = plt.subplots(figsize=figsize)

the scatter plot:

scatter_axes.scatter(x, y, alpha=0.5)

scatter_axes.set_aspect(1.)

divider = make_axes_locatable(scatter_axes)

axes_hist_x = divider.append_axes(position="top", sharex=scatter_

axes, size=1, pad=0.1)

axes_hist_y = divider.append_axes(position="right",

215

www.it-ebooks.info

Using Right Plots to Understand Data

harey=scatter_axes,

size=1, pad=0.1)

compute bins accordingly

binwidth = 0.25

global max value in both data sets

xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))])

number of bins

bincap = int(xymax / binwidth) * binwidth

bins = np.arange(-bincap, bincap, binwidth)

nx, binsx, _ = axes_hist_x.hist(x, bins=bins,

histtype='stepfilled',

orientation='vertical')

ny, binsy, _ = axes_hist_y.hist(y, bins=bins,

histtype='stepfilled',

orientation='horizontal')

tickstep = 50

ticksmax = np.max([np.max(nx), np.max(ny)])

xyticks = np.arange(0, ticksmax + tickstep, tickstep)

hide x and y ticklabels on histograms

for tl in axes_hist_x.get_xticklabels():

tl.set_visible(False)

axes_hist_x.set_yticks(xyticks)

for tl in axes_hist_y.get_yticklabels():

tl.set_visible(False)

axes_hist_y.set_xticks(xyticks)

plt.show()

Now we proceed with loading of the data and function call to generate and render the desired chart.

if __name__ == '__main__': # import the data

from ch07_search_data import DATA as d

Now let's generate random data for the same period

d1 = np.random.random(365)

assert len(d) == len(d1)

try with the random data

d = np.random.randn(1000)

d1 = np.random.randn(1000)

scatterhist(d, d1)

216

www.it-ebooks.info

Chapter 7

The previous code should generate the following output:

Plotting the cross-correlation between two

variables

If we have two different datasets from two different observations, we want to know if those two event sets are correlated. We want to cross correlate them and see if they match in any way. We are looking for a pattern of a smaller data sample in a larger data sample.

The pattern does not have to be an obvious or trivial pattern.

217

www.it-ebooks.info

Using Right Plots to Understand Data

Getting ready

We can use matplotlib's matplotlib.pyplot.xcorr function from the pyplot lab. This function can plot the correlation between two datasets in such a way that we can see if there is any significant pattern between the plotted values. It is assumed that x and y are of the same length.

If we pass the argument normed as True, we can normalize by cross-correlation at 0th lag (that is, when there is no time delay or time lag).

Behind the scenes, correlation is done using NumPy's numpy.correlate function.

Using the argument usevlines (setting it to True), we can instruct matplotlib to use vlines() instead of plot() to draw the lines of the correlation plot. The main difference is if we are using plot(), we can style the lines using the standard Line2D properties passed in the **kwargs argument to the matplotlib.pyplot.xcorr function.

How to do it...

In this following example we need to perform the following steps:

1. Import the matplotlib.pyplot module.

2. Import the numpy package.

3. Use a clean dataset of the Google search volume trend for a year for the keyword flowers.

4. Plot the datasets (the real and artificial ones) and the cross-correlation diagram.

5. Tighten the layout in order to have a better overview of labels and ticks.

6. Add appropriate labels and grids for easier understanding of the plot.

The following is the code that will perform the previously mentioned steps: import matplotlib.pyplot as plt

import numpy as np

import the data

from ch07_search_data import DATA as d

total = sum(d)

av = total / len(d)

z = [i - av for i in d]

Now let's generate random data for the same period

d1 = np.random.random(365)

assert len(d) == len(d1)

total1 = sum(d1)

218

www.it-ebooks.info

Chapter 7

av1 = total1 / len(d1)

z1 = [i - av1 for i in d1]

fig = plt.figure()

Search trend volume

ax1 = fig.add_subplot(311)

ax1.plot(d)

ax1.set_xlabel('Google Trends data for "flowers"')

Random: "search trend volume"

ax2 = fig.add_subplot(312)

ax2.plot(d1)

ax2.set_xlabel('Random data')

Is there a pattern in search trend for this keyword?

ax3 = fig.add_subplot(313)

ax3.set_xlabel('Cross correlation of random data')

ax3.xcorr(z, z1, usevlines=True, maxlags=None, normed=True, lw=2)

ax3.grid(True)

plt.ylim(-1, 1)

plt.tight_layout()

plt.show()

The previous code will render the following output:

219

www.it-ebooks.info

Using Right Plots to Understand Data

How it works...

We used a real dataset with a recognizable pattern in it (two peaks repeating in a similar manner across the dataset; refer to the preceding plot). The other dataset is just some random normal-distributed data of the same length as the real accrued data from the public service, Google Trends.

We plotted both datasets over the top half of the output to visualize the data.

Using matplotlib's xcorr, which in turn uses NumPy's correlate() function, we computed cross-correlation and plotted it on the bottom half of the screen.

Cross-correlation computation in NumPy returns a correlation coefficient's array that represents a degree of similarity of two datasets (or signals, as usually referred to if used in the signal processing field).

The cross-correlation diagram, correlogram, tells us that these two signals are not correlated, which is represented by the height of the correlation values (vertical lines that appear at certain time lags). We can see that there is more than one vertical line (the correlation coefficient at time lag n
) that is above 0.5.

If, for example, two datasets would have the correlation at a time lag of 100 (that is, a 100-second shift between the same object observed by two different sensors), we will see a vertical line (representing the correlation coefficient) at x = 100 in the preceding output.

Importance of autocorrelation

Autocorrelation represents the degree of similarity between a given time series and a lagged (that is, delayed in time) version of itself over successive time intervals. It occurs in time series studies when the errors associated with a given time period carry over into future time periods. For example, if we are predicting the growth of stock dividends, an overestimate in one year is likely to lead to overestimates in the succeeding years.

The time series analysis data arises in lots of different scientific applications and financial processes. Some of the examples include: generated reports of financial performance, prices over time, computing volatility, and others.

If we are analyzing unknown data, autocorrelation can help us detect whether the data is random or not. For that we can use correlogram. It can help provide answers to questions such as: Is the data random? Is this time series data a white noise signal? Is it sinusoidal?

Is it autoregressive? What is the model of this time series data?

220

www.it-ebooks.info

Chapter 7

Getting ready

We will use matplotlib to compare two sets of data. One is the Google day trend of search volume for a certain keyword for one year (365 days). The other set is 365 random measurements (the generated random data) with normal distribution.

We will autocorrelate both datasets and compare how the correlograms visualize patterns in data.

How to do it...

In this section we will perform the following steps:

1. Import the matplotlib.pyplot module.

2. Import the numpy package.

3. Use a clean dataset of Google search volume for a year.

4. Plot the dataset and plot its autocorrelation diagram.

5. Generate a same-length random dataset using NumPy.

6. Plot the random dataset on the same figure, and plot its autocorrelation diagram.

7. Add appropriate labels and grids for easier understanding of the plot.

The following is the code:

import matplotlib.pyplot as plt

import numpy as np

import the data

from ch07_search_data import DATA as d

total = sum(d)

av = total / len(d)

z = [i - av for i in d]

fig = plt.figure()

plt.title('Comparing autocorrelations')

Search trend volume

ax1 = fig.add_subplot(221)

ax1.plot(d)

ax1.set_xlabel('Google Trends data for "flowers"')

Is there a pattern in search trend for this keyword?

ax2 = fig.add_subplot(222)

221

www.it-ebooks.info

Using Right Plots to Understand Data

ax2.acorr(z, usevlines=True, maxlags=None, normed=True, lw=2)

ax2.grid(True)

ax2.set_xlabel('Autocorrelation')

Now let's generate random data for the same period

d1 = np.random.random(365)

assert len(d) == len(d1)

total = sum(d1)

av = total / len(d1)

z = [i - av for i in d1]

Random: "search trend volume"

ax3 = fig.add_subplot(223)

ax3.plot(d1)

ax3.set_xlabel('Random data')

Is there a pattern in search trend for this keyword?

ax4 = fig.add_subplot(224)

ax4.set_xlabel('Autocorrelation of random data')

ax4.acorr(z, usevlines=True, maxlags=None, normed=True, lw=2)

ax4.grid(True)

plt.show()

The previous code will render the following output:

222

www.it-ebooks.info

Chapter 7

How it works...

Looking at the left-hand side plots, it is easy to spot patterns in the search volume data, where the bottom-left plot has normally distributed random data with patterns that are not obvious, but still might exist.

Computing and plotting autocorrelation over random data, we can see that there is a high correlation at 0, which is expected, and data is correlated with itself without any time lag. But going before or after no time lag, the signal is almost 0. So we can safely conclude that there is no correlation between the signal in original time and any time lags examined.

Looking at the real data, Google search volume trend, we can see the same behavior at zero time lag, still something we can expect for any autocorrelated signal. But we have strong signals at around 30, 60, and 110 days after zero time lag. This indicates that there is a pattern with this particular search term and the way people search for it on the Google search engine.

We will leave the exercise of explaining why is this a very different story to the reader.

Remember that correlation and causation are two very different things.

There's more...

Autocorrelation is used very often when we want to identify a model for unknown data. When we try to fit data into a model, how data correlates to itself is sometimes the first step to identifying the appropriate model for a dataset we are presented with. This requires more than Python; it requires knowledge of mathematical modeling and various statistical tests (Ljung-Box test, Box-Pierce test, and so on) that will help us answer any questions we may have.

223

www.it-ebooks.info

www.it-ebooks.info

8

More on

matplotlib Gems

In this chapter we will cover:

f

Drawing barbs

f

Making a box and whisker plot

f

Making Gantt charts

f

Making errorbars

f

Making use of text and font properties

f

Rendering text with LaTeX

f

Understanding the difference between pyplot and OO API

Introduction

In this chapter we will explore some less frequently used features of the matplotlib package.

Some of these examples stretch the matplotlib original target, but they show what can be done with a little creativity, and prove that matplolib is full featured and generically oriented.

Drawing barbs

A barb is a representation of the speed and direction of wind, and is mainly deployed by meteorology scientists. In theory they can be used to visualize any type of two-dimensional vector quantities. They are similar to arrows (quivers), but the difference is that arrows represent vector magnitude by the length of the arrow, while barbs give more information about the vector's magnitude by employing lines or triangles as increments of magnitude.

www.it-ebooks.info

More on matplotlib Gems

We will explain what barbs are, how to read them, and how to visualize them using Python and matplotlib. Here's a typical set of barbs:

0 5 10 15

30

40

50

60

100

In the preceding diagram, the triangle, also known as flag, represents the largest increment.

A full line or barb, represents a smaller increment; a half line is the smallest increment.

The increments are in the order of 5, 10, and 65 for a half-line, line, and triangle respectively.

The values here represent, for meteorologists at least, wind speed in nautical miles per hour (knots).

We ordered the barbs from left to right to represent the following magnitudes: 0, 5, 10, 15, 30, 40, 50, 60, and 100 knots. The direction here is the same for each barb and is from north to south, because the east-west speed component is 0 for each barb.

Getting ready

A barb can be created using a matplotlib function from matplotlib.pyplot.barbs.

The barbs function accepts various arguments, but the main use case is that we specify X and Y coordinates, representing locations of observed data points. The second pair of arguments—U, V—represents the magnitude of the vector in north-south and east-west directions in knots.

Other arguments that can be useful are pivots, sizes, and various coloring arguments.

A pivot argument (pivot) represents the part of the arrow represented on the grid point.

We get a pivot argument when the arrow rotates around this point. The arrow can rotate around the tip or middle, which are valid values for the pivot argument.

Because barbs consist of several parts, we can set up the coloring of any of those parts.

So we have a few color-related arguments that we can set up:

f

barbcolor: This defines the color of all the parts for a barb, except for flags f

flagcolor This defines the color of any flag on the barb

f

facecolor: This argument is used if none of the preceding color arguments are specified (or the default value is read from rcParams)

If any of the preceding color-related arguments are specified, the argument facecolor is overridden. The argument facecolor is the one used in coloring polygons.

226

www.it-ebooks.info

Chapter 8

The size argument (sizes) specifies the ration of a feature to the length of the barb. This is a collection of coefficients that can be specified by using any or all of the following keys: f

spacing: This defines the space among features of the flag/barb

f

height: This defines the distance from the shaft to the top of a flag or barb f

width: This defines the width of a flag

f

emptybarb: This defines the circle radius used for low magnitudes

How to do it...

Let's demonstrate how to use a barb function by performing the following steps: 1. Generate a grid of coordinates to simulate observations.

2. Simulate observational values for wind speed.

3. Plot barb diagrams.

4. Plot quivers to demonstrate different appearances.

The following code will generate the figure:

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(-20, 20, 8)

y = np.linspace(0, 20, 8)

make 2D coordinates

X, Y = np.meshgrid(x, y)

U, V = X+25, Y-35

plot the barbs

plt.subplot(1,2,1)

plt.barbs(X, Y, U, V, flagcolor='green', alpha=0.75)

plt.grid(True, color='gray')

compare that with quiver / arrows

plt.subplot(1,2,2)

plt.quiver(X, Y, U, V, facecolor='red', alpha=0.75)

misc settings

plt.grid(True, color='grey')

plt.show()

227

www.it-ebooks.info

More on matplotlib Gems

The preceding code renders two subplots as shown in the following figure: How it works...

To illustrate how the same data can bring different information to light, we used barbs and quiver plots from matplotlib to visualize simulated observed wind data.

First, we used NumPy to generate samples of variations for x and y arrays. Then we used NumPy's meshgrid() function to create a 2D grid of coordinates where our observed data is sampled at certain coordinates. Finally, U and V are wind speed values in NS (north-south) and EW (east-west) directions, in knots (nautical miles per hours). For the purpose of the recipe, we adjusted some values from the already available X and Y matrices.

We then divided the figure into two subplots, plotting barbs in the leftmost plot and arrow-patches in the rightmost plot. We adjusted the color and transparency of both the subplots slightly, as well as turned the grid on both the subplots.

There's more...

This is all fine on the northern hemisphere where the wind rotates in a counter-clockwise direction and the feathers (triangles, full lines and half lines of the barb) point in the direction of lower pressure. On the southern hemisphere, this is inverted so our wind barb graph would not represent the data we are visualizing correctly.

228

www.it-ebooks.info

Chapter 8

We have to invert this direction of feathers. Luckily, the barbs function has the argument flip_barb. This argument can be of one single Boolean value (True or False) or a sequence of Boolean values such as the shape of other data arrays, when each item in the sequence specifies a flip decision for each barb.

Making a box and a whisker plot

Do you want to visualize a series of data measurement (or observations) to show several properties of the data series (such as the median value, the spread of the data, and the distribution of the data) in one plot? And would you want to do that in a way where you can visually compare several similar data series? How would you visualize them? Welcome to the box-and-whisker plot! Probably the best plot type for comparing distributions, if you are talking to people used to information density.

The box-and-whisker plot usage examples range from comparing test scores between schools to comparing process parameters before and after changes (optimization).

Getting ready

What are the elements of box and whisker plots? As we see in the following diagram, we have several important elements that carry information in the box-and-whisker plot. The first component is the box that carries information about the interquartile range going from lower to upper quartile values. The median value of the data is represented by a line across the box.

The whiskers extend from the box on both sides going from the first quartile (25 percentile) to the last quartile (75 percentile) of the data. In other words, the whiskers extend 1.5 times from the base of the inter-quartile range. In the case of a normal distribution, whiskers will cover 99.3 percent of the total data range.

If there are values outside the whiskers range, they will be displayed as fliers. Otherwise, the whiskers will cover the total range of the data.

229

www.it-ebooks.info

More on matplotlib Gems

Optionally, the box can also carry information about confidence intervals around the median.

This is represented by a notch in the box. This information can be used to indicate whether the data in the two series is of the similar distribution. However, this is not rigorous and is just an indication that can be visually inspected.

How to do it...

In the following recipe we will learn how to create a box-and-whisker plot using matplotlib.

We will perform the following steps:

1. Sample some comparative process data, where a single integer number represents the occurrence of an error during the observed period of the running process.

2. Read data from the PROCESSES dictionary into DATA.

3. Read labels from the PROCESSES dictionary into LABELS.

4. Render the box-and-whisker plot using matplotlib.pyplot.boxplot.

5. Remove some chart junk from the figure.

6. Add axes labels.

7. Show the figure.

The following code implements these steps:

import matplotlib.pyplot as plt

define data

PROCESSES = {

"A": [12, 15, 23, 24, 30, 31, 33, 36, 50, 73],

"B": [6, 22, 26, 33, 35, 47, 54, 55, 62, 63],

"C": [2, 3, 6, 8, 13, 14, 19, 23, 60, 69],

"D": [1, 22, 36, 37, 45, 47, 48, 51, 52, 69],

}

DATA = PROCESSES.values()

LABELS = PROCESSES.keys()

plt.boxplot(DATA, notch=False, widths=0.3)

set ticklabel to process name

plt.gca().xaxis.set_ticklabels(LABELS)

some clean up(removing chartjunk)

turn the spine off

230

www.it-ebooks.info

Chapter 8

for spine in plt.gca().spines.values():

spine.set_visible(False)

turn all ticks for x-axis off

plt.gca().xaxis.set_ticks_position('none')

leave left ticks for y-axis on

plt.gca().yaxis.set_ticks_position('left')

set axes labels

plt.ylabel("Errors observed over defined period.")

plt.xlabel("Process observed over defined period.")

plt.show()

The preceding code generates the following figure:

231

www.it-ebooks.info

More on matplotlib Gems

How it works...

The box and whisker plot is rendered by first computing quartiles for the given data in DATA.

These quartile values are used to compute lines to draw boxes and whiskers.

We adjusted the plot to be more visually pleasing and not contain any unnecessary lines (referring to superfluous lines such as "chart junk", as mentioned in the famous book The
 Visual Display of Quantitative Information
 by Edward R. Tufte
). Those lines do not carry information and just put more pressure on the mental models in a viewer's brain to decode all the lines before discovering real valuable information.

Making Gantt charts

One form of very widely-used visualization of time-based data is a Gantt chart. Named after the mechanical engineer Henry Gantt
 who invented it in 1910s, it is almost exclusively used to visualize work breakdown structures in project management. This chart is loved by managers for its descriptive value and not so loved by employees, especially when the project deadline is near.

Because it is very common, almost every one can understand and read it, even if it is overloaded with additional (related and unrelated) information.

A basic Gantt chart has a time series on the x axis, and a set of labels that represent tasks or subtasks on the y axis. Task duration is usually visualized either as a line or as a bar chart, extending from the start to end time of a given task.

If subtasks are present, one or many subtasks have a parent task, in which the case total time of a task is aggregated from subtasks in such a way that overlapping and gap time is accounted for. This is useful to perform critical path analysis.

Critical path analysis is a mathematical analysis that computes a path containing all the tasks required, taking into account tasks interdependencies so that the total start to completion time of a project can be calculated. This is a very important tool in the project management field and can be universally applied to any type of project for scheduling and resource planning.

So, in this recipe we will be covering the creation of the Gantt chart using Python.

Getting ready

There are many full-fledged software applications and services that allow you to make very flexible and complicated Gantt charts. We will try to demonstrate how you could do it in pure Python, not relying on external applications, yet achieving neat looking and informative Gantt charts.

232

www.it-ebooks.info

Chapter 8

The Gantt chart shown in the example does not support nested tasks, but it is sufficient for simple work breakdown structures.

How to do it...

The following code example will allow us to demonstrate how Python can be used together with matplotlib to render the Gantt chart. We will perform the following steps: 1. Load TEST_DATA that contains a set of tasks and instantiate the Gantt class with TEST_DATA.

2. Each task contains a label and the start and end time.

3. Process all tasks by plotting horizontal bars on the axes.

4. Format x and y axes for the data we are rendering.

5. Tighten the layout.

6. Show the Gantt chart.

The following is a sample code:

from datetime import datetime

import sys

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.font_manager as font_manager

import matplotlib.dates as mdates

import logging

class Gantt(object):

'''

Simple Gantt renderer.

Uses *matplotlib* rendering capabilities.

'''

Red Yellow Green diverging colormap

from http://colorbrewer2.org/

RdYlGr = ['#d73027', '#f46d43', '#fdae61',

'#fee08b', '#ffffbf', '#d9ef8b',

'#a6d96a', '#66bd63', '#1a9850']

POS_START = 1.0

POS_STEP = 0.5

233

www.it-ebooks.info

More on matplotlib Gems

def __init__(self, tasks):

self._fig = plt.figure()

self._ax = self._fig.add_axes([0.1, 0.1, .75, .5])

self.tasks = tasks[::-1]

def _format_date(self, date_string):

'''

Formats string representation of *date_string* into

matplotlib.dates

instance.

'''

try:

date = datetime.strptime(date_string, '%Y-%m-%d %H:%M:%S')

except ValueError as err:

logging.error("String '{0}' can not be converted to

datetime object: {1}"

.format(date_string, err))

sys.exit(-1)

mpl_date = mdates.date2num(date)

return mpl_date

def _plot_bars(self):

'''

Processes each task and adds *barh* to the current *self._ax*

(*axes*).

'''

i = 0

for task in self.tasks:

start = self._format_date(task['start'])

end = self._format_date(task['end'])

bottom = (i * Gantt.POS_STEP) + Gantt.POS_START

width = end - start

self._ax.barh(bottom, width, left=start, height=0.3,

align='center', label=task['label'],

color = Gantt.RdYlGr[i])

i += 1

def _configure_yaxis(self):

'''y axis'''

task_labels = [t['label'] for t in self.tasks]

pos = self._positions(len(task_labels))

ylocs = self._ax.set_yticks(pos)

234

www.it-ebooks.info

Chapter 8

ylabels = self._ax.set_yticklabels(task_labels)

plt.setp(ylabels, size='medium')

def _configure_xaxis(self):

''''x axis'''

make x axis date axis

self._ax.xaxis_date()

format date to ticks on every 7 days

rule = mdates.rrulewrapper(mdates.DAILY, interval=7)

loc = mdates.RRuleLocator(rule)

formatter = mdates.DateFormatter("%d %b")

self._ax.xaxis.set_major_locator(loc)

self._ax.xaxis.set_major_formatter(formatter)

xlabels = self._ax.get_xticklabels()

plt.setp(xlabels, rotation=30, fontsize=9)

def _configure_figure(self):

self._configure_xaxis()

self._configure_yaxis()

self._ax.grid(True, color='gray')

self._set_legend()

self._fig.autofmt_xdate()

def _set_legend(self):

'''

Tweak font to be small and place *legend*

in the upper right corner of the figure

'''

font = font_manager.FontProperties(size='small')

self._ax.legend(loc='upper right', prop=font)

def _positions(self, count):

'''

For given *count* number of positions, get array for the

positions.

'''

end = count * Gantt.POS_STEP + Gantt.POS_START

pos = np.arange(Gantt.POS_START, end, Gantt.POS_STEP)

return pos

235

www.it-ebooks.info

More on matplotlib Gems

The main function that drives the Gantt chart generation is defined in the following code.

In this function, we load the data into an instance, plot bars accordingly, set up the date formatter for the time axis (x axis), and set values for the y axis (the project's tasks).

def show(self):

self._plot_bars()

self._configure_figure()

plt.show()

if __name__ == '__main__':

TEST_DATA = (

{ 'label': 'Research', 'start':'2013-10-01

12:00:00', 'end': '2013-10-02 18:00:00'}, # @IgnorePep8

{ 'label': 'Compilation', 'start':'2013-10-02

09:00:00', 'end': '2013-10-02 12:00:00'}, # @IgnorePep8

{ 'label': 'Meeting #1', 'start':'2013-10-03

12:00:00', 'end': '2013-10-03 18:00:00'}, # @IgnorePep8

{ 'label': 'Design', 'start':'2013-10-04

09:00:00', 'end': '2013-10-10 13:00:00'}, # @IgnorePep8

{ 'label': 'Meeting #2', 'start':'2013-10-11

09:00:00', 'end': '2013-10-11 13:00:00'}, # @IgnorePep8

{ 'label': 'Implementation', 'start':'2013-10-12

09:00:00', 'end': '2013-10-22 13:00:00'}, # @IgnorePep8

{ 'label': 'Demo', 'start':'2013-10-23

09:00:00', 'end': '2013-10-23 13:00:00'}, # @IgnorePep8

)

gantt = Gantt(TEST_DATA)

gantt.show()

This code will render a simple, neat looking Gantt chart like the following one: 236

www.it-ebooks.info

Chapter 8

How it works...

We can start reading the preceding code from the bottom after the condition that checks if we are in "__main__".

After we instantiate the Gantt class giving it TEST_DATA, we set up the necessary fields of our instance. We save TASK_DATA in the self.tasks field, and we create our figure and axes to hold the charts we create in future.

Then we call show() on the instance that walks us through the steps required to render the Gantt chart:

def show(self):

self._plot_bars()

self._configure_figure()

plt.show()

Plotting bars requires an iteration where we apply the data about the name and duration of each task to the matplotlib.pyplot.barh function, adding it to the axes at self._ax.

We place each task in a separate channel by giving it a different (incremental) bottom argument value.

Also, to make it easy to map tasks to their names, we cycle over the divergent color maps that we generated using the colorbrewer2.org tool.

The next step is to configure the figure, which means that we set up the format date on the x axis and tickers' positions and labels on the y axis to match the tasks plotted by matplotlib.pyplot.barh.

We do a final tweaking of grid and legend.

At the end, we call plt.show() to show the figure.

Making errorbars

Error bars are useful to display the dispersion of data on a plot. They are relatively simple as a form of visualization; however, they are also a bit problematic because what is shown as an error varies across different sciences and publications. This does not lessen the usefulness of error bars, it just imposes the need to always be careful and explicitly state the nature of the error visualized as an error bar.

Getting ready

To be able to plot an error bar in the raw observed data, we need to compute the mean and the error we want to display.

237

www.it-ebooks.info

More on matplotlib Gems

The error we compute represents the 95 percent confidence interval that the mean we get from our observation is stable, which means our observations are good estimates of the whole population.

matplotlib supports these type of plots via matplotlib.pyplot.errorbar function.

It offers several capabilities around error bars. They can be vertical (yerr) or horizontal (xerr), and symmetrical or asymmetrical.

How to do it...

In the following code we will:

1. Use some sample data that consists of four sets of observations.

2. For each set of observations, compute the mean value.

3. For each set of observations, compute the 95 percent confidence interval.

4. Render bars with vertical symmetrical error bars.

Here is the code for this:

import matplotlib.pyplot as plt

import numpy as np

import scipy.stats as sc

TEST_DATA = np.array([[1,2,3,2,1,2,3,4,2,3,2,1,2,3,4,4,3,2,3,2,3,2,1],

[5,6,5,4,5,6,7,7,6,7,7,2,8,7,6,5,5,6,7,7,7,6,5],

[9,8,7,8,8,7,4,6,6,5,4,3,2,2,2,3,3,4,5,5,5,6,1],

[3,2,3,2,2,2,2,3,3,3,3,4,4,4,4,5,6,6,7,8,9,8,5],

])

find mean for each of our observations

y = np.mean(TEST_DATA, axis=1, dtype=np.float64)

and the 95% confidence interval

ci95 = np.abs(y - 1.96 * sc.sem(TEST_DATA, axis=1))

each set is one try

tries = np.arange(0, len(y), 1.0)

tweak grid and setup labels, limits

plt.grid(True, alpha=0.5)

plt.gca().set_xlabel('Observation #')

plt.gca().set_ylabel('Mean (+- 95% CI)')

plt.title("Observations with corresponding 95% CI as error bar.") 238

www.it-ebooks.info

Chapter 8

plt.bar(tries, y, align='center', alpha=0.2)

plt.errorbar(tries, y, yerr=ci95, fmt=None)

plt.show()

The preceding code will render a plot with error bars that display 95 percent confidence intervals as whiskers extending along the y axis. Remember, the wider the whiskers, the lesser is the probability that the observed mean is true. The following graph is the output for the preceding code:

How it works...

In order to avoid iterating over each set of observations, we use NumPy's vectorized methods to compute means and standard errors, which we use for plotting and computing error values.

Using NumPy's vectorized implementations that are written in C language (and called from Python) allows us to speed up computations by several magnitudes.

This is not very important for a few data points but, for millions of data points, it can either make or break our efforts to create responsive applications.

Also, you may notice that we explicitly specified dtype=np.float 64 in the np.mean function call. According to the official NumPy documentation reference (http://docs.

scipy.org/doc/numpy/reference/generated/numpy.mean.html), np.mean can be inaccurate if used in single precision; it's better to compute it with np.float32, or if performance is not an issue, use np.float 64.

239

www.it-ebooks.info

More on matplotlib Gems

There's more...

There is an ongoing issue with what to show on error bars. Some advise on using SD
 , 2SD
 , SE
 , or 95%CI
 . We must understand what the difference between all these values and what they are used for, in order to be able to give reasoning on what to use and when.

Standard Deviation informs us about the distribution of individual data points around the mean value. If we assume normal distribution, then we know that 68.2% (~2/3)
 of data values will fall between ±SD
 , and 95.4%
 of values will be between ±2*SD
 .

Standard Error is calculated as SD
 divided by the square root of N
 (SD/√N
), where N
 is the number of data points. Standard Error (SE) informs us about variability of mean values, if we are able to perform the same sampling more than once (like performing the same study hundreds of times).

The confidence interval is calculated from SE, similar to how the range of values is calculated from Standard Deviation. To calculate 95 percent confidence interval, we must add/subtract 1.96 * SE
 to/from our mean value or use proper notation: 95% CI = M ± (1.96 * SE)
 . The wider the confidence interval, the lesser we would be sure that we are right.

We see that in order to be sure that our estimation is correct and that we are giving its proof to our reader, we should display the confidence interval, which in turn carries the standard error; this, if small, proves that our means are stable.

Making use of text and font properties

We already learned how to annotate the plot by adding legends, but sometimes we want more with text. This recipe will explain and demonstrate more features of text manipulation in matplotlib, giving a powerful toolkit for even advanced typesetting needs.

We will not cover LaTeX support in this recipe, as there is a recipe named Rendering text with
 LaTeX
 in this chapter.

Getting ready

We start with listing of the most useful set of functions that matplotlib offers. Most of the functions are available via pyplot module's interface, but we map their origin function here to allow you to explore more if a particular text feature is not covered in this recipe.

240

www.it-ebooks.info

Chapter 8

Basic text manipulations and their mapping in matplotlib OO API is presented in the following table:

matplotlib.pyplot Matplotlib API

Description

text

matplotlib.axes.Axes.text

Adds text to the axes at the

location specified by (x, y).

Argument fontdict allows

us to override generic font

properties, or we can use

kwargs to override specific

property.

xlabel

matplotlib.axes.Axes.set_xlabel

Sets the label for the x

axis. Specifies the spacing

between the label and the

x axis in accordance with

labelpad.

ylabel

matplotlib.axes.Axes.set_ylabel

Similar to xlabel, but

intended for the y axis.

title

matplotlib.axes.Axes.set_title

Sets the title for the axes.

Accepts all the usual

text properties such as

fontdict and kwargs.

suptitle

matplotlib.figure.Figure.suptitle Adds a centered title to the

figure. Accepts all the usual

text properties via kwargs.

Uses figure coordinates.

figtext

matplotlib.figure.Figure.text

Puts text anywhere on the

figure. The location is defined

using x,y, using figure's

normalized coordinates.

Override font properties using

fontdict, but also support

kwargs to override any

text-related property.

The base class for text storing and drawing inside windows or data coordinates is the matplotlib.text.Text class. It supports the definition of the location of text objects as well as a range of properties that we can define, to tune how our strings are going to appear on a figure or a window.

241

www.it-ebooks.info

More on matplotlib Gems

The font properties supported by the matplotlib.text.Text instances are: Property

Values

Description

family

'serif',

Specifies the font name or font family. If this is a list,

'sans-serif',

then it is ordered by priority, so the first matched

'cursive',

name will be used.

'fantasy',

'monospace'

size or

12, 10,... or

Specifies the size in relative or absolute points,

fontsize

'xx-small',

or specifies the relative size as a size string.

'x-small',

'small',

'medium',

'large',

'x-large', 'xx-

large'

style or

'normal',

Specifies the font style as a string.

fontstyle

'italic',

'oblique'

variant

'normal',

Specifies the font variant.

'small-caps'

weight or

0-1000 or

Specifies the font weight or using a specific weight

fontweight

'ultralight',

string. Font weight is defined as the thickness of

'light',

character outline relative to its height.

'normal',

'regular',

'book',

'medium',

'roman',

'semibold',

'demibold',

'demi', 'bold',

'heavy', 'extra

bold', 'black'

242

www.it-ebooks.info

Chapter 8

Property

Values

Description

stretch or

0-1000 or

Specifies the stretch of the font. Stretch is defined as

fontstretch

'ultra-

horizontal condensation or expansion. This property is

condensed',

not currently implemented.

'extra-

condensed',

'condensed',

'semi-

condensed',

'normal',

'semi-

expanded',

'expanded',

'extra-

expanded',

'ultra-

expanded'

fontproperties

Defaults to the matplotlib.font_manager.

FontProperties instance. This class stores and

manages font properties as described in W3C CSS

Level1 specification at http://www.w3.org/

TR/1998/REC-CSS2-19980512/.

We can also specify the background box that will contain the text, and which can be further specified in color, borders, and transparency.

The basic text color is read from rcParams['text.color'], if not specified on the current instance, of course.

Specified text can also be aligned according to visual needs. There are the following alignment properties:

f

horizontalalignment or ha: This allows alignment of text horizontally to center, left, and right.

f

verticalalignment or va: Allowed values for this are center, top, bottom, and baseline.

f

multialignment: This allows alignment of text strings that span multilines. Allowed values are: left, right, and center.

How to do it...

So far all is good, but we have a hard time visualizing all these variations in the fonts we can create. So this is going to illustrate what we can do. In the next code we will be performing the following steps:

1. List all the possible properties we want to vary on the font.

243

www.it-ebooks.info

More on matplotlib Gems

2. Iterate over the first set of variations: font family and size.

3. Iterate over the second set of variations: weight and style.

4. Render text samples for both the iterations and print the variation combination as a text on the plot.

5. Remove axes from the figure, as they serve no purpose.

The following is the code:

import matplotlib.pyplot as plt

from matplotlib.font_manager import FontProperties

properties:

families = ['serif', 'sans-serif', 'cursive', 'fantasy', 'monospace']

sizes = ['xx-small', 'x-small', 'small', 'medium', 'large',

'x-large', 'xx-large']

styles = ['normal', 'italic', 'oblique']

weights = ['light', 'normal', 'medium', 'semibold', 'bold', 'heavy',

'black']

variants = ['normal', 'small-caps']

fig = plt.figure(figsize=(9,17))

ax = fig.add_subplot(111)

ax.set_xlim(0,9)

ax.set_ylim(0,17)

VAR: FAMILY, SIZE

y = 0

size = sizes[0]

style = styles[0]

weight = weights[0]

variant = variants[0]

for family in families:

x = 0

y = y + .5

for size in sizes:

y = y + .4

sample = family + " " + size

ax.text(x, y, sample, family=family, size=size,

style=style, weight=weight, variant=variant)

VAR: STYLE, WEIGHT

y = 0

family = families[0]

size = sizes[4]

variant = variants[0]

for weight in weights:

x = 5

244

www.it-ebooks.info

Chapter 8

y = y + .5

for style in styles:

y = y + .4

sample = weight + " " + style

ax.text(x, y, sample, family=family, size=size,

style=style, weight=weight, variant=variant)

ax.set_axis_off()

plt.show()

The preceding code will produce the following screenshot:

245

www.it-ebooks.info

More on matplotlib Gems

How it works...

The code is really straightforward, as we just iterate twice over tuples of properties printing their values.

The only trick employed here is the positioning of text on the figure canvas, as that allows us to have nice layout of text samples we can easily compare.

Keep in mind that the default font matplotlib will use is dependent on the operating system you are running, so the preceding screenshot might look slightly different. This screenshot was rendered using standard Ubuntu 13.04 installed fonts.

Rendering text with LaTeX

If we want to plot more scientific graphics and explain math as it should be using scientific notations and complex equations on the figures, we need support from the best.

Although matplotlib has support for math text rendering, the best support comes from the LaTeX community, proven in the task being used for many decades.

LaTeX is a high-quality typesetting system for the production of scientific and technical documentation, being a de facto
 standard for scientific typesetting or publication. It is a free software, available on the majority of desktop platforms used today as prepackages binary installation; hence, it is easy to install.

The basic syntax of LaTeX is similar to markup languages; so to produce satisfactory content, one would write focusing more on the structure than on the look and style. For example:

\documentclass{article}

\title{This here is a title of my document}

\author{Peter J. S. Smith}

\date{September 2013}

\begin{document}

\maketitle

Hello world, from LaTeX!

\end{document}

We see how this is different from the usual word processor, where you have the WYSIWYG

editor environment and the style is already applied to your text. Sometimes this is good but, for scientific publications, style is a secondary concern; the primary focus is having the right, correct, and valid content. Here, by content we also mean mathematical notations (usually a lot of it), including graphs.

Apart from this, there are many more features such as automatic generation of bibliographies and indexes, which are important for medium to large publications. And those are the main focus points of the LaTeX system.

246

www.it-ebooks.info

Chapter 8

Because this is not a book about LaTeX, we will stop with the quick introduction here. A lot more documentation is available on the project's website at http://latex-project.org/.

Getting ready

Before we start demonstrating matplotlib's support for rendering text using LaTeX, we need to have the following packages installed on our system:

f

LaTeX system: The most common one is the TeX Live prepackaged distribution f

DVI to PNG converter: This makes PNG graphics from DVI files as obtained from TeX, by producing anti-aliased screen-resolution images

f

Ghost script: This is required, unless already installed by TeX Live distribution There are different prepackaged systems of the LaTeX environment for different operating systems. For Linux-based systems, TeX Live is a complete TeX system. For Mac OS, the recommended environment is the MacTeX distribution; for the Windows environment, the proTeX system is going to install all the TeX supports, including LaTeX.

Whichever package you install, make sure it comes with font libraries and programs for typesetting, previewing, and printing of TeX documents in many different languages.

We will install our package for Linux using the texlive and dvipng packages for Ubuntu.

We can install this by using the following command:

$ sudo apt-get install texlive dvipng

The next step is to tell our matplotlib to use LaTeX by setting text.usetex to True. We can do that either in our custom .matplotlibrc inside our home directory (/home/<user>/.

matplotlibrc on Unix-based systems, or C:\Documents and Settings\<user>\.

matplotlibrc) via rcParams['text'], or by using the following code:

matplotlib.pyplot.rc('text', usetex=True)

The start of the code will tell matplotlib to go back to LaTeX for all text rendering. It is important to do this before we add any figure and axis.

Not all backends support LaTeX rendering. Only the Agg, PS and PDF backends support text rendering via LaTeX.

How to do it...

What we want to do here is demonstrate the basic usage properties of LaTeX. We will perform the following steps:

1. Generate some sample data.

2. Set up matplotlib to use LaTeX for this plotting session.

247

www.it-ebooks.info

More on matplotlib Gems

3. Set up the font and font properties to be used.

4. Write out the equation syntax.

5. Demonstrate the usage of Greek symbols' syntax.

6. Draw math notations of fractions and fractals.

7. Write some limits and exponential expressions.

8. Write possible range expressions.

9. Write expressions with text and formatted text in them.

10. Write some math expressions on x and y labels as figure titles.

The following code will perform these steps:

import numpy as np

import matplotlib.pyplot as plt

Example data

t = np.arange(0.0, 1.0 + 0.01, 0.01)

s = np.cos(4 * np.pi * t) * np.sin(np.pi*t/4) + 2

plt.rc('text', usetex=True)

plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica'],

'size':16})

plt.plot(t, s, alpha=0.25)

first, the equation for 's'

note the usage of Python's raw strings

plt.annotate(r'$\cos(4 \times \pi \times {t}) \times \sin(\pi \times \

frac {t} 4) + 2$', xy=(.9,2.2), xytext=(.5, 2.6), color='red', arrowpr ops={'arrowstyle':'->'})

some math alphabet

plt.text(.01, 2.7, r'$\alpha, \beta, \gamma, \Gamma, \pi, \Pi, \phi, \

varphi, \Phi$')

some equation

plt.text(.01, 2.5, r'some equations $\frac{n!}{k!(n-k)!} = {n \choose k}$')

more equations

plt.text(.01, 2.3, r'EQ1 $\lim_{x \to \infty} \exp(-x) = 0$')

some ranges...

plt.text(.01, 2.1, r'Ranges: $(a), [b], \{ c \}, | d |, \| e \|, \

langle f \rangle, \lfloor g \rfloor, \lceil h \rceil$')

you can multiply apples and oranges

248

www.it-ebooks.info

Chapter 8

plt.text(.01, 1.9, r'Text: $50 apples \times 100 oranges = lots of

juice$')

plt.text(.01, 1.7, r'More text formatting: $50 \textrm{ apples} \times 100 \textbf{ apples} = \textit{lots of juice}$')

plt.text(.01, 1.5, r'Some indexing: $\beta = (\beta_1,\beta_2,\dotsc,\

beta_n)$')

we can also write on labels

plt.xlabel(r'\textbf{time} (s)')

plt.ylabel(r'\textit{y values} (W)')

and write titles using LaTeX

plt.title(r"\TeX\ is Number "

r"$\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!", fontsize=16, color='gray')

Make room for the ridiculously large title.

plt.subplots_adjust(top=0.8)

plt.savefig('tex_demo')

plt.show()

The preceding code will render the following text-saturated figure that demonstrates LaTeX rendering:

249

www.it-ebooks.info

More on matplotlib Gems

How it works...

After we set up the rendering engine and font properties, we basically used standard matplotlib calls for text rendering, such as matplotlib.pyplot.annotate, matplotlib.

pyplot.text, matplotlib.pyplot.xlabel, matplotlib.pyplot.ylabel, and matplotlib.pyplot.title.

The difference here is that all the strings are so-called raw strings, meaning Python will not interpret them and no string substitution will occur; hence the LaTeX engine is going to receive exactly the same strings as commands to act upon.

More examples of the TeX syntax and how to use it in matplotlib can be found on official matplotlib documentation at http://matplotlib.org/users/mathtext.

html#writing-mathematical-expressions.

Note that this URL is not on LaTeX but on matplotlib's own integrated TeX parser. This parser supports almost the same syntax, and it can even be sufficient for your needs.

There's more...

If you run into a problem while setting up this environment or have different problems with fonts that either look bad or are not able to produce the LaTeX rendering, make sure that you have installed all required packages, your $PATH environment variable (if on Windows) is set up to include all the required binaries, and matplotlib is set to use LaTeX for text rendering.

If all of the given instructions are followed and the results cannot be replicated, refer to the official matplotlib website at http://matplotlib.org/users/usetex.

html#possible-hangups, and the LaTeX community on http://tex.stackexchange.

com/ for further assistance.

It is known that this setup is not as streamlined as it should be, and some quirks may occur for various reasons.

Understanding the difference between

pyplot and OO API

This recipe will try to explain some of the programming interfaces in matplotlib and make a comparison of pyplot and object-oriented API (Application Programming Interface).

Depending on the task at hand, this will allow us to decide why and when to use either of those interfaces.

250

www.it-ebooks.info

Chapter 8

Getting ready

When the matplotlib library started, it was similar to many open source projects—there was no proper (free) solution to the problem a person had, so he wrote one. The problem encountered with MATLAB® was with performance for the task in hand (http://www.aosabook.org/

en/matplotlib.html), and the original author already had knowledge of both MATLAB®

and Python, so he started writing matplotlib as a solution for his need for the current project.

This is the main reason matplotlib has a MATLAB®-like interface that allows one to quickly plot data without worrying about background details, which platform matplotlib is running on, which are the underlying rendering libraries (is it Linux with GTK, Qt, Tk, or wxWidgets either on Linux or Windows), or are we running on Mac OS with the help of Cocoa toolkits. This is all hidden inside matplotlib under a nice procedural interface in the matplotlib.pyplot module, a stateful interface handling logic for creating figures and axes to connect them with the configured backend. It also keeps data structures for the current figure and axes, which are called upon with plot commands.

This is the interface (matplotlib.pyplot) we were using throughout most of this book as it is simple, straightforward, and good enough for most of the tasks we were trying to accomplish. The matplotlib library was designed with this philosophy in mind. We must be able to draw plots with as few commands as possible, even just one command (for example, plt.plot([1,2,3,4,5]); plt.show() works!). For these tasks we don't want to be forced into thinking about objects, instances, methods, properties, rendering backends, figures, canvases, lines, and other graphical primitives.

If you are reading this book from the start, you probably noticed that some classes started appearing in various examples; such as, FontProperties or AxesGrid, where we needed more than is provided by the matplotlib.pyplot module.

This is the object-oriented programming interface that implements all the hidden hard stuff such as rendering graphical elements, rendering those to the platform's graphical toolkit, and handling user inputs (mouse and keystrokes). There is nothing to stop us from using OO API, and that is what we are going to do.

So if we take a look at matplotlib as a software, it consists of three parts: f

matplotlib.pylab interface: This is a set of functions for the user to create plots like in MATLAB®

f

matplotlib API (also called matplotlib frontend): This is a set of classes for the creation and management of figures, text, lines, plots, and so on

f

backends: These are drawing drivers; they transform front abstract representation into a file or a display device

251

www.it-ebooks.info

More on matplotlib Gems

This backend layer contains concrete implementations of abstract interface classes. There are classes such as FigureCanvas (a surface to draw onto paper), Renderer (a paintbrush that does the drawing on the canvas), and Event (a class that handles the user's keystrokes and mouse events).

The code is also separated. The base abstract classes are in matplotlib.backend_bases and every concrete implementation is in a separate module. For example, the GTK 3 backend is in matplotlib.backends.backend_gkt3agg.

In this stack there is an Artist classes' hierarchy where most of the hard stuff is done.

Artist knows about Renderer and how to use it to draw images on FigureCanvas. Most of the stuff we are interested in (text, lines, ticks, tick labels, images, and so on) are Artist or subclasses of the Artist class (located in the matplotlib.artist module).

The class, matplotlib.artist.Artist, contains all the shared properties of its children: coordinates transformation, clip box, label, user event handlers, and visibility.

In this figure Artist is the base for most of the other classes. There are two basic categories of classes that inherit from Artist. The first category is of primitive artists, which are visible objects such as Line2D, Rectangle, Circle, and Text. The second category is of composite artists, which are collections of other Artists such as Axis, Tick, Axes, and Figure. For example, Figure has the background of the primitive artist Rectangle, but also contains at least one composite artist, Axes.

Most of the plotting is happening on the Axes class (matplotlib.axes.Axes). Figure background elements such as ticks, axis lines, and the grid and color of the background patch is contained in Axes. Another important feature of Axes is that all the helper methods create other primitive artists and add them to the Axes instance; for example, plot, hist, and imshow.

252

www.it-ebooks.info

Chapter 8

Axes.hist, for example, creates many matplotlib.patch.Rectangle instances and stores them in the Axes.patches collection.

Axes.plot creates one or more matplotlib.lines.Line2D and stores them in the Axes.lines collection.

How to do it...

As an illustration we will:

1. Instantiate the matplotlib Path object for custom drawing.

2. Construct the vertices of our object.

3. Construct the path's command codes to connect those vertices.

4. Create a patch.

5. Add it to the Axes instance of figure.

The following code implements our intentions:

import matplotlib.pyplot as plt

from matplotlib.path import Path

import matplotlib.patches as patches

add figure and axes

fig = plt.figure()

ax = fig.add_subplot(111)

coords = [

(1., 0.), # start position

(0., 1.),

(0., 2.), # left side

(1., 3.),

(2., 3.),

(3., 2.), # top right corner

(3., 1.), # right side

(2., 0.),

(0., 0.), # ignored

]

line_cmds = [Path.MOVETO,

Path.LINETO,

Path.LINETO,

Path.LINETO,

Path.LINETO,

Path.LINETO,

253

www.it-ebooks.info

More on matplotlib Gems

Path.LINETO,

Path.LINETO,

Path.CLOSEPOLY,

]

construct path

path = Path(coords, line_cmds)

construct path patch

patch = patches.PathPatch(path, lw=1,

facecolor='#A1D99B', edgecolor='#31A354')

add it to *ax* axes

ax.add_patch(patch)

ax.text(1.1, 1.4, 'Python', fontsize=24)

ax.set_xlim(-1, 4)

ax.set_ylim(-1, 4)

plt.show()

The preceding code will generate the following:

254

www.it-ebooks.info

Chapter 8

How it works...

For this octagon we used the base patch matplotlib.path.Path, which supports the basic set of primitives for drawing lines and curves (moveto and lineto). These can be used to draw simple and also more advanced polygons using Bezier curves.

First, we specified a set of coordinates in the data coordinates that we match with a set of path commands to act upon those coordinates (or vertices, if you like). With that we instantiate matplotlib.path.Path. We then construct the patch instance matplotlib.

patched.PathPatch with that path, which is a general polycurve path patch.

This patch can now be added to the figure's axes (the fig.axes collection) and we can render the figure to show the polygon.

What we didn't want to do in this example is use matplotlib.figure.Figure directly in place of the matplotlib.pyplot.figure() call. The reason for this is that the pyplot.

figure() call does a lot in the background, such as reading the rc parameters from the matplotlibrc file (to load default figsize, dpi and figure color settings), setting up the figure manager class (Gcf), and so on. We could do all that, but until we really know what we are doing, this is the recommended way to create the figure.

As a general rule of thumb, unless we cannot achieve something via the pyplot interface, we should not reach for direct classes such as Figure, Axes, and Axis, because there is a lot of state managing going on in the background; so, unless we are developing matplotlib, we should avoid bothering about that.

There's more...

If you want interactivity and exploration, it would be the best to use matplotlib via the Python interactive shell. For this purpose, probably the most well known is the IPython pylab mode.

This gives you all the matplotlib features in a powerful and introspective shell with rich set features such as history, inline plotting, and the possibility to share your work if you use IPython Notebook.

IPython Notebook is a web-based interface to the IPython shell, where the work can be shared and converted into HTML or PDF. Matplotlib plots are embedded and inlined, so they can also be saved and shared.

255

www.it-ebooks.info

www.it-ebooks.info

Index

Symbols

axis limits

defining 81-83

3D bars

creating 139-143

B

3D histograms

creating 143-146

backends 251

3D visualization

background color

about 139

defining 89

3D bars, creating 139-143

barb

3D histograms, creating 143-146

about 225

.rc file 14

drawing 225-229

barbs function 226

A

bar charts

creating 99-101

Advanced Linux Sound Architecture (ALSA)

bard3d function 146

194

bar plot 72-78

animate() function 149

Basemap

animation

about 139

with OpenGL 150-154

used, for plotting data on map 172-176

animation, matplotlib 146-150

Basemap toolkit

Animation (object) class 146

URL, for documentation 177

annotations

box plot

adding 92-94

about 77

array slicing 54

making 229-232

ArtistAnimation (TimedAnimation) class 147

brg colormap 206

autocorrelation

bwr colormap 206

about 220

importance 220

C

plotting 221-223

Axes3D 140

CAPTCHA image

AxesGrid 139

about 183, 184

axis() function 82

generating 183-188

axis label

cell() method 24

size, setting 110-112

chart line

transparency, setting 110-112

shadow, adding to 113-116

axis lengths

color

defining 81-83

defining 88

www.it-ebooks.info

ColorBrewer

CSV 20

URL 206

CSV file

Colorbrewer2

data, exporting to 31-35

URL 85

data, importing from 20-22

colored markers

csv.reader() method 21

used, for drawing scatter plots 105, 107

colormaps

D

using 205-210

colormaps, categories

data

cyclic 206

cleaning up, from outliers 40-46

diverging 205

exporting, to CSV file 31-35

qualitative 206

exporting, to JSON file 31-35

sequential 205

exporting, to Microsoft Excel file 31-35

colormaps, ColorBrewer

importing, from CSV file 20-22

category 206

importing, from database 36-40

colormaps function 207

importing, from fixed-width datafile 25, 26

Comma Separated Values. See
 CSV

importing, from JSON resource 28-30

contour() function

importing, from Microsoft Excel file 22-25

about 125

importing, from tab-delimited file 27, 28

call signature 126

plotting on map, Basemap used 172-176

contourf(..., V) call signature 126

plotting on map, Google Map API used

contour plot

177-183

about 125

database

creating 125-128

data, importing from 36-40

contour(X,Y,Z) call signature 126

data table

contour(X,Y,Z,N) call signature 126

adding, to figure 116-118

contour(X,Y,Z,V) call signature 126

data visualization, types

contour(Z) call signature 126

bar charts 72

contour(Z, **kwargs) call signature 126

histograms 72

contour(Z,N) call signature 126

line graphs 72

contour(Z,V) call signature 126

pie charts 72

controlled random datasets

deactivate command 9

generating 56-64

dialect 27

convolve function 64

Distutis 8

coolwarm colormap 206

Django 1.1 8

Coordinate system

drawMap() function 182

Axes 113

dump() method 35

Data 113

DVI to PNG converter 247

Display 113

Figure 113

E

correlate() function 220

Enthought Python Distribution (EPD) 10

cosine plot

equential colormap 205

drawing 78-81

error bars

create_thumbnails() function 163

about 99, 237

cross-correlation

drawing 99-101

plotting, between two variables 217-220

making 237-239

258

www.it-ebooks.info

F

Google Data Visualization Library 177

Google Developer

figtext function 241

URL 183

figure

Google Geochart 178

data table, adding 116-118

Google Map API

figure() function 76, 89

used, for plotting data on map 177-183

file

Google Visualization API 177

reading 46-48

grids

filesystem tree

about 121-123

visualizing, polar bar used 134-137

customizing 121-124

fill_between() function 104, 128

setting 89, 90

filled areas

GTK Tools 139

plotting 103, 104

fill() function 105

H

fixed-width datafile

data, importing from 25, 26

hist() function 98

font properties

histograms

family 242

about 97

fontproperties 243

making 97-99

fontsize 242

using 210-217

fontstretch 243

hold property 74

fontstyle 242

Homebrew project 10

fontweight 242

horizontalalignment property 243

size 242

HTTP Protocol and Response message

stretch 243

URL 183

style 242

using 240-246

I

variant 242

weight 242

ImageChops module 159

format_data() function 167

image data

freetype 6

importing, into NumPy arrays 50-56

freetype 1.4+ 7

ImageDraw module 158

FuncAnimation (TimedAnimation) 147

ImageFilter module 159

Image module

G

im.crop(box) method 158

im.filter(filter) method 158

Gantt chart

im.histogram() method 158

about 232

im = Image.open(filename) method 158

making 232-237

im.resize(size, filter) method 158

get_captcha method 187

im.rotate(angle, filter) method 158

get() method 30

im.split() method 158

get_size function 137

im.transform(size, method, data, filter)

Ghost script 247

method 158

GitHub

image processing

URL 29

example 56

Glumpy 151

with PIL 158-163

Glumpy Quickstart

image processing, Python 50-56

used, for animating with OpenGL 155

259

www.it-ebooks.info

images

line plot

displaying, with other plots 168-172

about 72-78

plotting 164-168

format strings, defining 84-86

imread function 168

properties 86

init() function 149

properties, defining 84-86

installation, matplotlib

styles, defining 84-86

steps 6-8

linestyles

on Mac OS X 10, 11

list 87

on Windows 11, 12

linspace function 64

installation, NumPy 6-8

load_data function 167

installation, PIL

load_files() function 163

for image processing 13

loadtxt() function 21

installation, requests module 14

logarithmic plot

installation, SciPy 6-8

about 190-193

installation, SQLite library 36

rules 190

installation, virtualenv 8, 9

installation, virtualenvwrapper 8, 9

M

intsallation, Python 11, 12

IPython 8, 153

map

IPython Notebook 255

data plotting, Basemap used 172-176

isolines 125

data plotting, Google Map API used 177-183

matplotlib

J

about 72

animation 146-149

JavaScript Object Notation (JSON) 28

installing 6-8

JSON file

installing, on Mac OS X 10, 11

data, exporting to 31-35

installing, on Windows 11, 12

json.loads() function 31

plot, elements 73

JSON resource

matplotlib API 251

data, importing from 28-30

matplotlib parameters

customizing, in code 14, 16

L

customizing, per project 16, 17

matplotlib.pylab interface 251

labels

matplotlibrc configuration file

setting 89, 90

location 17

LaTeX

settings 17

about 246, 247

matplotlib software

syntax 246

backends 251

used, for rendering text 246-250

matplotlib API 251

LaTex syntax 81

matplotlib.pylab interface 251

LaTeX system 247

Mayavi 151

legend

Median absolute deviation (MAD) 40

adding 92-94

Median Filter 69

legend() function 93

meshgrid() function 228

libpng 6

meshgrid property 204

libpng 1.2 7

Microsoft Excel file

line markers

data, exporting to 31-35

list 87

260

www.it-ebooks.info

data, importing from 22-25

Pillow

mkvirtualenv ENV command 9

URL 13

mplot3d 139

plot

multialignment property 243

background color, defining 89

color, defining 88

N

elements 73

plot() function 73, 142, 167

Natgrid 139

plot types

NetCDF 177

bar plot 72-78

next() function 47

box plot 77

noise signal

contour plot 125

smoothing, in real-world data 64-70

cosine plot 78-81

NumPy

defining 72-78

about 6

line plot 72-78

installing 6-8

logarithmic plot 190

URL 6

polar plot 132

NumPy arrays

scatter plots 105

image data, importing into 50-56

sine plot 78-81

O

stacked charts 72-78

stem plot 198

object-oriented API (OO API)

stream plot 201

about 250

whiskers plot 77

differentiating, with pyplot 250-255

polar() function 132

open() function 163

polar plot

OpenGL

about 132

about 151

drawing 131-133

animating with 150-154

probability distribution 57

animating with, Glumpy Quickstart used 155

Processing

animating with, Pyglet Quickstart used 154

URL 155

OpenRefine

proTeX system 247

URL 46

Pyglet 151

Optical Character Recognition (OCR) 188

Pyglet Quickstart

outliers

used, for animating with OpenGL 154

data, cleaning up 40-46

PyPi

URL 25

P

pyplot

differentiating, with OO API 250-255

pie charts

pyplot function 207

about 101

Pyprocessing 155

making 101, 103

Python

PIL

CSV module 20

about 12, 53

file, reading 46, 47, 48

installing, for image processing 13

image processing 50-56

URL 13

intsalling 11, 12

used, for image processing 158-163

Python 2.3 8

Python 2.6 8

261

www.it-ebooks.info

Python 2.7+ Version 6

sheets() method 24

Python 3.3+ Version 6

show() function 171, 237

Python Distribution Utilities 8

sine plot

Python Imaging Library. See
 PIL

drawing 78-81

spectrogram

R

about 193-197

spines

rainbow colormap 206

about 95

random module 57

moving, to center 95, 96

read() function 47

split() function 28

read_png() function 167

SQLite db file 38

real-world data

SQLite library

noise signal, smoothing 64-70

installing 36

reCAPTCHA

stacked chart plot 72-78

URL 188

standard deviation 57

recaptcha-client

statistical population 57

URL 188

stem() function 198

requests module

stem plot

about 29

about 198

installing 14

creating 198-201

Response.json() method 30

formatters 198

run() function 155

streaming data source

S

reading 48, 49

stream plot

save() function 149, 163

about 201

scatter() function 107, 142

drawing 201-205

scatterhist() function 215

used, for visualizing vector field 201

struct module

scatter plots

about 105

about 25

drawing, with colored markers 105-107

URL 25

using 210-217

subplot

scikit-image

using 118-120

URL 56

suptitle function 241

SciPy

T

about 6

installing 6-8

tab-delimited file

SciPy Cookbook

data, importing from 27, 28

URL 66

Table Visualization 178

SciPy signal toolbox

tell() function 47

implementation 69

terrain colormap 206

seek() function 47

test_* function 153

seismic colormap 206

text

setp() function 85

alignment properties 243

setstate() function 63

rendering, with LaTeX 246-250

shadow

text function 241

adding, to chart line 113-116

262

www.it-ebooks.info

text properties

W

using 240-246

ticks

whiskers plot

about 89

about 77

setting 89, 90

making 229-232

TimedAnimation (Animation) class 147

WIMP

title function 241

URL 158

toolkit 139

windowing algorithm 68

transformations 113

workon ENV command 9

write_data() function 35

U

WYSIWYG

URL 158

Ubuntu 13.04 246

under-plot area

X

filling 128-131

urllib2 module 14

xlabel function 241

usevlines() function 218

Y

V

ylabel function 241

variance 57

verticalalignment property 243

virtualenv

about 8

installing 8, 9

virtualenvwrapper

about 9

installing 8, 9

URL 9

263

www.it-ebooks.info

www.it-ebooks.info

Thank you for buying

Python Data Visualization Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book " Mastering phpMyAdmin for Effective MySQL

Management
 " in April 2004 and subsequently continued to specialize in publishing highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and customizing today's systems, applications, and frameworks. Our solution based books give you the knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more specific and less general than the IT books you have seen in the past. Our unique business model allows us to bring you more focused information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge books for communities of developers, administrators, and newbies alike. For more information, please visit our website: www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to continue its focus on specialization. This book is part of the Packt Open Source brand, home to books published on software built around Open Source licences, and offering information to anybody from advanced developers to budding web designers. The Open Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it first before writing a formal book proposal, contact us; one of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience, our experienced editors can help you develop a writing career, or simply get some additional reward for your expertise.

www.it-ebooks.info

Python Geospatial

Development - Second

Edition

ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications from

scratch using Python tools for geospatial development

1. Build your own complete and sophisticated

mapping applications in Python

2. Walks you through the process of building

your own online system for viewing and editing

geospatial data

3. Practical, hands-on tutorial that teaches you all

about geospatial development in Python

Programming ArcGIS 10.1

with Python Cookbook

ISBN: 978-1-84969-444-5 Paperback: 304 pages

Over 75 recipes to help you automates geoprocessing

tasks, create solutions, and solve problem for ARcGIS

with Python

1. Learn how to create geoprocessing scripts

with ArcPy

2. Customize and modify ArcGIS with Python

3. Create time-saving tools and scripts for ArcGIS

Please check www.PacktPub.com
 for information on our titles

www.it-ebooks.info

NumPy Cookbook

ISBN: 978-1-84951-892-5 Paperback: 226 pages

Over 70 interesting recipes for learning the Python open

source mathematical library, NumPy

1. Do high performance calculations with clean and

efficient NumPy code

2. Analyze large sets of data with statistical functions

3. Execute complex linear algebra and mathematical

computations

NumPy Beginner's Guide -

Second Edition

ISBN: 978-1-78216-608-5 Paperback: 310 pages

An action packed guide using real world examples of the

easy to use, high performance, free open source NumPy

mathematical library

1. Perform high performance calculations with clean

and efficient NumPy code

2. Analyze large datasets with statistical functions

3. Execute complex linear algebra and

mathematical computations

Please check www.PacktPub.com
 for information on our titles

www.it-ebooks.info

Document Outline

	
Cover

	
Copyright

	
Credits

	
About the Author

	
About the Reviewers

	
www.PacktPub.com

	
Table of Contents

	
Preface

	
Chapter 1: Preparing Your Working Environment

	
Introduction

	
Installing matplotlib, NumPy, and SciPy

	
Installing virtualenv and virtualenvwrapper

	
Installing matplotlib on Mac OS X

	
Installing matplotlib on Windows

	
Installing Python Imaging Library (PIL) for image processing

	
Installing a requests module

	
Customizing matplotlib's parameters in code

	
Customizing matplotlib's parameters per project

	
Chapter 2 : Knowing Your Data

	
Introduction

	
Importing data from CSV

	
Importing data from Microsoft Excel files

	
Importing data from fixed-width data files

	
Importing data from tab-delimited files

	
Importing data from a JSON resource

	
Exporting data to JSON, CSV, and Excel

	
Importing data from a database

	
Cleaning up data from outliers

	
Reading files in chunks

	
Reading streaming data sources

	
Importing image data into NumPy arrays

	
Generating controlled random datasets

	
Smoothing the noise in real-world data

	
Chapter 3 : Drawing Your First Plots and Customizing Them

	
Introduction

	
Defining plot types – bar, line, and stacked charts

	
Drawing simple sine and cosine plot

	
Defining axis lengths and limits

	
Defining plot line styles, properties, and format strings

	
Setting ticks, labels, and grids

	
Adding legend and annotations

	
Moving spines to the center

	
Making histograms

	
Making bar charts with error bars

	
Making pie charts count

	
Plotting with filled areas

	
Drawing scatter plots with colored markers

	
Chapter 4 : More Plots and Customizations

	
Introduction

	
Setting the transparency and size of axis labels

	
Adding a shadow to the chart line

	
Adding a data table to the figure

	
Using subplots

	
Customizing grids

	
Creating contour plots

	
Filling an under-plot area

	
Drawing polar plots

	
Visualizing the file system tree using a polar bar

	
Chapter 5 : Making 3D Visualizations

	
Introduction

	
Creating 3D bars

	
Creating 3D histograms

	
Animating in matplotlib

	
Animating with OpenGL

	
Chapter 6 : Plotting Charts with Images and Maps

	
Introduction

	
Processing images with PIL

	
Plotting with images

	
Displaying image with other plots in the figure

	
Plotting data on a map using Basemap

	
Plotting data on a map using Google Map API

	
Generating CAPTCHA images

	
Chapter 7 : Using Right Plots to Understand Data

	
Introduction

	
Understanding logarithmic plots

	
Understanding spectrograms

	
Creating a stem plot

	
Drawing streamlines of vector flow

	
Using colormaps

	
Using scatter plots and histograms

	
Plotting the cross-correlation between two variables

	
Importance of autocorrelation

	
Chapter 8 : More on Matplotlib Gems

	
Introduction

	
Drawing barbs

	
Making a box and whisker plot

	
Making Gantt charts

	
Making errorbars

	
Making use of text and font properties

	
Rendering text with LaTeX

	
Understanding the difference between pyplot and OO API

	
Index

Table of Contents

Cover

Copyright

Credits

About the Author

About the Reviewers

www.PacktPub.com

Table of Contents

Preface

Chapter 1: Preparing Your Working Environment

Installing matplotlib, NumPy, and SciPy

Installing virtualenv and virtualenvwrapper

Installing matplotlib on Mac OS X

Installing matplotlib on Windows

Installing Python Imaging Library (PIL) for image processing

Installing a requests module

Customizing matplotlib's parameters per project

Chapter 2 : Knowing Your Data

Importing data from CSV

Importing data from Microsoft Excel files

Importing data from fixed-width data files

Importing data from tab-delimited files

Importing data from a JSON resource

Exporting data to JSON, CSV, and Excel

Importing data from a database

Cleaning up data from outliers

Reading files in chunks

Reading streaming data sources

Importing image data into NumPy arrays

Generating controlled random datasets

Smoothing the noise in real-world data

Chapter 3 : Drawing Your First Plots and Customizing Them

Introduction

Drawing simple sine and cosine plot

Defining axis lengths and limits

Defining plot line styles, properties, and format strings

Setting ticks, labels, and grids

Adding legend and annotations

Moving spines to the center

Making histograms

Making bar charts with error bars

Making pie charts count

Plotting with filled areas

Drawing scatter plots with colored markers

Chapter 4 : More Plots and Customizations

Setting the transparency and size of axis labels

Adding a shadow to the chart line

Adding a data table to the figure

Using subplots

Customizing grids

Creating contour plots

OEBPS/Image00068.jpg
] Mayavi Scene 1

OEBPS/Image00069.jpg

OEBPS/Image00067.jpg
y values (W)
4 B
S

—
o0

=
=Y

o
o>

TeX is Number) —

cos(4 x m x t) x sin(m x 4

e
T
o

n

some equations m""'“, =)
EQ1 lim, ., exp(—z) = 0
Ranges: (a). [¢], {c}. [d]. llell- (£). lg], []
Text: 50apples x 100oranges = lotsof juice

More text formatting: 50 apples x 100 apples = lots of juice

Some indexing: § = (5. 5. . 5n)

.0 0.2 0.4 0.6 0.8

time (s)

1.0

OEBPS/Image00021.jpg
200

175

150

125

100

OEBPS/Image00065.jpg
Mean (+- 95% CI)

12

Observations with corresponding 95% CI

as error bar.

10

0.0 0.5 1.0 15 2.0
Observation #

25 3.0

as

OEBPS/Image00022.jpg
Image: yellow_flowers.jpg

OEBPS/Image00066.jpg
12

No correlation

Ideal positive correlation

19

o}

04

02

00}

12

10|

os|

os|

ol

02

o0

o)

02,

5

To 15 3

Ideal negative correlation

35

%

3

56

Non ideal positive correlation

1o

49
35
30|
25
29
13|
19
03

3

57

CE R

5

12

0]

5

57

5T

58

o8

1o

12

OEBPS/Image00019.jpg
Python Geospatial Development
Second Edtion

Lear tobus sophatcted mappng sppicaton o st

OEBPS/Image00063.jpg

OEBPS/Image00020.jpg
5.0 5.0
45 4.5
4.0
4.0 35
a5 3.0
3.0 25
20
: &
4 15

2'%.0 1520253.0354.0 (i.01.52.02.53.03.54.04.56.01'00

12 40 . 55
i
10 35 i S0 e
! 45
8 30 . .
6 25 35
. 20 30 .
. 25
2 15 ! % .
T

q.01.52.02.53.03.54.04.56.01'0 1'%.51.01.52.02._’)3.03.54.04._’)

OEBPS/Image00064.jpg
Research)

Compiation)

Meeting #1

oesign

Meeting 42

Implementation

pemol

o oo

pe—

o= meeung o2
oesin

(5 meetng 1

I compiaton

|5 esearen

OEBPS/Image00017.jpg
100

80

60

40

20

=50

o

50 100
Raw

Cleaned

OEBPS/Image00061.jpg
Rainy days by season
Spring

Summer
Winter

Autumn

OEBPS/Image00018.jpg
43,

40

33

30

23

20

13|

10}

OEBPS/Image00062.jpg
filled between

15,

49 o5 1o 15 20

OEBPS/Image00059.jpg

OEBPS/Image00060.jpg
2.0

15

1.0

0.5

0.0

=10

=15

M

® _° delta

10

20

OEBPS/Image00025.jpg
a3

40

35,

10

25,

20

15,

10,

OEBPS/Image00026.jpg
16,

1af

12|

1of

o8|

o)

o4

02|

00)

— original signal
— length3
— length 5

%

00

OEBPS/Image00023.jpg
Fi25s

Logarithmic plot of 10"

Linear plot of 10°

ot Lopee
10°
o as
107)
4 as
1 S
g i
i 04
10°)
10° 02|
107)
»y @ 5 ® 7 0 oo @ 5 0 7
rithmic ot of 2. inear plot of 2 -
W0 Logar plot o Linar plot of 2
»
1
14
£ 1
10 <
Y
.
.
.
Wy B 3 5 ¥ 10 E B B O 7

T

OEBPS/Image00024.jpg

OEBPS/Image00002.jpg
Python Data Visualization
Cookbook

‘ ‘ or Milovanovic

OEBPS/Image00001.jpg

OEBPS/Image00004.jpg
10.3

10.2

10.1

10.0

9.9

9.8

10

20

30

40

50

60

70

80

90

OEBPS/Image00003.jpg
Coar dong e o o s

NumPy

‘Second Edition

Beginner's Guide

Ivan Idris

OEBPS/Image00006.jpg

OEBPS/Image00005.jpg
40,

15|

30

25

20

13]

10

os)

1m0

20

7R

0

5

a0

15

OEBPS/Image00057.jpg
Count

16

14

12

10

0.2

0.4 0.6
Number range

0.8

1.0

OEBPS/Image00058.jpg
90"

180

2700

OEBPS/Image00010.jpg
10,

Dema of subplotzgrid

o

o

Ko

3

o

10

o0

04

0

10

o0l

04|

o

°%5

o

%

o

°%s

3

=

10,

o)

o

10,

o6l

02|

%

OEBPS/Image00054.jpg
CoNOUsWN -

b

1024
2331

206
1890

939
2822
3357
2515
3580
3703
1532
1801

as6
1025

608
1380
2820
1892
3320
2257

Name Population

Munbai (Bombay)
seoul

Sao Paulo
Shanghai

Jakarta

Karachi

Istanbul

Ciudad de México
Moscow

New York

Tokyo

Peking

London

Delhi

cairo

Teheran

Lima

Chongaing

Bangkok

Eaats e Buoots

10500000
9981619
9968485
9696300
9604900
9269265
8787958
8501309
8389200
8008278
7980230
7472000
7285000
7206704
6782479
6758845
6464593
6351600
6320174
6260862

OEBPS/Image00011.jpg
225

200

175

150

125

OEBPS/Image00055.jpg
|
|
I
T
|
|
i
|
1
1
|
B

¥
+
T
I
C
Process observed over defined period.

& b---i-A | <
i] i i i i i i .
s o 9 <o o o o o o
8 R 8 8 & K& R =

“poLIad paulsp JSA0 PBAISSTO SI0LIT

OEBPS/Image00008.jpg
Python Data Visualization
Cookbook

OEBPS/Image00052.jpg
12

200000

400000

600000

800000

1000000

12
1.0
0.8
0.6
0.4
0.2
0.0

-0.2
10°

10°

OEBPS/Image00007.jpg
Python Data Visualization
Cookbook

gor Milovanovic¢

OEBPS/Image00009.jpg
100

o
o1
o : c2
3 .3
a
) .5
.6
b
- .8
2|
of
20
a0
855 T 0 w0 3 %0 000 T200

OEBPS/Image00053.jpg
Measurea values

Measurements

25

20

o

o0l

= experiment #1

0

OEBPS/Image00050.jpg
200

150
100
50

30 5010@5@00

OEBPS/Image00051.jpg
steam | leaf

023477789

OEBPS/Image00048.jpg
N
"

N
s

o
w0 e o
055 50 100 150 200 250 300 350 a00 0 -300 -200 -100 0 100 200 300 00

”
s

5
"

@
o o

‘Random data

‘Autocorrelation of random data

OEBPS/Image00049.jpg

OEBPS/Image00016.jpg

OEBPS/Image00014.jpg

OEBPS/Image00015.jpg
1
0

o8
s

o
o

o,
4

o.
2

-

>

s

-D‘T"%»\

OEBPS/Image00000.jpg
Programming ArcGIS 10.1
with Python Cookbook

OEBPS/Image00012.jpg
Sales Net [usd]

OEBPS/Image00056.jpg
3.0

y axis

25

y values

2.0

h L3

1.0

figure

y tickers

lineplot

x tickers

X axis

8
x values

OEBPS/Image00013.jpg
0
Time

—E

—3

15

OEBPS/Image00047.jpg

OEBPS/Image00043.jpg
25

20

15

10

My function: z=(1—a? +3)e ')/3

14

Ll

0.8

0.5

0.2

=1.0

OEBPS/Image00044.jpg
10 15 20
400
300
200
100
O0 10 15 20

OEBPS/Image00041.jpg
30

25
20
15
10
03/

3 E o0 o %0 =0 £ £y w0
(Google Trends dota for “owers”

10

o]
o6
04l
02|
o0}

Ed ™0 o =0 =0 £ £ o
Random data

10

o3|

B !

L5 B =y i Q 3 £ £ £
Cross comeiationofrandom data

OEBPS/Image00042.jpg
A

Functions sin and cos

+m/2

OEBPS/Image00039.jpg
0000000

OEBPS/Image00040.jpg
Blue where y2 <.

1. Gold-color where y2

v

20

15|

10|

05

00

-03,

-10

-13)

285 (3

20

o

Same as above, but mask

i5

15|

10
00 s

285 05

10

15

20

OEBPS/Image00037.jpg
14
12
10

oN & O ®

0 2 46 81012140 2 4 6 8

01234

OEBPS/Image00038.jpg
NumPy Cookbook

Ot 0t s g o Pyon o e

OEBPS/Image00045.jpg
Frequency

OEBPS/Image00046.jpg
Global Average Temperature vs. Number of Pirates.

160,

155

globa average temperature.

105

Mfog Te50 500 50 2000
year

OEBPS/Image00032.jpg
4.0

as

3.0

25

2.0

15

1.0

OEBPS/Image00076.jpg
10

-10.

=10

-0.5

0.0

0.5

1.0

OEBPS/Image00033.jpg
Frequency [Hz]

Times (sec)

-100

-120

-140

-160

150

200

OEBPS/Image00030.jpg
monospace xx-large
monospace x-large
monospace large

monospace nediun

nonespace snall

fantasy xx-large

fantasy x-large

fantasy large

fantasy medium black oblique

- black italic

[m—— black normal
. heavy oblique

cursive xx-large heavy italic

cursive x-large heavy normal

cursive large

cursive medium bold oblique

bold italic
bold normal

semibold oblique
semibold italic
semibold normal

sans-serif xx-large
sans-serif x-large
sans-senf large

medium oblique

medium italic

‘medium normal

serif xx-large normal oblique

serif x-large normal italic

serif large normal normal

serif medium

soifsmall light oblique

J— light italic

JE— light normal

OEBPS/Image00074.jpg
Smoothing windows

flat

10f

03]

o)

ol

02

— hanning

00}

10

15 g =

Smoothed signal

15,

10|

03|

00)

— original signal
— signal with noise
— fat

hanning

%

W

% 3 100

20

OEBPS/Image00031.jpg
a3

40

35,

10

25,

20

15,

10,

OEBPS/Image00075.jpg
2|

15

10

no correl

1

10

- comel

ENE
strong comstation

OEBPS/Image00028.jpg
20,
ol w2 i
T © 5
21 2 2
13 2% £ Eg
10
05
00|
o3|
10|
“13g g 7

OEBPS/Image00072.jpg
2.0

15

1.0

0.5

2.0

L5

1.0

0.5

0.0

0.5

-1.0

o T

280

OEBPS/Image00029.jpg
NN N

%

I .

3

NN

\

15

10

00 L oy
(SRR N GO S

| S S S RS

LRy

TR agy

R

[A SN

e

o5

E

g

EUNE

2

=)

1|

0|

5

OEBPS/Image00073.jpg
text.Annotation
SRR tertText

text TextWithDash ——

lines.Line2D

patches.FancyArow _patches.Polygon

patches.RegularPolygon

patchesglipse |\
atches.Patc
patches.Rectangle > \
patches.Arrow |

spines.Spine
legend.Legend |
figure.Figure

axis.Xas J
| avis.Avis
D

axis XTick
axis. \Tick

axis. Tick

OEBPS/Image00070.jpg
200
150
100

50

=50
-100

250
200
150
100

50

=50
-100
—150

250
200
150
100

50

=50
-100
~150

10

20

50

OEBPS/Image00027.jpg
351

25|

20

151

10)

— plot

— 2ndplot

last plot

Important value

£

W

0

OEBPS/Image00071.jpg
[output hemt

€« C [) file:// g gy = = foutput html

Median Monthly Disposable Salary World Countries

OEBPS/Image00036.jpg

OEBPS/Image00034.jpg

OEBPS/Image00035.jpg
1.0

0.5

0.0

05

-1.0

